

The International Journal on Advances in Software is published by IARIA.

ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Software, issn 1942-2628

vol. 3, no.1 & 2, year 2010, http://www.iariajournals.org/software/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Software, issn 1942-2628

vol. 3, no. 1 & 2, year 2010,<start page>:<end page> , http://www.iariajournals.org/software/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2010 IARIA

International Journal on Advances in Software

Volume 3, Number 1 & 2, 2010

Editor-in-Chief

Jon G. Hall, The Open University - Milton Keynes, UK

Editorial Advisory Board

 Meikel Poess, Oracle, USA

 Hermann Kaindl, TU-Wien, Austria

 Herwig Mannaert, University of Antwerp, Belgium

Software Engineering

 Marc Aiguier, Ecole Centrale Paris, France

 Sven Apel, University of Passau, Germany

 Kenneth Boness, University of Reading, UK

 Hongyu Pei Breivold, ABB Corporate Research, Sweden

 Georg Buchgeher, SCCH, Austria

 Dumitru Dan Burdescu, University of Craiova, Romania

 Angelo Gargantini, Universita di Bergamo, Italy

 Holger Giese, Hasso-Plattner-Institut-Potsdam, Germany

 Jon G. Hall, The Open University - Milton Keynes, UK

 Herman Hartmann, NXP Semiconductors- Eindhoven, The Netherlands

 Hermann Kaindl, TU-Wien, Austria

 Markus Kirchberg, Institute for Infocomm Research, A*STAR, Singapore

 Herwig Mannaert, University of Antwerp, Belgium

 Roy Oberhauser, Aalen University, Germany

 Flavio Oquendo, European University of Brittany - UBS/VALORIA, France

 Eric Pardede, La Trobe University, Australia

 Aljosa Pasic, ATOS Research/Spain, NESSI/Europe

 Robert J. Pooley, Heriot-Watt University, UK

 Vladimir Stantchev, Berlin Institute of Technology, Germany

 Osamu Takaki, Center for Service Research (CfSR)/National Institute of Advanced Industrial

Science and Technology (AIST), Japan

 Michal Zemlicka, Charles University, Czech Republic

Advanced Information Processing Technologies

 Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania

 Michael Grottke, University of Erlangen-Nuremberg, Germany

 Josef Noll, UiO/UNIK, Sweden

 Olga Ormandjieva, Concordia University-Montreal, Canada

 Constantin Paleologu, University ‘Politehnica’ of Bucharest, Romania

 Liviu Panait, Google Inc., USA

 Kenji Saito, Keio University, Japan

 Ashok Sharma, Satyam Computer Services Ltd – Hyderabad, India

 Marcin Solarski, IBM-Software Labs, Germany

Advanced Computing

 Matthieu Geist, Supelec / ArcelorMittal, France

 Jameleddine Hassine, Cisco Systems, Inc., Canada

 Sascha Opletal, Universitat Stuttgart, Germany

 Flavio Oquendo, European University of Brittany - UBS/VALORIA, France

 Meikel Poess, Oracle, USA

 Kurt Rohloff, BBN Technologies, USA

 Said Tazi, LAAS-CNRS, Universite de Toulouse / Universite Toulouse1, France

 Simon Tsang, Telcordia Technologies, Inc. - Piscataway, USA

Geographic Information Systems

 Christophe Claramunt, Naval Academy Research Institute, France

 Dumitru Roman, Semantic Technology Institute Innsbruck, Austria

 Emmanuel Stefanakis, Harokopio University, Greece

Databases and Data

 Peter Baumann, Jacobs University Bremen / Rasdaman GmbH Bremen, Germany

 Qiming Chen, HP Labs – Palo Alto, USA

 Ela Hunt, University of Strathclyde - Glasgow, UK

 Claudia Roncancio INPG / ENSIMAG - Grenoble, France

Intensive Applications

 Fernando Boronat, Integrated Management Coastal Research Institute, Spain

 Chih-Cheng Hung, Southern Polytechnic State University, USA

 Jianhua Ma, Hosei University, Japan

 Milena Radenkovic, University of Nottingham, UK

 DJamel H. Sadok, Universidade Federal de Pernambuco, Brazil

 Marius Slavescu, IBM Toronto Lab, Canada

 Cristian Ungureanu, NEC Labs America - Princeton, USA

Testing and Validation

 Michael Browne, IBM, USA

 Cecilia Metra, DEIS-ARCES-University of Bologna, Italy

 Krzysztof Rogoz, Motorola, USA

 Sergio Soares, Federal University of Pernambuco, Brazil

 Alin Stefanescu, University of Pitesti, Romania

 Massimo Tivoli, Universita degli Studi dell'Aquila, Italy

Simulations

 Robert de Souza, The Logistics Institute - Asia Pacific, Singapore

 Ann Dunkin, Hewlett-Packard, USA

 Tejas R. Gandhi, Virtua Health-Marlton, USA

 Lars Moench, University of Hagen, Germany

 Michael J. North, Argonne National Laboratory, USA

 Michal Pioro, Warsaw University of Technology, Poland and Lund University, Sweden

 Edward Williams, PMC-Dearborn, USA

Additional reviews

 Alexandre Mota, UFPE, Brazil

International Journal on Advances in Software

Volume 3, Numbers 1 & 2, 2010

CONTENTS

Combining Formal Methods and MDE Techniques for Model-driven System Design and

Analysis

Angelo Gargantini, Università di Bergamo, Italy

Elvinia Riccobene, Università degli Studi di Milano,Italy

Patrizia Scandurra, Università di Bergamo, Italy

1 - 18

Video Notation (ViNo): A Formalism for Describing and Evaluating Non-sequential

Multimedia Access

Anita Sobe, Klagenfurt University, Austria

Laszlo Böszörmenyi, Klagenfurt University, Austria

Mario Taschwer Klagenfurt University, Austria

19 - 30

Ontology-based Indexing and Contextualization of Multimedia Documents for Personal

Information Management Applications

Annett Mitschick, Dresden University of Technology, Germany

31 - 40

Relying on Testability Concepts to ease Validation and Verification activities of

AIRBUS Systems

Fassely Doumbia, Airbus, France

Odile Laurent, Airbus, France

Chantal Robach, LCIS - Grenoble Institute of Technology, France

Michel Delaunay, LCIS - Grenoble Institute of Technology, France

41 - 53

Towards a Deterministic Business Process Modelling Method based on Normalized

Systems Theory

Dieter Van Nuffel, University of Antwerp, Belgium

Herwig Mannaert, University of Antwerp, Belgium

Carlos De Backer, University of Antwerp, Belgium

Jan Verelst, University of Antwerp, Belgium

54 - 69

Adaptive Object-Models: a Research Roadmap

Hugo Sereno Ferreira, Universidade do Porto, Portugal

Filipe Figueiredo Correia, Universidade do Porto, Portugal

Ademar Aguiar, Universidade do Porto, Portugal

João Pascoal Faria, Universidade do Porto, Portugal

70 - 89

Goal Sketching from a Concise Business Case

Kenneth Boness, University of Reading, UK

90 - 99

Rachel Harrison, Oxford Brookes University, UK

A Meta-model for Problem Frames: Conceptual Issues and Tool Building Support

Pietro Colombo, Università degli Studi dell’Insubria, Italy

Luigi Lavazza, Università degli Studi dell’Insubria, Italy

Alberto Coen-Porisini, Università degli Studi dell’Insubria, Italy

Vieri del Bianco, University College Dublin, Ireland

100 - 113

Understanding Frameworks Collaboratively : Tool Requirements

Nuno Flores, Universidade do Porto, Portugal

Ademar Aguiar, Universidade do Porto, Portugal

114 - 135

Automatic Identification of Cohesive Structures within Modularity Reengineering

Anja Bog, University of Potsdam, Germany

Oleksandr Panchenko, University of Potsdam, Germany

Kai Spichale, University of Potsdam, Germany

Alexander Zeier, University of Potsdam, Germany

136 - 146

Requirement-driven Scenario-based Testing Using Formal Stepwise Development

Qaisar A. Malik, Åbo Akademi University, Finland

Linas Laibinis, Åbo Akademi University, Finland

Dragoş Truşcan, Åbo Akademi University, Finland

Johan Lilius, Åbo Akademi University, Finland

147 - 160

Integrating Quality Modeling in Software Product Lines

Joerg Bartholdt, Siemens AG, Germany

Roy Oberhauser, Aalen University, Germany

Andreas Rytina, itemis, Germany

Marcel Medak, FNT GmbH, Germany

161 - 174

Enabling Innovations in Mobile-Learning: A Context-aware and Service-based

Middleware

Sergio Martin, UNED (Spanish University for Distance Education), Spain

Elio Sancristobal, UNED (Spanish University for Distance Education), Spain

Rosario Gil, UNED (Spanish University for Distance Education), Spain

Gabriel Díaz, UNED (Spanish University for Distance Education), Spain

Manuel Castro, UNED (Spanish University for Distance Education), Spain

Juan Peire, UNED (Spanish University for Distance Education), Spain

Mihail Milev, University of Plovdiv, Bulgaria

Nevena Mileva, University of Plovdiv, Bulgaria

175 - 185

Sources of Software Requirements Change from the Perspectives of Development and

Maintenance

Sharon McGee, Queens University, Ireland

186 - 200

Des Greer, Queens University, Ireland

Equipping Software Engineering Apprentices with a Repertoire of Practices

Vincent Ribaud, Université Européenne de Bretagne, France

Philippe Saliou, Université Européenne de Bretagne, France

201 - 212

Modernization of a Legacy Application: Does it Have to be Hard?

Arne Koschel, Applied University of Sciences and Arts, Hannover, Germany

Carsten Kleiner, Applied University of Sciences and Arts, Hannover, Germany

Irina Astrova, Tallinn University of Technology, Estonia

213 - 224

Human-Computer Interaction Design Patterns: Structure, Methods, and Tools

Christian Kruschitz, University of Klagenfurt, Austria

Martin Hitz, University of Klagenfurt, Austria

225 - 237

Metrics for the Evaluation of Adaptivity Aspects in Software Systems

Claudia Raibulet, Universitá degli Studi di Milano-Bicocca, Italy

Laura Masciadri, Universitá degli Studi di Milano-Bicocca, Italy

238 - 251

A Quality Criteria Framework for Pattern Validation

Daniela Wurhofer, University of Salzburg, Austria

Marianna Obrist, University of Salzburg, Austria

Elke Beck, University of Salzburg, Austria

Manfred Tscheligi, University of Salzburg, Austria

252 - 264

Adaptable and Adaptive Visualizations in Concept-oriented Content Management

Systems

Hans-Werner Sehring, T-Systems Multimedia Solutions GmbH, Germany

265 - 279

A Practical Approach to Distributed Metascheduling

Janko Heilgeist, Fraunhofer SCAI, Germany

Thomas Soddemann, Fraunhofer SCAI, Germany

Harald Richter, Clausthal Technical University, Germany

280 - 293

Accelerating Cellular Automata Evolution on Graphics Processing Units

Luděk Žaloudek, Brno University of Technology, Czech Republic

Lukáš Sekanina, Brno University of Technology, Czech Republic

Václav Šimek, Brno University of Technology, Czech Republic

294 - 303

Service-Oriented Integration Using a Model-Driven Approach

Philip Hoyer, Karlsruhe Institute of Technology, Germany

Michael Gebhart, Karlsruhe Institute of Technology, Germany

Ingo Pansa, Karlsruhe Institute of Technology, Germany

Aleksander Dikanski, Karlsruhe Institute of Technology, Germany

304 - 317

Sebastian Abeck, Karlsruhe Institute of Technology, Germany

Combining Formal Methods and MDE Techniques
for Model-driven System Design and Analysis

AngeloGargantini∗, Elvinia Riccobene,† and Patrizia Scandurra∗
∗Dipartimento di Ingegneria dell’Informazione e Metodi Matematici (DIIMM)

Università di Bergamo, Viale Marconi, 5 - 24044 Dalmine (BG), Italy
Email: {angelo.gargantini,patrizia.scandurra}@unibg.it
†Dipartimento di Tecnologie dell’Informazione (DTI)

Università degli Studi di Milano, via Bramante 65 - 26013 Crema (CR), Italy
E-mail: elvinia.riccobene@dti.unimi.it

Abstract—The use offormal methods, based on rigorous math-
ematical foundations, is essential for system specification and
proof, especially for safety critical systems. On the otherhand,
Model-driven Engineering (MDE) is emerging as new approach
to software development based on the systematic use of models as
primary artifacts throughout the engineering life-cycle by com-
bining domain-specific modeling languages (DSMLs) with model
transformers, analyzers, and generators. This paper presents our
position and experience on combining flexibility and automation
of the MDE approach with rigorousness and preciseness of formal
methods to achieve significant boosts in both productivity and
quality in model-driven design and analysis of software and
systems. An in-the-loop integration is proposed where, on one
hand, MDE principles are used to engineer a language and a tool-
set around a formal method for its practical adoption in systems
development life cycle, and, on the other hand, the same formal
method is used in the same MDE context to endow modeling
languages with a precise and (possibly) executable semantics
and to perform formal analysis of systems models written in
those languages. A concrete scenario of in-the-loop integration is
presented in terms of the Abstract State Machine formal method
and the Eclipse Modeling Framework. This integration allows
system design using the Eclipse Modeling Framework and formal
system analysis by Abstract State Machines in a seamless and
systematic way, as shown by a concrete case study.

Keywords-Formal methods; Model Driven Engineering; Ab-
stract State Machines; model semantics; model execution and
analysis

I. I NTRODUCTION

Using Formal Methods(FMs), which have rigorous math-
ematical foundations, for system development is nowadays
extremely important, especially for high-integrity systems
where safety or security need to be formally proved. On
the other hand, theModel-driven Engineering(MDE) [2],
[3] is emerging as a new paradigm in software engineering,
which bases system development on (meta-)modeling and
model transformations, and provides methods to build bridges
between similar or different technical spaces and domains.

Both approaches have advantages and disadvantages that we
here shortly summarize (see Fig. 1).

This paper is the extended version of the conference paper [1].
This work is supported in part by the Italian Government under the project

PRIN 2007D-ASAP: Architetture Software Adattabili e Affidabili per Sistemi
Pervasivi(2007XKEHFA).

Advantages of FMs The use of formal methods in system
engineering is becoming essential, especially during the early
phases of the development process. Indeed, an abstract model
of the system can be used to understand if the system under
development satisfies the given requirements (by simulation
and model-based testing), and guarantees certain properties
by formal analysis (validation & verification).

Disadvantages of FMsWhile there are several cases proving
the applicability of formal methods in industrial applications
and showing very good results, many practitioners are still
reluctant to adopt formal methods. Besides the well-known
lack of training, this skepticism is mainly due to: the com-
plex notations that formal techniques use rather than other
lightweight and more intuitive graphical notations, like the
Unified Modeling Language (UML) [4]; the lack of easy-
to-use tools supporting a developer during the life cycle
activities of system development, possibly in a seamless
manner; and the lack of integration among formal methods
themselves and their associated tools.

Advantages of MDE MDE technologies with a greater fo-
cus on architecture and automation yield higher levels of
abstraction in system development by promoting models
as first-class artifacts to maintain, analyze, simulate, and
eventually transform into into code or into other models.
Meta-modeling is a key concept of the MDE paradigm and
it is intended as a way to endow a language or a formalism
with an abstract notation, so separating the abstract syntax

M D E

F M

A d v a n t a g e s D i s a d v a n t a g e s

* De r i va t i ve a r t i f ac t s f o r
 t o o l d e v e l o p m e n t

* A u t o m a t e d m o d e l
 t rans fo rmat ions

* U s e r - f r i e n d l y n o t a t i o n

* L a c k o f i n t e g r a t i o n

* L a c k o f t o o l s

* H a r d n o t a t i o n

* L a c k o f s e m a n t i c s

* Un f i t f o r mode l
 ana lys is

* R i g o r o u s m a t h e m a t i c a l
 f o u n d a t i o n
* S u i t a b l e f o r m o d e l
 analys is

Fig. 1: Formal methods and MDE

1

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and semantics of the language from its different concrete
notations. Although the foundation constituents of the MDE
are still evolving, some MDE principles are implemented
in meta- modeling/programming frameworks like the OMG
MDA (Model Driven Architecture) [5], Model-integrated
Computing (MIC) [6], Software Factories and Microsoft
Domain-Specific Languages (DSLs) tools (as part of the
Visual Studio SDK) [7], Eclipse/EMF [8], etc. Metamodel-
based modeling languages are increasingly being defined and
adopted for specific domains of interest addressing the inabil-
ity of third-generation languages to alleviate the complexity
of platforms and express domain concepts effectively [3].

Disadvantages of MDE Although the definition of a lan-
guage abstract syntax by a metamodel is well mas-
tered and supported by many meta-modeling environ-
ments (EMF/Ecore, GME/MetaGME, AMMA/KM3, XMF-
Mosaic/Xcore, etc.), the semantics definition of this class
of languages is an open and crucial issue. Currently, meta-
modeling environments are able to cope with most syntactic
and transformation definition issues, but they lack of any
standard and rigorous support to provide the (possibly ex-
ecutable) semantics of metamodels, which is usually given
in natural language. This implies that most currently adopted
metamodel-based languages (such as the UML) are not yet
suitable for effective model analysis due to their lack of
a strong semantics necessary for a formal model analysis
assisted by tools.
In [1], we described how these two approaches can be

combined showing how the advantages of one can be exploited
to cover or weaken the disadvantages of the other. In this
paper, we extend and deepen this combination view with the
final goal of developing a model-driven approach for designing
systems according to the MDE principles, and analyzing
models by exploiting formal techniques.

Section II provides some related work concerning connec-
tions between formal methods and MDE.

Section III describes an overall process, based on the MDE
approach, for engineering a language and a tool-set for a
formal method. This allows to overcome the lack of user-
friendly notations, of integration of techniques, and of their
tool inter-operability. This deficiency still poses a significant
challenge for formal methods.

Section IV presents an approach to endow language meta-
models with precise executable semantics, and we discuss
techniques for formal analysis that can be used once formal
models are associated to language terminal models by, pos-
sibly, automatic model mapping. This addresses the problem
of expressing semantics of metamodel-based languages and
performing model validation and formal verification.

In order to combine in a tight way rigorousness and pre-
ciseness of FMs with flexibility and automation of the MDE,
in Section V anin-the-loopintegration is proposed, where the
same MDE technology and FM techniques are involved in
both the two activities: MDE for FMs and FMs for MDE.

Section VI provides basic concepts concerning the Abstract
State Machine formal method which is later used to implement
the in-the-loop approach.

Sections VII and VIII show a concrete scenario of in-the-

loop integration between the ASM formal method and the
EMF framework. On one side, we report our experience in
exploiting MDE methodology to engineer a language and
a tool-set for the ASMs in order to support their practical
use in systems development life cycle. On the other side,
we show how ASMs can be used to provide semantics to
languages defined in the MDE context and how to perform
formal analysis of models developed by MDE technology.

A complete case study is presented in Section IX which
shows how MDE-based technologies are used to define a
metamodel-based language for the Tic-Tac-Toe, and the ASM-
based semantic framework is used to define an executable
semantics of the language and to support semantics validation
and formal verification of models.

Section X shows how to get a tighter integration between
ASM and EMF byclosing the loop, i.e. by using the ASM
formal method itself to define the semantics of the ASMs in
the EMF framework.

Finally, our conclusion and future directions are provided
in Section XI.

II. RELATED WORK

Software languages play a cornerstone role in system devel-
opment. Language engineering processes have been considered
in many contexts of software engineering [9]. Concerning
the metamodeling technique of MDE for (software) language
engineering, many proposals have been presented, which pay
attention to the fact that language descriptions take different
form in different technical spaces (e.g. metamodels, schemas,
grammars, and ontologies) and typically multiple languages
(from different technical spaces) need to be used together and
integrated in most software development scenarios. A process
to engineer languages address several aspects of a language:
structure, constraints, textual and graphical representation,
parser/compiler, transformational and executional behavior.
Research usually faced only one of these aspects, therefore, a
comparison with related work can be often done considering
single aspects of a language development process.

Formal methods communities have only recently started
to settle their tools on metamodels and MDE platforms.
A non exhaustive list of such efforts follows. An Event-B
metamodel and an EMF-based Framework for Event-B have
been recently developed [10] to provide an EMF-based front-
end to the Rodin platform, an Eclipse-based IDE for Event-B
that provides support for refinement and mathematical proof
of Event-B models.

The Maude Formal Tool Environment [11] is an executable
rewriting logic language suited for the specification of object-
oriented open and distributed systems. It offers tool support
for reasoning about Maude specifications and, recently, also an
Eclipse plug-in that allows to connect the Maude environment
to the KM3 metamodeling framework using ATL (the ATLAS
Transformation Language) [12] transformations.

Within the Graph Transformation community, using the
concepts of graph transformations and metamodeling, the
transformation language GReAT (Graph Rewriting And Trans-
formation language) [13] has been designed to address the

2

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

specific needs of the model transformation area of the Model
Integrated Computing. It is supported by tools that allow the
rapid prototyping and realization of transformation tools.

To the best of our knowledge, the development of the above
mentioned languages and tools did not follow a model-driven
engineering process like the one described here in Section III.

A metamodel for the ITU language SDL-2000 has been
also developed [14]. The authors present also a semi-automatic
reverse engineeringmethodology that allows the derivation of
a metamodel from a formal syntax definition of an existing
language. The SDL metamodel has been derived from the
SDL grammar using this methodology. A very similar method
to bridgegrammarwareand modelwareis also proposed by
other authors in [15] and in [16]. These approaches are
complementary to the development process presented in Sect.
III. Our approach has to be considered aforward engineering
process consisting in deriving a concrete textual notationfrom
an abstract metamodel.

A recent result [17] shows how to apply metamodel-based
technologies for the creation of a language description for
Sudoku. This is on the same line of our approach of exploiting
MDE technologies to develop a tool-set around ASMs.

Within the ASM community, a number of notations and
tools have been developed for the specification and analysis
[18]. The Abstract State Machine Language (AsmL) developed
by the Foundation Software Engineering group at Microsoft
is the greatest effort. AsmL is a rich executable specification
language, based on the theory of Abstract State Machines,
expression- and object- oriented, and fully integrated into
the Microsoft .NET framework. However, AsmL does not
provide a semantic structure targeted for the ASM method.
“One can see it as a fusion of the Abstract State Machine
paradigm and the .NET type system, influenced to an extent by
other specification languages like VDM or Z” [19]. Adopting
a terminology currently used, AsmL is a platform-specific
modeling language for the .NET type system. Of the remaining
tools for ASMs, let us mention the more popular ones: the
CoreASM, an extensible execution engine developed in Java,
TASM (Timed ASMs), an encoding of Timed Automata in
ASMs, and a simulator-model checker for reactive real-time
ASMs [20] able to specify and verify First Order Timed
Logic (FOTL) properties on ASM models. Among these, the
CoreASM engine is the more comparable to our. Other specific
languages for the ASMs, no longer maintained, are ASM-SL,
which adopts a functional style being developed in ML and
which has inspired us in the language of terms, the AsmGofer
language based on the Gofer environment, and XASM which
is integrated in Montages, an environment generally used for
defining semantics and grammar of programming languages.
All the above tools, however, do not rely on MDE principles
and techniques, and, except CoreASM that is based on an
extensible architecture, none of the others are designed to
support model exchange and tool integration. Recently, a
metamodel for the AsmL language is available as part of a
zoo of metamodels defined by using the KM3 meta-language.
However, this metamodel is not appropriately documented or
described elsewhere, so this prevented us to evaluate it.

Regarding the derivation of concrete grammars for meta-

models, developing a grammar for the ASMs from the meta-
model was challenging and led us to the definition of a bridge
between grammars and metamodels as explained in [21]. This
part of the process required at least six man month. Although
we did not automatize these rules, because no advanced model-
to-text tools were available at that time and because we wanted
to derive only one grammar for AsmetaL, the rules may be
easily reused for other formalisms. Several model-to-texttools
exist now: EMFText [22] working for Ecore metamodels,
TCS [23] (Textual Concrete Syntax) for metamodels written
in KM3, TEF (Textual Editing Framework) for EMF-based
metamodels, etc. Vice versa, Xtext [24] allows to derive
a language metamodel from the language concrete textual
grammar. An overview of textual grammars and metamodel
is given in [25]. Other more complex model-to-text tools,
capable of generating text grammars from specific MOF
based repositories, exist [26], [27]. These tools render the
content of a MOF-based repository (known as a MOFlet) in
textual form, conforming to some syntactic rules (grammar).
However, though automatic, since they are designed to work
with any MOF model and generate their target grammar based
on predefined patterns thus they do not permit a detailed
customization of the generated language.

On the problem of integrating graphical notations and
formal methods, [28] shows how the process algebra CSP
and the specification language Object-Z, can be integrated into
an object-oriented software engineering process employing the
UML as a modeling and Java as an implementation language.
In [29], the author presents an approach to formal methods
technology exploitation which introduces formal notations into
critical systems development processes. Furthermore, [30] pro-
poses a metamodel-based transformation technique, which is
founded by a set of structural and semantic mappings between
UML and B, to assist derivation of formal B specifications
from UML diagrams. All these approaches are based on
translating graphical models to formal specifications, andare
similar to our approach on moving from terminal models of a
metamodel-based language to an ASM specification. However,
they are tailored for the UML, while our approach refer to
generic metamodel-based languages, and they perform only
one side of the in-the-loop integration.

An MDE-based approach for integrating different formal
methods was recently proposed in [31]. As in our approach,
formal models are introduced into MDE as domain specific
languages by developing their metamodels. Then, transfor-
mation rules are defined to obtain notation bridges. At last,
model-to-text syntax rules are developed, so to map models
into programs. As case study, the approach was applied for
bridging MARTE to LOTOS. The main goal of their work is to
integrate different formal notations in software development,
however they do not provide semantics to them. General
challenges of tool integration are discussed in [32], wherea
software language engineering solution technique is presented
that apply MDE principles to address tool interoperability.

Concerning the problem of specifying the semantics of
metamodel-based languages, some recent works, such as
Kermeta [33], aim at providing executability into current
metamodeling frameworks. Another effort toward this same

3

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

direction is presented in [34] where the authors describe the
M3Actions framework to support operational semantics for
EMF models. The Maude formalism is also proposed in [35]
as a way for specifying the semantics of visual modeling
languages.

On the application of ASMs for specifying the execution
semantics of metamodel-based languages in a MDE style,
we can mention the translational approach described in [36].
They propose asemantic anchoringto well-established formal
models of computation (such as FSMs, data flow, and discrete
event systems) built upon AsmL, by using the transforma-
tion language GME/GReAT. The proposed approach offers
up predefined and well-defined sets ofsemantic unitsfor
future (conventional) anchoring efforts. However, we see two
main disadvantages in this approach: first, it requires well
understood and safe behavioral language units and it is not
clear how to specify the language semantics from scratch when
these language units do not yet exist; second, inheterogeneous
systems, specifying the language semantics as composition
of some selected primary semantic units for basic behavioral
categories [37] is not always possible, since there may exist
complex behaviors which are not easily reducible to a com-
bination of existing ones. Still concerning the translational
category, in [38] the dynamic semantics of the AMMA/ATL
transformation language was specified in the XASM [39] ASM
dialect. A direct mapping from the AMMA meta-language
KM3 to an XASM metamodel is used to represent metamodels
in terms of ASM universes and functions, and this ASM model
is taken as basis for the dynamic semantics specification of the
ATL metamodel. However, this mapping is neither formally
defined nor the ATL transformation code which implements
it have been made available in the ATL transformations Zoo
or as ATL use case [12]; only the Atlantic XASM Zoo
[40], a mirror of the Atlantic Zoo metamodels expressed
in XASM (as a collection of universes and functions), has
been made available. A further recent result [41] proposes
ASMs, Prolog, and Scheme as description languages in a
framework named EProvide 2.0 for prototyping the operational
semantics of metamodel-based languages. Their approach is
also translational as it is based on three bridges: a physical,
a logical, and a pragmatical bridge between grammarware
language and modeling framework.

By exploiting our ASM-based semantic framework [42], we
also defined the semantics of the AVALLA language [43] of
the AsmetaV validator, a domain-specific modeling language
for scenario-based validation of ASM models. Moreover, in
[44] we adapt one of the techniques in [42], themeta-hooking,
for UML profiles, and we show its application to theSystemC
Process (SCP) state machinesformalism of the SystemC UML
profile [45].

III. MDE FOR FMS

Applying the MDE development principles to a formal
method has the overall goal of engineering a language and
a tool-set around the formal method in order to support its
practical use in systems development life cycle.

The MDE methodology for engineering software languages
is well established in the context of domain-specific languages

[46]. Nevertheless, this model-driven development process can
be adapted to formal methods, too.

The first step of this engineering process is thechoice of a
metamodeling framework and its supporting technologies. In
principle, the choice of a specific meta-modeling framework
should not prevent the use of models in other different meta-
modeling spaces, since model transformations among meta-
modeling framework should be theoretically supported by the
environments. However, although in theory one could switch
framework later, a commitment with a precise meta-modeling
framework is better done at the very early stage of the
development process, mainly for practical reasons. The chosen
MDE framework should support easy (e.g., graphical) editing
of (meta) models, model to model transformations, and text to
model and model to texts mappings to assist the development
of concrete notations in textual form. It should also provide a
mapping towards programming languages (i.e. API artifacts)
to allow the integration with other software applications.

Once a metamodeling framework has been chosen, the
further main steps, that might require iterative processing, of
the process are the following.
Design of a language abstract syntax.In the MDE context,

theabstract syntaxof a specification language is defined by
means of ametamodel[47]. It is an object-oriented model
of the vocabulary of the language. It represents concepts
provided by the language, the relationships existing among
those concepts, and how they may be combined to create
models. Precise guide lines exist (e.g., [46]) to drive this
modeling activity that leads to an instantiation of the chosen
metamodeling framework for a specific domain of interest.
This is a critical process step since the metamodel is the
starting point for tool development.

Development of tools.Software tools are developed starting
from the language metamodel. They can be classified in
generated, based, andintegrated, depending on the decreas-
ing use of MDE generative technologies for their develop-
ment. The effort required by the user increases, instead.
Software tools automatically derived from the metamodel
are considered generated. Based tools are those developed
exploiting artifacts (APIs and other concrete syntaxes) and
contain a considerable amount of code that has not been
generated. Integrated tools are external and existing tools
that are connected to the language artifacts: a tool may use
just the XMI format, other tools may use the APIs or other
derivatives. In the sequel we explain these kinds of tools.
1) Development of language artifacts.From the language
metamodel, severallanguage artifactsare generated for
model handling – i.e. model creation, storage, exchange,
access, manipulatation –, and these artifacts can be reused
during the development of other applications. Artifacts are
obtained by exploiting standard or proprietary mappings
from the metamodeling framework to several technical
spaces, as XMLware for model serialization and interchange,
and Javaware for model representation in terms of pro-
grammable objects (through standard APIs).
2) Definition and validation ofconcrete syntax(es). Lan-
guage concrete notations (textual, graphical or both) can be
introduced for the human use of editing models conforming

4

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to the metamodel. Several tools exist to define (or derive)
concrete textual grammars for metamodels. For example,
EMFText [22] allows defining text syntax for languages de-
scribed by an Ecore metamodel and it generates an ANTLR
grammar file. TCS [23] (Textual Concrete Syntax) enables
the specification of textual concrete syntaxes for Domain-
Specific Languages (DSLs) by attaching syntactic informa-
tion to metamodels written in KM3. A similar approach
is followed by the TEF (Textual Editing Framework) [48].
Other tools, like the Xtext by openArchitectureWare [49],
following different approaches, may fit in our process as
well. Depending on the degree of automation provided by the
chosen framework, concrete syntax tools can be classified
between generated and based software.
Besides to be defined, concrete grammars must be also
validated. To this aim, a pool of models written in the
concrete syntax and acting as benchmark has to be selected.
During this activity it is important to collect information
about the coverage of language constructs (classes, attributes
and relations) to check that all them are used by the exam-
ples. Writing wrong models and checking that they are not
accepted is important as well. Coverage evaluation can be
performed by using a code coverage tool and instrumenting
the parser accordingly. This validation activity is also useful
to provide confidence that the metamodel correctly captures
concepts and constructs of the underline formal method.
3) Development of other tools.Metamodel, language arti-
facts, and concrete syntaxes are the foundations over which
new tools can be developed and existing ones can be
integrated.

IV. FM S FORMDE

Applying a formal method to a languageL defined in a
meta-modeling framework should have the following overall
goals: (a) allow the definition of the behaviors (semantics)of
models conforming toL and (b) provide several techniques
and methods for the formal analysis (e.g., validation, property
proving, model checking, etc.) of such models.

A. Language semantics definition

A metamodel-based languageL has a well-defined seman-
tics if a semantic domainS is identified and a semantic
mappingMS : A → S is provided [50] between theL’s
abstract syntaxA (i.e. the metamodel ofL) and S to give
meaning to syntactic concepts ofL in terms of the semantic
domain elements.

The semantic domainS and the mappingMS can be de-
scribed in varying degrees of formality, from natural language
to rigorous mathematics. It is very important that bothS

and MS are defined in a precise, clear, and readable way.
The semantic domainS is usually defined in some formal,
mathematical framework (transition systems, pomsets, traces,
the set of natural numbers with its underlying properties, are
examples of semantic domains). The semantic mappingMS

is not so often given in a formal and precise way, possibly
leaving some doubts about the semantics ofL. Thus, a precise
and formal approach to define it is desirable.

AML

A

ω

EE

MS

((
M // A′

ω

ZZ

M
′

S ///o/o/o/o/o/o/o/o/o/o/o S′ = S

m

ω

OO

�
M // m′

ω

OO

�

M
′

S ///o/o/o/o/o/o/o MS(m) = M ′

S
(m′)

Fig. 2: The building functionM

Sometimes, in order to give the semantics of a languageL,
another helper languageL′, whose semantics is clearly defined
and well established, is introduced. Therefore,M ′

S
and S′

should be already well-defined forL′. L′ can be exploited
to define the semantics ofL by:

1) takingS′ as semantic domain forL too, i.e.S = S′,
2) introducing abuilding functionM : A → A′, beingA′

the abstract syntax ofL′, which associates an element of
A′ to every construct ofA, and

3) defining the semantic mappingMS : A → S as

MS = M ′

S ◦ M

TheM functionhooksthe semantics ofA to theS′ semantic
domain of the languageL′. The complexity of this approach
depends on the complexity of building the functionM .

Note that the functionM can be applied to terminal models
conforming to A in order to obtain models conforming to
A′, as shown in Fig. 2. In this way, the semantic mapping
MS : A → S associates a well-formed terminal modelm

conforming toA with its semantic modelMS(m), by first
translatingm to m′ conforming toA′ by means of theM
function, and then applying the mappingM ′

S
which is already

well-defined.
To be a good candidate, a languageL′ should (i) be abstract

and formal to rigorously define model behavior at different
levels of abstraction, but without formal overkill; (ii) beable
to capture heterogeneous models of computation (MoC) in
order to smoothly integrate different behavioral models; (iii)
be endowed with a model refinement mechanism leading to
correct-by-construction system artifacts. Furthermore,as MDE
specific requirement (iv),L′ should be possibly endowed
with a metamodel-based definition in order to automatize
the application of building functionM by exploiting MDE
techniques of automatic model transformation.

B. Formal analysis

Besides the above stated requirements about the expressive
power ofL′ as notation, it is important that formal analysis of
models written inL′ is supported by a set of tools for model
execution, as simulation or testing, and for model verification.
Indeed, the main goal of applying a formal notation to the
semantics ofL is to allow formal analysis of the models
written in L.

5

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As main formal activities that are allowed by applying a
formal method to a languageL, we identify at least:model
validation andproperty verification.

Validation is intended as the process of investigating a
model (intended as formal specification) with respect to its
user perceptions, in order to ensure that the specification really
reflects the user needs and statements about the application,
and to detect faults in the specification as early as possible
with limited effort. Techniques for validation includescenarios
generation, when the user builds scenarios describing the
behavior of a system by looking at the observable interactions
between the system and its environment in specific situations;
simulation, when the user provides certain input and observes
if the output is the expected one or not (it is similar to
code debugging);model-based testing, when the specification
is used as oracle to compute test cases for a given critical
behavior of the system at the same level of the specification.
These abstract test cases cannot be executed at code level since
they are at a wrong level of abstraction. Executable test cases
must be derived from the abstract ones and executed at code
level to guarantee conformance between model and code.

In any case, validation should precede the application of
more expensive and accurate methods, likerequirements for-
mal analysisand verification of properties, that should be
applied only when a designer has enough confidence that
the specification captures all informal requirements. Formal
verification has to be intended as the mathematical proof of
system properties, which can be performed by hand or by the
aid of model checkers (which are usable when the variable
ranges are finite) or of theorem provers (which require strong
user skills to drive the proof).

Model validation techniques can be also used during the
development of the language semantics ofL for semantic
validation. This activity consists in checking (or proving, if
possible) that the building functionM really captures the
intended semantics ofL, and it must be performed before any
formal analysis of models. Indeed every later formal activity
on models written inL is based onM and a faultyM would
jeopardize the results obtained.

V. I N-THE-LOOP INTEGRATION

Although the two activities of applying the MDE to a FM
and apply a FM to the MDE can be considered unrelated and
could be performed in parallel even by using two different
notations for the MDE and FMs, the best results can be
obtained by a tight integration between the MDE and a FM
in an in-the-loop integration approach. In this approach, the
MDE framework and the FM notation are the same in both
of the above activities and the application of the MDE to the
FM is carried out before the application of the FM to the
MDE. Thanks to the first activity, the FM will be endowed
with a metamodel and possibly a set of tools (e.g., a grammar,
artifacts, etc.) which can be used in the second activity to
automatize (meta-)model transformations and apply suitable
tools for formal analysis (i.e. validation and verification) of
models. Indeed, although for applying FM to the MDE it
is in principle not required that the FM is provided with a

M D E F M
a p p l y M D E t o F M
 (1)

a p p l y F M t o M D E (2)

Fig. 3: In the loop integration of FM and MDE

metamodel (see Sect. IV), a formal notation endowed with
a representation of its concepts in terms of a metamodel
would allow the use of MDE transformation languages (as
ATL) to define the building functionM and to automatize
the application ofM as model transformation by means of
a transformation engine. Therefore, having a metamodel is a
further constraint for an helper languageL′, and it justifies
why the second activity must precede the first one.

Sect. VII and VIII present our instantiation of thein-the-
loop integration with the EMF (Eclipse Modeling Framework)
as MDE framework and the ASMs (Abstract State Machines)
as formal method. This choice is justified by the following
motivations:

• EMF is based on an open-source Eclipse framework and
unifies the three well known technologies, i.e. Java, XML,
and UML, currently used for software development.

• ASMs own all the characteristics of preciseness, ab-
straction, refinement, executability, metamodel-based def-
inition that we identified as the desirable properties a
FM should have in order to be a good candidate for
integration.

In order to make a further step in the direction of a tighter
integration between ASM and EMF, Sect. X shows how
effectively we canclose the loop(see Fig. 3) by describing
the semantics of ASMs representation in the EMF framework
by using the ASM formal method itself.

VI. A BSTRACT STATE MACHINES

Abstract State Machines are an extension of FSMs [51],
where unstructured control states are replaced by states com-
prising arbitrary complex data. Thestatesof an ASM are
multi-sorted first-order structures, i.e. domains of objects with
functions and predicates (boolean functions) defined on them,
while thetransition relationis specified by “rules” describing
the modification of the functions from one state to the next.

Basically, a transition rule has the form ofguarded update
“ if Conditionthen Updates” whereUpdatesis a set of function
updates of the formf(t1, . . . , tn) := t that are simultaneously
executed whenCondition is true, f is an arbitraryn-ary
function, andt1, . . . , tn, t are first-order terms. To fire this
rule to a stateSi, i ≥ 0, evaluate all termst1, . . . , tn, t at Si

and update the functionf to t on parameterst1, . . . , tn. This
produces another stateSi+1 which differs fromSi only in the
new interpretation of the functionf . An ASM M is therefore
a finite set of rules for such guarded multiple function updates.

Function are classified asderivedfunctions, i.e. those com-
ing with a specification or computation mechanism given in
terms of other functions, andbasic functions which can be

6

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

static(never change during any run of the machine) ordynamic
(may change as a consequence of agent actions orupdates).
Dynamic functions are further classified into:monitored(only
read, as events provided by the environment),controlled(read
and write),sharedandoutput (only write) functions.

These is a limited but powerful set ofrule constructors
that allow to express simultaneous parallel actions (par),
sequential actions (seq), iterations (iterate, while, rec-
while), and submachine invocations returning values. Ap-
propriate rule constructors also allow non-determinism (exis-
tential quantificationchoose) and unrestricted synchronous
parallelism (universal quantificationforall).

A computationof an ASMM is a finite or infinite sequence
S0, S1, . . . , Sn, . . . of states ofM , whereS0 is an initial state
and eachSn+1 is obtained fromSn by firing simultaneously
all of the transition rules which are enabled inSn.

The notion of ASMs formalizes simultaneous parallel ac-
tions of a single agent, either in an atomic way,Basic ASMs,
or in a structured and recursive way,Structured or Turbo
ASMs. Furthermore, it supports a generalization where mul-
tiple agents interact in parallel in a synchronous/asynchronous
way, Synchronous/Asynchronous Multi-agent ASMs.

Although the ASM method comes with a rigorous math-
ematical foundation, ASMs provide accurate yet practical
industrially viable behavioral semantics for pseudocode on
arbitrary data structures. We quote here thisworkingdefinition
of an ASM defined as a tuple (header, body, main rule,
initialization).

Theheadercontains thenameof the ASM and itssignature,
namely all declarations of domains, functions, and predicates.
The header may contain alsoimportandexportclauses, i.e., all
names for functions and rules that are, respectively, imported
from other ASMs, and exported from the current one. We
assume that there are no name clashes in these signatures.

The body of an ASM consists of (static) domain and
(static/derived) function definitions according to domainand
function declarations in the signature of the ASM. It also
contains declarations (definitions) of transition rules and def-
initions of axioms for invariants one wants to assume for
domains and functions of the ASM.

The (unique)main ruleis a transition rule and represents the
starting point of the machine program (i.e. it calls all the other
ASM transition rules defined in the body). The main rule is
closed(i.e. it does not have parameters) and since there are no
free global variables in the rule declarations of an ASM, the
notion of a move does not depend on a variable assignment,
but only on the state of the machine.

The initialization of an ASM is a characterization of the
initial states. An initial state defines an initial value for
domains and functions declared in the signature of the ASM.
Executingan ASM means executing its main rule starting from
a specified initial state.

A complete mathematical definition of the ASM method
can be found in [52], together with a presentation of the great
variety of its successful application in different fields such as:
definition of industrial standards for programming and model-
ing languages, design and re-engineering of industrial control
systems, modeling e-commerce and web services, design and

Fig. 4: Package structure of the AsmM metamodel

analysis of protocols, architectural design, language design,
verification of compilation schemas and compiler back-ends,
etc.

VII. EMF FOR ASMS

In addition to its mathematical-based foundation, a
metamodel-based definition for ASMs has been given [53],
[54]. This ASM metamodel allowed us to apply MDE
techniques for developing a general framework, called
ASMmETA- modeling framework (ASMETA) [55], for a wide
inter-operability and integration of new and existing tools
around ASMs (ASM model editors, ASM model repositories,
ASM model validators, ASM model verifiers, ASM simula-
tors, ASM-to-Any code generators, etc.).

A. ASM Metamodel

We started by defining a metamodel [55], [56], [53], [54],
the Abstract State Machine Metamodel(AsmM), as abstract
syntax description of a language for ASMs. The aim was
that of developing aunified abstract notation for the ASMs,
independent from any specific implementation syntax and
allowing a more direct encoding of the ASM mathematical
concepts and constructs.

The complete AsmM metamodel is organized in one pack-
age calledASMETA containing 115 classes, 114 associations,
and 150 class invariants expressed in the OMG OCL language
[57], approximatively. TheASMETA package is further divided
into four packages as shown in Fig. 4. Each package covers
different aspects of the ASMs. The dashed gray ovals in
Fig. 4 denote packages representing the notions ofState
and Transition System, respectively. TheStructure pack-
age defines architectural constructs (modules and machines)
required to specify the backbone of an ASM model. The
Definitions package contains all basic constructs (func-
tions, domains, constraints, rule declarations, etc..) which char-
acterize algebraic specifications. TheTerms package provides
all kinds of syntactic expressions which can be evaluated
in a state of an ASM. TheTransitionRules package
contains all possible transition rules schemes of Basic and
Turbo ASMs. All derived transition rules are contained in
theDerivedTransitionRules package. These rules are
other ASM transition rule schemes derived from the basic

7

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 5: Backbone

and the turbo ones, respectively. Although they could be
easily expressed at model level in terms of other existing rule
schemes, they are considered “syntactic sugar” and therefore
they have been included in the metamodel. Example of such
rules are the case-rule and the (turbo) iterative/recursive while-
rule. All relations between packages are of typeuses.

We present here only a very small fragment of the AsmM
whose complete description can be found in [53], [55]. Fig.
5 shows the backbone of abasic ASM. An instance of
the root classAsm represents an entire ASM specification.
According to the definition given in Sect. VI, a basic ASM
has a name and is defined by aHeader (to establish
the signature), aBody (to define domains, functions, and
rules), amain rule, and a set of initial states (instances of
the Initialization class). All possible initial states are
linked to an ASM by the association endinitialState
and one initial state is elected asdefault (see the association
enddefaultInitialState). ASM rule constructors are
represented by subclasses of the classRule, not reported here.

B. ASMETA tool-set

From the AsmM, by exploiting the MDE approach and
its facilities (derivative artifacts, APIs, transformation li-
braries, etc.), we obtained in a generative manner (i.e. semi-
automatically) several artifacts (an interchange format,APIs,
etc..) for the creation, storage, interchange, access and manip-
ulation of ASM models [58]. The AsmM and the combination
of these language artifacts lead to an instantiation of the EMF
metamodeling framework for the ASM application domain,
the ASMETA framework that provides a global infrastructure

AsmM

AsmEE AsmetaS

AsmetaV

Asm XMI

Asm Java Api

AsmetaL

ATGT

generated based

integrated

AsmetaLc
AsmetaSMV

Fig. 6: TheASMETA tool set

for the interoperability of ASM tools (new and existing ones)
[59].

The ASMETA tool set (see Fig. 6) includes (among other
things) a textual concrete syntax,AsmetaL, to write ASM
models (conforming to the AsmM) in a textual and human-
comprehensible form; a text-to-model compiler,AsmetaLc,
to parse AsmetaL models and check for their consistency
w.r.t. the AsmM constraints expressed in the OCL language;
a simulator,AsmetaS, to execute ASM models; theAvalla
language for scenario-based validation of ASM models, with
its supporting tool, theAsmetaVvalidator; a model checker
AsmetaSMV[60] for model verification by NuSMV; theATGT
tool that is an ASM-based test case generator based upon
the SPIN model checker; a graphical front-end calledASMEE
(ASM Eclipse Environment) which acts as IDE and it is an
eclipse plug-in.

All the above artifacts/tools are classified in:generated,
based, andintegrated. Generated artifacts/tools are derivatives
obtained (semi-)automatically by applying appropriate Ecore
projections to the technical spaces Javaware, XMLware, and
grammarware. Based artifacts/tools are those developed ex-
ploiting the ASMETA environment and related derivatives; an
example of such a tool is the simulator AsmetaS). Integrated
artifacts/tools are external and existing tools that are connected
to the ASMETA environment.

VIII. ASM S FOREMF

We here describe how the ASM formal method can be
exploited as helper language to define a formalsemantic
framework to provide languages with their (possibleexe-
cutable) semantics natively with their metamodels. We also
describe how the ASM tool-set provides a concrete support
for model analysis.

A. Language semantics definition

Recall, from Sect. IV, that the problem of giving the seman-
tics of a metamodel-based languageL is reduced to define the
function M : A → A′, beingA andA′ the language and the
helper language abstract syntaxes, respectively. Let us assume
the ASMs as helper language satisfying the requirements,
given in Sect. IV, of having a mathematical well-founded se-
mantics and a metamodel-based representation. The semantic
domainSAsmM is the first-order logic extended with the logic
for function updates and for transition rule constructors defined
in [52] and thesemantic mappingMS : AsmM → SAsmM

to relate syntactic concepts to those of the semantic domain
is given in [58].

8

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

trasf. application

Γ
Amodel

A

AsmM
defined

m

intialization

metamodel

ι

ι
apply

MOFMeta−metamodel

M(m)

conforms to

trasf. definition

Fig. 7: Semantic hooking

The semantics of a metamodel-based language is expressed
in terms of ASM transition rules by providing the building
function M : A −→ AsmM . As already mentioned, the
definition of the functionM may be accomplished by different
techniques (see [42]), which differ in the way a terminal model
is mapped into an ASM. As example of such techniques, the
semantic hookingtechnique is presented below. This technique
is used in Section IX-B to provide behavioral semantics of the
language in our case study.

Thesemantic hookingendows a language metamodelA with
a semantics by means of a unique ASM for any model con-
forming to A. By using this technique, designershook to the
language metamodelA an abstract state machineΓA, which is
an instance ofAsmMand contains all data structures modeling
elements ofA with their relationships, and all transition rules
representing behavioral aspects of the language.ΓA does not
contain the initialization of functions and domains, whichwill
depend on the particular instance ofA. The function which
adds the initialization part is calledι. Formally, the building
function M is given by M(m) = ιA(ΓA, m), for all m

conforming toA.
ΓA: AsmM , is an abstract state machine which contains

only declarations of functions and domains (the signature)and
the behavioral semantics ofL in terms of ASM transition rules.

ιA: AsmM × A −→ AsmM , properly initializes the
machine.ιA is defined on an ASMa and a terminal model
m instance ofA; it navigatesm and sets the initial values for
the functions and the initial elements in the domains declared
in the signature ofa. The ιA function is applied toΓA and to
the terminal modelm for which it yields the final ASM.

Examples of applying the semantic hooking technique to
define the semantics of a metamodel-based language can be
found in [42] for a metamodel of Finite State Machines and
in [1] for a metamodel of the Petri net formalism. The latter is
also reported in Appendix A and can be viewed as an example
which facilities the reader in understanding our approach since
the semantics of Petri nets is well-known.

B. Formal analysis

The ASM-based semantic framework supports formal anal-
ysis of ASM models by exploiting theASMETA tool-set (see
Section VII-B for details) for model validation and verifica-
tion.

1) Model validation: Simple model validation can be per-
formed bysimulatingASM models with the ASM simulator
(see Section VII-B) to check a system model with respect
to the desired behavior to ensure that the specification really
reflects the user needs and statements about the system, and
to detect faults in the specification as early as possible with
limited effort.

The AsmetaS simulator can be used in a standalone way
to provide basic simulation of the overall system behavior.As
key features for model validation, AsmetaS supportsaxiom
checkingto check whether axioms expressed over the currently
executed ASM model are satisfied or not,consistent updates
checkingfor revealing inconsistent updates,random simulation
where random values for monitored functions are provided by
the environment,interactive simulationwhen required input
are provided interactively during simulation, and configurable
loggingfacilities to inspect the machine state. Axiom checking
and random simulation allow the user to perform a draft
system validation with minimal effort, while interactive sim-
ulation, although more accurate, requires the user interaction.

The most powerful validation approach is thescenario-
based validation[61] by the ASM validator (see Section
VII-B). The AsmetaV validator is based on the AsmetaS simu-
lator and on the Avalla modeling language. This last provides
constructs to express execution scenarios in an algorithmic
way as interaction sequences consisting ofactionscommitted
by the user actor to set the environment (i.e. the values
of monitored/shared functions), tocheck the machine state,
to ask for theexecution of certain transition rules, and to
enforce the machine itself to make onestep (or a sequence
of steps bystep until) as reaction of the actor actions.

AsmetaV reads a user scenario written in Avalla, it builds
the scenario as instance of the Avalla metamodel by means
of a parser, it transforms the scenario and the AsmetaL
specification which the scenario refers to, to an executable
AsmM model. Then, AsmetaV invokes the AsmetaS inter-
preter to simulate the scenario. During simulation the user
can pause the simulation and watch the current state and value
of the update set at every step, through a watching window.
During simulation, AsmetaV captures any check violation and
if none occurs it finishes with a “PASS” verdict. Besides a
“PASS”/“FAIL” verdict, during the scenario running AsmetaV
collects in a final report some information about thecoverage
of the original model; this is useful to check which transition
rules have been exercised.

2) Model checking:The ASMETA tool-set provides support
for temporal properties verification of ASM models by means
of the model checker AsmetaSMV [60], which takes in input
ASM models written in AsmetaL and maps these models into
specifications for the model checker NuSMV [62].

AsmetaSMV supports both the declaration ofComputation
Tree Logic(CTL) andLinear Temporal Logic(LTL) formulas.
CTL/LTL properties to verify are declared directly into the
ASM model as (special) axioms of the form:

axiom over [ctl | ltl] : p

where the over section specifies ifp is a CTL or a LTL
formula. No knowledge of the NuSMV syntax is required to

9

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

model benchmark hooking
 function

AsmetaV

PASS/FAIL

COVERAGE

ASM models

scenarios

Fig. 8: Semantic validation by AsmetaV

the user in order to use AsmetaSMV.
3) Language semantics validation:The ASMETA tool-set

and the validation techniques can also be used forlanguage
semantics validation. Indeed, this activity is performed through
the validation of the hooking functionM presented in Section
VIII-A by applying it to a collection of meaningful examples.
The ASM models obtained form the application ofM to
the examples can be validated in different ways providing
increasing degrees of confidence in the semantics correctness.
Random simulationallows checking if errors like inconsistent
updates and type errors, occur.Interactive simulationcan
provide evidence that the semantics captures the intended be-
havior, but it requires the user to provide the correct inputs and
to judge the correctness of the observed behavior. The most
powerful validation approach is thescenario-based validation.
As shown in Fig. 8, a suitable set of models are selected
as benchmark for language semantic validation; these models
are translated into ASM models by the hooking functionM ;
moreover, a set of scenarios specifying the expected behavior
of the models must be provided by the user and are used
for validation. These scenarios can be written from scratchin
the Avalla language, or alternatively, if the languageL has
already a simulator, these scenarios may be derived from the
execution traces generated by such a simulator. The second
approach is useful to check the conformance of the semantics
implemented byLS with respect to the semantics defined
by the hooking functionM . The ASM validator provides
also useful information about the coverage obtained by the
scenarios.

IX. T HE TIC-TAC-TOE EXAMPLE

As a case study, we consider Tic-Tac-Toe as a language,
where a Tic-Tac-Toe board is an instance of the language.
We use MDE-based technologies to define a metamodel for a
description language of the Tic-Tac-Toe game, and the ASM-
based semantic framework for the definition of the execution
semantics of a board (for playing) including correctness check-
ing by validation and verification.

A. Tic-Tac-Toe abstract syntax

Fig. 9 shows the metamodel for the Tic-Tac-Toe. It describes
the static structure of a board (theBoard class) maintain-
ing data seen by users: rows (theRow class) and squares
(the Square class). A board has (see referenceshrows,
vrows, and drows): three horizontal rows, three vertical
rows, and two diagonal rows. Totally, in a board there are
nine squares (see the referencesquare), three per each row
(thesquareInRow reference). TheSKind enumeration type
denotes the kind of symbols a square can contain (cross,
nought, empty). The default symbol is empty.

Fig. 9: A metamodel for Tic-Tac-Toe

Fig. 10: Examples of Tic-Tac-Toe boards

Each square is contained in one row and one vertical row.
Some squares may be contained in more than one row. The
square in the center, for example, is contained in the middle
vertical row and horizontal row, and in the two diagonal rows.
All these structural constraints can be expressed in OCL. For
example, the following OCL invariant

Contex t : Board
i nv RowColumnCommonSquares :
s e l f . hrow . squareInRow−>

i n t e r s e c t i o n (s e l f . vrow . squareInRow)−> s i z e ()=1

states that an horizontal row and a vertical row can only have
exactly one square in common.

Fig. 10 shows (using a graphical concrete syntax) examples
of Tic-Tac-Toe boards as instances (terminal models) of the
Tic-Tac-Toe metamodel in Fig 9.

B. Tic-Tac-Toe semantics definition

According to the hooking technique, first we have to specify
an ASM ΓTic−Tac−Toe containing the signature and the
behavioral semantics of the Tic-Tac-Toe metamodel in terms
of ASM transition rules. Listings 1 (for the signature), 2
and 3 (for the transition rules) report portions of a possible
ΓTic−Tac−Toe in AsmetaL for a computer (symbol O) vs user
(symbol X) Tic-Tac-Toe game. The complete ASM model is
reported in Appendix B.

The signature (see Listing 1) introduces domains and func-
tions for representing a board such as the enumerationSKind,
domains for squares and rows as subsets of the predefined
Integer domain, and so on. The signature also provides
domain and functions for managing the overall game. Each
player takes alternating turns (see the functionstatus)
trying to earn three of their symbols in a row horizontally,
vertically, or diagonally. The game can end with a player
winning (represented by thewhoWon function) by getting
three of his/her symbol in row (as denoted by the function
hasThreeOf) or end in a draw, i.e. no spaces left on the
board with none winning (as denoted by thenoSquareLeft
function). The winner is determined by position of board; no
history needs to be recorded (only board position before and
after turn). If there is no winner after nine clicks, there isa

10

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Listing 1: ΓTic−Tac−Toe signature

asm Tictactoe
signature:

//For representing a board
enum domain Skind = {CROSS|NOUGHT|EMPTY}
domain SquaresubsetofInteger
domain Row subsetofInteger
static squaresInRow: Prod(Row,Integer)−> Square
controlled symbol: Square−> Skind

//For managing the game
enum domain Finalres = {PLAYERX|PC|TIE}
enum domain Status = {TURNX|CHECKX|TURNPC|CHECKPC

|GAMEOVER}
monitored playerX:Square// move of X
controlled status: Status
controlled whoWon: Finalres
derived noSquareLeft : Boolean
derived hasThreeOf: Prod(Row,Skind)−> Boolean

//For PC strategies
controlled count: Integer
derived openingPhase: Boolean
controlled lastMoveX: Square
static isCorner: Square−> Boolean
static isEdge: Square−> Boolean
static isCenter: Square−> Boolean
derived hasTwo: Row−> Boolean
static opposite: Square−> Square

tie. Note that the square selected by the player X (the user) is
represented by a monitored functionmoveX, and therefore is
provided at each step as input value to the ASM; the computer
move (the square to mark) is instead calculated according to
some playing strategies. Further domains and functions are
introduced in the signature to implement these PC strategies,
as better explained later in the text.

The behavior of the overall game is provided by the main
rule r_Main (see Listing 2) where at each step a check for a
winner or a tie (ruler_checkForAWinner) or a move of a player
is executed depending on the status of the game. The two rules
r_movePlayerXandr_movePCspecify the execution behavior
of the two players. The behavior of the user (player X) is
straightforward as the square to mark is provided interactively
through the monitored functionmoveX. The behavior of the
computer depends instead by the chosen strategy as formalized
by the invokedr_tryStrategyrule.

Listing 3 reports the definition of ther_tryStrategyrule and
of the invoked macro rules for making a computer play the
game. To this goal, we formalize by ASM rules a children’s
strategy that is divided in two phases:opening phase(opening
of the game) anddraw phase(after opening of both players).
Note that to build an unbeatable opponent (especially if we
want to learn a computer to play it), we need to use aminimax
approach of Game Theory. We remark that this is out of the
scope of this work. So, here we limit to express a children’s
strategy.

For the opening phase (see ther_opening_strategyrule in
Listing 3), as first player the computer has three possible
positions to mark during the first turn. Superficially, it might
seem that there are nine possible positions, corresponding
to the nine squares in the board. However, by rotating the

Listing 2: ΓTic−Tac−Toe transition rules for game management

asm Tictactoe
...
rule r_movePC =par

r_tryStrategy[NOUGHT]
count := count + 1
status := CHECKPC

endpar

rule r_movePlayerX =if symbol(playerX)= EMPTY
then par

symbol(playerX):= CROSS
count := count + 1
lastMoveX := playerX
status := CHECKX

endpar
elsestatus := TURNX
endif

rule r_checkForAWinner($symbolin Skind) =
//GAME OVER WITH A WINNER?
if (exist $r in Row with hasThreeOf($r,$symbol))then
par

status := GAMEOVER
if $symbol = CROSSthen whoWon:= PLAYERX
elsewhoWon:= PC
endif

endpar
//GAME TIE?

else if (noSquareLeft)
then par

status := GAMEOVER
whoWon := TIE

endpar
else

if $symbol = CROSSthen status:= TURNPC
elsestatus:= TURNX

endif endif endif

main rule r_Main =
if status = TURNXthen r_movePlayerX[]
else if status = CHECKXthen r_checkForAWinner[CROSS]
else if status = TURNPCthen r_movePC[]
else if status = CHECKPCthen r_checkForAWinner[NOUGHT]
endif endif endif endif

board, we will find that in the first turn, every corner mark
is strategically equivalent to every other corner mark. The
same is true of every edge mark. For strategy purposes, there
are therefore only three possible first marks: corner, edge,or
center. The computer can win or force a draw from any of these
starting marks; however, playing the corner gives the opponent
the smallest choice of squares which must be played to avoid
losing. In ther_opening_strategyrule, the computer chooses
therefore a corner (see the ruler_playACorner) in case of first
player. As second player, the computer must respond to X’s
opening mark in such a way as to avoid the forced win. The
computer (player O) must always respond to a corner opening
with a center mark, and to a center opening with a corner
mark. An edge opening must be answered either with a center
mark, a corner mark next to the X, or an edge mark opposite
the X. For semplicity, in this case we play always the center as
formalized in ther_opening_strategyrule. Any other responses
will allow X to force the win. Once the opening is completed,
O’s task is to follow the below draw strategy in order to force

11

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Listing 3: ΓTic−Tac−Toe transition rules for the game strategies

asm Tictactoe
...

//A very naive player: choose an empty square and mark it.
rule r_naive_strategy ($symbolin Skind)=
choose$s in Squarewith symbol($s)=EMPTY
do symbol($s):= $symbol

rule r_playACorner($symbolin Skind) =
choose$s in Squarewith (symbol($s)=EMPTY and isCorner($s))
do symbol($s):= $symbol

//Opening strategy
rule r_opening_strategy ($symbolin Skind)=

if (count=0)//first mark
then r_playACorner[$symbol]
else //second mark

if symbol(5) = EMPTYthen symbol(5):=$symbol//play the center
elser_playACorner[$symbol]//we play a corner
endif

endif

//Mark with $symbol the last empty square within row $r
rule r_markLastEmpty ($rin Row, $symbolin Skind) =
choose$x in {1,2,3} with symbol(squaresInRow($r,$x))=EMPTY
do symbol(squaresInRow($r,$x)) := $symbol

//Draw strategy (with no fork creation/block)
rule r_draw_strategy ($symbolin Skind) =

choose$wr in Row with hasTwo($wr)
do r_markLastEmpty[$wr,$symbol]//1. Win or 2. Block
ifnone

if (symbol(5)=EMPTY)
then symbol(5):=$symbol//3. Center
else if (isCorner(lastMoveX) and symbol(opposite(lastMoveX))=EMPTY)
then symbol(opposite(lastMoveX)):= $symbol//4. Opposite corner
else choose$s in Squarewith (symbol($s)=EMPTY and isCorner($s))

do symbol($s):= $symbol//5. Empty Corner
ifnone r_naive_strategy[$symbol]//6. Empty edge

endif endif

//Computer strategy selection
rule r_tryStrategy ($symbolin Skind) =
if openingPhasethen r_opening_strategy[$symbol]
elser_draw_strategy[$symbol]
endif

the draw, or else to gain a win if X makes a weak play.

For the draw phase (see ther_draw_strategyrule in Listing
3), the PC try adraw strategywith no fork creation or block.
Essentially, the computer can play Tic-Tac-Toe if it chooses
the move with the highest priority in the following list:
1. Win: you have two in a row, play the third to get three in
a row.
2. Block: the opponent has two in a row, play the third to
block.
3. Center: Play the center.
4. Opposite Corner: the opponent is in the corner, play the
opposite corner.
5. Empty Corner: Play an empty corner.
6. Empty Side: Play an empty edge.

For this example, the functionιTic−Tac−Toe that adds to
ΓTic−Tac−Toe the initialization necessary to make the ASM
model executable do not present variability among terminal
models (unless one want to start playing from a partially

Listing 4: A winning scenario for player O

1 scenario winPC
2 load Tictactoe.asm
3 set playerX := 2;
4 step until status = TURNPC;
5 step until status = TURNX;
6 check symbol(2)=CROSS;
7 check symbol(5)=NOUGHT;
8 set playerX := 1;
9 step until status = TURNPC;

10 step until status = TURNX;
11 check symbol(1)=CROSS;
12 check symbol(3)=NOUGHT;
13 set playerX := 8;
14 step until status = GAMEOVER;
15 check symbol(7)=NOUGHT;
16 check whoWon = PC;

full board). In this case,ιTic−Tac−Toe is to be intended as a
constant function always producing in the target ASM model
the same ASM initial state. One possible, for example, is as
follows:

default init s0:
function symbol($sin Square) = EMPTY
//A polite computer: it allows the user (X) to play first
function status = TURNX
function count = 0

C. Tic-Tac-Toe semantic validation

The validation of the semantics of the Tic-Tac-Toe case
study consists in checking that the mapping function defined
in IX-B really captures the intended semantics of the case
study language. Among the semantics validation techniques
discussed in Section VIII-B, we have used interactive and
scenario-based simulation. By interactive simulation, wehave
used the ASM specification and the AsmetaS simulator to
interactively play Tic-Tac-Toe (player vs computer) and check
that the ASM model actually captures the desired behavior.

For scenario-based simulation, Listing 4 reports a scenario
in Avalla corresponding to the board configurations shown in
Fig. 10. In this scenario, the player opens by crossing cell
2 (line 3), the PC responds in the cell 5 (line 7), and the
player crosses cell 1. At this point the PC correctly responds
by occupying cell 3 (line 12). If the player puts the cross in
cell 8 (line 13), the PC takes advantage of that and wins. This
scenario shows the smart opening of the PC (as second player)
and that the PC is able both to block the player to win and to
take advantage of the opportunity to win.

D. Tic-Tac-Toe formal verification

Once we were confident that the semantics of the Tic-Tac-
Toe as specified really captures the intended behavior, we tried
to model andprovesome formal properties. The first one states
that the specification is fair and allows both player to win. To
model this fact, we have introduced in the specification the
following three temporal properties written in Computational
Tree Logic (CTL).

12

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

MDE FM
apply MDE to FM
 (1)

apply FM to MDE (2)

Fig. 11: Closing the in-the-loop integration

//the player can win
axiom over CTL: EF(whoWon=PLAYER)
//the computer can win
axiom over CTL: EF(whoWon=PC)
//the match can terminate tie
axiom over CTL: EF(whoWon=TIE)

The meaning ofEF(φ) is given by theE (exist) operator
which means along at least one path (possibly) and the
F operator which means finally: eventuallyφ has to hold
(somewhere on the subsequent path). We have automatically
proved the three properties via model checking by using the
AsmetaSMV component [60].

We wanted also to prove that the match always finishes and
we added the following property:

axiom over CTL: AF((status = GAMEOVER))

It means that on all paths (A) starting from the initial state,
status will eventually (F) becomeGAMEOVER. This was
proved false by the model checker which provided a counter
example for it. Analyzing the counter example, we noticed
that the player can indefinitely postpone the end of a game by
keeping to try to put a cross in an already occupied cell.

X. CLOSING THE LOOP

This section shows a portion of the definition of the ex-
ecutable semantics of the AsmM metamodel itself by using
the ASM-based semantic framework outlined in Sect. IV. We
apply the semantic hooking approach on a small portion of the
AsmM metamodel concerning the interpretation of the ASM
update-rule. In this way, we close the in-the-loop integration
between the formal method (ASM) and the MDE framework
(EMF), as depicted in Fig. 11.

A. AsmM semantics

We have to specify, in general, an ASMΓAsmM (i.e.
a model conforming to the AsmM metamodel) containing
declarations of functions and domains (the signature) and the
behavioral semantics of the AsmM metamodel itself in terms
of ASM transition rules.

ASM rule constructors are represented in the AsmM meta-
model by subclasses of the classRule. Fig. 12 shows a subset
of basic forms of a transition rule under the class hierarchy
rooted by the classBasicRule: update-rule, conditional-
rule, skip, do-in-parallel (block-rule), extend, etc.

Listing 5 reports a fragmentΓAsmM in AsmetaL notation,
for the interpretation of an ASM update-rule. It contains
domains and function declarations induced from the AsmM
metaclasses themselves for static/structural concepts (terms,

rule constructors, etc.). Further domains and functions are
introduced to denote run-time concepts like locations, values,
updates, etc., according to the theoretical definitions given in
[52] to construct therun of the ASM model under simulation.

A supporting execution engine has to keep the current state
of the ASM model and, on request, evaluates the values of
terms and computes (and applies) the update set to obtain the
next state. To this purpose, an abstract domainValue and
its sub-domains are introduced to denote all possible values
of ASM terms. The functioneval computes the value for
every term (expression) in the current ASM state. The abstract
domain Location represents the ASM concept of basic
object containers (memory units), namedlocations, abstracting
from particular memory addressing and object referencing
mechanisms. Functionssignt and elements denote, re-
spectively, the pair of a function namef , which is fixed by
the signature, and an optional argument(v1, . . . , vn), which is
formed by a list of dynamic parameter valuesvi of whatever
type, forming a location. Two functionscurrentState,
which represents the state of an ASM, andupdateSet,
which represents an update set, are used as tables to denote
location-value pairs(loc, v) (updates) and are the basic units
of state change. Theassignment function maps location
variables to their values for variable assignment in a state.

The very crucial task is that of computing at each step
the ASM update set. To this purpose, there exist a rule
visit(RuleType R) for everyRuleType subclass of the
Rule class of the AsmM. Given a ruleR, the matching visit
method is invoked accordingly to the type ofR to obtain the
update set ofR. As example of such a kind of rule, Listing
5 reports the ruler_visit to compute the update set for an
update-rule type.

One has also to define a functionιPT which adds to
ΓAsmM the initialization necessary to make the ASM model
executable. Any model transformation tool can be used to
automatize theιAsmM mapping by retrieving data from a
terminal modelm and creating the corresponding ASM initial
state in the target ASM model. A model transformation engine
may implement such a mapping. Essentially, for each class
instance of the terminal model, a static 0-ary function is
created in the signature of the ASM modelΓAsmM in order
to initialize the domain corresponding to the underlying class.
Moreover, class instances with their properties values andlinks
are inspected to initialize the ASM functions declared in the
ASM signature.

B. AsmM semantics validation

We applied the scenario-based approach for the validation
of the semantics. We initially collected a set of AsmetaL
examples representing all ASM constructs. In order to build
an extensive set of scenario specifying the expected behavior
of the system, instead of writing the scenario by hand, we
simulated the original examples with AsmetaS (the simulator
of AsmetaL models, see Sect. VII) itself, parsed the log files
produced by AsmetaS in order to obtain valid scenario files in
the Avalla syntax. Then we run the validator with the scenarios
and the translation of the input examples by the semantic

13

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 12: A fragment of the AsmM metamodel for function terms and update-rules

Listing 5: ΓAsmM

asm AsmM_hooking
signature:
// Signature induced from the AsmM metamodel:
abstract domain Function
abstract domain Term
concrete domainVariableTermsubsetofTerm
concrete domainFunctionTermsubsetofTerm
concrete domainLocationTermsubsetofFunctionTerm
...
abstract domain Rule
concrete domainUpdateRulesubsetofRule
...
controlled updatingTerm: UpdateRule−> TupleTerm
controlled location: UpdateRule−> Term
...

// Signature for run−time concepts:
abstract domain Value
abstract domain Location
controlled signt: Location−> Function
controlled elements: Location−> Seq(Value)
//Function for the evaluation of ASM terms
static eval: Term−> Value
...
//Functions for the current state of the ASM and memory updates
controlled currentState: Location−> Value
controlled updateSet: Location−> Value
controlled assignment: VariableTerm−> Value
...

definitions:
rule r_visit($r in UpdateRule) =
let (content = eval(updatingTerm($r)))in

if isLocationTerm(location($r))
then extend Locationwith $l do

par
signt($l):= funct(location($r))
elements($l):= values(eval(arguments(location($r))))
updateSet($l):= content

endpar
else if isVariableTerm(location($r))

then assignment(location($r)):= content
endif

endif
endlet

...

proposed above. In this way we have checked the conformance
of AsmetaS with the semantics of the ASM as defined by the
hooking functionM .

XI. CONCLUSION AND FUTURE DIRECTIONS

On the basis of our experience in developing theASMETA

toolset, we believe a formal method can gain benefits from the
use of MDE automation means either for itself and toward the
integration of different formal techniques and their tool inter-
operability. Indeed, the metamodel-based approach has the
advantage of being suitable to derive from the same metamodel
several artifacts (concrete syntaxes, interchange formats, APIs,
etc.). They are useful to create, manage and interchange
models in a model-driven development context, settling, there-
fore, a flexible infrastructure for tools development and inter-
operability. Moreover, metamodeling allows to establish a
“global framework” to enable otherwise dissimilar languages
(of possibly different domains) to be used in an inter-operable
manner by defining precisebridges (or projections) among
different domain-specific languages to automatically execute
model transformations. That is in sympathy with theSRI
Evidential Tool Bus idea[63], and can contribute positively
to solve inter-operability issues among formal methods, their
notations, and their tools.

On the other hand, the definition of a means for specifying
rigorously the semantics of metamodels is a necessary step
in order to develop formal analysis techniques and tools
in the model-driven context. Along this research line, for
example, we are tackling the problem of formally analyzing
visual models developed with the SystemC UML Profile [64].
Formal ASM models obtained from graphical SystemC-UML
models can potentially drive practical SoC model analysis like
simulation, architecture evaluation and design exploration.

In conclusion, we believe MDE principles and technologies
combined with formal methods elevate the current level of
automation in system development and provide the widely
demanded formal analysis support.

14

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] A. Gargantini, E. Riccobene, and P. Scandurra, “Integrating formal
methods with model-driven engineering,” inThe Fourth International
Conference on Software Engineering Advances, ICSEA 2009, 20-25
September 2009, Porto, Portugal, K. Boness, J. M. Fernandes, J. G.
Hall, R. J. Machado, and R. Oberhauser, Eds. IEEE Computer Society,
2009, pp. 86–92.

[2] J. Bézivin, “On the Unification Power of Models,”Software and System
Modeling, vol. 4, no. 2, pp. 171–188, 2005.

[3] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
IEEE Computer, vol. 39, no. 2, pp. 25–31, 2006.

[4] “OMG. The Unified Modeling Language (UML), v2.1.2,”http://
www.uml.org, 2007.

[5] “OMG. The Model Driven Architecture (MDA Guide V1.0.1),” http:
//www.omg.org/mda/, 2003.

[6] S. J. and K. G., “Model-Integrated Computing,”IEEE Computer, pp.
110–112, 1997.

[7] S. Cook, G. Jones, S. Kent, and A. C. Wills,Domain-Specific Develop-
ment with Visual Studio DSL Tools. Addison Wesley, 2007.

[8] “Eclipse Modeling Framework (EMF),”http://www.eclipse.
org/emf/.

[9] D. Gasevic, R. Lämmel, and E. V. Wyk, Eds.,Software Language En-
gineering, First International Conference, SLE 2008, Toulouse, France,
September 29-30, 2008. Revised Selected Papers, ser. Lecture Notes in
Computer Science, vol. 5452. Springer, 2009.

[10] C. Snook, F. Fritz, and A. Illisaov, “An EMF Framework for Event-B,”
in Workshop on Tool Building in Formal Methods - ABZ Conference,
2010.

[11] “The Maude System,”http://maude.cs.uiuc.edu/.
[12] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez, “ATL: a

QVT-like transformation language,” inProc. OOPSLA’06. ACM, 2006,
pp. 719–720.

[13] A. Agrawal, G. Karsai, S. Neema, F. Shi, and A. Vizhanyo,“The
design of a language for model transformations,”Software and System
Modeling, vol. 5, no. 3, pp. 261–288, 2006.

[14] J. Fischer, M. Piefel, and M. Scheidgen, “A Metamodel for SDL-2000
in the Context of Metamodelling ULF,” inProc. SAM’04, 2004, pp.
208–223.

[15] M. Alanen and I. Porres, “A Relation Between Context-Free Grammars
and Meta Object Facility Metamodels,” Turku Centre for Computer
Science, Tech. Rep., 2003.

[16] M. Wimmer and G. Kramler, “Bridging grammarware and model-
ware,” in Proc. of the 4th Workshop in Software Model Engineering
(WiSME’05), Montego Bay, Jamaica, 2005.

[17] T. Gjøsæter, I. F. Isfeldt, and A. Prinz, “Sudoku - a language description
case study,” inProc. SLE’08, 2008, pp. 305–321.

[18] “Abstract State Machines tools,”http://www.eecs.umich.edu/
gasm/tools.html.

[19] Y. Gurevich and B. Rossman and W. Schulte, “Semantic Essence of
AsmL,” Microsoft Research Technical Report MSR-TR-2004-27, March
2004 .

[20] A. Slissenko and P. Vasilyev, “Simulation of timed abstract state ma-
chines with predicate logic model-checking,”J. UCS, vol. 14, no. 12,
pp. 1984–2006, 2008.

[21] A. Gargantini, E. Riccobene, and P. Scandurra, “Deriving a textual
notation from a metamodel: an experience on bridging Modelware and
Grammarware,” in3M4MDA’06 workshop at the European Conference
on MDA, 2006.

[22] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende,
“Derivation and refinement of textual syntax for models,” inECMDA-
FA, 2009.

[23] F. Jouault, J. Bézivin, and I. Kurtev, “TCS: a DSL for thespecification
of textual concrete syntaxes in model engineering.” inProceedings
of the fifth international conference on Generative programming and
Component Engineering (GPCE’06), 2006.

[24] S. Efftinge, “oAW xText - A framework for textual DSLs,”in Workshop
on Modeling Symposium at Eclipse Summit, 2006.

[25] P.-A. Muller, F. Fondement, F. Fleurey, M. Hassenforder, R. Schneck-
enburger, S. Gérard, and J.-M. Jézéquel, “Model-driven analysis and
synthesis of textual concrete syntax,”Software and System Modeling,
vol. 7, no. 4, pp. 423–441, 2008.

[26] “OMG, Human-Usable Textual Notation, v1.0. Document formal/04-08-
01,” http://www.uml.org/.

[27] D. Hearnden, K. Raymond, and J. Steel, “Anti-Yacc: MOF-to-text,” in
Proc. of EDOC, 2002, pp. 200–211.

[28] M. Möller, E.-R. Olderog, H. Rasch, and H. Wehrheim, “Integrating a
formal method into a software engineering process with UML and Java,”
Form. Asp. Comput., vol. 20, no. 2, pp. 161–204, 2008.

[29] J. Armstrong, “Industrial integration of graphical and formal specifica-
tions,” J. of Systems and Software, vol. 40, no. 3, pp. 211–225, 1998.

[30] A. Idani, J.-L. Boulanger, and L. P. 0002, “A generic process and its
tool support towards combining uml and b for safety criticalsystems,”
in Proc. CAINE, 2007, pp. 185–192.

[31] T. Zhang, F. Jouault, J. Bézivin, and J. Zhao, “A MDE Based Approach
for Bridging Formal Models,” inTASE ’08. IEEE Computer Society,
2008, pp. 113–116.

[32] Y. Sun, Z. Demirezen, F. Jouault, R. Tairas, and J. Gray,“A model
engineering approach to tool interoperability,” inSLE, 2008, pp. 178–
187.

[33] P.-A. Muller, F. Fleurey, and J.-M. Jezequel, “WeavingExecutability into
Object-Oriented Meta-Languages,” inProc. MODELS, 2005.

[34] M. Soden and H. Eichler, “Towards a model execution framework for
Eclipse,” inProc. of the 1st Workshop on Behavior Modeling in Model-
Driven Architecture. ACM, 2009.

[35] J. E. Rivera, E. Guerra, J. de Lara, and A. Vallecillo, “Analyzing rule-
based behavioral semantics of visual modeling languages with maude,”
in SLE, ser. Lecture Notes in Computer Science, D. Gasevic, R. Lämmel,
and E. V. Wyk, Eds., vol. 5452. Springer, 2008, pp. 54–73.

[36] K. Chen, J. Sztipanovits, and S. Neema, “Toward a semantic anchoring
infrastructure for domain-specific modeling languages,” in EMSOFT,
2005, pp. 35–43.

[37] ——, “Compositional specification of behavioral semantics,” in DATE,
2007, pp. 906–911.

[38] D. Di Ruscio, F. Jouault, I. Kurtev, J. Bézivin, and A. Pierantonio,
“Extending AMMA for Supporting Dynamic Semantics Specifications
of DSLs,” LINA, Tech. Rep. 06.02, 2006.

[39] M. Anlauff, “XASM - An Extensible, Component-Based ASMLan-
guage,” inProc. of Abstract State Machines, 2000, pp. 69–90.

[40] “Atlantic XASM Zoo,” http://www.emn.fr/z-info/
atlanmod/index.php/Xasm/, 2001.

[41] D. A. Sadilek and G. Wachsmuth, “Using grammarware languages to
define operational semantics of modelled languages,” inTOOLS (47),
2009, pp. 348–356.

[42] A. Gargantini, E. Riccobene, and P. Scandurra, “A semantic framework
for metamodel-based languages,”Journal of Automated Software Engi-
neering, vol. 16, no. 3-4, pp. 415–454, 2009.

[43] A. Carioni, A. Gargantini, E. Riccobene, and P. Scandurra, “Exploiting
the ASM method for Validation & Verification of Embedded Systems,”
in Proc. of ABZ’08, LNCS 5238. Springer, 2008, pp. 71–84.

[44] E. Riccobene and P. Scandurra, “An executable semantics of the Sys-
temC UML profile,” in ABZ 2010, ser. LNCS, M. F. et al., Ed., vol.
5977, 2010, pp. 75–90.

[45] E. Riccobene, P. Scandurra, S. Bocchio, A. Rosti, L. Lavazza, and
L. Mantellini, “SystemC/C-based model-driven design for embedded
systems,”ACM Trans. Embedded Comput. Syst., vol. 8, no. 4, 2009.

[46] M. Strembeck and U. Zdun, “An approach for the systematic develop-
ment of domain-specific languages,”Software: Practice and Experience,
vol. 39, no. 15, pp. 1253 – 1292, October 2009.

[47] J. Bézivin, “In Search of a Basic Principle for Model Driven
Engineering,” CEPIS, UPGRADE, The European Journal for
the Informatics Professional, vol. V, no. 2, pp. 21–24, 2004.
[Online]. Available: http://www.upgrade-cepis.org/issues/2004/2/up5-
2Bezivin.pdf

[48] “Textual Editing Framework.”http://www2.informatik.hu-
berlin.de/sam/meta-tools/tef, 2009.

[49] “openArchitectureware website,”www.openarchitectureware.
org, 2009.

[50] D. Harel and B. Rumpe, “Meaningful modeling: What’s thesemantics
of "semantics"?”IEEE Computer, vol. 37, no. 10, pp. 64–72, 2004.

[51] E. Börger, “The ASM method for system design and analysis. A tutorial
introduction,” in Frontiers of Combining Systems, 5th International
Workshop, FroCoS 2005, Vienna, Austria, September 19-21, 2005,
Proceedings, ser. Lecture Notes in Computer Science, B. Gramlich, Ed.,
vol. 3717. Springer, 2005, pp. 264–283.

[52] E. Börger and R. Stärk,Abstract State Machines: A Method for High-
Level System Design and Analysis. Springer Verlag, 2003.

[53] A. Gargantini, E. Riccobene, and P. Scandurra, “Metamodelling a
Formal Method: Applying MDE to Abstract State Machines,” DTI Dept.,
University of Milan, Tech. Rep. 97, 2006.

[54] ——, “Ten reasons to metamodel ASMs,” inDagstuhl Workshop
on Rigorous Methods for Software Construction and Analysis, LNCS
Festschrift. Springer, 2007.

15

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[55] “The Abstract State Machine Metamodel website,”http://asmeta.
sf.net/, 2006.

[56] E. Riccobene and P. Scandurra, “Towards an InterchangeLanguage for
ASMs,” in Abstract State Machines. Advances in Theory and Practice,
ser. LNCS 3052, W. Zimmermann and B. Thalheim, Eds. Springer,
2004, pp. 111 – 126.

[57] “OMG. Object Constraint Language (OCL), v2.0 formal/2006-05-01,”
2006.

[58] A. Gargantini, E. Riccobene, and P. Scandurra, “A Metamodel-based
Language and a Simulation Engine for Abstract State Machines,” J.
UCS, vol. 14, no. 12, pp. 1949–1983, 2008.

[59] ——, “Model-driven language engineering: The ASMETA case study,”
in International Conference on Software Engineering Advances, ICSEA.
IARIA: Published by IEEE Computer Society, 2008, pp. 373–378.

[60] P. Arcaini, A. Gargantini, and E. Riccobene, “AsmetaSMV: A way to
link high-level ASM models to low-level NuSMV specifications,” in
ABZ 2010, ser. LNCS, M. F. et al., Ed., vol. 5977, 2010, pp. 61–74.

[61] E. Börger, M. J. Butler, J. P. Bowen, and P. Boca, Eds.,Abstract
State Machines, B and Z, First International Conference, ABZ 2008,
London, UK, September 16-18, 2008. Proceedings, ser. Lecture Notes
in Computer Science, vol. 5238. Springer, 2008.

[62] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV Version 2: An
OpenSource Tool for Symbolic Model Checking,” inProc. International
Conference on Computer-Aided Verification (CAV 2002), ser. LNCS, vol.
2404. Copenhagen, Denmark: Springer, July 2002.

[63] J. M. Rushby, “Harnessing Disruptive Innovation in Formal Verifica-
tion,” in Proc. SEFM, 2006, pp. 21–30.

[64] A. Gargantini, E. Riccobene, and P. Scandurra, “Model-driven design
and ASM-based analysis of embedded systems,” inBehavioral Modeling
for Embedded Systems and Technologies: Applications for Design and
Implementation, L. Gomes and J. M. Fernandes, Eds. Norwell, MA,
USA: IGI Global, 2009, pp. 24–54.

APPENDIX A
BASIC PETRI NETS SEMANTICS

A concrete example is here provided by applying the
semantic hooking technique to a possible metamodel for the
Petri net formalism. The results of this activity are executable
semantic models for Petri nets which can be made available
in a model repository either in textual form using AsmetaL
or also in abstract form as instance model of the AsmM
metamodel.

Fig. 13 shows the metamodel for the basic Petri net for-
malism. It describes the static structure of a net consist-
ing of places and transitions (the two classesPlace and
Transition), and of directed arcs (represented in terms of
associations between the classesPlace andTransition)
from a place to a transition, or from a transition to a place.
The places from which an arc runs to a transition are called
the input places of the transition; the places to which arcs run
from a transition are called the output places of the transition.
Places may contain (see the attributetokens of the Place
class) any non-negative number of tokens, i.e. infinite capacity.
Moreover, arcs are assumed to have a unary weight. Fig. 14
shows (using a graphical concrete syntax) an example of Petri
net (with its initial marking) that can be intended as instance
(a terminal model) of the Petri net metamodel in Fig 13.

According to the semantic hooking approach, first we have
to specify an ASMΓPT (i.e. a model conforming to the AsmM
metamodel) containing only declarations of functions and
domains (the signature) and the behavioral semantics of the
Petri net metamodel in terms of ASM transition rules. Listing
6 reports a possibleΓPT in AsmetaL notation. It introduces
abstract domains for the nets themselves, transitions, and

Fig. 13: A metamodel for basic Petri nets

Fig. 14: A basic Petri net with its initial marking

places. The static functionisEnabledis a predicate denoting
whether a transition is enabled or not. The behavior of a
generic Petri net is provided by two rules:r_fire, which express
the semantics of token updates upon firing of transitions,
and r_PetriNetReact, which formalizes the firing of a non-
deterministic subset of all enabled transitions. The main rule
executes all nets in theNet set.

One has also to define a functionιPT which adds toΓPT the
initialization necessary to make the ASM model executable.
Any model transformation tool can be used to automatize the
ιPT mapping by retrieving data from a terminal modelm and
creating the corresponding ASM initial state in the target ASM
model. We adopted the ATL model transformation engine to
implement such a mapping. Essentially, for each class instance
of the terminal model, a static 0-ary function is created in the
signature of the ASM modelΓPT in order to initialize the
domain corresponding to the underlying class. Moreover, class
instances with their properties values and links are inspected to
initialize the ASM functions declared in the ASM signature.
For example, for the Petri netmPT shown in Fig. 14, the
ιPT mapping would automatically add to the originalΓPT

the initial state (and therefore the initial marking) leading to
the final ASM model shown in Listing 7. The initialization of
the abstract domainsNet, Transition, andPlace, and
of all functions defined over these domains, are added to the
original ΓPT .

16

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Listing 6: ΓPT

asm PT_hooking
signature:
abstract domain Net
abstract domain Place
abstract domain Transition

//Functions on Net
controlled places: Net−> Powerset(Place)
controlled transitions: Net−> Powerset(Transition)

//Functions on Place
controlled tokens : Place−> Integer

//Functions on Transition
controlled inputPlaces: Transition−> Powerset(Places)
controlled outputPlaces: Transition−> Powerset(Places)
static isEnabled : Transition−> Boolean

definitions:
function isEnabled ($tin Transition) =

(forall $p in inputPlaces($t)with tokens($p)>0)

rule r_fire($t in Transition) =
seq

forall $i in inputPlaces($t)do tokens($i) := tokens($i)−1
forall $o in outputPlaces($t)do tokens($o) := tokens($o)+1

endseq

rule r_PetriNetReact($nin Net) =
choose$transSetin Powerset(Transitions($n))

with (forall $t in $transSetwith isEnabled($t))do
iterate let ($t = chooseOne($transSet))in par

remove($t,$transSet)
if isEnabled($t)then r_fire[$t] endif

endpar endlet

//Run all Petri nets
main rule r_Main = forall $n in Net do r_PetriNetReact[$n]

Listing 7: ιPT (ΓPT , mPT)

asm PT_hooking
signature:

....
static myNet: Net
static P1,P2,P3,P4:Place
static t1,t2:Transition
....

default init s0:
//Functions on Net
function places($nin Net) = at({myNet−> {p1,p2,p3,p4}},$n)
function transitions($nin Net) = at({myNet−> {t1,t2}},$n)

//Functions on Place (the "initial marking")
function tokens($pin Places) =

at({p1−>1,p2−>0,p3−>2,p4−>1},$p)

//Functions on Transition
function inputPlaces($tin Transition) =

at({t1−>p1,t2−>{p2,p3}},$t)
function outputPlaces($tin Transition) =

at({t1−>{p2,p3},t2−>{p4,p1}},$t)

APPENDIX B
ASM SPECIFICATION FORTIC-TAC-TOE

Listing 8: ΓTic−Tac−Toe - the complete signature

asm Tictactoe
signature:
//For representing a board
enum domain Skind = {CROSS|NOUGHT|EMPTY}
domain SquaresubsetofInteger
domain Row subsetofInteger
domain ThreesubsetofInteger
static squaresInRow: Prod(Row,Three)−> Square
controlled symbol: Square−> Skind
//For managing the game
enum domain Finalres = {PLAYERX|PC|TIE}
enum domain Status = {TURNX|CHECKX|TURNPC|CHECKPC

|GAMEOVER}
monitored playerX:Square// move of X
controlled status: Status
controlled whoWon: Finalres
derived noSquareLeft : Boolean
derived hasThreeOf: Prod(Row,Skind)−> Boolean
//For PC strategies
domain Count subsetofInteger
controlled count: Count
derived openingPhase: Boolean
controlled lastMoveX: Square
static isCorner: Square−> Boolean
static isEdge: Square−> Boolean
static isCenter: Square−> Boolean
derived hasTwo: Row−> Boolean
static opposite: Square−> Square

definitions:
domain Square = {1..9}
domain Count = {0..9}
domain Row = {1..8}
domain Three = {1..3}

function squaresInRow($rin Row,$x in Three) =
if $r = 1 then if $x = 1 then 1 else if $x = 2 then 2 else3 endif endif
else if $r = 2 then if $x = 1 then 4 else if $x = 2 then 5 else6 endif endif
else if $r = 3 then if $x = 1 then 7 else if $x = 2 then 8 else9 endif endif
else if $r = 4 then if $x = 1 then 1 else if $x = 2 then 4 else7 endif endif
else if $r = 5 then if $x = 1 then 2 else if $x = 2 then 5 else8 endif endif
else if $r = 6 then if $x = 1 then 3 else if $x = 2 then 6 else9 endif endif
else if $r = 7 then if $x = 1 then 1 else if $x = 2 then 5 else9 endif endif
else if $x = 1 then 3 else if $x = 2 then 5 else7 endif endif
endif endif endif endif endif endif endif

function noSquareLeft = not(exist $sin Squarewith symbol($s)=EMPTY)

function hasThreeOf ($rin Row, $symbolin Skind) =
(symbol(squaresInRow($r,0)) = $symbol) and
(symbol(squaresInRow($r,0)) = symbol(squaresInRow($r,1))) and

(symbol(squaresInRow($r,0)) = symbol(squaresInRow($r,2)))

function openingPhase = count=0 or count=1

function isCenter($sin Square) = $s =5
function isCorner($sin Square) = $s =1 or $s=3 or $s=7 or $s=9
function isEdge($sin Square) = $s =2 or $s =4 or $s=6 or $s=8

//return true iff $r has two equal symbols and the third square is EMPTY
function hasTwo($rin Row) =

(exist $i1 in Three, $i2in Three, $i3in Three
with ($i1!=$i2 and $i1!=$i3 and $i2!=$i3 and
(symbol(squaresInRow($r,$i1)) = symbol(squaresInRow($r,$i2))) and
(symbol(squaresInRow($r,$i1)) != EMPTY) and
(symbol(squaresInRow($r,$i3)) = EMPTY)))

function opposite($sin Square) =
if $s=1 then 9 else if $s=3 then 7 else if $s=7 then 3
else if $s=9 then 1 endif endif endif endif

17

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Listing 9: ΓTic−Tac−Toe transition rules

//A very naive player: choose an empty square and mark it.
rule r_naive_strategy ($symbolin Skind)=
choose$s in Squarewith symbol($s)=EMPTY
do symbol($s):= $symbol

rule r_playACorner($symbolin Skind) =
choose$s in Squarewith (symbol($s)=EMPTY and isCorner($s))
do symbol($s):= $symbol

//Opening strategy
rule r_opening_strategy ($symbolin Skind)=

if (count=0)then r_playACorner[$symbol]
else if symbol(5) = EMPTYthen symbol(5):=$symbol//play the center
elser_playACorner[$symbol]//we play a corner
endif endif

//Mark with $symbol the last empty square within row $r
rule r_markLastEmpty ($rin Row, $symbolin Skind) =

choose$x in {1,2,3} with symbol(squaresInRow($r,$x))=EMPTY
do symbol(squaresInRow($r,$x)) := $symbol

//Draw strategy (with no fork creation/block)
rule r_draw_strategy ($symbolin Skind) =
choose$wr in Row with hasTwo($wr)
do r_markLastEmpty[$wr,$symbol]//1. Win or 2. Block
ifnone

if (symbol(5)=EMPTY)then symbol(5):=$symbol//3. Center
else if (isCorner(lastMoveX) and symbol(opposite(lastMoveX))=EMPTY)
then symbol(opposite(lastMoveX)):= $symbol//4. Opposite corner
else choose$s in Squarewith (symbol($s)=EMPTY and isCorner($s))

do symbol($s):= $symbol//5. Empty Corner
ifnone r_naive_strategy[$symbol]//6. Empty edge

endif endif

//Computer strategy selection
rule r_tryStrategy ($symbolin Skind) =
if openingPhasethen r_opening_strategy[$symbol]
elser_draw_strategy[$symbol]endif

rule r_movePC =par r_tryStrategy[NOUGHT]
count := count + 1
status := CHECKPC

endpar

rule r_movePlayerX =if symbol(playerX)= EMPTY
then par symbol(playerX):= CROSS

count := count + 1
lastMoveX := playerX
status := CHECKX

endpar
elsestatus := TURNXendif

rule r_checkForAWinner($symbolin Skind) =
//GAME OVER WITH A WINNER?
if (exist $r in Row with hasThreeOf($r,$symbol))then
par status := GAMEOVER

if $symbol = CROSSthen whoWon:= PLAYERX
elsewhoWon:= PCendif

endpar
else if (noSquareLeft)//GAME TIE?

then par status := GAMEOVER whoWon := TIEendpar
else if $symbol = CROSSthen status:= TURNPC

elsestatus:= TURNXendif endif endif

main rule r_Main = if status = TURNXthen r_movePlayerX[]
else if status = CHECKXthen r_checkForAWinner[CROSS]
else if status = TURNPCthen r_movePC[]
else if status = CHECKPCthen r_checkForAWinner[NOUGHT]
endif endif endif endif

18

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Video Notation (ViNo): A Formalism for Describing
and Evaluating Non-sequential Multimedia Access

Anita Sobe, Laszlo Böszörmenyi, Mario Taschwer
Institute of Information Technology

Klagenfurt University
Austria

{anita, laszlo, mt}@itec.uni-klu.ac.at

Abstract—The contributions of this paper are threefold: (1)
the extensive introduction of a formal Video Notation (ViNo) that
allows for describing different multimedia transport techniques
for specifying required QoS; (2) the application of this formal
notation to analyzing different transport mechanisms without
the need of detailed simulations; (3) further application of ViNo
to caching techniques, leading to the introduction of two cache
admission policies and one replacement policy supporting non-
sequential multimedia access.
The applicability of ViNo is shown by example and by analysis
of an existing CDN simulation. We find that a pure LRU
replacement yields significantly lower hit rates than our suggested
popularity-based replacement. The evaluation of caches was done
by simulation and by usage of ViNo.

Keywords-Multimedia Formalism; QoS; Caching; CDN; Non-
sequential Multimedia

I. INTRODUCTION

A. Motivation

In the end of 1895 the Lumière brothers presented the
first moving pictures in France (Lyon and Paris). They stored
the movie as a sequence of images on a perforated celluloid
tape. They were able to record and play this back at such a
speed that the viewers had the impression of - more or less -
continuous movement. This was the birth of the movie. People
were so much fascinated from moving pictures that on the very
first posters for movie performances we cannot find a title,
author or the like - people just went to see moving pictures;
whatever was showed.

Since then we have got used to the idea that a movie is
a long sequence of images recorded and played back at a
more or less constant speed. Even though this basic principle
is still valid, the uncritical usage of this paradigm causes a
lot of unnecessary difficulties in modern video access. Usage
scenarios are rapidly changing. We have reported [2] how
arthroscopic videos are used. The camera plays a central role
in this kind of surgery and the recorded videos are highly
interesting for research and education. The users - medical
doctors - are interested to find special situations in a large
archive of visually very similar recordings, e.g., the usage of
surgery equipment of a given type, in a special pathological
situation. They might be interested in comparing similar
scenes, watch them in parallel and create sub-sequences or
even single images from them. Several persons may do this

in cooperation, in a distributed manner. Such usage patterns
are obviously very different from that of the first viewers of
Lumières’ movies. In the following non-exhaustive list, we
summarize the main aspects of the current situation:

1) Virtually everybody can create and consume videos.
2) The length of movies available on the Internet varies

from a few seconds up to several hours.
3) Besides entertainment, professional use is gaining im-

portance, e.g., in medicine, news production, traffic
control and so on.

4) Both in entertainment and in professional usage, people
are often only interested in a small fraction of long video
sequences.

We conclude that we could gain a lot if we regarded videos as
non-sequential, direct access media. To put it in another way:
It is time to switch from the tape to the disk paradigm. Or
again in other words: Instead of enforcing users to be passive
viewers of movies it would be desirable to enable them to
become active composers of video presentations.

B. Compositions

Instead of offering prefabricated long, sequential videos, we
propose to offer a set of elementary video units, which can be
composed with the help of sequential and parallel composition
operators to arbitrary Video Notation (ViNo) compositions.
A unit itself is regarded as an atomic composition. The
result of a composition operation is also a composition. Thus,
compositions can be constructed from video units by repeated
application of composition operators.

We do not constrain the exact semantics of a video unit. It
could be a single bit or byte, a video frame, or a semantically
meaningful, short clip. By short we mean that the download
time is short enough not to justify streaming. Streaming should
rather be expressed as a composition (see below).

A given video can be logically described by several different
compositions. It can also be physically decomposed, in order
to get physically materialized units. We assume that for a
given video usually several logical compositions exist, but only
one physical decomposition exists. The problem of finding a
physical decomposition of maximal unit size that is compatible
with a given set of logical compositions is the subject of
related research, but out of scope of this paper. In the following

19

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

we assume that compositions rely on a given suitable physical
decomposition.

C. Quality of Service (QoS) constraints on compositions

Compositions may be subject to certain QoS constraints to
describe video processing requirements and properties using
ViNo. For example, we may require that the processing delay
for video units must not exceed a certain maximum. Or a
given network bandwidth must be available when transmitting
units according to a given ViNo composition. It is thus
possible to describe a video streaming scenario as a sequential
composition of bits with a bandwidth requirement of 1 Mbps,
or as a sequential composition of video frames with an average
throughput of 25 frames/sec. A video playback scenario could
be expressed as a parallel composition of some clips with
a maximal start-up delay of 500 ms. We can describe both
required and provided QoS using the same formalism.

ViNo compositions may also describe pipelined video pro-
cessing by an appropriate combination of sequential and
parallel operators according to a certain number of stages.
Each stage in the pipeline represents a buffering element.
Classical video streaming can be described as a pipelined
sequential composition, constrained by bandwidth and start-
up delay.

More generally, ViNo can be used to express temporal
relations between video units for the purpose of: (1) video
presentation requests, (2) video delivery execution plans, and
(3) video access methods.

D. Putting it together

Let us consider a simple example to put the elements
together. Assume that a ski-jumping video has already been
decomposed into six meaningful, short clips. The clips show
two essential moments (jump-off and touch-down) for three
athletes. The user would like to see the two clips belonging
to the same jumper sequentially, but the three clip pairs in
parallel. We assume that a video player capable of such
presentation modes is available. The user creates a ViNo
composition expressing her video presentation request (see
formal examples below) with the help of some appropriate
GUI. Now, the video transportation system transforms the
request to an execution plan, which is again represented by
a ViNo composition. For instance, if all clips are stored on
the same network node then the clips must be downloaded
sequentially (as we assume that clips are video units, which
are handled atomically by the video transportation system).
However, their order should be interleaved: first the jump-
off clips of all three athletes and then the touch-down clips).
On the other hand, if the clips happen to be distributed
in the delivery network in an optimal way, i.e. the clips
belonging to the same jumper are stored on the same network
node and clips belonging to different athletes are stored on
different nodes, with equal and minimal distance to the client,
then the execution plan is actually represented by the same
ViNo composition as the request. A good video transportation
system obviously strives for finding such optimal placement

of clips for popular requests. In any case the execution plan
must, of course, fulfill the requested QoS constraints. If this
is not possible, a good implementation is supposed to take
certain adaptation actions such as replicating video units.
These actions can again be expressed as ViNo composition
transformations.

E. What are ViNo compositions good for?

We see two main advantages:
1) Flexibility: If we get rid of the dictatorship of the long,

sequential, and continuous streams, then we gain a lot of
freedom in the handling of video systems. By using ViNo we
make any video delivery system programmable in a certain
sense. This apparently rather theoretical point should not be
underestimated. The success of digital computers relies exactly
on this kind of flexibility. Analog computers had a number
of advantages over the digital ones in solving differential
equations. They were faster and more precise – but less
flexible. No need to say who won the race between analog
and digital computers. Note that in the early 1960s, this was
not yet obvious.

2) Simplification: This is the actual topic of this paper.
Making explanations and descriptions simpler had always been
a driving power in science. It is not only a matter of costs
– a simple solution is usually cheaper than a complex one,
but a simple description is also easier to understand and
therefore less error-prone. On the other hand, if something is
getting very complicated then this is usually a sign of missing
understanding.

F. Using ViNo for deriving delay bounds

In the first part of this paper we introduce syntax and
semantics of ViNo and the associated QoS description lan-
guage in detail. In describing QoS constraints we rely on
QL, as defined by Blair and Stefani [3]. In the second part,
we show how to model Content Delivery Systems (CDNs)
with the help of ViNo. We can perform delay estimations of
arbitrary complex compositions in a recursive manner. We use
the CDNSim [4] simulator as a reference for evaluating our
results. We already obtain good estimations using a rough
model, which can easily be refined. Thus, we are able to
estimate transport delay bounds of complex, distributed video
delivery systems using a small set of ViNo expressions. The
results can be sufficient to support system design decisions,
thereby eliminating the need of sophisticated simulations. To
the best of our knowledge, this is a unique achievement.
ViNo expressions can easily be modified and extended. When
creating the examples, we experienced indeed that we could
not test all required situations using CDNSim. Modifying the
simulation would have needed days – if not weeks – of work.
Extending ViNo expressions, however, is a matter of hours or
minutes (for an experienced user).

In the third part of the paper we use ViNo to experiment
with some simple but novel video caching methods [1] based
on units. An own prototype implementation serves as a refer-
ence. Also in this case ViNo yields suitable delay estimations

20

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(under the assumption, of course, that QoS parameter estima-
tions are correct). The prototype implementation is a first step
towards a novel, self-organizing video delivery system, where
ViNo compositions and decompositions play a central role.
However, this system will not be discussed in this paper.

II. RELATED WORK

QoS languages have been defined to help a user or appli-
cation to specify requirements and to formally define actions
for recovery if the given requirements are not met. In [5] the
authors give an overview and classification of QoS languages,
which are categorized into user-layer QoS, application-layer
QoS and resource-layer QoS. Examples are INDEX [6] as
an expressive user-layer QoS language that helps translat-
ing the user’s preferences to more specific network-related
QoS. Application-layer QoS regards parameters such as frame
rate and frame resolution. The authors of HQML [7] took
advantage of XML for allowing developers to specify their
own multimedia-related tags. Another example is QML [8],
which is an object-oriented CORBA-based QoS language that
allows for QoS hierarchies and reusability. Resource-layer
QoS languages such as RSL [9] concentrate on resource
management and allocation.

However, ViNo’s aim is not to define a new QoS paradigm.
ViNo uses QoS languages, in particular QL [3], in order to
clarify QoS requirements. MMC# (see [10], [11]), a QL based
QoS extension of C#, provides automatic QoS requirement
formulation checking. A ViNo-compliant application might
take advantage of that by being implemented in MMC#.
However, calculations done with ViNo cannot be performed
with any of the examples given in [5] nor with MMC#.

In contrary to QoS languages, an XML-based language
exists that handles the presentation of autonomous media
objects, namely SMIL [12]. SMIL is a description language for
synchronizing different media channels like sound, video and
text in a SMIL player. Although ViNo might also be used to
describe multimedia presentations without the XML overhead
of SMIL, ViNo’s main strength is its general applicability
to the analysis of flexible transport mechanisms and related
calculations.

ViNo was designed to be able to compare existing multi-
media transport technologies, such as Client/Server, Content
Delivery Networks (CDNs) or P2P download and streaming,
to more flexible approaches. In this context, non-sequential
multimedia access patterns open new possibilities of video
services and require new ways of transport.

As described in [1], a first step in the direction of non-
sequential media was investigated by Zhao et al. [13]. The
authors define ”non-linear” media as video consisting of
several parallel branches. The streaming system maintains a
channel per branch. The authors observed as major problem
that there is no possibility to explore bandwidth reduction by
sharing connections, because it is not known if the client will
choose the branch just transmitted in advance. Nevertheless,
the authors showed that some hints regarding the client branch
selection lead to remarkable server bandwidth and client data

overhead reduction. However, the possible paths are predefined
and limited compared to the possibilities offered by our video
unit model.

Videos are considered as too large with respect to size to be
cached completely. A lot of research has been done on partial
caching. Generally, the idea of caching only parts of a video
supports our non-sequential media model.

In [14], a detailed overview of different caching strategies
is given. Prefix caching and segment-based caching are most
closely related to our work. A prefix may be fixed (e.g., the
first 10 minutes of a video) or dynamic (for every video
a proper prefix size is defined), see also [15]. Segment-
based caching increases the number of cached segments of
a video based on popularity measurements. Segments may be
uniformly sized or grow exponentially [16].

The authors of [17] propose a caching algorithm for stream-
ing media based on a measured popularity distribution of
segments. Considering fixed-sized segments of one second,
they observed that the popularity of segments of a single
video (internal popularity) follows a k-transformed Zipf-like
distribution (for kx = 10 and ky > 200). Hence the first
segments of a video are most popular, so the proposed caching
policy prioritizes prefix caching. However, we cannot expect
that non-sequential media access exhibits the same internal
popularity pattern. A user may not be aware of which unit is
the ”beginning” of a video.

Another segment-based caching mechanism aims to sup-
port interactive ”jumps” in a video stream [18]. The authors
introduce a basic interleaved segment caching (BISC) policy,
which disperses prefetched segments uniformly over the video
length to reduce response time for jump requests at the cost of
a reduced hit rate for sequential access. When the client jumps
to an uncached segment the cache delivers the closest cached
segment. Since segments are likely to be accessed sequentially
after a jump, BISC was extended to a dynamic interleaved
segment caching (DISC) policy, which dynamically selects an
interleaved or continuous segment caching strategy based on
observed client access patterns. However, the authors assume,
based on their analysis of a real RTSP workload in the year
2004, that video segments will be accessed sequentially in
most cases. In our video unit approach we refrain from this
restriction.

III. THE VINO FORMALISM

As described in the Introduction ViNo is based on so called
compositions. Its general syntax is given by the following
definition (the EBNF specification appears in the appendix).

Definition 1: A composition is an expression defined induc-
tively by these rules:

1) A single video unit is a composition.
2) Let c1, c2, ..., cn with n ≥ 2 be compositions, which

have already been defined. Then, the following expres-
sions are compositions, too:

a) [c1 || c2 || . . . || cn] is called a parallel composition.
b) (c1 ←Q1 c2 ←Q2 · · · ←Qn−1 cn) is called

a sequential composition. A symbol Qi, where

21

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

i = 1, . . . , n − 1, represents an optional QoS
parameter and may be omitted.

Throughout this paper, ui (i ≥ 1) always denotes a single
video unit. The brackets or parentheses of a parallel or a
sequential composition c, respectively, may be omitted if c
does not appear as proper subexpression of a composition. So
both [u1 ||u2] and u1 ||u2 are valid compositions on their own,
but u1 ||u2 ← u3 is not.

We define the semantics of ViNo in the context of video
transmission, but analogous interpretations apply in other
contexts as explained in the Introduction.

Definition 2: Semantics.
1) If c = c1 || c2 for some compositions c1 and c2, then the

transport of c starts as soon as c1 or c2 starts, whatever
is earlier; and it is finished when the transport of both
c1 and c2 is completed.

2) If c = c1 ←Q c2 then the transmission of c2 must not
start before the completion of c1; the QoS predicate Q
applies to the time period between completion of c1 and
completion of c2.

3) The semantics of c = c1 ←Q1 c2 ←Q2 c3 is defined as
that of (c1 ←Q1

c2)←Q2
c3.

We consider two compositions c1 and c2 as equivalent if they
lead to the same semantics according to Definition 2. We then
write c1 = c2. It is easy to check that the following equations
hold:

[c1 || c2] || c3 = c1 || [c2 || c3] (1)
[c1 || c2] = [c2 || c1] (2)
(c1 ← c2)← c3 = c1 ← (c2 ← c3) (3)
(c1 ←Q1 c2)←Q2 c3 = c1 ←Q1◦Q2 (c2 ←Q2 c3) (4)

where c1, c2, c3 are arbitrary compositions and Q1 ◦Q2 means
a suitable combination of both QoS predicates Q1 and Q2,
e.g. the sum if Q1 and Q2 refer to maximal delay. Note that
according to (1) a parallel composition c is an associative
binary operation, so the semantics of c is well defined. The
same applies to sequential composition without QoS predicate.

Definition 3: The null unit u0 is a video unit of length 0
(empty).
The null unit u0 serves as a ”dummy” composition (in a
similar way as dummy targets are used to express side-effects
in functional languages). The following properties apply:

• u0 || c1 = c1
• u0 ← c1 = c1
• c1 ← u0 = c1

A. Simple examples

In order to show how the before mentioned definitions work,
three artificial examples are created. All examples are based on
the same video delivery system architecture. It consists of one
origin server, four interconnected proxies and one client. We
show how the transmission of six video units can be described
using ViNo for different configurations with respect to unit
placement. For sake of simplicity, QoS is postponed to the
next section.

Fig. 1. Sample video delivery system with one origin server S, four proxies
P1− P4, and one client C, where all video units u1− u6 are available at
proxy P3.

As described in the Introduction a presentation request
may be created using some appropriate GUI. The request of
displaying video units 1–6 sequentially can be expressed as:

r = u1 ← u2 ← u3 ← u4 ← u5 ← u6

The actual transport of video units may differ from the
presentation request. To keep it simple, we assume that all
video units are downloaded to the client completely before
play back starts. So the video delivery process can be decom-
posed into one or more download stages corresponding to a
ViNo transport description s, followed by a play back stage
equivalent to the presentation request r: s← r.

Example 1. All video units are located at proxy P3 as
shown in Fig. 1. The units will be downloaded sequentially to
the client, corresponding to the ViNo transport description:

s1 = u1 ← u2 ← u3 ← u4 ← u5 ← u6

By adding the play back stage s2 = r we obtain the complete
video delivery description:

c = s1 ← s2 = s1 ← r =

u1 ← u2 ← u3 ← u4 ← u5 ← u6

← u1 ← u2 ← u3 ← u4 ← u5 ← u6

Example 2. Three of the units are located on proxy P3
and the other three are located on proxy P4. Both proxies
are direct neighbors of the client (Fig. 2). The download from
P3 is described as s1 = u1 ← u2 ← u3 and the download
from P4 is described as s2 = u4 ← u5 ← u6. There are two
possibilities to combine these download stages to describe the
overall video transport:

(1) The client downloads everything from P3 and after-
wards everything from P4, resulting in the ViNo expression:
s1 ← s2 = (u1 ← u2 ← u3)← (u4 ← u5 ← u6).

(2) While downloading everything from P3 the units are
downloaded from P4 in parallel: s1 || s2 = (u1 ← u2 ←
u3) || (u4 ← u5 ← u6). The video transport expressed by
this composition is finished when all video units have been
transmitted. Note that there is no temporal relation between
downloading units of s1 and s2, respectively. That is, u2 can
be received before or after u5 by the client. However, a system
designer may decide to synchronize the transport of s1 and s2;

22

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 2. Sample video delivery system with one origin server S, four proxies
P1− P4, and one client C, where the video units u1− u6 are available at
proxies P3 and P4 near the client.

Fig. 3. Sample video delivery system with one origin server S, four proxies
P1− P4, and one client C, where the video units u1− u6 are available at
proxies P1 and P2, which are not directly connected to the client.

then the description specializes to [u1 ||u4] ← [u2 ||u5] ←
[u3 ||u6].

As in example 1 the transport description involving the
download stages s1 and s2 is followed by a play back stage
s3 = r.

Example 3. Three of the video units are located on proxy
P1 and the other three units are located on proxy P2. None of
these proxies is directly connected to the client (Fig 3), so units
have to be replicated to proxies P3 or P4, respectively, before
they are downloaded to the client. This results in 5 stages: the
transport of 3 units from P1 to P3 (stage s1), from P2 to P4
(stage s2), from P3 to the client (stage s3), and from P4 to
the client (stage s4); and finally, the play back of all 6 units
at the client (stage s5 = r).

Let us assume a pipelined transport where proxies P3 and
P4 forward units immediately after receiving them from P1
or P2, respectively. For the sake of simplicity, let us further
assume that the transmission times of all video units between
adjacent network nodes and the play back duration of a single
video unit are roughly equal to a certain time period t. Then
the temporal evolution of the video delivery process can be
represented by TABLE I. Consequently, the user has to wait
4 time slots until play back can start, and the entire video
delivery process takes 10 time slots.

The table also helps creating the appropriate ViNo expres-
sion that describes the given video delivery scenario. Units
within the same time slot are transmitted in parallel, units in
different time slots are processed sequentially. The resulting

t 1 2 3 4 5 6 7 8 9 10
s1 u1 u2 u3

s2 u4 u5 u6

s3 u1 u2 u3

s4 u4 u5 u6

s5 u1 u2 u3 u4 u5 u6

TABLE I
TEMPORAL EVOLUTION OF VIDEO DELIVERY SCENARIO OF EXAMPLE 3.

ViNo expression is:

[u1 ||u4]← [u2 ||u5 ||u1 ||u4]← [u3 ||u6 ||u2 ||u5]
← [u3 ||u6]← u1 ← u2 ← u3 ← u4 ← u5 ← u6 (5)

B. Introducing QoS

To specify a request a client has only to provide information
about the required video units and whether these units have to
arrive in order (e.g. at the player). For example, a user may
express “I want to download units x and y, the order does
not matter” as ux ||uy . Note that this does not mean that the
units have to be delivered in parallel. A user who wants to
watch the units using a video player would be more specific:
“I want to watch unit x and then unit y, and unit x has to arrive
within the next 30 seconds”. This request can be expressed as
u0 ←D=30sec ux ← uy , where u0 is the null unit needed only
to express the required delay for unit x.

In the sequel the usage of QoS parameters is demonstrated
for expressing video unit transport. However, if ViNo is used
in a different context, the semantics of QoS annotations may
differ and need to be clarified prior to any calculations based
on ViNo expressions. We provide examples for the well-known
transport-related QoS parameters bandwidth, delay, and jitter.

We derive the notation and semantics of QoS parameters
from the QoS language QL [3]. QL is based on events like
reception and sending of messages. It uses a function τ
mapping events to points in time. Since ViNo is based on
compositions, we restrict ourselves to the event of receiving a
composition c at a given network node or video display. This
event occurs as soon as all video units referenced by c have
been received completely. We denote the corresponding point
in time as τ(c). In this paper we focus on QoS parameters that
can be used for delay calculations of video transport processes
described by ViNo expressions.

Definition 4: We define a recursive function delay to cal-
culate a delay bound for a QoS-annotated ViNo transport
description c:

1) The null unit causes no delay: delay(u0) = 0.
2) If c = c1 ←Q u for some composition c1 and a video

unit u, then

delay(c) = delay(c1) + delay(u,Q)

where delay(u,Q) is defined to be the delay τ(u) −
τ(c1) assuming a provided QoS parameter Q (trivial
case of recursion).

23

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3) If c = c1 ← c2 for compositions c1 and c2, then the
delay bound is computed recursively as:

delay(c) = delay(c1) + delay(c2)

For delay calculations, we assume that the transmission
of c2 occurs as soon as possible after the transmission of
c1, which is expressed by omitting the QoS parameter.

4) If c = c1 || c2 for compositions c1 and c2, then the delay
bound is computed recursively as:

delay(c) = max(delay(c1), delay(c2))

Note that the delay function is defined only on a subset of
all possible ViNo expressions. The following two expression
types will occur frequently in the subsequent examples, so
we introduce a separate notation for the corresponding delay
bounds:

• If c = u0 ←Q1
u1 ←Q2

· · · ←Qn
un for video units ui

(u0 is the null unit), then

delay(c) =

n∑
i=0

delay(ui, Qi) (6)

= delay(u1, . . . , un, Q1, . . . , Qn, seq)

where the last term introduces a new notation.
• If c = (u0 ←Q1

u1) || . . . || (un ←Qn
un for video units

ui (u0 is the null unit), then

delay(c) = max
1≤i≤n

(delay(ui, Qi)) (7)

= delay(u1, . . . , un, Q1, . . . , Qn, par)

where the last term introduces a new notation.
Whether the delay function represents a lower or upper delay
bound depends on the definition of the delay(u,Q) values.
We now demonstrate how to define these values if the QoS
parameters are given in terms of bandwidth, delay, or jitter,
respectively.

1) Bandwidth: By Q = BW we express that a given
bandwidth BW is available for transmission. The delay of
transmitting a video unit u is defined as:

delay(u,BW) =
size(u)

BW

The delay function therefore computes a lower bound of the
end-to-end delay corresponding to a given ViNo expression.
We assume that video units transmitted in parallel according to
some parallel ViNo composition use separate links, so that the
available bandwidth is not reduced by parallel transmissions.

Calculation of the lower delay bounds of sequential and
parallel compositions of video units according to equations
(6) and (7) results in:

delay(u1, . . . , un, BW1, . . . , BWn, seq)

=

n∑
i=1

size(ui)

BWi
(8)

delay(u1, . . . , un, BW1, . . . , BWn, par)

= max
1≤i≤n

(
size(ui)

BWi

)
(9)

2) Delay: By Q = D we express that transmission yields
a given delay D. The delay of transmitting a video unit u is
defined as:

delay(u,D) = D

If all delays occurring in a video delivery system are expressed
as provided QoS parameters of a corresponding ViNo compo-
sition and if the composition is an appropriate model of the
system, the calculated end-to-end delay value should be accu-
rate. However, for practical purposes, the ViNo composition
is constructed to provide an upper delay bound only, which
may lead to a simpler ViNo expression.

3) Jitter: According to the QoS language QL, jitter can
be defined by specifying lower and upper delay bounds
(Dmin, Dmax). To calculate the jitter of a given video trans-
port system described by an appropriate ViNo expression, we
therefore just need to apply the delay function to both bounds
separately. We obtain two functions delaymin and delaymax

with appropriate definitions of delay bounds for transmitting
a video unit u:

delaymin(u,Dmin) = Dmin

delaymax(u,Dmax) = Dmax

The jitter of a ViNo composition c is then computed as
(delaymin(c), delaymax(c).

To illustrate delay calculations, we now apply the delay
function to example 3 of section III-A. We restrict the dis-
cussion to delay as QoS parameter. Let the delay D1 for one
unit delivered from P1 to P3 be 300 ms, and the delay D2

from P2 to P4 be 350 ms. The delay D3 from both proxies
P3 and P4 to the client shall be 200 ms each. We need to
extend the ViNo transport description (see (5) and TABLE I)
to introduce delay parameters:

c = [(u0 ←D1
u1) || (u0 ←D2

u4)]

← [(u0 ←D1
u2) || (u0 ←D2

u5)

|| (u0 ←D3
u1) || (u0 ←D3

u4)]

← [(u0 ←D1
u3) || (u0 ←D2

u6)

|| (u0 ←D3
u2) || (u0 ←D3

u5)]

← [(u0 ←D3
u3) || (u0 ←D3

u6)]

Note that this ViNo composition is of the form c = c1 ← c2 ←
c3 ← c4, where each ci denotes a parallel composition. By
applying equation (7) and case 3 of Definition 4 we therefore
obtain:

24

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 4. Sample Architecture in CDNsim

delay(c1) = delay(u1, u4, D1, D2, par)

= max(D1, D2) = D2

delay(c2) = max(D1, D2, D3, D3) = D2

delay(c3) = max(D1, D2, D3, D3) = D2

delay(c4) = max(D3, D3) = D3

delay(c) = delay(c1) + delay(c2) + delay(c3) + delay(c4)

= D2 +D2 +D2 +D3

= (350 + 350 + 350 + 200) ms = 1250 ms

IV. ANALYZING TRANSPORT AND CACHING

In this section the potential of ViNo is shown as a tool
for analyzing existing delivery systems, such as Content
Delivery Networks (CDN). Additionally, we applied the same
analysis to our non-sequential multimedia cache to compare
its caching techniques to CDN.

A. Content Delivery Networks

CDNs consist of origin servers that are supported by
strategically placed surrogate servers to which the content
is replicated and/or cached (see [19], [20]). In most of
the commercially available CDNs, the content is passively
pulled by surrogate servers. Usually, commercial CDNs are
not available for research purposes. Even academic CDNs,
which are available on PlanetLab, are treated as black boxes.
For this reason, Stamos et al. [4] developed a simulation
environment, called CDNsim, for large scale CDN simulations.
This simulation is the basis for our experiments with ViNo.
A GUI for configuring simulations is also part of CDNSim.
CDNSim is an Omnet++ [21] simulation and uses the INET
Framework Library [22]. It covers all typical CDN function-
ality, such as DNS request redirection and LRU replacement.
CDNSim supports different cooperation policies such as clos-
est surrogate or random surrogate cooperation, but also simple
non-cooperative behavior can be configured. A very interesting
point for our investigations is the fact that if the number of
nodes and routers remains the same the same architecture
is generated for each simulation run. Therefore, the clients
connect always to the same surrogate servers.
TABLE II shows the configuration parameters used for our

experiments. Sample request traces and router topologies are

made available by the CDNSim developers at [23]. For sake
of simplicity we decided to use the non-cooperative policy for
our experiments, i.e, if a requested object is not available at the
client’s surrogate server the request is forwarded to the origin
server. However, all delay calculations can also be applied to
the cooperative policies as well.
The optimal unit size for a given application is an open
research issue. For our simulation experiments we simply
selected some reasonable size, namely 1500 bytes. This means
that a web page of 4,500 bytes is divided into 3 units and is
described as u1 ← u2 ← u3. The link speed is specified
to be 200 Mbits/sec, which results in a bandwidth BW of
16,666 units/sec.
We evaluate ViNo by calculating delay in miss and hit situa-
tions and compare the results to the simulated values.
In general a hit is represented as the distance from a client to
its surrogate, which is 1 hop. On a miss the transport represents
a sequential composition of two stages, i.e., from origin to
surrogate and from surrogate to client (e.g., c = (u0 ←BW

u1 ←BW u2 ←BW u3) ← (u0 ←BW u1 ←BW u2 ←BW

u3)). Thus, all calculations can be done without the complete
knowledge of the CDN’s architecture. The calculations repre-
sent the time a transport takes at minimum, i.e., it is the best
case transport delay. For the experiments these calculations are
referred to as ViNo generic.
The delay function for the example above can be described as
delay(c) and can be calculated as follows:

delay(c) = delay(u1, u2, u3, BW, ..., BW, seq)

+ delay(u1, u2, u3, BW, ..., BW, seq)

=
6

16, 666
= 0.36 ms

If the architecture is known in more detail, which is the case
for CDNSim, more precise calculations can be performed. As
shown in Fig. 4 routers are placed on the path of clients and
surrogates. The idea was to consider those routers as hops,
e.g., a client is 3 hops away from its surrogate server. On a
hit the delay can be calculated based on the distance (measured
in hops) from client to surrogate. For the experiments these
calculations are referred to as ViNo routers.
Two experiments were started, (1) all clients download web
pages of small size; (2) one client downloads a number of
different sized web pages.
Experiment 1. This experiment proves the general applica-
bility of ViNo, its results are shown in Fig. 5. It is seen that
both ViNo routers and ViNo generic estimate well the delay
pattern of the measured values. The distance of ViNo routers
to the simulated delay is smaller because its calculations are
more precise, for the price that the transport paths have to be
known in advance.
We show by the example of downloading one single object,
how the corresponding delay is calculated. A randomly chosen
client with the id c1009 connects to the surrogate server
with id s1199 in 4 hops. A miss means a transport over
9 hops from the origin server. This client downloads the

25

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Parameter Value
Router Topology Waxman for 1000 Routers
Link speed 200 Mbit/sec
Number of clients 100
Number of surrogate servers 100
Number of origin servers 1
Number of outgoing connections 1000
Websites 50000 Web objects, 100MB max object size, sizes’ zipf=1, size vs popularity correlation = 0
Traffic 1000000 requests, popularity’s zipf = 1.0, expo mean interarrival time = 1, 100 client groups

TABLE II
CDNSIM CONFIGURATION PARAMETERS

0,0001

0,0010

0,0100

0,1000

1,0000

c1
00

0
c1

00
3

c1
00

6
c1

00
9

c1
01

2
c1

01
5

c1
01

8
c1

02
1

c1
02

4
c1

02
7

c1
03

0
c1

03
3

c1
03

6
c1

03
9

c1
04

2
c1

04
5

c1
04

8
c1

05
1

c1
05

4
c1

05
7

c1
06

0
c1

06
3

c1
06

6
c1

06
9

c1
07

2
c1

07
5

c1
07

8
c1

08
1

c1
08

4
c1

08
7

c1
09

0
c1

09
3

c1
09

6
c1

09
9

tim
e

in
 se

co
nd

s (
lo

g)

clients

CDNSim

ViNo Routers

Vino generic

Fig. 5. Comparison of download time ViNo vs. CDNSim

object with id 13, which has a size of 5 units. In ViNo
one stage consisting of these 5 units can be described as
ci = u0 ←BW u1 ←BW u2 ←BW u3 ←BW u4 ←BW u5. In
the simulation object nr 13 was not present at the surrogate
server. Thus, the overall composition c for ViNo routers is a
sequential composition of stages 1-9 (one stage per hop).

h = 9,BW = 16, 666u/sec

delay(c) =

h∑
i=1

delay(ci)

= h ∗ delay(u1, ..., u5, BW, ..., BW, seq) = 2.7 ms

The ViNo generic calculation has no detailed knowledge of
the routers and reduces therefore the miss to two hops, such
that the calculation changes to:

h = 2,BW = 16, 666u/sec

delay(c) =

h∑
i=1

delay(ci)

= h ∗ delay(u1, ..., u5, BW, ..., BW, seq) = 0.6 ms

The measured value was 3.01 ms, which shows that ViNo
routers calculation is a really good estimation.
Experiment 2. This experiment was done to investigate the

impact of different file sizes, since video objects are in general

larger than web objects. One client was picked out of all
clients, which downloads a set of very different sized objects.
The generic and the router based delay was calculated and then
compared to the simulated results. The ViNo router calculated
delay is shown in Fig. 7 and it can be seen that the calculations
do not always represent the lower bound of the simulated
duration. One extreme case is shown for the object with id
637 (the peak in Fig. 7), which has a size of 24 MBytes
(16,666 units). At this point of the simulation the object was
not present at the surrogate, thus it had to be downloaded from
the origin with a distance of 8 hops. The measured value was
3 seconds. The calculations with ViNo routers are provided
below:

delay(c) =

8∑
i=1

delay(ci)

= 8 ∗ delay(u1, ..., u16666, BW, ..., BW, seq) = 8sec

This effect appears for files that exceed the size of 10 KBytes,
which are routed in a different way than smaller files (as
in experiment 1). Larger files are split up and are routed
in parallel over several paths. Therefore, the transport is a
mixture of parallel and sequential compositions and not purely
sequential as assumed before. Since the routing algorithm is
part of the INET Framework and the paths are not predictable
with reasonable effort, we cannot provide a more detailed
calculation. However, the router based calculations might
represent the worst case delay if the routing path is always
the same.
The generic calculations are always representing the lower
bound of the duration as shown in Fig. 6, since in any way the
surrogate downloads the complete website before forwarding
it to the client. In comparison to the ViNo routers result the
ViNo generic result is 2 seconds for the object with id 637.
Thus, the generic case represents the larger file downloads
better and the router based calculations represent smaller file
downloads better. Which type of calculation is finally taken
depends on the knowledge of the architecture and on the
purpose of the analysis.
The efficiency of CDNs and caches is usually compared by

measuring the hit rate. ViNo can also be used to analyze the
impact of the hit rate to the delay.
In our experiments the objects’ sizes are Zipf distributed with
an alpha value of 1.0 (strongly skewed). This means that

26

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0,00010

0,00100

0,01000

0,10000

1,00000

10,00000

73
0

55
7

63
9

64
6

52
8

67
1

69
6

56
2

63
1

60
0

56
4

56
6

61
8

52
3

53
2

63
1

60
4

72
6

73
2

71
4

54
9

58
8

56
0

64
2

63
2

59
6

62
7

57
4

61
2

tim
e

in
 se

c
(lo

g)

object ID

CDNsim
ViNo …

Fig. 6. Comparison of download time ViNo generic vs. CDNSim

0,00050

0,00500

0,05000

0,50000

5,00000

73
0

55
7

63
9

64
6

52
8

67
1

69
6

56
2

63
1

60
0

56
4

56
6

61
8

52
3

53
2

63
1

60
4

72
6

73
2

71
4

54
9

58
8

56
0

64
2

63
2

59
6

62
7

57
4

61
2

tim
e

in
 se

c
 (l

og
)

object ID

CDNSim
Vino …

Fig. 7. Comparison of download time ViNo routers vs. CDNSim

80 % of the overall objects’ size are represented by 20 %
of the objects. This fact has a huge impact on the surrogates’
cache size. In CDNSim one cache was able to store 109 MBs,
which lead to hit rates of around 80 %. The reason is that
most surrogates handle small files and the cache misses only
occured in the beginning of the simulation until all objects
were loaded from the origin server (i.e., the actual cache size
was around 100 %).
If the surrogate servers had used popularity based prefetching
the hit rate would have reached 100 %. This leads to the
question on how much delay improvement prefetching would
make. For this investigation we took ten random surrogate
servers out of the simulation and calculated the delay reduction
as shown in TABLE III. It can be seen that the number
of units (i.e., the size of the original files) to serve vary
a lot. E.g., surrogate s1191 only serves 19 files, whereas
surrogates s1158 and s1164 serve almost the same amount
of units, but the number of objects differ by a factor of
10. In general, those surrogate servers serving large files
have advantages if prefetching is used. A CDN provider for

SID no. clients no. objects no. units prefetch pipeline
s1110 2 2158 26290 1.57733 1.57727
s1132 1 475 4033 0.24198 0.24190
s1140 3 46 210 0.01260 0.01255
s1158 1 214 18352 1.10110 1.10109
s1164 3 2632 18597 1.11571 1.11571
s1188 4 3007 49100 2.94594 2.94591
s1191 2 19 69 0.00414 0.00408
s1194 2 6658 77183 4.63089 4.63077
s1196 4 3355 56281 3.37679 3.37672
s1198 6 3291 39795 2.38764 2.38758

TABLE III
SURROGATE DELAY REDUCTION IN SECONDS ON PREFETCH AND ON

PIPELINING

videos can reach better surrogate efficiency and therefore
startup delay minimization if popularity based prefetching per
surrogate is applied. However, the popularity measures must
include different factors, e.g, region, as we might assume that
clients in Europe have different interests than in America, aso.
Another solution for the CDN provider could be to apply

pipelined transport on a miss, i.e., a surrogate forwards a unit
immediately after download from the origin. For a web site
that consists of three units this is described as:

c = (u0 ←BW u1)← [(u0 ←BW u2)||(u0 ←BW u1)]

← [(u0 ←BW u3)||(u0 ←BW u2)]← (u0 ←BW u3)

In comparison to c1 ← c2 = (u0 ←BW u1 ←BW u2 ←BW

u3) ← (u0 ←BW u1 ←BW u2 ←BW u3) for the pure
sequential transport. The delay for the pipelined composi-
tion is calculated as the sum of all sub-compositions (i.e.,
c = c1 ← c2 ← c3 ← c4).

delay(c)

=

4∑
i=1

delay(ci)

= delay(u1, BW)

+max(delay(u2, BW), delay(u1, BW))

+max(delay(u3, BW), delay(u2, BW))

+delay(u3, BW)

=
1

BW
+

1

BW
+

1

BW
+

1

BW
= 0.24ms

If the units would be transported sequentially as in c1 ← c2
the delay would be calculated as the sum of the sub delays,
i.e:

delay(c)

= delay(u1, u2, u3, BW, ..., BW, seq)

+delay(u1, u2, u3, BW, ..., BW, seq)

=
1

BW
+

1

BW
+

1

BW
+

1

BW
+

1

BW
+

1

BW
= 0.36ms

The transport would need 3+3=6 time slots. The pipelined
transport reduces the number of time slots to 4, in more general

27

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(for a 2-stage pipeline):

delaypipelined =
delaysequential

2
+ 1 time slots

If the surrogates analyzed before used pipelined transport
on a miss the delay would reduce in comparison to a
sequential transport as shown in TABLE III. Which of the
both techniques a CDN provider chooses is a matter of
implementation.

B. Non-sequential Multimedia Caching

If resources at a surrogate server are more limited and
the access patterns more flexible than in the CDNSim case
before, a CDN provider might be interested in a more efficient
replacement and prefetching policy. This analysis was done in
[1] and extended results are shown in the following.
We assume that the units are self-contained and equipped with
metadata comprising further information about the content.
Furthermore, we assume that a smart user application exists
that provides information about user intentions (see [24]). User
intentions are metadata about semantic roles a user can be cate-
gorized to. Such a role could be, e.g., ”informational” denoting
users looking for many but unspecific data and ”transactional”
denoting users wishing to buy a specific content. A semantic
group of units is therefore a number of units that is of interest
for a category of users. Note that the unit groups are not
disjoint, but a user mapped to a given role is expected to
request those units that are mapped to that role. This favors
units that are more popular than others. Units in each group
are ordered according to their popularity. This knowledge is
exploited in the proposed cache admission policy.
The initial content of the cache is prefetched at system start
and regards the most popular units of all groups, depending
on the cache’s size. Subsequently, the next fitting unit from
a user group will be prefetched. The next fitting unit is the
unit following the currently requested unit regarding popularity
within the current group. This policy is called ”simple cache
admission policy” and formally defined as follows:

prefetch=

unext if hit ucurrent
0 if hit ucurrent && hit unext
ucurrent ← unext else

However, this policy is inefficient, since unpopular units are
prefetched as well. Therefore, the second admission policy is
based on a rank calculation (rall) over all groups for each
unit. If the calculated global rank is below a predefined rank
(rank 0 is the highest rank level), the unit is considered for
prefetching. The impact of low popularity is minimized using
the logarithm of the group rank.

rall =
1

n

n∑
i=1

ln ri

If a unit is in the top 5 of one group and less popular in
another group, it is more likely that this unit is cached than a
unit that has an average popularity within several groups.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

H
it

ra
te

 in
 %

Cache size in %

simple
rank_10
rank_15
rank_20

pure LRU

Fig. 8. Hit rate comparison of pure, simple and rank-based admission using
LRU.

This approach was evaluated with a discrete-event based
simulation using Omnet++. The user requests were generated
with Medisyn [25], in a similar way as done in CDNSim.
For 100 units with different popularity, 10000 requests per
user group were generated. Initially, LRU was implemented as
the replacement strategy. The threshold was mapped to ranks
10, 15 and 20. Furthermore, we used CDNSim with the same
parameters to compare pure LRU without prefetching to the
non-sequential cache.
First, the hit rate comparison is done for the LRU-based
admission policies, the results are depicted in Fig. 8. The
rank-based admission policy shows an improvement of 5-
10 % according to the simple admission and up to 20 % of
improvement in comparison to the non-prefetching policy. It
can also be seen that the thresholds of the rank-based policy
show small differences in hit rate, but the number of prefetches
increases the higher the threshold is specified. For further
experiments the threshold of rank 10 is seen to be sufficient.
Although LRU supports popular units to remain longer in

the cache, for small cache sizes even popular units are often
replaced in the case of prefetching. Fig. 9 shows the factor of
requests sent to the server in comparison to the client requests.
This shows the maybe surprising result for small cache sizes
it would be more efficient to send the units directly from
the server, because the number of units sent from the server
exceeds the number of requests. For the simple admission
policy the server ought to send units in vain until 30 % of
cache size. Whereas the rank-based policy decreases the load
to an efficient level already at a cache size of 10-15 %. For
less unnecessary replacements LRU has to be substituted by
a replacement policy that considers the unit popularity.

A unit has to be prefetched and cached if it is popular
enough. The rank calculation of the admission policy can also
be applied to the replacement policy.
The effect on the load is shown in Fig.11. The simple
admission policy starts to be efficient from a cache size of
10 % in comparison to LRU replacement. Also the rank-based

28

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 5 10 15 20 25 30 35 40

S
er

ve
r

re
qu

es
t l

oa
d

fa
ct

or

Cache size in %

simple
rank_10
rank_15
rank_20

Fig. 9. Factor of server requests compared to user requests (LRU)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

H
it

ra
te

 in
 %

Cache size in %

rank_10_lru
simple_lru

rank_10_pop
simple_pop

pure_lru

Fig. 10. Hit rate comparison of the admission policies using LRU and
popularity replacement

admission policy starts to be efficient from very small cache
sizes. However, this policy is complex and might not be used
for caches with limited computing resources. For this cases
the simple admission policy in combination with rank-based
replacement is preferable.
Fig. 10 compares the hit rate evolution for both replacement
policies. The comparison to pure LRU shows that the hit rate
increases remarkably if applying a combination of rank-based
admission and rank-based replacement. For a cache size of
20 % the hit rate differs by 40 %. Video CDN providers would
gain remarkable storage cost reductions if applying rank-based
caching.

V. CONCLUSION AND FUTURE WORK

In this paper we extended the definition of the syntax and
semantics of the Video Notation (ViNo) published in [26] and
in [1]. Its applicability for describing and analyzing video
transport is shown by simple examples and by the evaluation

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 5 10 15 20 25 30 35 40

S
er

ve
r

re
qu

es
t l

oa
d

fa
ct

or

Cache size in %

rank_10_lru
simple_lru

rank_10_pop
simple_pop

Fig. 11. Factor of server requests compared to user requests (LRU, popularity
Relacement)

of an existing transport technique (CDN). For this reason
we investigated two calculation types: (1) a simple, generic
calculation that is always valid for the estimation of the best
case delay and (2) a router based calculation that is more
precise if the architecture is known in advance.
We showed in a caching scenario by taking advantage of ViNo
how the use of prefetching and pipelining reduces startup
delay. It is shown that ViNo could support content providers’
system design decisions without extensive simulations.
The analysis of the CDN simulation was further used to
investigate flexible access patterns in a non-sequential caching
technique. The next unit to prefetch is depending on the
popularity of this unit in all defined user groups. By comparing
these prefetching techniques LRU replacement was found to
replace units too frequent. Thus, LRU should be substituted
by a popularity based replacement. The popularity based
replacement technology improves hit rate and reduces the
load of the server remarkably. This proactive caching and
prefetching policy can be an efficient technique for multimedia
CDNs, because storage and costs would be reduced and quality
be increased (smaller start-up delays). The calculation effort of
rank-based prefetching combined with rank-based replacement
might have huge impact on the performance of a system. Thus,
the decision of which cache admission and replacement policy
to use depends on the resources available in the system to
analyze.
However, ViNo cannot fully substitute a simulation, since the
prediction of specific steps in a system (e.g., dynamic routing
paths) cannot be made with reasonable effort. ViNo can be
used as a tool for approximating general behavior of multime-
dia transport, e.g., to compute the best case delay on a miss or
on a hit. One of ViNo’s strength is the expression of different
transport techniques, which allows a simple comparison on the
first sight.

By using ViNo in research articles authors can explain new

29

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

transport techniques. For example, a new flexible approach
can be formally described in a few lines. This would banish
a lot of ambiguity from the scientific discussion.
Future work will regard further QoS calculations beyond
delay, and the definition of unit loss. Another issue is dynamic
unit size, which will be needed for semantically meaningful
units. In this context ViNo will be applied to compare
self-organizing multimedia transport to existing techniques. It
is expected that in non-sequential cases the flexible system
will outperform the traditional systems regarding startup
delay and user experience, even though the proposed caching
technique will also have its costs.

VI. ACKNOWLEDGEMENTS

The results presented in this paper are part of the research
efforts for the SOMA (Self-organizing Multimedia Archi-
tecture) project, a Klagenfurt University and Lakeside Labs
GmbH cooperation (URL: http://soma.lakeside-labs.com/)

APPENDIX

The following ViNo specification was created by using
ANTLR a LL(*) parser generator [27]. Since special signs
are not allowed in ANTLR, we used < Q for ←Q.

SEQ : ’<’ Q? ;
PAR : ’||’;
NUMBER : (’0’..’9’);
VALUE : NUMBER+;
LETTER : (’a’..’z’|’A’..’Z’);
NAME : LETTER (NUMBER | LETTER)*;
Q : (’_’ NAME (’=’ | ’>=’ | ’<=’) VALUE)+;

unit : NAME;

primitive: unit | group;

par: (PAR primitive)+;

seq: (SEQ primitive)+;

pargroup: ’[’ primitive par ’]’;

seqgroup: ’(’ primitive seq ’)’;

group: pargroup | seqgroup;

comp: primitive (par | seq)?;

REFERENCES

[1] A. Sobe and L. Böszörmenyi, “Non-sequential multimedia caching,”
in International Conference on Advances in Multimedia MMedia2009.
IEEE Computer Society, 2009, pp. 158–161.

[2] M. Lux, O. Marques, K. Schöffmann, L. Böszörmenyi, and G. Lajtai,
“A novel tool for summarization of arthroscopic videos,” Multimedia
Tools and Applications, vol. 46, no. 2, pp. 521–544, January 2010.

[3] G. S. Blair and J.-B. Stefani, Open Distributed Processing and Multi-
media. Addison-Wesley Longman Publishing Co., Inc., 1998.

[4] K. Stamos, G. Pallis, A. Vakali, D. Katsaros, A. Sidiropoulos, and
Y. Manolopoulos, “Cdnsim: A simulation tool for content distribution
networks,” ACM Transactions on Modeling and Computer Simulation,
2009.

[5] J. Jin and K. Nahrstedt, “Qos specification languages for distributed
multimedia applications: a survey and taxonomy,” Multimedia, IEEE,
vol. 11, no. 3, pp. 74–87, July-Sept. 2004.

[6] J. Altmann and P. Varaiya, “Index project: user support for buying qos
with regard to user’s preferences,” in Quality of Service, 1998. (IWQoS
98) 1998 Sixth International Workshop on, May 1998, pp. 101–104.

[7] X. Gu, K. Nahrstedt, W. YUAN, D. Wichadakul, and D. Xu, “”an xml-
based quality of service enabling language for the web”,” Journal of
Visual Language and Computing, special issue on multimedia languages
for the Web, vol. 3, pp. 61–95, 2002.

[8] S. Frolund and J. Koistinen, “Qml: A language for quality of service
specification, hpl-98-10,” HP Laboratories, Tech. Rep., 1998.

[9] I. Foster and C. Kesselman, “The globus project: a status report,” in
Heterogeneous Computing Workshop, 1998. (HCW 98) Proceedings.
1998 Seventh, Mar 1998, pp. 4–18.

[10] O. Lampl, E. Stellnberger, and L. Boeszoermenyi, “Programming lan-
guage concepts for multimedia application development,” in Modular
Programming Languages. Springer, September 2006, pp. 23–36.

[11] O. Lampl and L. Böszörmenyi, “Adaptive quality-aware programming
with declarative qos constraints,” in Internet and Multimedia Systems
and Applications, EuroIMSA 2008, M. Roccetti, Ed., 2008.

[12] D. C. Bulterman and L. W. Rutledge, SMIL 3.0: Flexible Multimedia for
Web, Mobile Devices and Daisy Talking Books. Springer Publishing
Company, Incorporated, 2008.

[13] Y. Zhao, D. L. Eager, and M. K. Vernon, “Scalable on-demand streaming
of nonlinear media,” IEEE/ACM Transactions on Networking, vol. 15,
no. 5, pp. 1149–1162, 2007.

[14] S. Podlipnig and L. Böszörményi, “A survey of web cache replacement
strategies,” ACM Computing Surveys, vol. 35, pp. 331–373, 2003.

[15] S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching for multimedia
streams,” in INFOCOM ’99. Eighteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE,
vol. 3, 1999, pp. 1310–1319 vol.3.

[16] K. L. Wu, P. S. Yu, and J. L. Wolf, “Segment-based proxy caching of
multimedia streams,” in WWW ’01: Proceedings of the 10th international
conference on World Wide Web. New York, NY, USA: ACM, 2001,
pp. 36–44.

[17] J. Yu, C. Chou, Z. Yang, X. Du, and T. Wang, “A dynamic caching
algorithm based on internal popularity distribution of streaming media,”
Multimedia Systems, pp. 135–149, October 2006.

[18] L. Guo, S. Chen, Z. Xiao, and X. Zhang, “Disc: Dynamic interleaved
segment caching for interactive streaming,” Distributed Computing Sys-
tems, International Conference on, vol. 0, pp. 763–772, 2005.

[19] G. Pallis and A. Vakali, “Insight and perspectives for Content Delivery
Networks,” Commununications of the ACM, vol. vol. 49, no. 1, 2006.

[20] A. Vakali and G. Pallis, “Content Delivery Networks: Status and Trends,”
IEEE Internet Computing, vol. 7, no. 6, 2003.

[21] “Omnet++ discrete event simulator.” [Online]. Available:
http://www.omnetpp.org

[22] “Inet framework.” [Online]. Available: http://inet.omnetpp.org
[23] “Cdnsim.” [Online]. Available: http://oswinds.csd.auth.gr/˜cdnsim/;

accessed 12/09
[24] C. Kofler and M. Lux, “Dynamic presentation adaptation based on user

intent classification,” in MM ’09: Proceedings of the seventeen ACM
international conference on Multimedia. New York, NY, USA: ACM,
2009, pp. 1117–1118.

[25] W. Tang, Y. Fu, L. Cherkasova, and A. Vahdat, “Medisyn: a synthetic
streaming media service workload generator,” in NOSSDAV ’03: Pro-
ceedings of the 13th international workshop on Network and operating
systems support for digital audio and video. New York, NY, USA:
ACM, 2003, pp. 12–21.

[26] A. Sobe and L. Böszörmenyi, “Towards self-organizing multimedia
delivery,” Reports of the Institute of Information Technology, Klagenfurt
University, TR/ITEC/12/2.08, Tech. Rep., 2008.

[27] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Bookshelf, 2007.

30

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Ontology-based Indexing and Contextualization of Multimedia Documents
for Personal Information Management Applications

Annett Mitschick
Dresden University of Technology, Department of Computer Science

Chair of Multimedia Technology
Dresden, Germany

annett.mitschick@tu-dresden.de

Abstract—With the help of Semantic Web technologies,
which ensure machine processability and interchangeability,
we are able to apply semantic knowledge models to organize
and describe heterogeneous multimedia items and their context.
However, an ontology-based document management system has
to meet a number of challenges regarding flexibility, soundness,
and controllability of the semantic data model. This paper
presents an integrated approach for ontology-based multimedia
document management which covers the process of automated
modeling of semantic descriptions for multimedia objects
and their long-term maintenance, allowing for the domain-
specific customization of the used ontology. Furthermore, the
proposed approach addresses the problems of data validation
and consolidation to ensure semantic descriptions of proper
quality. We demonstrate the practicability of our concept by a
prototypical implementation of a service platform for personal
information management applications.

Keywords-personal multimedia document management; se-
mantic metadata; generation; maintenance;

I. INTRODUCTION

As digital devices have found their way into nearly all
domains of every-day life, the amount of digital multime-
dia content is increasing and becomes more valuable and
important. Managing a considerable quantity of multimedia
documents involves administration efforts and certain strate-
gies for ordering and arrangement to keep track of content
and structure of the collection – esp. over a long period [1].
The problem is intensified by the complex and partly high-
dimensional characteristics of multimedia objects. Problems
which appear when users deal with search and retrieval
tasks within personal document collections mainly result
from lacking expressiveness and flexibility of the structure
of traditional file systems. Another problem users are facing
today is an increasing information fragmentation [2]. A
large number of desktop applications for personal document
management exists, typically applying individual storage
and indexing structures for specific document types (e. g.,
photo management software) and providing different access
to the content. The reuse of metadata across personal desktop
applications is rather restricted.

With the help of Semantic Web technologies, which
ensure machine processability and interchangeability, we are

able to apply semantic knowledge models and paths to orga-
nize and describe heterogeneous multimedia items and their
context. A document collection is no longer an aggregation
of separate items, but forms an individual knowledge base
providing rich and valuable data for innovative PIM (per-
sonal information management) applications which present
an aggregated view of the relations and links between
personal documents, dates, contacts, e-mails, etc. To avoid
the information fragmentation mentioned above, such PIM
applications should be lightweight solutions, accessing a
central ontology-based document management system. Such
an ontology-based personal multimedia document manage-
ment system has to meet several challenges:

• Diverse file and metadata formats are in use today and
even more will evolve in the near future. Thus, it is
of utmost importance that suitable document analysis,
metadata and feature extraction modules can be added
to the system without any difficulty. Extensibility of
supported schemas or standards also means that knowl-
edge modeling and processing modules must be flexible
and configurable enough to allow for media or format
specific knowledge instantiation.

• The ontology model used as a foundation of the in-
stantiated document and context descriptions must be
expressive and efficient. In the context of personal
document and information management, the design of
a suitable ontology model is non-trivial, only few pro-
posals exist, and standards are still missing. Thus, the
design of modules for knowledge processing, storing
and provision should take into account that ontology
models need to be replaced or changed. This must not
result in substantial re-engineering work.

• As semantic data about documents and their relations
to other resources tends to become very complex over
time and therefore difficult to handle, it is necessary to
integrate and apply control facilities, to enable the user
to take corrective action and prevent him from being
overstrained. Another result of the growing complexity
of a knowledge base can be a loss of confidence –
if the users are no longer able to check its correctness

31

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

themselves. Thus, appropriate support must be provided
to make sure that the content of the knowledge base is
sound and reliable at any time.

In this paper we present an integrated approach for
ontology-based personal multimedia document management
which addresses these issues, developed within the K-IMM
(Knowledge through Intelligent Media Management) project
[3]. After a discussion of related work in Section II, we
present the process of generating semantic descriptions
for personal multimedia documents in Section III and our
approach for data consolidation and document life cycle
management in Section IV. The architecture of the K-IMM
system, including a prototypical example application for per-
sonal document and information management, is presented
in Section V. Section VI concludes the paper and suggests
future research directions and open issues.

II. RELATED WORK

Existing projects with comparable goals (ontology-based
document management) can be classified according to their
focus on either manual ontology-based annotation or (semi-)
automatic semantic data modeling. A comprehensive survey
of the state of the art of semantic annotation for knowledge
management is presented in [4]. Manual annotation systems
mostly emerged in the context of Web document annotation,
e. g., Annotea [5], SMORE [6] and CREAM [7]. Later,
dedicated multimedia document annotation solutions like,
e. g., Caliph&Emir [8] and AKTiveMedia [9], evolved. Most
of the work on ontology-based annotation proceeds from
the assumption that, before annotation starts, an appropriate
ontology has to be created or assigned as a description
schema (top-down approach). If this is left to the users,
modality and sense of annotations depend on their intention
which is even more difficult for non-ontology engineers.

Projects concerned with the problem of automatic gen-
eration and maintenance of semantic metadata are either
targeting the automatic extraction and modeling of knowl-
edge from documents (Ontology Population or Ontology
Instantiation) based on NLP-techniques (e. g., KIM [10],
ArtEquAKT [11], MediaCampaign [12]) or at the develop-
ment of a so-called “Semantic Desktop”. The NEPOMUK
project [13] dealt with the development of a standardized,
conceptual framework for “Semantic Desktops” which in-
cludes information extraction and wrapping from hetero-
geneous data sources, based on the Open Source project
Aperture [14] (a reference implementation is Gnowsis [15]).
Other projects that can be named in relation to “Semantic
Desktop” are e. g., D-BIN [16], IRIS [17] and Haystack [18].
The latter turned out to be too non-restrictive to prevent data
from being corrupted by the user.

At present, ontology-based solutions for multimedia doc-
ument management are results of projects like aceMedia,
BOEMIE or X-Media. They are either focused on automated
annotation of image and video content [19], multimedia

information extraction for ontology evolution [20] or large
scale methodologies and techniques for knowledge man-
agement [21]. Adequate support for private users often
means that a well-balanced compromise between manual
and automatic annotation must be found. Presently, there
is no integrated approach for ontology-based personal mul-
timedia document management – from the content analysis
to valid semantic metadata – accounting for existing context
information and so-called “world knowledge”. In particular,
most of the existing approaches do not explicitly focus on
controllability and long-term maintenance regarding data
integrity and consistency, as well as document life cycle
management. Furthermore, from a developer’s point of view,
the domain-specific customization and configuration (i. e.,
substitution of the used ontology model) is not explicitly
supported.

III. AUTOMATIC GENERATION OF SEMANTIC
DESCRIPTIONS FOR MULTIMEDIA DOCUMENTS

The prevalent uncertainty and ambiguity of interpretation
and interrelation of information sources and the various
application scenarios led us to the concept of a stepwise
information instantiation process [22]. Figure 1 broadly
depicts the generation process, showing a sequence of dis-
tinguishable stages of data modeling which will be described
in more detail in the following.

A. Document Analysis

A multimedia document is processed and analyzed by a
specific Analyzer component, depending on its media type
and file format. Available Analyzers register dynamically
at runtime and are thereupon considered as providers of
specific information about a certain document type. They
perform the task of document pre-processing, i. e., the file
format specific processing and extraction of embedded meta-
data and raw data (content), and the format-independent
analysis of the extracted (multimedia) content. Irrespective
of the type of document, each analyzing process starts with
the following steps: (a) identification of the file format, (b)
extraction of embedded metadata, and (c) extraction of the
raw data.

The correct identification of the file format is most
important for the further processing and interpretation of
the content. Even if the file has an appropriate filename
extension, it can not be assured that it really complies
with the corresponding format (e. g., because of multiple
use of filename extensions). The primary decision criterion
(whether the file can be processed and analyzed by the
component) must be provided by the component itself to
guarantee that the content can be analyzed correctly. Of
course, embedded metadata can only be extracted and ana-
lyzed if the way it is stored (or embedded) complies with a
certain standard or de facto standard. The same applies to
the actual raw data of the document.

32

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

"world

knowledge"
D

o
c

u
m

e
n

t
A

n
a

ly
s

is
audio

In
s

ta
n

ti
a

ti
o

n

temporary

model
facts extended

model

In
te

g
ra

ti
o

n

knowledge-

centric

Syntax

check

E
x

te
n

s
io

n

Image

Analyzer

Text

Analyzer

Audio

Analyzer

images texts

...

multimedia

Normali-

zation

Instantiation

rules

Extension

rules

Semantic

Web Search

Integration

rules

application

context

Context

Modeling
Consolidation

document-

centric

target

model

weakly

formalized

Figure 1. Data Modeling Process

The content-based exploitation and analysis of the raw
data mainly comprises two subtasks: the segmentation or
decomposition of the content to obtain logical parts (which
can be further processed), and the determination of low- and
high-level features. Following the principle of “divide-and-
conquer”, certain tasks of the content-based analysis of mul-
timedia content are delegated to specialized subcomponents,
allowing for reuse and substitution of particular solutions.
Thus, an image which is part of a text document is extracted
(by decomposition within a Text Analyzer) and passed to
an appropriate Image Analyzer. Depending on the media
type and file format, different techniques must be applied
to extract low- and high-level features. Deducing high-
level information from low-level features requires certain
background information and user participation (e.g., to train
classifiers for pattern recognition). For rather general fields
of application, automated techniques are still missing and
will hardly ever be on-hand without tight relationship to a
user’s context and conceptualization. Extent and complexity
of the extracted data depends on how much background
knowledge (rules and facts, or training data for the classifica-
tion of low-level features) is available. The capabilities of an
Analyzer component might be limited to the mere extraction
of certain embedded metadata. Thus, it is possible to apply a
combination of multiple Analyzers of different specialization
to one document type.

B. Information Instantiation
As we can not predict the extent and quality of available

information about multimedia documents, we need a flexible
and extensible schema for the input data of the instantia-
tion process. The most efficient way to specify descriptive
information is in the form of attribute-value pairs (name
and value of features or properties, like creator, modification
date, but also color layout, sound intensity, etc.). A reduc-
tion to minimum structure allows a compact and uniform
presentation of different sources and schemes. Furthermore,
the list of attribute-value-pairs can grow dynamically. Thus,
using this simple schema, an arbitrary number of Analyzer
components can act as data providers. However, as the
schema itself offers no validation ability, the passed input
data might be incomplete or faulty, or contains redundancies
or inconsistencies. To achieve an adequate level of data
quality, the input data is evaluated within this process of
instantiation (depicted in Figure 2) as follows:

1) Filtering: First of all, extracted data is filtered ac-
cording to the requirements of the application domain.
Filter criteria are defined in an editable configuration
file. In case of redundant data a selection is made.

2) Syntax check: Syntactic errors occur if Analyzer com-
ponents extract faulty data because of coding errors or
problems with character sets. Examples are improper,
supernumerary or missing characters, or the exceeding

33

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the range of values. The erroneous data is corrected
or, if no automatic solution can be applied, excluded
from further processing.

3) Normalization: Values originating from different data
sources can be syntactically correct, but specified
in different data formats (e. g., “2008-01-13” or
“01/13/2008”). The transformation to a uniform,
consistent data format is an important premise for
further processing of the data.

4) Transformation: Finally, the filtered and normalized
data is “translated” to the internal ontology model
using a set of instantiation rules. In doing so, a
decision is made regarding the interpretation of the
mere syntactic input data by the semantic target model.

Figure 2. Information instantiation process

The process of syntax check and normalization is de-
scribed in [22]. It is designed in a modular way, so that
algorithms, sources and result format can be substituted and
configured easily. The datatype handlers are either based on
regular expressions (pattern-based), dictionaries (list-based)
or web search results (web-based).

As for the process of transformation, we apply the fol-
lowing procedure: Each attribute-value-pair represents per
se a statement and can be specified in RDF using the
utility property rdf:value as predicate and a unique
key as subject identifier. Hence, the resulting RDF model
can be passed to a reasoner component to apply a set of
configurable Instantiation Rules, allowing for appropriate
customization.

C. Extension and Integration

In the next step, the resulting model is extended with
additional data, i. e., with semantic information found on
the Internet provided by a Semantic Web Search Component,
described in more detail in [23], and current context informa-
tion provided by a Context Modeling Component, presented
in [24]. We assume that these services provide data in OWL
over a standardized interface (using SPARQL) and that the

ontologies are publicly available. An example for context
information and a sample query is given in [24]. To allow
for dynamic query composition, we introduced a template
mechanism to specify SPARQL queries with the help of
placeholders. An example (describing context information
about an email transmission) is given in the following:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX cm: <http://mmt.inf.tu-dresden.de/crocoon/

context-mail.owl#>
PREFIX cu: <http://mmt.inf.tu-dresden.de/crocoon/

context-upper.owl#>

SELECT ?mail ?property ?value
WHERE
{
?mail rdf:type cm:Email.
?mail cm:hasAttachment ?d.
?d cu:uniqueID [[SHA1_content]].
?mail ?property ?value.

}

The placeholders, tagged with squared brackets, are replaced
at runtime with adequate attributes – in this case the SHA1
hash of the document’s content, e. g.,

?d cu:uniqueID "d07149922d9f84c097f7ccf6ed5c7b658c4229d0".

The result of the query can be used to extend the existing
semantic information about the document. Thus, a collection
of configurable Extension Rules is applied to the temporary
data. An example of an Extension Rule (in Jena Rules
syntax [25], person and core are namespaces of the target
ontology model) could be:

[foaf1: (?P rdf:type person:Person),
(?F rdf:type foaf:Person),
(?F foaf:page ?homepage),
(?F foaf:depiction ?img)
-> (?P person:homepage ?homepage),

(?P core:imgLink ?img)]

Finally, the resulting temporary model can be inserted
into the system’s RDF repository. The concluding step of
Integration (cf. Figure 1) performs two tasks:

• the exploitation of interrelations within the temporary
model, and

• the verification and consolidation of the new informa-
tion – both in isolation as well as in context of already
existing information in the repository.

At first, a set of Integration Rules is applied to the
temporary model to deduce interrelations between instances,
e. g.,

[html1: (?H rdf:type ex:HTMLDocument),
(?H ex:containsURL ?img),
(?P rdf:type ex:Image),
(?P ex:filepath ?fp),
equal (?fp, ?img)
-> (?H ex:contains ?P)]

Secondly, the consolidation process is invoked, which is later
on described in Section IV-A. Afterwards, the generation
process is completed.

34

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. MAINTENANCE

Due to the unsupervised analysis and extraction of doc-
ument descriptions and context information, inserted data
is likely to be of inferior quality in terms of consistency,
accuracy, and redundancy. Furthermore, generated semantic
descriptions become obsolete if documents are modified. In
this section we describe our approach for maintaining the
semantic data model, regarding consolidation and document
life cycle management.

A. Data Validation and Consolidation

The semantic consolidation process within our system
considers data in the context of the whole knowledge base.
In general, consolidation is necessary whenever the knowl-
edge base has been changed or extended by any automated
process. It is invoked by the above-mentioned Integration
Component. Our Consolidation Component is composed
of three subcomponents: the Semantic Conflicts Handler,
the Duplication Handler, and the Incompletion Handler.
Their interrelation and the overall process of consolidation
is described in detail in [22]. By now, the Consolidation
Component provides high configuration ability: depending
on the actual application context, the set of rules for the
detection of semantic conflicts and incompletion, as well as
the metrics and threshold for duplication detection can easily
be adjusted or replaced. The following example rules (Jena
Rules syntax) should illustrate the mode of action:

[rule1: (?P rdf:type ex:Person),
(?P ex:bornOn ?T1),
(?P ex:authorOf ?X),
(?X ex:createdOn ?T2),
greaterThan(?T1, ?T2)
-> reportConflict(?P, ?X, ’...description’)]

[label: (?O rdf:type ?C),
noValue(?O rdfs:label)
-> reportIncompletion(?O, ’Missing label...’)]

[fname: (?P rdf:type ex:Person),
noValue(?P ex:familyName)
-> reportIncompletion(?P,

’Person has no surname...’)]

The first rule is an example for the detection of a semantic
conflict (“If a person, born on BirthEvent T1, is author
of a Document X, created on AuthoringEvent T2, then T1
must have happened before T2.). The second example is
a domain-independent rule to detect incompletion (missing
label), whereas the last one is a domain-dependent incom-
pletion rule (missing attribute).

If a decision for conflict or duplication resolution can be
made automatically, the user does not need to intervene.
If a clear decision cannot be assured, the user must be
involved for case-related judging. To minimize additional
effort whilst providing the user with a high degree of control,
it is necessary to find a compromise between fully automatic,
semi-automatic and manual solution of the above-mentioned
data problems. We propose two different approaches:

• Detected problems which can not be clearly solved
are reported to the user (with a proposal for solution),
leaving the active decision to him.

• All problems are solved automatically. Every decision
is logged, in such a way that it can be undone.

Both approaches are supported by our solution as it pro-
vides machine-readable as well as human-readable problem
description, according to a purpose-made ontology. These
problem descriptions are produced by the above-mentioned
handlers and passed to a central management component
which performs the task of storage and provision, as well
as solution and deletion of the conflicts depending on user
feedback.

B. Document Life Cycle Management

A document’s life cycle comprises all stages of a docu-
ment: from its creation, processing, storage, and usage, to
its disposal. In the context of personal document manage-
ment, these stages are not clearly separable. Nevertheless,
information about development stages of a document are
quite valuable if they are related to the user’s activities
and events. In order to deal with the document life cycle,
we specified a Document Life Cycle Management (DLCM)
process, performing the task of modeling information about
document activities which are either

1) activities which affect the document itself (creation,
editing, and deletion) and according semantic infor-
mation within the database needs to be updated, or

2) usage and management activities which do not affect
the document itself (rendering, printing, publishing,
sharing, retrieval, annotation, etc.).

An overview of the workflow is given in Figure 3. Document
modifying activities invoke the application of Update and
Extension Rules to the knowledge model.

In accordance to the instantiation process described in
Section III-B, the modeling of metadata about the activities
themselves is also a configurable, rule-based transformation
process to provide flexibility and allow for substitution of
the used ontology model. The input data for this modeling
process should comply with a determined ontology which
we call Document Life Cycle Ontology (DLC) – a purpose-
built ontology to describe the above-mentioned document
activities.

The DLC instantiation is triggered by an event handler
which receives data from file system events, available con-
text providers, and the management system itself (cf. Figure
3). To retrieve context information about a document’s us-
age, we integrated the generic Context Modeling Component
[24], already mentioned in Section III-B, which gathers
and models cross-application context data from available
context providers (e.g., from desktop applications, like e-
mail clients, authoring tools, etc.).

Unlike the process of generating new semantic descrip-
tions, as described in Section III, the update process of the

35

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

file

system

DLC-

Instantiation

Index management

ExtensionUsage

Editing

Deletion

application

context

Context

Modeling

Extension
rules

ManagementFile System

Monitoring

Management

system

activities

management

system

Update

Update rules

Event

Handler

DLC

Modification log

target
model

Figure 3. Document life cycle modeling process

DLC modeling process modifies existing semantic descrip-
tions. This also means that user-created descriptions, i. e., de-
scriptions of particular importance, might be altered uninten-
tionally. To avoid this, we integrated a logging mechanism
which records all user-driven activities in the repository (i. e.,
manual instance or statement creation, deletion, or editing)
using a special logging ontology. The DLC modeling process
accounts for the existing modification log (cf. Figure 3) by
accomplishing only deletion and modification rules which
do not effect user-generated content. To limit the size of the
modification log it is advisable to apply suitable replacement
policies, e. g., deleting log entries according to their time-
stamp (FIFO).

V. K-IMM: ARCHITECTURE AND IMPLEMENTATION

Based on the concepts described in Sections III and IV,
we developed a prototypical personal multimedia document
management system, designed as a service platform which
autonomously manages documents stored on the local file
system of the user. The import and indexing of multimedia
assets (of different type) is performed by background
tasks. An overview of the system is depicted in Figure 4.
Three layers can be distinguished and are marked in the
figure accordingly: (I) multimedia document indexing and
analysis, (II) semantic data modeling and storage, and (III)
a domain-dependent application layer.

(I) The document analyzing components extract specific
properties and features (as described in Section III-A).

(II) The extracted data is passed to the Semantic Mod-
eling and Consolidation component which provides
the subcomponents for information instantiation and
propagation, data validation and consolidation of the
knowledge base, as well as the described document
life cycle management. As mentioned in Sections III-C
and IV-B, a Semantic Web Search component [23] and
a Context Management component are connected to it

to allow for the semi-automatic extension of semantic
descriptions. The results of modeling and consolida-
tion processes are stored in a persistent RDF/OWL
repository using a third-party RDF/OWL API. The
Model Management and Processing component pro-
vides an abstraction layer which allows for the sub-
stitution of applied RDF/OWL processing frameworks
on the data layer. A component for User and Rights
Management, described in more detail in [26], allows
for sharing semantic descriptions with other users (on
the local computer or via a remote RDF server).

(III) The topmost component (Data Interface) provides
access to the modeled information for miscellaneous
front-end applications for personal document man-
agement. On this level, application developers can
configure or replace the used domain-specific ontology
model and the corresponding rule sets (more details
are given in Section V-A).

The overall architecture of the K-IMM system is realized
in Java based on the OSGi [27] execution environment
Equinox [28]. The diverse system components (described
above) are implemented as OSGi Service Bundles which
makes it possible to install, register, and start services (e. g.,
for multimedia analysis or user interface components) at run-
time and on demand. Currently, there are three prototypical
document analyzing components: an ImageAnalyzer for dig-
ital photographs, a TextAnalyzer for text documents, and an
AudioAnalyzer for music files. RDF and OWL processing
and storage is based on the Jena Semantic Web Framework
[29], including its inference support for the application of
rules and reasoning services. Particularly, we employ Jena’s
general purpose rule engine, its rule syntax and the concept
of Builtin primitives [25] to pass data to corresponding Java
modules, especially for evaluation and weighting algorithms
within the process of data consolidation.

36

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Desktop

PIM application

K
-I

M
M

 S
y

s
te

m

(I) media- / system-specific

(II) domain-independent

Document Indexing & Analysis

Image

Analyzer

Text

Analyzer

Audio

Analyzer

Model Management &

Processing
RDF/OWL

Framework

User & Rights

Management RDF/OWL
Repository

Media Index

RDF Server

Document
Repository

(III) domain-dependent

Data Interface

Model API

OWL files Rule files

Semantic Modeling &

Consolidation

Context

Management

Semantic Web

Search
Context

Service

WWW

PIM user

PIM

developer

...

Figure 4. K-IMM Architecture (overview)

A. Domain-dependent Application Layer and Authoring
Process

The Model API within the topmost layer of the architec-
ture enables modeling, storing, and processing of instance
data of the used ontology model. It provides an object-
oriented access to the ontology-based dataset which is
very useful for external software components (e. g., PIM
applications) to access and edit information in an object-
oriented way. Thus, external applications can create, modify
or delete instances (e. g., if a user manually edits semantic
descriptions) which is mapped by the Model API to appro-
priate operations on the RDF-based data layer. The Model
API is dynamically generated, mapping OWL concepts to
object-oriented classes with adequate methods for relations,
with the help of an automated build-process. Thereby, at
design time, the Model API is most flexible, allowing
for substitution or modifications of the ontology model.
Moreover, domain-specific rules used for the generation and
consolidation processes, described in Sections III and IV,
are kept in this layer. Thus, the developer is able to control
these processes in order to meet the demands of the PIM
application.

The intended authoring process comprises the following
four steps:

(1) Building the application ontology in OWL (e. g., using
Protégé [30]),

(2) Specifying the configuration settings for

• the instantiation process (with regard to the doc-
umentation of available Analyzer bundles),

• duplication handling (similarity metrics), and
• the compilation of SPARQL queries for the ac-

quisition of context information and semantic web
search results,

(3) Specifying rule sets for
• consolidation (semantic conflicts, incompletion),
• updating the document descriptions (DLC),
• extension (regarding available context information

and “world knowledge”),
• integration (establishing relationships between

documents),
(4) Implementing the front end application based on the

object-oriented data interface.
A graphical representation is depicted in Figure 5.

The benefit of the system and its application layer is the
separation of concerns: a declarative configuration of the
application domain and its “business logic”, and the imper-
ative programming of the front end application. Developing
suitable authoring tools, based on a linear, guided authoring
process, is obviously worthwhile. Furthermore, it would also
be possible to introduce distinct authoring roles, e. g., the
ontology designer (a domain-expert, responsible for steps
(1) and (3)), the process designer (responsible for step (2))
or the user interface developer (responsible for step (4), in
general the most laborious task).

In the following we present an application example which
shows the feasibility of our approach.

B. A K-IMM-based Desktop Application

Based on the exemplary implementation of the K-IMM
System, we set up a desktop application based on the

37

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Semantic Modeling

& Consolidation

Data Interface

(3)

Analyzer

PIM

developer

Image
Analyzer

Text
Analyzer

Audio
Analyzer

OWL files

(1)

attribute

descriptions

Instantiation

configuration

(2)

OWL2Java

Consolidation

rules
Extension

rules

Integration

rules

PIM application

(4)

Update

rules

Model API
Model Management

& Processing

RDF/OWL Framework

Duplication

Handling

SPARQL

templates

Figure 5. Authoring process of the PIM developer

Eclipse Rich Client Platform (RCP) [31]. The application
uses the Data Interface and Model API to retrieve semantic
information managed by the K-IMM System, modeled and
managed as described in Sections III and IV. The used
ontology is a purpose-built PIM ontology, consisting of 87
concepts and 173 properties. The necessary configuration
and Jena Rule files include about 500 lines of code (LOC),
whilst in contrast, the sophisticated graphical user interface
(GUI) expectedly comprises more than 20.000 LOC in Java.
A screenshot of the application is shown in Figure 6.

Figure 6. Screenshot of the demo application

The GUI provides several views to present and edit

the available instances. Resources which have relations to
spatial or temporal information (e. g., creation date/place)
are visualized as pictograms in a geographical view (on the
right), based on the Google Maps API [32], and in a time-
line view (in the middle) which can be zoomed smoothly for
different levels of detail [33]. The application allows for the
unrestrained edition and creation of semantic descriptions,
providing dynamically generated dialogs with appropriate
data type verification.

The GUI also contains a so-called Inspector view in
the bottom right corner. It presents currently existing and
automatically detected problems with a human-readable de-
scription and proposed solution (cf. Section IV-A). Thus, the
user can solve a conflict or delete the problem record with
just one mouse click.

Furthermore, the application features a Semantic Web
search widget, depicted in Figure 7. It illustrates the applica-
tion of semi-automated gathering and integration of “world
knowledge” found on the Semantic Web. As an example,
the figure shows the extension of the person instance “Peter
Jackson” using information from DBpedia.org [34] – with
one mouse click.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented an integrated approach for
ontology-based personal multimedia document management
which covers the whole process of automated modeling
of semantic descriptions for multimedia objects: document
analysis, information instantiation, context-aware extension
and integration, data consolidation, and observance of the
document’s life cycle. These aspects have been described in
Sections III and IV. They provide the basis for the design

38

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Detail of the demo application showing the widget for Semantic
Web search

of a personal multimedia document management system,
presented in Section V. It consists of three layers, separat-
ing system-specific document analysis, domain-independent
semantic data modeling and storage, and the domain-
dependent application interface. Thus, our solution allows
for the domain-specific customization and substitution of
the used ontology model and the corresponding modeling
rules and configurations. The proposed approach is perfectly
flexible regarding domain-specific alterations done by appli-
cation developers, or regarding future document or metadata
formats. We have proven the practicability of our concept
by a prototypical implementation of the K-IMM system as
an OSGi-based service platform for personal information
management applications. As a demo application we created
a comprehensive RCP front end, described in Section V-B.

We hope that this approach helps researchers and devel-
opers who pursue similar objectives. Of course, the benefit
of this concept heavily depends on the usability and “added
value” of suitable applications for personal information man-
agement. However, the rich, ontology-based datasets, which
are automatically generated, consolidated and managed by
the K-IMM system, form a proper basis to create advanced
and lightweight front ends.

In the near future we will concentrate on more detailed
performance and usability evaluation within our K-IMM-
based personal desktop application for ontology-based mul-
timedia document management. Additionally, as we have
already adopted our system in other application scenarios
(e. g., within the professional domain of construction process
management addressed in the project BauVOGrid [35]),
we would like to evaluate its feasibility within further
application domains. Finally, to ameliorate and simplify the
development process it would be reasonable to work on a
convenient authoring tool which supports ontology design,
specification of rules and configurations, as well as several
authoring roles.

REFERENCES

[1] A. Mitschick and K. Meißner, “Generation and maintenance
of semantic metadata for personal multimedia document

management,” in Proceedings of the First International Con-
ference on Advances in Multimedia (MMEDIA 2009), Colmar,
France, July 2009, pp. 74–79.

[2] D. R. Karger and W. Jones, “Data Unification in Personal
Information Management,” Communications of the ACM,
Special Issue: Personal information management, vol. 49,
no. 1, pp. 77–82, Jan. 2006.

[3] K-IMM Project, Chair of Multimedia Technology, TU Dres-
den, URL: http://mmt.inf.tu-dresden.de/K-IMM/, last ac-
cessed: 06/16/2010.

[4] V. Uren, P. Cimiano, J. Iria, S. Handschuh, M. Vargas-
Vera, E. Motta, and F. Ciravegna, “Semantic annotation for
knowledge management: Requirements and a survey of the
state of the art,” Journal of Web Semantics, vol. 4, no. 1,
2006.

[5] J. Kahan and M.-R. Koivunen, “Annotea: an open RDF
infrastructure for shared Web annotations,” in WWW ’01:
Proceedings of the 10th international conference on World
Wide Web. New York, NY, USA: ACM, 2001, pp. 623–632.

[6] A. Kalyanpur, J. Golbeck, J. Hendler, and B. Parsia, “SMORE
- Semantic Markup, Ontology, and RDF,” Mindswap, Tech.
Rep., Nov. 2002.

[7] S. Handschuh and S. Staab, “Authoring and Annotation of
Web Pages in CREAM.” in Proceedings of the Eleventh
International World Wide Web Conference, WWW2002, 2002,
pp. 462–473.

[8] M. Lux, “Semantische Metadaten: Ein Modell fr den Bereich
zwischen Metadaten und Ontologien,” Ph.D. dissertation,
Graz University of Technology, 2006.

[9] A. Chakravarthy, F. Ciravegna, and V. Lanfranchi,
“Cross-media Document Annotation and Enrichment,”
in Proceedings of the 1st Semantic Authoring and
Annotation Workshop (SAAW2006), 2006. [Online].
Available: http://www.dcs.shef.ac.uk/ ajay/publications/paper-
camera-workshop.pdf

[10] B. Popov, A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff,
and M. Goranov, “KIM - Semantic Annotation Platform,” in
International Semantic Web Conference, ser. Lecture Notes
in Computer Science, D. Fensel, K. P. Sycara, and J. My-
lopoulos, Eds., vol. 2870. Springer, 2003, pp. 834–849.

[11] M. J. Weal, H. Alani, S. Kim, P. H. Lewis, D. E. Millard,
P. A. S. Sinclair, D. C. De Roure, and N. R. Shadbolt,
“Ontologies as facilitators for repurposing web documents,”
International Journal of Human Computer Studies, vol. 65,
pp. 537–562, 2007.

[12] M. Yankova, H. Saggion, and H. Cunningham, “A Frame-
work for Identity Resolution and Merging for Multi-source
Information Extraction,” in Proceedings of the Sixth Inter-
national Language Resources and Evaluation (LREC’08),
N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odjik,
S. Piperidis, and D. Tapias, Eds. Marrakech, Morocco:
European Language Resources Association (ELRA), May
2008.

39

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[13] T. Groza, S. Handschuh, K. Moeller, G. Grimnes,
L. Sauermann, E. Minack, C. Mesnage, M. Jazayeri,
G. Reif, and R. Gudjonsdottir, “The NEPOMUK
Project - On the way to the Social Semantic
Desktop,” in Proc. of I-Semantics’ 07. JUCS, 2007,
pp. pp. 201–211. [Online]. Available: http://www.dfki.uni-
kl.de/ sauermann/papers/groza+2007a.pdf

[14] Aperture, Aduna Software, URL: http://www.aduna-
software.com/technology/aperture, last accessed: 06/16/2010.

[15] L. Sauermann, G. A. Grimnes, M. Kiesel, C. Fluit, H. Maus,
D. Heim, D. Nadeem, B. Horak, and A. Dengel, “Semantic
Desktop 2.0: The Gnowsis Experience,” in Proc. of the ISWC
Conference, Nov 2006, pp. 887–900.

[16] G. Tummarello, C. Morbidoni, and M. Nucci, “Enabling
Semantic Web Communities with DBin: An Overview.” in
Proc. of ISWC 2006, ser. Lecture Notes in Computer Science.
Athens, GA, USA: Springer, 2006.

[17] A. Cheyer, J. Park, and R. Giuli, “IRIS: Integrate. Relate.
Infer. Share.” in Proc. of 1st Workshop on The Semantic
Desktop. 4th International Semantic Web Conference, Nov.
2005, p. 15.

[18] D. R. Karger, K. Bakshi, D. Huynh, D. Quan, and V. Sinha,
“Haystack: A Customizable General-Purpose Information
Management Tool for End Users of Semistructured Data,”
in In CIDR, 2005.

[19] S. Dasiopoulou, C. Saathoff, P. Mylonas, Y. Avrithis, Y. Kom-
patsiaris, S. Staab, and M. G. Strintzis, “Introducing con-
text and reasoning in visual content analysis: An ontology-
based framework,” in Semantic Multimedia and Ontologies.
Springer Verlag, 2008.

[20] S. Castano, A. Ferrara, S. Montanelli, and D. Lorusso, “In-
stance matching for ontology population,” in Proc. of the
16th Italian Symposium on Advanced Database Systems, 22-
25 June 2008, Mondello, Italy, 2008, pp. 121–132.

[21] P. Buitelaar, P. Cimiano, A. Frank, M. Hartung, and
S. Racioppa, “Ontology-based information extraction and
integration from heterogeneous data sources,” Int. Journal of
Human-Computer Studies, vol. 66, no. 11, pp. 759 – 788,
2008.

[22] A. Mitschick and K. Meißner, “Metadata Generation and Con-
solidation within an Ontology-based Document Management
System,” Int. Journal of Metadata, Semantics and Ontologies,
vol. 3, no. 4, pp. 249–259, 2008.

[23] A. Mitschick, R. Winkler, and K. Meißner, “Searching
Community-built Semantic Web Resources to Support Per-
sonal Media Annotation,” in Proc. of SemNet 2007, Int.
Workshop located at ESWC2007, Innsbruck, Austria, 2007.

[24] S. Pietschmann, A. Mitschick, R. Winkler, and K. Meißner,
“CroCo: Ontology-Based, Cross-Application Context Man-
agement,” in Proc. of SMAP 2008. Prague, CZ: IEEE
Computer Society, December 2008.

[25] Jena Rules Documentation, Jena Semantic Web Frame-
work, URL: http://jena.sourceforge.net/inference/, last ac-
cessed: 06/16/2010.

[26] A. Mitschick and R. Fritzsche, “Publishing and Sharing
Ontology-Based Information in a Collaborative Multimedia
Document Management System,” in WISE Workshops, Nancy,
France, Dec. 2007, pp. 79–90.

[27] D. Marples and P. Kriens, “The Open Services Gateway
Initiative: An Introductory Overview.” 2001. [Online].
Available: http://www.adammathes.com/academic/computer-
mediated-communication/folksonomies.html

[28] Equinox Project, Eclipse Foundation, URL:
http://www.eclipse.org/equinox, last accessed: 06/16/2010.

[29] J. J. Carroll, I. Dickinson, C. Dollin, A. Seaborne, K. Wilkin-
son, and D. Reynolds, “Jena: Implementing the semantic web
recommendations,” in Proc. of WWW Alt. ’04, New York,
USA, 2004.

[30] Protégé Ontology Editor and Knowledge Acquisition System,
URL: http://protege.stanford.edu/, last accessed: 06/16/2010.

[31] Eclipse Rich Client Platform (RCP), Eclipse Foundation,
URL: http://www.eclipse.org/rcp, last accessed: 06/16/2010.

[32] Google Maps API, Google Code, URL:
http://code.google.com/apis/maps/, last accessed: 06/16/2010.

[33] R. Dachselt and M. Weiland, “TimeZoom: A Flexible Detail
and Context Timeline,” in Proc. of CHI ’06. New York, NY,
USA: ACM, 2006, pp. 682–687.

[34] DBpedia Knowledge Base, Linking Open Data community
project, URL: http://dbpedia.org/, last accessed: 06/16/2010.

[35] A. Gehre, P. Katranuschkov, and R. Scherer, “Semantic
Support for Construction Process Management in Virtual
Organisation Environments,” in ECPPM 2008 - eWork and
eBusiness in Architecture, Engineering and Construction -
Proc. of the 7th European Conference on Product and Process
Modelling (ECPPM), S. R. Zarli A., Ed. Taylor & Francis
Group, Netherlands, Sep. 2008.

40

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Relying on Testability Concepts to ease Validation and Verification activities of
AIRBUS Systems

Fassely Doumbia, Odile Laurent
Systems Design
AIRBUS France

Toulouse, France
{Fassely.Doumbia, Odile.Laurent}@airbus.com

Chantal Robach, Michel Delaunay
Systems Design & Test

LCIS – Grenoble Institute of Technology
Valence, France

Chantal.Robach@esisar.grenoble-inp.fr

Abstract—The experiments, carried on AIRBUS systems, show
that testability analysis can ease system formal detailed
specifications validation activities. Indeed, testability
information can highlight testing efforts, guide functional tests
definition, facilitate detailed specification coverage analysis
against system requirements, and support tests coverage
analysis against formal detailed specification. This paper
highlights the assessment result of testability concepts on
AIRBUS systems.

Keywords- requirement; data-flow design; testability flows;
testability measures; testing strategy; test; coverage analysis

I. INTRODUCTION

Development of avionics systems must comply with the
DO-178B standard [17]. The Validation and Verification
(V&V) process is very demanding and contributes to high
development costs. Therefore, innovative methods and tools
that can alleviate and efficiently support V&V activities are
of great interest for aeronautics domain. Functional testing is
the most commonly used technique for systems requirements
V&V. But, testing methods present some limits: exhaustive
test data generation is most often unselected because of the
size and the complexity of the systems. In this way,
controlling testing effort is major, but systems quality
demands are so big. Indeed, testing effort characterizes much
as test scenarios and test data definition as error
identification after fault detection during the diagnosis.

In this context, the testability analysis methodology
proposed in this paper can offer useful methods to support
the validation of systems formal detailed specification. Our
testability approach deals with detailed specification relying
on data-flow languages like SCADE [5]. The testability
analysis proposed is based on SATAN [3, 7] (System’s
Automatic Testability ANalysis) technology. This approach
determines testability flows and metrics that can be helpful
information for system designers and system design
validation engineers.

A significant number of research projects have dealt with
software testability and a set of complexity metrics have
been proposed. Each of these metrics address to either black-
box or white-box testing technique. The black-box testing
consists in considering the system under test as a box of
which we know only the specification. Test data are
generated from this specification which is most often

formalized. The black box testing does not consider the
internal structure of the system and defined test data are
independent of the implementation. Freedman [6] and Voas
and Miller [11] defined some testability approaches related
to the black box testing technique. Freedman introduced the
domain testability of software components based on
controllability and observability. A component becomes
observable when it produces distinct outputs from different
inputs. A component is controllable when its specified output
field corresponds to its produced output. Voas and Miller
proposed the DRR (Domain / Range Ratio) metric, which
exhibits fault-hiding tendencies of software subcomponents
considering the input and the output field cardinality. This
technique can be used to predict a subcomponent’s ability to
cause program failure if it contains a fault.

The white box testing technique is based on the internal
structure of the system under test to define test data and
coverage criteria. This technique assumes the program under
test is available as well as the system specification. McCabe
[8], Nejmeh [9] and Do, Le Traon and Robach [2, 3, 7]
proposed some approaches based on the internal structure of
a program. McCabe defined the Cyclomatic number which
measures the number of linearly independent paths through
the control graph built by using a program source code.
Nejmeh introduced the Npath metric which computes the
number of possible execution paths through a function. Do,
Le Traon and Robach proposed a testability measurement
applicable to data-flow designs. The study presented in this
paper is based on the same approach.

This paper proceeds as follows: Section II introduces
SATAN technology and the associated testability analysis
concepts. Section III describes the AIRBUS flight control
systems validation process. Section IV proposes some
adaptation techniques for Airbus systems analysis. The
defined methodology which aims at enhancing systems
validation process is presented in Section V. Experiments
results are depicted in Section VI. Finally, conclusion and
perspectives are given in section VII.

II. TESTABILITY ANALYSIS

Fig. 1 gives a simple view of testability analysis,
proposed by SATAN technology. This approach has been
initially applied to hardware systems [3]. Further studies [2,
7] demonstrated that this approach could be used for
analyzing the testability of data-flow designs. This method

41

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

provides metrics that allow the identification of critical parts
(which can be hard to test). It also identifies testability flows
which are a set of operators involved in the computation of
one output from relevant inputs. They can be used to guide
tests definition in the system design validation cycle.

The SATAN approach is based on a testability model that
represents the transfer of information into the system. This
model is called ITM “Information Transfer Model” (Section
A). Testability flows are identified from this ITM (Section
B). Measures quantified the testability of system components
are calculated from these testability flows (Section C). Test
strategies (Section D) can be applied to select relevant
testability flows to help the tests generation process.

Data-flow design

Automatic
translators

Data-flow
description

SATAN and
associated tools

Result
(Flows & measures)

Figure 1. Testability analysis process.

A. Information Transfer Model

The testability model is a graph defined by a set of
places, transitions and arrows. Places represent inputs,
constants, functional modules, outputs and test injection
points specified in the system. Transitions express
information transfer modes between places. Arrows
connecting places and transitions represent information
media throughout the system.

Three different information transfer modes Fig. 2 are
used in an ITM:

 Junction mode: the destination place needs
information from all source places;

 Attribution mode: the destination place needs
information from one of several source places;

 Selection mode: the same information is sent from
the source place to some destination places.

Junction Attribution Selection

Figure 2. Information transfer modes.

A data-flow description of a system is hierarchically
composed of operators. Each operator has an elementary
ITM. This model corresponds to the data-flow representation
of the operator. According to the level of testability analysis,
this elementary model can be more (or less) detailed. The

basic representation of an operator associates a functional
module to each output. Graphic representations Fig. 3
illustrate the notion of elementary ITM.

AND

E1 E2

S1

SWITCH

E1 E2

S1

CMD

then.sw

E1 E2

S1

CMD

else.sw

AND logic Basic model of SWITCH Detailed model of SWITCH

Functional
module

Figure 3. Elementary ITM of AND logic and SWITCH operators.

In this representation, inputs and outputs are depicted by
semicircles, modules by circles, and transitions by bars.

The system ITM is obtained by concatenating the
elementary ITMs.

B. Testability flows

SATAN technology identifies flows from a system ITM.
A testability flow is an information path that carries
information from one or several inputs, through modules and
transitions, to one output. Several testability flows can be
associated to an output.

The system specification represented in Fig. 4 contains
sixteen testability flows. Two testability flows (F1 and F5)
are depicted using bold lines. These flows are described
below by a set of modules and output.
F1 = {NOT_2, then.SWITCH_2, OR_2 | O2}
F2 = {NOT_2, then.SWITCH_2, OR_2, then.SWITCH_4,

OR_3, else.SWITCH_5 | O1}

Figure 4. Graphical representation of a testability flow

C. Testability measures

Two different measures are defined to characterize the
testability of a component using SATAN approach: the
controllability and the observability. The controllability
expresses how ease the input values of an internal
component can be controlled through the input values of the
system. The observability expresses how ease the results of
an internal component can be observed at the outputs of the
system. Fig.5 illustrates these measures.

42

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Controllability and observability of a component

These measures can be calculated for each defined
testability flow. SATAN associates these measures to all the
system ITM modules. Therefore, the testability measures of
a component are deduced from modules which represent it in
the ITM. Testability measures computation is based on
information theory. Let F be a testability flow and M a
module activated by ,F we can define the following

variables:

FI represents the sources of F ;

FO is the output of F ;

MI represents the input of M ;

MO is the output of .M

The controllability of a module M is computed as
follows: if M is isolated, all the possible combinations of its
input values can be produced. We denote MIC the input

capacity of M corresponding to the maximum information
quantity on its inputs when it is isolated. If M belong to the
testability flow ,F the maximum information quantity that

can be brought to its inputs is denoted .; MF IIT The

controllability of M is expressed as follows:

 M

MF
F

IC

IIT
MCont

;

In the same way, the observability of a module M is
computed as follows: the maximum information quantity
produced by M is MOC when it is isolated. The

maximum information quantity which can be delivered to the
output of F from

MO is denoted .; FM OOT The

following equation defines the observability of M :

 M

FM
F

OC

OOT
MObs

;

To determine the information quantities MF IIT ; and

 FM OOT ; , the approach uses the Information transfer Net

(ITN) to simulate the transfer of information in the system.
The ITN is a weighted ITM, whose elements are associated
with their information capacities. These capacities quantify
the information carried by the ITM elements using bits as
information unit.

 The information capacity of the ITM sources are
determined from their data types. The capacity is
equal to 1 for Boolean, 8 for Integer (when we

reduce the domain to 82 elements), etc.
 The capacity of a module corresponds to the

information quantity of its output. Indeed, we
suppose that the output takes its value in a finite set.
A probability is associated with the occurrence of

each element of this set at the output. In this context,
the capacity is equal to the entropy of the module
output variable. The Information Loss Coefficient
(ILC) of a module is determined from its capacity. It
expresses the intrinsic loss of information of each
ITM module. The ILC corresponds to the ratio
between the effective capacity and the maximum
capacity of the module [12, 13].

 The capacity of an arrow leaving from a place is
equal to the capacity of that place.

 The capacity of an arrow arriving to a place is equal
to the capacity of this place.

 In the junction information transfer mode, the
capacity of the arrow that leaves the transition is the
sum of capacities of all arrows arriving at the
transition.

 In the selection mode, the capacity of each arrow
leaving from the source place corresponds to the
capacity of this source place.

 In the attribution mode, the capacity of the
destination place is equal to the maximum value of
capacities associated with arrows arriving at this
place.

As to build the ITM, the ITN is obtained from elementary
ITNs of system operators. “Fig 6” presents the ITM (a) and
the ITN (b) of the AND operator.

AND

E1 E2

S1

(a) ITM

AND

E1 E2

S1

(b) ITN

1 1

2

0,81

1

1

Figure 6. ITM and ITN of the operator AND logic

As previously mentioned, testability measures can be
calculated for each testability flow. The approach described
in this paper considers only selected flows after the
application of a test strategy in order to alleviate the
testability analysis process.

D. Test strategies

A test strategy defines the way to conduct test activities
and to analyze test results. Test strategies allow us to select a
set of relevant testability flows for testing purpose. Flows are
chosen according to the following criterion: every place in
the graph must be activated at least once in order to ensure
the coverage of all operators. SATAN supports three
strategies: Start-Small (progressive structural strategy) [10]
suitable for the progressive detection of faults during system
validation, Multiple-Clue (cross-checking strategy) [10]
suitable for diagnosis during maintenance and All-paths [10]
which chooses all flows contained in the ITM. We will focus
on the Start-Small strategy in this paper.

43

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Start-Small strategy gradually covers the modules by
choosing flows with an increasing number of covered
modules. The main idea of this strategy is to minimize test
and diagnosis efforts. The first testability flow to be tested
contains the minimal number of modules. The next one
contains a minimal number of modules that are not activated
yet. In this strategy, a new flow is tested only if all faults
detected in previous flows are corrected, as depicted in Fig.
5. Tests are defined for each selected flow.

Start

T1

T2

Tn

End
System correct

Fail

Success

Success

Fail

Diagnosis and
fault repair

Diagnosis and
fault repair

T1

T2

Tn

...

System
Under Test

Figure 7. Start-Small strategy illustration

Start-Small strategy selects eight relevant testability
flows instead of the sixteen determined for the system
specification depicted in “Fig 4”.

Choosing a relevant testing strategy depends on industrial
practices and system development stage. In the next section,
we present the AIRBUS system validation and verification
process in order to point out the detailed specification
validation activities.

III. AIRBUS VALIDATION AND VERIFICATION (V&V)
PROCESS

In this section, we focus on AIRBUS flight control and
Auto flight systems V&V activities. Flight control systems
allow the pilot to control the aircraft in flight. Auto flight
systems allow maintaining the flight path defined by the
crew. They also control the aircraft and the engines. The
V&V cycle of these reactive systems relies on a generic V-
cycle process for which validation activities are added due to
the modelling process at system level Fig. 6.

Three main levels can be identified in this V&V process.
 The “Aircraft level” is composed of aircraft level

requirements definition, aircraft simulation, ground
and flight tests activities.

 The “System level” represents the system
specifications and design definition stage. The
system specification validation activities are led in
the phase.

 The “Equipment level” corresponds to the
implementation of system specifications and designs
in real equipment.

We will focus on systems validation activities in the rest
of the paper.

Unit test &
Formal verification

Integration & test

Lab tests

Ground tests

Flight tests

Model
Validation

Aircraft level
simulation

Aircraft
High level

requirements

SRD (System
requirements)

DFS (detailled
specification)

SCADE model

Partial automatic
code generation

Partial manual
coding

E
q

u
ip

m
e
n

t
le

v
e
l

S
y
s
te

m
le

v
e
l

A
ir

c
ra

ft
le

v
e
l

TRD

Validation cycle

(L1)

(L2)

(L3)

(L4)

(1)

(2)

(3)

(4)

(5)

Figure 8. AIRBUS Flight control systems V&V process

A. System validation cycle

System validation activities are mainly based on testing
and traceability activities. The model validation activities (5)
consist in executing tests on a desktop simulator dedicated to
flight control system. This simulator embeds system
functions code automatically generated from the SCADE
model. The traceability process relies on a documents
cascade and on a SCADE model managed by the DOORS
tool [5]:

 SRD (System Requirements Document) (1)
specifying system requirements refined from aircraft
requirements.

 DFS (Detailed Functional Specification) (2)
document describing the system detailed functions
that meet the system requirements.

 TRD (Test Requirements Document) (3) defining for
each DFS function the tests data (functional tests
description, tests vectors and expected tests results).

 SCADE model (or detailed specification) (4)
corresponding to a formal implementation of the
detailed functions and from which the embedded
code is automatically generated.

The traceability activities, based on DOORS tools,
consist in checking that:
 All the system requirements described in the SRD

are considered in the system functions (L1);
 The SCADE model implements only once all the

systems functions specified in the DFS (L2) (neither
under-specification nor over-specification);

 The tests defined in TRD cover all the functions of
the DFS (L3) and the functions of the SCADE model
(L4) (no missing tests).

In order to alleviate drastically the coverage analysis
activities described above, we propose to rely on the
testability flows determined by SATAN on the SCADE
model.

44

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Indeed, if we can demonstrate that there is a clear link
between testability flows and DFS requirements, the
relationship between SCADE model and DFS becomes
obvious. Another important issue of this approach in the
validation process is the definition of relevant set of tests
ensuring the coverage of the SCADE model. Enough tests
have to be identified to cover all the system requirements,
but redundant tests must be avoided for cost-efficiency
reasons.

The next Section IV presents developed methods in order
to take AIRBUS systems specific characteristics into account
during testability analysis.

IV. ADAPTING THE TESTABILITY ANALYSIS TO THE

AIRBUS CONTEXT

Appling the testability analysis on AIRBUS systems needs
the development of new testability concepts. Indeed, systems
specification use specific operators defined in the AIRBUS in-
house libraries in addition to those predefined in the SCADE
environment. The testability analysis must build ITM for
each specific operator and integrate new approaches in order
to comply with system validation functional tests definition
process. We first describe the proposed technique for
modeling AIRBUS specific operators ITM and ITN (Section
A). Indeed, previous research works highlight the interest of
testability measures on some systems [12, 15]. In this paper,
we will check the relevance of these measures in the AIRBUS

systems functional testing context. Then, we define
testability flows classification method relying on the
different phase of systems operation (Section B). Finally, we
present defined testability approaches for systems validation
(Section C).

A. AIRBUS specific operators ITM and ITN

The in-house libraries operators can be mainly split in
two categories: combinative and temporal operators. Indeed,
SCADE uses the synchronous approach for systems
specification [14]. In this approach, the time is divided into
discrete instants (cycles) defined by a global clock. At instant
t, the system receives input it from its external environment,
and computes output ot. Fig. 9 illustrates the synchronous
approach principles.

Environment
Synchronous

system

i
0

i
1

i
2

...

...o
2

o
1

o
0

Figure 9. Synchronous mechanism

The synchronous hypothesis expresses that the
computation of the output values is made instantaneously at
the same instant t.

The combinative operators compute the output
considering information of the current cycle. Arithmetic and
logical and switch operators belong to the category of
combinative operators. SATAN already proposes techniques
to model these operators.

Temporal operators compute the output considering
information of previous cycles (operators memory) in
addition of the current one. These operators implement the

past linear temporal logic. The flip-flop, state change
confirmation and state change stabilizer operators belong to
the category of temporal operators. This temporal aspect is
not currently taken into account by the testability analysis.
We use the flip-flop with priority to reset (BASCR) to
describe the ITM and ITN modeling techniques in order to
integrate the temporal aspect into the testability analysis
proposed by SATAN.

Fig. 10 highlights the graphical representation of
BASCR. Four different inputs and one output can be
identified for this operator.

SE is the “Set” input (boolean);

RE is the “Reset” input (boolean);

 Init represents the initialization value (boolean);

 InitB _ corresponds to the initialization boolean;

 1S is the output (boolean) of the operator.

Figure 10. SCADE representation of BASCR

The algorithm highlighting the behavior of this operator
is described below. We denote kE as the value of the flot

E at the cycle k .

 111

1

1

1_

kSkSElse

TruekSThenTruekEIfElse

FalsekSThenTruekEIf

nCalculatio

nCalculatioElse

kInitkSThenTruekInitBIf

tionInitializa

S

R

1) ITM of BASCR operator
The data-flow modeling of BASCR for testability

analysis is represented using two modules (see Fig. 11).

_BASCR_Init

Init

S1

_BASCR_Nominal

B_Init E
R

E
S

Figure 11. ITM of the temporal operator BASCR

45

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The first module (_BASCR_Init) computes the value of
1S when InitB _ is True from the input Init in the

initialization cycle. The module “_BASCR_Nominal”
computes 1S from

SE ,
RE and the value of 1S in previous

cycle when InitB _ is .False

2) ITN of BASCR operator
The ITN modeling of BASCR operator returns to

calculate the capacity of its modules (“_BASCR_Init” and
“_BASCR_Nominal”).

The basic hypothesis is to consider the occurrence of an
operator inputs value as independent events from a cycle to
another one. Indeed, it is difficult to make a correlation
between these values according to the complexity of their
production and the use of the operator in the system
specification. We also suppose that these events comply with
the Bernoulli distribution [16].

The “_BASCR_Init” module produces Null when

InitB _ is equal to 0orFalse and calculates 1S when

InitB _ is equal to .1orTrue As result, three different

values (Null , 0 and 1) can be observed on the output of this
module. Therefore, the maximum capacity of the output is
equal to .3log2Q We denote

BP the probability of the

event .1_ InitB Let AP mi _
be the occurrence

probability of A at the output of “_BASCR_Init”.

 Bmi PInitBPNullP 10__

 001_0_ InitPPInitandInitBPP Bmi

 111

11_1_

InitPPInitPP

InitandInitBPP

BB

mi

The capacity of this module can be expressed as follows:

1,0,

2 log__
Nullj

mimi jPjPInitBASCRCapa

In addition, the ILC (Information Loss Coefficient) of
this module is defined in the following expression.

 3log

__
__

2

InitBASCRCapa
InitBASCRILC

Considering the module “_BASCR_Nominal”, it
produces Null when 1_ InitB and calculates 1S when

.0_ InitB As result, three different values (Null , 0 and

1) can be observed on the output of this module. Therefore,
the maximum capacity of the output is equal to

 .3log2Q Let AP mn _
be the occurrence probability of

A at the output of “_BASCR_Nominal”. We denote p the

probability of the events 1kEP R
or .1kEP S

 Bmn PInitBPNullP 1__

 111

110_1_

kSPP

kSandInitBPP

B

mn

When 0_ InitB , the probability of the event

 11 kS can be expressed using the following table.

 kER
 kES kS1

0 0 11 kS

1 0 1
0 1 0
1 1 0

 11100

0111

kSandEandEPor

EandEPkSP

SR

SR

 111111 kSPppppkSP

p

p
kSP

2

1
11

Therefore,
p

p
PP Bmn

2

1
11_

 1111

010_0_

kSPP

kSandInitBPP

B

mn

p

PP Bmn

2

1
10_

The capacity of this module is:

1,0,

2 log__
Nullj

mnmn jPjPNoMinalBASCRCapa

The ILC is defined in the following expression.

 3log

__
__

2

NoMinalBASCRCapa
NoMinalBASCRILC

These capacities depend on the probabilities
BP and .p

Fig. 12 presents an ITN of BASCR with 5,0BP 5,0p

and .5,01 InitP

_BASCR_Init

Init

S1

_BASCR_Nominal

B_Init E
R

E
S

11111

2

1,5 1,46

1 1

11

3

Figure 12. ITN of the temporal operator BASCR

This modeling technique can be applied to other temporal
operators. It introduces new aspects (the state of memory and
the initialization phase of operators) in the testability
measures computing process.

B. Testability flows classification

Testability flows are the basic element of the proposed
testability analysis. Indeed, they represent system elementary
functions. The initialization phase modeling for temporal
operators ITM leads to the identification of two different
categories of testability flows. These categories reflect the
normal operation of reactive systems (initialization and
nominal phases).

 The initialization phase corresponds to the program
memory initialization in order to ensure a

46

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

deterministic behavior. However, the memories of
all the used temporal operators represent the memory
of the program. In this instance, this phase returns to
the initialization of these operators.

 The nominal phase represents the cyclic operation of
the program. This periodic operation is composed of
three main parts: the inputs reading, the outputs
computing and the memory updating. In a
synchronous paradigm, this period corresponds to a
cycle.

In order to make the testability analysis more
representative of systems operation, we define two classes of
testability flows corresponding to each operation phase. The
method of testability flows classification is illustrated in aid
of the Fig. 13.

_BASCR_Init

Init

S1

_BASCR_Nominal

B_Init E
R

E
S

Figure 13. An ITM representing the two classes of flows

As previously described, the ITM of the BASCR
operator is composed of two modules representing
respectively the initialization and the nominal phases.
Considering this ITM, one flow coming from
“_BASCR_Init” or “_BASCR_Nominal” is required to
activate .1S Indeed, it corresponds to the attribution mode
(see Fig. 2). Therefore, the classification method consists in
separating testability flows which contain initialization
modules from the other testability flows. Referring to Fig.
13, the dotted line represents the flow which activates
“_BASCR_Init”. This technique can be applied to other
temporal operators and information transfer modes. It allows
the identification of testability flows (functions) which are
activated in the both phases. This can be interesting for test
definition issue.

C. Testability analysis approahces

Testability analysis information is useful only if it
reflects the development process. In this section, we present
three testability approaches defined for AIRBUS needs.

1) Output variable approach

This first approach consists in identifying all the SCADE
output variables involved in the DFS. The part of the
SCADE model related to each output variable is extracted.
Thereby, testability flows are determined for each extracted
part of the SCADE model. This approach allows a local
testability view of the system for all output variables.

2) Set of output variables approach
This second approach consists in identifying the set of

output variables per function. The part of the SCADE model
related to this set of output variables is extracted and
testability flows are determined. It allows the testability
assessment for each function defined in the system.

3) Component approach
In this third approach, we propose to split the SCADE

model into independent parts from a data-flow point of view
(called hereafter components). This approach consists in
extracting each component and performing the testability
analysis. It allows the analysis of system independent parts
separately.

To illustrate testability approaches, we use the system
specification depicted in Fig. 4. “Tab I” below summarizes
the result when applying these methods. We assume

1O performs a function and
2O and

3O perform another

function.
We observe that the number of selected testability flows

decreases from (1) to (3). Indeed, the description of some
output variables can share SCADE model parts.

 In approach (1), these common parts are analyzed
for each output variable. Thereby, an important
number of testability flows is determined. Fig. 14
highlights the notion of common parts. The part (A)
computes the output variable

2O and (B) performing

3O involves (A). Using this approach, testability

flows determined for (A) are also considered during
flows identification for (B). (A) is then a common
part of the model.

 Regarding the approach (2), common parts used by a
set of output variables related to a function are
analyzed once during testability analysis. Common
parts related to different functions are analyzed
several times. So, the number of testability flow
decreases compared to (1) but is still high. The part
(A) performs

2O and
3O output variables; (B)

performing
1O involves (A) (see Fig.14).

TABLE I. TESTABILITY APPROACHES ILLUSTRATION

Methods
Output variables (1) Set of output variables (2) Component (3)

Number of
selected flows

12 (6 for
1O , 2 for

2O and 4

for
3O)

11 (6 for the 1st function and 5
the 2nd function)

8 (5 for
1O , 2 for

2O and

1 for
3O)

47

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. Specification common parts illustration

 In approach (3), all SCADE model related parts are
analyzed together. Each part of the specification is
explored only once during testability analysis. As a
result, testability flows determined by this approach
represent the lowest number compared to the two
others. The specification depicted in Fig. 14 contains
only one component.

We present, in this section, the main developed methods
for AIRBUS systems testability analysis. The next section
(Section V) defines a methodology based on testability
analysis to support system coverage analysis.

V. TESTABILITY ANALYSIS METHODOLOGY

The methodology defined for AIRBUS systems is based
on DFS document, TRD document and SCADE model. It is
composed of three main activities: a testability approach
application, the coverage assessment of the requirements
against the SCADE model, and the test cases against the
SCADE model.

A. Testability approach application

The testability analysis stage is depicted in Fig. 15. It
consists in applying one of the three testability approaches
defined in the previous section. Relevant testability flows are
selected using the Start-Small strategy (Section II). These
flows are exploited for coverage activities. Testability
measures are determined from selected flows. The relevance
of these measures is checked during experiments (Section
VI).

SCADE Model

Testability analysis
- Choice of the appoach
- Start-Small strategy

Testability
measures

Relevant flows

Figure 15. Testability approach application stage

B. SCADE model coverage against system requirements

Systems functional requirements have to be specified into
a formal model for their validation. This coverage analysis
uses relevant testability flows selected in the previous section
to give information about the completeness of the formal
specification. Fig. 16 presents the SCADE model coverage
analysis process.

This coverage analysis is mainly composed of three
activities.

a) Requirements output variables identification: This
activity consists in using the DFS document to identify
SCADE ouput variables involved in each system
requirement definition. The identification is performed
manually.

b) SCADE model coverage analysis: Testability flows
are associated automatically with output variables in this
step. This coverage activity allows highlighting a link
between requirements and testability flows. It also points
out the presence of:

Detailed
specification

Validation

SRD (System
requirements)

DFS (detailled
specification)

Formal model

(L2)

DFS

Requirements
SCADE output variables

identification
Sets of SCADE

output variables
Relevant flows

Coverage analysis

Set of flows for
each requirement

Missing flows in
the SCADE model

Orphan flows in
the SCADE model

Check DFS and
SCADE model

Figure 16. SCADE model coverage analysis against requirements process

48

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Orphan flows: Is called orphan a flow which has not
any association with a requirement. The
identification of these flows highlights the presence
of SCADE output variables which are not defined in
the DFS. The presence of these flows points out
either a possible over-specification of the SCADE
model or the implementation of derived
requirements in the SCADE model.

 Missing flows: This situation is due to the absence of
flows associated with some output variables. The
detection of these outputs means that no SCADE
model part corresponds to these output variables. It
highlights the SCADE model is incomplete: the
implementation of some DFS requirements is
missing.

In addition, for each DFS requirement, the minimum
number of tests to be defined can be deduced from the
number of testability flows: at least one test per flow. It
allows evaluating the testing effort.

c) SCADE model check: It consists in analyzing
orphan and missing flows data and may lead to
modifications in the SCADE model: suppress the SCADE
part related to orphan flows; add the SCADE part related to
the unimplemented DFS requirements highlighted by the
missing flows. This checking activity needs human
intervention.

C. Tests coverage against SCADE model

Testing is the dynamic verification technique led on the
simulated code of the system in order to verify the
completeness and the correctness of implanted requirements.
This coverage analysis uses testability flows associated with
system requirements in the previous section to give
information about defined test cases for validation. Fig. 17
presents the tests coverage analysis process.

This tests coverage analysis is mainly composed of three
activities.

a) Requirements test cases identification: This activity
consists in using the TRD to identify test cases associated
with each requirement described in the DFS. The
identification is performed manually.

b) Tests coverage analysis: This step highlights the
link, for each requirement, between relevant testability
flows and identified test cases. When a relevant flow
associated with a requirement cannot be linked to a
described test in the TRD, a missing test is identified. When
that a same flow is linked to different tests, potential

redundant tests are identified. It is also pointed out that the
number of determined flows is dependant of the ITM
modeling (Section II). In the current study, the ITM
modeling principle is based on branch and decision
coverage criteria.

c) TRD document check: This third activity consists in
analyzing missing and potential redundant tests data and
may lead to modifications in the TRD. These modifications
could be: the definition additional tests related to testability
flows which are not associated with any test and the deletion
tests when analysis shows they are functionally redundant.

Otherwise, the relation between relevant flows and test
cases can be used to define tests scheduling. Indeed, Start-
Small strategy (Section II) proposes an order of execution of
the tests related to the selected flows. This order aims at
minimizing diagnosis effort.

In the following section, we apply our methodology to
an academic example and present the results of its use for
two industrial case studies.

VI. CASE STUDIES

In this section, we first depict two experiments on
coverage analyses: the pumping system which is academic
and two Auto-flight systems which are AIRBUS operational
systems. Then we give some conclusion on the relevance of
the testability measures in the AIRBUS systems functional
testing process.

A. Coverage analyses

For interpretation purpose: (1) means the “Output
variable approach”, (2) means the “Set of output variables
approach” and (3) means the “Component approach”. We
will focus on nominal tests coverage analysis in this paper.

1) A house pumping system
This academic case study controls the water supply of a

house. Two pumps are used to specify this system: the first
one brings up water from a well to fill a tank; the second
pump supplies water to the residence. Three main functions
can be defined for controlling this system: one manages the
first pump; another controls the second pump and the last
one performs the system’s global status. These functions can
be described by the following requirements:

 R1: the system shall actuate the first pump when the
water-level in the tank decreases and reaches the
“filling level”;

Detailed
specification

Validation

SRD (System
requirements)

DFS (detailled
specification)

Formal model

TRD

(L3)

(L4)

TRD

Requirements tests
identification Sets of test cases for

each requirement
Set of flows for

each requirement

Coverage analysis

Missing tests

Possible redundant
tests

Check TRD

Figure 17. Tests coverage analysis against SCADE model process

49

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fill_Level

Idle_Level

TH1

PB1

PS

Flow

Warm_level

TH2

PB2

Turn_On

Turn_Off

Warm_level

On

CTRL1

CTRL2

S
ig

n
b

o
a

rd

Cmd_P1

L1

L0

Cmd_P2

L2

L3

Figure 18. Formal specification of pumping system

 R2: The pumping shall stop when the water-level in
the tank raises and reaches the “pumping idle level”;

 R3: The first pump shall stop running when the
temperature of the pump is abnormally high (only a
push button can actuate it).

 R4: The second pump shall be actuated by the
decrease in pressure due to the turning on of a tap in
the residence. Its shutdown is provoked by the
turning off all the taps in the residence;

 R5: the system shall warn and idle the second pump
when water reaches the “warning level” (the water-
level is lower than the “filling level”);

 R6: The pump shall be idled when the water flow
rate is too low;

 R7: The pumping shall stop when its temperature is
abnormally high (only a push button can actuate it).

 R8: the system shall indicate its global status by
taking into account the two pumps.

The following figure Fig. 18 shows pumping system
SCADE model.

The “Tab. II” gives the result of testability analysis
process on this case study. It shows that the number of tests
(48) is higher than the number of testability flows (45, 45 or
27) selected using respectively (1), (2) or (3).

We observe that the number of selected testability flows
is stable from using (1) to (2) in this case study. This is
mainly due to the structure of the SCADE model. Indeed,
each output variable corresponds to a function description.
The number of selected flows decreases from using (2) to
(3).

The requirement R8 is verified in combination with the
seven other requirements. Indeed, L0 represents the state that
is checked what ether the pump behavior.

An example of functional tests defined for requirement
R1 is described as follow: “the water-level reaches the
filling level (Fill_level = true and Idle_level = false); the
pump temperature is normal (TH1 = false and PB1 = false);
as result the first pump is activated (Cmd_P1 = true)”.

The experiment result analysis outlines interesting points:
 For this academic example, we found no orphan

testability flows; neither missing implemented
requirement in the SCADE model. Indeed, this
specification is a final version which has been tuned;

 In order to introduce missing test problem, we
deliberately omitted to define tests verifying the
second pump is running without output rate (R5). As
a result, three testability flows have not been linked
to any test;

 For redundant tests, we identify several tests
verifying the second pump behavior when its
temperature is too high (R7). These tests are linked
to the same testability flows. Consequently, they can
be considered redundant because they all address the
same pump behavior.

TABLE II. PUMPING SYSTEM ANALYSIS RESULT

Number

Functional
requirements

Output
variables

Defined
tests

Selected
nominal flows

Selected
initialization flows

Input variables

(1) (2) (3) (1) (2) (3)

R1
R2

Cmd_P1 6 5 5 5 5 5 5
Fill_level; Idle_level;

TH1; PB1.

R3
Cmd_P1

L1
6 6 6 4 6 6 4

Fill_level; Idle_level;
TH1; PB1.

R4 Cmd_P2 6 4 4 4 4 4 4
PS; Flow; Warn_level;

TH2; PB2.

R5
Cmd_P2

L3
6 3 3 3 2 2 2

PS; Flow; Warn_level;
TH2; PB2.

R6
R7

Cmd_P2
L2

24 13 13 9 13 13 9
PS; Flow; Warn_level

TH2; PB2.

R8 L0 48 14 14 2 14 14 3
Fill_level; Idle_level; Warn_level;

TH1; PB1;TH2; PB2.

50

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) Industrial examples
Our testability analysis process has been experimented

with two systems LM1 and LM2 provided by AIRBUS. These
examples are extracted from an AIRBUS program Auto Flight
systems. LM1 and LM2 contain respectively 69 and 146
nodes.

The following table “Tab. III” exposes the result of the
defined testability analysis methodology application on these
systems.

We observe that the number of selected testability flows
decreases from (1) to the (3). The “Section IV” describing
the different testability approaches gives explications about
the mechanism. Indeed, the description of some output
variables can share SCADE model parts.

In (1), these common parts are analyzed for each output
variable. Thereby, an important number of testability flows is
determined using this approach.

Regarding (2), common parts using by a set of output
variables related to a function are analyzed once during
testability analysis. Common parts related to different
functions are analyzed several times. So, the number of
testability flow decreases compared to (1) but is still high.

In (3), all SCADE model related parts are analyzed
together. Each common part is explored only once during
testability analysis. As a result, testability flows determined
by this approach represent the lowest number compared to
the two others.

Considering these approaches, the principle of (3) sticks
to the AIRBUS testing process of system validation.

The experiment result analysis of LM1 and LM2 outlines
the following points:

 No orphan testability flows has been detected after
running our testability analysis process. Neither
missing flow is identified in the detailed
specification.

 Considering (3), for LM1 (resp. LM2), the number
of tests (70 (resp. 114)) is lower than the number of
flows (84 (resp. 127)). At least, 14 (resp. 13) tests
are missing.

 During tests coverage analysis process, we identified
that several tests are linked to the same testability
flows. Consequently, they can be considered
redundant.

These experiments show the testability analysis
methodology described in Section IV can support efficiently
the AIRBUS system detailed specification validation process.
Nevertheless, the applicability of the method in term of
scalability must be confirmed on larger operational systems.

B. Testability measures assessment

This assessment aims at checking testability measures
relevance in the AIRBUS systems validation context. Indeed,
these measures should give information about the complexity
introduced by some operators during test definition. The
main idea is the highlighting of a possible correlation
between predictive controllability and observability
measurements and the test effort during the validation of the
system specification. The results show that it is difficult to
build this relation in AIRBUS context based on functional test.
We use the diagram of operators described below Fig. 19 to
illustrate this difficulty. It is extracted from the system LM1.
This diagram is composed of temporal operators (PULSE1,
PULSE2 and PREV) and logic operators (AND and NOT).
PULSE1 (resp. PULSE2) outputs pulses on the rising (resp.
falling) steps of a Boolean signal. PREV delays a Boolean
signal. I1, I2, I3, I4 are the inputs of the diagram and O1, O2

represent the outputs the diagram of operators.
The “Tab. IV” exposes the testability measures

associated with each operator used in the diagram above.

1) Controllability measurement
The “Tab. IV” highlights a difference of about 13%

between the controllability measure associated with AND_1
(1.0) and AND_2 (0.8754). This difference is due to the lost
of information caused by AND_1 on AND_2 input. This
reduces the effective information quantity available on
AND_2. Therefore, the controllability measurement of
AND_2 becomes lower than the AND_1.

TABLE III. LM1 AND LM2 TESTABILITY ANALYSIS RESULT

Number

Functional
requirements

Output
variables

Defined tests
Selected

nominal flows
Selected

initialization flows
(1) (2) (3) (1) (2) (3)

LM1 34 58 70 615 198 84 155 83 73

LM2 57 92 114 534 202 127 203 132 112

Figure 19. Diagram of operators extracted from the system LM1

I1

I2

I3

I4

O1

O2

PULSE1_1 PREV_1

PULSE2_1

NOT_1

NOT_2

AND_1

AND_2

51

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. TESTABILITY MEASURES

PULSE1_1 PREV_1 PULSE2_1 NOT_1 NOT_2 AND_1 AND_2

Controllability 1.0 0.9539 1.0 0.9443 1.0 1.0 0.8754
Observability 0.9273 0.9271 0.9177 0.9271 0.8754 1.0 1.0

In a functional test context, the activation effort of
AND_2 is at the most equal to the needed effort to activate
AND_1. The coverage effort of AND_2 is limited to the
production of “true” and “false” by AND_1. Indeed, the
second input of AND_2 corresponds to a system input (I1).
Considering this example, we can conclude that it is difficult
to construe the controllability measurement (defined as such)
in terms of the effort of an operator or a component.

2) Observability measurement
The observability measures associated to operators

presented on “Tab. IV” show a difference of about 5%
between NOT_1 (0.9271) and NOT_2 (0.8754). Indeed, the
effective information quantity available on the output
NOT_1 is lower than NOT_2 one. Then, the information loss
from NOT_1 is less important than NOT_2 from the both
operators to the outputs (O1 and O2).

In a functional test context, the observation effort of the
output of NOT_1 is equal to NOT_2 one. Indeed, the
information flows produced by the both operators are treated
in the same way to the outputs (O1 and O2). Considering this
case, we can conclude that it is difficult to interpret the
observability measurement (defined as such) in terms of the
effort of an operator or a component.

VII. CONCLUSION AND FUTURE WORK

This paper deals with the definition of a methodology
based on testability principles to support traceability
activities and test design in the system validation process.

We propose methods highlighting links between the
detailed specification, the SCADE model, the test data and
the testability flows. AIRBUS systems testability analysis
required the extension of SATAN (System’s Automatic
Testability ANalysis) technology principles. This extension
concerns the definition of Airbus specific operators modeling
techniques.

We also introduce the temporal aspect in the testability
analysis process by proposing the information loss
assessment technique considering several execution cycles of
the system. A testability flows classification technique has
been defined. It splits testability flows in two categories: the
initial flows related to system initialization phase; and the
nominal flows. Such an approach allows facilitating
coverage analysis activities and tests design. The validation
phase is thus shortened generating important cost and effort
reduction. However, we demonstrate that testability
measures, such as defined, do not provide relevant
information about the complexity introduced by some system
parts during test definition in the functional testing context.

In the future, our work will focus on two main objectives.
The first one consists in leading new experiments on a larger
number of systems in order to enhance tools supporting the

systems specification coverage analysis methodologies. This
allows their consolidation for their deployment in operational
conditions.

The second objective of our future work aims at
adapting testability measures to a functional testing context.
This requires the consideration of value and constraints
related to information flows in the system specification
during information loss coefficient assessment of operators.

REFERENCES

[1] F. Doumbia, O. Laurent, C. Robach, and M. Delaunay, "Using the
Testability Analysis Methodology for the Validation of AIRBUS
Systems," VALID 2009, First International Conference on Advances
in System Testing and Validation Lifecycle, pp.86-91, September
2009.

[2] H. V. Do, M. Delaunay, and C. Robach, “Integrating testability into
the development process of reactive systems”, IASTED SE 2007,
Innsbruck, Austria, February 2007.

[3] C. Robach: “Test et testabilité de systèmes informatique”, PhD
Thesis, 1979.

[4] N.Halbwachs, P. Caspi, P. Raymond, and D. Pilaud: “The
synchronous dataflow programing language LUSTRE”, Proceedings
of the IEEE, 79(9): 1305-1320, September 1991.

[5] Esterel Technologies SA. SCADE Technical Manual, 2005.

[6] R. S. Freedman. Testability of Software Components. IEEE
Transactions on Software Engineering, 17(6):553–564, Jun 1991.

[7] Y. Le Traon and C. Robach. Testability Measurements for Data Flow
Design. In Proceedings of the Fourth International Software Metrics
Symposium, pages 91–98, Albuquerque, New Mexico, Nov 1997.

[8] T. J. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, 2(4):308–320, December 1976.

[9] B. A. Nejmeh. Npath: A complexity measure of execution path
complexity and its applications. Communications of the ACM,
31(2):188–200, February 1988.

[10] C. Robach and P. Wodey. Linking design and test tools: an
implementation. IEEE Transactions on Industrial Electronics,
36:286–295, 1989.

[11] J. M. Voas and K. W. Miller. Software testability: The new
verification. IEEE Software, 12(3):17–28, May 1995.

[12] H. V. Do, C. Robach, M. Delaunay, and J. S. Cruz. Testability
Analysis for Grapically Describec Algorithms of Reactive Systems.
EMBEDDED REAL TIME SOFTWARE (ERTS) 2006, Toulouse, France,
January 2006.

[13] A. Dammak: “Etude de Mesures de Testabilité de Systèmes
Logiques”, PhD Thesis, 1985.

[14] A. Benveniste and G. Berry. The Synchronous Approach to Reactive
and Real-Time Systems. Proceedings of the IEEE, 79(9), 1991.

[15] C. Robach, H. V. Do, and M. Delaunay. Testability as a component
of CASE tools. International Conference on Degradation, Damage,
Fatigue and Accelerated Life Models in Reliability Testing, Angers,
France, May 2006.

[16] Bermoulli Distribution.
http://en.wikipedia.org/wiki/Bernoulli_distribution.

[17] RTCA/DO-178B, "Software Considerations in Airborne Systems and
Equipment Certification", December 1992.

52

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

53

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Towards a Deterministic Business Process

Modelling Method based on

Normalized Systems Theory

Dieter Van Nuffel, Herwig Mannaert, Carlos De Backer, Jan Verelst

Department of Management Information Systems

University of Antwerp

Antwerp, Belgium

dieter.vannuffel;herwig.mannaert;carlos.debacker;jan.verelst@ua.ac.be

Abstract—Normalized Systems theory has recently
been proposed to engineer evolvable information sys-
tems. In order to build information systems accord-
ing to this theory, a method to identify the Nor-
malized Systems’ primitives has to be constructed.
Because business processes are currently receiving
more attention as process-centric representations of
an enterprise, the method should be able to translate
business process models into the Normalized Systems
primitives. In this paper, a preliminary mapping
method based on proven software engineering prin-
ciples, is discussed. The proposed method adheres
to the Normalized Systems’ viewpoint of business
processes being normalized production lines. In this

sense, business process production lines are identified
as workflow elements operating on a single type of
data element. These process lines are operated as state
machines, triggering action elements on the specified
data element. The mapping method is illustrated
using an example of a realistic business process flow.
Preliminary guidelines and conclusions on the method
construction are presented.

Keywords—Normalized Systems, Business Process
Engineering, Business Process Modelling, BPMN

I. INTRODUCTION

Contemporary information systems are con-

fronted with higher demands of evolvability, i.e.

able to be swiftly adapted to the changing business

environment. The required business agility needs

to be translated towards the supporting software,

which makes software change inevitable. However,

due to the invasiveness and frequency of these

changes and because most IT infrastructures are

poorly architected, organizations severely suffer

from the number and nature of their complica-

tions [26]. Most of the time, these adaptations

happen during the mature life cycle stage of an

information systems and are thus coined as soft-

ware maintenance [25]. Software maintenance is

therefore regarded as the most expensive phase

of the software life cycle, and often leads to an

increase of architectural complexity and a decrease

of software quality [9]. This phenomenon is known

as Lehman’s law of increasing complexity [14],

expressing the degradation of information systems’

structure over time. To accomplish the required

agility within information systems, the Normalized

Systems theory has recently been established [16].

Based on the systems theoretic concept of stabil-

ity, a software engineering theory is proposed to

engineer evolvable information systems. Although

the theory has already been used to design global

mission-critical information systems [15], a system-

atic way to derive primitives underlying Normalized

Systems from organizational requirements is not yet

completely determined. For this purpose, different

approaches to describe organizational requirements

are available, but business processes are recently

receiving more attention as process-centric repre-

sentations of an enterprise. Whereas earlier, mostly

data-driven approaches have been pursued as a

starting point for information systems modelling,

there is currently a tendency to apply process-driven

requirements engineering [24].

A relatively large number of notations, languages

54

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and tools exist to model business processes. These

existing business process languages however have

some limitations, e.g., absence of formal semantics,

limited potential for verification, message-oriented

approach and multi-party collaborations modelling

[4]. Nevertheless, they are currently adopted within

numerous organizations, and especially the Busi-

ness Process Modelling Notation (BPMN) is one of

the most applied notations [18]. Although the con-

structs of BPMN are rather ambiguously defined,

the notation seems to be quite intuitive, and easy

to understand and learn [7]. It is even argued that

BPMN has become the de facto process modelling

standard, being more widely adopted and supported

than other business process modelling languages

such as Event-Driven Process Chains (EPC) [21].

Therefore, BPMN models are chosen to represent

organizational requirements in our research. The

contribution of this paper is thus aimed at mapping,

in a systematic way, the organizational requirements

represented as BPMN models, to the primitives

of Normalized Systems exhibiting proven evolv-

ability. In this sense, the paper provides a way

to derive stable information systems from con-

temporarily widely applied process-centric require-

ments representations, offering a potential answer

to the problems earlier stated. This paper extends

the method presented in [1] by adding a number

of theory-grounded guidelines and illustrating their

applicability on an expanded case study.

The remainder of the paper is organized as fol-

lows. In Section 2, the Normalized Systems theory

will be discussed. In addition, it will elaborate

on the different types of the Normalized Systems

primitives, and how these primitives can enable

business processes. A third section provides insights

on a systematic way to map business processes onto

these primitives of Normalized Systems. Finally,

conclusions and future research are discussed.

II. NORMALIZED INFORMATION SYSTEMS

Manny Lehman’s law of increasing complexity

[13], [14] expresses the degradation of information

systems’ structure over time. Normalized Systems

Theory has been proposed to design and implement

information systems that defy this law. In a first

section, a brief summary of this theory is pre-

sented. A second section explains the implications

of Normalized Systems Theory on the automation

of business processes.

A. From Stability to Evolvable Elements

In this section, we present a brief overview of

Normalized Systems theory. Starting from the sys-

tems theoretic concept of stability, both software

design theorems and evolvable software elements

are deduced.

1) Stability and Combinatorial Effects: The ba-

sic assumption of Normalized Systems theory is

that information systems should be able to evolve

over time, and should be designed to accommodate

change. Therefore, the software architecture should

not only satisfy the current requirements, but should

also support future requirements. Although this is

an important concern for all information systems, it

is particularly important for large-scale information

systems and even more important for Software

Product Lines, as future applications are sometimes

hard to predict [15], [17].

In order to support these changes, Normalized

Systems Theory states that an essential character-

istic of an information system is its stability. In

systems theory, stability refers to a system in which

a bounded input function results in bounded output

values, even as t → ∞. When applied to informa-

tion systems, this implies that there should be no

combinatorial or change propagation effects in the

system. This means that applying a specific change

to the information system should require the same

effort, irrespective of the size of the information

system or the point in time at which the change

is applied. This implies that such systems defy

Manny Lehman’s Law of Increasing Complexity,

which states that as time goes by, the structure of

software will degrade and become more complex as

changes are applied to it, causing the impact of a

given change to increase over time [13], [14].

Normalized Systems are defined as information

systems exhibiting stability with respect to a defined

set of changes [15]. In this sense, evolvability is

operationalised as a number of anticipated changes

that occur to software systems during their life cycle

55

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[16]. The existence of changes that are dependent

on the size of the system, pose a serious threat to

stability, and are called combinatorial effects [15],

[16].

2) Design Theorems for Software Stability: To

contain these combinatorial effects, a sound archi-

tectural approach is required, following a set of

design rules as called for by Baldwin and Clark

[2]. In Normalized Systems Theory, a set of four

design theorems is deduced that act as design rules

to identify most combinatorial effects [15], [16]. Es-

sentially, these theorems identify, in very clear and

specific terms, places in the software architecture

where high coupling is threatening evolvability.

The first theorem, separation of concerns, implies

that every change driver or concern should be

separated from other concerns. This theorem allows

for the isolation of the impact of each change driver.

This principle was informally described by Parnas

already in 1972 [19] as what was later called design

for change. This theorem implies that each module

can contain only one submodular task (which is

defined as a change driver), but also that workflows

should be separated from functional submodular

tasks. Any violation automatically results in a com-

binatorial effect: for instance, consider a function

F consisting of task A with a single version and

a second task B with N versions; thus leading

to N versions of function F . The introduction of

a mandatory version upgrade of the task A will

not only require the creation of the additional task

version of A, but also the insertion of this new

version in the N existing versions of function F .

The number N is clearly dependent on the size of

the system, and thus implies a combinatorial effect.

The second theorem, data version transparency,

implies that data should be communicated in ver-

sion transparent ways between components. This re-

quires that this data can be changed (e.g., additional

data can be sent between components), without

having an impact on the components and their

interfaces. For instance, consider a data structure

D passed through N versions of a function F .

If an update of the data structure is not version

transparent, it will also demand the adaptation of

the code that accesses this data structure. Therefore,

it will require new versions of the N existing

processing functions F . The number N is clearly

dependent on the size of the system, and thus

implies a combinatorial effect. This principle can,

for example, be accomplished by appropriate and

systematic use of web services instead of using

binary transfer of parameters. This also implies that

most external APIs cannot be used directly, since

they use an enumeration of primitive data types in

their interface. As a result, such interface is not data

version transparent.

The third theorem, action version transparency,

implies that a component can be upgraded without

impacting the calling components. Consider, for

instance, a processing function P that is called

by N other processing functions F . If a version

upgrade of the processing function P is not version

transparent, it will, besides upgrading P , also cause

the adaptation of the code that calls P in the

various functions F . Therefore, it will require new

versions of the N existing processing functions F .

The number N is clearly dependent on the size of

the system, and thus implies a combinatorial effect.

This principle can be accomplished by appropriate

and systematic use of, for example, polymorphism

or a facade pattern. In practice, it can often be

observed that upgrading a component can have an

impact on the rest of the system. A possible reason

could be that they are not used in an action version

transparent way.

The fourth theorem, separation of states, implies

that actions or steps in a workflow should be

separated from each other in time by keeping state

after every action or step. For instance, consider

a processing function P that is called by N other

processing functions F . Suppose the calling of the

function P does not exhibit state keeping. The

introduction of a new version of P , possibly with

a new error state, would force the N functions F

to handle this error, and would therefore lead to

N distinct code changes. The number N is clearly

dependent on the size of the system, and thus

implies a combinatorial effect. This theorem sug-

gests an asynchronous and stateful way of calling

other components. Synchronous calls—resulting in

pipelines of objects calling other objects, which are

56

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

typical for object-oriented development—result in

combinatorial effects.

It needs to be emphasized that each of these

theorems is not completely new, and even relates

to the heuristic knowledge of developers. However,

formulating this knowledge as theorems that cause

combinatorial effects, supports systematic identifi-

cation of these combinatorial effects so that systems

can be built with minimal combinatorial effects.

3) Encapsulations for Evolvable Elements: The

design theorems show that software constructs, such

as functions and classes, by themselves offer no

mechanisms to accommodate anticipated changes

in a stable manner. Therefore, Normalized Systems

Theory proposes to encapsulate software constructs

in a set of five higher-level software elements, mod-

ular structures that adhere to the design theorems, in

order to provide the required stability with respect

to the anticipated changes [15].

The second and third theorem imply that the basic

software constructs, representing data and actions,

need to be encapsulated in order to build stable

information systems. This leads to the following

encapsulations or elements:

• Data Encapsulation, the composition of soft-

ware constructs to encapsulate a data con-

struct into a data element, implies that

data elements have get- and set-methods for

data version transparency, So-called cross-

cutting concerns—such as remote access and

persistence— can be added to the element in

separate constructs.

• Action Encapsulation, the composition of soft-

ware constructs to encapsulate an action con-

struct into an action element, implies that

the core action construct can only contain a

single functional task, not multiple tasks, and

that workflow has to be separated from these

elements. Arguments and parameters need to

be encapsulated as data elements, and so-called

cross-cutting concerns—such as remote access,

logging and access control— can be added to

the action element in separate constructs.

The first and fourth theorem, dealing with ag-

gregations of tasks, imply that workflow must be

separated from other action elements, actions must

be separated or isolated by intermediate states, and

information systems must be able to follow up and

react on states and/or error states. This leads to

additional encapsulations:

• Workflow Encapsulation, the composition of

software constructs to create an encapsulated

workflow element, implies that workflow el-

ements cannot contain other functional tasks,

and that they must be stateful. This state is

required for every instance of use of the action

element, and therefore needs to be part of, or

linked to, the instance of the data element that

serves as argument.

• Trigger Encapsulation, the composition of

software constructs to create an encapsulated

trigger element, implies that trigger elements

need to control the separated—both error and

non-error—states, and check whether an action

element has to be triggered. So-called cross-

cutting concerns—such as controlling the trig-

ger and its time interval—can be added to the

element in separate constructs.

• Connector Encapsulation, the composition of

software constructs to create an encapsulated

connector element, implies that connector el-

ements must ensure that external systems can

interact with data elements, but that they can-

not call an action element in a stateless way.

So-called cross-cutting concerns—such as set-

ting up network listeners—can be added to the

element in separate constructs.

B. Business Process Production Lines

In this section, the viewpoint of the Normalized

Systems theory on business processes will be first

discussed. The subsequent subsections will describe

the different elements of Normalized Systems rele-

vant to enable business processes.

1) Normalized Production Lines: Automated

manufacturing is based on so-called production or

assembly lines, where products are assembled as

they pass through the production line. At every

step or position of the assembly line, a specific

and dedicated operation is performed on the product

that is being created. Though production lines seem

highly integrated at first sight, they actually exhibit

57

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

loose coupling. Though every single processing step

requires the completion of the previous steps on

that instance of the product that is being created,

it neither requires any knowledge of the previous

processing steps, nor of the subsequent steps. More-

over, they do not have to be aware of the timing

of the other steps. Any step can be performed

on thousands of product instances that have been

prepared hours, or even days, earlier.

It is this proven model or metaphor for automated

production in the industrial world that we propose

to apply to the automated execution of business

processes by information systems. We translate the

concept of a production line, that assembles in-

stances of a specific product that is being created,

to a business process flow, that performs operations

on instances of a specific target data argument.

The software primitives of these production lines

are the elements of Normalized Systems theory.

These elements are encapsulated software entities

that exhibit stability with respect to a defined set of

basic changes, and that are able to take care of a

number of so-called cross-cutting concerns, such as

persistency and remote access. Software entities are

defined as instantiations of programming constructs,

for instance Java or C# classes.

2) Data and Action Elements: Based on the laws

of separation of concerns and separation of states,

we propose that every flow is concerned with one,

and precisely one, type of data element. Due to

separation of states, every flow should be divided

in its constituent actions to isolate the different

functional tasks and to sequence the state transi-

tions. As such, the artefact whose state is being

altered by the subsequent functional tasks should be

uniquely defined. Complementing this insight with

the metaphor of the normalized production line, it

is clear that the artefact underlying a flow, is a

data element. Based on separation of concerns, this

artefact cannot represent more than one concern;

thus a flow is concerned with one, and precisely one

data element. This type of data element is called the

life cycle object of the flow, and corresponds to the

type of product that is created on an assembly line.

Every instance of this data element goes through

the life cycle of this flow, and a dedicated state

attribute stores the state of this product instance.

In this way, the state of a product instance is

available to the outside world, resulting in the

required loose coupling between operations, both in

features and time. These data elements or life cycle

objects basically correspond to the nouns of the

business processes. Indeed, as every data element is

built around a single data entity, and cross-cutting

concerns such as persistency and remote access are

integrated into the element, this long time promise

of object-oriented software can finally be realized.

In object-oriented software, nouns could only be

implemented in plain classes if all cross-cutting

concerns would be part of the same class.

We propose that every operation in a flow con-

sists of one, and precisely one, action element.

Once again, this is made possible by the fact that

every action element is built around a single action

entity and therefore task, and that cross-cutting

concerns like remote control, logging, and possible

access control are integrated into the element. In

our opinion, the following types of action elements

are distinguished in business process flows:

• Standard actions: the information system per-

forms an actual action, e.g., sending an e-mail,

checking the availability of a part, deciding

on a type of procedure, sending an invoice,

confirming an order, etcetera.

• Bridge actions: the information system creates

another type of life cycle data element that will

be processed in its own state machine flow;

e.g. creating an order upon an approved offer,

creating a number of parts to be reserved upon

an accepted order, creating an invoice after an

order has been delivered, etcetera.

• Manual actions: a human user is required to

perform the action, and to set the state of the

life cycle data element through a user interface,

e.g. approving an expense report, granting a

holiday, checking whether a payment has been

made, etcetera.

• External actions: another process, possibly

belonging to another information system, is

assumed to perform the action, and to set

the state of the life cycle data element, e.g.

reporting the state of another system, trigger-

58

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ing an alarm, acknowledging the receipt of a

transmission, etcetera.

3) Flows, Tasks, and Timers: As mentioned in

paragraph II-A, a workflow element is responsible

for executing the process flow for every instance of

the target life cycle data element. Because it should

be possible to (re-)define and to (re-)configure

workflows in a dynamic way, the definition of the

workflow should not be programmed or hard-coded.

According to the theorem of separation of con-

cerns, a particular workflow description language

like BPEL should not drive the workflow as this

combines the process flow with a specific technol-

ogy. Workflows should therefore be defined using a

neutral representation consisting of data elements.

To apply descriptions like BPEL, a connector el-

ement should be used. As such, the concern of a

specific technology and the concern of workflow

execution are separated. Thus, in order to specify a

process flow according to the Normalized Systems

theory, the following data elements are defined:

• Flows: An instance of a Flow data element

represents a process flow operating on a single

life cycle data element, e.g. an InvoiceFlow,

an OrderFlow, etcetera. Such a flow consists

of multiple tasks on the target data element. It

is possible to have different flows operating on

the same life cycle data element, e.g. multiple

invoice flows.

• Tasks: An instance of a Task data element rep-

resents a task operating on a single life cycle

data element. Such a task identifies a specific

action element operating on the data element,

a parameter data element, a begin or trigger

state, a success state, and a failure state. This

failure state allows the flow to branch from

the so-called golden path for specific instances

of the data element. Tasks are grouped using

flows.

• Timers: An instance of a Timer data element

represents a timing constraint operating on a

single life cycle data element. Such a timer

specifies a maximum allowed period between

two states or anchor points in a flow. The timer

may identify a specific action element to be

executed in case the timer expires, and/or a

new state that needs to be set in any instance

of the data element for which the timer expires.

The need for the first two elements can be

straightforwardly derived, the third element is intro-

duced because of its omnipresence in contemporary

business processes. The control flow model of such

a process flow is based on the following three

primitives:

• Trigger states: Every instance of the target

or argument data element needs to have a

state field or attribute. This persistent field will

always keep track of the current position of

that data element instance in the control flow. It

represents which operations have already been

performed on that instance of the data element

that is being processed.

• State transitions: A processing step or op-

eration on an instance of a data element is

specified as a state transition. Performing an

operation is represented in the control flow

model as a transition from one state—a value

of the described state field—to another. In or-

der to allow branching, such a state transition

can in general have two outcomes.

• Transition actions: A state transition corre-

sponds to the execution of an actual operation

on that instance of the data element. Such

transition action performs a real operation, and

is implemented in a so-called action element.

III. MAPPING METHOD CONSTRUCTION

The construction of the mapping method will be

illustrated using a generic business process example

of a make to order producing company. Figure

1 represents the process description modelled in

BPMN. It should be mentioned that the business

process example has a rather restricted scope, and

can thus only be considered as a proof-of-concept to

exemplify the applicability of the proposed mapping

method.

A small company manufactures cus-

tomized bicycles. When an order for a

customized bicycle is received by the

organization, it is first evaluated by the

sales department. If the order is rejected,

the customer is notified and the process

59

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. BPMN business process model

ends. If it is accepted, both the warehouse

and production are informed. Production

is commanded to plan and prepare the

assembly. The warehouse processes the

required items by checking the availabil-

ity of the parts. If the items are available

in-house, they are reserved; otherwise the

items are back-ordered. Upon arrival of

the ordered items, they will be received

and reserved. When all required items are

available and the assembly is prepared,

the order is produced. After production,

the order is passed to the shipping de-

partment that will ship the bicycle to the

customer. When the order has not been

completed within six weeks, the customer

will be contacted. This option is incorpo-

rated to offer the customer the opportunity

to cancel or change and resubmit the

order.

In a first subsection, it will be discussed how

data elements will be derived from the model. In a

second subsection, the identification of flows, con-

stituent tasks and action elements will be described.

A third subsection will provide a summary on the

proposed way of working, and thus constitutes a

first draft of the resulting method.

A. Data Elements

Based upon the theorems of separation of con-

cerns and data version transparency, business en-

tities and business actors are analyzed if they

correspond to separate data elements. For every

noun represented in the BPMN model, expressing

an business entity or actor, it should be decided

whether it indicates an entity, an instance of an

existing entity, or an attribute describing an existing

entity. In this way, the identification is rather similar

as searching for business objects within object-

orientation. The choice is however not irreversible

as introducing a new separate data element and an

additional flow regarding this data element, is a

functional change that can be translated in a set

of anticipated changes for which Normalized Sys-

tems exhibit proven evolvability [15]. Determining

data elements representing the life cycle objects on

which the process flow is executed, can however

be considered to be more concise. As business pro-

cesses symbolize a sequence of activities on one or

more business entities, the life cycle entities are rec-

60

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ognized as the elementary artefacts, i.e. concerns,

passing through the different states. Because of

the relatedness to the information-centric business

process modelling approach, research results from

that domain can, to some extent, be incorporated in

our work. As such, three conditions to determine

whether an information entity is a business entity

were identified [3, p.290]:

• business entities are records storing informa-

tion pertinent to a given business context;

• business entities have their own, distinct life

cycle from creation to completion;

• business entities have a unique identifier within

the organization.

Applying our insights complemented with the

aforementioned guidelines leads to the identification

of the following data elements. A first data element

is of course the User: all actors in the description

need to be defined as users of the information

system. In general, this data element is already

in existence for other business processes that have

previously been automated, as a user symbolizes

a generic concern in all information systems. Also

the criteria mentioned by the related research apply,

as a User has a distinct life cycle and a unique

identifier. This also accounts for a Customer data

element, probably linked to the User element, as

a Customer has its distinct life cycle and unique

identifier within the organization. It should be

mentioned that, according to Normalized Systems

theory, the introduction of one or more additional

data attributes to an existing data element can be

done with a limited impact [16].

There are two main life cycle data elements in

the described business process or flow: the Order

and the Part. Although the business process in

Figure 1 is described as a unified process of Order

and Part, the actions on these entities cannot be

represented by the same flow because they can

clearly evolve independently from each other, and

are thus different concerns. Moreover, the two el-

ements have obviously independent life cycles. An

instance of the Order data element is created by the

customer and goes through the various processing

steps that have been described, ending with the

shipment or delivery of the order. For every part

that makes up the specific instance of a product,

an instance of the Part data element is created,

and linked to the instance of the respective Order

data element. Every individual instance of the Part

data element goes through its own life cycle of

reservation, reception, and so on. The observations

that different information is stored and that different

identifiers are used to pinpoint an Order and a

Part, add to the rationale to identify these data

elements.

Several tasks that are described in the process

involve some kind of notification. Such a notifica-

tion clearly consists of two concerns: the extraction

of the information that makes up the message’s

content on the one hand, and the actual sending

of the message on the other. This means that, in

accordance with separation of concerns and sepa-

ration of states, they have to be separated into two

different tasks or action elements. The second task

is actually quite a generic one: the sending of a

notification message, such as an e-mail or SMS.

Therefore, it should operate on a corresponding

generic target data element Notifier, in a corre-

sponding separate flow. This also implies that the

first task of such a composed notification task will

be implemented as a bridge action. Based on the

appropriate information extracted from the order

state, an instance of the Notifier data element

will be created.

B. Flows, Tasks and Action Elements

This paragraph discusses how flows, tasks and the

diverse kinds of action elements will be detected.

A number of recommendations and guidelines with

their rationale will be provided, each of them il-

lustrated by the representative examples within the

scope of our case example. It should be repeated

that based upon the four Normalized Systems’ the-

orems, workflow elements are represented by state

transition diagrams of a single data element; and

action elements will contain only one functional

task resulting in a state transition of the life cycle

data element driving the flow. The resulting state

transition diagrams of the elementary life cycle data

elements Part and Order can be found in Figures

2 and 3 respectively.

61

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Schematic representation of the Order state transition diagram.

Figure 2. Schematic representation of the Part state transition
diagram.

1) State labelling: The figures illustrate that due

to separation of states, the different states must be

explicitly defined. Moreover, this state definition

has to be very concise because every defined state

has to be unique for the life cycle object driving

the flow. Otherwise, the action element triggered

by the respective state can not be determined as it

is not clear which state the life cycle object has.

For example, an order can be rejected at multiple

points in the flow, either by the sales department

when receiving the order, or by the customer when

the order takes longer than six weeks to complete.

If these rejection states would be both labelled

rejected, it would not be possible to distinguish

between the two different notifications that have

to be sent. A best practice is therefore to provide

each state with a distinctive, self-explanatory label.

2) Interacting life cycle data elements: Certain

life cycle data elements will be created as a result

or as a consequence of actions performed by other

life cycle data elements. Based on the Normalized

Systems theorems separation of concerns and sep-

aration of states, these two life cycle data elements

are not the same concern and both life cycles should

be separately managed. Within paragraph II-B2, a

bridge action was mentioned as one of the types of

action elements. This action element will be used

when a second life cycle data element has to be

initiated. Following examples will exemplify the

way of working.

Concerning the Part Processor, it was men-

tioned in Section III-A that the Part data element is

identified as a separate life cycle element, and there-

fore Part Processor is a bridge action because at

this point in the process, an instance of the Part life

cycle data element is created for every single part of

the order. Handling the Item Processing subprocess

exemplified in Figure 1 is clearly another concern

than handling the complete order. It should also be

mentioned that abstraction is made of the Prepare

Assembly activity mentioned in Figure 1. This ac-

62

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tivity probably consists of planning the production,

reserving the needed resources, etcetera. In this

sense, it is argued that this activity is most likely a

bridge action to an additional workflow element, for

instance a ProductionPlanningFlow. The final

step of the Order flow consists of shipping the

order to the customer: a bridge action will create

a shipment data element that will go through the

shipping process not further explained in this paper.

The Part Orderer within Figure 2 is a bridge

action to another flow or information system, as

purchase orders will probably be handled by a

PurchaseFlow. Based on the Normalized Systems

theorems separation of concerns and separation of

states, the issue of purchase orders being delivered

on time, with the correct amount, etcetera. is not

an issue of the PartFlow, but of a PurchaseFlow.

3) Notifying stakeholders: Like already men-

tioned at the end of Section III-A, business pro-

cesses often require activities to notify certain stake-

holders. This requirement is actually a particular

case of interacting life cycle data elements, as one is

always an instance of the Notifier data element.

Based upon the theorem separation of concerns,

sending notifications to diverse stakeholders is con-

sidered a separate concern. Delivering a message

in the correct format to the intended recipients

at the right time, with the related fault handling,

does not concern other data elements. Our solution

consists of implementing a bridge action that will

trigger the creation of a Notifier data element.

Of course these bridge actions will differ from

each other, as the semantics of the message that

has to be communicated, vary depending on the

situation. Therefore, the bridge action will pass a

set of parameters defining the message’s content and

format. Additional tasks that should be performed

to send the notifications, can be designed using

workflow elements defined upon the Notifier data

element.

In the example, notifiers can be found at diverse

points within the Order workflow represented

by Figure 3. First, when receiving an order, a

notification is sent to a sales representative in

order to evaluate the order. The Sales Notifier

bridge action will thus result in the creation

of a Notifier data element that sends an

e-mail to a sales representative stating that a

particular order has to be evaluated. Second, the

Department Notifier bridge action creates a

notification or assembly preparation request that

is sent to the manufacturing department, and the

individual parts are created. Third, when the six

weeks timer elapses, a Delay Notifier bridge

action is triggered that will create a notification

sent to the customer to inform her about the delay

and to request the wanted action. The multiple

notifiers illustrate the usefulness of isolating a

change driver in its designated data element to

obtain true reusability as notification functionality

can thus be reused by applying a bridge action.

4) Communicating life cycle data elements:

Different life cycle data elements sometimes need

to communicate their state to one another in order

to trigger further execution of the flow. Although

in many cases an external action can implement

this, like the Order Assembler action in the

OrderFlow or the Part Receiver action in the

PartFlow, this will not suffice in the particular case

when a life cycle data element A triggers multiple

instances of another life cycle data element B, and

its flow can only continue when all these instances

have reached a particular state. In this case, an

action element on the triggering life cycle data

element A has to be implemented that will verify

the state of the initiated instances of B. When all

the initiated instances of B reach the target state, the

action will set off the state transition on A. If one

of the triggered instances of B has not yet arrived

at the target state, A’s state will not be altered. As

such, the action element will be initiated until all

instances of B attain the target state.

An example from the case will exemplify and

further ground the proposed solution: when all

parts are created in the OrderFlow, the order

has to wait until it can be produced. This implies

that the manufacturing department is ready to

start the assembly, and that all parts are reserved

and available in stock. Actually, both these

conditions will become available in the instance

63

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the Order data element, either through a

data attribute or data links. Therefore, though

this information will be entered by another flow

(e.g. the PartFlow) and due to the separation of

concerns theorem not allowing one flow to actively

interfere with another one; a simple standard action,

Assembly Readiness Checker, is needed to

check the appropriate information on a regular

basis. A flow element actively interfering with

another flow element can be considered a so-called

GOTO statement. Although most contemporary

business process descriptions and languages do

not inhibit this behaviour, Normalized Systems

theory does not allow their presence in accordance

with the seminal work of Dijkstra [8]. The

reason why Assembly Readiness Checker is

positioned in the OrderFlow, and not within the

PartFlow, is quite straightforward as the Order

instance “knows” through its data links, which

Parts are created. Therefore, an action in the

PartFlow communicating that everything has

completed correctly for a particular part can not

be implemented as there are multiple parts for a

single order and the individual Part instances

are not aware of the existence of the other instances.

5) Human tasks: Whether a task is executed by

a human or an information system does actually

not matter, as it is the encapsulated functional

task representing the change driver that should

be isolated within its designated action element.

When defining the action element within paragraph

II-A, it was derived that an action element

encapsulates one and only one functional task. The

way in which this task is performed, manually or

automated, is just a matter of implementation and

should, adhering to the action version transparency

theorem, be kept hidden from the action or flow

calling the respective action element. For instance,

it is obvious that Order Evaluator within Figure

3 is a manual action: the sales manager verifies the

order and takes a decision whether or not to accept

the order. This task is not identified as a separate

element because of being performed manually, but

because it represents a separate concern, namely

an elementary functional task, and because the task

triggers a state transition relevant to the life cycle

of the underlying Order data element.

6) Timer functionality: Contemporary business

processes very often contain time constraints, e.g.

stakeholders only have a given period to answer,

a management reporting process should be run

every morning at 7 AM, etcetera. Because of its

omnipresence and its clear concern, a time con-

straint, a timer element was introduced in paragraph

II-B3 to represent this functionality. Adhering to

the Normalized Systems’ theorems, such a timer

element can only operate on a single life cycle data

element and will specify a maximum allowed period

between two states of the associated data element.

As such, the start state will probably trigger two

elements: the action element that is described within

the flow element, and the timer element. When the

timer expires, either a new state is set in an instance

of the data element, or a specific action element is

triggered.

The description of the OrderFlow process

specifies a timer of the second kind. When an

order takes longer than six weeks to be completely

processed, the customer has to be contacted. This

individual timer element, schematically represented

in Figure 3 by the open circle and described in Table

I, has an allowed time window of six weeks between

start state accepted and target state assembled

before the Customer Delay Notifier bridge

action is potentially triggered. The start state

accepted thus triggers both the timer element

Customer Delay Timer and the bridge action

Department Notifier.

7) Cancellation Pattern: Within the business

process, a customer contact was provided to offer

the customer the opportunity to cancel his order.

However, one should be very cautious with possible

cancellations. If the customer decides to cancel the

order, the state cannot simply be set to cancelled

and thus disregard everything that has already been

done. This would very quickly lead to an infinite

amount of parts in stock as these parts will be

kept reserved for an already cancelled order. If it is

absolutely necessary to offer the customer the pos-

64

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Start state Target state Timer Element Name Time elapse Action Element Triggered

accepted assembled Customer Delay Timer 6 weeks Customer Delay Notifier

Table I
TIMER ELEMENT OF ORDER FLOW

sibility to cancel the order, an entire branch should

be added to the process flow of the order, where

the assembly request is withdrawn and the various

reserved parts are released. Within our example,

only the Part Releaser action element was mod-

elled, because no details were provided what should

be performed when the customer cancels its order.

The Part Releaser is a standard action sending

a release request to the Part data element, which

will handle the request accordingly.

However, contemporary organizations need to

provide the customer an opportunity to cancel an

order during a part of or even the whole process.

By consequence, cancel requests can arrive not only

on specified moments like discussed above, but also

during the regular flow execution. Like mentioned

in paragraph III-B4, the Normalized Systems’ the-

orems do not allow to directly interrupt a flow and

to change the state. Due to transactional integrity

reasons, flows can only be routed by elementary ac-

tion elements resulting in state transitions of the un-

derlying data element. To support this cancellation

functionality, we suggest to add a cancelRequest

data attribute to every data element representing a

business artefact that might be have to cancelled.

The following cancellation pattern describes how

to handle such a cancel request:

• Capture cancel request by updating

cancelRequest data attribute. Conditions

that check whether the cancel request is valid,

are designed in the update operation of this

data attribute.

• The engine supporting the flow element then

checks the cancelRequest data attribute,

equivalent to the way it verifies the different

states of the different data elements to trigger

the correct action element.

• If the cancelRequest data attribute’s state is

true, the regular state field is updated to a value

such that the regular flow does not continue;

and the state field in which the data element

was before cancelling, will be stored in another

state attribute of the respective data element.

This second state attribute will be referenced in

our approach as a parking state field. The value

attributed to the regular state attribute must be

the same for every data element, as this will

uniquely define the situation and can thus be

recognized within all data elements; as such

we suggest to label it cancel requested.

The second state attribute (see also paragraph

III-B8) is necessary to trigger the correct ac-

tions to handle the cancellation. The way a

cancellation will be handled, evidently varies

according to the data element’s life cycle state.

For instance, cancelling an accepted order will

be totally different compared to cancelling an

already produced order.

• Finally, an action element will be triggered that

based upon the value of the parking state field

will decide which cancellation flow should be

triggered as the scenario will differ according

to the actions already executed upon the data

element that was requested to be cancelled.

The output of this action element is attributing

a value to the regular state field of the particu-

lar data element that uniquely describes which

action should be triggered to initiate the correct

cancellation flow.

If the customer decides to confirm the order, the

process can simply continue, and should of course

not be restarted, nor should it re-create the various

parts. This latter option will be discussed in the

next paragraph.

8) Pausing flows: When the customer is con-

tacted to either cancel or resubmit the order, it

can be argued that a third option is missing: the

65

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

customer still wants its initially ordered bicycle to

be delivered. In this case, the order has to continue

its regular flow. In the BPMN model however,

this behaviour is difficult to model as neither the

interrupting nor the non-interrupting intermediate

events added in the latest proposed BPMN standard

version 2.0 [18], exhibit the wanted behaviour of

“pausing” the flow until the customer answer is

received. Interrupting intermediate events break off

the flow, and non-interrupting intermediate events

let the flow continue.

The Normalized Systems’ theorems and de-

rived primitives do however enable this desired

behaviour in a quite straightforward and easy to

comprehend way: preserve the life cycle data el-

ement’s state in the parking state data attribute.

The way of working will be explained by applying

it to the example case, in particular when the

Customer Delay Notifier discussed in para-

graph III-B6 elapses and the customer will be noti-

fied. As a result, the Order data element’s state will

become customer delay notified. The state

in which the Order data element was before the

timer elapsed should however not be neglected as

it might be possible that the customer requests the

continuation of the initial order. Therefore, this state

should be made be persistent by storing it in the

designated parking state data attribute. In this way,

the flow will be paused and can be reinstated upon

request by retrieving the state from the parking state

data attribute and updating the regular state field

with this value.

The fact that this requirement can be solved in

a rather simple way is due to the deterministic

nature of the Normalized Systems’ theory. First,

the separation of concerns theorem prescribes that

atomic functional tasks should be separated in dif-

ferent action elements. Second, the separation of

states theorem adds the need of defining action

states in order to isolate these individual tasks.

Third, combining the two theorems leads to our

proposition that business processes should be im-

plemented as state machines operating on a single

data element. Fourth, adding the state labelling

guideline discussed in paragraph III-B1 to these

characteristics realizes that any business process

state will be uniquely and unambiguously defined

by the state field of the life cycle data element going

through the process flow. Fifth, the deterministic

pattern expansion used to design and implement

Normalized Systems’ elements makes it possible to

introduce such an additional state field in a standard

way to any instance of the respective data elements.

Sixth, as such the initial life cycle data element’s

state can persistently be stored and retrieved upon

request without interfering with the prerequisite of

transactional integrity.

C. Method Overview

To summarize the results when obeying to the

guidelines discussed above, Tables II and III repre-

sent the flow elements driving the business process.

In the first section, the limited potential for

verification was mentioned as one of the drawbacks

of contemporary business process languages. When

comparing the business process represented as Nor-

malized Systems elements in Figures 2 and 3, to the

BPMN of Figure 1, it can be noticed that the former

representations offer better support for verification

as process states are explicitly modelled, and can

thus be compared with the allowed state transitions

of the underlying data element. We also claim in

accordance with Kumaran et al. [12, p.41] that

representing processes as state machines of life

cycle data elements (or business entities) increase

the understandability of these models.

It can be concluded that applying the Normalized

Systems’ theorems on business processes already

provides some principles to assess these business

processes. In this sense, the following preliminary

guidelines are proposed in this article:

• Business processes should be separated in

workflow elements driven by the persistent

state field of a single life cycle data element.

• These life cycle data elements are identified

as the elementary artefacts passing through the

different states during business process execu-

tion, e.g. Order. Useful conditions to identify

such life cycle data elements are found in the

work regarding business entities [3, p.290].

• Time constraints should be isolated in separate

timer elements, e.g. a six weeks timer.

66

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Start State End State Action Element Name Action Element Type

created sales-notified Sales Notifier Bridge

sales-notified accepted XOR not-accepted Order Accepter Manual

not-accepted refusal-notified Customer Reject Notifier Bridge

accepted departments-notified Department Notifier Bridge

departments-notified processing-parts Part Processor Bridge

processing-parts ready-for-assembly Assembly Readiness Checker Standard

ready-for-assembly assembled Order Assembler External

assembled shipped Order Shipper Bridge

customer-delay-notified rejected Customer Decider Manual

rejected cancelled Part Releaser Bridge

Table II
STATE TRANSITIONS DESCRIBING ORDER WORKFLOW ELEMENT

Start State End State Action Element Name Action Element Type

created available XOR not-available Part Checker Standard

not-available ordered Part Orderer Bridge

ordered available Part Receiver External

available reserved Part Reserver Standard

Table III
STATE TRANSITIONS DESCRIBING PART FLOW ELEMENT

• When the creation of a life cycle data element

is dependent on actions performed by another

life cycle data element, the interaction between

the two elements has to be implemented using

a bridge action.

• Frequently required generic functionality like

notifying people, should be isolated in separate

workflow elements driven by a generic data

element, e.g. Notifier.

• Separating the activities of a business pro-

cess into different tasks and action elements

can be done in a structured way by di-

viding different concerns, representing dif-

ferent change drivers, into different Nor-

malized Systems primitives. For instance,

the identification of the action element

Assembly Readiness Checker based upon

the communicating life cycle data elements

guideline, exemplifies the fact of only allow-

ing one functional task in one single action

element: some designers might be tempted to

implement this task either in the workflow

element itself, or in the PartsCreator action

element.

• To cancel processes, a Cancellation Pattern is

proposed needing a cancelRequest and a

parking state field data attribute that are

by default provided in every life cycle data

element.

• To enable processes to be paused, a pattern is

proposed again using the by default provided

parking state field data attribute.

IV. RELATED WORK

Our work relates to research in three areas. First,

it is related to research on modularity and stability.

Modularity expresses the idea to decompose a sys-

tem in loosely coupled building blocks. In software

engineering, modularity is used to decompose an

information system in independent modules [19].

Stability refers to the systems theoretic notion that a

bounded input results in bounded output. Although

no precise definition exists in the context of in-

formation systems, most authors imply it to refer

to software or information systems architectures

designed to be resistant to change propagations

[10].

Second, two business process theorems relate to

67

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a certain extent to our viewpoint. First, the case

handling paradigm also focuses on the role of data

objects to drive the flow [22]. This orientation

considers a case to be the central concept and

describes it as a product, which is produced with

structure and state. This structure and state are

based on a collection of data objects representing

valuable information about the case. As such, a

process is defined as the recipe for handling cases

of a certain type. The main differences with other

workflow approaches are the focus on the whole

case and not on single work-items; and the state of

the case, rather than the control flow, that primarily

determines which activities are enabled [23]. Sec-

ond, our work is related to the information-centric

approach on business process modelling where a

business process is modelled as the interacting life

cycles of information entities [12]. These infor-

mation entities, also called business entities, are

used to describe business processes operating as

state machines where state transitions are caused

by activities acting on the most important entity.

Business processes are thus defined as the life

cycles of the business entities from their initial to

final state. In this sense, the approach is very closely

related to ours.

Third, the mapping method presented in this

paper relates to research in the Service-Oriented

Architectures (SOA) domain. In this domain, a

number of approaches exist that describe how to

identify service operations based on business pro-

cess models. These approaches originate from both

practice, e.g., Mainstream SOA Methodology [5],

and academia, e.g., [6]. A more comprehensive

overview can be found in [11], [20]. Because our

proposed method is based upon proven software

engineering principles, it mainly relates to the

principles-driven design approaches [20].

V. CONCLUSION AND FUTURE WORK

When deriving Normalized Systems’ primitives

from business process models, the following ini-

tial conclusions can be drawn. Data elements are

mostly only indirectly represented within business

process models. Therefore, every noun should be

systematically checked as a potential data element

candidate. The identification of the elementary life

cycle data elements is however considered relatively

straightforward as they represent the business en-

tities going through different business states dur-

ing business process execution. Moreover business

processes will potentially be enabled by multiple

workflow elements as the Normalized Systems the-

orems propose that a workflow element should only

relate to one and only one data element. In this

sense, both Order and Part workflow elements

were identified.

Due to the fact that business process models em-

phasize the flow of activities, the constituent tasks

of these workflow elements can be deducted in a

structured way. Also action elements are obtainable

by merging the Normalized Systems’ laws with

the functionality exhibited by the activities within

the business process model. For instance, timer

elements are basic blocks of both business processes

and Normalized Systems, and can therefore be

mapped in a structured way. In addition, the case

demonstrated how the omnipresent tasks of con-

tacting diverse actors can be mapped to a generic

Notifier data element on which workflows taking

care of the requested notification functionality can

be defined.

Our future work will be, next to executing more

extended and additional case studies, targeted at

formalizing the method proposed in this paper.

The rather implicit rules must be translated into

strict guidelines, providing an unambiguous way

to derive the Normalized Systems elements from

business process models. This will also include

identifying the different concerns existing at the

level of business processes, as they will vary from

the concerns identified at the software level. Second,

the mapping of other business process modelling

languages and enterprise architecture descriptions

to Normalized Systems primitives will be studied.

Finally, research on the Normalized Systems theory

itself will be extended. Key areas are the introduc-

tion of additional supporting tasks into the stable

software elements, and porting the stable element

patterns to supplementary software platforms.

68

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] D. Van Nuffel, H. Mannaert, C. De Backer and J. Verelst,
“Deriving Normalized Systems elements from business pro-
cess models,” in Proceedings of Fourth International Con-

ference on Software Engineering Advances (ICSEA 2009),
K. Boness, Ed. Los Alamitos, CA, USA: IEEE Computer
Society, September 2009, pp. 27–32.

[2] C. Y. Baldwin, and K. B. Clark, “Design Rules: Vol. 1: The
Power of Modularity,” MIT Press, Cambridge, MA, USA,
2000.

[3] K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su,
“Towards formal analysis of artifact-centric business process
models,” in BPM 2007, ser. Lecture Notes in Computer
Science, G. Alonso, P. Dadam, and M. Rosemann, Eds.,
vol. 4714. Berlin Heidelberg: Springer-Verlag, 2007, pp.
288–304.

[4] M. De Backer, M. Snoeck, G. Monsieur, W. Lemahieu,
and G. Dedene, “A scenario-based verification technique to
assess the compatibility of collaborative business processes,”
Data and Knowledge Engineering, vol. 68, no. 6, pp. 531–
551, June 2009.

[5] T. Erl, “SOA: Principles of Service Design,” Prentice Hall,
Upper Saddle River, NJ, USA, 2008.

[6] A. Erradi, S. Anand, and N. Kulkarni, “SOAF: An Archi-
tectural Framework for Service Definition and Realization,”
in Proceedings of the IEEE International Conference on

Services Computing (SCC’06). Los Alamitos, CA, USA:
IEEE Computer Society, September 2006, pp. 151–158.

[7] R. Dijkman, M. Dumas, and C. Ouyang, “Semantics and
analysis of business process models in BPMN,” Information

and Software Technology, vol. 50, no. 12, pp. 1281–1294,
November 2008.

[8] E. Dijkstra, “Go to statement considered harmful,” Commu-

nications of the ACM, vol. 11, no. 3, pp. 147–148, 1968.

[9] S. G. Eick, T. L. Graves, A. F. Karr, J. Marron, and
A. Mockus, “Does code decay? Assessing the evidence from
change management data,” IEEE Transactions on Software

Engineering, vol. 27, no. 1, pp. 1–12, January 2001.

[10] D. Kelly, “A study of design characteristics in evolving
software using stability as a criterion,” IEEE Transactions

on Software Engineering, vol. 32, no. 5, pp. 315–329, May
2006.

[11] A. Kontogogos, and P. Avgeriou, “An Overview of Soft-
ware Engineering Approaches to Service Oriented Archi-
tectures in Various Fields,” in Proceedings of the 18th

IEEE International Workshops on Enabling Technologies:

Infrastructures for Collaborative Enterprises, S. M. Reddy,
Eds., Los Alamitos, CA, USA: IEEE Computer Society,
July 2009, pp. 254–259.

[12] S. Kumaran, R. Liu, and F. Y. Wu, “On the duality of
information-centric and activity-centric models of business
processes,” in 20th International Conference on Advanced

Information Systems Engineering, CAiSE 2008, ser. Lecture
Notes in Computer Science, Z. Bellahsene and M. Leonard,
Eds., vol. 5074. Berlin Heidelberg: Springer-Verlag, June
2008, pp. 32–47.

[13] M. M. Lehman, “Programs, life cycles, and laws of soft-
ware evolution,” in Proceedings of the IEEE, Vol. 68, pp.
1060–1076, September 1980.

[14] M. M. Lehman and J. F. Ramil, “Rules and tools for
software evolution planning and management,” Annals of

Software Engineering, vol. 11, no. 1, pp. 15–44, November
2001.

[15] H. Mannaert and J. Verelst, Normalized Systems: Re-

creating Information Technology Based on Laws for Soft-

ware Evolvability. Hasselt: Koppa, March 2009.
[16] H. Mannaert, J. Verelst, and K. Ven, “Exploring the con-

cept of systems theoretic stability as a starting point for
a unified theory on software engineering,” in Proceedings

of Third International Conference on Software Engineering

Advances (ICSEA 2008), H. Mannaert, T. Ohta, C. Dini, and
R. Pellerin, Eds. Los Alamitos, CA, USA: IEEE Computer
Society, October 2008, pp. 360–366.

[17] H. Mannaert, J. Verelst, and K. Ven, “Design theo-
rems for avoiding combinatorial effects in integrating open
source software components in software product lines.,”
in Proceedings of the Joint Workshop on Quality and Ar-

chitectural Concerns in Open Source Software (QACOS)

and Open Source Software and Product Lines (OSSPL),
Babar, Muhammad Ali et al. Eds. Skövde, Skövde Univer-
sity, 2009, p. 20-27.

[18] Object Management Group, “Business Process Mode-
ling and Notation, v2.0 Beta 1 OMG Adopted Beta
specification,” online available at: http://www.omg.org/cgi-
bin/doc?dtc/09-08-14, August 2009.

[19] D. Parnas, “On the Criteria To Be Used in Decomposing
Systems into Modules,” in Communications of the ACM,
Vol. 15, Nr. 12, pp.1053–1058, 1972.

[20] S. Patig, “Cases of Software Services Design in Practice,”
in ICSOFT 2009 - Proceedings of the 4th International Con-

ference on Software and Data Technologies, B. Shishkov,
J. Cordeiro, and A. Ranchordas, Eds. Setubal, Portugal:
INSTICC Press, July 2009, pp. 376–383.

[21] J. Recker, “Opportunities and constraints: the current strug-
gle with BPMN,” Business Process Management Journal,
vol. 16, no. 1, pp. 181–201, 2010.

[22] H. A. Reijers, J. H. M. Rigter, and W. M. van der
Aalst, “The case handling case,” International Journal of

Cooperative Information Systems, vol. 12, no. 3, pp. 365–
391, September 2003.

[23] W. M. P. van der Aalst, M. Weske, D. Grünbauer, “Case
handling: a new paradigm for business process support,”
Data and Knowledge Engineering, vol. 53, no. 2, pp. 129–
162, May 2005.

[24] M. Weske, Business Process Management: Concepts, Lan-

guages, Architectures. Springer-Verlag, 2007.
[25] B. J. Williams and J. C. Carver, “Characterizing software

architecture changes: A systematic review,” Information and

Software Technology, vol. 52, no. 1, pp. 31–51, January
2010.

[26] J. L. Zhao, M. Tanniru, and L.-J. Zhang, “Services com-
puting as the foundation of enterprise agility: Overview
of recent advances and introduction to the special issue,”
Information Systems Frontiers, vol. 9, no. 1, pp. 1–8, March
2007.

69

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Adaptive Object-Models: a Research Roadmap

Hugo Sereno Ferreira
INESC Porto

Faculdade de Engenharia
Universidade do Porto

Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal

hugo.sereno@fe.up.pt

Filipe Figueiredo Correia
Faculdade de Engenharia

Universidade do Porto
Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal

filipe.correia@fe.up.pt

Ademar Aguiar
INESC Porto

Faculdade de Engenharia
Universidade do Porto

Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal
ademar.aguiar@fe.up.pt

João Pascoal Faria
INESC Porto

Faculdade de Engenharia
Universidade do Porto

Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal

jpf@fe.up.pt

Abstract—The Adaptive Object-Model (AOM) is a meta-
architectural pattern of systems that expose an high-degree
of runtime adaptability of their domain. Despite there being
a class of software projects that would directly benefit by
being built as AOMs, their usage is still very scarce. To
address this topic, a wide scope of concepts surrounding to
Adaptive Object-Models need to be understood, such as the
role of incompleteness in software, and its effects on system
variability and adaptability, as well as existing metamodeling
and metaprogramming techniques and how do they relate to
software construction. The inherent complexity, reduced litera-
ture and case-studies, lack of reusable framework components,
and fundamental issues as those regarding evolution, frequently
drive developers (and researchers) away from this topic. In this
work, we provide an extensive review of the state-of-the-art in
AOM, as well as a roadmap for empirical validation of research
in this area, which underlying principles have the potential to
alter the way software systems are perceived and designed.

Keywords-Architectural Structures and Viewpoints, Design
Patterns, Families of Programs and Frameworks.

I. INTRODUCTION

The current demand for industrialization of software de-
velopment is having a profound impact in the growth of
software complexity and time-to-market [1]. Moreover, a
lot of the effort in the development of software is repeatedly
applied to the same tasks, despite all the effort in research for
more effective reuse techniques and practices. Like in other
areas of scientific research, the reaction has been to hide the
inherent complexities of technological concerns by creating
increasingly higher levels (and layers) of abstractions with
the goal of facilitating reasoning, albeit often at the cost
of widening the already existing gap between specification
and implementation artifacts [2]. To make these abstractions
useful beyond documentation and analytical and reasoning
purposes [3], [4], higher-level models must be made exe-
cutable, by systematic transformation [5] or interpretation
[6] of problem-level abstractions into software implemen-
tations. The primary focus of model-driven engineering
(MDE) is to find ways of automatically animating such
models, often used simply to describe complex systems at
multiple levels of abstraction and perspectives and therefore

Reality

Domain

Software

Figure 1. Software may be regarded as the crystallization of an abstraction
that models a specific domain. Ideally, it would match the exact limits of
that domain. But in practice: (i) those limits are fuzzy, (ii) software often
imposes an artificial, unnaturally rigid structure, and (iii) reality itself keeps
changing.

promoting them to first-class artifacts [2].

A. Incomplete by Design

A recurrent problem in software development is the
difficulty of acquiring, inferring, capturing and formalizing
requirements, particularly when designing systems where the
process is highly-coupled with the stakeholders’ perspective
and the requirements often change faster than the imple-
mentation. This reality is well known in industrial environ-
ments, and is sometimes blamed upon incompleteness of the
stakeholders’ knowledge [7] — maintaining and evolving
software is a knowledge intensive task that represents a
significative amount of effort [8]. Consequently, once the
analysis phase is finished and the implementation progresses,
strong resistance to further change emerges, due to the mis-
match between specification and implementation artifacts.
Notwithstanding, from the stakeholder’s perspective, some
domains do rely on constant adaptation of their processes to
an evolving reality, not to mention that new knowledge is
continuously acquired, which lead to new insights of their
own business and what support they expect from software.

70

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Confronted with the above issues, some development
methodologies (particularly those coined “agile”) have in-
tensified their focus on a highly iterative and incremental
approach, accepting that change is, in fact, an invariant of
software development [9]. For example, one of the most
prominent books in agile methodologies — Kent Beck’s
“Extreme Programming Explained” [10] — use the phrase
“embrace change” as its subtitle. This stance is in clear
contrast with other practices that focus on a priori, time-
consuming, rigorous design, considering continuous change
as a luxurious (and somewhat dangerous) asset for the
productivity and quality of software development.

Although the benefits of an up-front, correct and validated
specification are undeniable — and have been particularly
praised by formal methods of development, particularly
when coping with critical systems — their approach is
often recognized as impractical, particularly in environments
characterized by continuous change. Likewise, the way
developers currently cope with change often result in a BIG
BALL OF MUD, where the systems will eventually face a
total reconstruction, invariably impacting the economy [11].
Thus, software that is target of continuous change should be
regarded as incomplete by design, or in other words, it needs
to be constantly evolving and adapting itself to a new reality,
and most attempts to freeze its requirements are probably
doomed to fail (see Figure 1).

This notion, and the adequate infrastructure to support
it, has roots that go as back as the history of Smalltalk
and object-oriented programming in the dawn of personal
computers [12]: ”Instead of at most a few thousand insti-
tutional mainframes in the world (...) and at most a few
thousand users trained for each application, there would
be millions of personal machines and users, mostly outside
of direct institutional control. Where would the applica-
tions and training come from? Why should we expect an
applications programmer to anticipate the specific needs
of a particular one of the millions of potential users? An
extensional system seemed to be called for in which the end-
users would do most of the tailoring (and even some of the
direct constructions) of their tools.”

B. Motivational Example

Figure 2 depicts small subset of the class diagram from
real-world information system for a medical healthcare
center. In summary, the medical center has Patients and
specialized Doctors. Information about a patient, such as
her personal information, Contacts and Insurances,
are required to be stored. Patients go to the center to have
Appointments with several Doctors, though they are
normally followed by just one. During an appointment,
several Pathologies may be identified, which are often
addressed through the execution of medical Procedures.

In this example, we can begin to observe the incom-
pleteness of these kind of information systems. For exam-

ple, procedures, insurances, pathologies and contacts are
depicted has having open-hierarchies (where each special-
ization may require different fields). Patients may not have
all the relevant information recorded (e.g., critical health
conditions) and foreseeing those missed formalizations, ei-
ther the designer or the customer make extensive usage
of an observations field. The system is also missing
some domain notion, such that of Auxiliary Personnel,
which would require a complete new entity. Maybe it will
be revealed as relevant to store personal information of
Doctors; actually, in the presence of this new requirements,
a designer would probable make Patients, Doctors
and Auxiliary Personnel inherits from a single ab-
straction (e.g., Persons). The healthcare center may also
require the system to prevent doctors from performing
procedures for which they are not qualified (e.g., through
a specific constraint based on their specialization). In fact,
it now seems evident that a doctor may have multiple
specializations.

These are examples of requirements that could easily
elude developers and stakeholders during the analysis pro-
cess. What may seem a reasonable, realistic and useful
system at some point, may quickly evolve beyond the orig-
inal expectations, unfortunately after analysis is considered
finished.

C. Accidental Complexity

Should the customer require the system to cope with these
incomplete definitions, the designer would have to deliber-
ately make the system extensible in appropriate points. Fig-
ure 3 shows the refactored elements of a particular solution
that only addresses open inheritances and enumerations.

Compared to the initial design, the new one reveals itself
as a much larger model. In fact, it is now more difficult to
distinguish between elements that model the domain, from
those that provide extensibility to the system. The result
is an increase of what is defined as accidental complexity
— complexity that arises in computer artifacts, or their
development process, which is non-essential to the problem
to be solved. In contract, the first model was much closer
to that of essential complexity — inherent and unavoidable.
This increase in accidental complexity was only caused by
the specific approach chosen to solve the problem — in this
case, recurrent usage of the TYPE-OBJECT pattern.

While sometimes accidental complexity can be due to
mistakes such as ineffective planning, or low priority placed
on a project, some accidental complexity always occurs
as the side effect of solving any problem. For example,
mechanisms to deal with out of memory errors are part of
the accidental complexity of most implementations, although
they occur just because one has decided to use a (von-
neumann) computer to solve the problem. Because the
minimization of accidental complexity is considered a good
practice to any architecture, design, and implementation,

71

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

National ID {unique}
Name
Birthdate
/ Age
Sex: enum
Observations

Patient

Expiration Date
Observations

Insurance

Name
Specialization

Doctor

Date
Symptom
Diagnostic
/ Total Cost

Appointment

Description
Treatment Group
Cost
Observations

Procedure

Description
Observations

Contact

Severity: enum
Observations

Pathology

Engineer
Architect
...

‹‹enumeration››
Profession

*

* doctors

*

0..1 {subsets
doctors} / procedures

*

/ doctor

1

*

Figure 2. Example of a domain diagram of an information system for a medical center. The horizontal dashed lines denote open (incomplete) inheritances.
The dots inside the enumeration also denotes incomplete knowledge which should be editable by the end-user.

excessive accidental complexity is a clear example of an
anti-pattern.

D. Designing for Incompleteness

While newer software engineering methodologies struggle
to increase the ability to adjust easily to change of both
the process and the development team, they seem to gen-
erally have a certain agnosticism regarding the form of the
produced software artifacts (probably an over-simplification
since agile methodologies, for example, recommended the
simplest design that works, which addresses form, in a
certain way). This doesn’t mean they are not aware of this
“need to change”. In fact, iterative means several cycles
going from analysis to development, and back again. Some
are also aware of the BIG BALL OF MUD pattern (or
anti-pattern, depending on the perspective); the practice of
refactoring after each iteration in order to cope with design
debt is specifically included to address that [13]. But the
problem seems to remain in the sense that the outcome —
w.r.t. form — of each iteration is mostly synthesized as if it
would be the last one (albeit knowing it isn’t).

Yet, if these systems are accepted and regarded as being
incomplete by design, it seems reasonable to assume benefits
when actively designing them for incompleteness. If we shift
the way we develop software to embrace change, it seems a
natural decision to deliberately design that same software to
best cope with change. Citing the work of Garud et al.: ”The
traditional scientific approach to design extols the virtues

of completeness. However, in environments characterized
by continual change (new solutions) highlight a pragmatic
approach to design in which incompleteness is harnessed in
a generative manner. This suggests a change in the meaning
of the word design itself – from one that separates the
process of design from its outcome, to one that considers
design as both the medium and outcome of action.” [7]

This is in particular dissonance with the current ap-
proaches to software engineering, where most processes
attempt to establish a clear line between designing and devel-
oping, specifying and implementing. Though it seems that,
should we wish to harness continual change, that distinction
no longer suits our purposes: design should become both the
medium and outcome of action. Consequently, we are thus
looking forward not just for a process to be effective and
agile, but to what form should agile software take.

E. Article Structure

The remaining of the article is divided into three main
sections. We will first present a literature survey of the
state-of-the-art regarding several concepts and techniques
used to harness the specification and construction of these
incomplete by design systems. In Section III, we’ll use return
to the motivational example and delve into the Adaptive
Object-Model meta-architectural pattern to further detail
its related concerns. Section IV aims to summarize the
current known open issues in the field, and discuss issues
on research design and empirical validation for assessing

72

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Patient

Doctor

Appointment

Procedure Type

Pathology Type

*

*

0..*

Name

Profession

Name: string

Procedure

Name = "Surgery"

Surgery: Procedure

Name: string

Pathology

Name = "Flu"

Flu: Pathology

‹‹is-instance-of››

‹‹is-instance-of››

Name = "Architect"

Architect: Profession

‹‹is-instance-of››

Insurance TypeContact Type

Name: string

Contact

Name: string

Insurance

Name = "Mobile Phone"

Mobile: Contact

Name = "SNS"

SNS: Insurance

‹‹is-instance-of››‹‹is-instance-of››

Figure 3. A refactored solution for the diagram in Figure 2, mainly depicting the elements that were changed/added for providing a mechanism to cope
with open inheritance and enumerations. This example makes extensive use of the TYPE-OBJECT pattern (see Section III).

Adaptive Object-Models. We will finish this article by
drafting some conclusions and pointing to future work.

II. STATE-OF-THE-ART

One way to design software able to cope with incom-
pleteness is to encode the system’s concepts into higher-
level representations, which could then be systematically
synthesized — desirably, in an automatic fashion — into
executable artifacts, thus reducing the overall effort (and
complexity) of changing it. An overview of the several
concepts that will be approached in this section is shown
in Figure 4.

A. Fundamentals

1) Variability: Software variability is the need of a
software system or artifact to be changed, customized or
configured for use in different contexts [14]. High variability
means that the software may be used in a broader range of
contexts (i.e., the software is more reusable). The degree of
variability of a particular system is given by its Variation
Points, or roughly the parts which support (re)configuration
and consequently tailoring the product for different contexts
or for different purposes. Variability is a well-known concept
in Software Product Lines, which will be covered later.

2) Adaptability and Self-Adaptive Systems: While vari-
ability is given by context, the capability of software systems
to react efficiently to changed circumstances is called Adapt-
ability. The main difference relies on what has changed and
what is being changed accordingly. The same software may

be reconfigured to be used in different contexts (e.g., by re-
compiling with an additional component), and this provides
Variability. The mechanisms that allow software to change
its behavior (without recompiling) is called Adaptability.
Adaptive systems may thus be defined as open systems
which are able to fit their behavior according to either (or
both) external or internal changes. The work by Andresen
et al. [15] identifies some enabling criteria for adaptability
in enterprise systems. Further work by Meso et al. [16]
provides a insight into how agile software development
practices can be used to improve adaptability.

Self-adaptation is a particular case of Adaptability, when
software systems are empowered with the ability to adjust
their own behavior themselves during run-time, in response
to both their perception of the environment and itself [17].
Despite that in self-adaptation often (i) the change agent is
the system itself in reaction to the external world, and (ii)
the scope of adaptability is well-defined a priori, there is
an extensive amount of research that still applies to systems
that need adaptation, without having to adapt themselves.

B. Incompleteness

1) The Wiki Way: Earlier in 1995, Cunningham wrote a
set of scripts that allowed collaborative editing of webpages
inside the very same browser used to view them [18],
and named this system WikiWikiWeb. He chose this word
because of the analogy between its meaning (quick) and
the underlying philosophy of its creation: a quick-web. Up
until now, wikis have gradually become a popular tool on

73

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Adaptability Variability

Adaptive
Object-Model

Software

DomainReality

IncompletenessSelf-Adaptive
Agile

Processes

Components

Software
Product Lines

MetaModeling
Technique

MDA MDE

Domain Specific
Language

xUML

MetaProgramming

Reflection

FrameworkInfrastructure

Pattern

copes-with supports

supports
provides

config points

copes

is-expressive-in

abstracts

implements

is-inherent

requires

is-property-of

is-a

contains
is-a is-a is-a

supports

requires

is-a-property-of

has

is-a

provides

often-use

Change

embrace

leads-to

may-result-from

helps

Wiki
embrace

embrace

may-be

may-use

may-provide

Generative
Programming

is

Figure 4. Concept map representing the relationship between several areas, concepts and techniques related to Adaptive Object-Models.

several domains, including that of software development
(e.g., to assist the creation of lightweight software documen-
tation [19]) — they ease collaboration, provide generalized
availability of information, and allow to combine different
types of content (e.g., text, models, code) into the same
infrastructures.

2) Characteristics: The overall success of wikis may be
due to a set of design principles drafted by Cunningham that
overall tend to embrace change and incompleteness, namely
(i) Open, (ii) Incremental, (iii) organic, (iv) Universal, (v)
Overt, (vi) Tolerant, (vii) Observable and (viii) Convergent.
Their original definition may be looked up in [20].

3) Wikis and Incomplete Systems: Likewise, we may also
regard the usage (and development) of a software systems as
a team work. The underlying design and the knowledge that
lead to it (e.g., requirements, use-cases, models) is mostly
devised and shared between developers and stakeholders.
Data is collaboratively viewed and edited among users.
Oddly, not only these circles seem to be disjoint, but
emergent knowledge from this collaboration seem to start
and end towards the artifacts themselves, despite the fact
they have (and are) built incrementally.

Incompleteness, once again, seems to be the key. Instead
of regarding it as a defect, we should embrace it as the
means through which the system evolves, thus fulfilling
its function. WikiWikiWeb seemed to have realized this
fundamental ideal, and for us it is reasonable to conjecture
about attempting the same underlying principles [20] to
other computational systems as well:

• Open. Should a resource be found to be incomplete or
poorly organized, the end-user can evolve it as they see
fit.

• Incremental. Resources can link to other resources,

including those who have not yet been brought into
existence.

• Organic. Structure and content are open to editing and
evolution. Evolution may be made more difficult if it
is mandatory for information to strictly conform to a
pre-established model.

• Universal. The same (or very similar) mechanisms for
modifying data and model should be exposed by the
system with no apparent distinction.

• Overt. End-user evolution should be made by non-
programmers. The introduction of linguistic construc-
tions (such as textual syntax) is usually required in
order to provide formalization. However, such construc-
tions may reveal unnatural, intrusive and complex to the
end-user, thus model edition should be made as readily
apparent (and transparent) as possible.

• Tolerant. Interpretable behavior is preferred to system
halt.

• Observable. Activity should be exposed and reviewed
by end-users, fomenting social collaboration.

• Convergent. Duplication is discouraged and removed
by incremental restructuring and linking to similar or
related content.

To reach expand these principles inherent to the WikiWiki-
Web to other areas of software, we need a particular degree
of adaptability — both to the developers and to the end-
users — from the infrastructure which is neither commonly
found, nor particularly easy to design.

C. Abstraction

Wikipedia [21] has several articles defining the concept of
abstraction, depending on the scientific area: ”Conceptually,
it is the process or result of generalization by reducing

74

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the information content of a concept or an observable
phenomenon, typically to retain only information which is
relevant for a particular purpose. In mathematics, it is the
process of extracting the underlying essence of a mathemati-
cal concept, removing any dependence on real world objects
with which it might originally have been connected, and
generalizing it so that it has wider applications or matching
among other abstract descriptions of equivalent phenomena.
In computer science, it is the mechanism and practice of
abstraction reduces and factors out details so that one can
focus on a few concepts at a time.”

All definitions share one factor in common, i.e., that ab-
straction involves relinquishing some property (e.g., detail)
to gain or increase another property (e.g., simplicity). For
example, a common known use of abstraction is the level
of programming language. Assembly is often called low-
level because it exposes the underlying mechanisms of the
machine with an high degree of fidelity. On the other end,
Haskell is an high-level language, struggling to hide as much
as possible the underlying details of its execution. The latter
trades execution performance in favor of cross-platform and
domain expressiveness.

In this sense, abstractions are never to be considered
win-win solutions. For example, Joel Spolsky [22] observes
a recurrent phenomena in technological abstractions called
Leaky Abstractions, which occurs when one technological
abstraction tries to completely hide the concepts of an-
other, lower-level technology, and sometimes the underlying
concepts “leak through” those supposed invisible layers,
rendering them visible. For example, an high-level language
may try to hide the fact that the program is being executed
at all by a von-neumann machine. In this sense, although
two programs may be functionally equivalent, memory
consumption and processor cycles may eventually draw a
clear separation between them. Hence, the programmer may
need to learn about the middle and lower-level components
(i.e., processor, memory, compiler, etc.) for the purpose of
designing a program that executes in a reasonable time, thus
breaking the abstraction. He goes as far as hypothesizing
that “all non-trivial abstractions, to some degree, are leaky”.
Hence, good abstractions are specifically designed to express
the exactly intended details in a specific context, while
relinquishing what is considered unimportant.

1) Metaprogramming: Metaprogramming consists on
writing programs that generate or manipulate either other
programs, or themselves, by treating code as data [23].
Historically, it is divided into two languages: (i) the meta-
language, in which the meta-program is written, and (ii)
the object language which the metaprogram produces or
manipulates. Nowadays, most programming languages use
the same language for the two functions [24], either by
being homoiconic (e.g., Lisp), dynamic (e.g., Python) or by
exposing the internals of the runtime engine through APIs
(e.g., Java and .NET). Claims about the economic benefits in

terms of development and adaptability have been studied and
published for more than twenty years [25], though its focus
is on code-level manipulation and not on domain artifacts.

2) Meta-modeling: Supporting the use of models dur-
ing runtime is an answer to high-variability systems [6],
where the large semantic mismatch between specification
and implementation artifacts in traditional systems can be
reduced by the use of models, meta-models, and metadata
in general. Metamodeling is thus the analysis, construction
and development of the frames, rules, constraints, models
and theories applicable and useful for modeling a predefined
class of problems [26] (i.e., a model to specify models).

3) Reflection: Reflection is the property of a system that
allows to observe and alter its own structure or behavior
during its own execution. This is normally achieved through
the usage and manipulation of (meta-)data representing the
state of the program/system. There are two aspects of such
manipulation: (i) introspection, i.e., to observe and reason
about its own state, and (ii) intercession, i.e., to modify its
own execution state (structure) or alter its own interpretation
or meaning (semantics) [24]. Due to this properties, reflec-
tion is a key property for metaprogramming.

4) Domain Specific Languages: A domain-specific lan-
guage (DSL) is a programming or specification language
specifically designed to suit a particular problem domain,
representation technique, and/or solution technique. They
can be either visual diagramming languages, such as UML,
programatic abstractions, such as the Eclipse Modeling
Framework, or textual languages, such as SQL. The benefits
of creating a DSL (along with the necessary infrastruc-
ture to support its interpretation or execution) may reveal
considerable whenever the language allows a more clear
expression of a particular type of problems or solutions than
pre-existing languages would, and the type of problem in
question reappears sufficiently often (i.e., recurrent, either
in a specific project, like extensive usage of mathematical
formulae, or global-wise, such as database querying).

The creation of a DSL can be supported by tools such
as AntLR [27] or YACC [28], which take a formalized
grammar (e.g., defined in a meta-syntax such as BNF),
and generate parsers in a supported target language (e.g.,
Java). Recently, the term DSL has also been used to coin
a particular type of syntactic construction within a general
purpose language which tends to more naturally resemble a
particular problem domain, but without actually extending or
creating a new grammar. The Ruby community, for example,
has been enthusiastic in applying this term to such syntactic
sugar [29].

Domain-specific languages share common design goals
that contrast with those of general-purpose languages, in the
sense they are (i) less comprehensive, (ii) more expressive
in their domain, and (iii) exhibit minimum redundancy.
Language Oriented Programming [30] considers the creation
of special-purpose languages for expressing problems as a

75

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

standard methodology of the problem solving process.
5) Meta-Architectures: We have already seen several

techniques used to address systems with high-variability
needs. There is, nonetheless, differences between them. For
example, some do not parse or interpret the system definition
(meta-data) while it is running: Generative Programming
and Metamodeling rely on code generation done at compile
time. Reflection is more of a property than a technique by
itself, and the level at which it is typically available (i.e.,
programming language) is inconvenient to deal with domain-
level changes. Domain Specific Languages are programming
(or specification) languages created for a specific purpose.
They are not generally tailored to deal with change (though
they could), and they do require a specific infrastructure in
order to be executed.

Meta-architectures, or reflective-architectures, are archi-
tectures that strongly rely on reflective properties, and may
even dynamically adapt to new user requirement during
runtime. Pure OO environments, and MOF-based systems
are examples of such architectures, as they make use of
meta-data to create different levels that sequentially comply
to each other. The lowest level in this chain is called the
data level, and all the levels above the meta-data levels, but
the line that separates them is frequently blurred as both are
data.

D. Approaches

1) Software Product Lines: A software product line
(SPL) is a set of software systems which share a common,
managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed
from a common set of core assets in a prescribed way [31].
Software product line development, encompasses software
engineering methods, tools and techniques for supporting
such approach. A characteristic that distinguishes SPL from
previous efforts is predictive versus opportunistic software
reuse. Rather than put general software components into a
library in the hope that opportunities for reuse will arise,
software product lines only call for software artifacts to be
created when reuse is predicted in one or more products in
a well defined product line.

2) Naked Objects: Naked Objects takes the automatic
generation of graphical user interfaces for domain models
to the extreme. This software architectural pattern, first
described in Richard Pawson’s PhD thesis [32] which work
includes a thorough investigation on prior known uses and
variants of this pattern, is defined by three principles:

1) All business logic should be encapsulated onto the
domain objects, which directly reflect the principle of
encapsulation common to object-oriented design.

2) The user interface should be a direct representation
of the domain objects, where all user actions are
essentially creation, retrieval and message send (or
method invokation) of domain objects. It has been

argued that this principle is a particular interpretation
of an object-oriented user-interface (OOUI).

3) The user interface should be completely generated
solely from the definition of the domain objects, by
using several different technologies (e.g., source code
generation or reflection).

The work of Pawson further contains some controversial
information, namely a foreword by Trygve Reenskaug, who
first formulated the model-view-controller (MVC) pattern,
suggesting that Naked Objects is closer to the original MVC
intent than many subsequent interpretations and implemen-
tations.

3) Domain-Driven Design: Domain-driven design
(DDD) was coined by Eric Evans in his books of the same
title [33]. It is an approach to developing software for
complex needs by deeply connecting the implementation
to an evolving model of the core business concepts, which
encompasses a set of practices and terminology for making
design decisions that focus and accelerate software projects
dealing with complicated domains. The premise of domain-
driven design is the following: (i) placing the project’s
primary focus on the core domain and domain logic, (ii)
basing complex designs on a model, and (iii) initiating a
creative collaboration between technical and domain experts
to iteratively cut ever closer to the conceptual heart of the
problem.

4) Model-Driven Engineering: Model-Driven Engineer-
ing (MDE) is a metamodeling technique that strives to close
the gap between specification artifacts which are based upon
high-level models, and concrete implementations. A conser-
vative statement claims that MDE tries to reduce the effort of
shortening (not completely closing) that gap by generating
code, producing artifacts or otherwise interpreting models
such that they become executable [2].

Proponents of MDE claim several advantages over tra-
ditional approaches: (i) shorter time-to-market, since users
model the domain instead of implementing it, focusing on
analysis instead of implementation details; (ii) increased
reuse, because the inner workings are hidden from the user,
avoiding to deal with the intricate details of frameworks or
system components; (iii) fewer bugs, because once one is
detected and corrected, it immediately affects all the system
leading to increased coherence; (iv) easier-to-understand
systems and up-to-date documentation, because the design
is the implementation so they never fall out of sync [6].
One can argue if these advantages are exclusive of MDE or
just a consequence of “raising the level of abstraction” (see
Domain Specific Languages).

Downsides in typical generative MDE approaches in-
clude the delay between model change and model instance
execution due to code generation, debugging difficulties,
compilation, system restart, installation and configuration of
the new system, which can take a substantial time and must
take place within the development environment [6]. Once

76

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

again, it doesn’t seem a particular downside of MDE, but
a general property of normal deployment and evolution of
typical systems.

More interesting counter-points to MDE adoption will be
addressed in Section IV. It seems worthwhile to note that
the prefix Model-driven seems to be currently serving as a
kind of umbrella definition for several techniques.

5) Model-Driven Architecture: Model-driven architecture
(MDA) in an approach to MDE proposed by the OMG,
for the development of software systems [34]. It provides
a set of guidelines to the conception and use of model-
based specifications and may be regarded as a type of
domain engineering. It bases itself on the Meta Object
Facility (MOF) [35], which main purpose is to define a strict,
closed metamodeling architecture for MOF-based systems
and UML itself, provides four modeling levels (M3, M2,
M1 and M0), each conforming to the upper one (M3 is in
conformance to itself).

M2

M1

M0

ClassAttribute

‹‹instanceOf››‹‹instanceOf››

M3 Class

Instance

‹‹instanceOf››‹‹instanceOf››‹‹instanceOf››

classifier

 +title: string

Video

title = "Matrix"

:aVideo‹‹snapshot››

‹‹instanceOf››

Matrix

‹‹instanceOf››

Figure 5. Layers of Abstraction in the Meta-Object Facility (MOF). Each
level is in direct conformance to the upper level. The classes named Class,
from both level 2 and 3, represent the same concept.

Like most of the MDE practices, MDA thrives within a
complex ecosystem with specialized tools for performing
specific actions. Moreover, MDA is typically oriented for
generative approaches, using systematic offline transforma-
tion of high-level models into executable artifacts. for exam-
ple, trying to answer MDA’s objective of covering the entire
gap between specification and implementation, xUML was
developed. It is a UML profile which allows the graphical
representation of a system, and takes an approach in which
platform specific implementations are created automatically
from platform-independent models, with the use of model
compilers.

While some complex parts of MDA allow runtime adap-
tivity, developers seldom acquire enough knowledge and
proficiency of the overall technologies to make them cost
(and time) effective in medium-sized applications. Runtime
adaptivity may be approached in different ways, including

the use of reflection, and the interpretation of models at
runtime [6], covering the concept of Adaptive Object-Model
(see section II-E3).

E. Infrastructures

1) Frameworks: Object-oriented frameworks are reusable
designs of all or part of a software system described by
a set of abstract artifacts and the way they collaborate
[36]. They aim to provide both an infrastructure, through
a COMPONENT LIBRARY and pre-defined interconnections
among them, which may all be (re-)configured and extended
to address different problems in a given domain. Good
frameworks are able to reduce the cost of development by
an order of magnitude. It should be stressed that software
frameworks are more than just a collection of reusable
components (also known as LIBRARY); a framework usually
makes use of the Hollywood Principle1 to promote high
cohesion and low coupling in object-oriented designs, by
ensuring a THREAD OF CONTROL.

2) Generative Programming: One common approach to
address variability and adaptability is the use of Generative
Programming (GP) methods, which transform a description
of a system (model) based in primitive structures [37], into
either executable code or code skeleton. This code can then
be further modified and/or refined and linked to other com-
ponents [38]. Generative Programming deals with a wide
range of possibilities including those from Aspect Oriented
Programming [39], [40] and Intentional Programming [41].

Because GP approaches focus on the automatic generation
of systems from high-level (or, at least, higher-level) descrip-
tions, it is arguable whether those act like a meta-model
of the generated system. Still, the resulting functionality is
not directly produced by programmers but specified using
domain-related constructs. In summary, GP works as an off-
line code-producer and not as a run-time adaptive system
[42].

This technique typically assumes that (i) changes are
always introduced by developers (change agents), (ii) within
the development environment, and (iii) that a full transfor-
mation (and most likely, compilation) cycle is affordable
(i.e., no run-time reconfiguration). When these premises fail
to hold, generative approaches are easily overwhelmed [6].

3) Adaptive Object-Models: In search for flexibility and
run-time adaptability, many developers had systematically
applied code and design reuse of particular domains, ef-
fectively constructing higher-levels representations (or ab-
stractions). For example, some implementations have their
data structure and domain rules extracted from the code and
stored externally as modifiable parameters of well-known
structures, or statements of a DSL. This strategy gradually
transforms some components of the underlying system into

1A well-known cliché response given to amateurs auditioning in Holly-
wood: “Don’t call us, we’ll call you”.

77

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

an Interpreter or Virtual Machine whose run-time behavior
is defined by the particular instantiation of the defined
model. Changing this model data thus results on the system
following a different business domain model. Whenever we
apply these techniques based upon object-oriented principles
and design, we are using an architectural style, known as an
Adaptive Object-Model [43].

Shortly, it is (i) a class of systems’ architectures, (ii)
heavily based on Metamodeling and Object-Oriented design,
(iii) which often uses a Domain Specific Language, (iv)
usually have the property of being Reflective, and (v) with
the intent of exposing its configuration to the end-user.
Because we are abstracting a set of systems and techniques
into a common underlying architecture heavily based on
object-oriented metaprogramming/metamodelling, we cate-
gorize the AOM as a meta-architecture.

The evolution of the core aspects of an AOM can be
observed by the broad nomenclature used in the literature in
the past couple of decades (e.g., Type Instance, User Defined
Product Architecture, Active Object-Models and Dynamic
Object Models). The concept of Adaptive Object-Model is
inherently coupled with that of an architectural pattern, as
it is an effective, documented, and prescriptive solution to a
recurrent problem.

It should therefore be noted that most AOMs emerge from
a bottom-up process [43], resulting in systems that will likely
use only a subset of these concepts and properties, and only
when and where they are needed. This is in absolute contrast
with top-down efforts of specific meta-modeling techniques
(e.g., Model-Driven Architecture) where the whole infras-
tructure is specifically designed to be as generic as possible
(if possible, to completely abstract the underlying level).

The concepts of End-User Programming and Confined
Variability — the capability of allowing the system’s users
to introduce changes and thus control either part, or the
entire system’s behavior — are significative consequences
of the AOM architecture which aren’t easily reconcilable
with other techniques such as Generative Programming.

III. ARCHITECTURE AND DESIGN OF ADAPTIVE
OBJECT-MODELS

The basic architecture of an Adaptive Object-Model is
divided into three parts, or levels, that roughly correspond
to the levels presented by MOF: M0 is the operational level,
where system data is stored, M1 is the knowledge level
where information that defines the system (i.e., the model) is
stored, and M2 is the design of our supporting infrastructure.
M0 and M1 are variants of our system. M2, the meta-model,
is usually invariant — should it need to change, we would
have to transform M0 and M1 to be compliant with the new
definition.

A. Making the Structure Agile
In Section I, we have shown a refactored example which

made use of a small set of patterns to introduce the desired

adaptability into the original system. As always, one key
to good software design is two-fold: (i) recognize the things
that will often change in a predictable way, and (ii) recognize
what it rarely does not; it is the search for patterns and
invariants.

B. The Type-Object Pattern

In the context Object-Oriented Programming and Anal-
ysis, the Type of an object is defined as a Class, and its
Instance as an Object which conforms to its class. A typical
implementation of our example system would hardcode
into the program structure (i.e., source-code) every modeled
entity (e.g., Patient). Would the system needed to be changed
(e.g., to support a new entity) the source-code would have
to be modified.

However, if one anticipate this change, objects can be
generalized and their variation described as parameters, just
like one can make a function that sums any two given
numbers, regardless of their actual value. The TYPE OBJECT
pattern, depicted in Figure 7, identifies the practice of
splitting such a class in two: a Type called EntityType, and
its Instances, called Entity.

Identifier {unique}

Entity

Identifier {unique}
Name: string
Abtract: bool

Entity Type

Identifier = 001
Name = "Patient"
Abstract = False

Patient

Identifier = 001

John Doe

is-instance-of

is-instance-of

model-level

data-level

parent

0..1

0..*

Figure 7. The TYPE-OBJECT pattern.

Using this pattern, Patients, Doctors, Appointments, etc.
all become instances of Entity Types, therefore meta-data.
The actual system data, such as a the patient John Doe, are
now represented as instances of Entity. Because data and
meta-data are values beyond the program structure, they can
be changed during run-time.

We’ll often extend and customize the original design
of patterns to further enhance the model semantics. For
example, by supporting the notion of inheritance through an
optional relation between EntityTypes, which do incidentally
solve the problem of open-inheritance. Provided sufficient
mechanisms exists to allow the end-user customization of the
model-level, new specializations (e.g., Procedures, Patholo-
gies, etc.) can be added without modifying the source-code.

C. The Property Pattern

Similarly to the TYPE-OBJECT pattern, we face a similar
problem with the attributes of an object, such as the Name
and Age of a Patient, which are usually stored as values
of fields of an object, which have been defined in its

78

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Type Square

Dynamic
Hooks

Strategy

Type Cube

Rule Object

Rule Engine

Interpreter

Builder

Editor / Visual
Language

AOM Builder

Dependency
Injection

Dynamic
Factory

Bootstrapping

Type Object

PropertiesAccountability

Null Object Value Object

Smart
Variables

Entity View
Property
Renderer

Dynamic
Views

GUI
Workflow

History of
Operations

System
Memento

Migrations

manages

may-use may-use

coordinates

uses

usesuses

supports

supports

renders

extends

manages

or extends

manages

extends

extends

Domain Specific
Languagesupports

extends

uses

uses

supports supports

uses

uses

may-use

may-use

instrument

uses

controls

instrument

Figure 6. Pattern map of design patterns and concepts related to Adaptive Object-Models. Adapted from [44].

appropriate classes. Once again, anticipation of this change
leads to the PROPERTY pattern; a similar bi-section between
the definition of a property and its corresponding value as
depicted in Figure 8.

Using this pattern, the Name, Age, Birthday, Profession,
and several attributes of the domain’s entities become in-
stances of Property Types, and their particular values in-
stances of Property. Again, this technique solves the problem
of adding (or removing) more information to existing entities
beyond those originally designed.

D. The Type-Square Pattern

The two previous patterns, type-object and property, are
usually used in conjunction, resulting in what is known
as the TYPE-SQUARE pattern, which poses the core of an
AOM. If we add the instantiations of these classes, we get
the diagram depicted in Figure 9.

In this picture, the objects represent both the systems’ data
and model, while the classes represent our static, abstract
infrastructure. The ability to represent an increasing number
of different — and useful — systems is directly dependent
on the power of the underlying infrastructure.

Identifier {unique}
Value

Property

Identifier {unique}
Name: string

Property Type

Identifier = 001
Name = 'Age'

: Property Type

Identifier = 001
Value = 23

: Property

is-instance-of

is-instance-of

model-level

data-level

Figure 8. The PROPERTY pattern, which separates the definition of an
object’s property and its corresponding value.

E. Revisiting the PROPERTY Pattern

Literature in AOM used to describe a form to capture
relationship between different objects by using the AC-
COUNTABILITY pattern [45]. But what exactly is a field,
a relation or a property? Object fields, in OOP, are used to
store either values of native types (such as int or float in
Java) or references to other objects. They can also be either
scalars or collections. Some OO languages (e.g., smalltalk)
treat everything as an object, and as such do not make any
difference from native types to references. Some also discard
scalar values and instead use singleton sets. We may borrow
these notions to extend the PROPERTY pattern in order to
support associations between entities, provided we are able
to state properties such as cardinality, navigability, role, etc.
The actual differentiation between what is a scalar property
and a relation, becomes an implementation detail. Figure 10
depicts such design.

One hook introduced between the abstraction and the
underlying language is the use of the Native Type property in
Entity Type, to allow any custom Entity Type to be directly
mapped into a native type of the underlying language (such

Property

Property Type

Entity

Entity Type

Age

23

Patient

John Doe

Figure 9. The TYPE-SQUARE pattern, which is a composition of the TYPE
OBJECT and PROPERTY patterns.

79

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Entity Property

Lower-bound: int
Upper-bound: int

Cardinality

Association
Aggregation
Composition

‹‹enumeration››
Role

isNavigable: bool

Property Type

Native Type: Type [0..1]

Entity Type

target

value

Figure 10. An extension of the TYPE-SQUARE pattern, using a variant of
the ACCOUNTABILITY pattern.

as integers and strings).
There are also several logical restrictions related to the

semantics of this design. For example, the lower and up-
per bound in cardinality should restrain the number of
associations from a single Property to Entities. Likewise,
Properties should only link to Entities which are of the same
Entity Type as that defined in Property Type. The complete
formalization of the semantics of the presented models is
outside of the scope of this work.

F. Self-compliance

If our meta-model has enough expressivity, one can reach
the point where the model can be represented inside itself.
MOF is an example of such self-compliance by making
M3 a self-describing level. There are several reasons to
make that design choice: (i) it makes a strict meta-modeling
architecture, since every model element on every level is
strictly in correspondence with a model element of above
level, and (ii) the same mechanisms used to view, modify
and evolve data can be reused for meta-data. A way to
accomplish this is by introducing the notion of a Thing, that
abstracts elements at any level. A Thing is thus an instance of
another Thing, including of itself, such as depicted in Figure
11. This implies that during bootstrapping, the system would
first need to load its own meta-model. When applicable,
Entity Types are actually M2 Entities, thus requiring a
mechanism to inherently convert between them.

‹‹serializable››
State

Entity Type Entity

Identifier {unique}

Thing 1..*

has

‹‹instanceOf››

Figure 11. The THING pattern, which decouples the Identity of an object
from its State.

G. Versioning

As is also shown by Figure 11, the identity of each
instance is maintained as Things, while the respective details

are maintained as States. The decoupling of these two con-
cepts may be leveraged to provide auditability capabilities,
thus answering a common request when building informa-
tion systems. Auditability may be reached by allowing users
to access past versions of an instance, and thus to understand
how such instance has evolved.

Figure 12 depicts an example of this mechanism. Two dis-
tinct values exist for the same Property Type, corresponding
to two different changes the instance has been through over
time.

Name: Property Type

Value = "Michael Doe"

S1: State

Value = "John Doe"

S2: State

Patient: Entity Type

Figure 12. S1 and S2 are two different states — or snapshots — of
the property name. Although a typical system usually stores only the most
recent snapshot, some techniques rely on having the history of an object.

H. Making the Behavior Agile

In addition to structure, such as Entities, Properties and
Associations, systems usefulness also relies on the ability
to support rules and automatic behavior. Some examples of
these include, but are not limited to, (i) Constraints, such
as relationship cardinality, navigability, type redefinition,
default values, pre-conditions, etc. (ii) Functional Rules,
which include reactive logic such as triggers, events and
actions, and (iii) Workflows.

During the instantiation of the object-model, after all types
of objects and their respective attributes are created, there
are some operations that can be applied to them. Some of
these operations are simple Strategies, relatively immutable
or otherwise parameterized, which can be easily described
in the metadata as the method to be invoked along with the
appropriate Strategy.

When the desired behavior reaches a certain level of com-
plexity and dynamism, then a domain specific language can
be designed using RULE-OBJECTS [46]. In this case, prim-
itive rules are defined and composed together with logical
objects, parsed into a tree structure to be interpreted during
runtime. The use of patterns like SMART VARIABLES [47]
and TABLE LOOKUP reveal useful for triggering automatic
updates and validations of property values. More complex
systems can make use of StateMachines and Workflows both
for data and human-computer interaction.

A common problem that arises with the abstraction of
rules, is that the developer may fall in the trap of creating
(and then maintaining) a general-purpose programming lan-
guage, which may result in increased complexity regarding
the implementation and maintenance of the target applica-
tion, far beyond what would be expected if those rules were

80

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

hardcoded [42]. It should be kept in mind that the goal is
not to implement the whole application in a new language;
just what changes.

I. Rules

Figure 13 depicts a design extending the RULE OBJECT
pattern and presented in [48], which allows the definition
of: (i) Entity Type invariants, which are predicates that must
always hold, (ii) derivation rules for Property Types and
Views, (iii) the body of Methods, (iv) guard-conditions of
Operations, etc. Even some structural enforcement, such
as the Cardinality and Uniqueness of a Property Type
may be unified into conditions. Methods, which are used-
defined Batches of Operations, may be invoked manually,
or triggered by Events, thus providing enough expressivity
to specify STATE MACHINES. This design ensures the ca-
pability of the system to enforce semantic integrity during
normal usage and assisting model evolution.

J. Views

In the design presented so far, Views are regarded as
Entity Types which have a derivation rule that returns a
collection, and every property have a second derivation
rule (often manipulating each item of that collection). They
allow the existence of virtual Entity Types where their
information is not stored by inferred, similar the querying
mechanisms of relational databases (SQL). For example, we
could consider a requirement for the system presented in
Figure 2, that specifies a list of items composed by every
doctor in the medical center, along with the number of
high-risk procedures and their total cost. This would be
represented by a new Entity Type (“High-Risk Treatments
Income by Doctor”) that iterates over Doctors and their
Procedures. Since the latter is also a derived property, it
should be specified as a rule of Doctor and so on.

K. Evolution

Has already discussed, structural integrity of the run-time
model is asserted through rules stated in the meta-model. For
example, Entities should conform to their specified Entity
Type (e.g., they should only hold Properties to which its
Property Type belong to the same Entity). Nonetheless,
evolving the model may corrupt structural integrity. For
example, when moving a mandatory Property Type to its
superclass, if it doesn’t have a default value, it can render
some Entities structurally inconsistent. Some of these issues
can be coped with, by foreseeing integrity violations and
applying prior steps to avoid them (e.g., one could first
introduce a default value before moving the Property Type
to its superclass). Through careful annotation of model-
level operations (e.g., by reducing the applicability scope
through pre-conditions so that a well-formalized semantics is
established), one can increase the confidence on maintaining
structural integrity.

Another issue arrises when parts of a composite evolution
violate model integrity, although the global result would be
valid. For example if a Property Type is mandatory, one
cannot delete its Properties without deleting itself and vice-
versa. This problem is solved by the use of transactions or
change-sets, and by suspending integrity check until the end.

Semantic Integrity of a particular evolution, on the other
hand, is much harder to ensure since it is not encoded as
rules in the meta-model. State-based comparison of models
have already shown this problem, because it is not always
possible to just compare the results of an arbitrary evolution
and accurately infer the performed operations. In our exam-
ple, consider the scenario where a patient’s age was being
stored directly, but we now realize that having the birthdate
is far less problematic. For that, the following modifications
to the model are made: (i) rename Age to Date of Birth, (ii)
reverse calculate it according to the current date, and (iii)
move it to a the superclass Person.

Patient: Entity Type

before

after

Value = 32

Age: Property Type

Person: Entity Type
Value = 8/1/1978

Date of Birth: Property Type

Patient: Entity Type

Figure 14. A model evolution example, where a property is both changed
w.r.t. its semantics, and moved to the superclass.

Would we rely on the direct comparison of the initial and
final models, a possible solution would be to delete the Age
in Patient and create Date Of Birth in Person. Clearly, the
original meaning of the intended evolution (e.g., that we
wanted to transform ages to birth-dates) would be missed,
and every data lost. Operation-based evolution solves this
problem, and we can make use of the MIGRATION pat-
tern [49] which express these changes through sequences
of model-level operations that cascade into instance-level
changes, as we’ll see next.

L. (Co-)Evolution

Allowing (potentially collaborative) co-evolution of model
and data by the end-user introduces a new set of concerns
not usually found in classic systems. They are (i) how to
preserve model and data integrity, (ii) how to reproduce
previously introduced changes, (iii) how to access the state
of the system at any arbitrary point in the past, and (iv)
how to allow concurrent changes. All these concerns are
directly related to traceability, reproducibility, auditability,
disagreement and safety, and are commonly found, and
coped with, on version-control systems.

81

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Property Type

Entity Type

Method Rule

invariant

body

1..*

derived by

0..*
Operation

guard
Condition

1..* 0..1

Create
Update
Delete
User-Activated

‹‹enumeration››
Event

Figure 13. The dynamic core of an Adaptive Object-Model framework. This particular design supports method definition, guard conditions, class invariants,
derived rules and event triggers.

Typically, Evolution is understood as the introduction
of changes to the model. Yet, the presented design so
far doesn’t establish a difference between changing data
or meta-data; both are regarded as evolutions of Things,
expressed as Operations over their States, and performed by
the same underlying mechanisms as depicted in Figure 15.
To provide enough expressivity such that semantic integrity
can be preserved during co-evolution, model-level Batches
operate simultaneously over data and meta-data.

Sequences of Operations may be encapsulated as Change-
Sets, following the HISTORY OF OPERATIONS pattern [49],
along with meta-information such as user, date and time,
base version, textual observations, and data-hashes, etc.
Whenever the system validates or commits a ChangeSet, the
Controller uses the merge mechanism depicted in Figure 15
(similarly to the SYSTEM MEMENTO pattern [49]) by (i)
orderly applying each Operation to create a new State, (ii)
dynamically overlaying the new States onto the base version,
(iii) evaluating and ensuring behavioral rules, and finally (iv)
producing a new version.

ChangeSet Operation

State

Version

base

provides

has

1..*

1..*

Merged
Container

<<interface>>
IContainer

1..*

background

overlay

Merge
spawn

base

changes

1..*

Figure 15. The merging mechanism of an AOM framework, which
overlays a changeset to provide a merged view (i.e., a snapshot) of a system.

M. Enduser (Co-)Evolution

In order for the end-user to perform arbitrary model evo-
lutions, a sufficiently large library of (probably composable)
operations should be provided. If the sequences of operations
over data and meta-data are preserved, it becomes possible to
recover past states of the system. It also opens way to solve
concurrent changes to the model, by allowing the existence

of multiple branches of evolution, and provide disagreement
and reconciliation mechanisms [48].

N. Warehousing

So far we have been incrementally empowering an in-
frastructure — or meta-model — to describe most of our
example application. One issue remains though: how should
this metadata be represented, accessed, and stored?

We should have in mind that, by describing both the struc-
ture and behavior of the system, it is to be interpreted in three
distinct phases: (i) during system initialization, a process
also known as bootstrapping, (ii) during the construction of
objects, a phase typically known as “instantiating the object-
model”, and (iii) during the assessment and execution of
rules.

Warehousing thus aim to hide the details of persistency
from the rest of the system, exposing and consuming data
and meta-data (i.e., Things), and managing versioning (i.e.,
through Versions and States). Its behavior can be extended
and modified through inheritance and composition, as by
the DECORATOR pattern. Transient memory-only, direct
data-base access, lazy and journaling strategies (e.g., using
CACHES) are just a few examples of existing (and sometimes
simultaneous) configurations.

O. Representation

We already discussed that because this information will
be readily available for runtime manipulation (e.g., in a
database or other external storage mechanism), and not
hardcoded, it allows the business model to be updated and
immediately reflected in the applications.

Options for storage and manipulation of meta-data include
relational and object-oriented databases, Domain Specific
Languages, custom XML vocabularies, etc. Direct serializa-
tion of the model — e.g., using native language primitives
— may simplify system initialization. Domain Specific
Languages and XML vocabularies may need the usage of
the INTERPRETER and BUILDER patterns.

However, one of the most powerful abilities of an AOM is
to allow the end-user himself to introduce (confined) changes
to the model at runtime. This raises a number of concerns
which the AOM literature does not commonly address, and
that may require more elaborate strategies to deal with the

82

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

evolution of data and meta-data, and which will be discussed
in Section IV.

P. Persistency

The use of object-oriented databases (OODB) simpli-
fies persistency in AOM-based systems, due to the object-
oriented nature of the meta-model. Other techniques include
model-to-model transformations for relational models, use
of the filesystem for storing serialized objects, or BLOBs in
databases.

Still, persistency based on static-scheming, such as au-
tomatic generation of DDL code for specifying relational
databases schema and subsequent DML code for manip-
ulating data, which attempts a semantic correspondence
between both models, significantly increases the implemen-
tation complexity, particularly when dealing with model co-
evolution [49]. This has been long known as object-relational
impedance mismatch [50], and evidence of such issues may
be observed in the way Object-Relational Mapping (ORM)
frameworks attempt to deal with these issues, often requiring
knowledge of both representations and manual specification
of their correspondence (e.g., Migrations in RoR).

Therefore, though persistency may seem a solved issue,
the highly-dynamic nature of AOMs and their inherent mis-
match with relational-models suggest that new alternatives
need to be investigated and tested, specially when dealing
with multiple versions and migrations of data and metadata
[49].

Q. Thread of Control

In Figure 6, the AOM BUILDER serves as a Controller
for the system, and its key responsibility is to orchestrate the
several other components in the framework by establishing
a thread of control. It bootstraps the system by loading
the meta-model, and the necessary versions of the domain-
model from the Warehouse. It manages data requests by
interacting with the Warehouse. It also provides several
HOOKS to the framework through CHAINS OF RESPON-
SIBILITY and PLUGINS (e.g., interoperability with third-
party systems by allowing subscribers to intercept requests).
It is the AOM BUILDER that establishes the THREAD OF
CONTROL for an AOM-based system.

R. User-Interface

Adaptive Graphical User-Interfaces (GUI) for AOMs
work through inspection and interpretation of the model and
by using a set of pre-defined heuristics and patterns [51].
The work in [48] describes an example of a minimalistic
workflow for an automated GUI, based on: (i) a set of
grouped entry-points declared in the model, and further
presented to the user grouped by Packages, (ii) list of the
instances by Entity Type or View, which show several details
in distinct columns, inferred from special annotations made
in the model, (iii) pre-defined automated views inferred

by model inspection (edition and visualization) based on
heuristics that consider the cardinality, navigability and role
of properties, (iv) generic search mechanisms, (v) generic
undo and redo mechanisms, (vi) support of custom panels
for special types (e.g., dates) or model-chunks (e.g., user
administration), through PLUGINS, etc.

This reactive user-interface also resembles a type of
offline mode, similar to using version-control systems. User
changes, instead of being immediately applied, are stored
into the user Changeset, and sent to the main Controller
(which would subsequently assert the resulting integrity
of applying changes, and provide feedback on behavioral
rules). The user can commit its work to the system when
she wants to save it, review the list of Operations she has
made, and additionally submit a descriptive text about her
work.

Awareness of the system also makes use of several feed-
back techniques such as (i) graphics showing the history of
changes, (ii) alerts for simultaneous pendent changes in the
same subjects from other users, (iii) reconciliation wizards
whenever conflicts are detected due to concurrent changes,
etc.

S. Towards a Pattern Language

When building systems, there are recurrent problems
which have proven, recurrent solutions, and as such are
known as patterns. These patterns are presented as a three-
part rule, which expresses a relation between a certain
context, a problem, and a solution. A software design pattern
addresses specific design problems specified in terms of
interactions between elements of object-oriented design,
such as classes, relations and objects [52]. They aren’t meant
to be applied as-is; rather, they provide a generic template
to be instantiated in a concrete situation.

1) Categorization: The growing collection of AOM-
related patterns which is forming a domain pattern language
[49], [44], [53], is currently divided into six categories (i)
Core, which defines the basis of a system, (ii) Creational,
used for creating runtime instances, (iii) Behavioral, (iv)
GUI, for providing human-machine interaction, (v) Process,
to assist the creation of a AOM, and (vi) Instrumental, which
helps the instrumentation:

• Core. This set of patterns constitutes the basis for
an AOM-supported system. The patterns included in
this category are Type Square, Type Object, Properties,
Accountability, Value Object, Null Object and Smart
Variables.

• Creational. These patterns are the ones used for creat-
ing runtime instances of AOMs: Builder, AOM Builder,
Dynamic Factory, Bootstrapping, Dependency Injection
and Editor / Visual Language.

• Behavioral. Behavioral patterns are used for adding
and removing behavior of AOMs in a dynamic way.

83

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

They are Dynamic Hooks, Strategy, Rule Object, Rule
Engine, Type Cube and Interpreter.

• GUI. User-interface rendering patterns have already
been mentioned: Property Renderer, Entity View, and
Dynamic View. Related to UI there’s to add the GUI
Workflow pattern.

• Process. Includes the patterns used in the process of
creating AOMs. An AOM has usually much of a frame-
work in it. The following patterns are good practices
when building a framework as well as when building
an AOM: Domain Specific Abstraction, Simple System,
Three Examples, White Box Framework, Black Box
Framework, Component Library, Hot Spots, Pluggable
Objects, Fine-Grained Objects, Visual Builder and Lan-
guage Tools.

• Instrumental. Patterns that help on the instrumentation
of AOMs, namely, Context Object, Versioning, History
and Caching.

2) Core Patterns:

• Type Object. As described in [54] and [55], a TypeOb-
ject decouples instances from their classes so that those
classes can be implemented as instances of a class. Type
Object allows new “classes” to be created dynamically
at runtime, lets a system provide its own type-checking
rules, and can lead to simpler, smaller systems.

• Property. The Property pattern gives a different so-
lution to class attributes. Instead of being directly
created as several class variables, attributes are kept in
a collection, and stored as a single class variable. This
makes it possible for different instances, of the same
class, to have different attributes [45].

• Type Square. The combined application of the Type-
Object and Property patterns result in the TypeSquare
pattern [45]. Its name comes from the resulting layout
when represented in class diagram, with the classes
Entity, EntityType, Attribute and AttributeType.

• Accountability. Is used to represent different relations
between parties, as described in [45] and [46], using
an AccountabilityType to distinguish between different
kinds of relation.

• Composite. This pattern consists of a way of repre-
senting part-hole hierarchies, by using the Rule and
CompositeRule classes [54].

• Strategy. Strategies are a way to encapsulate behavior,
so that it is independent of the client that uses it.
Rules are Strategies, as they define behavior that can
be attached to a given EntityType [54].

• Rule Object. This pattern results from the applica-
tion of the Composite and Strategy patterns, for the
representation of business rules by combining simpler
elementary constraints [44].

• Interpreter. An AOM consists of a runtime inter-
pretation of a model. The Interpreter pattern is used

to extract meaning from a previously defined user
representation of the model [54].

• Builder. A model used to feed an AOM-based system is
interpreted from its user representation and a runtime
representation of it is created. The Builder pattern is
used in order to separate a model’s interpretation from
its runtime representation construction [54].

3) Graphical User Interface Patterns: The patterns in
[53] focus specifically on User Interface (UI) generation
issues when dealing with AOMs. In traditional systems,
data presented in User Interfaces is usually obtained from
business domain objects, which are thus mapped to UI
elements in some way. In AOMs business objects exist
under an additional level of indirection, which has to be
considered. In fact, it can be taken into our advantage, as
the existing meta-information, used to achieve adaptivity,
can be used for the same purpose regarding user interfaces.
User interfaces can this way be adaptive to the domain model
in use.

• Property Renderer. Describes the handling of user-
interface rendering for different types of properties.

• Entity View. Explains how to deal with the rendering
of EntityTypes, and how PropertyRenderers can be
coordinated for that purpose.

• Dynamic View. Approaches the rendering of a set of
entities considering layout issues and the possibility of
coordinating EntityViews and PropertyRenderers in that
regard.

IV. RESEARCHING ADAPTIVE OBJECT-MODELS

The Adaptive Object-Model and its ecosystem is com-
posed of architectural and design patterns that provide
domain adaptability to Object-Oriented based systems. As
patterns, they’ve been recurrently seen in the wild and
systematically documented. However, we may argue there
isn’t enough scientific evidence of any specific benefits due
to the lack of rigorous empirical validation. In this sec-
tion, we raise several research questions about the benefits
of AOMs, argue what metrics should be used to support
common claims, point to what should be the baseline for
such experiments, and underline the need to design them as
repeatable packages for independent validation.

A. Epistemology

In order to understand the way software engineers build
and maintain complex and evolving software systems, re-
search needs to focus beyond the tools and methodologies.
Researchers need to delve into the social and their surround-
ing cognitive processes vis-a-vis individuals, teams, and
organizations. Therefore, research in software engineering
may be regarded as inherently coupled with human activity,
where the value of generated knowledge is directly depen-
dent on the methods by which it was obtained.

84

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Because the application of reductionism to assess the prac-
tice of software engineering, particularly in field research,
is very complex (if not unsuitable), we claim that further
research should be aligned with a pragmatistic view of truth,
valuing acquired practical knowledge. That is, it should
be used whatever methods will seem more appropriate to
prove — or at least improve our knowledge about — the
questions here raised, but mostly through the use of mixed
methods, such as (i) (Quasi-)Experiments to primarily assess
exploratory questions, which are suitable for an academic
environment, and (ii) industrial Case-Studies, as both a con-
duit to harvest practical requirements, as to provide a tight
feedback and application over the conducted investigation.

B. Fundamental Challenges

There are some fundamental questions directly inherited
from the current research trends and challenges in the area
of Model-Driven Engineering (MDE). A recent research
roadmap by France et al. [2] states three driving issues:
(i) what forms should runtime models take; (ii) how can
the fidelity of the models be maintained; and (iii) what
role should the models play in validation of the runtime
behavior? Another survey by Teppola et al. [56] synthesize
several obstacles related to wide adoption of MDE:

1) Understanding and managing the interrelations among
artifacts: Multiple artifacts such as models, code and docu-
mentation, as well as multiple types of the same artifact (e.g.,
class, activity, state diagrams) are often used to represent
different views or different levels of abstraction. Subsets
of these overlap in the sense that they represent the same
concepts. Often because they are manually created and
maintained without any kind of connection, consistency
poses a problem.

2) Evolving, comparing and merging different versions of
models: The tools we currently have to visualize differences
among code artifacts are suitable because they essentially
deal with text. Models often don’t have a textual representa-
tion, and when they do, it may not be the most appropriate
to understand the differences and to make decisions, partic-
ularly if these are to be carried by the end-user.

3) Model transformations and causal connections: Mod-
els are often used to either (i) reflect a particular system, or
(ii) dictate the system’s behavior. The relationships between
the system and its model, or between different models that
represent different views of the same system, are called
causal connections. Maintaining their consistency when ar-
tifacts evolve is a complex issue, often carried manually.

4) Model-level debugging: If the model is being used
to dictate a system’s behavior, enough causal connections
must be kept in order to understand and debug a running
application at the model-level.

5) Combination of graphical and forms-based syntaxes
with text views: Developers and end-users have different

preferences concerning textual syntaxes and graphical edi-
tors to view and edit models. To this extend, a complete
correspondence between each strategy is currently not well
supported.

6) Moving complexity rather than reducing it: Model-
Driven Engineering is not a “silver-bullet” [57] and as such
its benefits must be carefully weighted in context to assess
whether the approach will actually reduce complexity, or
simply move it elsewhere in the development process.

7) Level of expertise required: It is not clear if the
interrelationships among multiple artifacts (which may have
different formalisms), combined with the necessary (mul-
tiple) levels of abstraction to express a system’s behavior
actually eases the task of any given stakeholder to understand
the impact and carry out a particular change, and to which
extent current training in CS/SE courses is adequate.

C. Viewpoints

When researching Adaptive Object-Models, there are al-
ways two distinct viewpoints from where we can measure
the benefits: (i) the developer viewpoint, which is actively
trying to build a system for a specific use-case profile, and
(ii) the end-user, which, when provided, will be evolving
the system once delivered. The existence of an end-user as
a change-agent, although always cited as a benefit of the use
of AOMs, should not be taken lightly. What may seem as
an excellent way to improve adaptivity to the well-trained
developer, it may may reveal as an encumbrance to the end-
user, or at worst, a designer’s worst nightmare.

We thus suggest that some questions regarding end-user
development should be: (i) either specifically researched in
the area of AOMs, or (ii) borrowed from other fields of
research:

1) End-user perception of the model: The way end-users
see their systems is different from the abstraction the devel-
oper are used to. Understanding the differences between this
two perspectives is essential to provide mechanisms in the
user-interface that are suitable, and avoids an higher-level
BIG BALL OF MUD.

2) Visual metaphors: We shouldn’t expect the common
end-user to actually type in a Domain Specific Language to
express some new rules they want to insert in the system.
Other kinds of visual metaphors should be considered as
a proxy for the underlying rule engine. A more detailed
discussion can be found in [58].

3) Evolving the model: A tentative, failed, evolution may
be disastrous regarding the meaning of data. Mechanisms
to recover from mistakes, though already useful to the
developer, are paramount to the end-user.

D. Specific Challenges

Although the research in Adaptive Object-Models is a
subset of the research in MDE, we think the following
questions should be careful assessed and their answers would

85

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

contribute to the body of knowledge, particularly when
choosing to use (or not) this pattern. Though the authors
believe in the capability of Adaptive Object-Models to
efficiently cope with several of the stated issues in software
development, and this belief has been substantiated both by
research on the wider area of MDE, as well as through the
studies by the pattern community, we believe that we have
much to gain if we could prove that an AOM, despite a
pattern, is not an anti-pattern (i.e., an obvious, apparently
good solution, but with unforeseen and eventually disastrous
consequences):

1) Fitness for purpose: When is an AOM adequate to
use? When should the use of an AOM be considered over-
engineering. What metrics should we base our judgment for
applicability?

2) Target audience: What type of developers are best
suited for AOMs? Are current developers lacking in specific
formation that hinders the usage and construction of AOMs?
What about end-users? Are there specific profiles that could
point to a more suitable audience?

3) Development speed indicator(s): What is the impact
on the usage of AOMs during the several phases of the
process? Do developers increase their ability to produce
systems? How long is their start-up time?

4) Extensibility indicator(s): How easy is to extend an
AOM-based system? How long does it take to HOOK a
particular customization into the base architecture? Is this
dependent on a specific implementation?

5) Quality indicator(s)?: What is the impact on software
quality metrics when using AOMs? How does it affect Per-
formance? How does it ensure Correctness? Is Consistency
a major factor? What about the Usability of automatically-
generated interfaces? How can we improve them?

E. Research Design

It is necessary to adequately define the experimental
protocols which assess these claims in a rigorous and sound
way. This includes a precise definition of the processes to
be followed in industry case studies, as well as in the family
of quasi-experiments to be performed in academic contexts.
The design of experimental protocols for the industrial case
studies, should attempt to cover the whole experimental
process, i.e, from the requirements definition for each exper-
iment, planning, data collection and analysis, to the results
packaging. Discussion on guidelines for performing and
reporting empirical studies have been recently going by the
works of Shull et al. [59] and Kitchenham et al. [60]. The
typical tasks and deliverables of a common experimental
software engineering process can be found in [61].

F. (Quasi-)Experiments

(Quasi-)experiments conducted in an academic context
should be randomized, multiple-group, comparison designs,
which may be implemented as part of graduate student teams

lab work. One scenario would involve splitting the students
into three groups. One group would act as a baseline and
use any traditional development methodology and tools to
construct and evolve a particular system. The second group
would be mandated to develop an AOM-based solution. The
third group would have direct access to a framework which
already provides a specific infrastructure to build AOM-
based systems.

There should be an evaluation of the base skills for
every member. For example, was their academic track the
same, or did they take courses that could influence the
experiments outcome? In this case, it should be taken into
consideration subjects such as Software Specification, Agile
Methodologies, Formal Methods, Design Patterns, Object-
Oriented Programming, Model-Driven Engineering, to men-
tion a few, which could pose a direct influence. In order
to guarantee that there is no significant statistical deviation
on their base skills, researchers should also use of a subset
of computer science related GRE (or similar) questions
prior to conducting the selection. There’s also the need to
ensure that all groups share common skills with respect to
metamodeling, compilers, interpreters, and architectural and
design patterns, the AOM and its ecosystem, thus specific
training them should be taken into consideration.

A (quasi-)experiment may assess several distinct claims,
which could match into different phases. For example, re-
searchers could make (quasi-)experiments aligned with two
different phases: development and maintenance. In the first
phase, a Requirements Specification Report, which would
include detailed user stories and UML diagrams (or similar
artifacts) that could semi-formalize a particular small system
(e.g., around 50 model elements), would be given to all
groups. Their task would be to implement a full system using
their given technique and restrictions. The time available
for pursuing the implementation should be based in effort
estimations made by software-engineer professionals. Here,
several metrics should be collected and assessed.

The second phase would be pursued after all the systems
are finished. A series of small changes (e.g., 10 model
elements each) would be separately handled to each group,
thus accounting for a change in 50% (this number here is
being used rather arbitrarily; the rationale is that it should
reflect real-world profiles of high-variable systems). The
implementation of each of these series should occur in a
more strict laboratory environment (compared to the first
phase), with the supervision of researchers and lecturers. For
each series relevant data should be collected and assessed.

In order to improve confidence in the results, there should
be a repetition of this experiment where the groups would
(randomly) switch positions — e.g., the group which was
working with the framework-based solution would switch
to the baseline approach — for a second round.

86

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

G. Data Collection

We propose the usage of metrics such as time, correctness
and complexity of the produced artifacts, but it remains the
specification of tools and methods to collect the data during
experimentation that reveal non-intrusive for practitioners.
A possible technical solution to those using the framework
would be to instrument it in order collect as much significant
data as possible, including all steps of model evolution. The
instrumentation of Integrated Development Environments
(IDE) is also a possibility.

H. Independent Validation

The independent experimental validation of claims is not
as common in Software Engineering as in other, more mature
sciences. Hence, we stress the need to build reusable exper-
imental packages that support the experimental validation
of each claim by independent groups. The family of (quasi-
)experiments should be performed in different locations, and
lead by different researchers, but based on the same experi-
mental package, in order to enhance the ability to integrate
the results obtained in each of the quasi-experiments, and
allow further meta-analysis on them.

V. CONCLUSION AND FUTURE WORK

Software development face an increasing difficulty in
acquiring, inferring, capturing and formalizing requirements,
particularly in domains that rely on constant adaptation of
their processes to an evolving reality, and thus what support
they expect from software. This type of software is said
to be incomplete by design and thus require a design for
incompleteness approach. Agile processes have intensified
their focus on a highly iterative and incremental approach,
accepting and embracing the relevance of efficiently coping
with change.

While methodologies struggle to make the process and the
development team more suitable, we are looking forward to
what form should agile software take. One example of such
software is the WikiWikiWeb, which embrace incompleteness,
by relying on fundamental principles such as organic, overt,
tolerant and observable. We conjecture about attempting
the same principles in other systems, and those based on
Adaptive Object-Models reveal a good candidate.

The Adaptive Object-Model and its ecosystem is com-
posed of architectural and design patterns that provide
adaptability to systems based on object-oriented domain
models. AOMs, Software Product Lines, Model-Driven En-
gineering, and Frameworks are all solutions for a common
set of problems, such as increase software reuse and reduce
time-to-market. But AOMs, by leveraging the concept of
adaptability outside the development team, empower end-
users to introduce (confined) changes to the model during
run-time, and thus control themselves the evolution of their
own tool.

As patterns, they’ve been recurrently seen and docu-
mented. However, this fact doesn’t seem enough to provide
sufficient scientific evidence of their benefits, both to the
developer and to the end-user. This may be due to the
lack of sufficient empirical validation published upon the
use of AOMs, such as detailed case-studies and (quasi-
)experiments. In this work, we have raised several research
questions that address the benefits of AOMs. We have
argued what metrics should be used to support these claims,
and we have pointed to what should be the baseline for
such experiments, including designing them as repeatable
packages for independent validation.

ACKNOWLEDGMENT

This work has been partially founded by the Portuguese
Foundation for Science and Technology and ParadigmaXis,
S.A., through the doctorate scholarship grant SFRH / BDE
/ 33298 / 2008. We would also like to acknowledge the
support of Joseph Yoder, which is currently cooperating in
the supervision of the lead author’s PhD in this area.

REFERENCES

[1] H. S. Ferreira, A. Aguiar, and J. P. Faria, “Adaptive object-
modelling: Patterns, tools and applications,” Software Engi-
neering Advances, International Conference on, vol. 0, pp.
530–535, 2009.

[2] R. France and B. Rumpe, “Model-driven development of
complex software: A research roadmap,” in FOSE ’07: 2007
Future of Software Engineering. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 37–54.

[3] J. Arlow, W. Emmerich, and J. Quinn, “Literate modelling
— capturing business knowledge with the uml,” in UML’98:
Selected papers from the First International Workshop on The
Unified Modeling Language. London, UK: Springer-Verlag,
1999, pp. 189–199.

[4] J. Krogstie, A. L. Opdahl, and G. Sindre, Eds., Advanced
Information Systems Engineering, 19th International Confer-
ence, CAiSE 2007, Trondheim, Norway, June 11-15, 2007,
Proceedings, ser. Lecture Notes in Computer Science, vol.
4495. Springer, 2007.

[5] M. Voelter, “A catalog of patterns for program generation,” in
Proceedings of the Eighth European Conference on Pattern
Languages of Programs, Jun 2003.

[6] D. Riehle, S. Fraleigh, D. Bucka-Lassen, and N. Omorogbe,
“The architecture of a uml virtual machine,” in OOPSLA
’01: Proceedings of the 16th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications. New York, NY, USA: ACM, 2001, pp. 327–
341.

[7] R. Garud, S. Jain, and P. Tuertscher, “Incomplete by design
and designing for incompleteness,” in Organization studies as
a science of design, Marianne and G. Romme, Eds., 2007.

87

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] N. Anquetil, K. M. de Oliveira, K. D. de Sousa, and M. G.
Batista Dias, “Software maintenance seen as a knowledge
management issue,” Inf. Softw. Technol., vol. 49, no. 5, pp.
515–529, 2007.

[9] L. Williams and A. Cockburn, “Guest editors’ introduction:
Agile software development: It’s about feedback and change,”
Computer, vol. 36, pp. 39–43, 2003.

[10] K. Beck and C. Andres, Extreme Programming Explained:
Embrace Change (2nd Edition). Addison-Wesley Profes-
sional, 2004.

[11] B. Foote and J. Yoder, “Big ball of mud,” in Pattern Lan-
guages of Program Design. Addison-Wesley, 1997, pp. 653–
692.

[12] A. Kay, “The early history of smalltalk,” ACM SIGPLAN
Notices, Jan 1993.

[13] C. J. Neill and P. A. Laplante, “Paying down design debt with
strategic refactoring,” Computer, vol. 39, pp. 131–134, 2006.

[14] G. Jilles Van, J. Bosch, and M. Svahnberg, “On the notion
of variability in software product lines,” in WICSA ’01:
Proceedings of the Working IEEE/IFIP Conference on Soft-
ware Architecture. Washington, DC, USA: IEEE Computer
Society, 2001, p. 45.

[15] K. Andresen and N. Gronau, “An approach to increase
adaptability in erp systems,” in Proceedings of the 2005 In-
formation Recources Management Association International
Conference. Idea Group Publishing, May 2005, pp. 883–885.

[16] P. Meso and R. Jain, “Agile software development: Adap-
tive systems principles and best practices,” IS Management,
vol. 23, no. 3, pp. 19–30, 2006.

[17] B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, and
J. Magee, Eds., Software Engineering for Self-Adaptive Sys-
tems. Berlin, Heidelberg: Springer-Verlag, 2009.

[18] W. Cunningham, “WikiWiki,” 1995. [Online]. Available:
http://c2.com/cgi/wiki

[19] A. Aguiar, “A minimalist approach to framework docu-
mentation,” Ph.D. dissertation, Faculdade de Engenharia da
Universidade do Porto, Sep. 2003.

[20] W. Cunningham, “Wiki design principles.” [Online].
Available: http://c2.com/cgi/wiki$?WikiDesignPrinciples

[21] Wikipedia, “Abstraction,” July 2010. [Online]. Available:
http://en.wikipedia.org/wiki/Abstraction

[22] J. Spolsky, “The law of leaky abstractions,” Nov 2002.
[Online]. Available: http://www.joelonsoftware.com/articles/
LeakyAbstractions.html

[23] R. CAMERON and M. ITO, “Grammar-based definition of
metaprogramming systems,” ACM Transactions on Program-
ming Languages and Systems, Jan 1984.

[24] W. Cazzola, “Evaluation of object-oriented reflective mod-
els,” Proceedings of ECOOP Workshop on Reflective Object-
Oriented Programming and Systems (EWROOPS’98), in
12th European Conference on Object-Oriented Programming
(ECOOP’98), Jan 1998.

[25] L. Levy, “A metaprogramming method and its economic
justification,” IEEE Transactions on Software Engineering,
Jan 1986.

[26] T. Stahl and M. Völter, “Model-driven software development:
Technology, engineering, management,” 2006.

[27] T. Parr and R. Quong, “ANTLR: A Predicated-LL(k) parser
generator,” Journal of Software Practice and Experience,,
vol. 25, no. 7, pp. 789–810, July 1995.

[28] S. C. Johnson, “Yacc: Yet another compiler-compiler,” Bell
Laboratories, Tech. Rep., 1978.

[29] W. Schuster, “What’s a ruby dsl and what isn’t?” Jun
2007. [Online]. Available: http://www.infoq.com/news/2007/
06/dsl-or-not

[30] M. P. Ward, “Language-oriented programming,” Software —
Concepts and Tools, vol. 15, no. 4, pp. 147–161, 1994.

[31] Software product lines: practices and patterns. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2001.

[32] R. Pawson, “Naked objects,” Ph.D. dissertation, University of
Dublin, Trinity College, Jun 2004.

[33] E. Evans, Domain-Driven Design: Tackling Complexity in the
Heart of Software. Addison-Wesley Professional, Aug 2003.

[34] OMG – MDA, “Model driven architecture.” [Online].
Available: http://www.omg.org/mda/

[35] OMG – MOF, “MetaObject Facility.” [Online]. Available:
http://www.omg.org/mof/

[36] D. Roberts and R. Johnson, “Evolving frameworks: A pattern
language for developing object-oriented frameworks,” in Pro-
ceedings of the Third Conference on Pattern Languages and
Programming, vol. 3, 1996.

[37] G. Roy, J. Kelso, and C. Standing, “Towards a visual program-
ming environment for software development,” Proceedings on
Software Engineering: Education & Practice, Jan 1998.

[38] K. Czarnecki, “Overview of generative software develop-
ment,” Unconventional Programming Paradigms (UPP), Jan
2004.

[39] G. Kiczales and E. Hilsdale, “Aspect-oriented programming,”
in ESEC/FSE-9: Proceedings of the 8th European software
engineering conference held jointly with 9th ACM SIGSOFT
international symposium on Foundations of software engi-
neering. New York, NY, USA: ACM, 2001, p. 313.

[40] A. Dantas, J. Yoder, P. Borba, and R. Johnson, “Using aspects
to make adaptive object-models adaptable,” Research Reports
on Mathematical and Computing Sciences.

88

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[41] K. Czarnecki and U. Eisenecker, “Generative programming:
Methods, tools, and applications,” p. 832, Jan 2000.

[42] J. Yoder, F. Balaguer, and R. Johnson, “Adaptive object-
models for implementing business rules,” Urbana, 2001.

[43] J. W. Yoder, F. Balaguer, and R. Johnson, “Architecture and
design of adaptive object-models,” ACM SIG-PLAN Notices,
vol. 36, pp. 50–60, Dec. 2001.

[44] L. Welicki, J. W. Yoder, R. Wirfs-Brock, and R. E. Johnson,
“Towards a pattern language for adaptive object models,”
in OOPSLA ’07: Companion to the 22nd ACM SIGPLAN
conference on Object-oriented programming systems and ap-
plications companion. New York, NY, USA: ACM, 2007,
pp. 787–788.

[45] M. Fowler, “Analysis patterns: Reusable object models,”
1997.

[46] A. Arsanjani, “Rule object: A pattern language for adaptive
and scalable business rule construction,” Proceeding of PLoP,
2000.

[47] J. Yoder, B. Foote, D. Riehle, and M. Tilman, “Metadata
and active object models,” Conference on Object-Oriented
Programming, 1998.

[48] H. S. Ferreira, F. F. Correia, and A. Aguiar, “Design for
an adaptive object-model framework: An overview,” in Pro-
ceedings of the 4th Workshop on Modelsrun.time, held at the
ACM/IEEE 12th International Conference on Model Driven
Engineering Languages and Systems (MoDELS’09), October
2009.

[49] H. S. Ferreira, F. F. Correia, and L. Welicki, “Patterns
for data and metadata evolution in adaptive object-models,”
Proceedings of the Pattern Languages of Programs, 2008.

[50] S. Ambler, Agile Database Techniques: Effective Strategies
for the Agile Software Developer. New York, NY, USA:
John Wiley & Sons, Inc., 2003.

[51] L. Welicki, J. W. Yoder, and R. Wirfs-Brock, “A pattern lan-
guage for adaptive object models: Part i - rendering patterns,”
in PLoP 2007, Monticello, Illinois, 2007.

[52] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design
patterns: Elements of reusable object-oriented software,” p.
395, Jan 1995.

[53] L. Welicki, J. Yoder, and R. Wirfs-Brock, “A pattern lan-
guage for adaptive object models: Part i-rendering patterns,”
hillside.net, 2007.

[54] R. Johnson and B. Woolf, “Type object,” Addison-Wesley
Software Pattern Series, Jan 1997.

[55] J. Yoder, F. Balaguer, and R. Johnson, “Architecture and
design of adaptive object-models,” ACM SIGPLAN Notices,
Jan 2001.

[56] S. Teppola, P. Parviainen, and J. Takalo, “Challenges in
deployment of model driven development,” Software Engi-
neering Advances, International Conference on, vol. 0, pp.
15–20, 2009.

[57] J. B. F.P., “No silver bullet essence and accidents of software
engineering,” Computer, vol. 20, pp. 10–19, 1987.

[58] B. A. Nardi, A Small Matter of Programming: Perspectives
on End User Computing. Cambridge, MA, USA: MIT Press,
1993.

[59] F. Shull, J. Singer, and D. I. Sjøberg, Guide to Advanced Em-
pirical Software Engineering. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2007.

[60] B. Kitchenham, H. Al-Khilidar, M. A. Babar, M. Berry,
K. Cox, J. Keung, F. Kurniawati, M. Staples, H. Zhang,
and L. Zhu, “Evaluating guidelines for reporting empirical
software engineering studies,” Empirical Softw. Eng., vol. 13,
no. 1, pp. 97–121, 2008.

[61] M. Goulao and F. B. Abreu, “Modeling the experimental
software engineering process,” in QUATIC ’07: Proceedings
of the 6th International Conference on Quality of Information
and Communications Technology. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 77–90.

89

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Goal Sketching from a Concise Business Case

 Kenneth Boness
School of Systems Engineering

University of Reading,
Berkshire, RG6 6AY, UK
k.d.boness@reading.ac.uk

 Rachel Harrison
Dept of Computing & Electronics

Oxford Brookes University
Wheatley, Oxford OX33 1HX, UK

rachel.harrison@brookes.ac.uk

Abstract - This paper describes how the business case can be
characterized and used to quickly make an initial and
structurally complete goal-responsibility model. This eases the
task of bringing disciplined support to key decision makers in
a development project in such a way that it can be instantiated
quickly and thereafter support all key decisions. This process
also greatly improves the understanding shared by the key
decision makers and helps to identify and manage load-
bearing assumptions. Recent research has revealed two
interesting issues, which are highlighted in this paper.

Keywords-goal-oriented requirements engineering; project
management; agile development.

I. INTRODUCTION
This paper amplifies work originally presented in [1].

Our aim with goal sketching is to help stakeholders who
have to make critical decisions in projects that develop
evolving systems. We are developing goal sketching
through action research to provide an agile way of
maintaining a coherent representation of what is known
about what the project is to do and how it is to do it. In [2]
we state four key objectives to help the decision makers set
and manage stakeholders' expectations and nurture shared
understanding. Two of these objectives are bringing this
help to bear as close as possible to the beginning of the
project and ensuring that the methods can be adopted easily
by project managers as well as analysts.

In [3; 4] we reported on case studies that suggest that
building the stepwise goal refinement arguments that are
fundamental to goal sketching can be more difficult than
the simplicity of the concept would suggest. In [4] we
showed that stepwise refinement of functional goals can be
accelerated using simplified activity diagrams provided that
due attention is paid to the environment (for example the
contexts of construction, commissioning and operation) [2].

Reflecting on our own use of goal sketching in real
projects and observing undergraduate students' difficulties
it became clear that creating an initial goal sketch, which is
useful can also be difficult. In this paper we report on new
work to overcome this difficulty. This paper consolidates
the material reported in [1] and extends it in the light of
further experience.

The basic idea is to determine the roots of the goal
sketch from the project's business case. Our new technique
takes that part of the business case, which is crucial to the
existence of the project and casts it into a structured format

of goal oriented propositions (GOPs) that we call a concise
business case. As our goal sketching is entirely based on
GOPs and their refinement [2] the concise business case
thus provides a disciplined start to the process. The goal
sketch initiated in this way is immediately turned into a
structurally complete goal-responsibility (G-R) model by
adding suitable additional GOPs; usually with a generous
quantity of assumptions. This process quickly brings load-
bearing assumptions [5] and constraints to the fore thereby
quickly framing a picture of what is known about the
requirements and a clear understanding of the current
threats jeopardizing the satisfaction of the business case.
The aim is to help managers and developers recognize
where the project might safely proceed, where it would be
prudent to invest more resources into analysis, which
assumptions should be “hedged” (mitigated against) and/or
“sign-posted” (flagged as early warnings) [5].

It should be noted that there is no presumption in our
technique that a single immutable business case is created
at the outset. It is simply asserted that the purpose of the
project is to deliver products that satisfy the business case
at the time.

In standard product based planning (PBP) as espoused
in [6; 7] the scope of a project is defined by the sum of its
specialist products. Thus with the inclusion of
'management' products (project plans, contracts etc) all the
expected contributory effort to a project can be estimated;
at least in principle. However this is only true in practice
when what is to be done and how it is to be done are both
clear (such as the “painting by numbers projects” described
in [8]). But when the situation harbors considerable
uncertainties about what and how it is then said to be “in
the fog” [8]. Setting realistic stakeholder expectations
(including the eventual satisfaction of the business case) is
then problematical and would need the investigative
methods of requirements analysis to discover the what
while technical invention may be needed to accomplish the
how.

The methods in this paper concentrate on projects that
have invention and/or discovery as prerequisites to their
conclusion. In terms of the classifications in [8] they are the
projects with a preponderance of “quest” (clear what and
unclear how), “movie” (clear knowledge of how but unclear
what) or “in the fog” (unclear about what and how). These
situations are typical of, but not limited to, projects where
Agile methodologies apply. In the wider project

90

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

management community they can be recognized as soft
projects [9].

This paper proceeds with Section II putting the work
into the context of related work. Section III outlines goal-
responsibility (G-R) models as used in goal sketching.
Section IV introduces the concise business case template in
a simple form that is then expressed as a goal-sketch in
Section V. Section VI introduces two refinements of the
simple idea. Experiences from a pilot study with students
and real-world case studies/y are reported in Section VII.
Conclusions are presented in Section VIII.

II. RELATED WORK
The G-R modeling used in goal sketching has an

antecedent in KAOS [10], which itself has applications in
business process modeling as well as requirements analysis
such as illustrated in [11], An alternative goal oriented
approach I* [12]has been applied to a wide range of
requirements and business process re-engineering. In
[13]the authors combine I* with problem frames [14]and
business processing to model business strategy with goal
oriented analysis. Use-case techniques of goal oriented
requirements engineering can offer considerable agility
especially when applied with the breadth before depth
pattern [15]. However use-cases primarily concern the
functional behavior and outcome guarantees [16] and even
when the 'wheel and hub' [16] is accounted for many more
project concerns remain to be managed. None of these
approaches has been specialized for projects and their
business cases.

The methods of project management emphasize product
delivery, risk and the raison d'etre provided by the business
case. This is perhaps best exemplified in PRINCE2 and its
product based planning [6]. However there appear to be no
techniques to assure that the products will actually satisfy
the business case; especially when the business case
includes a requirement to satisfice the concerns of a
complex customer community.

We accept that the above approaches offer potential
rigor and precision in their specialized ways but none
provide a combined model of business and technical
requirements analysis that meets the agile aims of goal
sketching [2]; speed and a concise capture of rationale in
just enough precision for managing expectations and
enriching stakeholder negotiation. Our new technique of
goal sketching from the business case complements, and
can be used with, the appropriate best practice requirements
engineering and project management techniques.

Pursuit of alignment and shared understanding leads to
complexities known as “problematical situations” in soft
systems methodology (SSM) [17] Therefore soft systems
thinking could be used for investigating soft projects.
However this would tend to be cumbersome in the face of
demand for agility. Nevertheless the attention to
weltanschauungen (world views) and human activity
systems (holons) in SSM [17] has informed our approach
to goal sketching. Our goal sketching may be related to the
nesting of holons in SSM but with the simplification of a
focus on project appraisal as a problematical situation. We

are currently exploring this relationship more deeply.

III. GOAL-RESPONSIBILITY MODELS
Goal sketching is a lightweight technique for producing

goal-responsibility models. An example goal-responsibility
model is shown in Figure 1. The figure and the explanation
provided here is abstracted from [2].Each box in Figure 1 is
a 'goal oriented proposition' (GOP). There are goals,
assumptions and constraints. In this example P is satisfied
by the combined soundness of A,Q and R. R is satisfied by
actors 1 and 2 taking necessary joint and collaborative
responsibilities. Similarly Goal Q is satisfied by C,S and T
where S and T are satisfied by actors 1 and 3 respectively.
C is a constraint that will be satisfied by the definition of a
'rule' for cross-cutting the responsibilities of actors. [2].

 In this example P is a single root and A,C,S,T and R
are the leaves of the G-R model. Note that the necessary
behavior (and other qualities) that must be instantiated is
described only at the leaves of the model; it is not
distributed across the model.

Figure 1. Goal-Responsibility model.

A structurally complete G-R model is one (such as
Figure 1) where: all goal leaves are guaranteed by
responsible actors and constraints are guaranteed through
cross-cutting rules. The only leaves not guaranteed are
assumptions, that must be trusted.

The skill of the analyst is to organize the GOPs into a
structurally complete and persuasive stepwise argument.
This discipline is a powerful aid to understanding what is
known about the requirements and their preferred
satisfaction. It allows the analyst to guide the setting of
expectations among the stakeholders. For example in order
to achieve structural completeness the analyst may need to
add GOPs as “TBD” (to be determined) or to add one or
more assumptions. These moves may reveal a lack of
information as well as vulnerable assumptions and thus
point to the risks surrounding expectations on the current
understanding.

IV. THE CONCISE BUSINESS CASE (CBC)
Major project management methodologies emphasize

the temporary nature of projects and how a project’s

91

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

continued existence can be justified by a viable business
case; see [6; 18; 19]. Taking PRINCE2 as an exemplar, a
project is defined as:-

“a temporary organization that is created for the purpose
of delivering one or more business products according to a
specified business case.” [6].

Business products (aka specialist products [6]) define
the intended outcome of the project. A product may be all
or part of what Alexander calls kit [20] or an
accomplishment such as completing the training for a group
of staff who will be served by the kit. At the heart of the
above definition is the imperative that these products satisfy
a business case. It follows that the requirements, or
acceptance criteria, for the products should be traceable to
the business case. One way of assuring this is to create a G-
R model such as Figure 1 to represent the business case
roots, constraints and assumptions and after suitable
stepwise GOP refinement placing the products that are to
participate in the live system among the actors.

A business case typically includes a promissory part and
a rationale justifying the investment needed to accomplish
it. The promissory part will include benefits that are both
direct (i.e. immediate) and indirect (realized later). The
project is obliged to deliver only the direct benefits. Under
the definition (above) it is the promissory part of the
business case that concerns the project. Bearing this in
mind and considering projects that we have observed
(system & product development projects and investigation
projects) we have postulated certain characteristics and
summarize them in what we call the concise business case
template, as described below.

CBC Template: Subject to the validity of certain

assumptions it is agreed by the project owners that it is a
sound investment proposition to realize certain direct
benefits and enable other indirect benefits to the project
owners through the development of products that will
satisfice the concerns of a given community of ‘customers’.
This is to be accomplished within defined constraints on
time, cost and prescribed approach.

The terms owner and customer are adopted from [17].

The term owner thus stands for those people, or their
representatives, sponsoring the project so long as they can
expect a satisfactory return on their investment. The term
customer stands for someone (or agency) that will be a
beneficiary or potential victim of the results of the project
fulfilling its obligations. The community of such customers
includes all the ‘on-stage’ and ‘off-stage’ actors [16] such
as users and regulators.

The underlined text in the CBC template affords a basis
for structuring the promissory part of the business case as a
set of goal oriented propositions; the motivations (/m/),
behaviors (/b/), constraints (/c/) and assumptions (/a/)
described in [2]. This may be more easily visualized
through a Goal Frame [2] as shown in Figure 2.

In Figure 2 the large box represents the target domain of

the project, which here (and according to the CBC
template) contains two sub-domains: the products to be
produced and the customer community. Usually in practice
both of these domains are decomposed into their own sub
domains.

The underlined terms in the CBC template are
represented in Figure 2 as follows: The benefits appear
mostly as motivation goals at the top of the frame but there
may also be motivations involved in satisficing [21] the
concerns of customer community. The assumptions appear
mostly as load-bearing assumptions (holding up the frame
at the bottom) but there may be further assumptions
involved.

Figure 2. Concise Business Case as a Goal Frame.

The constraints and approach appear mostly as the

constraints on each side of the frame (containing it) but
again there may be further constraints emerging through the
concerns of the customer community.

A simple illustration adapted from the zoo turnstile
example in [22] serves to demonstrate the above ideas: The
sponsor is the management of a zoo who believe that it is
worth the investment to develop a computer-controlled
turnstile guarding the entrance to their zoo. Their concerns
therefore relate to an application domain involving the
public and their interaction with the zoo. The GOPs in the
business case could be those shown in Figure 3.

Assumptions:

• Admission to the zoo is through one gate alone.
/a1/

• Revenue is being lost by visitors evading payment.
/a2/

Benefits:
• Increased profit for the Zoo /m1/
• Control of admissions /m2/

Satisfice Customer Community:
• Safety of the visitors (Emergency services) /m3/
• No additional workload (Staff)./m4/
• Easier reporting of visitor statistics (Staff) /m5/

Defined Constraints:
• The new system shall be operational by 1st April

2009. /c1/

92

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• The development resources are X. /c2/
Approach:

• Develop a computer-controlled turnstile guarding
the entrance to the zoo. /c3/

Figure 3. The GOPs for the Zoo project.

The approach presented in Figure 3 is what we refer to
as the simple form of the CBC. Experience has shown that
certain additional concerns may need attention. These are
introduced in section V following an illustration.

V. GOAL-RESPONSIBILITY MODEL FOR THE BUSINESS
CASE

 A structurally complete goal refinement model for the
concise business case template is shown in Figure 4.
Because of the lack of detail provided the completeness of
the G-R model depends, as anticipated in Section III, on
added assumptions and TBDs.

Figure 4. Structurally complete Goal-Responsibility Model for the Concise
Business Case.

The goal responsibility model in Figure 4 reads from

left to right. The nodes without type indicators (such as
'global constraints') are inserted as grouping nodes to make
the reading easier.

In order to make Figure 4 structurally complete a set of
assumptions were added to the effect that there are no other
known concerns at each level of refinement over and above
the concerns explicitly addressed. Such assumptions can
provide a powerful challenge to the stakeholders and this
helps the elicitation of technical and project requirements.
A single behavior goal (/b/) has been added as a place
marker and is yet to be determined (TBD) in detail. This
behavior must be terminated with defined responsibilities to
guarantee it.

If the project board trust the assumptions in Figure 4
and believe that its TBD can be safely resolved some time
later they may judge that enough analysis has been
completed; there is enough precision where it is needed and
the assumptions are sound. However it would be difficult
on the basis of Figure 4 as it stands to have any confidence

in setting the stakeholders' realistic expectations. It is more
likely that further analysis would be undertaken to validate
or replace the assumptions and clarify the TBD.
Completing a structurally complete G-R model with just
enough detail and precision to satisfy the project board is an
iterative process.

Returning to the turnstile example, the GOPs of Figure
3 are laid out in the G-R model Figure 5, which owing to
space limitations is not shown in structurally complete
form.

In Figure 5 the assumptions are satisfactory from a
structural completeness point of view; though they are
probably not persuasive.

Figure 5. Structurally incomplete G-R model for the Zoo Turnstile project.

A rationale for enforcing the constraints needs to be
added. They will be handled differently: /c1/ and /c2/ cross
cut the project plan and impact on the feasibility of the
production of project products (see [2; 23] and Cockburn's
'wheel and hub' [16]); /c3/ is a design constraint that would
be testable in any products developed by the project. The
motivation goals /m1/ through /m5/ will require refinement
into behaviors guaranteed by appropriate actors; as in
Figure 4 some of the actors will be those of the application
domain and some will be the products.

As a temporary measure Figure 5 could be made
structurally complete by adding TBD behaviors and
suitable assumptions. As an example, a speculative first
analysis is provided in Figure 6 for /m2/.

The behavior /b1/ in Figure 6 is described by a use case,
which is indicated as TBD. If the project board are content
that this can safely be left to the future or to chance in the
hands of the developers then no more precision is needed
even though the actual project products that will provide
machines or props are also TBD.

93

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Structurally complete refinement to /m2/.

The goal /b2/ has definite assigned responsible actors in

the form of two products (Turnstile and Controller) and
people. Again if the project board is satisfied with its use
case then no more analysis is needed on this matter and
attention can be directed to the outstanding /m2/ through
/m5/ and the composition rules for /c3/.

VI. TWO PRACTICAL ISSUES
Practical experience has drawn our attention to two

issues. The first of these relates to the context of project
instantiation and execution.

A. Direct and Indirect Benefits
Turner [24] points out that (as mentioned earlier)

projects are temporary organizations within a regime of
project based management. Projects deliver products but
the benefits sought might depend upon their subsequent
exploitation (see [24] figure 1). This implies that the
‘benefits’ in the CBC may be indirect pending their
exploitation. Thus entries listed in the CBC (such as
benefits and assumptions) may need to be adjusted in order
that the CBC expresses the promissory obligations on the
project alone. If this observation is overlooked it can be the
cause of confusion by practitioners of our method; this was
found in the experience reported below.

To help circumvent the confusion we strongly advocate
that the CBC is reviewed and adjusted to ensure that it
expresses the project viewpoint and differentiates between
direct and indirect expectations. The adjustments tend to be
that those benefits that are indirect are commuted to
assumptions.

B. Efficiency
The second concern pertains to the efficiency of goal

sketching from the CBC.
Refining the CBC towards concrete responsibilities

reveals a set of project acceptance criteria based on
constraints, behaviors and assumptions. In simple examples

such a refinement offers obvious ‘stems’ from which
systems requirements can be expressed as refinement trees.
For example Figure 6 takes /m2/ as a stem from which the
turnstile system requirements can be obtained by
refinement. This was assumed in [1] and has been assumed
in all sections above.

It is more often the case that the branch from which a
system refinement would logically follow will not be
obvious. We have recently adjusted our technique to
overcome this difficulty. Two goal graph trees are now
used. The first representing the project CBC and the second
representing a presumed goal of ‘sound solution
architecture’.

The ‘sound solution architecture’ goal provides a
systematic opportunity to represent the full scope of the
required products and the full criteria by which they would
be acceptable. This point is easily overlooked. Direct
refinement of the CBC can be expected to provide the
ultimate acceptance criteria. However in a systems or
software development project these are satisfied through the
construction of a new structure. The project owners might
not be able to verify the structure and it might not be their
primary concern so long as the direct CBC derived
acceptance criteria are satisfied. However to the project the
structure is the means to satisfying the CBC goals but will
itself need to be a complete and coherent structure that must
be acceptance tested. It is as if the CBC presents ‘black
box’ acceptance criteria and the second tree offers ‘white
box’ acceptance criteria. For a project to be successful both
must be satisfied. Separating problem (CBC) and solution
(the solution architecture) in this way is a manifestation of
the well-known fact that requirements and design so often
intertwine [25; 26] as do problem and solution [27].

Figure 7. Showing the introduction of the sound solution architecture.

94

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The principles are illustrated in Figure 7 where the
original CBC of Figure 4 is supplemented with a ‘sound
solution architecture’ goal.

The sound solution architecture is refined into system
lifecycle concerns and an assumption of no others. In
practice this assumption is unlikely to hold as there often
are other parts of the solution architecture such as enterprise
architecture phasing and personnel training. All of these
entail products to be supplied by the project. However for
the present audience the main interest will be the system
lifecycle. Here we have assumed a lifecycle pattern that we
often find. There is a main system with its normal operation
and system actors to support that operation (all TDB at this
stage as indicated by the). There are also systems for
commissioning and maintenance. In general there will be
cross-cutting acceptance responsibilities between the actors
of the different systems and between the systems and the
CBC criteria.

VII. CASE STUDY
The example application is taken from a project

undertaken by a small software product development
company supplying tools for use in the UK medical primary
care sector. The example is generalized to illustrate the fact
that it has already become a reusable analysis pattern [28]
to the company. This company is referred to as the supplier
in the following example where company and organization
names have been changed to safeguard confidentiality.

Example: A Pharmaceuticals company (PCo) wants to
provide a software tool that can be installed and used in
general medical practices in the UK as a supplement to
their usual medical systems. The tool is intended to access
and analyze the electronic records for patients registered
with the medical practices who have a particular condition
(the cohort of interest in each medical practice). The
analysis will show compliance and deviations with
nominated best practice care guidelines published by a
College of Physicians (CP) and will provide data to be
analyzed in a research department at the University of X
(UoX) supporting the guidelines. It is a part of the business
justification that this will obtain the endorsement of the
National Society for the Condition (NSC). A hidden
justification is that such acts of educational contribution
improve the standing of the PCo among the healthcare
professionals. A pharmaceutical industry regulatory body
(RB) gives strict rules that the PCo must obey when
interacting with the practices and the National Health
Service (NHS) regulates codes of confidentiality in regard
to the access and use of patients' data.

The sponsor is thus the PCo and the Customer
Community includes the doctors, the CP, the Regulators
(RB and NHS). The application domain comprises the
medical surgeries with their staff and standard medical
computer systems. The complete Customer Community
Domain (see Figure 2) is shown in Figure 8. Each of the
sub domains harbors people with concerns that will be
satisfied by the project's products alone and/or in
collaborations with actors from the sub domains.

Figure 8. The Customer Community Domain for the PCo project.
(Note: the * indicates multiplicity)

The sponsor requires the supplier to provide the tool

but, crucially, is not acquainted with the normal working
activities associated with a medical practice nor with the
different medical computer systems in use. The sponsor
relies on the supplier for this knowledge. Thus sponsor's
business case requires the satisficing of a customer
community's concerns that are not appreciated by the
sponsor. Figure 9 shows the CBC.

Benefits:

• Enhance the PCo's standing appropriately with
healthcare professionals /m1/

• Contribute to the evidence base for the Guidelines
/m2/

Satisfice Customer Community:
• Satisfy the regulators concerns. /m3/
• Provide a practical service to help the doctors

manage the care for their patients in the cohort of
interest. /m4/

• Collect suitable data for onward supply to the
Guidelines research centre./m5/

• Satisfy all brand and commercial presentation
concerns /m6/

Global Constraints:
• The tool shall be operational by 1st April 2009.

/c1/
• A fixed price development fee of £X. /c2/

Approach:
• Develop an independent software tool that can be

worked cooperatively with standard medical
computer systems /c3/

Global Assumptions:
• The best practice guidelines would be adopted

more rigorously in the medical centres if they
could be made more accessible. /a1/

• Support for the guidelines is note provided as a
part of the normal behavior of the standard
medical systems. /a2/

• The supplier knows how to satisfice the normal
working needs of the intended users /a3/

Figure 9. The GOPs for the PCo project.

An initial structurally complete G-R model was

constructed from Figure 8. Six low precision TBD and
assumption GOPs were needed to establish the initial
structural completeness. In general the assumptions and

95

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Partially expanded G-R model for the CBC in Figure 9.

96

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TBDs could not be accepted by the stakeholders; however
after a couple of cycles of iteration involving discussion
and the goal sketching techniques outlined in [2] just
enough precision was established to make proceeding on
some parts of the development acceptable to the
stakeholders (e.g. the refinements of /m3/,/m5/ and /m6/)
whilst other parts (e.g. the refinement of /m4/) needed to be
analyzed further before proceeding. The developed G-R
model is shown in Figure 10.

The figure is only partially expanded because of space
limitations. The (+) marked at leaves indicates hidden
(‘rolled-up’) detail. If all of the (+) are expanded the reader
would see that the graph is indeed structurally complete.
All of the elements of Figure 9 are transcribed onto the
graph. Benefit /m1/ is an example indirect benefit as it
depends on exploitation and effect outside the competence
of the project itself. On the other hand /m2/ is accepted as a
direct goal, which is assumed to be satisfied as a
consequence of satisfying the two customer community
GOPs /m4/ and /m5/. These two GOPs imply complex
requirements. These requirements require the vehicle of a
coherent and structurally complete system to support their
satisfaction. Such a system must be self-consistent and
complete in its own terms hence it is more appropriate to
apply the ‘sound solution architecture’ method described in
section VI.II above. The /m4/ and /m5/ branches therefore
point to /b111/ and /b112/ in the normal operation branch of
the sound solution architecture GOP. (The link between
pairs such as /m4/ and /b111/ is indicated by a hyperlink
icon and the supplementary test ‘(TWIN)’.)

Figure 11. Activity Frame AF1 referenced in Figure 10
It depicts a life-cycle pattern.

The sound solution architecture GOP has been refined

using a life-cycle refinement pattern that we frequently find
appropriate. The pattern is shown in Figure 11. It has the
form of an activity frame and has been applied as a
refinement device in the manner we describe in [2; 4]. By
applying this pattern (or an alternative) we can trust that the

additional ‘systems’ are not overlooked.
The activity frame of Figure 11 appears in Figure 10 as

AF1 in /a 100/ and /b 100/. Another, more complex activity
frame has been used called AF2, which appears in /a110/
and /b111/. We refer the reader to [2; 4] for details of the
technique of working with activity frames and goal
refinements.

Some of the leaves of Figure 10 show operationalization
by responsibility assignment. /c 16/ represents a constraint
on all (signified by *) system elements that involve outputs
to the screen, file or paper. The semantic tag <OUTPUT>
indicates cross-cutting to all other responsibilities marked
also with the tag (see [2] for details of the method).
Similarly the system element ‘Tool’ in /b110/ will cross-cut
all others with tags <AF1> and <AF2>.

This example and others have led us to the following
interesting observations:-

1 Although the technique was established to accelerate

goal sketching on new problems this approach has (as
mentioned above) become the standard pattern used by
the company on its development projects.

2 The resulting G-R models appear to focus from the start
on the assumptions that are load-bearing and vulnerable
[5] and this can readily lead to assumption based
planning [5] with its recommended 'hedging' and 'sign-
posting' tactics.

3 As anticipated when discussing Figure 4, the
assumption 'no known further assumptions' and the
need to impose provisional TBDs provoked keen
attention to the assumptions and consequently increases
the understanding shared by the stakeholders.

The effectiveness of this approach is difficult to

quantify as it is uneconomic to execute a project twice
concurrently; one for control and the other for comparison.
Nevertheless looking at three projects (of similar size and
complexity) where we used goal sketching prior to the
incorporation of the CBC it can be said with some
confidence that there was an appreciable acceleration
brought about by the use of the CBC. Qualitatively this
appears to be due to increased confidence brought about by
the focus of the CBC. There were also benefits due to
achieving higher that usual early shared understanding.

Pilot study: At the University of Reading each final

year undergraduate of the School of Systems Engineering
has an individually assigned project. 44 such students who
attended an optional short module on requirements analysis
were set an exercise where they would have to use a CBC.
The students represented a spread of discipline from IT
with management through to computer science. They were
all novices at goal argumentation (such as goal graph
refinement) but had a basic grasp of the principles. Most
students had a year in industry and a large proportion of the
students were on degrees that require a grasp of business
imperatives. It was felt that this group would make an
interesting test of the ease of learning and applying the

97

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CBC technique. Despite their inexperience they are typical
of the kind people who will eventually be involved in
managing software and systems development projects.

In the exercise the students were instructed to prepare
by writing a brief summary (100 words) of their project and
then were instructed to develop a mind map of the
stakeholders to the project and their respective concerns
(limited to what they perceived to be the 20 most important
stakeholder-concern items). They were instructed to create
a CBC in their own time up to a deadline of three weeks.
Again a budget as given to focus attention on expressing
the full scope through the discipline of condensing what
they perceived as the most important of 20 entries on the
CBC. This occurred during a period that coincided with a
high load of other academic work on each student.

We found that 30% (13) of the students created CBCs
that were good enough to take directly to their project
stakeholders for clarification and improvement by
discussion and to be used as the basis for full G-R model
refinement. 20% were adjudged as not understanding the
technique as they needed more mentoring on the use of the
technique before they could redraft their CBC and reach the
standard of the higher cohort. The remainder 50% were
judged as not suitable to be shown to stakeholders without
prior intensive mentoring and rework.

Our technique has given us an insight that helps to
distinguish those students who have the skills and ability to
formulate abstract concepts about a future world. This
discrimination correlated well with the more general
observations of the students’ tutors; people who have
observed the students over several years.

The skill to formulate abstract concepts about a future
world is crucial to prospective requirements analysts and it
is one that industrial practitioners and students find difficult
to acquire.

Looking at the CBCs produced by the upper 50% was
instructive. It illustrated some weaknesses in the original
formulation of the CBC, which led to the changes discussed
in the above section. When using the original formulation it
is easy to confuse whether a requirements statement refers
to a benefit, assumption, constraint or satisfied concern.
Sometimes the classification does not matter as the key
outcome is the elicitation of important concerns.

Further Examples: The concise business case has been

applied to other soft projects. For example a recent project
between a major enterprise architecture service company
and the University of Reading showed that the methods
described here can be used to bring focus to a project as a
whole and to stages (e.g. sprints) of the project. We can
also report that in a dozen real projects considered the
concise business case template proposed here in every case
provides a robust and suitable template to commence a goal
sketch. We have also observed its successful use in drawing
up proposals and contracts.

Early indications suggest that the application of the
CBC could be formulated as number of requirements
analysis patterns. This matter is being investigated as
further work.

VIII. CONCLUSION AND FURTHER WORK
We have shown how goal sketching can be accelerated

by introducing a template concise business case and have
corroborated our expectation using industrial case studies.
The template will be one in a family of templates. We are
also confident that there is an underlying analysis pattern:
choose a template, map the business case to it and
transform that into a structurally complete G-R model by
adding such assumptions as necessary. The pattern also
appears to have a fractal nature as it can be applied to the
whole project or to its stages (or agile sprints). More work
is needed to clarify and document the pattern.

G-R modeling with the concise business case is most
appropriate to soft projects with uncertainty about what and
how. Otherwise best practice project management methods
(e.g. PBP) would be advised as more cost effective.
 The use of the concise business case begins a goal
refinement process in which techniques such as use-case
goal refinement and KAOS can be used for additional rigor
with regard to operationalizing functional requirements.

It was expected that the process of building a
structurally complete model from the concise business case
would nurture improved shared understanding among the
stakeholders. Early signs are that this is indeed the case.
This is apparent in the value of the assumptions identified
when attempting to build a structurally complete model
from the concise business case. Additionally we identify a
potential synergy with assumption based planning [5] and
its 'hedging' and 'sign-posting' tactics.

Further, the elicitation of assumptions can be helped by
the identification of weltanschauungen using soft systems
methodology [17].

Creating a structurally complete model based on the
concise business case might best be considered as a digest
of what is known and provides a project board's viewpoint.
It compliments (and does not compete with) best practice
requirements engineering and project management.

ACKNOWLEDGMENT
The authors would like to acknowledge their industrial

collaborators. In particular colleagues in OSKIS
Informatics Ltd and Secerno Ltd.

98

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] Boness, K. and Harrison, R. 2009. Goal Sketching and the Business

Case. Software Engineering Advances, 2009. ICSEA'09. The Fourth
International Conference on.

[2] Boness, K., Harrison, R., and Liu, K. 2008. Goal sketching: An Agile
Approach to Clarifying Requirements. International Journal on
Advances in Software, IARIA. 1, 1.

[3] Boness, K. and Harrison, R. 2007. Goal sketching: Towards agile
requirements engineering. Software Engineering Advances, 2007.
ICSEA 2007. International Conference on. 71-71.

[4] Boness, K. and Harrison, R. 2008. Goal Sketching with Activity
Diagrams. Software Engineering Advances, 2008. ICSEA'08. The
Third International Conference on. 277-283.

[5] Dewar, J. A. 2002 Assumption-based planning: a tool for reducing
avoidable surprises. Cambridge Univ Pr.

[6] OGC 2002. PRINCE2: Managing Successful Projects. London:
HMSO.

[7] Taylor, M. D. 2003. How to Develop Work Breakdown Structures.
[8] Checkland, P. and Winter, M. 2006. Process and content: two ways

of using SSM. Journal of the Operational Research Society. 57, 12,
1435-1441.

[9] Crawford, L. and Pollack, J. 2004. Hard and soft projects: a
framework for analysis. International Journal of Project
Management. 22, 8, 645-653.

[10] Dardenne, A., Lamsweerde, A. V., and Fickas, S. 1993. Goal-
directed requirements acquisition. Science of computer
Programming.

[11] Koladis, G. and Ghose, A. 2006. Relating Business Process Models
to Goal-Oriented Requirements models in KAOS. Advances in
Knowledge Aquisition and Management.

[12] Yu, E. 1997. Towards modelling and reasoning support for early-
phase requirements engineering. Proceedings of the 3rd IEEE
International Symposium on Requirements Engineering (RE'97).
226.

[13] Bleistein, S. J., Cox, K., Verner, J., and Phalp, K. T. 2006. B-SCP: A
requirements analysis framework for validating strategic alignment
of organizational IT based on strategy, context, and process.
Information and Software Technology. 48, 9, 846-868.

[14] Jackson, M. 2000 Problem Frames: Analyzing and structuring
software development problems. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA.

[15] Adolph, S., Cockburn, A., and Bramble, P. 2002 Patterns for
effective use cases. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA.

[16] Cockburn, A. 2002 Writing effective use cases. Addison-Wesley
Reading, MA.

[17] Checkland, P. 1998 Systems thinking, systems practice. Wiley.
[18] APM. 2006 Project management body of knowledge. Association for

Project Management (APM).
[19] PMI 2000. Guide to the Project Management Body of Knowledge,

PMBOK Guide 2000 edition.
[20] Alexander, I. F. 2005. A Taxonomy of Stakeholders: Human Roles

in System Development. International Journal of Technology and
Human Interaction. 1, 1, 23-59.

[21] Simon, H. A. 1996 The sciences of the artificial. The MIT Press.
[22] Zave, P. and Jackson, M. 1997. Four dark corners of requirements

engineering. ACM Transactions on Software Engineering and
Methodology (TOSEM). 6, 1, 1-30.

[23] Boness, K., Finkelstein, A., and Harrison, R. 2008. A lightweight
technique for assessing risks in requirements analysis. IET Software.
2, 1, 46-57.

[24] Turner, J. R. 2008 The handbook of project-based management.
McGraw-Hill Professional.

[25] Krabbel, A., Wetzel, I., and Züllighoven, H. 1997. On the inevitable
intertwining of analysis and design: developing systems for complex
cooperations. Proceedings of the 2nd conference on Designing

interactive systems: processes, practices, methods, and techniques.
205-213.

[26] Nuseibeh, B. 2001. Weaving together requirements and architectures.
IEEE Computer. 34, 2, 115-117.

[27] Hall, J. G. and Rapanotti, L. 2009. The discipline of natural design.
Undisciplined! Proceedings of the Design Research Society
Conference 2008. 2.

[28] Alexander, C., Ishikawa, S., and Silverstein, M. 1977 A pattern
language: towns, buildings, construction. Oxford University Press,
USA.

99

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Meta-model for Problem Frames:
Conceptual Issues and Tool Building Support

P. Colombo, L. Lavazza, A. Coen-Porisini
Dipartimento di Informatica e Comunicazione

Università degli Studi dell’Insubria
Varese, Italy

{pietro.colombo, luigi.lavazza,
alberto.coenporisini}@uninsubria.it

V . del Bianco
Systems Research Group, CASL

University College Dublin
Dublin, Ireland

vieri.delbianco@ucd.ie

Abstract—Problem frames are an approach to requirements
modeling that is gaining increasing attention and popularity.
The approach provides useful concepts and methodological
guidelines. However, problem frames are not equipped with an
expressive and complete notation and they lack tools support.
These limitations can be addressed by introducing a suitable
meta-model to formally define the notation. In this way it is
also possible to identify the aspects that are not covered by the
problem frames notation and to provide hooks for user-defined
extensions. The meta-model is expected to support the
underlying analysis methodology, and the following design and
verification phases. Furthermore, it can provide the basis for
building a tool supporting both the editing of problem frames
and the other activities associated with the approach (frame
concern, composition, correctness argument, etc.). This paper
presents a meta-model that addresses the former issues and
was used for building a tool with the EMF/GMF technology.

Keywords- meta-modeling; modeling tools; problem frames.

I. INTRODUCTION
Problem Frames (PFs) [1] are an approach to

requirements analysis and modeling that drives the analyst to
model the problem in terms of (physical) problem domains,
their properties, the information they exchange and the user
requirements. The solution of the problem is specified in
terms of a machine, whose behavior is defined so that the
interaction of the machine with the given environment
satisfies the requirements.

PFs allow analysts to analyze complex problems by
decomposing them into simpler ones; these basic problems
are modeled according to basic patterns (i.e., the frames,
which represent common, well understood problems). Then
the analyst can show that the user requirements are satisfied
by the outcome of the previously defined modeling activity;
finally, the various problem frames are composed into a
complete description.

While a great effort has been dedicated to define the PF
methodology, little attention was given to the definition of an
expressive and complete notation and to tools supporting
PFs. For instance, PFs do not provide any language for
describing the properties of problem domains, or for
specifying the desired behavior of the system: the analyst has
to select and use a language among the available ones (in [1]

Jackson uses state-charts, pseudo-code, and natural
language). Problem Frames also lack automated support: no
tool is available for defining, analyzing, or composing PFs.

The aforementioned problems can be solved with the
help of a meta-model that defines precisely the Problem
Frames concepts, supports the methodology, and provides
the basis for the construction of tools.

An initial proposal of a meta-model for Problem Frames
was presented by the authors of this paper in [21]. The usage
of the proposed meta-model in the construction of a
prototype tool using the meta-model in combination with
EMF [13] and GMF [14] was also discussed.

The meta-model presented did not cover a very important
part of the Problem Frame methodology, namely the
correctness argument [1]. This paper is an extended version
of [21]. Besides refining the material already presented in
[21], here we illustrate and discuss the usage of the meta-
model in describing the requirements, domain characteristics
(with special reference to behavioral properties), and
machine specifications. These are the ingredients for
building correctness arguments, that is, for showing that the
proposed machine specification satisfies the requirements in
the problem domain.

A PF-based development process is introduced as well, in
which PF models are exploited also in the design and
verification phases.

The paper is organized as follows: Section II provides a
brief introduction to Problem Frames; Section III illustrates
the proposed meta-model, while Section IV describes the
UML definition of the meta-model and exemplifies the usage
of the meta-model in describing a problem. Section V
illustrates the usage of the meta-model for expressing
requirements and describing machine and problem domain
behavior, and the support to correctness arguments. Section
VI describes the construction of a tool based on the meta-
model, exploiting the EMF/GMF methodology. In Section
VII a PF-based development process is introduced; Section
VIII accounts for related work; finally Section IX draws
some conclusions.

II. PROBLEM FRAMES
Problem Frames are based on the concept that user

requirements are about relationships in the real world and not
about functions that the software system must perform. The

100

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

desired relationships in the real world are achieved with the
help of a machine; however, in the requirements analysis
phase, the Machine is only specified as far as its role in the
real world is concerned: only the interface between the
machine and the problem domain needs to be specified,
while the machine internals are left unspecified, since they
will be addressed in the design phase.

Thus, the first task is to understand and represent the
context in which the problem is set: the context diagram
shows the various problem domains in the application
environment along with their connections, and the Machine
and its connections to (some of) the problem domains. A
domain is simply a part of the world that we are interested in.
It consists of phenomena such as individuals, events, states,
relationships, and behaviors. An interface is a place where
domains overlap, so that the phenomena in the interface are
shared, thus allowing connection and communication
between domains. A set of shared phenomena is controlled
by a domain and is observed by other domains.

Problem diagrams add requirements to context diagrams.
Requirements are attached to domains and specify conditions
involving the phenomena of those domains (possibly
including the private, non-shared ones).

An interface that connects a problem domain to the
Machine is called a specification interface. The goal of the
analyst is to develop a specification of the behavior that the
Machine must exhibit at its interface in order to satisfy the
user requirements. A PF is a description of a recognizable
class of problems, and thus in some sense problem frames
are problem patterns.

Figure 1 shows an example of a commanded behavior
frame: “there is some part of the physical world whose
behavior is to be controlled in accordance with commands
issued by an operator. The problem is to build a machine that
will accept the operator’s commands and impose the control
accordingly [1]”.

 Gate &
motor

Raise &
lower gate

ba

Sluice
operator

cc

Sluice
controller

a: SC!{Clockw, Anti, On, Off}
GM!{Top, Bottom}

b: GM!{Open, Shut, Rising, Falling}
c: SO!{Raise, Lower, Stop}

Figure 1. The sluice gate commanded behavior frame.

Such a frame (illustrated in Figure 1) is described using a
simple example concerning the specification of a controller
that operates a sluice gate. A small sluice, with a rising and a
falling gate, is used in a simple irrigation system. A
computer system is needed to raise and lower the sluice gate
in response to the commands issued by an operator. The gate
is opened and closed by rotating vertical screws. The screws
are driven by a small motor, which can be controlled by
clockwise, anticlockwise, on and off pulses. There are
sensors both at the top and the bottom of the gate travel:
when the top sensor is active the gate is fully open, when the
bottom sensor is active, it is fully shut. The connection to the
computer consists of four pulse lines for motor control, two
status lines for the gate sensors, and a status line for each
class of operator commands. The position of the gate is
defined as the fraction of space occupied by the gate: when it
is open Position=0, when it is closed Position=1. Finally, the
top and the bottom sensors are active when Position becomes
less than 0.05 and greater than 0.95, respectively.

The PF diagrams involves three domains: the Sluice
Controller, which is the machine that will be developed to
satisfy the requirements; the Gate & motor, which is the
domain to be controlled (it is a causal domain since its
properties include predictable causal relationship among its
causal phenomena); the Sluice Operator, which is a biddable

domain indicating a user without a positive predictable
behavior (that is, the user can issue commands but cannot be
constrained to act in any way).

It has to be assured that requirements, domain and
specification descriptions fit together properly. Addressing
this issue (the “frame concern”) must result in a ‘correctness
argument’ showing that the proposed machine will make the
requirements satisfied in the problem domain [1].

In the case of the commanded behavior frame, we have to
assure that only sensible and viable commands are executed.
Requirements can be expressed as effects on the problem
domain caused directly by the user’s commands or by other
events, such as reaching the completely open or closed
position. According to Jackson, these effects can be
expressed in a rather straightforward way by means of state
machines. Also the behavior of the problem domain can be
represented by means of a state machine, showing the states
of Gate & motor, and specifying the reactions to external
commands, as well as the evolution in time of the domain.
For instance, the behavior of the Gate & motor domain is
specified by the state machine reported in Figure 2 (taken
from [1]); state 5 is an ‘unknown’ state, which should never
be reached in normal operations; in fact, the gate would
probably break if entering this state were attempted.

101

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1: ClocW ∧ ¬IsOn
(State==IsStill)

SwitchOff, SetClkWise

2: ¬ClocW ∧ ¬IsOn
(State==IsStill)

SwitchOn, SetAntiClkWise

SetClkWise
SetAntiClkWise

3: ClocW ∧ IsOn
(State==IsOpening)

SwitchOn, SetClkWise

SwitchOn

SwitchOff

4: ¬ ClocW ∧ IsOn
(State==IsClosing)

SwitchOn, SetAntiClkWise
SwitchOff

SwitchOn

5: ?

SetAntiClkWise

SetClkWise

after(1s)/Position -= 0.01

after(1s)/Position += 0.01

Position>1

Position<0

Figure 2. The specification of the Gate & motor domain.

III. THE META-MODEL
In order to build a tool that supports the PFs approach,

several aspects need to be defined. Our approach consists in
introducing a meta-model that supports the definition of all
the aspects necessary to specify both notational and
methodological concepts.

Notational concepts are used to represent the structural
elements of a problem, the behavioral properties associated
with such elements, the user’s goals, and the machine
specification. In our case the notational concepts have to
support the representation of the Problem Frames diagrams
as specified in [1].

Methodological elements are a collection of concepts,
rules and suggestions that drive requirement analysis. For
instance, phenomena that are internal to a domain are
modeled, although they do not appear in problem diagrams,
because they can be useful to define shared phenomena and
the domains behavior.

Moreover, the definition of the meta-model allows us to
identify possible inconsistencies, weaknesses or incomplete
definitions in the notation, and therefore to propose solutions
to address such issues. The meta-model introduces the
elements needed to describe the following concepts:
• The basic structural elements and connections associated

with a problem.
• The dynamic and behavioral properties associated with

structural elements.
• The goals of the user, i.e., the user requirements.
• The specification of the solution, i.e., of the machine.
• The decomposition criteria.

The Problem Frames specific elements to be addressed
are the following:
• A Problem Domain represents a physical domain of the

environment where the problem is located, whose
properties can be either given or designed by the user. A

Machine Domain is a computer that interacts with the
Problem domains in a way that satisfies the requirements.

• Phenomena are properties of a domain and can be
classified as Entities, Events or States.

• Interfaces are connections between Domains
characterized by shared phenomena.

• A Shared phenomenon is controlled by a domain and
observed by one or more other connected domains.

• The behavior of a domain is specified in terms of the
involved domain’s phenomena. Even though the PFs
methodology does not prescribe a notation for describing
the behavior, the meta-model should be able to explicitly
indicate the existence of a behavioral specification
element and which phenomena are involved.

• Requirements are associated with domains; requirements
are described in terms of domains’ phenomena; in
particular, they should be modeled as capable of referring
to and constraining phenomena.

• Machine specifications specify the properties of the
machine’s interface with the problem domains.
In the next section the meta-model is described using

UML [16]. This choice is motivated by the expressiveness of
the language and by its diffusion in the communities of
analysts and designers. Moreover, the serialization of a UML
model via XMI [17] is recognized as a valid description of
the meta-model by frameworks –like EMF [13]– that support
the generation of tools.

IV . UML DESCRIPTION OF THE META-MODEL
A UML Class Diagram that introduces the essential

features of the meta-model is shown in Figure 3.
The root element of the model is named PFsModel. It is

composed of entities representing essential structural
concepts such as Domain and Interface.

102

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. The UML Class Diagram defining the meta-model.

Domain is characterized by an attribute name (for
identification purposes), an attribute type (to express whether
the domain represents the machine, or it is given or
designed), an attribute behaviour (to specify whether the
domain is lexical, biddable or causal). The attributes type and
behavior are typed by means of two enumerative data types
named DType and DBehavior, respectively. Some
constraints are defined on the values associated with these
attributes. More specifically, a machine domain is always a
causal domain, and a designed domain is never biddable.
These properties are specified by means of OCL [15]
constraints:
context Domain inv:
 ((self.type=Dtype::machine) implies
 (self.behavior=Dbehavior::causal)) and
 ((self.type=Dtype::designed) implies
 (self.behavior<>Dbehavior::biddable))

Another constraint imposes that domains have unique
names:
context Domain inv:
Domain.allInstances()->forAll(p1, p2 | p1 <> p2
implies p1.name <> p2.name)

Similar rules are defined to assure that distinct elements
of a model are given different names.

Domain is composed of sub-domains and internal
phenomena. Phenomenon is characterized by the attributes
name and type. According to Jackson, the latter is used to
express whether a phenomenon is a state, an event, a value,
etc. The attribute type is typed by means of the enumerative
data type PType; the Boolean attribute internal specifies
whether the phenomenon is owned and controlled or just
visible by the connected domain. Also in this case some
constraints are introduced. More specifically, a lexical

domain cannot be characterized by causal phenomena such
as events or states.
context Domain inv:
 self.phenomenon->forAll(p |
 self.behavior=Dbehavior::lexical implies
 (p.type<>Ptype::event and p.type<>Ptype::state))

Domains can be connected by means of the element
Interface. Two directional association relationships named
source and target connect the class Interface to the class
Domain. Notice that the terms ‘target’ and ‘source’ do not
imply that the interface has an orientation. A constraint is
defined in order to assure that the involved domains are
distinct:
context Interface inv: self.target <> self.source

An Interface exists when one or more phenomena are
shared between two domains. The shared phenomenon
concept is represented in the meta-model by the
homonymous class. In the proposed meta-model, whenever a
phenomenon (for instance, SC!Off in Figure 1) is shared, a
corresponding phenomenon is created and added to the
phenomena of the connected domain (in our example, a non
internal phenomenon is added to the gate&Motor domain).
An instance of SharedPhenomenon is also created, and
connected to the instances of the corresponding phenomena
(in our example, controlled will identify the Off phenomenon
of sluiceController, while observed will identify the Off non
internal phenomenon of gate&Motor). This rather baroque
representation is motivated by the goal of using the meta-
model for the development of a tool based on GMF/EMF
technology. In fact, in order to guarantee that an element of a
model is accessible for editing, such technology imposes that
the element belongs to a containment hierarchy having the
diagram being edited as root. In order to satisfy such

103

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

constraint, we identified the following solution: domains
contain phenomena, and interfaces contain shared
phenomena that in turn refer to the phenomena (both
controlled and visible) of domains.

An additional constraint assures that the usage of the
relationships controlled and observed is consistent with the
value of the attribute internal.
context SharedPhenomenon inv:
 (self.controlled.internal=true and
 self.observed.internal=false and
 self.controlled.name=self.observed.name) and
 self.name=self.observed.name

The following constraint states that every instance of
SharedPhenomenon is properly connected.
context SharedPhenomenon inv:
 (self.controlled.domain=self.interface.target and
 self.observed.domain=self.interface.source) or
 (self.controlled.domain=self.interface.source and
 self.observed.domain=self.interface.target)

The proposed solution supports the association of a
different, specific editor with each element of the meta-
model: the editable elements are those recursively contained
in the element; the elements that are reachable from the
considered element via non containment relationships can be
accessed by the editor in a read-only manner. As an example,
the proposed solution supports the definition of a diagram
editor for domains and another editor for interfaces. With the
former, internal phenomena may be added to the domain
instance, which is the root element of the diagram. With the
interface editor,, shared phenomena that refer to the internal
phenomena of the involved domains are added to an instance
of Interface. No internal phenomena can be added to a
domain with the interface editor, being only possible to refer
to existing instances.

The specification of the behavior of the domains is
supported by means of the element Description. Description
allows the model to be extended, i.e. several kinds of
elements can be attached to this element for specifying the
behavior by means of ad hoc notations. In fact, descriptions
can be expressed with different notations such as state
machines, natural language, formal languages, modeling
languages like UML or SysML, etc. This can be done by
importing elements from the meta-models of external
notations, and by connecting them to Description; both the
choice of which elements to import and the definition of the
associations depend on the involved notation. Extending the
PFs meta-model is out of the scope of this work and
therefore the meta-model simply provides two attributes
named text and language. The former describes the behavior
by means of a textual description, while the latter indicates in
which language the description is written.

Descriptions predicate on the phenomena of a domain
(both controlled and visible); this concept is expressed by
means of a directional association named predicatesOn
between the classes Description and Phenomenon.

PFsModel also includes class Requirement, whose
instances are crosscutting elements that specify static or
dynamic properties with reference to the structural elements
of a model. Class Requirement represents the user
requirements, expressed by predicating on the domains’
phenomena. The class is characterized by the attribute name,
and by the relationships constrained and referenced, which
express whether the requirement constrains the phenomena
or just observes them. The specification of requirements is
supported by the class Description. In fact, in the meta-
model, the requirements, the machine specification and the
behavior of domains are all represented by the same element
Description.

PFsModel also introduces concepts that aim at
supporting problem decomposition. More specifically, the
problem concept is defined by the class Problem, while the
decomposition is represented by the subProblems
relationship. Other relationships are defined in order to
express that a problem is characterized by requirements and
domains, which are interconnected by means of interfaces.
Notice that such relationships are simple associations, i.e. an
instance of Problem is associated with instances of other
elements that are contained in an instance of PFsModel.
Such relationships support both the decomposition of a
problem, and the definition of multiple views. A problem
may involve only a subset of the domains (and of the
corresponding phenomena) of a model: instances of Problem
may be considered partial views on the model, consisting of
subsets of the elements contained in an instance of the
PFsModel class.

Figure 4 reports a fragment of the instance of the
proposed meta-model that describes the sluice gate control
problem. In particular, the model contains the Gate&Motor
and SluiceController domains and their internal phenomena.
Moreover, interface ‘a’, which connects the two domains
(see Figure 1), is also shown: the interface involves a set of
shared phenomena, each one corresponding to an internal
phenomenon of the controlling domain and an external
phenomenon, which is observed by the other domain
participating in the interface. For instance, the phenomenon
‘on’, controlled by the SluiceController is made visible to the
Gate&Motor domain through interface ‘a’ and the shared
phenomenon ‘onSP’.

The description is actually a bit redundant, with each
phenomenon represented several times; however, this kind of
organization was practically imposed by the constraints due
to the usage of GMF.

104

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. An instance of the meta-model (fragment).

V . REPRESENTING REQUIREMENTS AND REASONING
ABOUT CORRECTNESS

A fundamental part of the problem frame methodology
deals with correctness arguments.

With problem frames, the idea is that requirements are
described as relations that the user wants to be established
among domains in the problem environment. Requirements
are therefore given by means of optative descriptions
involving problem domain elements. For instance, a
requirement of the sluice gate control system is that when a
Raise command is issued and the state of the system makes
the required operation sensible and viable, the command is
executed, i.e., the gate starts rising.

Some characteristics of the relevant domains belonging
to the problem environment have also to be described,
because they contribute to the actual behavior of the
proposed solution. For instance, the fact that the gate starts
moving when the motor is set on, or that the Bottom signal is
issued when the gate reaches the closed position clearly
contribute to the behavior of the system. The behavior of
given domains is specified by means of indicative
descriptions.

The machine is the hardware/software part of the
proposed solution. Its behavior is defined via suitable
specifications that involve only the machine interface. The
machine specification must guarantee that the interaction of
the machine with the problem domain causes the required
relations in the problem environment to hold.

The correctness argument must convince that the
proposed machine satisfies the requirements in the problem
domain.

Figure 5 illustrates a piece of the correctness (or
adequacy) argument for the sluice gate control problem.
Figure 5 is an adaptation from [1]. According to [1], in this
kind of problem, requirements (1) state what commands are
sensible in which situations and (5) what effects they should
cause in the problem domain if they are viable. The
specifications of the machine (2 and 3) define what is the
reaction of the machine to commands (including those that
are not sensible or viable). The description of the behavior of
the problem domain describes how the domain state and
behavior are affected by what the machine does at their
shared interface.

Figure 5 provides an excerpt of the just mentioned
description concerning a specific case (i.e., what happens
when the Raise command is issued and the Gate is closed).
The correctness argument shows the domain behavior
resulting from the commands and that the final state of the
system complies with the requirements, which prescribe the
consequences of commands. In order to support this type of
argument, the meta-model must be able to support the proper
description of requirements (in terms of phenomena of the
problem domains), of domain behaviors (in terms of their
own phenomena and phenomena that are visible because
shared by other domains, including the machine) and of
machine specifications (in terms of phenomena shared
through its interfaces; talking about machine’s internal
phenomena is strictly forbidden in this phase).

Figure 3 shows that the meta-model includes
“descriptions” that belong either to domains (including the
machine) or to requirements. These descriptions consist of
text, written in some language, and of references to the
phenomena that are mentioned in the description itself.

105

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Gate &
motor

Raise &
lower gate

Sluice
operator

Sluice
controller

When the operator issues
the Raise command it may
or may not be sensible ...
{requirments}

... and the gate is closed,
the command is sensible
and viable, thus ...
{specifications}

... the machine shall
issue the ClockW and
On commands ...
{specifications}

... which cause the
gate to start opening
...
{domain properties} ... Thus achieving the

required effect.
{requirements}

1

3

2

4

5

Figure 5. An adequacy argument.

Figure 6 shows a fragment of an instance of a meta-
model, reporting the requirement that prescribes the effect of
a Raise command when the gate is closed. In Figure 6 the
textual description of the requirement is written in plain
English. Therefore, it brings no meaning to a possible tool
using the meta-model (unless, perhaps, sophisticated
artificial intelligence techniques are used; we do not consider
this possibility). However, the underlined words in the
descriptions have a specific meaning, comprehensible by a
tool using the meta-model: they correspond to the references

to phenomena having the same names. Therefore, when the
analyst that is defining the model of a system selects the
phenomena that are relevant for a requirement, he/she is also
determining the vocabulary that can be used in the textual
description of the requirement.

Note that the analyst, when describing requirements, has
to classify every phenomenon connected to a requirement as
‘referenced’ or ‘constrained’, according to the notation
defined in [1].

Open_req_descr: Description

language: English
text: If the gate is closed (IsOn is false and
Position≥0.95) and the event Raise is issued, the gate
starts opening (IsOn becomes true and ClockWise is
true)

Raise_closed_gate_req: Requirement

Name: Effect of Raise on the closed Gate

SluiceOperator: Domain

Name: Sluice operator
Type: given
Behaviour: biddable

Raise: Phenomenon

name: Raise
type: event
internal: true

constrained

referenced

constrained

referenced

Gate&Motor: Domain

name: Gate and motor
type: given
behaviour: causal

ClockWise: Phenomenon

name: ClockWise
type: state
internal: true

IsOn: Phenomenon

name: IsOn
type: state
internal: true

Position: Phenomenon

name: Position
type: state
internal: true

Figure 6. A fragment of meta-model instance that specifies a requirement.

106

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7 shows a piece of the description of a domain,
namely the Gate and motor. It is possible to see that this type
of description works exactly like a requirement description.
The only difference is that –following Jackson– we do not

distinguish referenced phenomena from constrained ones.
However, it must be noted that since external phenomena are
always referenced, it is possible to omit their classification.

Gate&Motor: Domain

name: gate and motor
type: given
behaviour: causal

ClockWise: Phenomenon

name: ClockWise
type: state
internal: true

IsOn: Phenomenon

name: IsOn
type: state
internal: true

On: Phenomenon

name: On
type: event
internal: false

G&M_descr: Description

language: English
text: If ClockWise is true and IsOn
is false (i.e., the state is still) and
event On is received, IsOn
becomes true (i.e., the state
becomes opening).

predicatesOn

predicatesOn

predicatesOn

Figure 7. A fragment of meta-model instance that specifies the behaviour of the Gate&Motor given domain.

Finally, Figure 8 reports the specifications of the
machine. The diagram is similar to those describing
requirements and domain behavior. However, more instances

of domains and phenomena are involved, since the
specifications deal with phenomena from three different
domains (the machine, the operator and the Gate and motor).

Controller: Domain

name: Sluice controller
type: machine
behaviour: causal

Off: Phenomenon

name: Off
type: event
internal: true

On: Phenomenon

name: On
type: event
internal: true

ClockW: Phenomenon

name: ClockW
type: event
internal: true

machine_spec: Description

language: English
text: If the command Raise is
received and the gate is closed (i.e.,
Bottom was received, then Off was
issued, and since then no On was
issued), the commands ClockW and
On are issued

SluiceOperator: Domain

Name: Sluice operator
Type: given
Behaviour: biddable

Raise: Phenomenon

name: Raise
type: event
internal: true

predicatesOn

Gate&Motor: Domain

name: gate and motor
type: given
behaviour: causal

Bottom: Phenomenon

name: Bottom
type: event
internal: true

predicatesOn

predicatesOn

predicatesOn

predicatesOn

Figure 8. A fragment of meta-model instance that specifies a piece of the machine specifications.

107

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The above reported descriptions provide the information
needed to build correctness arguments. In principle, it could
be possible to develop a tool that assists the user in building
such arguments. In fact, the tool could help the analyst in
selecting domains and phenomena that are relevant to the
argument. For instance, given the Raise command, the tool
could automatically select the involved requirements, the
triggered machine reactions, etc., thus providing the user
with the ‘bricks’ that can be used to build the argument.

In [1] Jackson uses a few different notations, and leaves
the analysts free to choose the notation they like the most.
Accordingly, the proposed meta-model allows the analyst to
use any notation: it is only necessary to specify the
‘language’ attribute of the descriptions.

The fact that the description of domains, requirements
and the machine can be used to build correctness
requirements, suggests that better results could be achieved if
a formal notation is used. In order to illustrate this
possibility, in what follows we rewrite the descriptions
already reported in Figure 6, Figure 7 and Figure 8 using
event calculus (EC).

The EC is a system of logical formalism, which draws
from first-order predicate calculus [24]. EC has already been
used for describing and reasoning about event-based
temporal systems, and has been used in conjunction with
problem frames [23][22]. Of the several variations of EC that
have been proposed, the version discussed in [25] was used
in [22]; we also use that version.

Domain behaviour

If ClockWise is true and IsOn is false (i.e., the state is
still) and event SwitchOn is received, IsOn becomes true
(i.e., the state becomes opening).
HoldsAt(ClockWise ∧ ¬IsOn,t) ∧ Happens(On,t) →
HoldsAt(IsOn, t+1)

The state IsOn persists until SwitchOff is issued
HoldsAt(IsOn,t) ∧ ¬Happens(Off,t) →
HoldsAt(IsOn,t+1)

Requirements

If the gate is closed (IsOn is false and Position≥0.95) and
the event Raise is issued, the gate starts opening (IsOn
becomes true and ClockWise is true).
Holds(¬IsOn ∧ Position≥0.95,t) ∧
Happens(Raise,t) → Holds(IsOn ∧ ClockWise, t+1)

Machine specifications

If the command Raise is received and the gate is closed
(Bottom was received, then Off was issued, and since then
no On was issued), the commands ClockW and On are
issued
Holds(Closed,t) ∧ Happens(Raise,t) →
Happens(ClockW, t+1) ∧ Happens(On, t+2)

Holds(Closed,t) ← Happens(Bottom,t1) ∧
Happens(Off,t2) ∧ t1<t2<t ∧ ¬∃t3
(Happens(On,t3) ∧ t2<t3<t)

Starting from descriptions written in EC, correctness
arguments can be built, also with the help of reasoning tools.

In [22] if an event or a fluent is a part of an interface, its
name is parameterized –under some circumstances– with the
name of the interface. For example, Happens(e1(p),t1)
indicates that the event e1 is generated by a controlling
domain at the interface p at the time t1. Similarly when
describing the effect of an event on a fluent that is controlled
by a domain, the fluent name is parameterized with the name
of the domain. For example, Initiates(e1(p),f2(D),t)
indicates that when the event e1 occurs at the interface p, the
fluent f2 controlled by Domain D becomes true. Our meta-
model is defined so that all the mentioned fluents or events
correspond to specific phenomena, therefore they are
unambiguously and precisely characterized in terms of the
domain they belong to and the interfaces they participate
into.

VI. FROM THE META-MODEL TO THE TOOL
The meta-model presented above was used as a basis for

the development of a tool supporting the editing of Problem
Frames as well as other aspects of the approach.

The proposed solution exploits the Eclipse Graphical
Modeling Framework (GMF) [13], a “state of the art”
technology for the definition of model editors in the Eclipse
development framework [18]. GMF provides advanced
services that guide the developer in the definition of visual
editors starting from a meta-model. The generated editors
also provide different kinds of advanced services such as
diagram editing, validation, transformation, and support for a
standardized XMI model serialization format.

GMF provides both a generative component and a
runtime infrastructure for developing graphical editors based
on the Eclipse Modeling Framework (EMF) [12] and the
Eclipse Graphical Editing Framework (GEF) [11].

EMF is a modeling framework and code generation
facility for building tools and other applications based on a
structured data model. EMF consists of three fundamental
parts [10]:
• The Core framework: it includes a meta-model (Ecore)

for describing models and runtime support for change
notification and XMI serialization.

• The Edit framework: it includes generic reusable classes
for building editors for EMF models.

• The Codegen framework: it provides code generation
facilities to build a complete editor for an EMF model.
EMF supports the definition of OCL constraints by

providing a framework usable for property validation. EMF
also provides tools for the automatic definition of basic
editors that aim at visualizing and manipulating models
(instances of the meta-model). GEF is a framework to be
used in conjunction with GMF to create graphical editors
characterized by a model-view-controller architecture. The
development of diagram editors that handle EMF models
based on the direct usage of GEF is an onerous activity, since
it requires an in-depth knowledge of the architecture and the
API of both GEF and EMF. In order to ease the development
of graphical editors, the capabilities of EMF and GEF were

108

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

composed and made available through the GMF
infrastructure. In fact, GMF combines the advantages of
EMF and GEF, and provides tools that aim at simplifying
and automating the generation of diagram editors. The usage
of such technologies provides several advantages to the
designer:
• A collection of reusable components for graphical

editors, such as geometrical shapes, icons, etc.
• A standardized model to describe diagram elements.

Diagram elements are described by means of graphical
models that define both the characteristics of the visual
elements shown in a diagram, and the mechanisms
through which it is possible to access them.

• The separation of semantic aspects from diagrams.
Semantic elements are defined in an Ecore model, and
they are accessed by means of EMF, while diagram
models are directly managed by GMF.
The generated editors are open, thus the interested user

can access the generated source code in order to modify or
extend the functionalities of the editor. Moreover, the
generated editors are Eclipse plug-ins; hence extensions can
exploit the standard Eclipse mechanisms.

A PF editor has to support problem analysis according to
the various concepts of the PFs approach. We decided to
partition the required functionalities into several editors,
since the involved activities are fairly independent and use
different notations. For instance, the specification of the
requirements (or of the machine) uses a notation that is
different from the one used for defining the problem
structure.

Although functionalities are allocated to distinct editors,
all the editors operate on the same model. In other words,
multiple views insist on the same elements. For instance, a
dedicated editor for domain behavior specification is opened
whenever the user double clicks a domain instance in the
problem editor. Several problems may arise when supporting
diagram partitioning: editor instances have to cooperate and
to stay constantly synchronized with the state of the global
model.

We identified the following distinct editors: A context
editor, for editing context diagrams; A problem editor, for
editing problem diagram; A domain editor, for specifying the
internal structure of a domain (internal phenomena as well as
internal sub-domains may be defined); A domain
specification editor, for describing the behavior of a domain;
An interface editor, for specifying shared phenomena

between the domains; A requirement editor, which supports
the specification of the user requirement.

The editors were defined according to the typical GMF
building process [13]. First of all, an EMF model was
defined; in particular, the meta-model proposed in the
Section IV –including the properties expressed via OCL–
was defined via EMF Ecore technology. The EMF model
describes the global model shared among the different
editors. Then, a framework supporting the manipulation of
the previously defined model was automatically generated
using EMF.

All the previously introduced diagram editors were
defined starting from the model and the generated editing
code. The same GMF process was applied to the definition
of each diagram editor.

A graphical model for the representation of diagram
elements was defined, using the GMF graphical model
creation wizard. A visual layout was defined –according to
Jackson’s notation [1]– for the elements of the EMF model
of Problem Frames, and the access points and services to
modify the attributes of each element were also defined.

The definition of the tool models for the manipulation of
diagram elements exploited the GMF tool model wizard. The
Problem Editor was defined so that all the elements that can
be visualized (e.g., domains, requirements and interfaces)
can also be edited, while the Interface Editor supports the
definition of shared phenomena among domains that are
given.

A mapping model specifies which graphical elements can
be used in each diagram, and which tool is used for the
manipulation of such elements. The definition of the
mapping model was performed in part by using the GMF
mapping wizard, and in part by configuring the generated
model. The resulting model relates the elements of the
models defined in the previous steps. Moreover, it supports
editor partitioning: this model was used to specify that the
interface element of the Problem editor has to be shown in
the canvas of an Interface editor.

A generator model was defined for each mapping model
specified for the editors by using the GMFGen Model tool.
Such model supported the definition of code generation
criteria, such as the specification of the serialization formats
for diagrams.

Once all the generator models were defined, dedicated
tools were used for automatic code generation. Then the
generated source code was extended by implementing
advanced functionalities, mainly concerning the partitioning
of diagrams.

109

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. A snapshot of the generated tool.

Figure 9 shows a snapshot of the generated PFs editor,
which is composed of the previously described editors and
coordinates the activities performed by them. The current
prototype is an editor that supports the PF notation. The
aspects that are strictly related to the notations/languages
adopted for the specifications, like developing correctness
arguments, are only partly supported. Future work includes
completing the support for problem composition and
developing a full support for notation dependent activities.

Our experience with GMF technology was not fully
satisfactory. EMF and GEF frameworks are becoming de
facto standards for the definition of Eclipse based editors, but
their combination in GMF appears not mature yet. In
particular, problems arise as soon as one tries to define non-
trivial editors characterized by features such as diagram
partitioning, multiple views, and synchronization of different
diagrams. More specifically, compilation errors, and the lack
of support for a few needed functionalities, which are not
properly implemented, oblige the user to manually patch the
generated code and to implement the missing functionalities.
Such activities are furthermore complicated by the high
complexity of the structure of the automatically generated
code, and by the poorly documented API of GMF.

GMF also constrains the structure of the meta-model.
The worst limitation we found concerns the elements that
can be edited in a diagram: they have to belong to a
composition hierarchy rooted in the element associated with
the editor. We addressed such issue by means of an extensive
(and unusual) usage of composition relations, and by adding
additional elements, which, as in the previously discussed
case of the SharedPhenomenon class, increase the
complexity of the model.

VII. A PROBLEM FRAME-BASED DEVELOPMENT PROCESS
Currently, the tool described above supports problem

frame modeling only in writing syntactically correct
diagrams. However, the formal descriptions of requirements
and specifications could be easily exploited to verify
properties of the model, in particular to prove that the
specification of the machine actually satisfies (some of the)
requirements when used in the modeled environment. To this
end, the PF editor could be used in combination with an
event calculus off-the-shelf tool, as in [23]. The resulting
process (see Figure 10) would lead to reliable requirements
specifications, whose most important properties would have
been formally proved.

PF modeling tool

PF model

EC-based
verification

Analyst

Correctness
evidence

Figure 10. Problem frame editing and verification.

The process described in Figure 10 had already been
envisaged by the authors for UML specifications [27], in the
context of a whole UML-based development process.

The PF models that result from the modeling and
verification activities are the base for the following
development phases. Therefore, we need to understand to
what extent the valuable information embedded in the PF

110

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

models can be exploited in the rest of the development
process.

The notation used to model problem frames is not suited
to support the design and implementation phases, thus we
have to translate the PF diagrams into a more
implementation-oriented notation. Since the authors have
already shown that problem frames can be successfully used
in conjunction with UML [5][26], it is quite natural to
choose UML as the design notation to be used in
combination with PF-based requirements specifications. The
usage of UML is also eased by several EMF/UML2 based
Eclipse projects (such as ATL [29] and the other
transformation engines developed in the context of the
Eclipse Model-to-model transformation project [28]) which
support the generation of UML models from meta-model
instances.

A possible problem frame-based development process is
schematically described in Figure 11. The idea is to exploit
to the maximum possible extent the knowledge about the
environment and the machine embedded in the PF diagrams.

A first step concerns the design phase: problem frames
can suggest which architectural structures are best suited for
implementing the machine. In [4], Hall et al. show how each
problem frame can be implemented with an appropriate
design structure, while in our preceding work [6] we show
how to use UML and SysML to represent PF models, thus
building a starting point for the following design phase.

A PF model is often also useful for understanding the
scenarios of the system (especially if complemented with
UML sequence diagrams, as in [26]). Scenarios are on their
turn strictly connected with testing activities: in fact, in
functional testing at least one test case must be written for
each scenario. A scenario involves actions, activities and
events originated by both problem domains and the machine,
which are described in PF diagrams: the latter can thus be
used to devise test cases. Moreover, since executing test
cases involves exercising some domain behavior, if the test
has to be carried out in a laboratory, the problem domain
behavior must be simulated: in this case, the PF diagrams
provide an accurate specification of the domain behavior to
be simulated. Finally, the requirements specify the expected
outcome for each scenario, i.e., the oracle of the test case. In
conclusion, the PF diagrams contain the whole knowledge
needed to define a complete testing environment.

To summarize: PF models can be used to schematically
define the software architecture, to provide domain
simulators properties, and to derive functional tests cases. A
tool able to understand the element constituting a PF model
(based on the previously presented meta-model), could
generate automatically –through model transformations–
three different models: the formal model of the system, used
to understand whether the systems fulfills the required proofs
of correctness; the design model, used as a starting point to
develop the system; the test model, used to verify the
implementation.

PF and UML
modeling tool

PF modelEC-based
verification

Analyst

Correctness
evidence

PF-compliant
UML model

Preliminary
design
model

Implementation

Model to
architecture

Designer/Programmer
Test case
generation

Test harness
generation

Test cases

Testing
environment

Tester
Figure 11. The PF customized development process.

VIII. RELATED WORK
The existing PFs meta-models describe the PF domain

with different objectives, which are reflected on the meta-

model structure. The meta-model described in [2], [7], [8] is
highly detailed, as the one presented in [9]; a less detailed
meta-model can be found in [20], while a very concise meta-
model is described in [10].

111

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The meta-model presented in [2], [7], [8] describes the
main relationships among most of the concepts introduced in
Problem Frames methodology. This meta-model suffers from
some inadequacies: some of its concepts are exclusively
dedicated to represent methodological concepts, such as
frame flavors and frame concerns, which we just keep out of
the meta-model and out of the tool’s responsibilities, leaving
them to the user. Another problem (from our specific point
of view) with the meta-model is the very fine granularity of
the concepts presented, sometimes introducing inheritance
hierarchies. Unfortunately, the management of generalization
hierarchies is quite cumbersome in GMF. In practice, when
working with GMF it is necessary to deal with meta-models
that represent the relevant information without employing
generalization/ specialization.

The ontology of the Problem Frames proposed in [3], [9]
captures even more concepts than the meta-model defined in
[2], [7], [8], and it is more abstract, since it does not provide
any meta-model (a meta-model is always an ontology, but
the vice versa is not guaranteed). From our point of view this
ontology presents the same problems as the meta-model
introduced in [2], [7], [8]. Moreover, it does not address the
specification of behaviors and requirements, which are
clearly relevant to the user.

The essential meta-model proposed in [10] is
oversimplified: it does not include all the concepts that are
expressed in PF diagrams, and some important pieces of
information are missing. For instance, the meta-model
includes a relation between domains for specifying that the
involved domains overlap, but this relation does not indicate
which phenomena are shared by the overlapping domains;
this information is elsewhere in the model and can be
retrieved in a rather complicated way. For these and other
similar reasons, the meta-model presented in [10] –which, in
fact, was defined to support requirements progression– is not
adequate for the construction of tools.

With respect to the approaches to meta-modeling
mentioned above, our approach is more pragmatic: on one
hand, we strived to provide a synthetic though fairly
complete description of the problem frames notation,
including a few elements that –although not strictly
belonging to the notation– are necessary to support the
methodology of PF; on the other hand, we kept the meta-
model compliant with the requirements of the EMF/GMF
development method. The result was that we were able in a
relatively short time to create a prototype of a tool fully
supporting the problem frame notation, and well on the way
of supporting the PF methodology.

In [20] a work very similar to the one reported here is
described: the meta-model is expressed in UML, with added
constraints in OCL, and the resulting meta-model is –quite
comprehensibly– similar. However, there are also relevant
differences. Our meta-model was specifically structured to
be used in an EMF/GMF framework: this is reflected in the
meta-model itself, e.g., composition relations and decorators
are often used instead of inheritance relations. There are also
some semantic differences between the two meta-models: the
meta-model in [20] does not account for sub-problems and
descriptions involving multiple frames. Finally, we have

implemented the PF editor: a full working prototype of a PF
modeling tool, able to generate UML compatible models.

Another project that exploits the GMF framework is
UML2Tools: the Eclipse Ecore UML2 meta-model is used
as a basis for building a tool for editing UML2 class, state,
component and activity diagrams [19]. Although the goal
and the approach of UML2Tools are similar to ours, it does
not support a common model shared by the diagram editors
(e.g., the editor of class diagrams, the editor of state
diagrams, etc.): instead, each editor deals with a distinct
instance of the model. In practice the user is not allowed to
define a single coherent model: multiple independent
diagram-specific models have to be created.

An alternative approach to directly supporting PF
notation is to integrate PFs concepts and methodology in the
usage of well known modeling languages, like UML and
SysML. Such approach has been proposed in [5] and [6].

IX. CONCLUSIONS AND FUTURE WORK
There are several reasons for defining the meta-model of

Problem Frames. The first one is that the meta-model helps
defining the notation in a precise way; this activity is much
needed, since the Problem Frames approach provides
essentially methodological guidelines and concepts, but does
not precisely define the notation. A second motivation is that
the meta-model supports the (semi-automatic) construction
of a tool, and tool availability is an essential condition to
promote the usage of Problem Frames in industrial software
processes. A third motivation is that a precise model (based
on a defined meta-model) can be used to automate model
transformations, thus feeding other development phases,
such as formal verification of the specifications (to prove
that the specifications satisfy the requirements), development
and test. Finally, a tool based on the meta-model provides a
sort of training environment that is compliant by construction
with the problem frames approach. Such environment is
expected to favor the learning of the PF based requirements
analysis techniques, to allow users of the PF approach to
evaluate both the tool and the approach, and to stimulate the
suggestion of improvements. This paper reports the
definition of a meta-model for problem frames that can
effectively be used as a basis for the construction of a tool.
The proposed meta-model represents all the elements of the
PF notation, but leaves the support of a few methodological
issues to the initiative of the user. The effectiveness of the
meta-model was demonstrated by building a prototype tool
with GMF. This activity was also an occasion to evaluate the
GMF technology, which appears still rather immature, since
a few essential features (such as editing the same subset of
elements in two different editors) are neither well supported
nor documented.

The main goal of the work reported here was to define a
meta-model that could be used as a basis for developing a
tool supporting the problem frames technique. While
achieving such goal, we put aside a couple of issues that will
be object of future work. A first issue concerns the definition
of a way to integrate Descriptions with the rest of the model:
in essence, the issue is that the text attribute of Descriptions
should be connected to the predicateOn links to Phenomena.

112

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In other words, the occurrence of a phenomenon’s name in
the text of a description should be recognized as a reference
to an instance of Phenomenon.

A second important issue involves implementing full-
fledged problem composition and decomposition
mechanisms, thus testing the ability of the meta-model to
support this very relevant part of the problem frames method.

ACKNOWLEDGMENTS
The research presented in this paper has been partially

funded by the project “Elementi metodologici per la
specifica, la misura e lo sviluppo di sistemi software basati
su modelli”, funded by the Università degli Studi
dell’Insubria.

Massimiliano Bosetti contributed to the development of
the prototype tool using the proposed meta-model and
approach.

REFERENCES
[1] Jackson, M.: Problem Frames - Analysing and Structuring Software

Development Problems. Addison-Wesley ACM Press (2001)
[2] Lencastre, M., Boetlho, J., Clericuzzi, P ., and Araújo, J.: A Meta-

model for the Problem Frames Approach. In 4th Workshop in
Software Modeling Engineering (WiSME'05), Montego Bay, 3
October 2005.

[3] Chen, X., Jin, Z., and Yi L.: An ontology of problem frames for
guiding problem frame specification. In: 2nd International
Conference-Knowledge Science, Engineering and Management,
2007.

[4] Hall, J.G., Rapanotti, L., and Jackson, M.: Problem frame semantics
for software development, Software System Modeling. 4, 189-198
Springer-Verlag (2005)

[5] Lavazza, L. and del Bianco, V .: Combining problem frames and
UML in the description of software requirements. In Fundamental
Approaches to Software Engineering (FASE 2006), March-April
2006, Vienna.

[6] Colombo, P ., Del Bianco, V ., Lavazza, L., and Coen-Porisini, A.: A
methodological framework for SysML: a Problem Frames-based
approach. In 14th Asia-Pacific Software Engineering Conference
(APSEC 2007), 5-7 Dec. 2007, Nagoya, Japan.

[7] Lencastre, M., Araujo, J., Moreira, A., and Castro, J.: Analyzing
crosscutting in the problem frames approach. Proceedings of the 2006
international workshop on Advances and applications of problem
frames, Shanghai, China, ACM, pp. 59--64, 2006.

[8] Lencastre, M., Araujo, J., Moreira, A., and Castro, J.: Towards
aspectual problem frames: an example. Expert Systems, vol. 25, pp.
74-86, 2008.

[9] Jin, Z. and Liu, L.: Towards automatic problem decomposition: an
ontology-based approach. Proceedings of the 2006 international
workshop on Advances and applications of problem frames,
Shanghai, China, ACM, pp. 41-48, 2006.

[10] Seater, R., Jackson, D., and Gheyi, R.: Requirement progression in
problem frames: deriving specifications from requirements.
Requirements Engineering, vol. 12, pp. 77-102, 2007.

[11] Moore, B., Dean, D., Gerber, A., Wagenknecht, G., and
Vanderheyden, P .: Eclipse Development using the Graphical Editing
Framework and the Eclipse Modeling Framework. IBM Redbooks,
2004.

[12] Graphical Editing Framework (GEF), http://www.eclipse.org/gef
[June 16, 2009]

[13] Eclipse Modeling Framework (EMF),
http://www.eclipse.org/modeling/emf [June 16, 2009]

[14] Graphical Modeling Framework (GMF),
http://www.eclipse.org/modeling/gmf [June 16, 2009]

[15] Object Constraint Language Specification, version 2.0, OMG
formal/06-05-01, 2006

[16] OMG, UML Superstructure Specification, v. 2.1.2. formal/2007-11-
02, 2007

[17] OMG, MOF 2.0/XMI Mapping, v2.1.1, formal/2007-12-01, 2007
[18] des Rivières, J. and Wiegand, J.: Eclipse: A platform for integrating

development tools, IBM Systems Journal, V ol 43, No 2, 2004
[19] Model Development Tools (MDT),

http://www.eclipse.org/modeling/mdt/ [June 16, 2009]
[20] D. Hatebur, M. Heisel, and H. Schmidt: A Formal Metamodel for

Problem Frames. Proceedings of the 11th international conference on
Model Driven Engineering Languages and Systems, Toulouse,
France: Springer-Verlag, pp. 68-82, 2008.

[21] P. Colombo, V . del Bianco, L. Lavazza, A. Coen-Porisini, “Towards
a Meta-model for Problem Frames: Conceptual Issues and Tool
Building Support”, The 4th Int. Conf. on Software Engineering
Advances – ICSEA 2009, September 20-25, 2009 - Porto, Portugal.

[22] Thein Than Tun, Tim Trew, Michael Jackson, Robin Laney and
Bashar Nuseibeh: Specifying features of an evolving software system,
Software Practice and Experience 2009; 39.

[23] Classen A, Laney R, Tun TT, Heymans P , Hubaux A.: Using the
event calculus to reason about problem diagrams, Proceedings of the
3rd International Workshop on Applications and Advances of
Problem Frames, Leipzig, 10 May 2008, ACM, 2008.

[24] Kowalski R, Sergot M.: A logic-based calculus of events. New
Generation Computing 1986; 4(1).

[25] Miller R, Shanahan M.: The event calculus in classical logic—
alternative axiomatisations. Journal of Electronic Transactions on
Artificial Intelligence 1999; 3.

[26] Del Bianco, V ., Lavazza, L., Enhancing Problem Frames with
Scenarios and Histories in UML-based software development, Expert
Systems – The Journal of Knowledge Engineering, Special issue on
applications and advances in problem frames, February 2008 - V ol.
25 n. 1 Pag. 28-53 – Blackell publishing.

[27] Del Bianco, V ., Lavazza, L., Mauri, M.: Model Checking UML
Specifications of Real-Time Software, The Eighth IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS
2002), Greenbelt, Maryland, 2–4 December, 2002.

[28] M2M, http://www.eclipse.org/m2m/
[29] Frédéric Jouault and Ivan Kurtev, “Transforming Models with ATL”,

in Satellite Events at the MoDELS 2005 Conference, Springer LNCS,
V ol. 3844/2006.

113

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Understanding Frameworks Collaboratively : Tool Requirements

Nuno Flores
Departamento de Engenharia Informática

Faculdade de Engenharia da Universidade do Porto
Porto, Portugal

e-mail: nuno.flores@fe.up.pt

Ademar Aguiar
INESC Porto, DEI

Faculdade de Engenharia da Universidade do Porto
Porto, Portugal

e-mail: ademar.aguiar@fe.up.pt

Abstract — Software development is a social activity. Teams of
developers join together to coordinate their efforts to produce
software systems. This effort encompasses the development of
a shared understanding surrounding multiple artifacts
throughout the process. Frameworks are a powerful technique
for large-scale reuse, but their complexity often makes them
hard to understand and learn how to use. Developers resort to
their colleagues for help and insight, at the expense of time and
intrusion, as documentation is often outdated and incomplete.
This paper presents a study on the state-of-the art on program
comprehension, framework understanding and collaborative
software environments, proposing a set of requirements for
developing tools to improve the understanding of frameworks
in a collaborative way.

Keywords- Frameworks; Understanding; Collaborative;
Tools; Requirements

I. INTRODUCTION
As software systems evolve in size and complexity,

frameworks are becoming increasingly more important in
many kinds of applications, in different technologies (object-
orientation and recently aspect-orientation too), in new
domains, and in different contexts: industry, academia, and
single organizations.

Frameworks are a powerful technique for large-scale
reuse that helps developers to improve quality and to reduce
costs and time-to-market. However, before being able to
reuse a framework effectively, developers have to invest
considerable effort on understanding it. Especially for first
time users, frameworks can become difficult to learn, mainly
because its design is often very complex and hard to
communicate, due to its abstractness, incompleteness,
superfluous flexibility, and obscurity.

Understanding a piece of software is an important
activity of software development, with a big social emphasis.
Advances in global software development are leading to
teams continuously becoming more and more distributed. A
software development project requires people to collaborate.
Trends toward distributed development, extensible IDEs, and
social software influence makers of development tools to

consider how to better assist the social aspects of
development.

Learning how to use a framework deals with
understanding its components, from its purpose and high-
level architecture to its source code. Understanding
framework means understanding software. The program
comprehension community addresses this, in a broad sense.
The social aspects of software development encompass the
concerns of the collaborative software development research
areas.

This paper outlines a set of requirements that should be
tackled in order to develop tools to improve framework
understanding using a collaborative approach.

Sections II to IV present a state-of-the art survey on the
main domain areas dealt by this paper, namely Program
Comprehension, Framework Understanding and
Collaborative Software Development Environments. Section
V points out open issues in those domains, converging to the
key research questions in section VI. Section VII presents the
solution approach and lists the set of requirements proposed
by the authors. The paper concludes in section VIII.

These findings are part of an on-going research work [1].

II. PROGRAM COMPREHENSION
Program comprehension research can be characterized by

both the theories that provide rich explanations about how
programmers comprehend software as well as the tools that
are used to assist in comprehension tasks.

Since the time of the first software engineering workshop
[99], challenges in understanding programs became too
familiar. As such, the field of program comprehension as a
research discipline has evolved considerably. The main goal
of the community is to build an understanding of these
challenges, with the ultimate objective of developing more
effective tools and methods that supports them [129].

This research has been rich and diversified, with various
shifts in paradigms and research cultures during the last
decades.

114

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A multitude of differences in program characteristics,
programmer ability and software tasks have led to many
diverse theories, research methods and tools.

Consequently, there is a wide variety of theories that
provide rich explanations of how programmers understand
programs and can provide advice on how program
comprehension tools and methods may be improved.

In this section, an overview of existing comprehension
theories, models and methods is presented, as an attempt to
create a landscape of program comprehension research and
possibly trends for future work directions. An overall
depiction of the main topics can be seen in Figure 1.

A. Cognitive theories and models
At first, experiments were done without theoretical

frameworks to guide the evaluations, and thus it was neither
possible to understand nor to explain to others why one
approach might be superior to other approaches [32].

As a lack of theories was being recognized as
problematic, methods and theories were borrowed from other
areas of research, such as text comprehension, problem
solving and education. These theoretical underpinnings led to
the development of cognitive theories about how
programmers understand programs and ways of building
supporting tools. These theories brought rich explanations of
behaviors that would lead to more efficient processes and
methods as well as improved education procedures [64].

1) Concepts
A mental model describes a developer’s mental

representation of the program to be understood whereas a
cognitive model describes the cognitive processes and
temporary information structures in the programmer’s head
that are used to form the mental model. Cognitive support
assists cognitive tasks such as thinking or reasoning [145].

Programming plans are generic fragments of code that
represent typical scenarios in programming. For example, a
sorting program will contain a loop, which compares two
numbers in each iteration, or visiting a structure will have a
loop going through all its elements [128].

Beacons are recognizable, familiar features in the code
that act as cues to the presence of certain structures [21].
Rules of programming discourse capture the conventions of

programming, such as coding standards and algorithm
implementations [128].

Then there are strategies and behaviors. Behaviors are
ways of changing from one strategy to another.

2) Top-down comprehension strategy
Two main theories emerged that support a top-down

comprehension strategy. Brooks [21] suggested that
programmers understand a completed program in a top-down
way where the comprehension process relies on
reconstructing knowledge about the application domain and
mapping that to the source code. The process starts with a
hypothesis about the general nature of the program. This
initial hypothesis is then refined in a hierarchical fashion by
forming secondary hypothesis. These are then refined and
evaluated in a depth-first manner, whose verification (or
rejection) depends heavily on the absence or presence of
beacons.

Soloway and Ehrlich [128] observed that top-down
understanding is used when the code or type of code is
familiar. They observed that expert programmers use
beacons, programming plans and rules of programming
discourse to decompose goals and plans into lower-level
plans. They noted that delocalized plans complicate program
comprehension.

3) Bottom-up comprehension strategy
The bottom-up theory of program comprehension

proposed by Shneiderman and Mayer [119] assumes that
programmers first read code statements and then mentally
chunk or group these statements into higher levels
abstractions. These abstractions (chunks) are aggregated
further until a high-level understanding of the program is
attained. The authors differentiate between syntactic and
semantic knowledge of programs: syntactic knowledge is
language dependent and concerns the statements and basic
units in a program; semantic knowledge is language
independent and is built in progressive layers until a mental
model is formed, which describes the application domain.

Similarly, Pennington [102] also observed programmers
using a bottom-up strategy initially gathering statement and
control-flow information. These micro-structures
(statements, control constructs and relationships) were
chunked and cross-referenced by macro-structures (text
structure abstractions) to form a program model. A
subsequent situation model was formed, also bottom-up,
using application-domain knowledge to produce a hierarchy
of data-flow and functional abstractions (the program goal
hierarchy).

4) Knowledge-based strategies
Littman et al [84] observed that programmers use either a

systematic approach, reading the code in detail and tracing
through control and data-flow, or they use an “as-needed
approach, focusing only on the code related to the task at
hand. Subjects using a systematic strategy acquired both
static knowledge (information about the structure of the
program) and causal knowledge (interactions between
components in the program when it is executed). This
enabled them to form a mental model of the program,
however, those using the as-needed approach only acquired

Figure 1 - Program Comprehension topics

115

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

static knowledge resulting in a weaker mental model of how
the program worked. More errors occurred since the
programmers failed to recognize casual interactions between
components in the program.

Soloway et al. [127] combined these two theories as
macro-strategies aimed at understanding the software at a
more global level. In the systematic macro-strategy, the
programmer traces the flow of the whole program and
performs simulations as all of the code and documentation is
read. However, this strategy is less feasible for large
programs. In the more commonly used as-needed macro-
strategy, the programmer looks at only what they think is
relevant. However, more mistakes could occur since
important interactions might be overlooked.

5) Integrated strategies
Von Mayrhauser and Vans [88] combined the top-down,

bottom-up, and knowledge-based approaches into a single
metamodel. In their experiments, they observed that some
programmers frequently switched between all three
strategies. They formulated an integrated metamodel where
understanding is built concurrently at several levels of
abstractions by freely switching between the three types of
comprehension strategies.

The model consists of four major components. The first
three components describe the comprehension processes
used to create mental representations at various levels of
abstraction and the fourth component describes the
knowledge base needed to perform a comprehension process:

• The top-down (domain) model is usually invoked
and developed using an as-needed strategy, when the
programming language or code is familiar. It
incorporates domain knowledge as a starting point
for formulating hypotheses.

• The program model may be invoked when the code
and application is completely unfamiliar. The
program model is a control-flow abstraction.

• The situation model describes data-flow and
functional abstraction in the program. It may be
developed after partial program model is formed
using systematic or opportunistic strategies.

• The knowledge base consists of information needed
to build these three cognitive models. It represents
the programmer’s current knowledge and is used to
store new and inferred knowledge.

6) Factors affecting comprehension strategies
The general opinion most researchers realize is that

certain factors will influence the comprehension strategy
adopted by a programmer [130] [140]. These factors also
explain the apparently wide variation in the comprehension
strategies discussed above. The variations are primarily due
to:

• Differences among programs,
• Aspects of the task at hand, and
• Varied characteristics of programmers.
To evaluate how programmers understand programs,

these factors must be considered [130]. These are further
explored in section 2.1.1.

With experience, programmers “know” which strategy is
the most effective for the given program and task. A change

of strategy may be needed because of some anomaly of the
program or the requested task. Program understanding tools
should enhance or ease the programmer’s preferred
strategies, rather impose a fixed strategy may not always be
suitable.

B. Program and programmers trends
Both program and programmer influence a

comprehension strategy choice by their inherent and varied
characteristics. Additionally, this choice also depends of the
task at hand. This section debates these issues giving an
insight on the subject, available studies and trends for future
research.

1) Program characteristics
Programs that are carefully designed and well

documented will be easier to understand change or reuse in
the future. Pennington’s experiments showed that the choice
of language as an effect on comprehension processes
[102[104]. For instance, COBOL programmers consistently
fared better at answering question related to data-flow than
FORTRAN programmers, while these would fare better at
control-flow questions than their counterparts.

Object-oriented (OO) programs are often seen as a more
natural fit to problems in real world because of “is-a” and
“is-part-of” relationships in a class hierarchy and structure,
but others argue that objects do not always map easily to real
world problems [32]. In OO programs, abstractions are
achieved through encapsulation and polymorphism. Message
passing is used for communication between class methods
and hence programming plans are dispersed (i.e., scattered)
throughout classes.

2) Program trends
As new techniques and programming paradigms emerge

and evolve, the comprehension process must shift to embrace
these changes. New characteristics on both program and
programming approaches seem to produce new trends for
comprehension research. A few follow [129]:

a) Distributed applications.
Along with web-based applications, both are becoming

more prevalent with technologies such as .NET, J2EE and
web services. One programming challenge that is occurring
now and is likely to increase is the combination of different
paradigms in distributed applications, e.g., a client side script
sends XML to a server application (which currently evolved
to the AJAX [51] technology).

b) Higher levels of abstraction.
 Visual composition languages for business applications

are also on the increase. As the level of abstraction increases,
comprehension challenges are shifting from code
understanding to more abstract concepts.

c) Aspect-oriented programming.
 The introduction of aspects [76] as a construct to

manage scattered concerns (delocalized plans) in a program
has created new excitement in the software engineering
community. Aspects have been shown to be effective for
managing many programming concerns, such as logging and
security. However, it is not clear how aspects written by

116

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

others will improve program understanding, especially in the
long term. More empirical work is needed to validate the
assumed benefits of aspects.

d) Improved software engineering practices.
 The more informed processes that are used for

developing software today will hopefully lead to software
that is easier to comprehend in the future. Component-based
software systems are currently being designed using familiar
design patterns [49][25] and other conventions. Future
software may have traceability links to requirements and
improved documentation such as formal program
specifications. Also, future software may have autonomic
properties, where the software self-heals and adapts as its
environment changes – thus in some cases reducing time
spent on maintenance.

e) Diverse sources of information.
 The program comprehension community, until quite

recently, mostly focused on how static and dynamic analyses
of source code, in conjunction with documentation, could
facilitate program comprehension. Modern software
integrated development environments, such as the Eclipse
Java development environment [36], NetBeans or Visual
Studio [93], also manage other kinds of information such as
bug tracking, test cases and version control. This
information, combined with human activity information such
as emails and instant messages, will be more readily
available to support analysis in program comprehension.
Domain information should also be more accessible due to
model driven development and the semantic web.

3) Programmer individual characteristics
There are many individual characteristics that will impact

how a programmer tackles a comprehension task. These
differences also impact the requirements for a supporting
tool. There is a huge disparity in programmer ability and
creativity, which cannot be measured simply by their
experience.

In her work [143], Vessey presents an exploratory study
to investigate expert and novice’s debugging processes. She
classified programmers as expert or novice based on their
ability to chunk effectively. She notes that experts used
breadth-first approaches and at the same time were able to
adopt a system view of the problem area, whereas novices
used breadth-first and depth-first approaches but were unable
to think in system terms.

Détienne [32] also notes that experts make more use of
external devices as memory aids. Experts tend to reason
about programs according to both functional and object-
oriented relationships and consider the algorithm, whereas
novices tend to focus on objects.

4) Programmer trends
As with everything else, programmers also adapt and

evolve, trying to accompany the paradigm shifts and new
trends in their development environment. Relevant issues are
[129]:

a) Program comprehension everywhere.
 The need to use computers and software intersects every

walk of life. Programming, and hence program

comprehension, is no longer a niche activity. Scientists and
knowledge workers in many walks of life have to use and
customize software to help them do science or other work.
Scientists from diverse fields, such as forestry, astronomy or
medical science, are using and developing sophisticated
software without a formal education in computer science.
Consequently, there is a need for techniques to assist in non-
expert and end-user program comprehension. Fortunately,
there is much work on this area (especially at conferences
such as Visual Languages and the PPIG group, where they
investigate how comprehension can be improved through
tool support for spreadsheet and other end user applications.

b) Sophisticated users.
 Currently, advanced visual interfaces are not often used

in development environments. A large concern by many tool
designers is that these advanced visual interfaces require
complex user interactions. However, tomorrow’s
programmers will be more familiar with game software and
other media that displays information rapidly and requires
sophisticated user controls. Consequently, the next
generation of users will have more skill at interpreting
information presented visually and at manipulating and
learning how to use complex controls.

c) Globally distributed teams.
 Advances in communication technologies have enabled

globally distributed collaborations in software development.
Distributed open source development is having an impact on
industry. Some notable examples are Linux and Eclipse.
Some research has been conducted studying collaborative
processes in open-source projects [94] [58] [52], but more
research is needed to study how distributed collaborations
impact comprehension.

C. Tools for Program Comprehension
Understanding a software program is often a difficult

process because of missing, inconsistent, or even too much
information. The source code often becomes the sole arbiter
of how the system works. The field of program
comprehension research has resulted in many diverse tools to
assist in program comprehension. When developing such
tools, experts bring knowledge from other fields of research
as Software Visualization and Reverse Engineering as means
to answer the researched requirements. This section provides
insight over the studies made to improve tool development to
assist on program comprehension.

1) Tool requirements studies
Which features should an ideal tool have to efficiently

support program comprehension? Needless to say that these
tools will only play a supporting role to other software
engineer tasks, such as design, development, maintenance,
and (re) documentation.

There are mainly two ways of conducting studies to
discover effective features to support program
comprehension: an empirical approach by observing
programmers trying to understand programs and an approach
based on personal experience and intuition. Given the
variability in comprehension settings, both approaches
contribute to answering this complex question.

117

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As such, several studies already conducted by several
authors revealed a number of tool requirements, as follows.

Biggerstaff [15] notes that one of the main difficulties in
understanding comes from mapping what is in the code to
the software requirements – he terms this the concept
assignment problem. Although automated techniques can
help locate programming concepts and features, it is
challenging to automatically detect human oriented concepts.
The user may need to indicate a starting point and then use
slicing techniques to find a related code. It may also be
possible for an intelligent agent (that has domain knowledge)
to scan the code and search for candidate start points. From
his research prototypes he found that queries, graphical
views and hypertext were important tool features.

Von Mayrhauser and Vans [89], from their research on
the Integrated Metamodel, make an explicit recommendation
for tool support for reverse engineering. They determined
basic information needs according to cognitive tasks and
suggested the following tool capabilities to meet those needs:

• Top-down model: online documents with keyword
search across documents; pruning of call tree based
on specific categories; smart differencing features;
history of browsed locations; and entity fan-in.

• Situation model: provide a complete list of domain
sources including non-code related sources; and
visual representation of major domain function.

• Program model: Pop-up declarations; online cross-
reference reports and function count.

Singer and Lethbridge [123] also observed the work
practices of software engineers. They explored the activities
of a single engineer, a group of engineers, and considered
company-wide tool usage statistics. Their study led to the
requirements for a tool that was implemented and
successfully adopted by the company. Specifically they
suggested tool features to support “just-in-time
comprehension of source-code”. They noted that engineers
after working on a specific part of the program quickly forget
details when they move to a new location. This forces them
to rediscover information at a later time. They suggest that
tools need the following features to support rediscovery:

• Search capabilities so that the user can search for
code artifacts by name or by pattern matching.

• Capabilities to display all relevant attributes of the
items retrieved as well as relationships among items.

• Features to keep track of searches and problem-
solving sessions, to support the navigation of a
persistent history.

Erdös and Sneed [41] designed a tool to support
maintenance following many years of experience in the
maintenance and reengineering industry. They proposed that
the following seven questions needed to be answered for a
programmer to maintain a program that is only partially
understood:

• Where is a particular subroutine/procedure invoked?
• What are the arguments and results of a function?
• How does control flow reach a particular location?
• Where is a particular variable set, used or queried?
• Where is a particular variable declared?
• Where is a particular data object accessed?

• What are the inputs and outputs of a module?
Other attempts to capture tool requirements were made

that involved observation of programmers performing
different tasks.

Murray and Lethbridge [98] observed software
professionals using a mixed approach combining elements
from specific methods used in software engineering
empirical research and a sociological qualitative research
called “ground theory”. From this approach, they were able
to develop the basis for a theory of the ways people think
when explaining and comprehending software, which they
called “cognitive patterns”. These patterns can then be
applied to further empirical observatory studies as a roadmap
to capture programmer behaviour.

Zayour [150] proposes a methodology for assessing
cognitive requirements and adoption success for reverse
engineering tools, from which he concludes five main rules
of thumb: (1) A clear and realistic definition of the problem
space to be targeted is a must; (2) direct observation of the
targeted user is required to form a realistic perception of
users problems and tasks; (3) Tool designers should
document their perception of the user’s problems and tasks;
(4) When determining the success of a tool, cognitive load is
a more important indicator to measure than elapsed time
(because it affects adoptability more) and (5) design should
be aimed at satisfying cognitive requirements and thus
should be guided by cognitive principles.

Work by other authors included recall tests to evaluate
the ability to answer questions regarding a piece of code
programmers studied for a limited period of time [102].
Subjective ratings [120] have been used recently to measure
different levels of comprehension. Additionally, other studies
may ask subjects to label or group different code members
based on the similarity of their functionalities [113].
Soloway and Erlich [128] asked programmers to fill blank
lines and complete unfinished programs on paper in an
unfamiliar source code without providing specifications
about the program’s use or functionality. Similarly, Bertholf
et al. [14] asked novice developers to complete incomplete
literal programs on paper. Additional techniques to measure
program comprehension involved completing incomplete
call graphs, modifying existing code, report a bug, or
separate source code from two different algorithms [121].

From this research and derived from cognitive theories,
Storey [129] extracts and synthesizes several tool
requirements:

a) Browsing support.
 The top-down process requires browsing from high-level

abstractions or concepts to lower-level details, taking
advantage of beacons in the code; bottom-up comprehension
requires following control-flow and data-flow links, both
novices and experts can benefit from tools that support
breadth-first and depth-first browsing; and the Integrated
Metamodel suggests that switching between top-down and
bottom-up browsing should be supported. Flexible browsing
support also will help to offset the challenges from
delocalized plans.

b) Searching.

118

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Tool support is needed when looking for code snippets
by analogy and for iterative searching. Also inquiry episodes
should be supported by allowing the programmer to query on
the role of a variable, function, etc.

c) Multiple views.
 Programming environments should provide different

ways of visualizing programs. One view could show the
message call graph providing insight into the programming
plans, while another view could show a representation of the
classes and relationship between the to show an object-
centric or data-centric view of the program. These
orthogonal views, if easily accessible, can facilitate
comprehension, especially when combined.

d) Context-drive views.
 The size of the program and another program metrics

will influence which view is the preferred one to show a
programmer browsing the code for the first time. For
example, in an object-oriented program, it is usually
preferable to show the inheritance hierarchy as the initial
view. However, if the inheritance hierarchy is flat, it may be
more appropriate to show a call graph as the default view.

e) Additional cognitive support.
 Experts need external devices and scratchpads to support

their cognitive tasks, whereas novices need pedagogical
support to help them access information about the
programming language and the corresponding domain.

2) Tool development
Programming comprehension tools can be roughly

grouped into three categories [139]:
• Extraction tools include parsers and data gathering

tools.
• Analysis tools do static and dynamic analysis to

support activities such as clustering, concept
assignment, feature identification, transformations,
domain analysis, slicing and metrics calculation.

• Presentation tools include code editors, browsers,
hypertext and visualizations. They are strongly
linked to research in software visualization.

Integrated software development and reverse engineering
environments will usually have some features form each
category. The set of features they support is usually
determined by the purpose for the resulting tool or by the
focus of the research. As such, two majors areas that relate to
this issue are Software Visualization and Reverse
Engineering.

a) Software Visualization
Software visualization tools and browsing tools provide

information that is useful for program understanding.
These tools use graphical and textual representations for

the navigation, analysis and presentation of software
information to increase understanding. Mixed results have
been reported through the literature on the role of text and
graphics for program comprehension. While Green and Petre
[53] observed that text was faster than graphics for
experimental program comprehension tasks, Scanlan [117]
reported an improvement using graphical visualizations
when comparing textual algorithms and structured

flowcharts. Petre [104] attributes the difficulty in
understanding program visualizations to the fact that
graphical representations have fewer navigational cues,
namely secondary notations, when compared to program
text: source code implies a serial inspection strategy.
Moreover, she observed that experienced readers tend to use
parallel textual and graphical information whenever available
to assist their comprehension process: they use text as a main
source to guide their understanding of graphical
representation.

Several software visualization tools show animations to
teach widely used algorithms and data structures [22] [125]
[131]. Another class of tools shows dynamic execution of
programs for debugging, profiling and for understanding
run-time behavior [68] [115]. Other software visualization
tools mainly focus on showing textual representations, some
of which may be pretty printed to increase understanding [9]
[63] or use hypertext in an effort to improve the navigability
of the software [104]. Typography plays a significant role in
the usefulness of these textual visualizations.

Many tools present relevant information in the form of a
graph where nodes represent software objects and arcs show
the relations between the objects. This method is used by
PECAN [102], Rigi [96], VIFOR [107], Whorf [19], CARE
[83], Hy+ [91] and Imagix 4D [67]. Other tools use
additional pretty printing techniques or other diagrams to
show structures or information about the software. For
example, the GRASP tool uses a control structure diagram to
display control constructs, control paths and the overall
structure of programming units [130].

b) Reverse Engineering
Reverse Engineering concerns how to extract relevant

knowledge from source code and present it in a way that
facilitates comprehension. Several studies conducted in the
past have proposed solutions on how to overcome caveats in
the program comprehension process. Maryhauser and Vans
[89], Singer and Lethbridge [123] and Zayour [150] have
given their insight on how to address tool development for
reverse engineering of useful information to assist on
program understanding (seen on section 2.1). K.Wong also
discusses reverse engineering tool features [149]. He
specifically mentions the benefits of using a “notebook” to
support ongoing comprehension.

Usually, the reverse engineering tools and techniques
associated to program comprehension are bundled into
broader development environments where other types of
tools also co-exist.

It is possible to examine each of these environments and
to recover the motivation for the features they provide by
tracing back to the cognitive theories. For example, the Rigi
system [96] has support for multiple views, cross-referencing
and queries to support bottom-up comprehension. The
Reflection tool [97] has support for the top-down approach
through hypothesis generation and verification. The Bauhaus
tool [38] has features to support clustering (identification of
components) and concept analysis. The SHriMP tool [132]
provides navigation support for the Integrated Metamodel,
i.e, frequent switching between strategies. And the

119

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Codecrawler tool [79] uses visualization of metrics to
support understanding of an unfamiliar system and to
identify bottlenecks and other architectural features.

All these tools combine reverse engineering tasks with
software visualization techniques to improve program
comprehension on different levels of abstraction, gathering
information recovered or simply mined together into user-
friendly viewed chunks of valuable data for the programmer.

3) Tool trends
The forthcoming breakthroughs in tool technology seem

promising as research and evaluation methods and theories
become more relevant to end-users doing programming-like
tasks. Therefore, directions in tool evolution appear to follow
several guidelines presented next [129].

a) Faster tool innovations.
 The use of frameworks as an underlying technology for

software tools is leading to faster tool innovations, as less
time needs to be spent reinventing the wheel. A prime
example of how frameworks can improve tool development
is the Eclipse platform [36]. Eclipse was specifically
designed with the goal of creating reusable components,
which would be shared across different tools. The research
community benefits from this approach in several ways.
Firstly, they are able to spend more time writing new and
innovative features as they can reuse the core underlying
features offered by Eclipse and its plug-ins; and secondly,
researchers can evaluate their prototypes in more
ecologically valid ways as they can compare their new
features against existing industrial tools.

b) Mix ‘n match tools.
 Given a suite of tools that all plug in to the same

framework, together with a standard exchange format (such
as GXL), researchers will be able to more easily try different
combinations of tools to meet their research needs. This
should result in increased collaborations and more relevant
research results. Such integrations will also lead to improved
accessibility to repositories of information related to the
software including code, documentation, analysis results,
domain information and human activity information.
Integrated tools will also lead to fewer disruptions for
programmers.

c) Recommenders and search.
 Software engineering tools, especially those developed

in research, are increasingly leveraging advances in
intelligent user interfaces (e.g., tools with some domain or
user knowledge). Recommender systems are being proposed
to guide navigation in software spaces. Examples of such
systems include Mylar [74] and NavTracks [124]. Mylar,
(now called MyLyn) uses a degree of interest model to filter
non-relevant files from the file explorer and other views in
Eclipse. NavTracks provides recommendations of which
files are related to the currently selected files. Deline et al.
also discuss a system to improve navigation [31]. The FEAT
tool suggests using concern graphs (explicitly created by the
programmer) to improve navigation efficiency and enhance
comprehension [114]. Search technologies, such as Google,
show much promise at improving search for relevant

components, code snippets and related code. The Hipikat
tool [30] recommends relevant software artifacts based on
the developer’s current project context and development
history. The Prospector system recommends relevant code
snippets [86]. It combines a search engine with the content
assist in Eclipse to help programmers use complex APIs.
Although new, this work shows much promise and it is
expected to improve navigation in large systems while
reducing the barriers to reuse components from large
libraries.

d) Adaptive interfaces.
 Software tools typically have many features, which may

be overwhelming not only for novice users, but also for
expert users. This information overload could be reduced
through the use of adaptive interfaces. The idea is that the
user interface can be tailored automatically, i.e., will self-
adapt, to suit different kind of users and tasks. Adaptive
interfaces are now common in Windows applications such as
Word. Eclipse has several novice views (such as Gild [132]
and Penumbra) and Visual Studio has the Express
configuration for new users. However, neither of these
mainstream tools currently have the ability to adapt nor even
to be easily manually adapted to the continuum of novice to
expert users.

e) Visualizations.
 These have been subject of much research over the past

ten to twenty years. Many visualizations, and in particular
graph-based visualizations, have been proposed to support
comprehensions tasks, some of then already referred in
section 2.2.2. Other examples include Seesoft [11], Bloom
[111], Landscape views [103], and sv3D [87]. Graph
visualization is used in many advanced commercial tools
such as Klocwork, Imagix4D and Together. UML Diagrams
are also commonplace in mainstream development tools.
One challenge with visualizing software is scale and
knowing at what level of abstraction details should be
shown, as well as selecting which view to show. More
details about the user’s task combined with metrics
describing the program’s characteristics (such as inheritance
depth) will improve how visualizations are currently
presented to the user. A recommender system could suggest
relevant views as a starting point. Bull proposes the notion of
model-driven visualization [24]. He suggests creating a tool
for tool designers and expert users that recommends useful
views based on characteristics of the model and the data.

f) Collaborative support.
 As software teams increase in size and become more

distributed, collaborative tools to support distributed
software development activities are more crucial. In
research, there are several collaborative software engineering
tools being developed such as Jazz and Augur [66] [47].
There are also some collaborative software engineering tools
deployed in industry, such as CollabNet, but they tend to
have simple tool features to support communication and
collaboration, such as version control, email and instant
messaging. Current industrial tools lack more advanced
collaborative features such as shared editors, and research
falls short on providing empirical work to improve these

120

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tools. Another area for research that may prove useful is the
use of large screen displays to support co-located
comprehension. O’Reilly et al. [101] propose a war room
command console to share visualizations for team
coordination. There are other research ideas in the CSCW
(computer supported collaborative work) field that could be
applied to program comprehension.

g) Domain and pedagogical support.
 The need to support domain experts that lack formal

computer science training will necessarily result in more
domain-specific languages and tools. Non-experts will also
need more cognitive scaffolding to help them learn new
tools, languages and domains more rapidly. Pedagogical
support, such as providing examples by analogy, will likely
be an integral part of the future software tools. The work
discussed above on recommending code examples is also
suggested at helping novices and software immigrants (i.e.,
programmers to a new project). Results from the empirical
work also suggest that there is a need for tools to help
programmers learn a new language. Technologies such as
TXL [29] can play a role in helping a user see examples of
how code constructs in one language would appear in a new
language.

III. FRAMEWORK UNDERSTANDING
Program comprehension covers a wide range of sub-areas
when it comes to comprehend programs. When we say
programs, we mean software artefacts: constructs built upon
source-code. A framework can be considered one of such
artefacts and, due to its importance and growing adherence
by the software community, spawned and research area of its
own. Framework understanding deals with understanding
and learning about a framework for usage, implementation,
and evolution.

Object-oriented frameworks are a powerful form of reuse
but they can be difficult to understand and reuse correctly.
They are promoted as having the potential to provide the
benefits of large-scale reuse [49] [25] [43]. While practical
evidence does suggest that framework usage can increase
reusability and decrease development effort [95], experience
has identified a number of issues that complicate framework
application and limit potential benefits [18]. One of the
major challenges is effective framework understanding – a
specialized kind of program comprehension.
Over the past decade a large range of candidate
documentation techniques has been proposed to support
framework understanding, including design patterns [29],
pattern languages [70], example-based learning [118],
cookbooks [78], hooks [48] and exemplars [50].

However, the lack of investigation of these techniques
and their impact in framework understanding, together with

the lack of insight into problems that limit the
comprehension and reuse of software frameworks, spurred a
few studies, which identified some concerns and bases for
future research in the field. The next section will briefly
address some of these studies, and, afterwards, a brief review
of some existing tools and approaches to aid in framework
understanding and reuse. An overall depiction of the main
ideas behind framework understanding is shown in Figure 2.

A. Reuse and comprehension issues
There is a considerable quantity of literature into

framework domain, but little of it deals with the
identification of reuse problems or evaluation of strategies to
support the framework developer as a whole. There are tools
that address topics under the realm of framework building,
design recovery and documentation, but none clearly
emphasizes or studies the overall symptoms behind
ineffective framework reuse, and thus hindering a
framework’s main goal.

Fayad and Schmidt [43] claimed that different
alternatives could improve framework understandability:

• Refining the framework’s internal design.
• Using methods that can ensure a successful

development and usage of frameworks.
• Adhering to standards for framework development,

adaptation, and integration.
• Producing comprehensible framework

documentation.
These guidelines are mainly preventive and don’t focus

on the issue of reusability, being general advices.
Nevertheless, they can be relevant as rules of thumb for
framework development and maintenance.

Butler, Keller and Milli [26] describe a taxonomy of
framework documentation primitives that appear to address
reusability issues. They describe six primitives, which
emphasize the need for information about class interfaces
and communication protocols between classes.

Johnson [70] identifies three important areas for
framework documentation to address – purpose, how to use
and design. He argues that the purpose of the framework and
its constituent parts should be communicated so that
developers may select the correct parts for a task. While
knowledge of how those parts are expected to operate allows
them to be employed correctly and a description of the
underlying design provides developers with an
understanding of how to adapt and extend the framework in
a manner consistent with existing structure.

121

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Shull et al. [118] presents an evaluation of the role that
examples play in framework reuse. Their study compared
two approaches to framework reading and eventual
documentation, and example-based approach and a
hierarchical-based approach. Their results suggested that
examples are an effective learning strategy, especially for
those beginning to learn a framework. They also identify
potential problems with an example-based approach: finding
the small pieces of required functionality in larger examples,
inconsistent organization and structure of examples and lack
of design choice rationale in example documentation. They
also discuss the possibility that developers become too
reliant on examples and do not understand the system at a
sufficient level of detail to implement effectively from
scratch when necessary.

Kirk et al. [75] conducted a research, through observation
of both novice and experienced re-users, where they
identified four fundamental problems of framework reuse:

• Mapping identifies the problem on translating an
abstract, conceptual solution into a concrete
implementation, which reuses the existing structures
within the framework. Such problems were often
expressed as “what should I use to represent…?” or
“How do I express…?”

• Understanding functionality describes problems
understanding what specific parts of the framework
actually do. Manifestations of this problem included
“How does … work?”, “Where … does happen?” or
“Where is … defined/created/called?”

• Understanding interactions focuses on problems
concerning the communication between classes in
the framework (“What happen if …?” or “Where
should I put …?”). Such problems are significant
because of hidden or subtle dependencies within the
framework that may cause failures to occur
elsewhere as the result of a wrongly positioned
modification.

• Understanding the framework architecture is the
problem of making modifications without giving
appropriate consideration to the high-level
architectural qualities of the framework. Such

alterations might have no short-term effects but
ultimately lead to the framework losing its
flexibility.

From these problems, the authors experimented applying
two known solutions they deemed the most suited to address
these issues: pattern languages and micro-architectures.
Their results showed that the pattern language provided
some support for mapping problems, particularly for those
with no experience of the framework, by introducing key
framework concepts and providing examples of framework
use. However, it was clear that previous experience
dominated the explicit use of the pattern language, as well as
being an inhibitor to other forms of documentation as its
immediacy often precludes consideration of alternative
solutions.

Although the micro-architectures, used to help develop
and understanding of the key interactions within the
framework, seemed relatively ineffective, it is the authors’
belief that documentation of this kind is necessary to address
these problems in particular.

B. Tools to assist framework understanding
As for program comprehension tools, the same line of

thinking applies for framework understanding tools. Both
subjects share the same problems and trends, yet some
framework specific issues may be addressed when devising
aids to framework learning and understanding.

The past and present research in the field focus on topics
that range from uncovering design artifacts to representing
processes and behaviors that might help using the
framework. Mostly, the proposals converge to producing and
enhancing existing documentation with adequate information
that can be mined and represented using different formats
(recipes, cookbooks), languages (patterns, beacons, idioms)
and notations (textual, graphical, UML, formal languages,
etc.). Next, a brief summary of these proposals is presented.
The categorization used emerged from its most relevant
technique, yet several use mixed approaches combining
several techniques to optimize their results.

1) Cookbooks
Confronting the challenge of communicating how to use

the Model-View-Controller framework in Smalltalk-80,
Krasner and Pope [78] built an 18-page cookbook that
explained the purpose, structure, and implementation of the
MVC framework. This cookbook was designed to be read
from beginning to end by programmers and could also be
used as a reference but every recipe did not follow a
consistent structure nor was it suitable for parsing by
automatic tools.

The Framework EDitor / JavaFrames project [59] [60]
[61] has developed a language for modelling design patterns
and tools that act as smarter cookbooks, guiding
programmers step-by-step to use a framework. With the 2.0
release of JavaFrames, many of these tools work within the
Eclipse IDE. Their language allows expression of structural
constraints and the tool can check conformance with the
structural constraints. Code can be generated that conforms
to the patterns definition, optionally including default
implementations of method bodies. Specific patterns can be

Figure 2 - Framework Understanding topics

122

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

related to general patterns; for example a specific use of the
Observer pattern in a particular framework can be connected
to a general definition of the Observer pattern.

2) Design Artifacts
Ralph Johnson seems to be the first to suggest

documenting frameworks using patterns [70]. He notes that
the typical user of framework documentation wants to use
the framework to solve typical problems, but also that
cookbooks do not help the most advanced users [71].
Patterns can be used both to describe a framework’s design
as well as how it is commonly used. He argues that the
framework documentation should describe the purpose of the
framework, how to use the framework, and the detailed
design of the framework. After presenting some graduate
student with his initial set of patterns for HotDraw [20], he
realized that a pattern isolated from examples is hard to
comprehend.

Froelich et al.’s hooks [48] focus on documenting the
way a framework is used, not the design of the framework.
They are similar in intent to cookbook recipes but are more
structured in their natural language. The elements listed are:
name, requirement, type, area, uses, participants, changes,
constraints, and comments. The instructions for framework
users (the changes section) read a bit like pseudo code but
are natural languages and do not appear to be parsable by
tools.

Design patterns themselves can be decomposed into
more primitive elements [106]. Pree calls these primitive
elements metapatterns and catalogues several of them with
example usage. He proposes a simple process for developing
frameworks where identified points of variabilility are
implemented with an appropriate metapattern, enabling the
framework user to provide an appropriate implementation.

From the declarative metaprogramming group from Vrije
University, Tourwé and Mens [141] [142] use Pree’s
metapatterns to document framework hotspots and define
transformations for each framework and design patterns.
Framework instances (plug-ins) can be evolved (or created)
by application of the transformations. The tool uses SOUL, a
prolog-like logic language. The validation was done on the
HotDraw framework by specifying the metapatterns, patterns
and transformations needed. The validation uncovered
design flaws in HotDraw, despite its widespread use, along
with some false positives. The declarative metaprogramming
approach to modeling framework hotspots appears to have
significant up-front investment before payoff in order to
provide its guarantees about correct use of the framework. It
may additionally assume a higher level of accuracy or
correctness in frameworks than will commonly be found in
practice. The authors comment that their approach
specifically avoids design patterns in favor of metapatterns
because there could be many design patterns. While this
makes their technique generally applicable and composable,
it will be difficult to add pattern-specific semantics and
behavior checking to their approach.

JFREEDOM [44] is a design recovery tool that discovers
metapatterns in a framework or software system. It relies on
Tourwé’s formal definition of metapatterns and uses JQuery,
a logic inference-engine, to search the code for instances of

these metapatterns. It then recommends possible GoF [49]
design pattern instances based on its found metapatterns.
Other design pattern recovery tools exist and a brief review
of each one can be found in [44]. Design pattern recovery is,
by itself, a research field where a community recently
formed to combine efforts.

Bruch et al. [23] propose the use of data mining
techniques to extract reuse patterns from existing framework
instantiations. Based on these patterns, suggestions about
other relevant parts of the framework are presented to novice
users in a context-dependent manner. They built FrUiT, an
Eclipse plug-in that implements the approach and, yet at an
early stage, already presents several benefits: relying on
expert-written framework instantiations, there is no need to
create special artifacts such as documentation or code
snippets; using data mining, significant reuse rules are
extracted, only concerning how to use the framework; and
the tool makes automatic context search relieving developers
from searching for rules explicitly.

Fairbanks et al. [42] present a pattern language based on
the notion of design fragment. A design fragment is a pattern
that encodes a conventional solution to how a programmer
interacts with a framework to accomplish a certain goal. It
provides the programmer with a “smart flashlight” to help
him/her understand the framework, illuminating only those
parts of the framework he/she needs to understand for the
task at hand. They use XML to express these patterns, so that
automation tools are a step away. They have analyzed the 20
Java applets provided by Sun and came up with a catalogue
of design fragments, which evaluated against other 36
applets from the internet proved that those design fragments
were common and recurrent. Design fragments gives
programmers immediate benefit through tool-based
conformance and long-term benefit through expression of
design intent.

Zdun and Avgeriou [151] propose to remedy the problem
of modeling architectural patterns through identifying and
representing a number of architectural primitives that can act
as the participants in the solution that patterns convey.
According to the authors, these “primitives” are the
fundamental modeling elements in representing a pattern and
also they are the smallest units that make sense at the
architectural level of abstraction (e.g., specialized
components, connectors, ports, interfaces). Their approach
relies on the assumption that architectural patterns contain a
number of architectural primitives that are recurring
participants in several other patterns. They chose UML as the
preferred notation to represent the primitives and pretend to
formalize the definitions using OCL.

3) Notations and formal languages
A UML profile is a restricted set of UML markup along

with new notations and semantics [46]. Fontoura et al.
present the UML-F profile that provides UML stereotypes
and tags for annotating UML diagrams to encode framework
constraints. Methods and attributes in both framework and
user code can be marked up with boxes (grey, white, half-
and-half, and a diagonal slash) that indicate the
method/attribute’s participation in superclass-defined
template patterns. A grey-box indicates newly defined or

123

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

completely overridden superclass method. A white box
indicate inherited and not redefined, a half-and-half indicates
refined but call to super(), and a slashed box indicates an
abstract superclass method.

The Fixed, Adapt-static, and Adapt-dyn tags annotate the
framework and constrain how users can subclass. Template
and Hook tags annotate framework and user code to
document template methods. Stereotypes for Pree’s
metapatterns (like unification and separation variants) are
present, as are predefined tags for the GoF patterns. Recipes
for framework use are present in a format very similar to that
of design patterns but there is no explicit representation of
the solution versus the framework. The recipe encodes a list
of steps for programmer to perform.

The Framework Constraint Language (FCL) [65] applies
the ideas from Richard Helms object oriented contracts [62]
to frameworks. Much like Riehle’s role models [112], FCLs
specify the interface between the framework and the user
code such that the specification describes all legal uses of the
framework. The researchers raise the metaphor of FCL as
framework-specific typing rules and validate their approach
by applying it to Microsoft Foundation Classes, historically
one of the most widely used frameworks. The language has a
number of built-in predicates and logical operators and is
designed to operate on the parse tree of the user’s code.

C. Trends
Not as developed as program comprehension, framework

understanding research still has room for expansion, and
future work is needed to address existing open issues. It
shares the same trends as program comprehension, yet it has
its own issues. Reuse problems must be better addressed by
documentation or tool support if frameworks are to be
widely adopted. There are still significant and stimulant
challenges:

1) Pattern languages.
 While developing pattern languages for framework

documentation, some issues have to be addressed such as
identifying the expertise necessary to create effective pattern
languages, how to identify the framework domain problems
that should be the basis of patterns in the pattern language,
how to best describe patterns, and what inter-pattern
relationships should be included.

2) Widen context domain research.
 There is a clear need to investigate the prevalence of

framework understanding problems in industrial context
frameworks. Industry and academia have to join efforts to
ascertain the impact frameworks learning problems have in
large-scale software development environments, so that
adequate solution may be searched for.

3) Integrated environments.
 With the advent of pluggable and extensible software

development environments (like, Eclipse), tools for assisting
on framework understanding tend to be integrated into these
self-sustainable platforms, producing solutions that are
multi-faceted and present different and varied approaches to
accommodate different user needs. The combination and
personalization of these tools, offer flexibility to adjust the

environments to the specific needs of particular users in
particular tasks.

IV. COLLABORATIVE SOFTWARE ENVIRONMENTS
Software projects usually involve a team or multiple

teams that have to work together. For some time now, there
has been a concern on how to coordinate these teams of
developers to be able to efficiently work together. Research
areas such as Groupware and Computer-Supported
Collaborative Work rose to address collaboration supported
by software. The Collaborative Software Engineering
domain deals with collaboration within the software
development process. The next sections address these
research areas in further detail.

A. Groupware and CSCW
Many credit Peter and Trudy Johnson-Lenz for coining

the term “groupware” in 1978. They defined it as:
“intentional group processes plus software to support them”.
This definition, however, was not widely accepted as it has
narrowed the scope of group work to a set of processes.

Another attempt to provide a definition came from
Johansen [69]: “Groupware… a generic term for specialized
computer aids that are designed for the use of collaborative
work groups. Typically, these groups are small project-
oriented teams that have important task and tight deadlines.
Groupware can involve software hardware, services, and/or
group process support”. This definition also didn’t take, as it
would exclude categories of products that were not designed
specifically for supporting work groups, like email or shared
databases. Besides that, it also focuses on small teams, which
is also restrictive.

To broaden the scope, Ellis et al. [39] proposed to define
groupware as: “computer-based systems that support groups
of people engaged in a common task (or goal) and that
provide an interface to a shared environment”. Although less
restrictive, this definition was considered too broad. Despite
excluding multi-user systems (such as time-sharing systems
where users don’t share the same goal), it would include
shared database systems. Many argue that these systems
cannot be considered groupware because they provide the
illusion that every user has independent access, alas, they are
not “group-aware.”

In general, as Grudin points out in [57] groupware means
different things to different people. According to Nunamaker
et al. [100], groupware is defined as “any technology
specifically used to make a group more productive”.
Coleman states [28], “Groupware is an umbrella term for the
technologies that support person-to-person collaboration;
groupware can be anything from email to electronic meeting
systems to workflow”. These definitions although quite
broad capture almost all the products and projects that are
identified as groupware.

The common denominator in all the above definitions is
the notion of group work. Groupware is designed to support
teams of people working together. As such, groupware
provides a new focus in software technology from human –
computer to human – human interaction. Human interactions
have three key elements: communication, collaboration and

124

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

coordination. The goal of groupware is to assist groups in
communicating, in collaborating and in coordinating their
activities [39], and has been focusing on these issues for
years.

The fact that most groupware tools failed to be widely
adopted made clear the need for a better understanding of
how groups of people work together. A new research area
emerged called: “Computer-Supported Collaborative Work
(CSCW)”.

Iren Greif of MIT and Paul Cashman of Digital
Equipment Corporation, who organized a workshop in 1984
for people interested in how groups work, coined the term
CSCW. Since then, this new field attracted a lot of interest.
Amongst the various definitions, Wilson’s seems to have
captured the scope of CSCW [148]: “CSCW [is] a generic
term, which combines the understanding of the way people
work in groups with the enabling technologies of computer
networking, and associated hardware, software, services and
techniques.” Greenberg [54] adds: “CSCW is the scientific
discipline that motivates and validates groupware design. It
is the study and theory of how people work together, and
how computer and related technologies affect group
behavior.”

CSCW collects researchers from a variety of
specializations – computer science, cognitive science,
psychology, sociology, anthropology, ethnography,
management, and information systems – each contributing a
different perspective and methodology for acquiring
knowledge of groups and for suggesting how the group’s
work could be supported.

CSCW led to a better understanding of groups and made
clear that group relationships are not based only on
communication, collaboration and co-ordination. As pointed
out by Kling [77]: “In practice, many working relationships
can be multivalent with and mix elements of co-operation,
conflict, conviviality, competition, collaboration,
commitment, caution, control, coercion, co-ordination and
combat.”

CSCW researchers that design and build systems try to
address core concepts in novel ways. These concepts have
largely been derived through the analysis of systems

designed by researchers in the CSCW community, or
through studies of existing systems and the most addressed
are:

• Awareness. Individuals working together need to be
able to gain some level of shared knowledge about
each other's activities [33].

• Articulation work. Cooperating individuals must
somehow be able to partition work into units, divide
it amongst themselves and, after the work is
performed, reintegrate it [126].

• Appropriation (or tailorability). How an individual
or group adapts a technology to their own particular
situation; the technology may appropriate in a
manner completely unintended by the designers [34].

However, the complexity of the domain makes it difficult
to produce conclusive results. The success of CSCW systems
is often so contingent on the peculiarities of the social
context that it is hard to generalize. Consequently, CSCW
systems that are based on the design of successful ones may
fail to be appropriated in other seemingly similar contexts for
a variety of reasons that are nearly impossible to identify a
priori [56].

In [2], Ackerman describe CSCW’s main intellectual
contribution has the effort to close the social-technical gap
between what we know we must support socially and what
we can support technically. He states that systems lack
nuance, flexibility and ambiguity, clearly properties inherent
to Human activity. Therefore, the social aspects must be
taken into account when designing systems for these to be
increasingly effective.

In [109], Weber et al. contributed with a taxonomy that
defines and describes criteria for identifying CSCW systems
and serves as a basis for defining CSCW system
requirements. The criteria are divided into three major
groups:

• Application. From an application viewpoint, certain
tasks are generically present in many scenarios, from
general-purpose tasks such as brainstorming, note
taking and shared agenda features to more dedicated
domains where there is the need for tailored tools.
To the user, a CSCW system appears complete only
when specialized and generic tools are integrated.

• Functional. A CSCW system relates functional
features with the social aspects of teamwork. Each
functionality has an impact on the work behavior
and efficiency of the entire group using the system.
Issues such as interaction, coordination, distribution,
user-specific reactions, visualization and data hiding
must be taken into consideration. However, the
psychological, social, and cultural processes active
within groups of collaborators are the real keys to
the acceptance and success of CSCW Systems.

• Technical. This criteria comprises hardware,
software and network support. It divides the
architecture of a CSCW system into four classes of
classes or features: (1) input, (2) output, (3)
application, and (4) data. Each can be centralized or
replicated.

Figure 3 - Groupware Matrix (extracted from [69][10])

125

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For all of these groups, concerns such as flexibility,
transparency, collaboration and sharing are addressed and
guidelines for supporting them are presented.

Another approach to conceptualizing groupware and a
CSCW system, states that its context can be considered
along two dimensions: first, whether collaboration is co-
located or geographically distributed, and second, whether
individuals collaborate synchronously (same time) or
asynchronously (not depending on others to be around at the
same time). This approach can be seen in Figure 3 and was
first introduced by Johansen [69] in 1988, also appearing in
[10].

As the research continues, both groupware and CSCW
fields still face challenges. The current trends evolve mostly
in the following directions:

1) Mobile technologies.
 With the emergence of new mobile technologies and the

increasing connectivity users enjoy, the importance of having
light, easy-to-use and accessible groupware features is
growing.

2) Web 2.0.
 With the advent of concepts of the so-called second-

generation web or “Web 2.0”, collaboration and contextual-
connectivity become even more present in our day-to-day
activities. From blogs to wikis, social software is booming
and its capabilities should be harnessed to improve group
work.

3) Strong commercial interest.
 Major commercial competitors such as Microsoft,

Google, IBM, amongst others, are releasing solutions into
the market at an increasing rate. This must come as an
incentive to continue researching into these ever-increasing
fields of interest.

4) Delocalization of groups.
 Teams and groups are becoming more and more

delocalized. Work stops at one side of the planet and starts
contiguously on the other side. Communication and
synchronism become critical for a adequate and effective
flow of work.

B. Collaborative Software Engineering
Software engineering projects are inherently cooperative,

requiring many software engineers to coordinate their efforts
to produce a large software system [146]. As such, this effort
encompasses the development of a shared understanding
surrounding multiple artefacts, each embodying its own
model, over the entire development process. Figure 4 depicts
that effective communication and awareness are crosscutting
concerns across, not only the phases of software
development but its models, process and infrastructure.

Collaboration techniques in software engineering have
evolved to address our limitations: humans are slow and
error-prone, especially when working at high-levels of
abstraction; our natural language is expressive but
ambiguous; our memory skips the details of large projects
and we can’t keep track of what everyone is doing.

Software engineering collaboration has multiple goals
spanning the entire lifecycle of development:

a) Establish the scope and capabilities of a project.
 Engineers must work with the users and stakeholders of

a software project to describe what it should do at both a
high level, and at the level of detailed requirements. How
this collaboration takes place can have profound impact on a
project, ranging from the up-front negotiation of the
waterfall model, to the iterative style of evolutionary
prototyping [90].

b) Converge towards a final architecture and design.
 System architects and designers must negotiate, create

alliances, and engage domain experts to ensure convergence
on a single system architecture and design [55].

c) Manage dependencies among activities, artefacts,
and organizations.

 This encompasses a wide range of collaborative
activities, including typical management of subdividing work
into tasks, ordering them, monitoring, assessing, and
controlling the plan of activities [85].

d) Reduce dependencies amongst engineers.
 An important mechanism for managing dependencies is

to reduce them where possible, thereby reducing the need for
collaboration. Defining per-developer workspaces helps
reducing dependencies in development time.

e) Identify, record and resolve errors.
 Errors and ambiguities exist in all software artefacts, and

many approaches have been developed to find and record
them. Collaborative techniques such as inspections, reviews,
beta testing and bug tracking assist on mitigating these
problems and tracking the quality of the software.

f) Record organizational memory.
 In any long running collaborative project, people may

join and leave. Part of the work of collaboration is recording
what people know, so that project participants can learn this
knowledge now, and in the future [3]. SCM change logs are
one form of organizational memory in software projects, as
are project repositories of documentation. Process models
also record organizational memory, describing best practices
for how to develop software.

Figure 4 - Collaborative Software Engineering Model

126

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Collaboration in software engineering can be
unstructured, where occasional and sporadic informal
conversations occur concerning a piece of software
anywhere in the project’s lifecycle. It can also be structured,
where the focus goes to various formal and semi-formal
artefacts (requirement specifications, architecture diagrams,
UML diagrams, source-code, bug reports, etc.) Software
engineering collaboration can thus be understood as artefact-
based, or model-based collaboration, where the focus of
activity is on the production of new models, the creation of
shared meaning around the models, and elimination of error
and ambiguity within the models. Without the structure and
semantics provided by the model, it would be more difficult
to recognize differences in understanding among
collaborators.

This focus on model-oriented collaboration embedded
within a larger process is what distinguishes collaboration
research in software engineering from broader collaboration
research, which tends to address artefact-neutral coordination
technologies and toolkits.

Software engineers have developed a wide range of
model-oriented technologies to support collaborative work
on their projects. These technologies span the entire
lifecycle, including collaborative requirements tools
[16][136], collaborative UML diagram creation, software
configuration management systems and bug tracking systems
[137].

Process modelling and enactment systems have been
created to help manage the entire lifecycle, supporting
managers and developers in assignment of work, monitoring
current progress, and improving processes [17] [81]. In the
commercial sphere, there are many examples of project
management software, including Microsoft Project [92] and
Rational Method Composer [108]. Several efforts have
created standard interfaces or repositories for software
project artefacts, including WebDAV/DeltaV [35][147] and
PCTE [144]. Web-based integrated development
environments serve to integrate a range of model-based
(SCM, bug tracking systems) and unstructured (discussion
list, web pages) collaboration technologies.

1) Tools, environments and infrastructure
Tool support developed specifically for collaboration in

software engineering falls into four broad categories:
a) Model-based collaboration tools.

 Software engineering involves the creation of multiple
artifacts. These range from the end product and the source
code to all the models, diagrams and specifications that cover
all the phases of the software development process. Each
artifact has its own semantics, with a variable degree of
formality, and creating them is an inherently collaborative
activity. Systems designed to support the collaborative
creation and editing of specific artifacts are really supporting
the creation of specific models, and hence support the model-
based collaboration. Collaboration tools exist to suppose the
creation of every kind of model found in typical software
engineering practice.

b) Process centred collaboration.

 A software process model structures steps, roles and
artifacts to create during software development. Typically,
engineers reduce the amount of overhead coordination to
initiate the project, tackling more quickly with the project at
hand, rather than negotiating the entire project structure.
Overtime, as experience grows, the net effect is to reduce the
amount of coordination work required within a project by
regularizing points of collaboration, as well as to increase
predictability of future activity. Process centered software
development environments have facilities for writing
software process models in a process modeling language,
then executing these models in the context of the
environment. For example, the environment can manage the
assignment of tasks to engineers, monitor their completion,
and automatically invoke appropriate tools. Some examples
of such systems are Arcadia [72], Oz [12], Marvel [13],
ConversationBuilder [73], and Endeavours [17].

c) Collaboration awareness.
 Software engineering is a human-driven and human-

intensive activity. Most medium- to large-scale projects
involve multiple software developers that may or may not be
co-located. In recent years, there has been much work in
developing collaborative development environments that
provide support for coordination and communication during
software development [66]. A key issue in any collaborative
is awareness, or “knowing what is going on” [40]. More
precisely, awareness is “an understanding of the activities of
others, which provides a context for [one’s] own activity”
[33]. Awareness encompasses knowing who else is working
on the project, what they are doing, which artifacts they are
or were manipulating, and how their work may impact other
work. In distributed collaborative work, maintaining
awareness is considerably more difficult. Research areas
ranging from software visualization to reverse engineering
have been developing tools and techniques to provide
awareness during software development. Seesoft [37],
Palantir [116], Lighthouse [122] and Jazz [66] are but a few.
A more extensive survey and comparison study can be found
at [134].

d) Collaboration infrastructure.
 Various infrastructure technologies make it possible for

engineers to work collaboratively. Software tool integration
technologies make it possible for software tools to coordinate
their work. Major forms of tool integration include data
integration (ensuring that tools can exchange data), control
integration (ensuring that tools are aware of activities of
other tools and can take action based on that knowledge). For
example, nowadays, most IDEs know when a source-file is
saved after editing and store it on a central repository (data
integration) or SCM, then automatically call the proper
compiler (control integration). Tools like Eclipse, Visual
Studio, Marvel and WebDAV already implement these
behaviors. Whether through calling other external tools
based on the context of the task or coordinating between
integrated tools, these environments already bring a
sustainable collaboration between engineers and theirs
development tasks.

2) Trends and future research directions

127

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

There are still several areas to be addressed for
improving collaboration in software engineering, which may
reveal the future trends on this domain of expertise.

a) Integrating web and desktop environments.
 The migration of development tools to the web is

increasing, now that the user interface is becoming more
sophisticated (thanks to AJAX and its overall adoption) and
the processing power of browsers is higher. UML and source
code editing are no longer relegated only to desktop
applications, whereas in the past, the web could not support
such features. Despite this trend, there is a longstanding
practice surrounding the use of integrated development
environments (Visual Studio, Eclipse, JBuilder, etc.), which
are not going to be displaced by completely web-based
environments. Instead, future projects are likely to adopt a
mixture of web-based and desktop tools, for which
interfacing open standards between the desktop IDE’s and
the web-based services should be created. Although not an
easy task, these open standards would allow a more seamless
interaction with the complex information a software project
creates.

b) Broader participation in design.
 Currently, software customers are engaged in the

development process during requirements elicitation, but
then become not so engaged for the requirements analysis,
design and coding phases, only to reconnect again for the
final phase of testing. Broadened participation by customers
in the requirements analysis, design, coding and early testing
phases would keep them engaged during these middle stages,
allowing a more actively assurance that their direct needs are
met. By increasing the participation of the direct end users,
software engineers can reduce the risk that the final product
does not meet the needs of customer organizations. Surely, a
balance between completely open-sourced projects and a
fine-grained proprietary closed-source model available for
the customer to refine has to be made. Nevertheless, a
participatory development model would allow customers a
better tailoring of the software to their needs. The trend
toward providing support for distributed development teams
in a wide range of development tools makes a broader
engagement possible. Open source SCM tools like
Subversion, as well as web-based requirements tools and
problem tracking tools make it possible to coordinate
globally distributed teams.

c) Capturing rationale argumentation.
 One of the strongest design criteria used in software

engineering is design for change, which inherently involves
making predictions about the future. As a result, the design
process is not just and engineer making rational decisions
from a set of facts, but instead is a predictive process in
which multiple engineers argue over current facts and future
potentials. Architecture and design are argumentative
processes in which engineers resolve differences of
prediction and interpretation to develop models of a software
system’s structure. Since only one vision will prevail, the
process of architecture and design is simultaneously
cooperative and competitive. Providing collaborative tools to
support engineers in the recording and visualization of

architecture and design argumentation structures would do a
better job of capturing the nuances and tradeoffs involved in
creating large systems. They would also better convey the
assumptions that went into a particular decision, making it
easier for succeeding engineers to know when they can
safely change a system’s design.

d) Using novel communication and presence
technologies.

 Software engineers have a long track record of
integrating new communication technologies into their
development processes. Email, instant messaging and web-
based applications are very commonly used in today’s
projects to coordinate work and be aware of whether other
developers are currently active (present). As a result,
engineers would be expected to adopt emerging
communication and presence technologies if they offer
advantages over current tools. For instance, networked
collaborative 3d game worlds are such an emerging
technology that spawned “software immersion
environments”. Second Life is an example of using such a
3D world to develop software, as their team uses its own
platform to do so. There is a range of research issues inherent
to the use of 3D virtual environments as a collaboration
infrastructure, for example, how to synchronize physical and
virtual worlds. Ultimately, the utility of adopting a 3D virtual
world needs careful examination, as the benefits of the
technology need to clearly exceed the costs. It is currently
very unclear that this is true.

e) Improved assessment of collaboration technology.
 Assessing the impact of the introduction of new

technology into a project is difficult, and usually subjective.
Estimation in software development is a difficult task, which
hinders the objective assessment of collaboration technology.
Without the uncovering of the pros and cons of specific
collaboration tools, forward progress in the field of software
collaboration support tools is hard to measure. There is a
lack of studies how already introduced tools (instant
messaging, Internet-aware SCM tools, email, bug tracking
systems, etc.) that quantify the benefits received from using
these collaboration tools. Developing improved methods for
assessing the impact of collaboration tools would boost
research in these areas by increasing confidence in positive
results, and making it easier to convince teams to adopt new
technologies.

V. OPEN ISSUES
Program Comprehension deals with understanding

programs and software artefacts. Framework Understanding
focuses on a specific kind of software artefact: a framework.
This understanding is often made resorting only to
information on the artefact itself and accompanying
documentation. More and more, software is developed
collaboratively. Can this “collaboration” help in framework
understanding?

From the state-of-the-art review, a number of open
research issues arise. An insight of the most relevant ones
follows, as a means to focus the reader to the intended scope:

a) Frameworks are often hard to understand and use.

128

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 The difficulty of understanding frameworks is a serious
inhibitor of effective framework reuse. This is mainly due to
framework designs being usually very complex, and thus
hard to communicate. The framework design is: (1) very
abstract, to factor out commonality; (2) incomplete, requiring
additional classes to create a working application; (3) more
flexible than needed by the application at hand; (4) obscure,
in the sense that it usually hides existing dependencies and
interactions between classes. The learning curve becomes
steep, requiring a considerable amount of effort to
understand and learn how to use a framework.

b) Framework documentation is often outdated and
inaccurate.

 Good documentation significantly improves the process
of learning and understanding new frameworks. By guiding
users on the customization process and by explicitly showing
the framework design principles and details, effective
documentation contributes to make frameworks easy to
reuse. Despite these reasons, framework documentation is
still regarded as of low importance within the framework
development process. Most commonly during maintenance
or evolution phases, documentation is used to assist on these
tasks but its update is often discarded or neglected.
Moreover, it is still hard, costly and tiresome to define and
write good quality documentation for a framework. Good
documentation should be easy to use, support different
audiences and provides multiple views through different
types of documents and notations. The difficulty of
producing contents for these requirements may hinder its
applicability and demotes its importance within the
development process.

c) Programmers (both experts and novices) recurrently
tackle with understanding problems.

 Every time a software developer needs to re-use a piece
of code, whether it’s a snippet, class, library or framework,
she goes over the entire cognitive process of analyzing,
understanding and capturing the relevant information she
needs. Depending on the purpose of the task at hand
(learning, teaching, communicating, using), the format
(quality, clarity, structure, abstraction level, etc.) of the code,
and the experience of the programmer (expert or novice) the
understanding process may go through various approaches
(top-down, bottom-up, etc.), not always leading to the
desired outcome in a straight forward manner. Choosing the
adequate understanding process should not be difficult, and
changing from one to another should be feasible without
much overhead.

d) The process of understanding a framework is not
properly dealt with.

 The palette of tools available to the framework learner
scarcely deals with specific aspects of framework
understanding. Without questioning its local and highly
focused solutions, each tool aids in a specific aspect, whether
capturing high-level design artifacts, browsing the code for
hot-spots, or helping on producing sustainable output
formats. Alas, the framework user has to navigate through a

plethora of tools trying to figure out where the relevant
information might be.

e) Different tools provide sparse results with variable
quality.

 By itself, each tool has its own problems and limitations,
thus producing quality-questionable results. For instance,
many of the problems design recovery (reverse engineering)
tools have, tend to converge to selection of results
(elimination of false positives) and semantic overlapping
(same result can have several meanings). With such
discrepancy amongst results, it becomes difficult to ascertain
tool efficiency and compare results regarding precision and
recall.

f) Collective knowledge of the development team is
often not harnessed at its best.

 Software development is a highly social process. It has
been perceived that, when trying to understand a piece of
code, developers turn first to the code itself and, when that
fails, to their social network, that is, the team. This behavior,
not only happens during code understanding, but also
throughout the whole understanding process. Nevertheless, it
is not easy to go for the team. Firstly, it is not clear who to
address for clarification, for there is a lack of awareness of
what other members of the team are doing or how do they
relate to the work done. Secondly, the fields of expertise are
not clear or stated, leading to wasteful interruptions of the
wrong people. Thirdly and most often, the team or the
experts are not available for consulting or rebuke their fellow
colleagues due to interruption. Interrupted developers lose
track of parts of their mental model, resulting in laborious
reconstruction or bugs and discouraging more frequent
interruptions.

g) Implicit developers’ knowledge is not captured and
shared as effectively as it could be if well supported.

 Developers go to great lengths to create and maintain
rich mental models of design and code that are rarely
permanently recorded. Very often, developers, without
referencing written material, can talk in detail about their
product’s architecture, how the architecture is implemented,
who owns what parts, the history of the code, to-dos, wish-
lists, and meta-information about the code. For the most part
this knowledge is never written down, except in transient
forms such as sketches on a whiteboard. The bottom-line
problem here is that “Lots of [useful] information is kept in
peoples’ heads” [80].

VI. KEY RESEARCH QUESTIONS
From the open issues presented before, a few research

questions revolve around a major question that is considered
central to this research work:

1) How to improve framework understanding?
a) What kind of information do developers try to

capture first? What makes them decide?
b) What are the actual goals of the framework learner?

129

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

c) Are there any typical and repeated behaviours
developers apply when trying to learn how to use a
framework?

d) How can tools assist the learning process?
e) What kind of information is presented to framework

learners that they mostly look for? What do they look for
that isn’t there?

f) What is missing from existing development
environments to assist on framework understanding?

In this paper, the authors address mainly questions d) and
f), and believe that to improve framework understanding,
tools should be collaborative and specific knowledge should
be captured and presented to the developers. The next section
will address how they intend to pursue that.

VII. IMPROVING THROUGH COLLABORATION
Teams collaborate to develop software. But not all of the

relevant knowledge is recorded for later use. Developers
tackle recurrently with understanding and learning issues,
especially if teams rotate their members often. Team
members take tacit knowledge with them that decays with
time and that proves useful later on. That knowledge, if
permanent and available, could save time when dealing again
with the system. What if that knowledge could be shared
with other developers, novice or expert? The idea is to make
that knowledge available within the development
environment. Therefore, (re) learning about the system
(frameworks, in this case) should benefit from knowing how
its was learnt in the first place.

A. Supporting the learning process
Learning how to use a framework is not a trivial task.

The learner is usually engaged in a process composed of a
series of activities. This process has best practices that can
be followed to improve its outcome. These practices could
be actively applied and improved having tools to support
them. These three levels are detailed next and depicted in
Figure 6.

1) Process
In this particular domain, there is range of activities that

may characterize the developer’s behavior while trying to
understand a framework. These activities may fall into three
categories:

a) Code

 “Where is all that we need to know”(?) The problem is
that what we need to know is not explicitly in front of us.
Furthermore, frameworks make it particularly difficult to
find what we need to know. As an example, recovering
design knowledge implicit in the code is a recurring practice
to help clarify the framework’s structure and purpose. The
questions reside on what kind of design artifacts, to what
kind of audience, and how to store and present the results so
that they are useful.

b) Documentation.
 When the developer wants to learn how to use a

framework (or any reusable software artifact, for that
matter), she goes for the documentation, if it exists. But, is
there always documentation? And is that documentation
clear, well suited and complete? Does it have all the
answers? There are known ways of producing good
documentation for frameworks [6][7][8]. The issue is
nurturing the developers to easily produce and access that
documentation, even during the learning process.

c) Social network.
 When all else fails, the developer loses her self-

sufficiency as a learner and resorts to her “contacts”, that is,
strong candidates to bear knowledge that might help her. Call
it team, peers, social network, buddies or any other term,
there is knowledge that one can’t find anywhere else but on
people’s minds. It is called intrinsic knowledge. Getting this
knowledge is intrusive. There should be ways of harnessing
this knowledge without such intrusiveness.

Putting it short, a framework learner looks at the code,
reads the documentation, visualizes information and asks her
colleagues for help, as going through a learning process of
understanding how to use the framework. Figure 5 (extracted
from [5]) depicts this scenario.

2) Best Practices
Associated with the learning process, there is a series of

good practices on how to deal with each stage of the learning
process. These are presented in [45]. A learning environment
should support and nurture these practices.

3) Supporting Tools
Depending on several factors (learner’s experience,

existing artifacts, learning goal, etc.) the learning process to
undertake may resort to different practices and paths. What
works for some, might not work for others, and may even
vary between frameworks. Novices and experts will take
different paths.

Yet, in a truly collaborative environment, where, at first,
there is no distinction between who is expert and who is

Figure 6 - Framework learning environment

Figure 5 - Learning environment support levels

130

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

novice, sharing experiences and advising the global
community proves useful [135]. The importance given to an
advice or counsel is measured by its actual applicability. You
became experienced and expert by giving valid and helpful
feedback into the community.

By supporting this sharing of knowledge, the learners
may benefit from their collective intelligence, thus
improving their own learning processes. Therefore, the
supporting tools should be prepared to capture this
knowledge, share it and assist other learners in their tasks.

B. Tool requirements
Teams turn into communities mainly due to high member

rotation, high project preemption and the widely spread of
frameworks. The strength of this community relies mainly on
its ability to withhold valuable knowledge, filtering out what
its not important. The issue is providing an effective
infrastructure to share this information amongst its members
without too much effort and to allow a “natural” selection of
what is actually valuable.

Providing such an environment would have the following
requirements:

a) Seamless integration into a IDE.
 Tools and features to support the learning process should

be available within the development environment as a means
to enforce usage, without disrupting the normal way a
developer works. When presented with possible solutions, it
should be straightforward how to proceed within the IDE to
apply those solutions.

b) Non-intrusive / non-interruptive.
 Ideally, capturing the developer’s intrinsic knowledge

should be implicit. That is, the developer should not be asked
to explicitly provide any information regarding that
knowledge to the system. In practice, a satisfactory solution
would be to notify the system we are trying to learn how to
do some task and signal reaching that goal. Bottom-line, it
should be as non-intrusive as possible.

c) Context-aware.
 The tools should be aware of the context where the

developer is learning and provide information that makes
sense within that context.

d) Web-aware.
 Not only should the environment seek knowledge within

its own boundaries (its knowledge-base), it should also be
prepared to go to the web in a contextual manner.

e) Descriptive, not prescriptive.
 The system should not tell the developer how to proceed,

but instead should give possible directions on how to solve
the task at hand.

f) Shared knowledge-base.
 The environment should store and share all the relevant

knowledge that helps the framework learning process. Not
only the documentation artifacts and source-code, but the
captured knowledge that helps guiding the developer
throughout the process.

g) Learning Path
Different developers learn in different ways. The

environment should be able to deal with the learning profile
of its users, considering aspects such as visualization of
information and easy personalization of contents.

The learning process would be supported relying on a
four-step cycle shown in Figure 7. The purpose would be to
capture the learning steps taken by the learner. Whether she
looks at the code first, goes for documentation, explores
certain artifacts, and recovers others, until she reaches a
satisfying conclusion. This path would then be recorded,
stored and shared. “Sharing” means that other learners may
reuse it or get assistance through it to guide them on their
own learning path. If the shared knowledge really helped
them, then they should rank it or improve it. As the collected
knowledge keeps improving (through sharing, usage and
ranking), the best learning strategies will be recommended to
recurrent learners and thus improving their learning process.

Candidate existing environments are Eclipse, Jazz Team
Concert and Visual Studio due to their extensible nature and
pluggable architecture. These environments have a notion of
context or process-awareness, yet they miss the learning
context. The idea would be to insert the notion of a learning
process and provide tools to assist in that process, supporting
the steps depicted in Figure 7. The tools should be built as
plug-ins to the collaborative environment, introducing a
learning context and accompanying the learner throughout
the process.

VIII. CONCLUSION
Frameworks are good software artifacts for reuse.

Nevertheless they are complex, thus hard to learn. Most of
the tools that may help in this task don’t encompass the
social nature of software development. In distress, learners
tend to look for help at their colleagues, often disrupting
their work. Supporting the social side of software
development by raising awareness and capturing intrinsic
knowledge helps improving the learning of software,
namely, frameworks.

A set of requirements for tools to harness framework
learning knowledge and assisting in the process of learning
should: allow for seamless integration into an IDE; be non
intrusive or interruptive; be context and web aware; be

Figure 7 - Supporting steps to improve the learning
process

131

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

descriptive instead of prescriptive; share a common
knowledge base of evolving learning knowledge and capture
the learning path taken by developers.

Providing a collaborative environment where learning
knowledge can be captured, shared, ranked and
recommended to recurrent learners, both expert and novice,
in a non-intrusive way, aims at improving framework
understanding.

REFERENCES
[1] N.Flores, “Patterns and Tools for improving Framework

Understanding: a Collaborative Approach”, SEDES Doctoral
Symposium, ICSEA - The Fourth International Conference on
Software Engineering Advances, Porto, Portugal, September 2009.

[2] M. Ackerman, (2000). "The Intellectual Challenge of CSCW: The
gap between social requirements and technical feasibility". Human-
Computer Interaction 15: 179–203

[3] M. S. Ackerman and D. W. McDonald (2000), "Collaborative
Support for Informal Information in Collective Memory Systems", in
Information Systems Frontiers, vol. 2, o. 3/4, pp. 333-347, 2000.

[4] Adoption-Centric Software Engineering Project site. Computer
Science Department at University of Victoria, Canada
URL:http://www.acse.cs.uvic.ca/index.html. Accessed at 30-06-2010

[5] A.Aguiar, “Framework Documentation – A Minimalist Approach”,
PhD Thesis, FEUP September 2003.

[6] A.Aguiar and G.David, “Patterns for Documenting Frameworks –
Part III”, PLoP’2006, Portland, Oregon, USA, October 2006.

[7] A.Aguiar and G.David, “Patterns for Documenting Frameworks –
Part II”, EuroPLoP’2006, Irsee, Germany, July 2006.

[8] A.Aguiar and G.David, “Patterns for Documenting Frameworks –
Part I”, VikingPLoP’2005, Helsinki, Finland, September 2005.

[9] R.Baecker and A.Marcus, “Human Factors and Typography for More
Readable Programs”. ACM Press, Addison-Wesley Publishing
Company, 1990

[10] R.M. Baecker et al., (1995). “Readings in human-computer
interaction: toward the year 2000”. Morgan Kaufmann Publishers.

[11] T. Ball and S.G. Eick, “Software visualization in the large”, IEEE
Computer, 29, 4, pp.33-43, 1996

[12] I. Z. Ben-Shaul (1994), "Oz: A Decentralized Process Centered
Environment (PhD Thesis)," in Department of Computer Science:
Columbia University, Dec 1994.

[13] I. Z. Ben-Shaul, G. E. Kaiser, and G. T. Heineman (1992), "An
Architecture for Multi-user Software Development Environments," in
ACM SIGSOFT 92: 5th Symposium on Software Development
Environments, Tyson's Corner, Virginia, 1992, pp. 149-158.

[14] C.F. Bertholf and J.Scholtz, “Program Comprehension of Literate
Programs by Novice Programmers”, Empirical Studies of
Programmers: 5th Workshop, 1993

[15] T.J.Biggerstaff, B.W Mitbander, and D.Webster, “The concept
assignment problem in program understanding”, Proceedings of the
15th International conference on Software Engineering, pp.482-498,
1993.

[16] B. Boehm and A. Egyed (1998), “Software Requirements
Negotiation: Some Lessons Learned”, in the 20th International
Conference on Software Engineering (ICSE’98), Japan, 1998,
pp.503-507

[17] G. A. Bolcer and R. N. Taylor (1996), "Endeavors: a Process System
Integration Infrastructure," in 4th International Conference on the
Software Process (ICSP'96), Brighton, UK, 1996, pp. 76-89.

[18] J.Bosch, P.Molin, M.Mattsson, and P.O. Bengtsson, “Framework –
Problems and Experiences” Building Application Frameworks,
M.Fayad, D.Schmidt, R.Johnson, Wiley, 1999.

[19] M.S.K.Brade, M.Guzdial, and E.Soloway, “Whorf: A visualization
tool for software maintenance”. Proceedings 1992 IEEE Workshop
on Visual Languages, pp.148-154, 1992

[20] J.M.Brant, “HOTDRAW”, MsC Thesis, University of Illinois, 1995
[21] R. Brooks, “Towards a theory of the comprehension of computer

programs”, International Journal of Man-Machine Studies, pp. 543-
554, vol.18, 1983.

[22] M.H.Brown and R.Brooks, “ZEUS: A system for algorithm animation
and multi-view editing”. Proceedings of the IEEE 1991 Workshop on
Visual Languages, pp.4-9, 1991

[23] M.Bruch, T.Schäfer, and M.Mezini, “FrUiT: IDE Support for
Framework Understanding”, OOPSLA Eclipse Technology
Exchange, 2006

[24] R.I.Bull and M-A. Storey, “Towards Visualization Support for the
Eclipse Modeling Framework”, A Research-Industry Technology
Exchange at EclipseCon, 2005.

[25] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
“Pattern oriented software architecture - a system of patterns”. John
Wiley and Sons, 1996.

[26] G.Butler, R.Keller, and H.Milli, “A Framework for Framework
Documentation”, Computing Surveys, special Symposium Issue on
Object-Oriented .Application Framework, ACM, 2000.

[27] T.Cheng, S.Hupfer, S.Ross, and J.Patterson (2007). “Social Software
Development Environments”, Dr.Dobb’s Journal. Janury 11th , 2007.

[28] K. Coleman (1995), “Groupware technology and Applications”,
Prentice Hall PTR 1995

[29] J.R. Cordy, T.R. Dean, A.J.Malton, and K.A. Schneider, “Source
Transformation in Software Engineering using the TXL
Transformation System”, Journal of Information and Software
Technology, vol(44)13, pp. 827-837, 2002.

[30] D.Cubranic, G.C. Murphy, J.Singer, and K.S.Booth, “ Hipikat: A
project memory for software development”, IEEE Transactions on
Software Engineering 31, 6 (Jun. 2005), pp. 446-465.

[31] R. DeLine, A.Khella, M.Czerwinski, and G.Robertson, “Towards
Understanding Programs through Wear-based Filtering”, Softvis,
2005

[32] F. Détienne, “Software Design – Cognitive Aspects”, Springer
Practitioner Series 2001.

[33] P. Dourish and V. Bellotti, (1992). "Awareness and coordination in
shared workspaces". Proceedings of the 1992 ACM conference on
Computer-supported cooperative work: 107-114, ACM Press New
York, NY, USA.

[34] P. Dourish, (2003). "The Appropriation of Interactive Technologies:
Some Lessons from Placeless Documents". Computer Supported
Cooperative Work 12: 465–490. Kluwer Academic Publishers.

[35] L. Dusseault (2003), WebDAV: Next-Generation Collaborative Web
Authoring, Prentice Hall PTR, 2003.

[36] Eclipse project site. URL: http://www.eclipse.org. Accessed at 30-06-
2010.

[37] S. G. Eick, J. L. Steffen and, E. E. Sumner Jr. (1992) “SeeSoft – a
tool for visualizing line oriented software statistics.” IEEE
Transactions on Software Engineering 28, 4, 396-412.

[38] T.Eisenbarth, R. Koschke, and D. Simon, “Aiding Program
Comprehension by Static and Dynamic Feature Analysis”,
Proceedings of the IEEE International Conference on Software
Maintenance, 2001

[39] C. A. Ellis, S. J. Gibbs, and G. L. Rein (1993), “Groupware some
issues and experiences”. In: Baecker, Ronald M. Readings in
groupware and computer-supported cooperative work. San Francisco:
Morgan Kaufmann, 1993. p. 9-28.

[40] M. Endsley (1995), “Toward a theory of situation awareness in
dynamic systems”. Human Factors 37, 1, 32-64.

[41] K. Erdös, and H.M. Sneed, “Partial Comprehension of Complex
Programs (enough to perform maintenance)”, Proceedings of the 6th

132

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Workshop on Program Comprehension, pp. 98-105,
1998.

[42] G.Fairbanks, D.Garlan and W. Scherlis, “Design Fragments Make
Using Frameworks Easier”, OOPSLA 2006 .

[43] M.Fayad, D.Schimdt, and R.Johnson, “Building Application
Frameworks”, Wiley 1999.

[44] N.Flores and A.Aguiar, “JFREEDOM: a Reverse Engineering Tool to
Recover Framework Design”, Proceedings of the 1st International
Workshop on Object-Oriented Reengineering, ECOOP’05, 2005.

[45] N. Flores and A.Aguiar, (2008) “Patterns for Framework
Understanding”, in Proc. of th 15th Pattern Languages of
Programming Conference (PLoP’08).

[46] M.Fontoura, W.Pree, and B.Rumpe, “The UML Profile for
Framework Architectures”, Addison-Wesley Professional 2001.

[47] J. Froehlich and P. Dourich, “Unifying artifacts and activities in a
visual tool for distributed software development teams”, Proceedings
of the 26th International Conference on Software Engineering, pp.
387-396, 2004.

[48] G. Froehlich, H.Hoover, L.Lui, and P.Sorenson, “Hooking into
Object-Oriented Application Frameworks”, Proceedings of the 19th
International Conference on Software Engineering, pp.491-501, 1997

[49] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. “Design Patterns
— Elements of reusable object-oriented software”. Addison-Wesley,
1995.

[50] D.Gangopadhyay and S.Mitra, “Understanding Frameworks by
Exploration of Exemplars”, Proceedings of CASE-95, IEEE
Computer Society, pp. 90-99, 1995

[51] J.J.Garrett. “Ajax: A New Approach to Web Applications”. Adaptive
Path, February 18th 2005. URL:
http://www.adaptivepath.com/publications/essays/archives/000385.ph
p. Accessed at 30-06-2010.

[52] D. M. German, “Decentralized open source global software
development, the GNOME experience,” Journal of Software Process:
Improvement and Practice, vol. 8,no. 4, pp. 201–215, 2004.

[53] T.R.G. Green and M. Petre, “When Visual Programs are Harder to
Read than Textual Programs”, Human-Computer Interaction: Tasks
and Organization, Proceedings (ECCE)-6 (6th European Conference
Cognitive Ergonomics), 1992

[54] S. Greenberg (1991), “Computer-supported Co-operative Work and
Groupware”, Academic Press Ltd., London, 1991.

[55] R. Grinter, (1999), "Systems Architecture: Product Designing and
Social Engineering," in ACM Conference on Work Activities
Coordination and Collaboration (WACC'99), San Francisco,
California, 1999, pp. 11-18.

[56] J. Grudin, (1988). "Why CSCW applications fail: problems in the
design and evaluation of organization of organizational interfaces".
Proceedings of the 1988 ACM conference on Computer-supported
cooperative work: 85-93, ACM Press New York, NY, USA.

[57] J. Grudin, (1994), “Computer-Supported Co-operative Work: History
and Focus”, Computer, Vol. 27, No. 5, May 1994

[58] C. Gutwim, R.Penner, and K. Schneider, “Group Awareness in
Distributed Software Development”, ACM CSCW, pp. 72 – 81, 2004

[59] M.Hakala, J. Hautamäki, K.Koskimies, J.Paakki, A.Viljamaa, and
J.Viljamaa, “Annotating reusable software architectures with
specialization patterns”, Proceedings of the Working
IEEE/IFIPConference on Software Architecture (WICSA’01), pp.
171, 2001

[60] I.Hammouda and K.Koskimies, “A pattern-based j2ee application
development environment”, Nordic Journal of Computing 9(3), pp.
248-260, 2002

[61] J.Hannemann and G. Kiczales, “Design pattern implementation in
java and aspectj”, Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems, languages and
applications, pp.161-173, 2002.

 [62] R.Helm, I.Holland, and D.Gangopadhyay, “Contracts: specifying
behavioral compositions in object-oriented systems”, Proceedings of

the European conference on object-oriented programming
(ECOOP’90), pp. 169-180, 1990

[63] T. Hendrix, J.H. Cross II, L. Barowski, and K.Mathias. “Tool support
for reverse engineering multi-lingual software”. Proceedings of the
4th Working Conference on Reverse Engineering (WCRE’97), pp.
136-143, 1997

[64] L. Hohmann, “Journey of the Software Professional: The Sociology
of Software Development”, 1996.

[65] D.Hou and H.J. Hoover, “Towards specifying constraints for object-
oriented frameworks”, Proceedings of the 2001 conference of the
Centre for Advanced Studies on Collaborative research, page 5, IBM
Press, 2001.

[66] S. Hupfer, L.-T Cheng, S. Ross, and J. Patterson, “Introducing
collaboration into an application development environment”,
Proceedings of the ACM Conference on Computer Supported
Cooperative Work, pp. 444-454, 2004.

[67] Imagix 4D. Imagix Corporation. URL: http://www.imagix
.com/index.html.

[68] S.Isoda, T.Shimomura, and Y. Ono, “VIPS: A visual debugger”,
IEEE Software, May 1987

[69] R. Johansen (1988) “Groupware: Computer Support for Business
Teams” The Free Press.

[70] R.Johnson, “Documenting Frameworks using Patterns”, Proceedings
of the OOPSLA’92, SIGPLAN notices, 27(10), pp.63-76. 1992

[71] R.Johnson, “Components, framework, patterns. SIGSOFT Software
Engineering Notes, 22(3), pp. 10-17, 1997

[72] R. Kadia (1992), "Issues Encountered in Building a Flexible Software
Development Environment," in ACM SIGSOFT 92: 5th Symposium
on Software Development Environments, Tyson's Corner, Virginia,
1992, pp. 169-180.

[73] S. M. Kaplan, W. J. Tolone, A. M. Carroll, D. P. Bogia, and C.
Bignoli (1992), "Supporting Collaborative Software Development
with ConversationBuilder," in ACM SIGSOFT 92: 5th Symposium
on Software Development Environments, Tyson's Corner, Virginia,
1992, pp. 11-20.

[74] M.Kersten and G.Murphy, “Mylar: a degree-of-interest model for
IDE’s”, International Conference on Aspect Oriented Software
Development, pp.159-168, 2005

[75] D.Kirk, M.Roper, and M.Wood, “Identifying and Addressing
Problems in Framework Reuse”, Proceedings of the 13th
International Workshop on Program Comprehension (IPWC’05), pp.
77-86, 2005

[76] G. Kizcales, J.Lamping, A.Mendhekar, C.Maeda, C.V.Lopes, J-M
Loingtier, and J. Irwin. “Aspect Oriented Programming”, Proceedings
of the European Conference on Object-Oriented Programming
(ECOOP), June 1997.

[77] R. Kling (1991) “Co-operation, Co-ordination and Control in
Computer-Supported Work”, CACM, vol. 34, no. 12, December
1991.

[78] G.E.Krasner, S.T.Pope,”A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk-80”, Journal of
Object-Oriented Programming 1,3, pp. 26-49, 1988

[79] M.Lanza and S.Ducasse, “A Categorization of Classes based on
Visualization of their Internal Structure: the Class
Blueprint”.Proceedings for OOPSLA 2001, pp.300-311, ACM Press,
2001

[80] T.D.LaToza, G.Venolia, and R.DeLine (2006), “Maintaining Mental
Models: A Study of Developer Working Habits”. Proc. of the
International Conference of Software Engineering (ICSE’06),
Shanghai, China.

 [81] B. S. Lerner, L. J. Osterweil, Stanley M. Sutton Jr., and A. Wise
(1998), "Programming Process Coordination in Little-JIL Toward the
Harmonious Functioning of Parts for Effective Results," in European
Workshop on Software Process Technology, 1998.

[82] S.Letovsky, “Cognitive processes in program comprehension”,
Empirical Studies of Programmers, pp.58-79, 1986

133

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[83] P.Linos, P.Aubet, L.Dumas, Y.Helleboid, P.Lejeune, and P.Tulula.
“Visualizing program dependencies: An experimental study”
Software-Practice and Experience, 24(4):387-403, 1994

[84] D.C Littman, J.Pinto, S.Letovsky, and E.Soloway, “Mental models
and software maintenance”, Empirical Studies of Programmers, pp.
80-98, 1986

[85] T. W. Malone and K. Crowston (1994), "The Interdisciplinary Study
of Coordination," in ACM Computing Surveys (CSUR), vol 26, no 1,
pp. 87-119, 1994.

[86] D. Mandelin, L. Xu, R. Bodik and D.Kimelman, “Mining Jungloids:
Helping to Navigate the API Jungle”, Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation, pp 48-61, 2005.

[87] A. Marcus, L. Feng, J.I. Maletic, “Comprehension of Software
Analysis Data Using 3D Visualization”, Proceedings of the IEEE
International Workshop on Program Comprehension (IWPC2003),
pp.105-114, 2003

[88] A. von Maryhauser and A. Vans. “Program comprehension during
software maintenance and evolution” IEEE Computer pp. 44-55,
August 1995.

[89] A. von Maryhauser and A. Vans. “From code understanding needs to
reverse engineering tool capabilities” Proceedings of CASE’93, pp.
230-239, 1993.

[90] S. McConnell (1996), "Lifecycle Planning," in Rapid Development:
Taming Wild Software Schedules Redmond, WA: Microsoft Press,
1996.

[91] A.Mendelson and J.Sametinger. “Reverse Engineering by visualizing
and querying”, Software – Concepts and Tools, 16:170-182, 1995

[92] Microsoft Corporation (2007), "Microsoft Office Project Standard
2007 Product Guide," April 2006, Available at:
http://download.microsoft.com/download/d/f/b/dfb0e645-3e5a-4fe8-
8ea6-1c9e86d6139a/ProjectStandard2007ProductGuide.doc.
Accessed at 30-06-2010

[93] Microsoft Visual Studio (2008) website.
http://msdn.microsoft.com/en-us/vstudio/default.aspx. Accessed on
30-06-2010

[94] A.Mockus, R.Fielding, and J.D. Herbsleb, “Two Case Studies of
Open Source Software Development: Apache and Mozilla”, ACM
Transactions of Software Engineering and Methodology, 11, 3,
pp.309-346, 2002

[95] S.Moser and O. Nierstrasz, The Effect of Object-Oriented
Frameworks on Productivity”, IEEE Computer, pp.45-51, 1996

[96] H.Muller and K. Klashinsky. “Rigi – A system for programming-in-
the-large”, Proceedings of the 10th International Conference on
Software Engineering (ICSE’10), pp.80-86, 1988.

[97] G.C. Murphy, D.Notkin, and K.Sullivan, “Software Reflexion
Models: Bridging the Gap Between Source and High-Level Models”,
Proceedings of Foundations of Software Engineering, pp. 18-28,
1995.

[98] A.Murray and T.Lethbridge, “On Generating Cognitive Patterns of
Software Comprehension”, Proceedings of the 2005 conference of the
Centre for Advanced Studies on Collaborative research, pp.200-211,
2005.

[99] NATO, Software Engineering Conference, Garmisch, Germany, 7-11
October 1968.

[100] J. F. Nunamaker, R. O. Briggs, and D. D. Mittleman (1995).
“Electronic meeting systems: Ten years of lessons learned.” In D.
Coleman, & R. Khanna (Eds.), Groupware: Technology and
Applications (pp. 149–192). Englewood Cliffs, NJ: Prentice-Hall,
1995.

[101] C. O’Reilly, D.Bustard, and P.Morrow, “The War Room Command
Console (Shared Visualizations for Inclusive Team Coordination)”,
Softvis, 2005.

[102] N.Pennington, “Stimulus structures and mental representations in
expert comprehension of computer programs”, Cognitive Psychology,
pp. 295-341, vol 19, 1987.

[103] D.A. Penny, “The Software Landscape: A Visual Formalism for
Programming-in-the-Large”, PhD Thesis, University of Toronto,
1992.

[104] M.Petre, A. Blackwell, and T.Green, “Cognitive questions in software
visualization”. Software Visualization: Programming as a Multi-
Media Experience, pp. 453-480. MIT Press, 1997

[105] M.Petre, “Why looking isn’t always seeing: readership skills and
graphical programming”, Communications of the ACM, vol. 38, pp.
33-44, 1995

[106] W.Pree, “Design Patterns for Object-Oriented Software
Development”, Addison-Wesley, 1994

[107] V.Rajlich, N.Damskinos, and P.Linos, “VIFOR: A tool for software
maintenance”. Software-Practice and Experience, 20(1):67-77, 1990

[108] Rational Software Corporation (2003), "Rational RequisitePro User's
Guide," June 2003,
http://www.ibm.com/developerworks/rational/library/content/03July/
getstart/RP/ReqProMain.pdf. Accessed on 30-06-2010.

[109] W. Reinhard, J. Schweitzer, G. Volksen, and M. Weber, (1994)
"CSCW tools: concepts and architectures," Computer , vol.27, no.5,
pp.28-36, May 1994

[110] S.Reiss, “Pecan: Program development systems that support multiple
views”, IEEE Transactions on Software Engineering, SE-11(3): 276-
285, 1985

[111] S.Reiss, “An overview of BLOOM”, Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program analysis for software
tools and engineering, pp.2-5, 2001.

[112] D.Riehle, “Framework Design: A Role Modelling Approach”, PhD
Thesis, Swiss Federal Institute of Technology, 2000

[113] R.S. Rist, “plans in programming: Definition, Demonstration, and
Development”, Empirical Studies of Programmers, 1st Workshop,
1986.

[114] M.P. Robillard and G.Murphy, “FEAT: A tool for locating,
describing, and analyzing concerns in source code”, Proceedings of
the 25th International Conference on Software Engineering, pp. 822-
823, 2003

[115] G.-C.Roman, K.C. Cox, C.D. Wilcox, and J.Y.Plun. “Pavane: A
system for declarative visualization of concurrent computations”.
Techinical Report WUCS-91-26, Washington University, St. Louis,
1991.

[116] A. Sarma, Z. Noroozi, and A. van der Hoek (2003). “Palantír –
raising awareness among configuration management workspaces”. In
Proc. Of the 25th International Conference on Software Engineering,
444-454

[117] D.A. Scanlan, “Structured flowcharts outperform pseudocode: An
experimental comparison”, IEEE Trans. Soft. Eng., 1989

[118] F.Schull, F.Lanubile, and V.Basil, “Investigating Reading Techniques
for Object-Oriented Framework Learning”, IEEE TSE, vol.26, nº.11,
2000

[119] B. Shneiderman and R.Mayer, “Syntatic/semantic interactions in
programmer behavior: A model and experimental results”.
International Journal of Computer and Information Science, pp. 219-
238, 8(3), 1979

[120] B. Shneiderman, “Measuring computer program quality and
comprehension”, InternationalJournal of Man-Machine Studies, vol.
9, pp. 465-478, 1977

[121] B. Shneiderman, R.Mayer, D.McKay, and P.Heller, “Experiment
investigations of the utility of detailed flowcharts in programming”,
Communications of the ACM, vol. 20, pp. 373-381, 1977

[122] I. A. da Silva, P. H. Chen, C. V. der Westhuizen, R. M. Ripley and A.
van der Hoek (2006)” Lighthouse: Coordination through Emerging
Design”.In Proc. of the 2006 OOPSLA workshop on eclipse
technology eXchange.

[123] J. Singer, T.Lethbridge, N.Vinson, and N. Anquetil, “An Examination
of Software Engineering Work Practices”, Proceedings of
CASCON’97, pp. 209-233, 1997

134

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[124] J. Singer, R. Elves, and M-A. Storey, “NavTracks Demonstration:
Supporting Navigation in Software Space”, International Workshop
on Program Comprehension, 2005

[125] P.Schorn, A. Brungger, and M. de Lorenzi, “The XYZ Geobench:
Animation of geometric algorithms. Animations for Geometric
Algorithms: A Video Review, Digital Systems Research Center, Palo
Alto, California, 1992

[126] K. Schmidt and L. Bannon, (1992). "Taking CSCW seriously".
Computer Supported Cooperative Work 1: 7–40.

[127] E. Soloway, J.Pinto, S.Letovsky, D.Littman, and R.Lampert,
“Designing documentation to compensate for delocalized plans”,
Communication of the ACM, 31(11): 1259-1267, 1988.

[128] E. Soloway and K. Erlich, “Empirical studies of programming
knowledge”, IEEE Transactions on Software Engineering, pp. 595-
609, SE-10(5), September 1984.

[129] M-A Storey, “Theories, Methods and Tools in Program
Comprehension: Past, Present and Future.” Proceedings of the 13th
IEEE International Workshop on Program Comprehension (IWPC).
St. Louis, MO, pp. 181-191, IEEE Computer Society Press 2005.

[130] M-A Storey, F.Fracchia, and H.Muller. “Cognitive design elements to
support the construction of a mental model during software
visualization”. Proceedings of the 5th International Workshop on
Program Comprehension (IWPC’97), Dearborn, Michigan, pp. 17-28,
May, 1997

[131] M-A Storey, F.Fracchia, and S.Carpendale, “A top down approach to
algorithm animation” Techincal Report CMPT 94-05, Simon Frasier
University, Brunaby, B.C., Canada, 1994

[132] M-A Storey, “Designing a Software Exploration Tool Using a
Cognitive Framework of Design Elements”, Software Visualization,
2003.

[133] M-A Storey, J. Michaud, M. Mindel, M. Sanseverino, D. Damian,
D,Myers, D.Geman and E.Hargreaves, “Improving the Usability of
Eclipse for Novice Programmers”, Eclipse Technology eXchange
(eTX) Workshop at OOPSLA 2003.

[134] M-A. D. Storey, D. Cubranic, and D.M. German (2005), “On the Use
of Visualization to Support Awareness of Human Activities in
Software Development: A Survey and a Framework”. In Proc. of the
2005 ACM symposium on Software Visualization, 193-202.

[135] J. Surowiecki, (2004) “The Wisdom of Crowds: Why the Many Are
Smarter Than the Few and How Collective Wisdom Shapes Business,
Economies, Societies and Nations”, Anchor Publishing.

[136] Rational DOORS, IBM (2008), Nov. 12, 2008. Available at:
http://www-01.ibm.com/software/awdtools/doors/productline/.
Accessed at 30-06-2010

[137] The Bugzilla Team (2008) , “The Bugzilla Guide - 3.3 Development
Release”. Mar 5, 2008. Available at:
http://www.bugzilla.org/docs/tip/en/pdf/Bugzilla-Guide.pdf.
Accessed at 30-06-2010

[138] W.F. Tichy, N. Habermann, and L. Pretchelt (1993). “Summary of
the dagstuhl workshop on future directions in software engineering:
February 17-21, 1992, schlo dagstuhl. ACM SIGSOFT Software
Engineering Notes, 18(1):35-48

[139] S.Tilley and D.B.Smith, “Coming Attractions in Program
Understanding”, Technical Report CMU/SEI-96-TR-019, 1996

[140] S.Tilley, S.Paul, and D.Smith. “Towards a framework for program
understanding”. WPC’96: 4th Workshop on Program Comprehension,
Berlin, Germany, pp. 19-28, March 1996

[141] T.Tourwé, “Automated Support for Framework-Based Software
Evolution”, PhD Thesis, Vrije Universiteit, 2002

[142] T.Tourwé and T.Mens, “Automated Support for Framework-Based
Software Evolution”, Proceedings of the International Conference on
Software Maintenance, page 148, 2003

[143] I.Vessey, “Expertise in debugging computer programs: A process
analysis”, International Journal of Man-Machine Studies, pp. 459-
494, vol 23, 1985.

[144] L. Wakeman and J. Jowett (2005), “PCTE: The Standard for Open
Repositories”: Prentice Hall, 1993. International Conference on
Software Engineering Research, Management and Applications
(SERA'05), Mount Pleasant, Michigan, USA, 2005, pp. 86-93.

[145] A. Walenstein, “Observing and Measuring Cognitive Support: Steps
Toward Systematic Tool Evaluation and Engineering”, 11th
International Workshop on Program Comprehension (IWPC’03), pp.
185-195, May 2003.

[146] J. Whitehead (2007). “Collaboration in Software Engineering: A
Roadmap”. In 2007 Future of Software Engineering (May 23 - 25,
2007). International Conference on Software Engineering. IEEE
Computer Society, Washington, DC, 214-225.

[147] E. J. Whitehead, Jr. and Y. Y. Goland, (1999) "WebDAV: A Network
Protocol for Remote Collaborative Authoring on the Web," in 6th
European Conference on Computer Supported Cooperative Work
(ECSCW'99), Copenhagen, Denmark, 1999, pp. 291-310.

[148] P.Wilson, (1991). “Computer Supported Cooperative Work: An
Introduction”. Kluwer Academic Pub, 1991.

[149] K. Wong. “The Reverse Engineering Notebook”, Ph.D Thesis,
University of Victoria, 2000.

[150] I. Zayour and T.C. Lethbridge, “A Cognitive and User Centric Based
Approach For Reverse Engineering Tool Design”, Proceedings of the
CASCON 2000.

[151] U.Zdun and P.Avgeriou, “Modelling Architectural Patterns Using
Architectural Primitives”, OOPSLA 2005

[152] M.V. Zelkowitz and D.R. Wallace (1998). “Experimental models for
validating technology”. IEEE Computer, 31(5):23-31

135

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Automatic Identification of Cohesive Structures within Modularity Reengineering

Anja Bog Oleksandr Panchenko Kai Spichale Alexander Zeier
Hasso Plattner Institute for Software Systems Engineering

University of Potsdam
August-Bebel-Str. 88, 14482 Potsdam, Germany

Email: {anja.bog, panchenko, kai.spichale, zeier}@hpi.uni-potsdam.de

Abstract—The quality of software systems depends heavily
on the quality of their structure, which affects maintainability
and readability. To improve the quality of structure, a system
can be restructured. This paper describes a restructuring pro-
cess, which uses a combination of strongly connected compo-
nent analysis, dominance analysis, and intra-modular similarity
clustering to identify and preserve structures that have been
thoughtfully placed together, but would be separated by pure
metric-based or similarity-based techniques. The use of the
proposed method allows a significant reduction of the number
of components that should be moved. Therefore, the number
of false movements is alleviated. The proposed approach was
implemented in a prototype and illustrated by statistics and
examples from 18 open source Java projects. A coherence
metric is introduced to further improve restructuring results.

Keywords-Source code organization, Restructuring, reverse
engineering, and reengineering, Metrics

I. INTRODUCTION

Each time that a software element (e.g., method, class,
package) is added, the developer has to decide where this
element has to be placed. It is likely that the developer
chooses a suboptimal position because of the limited abil-
ity of humans to cope with the increasing complexity of
software systems. Besides this, any source code change
could introduce new dependencies among software elements,
which might adversely affect the system structure. Depen-
dencies could also vanish, which allows creating simplified
configurations. This paper is an extended version of our
previous work [1], integrating the proposed pre-processing
techniques into the entire process of restructuring and adding
discussions about further techniques to enhance the results,
i.e., cohesion.

In this paper we present an approach for generating
restructuring advice to improve the physical structure [2] of
software systems. Restructuring advice comprises moving
misplaced software elements, whereas dependencies among
software elements are kept unchanged. Thus, restructuring
advice leads to another system configuration.

The proposed approach includes a preprocessing phase
and a restructuring phase. In the restructuring phase, several
alternative configurations of the original system are created
and compared to each other based on coupling, cohesion,
and coherence. However, not all configurations that lead to
better values of these metrics are acceptable. Not heeding

design decisions of the original system and only improving
metric values, may pull apart cohesive structures consist-
ing of elements that were thoughtfully placed together.
Therefore, given configurations must not be ignored as they
capture well-considered design decisions. The preprocessing
phase identifies such structures that should be preserved dur-
ing restructuring and helps to distinguish between intended
and unaware decisions.

Restructuring advice is created as the result of the prepro-
cessing and restructuring phase. In the following steps this
advice is validated by developers and eligible restructuring
advice can be implemented. For the preprocessing phase
we propose techniques that are applied to identify intended
cohesive structures and to mark them for preservation during
restructuring. Since the techniques used in this paper are
based purely on structural analysis of the software system,
semantical meanings of the elements are not taken into
account and are out of scope for this paper. The results of
the preprocessing phase are further enhanced by applying
the cohesion metric in the restructuring phase in order to
choose an optimal system configuration.

The following section introduces the graph structure used
as the basis for the restructuring algorithms. Section III
relates the approach to existing research. An overview of
the proposed reengineering process is given in Section
IV. The subsequent section focuses on the preprocessing
phase of the reengineering process detailing the steps and
algorithms, which are applied in order to create restructuring
advice. Section VI discusses a further possibility to improve
the restructuring results by introducing coherence metric.
Afterwards, a short overview of our implementation to create
restructuring advice is given in Section VII. Section VIII
concludes the paper and gives an overview of possible
directions for future work.

II. MODULE DEPENDENCY GRAPH

The proposed restructuring approach is independent of
any programming language. To accomplish this objective,
the described techniques are based on the Module Depen-
dency Graph (MDG) [3] that has three types of elements:
components, modules, and dependencies. A component rep-
resents an atomic software element whose internal struc-
ture is not considered at this level of granularity. Calls

136

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

between components are represented by dependencies. Each
pair of distinct components can be linked by at most one
dependency. The components and their dependencies form
a directed graph. Modules are disjoint sets of components.
Figure 1 shows the elements of an MDG. Notice that the
inter-modular dependency between b and c implies a module
dependency between M1 and M2.

Component

Module

Inter-modular dependencyIntra-modular dependency

a b cM1 M2

Figure 1. MDG Elements

A graph is defined as a pair (V,E), where V is the
vertex set and E is the edge set. However, the graph
described above must be extended to satisfy the need to
reflect modularization properties. Therefore a partition is
defined. A partition of a set X is a set of nonempty subsets
of X such that every element x in X is in exactly one of
these subsets. Thus, an MDG is a triple (V,E,M), where
(V,E) is a directed graph and M represents modules and is
a partition of V .

The MDG can be applied at different levels of granularity.
Java applications can be modeled as follows: Java classes
are represented by components and packages by modules.
Experiments have also been executed on a larger system
developed with the SAP [4] component model that divides
software projects into development components (DCs) to
organize the software in comprehensible and reusable units.
Further, a software component (SC) combines DCs to larger
units for delivery and deployment. The DCs are modeled by
components and SCs by modules.

Traditionally, various metrics have been used to assess
the quality of the MDG. Most popular metrics for coupling
and cohesion are used as optimization criteria for metric-
based refactoring. Coupling of a module m [5, p. 520] is
the degree of dependence between m and other modules
of the MDG and is represented by the number of afferent
and efferent dependencies. Cohesion of the module m [5, p.
524] is the measure of the strength of structural connections
of components inside m and is calculated as the number
of actual dependencies divided by the number of maximal
possible dependencies within a module. The module, that
has only one component, has a cohesion value equal to one.

III. RELATED WORK

Several techniques for automating the decomposition of
software systems into subsystems and improving their struc-
ture exist. In this section, categories of techniques, concrete
techniques, and their fields of application are presented.
Tool-driven reengineering techniques are aimed at architec-
ture reconstruction and software restructuring. Architecture
reconstruction captures component recovery and program

understanding of single systems and product lines [6]. Soft-
ware restructuring aims at improving the physical design of
existing code [7]. Due to the high number of software ele-
ments and relations among them, maintaining and improving
the structural quality must be supported and automated by
tools. As we are interested in improving the structure of
software systems, we are focusing on software restructur-
ing techniques in the following. Design structure matrices
[8] and reflexion models [2] provide means to model the
structure of software systems and thereby gain insights
to support their maintenance and evolution. Furthermore,
(semi-)automated techniques exist, that extract abstractions
from software artifacts to make software systems more un-
derstandable, e.g., Storey et al. [9] developed the interactive,
visual tool Rigi that helps understanding software systems.

Beyond modeling the structure of a software system,
subsystem decomposition techniques help to provide pro-
posals for improving its structure. Respective techniques are
categorized by their underlying technologies into cluster-
ing techniques, graph-based techniques, and multi-approach
techniques [10]. Clustering techniques utilize similarity mea-
sures for components and modules to group the most similar
ones. Graph-based techniques model relevant properties of
subsystems as graph properties and optimize them. Multi-
approach techniques use a mixture of techniques from the
aforementioned categories.

Concerning clustering techniques, Hutchens and Basili [7]
proposed an algorithm that clusters procedures by measuring
the interaction between pairs of procedures. Schwanke’s
tool Arch [11] clusters similar software elements based on
their common and distinct references. Girard, Koschke, and
Schied [12] extended Schwanke’s similarity metric to cluster
functions, types, and variables into atomic elements.

K-cut modularization proposed by Jermaine [13] is an ex-
ample for a graph-based technique. This method decomposes
a software system into modules in such a way as to attempt
the minimization of inter-module connections. As a result,
modules with high cohesion and low coupling are identified.
The problem of software decomposition is formulated as the
k-cut problem in graph theory. The computation of the k-
cut of a graph is an NP-hard problem, however, efficient
approximations exist [14]. K-cut modularization is most
appropriate for monolithic procedural systems.

Regarding multi-approach techniques, Mitchell and Man-
coridis [15] developed Bunch, a tool that identifies subsys-
tems based on maximizing cluster cohesion, while minimiz-
ing inter-cluster coupling. Tzerpos and Holt [16] developed
the algorithm ACDC that recognizes subsystem patterns and
places software elements based on lowering coupling.

However, none of the mentioned techniques was ex-
plicitly developed for providing restructuring advice for
misplaced components. There is no technique that detects
subsystem patterns to preserve existing structures. ACDC
detects subsystem patterns to create a skeleton, but the

137

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

System Model

Extraction Tool

Restructuring

Toolkit

(two-phase

restructuring

approach)

1

2

3

6

7

8

5

read files

extract

dependencies,

modules,

components

read create

restructuring

advice

read

manual

validation,

selection of

eligible

restructuring

advice

adapt

restructuring

rules

repeat

restructuring

implement selected

restructuring proposals

4

Artifacts

System

Expert

MDG MDG

Rules

9

Figure 2. Reengineering Process

identified subsystems are not restricted to the given configu-
ration. Furthermore, a subsystem decomposition technique
is needed that also resolves cyclic module dependencies.
This need is based on the Acyclic Dependency Principle,
a design principle formulated by Robert C. Martin [17] that
indicates that dependencies between software elements of
the granularity of release must not form cycles. Applied to
the MDG, this design principle stipulates that any cyclic
dependencies between modules have to be resolved. Our
empirical investigation shows that, although this design
principle is widely accepted, the most systems lack of proper
structure.

Techniques that are merely based on maximizing cluster
cohesion and minimizing inter-cluster coupling cannot create
acceptable results because the proposed configuration often
requires too many component moves. High cohesion and
low coupling are commonly agreed to be attributes of good
design. Although, a configuration with optimal metric values
does not inevitably imply an optimal design. Furthermore,
clustering techniques based solely on similarity cannot rea-
sonably place all software elements because of too low
similarity values.

In the following section we will introduce our reengineer-
ing process that detects and preserves constructs that have
been consciously placed together.

IV. REENGINEERING PROCESS

Figure 2 shows the steps and their sequence within a sim-
plified version of the entire reengineering process. (1) The
process starts with analyzing the physical artifacts (e.g.,
source code, deployment descriptors, configuration files) of
a software system. (2) Tools automatically extract data about
the software elements and the dependencies among them to
create a system model in the form of an MDG. (3) The

Figure 3. The Two-phase Restructuring Approach

created MDG is the input data for the used restructuring
techniques. (4) Rules can be defined to limit possible restruc-
turing proposals that contradict intended design decisions.
Such rules comprise modification suppressions for software
elements. By this means a component can be bound to a
module in such a way that it cannot be moved into another
module. (5) Finally, graph theory and clustering techniques
are applied to propose restructuring advice. (6) Not all
proposals might be suitable to the intended design. Therefore
the proposals must be validated and selected by a system
expert. (7) If the restructuring proposals are not satisfying,
the rules can be adapted. (8) After changing the rules, the
analysis can be repeated. (9) The process is finished when
the approved restructuring proposals are implemented.

The detailed activities of the two-phase restructuring
approach step that is proposed in this paper are shown in
Figure 3. The restructuring approach comprises a number
of individual graph-based techniques as well as clustering
techniques that are applied one after another to the MDG.
The selection and order of these techniques depend on the
intended purpose, which is in our case restructuring of an
existing software system in order to improve the overall
structure.

(1) In the first step, all cyclic dependencies on compo-
nent level are detected in the form of strongly connected
components (SCCs). One separate or several overlapping de-
pendency cycles constitute a strongly connected component.
Cyclic dependencies are useful information for restructuring
insofar as placing all components of an SCC into the

138

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

same module reduces the inter-modular coupling. (2) In the
second step, the detected component SCCs are collapsed
and placed into appropriate modules. Collapsing SCCs pulls
together all interconnected components. By this means the
dependency structure becomes acyclic at component level.
Further, cyclic module dependencies are resolved if the inter-
connected components were originally in different modules.
(3) Next, cyclic module dependencies are detected. Even if
the dependency graph is acyclic on component level after
collapsing all SCCs, cyclic module dependencies can exist.
Cyclic dependencies among modules are architectural flaws
that have to be detected and removed. (4) Cyclic module
dependencies are resolved by moving components from one
module to another. (5) For dominance analysis, redundant
edges have to be labeled. (6) Dominance subgraphs can then
be detected and collapsed without introducing new cyclic
dependencies. (7) In the last step of the preprocessing phase,
similar components are unified by clustering them within the
same module.

(8) In the second phase, component moves between differ-
ent modules are proposed by heuristic restructuring in order
to improve metric values. (9) At the end a metric report
is created that compares the original configuration with the
proposed configuration based on metrics.

(10) Detection of dominance mavericks shows misplaced
components based on dominance analysis. The results of
dominance mavericks detection are not integrated into the
final restructuring advice as the number of false positives
is high according to our experiments. Nevertheless, these
results should be reviewed by an expert of the analyzed
system and integrated manually if applicable. (11) Similarity
mavericks detection analyzes components that are misplaced
based on similarity. Results are not part of the final restruc-
turing advice, either, but should be reviewed by an expert
as they might reveal further structural improvement.

In the following section, more detail about the steps within
the preprocessing phase is provided.

V. PREPROCESSING PHASE

The purpose of the preprocessing phase is to (1) resolve
cyclic module dependencies and to (2) identify cohesive
structures with dominance analysis and intra-modular simi-
larity clustering.

Removing cyclic dependencies in a software system in-
creases maintainability and extensibility as will be explained
in this section. Additionally, acyclic graphs are a prerequisite
for the dominance analysis in the following step.

The goal of identifying cohesive structures is to dis-
tinguish between thoughtfully intended and unaware deci-
sions to position components in order to improve the final
reengineering results. Dominance analysis detects connected
components, and similarity clustering identifies elements
with similar structure.

Table I
ANALYZED PROJECTS

Name Source

Apache Ant 1.7.1 http://ant.apache.org/
CruiseControl 2.7.3 http://cruisecontrol.sourceforge.net/
Eclipse Ganymede SR1 http://www.eclipse.org/ganymede/
Apache Geronimo 2.1.2 http://geronimo.apache.org/
Hibernate 3.3.0 http://www.hibernate.org/
JBoss 4.2.3 jdk6 http://www.jboss.org/
JDepend 2.9 http://clarkware.com/software/

JDepend.html
J2SE 5.0 JDK 1.5.0 09 http://java.sun.com/javase/
JRuby 1.1.4 http://jruby.codehaus.org/
JUnit 4.5 http://www.junit.org/
Apache Logging Services
for Java 1.2.15 http://logging.apache.org/
Apache Maven 2.0.9 http://maven.apache.org/
NetBeans 6.1 (Base IDE) http://www.netbeans.org/
PicoContainer 2.5.1 http://www.picocontainer.org/
Saxon 9.1.0.1 http://saxon.sourceforge.net/
Spring Framework 2.5.5 http://www.springsource.org/
Apache Tomcat 6.0.18 http://tomcat.apache.org/
Xalan-j 2.7.1 http://xml.apache.org/xalan-j/

The examples given in this paper are selected after per-
forming an analysis of 18 open source Java projects. The
usefulness of the approach is exemplified by statistics. The
list of the selected projects is given in Table I.

To automate the analysis, a tool has been implemented.
The tool uses Classycle[18] to extract runtime dependencies
among Java classes. JAR files are analyzed by Classycle
and, as a result, the MDG is created in XML format.
The algorithms used in the proposed approach have been
implemented to work with the MDG in this format.

A. Resolving Cyclic Module Dependencies

Cyclic dependencies form SCCs. An SCC of a digraph G
is a maximal strongly connected subdigraph of G. A digraph
is strongly connected if there is a directed walk from each
vertex to each other vertex [19].

The components of an SCC can be part of several mod-
ules. If this is the case, cyclic module dependencies are
created. To resolve these cyclic module dependencies, the
SCCs are collapsed. Possible locations of a collapsed SCC
are the modules that contain at least one component that is
part of the SCC. The module that implies the lowest coupling
is chosen.

Even if the dependency graph is acyclic on component
level after collapsing all SCCs, cyclic module dependencies
can exist. Alternative modifications to remove these pseudo-
cyclic dependencies are component moving, module split-
ting, and module merging.

As the name states, in component moving a component is
moved from one module to another to resolve the pseudo-
cycle. Component moving may result in an empty module,
which has to be deleted. In module splitting a selected
module is split into two separate modules in such a way

139

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Pseudo-cyclic Dependencies on Component Level

that the pseudo-cyclic dependencies are removed. However,
not every module that is part of the cycle can be split so
that the intended effect occurs. Module splitting can be
interpreted as a special case of component moving, as it
requires the movement of components into a newly created
or existing module. Consequently, the conditions under
which this strategy is applied are the same as in component
moving. Module merging is the reverse modification of
module splitting. Modules are unified with the objective
of turning their undesired inter-modular dependencies into
intra-modular dependencies. Module merging is not selec-
tive, i.e., modules are merged in their entirety. Therefore,
component moving and module splitting are far more fine-
grained than merging.

To determine which components are part of a cycle on
module level that is not cyclic on component level, the
order of the modules has to be determined and which
components are the cause of it. Each module in a cycle has
the role of a successor and predecessor to another module.
Therefore, for each module pair (p, s) two component sets
called predecessor subset P and successor subset S are
defined, where p is the predecessor and s the successor.
“→” denotes dependencies between components. The sets
are defined as follows:

P (p, s) := {v | v ∈ p ∧ ∃t ∈ s :
∃{r1, ..., rn} ⊆ p : v → r1 → ...→ rn → t}

S(p, s) := {v | v ∈ s ∧ ∃r ∈ p :
∃{t1, ..., tn} ⊆ s : r → t1 → ...→ tn → v}

The predecessor subset contains all components v ∈ p
that directly or indirectly depend on a component t ∈ s not
considering paths including other modules. Similarily, the
successor subset is the subset of s containing components v
that are directly or indirectly referenced by the components
in p.

The algorithm for resolving pseudo-cyclic dependencies
is based on the fact that the inter-component dependencies
are acyclic. Consequently, there exists at least on non-empty
set of components that can be moved to resolve the cyclic
dependencies on module level.

Figure 4 shows an example containing pseudo-cyclic
dependencies on module level. To determine which com-
ponent subsets can be moved to resolve these dependencies,
predecessor subset and successor subset are analyzed for

each of the modules, see Table II.
If the predecessor subset of a module overlaps with

its successor subset, then neither the predecessor nor the
successor subset can be moved to break the pseudo-cyclic
dependencies. In the example, only C1 and C5 could ef-
fectively be moved. Hence, we can identify the following
options:

• Moving {C1}: The component subset {C1} is the
predecessor subset of M1 with regard to M2. If {C1}
is moved to M2, the dependencies on module level
become acyclic.

• Moving {C5}: The successor subset of M1 with regard
to M3 is {C5}. Moving this subset to M3 is another
valid solution.

• Splitting M1: One of the identified disjoint subsets can
be moved into a separate module.

If multiple solutions exist, the solution is chosen that
requires the smallest number of component moves and
creates the configuration with the lowest coupling. Typically,
software systems contain a large number of cycles [20].
If several cycles overlap, the algorithm has to be applied
iteratively.

According to Fowler [21], cycles in dependency structures
should be avoided as they provoke situations, where every
change of one module breeds other changes that come
back to the original module entering a vicious circle of
change propagation. Systems become tightly coupled by
cyclic dependencies and fiercely resist decomposition.

Drawbacks of cyclic dependencies are: (1) higher com-
plexity, since modules cannot be understood independently.
The goal of modularization is to divide a complex system
into simpler modules that can be independently developed,
maintained, and understood [22], whereas tight coupling,
caused by cyclic dependencies diminishes the ability to
understand modules in isolation [23, p. 85]; (2) less flex-
ibility and extensibility is a result of cyclic dependencies as
the program is harder to understand because of increased
complexity, and coupled components can be affected by
changes. Cycles make it harder to accurately assess and
manage the impact of changes to the system.

Cyclic dependency analysis is an important aspect of the
proposed approach because 31.5% of the components and
53.7% of the modules in the analyzed projects are involved
in cyclic dependencies. Melton and Tempero’s empirical
study [20] confirms the high amount of cyclic dependencies
between classes and packages, which was also discovered
in our analysis: 52% of the component level SCCs remain
inside a module. Consequently 48% of the component level
SCCs are distributed over more than one module and cause
cyclic dependencies among modules.

A large number of cyclic dependencies requires many
component movements to resolve cycles, which results in
complex refactorings at the beginning of the process. In

140

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Module Predecessor subset Successor subset Intersection of subsets

M1 P (M1, M2) = {C1} S(M3, M1) = {C5} Ø
M2 P (M2, M3) = {C2} S(M1, M2) = {C2} {C2}
M3 P (M3, M1) = {C3, C4} S(M2, M3) = {C3, C4} {C3, C4}

Table II. Predecessor subset, succes-
sor subset and subset intersections of
the example given in Figure 4

this case, human intervention is needed to continue with
the reengineering process.

B. Dominance Analysis

Components often reference underlying components that
provide specific functions, which cannot be understood
or reused individually. If an underlying component is an
essential part of the referencing component, then referenced
and referencing components must not be separated by any
restructuring attempt.

Figure 5 (A) shows a client using a facade, a unified
interface hiding a complex subsystem. The facade and the
covered components must be reckoned as one unit to prevent
dispersing this coherent structure.

Figure 5 (B) shows two clients depending on some
utility components. When Client2 was developed, its
common utility functions were extracted to the component
CommonUtil. Client1 can use CommonUtil with-
out referencing Client2. The component SpecialUtil
emerged when the developers of Client1 decided to
encapsulate some functions. But no other component de-
pends on SpecialUtil. Client1 and SpecialUtil
belong together and must not be separated. Nevertheless, if
SpecialUtil was developed as a reusable component,
a rule could be defined to enable the separation of both
components.

Figure 5. Examples of Dominance Subgraphs

Dominance analysis is the process of identifying intra-
modular subgraphs that can be collapsed without introducing
cyclic dependencies. The first step, is collapsing all SCCs
as mentioned above. This step is common to other proposed
approaches [24], [25], because the algorithms for transitive
closure used for dominance analysis require acyclic graphs
as input. Next, all redundant dependencies are removed. An
edge e part of a directed graph G is said to be redundant
iff e can be removed without changing the transitive closure
of G [26]. Then, the algorithm goes through all vertices v

and examines whether v qualifies as dominated vertex. The
vertex v is said to be dominated iff there exists exactly one
vertex d that is linked to v by an edge (d, v). Dominator
vertex and dominated vertex form a dominance pair if they
are part of the same module. One separate or several overlap-
ping dominance pairs constitute a dominance subgraph. The
dominance subgraph detection is repeated until no further
dominance pairs can be detected.

Figure 6 shows an example of dominance analysis. The
SCC {e, f} detected in part (A) is collapsed in part (B).
The dotted edges in part (B) denote redundant dependencies.
In part (C) the redundant dependencies are filtered and
three dominance pairs are found that form two collapsed
dominance subgraphs in part (D).

Figure 6. Steps of Dominance Analysis

Only components within the same module should be
united, otherwise too many components would be pulled
together. Since dominance subgraphs are not spread over
multiple modules, subsequent restructuring attempts must
either move complete subgraphs or keep them unchanged
in their modules.

Other proposed dominance analyses [16], [24] are re-
stricted to rooted (sub-)trees and unsuitable to detect nested
dominance subgraphs due to redundant edges.

During preprocessing 32.1% of the analyzed classes
could be assigned to dominance subgraphs. There are 1.82
dominance subgraphs per package. Based on a manual
review, the identified dominance subgraphs are accurate
and expedient without exception. Figure 7 shows an intra-
modular dominance subgraph detected in the J2SE JDK. The
Java classes Timer, TimerThread, TaskQueue, and
TimerTask, which are part of the java.util package,
form a dominance subgraph. When the system is restructured
these classes should be kept together because Timer and

141

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TimerTask are always referenced together by classes posi-
tioned in other packages. TimerThread and TaskQueue
are only used by Timer, and therefore they should not be
separated from Timer.

Timer

TimerThread

TaskQueue

TimerTask

java.util

Timer

javax.management.timer

DGCAckHandler

sun.rmi.transport

Redundant

Dependency

Figure 7. Detected Dominance Subgraph

C. Intra-modular Similarity Clustering

Structural similarity clustering allows comparing com-
ponents based on afferent and efferent dependencies. Two
patterns can be distinguished: support library pattern and
facade pattern. Figure 8 (A) shows the support library
pattern. The gray component is a support library that is used
frequently. Figure 8 (B) shows the facade pattern. The gray
component is the facade depending on a number of other
components. In both cases, the white components resemble
one another structurally although the dependencies of the
support library and facade may be irrelevant for positioning.
Therefore, it can be useful to remove these dependencies
from consideration.

Clustering algorithms [27] group similar entities together.
In order to quantify the similarity of entities a similarity
measure is necessary. Schwanke [11] proposes a similarity
measure to compare two procedures. This measure is applied
to the MDG to compare components. By this means clusters
of similar components that are part of the same module can
be identified. These clusters are cohesive structures that are
sustained during restructuring.

Figure 9 shows the similar components b and c that
would be separated by metric-based restructuring techniques
without similarity clustering. Part (A) shows the initial
MDG. The similarity cluster {b, c} is marked by a shaded
oval. Without this cluster, b an c would be separated to
improve metric values as shown in part (B). The metric
values for the original configuration are: Coupling(M1 and
M3) = 2, Coupling(M2) = 4, Cohesion(M1 and M3) = 1,
Cohesion(M2) = 0. The alternative configuration created by
a pure metric-based approach would have: Coupling(M1

Figure 8. Similarity Clustering Motivating Example

Figure 9. Intra-modular Similarity Clustering

and M3) = 2, Cohesion(M1 and M3) = 0.5. Part (C)
shows an alternative configuration with equal metric values.
Therefore, using structural clusters prevents pulling apart
similar components.

The similarity measure is based on features that are
derived from the afferent and efferent dependencies of the
components. Let a be a component that depends on the
component b, then a has the feature “is-predecessor-of-b”
and b has the feature “is-successor-of-a”. Important features
occur seldom, while common features emerge frequently.
For example, the dependencies to a logging component are
of little importance because they occur frequently throughout
the system. Schwanke proposes to use the Shannon infor-
mation content [28] from information theory as weighting
factor for features. The formula for the weight of a feature
used in this project is:

weight = −1 ∗ log2
#feature references

#components− 1

The components are clustered as follows: first an undi-
rected graph is created. Each component is represented
by a distinct vertex. At the beginning the graph has no
edges. Then pairs of similar vertices are connected if the
components they represent are part of the same module
and if the similarity value reaches the similarity threshold,
which has been detected in experiments as 0.8. At the
end, the connected components of the graph are detected.
Each connected component represents a cluster of similar
components.

The collapsed dominance subgraphs and SCCs can affect
the similarity of components. Therefore, similarity must be
measured based on graphs without collapsed subgraphs.

The experiments show that only 61.3% of the classes are
in the same package as their most similar peer. Therefore,
restructuring a system by means of clustering the most
similar components causes a high number of component
moves and is therefore not acceptable. Seen from a different
point of view, the positioning of 38.7% of the classes might
be justified by other arguments, which are not detectable by
similarity clustering.

Similarity clustering is a useful tool for detecting struc-
tures that should be maintained during restructuring. 12.3%
of the analyzed classes could be assigned to intra-modular

142

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

similarity clusters using a high similarity threshold to limit
the number of false-positive findings.

VI. RESTRUCTURING PHASE

Although the main focus of this paper is preserving
cohesive structures during the preprocessing phase, the ac-
curacy of the restructuring phase can be improved as well.
Besides using well known and widely accepted coupling
and cohesion metrics, this paper introduces a third metric
– coherence – as a further optimization criterion.

A. Coherence Metric Definition

Cohesion refers to the relatedness of a module’s internal
structure. We argue that an external viewpoint should also
be used to analyze how the elements of a module contribute
to a common purpose or objective. Therefore, we propose
the metric coherence, which characterizes the functional
cohesion of a module from an external viewpoint.

For a module m the function Clients defines the compo-
nents that are not part of m and that depend on components
in m.

Clients(m) := {c|c ∈ V ∧ c /∈ m ∧ ∃a ∈ m : (c, a) ∈ E}

Let m be a module and c a component not in m. The
function ref specifies the components in m, which are used
by c.

ref(c, m) := {a|a ∈ m ∧ (c, a) ∈ E}

The Jaccard Coeffcient [29, ch. 7] is used as a binary simi-
larity measure to compare the usage patterns of the module’s
external clients. Let A and B be sample sets by which two
entities are compared, then the Jaccard Coefficient is

SJaccard :=
|A ∩B|

|A ∩B|+ |A4B|
with the symmetric difference: A4B := (A\B)∪ (B \A).
Coherence for a module m is defined as the sum of Jaccard
Coeffcients applied to the module’s clients:

Coherence(m) :=∑
c |ref(a, m) ∩ ref(b, m)|∑

c |ref(a, m) ∩ ref(b, m)|+
∑

c |ref(a, m)4 ref(b, m)|

with c := {a, b} ⊂ Clients(m), a 6= b. Coherence quanti-
fies the similarity of usage patterns of the module’s external
clients. All clients of module m are pairwise compared using
sets of referenced components in m.

Figure 10 shows three modules with varying coherence.
The modules M1, M2, and M3 are equal, but are used
differently. Module M1 has two clients each referencing to a
different component in M1. By means of the above proposed
formula Coherence(M1) = 0/(0 + 2) = 0. The value
0 corresponds to our intuitive comprehension of coherence
because the clients use disjoint parts of M1. If all elements
of a module would contribute to one and the same purpose

or objective, the clients would depend on component subsets
with high intersection.

Module M2 has three clients. Client1 and Client3
depend on different components. Client2 depends on both
components from m. In this case, coherence has a low value,
but not zero, Coherence(M2) = (1 + 0 + 1)/((1 + 0 + 1) +
(2 + 1 + 1)) = 1/3.

Both clients of M3 have the same usage pattern. In this
case the module provides a coherent set of functions to other
elements in the system. Consequently, coherence has the
highest possible value, Coherence(M3) = 2/(2 + 0) = 1.

A similar idea of using clients of a module for measuring
the strength of its internal connections has been used in the
Lack of Coherence in Clients (LCIC) metric [30]. LCIC
has been used for identifying candidates for refactoring. The
main difference between the coherence metric presented in
this paper and LCIC is that LCIC uses the same approach
as the Lack of Cohesion on Methods (LCOM) metric [31]
while the coherence metric is based on a similarity measure.
We argue that in contrast to the LCIC our metric depend less
on the size of the module.

B. Coherence Metric Properties

This section validates the cohesion metric according to
a property set similar to the set of properties proposed by
Briand et al. [32] that must be satisfied by coupling and
cohesion metrics.

Non-negativity and normalization property requires the
existence of a real number Max such that the coherence
of a module belongs to an interval [0; Max]. The metric
coherence has the range [0; 1].

Zero value property requires coherence to be zero, if the
usage patterns of clients have nothing in common. Coher-
ence is not defined for modules without clients. If a module
has one client, the coherence is 1 per definition. Let us as-
sume a module m has n clients, where n = |Clients(m)| ≥
1. If all clients depend on different components in m, then
|∀a, b ∈ Clients(m), a 6= b : ref(a, m) ∩ ref(b, m) = ∅
and consequently Coherence(m) = 0.

Monotonicity property means that the coherence of a
module is not decreased by adding an inter-modular de-
pendency between a client and a component that is already

Figure 10. Illustration of Coherence Metric

143

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

referenced by one ore more other clients of this module. Let
Γ = (V,E,M) be an MDG, m ∈ M a module, and t ∈ m
a component. Let c1, c2 ∈ Clients(m) be two different
clients of m. (c1, t) /∈ E, (c2, t) ∈ E,E′ := E ∪ {c1, t)},
and Γ′ = (V,E′, M) is a second MDG. This property is
satisfied, if the coherence of m in Γ is not greater than the
coherence of m in Γ′. If in Γ the coherence of m is a/b
with a ≥ 0 and b > 0, then in Γ′ the coherence of m is
(a + x)/b with x ≥ 1 because there is at least one more
common dependency leading to t. Adding a dependency
(c1, t) increases the similarities of the usage patterns of the
clients of m.

Coherent modules property means that the coherence
of a module created by merging two other modules having
different clients is not greater than the maximum coherence
of the two original modules. Let Γ = (V,E, M) be an MDG.
Let m1, m2 ∈ M be two different, non-empty modules,
m1 6= m2, |m1|, |m2| > 0. Further, there is a module
m = m1 ∪m2, m /∈ M . Let M ′ := M ∪ {m} \ {m1, m2}
be a set of modules and Γ′ = (V,E, M ′) an MDG. The
coherence of m1 and m2 is:

Coherence(m1) =
r1

r1 + d1
Coherence(m2) =

r2

r2 + d2

where r1, d1, r2, d2 ∈ N and r1 + d1, r2 + d2 > 0. In order
to validate this property we have to show:

max{Coherence(m1), Coherence(m2)} ≥ Coherence(m)

Let us assume

Coherence(m1) ≥ Coherence(m2)

⇔ r1

r1 + d1
≥ r2

r2 + d2

⇔ r1(r2 + d2) ≥ r2(r1 + d1)

Let x ≥ 1 be the number of usage difference of the
clients that were added when merging m1 and m2. If
Coherence(m1) ≥ Coherence(m2), then it is sufficient
to show that

Coherence(m1) ≥ Coherence(m)

⇔ r1

r1 + d1
≥ r1 + r2

r1 + r2 + d1 + d2 + x

⇔ r2
1 + r1r2 + d1r1 + d2r1 + r1x ≥ r2

1 + r1r2 + d1r1 + d1r2

⇔ r1(r2 + d2) + r1x ≥ r2(r1 + d1)

C. Coherence Metric Values

A manual inspection of the coherence metric val-
ues confirmed its plausibility. For example, the package
org.apache.tools.ant.taskdefs is a conglomer-
ation of different, partially related classes. This package has
no clearly defined function, but containing all Ant tasks.
The coupling is 978, cohesion 0.01, coherence 0.08. Other
packages such as org.apache.tools.tar include a set
of related classes. Its coupling is 8, cohesion is 0.2, and
coherence is 0.62.

The Spearman’s rank correlation coeffcient, p, was used
to measure the pairwise correlation between the module size
and coherence, and between cohesion and coherence. There
is a very significant (p-value � 0.05), medium negative
correlation between size and coherence (p = –0.52). Further,
there is a very significant (p-value � 0.05), medium
positive correlation between cohesion and coherence (p =
0.42).

The distribution of the cohesion and coherence values of
the analyzed Ant projects is provided in Figure 11. The
coherence metric shows a wider spectrum than cohesion. As
a result of this stronger distinction of the projects regarding
their coherence value, we argue, that although both metrics
correlate, coherence can complement coupling and cohesion
as a further optimization criteria.

VII. THE AUTOMATIC RESTRUCTURING TOOLKIT

As a basis for the validation of our proposition, we devel-
oped a framework called “Automatic Restructuring Toolkit”
(ART). This section comprises a short description of ART
and its characteristic implementation aspects.

ART is a framework providing a collection of individual
restructuring techniques, e.g. “detect SCCs” or “resolve
component cycles” as introduced above. Figure 12 gives an
overview of the most important modules within ART. All
artifacts needed to analyze the structure of a software system
are provided as XML documents, which are transferred
into the internal format by the XML Handler and the Data
Loader. The ArtGraph is an MDG that has been created from
source code with the help of external tools, e.g., Classycle
in case of Java code. The core engine of ART contains the
restructuring techniques, which can be combined with each
other via tasks to create restructuring proposals according to
specific restructuring processes such as the process shown
in Figure 3. The output of each task is the input of its
following task. Intermediate results are stored, since they
can be helpful to understand the final results.

The task-based approach allows changing the execution
order of techniques without re-compilations. Therefore, tech-
niques can be added or replaced, and configured with
diverse parameters leaving the entire process of restructuring
flexible. The composition of techniques can be accomplished
through the exposed Java API, or by Ant scripting.

Figure 11. Cohesion and Coherence Metric Values

144

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. ART Architecture Overview

VIII. CONCLUSION AND FUTURE WORK

Instead of radical changes, manageable changes are pro-
posed by the presented approach. Existing cohesive struc-
tures are identified in the preprocessing phase and preserved
during restructuring.

Eighteen Java open source projects have been analyzed
for this work. The analysis shows that each module could be
split on an average into 3.1 modules without introducing new
inter-modular dependencies. 76% of all dependencies are
inter-modular. Consequently, pure metric-based techniques
would propose many component moves and split up those
modules not changing the values for coupling, but improving
the cohesion values.

Since only 61.3% of the components are in the same
module with their most similar peer, pure similarity-based
techniques would also propose comprehensive changes.

The results verify the usefulness of the proposed ap-
proach. During preprocessing 32.1% of the analyzed classes
could be assigned to dominance subgraphs and 12.3% could
be assigned to similarity clusters for preserving these struc-
tures during restructuring, thereby proposing less radical
change.

The approach, however, does not include statements about
the actual usage during runtime. Cases may exist where the
usage patterns implying components to be similar on the
basis of a structural analysis seldom or never occur during
the runtime of the system. Runtime analysis and validating
the above techniques from this point of view is a stream for
future work.

More empirical research is necessary to analyze to what
extent preserving cohesive structures supports or impedes
finding better configurations. Future tests will show whether
size and quality of the intra-modular similarity clusters can
be improved with an extended similarity measure [12].

In future work the restructuring rules will be extended
and combined with logical architectures mapped onto the
physical artifacts of the analyzed systems to reduce the level
of uncertainty of restructuring proposals.

A similar approach can be used during development of
new software to identify positions for a new component
while the rest of the system is kept unchanged.

Another field of future work lies in assessing different
versions of a software system with our proposed approach,
hereby validating the approach and the design decisions
made during the evolution of the system.

Although no empirical evidence about the usefulness of
the coherence metric has been investigated in this paper, we
believe that introducing this additional criteria will allow
preserving more cohesive structures. An experiment to test
this hypothesis is part of future work.

Our results show that pure structural analysis can sig-
nificantly contribute to the improvement of source code
structure. From our point of view including analysis of the
components’ semantic meaning may even lead to further
enhanced restructuring results. The validation of this as-
sumption is subject of future work.

ACKNOWLEDGMENTS

We thank Pieter Bloemendaal and Jakob Spies for their
insightful inputs and suggestions concerning this work.

REFERENCES

[1] K. Spichale, O. Panchenko, A. Bog, and A. Zeier, “Pre-
serving Cohesive Structures for Tool-based Modularity Re-
engineering,” in Proceedings of the Fourth International
Conference on Software Engineering Advances, ICSEA’09,
Porto, Portugal, September 2009.

[2] G. C. Murphy, D. Notkin, and K. J. Sullivan, “Software
Reflexion Models: Bridging the Gap between Design and Im-
plementation,” IEEE Transactions on Software Engineering,
vol. 27, no. 4, pp. 364–380, 2001.

[3] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner,
“Bunch: A Clustering Tool for the Recovery and Maintenance
of Software System Structures,” in Proceedings of the IEEE
International Conference on Software Maintenance. Wash-
ington, DC, USA: IEEE Computer Society, 1999, p. 50.

[4] “SAP – Business Managemant Spftware Solutions Applica-
tions and Services,” http://www.sap.com, accessed July 1st,
2010.

[5] H. Zuse, A Framework of Software Measurement.
Hawthorne, NJ, USA: Walter de Gruyter & Co., 1997.

145

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[6] R. Koschke, “Atomic Architectural Component Recovery for
Understanding and Evolution,” Ph.D. dissertation, University
of Stuttgart, 2000.

[7] D. H. Hutchens and V. R. Basili, “System Structure Anal-
ysis: Clustering with Data Bindings,” IEEE Transactions on
Software Engineering, vol. 11, no. 8, pp. 749–757, 1985.

[8] S. Huynh, Y. Cai, Y. Song, and K. Sullivan, “Automatic
Modularity Conformance Checking,” in Proceedings of the
International Conference on Software Engineering. ACM,
2008, pp. 411–420.

[9] M.-A. D. Storey, K. Wong, H. A. Müller, P. Fong, D. Hooper,
and K. Hopkins, “On Designing an Experiment to Evaluate a
Reverse Engineering Tool,” in Proceedings of the 3rd Working
Conference on Reverse Engineering. IEEE CS Press, 1996,
pp. 31–40.

[10] J.-F. Girard, “ADORE- AR: Software Architecture Recon-
struction with Partitioning and Clustering,” Ph.D. dissertation,
Univ. of Kaiserslautern, CS Dept., 2006.

[11] R. W. Schwanke, “An Intelligent Tool For Re-engineering
Software Modularity,” in Proc. of the Int. Conference on
Software Engineering. IEEE CS Press, 1991, pp. 83–92.

[12] J.-F. Girard, R. Koschke, and G. Schied, “A Metric-Based
Approach to Detect Abstract Data Types and State Encapsu-
lations,” Automated Software Engineering, vol. 6, no. 4, pp.
357–386, 1999.

[13] C. Jermaine, “Computing Program Modularizations Using the
k-cut Method,” in Proceedings of the 6th Working Conference
on Reverse Engineering. Los Alamitos, CA, USA: IEEE CS
Press, 1999, pp. 224–234.

[14] O. Goldschmidt and D. Hochbaum, Polynomial algorithm for
the k-cut problem. Los Alamitos, CA, USA: IEEE Computer
Society, 1988, vol. 0.

[15] B. S. Mitchell and S. Mancoridis, “On the Automatic Modu-
larization of Software Systems Using the Bunch Tool,” IEEE
Transactions on Software Engineering, vol. 32, no. 3, pp.
193–208, 2006.

[16] V. Tzerpos and R. C. Holt, “ACDC: An Algorithm for
Comprehension-Driven Clustering,” in Proceedings of the 7th
Working Conference on Reverse Engeneering. IEEE CS
Press, 2000, pp. 258–267.

[17] R. C. Martin. (2000) Design Principles and Design Patterns.
http://www.objectmentor.com.

[18] “Classycle: Analysing Tools for Java Class and Package
Dependencies,” http://classycle.sourceforge.net, accessed July
1st, 2010.

[19] J. L. Gross and J. Yellen, Handbook of Graph Theory. CRC
Press, 2004.

[20] H. Melton and E. Tempero, “An Empirical Study of Cycles
among Classes in Java,” Empirical Software Engineering,
vol. 12, no. 4, pp. 389–415, 2007.

[21] M. Fowler, “Reducing Coupling,” IEEE Software, vol. 18,
no. 4, pp. 102–104, 2001.

[22] D. L. Parnas, “On the Criteria To Be Used in Decomposing
Systems into Modules,” Communications of the ACM, vol. 15,
no. 12, pp. 1053–1058, 1972.

[23] E. Yourdon and L. L. Constantine, Structured Design: Fun-
damentals of a discipline of Computer Program and Systems
Design. Raleigh, NC, USA: Prentice-Hall, Inc., 1979.

[24] J.-F. Girard and R. Koschke, “Finding Components in a
Hierarchy of Modules: A Step Towards Architectural Under-
standing,” in Proceedings of the International Conference on
Software Maintenance. IEEE CS Press, 1997, pp. 58–65.

[25] A. Cimitile and G. Visaggio, “Software Salvaging and the
Call Dominance Tree,” Journal of Systems and Software,
vol. 28, no. 2, pp. 117–127, 1995.

[26] A. V. Aho, M. R. Garey, and J. D. Ullman, “The Transitive
Reduction of a Directed Graph,” SIAM Journal, vol. 1, no. 2,
1972.

[27] T. A. Wiggerts, “Using Clustering Algorithms in Legacy Sys-
tems Remodularization,” in Proceedings of the 4th Working
Conference on Reverse Engineering. IEEE CS Press, 1997,
pp. 33–43.

[28] R. G. Gallager, Information Theory and Reliable Communi-
cation. John Wiley & Sons, Inc., 1968.

[29] M. Falk, F. Marohn, and B. Tewes, Foundations of Statis-
tical Analyses and Applications with SAS. Basel, Swiss:
Birkhäuser, 2002.

[30] S. Mäkelä and V. Leppänen, “A Software Metric for Coher-
ence of Class Roles in Java Programs,” in Proceedings of the
5th international symposium on Principles and practice of
programming in Java. New York, NY, USA: ACM, 2007,
pp. 51–60.

[31] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for
Object Oriented Design,” IEEE Transactions on Software
Engineering, vol. 20, no. 6, pp. 476–493, 1994.

[32] L. C. Briand, S. Morasca, and V. R. Basili, “Property-Based
Software Engineering Measurement,” IEEE Transactions on
Software Engineering, vol. 22, no. 1, pp. 68–86, 1996.

146

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Requirement-driven Scenario-based Testing Using Formal Stepwise Development

Qaisar A. Malik, Linas Laibinis, Dragoş Truşcan, and Johan Lilius
Turku Centre for Computer Science and Dept. of Information Technologies,

Åbo Akademi University, Turku, Finland.
Email: {Qaisar.Malik, Linas.Laibinis, Dragos.Truscan, Johan.Lilius}@abo.fi

Abstract

This article presents a scenario-based testing approach,
in which user-defined abstract testing scenarios of the SUT
are automatically refined based on formal specifications of
the system under test (SUT). The latter are specified in
a stepwise manner using the Event-B formalism until a
sufficiently refined specification is obtained, which is then
used to generate a Java implementation template of the
system. The development of the specification is driven by the
requirements of the system which are traced throughout the
development and testing process. Abstract testing scenarios,
provided by the user, are automatically refined following
the same refinement steps used for the system specification.
The sufficiently refined scenarios are then transformed into
executable Java Unit Testing (JUnit) test cases, which are ex-
ecuted against the Java implementation of the SUT. During
the described process, the requirements linked to the testing
scenarios are propagated to JUnit tests. The main advantage
of the proposed approach that it allows the developer to
evaluate which requirements have been validated and to
trace back the failed tests to corresponding elements of the
formal specifications.

Index Terms

Scenario-based testing; Requirements Traceability; Event-
B; Formal Refinement; JUnit;

1. Introduction

Formal development ensures that the developed systems
are correct-by-construction. However, development of large
and complex systems by formal methods exhibit several
limitation including computation time and efforts it takes
for the verification, and handling of low-level implemen-
tation details [1]. In general practice, formal methods are
used to verify specifications of the system abstractly and
implementation of the system is hand-coded while following
formal specifications. In such cases, the implementation is
written in an informal programming language. Since the
implementation is no longer correct-by-construction, the
resulting implementation needs to be tested.

Traditionally, testing has been performed manually by the
tester carefully examining the implementation under test and
then designing test cases. As the software became more
complex, the resulting test cases have grown in numbers and
complexity. This naturally has lead to the need to automate
the testing process. Today, there exist several testing ap-
proaches that automate the testing process either completely
or partially. These approaches try to achieve their goal
by applying different means, i.e., code templates, scripts,
formal and semi-formal software models etc. However, these
approaches do not distinguish between different parts of the
system that might be more or less important for overall
system correctness. Therefore, it is important to test the
functionality of the system according to user’s requirements.

In this paper, we propose a testing methodology which
uses user-specified testing scenarios in order to generate
test cases. Our scenario-based testing approach can be seen
as a kind of model-based testing where tests are generated
from user-provided testing scenarios. The focus of this
testing approach is on explicit identification of important
behavior of the system that should be tested. The proposed
methodology uses formal models of the system along with
user-provided testing scenarios. These formal models and
scenarios are mapped using the requirements. Later on, the
formal models and scenarios are translated to Java and
JUnit artifacts, respectively, while the requirements are also
propagated to the JUnit test cases. The advantage of prop-
agating requirements to executable test cases is that upon
a a test case failure, it is possible to back-trace the failed
requirement(s) to the corresponding parts in the model.

The work we present in this paper builds on and extends
our previous work [9], [10] on scenario-based testing, where
we have used formal models of the SUT based on the
Event-B formalism. We have also proposed a collection
of formal refinement techniques that can be used in the
context of test generation. In this article, we elaborate our
previous results and as well as compliment them by building
a requirement traceability support. This allows us to keep
track on how requirements are addressed by the specification
at different abstraction levels and how they are propagated
to the generated test cases.

147

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To summarize, our proposed methodology encompasses
the following:
• inclusion of requirements in the formal specification

process and propagation of requirements to tests;
• traceability of requirements from tests back to formal

specifications;
• identification of abstract test cases from formal scenario

specifications;
• generation of Java templates of the system from suffi-

ciently refined Event-B specifications;
• generation of JUnit tests from abstract test cases in the

Communicating Sequential Processes (CSP) notation.
The organization of the paper is as follows. Section 2 pro-

vides necessary background on the modeling and program-
ming languages used in this paper. In Section 3, we look
in detail at the scenario-based testing process and present
extended guidelines for modeling of Event-B specifications
and of testing scenarios along with requirements. Section 4
gives overview of the tools we used for modeling, testing
and measuring test coverage. In Section 5, we analyze and
discuss the benefits and short-comings of our approach.
Section 6, presents some related work in the area of research.
Finally, Section 7 concludes the paper.

2. Background

In this section, we give overview of the languages and
techniques we use for our scenario-based methodology.

2.1. Overview of Event-B

The Event-B [3] is a recent extension of the classical B-
method [4] formalism. Event-B is particularly well-suited
for modeling event-based systems. The common examples
of event-based systems are reactive systems, embedded
systems, network protocols, web-applications and graphical
user interfaces. The language of the B-method and Event-B
is based on set theory and predicate calculus.

As an example of an Event-B model, consider the fol-
lowing model (also known as machine) M with a context
C. A context is considered as the static part of the Event-
B specifications. It contains constants, sets and properties
(axioms) related to these. On the other hand, an Event-B
machine describes the dynamic part of the specification in
the form of events (state transitions).
The context has the following general form.

CONTEXT C
SETS sets
CONSTANTS constants
AXIOMS axioms
END

A context is uniquely defined by its name in the CONTEXT
clause. The CONSTANTS and SETS clauses define constants
and sets respectively. The AXIOMS clause describes the

properties of constants and sets in terms of set-theoretic
expressions.
An Event-B machine has the following general form.

MACHINE M
SEES C
VARIABLES v
INVARIANT I
EVENTS
INITIALISATION = . . .
E1 = . . .
. . .
EN = . . .

END

The machine is uniquely defined by its name in the
MACHINE clause. The VARIABLES clause defines state
variables, which are then initialized in the INITIALISATION
event. The variables are strongly typed by constraining pred-
icates of the machine invariant I given in the INVARIANT
clause. In addition, the invariant can define other essential
system properties that should be preserved during system
execution. The operations of event-based systems are atomic
and are defined in the EVENT clause. An event is defined
in one of two possible ways

E = WHEN g THEN S END

E = ANY i WHERE G(i) THEN S END

where g is a predicate over the state variables v, and the body
S is an Event-B statement specifying how the variables v are
affected by execution of the event. The second form, with
the ANY construct, represents a parameterized event where i
is the parameter (or a local variable) and G(i) restricts i. The
occurrence of the events represents the observable behavior
of the system. The event guard (e.g., g or G(i)) defines the
condition under which event is enabled.

The occurrence of events represents the observable be-
havior of the system. The condition under which the action
can be executed is defined by the guards. An event is
known to be enabled when the guards evaluate to true. An
event execution is supposed to take no time and no two
events can occur simultaneously. When some events are
enabled, one of them is chosen non-deterministically and
its action is executed on the model state. When all events
are disabled, i.e. their guards evaluate to false, the discrete
system deadlocks. Then previous step is repeated to see if
any events are enabled for execution.

The actions of an event can be either a determinis-
tic assignment to the variables of the system or a non-
deterministic assignment from a given set or according
to a given post-condition. The semantics of actions are
defined by their before-after (BA) predicates, where a BA
predicate is a relation between before and after values of the
event variables. BA predicates for specific cases of Event-B
actions are given in Figure 1.

148

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Action Before-after (BA) predicate Explanation

x := F (x, y) x′ = F (x, y) ∧ y′ = y standard
assignment

x :∈ Set ∃t. (t ∈ Set ∧ x′ = t) ∧ y′ = y non-deterministic
assignment from set

x : | P (x, y, x′) ∃t. (P (x, y, t) ∧ x′ = t) ∧ y′ = y
non-deterministic
assignment by
given post-condition

where x and y are disjoint lists of state variables, and x′, y′ represent their
values in the after state. The F (x, y) represents a function that provides a
deterministic value for x′ while y does not change its value. The Set repre-
sents any defined set while P (x, y, x′) is a post-condition relating initial val-
ues of x and y to the final value x′. The :∈ and : | represent non-deterministic
assignment operators operating on sets and predicates respectively.

3.1.1 Proof obligations for specifications in Event-B

In order to check consistency of an Event-B machine, a number of pre-defined
conditions (called proof obligations) should be proven true (i.e discharged)
for each event [41, 62]. In recent practice, these proof obligations are gener-
ated and proved using the provided automated tool support. For each event
in a machine, two types of properties are needed to be verified: the event
feasibility property and the invariant preservation property. The event fea-
sibility states that it should be possible to execute an event from any state
when both the machine invariant and the event guards hold. In other words,
it can produce at least one after state that satisfies the before-after predicate,
i.e.,

I(v) ∧Ge(v) ⇒ ∃v′. BAe(v, v
′) (1)

The invariant preservation property states that the invariant should always
be maintained:

I(v) ∧Ge(v) ∧BAe(v, v
′) ⇒ I(v′) (2)

The initialisation is treated as any other event of the system. The only
difference is that it does not have initial state. Therefore, for the initialisa-
tion event, the event feasibility(1) and invariant preservation(2) properties
become the following.

17

Figure 1. The actions and before-after predicate

In Figure 1, x and y are disjoint lists of state variables, and
x′, y′ represent their values in the after state. The F (x, y)
represents a function that provides a deterministic value for
x′ while y does not change its value. The Set represents
any defined set while P (x, y, x′) is a post-condition relating
initial values of x and y to the final value x′. The :∈ and : |
represent non-deterministic assignment operators operating
on sets and predicates respectively.

To check consistency of an Event B machine, we should
verify two types of properties: event feasibility and invariant
preservation. Formally,

Inv(x, y) ∧ ge(x, y) ⇒ ∃v′. BAe(x, y, x
′)

Inv(x, y) ∧ ge(x, y) ∧BAe(x, y, x
′) ⇒ Inv(x′, y)

The main development methodology of Event B is re-
finement – the process of transforming an abstract specifi-
cation to gradually introduce implementation details while
preserving its correctness. Refinement allows us to reduce
non-determinism present in an abstract model as well as
introduce new concrete variables and events. The connection
between the newly introduced variables and the abstract
variables that they replace is formally defined in the invariant
of the refined model. For a refinement step to be valid, every
possible execution of the refined machine must correspond
to some execution of the abstract machine.

Further details about modeling and verification in Event-B
can be found in [3].

2.2. Overview of Communicating Sequential Pro-
cesses (CSP)

In the following, we present a brief overview of Com-
municating Sequential Processes (CSP) [6] which is needed
to model scenarios in our approach. In CSP, a system is
modeled as a process, which interacts with the environment
via a number of events whereas the occurrence of events is
atomic.

In CSP, there are two basic processes: STOP is a
deadlocked process, and SKIP is the terminating process.
The process a→ P can perform an event a and then behave
as P . There are two choice operators used in CSP, namely,
external choice (�) and internal choice (u) operators. In the

case of external choice, P1�P2, either process P1 or P2 is
executed based on which event occurs first. On the other
hand, the internal choice operator is used to model non-
determinism, e.g., P1 u P2 can arbitrarily choose to behave
as either P1 or P2.

The processes can be combined together in parallel or
in sequence. For sequential composition, ′;′ operator is
used. For instance, P1;P2 ensures that P1 process executes
before P2. By parallel composition, we allow processes to
interact/communicate with each other through the events
they engage in. For parallel composition, ‖ operator is
used, e.g., P1‖P2. Further details about CSP operators, its
semantics and refinements can be read from [6].

2.3. Unit Testing

Unit testing aims at testing units of the program code, e.g.,
methods or modules, separately from each other. This kind
of testing is performed by writing programming methods
(called unit tests) that invoke the corresponding implemen-
tation methods under test. A unit test provides the needed
input to the unit under test and evaluates its output before
assigning any verdict about its success or failure. Unit testing
ensures that the functionality of individual units are tested
before these units are integrated to form a larger system.

In order to facilitate unit testing during the system devel-
opment, unit testing frameworks have been developed for al-
most every programming language. A unit testing framework
provides helper methods, reporting and debugging features
to aid unit testing. In our scenario-based approach, we use
Java Unit Testing (JUnit) [7] frameworks.

3. Scenario-based Testing Process

In our scenario-based testing process (Figure 2), the
system is specified in a stepwise manner using the Event-
B formalism until a sufficiently refined specification is ob-
tained. The formal models are refined manually based on
a set of guidelines which we will discuss in the following
section. The sufficiently refined specification is then used
to generate a Java implementation template of the system.
The development of the specification is driven by the re-
quirements of the system which are traced throughout the
process, including to the generated Java code.

The testing scenarios are gradually developed from re-
quirements. The first abstract scenario is provided by the
user. This scenario represents a valid behavior of the abstract
model present on the same level of abstraction. In short,
we say that the abstract model conforms to or formally
satisfies the abstract scenario. Later on, we refine this
abstract scenario along the refinement chain of the system
models until a sufficiently detailed scenario is obtained. In
fact, this detailed scenario represents an abstract test case.

149

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Refinement

Refinement

Abstract scenario

Refined scenario

(S
A

)

(S
i

)

Sufficiently refined
 scenarios (S

C
)

Implementation

System requirements

Testcase implementation

Test Cases

Scenario-specific requirements

Testcase application

Refinement

Refinement

Sufficiently refined
 model (M

C
)

Refined model (M
i

)

Abstract model (M
A

)

()

()

()

()

System Under Test
 (SUT)

Requirements

Conforms to ()=|

Conforms to ()=|

Conforms to ()=|

Test report Backtracing Requirements Backtracing Requirements

Figure 2. Overview of our scenario-based approach

3.1. Modeling Requirements

The sufficiently refined scenarios are then transformed
into executable JUnit test cases, which are executed against
the Java implementation. During the process, requirements
linked to the testing scenarios are propagated to JUnit
tests, where they are used for producing a test report. The
approach allows us to evaluate which requirements have
been validated and to trace back the failed tests to the formal
specifications.

Usually the software systems are built according to in-
formal requirements provided by user. The link between
informal requirements and formal models is quite important
in software development. The requirements are used for
creating the initial specification of the SUT and also for
refining this specification on the next level of abstraction.

In our approach, a stand-alone document specifying the
requirements of the SUT in a structured manner is used.
In this document, the requirements are described using
ID, Category, Title, Priority, and Description, as shown in
Figure 3. The hierarchy of the requirements is implemented
using the requirement ID. For instance, requirement REQ1−1
is a sub-requirement of requirement REQ− 1.

Throughout this paper we will use excerpts from a Hotel
Booking System. For the sake of the understanding, we will
briefly go through the main functionalities of the system
which will be used for exemplification later on in the paper.
The four main functional requirements of the system are:
the system should allow the user to search for a room in
the room database (REQ−1), to reserve the room (REQ−2),

to allow him to pay for the reserved room (REQ − 3) or to
cancel an existing reservation (REQ− 4).
The requirement REQ− 1 is described as

Requirement : REQ− 1

The system should be able to find a room of given

type if it is available in the database and

connection to the database is successfully

established. In case of failed connection,
an exception is reported.

Each requirement can be divided into several sub-
requirements. For instance, (REQ1 − 1) and (REQ1 − 2) are
given in the following.

Requirement : REQ1− 1

The system should be able to find a room of given

type if it is available in the database and

connection to the database is successfully

established.

Requirement : REQ1− 2

The system should return an error message if

connection to the database is not established

successfully.

The requirement (REQ1− 1), is further divided as

Requirement : REQ1.1− 1

The system should be able to accept room type as

an input.

Requirement : REQ1.1− 2

The system should be able to connect to the

database.

Requirement : REQ1.1− 3

The system should be able to retrieve results.

These sub-requirements serve as basis for refining the
Event-B model.

3.2. Using Event-B for Scenario-based Testing

In our approach, we create formal descriptions of the
SUT starting from the requirements as shown in Figure 2.
Subsequent refinements of the specification are preformed
based on the sub-requirements of a given requirement. In
order to be able to generate executable test cases, one
needs to have available sufficient information regarding the
inputs and outputs of the system. For this purpose, we
structure the information about the inputs and outputs based
on set of guidelines, following the basic refinement types
we suggested in [10]. These basic refinement types are also

150

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Requirements specification excerpt

referred to as controlled refinements. The guidelines are used
in a similar way for the development of both Event-B models
and corresponding user scenarios.

3.2.1. Classification of Events. In order to identify informa-
tion about the inputs and outputs of the system we classify
the Event-B event types into input, output, and internal
events, as follows:

Definition 1: The Events. Set of all events in the system,
denoted by Σ, is divided into following subsets of:
• Input events denoted by εI

• Output events denoted by εO

• Internal events denoted by ετ

�

The input events, εI , accept inputs from user or environ-
ment. Apart from their input behavior, these events may take
part in the normal functioning of the system. However, the
input events do not produce externally visible output. The
output events εO produce externally visible outputs. Finally,
the internal events do not take part in any input/output
activity. These events however, may produce intermediate
results used by the events in εI and εO. The motivation
of this classification is explained in next section, where we
further divide our system into logical functional units.

3.2.2. Logical Units. As we develop our system in a
stepwise manner, the main functional units of a system are
already identified at the abstract level. Each of these abstract
functional units are modeled as a separate logical unit, called
IOUnit, in our Event-B models.

Definition 2. An IOUnit, U, consists of a finite sequence of
events and has the following form.

U =< εI , ετ+, εO >

Here εI and εO denote the input and output events re-
spectively, and ετ+ represents one or more occurrences of
internal events.

�

It can be observed from the above definition that an
IOUnit consists of the sequence of events occurring in such
an order that the first event in the unit is always an input
event and the last event is always an output event, with
possibly one or more internal events in between. Moreover,
an IOUnit can not contain more than one input or output
event.

An IOUnit takes input and produces output, as the pres-
ence of the input and output events indicates. The classifi-
cation of events, defined previously, helps us in identifying
the inputs and outputs of each unit, and when combined,
of the whole system. The motivation for this approach is
the following. The developer of the SUT may decide to
implement the system independently of the structure of an
Event-B model. Indeed, it is sometimes hard to construct
the strict one-to-one mapping between the events of the
model and corresponding programming language units. For
example, two events in a model can be merged to form
one programming-language operation, or the functionality
of an event in the model may get divided across multiple
operations or classes in the implementation. However, for
successful execution of the system, the interfaces of the
model and implementation, i.e., the sequence of the inputs
and outputs, should remain the same.

3.2.3. Example. Reserving a room in such the hotel booking
system can be modeled as a sequence of events that occur
in a specific order. On the abstract level, we may have only
a few events, representing some particular functionalities
of the system. For example, if we model requirements
REQ − 1 to REQ − 4, each top-level user requirement will
be implemented as one IOUnit. Consequently, there are four
main IOUnits namely, Finding a room, Reserving it, Paying
for it, and Canceling a reserved room. After we structure our
model according to the guidelines described in Section 3.2.1,
the resulting events and their sequence of execution can be
seen in Figure 4(a).

As it can be observed, the main functional events are
wrapped with the input and output events. For example,

151

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the Find event is wrapped around with the InputForFind
and OutputForFind events, where InputForFind and Output-
ForFind are the input and output events, respectively.

I N I T

R e s e r v e

F i n d

P a y

O u t p u t F o r F i n d

O u t p u t F o r R e s e r v e

O u t p u t F o r P a y

I n p u t F o r F i n d

I n p u t F o r R e s e r v e

I n p u t F o r P a y

I O U n i t s

I n p u t F o r C a n c e l

O u t p u t F o r C a n c e l

C a n c e l

n e w I O U n i t

(a)

I N I T

I n pu t Fo rF i n d

C o n n e c t D B

Fe t c hRe c o r d s

Ou t p u t F o r F i n d

Connec t i o nFa i l u r e

Re t r i e v e

IOUn i t

(b)

Figure 4. (a) Abstract System (b) Refined System

Within an IOUnit, we treat our main functional events
as internal events (e.g., Find, Reserve, Pay and Cancel).
Such events can be further refined, in one or more steps,
consequently adding more internal events within the input-
output unit. The refinement is performed according to the
sub-requirements of the requirement that was the source of
the IOUnit. For instance, the Find IOUnit in Figure 4(a) has
been refined by applying successive refinements based on the
requirement REQ − 1 and its sub-requirements, introduced
earlier in Section 3.1, into four internal events depicted
graphically with dashed line pattern in Figure 4(b).

The complete Event-B specifications of this example have
been developed and proved using the RODIN [5] platform.
In the final refined system, there was a total of 42 proof
obligations. Out of these, 38 proof obligations were automat-
ically discharged by the tool, while the remaining 4 needed
manual assistance.

3.3. Modeling the Testing Scenarios

As previously mentioned, we use CSP to represent testing
scenarios. The advantage of using CSP is twofold. First,
a CSP expression is a convenient way to express several
scenarios in a compact form. Second, since we develop our
system in a controlled way, i.e. using the basic refinement
transformations, we can associate these Event-B refinements
with syntactic transformations of the corresponding CSP
expressions. For instance, the abstract scenario SA in Figure
2 is refined into scenario Si, while considering the controlled

refinement steps involved in refining the abstract model MA

to the refined model Mi. Similarly, this process continues
until we get a sufficiently detailed, concrete testing scenario
SC to which the model MC conforms.

3.3.1. Testing Scenarios. We define a testing scenario as a
finite sequence of events occurring in some particular order.
Since we have grouped the events in the form of logical
IOUnits, our scenarios will also include a finite sequence of
IOUnits. This means that the scenarios will include the same
events as in the corresponding Event-B model. However,
the scenarios must follow the same rules that were set for
constructing IOUnits in the previous section, i.e.,

1) The first event in the scenario is always an input event;
2) The last event in the scenario is always an output

event;
3) There can not be two input-type events in the sequence

without any output event in between them, i.e., the fol-
lowing sequence in a CSP expression is not allowed;

< · · · → εIk → εIk+1 → · · · >
4) There can not be two output-type events in sequence

without any input event in between them, i.e., the
following sequence is also not allowed.

< · · · → εOk → εOk+1 → · · · >
Since the scenarios are defined on the abstract level, they

lack details about the system inputs and outputs. The input
details can be identified from the input event(s) of each
IOUnit. For example, if an input event reads three input
variables then these three variables become the inputs for
the unit that the input event belongs to. The details about
the inputs can be retrieved from the Event-B model since the
model specifies the type, initial value and invariant properties
for all variables.

The expected outputs are generated after the model is
animated using the ProB model checker. For a given input
of a test case, the ProB can animate the model and return
the result, which is then saved as the expected output of
the test case. This expected output can be then used to
compare the values while testing the real implementation.
The ProB model checker can only produce output values
based on the available abstract values. For example, to test
whether a room is available in the Hotel Booking System,
ProB can check the expected result for a pre-defined set of
inputs, while in the actual implementation this result might
be retrieved from the database. Therefore, we need to define
a mapping relation between the abstract and concrete data
types. At the moment this mapping is provided manually.
However, it is possible to automate its generation for the
commonly used types, e.g., boolean and integers.

3.3.2. Example. In the case of the previously discussed
Hotel Booking System example, there can be many possible
testing scenarios. For example, if we want to test the room

152

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

finding, reservation and paying functionality, the correspond-
ing abstract scenario expressed as a CSP expression would
be as follows.

S0(A) = InputForFind?roomType→ Find→
OutputForFind!(roomId, anyException)→
InputForReserve?roomId→ Reserve→
OutputForReserve!reserveId→
InputForPay?reserveId→ Pay→
OutputForPay!payId→ SKIP

After a number of successive refinements of event Find,
we achieve the following scenario. For keeping the example
simple, we only show the refinement of Find event which
is also shown graphically in Figure 4(b).

S0 = InputForFind?roomType→ ConnectDB→
((FetchRecords→ Retrieve) u ConnectionFailure))
→ OutputForFind!(roomId, anyException)→
InputForReserve?roomId→ Reserve→
OutputForReserve!reserveId→
InputForPay?reserveId→ Pay→
OutputForPay!payId→ SKIP

The variable roomType is the input for this IOUnit,
whereas roomId, anyException are possible outputs. The
variable anyException specifies if there was any exception,
e.g., a connection failure.
Often, the subsequent event depends on the results of
the previous ones. For example, the event Reserve takes
roomId as an input from the previous event. It can be
noticed that the refinement of the Find event has created
two branches, one leading to successful case and the other
to a database connection failure exception. When the above
scenario is checked for conformance with the ProB model
checker, it will be found that one can not proceed to
Reserve if an exception occurred at the previous step.
Therefore, this scenario will be split into two scenarios S0
and S1 given in the following.

S0 = InputForFind?roomType→ ConnectDB→
FetchRecords→ Retrieve→
OutputForFind!(roomId, anyException)→
InputForReserve?roomId→ Reserve→
OutputForReserve!reserveId→
InputForPay?reserveId→ Pay→
OutputForPay!payId→ SKIP

S1 = InputForFind?roomType→ ConnectDB→
ConnectionFailure→
OutputForFind!(roomId, anyException)→ SKIP

These scenarios, when sufficiently refined, are transformed
into JUnit tests which will be discussed later in Section 3.5.

In the next section, we will discuss how Event-B model
is used to generate an implementation template in Java.

3.4. Generating Java Implementation Templates

Once developed, we use the Event-B models of the SUT
to generate Java implementation templates. We start by
translating a (sufficiently refined) Event-B model into a
Java class. As a result, Event-B events are translated to the
corresponding Java methods. For our Hotel Booking System
example, the excerpts of the respective Event-B machine and
its implementation template are shown as follows.

MACHINE BookingSystemRef1
REFINES BookingSystem
SEES BookingContext
VARIABLES

roomType
. . .

INVARIANTS

EVENTS
Initialisation

act5 : roomType := Null_roomType

Event InputForFind ≙
Refines InputForFind
any

tt
where

grd1 : tt ∈ RTYPES
then

act1 : roomT ype := tt
act2 : inputForFindCompleted := TRUE

end

END

An operation in an Event-B specification consists of
two parts. The first part contains the pre-condition(s) for
the event operation to be enabled, while the second part
consists of the actions that the operation performs. For every
event in an Event-B model, we create two separate methods
in the corresponding Java implementation representing the
pre-conditions and actions respectively. The first method,
which contains the pre-conditions of an event, returns the
evaluation result in the form of a boolean value. The name
of this method is pre-fixed with the string “guard ”. The
second method encapsulates the actions of the event. For
example, for the InputForFind event from our Hotel Booking
System example, the Java implementation methods are given
in the Listing 1. As one can notice, the requirements attached
to different IOUnits in Event-B are preserved during the
transformation and included in the generated template (see
line 19 of Listing 1).

1 p u b l i c c l a s s Hote lBookingSys tem {
2
3 / / c l a s s−l e v e l v a r i a b l e s
4 p u b l i c S t r i n g roomType ;
5

153

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

6
7 p u b l i c Hote lBookingSys tem () {
8 / / i n i t i a l i z a t i o n . . .
9 }

10
11 /∗ P r e C o n d i t i o n s / Guards f o r I n p u t F o r F i n d e v e n t

∗ /
12 p r i v a t e boolean g u a r d i n p u t F o r F i n d (S t r i n g

roomType) {
13 re turn (roomType != n u l l) ;
14 }
15
16 /∗ I m p l e m e n t a t i o n method f o r I n p u t F o r F i n d

e v e n t ∗ /
17 p u b l i c boolean i n p u t F o r F i n d (S t r i n g roomType)
18 throws P r e C o n d i t i o n V i o l a t e d E x c e p t i o n {
19 / / REQ1.1−1
20
21 boolean i n p u t F o r F i n d C o m p l e t e d = f a l s e ;
22 i f (g u a r d i n p u t F o r F i n d (roomType)) {
23
24 / / a c t i o n s . . .
25
26 t h i s . roomType = roomType ;
27 i n p u t F o r F i n d C o m p l e t e d = t rue ;
28 }
29 e l s e {
30 throw new
31 P r e C o n d i t i o n V i o l a t e d E x c e p t i o n (” For

i n p u t F o r F i n d ”) ;
32 }
33 re turn i n p u t F o r F i n d C o m p l e t e d ;
34 }
35
36 / / more I m p l e m e n t a t i o n methods f o r e v e n t s
37
38 }
39
40 c l a s s P r e C o n d i t i o n V i o l a t e d E x c e p t i o n ex tends

E x c e p t i o n {
41
42 p u b l i c P r e C o n d i t i o n V i o l a t e d E x c e p t i o n (S t r i n g

mesg) {
43 super (mesg) ;
44 }
45 }

Listing 1. Implementation template example

Each Java implementation method, representing an
Event-B event, first evaluates its pre-condition(s)
by calling its “guard ” method. If the pre-
conditions are evaluated to false then the exception
PreConditionViolatedException is raised,
otherwise the actions of the corresponding event are
executed. The variables of an Event-B machine are
translated into the corresponding class variables in Java.
The type information for these variables can be retrieved
from the invariant clause of the Event-B machine. We
assume that a mapping relation between data types in
Event-B and Java is provided by the user. For non-primitive
data types, Java enumeration (enum) type can be used, e.g.,
to represent a set of finite elements. While most of the
Java code can be automatically translated from Event-B
constructs, the user can add more code statements according
to his/her requirements. This means that the generated class

actually constitutes a Java template.
In the next section, we will discuss how testing scenarios

are translated into JUnit test cases.

3.5. Generating JUnit test cases from Scenarios

In Section 3.4, we presented the guidelines for generating
implementation templates for Java. Once such a template is
generated, we can generate the corresponding executable test
cases from the scenarios. These test cases are represented as
JUnit test methods.

Since our Event-B events are now presented as sequences
of IOUnits, we write JUnit test cases to test these IOUnits.
The Find IOUnit from scenario S0 is represented as an
abstract test case T0 as given in the following.

T0 = InputForFind?roomType→ ConnectDB→
FetchRecords→ Retrieve→
OutputForFind!(roomId, anyException)→ SKIP

For scenario S1, the abstract test case T1 would be expressed
as following.

T1 = InputForFind?roomType→ ConnectDB→
ConnectionFailure→
OutputForFind!(roomId, anyException)→ SKIP

For each of the test cases T0 and T1, a separate JUnit test
method is implemented. The JUnit test method for T0 is
shown in the Listing 2. In a similar way, JUnit test cases
are generated for each IOUnit in the scenario.

1 p u b l i c c l a s s Hote lBook ingSys t emTes t {
2
3 Hote lBookingSys tem bSys ;
4 . . .
5
6 @Before
7 p u b l i c vo id se tUp () throws E x c e p t i o n {
8 bSys = new Hote lBookingSys tem () ;
9 }

10
11 @Test
12 p u b l i c f i n a l vo id T0 () {
13 / / REQ1−1
14
15 S t r i n g roomType = ‘ ‘ S i n g l e ” ;
16
17 t r y {
18 b o o l e a n v1 , v2 , v3 , v4 , v5 ;
19 v1 = v2 = v3 = v4 = v5 = f a l s e ;
20
21 / / c a l l i n g methods o f IOUni t
22 v1 = bSys . i n p u t F o r F i n d (roomType) ;
23 v2 = bSys . connectDB () ;
24 v3 = bSys . f e t c h R e c o r d s () ;
25 v4 = bSys . r e t r i e v e () ;
26 v5 = bSys . o u t p u t F o r F i n d () ;
27
28 / / a s s e r t s t a t e m e n t s (v e r d i c t)
29 a s s e r t T r u e (‘ ‘ S u c c e s s f u l c o m p l e t i o n ’ ’ ,
30 v1 && v2 && v3 && v4 && v5) ;
31
32 a s s e r t T r u e (bSys . r e s u l t S e t . s i z e () > 0) ;

154

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

33 a s s e r t T r u e (bSys . a n y E x c e p t i o n == f a l s e)
;

34 }
35 c a t c h (P r e C o n d i t i o n V i o l a t e d E x c e p t i o n e) {
36 f a i l (e . ge tMessage ()) ;
37 }
38 }
39 }

Listing 2. JUnit Test method for T0

In the test case example shown in Listing 2, there is only
one input parameter, i.e., roomType. However, in practice,
there can be more than one input parameters. Generating
all possible values for each parameter and then making all
possible combinations of these parameters values may result
in combinatorial explosion. In order to handle this problem,
the input space partitioning [14] approach is used for test
case generation. Information about each input variable is
retrieved from the invariant clause and the pre-condition part
of the input event. The pre-conditions and invariant clauses
specify the type and possible restrictions (value ranges) for
each variable. Using this information, the input space for
each parameter is divided into equivalent partitions. Then
from each partition, one value is selected to represent the
whole partition. Combining the values of different variables
from different partitions reduces the total number of input
combinations needed for testing.

If a scenario involves multiple IOUnits in a sequence and
JUnit test case for that sequence is desired, then JUnit test
also includes calls to the relevant implementation methods
of the the IOUnit involved. Moreover, the JUnit assert
statements are also appended in the test case.

During the test case generation, the requirements asso-
ciated to CSP specifications (at this stage called abstract
test cases) are propagated to JUnit test cases, as Java
comments in the code (see Listing 2–line 13). In addition,
each requirement present in the requirement document listed
in Figure 3 will be associated with the test cases that covers
it. The approach allows one to trace which requirements
have been covered and validated during the test execution.
The approach will be discussed in more detail in Section 4.

3.6. Backtraceability of Requirements

Once the JUnit tests are run against the SUT a test report
is produced. The report will tell which requirements have
been covered by the selected set of test cases, which require-
ments have been left uncovered, and which requirements
were not validated. Having the requirements associated to
test cases and in the same time to different parts of both
Event-B and CSP specifications, allows us to trace at which
abstraction level a requirement was introduced and how it
reflected in the generated test cases. Based on this analysis,
one can identify the source of the error: either in the
SUT implementation or an incorrect formalization of the
requirement.

4. Tool Support

In this section we will have a brief overview of the tool
chain used to support our scenario-based testing process
described in Section 3.

Tool support for Event-B modeling and verification is
provided by the RODIN platform [5]. RODIN is an Eclipse-
based development platform providing effective support for
mathematical proof and refinement. The platform is an open-
source and further extendible with plugins. RODIN comes
along with several useful plugins facilitating smooth and
quick development of Event-B specifications. Some of its
important features include interactive prover, proof manager,
requirement manager and visual modeling. Figure 4 shows
a screenshot of RODIN platform with interactive prover.

The consistency of Event B models as well as correctness
of refinement steps should be formally demonstrated by
discharging proof obligations. The RODIN platform au-
tomatically generates the required proof obligations and
attempts to automatically prove them. Sometimes it requires
user assistance by invoking its interactive prover. However,
in general the tool achieves high level of automation (usually
over 90%) in proving.

The JFeature Eclipse plugin [?] ver. 1.2 is used for
specifying and managing the requirements of the system. A
screenshot was presented in Figure 3. The requirements are
specified in the Eclipse GUI and exported to a textual file.
The requirements file is then used by the the Requirement
plug-in [13] of RODIN for creating associations to Event-
B models. In the Requirement plug-in, a parser parses
the requirement document and lists individual requirements.
Then, any requirement can be selected to be mapped to
one or more Event-B elements. This mapping information is
stored in a mapping file. Similarly, a separate mapping file
is used for storing the mapping between requirements and
scenarios. A requirement can be associated with a model
element by first selecting a requirement in the requirement
manager and then choosing the “Add Association” menu
option, which appears after right-clicking the element to be
associated. A caption of the Requirement plugin displaying
the requirements of the Hotel Booking system is given
in Figure 4.

Another important tool in our tool chain is ProB [12]
animator and model-checker. Once an initial abstract sce-
nario is provide and expressed in CSP, the generation of
the refined testing scenarios is automatic. ProB is used to
check conformance between the models and the scenarios.
This satisfiability check is performed at each refinement
level as was shown earlier in Figure 2. ProB supports
execution (animation) of Event-B specifications, guided by
CSP expressions. In fact, the available tool support is an-
other motivating reason for representing scenarios as CSP
expressions. Otherwise, regular expressions could also have
served the purpose.

155

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Screenshot of RODIN showing the formal proofs of the Hotel Booking System

Once the JUnit tests are generated they are executed
using the JUnit plugin in Eclipse. The code coverage is
performed by EclEmma [15], which is a freely available
open source Java code coverage tool for Eclipse. With
EclEmma, it is also possible to generate the test execution
and coverage analysis reports. Figure 4 shows execution and
code coverage of a unit test.

As mentioned previously, when the JUnit test cases are
generated, the requirement document (listed in Figure 3) is
updated such that each requirement is associated with the
JUnit tests that cover it. Figure ?? shows a screenshot of the
JFeature view in Eclipse. In the top frame, the requirements
of the system are linked to one or many JUnit tests. In the left
frame, the result of executing the JUnit tests is presented,
whereas in the bottom frame, the JFeature test report on
how different requirements have been covered by the test
execution. In this concrete example, the TestT1() test
failed, and since it was associated with requirement REQ1-2
FindException, the report presents the requirement as
broken (with red background). The report presents also the
successful requirements in green color and the uncovered
requirements in yellow color.

For back-traceability of requirements for failed test cases,
a manual approach is used. Basically, we examine the test
reports for failed test cases. With the help of the RODIN
Requirement plugin we identify in what parts of the formal
specification a requirement was introduced and specified.
Alternatively, we examine the Java code of the implantation
and debug the code accordingly. Tracing requirements to
back to code and formal specifications proved useful in
identifying wrongful formalization of requirements or errors
in the implementation of the SUT.

5. Discussion

In this section, we analyze our testing approach and
discuss some related issues.

The presented test generation process produces test cases
in JUnit, which is a well-known and widely used testing
framework. The test cases are generated according to the
user provided scenarios. More scenarios the user provides,
the more code coverage we are likely to achieve. There are
several good coverage measuring tools available that can be
used with the generated test suites. We have tried EclEmma
as described earlier in Section 4.

Furthermore, our approach has the distinguishing advan-
tage that it also accommodates those changes which can not
categorized and proved as formal refinement. Referring back
to Figure 2, in some cases the model Mi may contain some
extra functionalities or features, such as the incorporated
fault-tolerance mechanisms, which were omitted or out of
scope of the scenario SA. These extra features, denoted
by SEF , can be added in the scenario Si manually. The
modified scenario Si ∪ SEF must be checked, by means of
the ProB model checker, to satisfy the model Mi. We can
then follow the same refinement process, now starting with
Si∪SEF , until we get a sufficiently refined scenario at level
of the final model MC .

Our approach also describes how one can generate Java
implementation templates and the corresponding JUnit test
cases. However, if for some reason, the user does not want
to use the generated template, s/he can still use the JUnit test
generation part to test his/her own implementation, provided
that s/he has implemented the system keeping the operation
interfaces consistent with the already generated JUnit tests.

156

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Screenshot of the Requirement plugin in RODIN showing requirements mapping

At the moment, we do not support translation of more
complex pre-condition and invariant expressions from Event-
B to Java. Namely, the existential and universal quantifiers
are not covered. However, this can be achieved by using an
approach similar to the one used in JML [16].

We do not explicitly support testing for negative scenarios
i.e., the behavior that should not exist in the SUT. However,
this kind of testing can also be accommodated if we model
such negative behavior in our Event-B models as events and
then provide testing scenarios covering those events. In order
to show correctness, the JUnit tests, generated from these
negative scenarios, should fail when applied on SUT.

6. Related Work

The jSynoPSys tool [17] performs scenario-based testing
using symbolic animation of the B machines. This work
defines a scenario-description language used to represent
scenarios. However, authors do not provide any guidelines
for the refinement of the specifications or scenarios. It is
also not mentioned how scenarios will be transformed into
executable test cases.

Nogueira et al. in [18] present a test generation approach
based on the CSP formalism. The CSP models are con-

structed from use cases described in a pre-defined subset of
natural language. The test scenarios are then incrementally
generated as counter-examples for refinement verifications
using a model checker. The main difference between their
work and our approach is that we use Event-B to represent
our system models and use CSP to represent testing sce-
narios. A model checker in our case is used to check the
conformance between models and scenarios.

Stotts et al. in [19] describe a JUnit test generation scheme
based on the algebraic semantics of Abstract Data Types
(ADTs). The developer codes ADT in Java, while tests
are generated for each ADT axiom. One of the advantages
of this approach is that the formalism is hidden and the
developer only needs to know Java to use this method.
However, unlike our approach, in their case it would not
be possible to mathematically prove any safety properties or
to find deadlocks in the specifications.

In our earlier work [20], we presented the scenario-
based testing approach for B models, where we designed
an algorithm for constructing test sequences across different
refinement [21] models. However, this algorithm is expo-
nential in its nature thus limiting its practical applicability.

In our current approach, ordering of events are enforced

157

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Executing Unit Tests and Measuring Code Coverage

by the guards and actions of the events. In [22], Iliasov
has proposed a support of control flow as an explicit event
ordering mechanism for Event-B models. The control flow
of events resemble the notion of scenarios used by our
approach. The difference between the two approaches is that
we use a model-checker and an animator to verify existence
of these scenarios, whereas in [22], the additional proof obli-
gations are generated and then proved by a theorem prover.
The control flow approach can be used as an alternative to
the scenario-conformance steps, shown in Figure 2.

7. Conclusion and Future Work

In this paper, we presented a model-based testing ap-
proach using user-provided testing scenarios. These sce-
narios are first validated using a model checker and then
used to generate test cases. Additionally, we have provided
the guidelines for stepwise development of formal models
and automatic refinement of testing scenarios. We also
proposed an approach to generate Java language implemen-
tation templates from Event-B models. The abstract testing
scenarios can then be used to generate executable JUnit test
cases. Optionally, user can map informal requirements to the
formal model and testing scenarios at different refinement
steps. This mapping of informal requirements is extended
till concrete test cases so that upon test case failure, these
unfulfilled requirements can be back-traced into the model.

We believe that our approach is very scalable. It can
help developers and testers to automatically generate large
number of executable test cases. Generating these test case
by hand would be very laborious and error-prone process.

As future work, we aim at providing graphical repre-
sentation for the testing scenarios and their refinements.
Moreover, at the moment, the mapping between abstract and
concrete data types needs to be provided manually by the
user. An automatic translation would be very helpful and
time-saving in this respect.

In addition to that, we also intend to use the UML-B [23]
formalism as the main modeling language in our scenario-
based testing approach. UML-B is a new graphical language,
which combines certain UML features with Event-B. UML-
B is similar to UML but has its own meta model. The main
advantages of using UML-B is that it provides an UML-like
front-end to Event-B, which make the modeling language
familiar to the majority of the developers. Moreover, it
provides additional structuring of Event-B models in the
form of UML classes and state-machines.

Another direction for our future work is to use the Next
Generation Java Testing (TestNG) framework [8] for im-
plementing the test cases. TestNG provides some important
extensions to JUnit 4 framework, e.g., parameterized test
methods.

158

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Requirement coverage report in JFeature.

References

[1] M. Hinchey, M. Jackson, P. Cousot, B. Cook, J. P. Bowen,
and T. Margaria, “Software engineering and formal methods,”
Commun. ACM, vol. 51, no. 9, pp. 54–59, 2008.

[2] M. Utting and B. Legeard, Practical Model-Based Testing.
Morgan Kaufmann Publishers, 2006.

[3] J. R. Abrial, Modeling in Event-B: System and Software
Design. Cambridge University Press, 2010.

[4] J.-R. Abrial., The B-Book. Cambridge University Press,
1996.

[5] “Rigorous Open Development Environment for Com-
plex Systems,” iST FP6 STREP project, online at
http://rodin.cs.ncl.ac.uk/.

[6] C. A. R. Hoare, Communicating Sequential Processes.
Prentice-Hall, Inc., 1985.

[7] “JUnit 4,” http://www.junit.org.

[8] C. Beust and H. Suleiman, Next Generation Java Testing:
TestNG and Advanced Concepts. Addison-Wesley, 2007,
http://www.testng.org/.

[9] Q. A. Malik, J. Lilius, and L. Laibinis, “Scenario-Based Test
Case Generation Using Event-B Models,” in International
Conference on Advances in System Testing and Validation
Lifecycle (VALID 2009). IEEE Computer Society, 2009, pp.
31–37.

[10] Q. A. Malik, J. Lilius, and L. Laibinis, “Model-Based Testing
Using Scenarios and Event-B Refinements,” in Methods,
Models and Tools for Fault Tolerance, LNCS Vol. 5454.
Springer-Verlag, 2009, pp. 177–195.

[11] A. Roscoe, The Theory and Practice of Concurrency. Pren-
tice Hall, 1998 amended 2005.

[12] M. Leuschel and M. Butler, “ProB: A model checker for B.”
Proc. of FME 2003, Springer-Verlag LNCS 2805, pages 855-
874., 2003.

[13] “Requirement Management Plug-in for Rodin
Platform,” home page : http://wiki.event-
b.org/index.php/Category:Requirement Plugin.

[14] P. Ammann and J. Offutt, Introduction to Software Testing.
Cambridge University Press, 2008.

[15] “EclEmma - Java Code Coverage for Eclipse,”
http://www.eclemma.org/.

[16] G. T. Leavens and A. L. Baker, “Enhancing the Pre- and
Postcondition Technique for More Expressive Specifications,”
in In FM99: World Congress on Formal Methods. Springer,
1999, pp. 1087–1106.

[17] F. Dadeau and R. Tissot, “jSynoPSys – A Scenario-Based
Testing Tool based on the Symbolic Animation of B Ma-
chines,” Electron. Notes Theor. Comput. Sci., vol. 253, no. 2,
pp. 117–132, 2009.

[18] S. Nogueira, A. Sampaio, and A. Mota, “Guided Test Gener-
ation from CSP Models,” in ICTAC, 2008, pp. 258–273.

[19] P. D. Stotts, M. Lindsey, and A. Antley, “An Informal
Formal Method for Systematic JUnit Test Case Generation,”
in XP/Agile Universe, 2002, pp. 131–143.

[20] M. Satpathy, Q. A. Malik, and J. Lilius, “Synthesis of
Scenario Based Test Cases from B Models.” in FATES/RV,
2006, pp. 133–147.

159

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[21] R.-J. Back and J. von Wright, “Refinement Calculus, Part
I: Sequential Nondeterministic Programs,” in REX Workshop,
1989, pp. 42–66.

[22] A. Iliasov, “On Event-B and Control Flow,” Technical Report
in DEPLOY Project, 2010.

[23] C. Snook and M. Butler, “UML-B: Formal Modeling and
Design Aided by UML,” ACM Transaction on Software
Engineering Methodologies, vol. 15, no. 1, pp. 92–122, 2006.

160

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Integrating Quality Modeling in Software Product Lines

Joerg Bartholdt
Corporate Technology

Siemens AG
Munich, Germany

joerg.bartholdt@siemens.com

Roy Oberhauser
Computer Science Dept.

Aalen University
Aalen, Germany

roy.oberhauser@htw-aalen.de

Andreas Rytina
itemis

Munich, Germany
andreas.rytina@itemis.de

Marcel Medak
FNT GmbH

Ellwangen, Germany
marcel.medak@fnt.de

Abstract— Due to the large number of possible variants in
typical Software Product Lines (SPLs), the modeling of,
explicit knowledge of, and predictability of the quality
tradeoffs inherent in certain feature selections are critical to
the future viability of SPLs. This article presents IQSPLE
(Integrated Quality Software Product Line Engineering), an
integrated tool-supported modeling approach that evaluates
both qualitative and quantitative quality attributes without
imposing hierarchical structural constraints. This contributes
to better traceability; annotation; constraint enforcement; and
quality attribute trade-off analysis - depicting overall product
quality impacts on-the-fly. The approach is used in an eHealth
SPL scenario, with the results showing that this approach is
promising for effectively integrating quality attributes into
SPL engineering in conjunction with (UML-based) artifacts.

Keywords - variability; software product lines; quality
modeling; feature modeling

I. INTRODUCTION
SPLE seeks to foster a systematic reuse of software

assets for different but similar software products (typically
within a domain). The general approach captures the
commonalities and variability of the products in the product
line and splits the development into domain (commonalities)
and application (additional individual features for the final
product). Products are created by integrating common
artifacts (usually a platform) and optionally configuring them
with product-specific artifacts [3][4].

Significant feature-oriented work and methodologies
such as Feature-Oriented Domain Analysis (FODA) [5],
FeatuRSEB [6], PuLSE [7] are well known for domain
analysis and variability modeling for SPLs. However, for a
potentially large set of possible variants, a significant aspect
yet to be sufficiently addressed is the consequences of
choices on the end qualities exhibited by a variant. An SPL
engineer is faced with many more quality-related unknowns
than a software engineer for a common single application
software architecture. While various approaches for
combining quality modeling with SPL engineering (SPLE)
exist, previous work does not provide an integrated tool-
supported approach with both qualitative and quantitative
quality attributes (Q-attributes) that are explicitly considered
in the variant derivation process without imposing structural
constraints such as a hierarchical structure. In this problem
space, the tool-supported IQSPLE method contributes trade-
off analysis, traceability, annotation, and constraints

enforcement of quality attributes during selection. Our
previous work in [1] was extended to directly integrate
solution space quality modeling with Unified Modeling
Language (UML)-based artifact annotation support for
variability and quality annotations as well as aggregated
quality evaluation capabilities.

Considering the need for trade-off analysis, the
distribution of quality attributes can vary significantly in
software products, as shown in [8] that studied 24 ATAM
(Architecture Tradeoff Analysis Method) evaluations. Such
quality attributes are often not fully and systematically
captured in prose. Even if formal models like the OMG
(Open Management Group) UML-related QoS profile are
used, an automatic aggregation ability is requisite to benefit
most from a formal description. IQSPLE contributes
methods and tools to immediately derive the quality attribute
values of a given product instantiation.

Because qualities in SPLs often describe crosscutting
concerns, the definition of qualities in the problem space is
generally not linked to the solution space, resulting in a lack
of traceability. IQSPLE contributes traceability via a formal
linking that is used to calculate the quality attributes from the
selection of product variations via the properties of assets in
the solution space. This also supports the detection of quality
issues for certain SPL variants that can be used in narrowing
tuning efforts to the relevant solution artifacts.

Typical feature-oriented tooling concentrates on
functional features; quality constraints are, if at all, modeled
as simple XOR on features and thus remain purely in the
problem space. IQSPLE enhances current feature modeling
with support for the annotation of solution components with
quality properties and arbitrary aggregation functions. By
linking to the features, automatic constraint checks on given
quality requirements can be executed. To enforce a common
understanding and enable automatic calculation in the
problem and solution space, a formal quality-capturing
model for crosscutting as well as localized quality attributes
is necessary.

This paper is structured as follows: Section II describes
an e-Health scenario with the ensuing requirements that
initiated the research. Section III describes the IQSPLE
solution approach, which is then illustrated via an eHealth
SPL scenario in Section IV. The solution is evaluated in
Section V, with Section VI discussing related work. A
conclusion and references follow.

161

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. E-HEALTH SCENARIO AND REQUIREMENTS
For illustration purposes, a simplified eHealth problem

scenario that motivated this research is used. Patients are
referred to other clinics due to their specialization (surgery,
physical therapy, imaging, etc.). In the past, computed
tomography images, clinical findings, etc., were given to the
patient in the form of a printout or CD to take to the next
treatment. This was error-prone, not all information was
necessarily available at the next treatment location, and one
was not sure that the data was current.

The eHealth scenario describes a clinic chain that wants
to introduce SEPDE (software system for electronic patient
data exchange) between organizations. The existing hospital
information systems (HIS) are supplemented with SEPDE.
The chain consists of ten hospitals where eight have the same
HIS product and two have individual solutions.

Figure 1 shows a reduced feature tree of the SEPDE SPL.
Integration with existent HIS, which is a key feature of the
product line, can be achieved with three different techniques:
web services, CORBA or message-based. The message-
based approach allows for two different options: A high-
throughput, but expensive commercial one or a slower, but
license-free open-source variant.

Figure 1. Conventional feature tree.

The development effort for creating the adapter to
connect to existing HIS differs: XML-based web services are
perhaps easier to develop, but carry greater performance
overhead compared to binary protocols. The CORBA-based
binary integration makes the final solution better in terms of
latency and throughput, but development efforts are higher
due to its complexity. A message-based approach increases
integration flexibility and scalability, yet development
complexity increases due to asynchronicity and lack of
object-oriented remote method calls while longer latencies
can be expected due to the centralized message broker.

For security and privacy, confidential connection
(mapped to SSL connections), message-based encryption and
signature (allows secure audit records), and virus scanning is
supported. While all decrease the overall performance, the
former two are necessary if no VPN exists between the sites;
the latter additionally results in ongoing costs for continuous
updates.

For higher availability of the system, a two-host-solution
can be instantiated. The session state must then be replicated
between the hosts so it exists should one of them fail.

This simplified scenario illustrates the relevance of
quality attributes (e.g., performance, price, security) to the
choice of specific features. The customer may not have exact
requirements (e.g., ‘use case 15’ must be performed in less
than 1.5 sec). However, the customer may be able to trade
quality attributes against each other or functional features
(e.g., 1.5 sec is achievable with the commercial MQ with a
5000€ license, whereas with the open-source solution it is
1.8 sec – which might be acceptable).

Each functional feature influences to some degree all
system quality attributes, making the manual tracking of
quality attributes difficult. Common feature trees contain
functional features that are selectable individually (with a
few constraints between each other), while system quality
attributes are a crosscutting concern that changes with each
(de)selection of a feature. Moreover, the quality correlations
are often not expressible in simple constructs. Feature model
constraints could (de)select features automatically, causing
an entire set of quality attribute values to change at once.

Figure 2. Example models affected by variability.

Qualities of the solution manifest themselves in different
views. Many quality constraints can be described on the

162

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

component level, e.g., the usage of a specific session
manager implementation correlates to the availability of the
system, see Figure 2. Others become apparent in the
deployment view, e.g., the availability of the solution
depends on the number of redundant elements or even the
existence of components like a load-balancer, but only make
sense when more than one host exists. Certain use cases are
valid only or change their nature depending on the features
selected or on quality parameters. The resulting use case
view can be used to generate development specification
documents or user manuals. An additional benefit of a
consistent and integrated usage of modeling of the views is
the automatic traceability of features in models and
specifications.

Considering non-trivial SPLs, the impact on quality
attributes is not foreseeable for the SPL engineer, thus there
is the need for methodology and tool support. As quality is
usually not exactly defined by the customer beforehand and
requirements may change, quality support is needed during
the selection process.

A. Requirements
The following requirements on the methodology (M-

requirements) and tool support (S-requirements) are deduced
from the scenario:

M1: qualitative values. It must be possible to define quality

values such as low, medium, or high in cases where a
quantitative expression is not feasible or would be too
expensive to measure. The quality attribute must be
definable in the solution space as a property of an artifact
and in the problem space as a non-functional requirement
of the customer. Because non-functional customer
requirements depend on design details, it must also be
possible to link the qualities between the problem space
and the solution space.

M2: quantitative values. It must be possible to define
quantitative values (e.g., memory footprint, response
times) in order to calculate the resulting quality values of
the instantiation. Here also, the quality attribute must be
definable in the solution as well as the problem space.

M3: algorithms for calculating the resulting attribute values.
The methodology must support the definition of a
calculation algorithm (“aggregation function”) for the
resulting quality value. This applies to quantitative as
well as qualitative values (however, it may be less
intuitive for qualitative values).

M4: presentation as feature. To support configuration and
selection of qualities for a product instance, qualities can
be presented in a separate quality tree like features, or
alternatively within the feature tree, e.g., when qualities
are relatively straightforward and the maintenance of a
separate quality tree would seem contrived.

M5: artifact annotation. Quality attributes are treated as a
first-class modeling citizens, and modeling and other
artifacts can be annotated wherever appropriate. The
annotation mechanisms shall follow a standardized
mechanism to foster reuse and community acceptance.

S1: calculate the quality values of a given variant. The
quality attributes that result from the selection have to be
calculated (ideally on-the-fly), to give immediate
feedback and let the users realize what changes in quality
values a change in features results in.

S2: determine the set of possible variants. Given quality
constraints during the selection process, the tooling shall
determine the valid variants.

S3: constrain the selectable features. Quality attribute
requirements shall be definable in advance and during
feature selection, with those features not selectable
whose selection would impair the required quality.

S4: visualization of quality values. From a customer
perspective, multiple quality attributes may be of interest
and may differ between customers. Thus, the tooling
shall support an appropriate yet configurable
visualization of the resulting quality values.

S5: quality modeling integration in solution space.
Consistent, gap-less usage of modeling techniques,
especially for quality modeling, leverages available
tooling. All views on the solution space of the product
line will more or less be influenced by quality attributes.
The tooling must handle all of these in a consistent way,
thus consistent meta-models must be applied on which
transformers, generators, evaluators and viewers rely.

S6: reuse of artifacts. Automatic evaluation of quality
attributes requires a formal description of quality
properties and correlations. These formal descriptions
can also be used for other purposes, e.g., for generating
product specification documents, manuals, etc.

S7: traceability support. Generated artifacts should carry
dependent tracing information, e.g., the “administration
of multiple hosts” chapter in the manual depends on the
selection of a high availability solution.

III. SOLUTION
To address the aforementioned requirements, IQSPLE

integrates quality attributes in the solution artifacts, maps the
feature and quality selection in the problem domain to the
associated solution artifacts, and collects and evaluates the
quality attributes. With appropriate aggregation functions,
the quality attributes of the product instance can be
automatically evaluated and displayed in the selection
configuration. The various elements of the IQSPLE
methodology are described below.

A. The IQSPLE Process
The process is depicted in Figure 3. SPL domain
engineering involves:
1) Requirements Analysis. Through the analysis of the

problem domain, common and variable feature and
quality requirements are collected.

2) Feature variability and quality variability modeling. In
addition to the typical feature modeling in a feature tree
(e.g., using the Compositional Variability Management
(CVM) framework, a separate quality tree is used to
model the quality attributes and their value types, e.g.,
memory footprint in MB, latency in ‘use case 15’ in ms).
It is assumed that components can be assigned quality

163

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attribute values based on a specification or measurement.
Note that discrete values need not be ordered.

The resulting quality tree can serve as a basis for
selecting non-functional requirements. As appropriate,
elements in the trees can be linked to other trees (e.g., a
selection in the quality tree might deselect certain
features in the feature tree) and to the UML models.

For automated synchronization support, UML
vendor-specific APIs can be used to allow changes to the
(quality-annotated) models to be automatically reflected
in the trees (e.g., certain quality options might disappear
if no longer supported in the solution models). This
supports M1, M2, and M4.

Figure 3. IQSPLE process.

3) Modeling of solution artifacts including quality-
annotations. A quality meta-model such as the UML
QoS Profile, variability profile, etc., is used to allow
solution space models (i.e., software artifacts) to be
annotated with quality attribute names and values. Note
that each element can have multiple quality attributes
assigned and these elements can be linked with features
(e.g., memory consumption, use-case-specific latency,
scalability properties), but not all components must be
assigned all attributes. E.g., all components will affect
memory, but not all will influence the latency in use case
15. This supports M1, M2, M5, and S5, S7.

SPL application engineering involves:
4) Configuration. A product configuration is selected based

on feature and quality requirements (e.g., using CVM).
This supports S2 and S3.

5) Quality Model Instance generation. Based on the
configuration information and using UML tooling (e.g.,
openArchitectureWare (oAW)), a tailored Quality Model
Instance is generated (e.g., in ECore).

6) Quality evaluation. OCL statements in the Quality Model
Instance are used to evaluate the resulting qualities. A
quality (aggregation) function is defined to support M3

and S1. To calculate the overall quality of the resulting
product instance, the quality attributes of all selected
components must be aggregated. In simple cases, this can
be a sum-operation (e.g., memory footprint, latency) or
min-operation (e.g., security behavior is as good as the
weakest component). Complex operations are also
possible, e.g., encryption depends on message length
which depends on the selected features, so influence may
be expressed in factors such as “encryption increases
latency of use case 15 by 50%”. For quality-based
attributes, the aggregation function may count the
number of occurrences, the most frequent wins, or
calculates an average over ordered elements.

7) Quality validation. Based on the quality viewer, the
qualities achieved are validated by the user or, based on
tradeoffs, the configuration is adjusted as necessary. This
supports S4.

8) Product Instance Generation. Once the configuration has
been validated, artifacts are generated (e.g., UML
models, code, documentation including specifications,
and user manuals), and manual artifacts are implemented.
This supports S6.

B. Variability
Negative variability. Negative variability starts from a

maximal description (e.g., a UML model containing all
possible elements of the product line) and deletes the
elements that are not connected to selected features [2]. By
this reduction, the final model of the selected product
instance will be the result.

Depending on the selected features, model elements can
be removed to derive different product instances. This is
reflected in the model by tagging the different types with the
stereotype <<Variation>>. The condition for which it is
generated for the product instance is defined by the tagged
value {feature = “any feature condition”}.
This indicates to the generation process that the elements
associated with the feature condition are generated if the
condition evaluates to true, otherwise they are removed.

This is called negative variability since the starting point
is a superset of the model definition and the unnecessary
elements are stripped away according to the features
selected. [2] discussed negative variability in class diagrams
to model data structures of product lines and generate the
data model for a selected product instance. In order to
integrate this approach with quality modeling, this
mechanism was extended for other diagram types. E.g., the
results of the quality “scalability” will be seen on a
deployment diagram that contains one, two, or more hosts.
Another example is the deletion of a use case in a use case
diagram because a certain feature was deselected. Use case
diagrams can form the basis for product specification and
manuals, which should also adapt automatically to selected
features for the product instance.

Structural variability. Structural variability describes a
change in the model dependent on some feature selection [2].
The element is already contained in the model, but its
structure (type, cardinality, association) may vary.
Structurally changing a UML model is achieved by adding

164

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the stereotype <<modify>> to the elements that should be
structurally changed and by setting predefined tagged values.
Possible tagged values are, e.g., feature, type, cardinality,
name, and initialValue.

In the resulting model, the corresponding property is
changed. This can also be used to redirect associations by
changing the type of the association.

C. Integrity Constraints
Constraint checking and their languages such as the OCL

(Object Constraint Language) in UML are a known and
powerful capability for assuring modeling correctness. Since
SPLs typically support a large number of variations and
quality aspects are typically crosscutting concerns that affect
multiple models, constraint capabilities should be applied at
the most appropriate points across the tooling.

For instance, feature/quality modeling constraints can be
utilized to determine the validity of a certain combination of
features or qualities (e.g., CVM provides a proprietary
language to specify feature constraints). Instance tailoring
constraints can be applied to check conditions (e.g., ensuring
that the domain and feature/quality models are consistent)
before or during the tailoring process as well as the artifact
generation process.

D. Quality Functions and Annotations
In order to enable the evaluation of qualities of a product

instance, mathematical functions are used to aggregate
quality attributes. These functions are defined as relations
between a valid variant v and a value x, where x represents
the state of a specific quality.

 xvqi a: (1)

To access attribute values of different artifacts, two
additional functions are defined. The function attribE returns
a single attribute value of a specific solution element (e.g.,
concrete component) and requires a valid variant v, a specific
element e and the intended attribute a.

 xaevattribE a××: (2)

The second function attribV returns a vector of all
attribute values of a variant that match the provided attribute
name. This provides access to values and can be used if no
exceptional conditions must be taken into account.

 xavattribV a×: (3)

Note that there are no limitations on using different value
ranges for aggregations, as long as a reasonable aggregation
function for the quality can be determined. Numbers for
calculating memory footprint are just as possible as using
low, middle, high values to assess, e.g., security aspects.

As an example, privacy could be defined as follows:

 ⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

=

=

=

∑
∑
∑

=

=

=

)tiontaProtecDa,v(attribVx
i

)otectionPrData,v(attribVx
i

)otectionPrData,v(attribVx
i

privacy

x,high

x,middle

x,low

)v(q

r

r

r

3

2

1

 (4)

By modeling restrictions (Figure 1) on feature
associations as constraints, M4 is supported. A constraint ci
is defined as a relation between a variant v and one element
of the set {true, false}.

 },{: falsetruevci a (5)

This allows a definition of, e.g., performance
requirements based on predefined quality functions.

 ⎩
⎨
⎧ ≤

=
elsefalse

msvqtrue
vc latency

eperformanc ,
300)(,

)(
 (6)

The constraints are used as a way to filter out remaining
variants that violate given requirements. For deselection
functionality support for S2 and S3, IQSPLE inspects each
feature beneath a selection line in the feature tree and decides
if a feature selection violates the given requirements. In order
to decide feature selectability, IQSPLE distinguishes three
fundamental cases. A feature is:

a) not selectable if it does not occur in any remaining

variant,
b) selectable if it occurs in every variant,
c) or in combination selectable if it occurs in some variants

but not in all.

Cases a and b are trivial. However not every

consequence of a selection can be predicted, especially if
there are still open selections that affect the fulfillment of
constraints. Thus, IQSPLE uses Case c to indicate that a
feature selection possibly can only be made dependent on
further feature selections.

An example is shown in Figure 4. To illustrate the
process, a constraint is defined that forces a selection of at
least five features. Initially all variants are derived that fulfill
the constraint. Subfigure (1) shows the root feature tagged in
green, which means that at least one variant of the feature
tree matches the constraint and that feature f0 is contained in
the set of the valid variants. Green features must always be
selected.

In (2) f0 is selected and the selection cut is moved below
f0. Here f1 is tagged in green and f2 in red. It is obvious that
f2 will always be tagged in red because of the alternative
relation to f1, which is an invalid selection since with f2
maximally four features can be selected. Consequently, f1
must be selected as shown in (3). In this case f3 is selectable
and f4 in combination selectable. In (4) f3 has been selected
and f4, f7 and f8 are in combination selectable. While the

165

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

current selection does not fulfill the constraint of at least five
selected features, it is recognizable that a combination of the
three remaining features would. If the current selection is a
valid variant and fulfills the constraint, the selection of a blue
feature is optional. For the case that a current selection does
not fulfill a constraint, it is necessary to select further blue
features.

(1) (2)

(3) (4)

f0

f1

f3 f4

f2

f5 f6

f7 f8

f0

f1

f3 f4

f2

f5 f6

f7 f8

f0

f1

f3 f4

f2

f5 f6

f7 f8

f0

f1

f3 f4

f2

f5 f6

f7 f8

Feature

Selectable
Non
selectable

In combination
selectable

Selected Or

Alternative

Mandatory

Optional

Figure 4. Selection process example.

Thus the IQSPLE process supports the handling of fixed
requirements and, depending on the stakeholder’s
perspective, one can see either which subset of features still
fulfill the requirements or if the selection of a certain feature
does not.

In the current implementation, all quality functions were
defined in OCL due to its expressiveness, UML integration,
and standardization, as shown in Figure 5. In the diagram,
four Quality of Service (QoS) characteristics are shown for
latency, security, costs, and availability. To annotate certain
constraints as quality aggregation functions, the OMG
“UML Profile for Modeling QoS and Fault Tolerance
Characteristics and Mechanisms” [9] was extended with the
<<aggregateFunction>> stereotype. Each
QoSCharacteristic can have at most one
aggregateFunction. To allow the retrieval of feature
expressions from within a QoSCharacteristic,
QoSCharacteristic inherits from the class
AbstractQoS. Static methods are defined in the
QoSCharacteristic, which can be additionally used for
the definition of constraints.

The range of attribute values is determined by the
QoSCharacteristic. For instance, costs are usually
positive numbers that are summed, while usability could be
either decreased by adding more components to administrate,
or increased by a module that presents role-based
administration user interfaces.

Figure 5. QoS characteristics with OCL quality aggregation functions.

In the OCL code of Listing 1, the aggregation function
for latency is shown.

Listing 1
context QoS_availability::availability() :
QualitativeValue
post:result = allAvailabilityValues(Order::asc)
 ->first()
-- same query with the generic method attribV:
-- result = attribV(QoS_availability)
-- .oclAsType(QualitativeValue)

166

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

-- ->sortedBy(integerValue())->first()

The method allAvailabilityValues(..)
returns an array of the results of all the availability
constraints. The input parameter defines the sorting order of
the array. The parameter Order::asc is for ascending
order. The method call first() returns the smallest
availability value. Alternatively, the call could have been
realized with the method attribV, as described in the
comments. The return values would then need to be cast to
the specific type and sorted.

E. Quality Evaluation
The Quality Evaluator calculates the quality values,

which utilizes the quality model instance created by the
tailoring process. Impacts on qualities are evaluated by
executing the OCL, thus calculating the quality attribute
values of the selected artifacts for the product instance and
aggregating them to an overall value. To support S4, after the
quality value calculation and aggregation process, the
assessed variant aggregated qualities are presented to the
user as a spider chart as shown in the Quality Editor of
Figure 6. This process is triggered every time a user changes
a feature selection. The effect of a feature selection on
particular qualities can thus be dynamically observed in the
change to the chart during selection. This is helpful
especially in trade-off situations.

Via this mechanism, the attribute values for a specific
variant can be concretely defined in the solution space. For
instance, a timeout configuration setting can be dependent on
the combined latencies of the selected message component
(commercial or open source).

Additionally, in order to ensure that the configured
variants achieve the required qualities, during configuration
the selectability of certain features and qualities are
dynamically grayed-out (unselectable) based not only as
hitherto on some abstractly modeled constraint/dependency
between feature trees or tree elements, but on the impact
evaluation of a specific feature or quality selection on
variants (configuration feedback). For example, if a user
defines that there is a budget of 10000€ for licenses, then all
(aggregated) features are grayed out that are dependent on
components that do not meet this requirement. At the time of
de(selection) of a feature, the resulting configuration is
verified against the quality requirements. In case the
configuration does not meet the requirements, the user can
choose alternatives. Currently a brute-force algorithm is used
to recursively evaluate the remaining variants in the tree.
Dependent on the number of variants, the automatic
assessment of possible variants can take significant
computation time. Therefore, typically not every variant is
evaluated, but once a user-configurable limit of valid
variants is found, the automatic assessment is halted and the
alternatives are suggested to the user. If no valid variants are
found within some user-defined time limit, the user is
required to select additional features to further limit the
variant space and thereby shorten the computation time.

As shown in Figure 6, the Quality Editor presents the
aggregated quality values of a variant and provides

information about the location and number of quality
constraints that affect a certain quality attribute. For
example, in Figure 6, the user has selected the quality
attribute latency (get patient data) and, in the description
which contains static and dynamic text, the user sees that
most latency constraints are located in the component view.

Figure 6. Quality editor.

The attribute values of a model element can also be
dynamically calculated or become part of a variant, e.g., as a
function of changes in the dependencies and selections.

IV. E-HEALTH SPL EXAMPLE

To illustrate IQSPLE, the E-Health example of Section II

will be used applying the process described in section III.A.

1) Requirements Analysis
This is assumed to have been completed in this simplified

example.
2) Feature variability and quality variability modeling

The feature tree from Figure 1 is now split into a feature
tree (Figure 7) and a quality tree (Figure 8).

The single-host / dual-host features are removed from the
feature tree. The customer should not select whether (s)he
wants one or two hosts, which was modeled as a feature.
Instead, the resulting quality of the solution is defined by the
customer, in this case 95% or 99% availability. The dual-
host solution is a solution and, as such, not of primary
interest to the customer (it might be from an administrative
point of view later).

The headline “security” is split. Virus scanning is
definitely a customer visible (external) feature and, as such,
located in the feature tree. The two other options
“connection” and “message-based” were for deciding the
security property if the communication can be unprotected,
e.g., if the systems are interconnected via VPN. Connection-
based security was implemented by using SSL, thus
authenticating sender and receiver and encrypting the data in
transit, but only a message-based signature results in

167

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

auditable messages because the messages together with the
signatures can be archived as-is in an audit trail record and
the signature can be verified again later. Thus, the customer
is primarily interested in the resulting quality properties, e.g.,
if he has to obey specific regulations for auditable records,
but does not care about the actual implementation necessary
to achieve this. Security is an example for qualitative values
(see requirement M2) with an order (“none” < “confidential”
< “auditable”).

Figure 7. Feature Tree.

Figure 8. Quality Tree.

Note that a group of features can create additional value,
e.g., if the http protocol is used for the user interface and
DICOM protocol for image data retrieval, the complete
solution is “confidential” only if both protocols provide
confidentiality mechanisms, e.g., SSL. The aggregation
function would be:

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

==
∧==

==
∧==

=

elsenone

alconfidenti
alconfidentialconfidenti

alconfidenti
autitable

auditable

vq urity

securityDICOMcomp.
ecurityHTTPcomp.s,

securityDICOMcomp.
security.HTTPcomp

)(sec

3) Modeling of solution artifact including quality
annotation.

The diagrams in Figure 9 through Figure 11 contain a
(simplified) super-set of all possible artifacts annotated with
constraints on the selected features and qualities. For
example, Host2 in the deployment view is marked as
<<Variation>>. The condition is {featureExp =
“99%”}, thus the element “Host2” will vanish if the feature
is not selected. The same is true for the load balancer. For
details on negative variability, see [2].

Additionally, the quality attributes are annotated
according to the OMG QoS profile [9] as described in Figure
5.

Figure 9. Quality-annotated use case model.

4) Configuration
For a fictitious customer, the product instance as shown

in Figure 12 is selected. The customer chooses a message
queue as the most flexible technology for integration, which
is also the most future-proof variant. To save costs, (s)he
selects the open-source implementation. For consolidation of
patient records, (s)he wants the new system to have an MPI
(Message Passing Interface). He/she selects virus scanning
because all systems are connected to the internet, which is
how the data exchange is routed.

From a quality perspective, (s)he emphasizes the
availability of the system and selects 99%. Since no VPN is
in place, (s)he selects confidential data exchange, but (s)he
has no requirement for auditable signatures. The customer
does not set any other quality constraints in the quality tree
as shown in Figure 13.
5) Quality Model instance generation.

This step generates an internal representation of the
quality model to be used during the quality evaluation. For
performance reasons, this quality model instance only
contains the quality constraints, quality aggregate functions,
and feature expressions. Based on this simplified model, the
Quality Evaluator calculates the quality attribute values for
all constrained elements and then aggregates the resulting
values to overall quality values.

168

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Quality annotated component model.

Figure 11. Quality annotated deployment model.

Figure 12. Selected product variant.

Figure 13. Initial quality tree defined by the customer.

6) Quality evaluation.
Due to the selection in the feature and quality tree, the

aggregation functions can aggregate the overall quality
attribute values of the product instance (see Figure 17 and 18
for the resulting product instance artifacts). E.g., the license
cost (a quality attribute referred to by requirement M1) is
determined by the sum of the existing artifacts on all
diagrams (see formula in QoS_costs:
allCostValues(Order:asc)->sum()):

Base 30,000
Load Balancer 5,000
Commercial session manager 5,000
Total 40,000

 The evaluation of the quality attributes is shown in

Figure 14.

169

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. First quality spider chart.

7) Quality validation
The customer realizes that the latency of the use cases,
represented by latency for “get patient data,” is unacceptable.
Modifying the messaging software provider from “open-
source” to “commercial” results in the quality spider chart
depicted in Figure 15, showing that the price increases to
45000€, but now the latency reaches an acceptable level.

Figure 15. Final quality spider chart.

8) Product Instance Generation
The resulting artifacts are depicted in Figure 16, 17, and

18.

Figure 16. Tailored UseCase View.

Figure 17. Tailored Component View.

Figure 18. Tailored Deployment View

The use case Failover is included, thus the user manual
will contain the section about administration and monitoring
of the high availability solution.

The deployment diagram shows dual hosts with a load
balancer required to fulfill the 99% availability. From the
deployment diagram, the bill of materials can be derived and
will now contain dual hosts and a load balancer, which has to
be ordered from a 3rd party provider.

The component diagram includes only MQ as an
integration provider and a distributed cache that is necessary
for the multi-host deployment for sharing the state across
multiple hosts.

The eHealth scenario exemplified how IQSPLE
facilitates greater thought to and usage of quality in the
domain and application engineering stages. First, customers
can make decisions about required qualities based on facts
instead of subjective estimations from the SPL engineer.
Customers are also able to see how a decision affects
particular qualities and if the consequences of a decision are
acceptable. The SPL engineer benefits since thought to

170

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

system qualities are explicitly stipulated, which can help to
improve the overall quality of the SPL architecture. In case a
quality requirement is not fulfilled by the SPL, the engineer
can track the different impacts on the quality and single out
optimization opportunities. Additionally, it is possible to
determine if a feature selection breaks any given quality
requirements, which is done by filtering all possible variants
based on existing quality requirements.

V. EVALUATION
Evaluation criteria considered beyond the M and S

requirements were an initial assessment of scalability for
current SPL development including the usage of OCL for on-
the-fly quality evaluation.

The measurements were performed on an Dell Latitude
E6500 (Core2Duo CPU @ 2.53GHz) PC with 3.5GB RAM
running Microsoft Windows XP Pro SP3, Java JDK 1.6,
Eclipse Galileo 3.5 (Modeling Distribution SR1),
openArchitectureWare 5, CVM framework 0.6.0, Eclipse
OCL2.0 Interpreter 1.3, and the Eclipse Modeling
Framework 2.5. All measurements were performed 3 times
and averaged.

For the first set of measurements, the tailoring process
(as shown in Figure 3) for binding the variability of the
Quality Annotated Model to derive a single variant (Quality
Model Instance) was considered to determine the current
practical scalability limitations of variation points, features,
and resulting generation time. Table I and Figure 19 show a
nearly linear correlation between a change in the number of
variation points and the generation time when the number of
features was held constant. An increase in the number of
features also showed a nearly linear increase in the
generation time. This result is explained by the iterations
used in the generator code implementation for each variation
point and for each feature. As to conditions, varying the
number of Boolean conjunctions up to 20 for a variation
point made no significant difference due to other inherent
overheads.

TABLE I. TAILORING PROCESS TIME (MSEC) GIVEN A NUMBER OF
FEATURES AND VARIATION POINTS

Number of
Variation

Points

Total Number of Features

300 600 900

1500 4302 6411 8709
3000 6771 11307 15526
4500 9453 16016 22563

The derivation and quality analyses of all variants of a

SPL can be computationally expensive and make its usage
impractical. Thus, measurements on the performance of the
implementation for automated variant derivation were
performed to determine its limits. The time to derive all
variants of a quality-annotated model with 100
QoSConstraints (simple additions) was measured for a
binary structured feature tree of or-relations, while the
number of features was increased from 10 to 32. The results
in Table II and Figure 20 show that, given a current PC, the
quality could be evaluated with up to 20 features and 2000

resulting variants on-the-fly with results in less than a
minute.

0

5

10

15

20

25

1500 3000 4500

T
ai

lo
ri

ng
 T

im
e

(s
ec

)

Variation Points
(model elements + quality constraints)

300

600

900

Number
of

features

Figure 19. Tailoring process time (sec) vs. variation points and number of

features.

0

20000

40000

60000

80000

100000

120000

140000

0

500

1000

1500

2000

2500

10 12 14 16 18 20 22 24 26 28 30 32

ev
al

ua
tio

n
tim

e
(s

ec
)

number of features

time in s

variants

nu
m

be
ro

f v
ar

ia
nt

s

Figure 20. Quality evaluation time (sec) vs. number of features and

variants.

TABLE II. QUALITY EVALUATION TIME GIVEN A NUMBER OF
FEATURES AND VARIANTS

Features Variants Time (sec)
10 63 4
12 127 5
14 255 7
16 511 11
18 1023 18
20 2047 35
22 4098 65
24 8191 126
26 16383 247
28 32767 497
30 65535 1012
32 131071 2075

Based on these results with available tooling and

systems, it is currently feasible to use and have the benefits
of IQSPLE in industrial settings. The evaluation showed that
performance for single variant quality evaluations was
sufficient for usage today, but scalability issues were found

171

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with handling large variation sets. When the quality
evaluation of a large number of variants is desired, it is
recommended that quality evaluations be executed in offline
batch mode, and the results for all variants stored in a
database for later access in order to enable tradeoff analysis
to take place without encumbrances. Optimization
possibilities include evaluating boundary constraints on the
quality function properties to avoid further calculation
overhead, e.g., aborting a calculation when a boundary value
is exceeded.

VI. RELATED WORK
.Related work includes the Feature-Softgoal

Interdependency Graph (F-SIG) approach [10], which
supports quality modeling in the domain analysis phase. Its
lack of support for quantitative values results in only
imprecise quality assessments of a variant. The Extended
Feature Model (Ext-FM) [11] applies a Constraint-
Satisfaction-Problem approach and allows both quantitative
and qualitative values to determine the set of matching
variants. However, it requires a hierarchical modeling of
quality attributes that restricts the possible set of quality
dependencies that can be modeled. The Integrated Software
Product Line Model (ISPLM) [12] integrates an
implementation model that supports quantitative Q-
attributes, yet it does not specify how these Q-attributes are
to be utilized for a Q-assessment or set selection of variants.
The Q-ImPrESS project [13] aims at modeling quality
attributes at an architectural level. A reverse engineering
process is used to derive component models which than are
evaluated for quality prediction. It lacks support for
modeling variation points in the problem space and in the
solution space. Quality-driven Architecture Design and
Analysis (QADA) [14] is a SPL architecture design method
supporting traceable product quality and design-time quality
assessment. Qualitative quality requirements are treated as
architectural style(s) and patterns, and quantitative quality
requirements as the properties of individual architectural
elements. While addressing not only the conceptual
architecture but also the concrete architecture, it does not
produce implementation artifacts. It uses quality viewpoints
[15] and conforms to OMG’s Model-Driven Architecture
(MDA) and IEEE 1471 [16] and uses UML profiles. [17]
describes a tool chain that supports QADA including quality
evaluation and test result imports. The protégé ontology tool
is used for quality attribute definition, whereas IQSPLE
encourages the use of feature tree tooling (e.g., CVM) for
quality attributes due to its simplicity and prevalence. A
comparison of these methodologies is shown in Table III
with “Y” meaning yes and “N” meaning No.

COVAMOF [18] supports the modeling of dependencies
between a set of variation points, however it does not
explicitly address quality modeling.

While the Attribute Driven Design (ADD) method [19]
supports the explicit articulation of the quality attribute goals
for SPLs, it is narrowly focused on the definition of the
conceptual architecture.

With regard to addressing SPL variability and quality
annotation in UML models, the comparison matrix in Table

IV shows an assessment of related SPLE approaches for a
subset of requirements. ‘Quality annotation’ refers to the
capability of annotating existing artifacts in SPL with quality
information. ‘Requirements analysis’ refers to the support of
the requirements process from elicitation to documentation,
while ‘feature model integration’ means the usage of feature
models as a basis for the approach. ‘Negative variability’ and
‘structural variability’ are defined in [2] and describe the
means to define SPL artifacts and transfer them into product
instance artifacts. ‘UML compliant’ refers to the restriction
of using standardized modeling based on UML including
OCL, stereotypes, tagged values, etc., an influential factor
for industrial adoption of an approach. Modeling artifacts
can contain ‘modeling constraints’ (i.e. constraints defined in
the solution space) and ‘configuration constraints’ (i.e.
interdependencies of features in feature trees). Constraints
might become expensive to evaluate, thus a separation of
constraints that can be evaluated on-the-fly and constraints
that will only be checked during the generation process
might become necessary, evaluated under ‘checks during
generation’. ‘Product instantiation’ evaluates the ability to
create a definition of the derived product instance, the
simplest form of which could be a list of selected features.
An approach can explicitly include ‘code generation’ in its
process and allow ‘quality variability tracing across
elements’, meaning selections and bindings through the
artifacts.

TABLE III. METHODOLOGY COMPARISON FOR QUALITY SUPPORT

Requirement F-
SIG

Ext-
FM ISPLM Q-

ImPrESS
QADA IQSPLE

M1: qualitative
values Y Y N Y Y Y

M2: quantitative
values N Y Y Y Y Y

M3: algorithms for
calculating the
resulting attribute
values

N Y N Y N Y

M4: presentation as
feature N N N N N Y

M5: artifact
annotation N N N Y Y Y

S1: calculate the
quality values of a
given variant

N Y - Y Y Y

S2: determine the set
of possible variants N Y - N N Y

S3: constrain the
selectable features N N - N N Y

S4: visualization of
quality values N N N Y N Y

S5: quality modeling
integration in solution
space

N N N Y Y Y

S6: reuse of artifacts N N Y Y Y Y
S7: traceability
support N N Y Y Y Y

172

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. METHODOLOGY COMPARISON FOR UML VARIABILITY
SUPPORT

 S
PL

IT

 P
L

U
S

 M
D

D
-A

O
-P

L
E

 U
M

L
 e

xt
. [

22
]

 IQ
SP

L
E

quality annotation D
requirement analysis +++ +++ ++ + ++
feature model integration D D D D
negative variability D D
structural variability D D D D
UML compliant D D D D
modeling constraints D D D D D
configuration constraints D D D
checks during generation D D D
product instantiation +++ + +++ + +
code generation D D
quality variability tracing
across elements D

Approaches include the conceptual framework SPLIT

[20], where additional UML stereotypes, e.g.,
<<variabilityMechanism>> and <<variationPoint>>, are
used for specifying variable elements. However, SPLIT does
not integrate an abstract feature view as does the IQSPLE,
and the variation points and the corresponding variants
require a separate class that may cause transparency issues in
large SPLs. PLUS (Product Line UML-Based Software
Engineering) [21] extends UML to model variability and
commonality using stereotypes and primarily subclassing.
[22] presents a generic modeling approach with additional
variability stereotypes as extensions to UML. The variation
points and variants can be assigned with tagged values to
define certain properties, such as the binding time of
variants, the multiplicity of associable variants, and the
condition of binding. However, this approach does not
address the derivation of product line instances. Crosscutting
variability in SPLs is investigated in MDD-AO-PLE
[23][24][25] and related aspect-oriented (AO) SPLE work.
While this work has not specifically addressed the
difficulties described in this paper for quality modeling
integration, the combination of these AO techniques with
IQSPLE could be synergistic and should be investigated in
future work.

VII. CONCLUSION AND FUTURE WORK
By integrating quality modeling into SPLs with a holistic

method and tool approach, the application of IQSPLE results
in product as well as process benefits. At the product level,
the resulting product instance has a higher potential value to
the customer since it is more likely to conform to his or her
expectations, satisfying not only requested features but also
complying with quality expectations. At the process level,
the use of an interactive, quality-driven selection process
provides efficiencies by supporting on-the-fly evaluation and

visualization for expeditious trade-off analysis while
assisting with and automatically constraining valid variant
selection against quality requirements. Efficiency is also
furthered via reuse of quality modeling and annotations
throughout the SPL lifecycle. The effectiveness of the
process is enhanced by making qualities first-class
requirement entities that are analyzed and formalized. The
comprehensive approach promotes contemplation of
(aggregated) quality impacts from the initial SPL concept
since qualities can be (directly) annotated across the solution
space artifacts (and are available directly to SPL engineers).
SPL process effectiveness is also furthered by automatic
evaluation and optimization as well as traceability support
for the source of variability decisions. IQSPLE supports the
flexible derivation of individual variants instead of a limited
set of predefined variants via immediate feedback on the
resulting quality attribute values of the current selection.
Barriers to adoptability of quality modeling in industrial
SPLs are lowered by IQSPLE due to its avoidance of
unnecessary complexity (e.g., ontologies are avoided) and
focus on integrating known and common tooling and
standards (UML, OCL, stereotypes, tagged values, OMG’s
QoS profile, MDD (e.g., oAW), Eclipse, feature trees).

By fulfilling the M and S requirements, IQSPLE supports
qualities in quantitative and qualitative ways. The application
of constraints on features allows the explicit modeling of
quality values inside a feature tree. It is not necessary to
make any structural changes to feature trees or add any
additional implementation details, so feature trees can still be
used for customer communications. With quality functions, a
mechanism is provided to transform different quality impacts
into a single quality characteristic and thus make it possible
to compute qualities of a variant. To make it easier to
recognize how changes in feature selections affect qualities,
quality values can be displayed in spider charts.

The eHealth scenario shows how IQSPLE supports the
detection of optimization opportunities and trade-offs during
product instantiation, making use of the traceability of the
modeled dependencies.

Models are necessarily limited in their portrayal of
reality, and holistic quality modeling of a SPL faces
significant challenges due to the large set of variations.
While IQSPLE may contribute towards improved quality
modeling in SPLs, much work remains. Future work should
address visualization of influences on qualities via quality
interaction dependency graphs; model checking integration
(e.g., UML dependency changes may affect OCL
constraints); OCL validity and syntax-checking of, e.g.,
component names and quality attributes, perhaps eventually
code-completion support; the support for and integration of
developmental qualities (e.g., architectural metrics affected
by a specific configuration); replacing the current brute-force
variant evaluation algorithm by alternatives described in
“Evaluation” Section V; decision support via analysis of
potential variants; enabling tolerances and trade-offs in
formulas for automatic optimization; and the application of
the IQSPLE in other industrial domains beyond the medical
domain.

173

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES
[1] J. Bartholdt, M. Medak, and R. Oberhauser, “Integrating Quality

Modeling with Feature Modeling in Software Product Lines”, Proc.
of the Fourth International Conference on Software Engineering
Advances (ICSEA 2009), IEEE Computer Society, 2009.

[2] J. Bartholdt, R. Oberhauser, A. Rytina, „Addressing Data Model
Variability and Data Integration within Software Product Lines”,
International Journal On Advances in Software, ISSN 1942-2628,
vol. 2, no. 1, 2009, pp. 86-102

[3] F.J. v.d. Linden, K. Schmid, and E. Rommes, “Software Product
Lines in Action: The Best Industrial Practice in Product Line
Engineering.” Springer, 2007, ISBN 3540714367.

[4] K. Pohl, G. Böckle, and F.J. v.d. Linden, “Software Product Line
Engineering: Foundations, Principles and Techniques”. Springer,
2005, ISBN 3540243720.

[5] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Software
Engineering Institute, Carnegie Mellon University, 1990.

[6] M. L. Griss, J. Favaro, and M. d. Alessandro, “Integrating feature
modeling with the RSEB,” Proc. of the 5th International Conference
on Software Reuse (1998), ICSR, IEEE Computer Society.

[7] J. Bayer, et al “PuLSE: a methodology to develop software product
lines”, In Proceedings of the 1999 Symposium on Software
Reusability (SSR '99), ACM, pp. 122-131, 1999.

[8] I. Ozkaya, L. Bass, R. S. Sangwan, and R. L. Nord, “Making Practical
Use of Quality Attribute Information,” IEEE Softw. 25, 2 (Mar.
2008), pp. 25-33. DOI= http://dx.doi.org/10.1109/MS.2008.39.

[9] OMG, UML Profile for Modeling Quality of Service & Fault
Tolerance Characteristics & Mechanisms, v1.1, formal/08-04-05

[10] S. Jarzabek, B. Yang, and S. Yoeun, “Addressing quality attributes
in domain analysis for product lines,” IEE Proceedings Software, vol.
153, no. 2, pp. 61–73, 2006.

[11] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, “Automated
reasoning on feature models”, in LNCS, Advanced Information
Systems Engineering: 17th International Conference, CAiSE 2005,
pp. 491–503, 2005.

[12] N. Siegmund, M. Kuhlemann, M. Rosenmüller, C. Kästner, and G.
Saake, “Integrated product line model for semi-automated product
derivation. Using non-functional properties,” Proc. of the Workshop
on Variability Modelling of Software-intensive Systems (VaMoS),
pp. 25–31, 2008.

[13] S. Becker, M. Hauck, M. Trifu, K. Krogmann, J. Kofron, “Reverse
Engineering Component Models for Quality Predictions”, CSMR
2010, IEEE, Mar 2010.

[14] M. Matinlassi, E. Niemelä, and L. Dobrica, "Quality-driven
architecture design and quality analysis method, A revolutionary

initiation approach to a product line architecture," VTT Technical
Research Centre of Finland, Espoo, 2002.

[15] A. Purhonen, E. Niemelä, and M. Matinlassi, "Viewpoints of DSP
Software and Service Architectures," Journal of Systems and
Software, vol. 69, 2004, pp. 57 - 73.

[16] IEEE, "IEEE Recommended Practice for Architectural Descriptions
of Software-Intensive Systems," Std-1471-2000. New York: Institute
of Electrical and Electronics Engineers Inc., 2000.

[17] A. Evesti, E. Niemel, K. Henttonen, M. Palviainen, "A Tool Chain for
Quality-Driven Software Architecting," splc, pp.360, 2008 12th
International Software Product Line Conference, 2008.

[18] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch, “Modeling
dependencies in product families with COVAMOF”, Proc. of the 13th
Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems (ECBS 2006), March 2006.

[19] F. Bachmann and L. Bass, "Introduction to the Attribute Driven
Design Method," icse, pp.0745, 23rd International Conference on
Software Engineering (ICSE'01), 2001.

[20] M. Coriat, J. Jourdan, and F. Boisbourdin, “The SPLIT method:
building product lines for software-intensive systems,” In
Proceedings of the First Conference on Software Product Lines:
Experience and Research Directions (Denver, Colorado, United
States). P. Donohoe, Ed. Kluwer Academic Publishers, Norwell, MA,
2000, pp. 147-166.

[21] H. Gomaa, “Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures”, Addison-Wesley,
2005, ISBN 0201775956.

[22] M. Clauss, “Generic modeling using UML extensions for variability”,
In Proceedings of the Workshop on Domain Specific Visual
Languages, OOPSLA 2001, Jyväskylä University Printing House,
Jyväskylä, Finland, 2001, ISBN 951-39-1056-3, pp. 11-18.

[23] M. Voelter and I. Groher, “Handling Variability in Model
Transformations and Generators”, in Proceedings of the 7th OOPSLA
Workshop on Domain-Specific Modeling (DSM’07), Sprinkle, J.,
Gray, J., Rossi, M., Tolvanen, J.-P., (eds.), Computer Science and
Information System Reports, Technical Reports, TR-38, University of
Jyväskylä, Finland 2007, ISBN 978-951-39-2915-2.

[24] M. Voelter and I. Groher, “Product Line Implementation using
Aspect-Oriented and Model-Driven Software Development,” In
Proceedings of the 11th international Software Product Line
Conference (September 10 - 14, 2007). International Conference on
Software Product Line. IEEE Computer Society, Washington, DC,
2007, pp. 233-242.

[25] I. Groher, "Aspect-Oriented Feature Definitions in Model-Driven
Product Line Engineering", Dissertation, Johannes Kepler
Universität, Linz, April 2008.

174

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Enabling Innovations in Mobile-Learning: A Context-aware and Service-based
Middleware

Sergio Martin, Elio Sancristobal, Rosario Gil,
Gabriel Díaz, Manuel Castro and Juan Peire
Electrical and Computer Engineering Department

UNED (Spanish University for Distance Education)
Madrid, Spain

{smartin, rgil, elio, gdiaz, mcastro,
jpeire}@ieec.uned.es

Mihail Milev, Nevena Mileva
Electronics Department
University of Plovdiv

Plovdiv, Bulgaria
mmilev@dipseil.net, nmileva@uni-plovdiv.bg

Abstract— Development of mobile learning projects involves
addressing many challenges, from pedagogies (e.g., what must
students learn? and how?) to technical issues (e.g., use of
context-awareness, use of communication or collaboration
methods, mash-up of information). This paper introduces a
framework intended to provide different educational tools and
information to mobile learning programmers and designers in
order to simplify and reduce the project development. The
paper offers an overview of the state of the art of mobile
learning applications, focusing on some of its problems: lack of
interoperability and difficulty of using advanced technologies,
such as location-based systems. It also addresses why most of
the m-Learning applications do not make use of the existing
services and knowledge of the Learning Management Systems,
which are in fact the real pillars of the e-learning methodology.
The framework design is guided by a new paradigm for
development of e-learning tools and platforms: Learning as a
Service (LaaS). The main contribution of this framework is to
provide contextual information from different sources and
sensors (e.g., geographical, motion); and integration of many
existing services from e-learning platforms.

Keywords- context-awareness, e-learning, framework,
location, LMS, mobile learning, ubiquity

I. INTRODUCTION

Nowadays mobile technologies are being applied on
educational environments quite successfully. One of the
main reasons of this success is the improvement of the
technical features of the devices. New generations of mobile
devices have wider and touchable screens; built-in digital
cameras; and connectivity not only with GPRS but also with
Wi-Fi or 3G. In some of them it is even possible to find
GPS receivers, RFID, NFC readers or smartcards integrated.

All these new technologies inside a small and portable
device are giving rise to a new generation of applications in
all kind of environments. These kinds of applications are
called mobile learning (M-Learning) inside the educational
environment. Here, mobile devices are supporting
collaborative and mobile work and enabling students to

learn anytime anywhere, especially through games,
applications or courses designed for these small devices.

Actually location-based and context-aware systems can
give a very interesting added-value to M-Learning, because
they allow the creation of mobile context-aware application
that lets students interact with their environment in a totally
new way. For instance, a student in a canteen will have
different needs than in a laboratory or in a secretary; or a
teacher in a classroom will need different information than
in an office. It is possible to offer personalized learning
through the mobile device depending not only on his/her
profile but also on the moment and his/her location.

The other focus of the paper is over the integration and
interoperability of the existing e-learning tools and
applications with the mobile learning environment, giving
rise to a complex mobile digital ecosystem of educational
applications.

The paper might be of interest for those involved in the
development of mobile learning applications, since the
introduced framework could become a powerful and useful
tool for them; for those also designing supportive tools to
simplify the development of mobile learning applications;
and in general for those involved in the development of any
kind of e-learning or m-learning application, since the paper
introduces a service-oriented methodology for the
development of applications.

The paper is structured as follows: Chapter II offers an
overview of the main goals of the system. Chapter III
describes what the authors consider m-learning, and
provides a mobile learning classification. This chapter is
complemented with the learning theories and methodologies
of Chapter IV. In chapter V, the necessity of the integration
of the new technologies related to location systems into the
m-learning environment is addressed. Chapter VI offers an
overview of the Learning as a Service (LaaS) methodology
used in the project design. Chapter VII shows the
importance of the interconnection between the e-learning
platforms and the m-learning applications, according with
the LaaS paradigm. Finally, chapter VIII describes the
design of the proposed middleware. Chapter IX offers an

175

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

overview of related works; and Chapter X some
conclusions.

II. GOALS

The aim of the paper is the description of a framework
developed recently by the authors that supports and simplify
the creation of M-Learning applications: M2Learn [1].

The main contribution of this architecture is the
combination of ubiquitous and context-aware technologies
with the Learning as a Service (LaaS) paradigm, which will
be introduced in the following chapters. The result is an
easily-extended framework that offers useful services and
information to high-level applications. Thus, developers
using this framework will see their work considerably
reduced.

Although there are many other frameworks to help in the
creation of context-aware systems and mobile applications,
this development supposes an improvement of the state of
the art. The reason is because M2Learn is particularly
focused on the learning environment, as its design is closely
related with the existing e-learning platforms and tools. As a
summary, the main features that the framework includes are:

 Context-awareness. Developed mobile applications
will easily incorporate information about user’s
geo-location, which is useful for personalizing the
services and activities offered to students; or for
having a log of their movements in certain
activities. Currently the location methods supported
by the M2Learn framework are Global Positioning
System (GPS), triangulation of Wi-Fi access points,
and identification through Radio Frequency
Identification (RFID). The framework also monitors
student’s hand movements through motion sensors.
It offers a more natural way of interacting with
technology, giving rise to a new kind of engaging
applications. Other relevant piece of information to
compile the student context is the academic profile
(e.g., degree, subject, or preferences), since it can
be used to personalize services and information
according with their interests. Finally, the user’s
context contains the user’s activities history (log),
which can be useful to study user preferences (e.g.,
applications used, information accessed, etc), and
movements in an environment (Figure 1).

Figure 1. Offering personalized services and information depending on
user’s contextual information..

 Communication tools (e.g., forum, chats) from e-
learning platforms (e.g., dotLRN or Moodle).
Lately much effort has been undertaken to develop
useful e-learning tools but most of the new mobile
applications leave them aside, with almost no
interoperability with other systems. For that reason,
authors have developed interfaces between many e-
learning services and the M2Learn framework.
These interfaces let students access the e-learning
contents and services not only anytime, but also
anywhere, and with any kind of device. These
interfaces also give the opportunity of integrating
information from the mobile applications to the e-
learning platforms.

 Collaboration. The framework supports the
incorporation of Web-based tools for collaborative
work such as Google Docs. This feature let the
developer create mobile learning applications that
include for example a text document that will be
created collaboratively among the students.

 Knowledge. M2Learn framework manages different
formats of knowledge representation, e.g., PDF, and
DOC. But the framework also gives support to the
integration of knowledge from search engines, web
sites (e.g., Wikipedia) or Learning Management
System’s (LMS) FAQ.

In the development of this middleware, some issues have
been considered, such as which is the best model of m-
learning application: learning on the move or learning with
mobile devices?; which is the kind of mobile applications
that provides an added-value in the educational experience?;
how the new features can be implemented inside these new
kind of applications?; and why is better to include the
existing e-learning resources into the mobile-learning
paradigm instead of doing everything again from scratch?.

III. IS M-LEARNING LEARNING WITH MOBILE DEVICES OR

LEARNING ON THE MOVE?

When we talk about mobile-learning, it is possible to
assume that m-Learning is all kind of activity carried out in
an educational environment with a mobile device. This trend
basically moves the traditional learning, with a teacher
giving a master class in a classroom, towards the mobile
world. Many examples can be found, for example in [2]
where an application on a mobile device reads a chapter of a
book in a karaoke-style; or the MPSS project [3], where
students must follow some courses and are evaluated through
some test exercises using the mobile device.

On the other hand there are other m-learning projects
oriented towards outdoor learning. This is a totally different
point of view, due to the fact that in these projects the idea is
not to try to apply the old methodology into the new
technologies, but they try to develop new environments
where mobile devices offer an added value to students’
education. These environments do not try to supplant the
master class. They just complement the traditional and more
formal education, opening a new range of possibilities to

Contextual
information Middleware

Services in
e-learning
platforms

Contextual
Games

Knowledge
Interchange

(P2P)

Contextual
information

Geographical
Services

176

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

students. For example, Bouvin [4] worked in a prototype
where learners should explore and document parts of a city
for later presentation in plenum. Other project more oriented
to the context-awareness is a prototype developed by
Bomsdorf [5] allowing learning materials to be selected
depending on a given situation – this takes into account
learner profiles such as their location, time available for
learning, concentration level and frequency of disruptions.
Similarly, a context-aware mechanism has been developed
by Bouzeghoub et al. [6], which takes into account time,
place, user’ knowledge, activity, and environment together
with the device capacity for adaptation to the user.

After many years of researching in this field our point of
view is that m-Learning must complement both e-learning
and traditional learning, because in our opinion each
methodology has its own place.

Thus, from our study [7], the most spread m-Learning
applications can be classified into several kinds of
applications depending on its functionality:

 Learning on the move: Intended to education out of
class, not replacing the face-to-face class, but
complementing it, and providing different ways of
learning on the field. There, m-learning seems to
cater for certain specialties more than others such as
agronomy, biology, geology, archaeology, tourism,
etc.

 Location-sensitive. Location-based systems provide
a very interesting added-value to mobile learning
applications. They allow the creation of context-
aware applications that lets students interact with
the environment in a totally new way. This kind of
applications react specifically to their current
location, time and other environment attributes and
adapt their behavior according to the changing
circumstances as context data may change rapidly.

 Mobile review: Mobile devices offer very good
results for quick reviews of aspects that the students
have previously learnt in class. This is typically
useful for example in the train. This model is often
presented for both review of contents with
documents or notes; and auto-evaluation with quiz
tests.

 Collaboration: Development of collaborative
exercises together with other students, giving rise to
applications such as mash-up systems (based on
geographical information services), Wikis, or
games.

 Services from e-learning tools. For instance, quick
accesses to services of a LMS, for example, check
the messages in the LMS forum of a course; or
access a Virtual Lab.

 Podcast allows ubiquitous learning whereby
students can access a variety of educational material
anywhere, anytime on iPods, MP3 and MP4 players
or mobile phones. Podcasts allow anywhere,
anytime learning. They permit students to access
educational materials at home, while travelling to
university or work, or doing any activity they

choose. They can play the recordings at any time,
which is convenient to them rather than be confined
to set class times. Podcasts in the educational
setting allow students on-demand access to audio or
video-recordings of lectures or other learning
materials at their convenience. But although
Podcast is a very in-fashion methodology, does not
really suppose a revolution in education. It only
applies the same methodology (a master class given
by a lecturer) to a new format. It presents an
important disadvantage that avoids its generalized
use in education: it is one-way.

 Augmented Reality is a technology that basically
merges information or images with video-streaming
from a Web-cam. The result is similar to virtual
reality but using real-world images in real-time.
Some of the many potential revolutionary
applications in education are related for example
with the study of architecture, art, anatomy,
decoration, or in general anything that a graphic, a
simulation or a 3D model could improve the
comprehension of the concepts.

 Games can be one of the most powerful tools for
learning. Students are easily engaged with them,
especially with those that use natural interaction,
such as motion recognition (e.g., puzzles; or
question-based contests using the mobile device as
a pointer).

 Other useful m-learning applications are for
example reminders or schedulers of the learning
process. This applications helps students to remind
some events at certain moments and places, e.g.,
“Remember take the Math’s book from the Library”
when the student is walking nearby.

The proposed framework has had in consideration the
different possible applications that a mobile learning project
includes, so it can offer useful information and services to
them, simplifying considerably its development.

IV. LEARNING METHODOLOGIES AND THEORIES APPLIED

TO MOBILE LEARNING

From the educational point of view, the different learning
methodologies and theories have also been taken into
account in the design of the M2Learn framework. The
objective was to design a framework to give support to
different kinds of applications, not only from the
functionality point of view, but also from the educational.

According with the literacy, there is no academic theory
or methodology specifically developed for mobile learning,
addressing assessment, pedagogy and instructional design
issues. In its place, the traditional learning theories are being
applied with more or less success depending on the kind of
application and environment. The following points describe
the main theories, methodologies and paradigms.

A. Behaviorism

Learning theory mainly developed by Skinner. It is based
upon the idea that all behaviors are acquired through
conditioning [8]. The other important exponent of this theory

177

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is Pavlov. According with Pavlov, behavior becomes a reflex
of a given stimulus [9], as in the case of Pavlov’s dogs. In
this theory, learning is based on a stimulus (problem), its
response (solution) and the reinforcement given (feedback).
This reinforcement can be presented as a comment, an award
or a punishment.

Mobile learning examples can be found in applications
devoted to deliver content, get the learners’ response and
provide constant feedback:

 Classroom response systems [10].
 Mobile Performance Support System for Vocational

Education and Training (MPSS Project) [11].
 Content delivery by SMS.

Roschelle describes as a benefit of the implantation of this
theory in mobile learning the anonymity in the students’
responses [12]. Thanks to technology students do not feel
worried about consequences of bad answers. It helps the
teacher in understanding the classroom’s knowledge level
[13].

Although this approach is widely used in e-learning and
has some advantage in m-learning, it finds several
disadvantages such as the use of limited displays and
restricted input methods when it is used as a way to deliver
content.

B. Constructivism

Constructivism views learning as a process in which the
learner actively constructs or builds new ideas or concepts. It
is often associated with pedagogic approaches that promote
active learning, or learning by doing. In this theory, learning
is viewed as a process where learners actively construct new
concepts from their experiences (previous and current
knowledge) [14] through two processes:

 Accommodation. The process of reframing the
mental representation of the external world to
fit new experiences. It also promotes that
failure leads to learning. Along these lines,
when we act on the expectation that the world
operates in one way but it does not happen, we
accommodate this new experience and reframe
our model of the way the world works. So
learning comes from the experience of failure,
or others' failure.

 Assimilation. It is the incorporation of new
experience into an already existing framework
without changing that framework. This may
occur when individuals' experiences are
aligned with their internal representations of
the world, but may also occur as a failure to
change a faulty understanding. For example,
they may not notice events, may misunderstand
input from others, or may decide that an event
is not important as information about the
world. In contrast, when individuals'
experiences contradict their internal
representations, they may change their
perceptions of the experiences to fit their
internal representations.

In this theory, such as Bruner points out, instructors
encourage students to discover principles by themselves,
helping them to move from passive listeners to active
constructors of knowledge by working to solve realistic
problems [15].

Constructivism itself has many variations, such as Active
learning, discovery learning, and knowledge building. Other
branch is social constructivism that defends that knowledge
is built when learners interact with others through talks and
activities about shared problems or tasks. Here, learning is
supported by more skilled members.

Regarding mobile learning, one of the most relevant
applications within this learning theory is any kind of
application based on role-games. To that effect, some
educational games fit perfectly with this theory. Educational
games provide an immersive experience that helps learners
to act in the educational environment (virtual world) as an
active. It provides a better knowledge acquisition, because
they can manipulate the virtual world without the fear of a
failure. Games also allow interacting with other learners
collaborating to achieve a particular task.

Other kind of application that matches with this theory is
the location-based systems aimed to facilitate learning out of
the classroom, for example in an art or archaeological
museum.

Finally, participatory simulations are also related to this
theory [16]. This kind of applications proposes immersive
recreation of real situations to become part of the process.
Here learners do not watch a simulation, but they are part of
it [13].

C. Situated learning

This paradigm promotes learning within an authentic
context with social interaction [17] [18]. In this case,
teachers propose problems to be solved (Problem and case-
based learning) to students in real environments, where they
feel immersed in an authentic environment that helps a better
acquisition of knowledge. It fixes perfectly with mobile
learning through the context aware and location-based
systems [19] [20].

D. Observational Learning or Social learning theory

This kind of learning occurs when an observer’s behavior
changes after viewing the behavior of a model [21]. Thus,
this paradigm is based on imitation of a model that the
observer finds interesting, attractive or desirable in some
way.

Although this approach does not necessarily imply
interactivity, it is widely used in mobile learning through the
use of Video-based systems (e.g., web-based video systems,
mobile TV or Podcast), that transmit knowledge to learners
through the use of videos. Other mobile applications that
make use of this paradigm are those where authentic
situations are described to show how to react in certain
situations.

E. Collaborative learning

This paradigm promotes learning based on social
interactions [22]. In this environment, there must be a

178

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

dynamic interaction among instructor, learners and the
proposed activities to help them creating their own truth
thanks to the interaction with the others.

This approach also fits perfectly with mobile learning,
because handheld devices can offer synchronous and
asynchronous communication methods. In addition, the Web
2.0 concept is arriving also to the mobile environment,
supporting collaborative work such as edition of on-line
documents, creation of wikis, blogs, virtual boards, etc.

V. NEW LEARNING NEEDS NEW TECHNOLOGIES

Once we determine the way to go inside m-Learning,
other aspects must also be considered. Mobile devices are
getting better everyday, incorporating new functionalities,
such as GPS receivers, motion sensors, Wi-Fi connectivity,
etc. These new features must be included inside the
educational environment; especially those related with geo-
location, due to the fact, knowing where students are in each
moment can be used for offering them personalized services
[23].

It is a fact that the main and most widely used location
method in mobile devices is the Global Positioning System
(GPS). This technology offers a quite reasonable accuracy at
outdoor environments. Each GPS satellite transmits data
that indicates its location and the current time. Signals,
moving at the speed of light, arrive at a GPS receiver at
slightly different times because some satellites are farther
away than others. The distance to the GPS satellites can be
determined by estimating the amount of time it takes for
their signals to reach the receiver. When the receiver
estimates the distance to at least four GPS satellites, it can
calculate its position in three dimensions.

However, the use of this technology inside buildings is
not possible (without the use of GPS repeaters, which are
not very spread) because the receiver needs to have direct
contact with the satellites. For that reason, technologies such
as Wi-Fi, Cell towers or RFID are appearing in location
systems for indoor environments.

In the Wi-Fi based location the mobile device recollects
different levels of noise and power that the access points
spread in an environment (at least 3 access points are
required) every few milliseconds. This information is
processed to obtain the user’s coordinates [24].

This same philosophy is being applied with Cell Towers
instead of using Wi-Fi. This is the case of the new iPod that
is revolutionizing the mobile market thanks to its great
interface features and location capabilities [25] [26].

On the other hand, Radio-frequency identification
(RFID) is a technology that is being used in more
environments, and is one of the pillars of the called “Internet
of Things”. It is an automatic identification method,
consisting in storing and remotely retrieving data using
devices called RFID tags or transponders [27]. This
identification is usually used for identification [28], as the
substitute of bar codes, tracking any kind of products or
even animals or people. Some tags can be read from several

meters away and beyond the line of sight of the reader. In
addition this identification method can also be used to locate
people in an area, but it only locates people when the RFID
reader identifies the tag that the user carries.

VI. LEARNING AS A SERVICE (LAAS)

But innovation in mobile learning, besides hardware, also
requires new methodologies and paradigms that guide the
development of new projects.

In our case, during the last years we have been
developing the Learning as a Service (LaaS) paradigm,
which is an extension of the widely extended Software as a
Service (SaaS). SaaS is based on the idea of having different
services available on the Internet (on the Cloud) that can be
used and integrated regardless of physical location. In the
case of LaaS, these services will come mainly from e-
learning applications, as we work in the education
environment. As examples of services provided by e-
learning applications and used in our middleware we can
find: forum rooms and chat from LMS, Wikis, Blogs,
collaboration tools, etc.

LaaS is based on the concept of modelling the educative
services with the objective of providing better
interoperability capabilities in different levels: service-
service, platform-platform, and service-platform. Equally it
is based on the encapsulation of learning objects services.
The aim is to develop autonomous and self-contained
services that can be easily integrated in different
environments such as Learning Management Systems and
mobile learning environments.

The main objective of this paradigm is the reuse of
existing services, providing interoperability of services
among platforms and applications. This methodology has
been coined as a consequence of the important efforts
already done in the e-learning field, and the fact that new
mobile learning applications usually leave them aside.

Figure 2. Different applications and LMS in an educational environment
with replicated services.

179

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

New mobile developments tend to create everything from
scratch, giving rise in one hand to a very spread student’s e-
portfolio. On the other hand, both economic and time project
efforts are considerably higher than if services were designed
for service reutilization and interoperability among platforms
and applications (Figures 2 and 3).

Figure 3. Reuse of service. Utilization of LMS’s services in external
applications, including games and mobile learning applications. Other

applications such as games could include also services in the LMS.

As a consequence, LaaS methodology promulgates the
creation of learning services that could be integrated in other
applications and services. Thus, M2Learn framework
includes interfaces to externalize many LMS’s services, such
as forum rooms, and FAQs to be easily integrated in mobile
learning applications; games; or any other kind of
applications. LaaS also remarks the importance of integration
of external services into the LMSs, extending its
functionality.

As a consequence, other result of the application of LaaS
in our project is that the monitoring activities of mobile
learning applications can be integrated into the LMS. Thus,
teachers will have the opportunity to check the whole e-
portfolio of the student, no matter if the information comes
from the LMS, from a mobile application, or other service.

In addition, there is another surrounding concept to this
methodology within educative services: Digital Educative
Ecosystems [29]. This concept is based on the idea of
creating environments made of different integrated systems
(mobile clients, applications, services and other tools)
devoted to improve the learning experience by supporting
communication and collaboration. One of the bases of this
concept is the use of SOA (Service-oriented architecture)
technologies such as SOAP [30], Web Services [31], ESB
(Enterprise Service Bus) [32] or REST [33]. Actually, most
of the developed services in the project follow the REST
methodology.

VII. CONNECTING WITH THE LEARNING REPOSITORIES:
SERVICES IN LMS

Reading the m-Learning bibliography, most of
applications do not have any relation with the already
existing LMS. Some examples are in [34], where a prototype
was developed in order to use Moodle through Smartphones.
Basically they changed the three-frame template of Moodle
for a one-frame template to allow users to visualize better the
content. Finally it did not offer the whole functionality of
Moodle because many features did not work properly in a
smartphone.

Other example can be found in [35] where a web service-
based architecture is proposed to move some of the Moodle
functionalities into a mobile device. This also allow to re-use
some of the existing services in LMS, such as authentication,
monitoring, etc., so it is not necessary to create them again.

Thus, excepting some prototypes, most of m-Learning
systems are isolated and autonomous applications that do not
make any use of the knowledge stored in them. These
platforms are in fact the real support of the e-learning
methodology, but it seems like we wanted to let them out of
the m-Learning paradigm.

That is why we also try to interconnect these e-learning
platforms with the mobile devices, in order to take advantage
of all the services and knowledge already existing in them.

Our middleware interacts with the university LMS also
through a set of RESTful Web Services, providing an
interface to implement some functionalities in a mobile
device, such as, access to forum rooms, content or FAQs. In
addition, as we have cited before, there are other advantages
related to the re-use of services instead of creating them
again: authentication, tracking activities, evaluation, content,
etc.

In addition, the LMSs can provide very useful contextual
information. For example, for many context-aware
applications knowing the courses where a student is signed
in can be very useful in order to personalize the offered
services. For example, by using the credentials (login and
password) it is possible to retrieve information about his/her
educational environment, e.g., accessing to the university’s
e-learning platform. In this case the system can know the
student’s degree or subjects, and provide this information to
higher level applications that will use it to personalize the
services provided to the student.

VIII. MIDDLEWARE DESIGN

Once we have achieved all these conclusions we are
prepared to design the middleware that will make easier the
creation of context-aware m-learning applications,
interconnecting them with the already existing LMS
services.

Firstly, the architecture of the system must ensure it is
possible to use several sensor networks to provide
contextual information about the user [36] [37]. For that
reason several sensors controllers have been developed in
order to understand the information provided by physical
sensors (level 1 at figure 4). At this stage we are working

180

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with GPS, RFID and Wi-Fi, but the system is designed
using open interfaces so that it is easy to add new location
methods, such as cell towers, Bluetooth, infrared, etc.

The proposed architecture can be studied as a stack of
services, protocols and applications. At the top level is the
context-aware application (level 6 at figure 4) that uses the
contextual information provided by sensors to access to
particular services such as information in a LMS, e-mail, etc
(level 5 at figure 4).

Figure 4. Architecture scheme

The most important level in the stack is the adaptation
middleware (level 4 at figure 4) that is a homogenizer layer
that offers an interface to the applications. The context-
aware application will not have to interact with the sensors,
and even it will not know from which sensor the
information comes from at this time. This interface provides
all the contextual information in a transparent way, ensuring
the applications will not have to worry about the

implementation of the lower layers. This is the same
philosophy than the TCP/IP levels.

It is based on a set of wrappers (or controllers) that
interact with the physical devices and offer homogeneous
information about not only geo-location, but also about the
user’s context (Figure 5).

The main goal of this interface is to use the information
retrieved from the location technologies to obtain more
information about the user. For example, from a particular
user is possible to know basic information like the geo-
coordinates and the name. It is also possible to know
information about the device and the operating system.

On the other hand, the framework uses a communication
manager that is in charge of the management of the external
communication services and tools. For example, one of the
developed wrappers is an interface to a forum room in
dotLRN, so the developer can easily create applications that
read or write messages in a forum, so the teacher will be
able to see the activity in the mobile application through the
LMS. This particular interface has been developed creating
a REST-like Web Service that wrap the complexity of the
dotLRN forum management. The M2Learn framework
connects with this service to offer this functionality to the
mobile application developer.

Other example of service integrated in the framework is
an intelligent question-answer system that retrieves
information from different sources to answer students’
questions. This service can be configured to access to Web
Sites such as Wikipedia or the university site; institutional
databases; or search engines to look up for answers.

Finally, the top level applications use all this information
provided by the interface, but without knowing from which
source it comes. The fact is that there is a lot of contextual
information about the user and services that can be used to
improve the learning experience.

Figure 5. Architecture to provide interoperability between different location technologies and retrieve contextual information for M-Learning applications.

181

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

All these modules make up the M2Learn Unit (Figure
5). It is the API that higher level applications use to access
the contextual information and personalized services.

This interaction is achieved through a set of Web
Services. They provide an interface to implement mobile
device functionality, such as for example, access to forum
rooms, content, or FAQs. In addition, there are other
advantages related to the re-use of services instead of
creating them again: authentication, tracking activities,
evaluation, content, etc. The LMS can also provide very
useful contextual information.

However, a mobile learning environment is not made up
of a single user, but is complex digital ecosystem with
different kind of users (students, teachers, and staff),
services, applications and platforms. That is why our
scenario envisages the coexistence of several M2Learn
Units communicating and collaborating simultaneously.

From a general overview, the mobile digital ecosystem
built around the M2Learn framework contemplates the co-
existence of (Figure 6): M2Learn units, e-learning
applications, and LMS.

From a development point of view, there are two possible
ways of building applications using the M2Learn
framework:

 A mobile client built over the M2Learn framework,
using its API to access the information and services
available in the mobile digital ecosystem.

 A Mash-up system that retrieves the information of
the mobile clients in the environment through the
Context-Hub.

The interaction in this mobile digital ecosystem is
possible thanks to two important modules:

 Context Hub. This module receives the user’s
contextual information and allows its distribution

(Figure 7). Using the Context-Hub module users
can discover information about other surrounding
users. In addition, this module is also fundamental
to support the development of mash-up systems. It
provides contextual information of all the mash-up
system users, which can merge location,
preferences, history and other services.

Figure 7. Several M2Learn Units sending their context to the Context-Hub.
The Unit B retrieves all the context to allow high-level applications its use.

 Context Directory Service (CDS). This service is a
central directory where all the external services
must be registered in order to be available for the
M2Learn Units. Later, applications built over the
M2Learn framework access the CDS requesting the
available services in this environment (Figure 8).

Figure 6. Interconnection of modules through the Contextual Directory Service. Some applications make use of the Context-Hub to get other users’
contextual information. Application A is built in a mobile device over a M2Learn Unit, while the applications B in a Web-based Mash-up system that

retrieves information of the mobile digital ecosystem and matches with a service from an e-learning tool.

182

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. A service provider register a service in the CDS. Later a mobile
application request the CDS the list of available services.

IX. EVALUATION

Evaluation has been conducted using students of a
“Professional Expert Course on Mobile Programming”. They
have developed several applications using the framework.
Later, students completed a questionnaire on user satisfaction
and the simplification degree obtained through the
framework’s use.

Within this experience, students easily developed a
mobile context-aware application that loaded different LOM-
based resources depending on their location and profile. One
of these resources was a simulation of a virtual laboratory of
thermodynamics. The development of this application was
effortless, and required very few lines of code thanks to the
use of M2Learn.

X. RELATED WORK

In the following section other context-aware frameworks
are described intended to create not only m-learning
applications, but any kind of context-aware system. But any
of them offer the same set of features than our framework,
due to the fact that it offers information and services not
only from the mobile device (contextual information) but
also from the university LMS and from other external
services.

A. HyCon Framework

The HyCon framework [38] was developed to provide a
general platform suitable for experiments with hypermedia
mechanisms in a context-aware and mobile environment.
HyCon encompasses an infrastructure for implementing
context-aware services and applications and a framework,
which can be used by applications programmers to build
such services and applications.

B. Stick-e Note Architecture

The Stick-e note software [39] infrastructure developed
at the University of Kent and provides one of the first
approaches to support the development of context-aware
applications.

The aim of the infrastructure is to simplify the creation
of context-aware applications using the electronic
equivalent of a Post-it note and, as such, it focuses on
information presentation and in particular discrete context-

aware applications, i.e., those in which the information
presented to the user does not change continuously.

In such applications, separate pieces of information are
attached to specific contexts (location, states, temporal
ranges, and adjacency) and are presented to the user when
the appropriate context is entered.

The infrastructure is aimed at mobile users carrying
small computing devices, such as PDAs, enhanced with
environmental sensors, but is essentially an on-line system
and does not explicitly address mobility issues.

C. The Context Toolkit

The Context Toolkit [40] is an architecture developed at
the Georgia Institute of Technology that aims to provide
reusable solutions to the problems of developing context-
aware applications. The main aim of the toolkit is to free
developers from having to deal with the low-level details of
context acquisition and allow them to concentrate on the
specification of higher-level application behaviours.

The toolkit is inspired by the success of toolkits for
Graphical User Interface (GUI) development and is based
on the GUI concept of a widget as a reusable component for
abstracting away from and hiding the specifics of a physical
device. Through the widget abstraction, the Context Toolkit
aims to enable context data to be handled in the same way
user input is currently handled.

The Context Toolkit provides useful domain-specific
abstractions for the incorporation of context data garnered
from sensors into applications, through the use of the widget
abstraction, and this is its major strength. In addition, the
interpreter abstraction of the toolkit provides a means to
convert sensor data to higher-level context.

D. MiLK: The Mobile Informal Learning Kit

MiLK [41] is a support tool that allows teachers and
students to develop event paths that consist of a series SMS
question and answer messages that lead players through a
series of checkpoints between point A and point B. These
event paths can be designed to suit desired learning
scenarios and can be used to explore a particular place or
subject. They can also be designed to facilitate formal or
informal learning experiences.

E. The Context Fabric

The Context Fabric project being carried out by the
Group for User Interface Research at the University of
California at Berkeley [42] proposes a novel approach to
providing support for context-awareness in the form of a
service infrastructure model. This model attempts to shift as
much of the task of context-aware computing as possible to
a network-accessible middleware.

This approach aims to aid the development of
applications based on a diverse and constantly changing set
of sensors and devices by providing uniform abstractions
and reliable services for common operations. The Context

183

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fabric provides sensor abstraction and is one of the few
projects providing an explicit treatment of proximity as a
useful concept in context-aware computing. Sensor fusion
as an approach to managing the uncertainty of sensor data is
not dealt with in the project.

XI. CONCLUSSION

M2Learn project gives a solution to the development
problems within the mobile learning field. At the same time,
this project promotes the creation of innovative applications
and provides the guide for the development of new
applications based on the new key factors of mobility in
learning: context-awareness, social interaction and
integration of e-learning resources.

Mobile devices are a very familiar tool for learners.
Their experiences are closer to the use of videogames;
watch videos; communication via mobile devices; and use
of collaborative technologies (e.g., blogs, wikis, mash-ups
and social networks) than to be a mere listener in a master
class given by a teacher. Therefore, thanks to the use of
these devices, students will take an active role in the
learning process in a more interactive and according way to
what they are accustomed to use. Learners will feel more
motivated and engagement with learning. This idea was
remarked by Elliot Soloway, an expert in mobile learning
from the University of Michigan: “The kids these days are
not digital kids. The digital kids were in the ‘90s. The kids
today are mobile, and there’s a difference. Digital is the old
way of thinking, mobile is the new way.”

M2Learn project is intended to give a step further in the
state of the art of design of mobile learning applications. It
supports the development of innovative mobile learning
applications that really complement and enrich the learning
experience. This is a learner-centred paradigm that really
encourage the “anywhere, anytime”, improving the social
interactions, providing a personalized educative experience
to each learner, and reaching to places where traditional or
on-line learning cannot reach. M2Learn Middleware is
devoted to help mobile learning to find its place in
education, as a complement to traditional and on-line
learning instead of replacing them and promoting blended
approaches.

ACKNOWLEDGMENT

Authors would like to acknowledge the Spanish Science and
Education Ministry and the Spanish National Plan I+D+I
the support for this paper with the project TIN2008-06083-
C03/TSI “s-Labs – Integration of Open Services for
Remote and Virtual Labs”; and the European Union for the
Leonardo Project 142788-2008-BG-LEONARDO-LMP
“mPSS – mobile Performance Support for Vocational
Education and Training Project” and the ERASMUS Project
141944-LLP-1-2008-1-ES-ERASMUS-ECDSP “IPLECS
Internet-based Performance-centered Learning Environment
for Curriculum Support”. Finally authors want to
acknowledge the support provided by e-Madrid Project,

S2009/TIC-1650, “Investigación y Desarrollo de
tecnologías para el e-learning en la Comunidad de Madrid”.

REFERENCES

[1] Martin, S., Gil, R., Sancristobal, E., Díaz, G., Castro, M., Peire, J.,
Milev, M., and Mileva, N., “Middleware for the development of
context-aware applications inside m-Learning: Connecting e-learning
to the mobile world”, Proceeding on The Fourth International Multi-
Conference on Computing in the Global Information Technology.
ICCGI 2009. August 23-29, 2009 - Cannes/La Bocca.

[2] Almirall, M. and Rivera, J.M., “Automatic Mobile Learning
Contents,” Proceedings on the 2009 IADIS Mobile Learning
Conference, Jan. 2009, Barcelona (Spain).

[3] Mobile Performance Support System (MPSS): http://mpss.ath.cx/

[4] Bouvin, N., Brodersen C., Hansen, F. and Iversen, O., and Nørregaard
P., “Tools of Contextualization: Extending the Classroom to the
Field,” Proceedings of the 2005 conference on Interaction design and
children. Boulder, Colorado, Pages: 24 – 31, 2005.

[5] Bomsdorf, B. (2005) “Adaptation of Learning Spaces: Supporting
Ubiquitous Learning in Higher Distance Education”, Dagstuhl
Seminar Proceedings 05181 Mobile Computing and Ambient
Intelligence: The Challenge of Multimedia.

[6] Bouzeghoub, A., Do, K., and Lecocq, C., “Contextual Adaptation of
Learning Resources”, IADIS International Conference Mobile
Learning, pp. 41-48, 2007.

[7] Castro, M., Colmenar, A., and Martin, S. (2010) “Trends of Use of
Technology in Engineering Education”, Proceeding on the I IEEE
Conference on Engineering Education. April 2010, Madrid (Spain)

[8] Skinner, B. (1968). The Technology of Teaching. New York:
Appleton-Century- Crofts. 1968

[9] Bower, G. H. and Hilgard, E. R. (1981). Theories of Learning, Fifth
Edition, Englewood Cliffs, NJ: Prentice Hall, Inc.

[10] Dufresne, R. J. (1996). Classtalk: A Classroom Communication
System for Active Learning. Journal of Computing in Higher
Education. 7 (2), pp. 3-47

[11] Martin, S. et al (2009), "Work in Progress: A Mobile Performance
Support System for Vocational Education and Training," Proceeding
on the 2009 Frontiers in Education Conference, San Antonio TX
(USA). October 2009.

[12] Roschelle, J. (2003). Keynote paper: Unlocking the learning value of
wireless mobile devices. Journal of Computer Assisted learning,
19(3), 260-272.

[13] Naismith, L., Lonsdale, P., Vavoula, G., and Sharples, M.. Literature
review in mobile technologies and learning. NESTA, 2004. Futurelab
series, report 11. Bristol: NESTA Futurelab

[14] Piaget, J. (1929). The Child’s Conception of the World. New York:
Harcourt, Brace Jovanovich

[15] Bruner, J. S. (1966). Toward a theory of instruction. Cambridge,
Mass: Belknap Press of Harvard University

[16] Colella, V. (2000). Participatory simulations: building collaborative
understanding through immersive dynamic modeling. Journal of the
Learning Sciences, 9(4): pp. 471-500

[17] Lave, J., and Wenger, E. (1991). Situated Learning: Legitimate
Peripheral Participation. Cambridge, England: Cambridge University
Press.

[18] P. J. Brown, J. D. Bovey, and X. Chen. Context-aware Applications:
from the Laboratory to the Marketplace. IEEE Personal
Communications, 4(5):58{64, October 1997.

[19] Lonsdale, P., Baber, C., Sharples, and M., Arvanitis, T. A context-
awareness architecture for facilitating mobile learning. In Learning
with mobile devices, research and development, 2004. Edited by
Attawell, J. & Savill-Smith C., pp. 79-85.

[20] Rogers, Y., Price, S., Harris, E., Phelps, T., Underwood, M., Wilde,
D., Smith, H., Muller, H., Randell, C., Stanton, D., Neale, H.,

184

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Thompson, M., Weal, M., and Michaelides, D. (2002). Learning
through digitally augmented physical experiences: reflections on the
Ambient Wood project. Equator Technical Report, pp. 1-19
http://www.informatics.sussex.ac.uk/research/groups/interact/papers/
pdfs/Rogers_Ambient_Wood2.pdf. Queried on July 2009.

[21] Bandura, A. (1986). Social foundations of thought and action: A
social cognitive theory. Englewood Cliffs, NJ: Prentice Hall.

[22] Vygotsky, L. Mind in Society: The Development of Higher
Psychological Processes. Edited Cambridge Mass, London: Harvard
University Press. 1978.

[23] Martín, S., Bravo, J., Hervás, R., Sancristobal, E., Gil, R., Díaz, G.,
Losada, P., Castro, M., and Peire, J., “Location-based Services for
Mobile Devices at University”, IMCL, International Conference on
Interactive Mobile and Computer Aided Learning, pp. 1-7, April 16 -
18 2008, Amman (Jordan).

[24] Borenovic, M.N., Simic, M.I., Neskovic, A.M., and Petrovic, M.M.,
(2005). Enhanced Cell-ID + TA GSM Positioning Technique. The
International Conference on Computer as a Tool, 2005. EUROCON
2005. Volume 2, pp. 1176 – 1179.

[25] Youssef, M.A., Agrawala, A., and Udaya Shankar, A., 2003. WLAN
location determination via clustering and probability distributions.
Proceedings of the First IEEE International Conference on Pervasive
Computing and Communications (PerCom 2003), pp.143-150.

[26] Su, W., Lee, S.-J., and Gerla, M., (2000). Mobility prediction in
wireless networks. 21st Century Military Communications
Conference (MILCOM 2000). Volume 1, 22-25 Oct. 2000 pp. 491 –
495.

[27] Polito, S., Biondo, D., Iera, A., Mattei, M. and Molinaro, A., 2007.
Performance Evaluation of Active RFID Location Systems based on
RF Power Measures. IEEE 18th International Symposium on
Personal, Indoor and Mobile Radio Communications, 2007 (PIMRC
2007). pp. 1-5.

[28] Bravo, J., Hervás, R., and Chavira, G., "Ubiquitous Computing in the
Classroom: An Approach through Identification Process." Journal of
Universal Computer Science 11(9): 1494-1504, 2005.

[29] Cheung. B., Stewart. B., and McGreal, R., “Going Mobile with
Moodle: First steps,” IADIS International Conference on Mobile
Learning 2006.

[30] Conde, M., Casany, M.J., Alier, M., and García, F.J., “Back and
forth: From the LMS to the mobile device. A SOA approach,“ 2009
IADIS International Conference Mobile Learning, Barcelona (Spain).

[31] Martín, S., Diaz, G., Sancristobal, E., Gil, R., Castro, M., and Peire,
J., “Supporting M-learning: The location challenge”, Proceedings on

the 2009 IADIS Mobile Learning Conference, Jan. 2009, Barcelona
(Spain).

[32] Martín, S., Sancristobal, E., Gil, R., Díaz, G., Castro, M., and Peire,
J., “A context-Aware Application based on Ubiquitous Location”,
UBICOMM 2008. The second International conference on Mobile
Ubiquitous Computing, Systems, Services and Technologies, October
2008, Valencia, (Spain).

[33] Hansen, F., and Bouvin, N., “Mobile Learning in Context — Context-
aware Hypermedia in the Wild“, International Journal of Interactive
Mobile Technologies (iJIM), Vol 3, No 1 (2009).

[34] Pascoe, J., “The Stick-e Note Architecture: Extending the Interface
Beyond the User”, 1997 International Conference on Intelligent User
Interfaces, pages 261-264, ACM Order Department, PO Box 12114,
Church Street Station, New York, NY 10257, January 1997. ACM,
ACM.

[35] Salber D., Dey, A., and Abowd, G., “The Context Toolkit: Aiding the
Development of Context-Enabled Applications”, Proceedings of the
1999 Conference on Human Factors in Computing Systems (CHI),
Pittsburgh, PA, pages 434-441, May 1999.

[36] Polson, D., and Morgan, C., “MiLK: The Mobile Informal Learning
Kit.Collaborating to design succesful mobile learning applications“,
IADIS International Conference Mobile Learning 2007.

[37] Hong J. I., and Landay, J. A, “An Infrastructure Approach to Context-
Aware”, Computing. Human-Computer Interaction, 16(2-4):287{303,
2001.

[38] Hansen, F., and Bouvin, N., “Mobile Learning in Context — Context-
aware Hypermedia in the Wild“, International Journal of Interactive
Mobile Technologies (iJIM), Vol 3, No 1 (2009).

[39] Pascoe, J., (1997). The Stick-e Note Architecture: Extending the
Interface Beyond the User, 1997 International Conference on
Intelligent User Interfaces, pages 261-264, ACM Order Department,
PO Box 12114, Church Street Station, New York, NY 10257, January
1997. ACM, ACM.

[40] Salber D., Dey, A., and Abowd, G., (1999). The Context Toolkit:
Aiding the Development of Context-Enabled Applications.
Proceedings of the 1999 Conference on Human Factors in Computing
Systems (CHI), Pittsburgh, PA, pages 434-441, May 1999.

[41] Polson, D., and Morgan, C., (2007). MiLK: The Mobile Informal
Learning Kit.Collaborating to design succesful mobile learning
applications. IADIS International Conference Mobile Learning 2007.

[42] Hong J. I., and Landay, J. A, (2001). An Infrastructure Approach to
Context-Aware Computing. Human-Computer Interaction, 16(2-
4):287{303, 2001.

185

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Sources of Software Requirements Change from the Perspectives of Development

and Maintenance

Sharon McGee
1
 and Des Greer

2

School of Electronics, Electrical Engineering and Computer Science

Queens University

Belfast, United Kingdom

{
1
smcgee08|

2
des.greer}@qub.ac.uk

Abstract— Changes to software requirements occur during

initial development and subsequent to delivery, posing a risk to

cost and quality while at the same time providing an

opportunity to add value. Provision of a generic change source

taxonomy will support requirements change risk visibility, and

also facilitate richer recording of both pre- and post-delivery

change data. In this paper we present a collaborative study to

investigate and classify sources of requirements change,

drawing comparison between those pertaining to software

development and maintenance. We begin by combining

evolution, maintenance and software lifecycle research to

derive a definition of software maintenance, which provides

the foundation for empirical context and comparison.

Previously published change ‘causes’ pertaining to

development are elicited from the literature, consolidated using

expert knowledge and classified using card sorting. A second

study incorporating causes of requirements change during

software maintenance results in a taxonomy which accounts

for the entire evolutionary progress of applications software.

We conclude that the distinction between the terms

maintenance and development is imprecise, and that changes

to requirements in both scenarios arise due to a combination of

factors contributing to requirements uncertainty and events

that trigger change. The change trigger taxonomy constructs

were initially validated using a small set of requirements

change data, and deemed sufficient and practical as a means to

collect common requirements change statistics across multiple

projects.

Keywords- Requirements change; requirements

management; project management; card sorting; software

evolution; development; maintenance.

I. INTRODUCTION

To some, effective management of changes to software

during its lifetime is the key to the effective software project
management [43]. While accepting that requirements
changes are inevitable during software development, the
increased cost of changes later in the development lifecycle
[53][2], combined with the threat that volatility poses to
project schedule, cost [3][4], and defect rates [5][4], means
that requirements volatility constitutes one of the top ten
risks to successful project development [6]. Continuing post-
delivery, constant adaptation and change is necessary if
software is to retain value and remain useful [38]. Viewing
software evolution as a continuum from conception to
demise is a perspective purported by some researchers [45],

though much empirical effort is bounded by a clear
distinction between initial development and post-
implementation [34][44][35]. Pfleeger‟s [7] recommendation
that “We must find a way to understand and anticipate some
of the inevitable change we see during software
development” is complemented by Bennett and Rajlich‟s
[35] encouragement to focus upon empirically founded
predictive models of maintenance.

Working with an industrial partner, our shared objective
is to design and conduct a series of studies that collectively
address the challenge of requirements change anticipation.
Our longer term aims are 1) To investigate the correlation
between the source of change and requirement type, 2) To
assess the impact of change source upon requirements
volatility and 3) To examine the pattern of source-induced
change during development and maintenance. The first step
is an exploration of the causes of requirements change, both
pre- and post delivery.

For the purpose of change management, it is generally
recommended that change requests are held in a database
with attributes such as „origin‟ and „change type‟ [8]. An
obvious starting point would therefore be to analyse existing
change control databases. However, it has been observed that
reasons for change are insufficiently recorded for the
purpose of analysis [9]. While this statement cannot be said
to apply generally, it has also been the experience of the
authors. Standardizing data collection across multiple
projects regardless of life-cycle phase will not only inform
explorative research, but also provide a means by which
industrial software providers can take ownership of empirical
opportunities. In this study we set out to build a taxonomy
of requirements change based on the source of the change,
including and comparing sources of change during software
development and maintenance. This classification of
requirements change sources should be useful as a pick-list
(along with other pre-defined attributes) in change diaries
across multiple projects within one organization, for the
purpose of future analysis.

Thus, the following questions are addressed:-

1. What are the sources of requirements change during
software development and maintenance?

2. Can they be similarly classified according to change
source domain?

186

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This paper combines a previous study [1] with new
results and is organised as follows. Section 2 describes
previous studies related to the classification and causes of
requirements change. Section 3 outlines the research
approach and methods used in this study. In Section 4 we
establish the software project categorisation used in this
study. Section 5 describes the research process, and
illustrates the derived taxonomy. Section 6 discusses our
findings with respect to previous work and outlines possible
application limitations. Finally we end our paper with
conclusions and plans for further work.

II. RELATED WORK

More abstract theories suggest that requirements change

because our perceptions of reality differ from actual reality
[32], or that the real world is unbounded yet our
understanding of the world is both bounded and based upon
assumptions which are often invalid [38].

Empiricists, seeking to complement these ideas with
more practical support, explore the causes of requirements
change by examining evidence during software development
and maintenance. Studies designed to classify requirements
changes fall into one of two camps. The first are those that
advocate the need for a domain-specific taxonomy. Lam et al
[10-12], who address the problem of managing volatility by
process control, recommend that volatility classification
should capture the domain-specific nature of change in order
to facilitate change estimation and reuse. This is echoed by
Stark [13] who analyses the impact of maintenance changes
on release schedule. The following discussion focuses upon
those studies such as Harker et al. [14] which propose a more
generic re-usable requirements change classification.

A. Software Development Change Classifications.

Harker et al. [14] divide empirically gathered

requirements changes into five categories depending upon
the source of the change – i) fluctuations in the organization
and market environment; ii) increased understanding of
requirements; iii) consequences of system-usage; iv) changes
necessary due to customer migratory issues or v) changes
due to adaptation issues. Based on Harker et al.‟s study, an
appraisal by Sommerville [15] includes compatibility
requirements relating to business process change in place of
migratory and adaptation issues. Working from data held in a
change control database within an industrial setting,
Nurmuliani et al [16] catalogues volatility by type (addition,
modification, deletion), origin, and reason for change.
Noting that most change requests used in the study had little
information about the reason for change, a further study was
undertaken using card sorting to classify the recorded
changes [9]. This resulted in a list of „super-ordinate
constructs‟ classified by reason for change – product
strategy, hardware/software environment changes, scope
reduction, design improvement, missing requirements,
clarification changes, testability and functionality
enhancement.

As can be seen there is little agreement in the
terminology used for classifying requirements change, and it
would seem at first sight that studies to date have little
commonality. This may be due to the different contextual
basis of the studies, or perhaps that classification was
established at different levels. It is possible, for example, that
Nurmuliani et al.‟s change reason of „missing requirement‟ is
included within Harker el al.‟s change source of „increased
understanding‟.

A genre of studies related to requirements engineering
risk and uncertainty is also of relevance. Mathiassen et al.
[17] classify requirements engineering risks by reliability,
complexity and availability, and relate these to appropriate
techniques.

B. Software Maintenance Change Classifications

Much empirical and theoretical work re-uses or builds

upon Swanson‟s classification [41] of maintenance changes
[34][44][46], which includes corrective, adaptive and
perfective changes. Chapin et al. [42] provide a thorough
review of literature referring to maintenance change types,
and propose a new classification which is an extension and
clarification of previous work, and is based upon observed
activities. These include changes to documentation, code,
and business rules. Incorporating both errors and
enhancements, this classification focuses not upon the
reason, cause or source of the change, but instead upon the
type of change being made. Both Kemerer & Slaughter [44]
and Heales [37] take a different approach and classify
changes according to what is being changed. From a
theoretical view point, Perry [39] discusses the dimensions
of change and concludes that software development imitates
the „real world‟ by the creation of a „model‟ from which we
abstract an „understanding of system requirements‟. These
are subsequently implemented upon a foundation of
sometimes weak „technical theory‟.

Due to the divergence of change sources compiled in
these studies, none of the classifications exclusively met the
needs of the subsequent stage of this research. However,
their findings, together with requirements change causes
derived from other studies are used to provide a collection of
change constructs upon which to base our classification
effort. A full list of change source constructs elicited from
the literature can be found in the appendix.

III. RESEARCH APPROACH

This study is the first of a family of studies [18]
employing a collaborative research approach, in that it seeks
to contribute to the body of knowledge in this area, whilst
answering to the need of our industrial partner to better
understand, manage and measure requirements changes.
Collaboration with industry is generally recommended to
ensure relevance and better transfer of research results [19].
In this instance the industrial partner gave of their time to
provide expert knowledge of software project management
and product maintenance.

187

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Preliminary Studies

To explore the scope and complexity of the problem, and
decide upon appropriate and effective research methods, a
number of initial investigations were undertaken. Three
unstructured interviews, during which project managers in
the main reflected upon their current project, demonstrated
the need for a focus for „memory-jogging‟. A subsequent
self-administered questionnaire exposed difficulties with
change construct interpretation and understanding, and a
review of a change database revealed that not all changes
were recorded, particularly those relating to the technical
solution. Therefore, methods were sought that would
maximise the opportunity for consensus building, provide a
visual basis for brainstorming, and maximise the potential
for knowledge sharing and exchange.

The unit of analysis is our industrial partner organization.
Participants were sampled from the company‟s Project
Managers and Maintenance Engineers by convenience,
within the stratum of those with at least 12 years experience
in IT.

B. Organisational Context

 Our industrial partner in this research employs 300 staff,
136 of whom are involved with software development. They
have 6 offices around the UK and Ireland and deliver IT
solutions to clients across both the public and private sectors.
Most of their contracts involve a single customer and
roughly 80% of these relate to governmental work. Nearly
all project managers are Prince2 certified and work with a
range of traditional and agile methodologies.

C. Workshops

In requirements engineering, group elicitation techniques
such as workshops aim to foster stakeholder agreement and
buy-in [20], and are a mechanism whereby individuals can
make decisions through the consensus building leadership of
a facilitator [21]. In view of this, they were used to
familiarize all participants with the constructs, come to a
common understanding of their meaning, and reach a
consensus of opinion at the end of the study regarding the
structure of the taxonomy to be used.

D. Card Sorting

Card sorting is a knowledge elicitation technique which
involves categorizing a set of cards into distinct groups
according to a single criterion. Each card represents a
construct which can be expressed in words or pictures, and
participants are invited to place them into related groups. The
categorisation may be left to the participants (open sort) or
pre-determined (closed sort). Maiden & Rugg [21] suggest
that card sorting is one of the most suitable techniques for
acquiring knowledge of data (in contrast to knowledge of
behaviour or process). Further, Rugg and McGeorge [54]
argue that card sorting overcomes one of the disadvantages
of the repertory grid method of categorisation since this uses
Likert-type measurements to capture participant responses
and is not well suited to nominal scale data. However, the
repertory grid approach does lend itself easily to statistical
analysis, which is one of the challenges of card sorting [22].

Other more semantic disadvantages include the need for
careful selection and naming of cards in order to ensure cross
participant construct understanding, and the potential
disparity of group labelling during open sorting. However,
the use of extensions such the Delphi method (each
participant iteratively improves a proposed hierarchy) [55]
can overcome some of these difficulties. Most analogous to
this approach is affinity diagramming which is similar to
card sorting except that the focus is upon reaching a
consensus, and therefore consists of a single card sorting
exercise with a number of participants. However, by contrast
to singular participant card sorting, taking this approach will
mean that the differences in participant perspectives will be
lost. Salient amongst the advantages of card sorting are its
simplicity, focus on participants terminology, and ability to
elicit semi-tacit knowledge [22]. A special edition of the
journal „Expert Systems‟ in 2005 [23] was dedicated to the
subject and it has widespread use in psychology, knowledge
engineering and requirements engineering. Accordingly,
single participant card sorting with supporting
aforementioned workshops for terminology understanding
and analysis consensus was deemed an appropriate approach
to the derivation of a taxonomy of change sources.

IV. SOFTWARE PROJECT CATEGORISATION

 In order to accommodate and compare sources of change

pertaining to all phases of the software lifecycle, it is first

necessary to clearly define what we mean by development

and maintenance. Noticing that there is some terminological

disparity in the literature [35], we firstly derive a character

based project categorization founded upon existing studies.

It is from this basis that we establish understanding between

academic and industrial research team members and

consider the validity of the results of this study.

A. Software Evolution

Lehman‟s influential and continuingly relevant work on
software change [38][45] brought the term evolution into
common research usage. Defined as “the dynamic behaviour
of programming systems as they are maintained and
enhanced over their lifetimes" [47], Belady & Lehman are
deliberately inclusive of all stages of the software lifecycle,
including initial development [38][43]. Subsequent to this
work, authors have applied the term to development [48],
used it as a substitute for maintenance [34][44], and
proposed that it refers to a period of time between initial
development and servicing [35]. Noting that the term lacked
a standard definition, Bennett & Rajlich [35] sought to
clarify its meaning by asking the question “What is
maintenance?” and proposing a staged model for the
software lifecycle [35]. This theory derived model promotes
the latter view that software enters a phase of evolution
following initial delivery and stops evolving once it is no
longer feasible to make requirements changes. Subsequently
the software enters a period of servicing when only minor
corrections are made. Bennett & Rajlich claim that from a
research perspective each stage has “different technical

188

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

solutions, processes, staff needs and management activities”.
Therefore empirical research should firstly ensure context is
specified, and secondly explore the best solution for each
stage. Interestingly, in a retrospective examination, Lehman
& Ramil observed that their empirical research supported the
staged model [38].

B. Software Development and Maintenance

The term maintenance has been defined by the IEEE [49]
as “The modification of a software product after delivery to
correct faults, to improve performance or other attributes or
to adapt the product to a modified environment”. As argued
by Godfry & German [36], this definition is not
representative of all post-delivery activity, and the semantic
inference of the term evolution more closely reflects the
changing nature of software, and in particular accounts for
requirements changes. Nonetheless, the term maintenance is
still used widely, though not consistently. Kitchenham et al.
[46] developed an ontology of maintenance in which two
scenarios are outlined. The first scenario (A), more
commonly understood as evolutionary development, is
included since in this instance the incremental nature of
software delivery necessarily implies that there is a portion
of software in the post-delivery phase. The second scenario
(B) represents the case where activity concerning software
change is facilitated by a maintenance organisation distinct
from that of development. The second of those is the more
traditionally accepted view of maintenance and the context
of much „maintenance‟ research. As an interesting aside,
Basilli [50] considers software re-use and surmises that from
a re-use perspective all development can be considered
maintenance due to the prevalence of components usage.
Chapin et al. [42] assert that a classification of requirements
change types, more traditionally ascribed to maintenance,
can equally be applied to software development, and that this
project nomenclature is relevant only in so far that it is
prevalent in industry. Indeed, in that environment, deciding
whether a project is „maintenance‟ or „development‟ is
merely a question of project funding and contractual
agreement. Supportive of this contention is the observation
that the maintenance process ontology from Kitchenham et
al. [46] is derived from and bears direct semblance to a
development process ontology proposed by de Almeida et al.
[52]. The activities involved in managing change
(evaluation, impact analysis, approval, implementation,
regression testing) and the supporting processes of
configuration management, requirements traceability and
release planning are beneficial elements of change
management, irrespective of life-cycle phase. However,
Chapin et al also assert that the level of effort consumed by
these activities depends upon whether they occur in a
development or maintenance environment, and that
recognition of the differences between the two phases will
lead to more realistic measurement and work evaluation [51].
Kemerer & Slaughter suggest that the types of changes seen
during longitudinal post-delivery studies are not
homogeneous. Further empirical research may reveal
predictable patterns of evolutionary change which would

contribute to knowledge regarding the software lifecycle
[44].

It is apparent therefore that there is some commonality of

change process and activity shared amongst projects in

phases termed development, evolution and maintenance.

However, the observations made by Bennett & Rajlich [35]

Chapin [51] and Kemerer & Slaughter [44], who advocate

the benefit of differentiating between life-cycle phases, are

of sufficient significance to warrant empirical investigation.

 While an exhaustive account of the comparison between

development and maintenance is out of the scope of this

study, the categorisation illustrated in Table 1 was derived

for the purposes of this and future empirical studies. It

combines the staged model proposed by Bennett & Rajlich

[35], Kitchenham et al.‟s maintenance scenarios [46] and

Chapin‟s classification of change types [42]. The division

between development and maintenance was drawn to reflect

the importance of the factors relating to team knowledge,

stability and responsibilities [46][51], coupled with the

distinct contractual governance prevalent during „product

upkeep‟ and „servicing‟. From Table 1 we derive the

following definition of software maintenance.

Maintenance projects are those that:-

1. Employ staff whose work assignment is distinct

from that of pre-delivery development, and whose

application domain knowledge is not assumed.

2. Operate under a clearly defined support contract.

3. Involve activities of product correction and

enhancement to production software.

V. TAXONOMY DEVELOPMENT

This section describes the process of taxonomy
development. Upon agreement of the proposed
categorisation, a consideration of the sources of requirements
changes observed during software development informs the
organisation of an initial change source classification. This is
followed by further study incorporating sources of change
associated with maintenance projects.

A. Project Categorisation Clarification

With one project manager present, the proposed project

categorisation was reviewed. Two post-delivery support

contracts were examined and it was noticed that small

changes termed „enhancements‟ were permitted under the

terms of both contracts provided that they did not exceed an

agreed (contract-specific) cost ceiling. These would be

undertaken by a member of the organisation‟s maintenance

team and scheduled in accordance with maintenance

priorities. Provision was made in both contracts for further

enhancements, whose costs were estimated to be in excess

of the ceiling, which would require the agreement of a

further contract. This work would be undertaken by a

dedicated software development project team.

189

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE 1 DEVELOPMENT AND MAINTENANCE PROJECT CATEGORISATION

Under the proposed project categorisation, the

enhancement work falling under the maintenance contract

would be termed „maintenance‟ while the work requiring

further funding arrangements would fall under

„development‟. Since both cases would involve

requirements changes made to post-delivery software, this

supports Chapin et al.‟s comment that industrial naming

convention is a matter of budget considerations [42], and

highlights the potential for confusion when understanding

the context of research studies. It was emphasised by the

project manager that any development project emerging

from a maintenance contract would necessitate more depth

of requirements analysis processes than that required by the

„mini projects‟ undertaken under the terms of the

maintenance contract. The project categorisation as

proposed was used in the remainder of the study.

B. Development Change Source Constructs

Electronic keyword searches were performed to assemble
candidate academic papers, industrial articles, and text
books. Citations referring explicitly to requirements
change/evolution sources/causes/uncertainty/creep/risk were
followed in a forward direction in search of the initial source.
This resulted in a total of 73 papers and text books which
were reduced to a final 14 sources by the criteria „software
development‟ with „discovered empirically‟ or „seminal
work/text book‟. As „seminal work‟ was subjectively
assessed, this cannot be considered a systematic review.
However, without this criterion, papers such as „Issues in

requirements elicitation‟ [24] would not have been included.
The authors felt that this would be an oversight.

During the collation of change source constructs it
became apparent that reasons for change such as „diverse
user community‟ and „New tools/technology‟ were often
gathered together under the umbrella term „cause‟ [14, 15,
25]. Clearly there is a distinction between uncertainty giving
rise to change and events that trigger a change. Whilst an
event can lead to a change without preceding uncertainty,
uncertainty can not result in a change unless an event
resolves or intervenes to mitigate the risk of uncertainty. It
could be argued that change is „caused‟ by a combination of
uncertainty and trigger, although in reality causation cannot
be proved to arise from one, other or both due to the
presence of confounding environmental factors.
Accordingly, uncertainties and triggers, collectively referred
to as sources of change, were separated. This separation was
not difficult since in most cases the semantics of the
constructs related to an event (trigger) or a situation
(uncertainty).

C. Initial Workshop – development construct consolidation

The first workshop taking 2 ½ hours introduced the
constructs to 3 project managers and each construct was
clarified for meaning. In so doing, constructs sharing a
similar meaning were amalgamated, and those represented
by other constructs at a finer level of granularity were
removed. Additionally, constructs such as „New Functional
Feature‟, which would necessarily arise as the consequence
of resolved uncertainty or opportunity were also removed.
The most debated of the constructs was „changes following
prototyping‟. Though quoted as a cause of change, it was the
opinion of the participants that this change source should be
thought of as a technique, having no more causal

Development Maintenance

 Development Iterative Delivery Product Upkeep

Servicing

Naming

Convention

Initial

Development1

Evolution1

Maintenance Scenario A2

Evolution1

Maintenance Scenario B2

Servicing1

Maintenance Scenario B2

Staff Roles Pre-delivery

only

Pre and Post-delivery. Post delivery only Post-delivery only

Software

Engineer

Knowledge

Domain and

project-specific

technical

knowledge

inherent

Continuity of domain and

project-specific technical

knowledge.

Some Domain and

project-specific technical

knowledge required but

not assumed.

Domain and project-

specific technical

knowledge not required or

assumed.

User Support N/A Feedback through

requirements analysis

activities

Help/Support Desk

Service Level Agreement

Help/Support Desk

Service Level Agreement

Types of

changes

All types All types All types Corrective

1 Bennett & Rajlich [35]
2 Kitchenham et al. [46]

190

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

significance than other techniques such as „requirements
inspections‟. Either all techniques should be included and
constructs added accordingly, or constructs pertaining to
increased understanding should represent the techniques. The
final consensus favoured the latter argument, though the
addition of technique constructs remains a question for
further research. Four triggers were added and as a result of
this process, the number of constructs was reduced from 73
to 46. Making the distinction between trigger and
uncertainty was confirmed both to be viable and useful, since
triggers could more easily be attributed to requirements
changes. The constructs are listed in the Appendix under the
headings „Development Trigger Construct‟ and
„Development Uncertainty Construct‟. What remained was
to classify the triggers and assign uncertainty constructs
accordingly, thus endorsing the classification and confirming
that uncertainties had corresponding change events.

D. Participant Card Sorting (development)

Individual card-sorting ensured that the opinions and
contribution of each project manager were represented. The
process was first validated by a pilot card sort with 1 project
manager and 1 researcher. Each card sorting session was
audio-recorded and reviewed, and photographs were taken of
card classifications. This process took between 45 minutes
and 1 ½ hours.

Each of the 23 development trigger constructs (as they
appear in the Appendix) was written on a card and assigned a
random number which could be seen clearly in the
photographs. Six participants were asked to classify the
triggers according to their source.

All participants classified the triggers into between 3 and
5 categories, and there was homogeneity between the
classifications, although in all cases they were named
differently. For example, one project manager referred to
„ownership‟ of the categories; another used process labels
such as „customer interface‟ and „Requirements
engineering‟. Naming convention aside, 14 of the 23
constructs were placed in the same pattern by all participants,
that is, co-resided in 3 groups. Notably, differences of card
placement related to degree of granularity of classification.
For example, 4 participants grouped „increased customer
understanding‟ and „first engagement of customer‟ alongside
constructs relating to understanding the technical solution.
The classifications of the remaining 2 project managers
conveyed the importance of distinguishing between changes
that arose due to increased understanding of the problem, and
those relating to the technical answer to that problem. Only 1
classification, illustrated the distinction between market
factors and those concerning the customer organisation, the
remainder considering them similarly „external‟ to the
project.

E. Second Workshop- Consesus building

Four project managers attended a second workshop

lasting 3 ½ hours. Stimulating and interesting discussion
resulted in a unanimously agreed trigger taxonomy to which
uncertainty constructs were attributed.

Beginning with 3 untitled groups containing a total of 14
trigger constructs, it remained to come to a consensus of
opinion regarding the remaining 9. As observed by one of
the participants, the granularity differences were a matter of
perception. For example, as a project manager, constructs
such as „market stability‟ or „customer organisation strategic
change‟ were equally external to their control. However,
from the perspective of a customer, this is perhaps not the
case. Therefore, the final taxonomy was built according to
the variance of classifications made during the card sorting
procedure. Consequently, a taxonomy comprising 5 groups
was derived and agreed.

These groups comprised the change domains illustrated
in Table 2. Uncertainty constructs were attributed to their
associated domain. At this stage several additional
uncertainty constructs were added. Most notable amongst
these were technical uncertainty, and technical complexity of
solution. Though considered general project risks [26], they
had not previously been recognised as a source of
requirements change. This may be because they do not alter
the vision of the problem, but rather the way in which the
problem is addressed.

TABLE 2 CHANGE DOMAINS AND DESCRIPTIONS

Change Domain Description

Market Differing needs of many customers,
government regulations, external to
project.

Customer
Organisation

Strategic direction of a single
customer, customer organisation
considerations, external to project.

Project Vision Problem to be solved, product
direction and priorities.

Requirements
Specification

Specifying the requirements of the
established problem.

Solution Technical answer to problem.

Nonetheless, as discovered by Curtis et al. [25] „creeping

elegance‟ is a source of change and a risk to budget and
schedule slippage. There was some debate about the
positioning of „project size‟. Initially considered to be a risk
to change in all domains, it was further reasoned that size has
an effect, due to the increased difficulty of conceptualizing
the problem. Therefore „size‟ was placed in the domain of
project vision.

F. Maintenance Change Source Constructs

Of the initial 73 papers, 11 contained references to post-

delivery requirements change causes. Having established a

project categorisation, there was difficulty applying it to

other studies since none of them made reference to contract

conditions or staffing arrangements. Only the criteria

„changes to production software‟ was used. Interestingly

there were significantly fewer empirical studies examining

sources of requirements changes post-delivery than during

development, despite the high proportion (75% [35]) of

191

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

enhancement work carried out during that time. It was noted

that many studies examining risks or uncertainty within the

maintenance environment were exploring risks to

maintenance change productivity rather than change

likelihood. Perhaps this indicates support for the argument

of Kitchenham et al. [46] that one of the major differences

between development and maintenance is that development

is requirement-driven and maintenance is event-driven. In

their words, “This means that the stimuli (i.e., the inputs)

that initiate a maintenance activity are unscheduled

(random) events”. Perhaps prohibitive to investigation is the

limited value that an exploration of change causes would

yield, should the contention be empirically proven that

maintenance change is stimulated by random events. Once

again, separation of trigger and uncertainty presented no

difficulties.

G. Third Workshop - Maintenance construct consolidation

Consolidation of maintenance constructs during a

workshop consisting of a researcher and 2 maintenance

team members, taking 2 hours, followed the same process as

development constructs, reducing an initial set of 36

constructs to 11 triggers and 12 uncertainties (see the

appendix). This is in marked contrast to the number of

constructs concerning development projects elicited from

the literature. Many of these constructs ignited lengthy

discussion. Of particular note was that many of the

uncertainty constructs were likely to introduce error rather

than requirements change. Those in that category included

„maintenance team instability‟ and „maintenance team

knowledge‟. By contrast, these team-related constructs had

been considered sources of requirements change during

development. It was believed that the perceived more

limited business knowledge required by maintenance

engineers coupled with the reduced need for requirements

analysis processes to implement „mini changes‟ meant that

these team attributes had no significant effect upon

requirements changes. Also interesting was the observation

that some uncertainties such as „economic climate‟ altered a

projects capacity to make change, rather than invoking

change. The construct „system usage‟ was removed since it

was seen as an „activity‟ during which an alternative change

source may manifest (such as „increased understanding‟),

rather than a cause of change itself. This bears comparison

to the removal of techniques during the development

construct consolidation. The 9 added constructs included

Commercial Off-the-shelf Software (COTS) usage, which

was felt to be a contributor to requirements change, due to

the need to react to new COTS opportunities and release

functionality. „Number of interfaces‟ and „Number of

functions‟ were added to reflect system complexity, as it

was thought that system complexity doesn‟t in itself lead to

changes of requirements during maintenance, though it

would during development when requirements are still

being understood. „Function Usage‟ was also added since

system functions used more frequently are prone to higher

levels of change.

H. Fouth Workshop - Card Sorting (Maintenance)

Since the intention was to discover if sources of change

during maintenance and development projects could be

similarly classified it was decided to perform one closed

card sort [22] within a workshop setting. Provided with the

change domains derived previously and described in Table

2, two maintenance engineers were asked to ascribe the

maintenance change constructs to one, many, or none of the

change domains.

The participants found the trigger constructs easy to

attribute, though some of the uncertainty constructs resided

in both requirements specification and project vision. A

higher number of users, or a high level of function usage

may uncover opportunities to improve the way in which the

system requirements have been implemented, or reveal new

desires and needs. Similarly, the discussion surrounding

„project size‟ during the consolidation of constructs

pertaining to software development, „system age‟ was

initially thought to reside in all domains. However, further

consideration led to the conclusion that, while an older

system is more likely to require functional updating without

changes to the surrounding market or customer

environment, the system could retain value in its current

state. By itself, the age of a system will only affect

performance or data storage issues requiring solution

maintenance. The term „semantic relativism‟ described by

Heales [37] as „generation of language construction‟ was

placed in the domain of project vision, although the

participants felt that as a concept it had less relevance than

the other uncertainties, and was difficult to evaluate. No

constructs remained unplaced.

I. Fifth Workshop – development and maintenance

taxonomy consolidation and comparison

During this workshop, taking 3 hours, both project

managers and maintenance engineers were brought together
to compare and consolidate the two previously derived
taxonomies. The following agenda items were agreed:

1. Identify and consolidate corresponding maintenance

and development constructs a) within the same
domain and b) within alternative domains.

2. Review constructs to determine if those located in a
single taxonomy related equally to both.

1) Maintenance and Development Construct

Consolidation.

Seven of the 12 maintenance related triggers, and 6 of the
12 maintenance related uncertainties were semantically
synonymous, though named differently to development
related constructs. Those that resided within the same change

192

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

domain retained the naming convention used in the software
development change source taxonomy. There was some
discussion regarding the naming and placing of „Number of
interfaces‟ and „number of functions‟ which had been placed
in both the domains of project vision and requirements
specification by the maintenance engineers. These
represented factors contributing both to „project size‟ and
„logical complexity of problem‟ residing in the domains of
project vision and requirements specification respectively.
The ensuing discussion led to the recognition that while
these constructs embodied a similar concept, the difference
lay in the effects of the uncertainty. For example, while
„project size‟ affected the capability of the development team
to understand and model the problem, from the perspective
of the maintenance team it increased the likelihood for
change discovery during maintenance.

2) Development and Maintenance construct review

Only two sources of maintenance related requirements

change - „semantic relativism‟ and „response to gap in
market‟ were deemed applicable to initial software
development. However, when taking iterative development
into consideration, the constructs relating to system usage
also became relevant. It was argued by the project managers
that from their perspective „alter performance‟ is a (non-
functional) requirement change that would happen in
response to a market or customer need and was therefore not
a cause of requirements change. From the perspective of
maintenance, „alter performance‟ represented the pro-active
changes made to deter system degradation or promote further
usage. Therefore „design improvement/solution elegance‟
was a more appropriate construct. Those remaining within
the realm of software maintenance related only to system
age.

 However, many of the constructs pertaining only to
development applied also to maintenance. Indeed, it was
agreed that, aside from „cost/schedule overrun‟, only those
constructs relating to the ability to understand the problem
related solely to software development. However, it was also
noted that many of these sources, particularly those in the
domains of market and project vision would result in the
initiation of a new product release. So while the change may
be incurred during maintenance, it will be realised by a
software development team. Confirming the insight arising
from the discussion regarding project size, a number of the
uncertainties relating to software development were
applicable also to maintenance, though with a distinct
difference in effect. For example, during development high
quality of communication with customers affected the clarity
of the shared understanding of the problem, thereby reducing
the likelihood of subsequent requirements changes. By
contrast, during maintenance the quality of communication
increased the probability of change recommendation, and
hence had an effect upon system longevity.

The resulting taxonomy is shown in figure 1. The reader
is referred to the appendix for full construct tracing from
research origin to construct consolidation and comparison.
The change domains relate to both triggers and uncertainties.

There is a many to many relationship between the
uncertainties and triggers within each change domain and in
many cases a „chain‟ of uncertainties may culminate with a
trigger event. Those constructs marked „(D)‟ apply solely to
development, while those marked „(M)‟ are relevant only to
maintenance. Of interest was the observation by the project
managers that the structure of the domain also reflects the
amount of control they have of the uncertainties, with least
control at the top - „Market‟ and tighter control at the bottom
– „Solution‟.

J. Validation of Change trigger Constructs

The capability of the change trigger constructs to

describe the source of a change was initially validated by one
of the participating project managers who used a small
sample of changes (13) across two development projects to
ensure that each had a corresponding trigger which
accurately reflected the source of change. No changes were
made at this stage. This taxonomy will firstly be used within
the context of development, assessed for informative
capability and internal validity, before considering the
broader scope of applicability. Further validation of this
taxonomy is the subject of an on-going study using a current
project.

VI. DISCUSSION

This section evaluates the taxonomy thus derived with

respect to previously published change classifications,

explores the implications of the study with respect to the

comparison between development and maintenance and

outlines some possible limitations of this work.

A. Comparison with Previous Classificatons

The classification proposed in this study bears little
synergy with change reasons derived by Nurmuliani et al.
[16] as many of these reasons such as „missing requirement‟
and „new functional feature‟ were considered to be
consequences of other events, rather than sources of change.
By comparison, there is some resemblance to the
classification of change sources defined by Harker et al. [14].
In particular, a combination of market and customer
organisation domain sources equate to their „mutable‟ class
defined as “changes that arise in response to demands
outside the system”. By making the distinction between
changes that occur in response to market demands, and those
answering to customers‟ organisational considerations, the
taxonomy developed here reflects the difference between
customer-driven and market driven software development.
Harker et al.‟s „emergent‟ requirements, “direct outcomes of
the process of engagement in the development activities”,
correspond to constructs in both the project vision and
requirements specification domain. In differentiating
between project vision and requirements specification
domains we are recognising the difference between variation
in the product to be developed and change due to better
understanding of the problem. This is an important
distinction as it can support decisions regarding requirements
elicitation techniques and rigour of documentation.

193

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1 Requirements Change Source Taxonomy

There are no analogous domains within this taxonomy for
the remainder of Harker et al.‟s categories. These include
prototyping or system usage, adaptive requirements and
migration requirements, which were reasoned to be
techniques, activities, or new requirements. Sommerville‟s
classification [15], while including „mutable‟, emergent‟ and
„consequential‟ change (system usage) also removes
adaptive and migration requirements. Instead „change to
business process‟ form a category which is included here in

the project vision domain, since these types of changes result
in a change of product direction. The solution domain has no
direct parallel in any classification but reflects the reality that
changes to the technical solution, though perhaps less visible,
pose a risk to timely development.

While there are some differences in contained constructs,
requirements availability as defined by Mathiassen et al. [17]
corresponds to requirements specification although
constructs relating to requirements complexity and reliability

194

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are included in both customer organisation and project
vision. That said, further categorising these domains
according to reliability and complexity would allow the
findings of both studies to be combined, thus relating
technique to change source domain.

A comparison can be drawn between this taxonomy and
classifications of change types during maintenance [42].
Excluding error handling, the taxonomy derived here
includes constructs in the solution domain relating to
perfection and adaptation while enhancements are further
classified according to the remaining change domains. There
is an encouraging parallel with Perry‟s software development
domains [39]. While the „real world‟ is represented here in
both the Market and customer organisation domains, Perry‟s
„model of the real world‟, „derived specification‟ and
„underlying theory‟ correspond closely to project vision,
requirements specification and solution respectively. Thus,
to an extent this study corroborates Perry‟s theoretical model
with empirical evidence, and furthers understanding of the
nature of the domains.

Of particular significance for our on-going research is
that by comparison to the descriptive or uncertainty based
nature of previous work, the clearly defined constructs
within each change source domain allow comparative source
data to be attributed to change databases. Therefore it would
be possible to assess the impact on the project of a particular
change source such as „new stakeholder‟ or „first
engagement of customer representative‟, giving software
providers some empirical data with which perhaps to
leverage customer involvement. Further, it would be possible
to assess the level of change in each change source domain.
Should, for example, a high proportion of changes come
from the domain of project vision, this would indicate the
vulnerability of the „problem‟ to change, thereby empirically
illustrating the need for more „agile‟ creative processes.

B. Comparison between development and Maintenance

Having derived a project categorisation based upon the

work of Kitchenham et al. [46], Bennett & Rajlich [35] and
Chapin et al [42] (refer to Table 1), the taxonomy derived in
this study verifies that many requirements change sources are
similarly relevant to development and maintenance. Thus
supporting Bennett & Rajlich‟s [35] observation that
software evolves during both iterative development and
maintenance, the differentiation presented by Kitchenham et
al. [46] between the two scenarios is also reflected in this
study. Sources of change arising due to continued
understanding of the requirements are attributable to iterative
delivery (scenario A), while those relating to system age are
relevant only to product upkeep and servicing (scenario B).
However, this observation relies upon a definition of
maintenance that includes only minor enhancements, which
are represented in Bennett & Rajlich‟s [35] model, not as a
lifecycle stage, but as an iterative element of evolutionary
product versioning. Refuting Kitchenham et al.‟s contention
that maintenance changes are event driven, while changes

during software development are requirement driven [46],
the separation of triggers and uncertainties and their
pertinence to both development and maintenance, reveals
that changes during software development can be equally
reactionary to external events. The pro-active approach to
maintenance described by one of the maintenance engineers
in this study suggests that maintenance changes, like those
during software development, aren‟t entirely event-driven,
but transpire as a result of a combination of uncertainty,
event and pro-active change discovery. Whilst the change
sources illustrated in the taxonomy indicate the similarities
between development and maintenance, further exploration
of the consequences of the uncertainties may reveal
differences to project risk.

C. Limitations

Generality of results are often sacrificed for richness and

complexity, reflecting an inherent conflict between internal
and external validity [19]. Given the disparity between both
terminology and published change taxonomies combined
with the debate among the participants of this study, it could
be argued that change classification is by nature a subjective
assessment. Motivated, however, by the potential for
improvement to requirements change visibility and
management, modelling change sources is a worthy
initiative. The collaborative approach taken here has led to
an internally usable model and reflects Sjoberg‟s et al.‟s
recommendation [19] to “formulate scope relatively
narrowly to begin with and then extend it gradually”.
Therefore no claims can be made with regard to external
validity beyond the boundaries of this study, and in particular
to projects employing alternative delivery models such as
service oriented and cloud computing. However given that
the constructs were drawn from a variety of empirically
based studies, it is plausible that the results apply to projects
similarly adhering to a more traditional development
lifecycle. The initial constructs are provided here, along with
methods description such that it should be possible to
replicate this study. Given the collaborative nature of this
research, and its immediate applicability, it has a high level
of relevance.

VII. CONCLUSION AND FURTHER WORK

This study set out to explore, classify and compare the
causes of requirements change during software development
and maintenance. A review of the terminology highlighted
the fuzzy distinction between projects termed „development‟
and those referred to as „maintenance‟. The disparity of
terminology in the literature is complemented, and to some
extent explained by the lack of distinction observed in
industry. Project nomenclature is decreed dependent upon
the size of the proposed change, and the supporting funding
agreement. This carries the implication that research in the
field of software development may apply to software
maintenance and vice versa. Further, that establishing
context in empirical research requires more than a reference

195

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to development or maintenance in a research article. A
somewhat narrower view of maintenance was defined in this
study which excluded evolutionary development and
reflected the naming convention used by our industrial
partners.

Expert knowledge of experienced project managers and
maintenance engineers was used to consolidate and classify
change source constructs elicited from the literature. An
initial study based on sources of change relevant to software
development resulted in a classification which made the
important distinction between uncertainty (situation) and
trigger (event) giving rise to change. In itself, this taxonomy
supports project risk visibility and facilitates the collection of
clearly defined change source data. In differentiating
between source domains pertaining to market, customer and
project vision a software provider using this taxonomy can
assess the level of changes that are arising due to a change in
the direction or vision of the problem, by contrast to those
pertaining to an increased understanding of the problem to
be solved. In so doing, project managers can make use of
internal empirical data to support process and technique
selection, and risk management.

A second study incorporating significantly fewer sources
of requirements change during software product maintenance
classified the constructs according to the change source
domains previously derived. The sources of maintenance
requirements change could easily be attributed to the change
domains defined in the initial study, and many of the
constructs had been included within the original taxonomy.
A comparative exploration revealed that most of the change
constructs applied to both development and maintenance,
though it was observed that the effects of the uncertainties
differed, and that some of the changes incurred during
maintenance would necessitate a new product release
requiring software development. Those constructs relevant
solely to development related to requirements and domain
understanding, while those pertaining only to maintenance
were concerned with system age. By contrast to the
contention that software maintenance changes are event
driven while development changes are requirement driven,
an implication of this study is that changes to requirements
are driven by a combination of event and uncertainty during
both development and maintenance. Further, opportunities
for requirements change may be sought pro-actively in both
situations.

This study was founded upon previously published
requirements change taxonomies, thus evaluating and
building upon their efforts. Therefore it addresses the
problems of divergent change source constructs, and reasons
that some of the classifications previously described as
„causes‟ were either consequences of other changes, types of
requirements, or more abstract concepts less easy to evaluate.

Having answered the questions posed in this study, it is
now possible to further our research and begin exploring
what kinds of requirements are more susceptible to change
arising within the change domains defined in this taxonomy.
This is currently on-going with our industrial partner. A
further study is envisaged which will explore patterns of
requirements change throughout the evolutionary progress of

software development and usage. The theoretical aspect of
the work presented here may contribute to ontological
studies, and open more issues in relation to emerging
paradigms such as dynamic updates in Service Oriented
Architecture and alternative delivery models such as cloud
computing. In the meantime the derived taxonomy can assist
practically in the identification and analysis of requirements
volatility and has particular relevance to customer driven
software development especially those working within the
government sector.

ACKNOWLEDGMENT

We would like to thank the project managers and
maintenance engineers whose valuable time was devoted to
the organization of this taxonomy.

REFERENCES

[1] S. McGee, D. Greer, “A Software Requirements Change Source
Taxonomy”, proc. 4

th
 Intl. Conf. Software Engineering Advances,

Porto, 2009.
[2] B. Williams, J. Carver and R. Vaughn, “Change Risk
Assessment: Understanding Risks Involved in Changing Software
Requirements”, Proc. International Conference on Software
Engineering Research and Practice, Las Vegas, Nevada, 2006.
[3] D. Zowghi and N. Nurmuliani, “A study of the impact of
requirements volatility on software project performance”, Proc.
Ninth Asia-Pacific Software Engineering Conference, 2002.
[4] S. Ferreira, F. Collofello, D. Shunk, G. Mackulac and P. Wolfe,
“Utilization of Process Modeling and Simulation in Understanding
the Effects of Requirements Volatility in Software Development”,
International Workshop on Software Process Simulation and
Modeling, Portland, Oregon, 2003.
[5] T. Javed, M. Maqsood and Q. Durrani, “A study to investigate
the impact of requirements instability on software defects”, ACM
Software Engineering Notes, 29, 3, 2004.
[6] B. Boehm,” Industrial Software Metrics Top 10 List”, IEEE
Software, 4(5), 1987.
*7+ S. L. Pfleeger, “Software Metrics: Progress after 25 Years? “,
IEEE Software, 25(6), 2008.
[8] K. Wiegers, Software Requirements, Microsoft Press, 2003.
[9] N. Nurmuliani, D. Zowghi and S. P. Williams, “Using card
sorting technique to classify requirements change”, Proc. 12

th
 IEEE

International Conference on Requirements Engineering, Kyoto,
Japan, 2004.
[10] W. Lam, M. Loomes and V. Shankararaman , “Managing
requirements change using metrics and action planning”, Proc. 3

rd

European conference on Software Maintenance and
Reengineering, Amsterdam, Netherlands, 1999.
[11] W. Lam and V. Shankararaman, “Requirements change: a
dissection of management issues”, Proc 25th EUROMICRO
Conference, Milan, Italy, 1999.
[12] W. Lam and V. Shankararaman, “Managing change in
software development using a process improvement approach”,
Proc. 24

th
 Euromicro Conference, vol 2, Vasteras Sweden, 1998.

*13+ G. Stark, A. Skillicorn and R. Ameele, “An Examination of the
Effects of Requirements Changes on Software Releases”,
CROSSTALK, The Journal of Defense Software Engineering, 1998.

196

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] S. D. P. Harker, K. D. Eason and J. E. Dobson, “The change and
evolution of requirements as a challenge to the practice of
software engineering”, Proc. IEEE International Symposium on
Requirements Engineering, San Diego, CA, USA, 1993.
[15] I. Sommerville, Software Engineering, Personal Education
Ltd, 2007.
[16] N. Nurmuliani, D. Zowghi and S. Powell, ”Analysis of
requirements volatility during software development lifecycle”,
Proc. Australian Software Engineering Conference, Melbourne,
2004.
[17] L. Mathiassen, T. Saarinen, T. Tuunanen and M. Rossi ,
“Managing Requirements Engineering Risks: Analysis and
Synthesis of the Literature”, Helsinki School of Economics Working
Papers W-379, 2004.
[18] D. Perry, A. Porter and L. Votta, “Empirical Studies of
Software Engineering: A Roadmap”, Proc. 22

nd
 International

Conference on Software Engineering, Limerick, Ireland, 2000.
[19] D. I. K. Sjoberg, T. Dyba and M. Jorgensen, “The future of
Empirical Methods in Software Engineering Research”, Proc.
Future of Software Engineering, Minneapolis, MN, 2007.
[20] B. Nuseibeh and S. Easterbrook, “Requirements Engineering:
A Roadmap”, Proc 22

nd
 International Conference on Software

Engineering, Limerick, Ireland, 2000.
[21+N. A. M. Maiden and G. Rugg. “ACRE: selecting methods for
requirements acquisition”, Software Engineering Journal, 11(3),
1996.
[22] S. Fincher and J. Tenenberg, “Making sense of card sorting
data”, Expert Systems, 22(3), 2005.
[23] Anonymous, Expert Systems Special Edition on Card Sorting,
22, 3, 2005.
[24] M. Christel and K. Kang, “Issues in Requirements Elicitation”,
Technical Report No. CMU/SEI-92-TR-012 Software Engineering
Institute, 1992.
[25] B. Curtis, H. Krasner and N. Iscoe, “A field study of the
software design process for large systems”, Communications of
the ACM, 31(11), 1988.
[26] H. Barki, S. Rivard and J. Talbot, “Toward an assessment of
software development risk”, Journal of Managment Information
Systems, 10(2), 1993.
[27] B. Boehm, “Requirements that handle IKIWISI, COTS, and
rapid change”, Computer, 33(7), 2000.
[28] A. Lamsweerde, Requirements Engineering : From System
goals to UML models to software specifications, John Wiley &
Sons Ltd, 2009.
[29] R. Pressman, Software Engineering. A Practitioner's
Approach, McGraw Hill, 2005.
*30+ T. Moynihan, “’Requirements-uncertainty': should it be a
latent, aggregate or profile construct?” Proc. Australian Software
Engineering Conference, Canberra, ACT, Australia, 2000.
[31]T. Moynihan. “How experienced project managers assess
risk”, IEEE Software, 14(3), 1997.
[32] A. M. Davis and K. V. Nori, “Requirements, Plato's Cave, and
Perceptions of Reality”, Proc. International Conference on
Computer Software and Applications, Beijing, China, 2007.
[33] C. Ebert and J. De Man, “Requirements uncertainty:
influencing factors and concrete improvements”, Proc. 27

th

International Conference on Software Engineering, ST Louis,
Missouri, USA, 2005.

[34] E. Barry, “Software evolution, volatility and lifecycle
maintenance patterns: a longitudinal analysis synopsis”, Proc
International Conference on Software Maintenance, 2002
[35] K. Bennett, V. Rajlich, “Software Maintenance and Evolution: a
roadmap”, Proc 22

nd
 International Conference on Software

Engineering, ACM Press, New York, 2000.
[36] M. Godfry, D. German, “The past, present, future of software
evolution”, Frontiers of Software Maintenance, 2008, FoSM 2008.
*37+ J. Heales, “Factors Affecting Information System Volatility”,
Proc. 21

st
 Intl. Conf. Information Systems, Brisbane, Australia,

2000.
[38] M. Lehman, J. Ramil, “Software Evolution”, Information
Processing Letters, 88(1-2), 2003
*39+ D. Perry, “Dimensions of Software Evolution”,n Proc. Intl.
Conf. Software Maintenance, Victoria, Canada, 1994.
*40+ M. Lehman, J. Ramil, “Towards a Theory of Software Evolution
– And it’s Practical Impact”
[41] E. Swanson, “The dimensions of Maintenance”, Proc. 2

nd
 Intl

Conf Software Engineering, CA USA, 1976.
[42] N. Chapin, J. Hale, K. Khan, J. Ramil, W. Tan, “Types of
Software Evolution and Software Maintenance” Journal of
Software Maintenance and Evolution: Research and Practice,
13(1), 2001.
*43+ M. Lehman, “Software’s future: managing evolution, IEEE
Software, 15(1), 1998.
[44] C. Kemerer, S. Slaughter, “An empirical approach to studying
software evolution” IEEE Transaction on Software Engineering,
25(4), 1999.
[45] M. Lehman, J. Ramil, P. Wernick, D. Perry, W. Turski, "Metrics
and Laws of Software Evolution - The Nineties View", Fourth
International Software Metrics Symposium (METRICS'97), 1997.
[46] . Kitchenham, G. Travassos, A. von Mayrhauser, F. Niessink ,
N. Schneidewind, J. Singer, S. Takada, R. Vehvilainen, H. Yang,
“Towards an ontology of software maintenance”, Journal of
Software Maintenance: Research and Practice 11(6), 1999.
*47+ L. Belady, M. Lehman, “A model of large program
development”, IBM Systems Journal 15(3), 1976.
*48+ K. Villela, J. Doerr, A. Gross, “Proactively managing the
Evolution of Embedded System Requirements”, Proc. 16

th

International IEEE Conf. Requirements Engineering, Caltunya,
2008.
[49] IEEE std. 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology, IEEE, New York, 1991
[50] V. Basili, “Viewing Maintenance as Reuse-Oriented Software
Development”, IEEE Software 7(1), 1990.
*51+ N. Chapin, “Productivity in Software Maintenance”, Proc.
National Computer Conference, Illinois, 1981.
*52+ F. de Almeida, S. de Menezes, A. da Rocha, “Using ontologies
to improve knowledge integration in software ebgineering
environments”, Proc. 2

nd
 World Multiconference on Systemics,

Cybernetics and informatics, 1998.
[53] N. Nurmuliani, D. Zowghi and S. P. Williams, “Requirements
Volatility and Its Impact on Change Effort: Evidence-based
Research in Software Development Projects”, Australian
Workshop on Requirements Engineering, Adelaide, 2006.
[54]G. Rugg, P. McGeorge, “The sorting techniques: a tutorial
paper on card sorts, picture sorts and item sorts”, Expert Systems,
22(3), 2005.
*55+ C. Paul, “A modified Delphi approach to a new card sorting
methodology”, Journal of Usability Studies, 4(1), 2008.

197

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Appendix

ID Development Trigger Construct Source Removed Applicable to
Maintenance

45 Use of Prototype [27] , [14] Technique, covered by
21, 44

68 New Stakeholder (role) [27] Y

96 Customer Company Reorganization [28], [16], [14], [27], [29] Y

51 New solution Tools/technology [27], [28], [25], [14], [8] Y

54 Change to government policy or regulation [28], [14],[8] Y

20 Participatory Learning [14], Y

28 Local Customization {14] New Stakeholder

50 Customer migration to new solution [14] Type of requirement

39 Customer need change [24], [25], [16], [29], [29] Too woolly, covered by
47, 96, 54, 82, 21, 45,
42, 90

44 Developers Increased Understanding of problem [25], [16],[17] Y

56 Scope Reduction [9][16] By-product of 88, 66

34 Changes to packaging/licensing/branding [9] Covered by 61

65 Solution Elegance (Design Improvement) [25], [9] Y

67 Resolution of mis-communication [9]

49 Testability [9] Type of Requirement

82 Business Process change (continuous improvement) [15], [8] Y

42 Response to competitor [25], [8] Y

16 Functionality Enhancement [16] Covered by 78, 65

11 Defect Fixing [16] Doesn’t result in
requirement change

69 Redundant Functionality [16] Covered by 66, 44, 20,
90, 67, 23, 51, 65, 21

8 Missing Requirement Identified [16] Not a
reason/cause/source

86 Clarification of Requirement [16] Covered by 67, 23

21 Increased customer understanding [28], [15], [8], [17]

72 New Class of User [28] Result of other changes,
covered by 82, 68

74 New Usage Condition [28] Covered by 78, 85

15 New way of doing things [28] Covered by 82, 96

77 Correction to Requirements specification [28] Covered by 23, 67

78 New Opportunity [28] Y

1 Change in the use of the information [17] Covered by 82

88 Cost or schedule overrun [29], [28]

49 Testability [16] Type of requirement

85 Change to Customer’s hardware/software [9] Y

58 System Usage (after installation, not prototype) [27], [15], [14] Out of scope of project
development

90 Changes to Market Demands [8], [14], [16], [29] Y

62 Resolution of Conflicting Requirement [16] Covered by 83

55 New Functional Feature [28] New Requirement

3 Improved Quality Feature [28] Change to requirement
for another reason

14 Result of Change in political climate
(needs of particular group emphasized)

[24], [8], [25] Y

93 Change to customer’s environment [15] Covered by 96, 68, 85,
47, 66

18 Changes in Underlying technologies [25] Covered by 85, 51

83 Incorrect Requirement Identified [16] Y

23 Resolution of Misunderstanding [25] Y

92 First or re-engagement of user representative Added

66 Change to business Case (Return on Investment, Total cost of
Ownership

Added Y

61 Customer Organization Strategic Change(New Marketing/Sales
direction, change to organization goals)

Added Y

12 Change of Stakeholder Representative Added Y

4 Understanding Technical Solution Added

198

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Development Uncertainty Construct Source(s) Removed Applicable to Maintenance

31 Analyst skill or experience [4], [24], [30], [8]

95 Development team knowledge of business area [24], [31]

79 Quality of Analysis techniques employed
(workshops, interviews, modeling etc)

[4], [8], [15], [29], [28]

59 Project Size [24], [17], [15] Y

30 Novelty of product
(business novelty)

[31], [8] Y

41 Logical complexity of problem [17], [31], [24]

19 Availability of communication with customer [17], [8] Y – added word ‘stakeholder’

22 Involved customer’s
knowledge/understanding/clarity of requirements

[24], [32], [31], [8]

64 Quality of Communication between analyst and
customer

[24], [17], [32], [8]

33 Involved customers experience with working
alongside IT to produce solutions

[31]

9 Diverse User Community [31], [15], [8] Summary of 29,
27, 40, 41, 2, 60

32 Incompatibility between requirements [28] Y

24 Lack of well understood model of utilizing system [17] unclear

55 Lack of well-understood model of the utilizing
system

[17] unclear

6 Lack of structure for activity or decision being
supported

[17] Covered by 22

52 Stability of Customers Business Environment [24] Y

76 COTS usage [28], [27] Y

2 All stakeholders identified [27], [33] Y

29 All Stakeholders involved [24], [33], [27], [8] Y

40 Clarity/unity of shared product vision [30], [14], [33], [8] Y

27 Synergy of stakeholder agenda [28], [31], [14] Y

43 Unknown Customer Project Dependencies [33] Y

46 Market Stability [25], [32], [14] Y

13 Differing Customer Needs [25] Y

38 Type of user doing specification
(incorrect user involved)

 [8][30] [17]

89 Change in the utilizing system [17] unclear

80 Low Staff morale [4]

10 Large number of users [17] Not a risk if
correct user
involved - 38

Y

87 Level of participation of users in specification [17] Covered by 19,
64

81 Lack of user experience of utilizing system [17] Covered by 22

63 Degree of Change to customers workflow [31], [8] Y

48 Quality of Requirements specification Added

71 Technical Uncertainty of Solution Added

84 Technical Complexity of Solution Added

53 Quality of Development team Communication Added Y – removed word ‘development’

73 Age of Requirements(elapsed time since
completion of requirements documentation)

Added

60 Insufficient Sample of User Representatives Added

35 Development team (PM and analyst) stability Added

199

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ID Maintenance Trigger Construct Source Removed Equivalent Development Construct

161 Use Of Case Tools [34] Technique

141 Maintenance activities [34] technique

146 Changes to deployment Environment [36]

153 New Opportunity [36], [38] , [40] Covered by 137

128 Domain changes due to system Use [36], [38]

125 Evolution of surrounding environment [36] Unclear

113 Deferred Requirements during development [37]

109 System Usage [38] , [39] , [14] Activity

142 Changing Customer Needs [38] Unclear Variation of development constructs

104 Changing Technology (for solution) [38] , [40], [42] New Tools/Technology

116 Increased customer understanding [39] Increased Customer Understanding

151 New technological Methods [39] Covered by 104

112 New Tools [39] Covered by 104

119 Organisation Changes [39] Company re-organisation

138 Change to Operational Domain [40] Covered by
146,104,151

132 Increased User Sophistication [40] Covered by 116

136 Response to competition [40] Response to Competitor

165 Ambition [40] Covered by 153,
137

162 Business Process Improvement [40] Business Process Change

101 Migration to other technology Environments [14] Covered by 146

144 Function added, replaced, deleted [42] Not a cause

103 Adapt to new technological environment [42] Covered by 146

123 Alter system performance [42] Design improvement/.solution elegance or
response to competitor/new opportunity

147 Alter Maintainability [42] Design Improvement/solution elegance

137 Response to Gap in Market Added Response to gap in market (added)

ID Maintenance Uncertainty Construct Source Removed Equivalent Development
Construct

166 Business Size [34] Represented by 157,163

121 Maintenance team Instability [34] Not a cause of req change

135 System Complexity [34] Increase defects but not req
change.
Represented by 157, 163

143 In-house software [34] Increase change capability
but not cause

158 Maintenance Team Knowledge [35] Not causing req change

117 Cohesive Architecture [35] Effects defects but not req
change

148 Presence of Competitor [36] Presence of Competitor (added)

118 Market Environment [36] Market Stability

154 Semantic Relativism [37] Semantic Relativism (added)

115 System Age [37]

102 Period [37] Unknown

167 Economic Climate [38] Effects ability for change but
not cause

164 COTS usage Added COTS Usage

157 No of Interfaces Added Project Size

139 Diversity of User Needs Added Differing Customer Needs

156 Stakeholder Agreement Added Synergy of Stakeholder agenda

163 No of Functions Added Project Size

221 Quality Control during development Added Quality Control during
development (added)

102 Function Usage Added Function Usage (added)

126 No. Of Users Added No Of Users (added)

200

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Equipping Software Engineering Apprentices with a Repertoire of Practices

Vincent Ribaud, Philippe Saliou
Université de Bretagne Occidentale, LISyC - EA 3883

Université Européenne de Bretagne
Brest, France

{Vincent.Ribaud, Philippe.Saliou}@univ-brest.fr

Abstract—Argyris and Schön distinguish espoused theories -
those which people speak about – from theory-in-use - those
which can be inferred from action. In small software teams,
developing reflective thinking about action is a vital necessity
in coping with change. We address these issues in a Masters of
Software Engineering, performed with an alternation between
university and industry. University periods are dedicated to a
long-term project performed in a reflective practicum. It aims
to develop a repertoire of practices which helps young
engineers deal with the ‘messiness’ of situations. Such a
practicum provides students, working in groups, with the
possibility of reflecting on action. We propose using the
Course-of-Action framework to record observable aspects of
the actor’s activity into semantic wikis. Two hypotheses are
discussed (1) self-analysis and self-assessment help to reveal
theories-in-use; (2) the Course-of-Action observatory helps
maintain awareness of the repertoire. A case study of a 6-
apprentice team illustrates the observatory use and the
reconstruction of apprentices’ activity. Primary conclusions
are that self-observation and self-analysis of a software
engineer’s activity help raise awareness of the initial structure
of the repertoire. We are however unable to conclude that it
helps reveal their theory-in-use (what governs an engineer’s
behaviour) - usually tacit structures.

Keywords-component; reflective practitioner, software
engineering processes, Course-of-Action, semantic wiki.

I. INTRODUCTION

This paper is an extended and enhanced version of a
paper presented at the ICCGI 2009 conference [1].

Small organizations – and small software teams
especially – need to constantly adapt their task force to the
products or services to be delivered. The software process
community shares a tacit axiom that improving software
processes automatically improves software products and
contributes to the project success. Many efforts have been
made to extensively define a set of processes and build
assessment methods intended to verify to what extent
defined processes are performed.

Yet D. Schön [2] argued that experienced professionals
deal with the ‘messiness’ of practice not by consulting the
research knowledge base, but by engaging in ‘reflection-in-
action’: experiencing surprise in a new situation and
responding to surprise through a kind of improvisation. To
educate the reflective practitioner, Schön recommended
looking at traditions of education for artistry – in art studios,
or in conservatories of music and dance. Schön qualified

these students as learning by doing in a reflective practicum.
This analogy was used to provide a suitable educational
environment for software design at CMU [3] or at MIT [4].

The notion of repertoire is very important in Schön’s
approach. Practitioners build up a collection of ideas,
examples, situations and actions. “A practitioner’s repertoire
includes the whole of his experience insofar as it is
accessible to him for understanding and action” [5, p.138].

This hypothesis – coupled with the observation that
students (and young engineers) are experiential, tending
toward learning by doing rather than listening – led us to
focus on the goal of providing software engineering
graduates with a non-empty repertoire of practices, together
with an operational knowledge of software processes,
activities and tasks. In 2002, we built an education system
called 'Software Engineering by Immersion' entirely based
on performing complete development cycles of a software
project, and accomplished in three iterations. This 3-
iterations system can be summed up with the sentence: 'A
first turn to learn by doing, a second turn to do autonomously
what has been learned, and a last turn to work effectively in a
business. A Process Reference Model - greatly simplified
from the ISO/IEC 12207:1995 standard and its amendments
[6] - was used as the initial structure of the repertoire. As
realistic working situations were experienced, students were
provided with progressive filling of their repertoires.

In 2007, local employers in Brest requested employees in
‘sandwich’ (or work placement) conditions, and we adapted
the 'Software Engineering by Immersion' programme to run
as a work placement course. In such a programme, some of
the educational objectives and related assessments are
devoted to periods in industry. The second and third
iterations were good candidates to assign to industrial
periods, and first iteration (at the university) and second
iteration (in the industry) were organised into alternating 2-
week periods. We do however face the problems of relating
the university-based and industry-based elements of the
student’s experience and avoiding a situation in which
learners are required to climb two ladders simultaneously.

We decided to redesign the repertoire (including its
construction and 'filling') in order to - as far as possible –
meet the twin challenges of learning and producing within a
small software project. Our current proposition is to use two
theories of action, the former from Argyris and Schön [7]
about theory-in-use and espoused theory and the latter - the
Course-of-Action framework pioneered by Theureau and
Pinsky [8]. The main idea is to provide young engineers and

201

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

small projects with an observatory of their individual and
collective activity (by observable, we mean what is
presentable, accountable and commentable) and to instigate
the reconstruction of a high-level view of the global Course-
of-Action from small and individual units of action.

The nature of collected data is very different and subject
to change, as is the semantic of the relationships between
data. This addresses technical challenges related to content
management. We choose to use semantic wikis as a
lightweight authoring platform. As Maxwell [9, p.199]
outlines “Our experience with and reflection on using wiki as
a platform suggests that there is much to be gained from an
approach which builds up from simple foundations rather
than attempting to customize already-complex architecture”.

Section 2 overviews theories of this introduction, their
application to software engineering and some related work.
In Section 3, we present courses-of-action for software
apprentices. Observing the course of apprentices’ projects is
discussed in Section 4. In Section 5, we present some data
excerpts of a case study. We conclude the paper with a
discussion and perspectives.

II. RESEARCH ISSUES AND RELATED WORK

We will present Argyris and Schön's theories of action as
well as certain elements of the Course-of-Action framework.
We will present two research hypotheses, and related work.

A. Espoused theories and theories-in-use

A starting point of Argyris and Schön's [7] theory (see
Figure 1) is that people design action to achieve intended
consequences, monitoring themselves in order to learn
whether their actions are effective. They made a distinction
between two contrasting theories of action: theories-in-use
and espoused theories. “When someone is asked how he
would behave under certain circumstances, the answer he
usually gives is his espoused theory of action for that
situation. This is the theory of action to which he gives
allegiance, and which, upon request, he communicates to
others. However, the theory that actually governs his actions
is his theory-in-use” [7, pp.6-7].

Our first observation is that, in the software engineering
field, lifecycle processes standards such as the 12207 [10]
and process assessment standards such as 15504 [11] or
CMMI may constitute the espoused theory, since it is what
engineers claim to follow. But what engineers do (and this
action is designed - it does not 'just happen') may reveal a
different theory-in-use. A young engineer is rarely aware of
either their theory-in-use or of any inconsistency - although
an experienced engineer may be.

Theories-in-use can be made explicit by reflecting on
action [7]. According to Schön, reflective thought takes place
in a reflective practicum. Schön advocated traditions of
education for artistry as exemplar through their reflective
practicum. “[…] its main features are these. It’s a situation
in which people learn by doing, […] where they learn by
doing in a practicum which is really a virtual world. A
virtual world in the sense that it represents the world of
practice, but is not the world of practice […] in that world,
students can run experiments cheaply and without great

danger […] in interaction with someone who is in the role of
coach” [12].

A reflective practicum is intended to run experiments and
develop reflection-on-action. In our practicum, we use
organized processes to drive project and competencies
building. Parallel to the engineering activities required by the
project, apprentices are regularly required to self-analyze and
self-assess their engineering practices. Our first hypothesis
(H1) is that self-analysis and self-assessment helps an
apprentice to reveal their theory-in-use.

Previous and related work. The studio is the central
training method in architecture schools and this analogy was
used to provide a suitable educational environment for
software [3] [4]. Our system is very close to Tomayko’s
work, and most of his observations apply to our system: “The
use of a well-established development process, a matrix
organization, and one-to-one mentoring give the highest
return on investment” [3, p.119].

Hazzan and Tomayko present in [13] a course intended to
develop reflective thinking about the education of software
engineers - but theories of action are not evoked.

Halloran [14] investigates the relationship between a
software process assessment and improvement model and
organizational learning. The paper points out the difference
between 'engineer’s espoused theory' and their 'theory in use'
but does not develop this idea, focusing instead on the use of
organizational learning to promote a proactive approach to
continuous improvement and learning procedures.

Models of theory-in-use
Argyris and Schön argued that, even though espoused theories vary

widely, theories-in-use do not. They labelled the most prevalent theory-in-
use Model I and argued that this model inhibits learning. Model II favours it.
This model looks to three elements. Governing variables are values that
actors seek to satisfy [1]. Each governing variable can be thought of as a
continuum with a preferred range (e.g. not too anxious, yet not too
indifferent) that people are trying to keep in these acceptable limits. Actions
strategies are sequences of moves used by actors in particular situations to
satisfy governing variables [1], there are the moves and plans used by people
to keep the governing variables in the preferred range (e.g. to use physical
exercise to eliminate stress). Consequences happen as results of action.
Consequences can be intended – those that the actor believes will result from
the action and will satisfy governing variables (e.g. feeling better after
sporting effort). Consequences can be unintended but they are designed
because they depend on the theories-in-use of recipients as well as those of
actors.

Single and double-loop learning
When the consequences of an action strategy are as the actor wanted,

then the theory-in-use of that person is confirmed. If there is a mismatch
between intention and outcomes, consequences are unintended. Argyris
defines learning as the detection and correction of error. The first response to
error is to search another action strategy (Model I). “Single-loop learning
occurs when errors are corrected without altering the underlying governing
variables” [2, p. 206]. An alternative is to question governing variables
themselves (Model II), to subject them to critical scrutiny (e.g. to emphasize
open inquiry into the anxiety rather than trying to suppress it). “Double-loop
learning occurs when errors are corrected by changing the governing
variables and then the actions” [2, p. 206]. Argyris and Schön argued that
many people espouse double-loop learning, but are unable to produce it, and
are unaware of it.

References
[1] C. Argyris, R. Putnam, and D. McLain Smith, “Action Science,
Concepts, methods, and skills for research and intervention”, San Francisco:
Jossey-Bass, 1985.
[2] C. Argyris, “Double-Loop Learning, Teaching and Research”, Learning
& Education, Vol. 1 (2), Dec. 2002, pp. 206-219.

Figure 1. Theory of Action by Chris Argyris and Donald Schön.

202

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Building their own repertoire

The Course-of-Action theory, pioneered by Theureau and
Pinsky [8], provides a framework for analysis of the
collective organization of the multiple courses of action in a
complex, autonomous and open system. A 'Course of Action'
is: “what, in the observable activity of an agent in a defined
state, actively engaged in a physically and socially defined
environment and belonging to a defined culture, is pre-
reflexive or again significant to this agent, i.e. presentable,
accountable and commentable by them at any time during its
happening to an observer-interlocutor in favourable
conditions” [15, p.7]. The course of action can be described
from two complementary perspectives: from the point of
view of its global dynamics - characterizing the units of the
course of action and the relations of sequencing and
embedding between these units, or from the point of view of
its local dynamics, characterizing the underlying structure of
the elementary units [15]. Given that we seek to establish a
fairly high-level model of actions, we focus on the global
point of view because it emphasizes the articulation of work
situations and their co-ordination, and is better suited to
process-level analysis.

Argyris and Schön suggested that each member of an
organization constructs his or her own representation or
image of the theory-in-use of the whole [16, p.16]. What is
intended is to connect the individual world of the practitioner
up with the collective world of an organization. But, prior to
this discussion, we need to understand how we perceive our
internal structure. The notion of repertoire is a key aspect of
Schön’s reflection in and on action. Practitioners build up a
collection of ideas, examples, situations and actions. “When
a practitioner makes sense of a situation he perceives to be
unique, he [she] sees it as something already present in his
[her] repertoire. […] It is, rather, to see the unfamiliar,
unique situation as both similar to and different from the
familiar one, without at first being able to say similar or
different with respect to what. The familiar situation
functions as a precedent, or a metaphor, or an exemplar for
the unfamiliar one” [5, p.138].

A coach may help both discover the existence of this
repertoire, and fill it, with the assistance of reflective
thought. Coaches often answer questions with questions, in
most cases, simply rephrasing the question. Our proposal is
that small projects should be provided with a device which
will act as a mirror for their observable activity, and that
privileged moments of self-observation in front of the mirror
(without adding too much extra work) should be seamlessly
integrated in the course of the project. Our second hypothesis
(H2) is that the Course-of-Action observatory helps maintain
awareness of the repertoire, facilitating self-assessment and
self-analysis.

Previous and related work. Hazzan debates the
reflective practitioner perspective in software engineering
education and the studio as a teaching method [17], but does
not address the subject of the practitioner’s repertoire.

The 'Course-of-Action' research framework consists of
several empirical and technological research programs [15]
in various domains such as work analysis [18] or traffic

control [19]. We are not aware of any uses of the Course-of-
Action framework in the software field.

III. SOFTWARE APPRENTICES' COURSES-OF-ACTION

We will be monitoring the 'Software Engineering by
Immersion' Masters programme, and we will present the
Course-of-Action observatory and its application to a
software project.

A. The 'Software Engineering by Immersion' Masters
Programme

1) Structural aspects of our programme
Our Masters Programme in Information Technology and

Software Engineering is a 2-year programme, accessible to
Bachelor graduates in Computing or 'back to school'
software practitioners. For students enrolled in the Software
Engineering by Immersion specialization, securing a
'professionalization contract' is a compulsory requirement.
During this 12-month contract, the work placement student is
a full-time employee, although also attending university for
certain periods. Strictly-speaking in France, 'apprenticeship
learning' and 'apprentice' are terms reserved for a longer
work placement system, but the sake of clarity, we use the
term 'apprentice' in this paper.

Competition for this type of contract is performed during
the first 7-month intensive courses. The following 4-months
are dedicated to an internship period. For the last year,
periods at university have to fit into alternating 2-week
periods. The year is divided into two periods, the former
(from September to mid-May) with movement between
university and company, and the latter (from mid-May to
August) with a full-time period at the company.

2) Pedagogical objectives and organization
Of the 43 processes of ISO/IEC 12207:2008 [10], we

concentrate on the 19 that are related to the software
development cycle, which we have reorganized into 3
groups:

- in the Software Project Management Process Group:
6.3.1 Project Planning - 6.3.2 Project Assessment and
Control, 7.2.2 Software Configuration Management, 7.2.3
Software Quality Assurance;

- in the Software Development Engineering Process
Group: 6.4.1 Stakeholder Requirements Definition, 6.4.3
System Architectural Design, 6.4.4 Implementation Process
replaced by 7.1.1 Software Implementation Process (and its
6 sub-processes: Requirement Analysis, Architectural
Design, Detailed Design, Construction, Integration,
Qualification), 7.2.4 and 7.2.5 Software Verification &
Validation;

- in the Software Development Support Process Group:
6.2.1 Life Cycle Model Management, 6.2.2 Infrastructure
Management, 6.4.7 Software Installation – 6.4.8 Software
Acceptance Support, 7.2.1 Software Documentation
Management.

These 19 processes are renamed (and some are also
merged) to give a breakdown of apprenticeships into 3
software engineering process groups subdivided into 13
software engineering processes, together with a set of
apprenticeship scenes (roughly associated with software

203

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

engineering activities) which provide the learning
environment and define tasks. This hierarchical group
process/process/scenes model, adapted from the ISO/IEC
12207, is given in Tables I and III and is used as a reference
framework for the learning objectives.

From the university point of view, this division is the
reference framework, in a diploma-awarding perspective.
Group processes are course categories, processes are courses
and scenes are sessions.

TABLE I. PROCESS BREAKDOWN

Process Group Process
12207:2008

Related Processes

Software
Project
Management

Project management
Quality insurance

Software configuration
management

6.3.1, 6.3.2
7.2.3
7.2.2

Software
Development
Engineering

Requirements capture
Software analysis

Technical architecture
Software design

Software construction
Integration and validation

6.4.1
7.1.2
6.4.3

7.1.3, 7.1.4
7.1.5, 7.1.6

7.1.7, 7.2.4, 7.2.5

Software
Development
Support

Technical support
Methods and tools support

Documentation
Installation and deployment

6.2.2
6.2.1
7.2.1

6.4.7, 6.4.8

The main feature of the university periods is to learn
software engineering by doing, without any computing
course but with a long-term project as the foundation of all
apprenticeships. Alternating employees are attending
university over 9 periods of 2 consecutive weeks, and work
in teams of 6 apprentices to build a complete information
system.

The rhythm is based on the lifecycle of a project,
organized into stages. Each stage was arbitrarily sized to 2
weeks, due to the constraints of alternation. The cycle is:
Stage 0: Warm-up; Stage 1: Project set-up; Stage 2:
Requirement capture; Stage 3: Requirement analysis; Stage
4: Design; Stage 5: Software construction; Stage 6: Software
construction; Stage 7: Integration and Verification; Stage 8:
Qualification and Deployment.

3) Competency Reference Model
While apprentices are currently learning by doing

software processes, process assessment will not measure a
capability level but (in the best case scenario) a learning
capability level. Because apprentices are building
competencies, and because some reflective learning is
required, we choose to promote self-assessment of personal
abilities. In 2006, we set down the abilities (or competencies:
“the ability of a person to act in a pertinent way in a given
situation in order to achieve specific purposes” [20]) that
scenes are intended to develop. We tried to answer the
questions 'What is the student able to do, once the scene is
performed? What are the related knowledge topics?' This
analysis gave us a set of abilities for each process (see
examples in Table II).

So we kept the 2-level breakdown of our reference
framework - the first level being called competency areas
(corresponding to process groups) and the second level

competency families (corresponding to processes), and we
positioned abilities and transversal competencies within
these areas. Table II shows abilities and knowledge related to
certain representative processes for each process group.

TABLE II. EXAMPLES OF COMPETENCY FAMILIES

Abilities and Skills Knowledge Topics

Project Management

 To use an ISO 9001 development
baseline
 To apply a Project Plan, updating
it if necessary
 Planning and project progress

* Software life-cycle model
* Estimation and follow-up of
development of components
* Traceability and conformity
* Project Plan

Software Requirements Capture

To mobilize specification methods
and tools in a real project:
 within an ISO 9001-style

baseline
 in relation to requirements

traceability
 to produce a Software

Requirement Specification

* Software Requirements
Fundamentals: definition,
functional and non-functional,
quantification.
* Requirements capture
techniques: interviews, client
meeting, statement of work,
response to solicitation
* Procedures, methods and tools
for requirements specification.
* Use cases.

Software Design

 To use design methods and tools
(in relation with requirements) to
produce design documents: system
and software architecture and
detailed design
 To implement methods and
modelling tools of various aspects
of a system (architecture and
decomposition software, data
structure)
 To implement J2EE development
and technology of associated
framework
 To implement DBMS concepts,
techniques and tools

* Software Design
Fundamentals: concepts and
principles, design role in a
development cycle, top-level
and detailed design
* Software decomposition
configuration item, software
component, software unit
* Software architecture through
different views: conceptual,
dynamic, physical, data.
* UML diagrams to describe
static and dynamic views
* Object-oriented design

Methods and tools support

 To know Software Engineering
methods and techniques for the
software life cycle
 To install, adapt, integrate and
maintain software tools
 To assist engineers in software
deployment
 To perform a consulting mission,
alone or in a group

* Use case models and formats.
* Analysis: patterns and model
transformation
*Design:architectural prototype,
generic design
*Configuration management:
tools and guides
* CASE tools

The complete breakdown (3 areas, 13 families, 48
abilities and 11 transversal competencies) is called the
competency reference model for our immersion system [21].

B. The Observatory of Apprentices' Courses-of-action

1) The Course-of-Action observatory
A short definition of a Course-of-Action is “the activity

of one (or several) specific actor(s), engaged in a specific
situation, belonging to a specific culture, which is significant
for the latter, in other words, that can be related or
commented by (or them) at any moment” [18, p. 2].

204

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Course-of-Action analysis is based on an
observatory which includes continuous observations of the
behaviour of action and communication in a work situation
as well as different traces of other elements such as
interpretations, feelings, and judgments [18]. Although the
data produced by these observations only gives access to the
surface of interactions, it suffices for understanding the
structural coupling between an agent and his or her situation.

The Course-of-Action framework proposes data
collection methods which include: observing and recording
actors’ behaviour methods; methods to keep track of
behavioural patterns; and methods of provoked and situated
verbalization from actors.

Self-confrontation is a prominent activity in terms of
documenting the Course-of-Action. This takes the form of
collecting verbal data whilst the activity is actually being
carried out and/or in a self-confrontation situation (e.g. in the
case of driving, the driver watches a film of their journey
(which is systematically recorded) and comments on it to
clarify their own actions and events [15]).

Other kinds of verbalization, made by agents during
activity analysis (called second degree self-confrontation
verbalizations - to emphasize the fact that they are situated in
the continuity of self-confrontation itself) are also
implemented. Here the agents are placed in the position of
observers and analysts, and their verbalizations, whilst not
data, do nonetheless constitute their contributions to the
analysis of their activity [15].

2) Link with field studies
From the 'data collection techniques' point of view,

Lethbridge, Sim, and Singer [22] provide a useful taxonomy.
They classify techniques according to the degree of human
contact required. We use several 'observational first degree
techniques' [22] (with direct access to young engineers),
including diaries, think-aloud protocols, observation, and
participant observation. Because we focus on self-
interpretation by the actors, most recording is done manually
by the actors themselves. From the taxonomy point of view,
it may appear as a 'second degree technique' [22] (with
indirect access to young engineers) because it does not
require direct contact between participant and researcher.

Representative artefacts of the job are the outputs of
software activities and tasks. The analysis of these artefacts
falls in a 'third degree technique' [22] (without access to
young engineers).

3) What can be collected in the course of projects ?
Recall the definition of the Course-of-Action in §III.B.1:

what, in the observable activity of an agent […] is pre-
reflexive or significant to this agent, i.e. (i) presentable, (ii)
accountable and (iii) commentable by them at any time
whilst it is happening […].

We have three types of observation: (i) presentation, (ii)
accounting, (iii) comment. Software workers do not achieve
complex technical gestures, or do not have to progress
through a detailed procedure. So (i) presentations to an
observer are quite difficult to reproduce, and the presentable
artefacts that are most notable and representative of the job
are the outputs of software activities and tasks.

Verbalization is widely used by the coach within the
learning process to scaffold the apprentice’s activity: when
students ask or when tutors consider it to be necessary, a
dialogue between apprentice and tutor about what, why and
how the apprentice is doing helps them to carry out the
activity. Recording this dialogue would be too complicated;
furthermore, it would probably compromise - and possibly
even destroy - this learning process.

We therefore focus on accounting and comments.
Accounting will replace recordings of engineer behaviour.
Products and documentary resources are the main objects of
presentation, since they describe the activity's inputs and
outputs. The 'historical' context of use of (i) resources and
product production must also be recorded. This can be
described in terms of events and processes, involving
occurrences of agents (people) and artefacts (products and
resources) meeting in space (in case of distributed
collaboration) and time. In the first instance, we consider the
individual courses of action of the various participants. At
the next stage, we look at collective action involving parts of
several individual courses of action taking place
synchronically or sequentially. We need to divide individual
Course-of-Actions into smaller units, which we call
Performed Activity. Each event of interest must be (ii)
individually accounted for in an instance of Performed
Activity in relation with the apprentice and artefacts
involved. This provides a kind of project diary or journal,
and is performed in a wiki by each apprentice as the project
goes along.

Provoked verbalizations are replaced with self-
confrontation interviews as a way of documenting the
constraints and effects of the segment of the actor’s activity
that is personally experienced. Even the smallest unit of
collective Course-of-Action is called a Course-of-Action
Unit, which organizes several individual Performed
Activities. At the end of each 2-week university period,
apprentices have to write a short report (individually, but
also collectively if they worked on a group task) about what
happened during the period (this is called a 'work diary' in
the taxonomy of [22]). Apprentices may complete Performed
Activity instances previously created, and must create
Course-of-Action Unit instances for activities involving
several individual Performed Activities.

For the industrial periods, accounting is performed in a
different way. As detailed in Section IV.B.5, young
engineers must perform a complete self-assessment, 4 times
per year, regarding the competency reference model
described in §II.A.3 - which is acting as an ability model for
their job as an engineer. In support of these periodic
assessments, they have to record events of interest in a
portfolio, associating events with significant artefacts they
may have used or produced.

With very few exceptions, we observed that information
about academic and industrial periods are written in a
descriptive style (what they do with linked artefacts, when
and where) but gave little or no indication why and for what
reason they did it. So, we can conclude that these reports are
(ii) accounts and not (iii) comments.

205

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4) What can be commented ?
We need a second-level of reporting intended to

encourage comments and reflection-on-action. Final reports
with in-class presentation could have been used, but we
chose not do this in order to avoid introducing bias, since
they are assessed with a mark. We found it more useful to
trigger intermediary reports without any assessment. Of
course, students will re-use analysis, writings and oral
presentation in their final reports, as well as for required self-
assessments (and this may provide extra motivation to
perform sound intermediary reports) but we minimize
assessment bias.

Among the self-confrontation methods used in the
Course-of-Action framework, one is the so-called second
level self-confrontation interview. It is performed after the
self-confrontation interview proper. Its procedure is radically
different, because its aim is not to collect empirical data
about the actor’s experience at instant t, but to develop co-
operation in the analysis of the activity between the
researcher and the actor [19]. We borrow this practice for
reporting on industrial and academic periods.

Every two months (corresponding to two industry
periods of 2 weeks each), the academic period begins with a
half-day during which each apprentice (12 in all) presents an
intermediary report of their activities at work. Writing up a
meeting report is assigned to two students, based on the
individual reports provided by each apprentice.

During academic periods where there is no industrial
reporting, apprentices must perform a first-level analysis on
the state of the software processes of their academic project.
Each apprentice has to work on two or three processes (13
are used in all), building an intermediary process element
called Step-of-Action based on historical Course-of-Action
Units related to a given process. This analysis is intended to
produce a reconstruction of the global dynamic in terms of
smaller units and the sequencing and embedding
relationships between these units.

IV. OBSERVING THE COURSE OF APPRENTICES’ PROJECTS

We will survey the models used in the 'Software
Engineering by Immersion' programme. We will present an
enacted project that will be used as a case study.

A. Process models

1) Prescribed work
Leplat [23] has identified a difference between prescribed

task and effective task. The prescribed task is a task that a
designer or an organizer wishes an operator to perform.
What he/she really achieves is the effective task.

It is a hard task to define things to do in a software
projects, hence to provide a structured description of the
prescribed tasks. Several standards were written with this
goal. In our opinion, the process dimension of the ISO/IEC
standard 15504:2004 [11] provides a complete view of the
prescribed work to be done in a software project.

ISO 15504 separates process and capability levels in two
dimensions. In the process dimension, individual processes
are described in terms of Process Title, Process Purpose, and
Process Outcomes as defined in ISO/IEC 12207 (where each

life cycle process is also divided into a set of activities; each
activity is further divided into a set of tasks [10]). In
addition, the process dimension provides: a) a set of base
practices for the process, providing a definition of the tasks
and activities needed to accomplish the process purpose and
fulfil the process outcomes; b) a number of input and output
work products related to one or more of its outcomes; and c)
characteristics associated with each work product [11]. The
capability dimension consists of six capability levels (Level
0 reflects an incomplete process) and the process capability
indicators for nine process attributes for levels 1 to 5. A
process attribute is “a measurable characteristic of process
capability applicable to any process” [11, p. 4]. Figure 2
represents the two dimensions and a performance of process
assessment.

Id : string
Name : string
Charact. : string

Work Product

Id : string
Name : string
Description : string

AchievementId : string
Title : string

Process Group

Id : string
Title : string
Purpose : string

Process

Id : string
Title : string

Activity

Id : string
Form : string

Task

-HasPart*

-Has*

-Has*

Id : string
Title : string
Description : string

Base Practice

Id : string
Description : string

Outcome

-Has*

*

Associates

*

*

Is Generic Of

*
*

Output

*

*

Input

*
*

FullFill*

Id : string
Name : string
Description : string

Capability Level

Id : string
Name : string
Description : string
Outcomes : string

Process Attribute

1

Has0..2

Process Instance

Process
Instance
Rating

1

Instance Of

*

Id : string
Description : string
Process Perf. Char. : string
Resource Char. : string

Management Practice

1

Has*

Process Dimension Capability Dimension

*

Supports *

Figure 2. 12207 and 15504 Reference Models. Performing a process
assessment yields a rating for each process attribute. A rating is a

judgement of the degree of achievment (None, Partially, Largely, Fully) of
the process attribute for the instance of the assessed process.

2) Work scenes
The 15504-5 standard provides software engineers with

an exemplar model of a software project. Unfortunately,
such an exemplar model is necessary but not sufficient for
learning purposes. In our system, we have to organize the
apprentices’ activity into small units of work called an
apprenticeship/production scene.

The apprenticeship/production scene is the reference
context in which a part of the play happens: the scene aims
for a unity of place, time and action; the scene is at once a
situation in which people learn and do; a scenario of actions;
a role distribution, and an area mobilizing resources and
means. The different components of a scene, along with their
articulation are depicted on a card. The card structure is
standardized (see an example in Figure 3).

The main elements of a card are the process group /
process (here development / design) tied up with the work;
the role to play (here, designer or architect) with team-mates'
assignment; the work description (here, the detailed design);
the products (deliverables) to deliver (here, a Software
Design Document, SDD); the supplied pedagogical resources
(here, a writing guide, real SDD samples and an analysis and
design course); workload and lead-time information.

206

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

No. 24 Date: Origin: Roles assignment
Project: SCENE CARD Designer

Architect
Solenn Arnaldi
Aude Genoud

Process group: SW development engineering
Process: Software design

Name:
Detailed design

WORK DESCRIPTION
The goal of the software design activity is to establish a software

design that effectively accommodates the software requirements.
During card No. 20 'Preliminary design', software requirements have
been transformed into software architecture and a top-level design for
the external and internal interfaces. Now, the purpose of the 'Detailed
design' is to:
- Transform the top-level design into a detailed design for each

software component. Components are refined into lower software
units that can be coded, compiled, and tested.

- Establish traceability between the software requirements and the
software designs.
…
The expected result will be materialized with a Software Design

Document (SDD) in accordance with the project baseline. This
document describes the position of each software unit in the software
architecture and the functional, performance, and quality characteristics
which each must address. The sections related to the DBMS will be on
the responsibility of the card No. 25 'Database Server analysis, design
and generation'.

…
Teaching resources can be helpful in writing the SDD:

- Simplified writing guide for the software design document (TEMPO-
IGQ348).

- SDD Examples: Techsas and Techdis.
- Object-Oriented Analysis and Design Using UML - Ch. 10 '

…
Products V. Milestone

Software Design Document (SDD) A 8-3-2009

Start date End date Workload
7-30-2009 8-3-2009 5 5

Figure 3. Example of a scene card.

3) Exemplar scenes
Our fundamental problem is to prescribe the content of

apprenticeship scenes, their objectives and their outcomes
and to link scenes with SE processes (and their outcomes).
Our modest proposition is to build scenes from previous
scenes description, called exemplar scenes. Rather than
being provided with an abstract definition of the prescribed
situation and its prescribed tasks, the tutor has to design
scenes from previous exemplar scenes and his/her own
previous scenes (from past projects). Table III shows the
complete breakdown for some processes.

Although an intermediate level between process and task
may exist (12207 activity), the hypothesis is made that it
complicates the model - and that hypothetical activities are
only presented so as to facilitate the link with the 12207.

4) Competency Assessment Model
Regarding the understanding of software processes that

students are building, we were faced with a crucial issue. In
the previous system (without work placement), students
learned software processes by doing during the first iteration
and reproduced these processes during the second one. Thus,
links were easy to establish and a practical understanding of
software processes occurred. Now, first iteration (focused on
learning activities) and second iteration (focused on
productive activities) are performed on different projects.

The former is an apprenticeship project driven by the
university and the latter is an industrial project driven by the
companies with which students are placed. We need an
assessment framework that is common to both projects and
which allows apprentices to relate and cumulate experiences.

TABLE III. PROCESS BREAKDOWN AND EXEMPLAR SCENES

12207 Process Hypothetical activity Scene

Group Process 'Software Project Management'

6.3.1,
6.3.2

Project
Manage-

ment

 Project tailoring
 Project planning
 Project progress

Response to solicitation
Project plan
Project plan review
Weekly progress meeting
Project monitoring and control

…

Group Process 'Software Development Engineering'

6.4.1
Require-

ments
Capture

 Functional
requirement capture
 Technical
requirement capture
 Document
requirements
 Requirements
review

Retro-capture of requirements
Functional requirements
Technical feasibility study
Document requirements
Non-functional requirements
Architectural feasibility study
Requirements review

7.1.3
7.1.4

Software
design

 Design tailoring
 Architectural
design
 Detailed design
 Database design
 Design review

Maintenance tasks
Retro-engineering
Architectural design
Database analysis and design
Detailed design
Design review

…

Group Process 'Software Development Support'

6.2.1
Methods
and tools
support

 Process
establishment
 Process
improvement
 Tools support

Life cycle process modelling
Project process modelling
Process monitoring
implementation
Tool usage guide

…

Software companies use assessment of software
processes for capability determination and process
improvement [24]. Although we think that process
assessment as defined in ISO/IEC 15504 or CMMI is beyond
the reach of young engineers, we believe that a simplified
Process Reference Model and a personal Process Assessment
Model are required to provide a basis for the practice of
software engineering. Furthermore, we think that these
models may provide an initial structure of the repertoire.

We observed that our apprenticeship scenes and work
placement periods mobilized a similar set of apprentices’
competency. As mentioned in Section §III.A.3, each process
is associated with a family of competencies constituted with
a list of knowledge topics and a set of abilities or skills
required to perform the process. We believe that a first step
in competency assessment should be made by the engineer
him/herself through a self-assessment of abilities at a
maturity level. The assessment scale grows from 0 to 5; - 0 -
Don’ know anything; - 1 - Smog: vague idea; - 2 - Notion:
has notion, a general idea but insufficient to an operational
undertaken; - 3 - User: is able to perform the ability with the

207

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

help of an experienced colleague and has a first experience
of its achievement; - 4 - Autonomous: is able to work
autonomously; - 5 - Expert: is able to act as an expert to
modify, enrich or develop the ability.

Four times a year, each young engineer is required to
auto-assess his/her maturity level for each ability of the 13
competency families (as well as for each transversal
competency). This periodic self-confrontation with the
competency reference model is called a competency
inventory and is performed while auto-analyzing the tasks
performed and his/her achievement level with the abilities
defined in the family.

Periodic competency inventories are stored in a Content
Management System (CMS). The CMS is hierarchically
structured according to the group process / process
decomposition. This structure is also intended to store
artefacts that may be of interest in illustrating the ability
determination. When the apprentice needs to relate a task
performed with a process’s ability, he/she has to write an
entry associated with the process and may link this entry
with artefacts stored. It constitutes a rudimentary portfolio,
but is sufficient for our purposes.

Our system reference models are presented in Figure 4.

Figure 4. A model of Process Reference Model -PRM- (on the left) and
Competency Reference Model (on the right).

Periodic inventories hold abilities self-assessments.

5) Technical issues
As the project moves forward, information is constantly

updated - in content, and in structure too. Moreover,
metadata management is required. In order to support these
purposes, we propose a very simple architecture based on the
use of several inter-linked semantic wikis. Semantic wiki is
the most flexible tool in order to record and shape a
structured content.

The structural elements of these reference models do not
change as projects go along and theirs events are recorded. In
order to facilitate links between the project journal and these
models PRM, information is stored into two semantic wikis
and a Content Management System (CMS):

• http://oysterz.univ-brest.fr/12207, the 12207 wiki is a
hypertext reference of the ISO/IEC 12207:2008.

• http://oysterz.univ-brest.fr/company, the upper-level of
the company wiki contains decompositions Processes group /
Processes / Exemplar Activities and Stages / Scenes.

• a CMS contains the periodic inventories together with
related artefacts used as witness of the maturity level.

B. Process enactment

1) Questioning our hypotheses
A case study, discussed below, will provide observations

and information belonging to the different types discussed in
§III.B (presentations, accounts and comments) and
structured with the models of §IV.A (hierarchical group
process/process/scenes model and competency reference
model) enhanced of events’ modelling of the project-in-
action presented above.

Self-recording of activity is materialized by adding new
items either in the portfolio or in the wiki, which is acting as
a journal. A measurement of each apprentice’s recording
(from low to high) gives an indication that the apprentice is
aware of the structure of his/her repertoire and able to use it
to classify their experiences. It will provide an empirical
verification of hypothesis H2: the Course-of-Action
observatory may help to be aware of his/her repertoire.

Once experiences are self-recorded, apprentices are
periodically performing self-assessment and self-analysis.
Comparing self-assessments of previous cohorts with those
of our Study Team may provide an indication that the use of
an observatory is influencing the maturity level reached by
the team at study.

The self-analysis of the Course-of-Action is providing a
view of the enacted processes as they are reconstructed and
perceived by the apprentices themselves. On the other hand,
the project should follow processes as they are prescribed by
the company’s tutor. A qualitative evaluation of the process
reconstruction gives an indication of the gap between
prescribed and enacted processes. It will provide an
empirical verification of hypothesis H1: self-analysis and
self-assessment helps an apprentice to reveal theory-in-use.

2) An empirical case study
This case study is based on the activity of a team of 6

young software engineering apprentices, the former author as
a participant-to-observe having a direct contact of the team
members, sharing their environment and taking part in the
activities of the team, the latter conducting formal
assessments as they happen. This case study observes the
whole course of the project. As pointed out by Singer and
Vinson [25], apprentices’ consent is required. At the
beginning of the project they were informed on the field
study and its objectives, and they agreed to participate.

The project is a semantic annotation tool. The main goal
of the project is to provide a semantic annotation tool able to
annotate Web resources, search in different modes, browse
hierarchically or with facets, and manage RDF vocabularies.
The project uses Jena (http://jena.sourceforge.net) an open-
source Semantic Web programmers’ toolkit as RDF API.

3) Planning and monitoring the project
The project enactment is based on the process models of

the previous section, a Y-shaped life cycle that separates
resolution of technical issues from resolution of feature
issues [26] and a typical WBS (Work Breakdown Structure:
“a deliverable-oriented hierarchical decomposition of the
work to be executed by the project team to accomplish the
project objectives and create the required deliverables. It
organizes and defines the total scope of the project” [27]).

208

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The WBS has a structural and a temporal breakdown.
Each process is achieved through scenes defined from
exemplar activities. The WBS is temporally organized in 9
stages of 2 weeks. The planning of each stage orchestrates
several work scenes. Scenes will be performed by team
members, and should produce artefacts.

Information is recorded at mid-level of the company wiki
(http://oysterz.univ-brest.fr/company). This mid-level
structure acts as a simple but realistic model of a project:
breakdown of the project stages into work scenes; allocation
of persons to scenes; expected inputs and outputs. This mid-
level is filled with instances (wiki pages) corresponding to
the project WBS and updated regularly. The structure of this
mid-level is given in the right half of Figure 5.

4) Recording the project progress
We state in §III.B.3 that software artefacts produced by

the team will serve as (i) presentations. As the project
progresses, events of interest are recorded in a journal
associated with significant artefacts they may have used or
produced. As described in III.B.3, each individual Course-
of-Action is accounted for, on a 2-3 days basis, in an
instance of the smaller unit, called a Performed Activity.
Apprentices create a wiki page for each individual activity
performed during the stage, fill this page with a short
description of activities performed, link this page with
related other pages (scene, person, artefact), and upload
artefacts. At the end of each 2-week period apprentices
account for individual and collective work in the finest grain
of collective Course-of-Action, called a Course-of-Action
Unit, which organizes several individual Performed
Activities. This (ii) accounting provides a first-level of self-
confrontation, as required by the Course-of-Action
observatory.

Figure 5. Representation of an enacted project. The lifecycle of a project
is organized into stages, composed of scenes. During a scene, actors

perform an SE activity inspired by an exemplar activity, yet contextual to
the project. Input and output work products (artefacts) are linked to scene,

activity and process. Self-observing the action leads to a rebuilding of
project processes into steps of Course-of-Action units.

Every two months, apprentices perform a first-level
Course-of-Action analysis on the state of the project’s
software processes. Each apprentice works on few processes
and builds intermediary process elements called Steps-of-
Action, based on historical Course-of-Action Units related to
this process.

All information is recorded in the lower-level of the
company wiki (http://oysterz.univ-brest.fr/company). The
structure of this lower-level is shown on the left side of
Figure 5.

5) Self-assessment
An attempt must be made to relate the university and

industrial phases of the student’s experience to one another.
Fortunately, the competency assessment model of our system
(which could be considered to be the learning objectives) is
based on a simplified model of professional activities. So it
may help apprentices to link up their competency building,
thus avoiding their having to ‘climb two ladders
simultaneously’ [28].

As stated at §IV.A.4, each apprentice is asked to self-
analyze the activities they carried out (during both university
and industrial periods) four times in the course of the year, in
line with the immersion system’s competency assessment
model. Students assess their own maturity, on a scale of 0 to
5, for each ability or transverse competency.

In order to prepare the periodic competency assessments,
apprentices use the CMS as a portfolio which hosts
significant work and interesting artefacts. At any moment of
the year, either in industry or at university, the apprentice
may encounter a work situation, or perform a task which
they perceived to be a significant experience. Within the
competency reference model, they must identify one (or
several) skills related to this experience, and then associate a
new entry with a description of the experience, uploading
artefacts that testify to this experience.

6) Building their own repertoire
The process models presented in Section IV.A are used

throughout the year to structure the apprentices learning
process in the reflective practicum at university (and partially
in industry). The process models are also providing structure
for the self-recording of apprentices’ Course-of-Action and
periodic self-assessments of competencies. We believe that
these models provide an initial structure for the repertoire,
acting as knowledge paths towards recording and retrieval
practices within the repertoire.

V. EXCERPTS OF RECORDINGS AND ANALYSIS

We give some quantitative facts about the case study and
empirically question the research hypotheses of Section 2.

A. Wiki accounting

The project is now complete, and Table IV gives the
number of instances (wiki pages) in each category:
 69 work scenes occurred,
 students carried out 118 Performed Activities,
 roughly 100 artefacts were produced.

209

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For each process, we have the quantity of: Work Scenes
(SCE); Performed Activities (PAY: individual); Course-of-
Action Units (CAU: collective), and Steps (STE: higher-
level construct). The 6th column gives an indication of the
quantity of Software Engineering Activities that may be
envisaged in the process. The 7th and 8th columns report the
12207 breakdown of related processes: number of activities
(Act) in (the) process (es) and number of corresponding tasks
(Tsk). The 9th and final column gives the number of Base
Practices (BP) in the corresponding process from the 15504
standard.

TABLE IV. QUANTITATIVE FACTS FROM THE CASE STUDY.

Process SCE PAY CAU STE
SE
Act.

Act Tsk BP

Project
management

13 22 13 5 5 7 14 15

Quality
insurance

2 2 1 2 2 4 16 8

Configuration
management

2 2 2 3 3 6 6 10

Requirements
capture

10 18 10 3 5 5 12 6

Software
analysis

2 2 2 2 2 1 3 6

Technical
architecture

7 10 5 3 4 2 2 -

Software
design

7 9 5 4 4 2 15 12

Software
construction

8 16 4 3 5 1 5 4

Integration -
validation

8 12 5 4 5 6 20 20

Technical
support

8 16 2 2 2 3 4 6

Methods and
tools support

3 3 3 3 2 - - 6

Documen -
tation

2 4 2 2 2 4 7 8

Installation -
deployment

1 2 2 1 2 2 5 6

Students report on their activity at the end of each 2-
week stage. Where an activity has extended beyond a single
stage (e.g. technical support or coding), students adopt a
simple strategy: creating one single mid-level structure
(Course-of-Action Unit), and linking it to individual low-
level units (Performed Activity) belonging to different
stages.

B. Self-Recording

In order to evaluate the impact of the Course-of-Action
observatory, we measure the use of the portfolio associated
with the competency assessment model. We compare the two
teams of the 2008-2009 cohort: a Control Team – which
does not record its activity in an observatory – and Study
Team. Each team comprises 6 apprentices.

For each process of the Process Reference Model, and for
each apprentice, we measured the number of associated
entries in the portfolio. Table V shows, for each team, the
minimum, maximum and average number of entries.

For the Study Team, the average for each process is
significantly higher than that of the other team. Remember
that each apprentice of the Study Team has to report their
activity in the observatory after each period at the university.
Comparison of Repertoire Use Between a Control Team and
the Study Team .

TABLE V. COMPARISON OF REPERTOIRE USE BETWEEN A CONTROL

TEAM AND THE STUDY TEAM .

08-09 Control Team 08-09 Study Team

Process Min. Max. Avg. Min. Max. Avg.

Project Management 0 4 2.33 1 5 2.5

Quality Insurance 0 2 1 0 3 1.16

Configuration Management 2 3 2.5 2 5 3.5

Requirements Capture 0 7 3.83 2 8 4.66

Software Analysis 1 4 3 1 8 3.83

Technical Architecture 1 5 2.83 1 7 3.83

Software Design 3 6 4.5 3 8 5.83

Software Construction 1 7 4.16 3 8 5.33

Integration - Validation 1 4 2 1 5 3

Technical Support 2 4 2.66 2 10 3.33

Methods and Tools Support 1 4 2.16 2 8 3.83

Documentation 1 6 2.83 1 8 4

Installation - deployment 2 6 3.16 2 7 4

It is plausible to think that this periodic self-confrontation
helps them to be aware of the Process Reference Model that
structures the repertoire and facilitates filling the repertoire.

We may reasonably argue that our hypothesis H2 is well-
grounded: the Course-of-Action observatory helps an
apprentice to be more aware of the repertoire.

C. Self-assessment

A comparison of the different systems can be drawn from
personal competencies follow-up. For the 13 competency
families, Table V presents three self-assessment averages (in
September, February and May) for the 2006-2007 cohort
(previous system: no work placement), the 2007-2008 cohort
(new system: with work placement), and the 2008-2009 case
study team (current system: with work placement and
observatory). Each cohort comprises 2 teams of 6 students.

All families make steady, and roughly equivalent,
progress - with or without work placements (and with or
without observatory). Due to the small number of students in
cohorts, and the paucity of our statistical knowledge, no
statistical comparison was performed. However, there is no
evidence to indicate that the observatory helps understand
software processes and reveal theories-in-use.

Some small differences can be pointed out: the 08-09
team-members assess themselves at a lower level than
previous cohorts, except in terms of Project Management.

210

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This may indicate that building the observatory, and
reconstructing processes, have enforced this competency.

TABLE VI. TECHNICAL COMPETENCIES: PERSONAL FOLLOW-UP FOR

THE 2006-2007, 2007-2008 COHORTS, AND 2008-2009 STUDY TEAM

06-07 Cohort 07-08 Cohort 08-09 Team

Competency
family

9/6 2/7 5/7 9/7 2/8 5/8 9/8 2/9 S 5/9 S

Project
Management

1.5 2.8 3.4 1.3 2.7 2.9
1.2 2.3 1 3.5 3

Quality
Insurance

1.1 2.4 2.8 1.4 2.3 2.4
1 1.1 2 1.5 2

Configuration
Management

1.2 1.8 2.9 1.6 2.9 3.0
1.2 1.6 2 2.7 3

Requirements
Capture

2.1 3.2 3.6 1.8 2.8 3.0
2 2.3 2 3.2 2

Software
Analysis

3.6 3.7 3.9 2.4 3.0 3.3
2 2.1 2 2.7 3

Technical
Architecture

1.4 2.4 3.0 2.0 2.8 2.9
1.4 2.1 2 2.7 3

Software
Design

2.8 3.2 3.5 2.3 3.1 3.6
1.8 2.1 2 3 4

Software
construction

2.7 2.7 3.1 2.5 2.9 3.4
2.2 2.5 2 3 2

Integration -
Validation

1.2 1.3 2.7 1.3 2.0 3.2
1.2 1.8 2 2.3 3

Technical
support

2.3 3.0 3.4 2.4 3.1 3.5
1.4 1.9 2 2.3 2

Methods and
tools support

1.7 2.6 3.2 2.0 2.5 2.9
1.2 1.8 1 2.5 3

Documen-
tation

2.8 3.3 3.5 3.1 3.3 3.7
2.4 2.5 2 2.8 2

Installation -
Deployment

2.4 3.3 3.5 2.9 3.3 3.7
1.6 2.6 3 3.2 3

Even though we were unable to confirm our hypothesis
H1, we believe that relating the project observatory to the
personal follow-up of competencies may improve
apprentices' overall understanding of processes. A brief
example: the complete Software Requirements Capture
Process was performed in 10 scenes, spread over several
sequences. Looking at the individual progress of an
apprentice regarding this process, we note that her self-
assessment stayed at a low maturity level of 2 - Notions -
despite the fact that she had participated in several
requirements-related scenes and observed her team-mates
performing other related scenes. It is only after her
participation in the Software Specification Requirements
Document update that she assessed herself at level 4 -
Autonomous – and finally perceived that the different
Course-of-Action units related to requirements were related
to the same field.

D. Process reconstruction

We concentrate on reconstruction by the students of
higher-level Course-of-Action from the smaller units.

In Table VI, column S represents the average of the
student carrying out reconstruction for this process (between
February and May) - but there is no evidence that this work
improved their understanding of the reconstructed process.

Analysis should be correlated with the participation (and
commitment) of students into scenes that are tied to the
process. Further work is required.

In Table IV, the number of 12207 tasks (and 15504 Base
Practices as well) give an indication as to the density of the
process. The higher these numbers are, the greater the
complexity - it should therefore lead to a process
reconstruction involving a higher number of Steps-of-Action
related to a roughly equivalent number of Software
Engineering Activities. A difference between the 5th column
(STE) and 6th column (SE Act.) - e.g. Requirements capture
- may indicate that the reconstruction failed.

From the tutor’s point of view, steps creation was
haphazard. Simple processes, such as Design, have been
correctly reconstructed. But, since a large number of BP
(Base Practices) in Table IV indicate a complex process
which may be oversimplified in the practicum (e.g.
Configuration Management or V&V), the reconstruction was
correct regarding the simplified process but it is partly
inaccurate. For complex processes involving many scenes,
reconstruction may fail - probably because apprentices are
unable to perceive an abstract view of the process. This is
what happened during the Software Requirement Process,
where students were not able to create the Steps that would
establish significant links with smaller units, nor inter-wikis
links with the corresponding 12207.

VI. CONCLUSION AND FUTURE WORK

Argyris and Schön make a distinction between the two
contrasting theories of action: theories-in-use and espoused
theories. We proposed to adapt the Course-of-Action
framework to observe software engineering apprentices’
activity in the course of their final year. Two hypotheses are
discussed: (1) that self-analysis and self-assessment help
reveal theories-in-use, and (2) that the Course-of-Action
observatory helps raise awareness of the repertoire. As a case
study, the activity of a team of 6 young software engineers
accompanied with two participants-to-observe is currently
recorded in the observatory.

Observations are presentations (software artefacts),
accounting (events in the project diary or a portfolio) and
comments (steps reconstruction and activity reports). This
self-observation builds a hierarchy of SE processes used as a
structure for young engineers’ repertoires. Four times a year,
apprentices self-confront the work they did, self-assessing
against a personal ability model.

Current progress with this work suggests that the process
models (a personal Process Assessment Model and a
simplified Process Reference Model) may form an initial
structure of the repertoire, and that the observatory helps
apprentices to be aware of their own experiences.

Further work is required to consider how the Course-of-
Action analysis fits in with Reflection-in-Action and how it
impacts the software engineering apprentices’ ability to cope
with innovation and change.

211

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENT

The authors wish to thank François-Xavier Bru, Gaëlle
Frappin, Ludovic Legrand, Estéban Merrer, Sylvain Piteau,
and Guillaume Salou for their participation in this work.

REFERENCES

[1] V. Ribaud, and P.Saliou, “Revealing Software Engineering
Theory-in-Use through the Observation of Software Engineering
Apprentices' Course-of-Action”, in Proceedings of 2009 Fourth
International Multi-Conference on Computing in the Global
Information Technology, New York: IEEE Press, pp. 202-210,
2009.

[2] D. Schön, D., “Educating the Reflective Practioner: Toward a New
Design for Teaching and Learning In the Professions”, San
Fransisco: Jossey-Bass, 1987.

[3] J. E. Tomayko, “Carnegie Mellon's software development studio: a
five year retrospective” in Proceedings of the 9th Conference on
Software Engineering Education, New York: IEEE Computer
Society Press, pp. 119-129, 1996.

[4] S. Kuhn, “The software design studio: an exploration”, IEEE
Software, Volume 15 (2), March-April 1998, pp. 65-71.

[5] D. Schön, “The Reflective Practitioner”, New York: Basic Books,
1983.

[6] ISO/IEC 12207:1995, AMD 1:2002, AMD 2:2004, “Information
technology -- Software life cycle processes”, Geneva: International
Organization for Standardization (ISO), 1995, 2002, 2004.

[7] C. Argyris, and D. Schön, “Theory in practice: Increasing
professional effectiveness”, San Fransisco: Jossey-Bass, 1974.

[8] L. Pinsky, and J. Theureau, “ Activite cognitive et action dans le
travail, Tome 1: les mots, l'ordinateur, l'operatrice”, Collection de
Physiologie du Travail et Ergonomie, vol. 73, Paris: CNAM.,
1982.

[9] J. W. Maxwell, “Using Wiki as a Multi-Mode Publishing
Platform”, in Proceedings of the 25th annual ACM international
conference on Design of communication, New York: ACM,
pp.196-200, 2001

[10] ISO/IEC 12207:2008, “Information technology -- Software life
cycle processes”. Geneva: International Organization for
Standardization (ISO), 2008.

[11] ISO/IEC 15504:2004, “Information technology -- Process
assessment”. Geneva: International Organization for
Standardization (ISO), 2004.

[12] D. Schön, “Educating the Reflective Practitioner” in Meeting of
the American Educational Research Association, 1987.

[13] O. Hazzan, and J.E. Tomayko, “Reflection processes in the
teaching and learning of human aspects of software engineering”,
in Proceedings of 17th Conference on Software Engineering

Education and Training, New York: IEEE Press, pp. 32- 38, 2004,
doi:10.1109/CSEE.2004.1276507

[14] P. Halloran, “Organisational Learning from the Perspective of a
Software Process Assessment & Improvement Program” in: 32nd
Hawaii International Conference on System Sciences. New York:
IEEE Press, 1999.

[15] J. Theureau, “Course-of-Action analysis & Course-of-Action
centered design” in: Hollnagel E. (ed.), Handbook of Cognitive
Task Design, New Haven: Lawrence Erlbaum Ass., 2003

[16] C. Argyris, and D. Schön, “Organizational learning: A theory of
action perspective”, Reading: Addison Wesley, 1978

[17] O. Hazzan, “The reflective practitioner perspective in software
engineering education”, Journal of Systems and Software, Vol. 63
(3), September 2002, pp. 161 – 171, ISSN:0164-1212

[18] J. Theureau, G. Filippi, and I. Gaillard, “From semio-logical
analysis to design: the case of traffic control” in Colloquium
"Work activity in the perspective of organization and design",
Paris: M.S.H., 1992

[19] J. Theureau, and G. Filippi, “Analysing cooperative work in an
urban traffic control room for the design of a coordination support
system, chapter 4” in: Luff, P., Hindmarsh, J., Heath, C. (eds.)
Workplace studies, Cambridge Univ. Press, 2000, pp. 68-91.

[20] P. Meirieu, “Si la compétence n’existait pas, il faudrait l’inventer”
in IUFM de Paris Collège des CPE, 2005, (accessed April 2009)
http://cpe.paris.iufm.fr/spip.php?article1150

[21] V. Ribaud, and P. Saliou, “Towards an ability model for software
engineering apprenticeship”. Italics, Innovation in Teaching And
Learning in Information and Computer Sciences, Vol.6 (3), July
2007, pp. 97-107.

[22] T. C. Lethbridge, S. E. Sim, and J. Singer. “Studying Software
Engineers: Data Collection Techniques for Software Field
Studies”, Empirical Software Engineering , vol. 10 (3), July 2005,
pp. 311 – 341, doi:10.1007/s10664-005-1290-x

[23] J. Leplat, “Regards sur l'activité en situation de travail -
Contribution à la psychologie ergonomique”, Paris: Presses
Universitaires de France, 1997.

[24] Software Process Improvement and Capability dEtermination
(SPICE), Software Process Assessment - Version 1.00,
http://www.sqi.gu.edu.au/spice/docs/baseline, 1995

[25] J. Singer, and N. G. Vinson, “Ethical issues in empirical studies of
software engineering”, IEEE Transactions on Software
Engineering, Vol. 28 (12), Dec 2002, pp. 1171- 1180,
doi:10.1109/TSE.2002.1158289

[26] P. Roques, and F. Vallée, “UML en action”, Paris: Eyrolles, 2002.

[27] ISO/IEC FCD 24765, “Systems and software engineering –
Vocabulary”. Geneva: International Organization for
Standardization (ISO), 2009.

[28] J. Topping, Sandwich courses, Phys. Educ. Vol. 141 (10), 1975,
pp. 141-143, doi:http://iopscience.iop.org/0031-9120/10/3/003

212

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Modernization of a Legacy Application: Does it Have to be Hard?

A Practical Industry Cooperation Case Study

Arne Koschel, Carsten Kleiner

Faculty IV, Dept. for Computer Science

Applied University of Sciences and Arts

Hannover, Germany

{akoschel | ckleiner}@acm.org

Irina Astrova

Institute of Cybernetics

Tallinn University of Technology

Tallinn, Estonia

irina@cs.ioc.ee

Abstract—Modernization of a legacy application is not very

hard any more. Whereas this may have been true a couple of

years ago, this paper describes a case study, which shows that

the modernization is significantly easier if modern integration

tools, a service-oriented architecture and Web services are

used. This is by contrast to a common belief that the

modernization is always hard, regardless of the technologies

used. The case study, where bachelor students succeeded to

carry out the modernization of a legacy application, shakes

that belief. The students neither had previous experience with

the technologies used in the legacy application nor with the

ones used for the modernization. As major contributions this

paper provides an overview of approaches to modernization, a

full case study for the modernization (including details on

business process analysis, architecture, and tools), and

comprehensive ‘lessons learned’ to help for ‘the practice’.

Keywords—service-oriented architecture; mainframe; legacy

integration; experience report; Web service

I. INTRODUCTION & MOTIVATION

Declared „dead‟ for quite a while now, many legacy
mainframe applications are still happily productive and will
continue to be. Indeed, until today legacy applications that
are based on mainframe database management systems
(DBMSs) like Adabas and associated fourth generation
programming languages (4GL) such as Natural, are still
often in practical use. However, those applications are often
only badly, if at all, integrated with newer enterprise
applications. The integration of legacy application assets is
required, e.g., due to joint use of functionality or data. It is an
important task, which occurs frequently in industrial
practice.

Figure 1. Overview of the SAG-Tours project

Initially, a punctual integration of the legacy assets was
achieved by means of „traditional‟ enterprise application
integration (EAI) technology (cf. [2][6]). Nowadays a
service-oriented architecture (SOA) [7][13] proposes a
promising solution to this task.

This paper describes a case study for legacy
modernization based on integration technology and Web
services. Used in conjunction, they served as the base for
integration of an existing legacy mainframe application
(SAG-Tours) into an up-to-date distributed SOA.

Figure 2. User interface of SAG-Tours application after modernization

The case study was done in scope of the SAG-Tours
project (see Figure 1). This project involved research and
industry cooperation with a German software company,
Software AG (SAG). The goal of the SAG-Tours project was

213

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to integrate the SAG-Tours mainframe application into a
modern Web environment – a requirement being driven by
Software AG customers. The customers wanted the SAG-
Tours application to become Internet-ready quickly (within a
year), thus giving end users the possibility to access the
application via a Web browser (see Figure 2). Previously,
„green screens‟ were the only way to access the application
(see Figure 3). The SAG-Tours project team consisted of 10
final-year bachelor students supervised by 2 professors. The
students had an average working effort of 1 day per week per
person. The team was given some „getting started‟ and
„configuration hotline‟ help from Software AG.

This paper provides two major contributions. First, it
shows how such a technically complex integration task
(where both old existing systems and several integration
technologies are involved) can be undertaken. Second, it
shows that this task could be carried out even with relatively
inexperienced students under only moderate supervision of
professors. This means the integration of at least functional-
wise not too complex legacy applications into a SOA should
not be a too difficult work any longer.

Figure 3. User interface of SAG-Tours application before modernization

This paper is an in-depth extension of our previous work
[1]. The related work has been extended by providing several
new references to related academic and industrial
publications. We examine different possible approaches to
modernization of a legacy application. Also, we explain
details on our approach to modernization of the SAG-Tours
application and our architecture that supports integration of
the application into a SOA. Finally, we bring together all the
lessons learned during the SAG-Tours project that can be
useful for application in other similar legacy modernization
projects.

The rest of the paper is organized as follows. Section II
describes the related work. Section III describes the SAG-
Tours application and its background technologies (viz.,
Natural and Adabas). Section IV analyzes existing
approaches to modernization of a legacy application (viz.
packaged applications, code conversion, re-hosting, re-
architecting, and SOA enablement). Section V gives details

on our approach to modernization of the SAG-Tours
application (viz. SOA enablement). Section VI gives details
on our integration architecture. Section VII describes lessons
we learned during the SAG-Tours project; it is followed by
conclusion and outlook to possible future work.

II. STATE OF THE ART

Related work especially regarding integration tools can
be found in industry as well (see, e.g., SAP [19], IBM [20],
Oracle [21][22], Software AG [23] and Microsoft [24]).
However, because Software AG‟s integration technology
stack was given us as a pre-requisite, we focus here on
academic related work only.

Although Canfora et al. [17] use a wrapper approach as
we do, they focus mainly on interactive functionality.

Englet [5] proposes a bottom-up integration approach,
which is not restricted to interactive components. It is,
however, suboptimal with respect to process modeling
because it might not take process optimization into account.

Smith [12] discusses several ways to introduce a SOA
into an enterprise, including legacy assets, but on a general
level. Erradi et al. [4] discuss similar strategies. Instead of a
general discussion, we focus mainly on concrete technical
integration aspects.

Lewis et al. [9][10][15] develop a service-oriented
migration and reuse technique (SMART) to assist
organizations in analyzing legacy components in order to
determine if they can be reasonably exposed as services in a
SOA. SMART provides a preliminary analysis of viability of
different migration strategies and the associated costs, risks
and confidence ranges for each strategy. In particular,
SMART gathers information about legacy components and
produces the best migration strategy for a given organization.
Thus, SMART helps organizations to select the right
migration strategy. SMART can be used to analyze what
legacy functionality can be re-used in a SOA. However, we
do not need this analysis, because it was pre-defined for us,
which legacy functionality had to be re-used. We consider
this to be an everyday situation in practice.

Erl [14] introduces a pattern-oriented background for a
SOA. While being helpful in general, more detailed work is
required for a concrete integration task.

Sneed [18] proposes a salvaging and wrapping approach
(SWA). This is a three-step procedure for creating Web
services from a legacy application code. These steps are: (1)
salvaging the legacy code; (2) wrapping the legacy code; and
(3) exposing the legacy code as a Web service. SWA is
effective in process and service integration. But it provides
limited support for content integration by wrapping second-
level Web services. This is similar to the second step of our
approach.

Ziemann et al. [25] describe a business-driven legacy-to-
SOA migration approach called enterprise model-driven
migration approach (EMDMA). This approach is based on
enterprise modeling, by introducing an elementary process
model between the business function tree and the tree related
to the legacy application, which is then aligned to the
function tree of the legacy application. Finally, it applies a
transformation from the legacy business process model to the

214

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SOA process model. EMDMA draws attention to the fact
that aspects such as functional granularity, security,
reliability, scalability, etc. are not taken into account
sufficiently during the migration. Thus, there is a need for
investigating how these aspects of the legacy application can
be mapped to a SOA.

III. SAG-TOURS APPLICATION

SAG-Tours [11] is a legacy mainframe application
written in Software AG‟s Natural. It is based on a 1-tier
terminal mainframe architecture (see Figure 4). Functional
wise one has the possibility to order fictitious cruises.

Figure 4. 1-tier system architecture of SAG-Tours application

Technically terminal emulations are used, which
communicate with a Unix variation of Natural via telnet
protocol. The SAG-Tours application itself has a connection
to an Adabas database [3]. Adabas is a high performance
mainframe DBMS, which is internally based on so-called
inverted lists. An example for a Natural query would be as
follows:

 FIND CRUISE

 WITH START HARBOR= „CURACAO‟

Figure 5. Internal structure of an Adabas

example query using inverted lists

This query delivers all journeys with the starting harbor
‟CURACAO‟. Figure 5 shows „3‟ as the total hits number of
query results. It also shows the resulting internal sequence
numbers (ISNs). These ISNs can be interpreted as logical
pointers to the relevant resulting tuples.

IV. APPROACHES TO MODERNIZATION OF LEGACY

APLLICATION

Legacy modernization is the process to supplement or
replace an organization‟s legacy applications and
technologies using newer applications and technologies that
are based on open standards, while retaining business logic
[28].

There are five basic approaches to legacy modernization
(that can be used alone or combined):

 Replacing legacy applications with packaged
applications.

 Re-architecting legacy applications.

 Legacy application code conversion (also called
automated migration of legacy applications [28]).

 Re-hosting legacy applications.

 Enabling SOA (also called enabling Web [29], re-
interfacing [29] or business logic wrapping [26]).

There are advantages and disadvantages with all these
approaches. An advantage of one approach is usually a
disadvantage of another and vice versa. But “organizations
that are SOA-enabling their legacy applications on the legacy
platforms are outperforming those that are using any other

215

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

approach. They report better productivity, higher agility, and
lower costs for legacy modernization projects.” [29].

Since legacy applications are typically not architected
with a SOA and Web services in mind, careful selection of
an approach is required before modernizing a legacy
application. Depending on the approach selected, the legacy
application may require big, small or no change at all.
Therefore, it was important to choose the right approach for
the SAG-Tours application.

A. Packaged Applications

This approach [28] consists of replacing the legacy
application with a packaged (commercial off-the-shelf) one
made up of SOA components. These components can then
be combined with re-architected components, re-hosted
components and automatically migrated components using a
SOA orchestration engine.

Because packaged applications are seen as sets of
reusable components, the biggest advantage of this approach
is the increased agility. However, this approach does not
work in a situation where legacy applications have unique
functionality that cannot be replicated by packaged
applications. In this case, the business logic can be retained
from the legacy application using one of other approaches
such as re-architecting or re-hosting. Therefore, we rejected
this approach.

B. Code Conversion

This approach [27][28] consists of converting the legacy
application code into a new programming language (e.g.,
Java). It is often used in combination with replacing the
legacy application with a packaged one.

The biggest advantage of code conversion is that the
process of migrating, e.g., from Natural to Java can be
automated; i.e., it can be carried out by a machine and
require no human intelligence during the migration process.

Because a machine will carry out the migration process,
it can be done quickly and consistently. But it only works if
the gap between the legacy architecture and the new one is
relatively small. E.g., it is not possible to convert the
procedural design of Natural into the object-oriented design
of Java. The fundamental design concepts of Java – e.g., a
class and its behavior – are architectural concepts that
require human intelligence to design. The designer of a truly
object-oriented application will use these concepts in new
ways that cannot be recovered from a legacy application
designed using procedural techniques. Therefore, although
the automatic migration of Natural code into Java can be
done, but the resulting Java code will not be the same Java
code that would be designed for a truly object-oriented
application.

The biggest disadvantage of code conversion is that it is
much more invasive to the legacy application than other
approaches to legacy modernization such as re-hosting and
SOA enablement. Therefore, we rejected this approach also.

C. Re-hosting

This approach [28] consists of migrating the legacy
application to a lower cost platform. It can be used in

combination with code conversion. E.g., during the re-
hosting process, the legacy database calls to a mainframe
database such as Adabas can be eliminated.

The biggest advantage of re-hosting is that it is non-
invasive to the legacy application because the application is
left “as-is”.

Since re-hosting does not change the legacy application,
one disadvantage of this approach is that it forces a
continued reliance on legacy skills. Another disadvantage is
that re-hosting retains much of the legacy architecture. This
means that the implementation of Web services could be
cumbersome. Therefore, we rejected this approach also.

D. Re-architecting

This approach [28] consists of extracting business logic
from the legacy application, building a new application,
integrating this new application with the legacy one, and
finally, shutting down the legacy application.

The biggest advantage of re-architecting is that it
maximizes the benefits of a SOA and new technologies. But
it is the most expensive approach to legacy modernization –
a legacy modernization project can span many years.
Therefore, we rejected this approach also.

E. SOA Enablement

This approach [26][28] consists of wrapping business
processes and presenting them as Web services to an
enterprise service bus (ESB). This is the approach we
selected.

The biggest advantage of SOA enablement is that it
provides immediate integration of the legacy application into
a SOA. In addition, this approach is relatively non-invasive
to the legacy application. Therefore, legacy components can
be used as part of a SOA with no or little risk of destabilizing
the legacy application.

However, like re-hosting, SOA enablement forces a
continued reliance on legacy skills. Another disadvantage of
this approach is the need for communicating among
disparate environments because the legacy components
continue to reside on the legacy platform. However, using
SOA enablement combined with re-hosting can eliminate the
need for such communication because all the components –
the re-hosted components that have been integrated into a
SOA, the new components, the packaged application
components, and the SOA orchestration engine that brings
them all together – reside on the same new platform. This
also makes it easier to convert the legacy components into a
new programming language such as Java.

V. CONCEPTUAL INTEGRATION APPROACH AND

BUSINESS PROCESS MODEL

In this section we will show how the domain specific
business process model for the case study has been
developed and present some conceptually important aspects
of the result. We will also describe the conceptual integration
approach we have chosen and the advantages of this
approach.

216

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Conceptual Integration Approach

As explained above, for integrating the SAG-Tours
application into a SOA, we decided to follow SOA
enablement [26], which continues to use the application
itself. We selected SOA enablement primarily because rather
quickly (within a year) this approach can bring the
application into a modern Web environment, where the
application can be accessed via a Web browser. This is one
of the biggest advantages SOA enablement has over other
approaches to legacy modernization.

Our cooperation partner, Software AG, also offers tools
that use screen scraping to extract complete work processes
from a legacy application and make them available as Web
services (see Figure 6). We did not use these tools either. On
the one hand, we did that to stay technology-neutral as far as
possible. On the other hand, these tools typically yield only a
few rather coarse-grained services in the business process
layer (cf. [7]) and no services in the underlying layers of
business services and basic services. By doing so, increased
speed in an integration of the legacy application can be
reached; but the increased flexibility of process definitions
by variable combination of services of the underlying layers,
which is one of the main goals of introducing a SOA, may
not be achieved. We will show below how the services of the
business service layer have been variably composed into
business processes in the case study.

Figure 6. SOA enablement via screen scraping vs. Comprehensive

mainframe integration based on services via business logic wrapping

Encapsulation of functionality from the SAG-Tours
application in business services is shown in Figure 7. It
shows the detailed flow of the business process for deleting a
cruise, which is the result of the three-step integration
approach (see Section V). It is very easy to identify the
elementary tasks (such as finding and deleting of single
business objects), which had been implemented as Natural
programs in the SAG-Tours application. These programs
will now be wrapped as business services so that the whole
flow of the business process may be described as a
composition of such business services.

Figure 7. Sample business process „Delete journey‟ modeled as activity

diagram showing the integration of several existing business services

In the case study, the modeled business processes were
translated manually into executable code on the ESB since
there were only rather few processes. However, in the real-
world scenarios (even in medium-size legacy modernization
projects) an automated generation tool fitting for a particular
technology required by the ESB should be used.

B. Business Process Model

In the case study, we started to set up a business process
model of the domain. Since we chose a combination of top-
down and bottom-up approaches to integrate the SAG-Tours
application into a SOA, at first the optimal target processes
had to be identified (top-down part). Since there have been
quite a large number of processes, in order to check that the
approach would also hold for larger legacy modernization
projects, we grouped the identified processes into packages.
The packages have to be formed based on domain-specific
criteria; in the case study packages could be formed based on
the domain entities, on which the processes primarily
operated. Figure 8 shows the package model of processes.
After identifying all processes and assigning them to
packages, it was also possible to define dependencies
between packages based on the underlying dependencies of
the processes. This yields another helpful structuring of the
whole set of processes and is also shown in Figure 8.

217

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Packages for business process services and business services

for structuring of the process model domain

After identifying the target processes, we identified the
functionality of the SAG-Tours application that would be
required in the processes and thus had to be modeled as
business services (bottom-up part) in order to compose the
processes in the final step. Identifying the legacy
functionality and assigning it to business services had been a
rather easy task. Most of the functional components could be
directly derived from the existing Natural programs of the
SAG-Tours application. However, some of the functional
components had to be implemented anew in Natural (based
on the Adabas database) in order to achieve a technologically
homogeneous implementation of the foundation. For
example, there was a Natural program DRINF-N0, which
computed and returned all available cruises for a given start
date and start harbor. This was encapsulated within the
business service BS_FindCruise and could subsequently be
used in different business processes.

Figure 9. Business process model for person related

processes and services

In the third and final step, the business services obtained
in the second step could be composed to detail the business
processes defined in the first step. For example, Figure 9
shows a part of the obtained business process model, which
contains the processes and services related to person entities.
The business process BP_AddPerson to add a new person in
any role to the SAG-Tours application is, e.g., composed of
the services BS_AddPerson and BS_FindPersonByName,
which directly correspond to the functional components of
the application.

As expected, most of the identified business services
could be used in several different business processes. This
can already be concluded from Figures 9 and 10, even
though only part of the corresponding package models are
shown there. For example, the business process
BP_ModifyPerson to change information about an existing
person in the Adabas database is composed of the services to
find and modify a person by his or her ID or name as well as
the services to obtain further information about the roles of
the person.

218

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. (Part of) the business process model for cruise and

contract related processes and services

It should be noted that reuse is possible not only on the
level of business services. As shown in Figure 10, there is
also potential for reusing complete business processes within
other business processes. For example, the business process
BP_ModifyContract, which is executed to change any aspect
of a booking by a person for a specific cruise, can be
composed of the business processes to add and remove
contracts, which in turn are composed of the business
process to remove a cruise among others. Consequently, we
can see that reuse on both levels is greatly simplified by the
integration approach. Of course, business services may not
be composed of business processes internally due to the
definition of the according layers.

VI. INTEGRATION ARCHITECTURE AND STEPS

In this section, we will describe technical steps we have
taken to bring up an integration architecture for the SAG-
Tours application. At first, we will describe a general
integration architecture, which is then mapped to a concrete
integration tool suite. This is followed by an overview and
more detailed technical steps one has to follow to use this
integration architecture.

A. Integration Architecture

Since in the case study we followed the comprehensive
mainframe integration approach (see Figure 6) that fits into a
SOA as well, an N-tier integration architecture [2][7][13]
was the appropriate means of choice. In this general
integration architecture (see Figure 11), an end user uses a

Web browser, which acts as a client front-end to a Web
server. The Web server hosts presentation preparation logic,
which (in a „traditional‟ Web technology environment)
prepares HTML pages for the end user‟s GUI and uses
HTTP to interact with the end user‟s Web browser. On the
other side, this logic accepts a service access protocol (e.g.,
SOAP over HTTP in the case of Web services) to access
integrated services. In this case, an encapsulated DBMS is
accessed, again, by means of some service access protocol,
say, an ordinary remote procedure call (RPC).

Figure 11. General N-tier system architecture using

Web technology and an enterprise service bus

Since the integration technology stack was pre-defined
for the SAG-Tours project, integration architecture for the
SAG-Tours application was based on Software AG‟s
integration tools such as EntireX Broker (see Figure 12).

At the lowest level of the integration architecture, there is
a persistence layer with an Adabas DBMS. Above it, there is
an application layer with a Natural runtime engine, a Natural
RPC server (which calls that engine), a Software AG‟s
EntireX Broker (which acts as an ESB that „understands‟
different service access protocols) and – optionally – a so
called integration server (which actually is an execution
engine for a specialized business process execution
language). At the highest level, there is a server-side Web
presentation layer (also called GUI layer). Here the Apache
Web server and the Servlet engine Tomcat are used. Like in
the general integration architecture in Figure 11, a typical
Web browser is used for the end user client access.

The integration can take place in three layers:

 Persistence layer. Here calls to the legacy database
(e.g., Adabas) are replaced with Web services that
issue the same native calls and return the requested
data. These calls may be further modernized by

219

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

allowing SQL calls to be issued instead, even though
data is still stored in the legacy database.

 Application layer. Here calls to the legacy
procedures and programs (e.g., Natural subprograms
and programs, respectively) are replaced with Web
services that issue the same calls. The legacy
procedures and programs that are called by the
legacy application may have been written as reusable
components and are candidates for reusable services.

 Presentation layer. Here „green screens‟ are replaced
with Web services that drive the legacy application
the same way the original screens did. „Green
screens‟ are good candidates for the integration
because many legacy applications use them to drive
a single transaction; e.g., deleting a journey, adding a
person / contract, etc. The integration in this layer
often involves screen scrapping.

Figure 12. 3-tier system architecture that supports integration of SAG-

Tours application into SOA and uses Software AG‟s integration tools

As shown in Figure 12, in the case study the integration
took place in the application layer. This was feasible because

the source code of the SAG-Tours application was available
for us.

B. Integration Steps

Based on the components in Figure 12, the following
technical integration steps have to take place:

1. Import Adabas database structures into a repository.
2. Map / import Adabas database structures for Natural

subprograms.
3. Re-use existing Natural subprograms if possible.

Otherwise, write suitable new ones based on the
business process analysis from the previous section.

4. Define Natural subprograms to be accessible via the
Natural RPC server. This server in turn is called by
the EntireX ESB (also known as EntireX Broker).

5. Generate Web services stubs (here Java-based) for
imported subprograms, thus exporting those stubs as
Web service definitions from EntireX Broker.

6. Access those Web services from Java programs
using JavaServer pages, e.g., via Axis / JAX-RPC.

7. Send the results from the JavaServer pages to the
end user‟s Web browser.

The components as well as their usage within those

integration steps are described below in more detail.

C. Steps 1-2: Accessing Adabas from Natural via RPC

Following the above steps, initially the existing Adabas
database needs to be accessed by Natural programs. For
existing Natural programs (which are re-used directly), there
is no extra work just because the SAG-Tours application
does this already. For new or re-written Natural programs,
however, the existing Adabas database structures, which they
want to access, need to be imported into a repository from
the Natural tool suite.

Figure 13. Data structure definitions

Natural programs and subprograms can query the
repository to define their database access data structure. Such
data structures are so called DEFINE DATA areas in
Natural. Within such data areas, local Natural program
variables are defined. Moreover, views to an underlying

220

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

database are defined by means of the USING clause within a
DEFINE DATA area definition. Such a view serves as a
common storage area between the Adabas DBMS and the
calling Natural program. (It should be noted that Natural is
not restricted to Adabas. Rather, it can also be used with
other DBMSs like DB/2 and Oracle.)

Figure 13 shows a screen shot of the Adabas data
mapping development environment from the Natural tool
suite. As can be seen, Natural data types are defined for local
and parameter data areas. These data areas have two
purposes. First, they are required for the Natural subprogram
itself as the communication structure with Adabas. This is
done by the LOCAL DATA area (YACHT-V and YACHT-
LD in Figure 13). Second, they specify the output data from
the Natural subprogram in the PARAMETER DATA area
(YACHT-INFO within YACHT-PD). This is then used as
the mapping input by the EntireX Broker (see Section D
below for more details).

The following little excerpt shows some Natural
subprogram code, which fills a data area called „YACHT-
VIEW‟ using a FIND statement that searches for „HUGE‟
yachts. This statement accesses the Adabas database from
the SAG-Tours application.

DEFINE DATA
PARAMETER USING YACHT-PD
LOCAL USING YACHT-V

1 COUNTER (N5.0) INIT <0> 1
1 LIMIT (N5.0) INIT <0>

END-DEFINE

FIND ALL YACHT-VIEW WITH

YACHT-VIEW.YACHT-TYPE = ‟HUGE‟
. . .
[code to check and increment COUNTER

 and to expand the size of the output
 data structure YACHT-INFO if required]

. . .
MOVE YACHT-VIEW.YACHT-NAME TO
YACHT-INFO.YACHT-NAME(COUNTER)
. . .

END-FIND

MOVE COUNTER TO YACHT-INFO.COUNTER
END

The query result in the „YACHT-VIEW‟ data area is then

moved to the output PARAMETER DATA „YACHT-PD /
YACHT-INFO‟ area. From this area, a „YACHT-INFO‟ data
structure in Figure 13 is filled. The „YACHT-
INFO.COUNTER‟ variable is filled with the number of
tuples, which were returned from the FIND statement.
Eventually, the newly filled YACHT-INFO data structure
(conceptually similar to a 2-dimensional array, technically
several 1-dimensional arrays) is returned as the Natural
subprograms result.

D. Steps 3-4: Accessing Natural via RPC

Following the above steps, the Adabas database can be
accessed by means of Natural programs. This is pretty much
the way, the SAG-Tours application works. Now in order for
this application to be re-used as services within the
application modernization context of the SAG-Tours project,
those programs need to become technically accessible from
the outside. For this purpose, the (Natural) remote procedure
call (RPC server in Figure 12 is used. Natural subprograms
(which run on remote machines) are accessed via a RPC.
This is conceptually comparable to protocols such as Java
Database Connectivity (JDBC), which are frequently used
for Java-based remote access to relational databases.

Within the integration architecture in Figure 12, the
EntireX Broker actually uses a RPC for such remote Natural
access. The EntireX Broker is Software AG‟s integration
turn table, which thus conceptually serves as the core of an
ESB as it is known from a SOA-based integration
architecture (see [7][13] for more detail).

Two major pre-requisites for this approach exist. First, he
Natural programs need to be callable as subprograms. This
just requires a well-written Natural subprogram with clearly
defined input / output data areas. Another option is to have
Natural programs as a base, which can reasonably easy be
modified to fulfill this requirement. However, one of those
options is due to Natural coding practices not to seldom
given for existing Natural code and it does hold for the SAG-
Tours application.

Second, the semantic structure of the existing
subprograms must be „good enough‟ to be re-usable in a
modernized business context. To ensure this, we did the
business process analysis of the existing Natural programs as
described in the previous section.

Since most of the existing programs were easily
understandable, e.g., comparable to functions like „DELETE
JOURNEY‟ or „FIND-AVAILABLE-YACHTS‟, this was a
manageable task for us (see [16] for more details). However,
such an analysis might not be an easy task for more complex
existing Natural code.

It should be noted that as a „side effect‟, all the students
were able to read and write Natural code afterwards (even
though they had no previous experience in Natural coding).

E. Step 5: Re-using integrated legacy code as Web

services

Having integrated the Natural subprograms using
EntireX Broker, one now wants to re-use them within non-
Natural contexts. In the case of the SAG-Tours project, Web
services are the means of choice. Thus, a Web Services
Description Language (WSDL) based service interface
definition and SOAP access to the integrated Natural
„services‟ needs to be enabled.

Easily enough, the EntireX Broker development
environment can generate all the required code. It utilizes the
PARAMETER DATA-areas form the above steps to enable
a mapping specification from the Natural procedure
parameters to XML data types. Of course, this requires a
suitable PARAMETER DATA areas for each Natural

221

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

subprogram (either newly written or existing), which is to be
mapped to another service description.

The mapping itself is based on a XML mapping
specification (XMM), which is used by EntireX Broker at
runtime for data type conversions (see XMM in Figure 12).

Now that the task of technically integrating the existing
Natural subprograms is achieved utilizing the EntireX
Broker, those programs can directly be accessed as Web
services based on SOAP. EntireX Broker does the internal
mapping and provides a WSDL based service endpoint for
each of the exposed „Natural‟-Web services.

F. Step 6-7: Using Web services from JSP clients

As shown in Figure 12, we then just used Java code
within JavaServer Pages (JSPs), which in turn called the
Web services above.

Instead of hard-coding JSPs and Java code, the Web
services could also be called using Software AG‟s business
process engine. This component in Figure 12 is called
integration server. We tried this exemplary as well – it
worked fine except for some minor data type issues. But we
did not explore it in more depth due to given time limits –
the SAG-Tours project was limited to one year.

Eventually the JSPs allowed for an easily developed GUI
front-end for the end user. In the real-world scenario, there is
also the possibility to call the Web services from other
external programs. Since our legacy components are
completely enclosed as Web services, they can easily be
embedded in a larger SOA environment.

VII. LESSONS LEARNED

Looking back at the SAG-Tours project, we can derive a
good bit of experiences, which might also be valuable for
other legacy modernization projects. These experiences are
described below as learned lessons (both technical and
pedagogical).

A. Technical Lessons

From a technical point of view, the most interesting
insight gained by the SAG-Tours project has been related to
mainframe legacy software. In particular, it was interesting
to see how easy or difficult it was to integrate a legacy
mainframe application into modern software architecture and
how object-oriented programmers could cope with this task.
(The students involved in the SAG-Tours project were
reasonably experienced in Java coding.)

1) Complexity of integration:

 Integration effort: The integration of existing legacy
mainframe applications into a SOA is not too hard
any more. Whereas this may have been true a couple
of years ago, the SAG-Tours project showed that the
integration is rather simple. This has been proven in
the case study where final-year bachelor students
succeeded to carry out the project. The students had
no previous experience in mainframes and the
technology used in the SAG-Tours application.

 Tool support: The integration of Adabas / Natural
legacy applications is very well supported by
Software AG‟s integration tools. Since Software
AG‟s integration technology stack was given us as a
pre-requisite, a general conclusion on tool support
cannot be drawn. It will be interesting to evaluate
this aspect in follow-up projects; i.e., whether
integration tools provided by different vendors can
also be used to implement our integration approach.

 Effort dependencies: As expected, the exact effort
required depends heavily on the size and number of
the target processes and (even more) on the amount
of knowledge of and documentation on the existing
code in the legacy application itself.

2) Integration Approach:

 Regarding the conceptual integration approach to the
legacy modernization, we used a combination of top-
down and bottom-up approaches. However, this may
not be viable in all situations. Factors that have to be
taken into consideration in order to choose the right
approach include:
o Quality of Service (QoS): the screen

scraping approach can never yield better QoS than
the original application at best. This time, the
comprehensive mainframe integration approach
might open up possibilities for improving the QoS
externally.
o Time to market requirements: if it is

important to have the legacy application usable in a
service environment as fast as possible, regardless
of the technology used, the bottom-up approach
will be a better choice.
o Effort (time and money): In most cases,

comprehensive mainframe integration (which is
based on services) will be more costly from a short
project point of view because of the conceptual
complexity. This effort could, on the other hand,
well pay off in the long run because such
integration has the potential to increase re-using of
components and may simplify software
maintenance.
o Knowledge about existing code: if there is

only a black-box like knowledge of what the
existing application components do and not how
they do it in detail, then the comprehensive
mainframe integration approach may not be
feasible at all. This is especially true if existing
components have to be modified or extended for
the integration (as in the case study). This scenario
which seems unrealistic at first sight can actually be
found in many organizations nowadays.

 In summary, we feel that our combined integration
approach is ideal for many situations because it joins
the long-term potential of the top-down approach
with the technological ease of the bottom-up
approach.

222

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Pedagogical Lessons

From a pedagogical point of view, there are several
lessons learned as well, which are interesting from higher
computer science education perspective. Within the SAG-
Tours project the following conclusions were derived:

1) Usage of complex technologies in bachelor projects

 Possible project type: A technology environment can
involve different technical skills such as different
programming languages, several tools, and different
hardware and networking technologies, as well as
conceptual knowledge in software / system
architectures, project management techniques, etc.
The usage of such a complex environment is still
feasible, although certainly not an easy project for
students.

 Enhanced motivation: Not only was the SAG-Tours
project feasible, but also the students were highly
motivated because they felt the „real world‟
characteristics of the project. During a visit to
Software AG, they were shown recent integration
software improvements and a roadmap, and they got
a guided tour including visiting Software AG‟s real
IBM mainframes. All these things enhanced student
motivation very much. At the end of the SAG-Tours
project, the students highly ranked the value of the
project for their computer science education.

 Team dependency: Although legacy modernization
projects are doable by students, at least reasonable
motivated students are required, who want to dig
into the game. The skills of students involved in the
SAG-Tours project have been „average‟ to „above
average‟. A project team of „below average‟ students
would likely not have finished the project with this
success. As said before, the students had a good
knowledge of Java, and database and networking
technologies but no prior exposure to Web services,
integration software or even mainframe technology.

 Reasonable environment: As known from software
projects in general, a proper organizational
framework is required. This includes a project room
with dedicated project team time and at least a
drawing board, dedicated machines, occasional
pizzas, a project poster to show etc.

2) SOA / Mainframe technology

 SOA principles / Web services: As expected usage of
Web services and SOA principles such as service-
oriented design, process analysis, well-defined
interfaces, etc., resulted in a reasonably better
„interface-oriented‟ software and system design.

 ‘Interesting mainframes’: Mainframe technology in
general was seen as a quite interesting topic,
especially when the students recognized that many
topics such as transaction processing have been
around for quite a while in computer science history.

 Willingness to ‘struggle through it’: Especially the
interplay of all the technologies and a mostly new
terminology for (although partially known) concepts
did require from the students some willingness to
„struggle through it‟. This clearly demanded student
motivation. But once that motivation had been
raised, the SAG-Tours project clearly became a self-
runner for the supervising professors.

VIII. CONCLUSION AND FUTURE WORK

There is a common belief that SAO enablement on the
application layer (also known as business logic wrapping) is
a very expensive approach to modernization of a legacy
application in case of a lack of legacy skills because of huge
efforts required to understand the legacy application.
However, the case study showed that this approach can
require rather few efforts if the right technologies are used.

In other words, integration of legacy applications into a
SOA is neither impossible nor too complex. Simple evidence
of this fact is that in the scope of the SAG-Tours project,
final-year bachelor students were able to do this within a
year, with an average effort of one day per week for 10
students. The students were experienced in Java coding and
network technologies in general. But they had no previous
experience in Natural coding, mainframe technologies
(Adabas in particular) or integration of legacy applications.

However, for a full SOA, we have to add some more
components to complete the integration architecture in
Figure 12. But the fact that it was possible without any major
problems in the context of the SAG-Tours project carried out
by bachelor students [8] shows that it is not necessary to
have a disproportional knowledge or to make huge efforts for
such integration.

Whether a particular integration would be possible in a
heterogeneous system environment (e.g., without using
newly offered components from the same vendor) or what
efforts would be required could be evaluated in future work
within another legacy modernization project.

ACKNOWLEDGMENTS

We would like to especially thank our students [16] from
the SAG-Tours project, who were instrumental in
implementing the above concepts.

Irina Astrova‟s work was supported by the Estonian
Centre of Excellence in Computer Science (EXCS) funded
mainly by the European Regional Development Fund
(ERDF).

REFERENCES

[1] A. Koschel, C. Kleiner, and I. Astrova. Mainframe application
modernization based on service-oriented architecture: a practical
industry cooperation case study. Proceedings of IARIA Computation
World: Future Computing, Service Computation, Cognitive, Content,
Patterns, ComputationWorld 2009, 298 – 301, 2009.

[2] S. Conrad, W. Hasselbring, A. Koschel, and R. Tritsch. Enterprise
application integration: Grundlagen - Konzepte - Entwurfsmuster –
Praxisbeispiele. Spektrum Akademischer Verlag, 2005.

[3] C. Date, An introduction to database systems 5th Edition, Volume I,
1992.

223

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[4] A. Erradi, S. Anand, and N. Kulkarni. Evaluation of strategies for
integrating legacy applications as services in a service oriented
architecture. In IEEE SCC, pages 257–260. IEEE Computer Society,
2006.

[5] S. Englet. Wiederverwendung von Legacy Systemen durch einen
bottom up Ansatz bei der Entwicklung einer SOA. In H. Hegering, A.
Lehmann, H. Ohlbach, and C. Scheideler, editors, GI Jahrestagung
(1), volume 133 of LNI, pages 96–100. GI, 2008.

[6] W. Keller. Enterprise Application Integration. Erfahrungen aus der
Praxis. Dpunkt-Verlag, 2002.

[7] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA: Service-
oriented architecture best practices. Prentice Hall, 2005.

[8] C. Kleiner and A. Koschel: Legacy vs. Cutting edge technology in
capstone projects: What works better? Proceedings of the 40th ACM
Technical Symposium on Computer Science Education (SIGCSE09),
2009.

[9] G. Lewis, E. Morris, and D. Smith. Analyzing the reuse potential of
migrating legacy components to a service-oriented architecture. In
CSMR ‟06: Proceedings of the Conference on Software Maintenance
and Reengineering, pages 15–23,Washington, DC, USA, 2006. IEEE
Computer Society.

[10] G. Lewis, E. Morris, D. Smith, and L. O‟Brien. Serviceoriented
migration and reuse technique (smart). In STEP ‟05: Proceedings of
the 13th IEEE International Workshop on Software Technology and
Engineering Practice, pages 222–229, Washington, DC, USA, 2005.
IEEE Computer Society.

[11] Software AG, SAG-Tours: SOA integration projects, Application
Document (Technical Report), Darmstadt, 2007.

[12] D. Smith. Migration of legacy assets to service-oriented architecture
environments. In ICSE COMPANION ‟07: Companion to the
proceedings of the 29th International Conference on Software
Engineering, pages 174-175,Washington, DC, USA, 2007. IEEE
Computer Society.

[13] G. Starke and S. Tilkov (Edts.). SOA-Expertenwissen: Methoden,
Konzepte und Praxis serviceorientierter Architekturen. Dpunkt-
Verlag, 2007.

[14] T. Erl. SOA Design Patterns, Prentice Hall, 2009.

[15] G. Lewis, E. Morris, and D. Smith. Analyzing the reuse potential of
migrating legacy components to a service-oriented architecture. In
CSMR ‟06: Proceedings of the Conference on Software Maintenance
and Reengineering, pages 15–23,Washington, DC, USA, 2006. IEEE
Computer Society.

[16] A. Koschel, C. Kleiner, M. Safris, A. Budina, O. Efimov, A.
Morozov, W. Schaefer, D. Schaefer, S. Kirstein, W. Zlobin, A.
Kolesnikov, and A. Brockwitz. Abschlussdokumentation für das
Bachelor-Projekt „SAG Tours‟. FH Hannover, Fakultät IV. 2008.

[17] G. Canfora, A. Fasolino, G. Frattolillo, and P. Tramontana. A
wrapping approach for migrating legacy system interactive
functionalities to service oriented architectures. Journal of Systems
and Software, 81(4):463–480, 2008.

[18] H. Sneed. Integrating legacy software into a service-oriented
architecture. CSMR‟06, IEEE CSP, 2006.

[19] SAP. NetWeaver Open Integration Platform.
https://www.sdn.sap.com/irj/sdn/developerareas/netweaver Last
access: June 2010.

[20] K. Channabasavaiah and K. Holley. Migrating to a service-oriented
architecture. IBM White paper, 2004.

[21] Oracle. Oracle IT modernization series: The types of modernization.
Oracle White paper, 2006.

[22] F. Mohammed. Oracle SOA Suite. Sys-Con XML Journal, 2007.

[23] Sofware AG. webMethods ApplinX.
https://www.softwareag.com/ApplinX Last access: June 2010.

[24] Microsoft Corporation. Enabling real-world SOA through the
Microsoft Platform. 2006.

[25] J. Ziemann, K. Leyking, T. Kahl, and W. Dirk. Enterprise model
driven migration from legacy to SOA. Software Reengineering and
Services Workshop, 2006.

[26] A. Erradi, S. Anand, and N. Kulkarni. Evaluation of strategies for
integrating legacy applications as services in a service oriented
architecture. In IEEE SCC, pages 257–260. IEEE Computer Society,
2006.

[27] T. Suganuma, T. Yasue, T. Onodera, and T. Nakatani. Performance
pitfalls in large-scale java applications translated from cobol. In
OOPSLA Companion ‟08: Companion to the 23rd ACM SIGPLAN
conference on Object oriented programming systems languages and
applications, pages 685–696, New York, NY, USA, 2008. ACM.

[28] Oracle. Oracle IT modernization series: Approaches to IT
modernization. Oracle White paper, 2009.

[29] T. Laszewski. SOA and the mainframe: Two worlds collide and
integrate.
http://www.theserviceside.com/tt/articles/content/SOAandtheMainfra
me/article.html, 2009 Last access: June 2010.

224

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Human-Computer Interaction Design Patterns: Structure, Methods, and Tools

Christian Kruschitz
Department of Informatics-Systems

University of Klagenfurt
Klagenfurt am Wörthersee, Austria

chris@isys.uni-klu.ac.at

Martin Hitz
Department of Informatics-Systems

University of Klagenfurt
Klagenfurt am Wörthersee, Austria

hitz@isys.uni-klu.ac.at

Abstract—Design patterns play an important role when
managing design knowledge for later reuse. In the Human-
Computer Interaction (HCI) community, design patterns are
an often used tool for sharing design knowledge among user
interface (UI) designers as well as non UI experts. An HCI
design pattern consists of several different components. The
first component is the structure of a pattern, which
encapsulates the description of the problem, its context, and
the solution suggested by the pattern. Relationships and
semantics are important when design patterns are used in
pattern management tools. To make sure that the developed
patterns satisfy their users, it is important to evaluate and
validate the patterns’ content.

Keywords – HCI patterns, History, Organization, Evaluation,
Validation, Standardization .

I. INTRODUCTION
This paper is an extended version of [41] (PATTERNS09),
and gives an in-depth overview on the literature and research
on Human-Computer Interaction (HCI) design patterns.

HCI design patterns are an important tool for knowledge
sharing in the domain of Human-Computer Interaction. To
avoid reinventing the wheel again and again, design patterns
identify and document best practice solutions to support
user interface designers in their daily work in order to
improve their productivity and make the design process
more efficient.

Over the past years, many research activities in the area
of design patterns have aimed to make them easier to use.
The research focused on the pattern structure, organizing
principles, semantics, relationships, evaluation of the
usefulness of patterns, and tool support. This paper gives an
overview of the above-mentioned topics.

We start with a historical overview of design patterns
from the birth of the pattern concept to today’s activities in
the community. In Section III, we provide definitions of
relevant terms. Section IV deals with the pattern structures
from the early beginnings in architectural design to pattern
forms, which are currently used by the HCI design pattern
community.

The following sections deal with research topics on
design patterns, starting with the Organizing Principles
which are focusing on the categorization schemes of design

patterns for easier retrieval of the right pattern for a given
design problem within an collection or pattern language.
Section VI shows how to identify relationships among
design patterns. Relationships represent a key concept to
gain the full reuse potential from individual patterns. Proper
consideration of relationships promises even more powerful
search and navigation opportunities. Section VII describes
research approaches on how to enrich design patterns with
semantic information. By using ontologies, it is possible to
share HCI design patterns across different collections and it
is easier to identify patterns for a specific design problem.
When using patterns in interface design it is important that
the used pattern is valid for the problem to be solved.
Therefore, Section VIII presents some approaches of how to
evaluate and validate HCI design patterns. Section IX
introduces some software tools, which have been developed
in the past years. The last section deals with standardization
approaches.

II. HISTORY
Christopher Alexander, architect and mathematician, first
talked about patterns in his PhD thesis which was
subsequently published as the book “Notes on the Synthesis
of Form” in 1964 (see timeline in Figure 1). Christopher
Alexander laid the cornerstone of the later well known
concept of design patterns. Alexander argues that design
problems are getting more and more complex so that they
exceed the designer’s abilities to come up with a solution
from scratch. Furthermore, problems cannot show its own
solution, only a set of requirements, when combined
together, the requirements create a new idea [4]. From 1975
to 1979 Alexander published several books on the concept of
design patterns and pattern languages [3][5][6]. Although his
concept was originally meant to support reuse of
architectural design knowledge, it found its way into the HCI
community where it was first mentioned 1986 by Donald
Norman and Stephen Draper [51].

Ward Cunningham and Kent Beck have adopted this
principle to object-oriented programming (OOP) and user
interface (UI) implementation in 1987 [8][55]. They
presented five patterns for designing window-based user
interfaces in Smalltalk:

• WindowPerTask
• FewPanes
• StandardPanes

225

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• NounsAndVerbs
• ShortMenus

This small “pattern language” was intended to give novices
in Smalltalk the possibility to use the language with all its
strengths and avoid pitfalls. Cunningham and Beck were
surprised of the good interfaces their users designed.

The Hillside Group, which now sponsors pattern
conferences all over the world, has organized the first PLoP
(Pattern Languages of Programs) conference in October
1994 with 80 participants.

Design patterns made their breakthrough in the software
engineering community when Erich Gamma et al. published
one of the bestselling books in software engineering,
“Design Patterns: Elements of Reusable Object-Oriented
Software” [25]. This book was awarded in the Journal of
Object Oriented Programming (September 1995 Issue) “the
best OO book of 1995” and “the best OO book of all times”.
From this time on many design patterns and pattern
languages in software engineering as well as in user interface
engineering have been published.

In HCI, the actual start of the design pattern era was 1996
when Tod Coram and Jim Lee published the first design
patterns of a pattern language for user-centered interface
design [14]. Their intention was to provide high level
patterns with which user interface designers could build
graphical user interfaces which are pleasurable and
productive to use. In 1997 the first CHI workshop on pattern
languages in user interface design was organized. The
participants explored the use of a pattern language in user
interface design to make HCI knowledge reusable in
different applications [7]. At this time, user interface toolkits
have emerged to support user interface designers and

software engineers. However, the workshop participants
stressed that a more general description of user interface
design know-how, which is detached from a specific
implementation platform, would be desirable and agreed that
design patterns could be an appropriate tool. Design patterns
reside on a higher level of abstraction than UI toolkits and
are not bound to source-code for a specific implementation
of the addressed problem. Furthermore, patterns are written
in such a general way that they give pattern users the
possibility to decide how specific widgets should be
arranged to concretize the patterns’ solutions.

Other pattern workshops focusing on HCI design patterns
followed (see Table 1). Beside the discussion about the
concept of design patterns in the HCI domain in workshops
around the world, several books were published addressing
design patterns and pattern languages for the HCI domain:

• “A Pattern Approach to Interactive Design”
provides design patterns for interactive exhibits and
user interface design [11].

• “The Design of Sites” is a comprehensive pattern
language to help developing customer-centered
websites [18].

• “A Pattern Language of Web Usability” provides a
pattern language for the design of usable websites
[27].

• “Designing Interfaces” is a collection of HCI design
patterns which addresses how to build desktop and
mobile user interfaces [60].

• “Patterns for Computer-Mediated Interaction”
provides patterns for the design of Human-
Computer-Human Interaction (HCHI) [56].

Figure 1: HCI Design Patterns Main Activities Timeline

226

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• “Designing Social Interfaces” written by the curator
of the Yahoo!Design Pattern Library. This book
provides patterns for designing a usable social
website [15].

• “User-Centered Interaction Design Patterns for
Interactive Digital Television Applications” shows
how television applications can be designed based
on design patterns [42].

Beside the publication of books, the World Wide Web is the
perfect medium to disseminate and publish HCI design
patterns across the HCI community. Over time, many
repositories were published, some have disappeared and
others are still a point of reference to UI designers. Some of
them are listed below with a short comment on each of them.
For a more detailed description of a selected set of the
mentioned Web repositories, cf. Section VIII.

• “Common Ground” is Jennifer Tidwell’s pattern
language for HCI design [59].

• “Designing Interfaces” is the companion website to
the same named book [60].

• “Little Springs Design – Mobile UI Design
Resources” provides a design pattern collection for
designing UIs for mobile devices [45].

• “UI Patterns – User Interface Design Pattern
Library”, describes design patterns for desktop and
mobile phone UI design [61].

• “Yahoo!Design Pattern Library” is a very popular
design pattern collection by Yahoo! [66].

• “Welie.com – Patterns in Interaction Design” is a
huge design pattern repository which addresses
patterns for Desktop- and Webdesign [64].

• “Portland Pattern Repository” maybe the oldest
pattern repository [53].

Beside the above mentioned design pattern repositories there
exists several design pattern portals providing a collection of
references to design pattern resources. These are:

• “The Interaction Design Patterns Page”, a collection
of links to interaction design pattern resources [19].

• “hcipatterns.org”, provides information to HCI
design patterns web resources, books and other
related stuff like papers [29].

• “The Pattern Gallery”, a listing of design pattern
forms with a short statement [23].

• “The Hillside Group”, is the organization who
organizes the PLoP conferences. A good resource to
start with the design pattern concept [58].

In the following section, we define the terms HCI design
pattern, design pattern catalogue/collection, and pattern
languages. Furthermore, we describe the components of HCI
design patterns (see Figure 2), and describe the
developments of the last years.

III. DEFINITIONS

A. HCI Design Pattern
An HCI design pattern describes a recurring problem
together with a proven solution. An HCI design pattern, in
the following referred to as “pattern” or “design pattern”,
has a well-defined form, which is dependent on the
individual author’s preferences. A pattern form should be
used consistently across a pattern language or pattern
collection. This makes it easier for pattern users to
understand the problem, context, and solution of a pattern
throughout a pattern collection / language. The pattern itself,
when it is part of a collection or a pattern language, may
have references to other patterns.

B. Design Pattern Catalogue / Collection
Patterns are stored in design pattern catalogues or
collections. The patterns in such a catalogue are categorized
to support faster navigation within the repository. In this
case, patterns show almost no relationships among each
other and thus do not form a fully interconnected system.
Instead several patterns stand more or less alone and have
no or few connections to predecessor or successor patterns.
Furthermore, such a collection usually does not completely
cover a specific application domain.

C. Pattern Language
In contrast to a pattern catalogue / collection, a pattern
language is a complete set of patterns for a given family of

Conference Year Title Ref.
INTERACT 1999 Usability Pattern Languages [28]

ChiliPLoP 1999 CHI Meets PLoP [9]

CHI 2000 Pattern Languages for Interaction
Design: Building Momentum [24]

CHI 2001 Patterns: What’s in it for HCI (Panel) [10]

CHI 2003 Perspectives on HCI Patterns [22]

Table 1: Workshops on HCI Design Patterns

Figure 2: Components of HCI Design Patterns

HCI
Design
Pattern

Pattern
Form

Organizing
Principles

Relationships

SemanticsStandard-
ization

Evaluation /
Verification

Tool
Support

227

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

design problems in a given domain. A pattern language
describes problems by means of high-level design patterns,
which may be solved by lower-level design patterns. The
design patterns are connected through relationships, so that
they constitute a network.

In a pattern language, the “words” are the patterns, while
the connections between patterns represent the “rules of
grammar” which are situated in the pattern itself. When
words and rules of grammar are combined, a “sentence” is
generated. Sentences can be built in many different forms
when the rules of grammar are followed. So there is not
only one path through a pattern language, it offers several
possibilities to solve a design problem. A good example is
“The Design of Sites” by van Duyne et al., a pattern
language that allows designers to articulate an infinite
variety of Web designs [18]. Figure 3 visualizes a part of a
pattern language with focus on online shopping [62].

IV. PATTERN FORM
Patterns are written by researchers and UI designers in a
well-defined format, the so-called pattern form. This form is
dependent on the author’s preferences but several canonical
forms have been established in the history of design
patterns. These are described below in more detail.

A. Alexandrian Form
Christopher Alexander has invented the concept of design
patterns as a problem / solution pair and presented them in a
common format [3], which consists of:

• Picture: Shows an archetypal example of the pattern
in use.

• Introductory Paragraph: This sets the pattern in
the context of other, larger scale patterns.

• Headline: A short description of the problem.
• Body: Detailed description of the problem.
• Solution: The solution of the pattern which is

written as a design instruction.
• Diagram: Sketches the solution in the form of a

diagram.
• Closing Paragraph: Gives references to other

patterns and describes how this pattern relates to
with other, smaller patterns.

This pattern form is used with minor changes by Todd
Coram and Jim Lee [14], Jan Borchers [11], Ian Graham
[27], Mark Irons [37], Douglas van Duyne et al. [18], and
Eric Chung et al. [13].

B. Software Engineering Design Patterns
There are influential approaches stemming from the software
engineering domain, which are briefly described below:

THE GANG OF FOUR FORM

This form is used in the book “Design Patterns: Elements of
Reusable Object-Oriented Software” [25] and for many other
OO software design patterns from different authors.

• Pattern Name and Classification: The pattern
name describes in a word or two what the pattern is

about and the classification groups the pattern with
similar problems.

• Intent: A short statement what the pattern does and
some words about its rationale and intent.

• Also Known As: Alternative names for the pattern.
• Motivation: A scenario how the class and object

structures solve the addressed problem.
• Applicability: Describes the situation in which the

design pattern can be applied.
• Participants: Addresses which classes and/or

objects participate in the design pattern.
• Collaborations: Represents how the participants

collaborate with each other.
• Consequences: Tells the user how the pattern

supports its objectives.
• Implementation: Describes how to implement the

pattern and how to overcome common pitfalls.
• Sample Code: Contains some code fragments on

how to implement the pattern.
• Known uses: Examples of implementations

proving the value of the pattern.
• Related Patterns: References to other patterns

which are closely related.

THE PORTLAND FORM

The Portland Pattern Form [53] is not as clearly structured as
the others. The patterns are structured as text paragraphs.
Ward Cunningham describes the form he uses in the Portland
Pattern Repository as follows:

 “Each pattern in the Portland Form makes a
statement that goes something like: ‘such and so
forces create this or that problem, therefore, build a
thing-a-ma-jig to deal with them.’ The pattern takes
its name from the thing-a-ma-jig, the solution. Each
pattern in the Portland Form also places itself and
the forces that create it within the context of other
forces, both stronger and weaker, and the solutions
they require. A wise designer resolves the stronger
forces first, then goes on to address weaker ones.
Patterns capture this ordering by citing stronger
and weaker patterns in opening and closing
paragraphs.”

THE COPLIEN FORM

James Coplien used the so-called Canonical Form to
describe his patterns. This form is also called Coplien Form
because he was one of the more famous pattern writers in the
early stages of the software patterns movement [1].

• Name: Describes the name of the pattern.
• Problem: Addresses which problem will be solved

by the pattern.
• Context: Tells the user in which context the

pattern can be applied.

228

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Forces: This element describes (possibly
conflicting) requirements and their impact on the
design pattern.

• Solution: Shows the user how to balance the forces
and solve the problems.

• Resulting Context: States which context is
generated by applying the pattern.

• Rationale: Describes why the solution is
implemented in such a way.

• Author: Name of author and creation date.
Software engineers have adapted the Alexandrian Form to
describe their patterns. Significant changes are the
introduction of the content elements – Implementation,
Sample Code and Participants, which describe OO
programming facets like source code and UML diagrams.

C. HCI Design Pattern Forms

UI PATTERN FORM

This pattern form was developed at the INTERACT patterns
workshop in 1999 [28]. It comprises seven content elements:

• Name: Shortly describes the pattern’s intent.
• Sensitizing Example: This component should

sensitize the reader to the application of the pattern.
It is usually a screenshot or drawing of the pattern’s
solution.

• Problem Statement: Describes the conflicts (trade-
offs) between “forces” guiding the design approach.

• Body: Textual description of the pattern’s intent.
• Solution Statement: Tells what to do (and not how

to do it).
• Technical Representation: This example solution is

more detailed and intended to inform HCI experts
about the pattern’s solution.

• Related Patterns: References to successor patterns
which enhance or are similar to the pattern.

TIDWELL FORM

Jenifer Tidwell is using a very minimalistic form, which is
used throughout her book “Designing Interfaces” and the
accompanying website [60].

• Name: Describes the pattern’s intention and
defines a unique reference number.

• Sensitizing Image: This image sensitizes the
reader to the pattern’s solution.

• What: Short problem statement.
• Use When: Describes the context in which this

pattern can be used.
• Why: Describes the design rationale.
• How: Represents the solution part of the pattern.
• Examples: Screenshots of the instantiated pattern

with a short description.

HCI design pattern authors are not using content elements
such as Implementation or Source Code for their patterns. It
is not necessary to provide source code for demonstration
purposes of the pattern’s solution. The problem is that
interaction principles are implemented in many different
programming languages. Therefore, the pattern is written in a
more abstract way than software patterns. The pattern form is
significantly stronger based on the Alexandrian Form.

More pattern forms, which were recently used, can be
found at Sally Fincher’s portal [23].

V. ORGANIZING PRINCIPLES
Alexander has organized his pattern language into levels of
physical scale. He starts with high-level patterns which
describe the size and distribution of towns and proceeds in
several steps to low-level patterns which describe individual
rooms [3].

In analogy, an organizing principle for HCI patterns, as
Fincher and Windsor mentioned, should allow users to find
patterns they need within a large repository. An organizing
principle should meet at least the following objectives (cited
from [24]):

• Taxonomise – It must allow finding and selecting
material from a large repository.

• Proximate – It must allow users to locate
supporting, perhaps inter-related, patterns
applicable to their solution.

TASKS INFORMATION INTERACTION
Retrieval Retrieval tasks have (static) information passing

from the artefact to the user(s). The flow is usually
initiated by the user(s).

Monitoring Monitoring tasks have (dynamic) information
passing from the artefact to the user(s). The
information may come from ‘beyond’ the artefact.
The flow is usually initiated by the artefact.

Controlling Controlling tasks have information passing from
the artefact to the user(s) and a separate flow from
the user(s) to the artefact. The flow may be
initiated by either the user(s) – proactive control –
or by the artefact – reactive control

Construction Construction tasks have the user(s) putting new
information into the artefact

Transaction Transaction tasks have the user(s) putting linked
changes into the artefact. They are often
accompanied by a corresponding change in the
outside world.

Modification Modification tasks have user(s) changing
information already in the system. They may be
modifying ‘attribute values’ or ‘structure’

“Calculation” Calculation tasks have the user(s) putting
information into the system which it then
transforms and passes back to the users (not
necessarily synchronous).

Workflow Workflow tasks have the system providing
information to the user(s) which they then
transforms and passes back to the system (not
necessarily synchronous).

Communication Communication tasks have one group of users
putting information into the system that it passes
to another group of users.

Table2: Organizing Principle by Fincher and Windsor [21]

229

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Evaluative – The problem should be considered
from different viewpoints. So that it is possible to
evaluate and change the users approach or to
confirm the quality of their existing solution.

• Generative – It would be advantageous to support
users to consider the problem from different points
of view and allow for building new solutions, which
have not been previously considered.

Fincher and Windsor have adapted the Alexandrian structure
of scale to UI design, starting with a high-level category
Society, and descending via System, Application, UI
Structure and Component to the low-level categories
Primitive and Physical Detail. However, they do not
consider this categorization sufficient for UI designers to
find a pattern for their problem. So they suggested a second
and a third structure. The second one is based on the design-
by-type-of-task, where they have defined tasks based on the
information flow, which includes categorizations such as
Task-Retrieval, -Monitoring, -Controlling, -Construction and
others (see Table 2). The reason for the last categorization
structure is as the authors stated in their article: “It is as
common, as ‘natural’, for UI designers to structure their
design not around the nature of the interaction (the ‘how’),
but the stuff that is to be interacted with (the ‘what’)”. So
they suggested another category to satisfy UI designers
which comprises categories such as Volume, Complexity,
Structure, and Dynamics. Structure is further subdivided into
amorphous, sequential, hierarchical, directed acyclic graph,
and web. Dynamics is subdivided into creation / termination,
rate of change and patterns of change.

Another approach has been put forward by Mahemoff

and Johnston [46]: UI patterns can be assigned to four
different categories. First, the Task category comprises all
patterns addressing actions users might perform. Second, the
User Profile category gathers patterns focusing on user
groups. Third, User-Interface Elements helps designers and
programmers to understand when to use a specific interface
element or widget. Finally, Entire System patterns capture
the issues of specific kinds of systems.

Van Welie and van der Veer [62] are organizing their
patterns by means of “scaling the problem”. As design is
considered a top-down activity, their categorization is top-
down as well. Problems are scaled from high-level problems
like Business Goals to more detailed problems like Task
Level and Action Level as shown in Figure 3. Another
possibility to scale or group design patterns suggested by van
Welie and van der Veer are to organize them according to
their Function or to Problem Similarity, where Function can
be subdivided into Navigation, Searching, Product, Display,
Layout, and other sub-categories. Yet another organization
principle suggested by van Welie and van der Veer is to
categorize patterns according to user tasks and user type. A
user task can be selecting things, finding things and sorting.
This can be done by different types of users, namely novice
users, intermediate users, and expert users.

VI. RELATIONSHIPS
Relationships between design patterns are a key concept to
gain the full reuse potential of individual design patterns. In
HCI patterns, relationships are typically described very
briefly, only specifying the connections to other patterns
which may be applicable to a particular design problem.
However, proper consideration of relationships promises

Figure 3: A part of a pattern language for Web design with focus on shopping [62]

230

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

even more powerful search and navigation opportunities. In
the past, software engineering researchers have proposed
possible categorization approaches for relationships in the
domain of OOP patterns.

Primarily, relationships help to understand the complex
interdependencies among design patterns. Pattern users can
use relationship information in addition to the
aforementioned pattern classifications to identify patterns
which are applicable to specific design problems.
Furthermore, relationships can be exploited for browsing
large re-use repositories [36]. To improve and quicken the
finding process, the browsing paradigm can be combined
with the search paradigm as well. First the user searches for a
specific design problem and based on the query results it is
possible to browse through the repository to identify the best
matching solution.

Noble’s [50] proposal consists of three primary
relationships (a pattern uses another pattern, a pattern refines
another pattern, a pattern conflicts with another pattern) and
a number of secondary relationships such as used by, refined
by, variant, similar, combines, and others.

Zimmer’s [67] approach deals with the classification of
relationships in Gamma’s [25] design patterns collection. He
classifies relationships into three categories: a pattern uses
another pattern in its solution, a pattern is similar to another
pattern, and a pattern can be combined with another pattern.
Beside this categorization, it is possible to modify existing
relationships to use their altered version between different
patterns. The application of categorized relationships allows
to structure patterns in different layers. Zimmer has
identified three semantically different layers: basic design
patterns and techniques, design pattern for typical software
problems, and design patterns specific to an application
domain. Van Welie and van der Veer have indentified
relationships similar to the relationship between classes in
the software engineering domain [62]. They are using

Association, Specialization and Aggregation to describe their
identified relationships among design patterns. To illustrate
the relationships they have provided examples how the
relationships work. Figures 4, 5 and 6 show a summary of
their explanations.

Beside the relationships discovered by van Welie we
have investigated another one. It is called Anti-Association.
It is similar to Association but it is a connection to a so-
called anti-pattern, a pattern describing a bad solution
approach.

VII. SEMANTICS
Beside the relationships, semantics of design patterns can be
described using ontology. Throughout the Web community
there exist many design patterns which describe the same
problem but with a different vocabulary. So it is difficult to
understand and to access this design knowledge. Therefore,
an ontology or formalized semantics are necessary to
provide a common vocabulary and a machine processable
form of design patterns to be used by pattern management
tools.

Over the years several approaches have been developed
to overcome the aforementioned problem. Below we
describe some of the research activities on this topic
regarding HCI design patterns.

Montero et al. describe Web design patterns using
DAML+OIL [48]. In their approach they are dealing with
knowledge from two different areas. On the one hand there
is the Hypermedia Models area which describes the
elements of Web applications and is defined in four basic
terms:

• Node – a place holder which contains a number of
content elements.

• Content – a unit of information.
• Link – a connection between two or more nodes or

contents.
• Anchor – the source or target of a link.

On the other hand, the Design Patterns area which represents
design patterns with respect to their essential content
elements. Therefore, a pattern in their ontology is defined in
five different terms:

• Name – identifies the design pattern.
• Category – is used for classifying the pattern.
• Problem – describes the context in which the

pattern can be applied and the problem it addresses.
• Solution – shows how the problem can be solved.
• Related Patterns – is referencing other similar or

complementary patterns.
The ontology itself is specified in DAML+OIL [57], and is
subdivided into three layers. The first layer represents the
pattern and hypermedia elements and is the basis for the
second layer, which represents the set of hypermedia design
patterns. Finally, the instances of the hypermedia design
pattern layer represent the third layer. For a more detailed
specification and examples see [48].

Figure 4: Specialization - The AD.SEARCH Pattern

“is-a” specialization of the SEARCH PATTERN

Figure 5: Aggregation - SHOPPING CARD consists of

one or more design patterns.

Figure 6: Association - SHOPPING CARD is "related to"

PRODUCT COMPARISON

231

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Another approach is used by Scott Henninger and
colleagues [31][32][33][34][35]. They are focusing on the
development of a Web-based ontology to represent design
patterns which are computed by agents. Their research goal
is to put the loosely coupled pattern collections into strongly
coupled pattern languages which represent the context in
which usability patterns can be applied. Furthermore, it was
important to find mechanisms for validating design patterns.
Tool support plays a crucial role in their approach because it
should be possible to get useful patterns for a specific
design problem when going through a question and answer
(Q&A) sequence. The results of which will be computed by
an inference engine.

Henninger uses OWL (Web Ontology Language) [52] to
define a metamodel for intelligent pattern languages. The
metamodel describes pattern properties. Some of the
properties Henninger is using are [33]:

• hasProblem – describes the design needs of an
actor for which the pattern was created.

• hasForces – addresses constraints and tradeoff in
choosing the solution suggested in the pattern.

• hasSolution – tells the user which actions must be
taken to solve the problem.

• hasContext – sets the context where the design
pattern can be useful

• hasRationale – describes why the solution is
effective.

Beside these generic properties other local semantics and
range restrictions are defined in the metamodel due to the
fact that the metamodel supports different types of design
pattern concepts (i.e. OOP-design patterns, HCI design
patterns). Furthermore, the metamodel contains several
types of semantic relationships to describe the connections
between design patterns:

• uses – Pattern A uses Pattern B if the usage is
optional [67].

• requires – Pattern A requires Pattern B [67].
• alternative – Two patterns are alternative if they

share the same problem and context but exhibit
different solutions [33].

• conflictsWith – Pattern A conflicts with Pattern B
if they should not be used together in a design
[33].

Figure 7 shows a part of an instance of a usability pattern
with the developed metamodel. The metamodel builds on
the HCI design pattern standardization approach by Fincher
et al. called PLML (cf. Section IX) and is enriched with
semantically meaningful pattern descriptions and
relationships between patterns. The pattern in Figure 4 is a
SHOPPING CART pattern which addresses the problem of
storing products that a user has selected. This is
accomplished with the property restriction
" hasProblem (Storing_Products ⊓ hasWebPages ≥ 1)".

The restriction is defined in OWL DL (OWL
Description Logic) to formalize the properties for OWL
reasoners. In addition to the property hasProblem the
pattern has other properties which define the problem and
requirements on possible solutions. For a more in-depth
description of Henninger’s design pattern metamodel see
[33].

To facilitate tool support Henninger combines BORE
[30, 32] and the semantic Web representation of design
patterns. BORE (Building on Organizational Repository of
Experiences) is used to demonstrate semantic Web
technologies to support the design of user interfaces. The
design tool can define a methodology with a set of activities
which describe the development process. It is using Q&As
to customize the methodology which consists of all possible
activities which are necessary to design a user interface.
BORE builds on the experiences of many usability projects
and various contexts and it uses a rule-based representation
that captures the requirements of the system.

VIII. EVALUATION AND VALIDATION OF DESIGN
PATTERNS

There are a lot of HCI design patterns available in the
community. Some are good and some are less valuable. The
usefulness of a pattern is often subject to the eye of the
beholder. But how do we measure the usefulness of design
patterns according to quality criteria or formal metrics? We
have investigated two approaches which are dealing with
the evaluation of patterns and pattern catalogues in HCI as
well as in the software engineering domain in a structured
way.

Wurhofer et al. presents a Quality Criteria Framework
which features five main quality criteria for HCI design
patterns [63] and which is based on approaches from
different researchers [10][39][47][49]. Figure 8 shows a
summary of the quality criteria suggested by Wurhofer. In
the following we give a short summary of each criterion
suggested by the framework.

Figure 7: OWL Description of a Usability Design Pattern [33]

232

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Findability – means that a pattern must be found
easily within a pattern language / collection. This
implies that they must have a meaningful
categorization and pattern name.

• Understandability – demands that the patterns’
content elements (name, problem, solution,…)
must be written in an clear and simple to
understand manner. This is achieved by the below
described sub-criteria:
- Completeness of Information – states that that

the pattern must carry all relevant information
(forces, problem, context, solution, example,
etc.).

- Language – means that the pattern must be
written in easy understandable terms and short
sentences.

- Problem-Centeredness – all parts of the pattern
should be centered on the problem and the
problem solution relationship must be clear.

- Balance between Concreteness and
Abstractness – the pattern should not be too
abstract nor to detailed.

- Comprehensiveness of Pattern Parts – this
criterion ensures that each part of the pattern
covers everything important to the user.

• Helpfulness – ensures that each pattern is written
in such a style that the pattern gives the user as
much information as possible to implement it
worries. This criterion is achieved through six sub-
criteria:
- Improvement of Design / Architecture – the

quality of a pattern is verified if it helps to
improve the design or development of a
system.

- Problem Solving – the pattern should help to
avoid common pitfalls by using common
solutions to the addressed problem.

- Support of Communication – states that the
design pattern should serve as the common
“language” for all stakeholders.

- Capturing of Knowledge – this criterion stands
for the reuse aspect of the design pattern. It
should capture relevant knowledge in its
domain to the user.

- Memorability – the main idea of a pattern must
be kept in mind of the stakeholders. This can be
achieved using an appropriate and easy to
remember pattern name or a good sensitizing
image.

- Feasibility – the patterns solution should be
realized easily.

• Empirical Verification – means that a pattern
based on empirical studies has a higher quality than
patterns based on personal experience.

• Overall Acceptability – states how much a pattern
user agrees with the pattern’s content. To fulfill

this criterion it is important to support the pattern
user’s subjective acceptance of a pattern. This can
be achieved by increasing the Overall Believe in
Pattern and the Overall Agreement with Pattern.

With this criteria catalogue it is possible to validate design
patterns according to their quality.

Another approach has been developed by Cutumisu et al.
[16]. They propose how to evaluate the effectiveness of a
design pattern catalogue or compare different catalogues
according to their effectiveness. The authors developed a
metric with which it is possible to validate patterns within
an existing design pattern catalogue. They defined four
metrics which are dependent on a specific application. That
means the metrics take the patterns which are used in a
specific application and compare them using various
formulae to the used pattern catalogue. Cutumisu et al.
define the four metrics as follows:

• usage – is the ratio of patterns used in the
application that come from the catalogue to the
total number of patterns in the catalogue.

• coverage – is the ratio of catalogue patterns used in
the application to the total number of patterns used
in the application.

• utility – is the ratio of pattern instances in the
application whose patterns are in the catalogue to
the total number of patterns used in the application
that come from the catalogues.

• precision – is the ratio of the total number of
patterns used in the application that come from the
catalogue to the number of adaptations required for
these pattern instances.

If a pattern catalogue has a high usage, coverage, utility, and
precision it is, according to Cutumisu et al. a good pattern
catalogue. Although the pattern metrics are designed for
software patterns, it is easy to adapt them to the HCI design
pattern domain. For a more detailed description and the
equations for each of the metrics see [16].

IX. TOOL SUPPORT
There are various tools which are exploiting the reuse
potential of HCI design patterns. These tools can be
categorized into online libraries / catalogues, pattern
management tools, and pattern-based UI design tools. Due
to space limitation we describe, in our mind, the most
important ones.

Figure 8: Components of the Quality Criteria Framework [63]

233

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Pattern Libraries / Collections
Pattern libraries or collections are focusing on the
categorization and dissemination of patterns via the Internet.
Sometimes there are basic mechanisms provided to create
and submit patterns to a repository. Such an online pattern
library is the Yahoo! Design Pattern Library [43, 66], a part
of the Yahoo! Developer Network. The founder’s intention
of the Yahoo! Library was to provide a tool to increase the
consistency and usability across Yahoo! and the
productivity of the UI design team. Today the design pattern
library is an often-used tool for UI designers and
researchers. Currently, there are about 47 patterns in six
categories available. Each pattern undergoes an extensive
review process within Yahoo!. They are reviewed, revised,
and rated. After review, the patterns are published and made
available to the public. All patterns in this library are under
the Creative Commons Attribution 2.5 License (June 2009).
Main features of the library are:

• A blogging tool for discussing patterns in the
library.

• A history function which helps users to see which
changes were made over time.

Further online pattern libraries are Welie.com [64], which
provides 130 UI design patterns with the possibility to
export them to PLML [22]. Furthermore, website users can
comment and discuss certain patterns.

As an addition to her Designing Interfaces book [60],
Tidwell provides a pattern library with selected patterns
where she updates and publishes new patterns. This library
is available at [60].

B. Pattern Management Tools
Pattern management tools are focusing on manipulating
patterns, navigating through pattern libraries, and providing
mechanisms to add relationships between patterns to create
a pattern language. They are easy to access and pattern users
can communicate with others via the pattern repository.

MOUDIL (Montreal Online Usability Patterns Digital
Library) [26] is a comprehensive framework for capturing
and disseminating patterns. It provides features and tools
like:

• Submission of patterns in different formats.
• International review and validation of submitted

patterns.
• A pattern editor for adding semantic information to

the patterns.
• A pattern navigator which allows navigating in

different ways through the pattern library.
• A pattern viewer which provides different views of

the pattern.
Unfortunately, the prototype of this pattern library is not
longer available online.

Currently under development is another online pattern
management tool which employs XPLML [40], an
improved version of PLML. XPLML provides a set of
common content elements, and it is possible to add semantic
information to design patterns. The tool will offer features
such as:

• A pattern editor with functions to support pattern
authors in writing and updating design patterns.

• A design pattern language visualization tool for
presenting relationships between patterns in a
pattern language.

• The pattern form transformation allows pattern
users to change the presentation form of a design
pattern. For example, if a user prefers the
Alexandrian form, the tool provides mechanisms to
change the pattern form from e.g. Tidwell’s to the
preferred (Alexandrian) form in order to maximize
user acceptance.

• A wiki functionality which should involve all
interested users in developing new and improving
existing patterns.

C. Pattern-based UI design tools
The last category describes pattern-based UI design tools.
They provide functions for using design patterns in UI
design activities. Patterns are used for generating user
interfaces in a semi-automatic way. These tools usually
provide a defined set of UI patterns, which can be used
within the tool as building blocks to create the UI system.

PIM (Patterns in Modeling) [54], a model-based UI
development tool, aims to support UI designers in
composing the UI models through pattern application. With
PIM it is possible to develop user interfaces on a more
abstract and conceptual way. This helps designers to handle
very complex systems more easily. Users can put their
attention on conceptual properties rather than being
distracted by technical and implementation details.

A further tool, developed by Ahmed and Ashraf, is
called Task Pattern Wizard [2]. It is based on XUL (XML
User Interface Language) [65] to describe the patterns and
models. UI design patterns are used as modules for
establishing task, dialog, presentation, and layout models.
The tool guides the UI designer through the pattern adaption
and integration process and it provides functions for using,
selecting, adapting, and applying patterns within the
proposed framework PD-MBUI (Pattern-Driven and Model-
Based User Interface). The framework tries to unify the
pattern-driven and model-based approaches, two methods
for UI and software engineering. A more detailed
description of the framework is given in [2].

DAMASK, developed by Lin and Landay [44], is a
prototyping tool to produce Web UI’s across different
devices with the support of design patterns. The tool relies
on two components. The layer component specifies which
parts of the UI can be used across all devices and which can
only be used on a single device. The second component is
the pattern component: In DAMASK, an HCI design pattern
consists of pre-defined UI elements that are optimized for
each device. The pattern repository of DAMASK has 90
patterns from “The Design of Sites” [18] which can be
extended by the UI designer. The UI designer sketches out a
UI for one device and DAMASK constructs an abstract
model from which it generates the UI’s for the other
devices. Once the first layout is established, the UI designer

234

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

can refine this layout and DAMASK changes the UI’s for the
other devices accordingly. Furthermore, the tool provides a
function for testing the established UI’s.

X. STANDARDIZATION APPROACHES
To our knowledge, the only serious standardization
approach was started at a workshop at a Human-Computer
Interaction conference in 2003. Due to the vast amount of
design pattern forms, Fincher et al. [22] proposed a standard
pattern form for HCI patterns called PLML (pronounced
“pell mell”). The goal was to provide a standard pattern
form where common elements should help pattern authors
and users to use design patterns across different collections.
PLML is specified in XML and comprises 16 content
elements on which the workshop participants agreed. It
turns out that only van Welie’s pattern collection [64] makes
use of PLML. He provides an export function to transform
patterns from his collection to PLML. However, this
approach suffers from certain technical limitations as
Kamthan points out [38]. He mentions that the design
principles behind the PLML DTD are not specified and that
elements are not strictly enough defined, because of the
broad use of the XML ANY element in the specification.
Kamthan also points out that PLML does not describe
semantic relationships between patterns, which are
necessary when using PLML in a pattern language.

 Since the publication of PLML, researchers tried to
improve it. PLML v. 1.2. developed by Deng et al. [17], is
an augmented PLML with some additional elements but
does not solve serious shortcomings such as the lack of
formalized relationships among patterns.

XI. CONLUSION AND FUTURE WORK
The concept of HCI design patterns is widely accepted tool
to represent design knowledge in a reusable format. In the
last years many concepts concerning the components of HCI
patterns were proposed, such as pattern forms, organizing
principles, standardization approaches, ontology, evaluation
and verification of patterns. This diversity leads to blurred
conceptualization and may confuse especially novice users.
To exploit the full reuse potential of patterns, a unification
of the above discussed components should be established,
which does not constrain pattern authors in their work but
supports pattern users by easing understanding and
instantiation of patterns to specific design problems [40].
Therefore a universal pattern form needs to be established
and enriched with semantics. This article shows that there
are many HCI design pattern resources available on the
WWW and because of the vast amount of different design
patterns available there exists many different forms as well.
To overcome the problem, an appropriate ontology would
help to share and disseminate HCI design patterns among
different repositories and help the authors and pattern users
to work more efficient with the provided design knowledge.
Therefore, a lot of research must be undertaken which
includes analyzing the different design pattern forms and
examining the content elements’ semantics. Furthermore, to
agree on a “standard” pattern form it is necessary to discuss

the results of the above mention research with the HCI
design pattern community to agree on a unified HCI design
pattern structure.

REFERENCES
[1] M. Adams, J. Coplien, R. Gamoke, R. Hanmer, F. Keeve, and K.

Nicodemus, “Fault-Tolerant Telecommunications System Patterns”,
in Pattern Languages of Program Design 2, pp. 549-562, Addison-
Wesley, 1996

[2] S. Ahmed and G. Ashraf, “Model-based User Interface Engineering
with Design Patterns”, in Journal of Systems and Software, vol. 80,
pp. 1408-1422, 2007

[3] C. Alexander, S. Ishikawa, and M. Silverstein, “A Pattern Language”,
Oxford University Press, 1977

[4] C. Alexander, “Notes on the Synthesis of Form”, Harvard University
Press, 1964

[5] C. Alexander, “The Oregon Experiment”, Oxford University Press,
1975

[6] C. Alexander, “The Timeless Way of Building”, Oxford University
Press, 1979

[7] E. Bayle, “Putting it all together: Towards a Pattern Language for
Interaction Design: A CHI workshop”, in SIGCHI Bulletin, vol. 30,
pp. 17 – 23, 1998

[8] K. Beck and W. Cunningham, “Using Pattern Languages for Object-
Oriented Programs”, OOPSLA’87:Workshop on the Specification
and Design for Object-Oriented Programming, 1987

[9] J. Borchers, “CHI Meets PLoP: An Interaction Patterns Workshop”,
SIGCHI Bulletin, vol. 32, 2000

[10] J. Borchers and J. Thomas, “Patterns: What’s in it for HCI?”, CHI’01:
Extended Abstracts on Human Factors in Computing Systems, ACM
Press, pp. 225 - 226, 2001

[11] J. Borchers, “A Pattern Approach to Interactive Design”, Wiley, 2001
[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stahl,

„Pattern-Oriented Software Architecture: A System of Patterns“, vol.
1, Wiley, 1996

[13] E. Chung, J. Hong, J. Lin, M. Prabaker, J. Landay, and A. Liu,
“Development and Evaluation of Emerging Design Patterns for
Ubiquitous Copmuting”, in Proc. Of Designing Interactive Systems,
2004

[14] T. Coram and J. Lee, “Experiences – A Pattern Language for User
Interface Design, 1996, Available at:
http://www.maplefish.com/todd/papers/Experiences.html, Accessed
on: June 30, 2010

[15] C. Crumlish and E. Malone, “Designing Social Interfaces: Principles,
Patterns, and Practices for Improving the User Experience”, O’Reilly
Media, 2009

[16] M. Cutumisu, C. Onuczko, D. Szafron, J. Schaeffer, M. McNaughton,
T. Roy, J. Siegel, and M. Carbonaro, “Evaluating Pattern Catalogs:
The Computer Games Experience”, ICSE '06: Proceedings of the 28th
International Conference on Software Engineering, ACM, pp. 132—
141, 2006

[17] J. Deng, E. Kemp, and G. Todd, “Focussing on a Standard Pattern
Form: The Demelopment and Evaluation of MUIP”, in Proc. of the
Seventh ACM SIGCHI New Zealand Chapter’s International
Conference on Computer-Human Interaction, pp. 83-90, ACM Press,
2006

[18] D. van Duyne, J. Landay, and J. Hong, “The Design of Sites:
Patterns, Principles, and Processes for Crafting a Customer-Centered
Web Experience”, Addison-Wesley, 2003

[19] T. Erickson, “The Interaction Design Patterns Page”, Available at:
http://www.visi.com/~snowfall/InteractionPatterns.html, Accessed on
June 30, 2010

[20] S. Fincher, “The Pattern Gallery”, Available at:
http://www.cs.kent.ac.uk/people/staff/saf/patterns/gallery.html,
Accessed on June 30, 2010

235

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[21] S. Fincher, J. Finlay, S. Greene, L. Jones, P. Matchen, J. Thomas, and
P. Molina, “Perspectives on HCI Patterns: Concept and Tools”,
CHI’03: Extended Abstracts on Human Factors in Computing
Systems, ACM Press, pp. 1044 – 1045, 2003

[22] S. Fincher, “Perspectives on HCI Patterns: Concepts and Tools
(introducing PLML)”, Interfaces, vol. 56, pp.26-28, 2003

[23] S. Fincher, “The Pattern Gallery”, Available at:
http://www.cs.kent.ac.uk/people/staff/saf/patterns/gallery.html,
Accessed on June 30, 2010

[24] S. Fincher and P. Windsor, “Why Patterns are not enough: Some
Suggestions Concerning an Organising Principle for Patterns of UI
Design”, CHI’2000 Workshop on Pattern Languages for Interaction
Design: Building Momentum, 2000

[25] E. Gamma, R. Helm, R. Johnson, andJ. Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software”, Addison-Wesley
Reading, 1994

[26] A. Gaffar, H. Javahery, A. Seffah, and D. Sinning, “MOUDIL: A
Comprehensive Framework for Disseminating and Sharing HCI
Patterns”, CHI’03 workshop: Perspectives on HCI patterns: Concepts
and Tools, 2003

[27] I. Graham, “A Pattern Language of Web Usability”, Addison-Wesley,
2003

[28] R. Griffiths, L. Pemberton, and J. Borchers, “Usability Pattern
Language Workshop”, at INTERACT’99, Available at:
http://www.it.bton.ac.uk/staff/rng/UPLworkshop99/PositionPapers.ht
ml, Accessed on: June 30, 2010

[29] “HCIPATTERNS.ORG”, Available at: http://www.hcipatterns.org/,
Accessed on June 30, 2010

[30] S. Henninger, “Accelerating the Successful Reuse of Problem Solving
Knowledge Through the Domain Lifecycle”, ICSR '96: Proceedings
of the 4th International Conference on Software Reuse, IEEE
Computer Society, 1996

[31] S. Henninger, M. Keshk, and R Kinworthy, “Capturing and
Disseminating Usability Patterns with Semantic Web technology”,
Workshop at CHI 2003: Perspectives on HCI Patterns: Concepts and
Tools, 2003

[32] S. Henninger, “Tool Support for Experience-Based Software
Development Methodologies”, in Advances in Computing, vol. 59,
pp. 29 – 82, 2003

[33] S. Henninger and P. Ashokkumar, “An Ontology-Based Metamodel
for Software Patterns”, 18th International Conference on Software
Engineering and Knowledge Engineering (SEKE2006), pp. 327 –
330, 2006

[34] S. Henninger, “Disseminating Usability Design Knowledge through
Ontology-Based Pattern Languages”, Proc. Semantic Web User
Interaction Workshop (ISWC2006). 2006

[35] S.Henninger and P. Ashokkumar, “An Ontology-Based Infrastructure
for Usability Design Patterns”, Proc. First International Workshop
Semantic Web Enabled Software Engineering, 2005

[36] M. Hitz and H. Werthner, A Graph Oriented Approach to Enhance
Reusability in *-bases, WISR’92: 5th Annual Workshop on Software
Reusability, 1992

[37] M. Irons, “Patterns for Personal Web Sites”, Available at:
http://www.rdrop.com/~half/Creations/Writings/Web.patterns/,
Accessed on: June 30, 2010

[38] P. Kamthan, “A Critique of Pattern Language Markup Language”,
Interfaces, vol. 68, pp. 14-15, 2006

[39] D. Khazanchi, J. Murphy, and S. Petter, “Guidelines for evaluating
patterns in the IS domain”, MWAIS 2008 Proceedigs, 2008, Paper 24,
Available at : http://aisel.aisnet.org/mwais2008/24, Accessed on: June
30, 2010

[40] C. Kruschitz, “XPLML: A HCI Pattern Formalizing and Unifying
Approach”, in Proc. of the 27th International Conference Extended
Abstracts on Human Factors in Computing Systems, pp. 4117 – 4122,
ACM, 2009

[41] C. Kruschitz and M. Hitz, “The Anatomy of HCI Design Patterns”,
Proc. of Computation World; Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns, IEEE
Computer Society, pp. 202 – 207, 2009

[42] T. Kunert, “User-Centered Interaction Design Patterns for Interactive
Digital Television Applications”, Springer, 2009

[43] M. Leacock, E. Malone, and C. Wheeler, “Implementing a Pattern
Library in the Real World: A Yahoo! Case Study”, ASIS&T IA
Summit, 2005

[44] J. Lin and J. Landay, “Employing Patterns and Layers for Early-Stage
Design and Prototyping of Cross-Device User Interfaces”, in Proc.
26th International Conference on Human Factors in Computing
Systems, pp. 1313-1322, ACM, 2008

[45] “Littles Springs Design – Mobile UI Design Resources”, Available at:
http://patterns.littlespringsdesign.com/index.php/Main_Page,
Accessed on: January 18, 2010

[46] M. Mahemoff and L. Johnston, “Pattern Language for Usability: An
Investigation of Alternative Approaches”, in Proc. Third Asian-
Pacific Conference in Computer Human Interaction, pp. 25-31, IEEE
Coomputer Society, 1998

[47] K. McGee, “Patterns and Computer Game Design Innovation”, IE’07:
Proc. of the 4th Australasian Conference on Interactive Entertainment,
pp. 1 – 8, 2007

[48] S. Montero, P. Díaz, and I. Aedo, “Formalization of Web Design
Patterns using Ontologies”, Proc. Of the 1st International Atlantic
Web Intelligence Conference, Springer-Verlag,Vol. 2663, pp. 179 –
188, 2003

[49] S. Nieburg, K. Kohler, and C. Graf, “Engaging Patterns: Challenges
and Means Shown by an Example”, Engineering Interactive Systems,
Springer, pp. 586 – 600, 2008

[50] J. Noble, “Classifying Relationships Between Object-Oriented Design
Patterns”, in Proc. of the Australian Software Engineering
Conference, 1998, IEEE Computer Society

[51] D.A. Norman and S.W. Draper, “User-Centered System Design: New
Perspectives on Human-Computer Interaction.”, Lawrence Erlbaum
Associates, Hillsdale, New Jersey, 1986

[52] “OWL – Web Ontology Language”, Available at:
http://www.w3.org/TR/2004/REC-owl-guide-20040210/, Accessed
on June 30, 2010

[53] “Portland Pattern Repository”, Available at: http://c2.com/ppr/,
Accessed on January 5, 2010

[54] F. Radeke, P. Fobrig, A. Seffah, and D. Sining, „PIM Tool: Support
for Pattern-Driven and Model-Based UI Development“, 5th
International Workshop: Task Models and Diagrams for User
Interface Design, LNCS: Programming and Software Engineering,
vol 4385, pp. 82-96, 2007

[55] T. Schuemmer and S. Lukosch, “Patterns for Computer-Mediated
Interaction”, John Wiley & Son, 2007

[56] R. Smith, “Panel in Design Methodology”, OOPSLA’87:Addendum
to the Proceedings on Object-Oriented Programming Systems,
Languages and Applications, pp. 91-95, ACM, 1987

[57] “The DARPA Agent Markup Language”, Available at:
http://www.daml.org, Accessed on June 30, 2010

[58] “The Hillside Group”, Available at: http://hillside.net, Accessed on
June 30, 2010

[59] J. Tidwell, “Common Ground”, Available at:
http://www.mit.edu/~jtidwell/common_ground.html, Accessed on
June 30, 2010

[60] J. Tidwell, “Designing Interfaces”, O’Reilly, 2005 Available at:
http://www.designinginterfaces.com, Accessed on June 30, 2010

[61] “UI Patterns - User Interface Design Pattern Library”, Available at:
http://ui-patterns.com, Accessed on June 30, 2010

[62] M. van Welie and G. van der Veer, “Pattern Languages in Interaction
Design: Structure and Organization”, Human-Computer Interaction –
INTERACT’03, pp.527-534, IOS Press, 2003

236

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[63] D. Wurhofer, M. Obrist, E. Beck, and M. Tscheligi, “Introducing a
Comprehensive Quality Criteria Framework for Validating Patterns”,
Future Computing, Service Computation, Cognitive, Adaptive,
Content, Patterns, Computation World, pp. 242 – 247, 2009

[64] “Welie.com – Patterns in Interaction Design”, Available at:
http://www.welie.com, Accessed on June 30, 2010

[65] “XML User Interface Language”, Available at:
https://developer.mozilla.org/En/XUL, Accessed on June 30, 2010

[66] “Yahoo! Design Pattern Library”, Available at:
http://developer.yahoo.com/ypatterns/, Accessed on June 30, 2010

[67] W. Zimmer, “Relationships between Design Patterns”, Pattern
Language of Program Design, Addison-Wesley, 1994

237

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Metrics for the Evaluation of Adaptivity Aspects in Software Systems

Claudia Raibulet, Laura Masciadri
Dipartimento di Informatica Sistemistica e Comunicazione,

Universitá degli Studi di Milano-Bicocca
Milan, Italy

raibulet@disco.unimib.it, laura.masc@gmail.com

Abstract—Runtime adaptivity is related to the ability of the
information systems to perform changes by themselves and on
themselves during their execution. The engineering of runtime
adaptivity is one of the most challenging issues to address in
today’s information systems. This is due to the fact that
runtime adaptivity requires additional elements at the
architectural or structural levels. Moreover, it increases the
dimension and computation of a system. Its advantages are
mostly related to the improvement of performances,
enhancement of the functionalities’ quality and automation of
administrative tasks. In this paper we propose a set of metrics
for the description and evaluation of adaptive properties of the
information systems and of the frameworks which provide
support for the development of adaptive systems. They aim to
provide a concrete mechanism to analyze the quality of the
design of adaptive systems, to determine the type of adaptivity
of a system or to compare the adaptive features of different
systems. Metrics are grouped into six categories: architectural,
structural, performance, interaction, documentation, and
miscellaneous. They have been identified and specified by
analyzing several case studies which address runtime
adaptivity issues through different approaches with different
objectives in various application domains and several
frameworks for the design and implementation of adaptive
systems.

Keywords-adaptivity, adaptive systems, evaluation, software
metrics.

I. INTRODUCTION
Runtime adaptivity [3], [5], [7], [10], [15] indicates the

ability of a system or software to perform changes by itself
and on itself during its execution. The objectives of changes
may be of various natures and may concern different issues
which range from addressing unpredicted situations to
ensuring the optimal working of a system’s resources or to
improving the performances of a system. Essentially, they
result from the need to address the growing complexity of
emerging systems and to improve productivity and
performance, as well as to automate configuration, re-
configuration, control and management tasks [15].

Due to the wide range of possible objectives, types and
solutions related to runtime adaptivity, it would be very
useful to have common mechanisms to evaluate and compare
adaptive approaches in order to choose the most appropriate
solution for the current needs, to integrate various solutions,
or to make these solutions cooperate to achieve complex
tasks.

We tried to address these issues by considering the
available solutions described in the scientific literature [2],
[5], [7], [8], [16] in order to determine how adaptivity is
actually achieved, the main characteristics of the design of
adaptive systems, as well as the advantages outlined by the
authors of the adaptive systems.

The conclusions are summarized as follows. Adaptivity
is a complex task. Independently of what it is changed at
runtime, an adaptivity pattern consisting of four main steps
(which should be implemented by any adaptive system) can
be specified: monitoring (to retrieve information about the
context or status of a system which is exploited at run-time
in the adaptation process), analysis of the monitored
information, decision (to determine whether changes should
be made or not and, in the affirmative case, to choose the
best solution for the current situation) and application of
identified changes [3], [5], [10], [14].

Adaptivity requires additional elements at the
architectural or structural levels in order to implement these
steps. Even if it is considered a non-functional requirement,
it influences the execution of a system, its interaction with
the external world, and its performances. Therefore, its
design and implementation are fundamental for a system’s
lifecycle.

Authors describe the advantages of adaptive systems in
terms of performances, simplified and enhanced interaction
with the users, and automation of administrative tasks.
However, the evaluation of the described solutions is
adaptive and case study oriented: the authors provide their
point of view and outline the strong aspects of their solutions
through a particular vocabulary/terminology. Therefore, it is
difficult, if not impossible, to evaluate and compare adaptive
systems.

Furthermore, the scientific literature presents also various
frameworks [5], [7], [16], each introducing a different
approach for the design and implementation of adaptive
mechanisms. For example, the Rainbow framework [5]
proposes a control loop which defines mechanisms to
monitor the runtime properties of a system, to evaluate
constraint violations, and to perform global and module level
adaptations on a running system. All these mechanisms are
provided at the architectural level. On the other hand, the
Adaptive Server Framework (ASF) [7] describes an
infrastructure of components and services which facilitates
the construction of adaptation from a behavioral perspective.
Hence, when developing an adaptive system, on which basis

238

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

there can be evaluated which of these frameworks is more
appropriate for the current requirements?

In this context, we propose a set of metrics which may be
adopted in the description, design, and evaluation of the
adaptive properties of information systems and frameworks.
The metrics are grouped into the following categories:
architectural, structural, interaction, performance,
documentation, and miscellaneous [12]. The architectural
and structural metrics are mostly related to the design issues
of adaptive systems; while the interaction and performance
metrics reflect the advantages regarding the usability of the
adaptive systems. Even if it may play a secondary role, the
documentation category may be considered an indication on
the usability and reusability, personalization, and the
advantages of adaptive systems, as well as about their overall
quality. Furthermore, it is a valuable indication on the
usability and the overall quality of a framework for adaptive
systems.

For the presentation of the metrics of adaptivity, this
paper considers four of the available case studies, which in
our opinion are representative for this topic: a Web-based
client-server system and a video conferencing system which
exploit the Rainbow framework [5], an adaptive image
server which uses the Adaptive Server Framework [7], and
the AHA! [2] system for adaptive e-learning.

The rest of the paper is organized as follows. Section II
provides an overview on four representative adaptive case
studies. Section III introduces the categories and
subcategories of metrics defined in this paper. The
application of the defined metrics to the four cases studies
introduced in Section II is discussed within Section IV. The
similar approaches for the evaluation of runtime adaptivity
are addressed in Section V. Conclusions and future work are
dealt with in Section VI.

II. CASE STUDIES ON RUNTIME ADAPTIVITY
This section introduces four of the case studies we have

considered in the identification and specification of metrics.
In Section X, an analysis of these case studies from the
metrics point of view is presented.

A. Web-based Client-Server (WebCS)
In this case study Web-clients make requests of contents

to various Web-server groups [5]. Adaptivity is related to the
system’s performances and more precisely to the response
time the clients perceive for their requests to the Web
servers. The two factors which influence the response time
are the servers’ load and the available bandwidth. To address
this performance issue through adaptivity, an architectural
level approach is adopted consisting in the definition of an
architectural style enriched with adaptation operators and
strategies for the dynamic aspects of a system [5].
Furthermore, each client has associated an invariant which
verifies if the response time is less than a predefined value. If
this is not true an adaptivity strategy is invoked. The results
of the application of the adaptive strategies are reflected at
the architectural level.

B. VideoConferencing (VConf)
This case study deals with the management of

videoconferences in which participants may use various
videoconferencing tools and communication protocols [5].
Adaptivity is related to the performance (determined
essentially by the available bandwidth) and cost (determined
essentially by the gateway costs) aspects. As in the previous
example, adaptivity is addressed at the architectural level
through an architectural style. Each handheld device and
gateway has associated an invariant which establishes the
range of the accepted values. Whenever an invariant is
violated, an adaptive strategy is invoked. The results of the
application of the adaptive strategies are reflected at the
architectural level.

C. Adaptive Image Server (AIS)
In this case study, clients send to a server requests for

images specifying the minimum and maximum resolution for
the requested images [7]. In a non-adaptive scenario, the
server provides the images with their current resolutions. In
an adaptive scenario, the server scales the images resolution
in order to optimize the overall performances of the system.
In this case, performances are translated into the
improvement of the throughput and the reducing of the
response time which are determined by the resolution and the
quality of an image. Furthermore, adaptivity takes into
consideration also its overhead introduced in the system: the
computation load (of the CPU) of the server because the time
needed to process images may influence significantly the
response time. This is compared to the latency determined by
sending non-modified images.

D. Adaptive Hypermedia Architecture (AHA!)
AHA! [2] is an adaptive e-learning system. Adaptivity

regards the content (visualized to a user as pages) and the
navigation in the content (implemented through links) based
on the knowledge level of a user. The information offered by
AHA! is organized hierarchically (consisting in fragments-
pages-courses) through a domain model. Each element in
this domain model may have associated one or more
concepts.

When a user requires a page, based on (1) the user’s
model (consisting in concepts which have associated a set of
attributes among which his knowledge level) and (2) the
adaptivity rules defined by the adaptation model, an
adaptivity engine (I) builds the requested page (inserting the
content and the navigation elements) accordingly to the
user’s current knowledge level, (II) updates the user model
(through the rules defined by the adaptation model by
considering the concepts inserted in the requested page) and
(III) visualizes the page.

III. METRICS FOR RUNTIME ADAPTIVITY EVALUATION
In the definition of the metrics we have assumed that the

functional part of a system is designed first, (or more
generally a system should provide a version of its
functionalities which does not exploit adaptivity), and further
it is enriched with adaptive mechanisms.

239

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Each metric is presented through its name, description
and further explanations wherever necessary.

We have defined five categories of metrics each of them
may be further divided into subcategories. Furthermore, we
have defined additional aspects which may be considered to
evaluate adaptivity and which are grouped in a
miscellaneous category due to the fact that they capture
different facets of adaptivity. An overview on these metrics
is presented in Figure 1.

The architectural category of metrics aims to capture the
main features of adaptivity which emerge at the system level.
These characteristics are visible and meaningful when
considering a global perspective on the architecture of a
system. The metrics in this category are further divided in
two subcategories: architectural growth and architectural
separation of concerns.

The structural metrics are collocated at a lower
abstraction level then the metrics in the previous category.
They concern the actual implementation aspects of an
adaptive system. The metrics in this category are further
divided in three subcategories: structural growth, structural
separation of concerns, and personalization.

The interaction category focuses on the advantages
provided by runtime adaptivity in terms of the automation of
the human tasks. Hence, it considers both the interactions of
the administrators and the final users with an adaptive

system.
The performance metrics aim to evaluate the quality of

the functionalities provided by the adaptive systems. Hence,
the aspects they consider are visible and meaningful for the
final users of a system.

The documentation category provides information on the
quality of a design of an adaptive system or a framework for
the implementation of adaptive systems. It defines
meaningful metrics for the usability and understandability of
the adaptive properties.

The miscellaneous indexes propose further evaluation
mechanisms which may be exploited to analyze the overall
effort necessary to implement adaptive functionalities.

These categories of metrics are described in detail in the
following sections.

A. Architectural Metrics
During the presentation of the architectural metrics we

use the term elements as defined by [1] for software
architecture: “The software architecture of a program or
computing system is a structure or structures of a system,
which comprise software elements, the external visible
properties of those elements and the relationships among
them”. Hence, the term element expresses an architectural
unit (e.g., components and connectors [6]). The metrics are

Figure 1. Overview on the metrics for runtime adaptivity

240

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

valid and applicable to any architectural element.
Generally, the systems addressing runtime adaptivity

through architectural mechanisms are composed of two
parts: functional and adaptive. The adaptive part is usually
composed of four main conceptual elements corresponding
to the adaptation steps: monitoring, analyzing, deciding and
changing (see Figure 3-A).

The architectural metrics concern two main aspects:
separation of concerns and architectural growth.

The separation of concerns regards two aspects: (1) the

separation between the functional logic and the elements
ensuring adaptivity, and (2) the separation among the
elements implementing the four steps of adaptivity. It is
expressed through two metrics.

aSCI: architectural Separation of Concerns Index

ܫܥܵܽ ൌ
ݏݐ݈݊݁݉݁݁ ݁ݒ݅ݐܽ݀ܽ ݂ ݎܾ݁݉ݑܰ

 ݂݀݁݅݅݀݉ ݏݐ݈݊݁݉݁݁ ݈ܽ݊݅ݐܿ݊ݑ݂ ݂ ݎܾ݁݉ݑܰ

This metric indicates the degree of dependence between

the functional logic and the adaptive elements of a system at
the architectural level. It enables the evaluation of the
separation of concerns at the architectural level by
comparing the number of elements inserted in the adaptive
part (which provide exclusively adaptive functionalities)
and the number of the functional elements which have been
modified (to interact with the adaptive ones).

aAPI: architectural Adaptivity Pattern Index

ܫܲܣܽ ൌ ݏݐ݈݊݁݉݁݁ ݈ܽݑݐ݁ܿ݊ܿ ݁ݒ݅ݐܽ݀ܽ ݂ ݎܾ݁݉ݑܰ

This metric indicates the separation of concerns between

the main conceptual (types of) elements implementing the
four steps defined by the adaptivity pattern at the
architectural level. If the value of this metric is four, then
the adaptive part of a system defines at least a conceptual
element for each of these four steps. If it is zero, the
adaptive part of the architecture is totally integrated with the
functional one. The values between zero and four suggest
that two or more adaptivity steps are provided by the same
conceptual architectural element.

These two metrics provide useful information related to
the modularity, reusability and maintainability of the
adaptive part of a system.

The architectural growth regards the number of elements

introduced by the adaptive part of an architecture. It is
express through five metrics.

MaAC: Minimum architectural Adaptive Cost

ܥܣܽܯ ൌ ݕݐ݅ݒ݅ݐܽ݀ܽ ݎ݂ ݏݐ݈݊݁݉݁݁ ݂ ݎܾ݁݉ݑ݊ ݉ݑ݉݅݊݅ܯ

This metric indicates the minimum number of elements
which should be added to make a system adaptive
independently of the number of functionalities it provides.
Essentially, this metric expresses the fix cost of adaptivity at
the architectural level. It considers the adaptive elements
necessary to make the first functionality adaptive.

aACF: architectural Adaptive Cost per Functionality

ܨܥܣܽ ൌ ݕݐ݈݅ܽ݊݅ݐܿ݊ݑ݂ ௧݅ ݄݁ݐ ݎ݂ ݏݐ݈݊݁݉݁݁ ݂ ݎܾ݁݉ݑܰ

This metric indicates the number of elements which

should be added to make the i-th functionality adaptive. It
may be seen as a variable cost for introducing adaptivity per
functionality at the architectural level.

OaAC: Overall architectural Adaptive Cost

ܥܣܱܽ ൌ ܥܣܽܯ ܽܨܥܣ

ୀଶ

The sum between the last two metrics expresses the

architectural growth in number of elements needed to add
adaptivity (see Figure 2). The results obtained through this
metric are dependent on the order in which the adaptive
functionalities of a system are actually implemented. If the
function has a linear evolution, then the adaptive
functionalities may be considered independent of each
other, hence they need independent components (see Figure
3-A). Otherwise, if the function has a logarithmic evolution,
then the adaptive functionalities may share common
components achieving implicitly reusability issues (see
Figure 3-B).

AvgaAC: Average architectural Adaptive Cost

ܥܣܽ݃ݒܣ ൌ
ܥܣܱܽ
݊

This metric expresses the average growth per

functionality at the architectural level due to the
introduction of adaptivity. It indicates the average number
of elements which have been added for each functionality.
Hence, for each functionality it is added 1/n (where n is the
total number of functionalities) of the fix costs related to the
introduction of adaptive mechanisms in a system.

As for the OaAC metric, if this function has a linear
behavior then we can assume that the adaptive
functionalities are independent of each other (see Figure 3-
A).

241

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Overall architectural Adaptive Cost

Otherwise, if the function has a logarithmic behavior,

there is a reuse of several of the already inserted elements in
the adaptive part (see Figure 3-B). In this case the behavior
of the function may be influenced by the order in which
functionalities are made adaptive (because some of them
share common elements). Figure 3 shows the generic
components implementing the four steps of the adaptivity
pattern: 1a for the monitoring, 2a for the analyzing, 3a for
the deciding, and 4a for the changing.

GaE: Growth of architectural Elements

ܧܽܩ ൌ
ܥܣܱܽ

ݏݐ݈݊݁݉݁݁ ݈ܽ݊݅ݐܿ݊ݑ݂ ݂ ݎܾ݁݉ݑܰ כ 100

Figure 3. Adaptive functionalities and elements

This metric expresses the percentage growth at the

architectural level due to the introduction of adaptivity.

B. Structural Metrics
During the presentation of the structural metrics we use

the term entity to denote the software units. For example, in
an object-oriented system an entity is a class.

The systems addressing runtime adaptivity at the
structural level are composed of two types of entities:

functional and adaptive. The structural metrics concern
three main aspects: separation of concerns, structural growth
and personalization.

As for the architectural metrics, the separation of

concerns regards two aspects: (1) the separation between the
functional entities and the entities ensuring adaptivity, and
(2) the separation among the conceptual (types of) entities
implementing the four steps of adaptivity. It is expressed
through six metrics.

sSCI: structural Separation of Concerns Index

ܫܥܵݏ ൌ
ݏ݁݅ݐ݅ݐ݊݁ ݁ݒ݅ݐܽ݀ܽ ݂ ݎܾ݁݉ݑܰ

 ݂݀݁݅݅݀݉ ݏ݁݅ݐ݅ݐ݊݁ ݈ܽ݊݅ݐܿ݊ݑ݂ ݂ ݎܾ݁݉ݑܰ

This metric indicates the degree of dependence between

the functional and adaptive entities at the implementation
level. It enables the evaluation of the separation of concerns
by comparing the number of entities inserted in the adaptive
part (which provide exclusively adaptive functionalities)
and the number of the functional entities which have been
modified (to interact with the adaptive ones). Theoretically,
the obtained value should be similar to the one resulted for
the aSCI metric. Actually, the two values may be
significantly different being determined by the adopted
implementation strategy: an approach based on few entities
(each implementing more functionalities) or a highly
modular one (each entity implementing few functionalities).
Hence, the two values may differ from each other for
different design methodologies at the architectural and the
implementation levels.

sAPI: structural Adaptivity Pattern Index

ܫܲܣݏ ൌ ݏ݁݅ݐ݅ݐ݊݁ ݈ܽݑݐ݁ܿ݊ܿ ݁ݒ݅ݐܽ݀ܽ ݂ ݎܾ݁݉ݑܰ

This metric indicates the separation of concerns between

the main conceptual (types of) entities implementing the
four steps of adaptivity at the implementation level. If the
value of this metric is four, then the adaptive part of a
system defines at least a conceptual entity for each of these
four steps. If it is zero, the adaptive entities are totally
integrated with the functional one. The values between zero
and four suggest that two or more adaptivity steps are
provided by the same conceptual entity.

IFLAL: Influence of the Functional Logic on the

Adaptive Logic

ܮܣܮܨܫ ൌ ݈ܿ݅݃ ݁ݒ݅ݐܽ݀ܽ ݄݁ݐ ݊݅ ݏݐݑ݊݅ ݂ ݎܾ݁݉ݑܰ

IALFL: Influence of the Adaptive Logic on the
Functional Logic

ܮܨܮܣܫ ൌ ݈ܿ݅݃ ݁ݒ݅ݐܽ݀ܽ ݄݁ݐ ݉ݎ݂ ݏݐݑݐݑ ݂ ݎܾ݁݉ݑܰ

242

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

These two metrics provide information about the role of
the adaptive part of a system in its overall functionality.
Higher is the value for the IFLAL, stronger is the influence
of the application domain or contextual aspects on the
adaptive part of a system (see Figure 4-B). Vice-versa, the
IALFL metric indicates the degree of influence of the
adaptive logic on the functionalities provided by a system
(see Figure 4-A). Comparing the values denoted by these
two metrics it is possible to determine the degree of
influence of one part on the other.

Figure 4. Influence of the adaptive part on the functional one (A) and vice-

versa (B)

AvgIFLAL: Average Influence of the Functional Logic

on the Adaptive Logic

ܮܣܮܨܫ݃ݒܣ ൌ
ܮܣܮܨܫ

 ݏ݁݅ݐ݈݅ܽ݊݅ݐܿ݊ݑ݂ ݂ ݎܾ݁݉ݑܰ

AvgIALFL: Average Influence of the Adaptive Logic

on the Functional Logic

ܮܨܮܣܫ݃ݒܣ ൌ
ܮܨܮܣܫ

 ݏ݁݅ݐ݈݅ܽ݊݅ݐܿ݊ݑ݂ ݂ ݎܾ݁݉ݑܰ

The last two metrics provide information about the

average number of inputs (respectively outputs) in the
adaptive part for each of the functionalities of a system. The
information they provide can be seen as a complexity degree
of the provided functionalities based on the influence of the
adaptive part of a system.

When AvgIFLAL is significantly greater than
AvgIALFL the adaptive logic is strongly related to the
application domain and the strategies of the adaptive part
consider more factors in their logic than those they can
influence in the functional part of a system. Vice-versa,
when AvgIALFL is significantly greater than AvgIFLAL
we expect that the functional part of a system has different
behaviors in the presence of the adaptive part than in its
absence due to the strong influence it has from the adaptive
entities.

The structural growth regards the number of entities

introduced by the adaptive part of a system. It is express
through ten metrics.

MsAC: Minimum structural Adaptive Cost

ܥܣݏܯ ൌ ݕݐ݅ݒ݅ݐܽ݀ܽ ݎ݂ ݏ݁݅ݐ݅ݐ݊݁ ݂ ݎܾ݁݉ݑ݊ ݉ݑ݉݅݊݅ܯ

This metric indicates the minimum number of entities to
be added to a system to become adaptive independently of
the number of the functionalities it provides. Essentially,
this metric expresses the fix cost of adaptivity at the
implementation level.

sACF: structural Adaptive Cost per Functionality

ܨܥܣݏ ൌ ݕݐ݈݅ܽ݊݅ݐܿ݊ݑ݂ ௧݅ ݄݁ݐ ݎ݂ ݏ݁݅ݐ݅ݐ݊݁ ݂ ݎܾ݁݉ݑܰ

This metric indicates the number of entities which

should be added to make the i-th functionality adaptive. It
may be seen as a variable cost for introducing adaptivity per
functionality at the implementation level. The results of this
metric may influence the interpretation of the AvgIFLAL
and AvgIALFL: minor is the reusability of the entities
implementing the adaptive steps, more precisely are the
considerations derived from these metrics.

OsAC: Overall structural Adaptive Cost

ܥܣݏܱ ൌ ܥܣݏܯ ܨܥܣݏ

ୀଶ

The sum between the last two metrics expresses the

structural growth in number of entities needed to add
adaptivity at the implementation level. The observations
made for the OaAC are valid also for OsAC.

AvgGsE: Average Growth of structural Entities

ܧݏܩ݃ݒܣ ൌ
ܥܣݏܱ
݊

This metric expresses the average growth per

functionality at the implementation level due to the
introduction of adaptivity. It indicates the average number
of entities which have been added for each functionality.
Hence, for each functionality it is added 1/n (where n is the
total number of functionalities) of the fix costs related to the
introduction of adaptive mechanisms in a system.

SDG: Storage Dimension Growth

ܩܦܵ ൌ ௪௧ௗ௧௩௧௬ܤܭ െ ܤܭ௪௧௨௧ௗ௧௩௧௬

PSDG: Percentage Storage Dimension Growth

ܩܦܵܲ ൌ
ܩܦܵ

௪௧௨௧ௗ௧௩௧௬ܤܭ
כ 100

These two metrics indicate the physical storage growth

in kilo bytes, and respectively in percentage, due to the
presence of the adaptive mechanisms in a system. Adaptive
mechanisms include both adaptive entities and their link
with the functional entities.

243

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SDAE: Storage Dimension of the Adaptive Entities

ܧܣܦܵ ൌ ௗ௧௩ா௧௧௦ܤܭ

PSDAE: Percentage Storage Dimension of the Adaptive
Entities

ܧܣܦܵܲ ൌ
ܧܣܦܵ
ܩܦܵ כ 100

These two metrics indicate the physical storage growth

in kilo bytes, and respectively in percentage, needed to store
the adaptive entities.

SDCAF: Storage Dimension of the Connections

between Adaptive and Functional parts

ܨܣܥܦܵ ൌ ௪௧ௗ௧௩௧௬ܤܭ െ ሺܤܭ௪௧௨௧ௗ௧௩௧௬ ሻܧܣܦܵ

PSDCAF: Percentage Dimension of the Connections
between Adaptive and Functional parts

ܨܣܥܦܵܲ ൌ
ܨܣܥܦܵ
ܩܦܵ כ 100

These two metrics indicate the physical storage growth

in kilo bytes and percentage, due to the entities which have
been defined for the link and communication between the
functional and adaptive part of a system.

The personalization category of metrics regards the

changes which are made on a framework for runtime
adaptivity or an adaptive system in order to apply it to an
actual case study. These metrics are defined from the
developers’ point of view and try to capture the effort
needed to adapt the framework or a system to other
solutions.

It consists of nine metrics.

MpAC: Minimum personalization Adaptive Cost

ܥܣܯ ൌ
ே௨ ௦௭ௗ ௧௧௦ ௧
ௗ௧௩ ௧ ௧ ଵೞ ௨௧௧௬
ே௨ ௧௧௦ ௧ ௗ௧௩

௧ ௧ ଵೞ ௨௧௧௬

*100

This metric indicates the percentage of entities which are

personalized considering only the minimum number of
entities necessary to make a system adaptive. Hence, it is
calculated through the number of personalized entities for
making one (e.g., the first) functionality adaptive.

If the result is 100%, then it may be assumed that the
adaptive entities are totally generic or that the factors which
influence the adaptive logic are totally domain dependent
due to the fact that all the necessary adaptive entities have
been personalized.

If the result is sensibly less than 100%, then it can be
considered that the adaptive entities are dependent on
general factors which may be considered generic enough to
be reused without modifications in many application
domains or case studies.

pACF: personalization Adaptive Cost per Functionality

ܨܥܣ ൌ

݊݅ ݏ݁݅ݐ݅ݐ݊݁ ݀݁ݖ݈݅ܽ݊ݏݎ݁ ݂ ݎܾ݁݉ݑܰ
ݕݐ݈݅ܽ݊݅ݐܿ݊ݑ݂ ݄ܿܽ݁ ݎ݂ ݐݎܽ ݁ݒ݅ݐܽ݀ܽ ݄݁ݐ

 ݄݁ݐ ݊݅ ݀݁݀݀ܽ ݏ݁݅ݐ݅ݐ݊݁ ݂ ݎܾ݁݉ݑܰ
 ݕݐ݈݅ܽ݊݅ݐܿ݊ݑ݂ ݄ܿܽ݁ ݎ݂ ݐݎܽ ݁ݒ݅ݐܽ݀ܽ

כ 100

This metric indicates the percentage of entities which are

personalized for each adaptive functionality considering the
number of adaptive entities added for this particular
functionality in the adaptive part. This metric may be
influenced by the order in which adaptive functionalities are
added (two or more functionalities may exploit common
adaptive entities, and hence these entities are added only for
the first inserted functionality).

If the result is greater than 100% it means that the new
functionality required the modification of already available
adaptive entities which have been added previously for
other functionalities.

If the result is 100% or less, then it is considered that a
number of adaptive entities equal or less then the number of
the added functionalities have been modified (without being
able to specify if only new added entities have been
personalized).

AvgpACF: Average personalization Adaptive Cost per

Functionality

ܨܥܣ݃ݒܣ ൌ
ܥܣܯ ∑ ܨܥܣ

ୀଶ
݊

This metric indicates the average cost for introduction of

adaptive mechanisms per functionality.

MpOC: Minimum personalization Overall Cost

ܥܱܯ ൌ

݄݁ݐ ݊݅ ݏ݁݅ݐ݅ݐ݊݁ ݀݁ݖ݈݅ܽ݊ݏݎ݁ ݂ ݎܾ݁݉ݑܰ
ݕݐ݈݅ܽ݊݅ݐܿ݊ݑ݂ 1௦௧݄݁ݐ ݎ݂ ݉݁ݐݏݕݏ ݁ݎ݅ݐ݊݁

݄݁ݐ ݊݅ ݏ݁݅ݐ݅ݐ݊݁ ݂ ݎܾ݁݉ݑܰ
ݕݐ݈݅ܽ݊݅ݐܿ݊ݑ݂ 1௦௧݄݁ݐ ݎ݂ ݐݎܽ ݁ݒ݅ݐܽ݀ܽ

כ 100

This metric indicates the percentage of entities which are

personalized in the entire system (functional and adaptive)
with respect to the minimum number of entities in the
adaptive part necessary to make a system adaptive. As in the
case of MpAC, it is calculated for the first functionality
chosen to be made adaptive.

If the result is equal to the one obtained for the MpAC,
then no entity in the functional part has been modified. If
these two results differ, then functional entities have been

244

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

modified too. Greater is the difference between the values of
the two metrics, more significant are the modifications in
the functional part of the system.

This metric may be useful during the analysis of the
separation between the functional and adaptive parts, as well
as of the integration of the adaptive part in a system.

pOCF: personalization Overall Cost per Functionality

ܨܥܱ ൌ

 ݏ݁݅ݐ݅ݐ݊݁ ݀݁ݖ݈݅ܽ݊ݏݎ݁ ݂ ݎܾ݁݉ݑܰ
݉݁ݐݏݕݏ ݁ݎ݅ݐ݊݁ ݄݁ݐ ݊݅

ݐݎܽ ݁ݒ݅ݐܽ݀ܽ ݄݁ݐ ݊݅ ݏ݁݅ݐ݅ݐ݊݁ ݂ ݎܾ݁݉ݑܰ
ݕݐ݈݅ܽ݊݅ݐܿ݊ݑ݂ ݄ܿܽ݁ ݎ݂

כ 100

This metric indicates the percentage of entities which are

personalized in the entire system (functional and adaptive)
with respect to the total number of adaptive entities
necessary to provide a functionality.

If the result is equal to the one obtained for the pACF,
then no entity in the functional part has been modified
(besides the modifications made for one functionality). If
these two results differ, then functional entities have been
modified too. Greater is the difference between the values of
the two metrics, more significant are the modifications in
the functional part of the system.

Comparing this metric to the previous one MpOC,
usually it can be observed that the modifications performed
for the first functionality made adaptive may be greater than
those performed for each of the other functionalities
(because there may be entities which are used further by all
functionalities).

AvgpOCF: Average personalization Overall Cost per

Functionality

ܨܥܱ݃ݒܣ ൌ
ܥܱܯ ∑ ܨܥܱ

ୀଶ
݊

This metric indicates the average overall cost for

introduction of adaptive mechanisms per functionality. If
the result is equal to the one obtained for the AvgpACF,
then the functional part is not modified. If these two results
differ, then functional entities have been modified too.
Greater is the difference between the values of the two
metrics, more significant are the modifications in the
functional part of the system.

ApOC: Adaptive personalization Overall Cost

ܥܱܣ ൌ

݊݅ ݏ݁݅ݐ݅ݐ݊݁ ݀݁ݖ݈݅ܽ݊ݏݎ݁ ݂ ݎܾ݁݉ݑܰ
ݐݎܽ ݁ݒ݅ݐܽ݀ܽ ݄݁ݐ

݀݁ݖ݈݅ܽ݊ݏݎ݁ ݂ ݎܾ݁݉ݑ݊ ݈ܽݐܶ
݉݁ݐݏݕݏ ݁ݎ݅ݐ݊݁ ݄݁ݐ ݊݅ ݏ݁݅ݐ݅ݐ݊݁

כ 100

This metric indicates the percentage of the

personalization of the adaptive part with respect to the

personalization of the entire system (functional and
adaptive) to make it adaptive.

DSAI: Domain Specific Adaptivity Index

ܫܣܵܦ ൌ

݁ܿ݊݁ݑ݈݂݊݅ ݊݅ܽ݉݀ ݂ ݎܾ݁݉ݑܰ
ݏݎݐ݂ܿܽ

ݏݎݐ݂ܿܽ ݁ܿ݊݁ݑ݈݂݊݅ ݈ܽݐݐ ݂ ݎܾ݁݉ݑܰ כ 100

This metric indicates the percentage of the factors

specific to the application domain which influence the
adaptive part of a system. Higher is this value, higher is the
number of personalized entities in the entire system.

pAEF: personalization of Adaptive Entity Functionality

ܨܧܣ ൌ

ݕݐ݈݅ܽ݊݅ݐܿ݊ݑ݂ ݀݁ݖ݈݅ܽ݊ݏݎ݁ ݂ ݎܾ݁݉ݑܰ
ݕݐ݅ݐ݊݁ ݁ݒ݅ݐܽ݀ܽ ݊ܽ ݂ כ 100
݊ܽ ݂ ݏ݁݅ݐ݈݅ܽ݊݅ݐܿ݊ݑ݂ ݈ܽݐܶ

ݕݐ݅ݐ݊݁ ݁ݒ݅ݐܽ݀ܽ

This metric indicates the percentage of functionalities
personalized for an adaptive entity. For example, in an
object-oriented system this regards the methods signature. If
this value is low, then modifications are made mostly inside
the functionalities (in the definition of methods and not in
their declarations).

C. Interaction Metrics
The purpose of the interaction metrics is to evaluate the

variations in the interaction between administrators or users
and the adaptive and non-adaptive versions of a system.

MAiAI: Modified Administrator interaction Adaptivity

Index

ܫܣ݅ܣܯ ൌቄ1 ݂݅ ܽ݊ ݂݀݁݅݅݀݉ ݏ݅ ݇ݏܽݐ
݁ݏ݅ݓݎ݄݁ݐ 0

This metric indicates the modified tasks which should be

performed by the administrator. These tasks are necessary
both in the non-adaptive and adaptive versions of the
system. The introduction of the adaptive part may have
made them more or less complex.

AAiAI: Added Administrator interaction Adaptivity

Index

ܫܣ݅ܣܣ ൌቄ1 ݂݅ ܽ݊ ݏ݅ ݇ݏܽݐ ܽ݀݀݁݀
݁ݏ݅ݓݎ݄݁ݐ 0

This metric indicates the new added tasks which should

be performed by the administrator after the introduction of
the adaptive part. These tasks were not necessary in the non-
adaptive version of the system.

245

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

RAiAI: Removed Administrator interaction Adaptivity
Index

ܫܣ݅ܣܴ ൌቄ1 ݂݅ ܽ݊ ݀݁ݐ݈݁݁݀ ݏ݅ ݇ݏܽݐ

݁ݏ݅ݓݎ݄݁ݐ 0

This metric indicates the removed tasks which should

not be further performed by the administrator after the
introduction of the adaptive part. These actions were
necessary in the non-adaptive version of the system.

Greater is the RAiAI and/or lower is the AAiAI, more
efficient is the introduction of the adaptivity mechanisms
from the administration of the system point of view.
However, these three metrics do not provide information on
the complexity of the administration tasks. This would be
very useful to complement the MAiAI metric in order to
check whether adaptivity has simplified or not the
administration tasks (for those which have not been
removed).

The user interaction metrics concern two aspects: the

variations in the interaction between users and a system in
the absence and presence of adaptivity, as well as the
provisioning of the parameters needed for adaptivity.

MUiAI: Modified User interaction Adaptivity Index

ܫܣܷ݅ܯ ൌቄ1 ݂݅ ܽ݊ ݂݀݁݅݅݀݉ ݏ݅ ݇ݏܽݐ

݁ݏ݅ݓݎ݄݁ݐ 0

This metric indicates the modified tasks which should be

performed by the users. These tasks are necessary both in
the non-adaptive and adaptive versions of the system. The
introduction of the adaptive part may have made them more
or less complex.

AUiAI: Added User interaction Adaptivity Index

ܫܣܷ݅ܣ ൌቄ1 ݂݅ ܽ݊ ݏ݅ ݇ݏܽݐ ܽ݀݀݁݀

݁ݏ݅ݓݎ݄݁ݐ 0

This metric indicates the new added tasks which should

be performed by the users after the introduction of the
adaptive part. These actions were not necessary in the non-
adaptive version of the system.

RUiAI: Removed User interaction Adaptivity Index

ܫܣܷܴ݅ ൌቄ1 ݂݅ ܽ݊ ݀݁ݐ݈݁݁݀ ݏ݅ ݇ݏܽݐ

݁ݏ݅ݓݎ݄݁ݐ 0

This metric indicates the removed tasks which should

not be further performed by the users after the introduction
of the adaptive part. These tasks were necessary in the non-
adaptive version of the system.

Greater is the RUiAI and/or lower is the AUiAI, more
efficient is the introduction of the adaptivity mechanisms

from the users’ point of view. However, these three metrics
do not provide information on the complexity of the user
interaction tasks. This would be very useful to complement
the MUiAI metric in order to check whether adaptivity has
simplified or not these tasks (for those which have not been
removed).

UIiI: User Information interaction Index

ܫ݅ܫܷ ൌ ቄ0 ݂݅ ݈݈ܽ ݁݀݅ݏ ݉݁ݐݏݕݏ ݁ݎܽ ݏݎ݁ݐ݁݉ܽݎܽ

݁ݏ݅ݓݎ݄݁ݐ 1

This metric indicates if the monitored parameters are

available on the system side or they should be gathered
through the interaction with the users.

D. Performance Metrics
The performance metrics concern five main aspects

related to the usage of the system resources (in terms of
RAM and CPU), the response time, the improvement of the
response quality in the presence of adaptivity and influence
of the performance factors on the adaptive strategies.
Usually, these metrics reflect the goals of the adaptive
systems.

pRAM: performance RAM

ܯܣܴ ൌ
ݕݐ݅ݒ݅ݐܽ݀ܽ ݂ ݁ܿ݊݁ݏ݁ݎ ݊݅ ݁݃ܽݏݑ ܯܣܴ
ݕݐ݅ݒ݅ݐܽ݀ܽ ݂ ݁ܿ݊݁ݏܾܽ ݊݅ ݁݃ܽݏݑ ܯܣܴ כ 100

This metric indicates the variation of the RAM usage

due to the computational overhead introduced by the
adaptive part of a system.

pCPU: performance CPU

ܷܲܥ ൌ
ݕݐ݅ݒ݅ݐܽ݀ܽ ݂ ݁ܿ݊݁ݏ݁ݎ ݊݅ ݁݃ܽݏݑ ܷܲܥ
ݕݐ݅ݒ݅ݐܽ݀ܽ ݂ ݁ܿ݊݁ݏܾܽ ݊݅ ݁݃ܽݏݑ ܷܲܥ כ 100

This metric indicates the variation of the CPU usage due

to the computational overhead introduced by the adaptive
part of a system.

pLatency: performance Latency

ݕܿ݊݁ݐܽܮ ൌ

݁ܿ݊݁ݏ݁ݎ ݊݅ ݁݉݅ݐ ݁ݏ݊ݏܴ݁
ݕݐ݅ݒ݅ݐܽ݀ܽ ݂

݁ܿ݊݁ݏܾܽ ݊݅ ݁݉݅ݐ ݁ݏ݊ݏܴ݁
ݕݐ݅ݒ݅ݐܽ݀ܽ ݂

כ 100

This metric indicates the variation of the system’s

responses in the presence of adaptivity with respect to the
response in the absence of adaptivity.

246

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

pQoR: performance Quality of Response

ܴܳ ൌ

݁ܿ݊݁ݏ݁ݎ ݊݅ ݁ݏ݊ݏ݁ݎ ݂ ݕݐ݈݅ܽݑܳ
ݕݐ݅ݒ݅ݐܽ݀ܽ ݂

݁ܿ݊݁ݏܾܽ ݄݁ݐ ݊݅ ݁ݏ݊ݏ݁ݎ ݂ ݕݐ݈݅ܽݑܳ
ݕݐ݅ݒ݅ݐܽ݀ܽ ݂

כ 100

This metric indicates the variation of the quality of the

system’s responses in the presence of adaptivity. Generally,
the obtained value for this metric should be greater than
100% in order to overcome the increments introduced by
one or more of the previous three metrics.

pIA: performance Influence on Adaptivity

ܣܫ ൌ ቄ0 ݂݅ ݁ܿ݊݁ݑ݈݂݊݅ ݊ ݏ݅ ݁ݎ݄݁ݐ

݁ݏ݅ݓݎ݄݁ݐ 1

This metric indicates if the adaptive strategies are

influenced by the first three performance metrics. For
example, the adaptive part may decide to apply a strategy
which uses less RAM or CPU, or which provides a response
in less time by paying in the quality of the response
(offering a medium, rather than a high quality).

E. Documentation Metrics
The documentation metrics concern two aspects: the

comments and the available documentation related to an
adaptive system. Their roots are in the general software
metrics and they have been interpreted and adapted to
provide useful information related to the design of adaptive
issues.

CE: Comments per Entity

ܧܥ ൌ
ݏ݈݁݊݅ ݐ݊݁݉݉ܿ ݂ ݎܾ݁݉ݑܰ
ݏ݈݁݊݅ ݕݐ݅ݐ݊݁ ݂ ݎܾ݁݉ݑܰ כ 100

This metric indicates the percentage of the number of

comment lines for each adaptive entity. It may be computed
for the entities which do not need personalization and those
which need personalization (but before their actual
personalization). If these two values differ significantly we
may suppose that the last category has been predisposed to
be personalized and due to the available comments, the
personalization may be performed easier.

CF: Comments per Functionality

ܨܥ ൌ
ݏ݈݁݊݅ ݐ݊݁݉݉ܿ ݂ ݎܾ݁݉ݑܰ

ݏ݈݁݊݅ ݕݐ݈݅ܽ݊݅ݐܿ݊ݑ݂ ݂ ݎܾ݁݉ݑܰ כ 100

This metric indicates the percentage of the number of

comment lines for each functionality offered by an adaptive
entity. It may be computed for the functionalities which do
not need personalization and those which need

personalization (but before their actual personalization). The
considerations for the previous metric hold also for the
present one.

CTI: Comments Type Index

ܫܶܥ ൌ
ݕݎ݃݁ݐܽܿ ݎ݁ ݏ݈݁݊݅ ݐ݊݁݉݉ܿ ݂ ݎܾ݁݉ݑܰ

 ݊ܽ ݊݅ ݏ݈݁݊݅ ݐ݊݁݉݉ܿ ݂ ݎܾ݁݉ݑܰ
ݕݐ݅ݐ݊݁ ݁ݒ݅ݐܽ݀ܽ

כ 100

This metric indicates the percentage of the comments of

a given type (e.g., auto-generated, formal language, natural
language, commented code) considering all the comments in
an adaptive entity.

DTI: Documentation Type Index

ܫܶܦ ൌ

ݕݎ݃݁ݐܽܿ ݎ݁ ݕݐ݅ݐ݊ܽݑݍ ݊݅ݐܽݐ݊݁݉ݑܿܦ
݊݅ݐܽݐ݊݁݉ݑܿ݀ ݈ܾ݈݁ܽ݅ܽݒܽ ݈݈ܽݎ݁ݒܱ כ 100

This metric indicates the percentage of the

documentation of a given type (e.g., descriptive, samples,
personalization examples for adaptive entities, auto-
generated) considering all the available documentation.

F. Miscellaneous Metrics
We have identified three more aspects which should be

considered for evaluation of adaptive systems.

ADI: Adaptivity Distribution Index
It regards the distribution of the adaptive elements and

entities on the physical nodes of an adaptive system. ADI
provides information on the replication of adaptive elements
and entities inside a system.

RAMI: Results of Adaptivity Memorization Index
It indicates if the results of each adaptive step are stored

temporarily or persistently in the system in order to provide
or optimize the adaptive functionalities.

AAI: Adaptive Alternatives Index
It is related to the way in which the various alternatives

of adaptivity are provided. Alternatives may be of two
types: horizontal and vertical. In the horizontal mode,
adaptivity optimizes the usage of the resources to provide
the required functionality; while, in the vertical mode,
adaptivity optimizes the quality of information to provide
the required functionality.

IV. ANALYSIS OF CASE STUDIES THROUGH METRICS
This section analyzes the four case studies introduced in

Section II from the adaptivity metrics point of view. Two
premises should be made here. First, the case studies are
well-defined and thought to outline their adaptivity features.
However, several observations have been extracted from

247

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

their study. Second, the information we used to analyze
these case studies consisted exclusively in their description
in various articles. Hence, only qualitative observations
have been drawn.

Table I summarizes the main adaptive aspects of the four
case studies in terms of the goals of runtime adaptivity, the
type of the addressed issues, the main conceptual steps of
adaptivity, the models or frameworks used to achieve
adaptivity, and the categories of metrics which provide
meaningful information for their evaluation.

The analysis of the case studies through the adaptivity
metrics has lead to the following considerations.

The goals of exploiting runtime adaptivity are of various
natures: automate administration tasks, resource usage
optimization, or enhancement of functionalities. A recurring
goal is related to the performance optimization. The
question is what to measure to evaluate performance
aspects? The authors of three case studies indicate as one of
the performance aspects the response time, which is
expressed through the pLatency metric. Only WebCS uses
this terminology, while the other two focuses on the
bandwidth (which influences the response time). WebCS
and VConf are proposed by the same authors. These are
simple examples, however they point out the importance of
having the same metrics for the same performance issues
and moreover, for their evaluation and comparison in
different case studies.

Adaptivity may regard various aspects (architectural,
behavioral, content and navigation in these cases).
Independent of these aspects, it is fundamental to fulfill the
separation of concerns metrics at the architectural and/or
structural levels. The last two case studies merge the
analysis and decision steps in one single step. This is mostly
related to the fact that the adaptivity issues are strongly
related to the application domain (e.g., specific information
as images or learning content) and the factors which are
considered in input of the adaptive process.

The separation of concerns and growth metrics at the
architectural or structural levels provide information on the
modularity, reusability, flexibility, extensibility and
scalability of an adaptive system.

Furthermore, in three of the case studies changes are
visible at the functional level. The metrics providing
information about this aspect are the structural and
performance ones. AIS updates also the adaptive knowledge
by storing the information resulted from the various
adaptive steps in a repository in order to use it in similar
cases without performing the same computation again. This
characteristic is described through the RAMI index. AIS
considers also the computational overhead introduced by the
adaptivity part and expressed through the pCPU
performance metric.

There are various changes which may be applied to
address the same performance issues. For example, in
WebCS, to improve the response time an architectural

TABLE I. ADAPTIVE ASPECTS RELATED TO FOUR CASE STUDIES

248

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

approach is used: a server is added to the system. This
implies that horizontal adaptive alternatives are available
(see Figure 5-A). In AIS, the same performance issue is
addressed by modifying images, which have different
dimensions and hence, may be changed less or more
depending on the current request and the status of the
system. This implies the availability of vertical adaptive
alternatives (see Figure 5-B). As in the case of the AAI
index, in the first case, the usage of the resources which
provide adaptive functionalities is optimized, while in the
second case, the quality of the information needed to
provide adaptive functionalities is optimized. In WebCS the
administrator tasks have been automated in that the adaptive
mechanisms decide whenever a server should be connected
or disconnected from the system in order to ensure its
performances. In this context, interaction metrics provide
information on the efficiency of the adaptivity modules
from the point of view of the reduction of the overhead
introduced by the interaction with the administrators.

The first three case studies exploit the adaptive concepts
(e.g., elements and entities) defined by a general model
(e.g., the Rainbow and ASF framework). Moreover, WebCS
and VConf are based on a common approach: Rainbow. In
these cases the personalization metrics are useful to evaluate
the adaptation and usability of the models’ concepts in
various contexts.

The AHA! approach does not exploit or personalize any
model. One of the reasons motivating this characteristics is
that adaptivity is specific to the application domain and
furthermore, only domain-specific content and its
provisioning are adapted. The functioning of AHA! in the
absence and in the presence of adaptivity differs
significantly: in a non-adaptive scenario the same content is
presented in the same way to all users, while in an adaptive
scenario users have to be identified and the content
representation and provisioning modified. These
modifications are properly described through the structural
growth metrics, user interaction, and pQoR metric.

Figure 5. Adaptive alternatives in WebCS and AIS

The last column in Table I lists the categories and
subcategories (as shown in Figure 1) of the metrics which
are meaningful to evaluate the adaptive features of each case

study. The documentation category has been not mentioned
because the only documentation we have considered is
composed of the articles describing these case studies.

V. RELATED WORK
There are various approaches for the evaluation of

runtime adaptivity properties. Typically, they are defined for
specific application domains and/or consider a particular
perspective on adaptivity.

For example, a methodology for empirical evaluation of
adaptive systems is presented in [21]. It considers the use of
adaptivity to reduce the complexity of the interaction
between users and information systems. Hence, it addresses
adaptivity from the users’ point of view. The methodology
defines six steps to achieve this goal: evaluation of reliability
and external validity of input data acquisition, evaluation of
the inference mechanism and accuracy of user properties,
appropriateness of adaptation decisions, change of system
behaviour when the system adapts, change of user behaviour
when the system adapts, and change and quality of total
interaction. Each of these steps is addressed independently in
the context of a framework which enables the evaluation of
reliability and external validity of input data acquisition,
inference mechanisms and accuracy of user properties,
adaptation decisions, and overall interaction (including
system and user behaviour and usability).

Or, [19] proposes a set of primary features based on
which adaptive hypermedia systems may be evaluated.
These features are categorized as follows: adaptation,
software quality, software engineering, and technology. This
approach considers only a specific type of systems.

Metrics for the evaluation of adaptivity in information
systems are introduced in [20], which identifies three generic
indexes applicable at the architectural level: element
adaptability index (which is 1 for adaptable elements, and 0
otherwise), architecture adaptability index (defined as the
sum of all element adaptability indexes divided per total
number of elements), and software adaptability index
(defined as the sum of the architecture adaptability indexes
for all the architecture of a software divided per the total
number of architectures of that software). The same authors
propose a framework called the Process-Oriented Metrics for
Software Architecture Adaptability (POMSAA) [4] to
calculate scores for the adaptability of software architectures.
The quantitative scores are computed based on the satisficing
degree [4] of a non-functional requirement, which in this
case regards adaptivity. Both these works consider
adaptability only at the architectural level.

A more detailed set of evaluation mechanisms is
presented in [11]. This work proposes the evaluation of self-
* systems from three points of view: (1) the methodology
adopted for their development, (2) the performances offered
at runtime, and (3) the intrinsic characteristics of such
systems. More specifically, this paper focuses on aspects
related to performance, robustness, computational
complexity, and decentralization and local algorithms. Even

249

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

if this approach is strongly related to the multi-agent domain,
it may be adopted for other application domains.

To our knowledge there is no work in the scientific
literature addressing the evaluation of the frameworks for
adaptivity through metrics.

VI. CONCLUSIONS AND FURTHER WORK
This paper has proposed a set of metrics for runtime

adaptivity. These metrics should be considered as a starting
point towards the identification and specification of what
should it be evaluated and how should it be evaluated in
adaptive system.

Our initial work on this topic has been previously
presented in [13], [17], [18]. In [17] we have focused our
attention on the feasibility of the definition of measurable
evaluation mechanisms for adaptive systems, and on the
usability of these metrics as design hints in the development
process of new adaptive systems and as formal approaches
for the evaluation of the existing adaptive systems. A first
set of metrics for the evaluation of adaptive systems has
been presented in [18]. The aim of this work was to provide
a concrete mechanism for the evaluation of the adaptive
features of information systems. In [13] we have extended
the evaluation of adaptive properties also to the frameworks
which provide support for the development of adaptive
systems. It is fundamental to understand their
personalization and documentation aspects in order to
evaluate the effort necessary to develop an adaptive system
based on such a framework.

 The advantage of such metrics is the specification of a
common vocabulary for different design, implementation,
and performance issues of adaptivity. They provide a
common means for the evaluation of adaptive systems, as
well as for the comparison of information systems from the
adaptivity point of view.

From the software engineering point of view, the
architectural and structural metrics suit best as hints in the
analysis and design phases of adaptive systems, as well as
concrete mechanisms to evaluate the design of adaptive
systems. They provide valuable information about the
modularity, maintainability, re-usability, or scalability of
adaptive systems. Structural metrics are particularly relevant
for the implementation and its evaluation in adaptive
systems. The personalization sub-category defines common
mechanisms to evaluate and choose an appropriate solution
for the issues of the current system in the case a framework
or a previous solution should be exploited. The
documentation metrics may complement the architectural
and structural categories in order to offer additional
information on the design of runtime adaptivity. These
metrics provide additional information on the quality of the
design of adaptive systems and frameworks.

 The interaction metrics provide information on the
advantages of runtime adaptivity from the administrators
and users points of view. This is significantly important in

various application domains such as e-learning, finance or
healthcare.

On the other hand, the performance metrics provide
information on the advantages of exploiting runtime
adaptivity from the resource usage and overall systems’
quality points of view. They are of a determinant
significance for all the actors of adaptive systems.

The miscellaneous indexes capture conceptual and
distributed aspects of adaptive systems. They are more
related to the deployment and efficiency of such systems.

The metrics proposed in this paper have been identified
through a process similar to the reverse engineering by
considering the available relevant case studies addressing
runtime adaptivity issues. Hence, they regard those aspects
which are outlined as advantages of the design and
exploitation of adaptivity by the authors of these case
studies.

Further work will concern the validation and revision of
these metrics by applying them to more case studies.
Moreover, we will consider the extensibility of this set of
metrics also towards standard software engineering metrics
for non-functional properties [9] which may be adopted and
adapted for the evaluation of runtime adaptivity.

A future development is related to the application of
these metrics from the initial phases of the development of
adaptive systems. Hence, they should be considered during
the identification and specification of the non-functional
requirements regarding the runtime adaptivity properties. In
this way, it will be possible to indicate a range of acceptable
values which should be satisfied by the final system in order
to be successfully deployed and exploited.

REFERENCES
[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in

Practice, Addison Wesley, USA, 2003
[2] P. De Bra, A. Aerts, B. Berden, D. de Lange, B. Rousseau, T. Santic,

D. Smits, and N. Stash, “AHA! The Adaptive Hypermedia
Architecture”, Proceedings of the 14th ACM Conference on Hypertext
and hypermedia, 2003, pp. 81-84

[3] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee,
“Software Engineering for Self-Adaptive Systems”, LNCS 5525,
Springer, 2009

[4] L. Chung and N. Subramanian, “Process-Oriented Metrics for
Software Architecture Adaptability”, Proceedings of the 5th
International Symposium on Requirements Engineering, 2001, pp.
310-311

[5] D. Garlan, S. W. Cheng, A. C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based Self-Adaptation with Reusable
Infrastructure”, IEEE Computer, Vol. 37, No. 10, 2004, pp. 46-54

[6] D. Garlan and M. Shaw, “An Introduction to Software Architecture”,
Technical Report CMU/SEI-94-TR-21, 1994

[7] I. Gorton, Y. Liu, and N. Trivedi, “An extensible and lightweight
architecture for adaptive server applications”, Software – Practice
and Experience Journal, Vol. 38, No. 8, 2007, pp. 853-883

[8] J. He, T. Gao, W. Hao, I.-L. Yen, and F. Bastani, ”A Flexible Content
Adaptation System Using a Rule-Based Approach”, IEEE
Transactions on Knowledge and Data Engineering, Vol. 19, No. 1,
2007, pp. 127-140

[9] ISO IEC 9126-1 Standard, http://www.iso.org, 2001, June 2010.

250

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10] G. Karsai, A. Ledeczi, J. Sztipanovits, G. Peceli, G. Simon, and T.
Kovacshzy, “An Approach to Self-Adaptive Software Based on
Supervisory Control”, LNCS 2614, 2003, pp. 77-92

[11] E. Kaddoum, M-.P. Gleizes, J.-P. Georgé, and G. Picard,
“Characterizing and Evaluating Problem Solving Self-* Systems”,
Proceedings of the ADAPTIVE 2009 Conference, IEEE Press, 2009,
pp.137-145.

[12] L. Masciadri, “A Design and Evaluation Framework for Adaptive
Systems”, MsC Thesis, University of Milano-Bicocca, Italy, 2009

[13] L. Masciadri and C. Raibulet, “Frameworks for the Development of
Adaptive Systems: Evaluation of Their Adaptability Feature Software
Metrics”, Proceedings of the 4th International Conference on
Software Engineering Advances (ICSEA 2010), 2009, pp. 309-321

[14] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng,
“Composing Adaptive Software. Computer”, IEEE Computer Society,
Vol. 37, No. 7, 2004, pp. 56-64

[15] C. Raibulet, “Facets of Adaptivity”, Proceedings of the 2nd European
Conference on Software Architecture, LNCS 5292, 2008, pp. 342-345

[16] C. Raibulet, F. Arcelli, S. Mussino, M. Riva, F. Tisato and L. Ubezio,
“Components in an Adaptive and QoS-based Architecture”,
Proceedings of the ICSE 2006 Workshop on Software Engineering for
Adaptive and Self-Managing Systems, pp. 65-71

[17] C. Raibulet and L. Masciadri, “Evaluation of Dynamic Adaptivity
through Metrics: an Achievable Target?”, Proceedings of the Joint
IEEE/IFIP Conference on Software Architecture 2009 & European
Conference on Software Architecture 2009, pp.341-344

[18] C. Raibulet and L. Masciadri, “Towards Evaluation Mechanisms for
Runtime Adaptivity: from Case Studies to Metrics”, Proceedings of
the ADAPTIVE 2009 Conference, IEEE Press, 2009, pp. 146-152

[19] H. Sadat and A. A. Ghorbani, “On the Evaluation of Adaptive Web
Systems”, Proceedings of the Workshop on Web-based Support
Systems, 2004, pp. 127-136.

[20] N. Subramanian and L. Chung, “Metrics for Adaptability”, Journal of
Applied Technology Division, 1999, pp. 95-108.

[21] S. Weibelzahl, “Evaluation of Adaptive Systems”, Lecture Notes
Computer Science LNCS 2109, 2001, pp. 292-29

251

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Quality Criteria Framework for Pattern Validation

Daniela Wurhofer, Marianna Obrist, Elke Beck & Manfred Tscheligi

Christian Doppler Laboratory for “Contextual Interfaces”
HCI & Usability Unit, ICT&S Center

University of Salzburg
Salzburg, Austria

Email: {firstname.lastname}@sbg.ac.at

Abstract—Patterns represent an important tool for commu-
nicating, documenting, and looking up best practices for both
novice and expert system developers and designers. Working
in the field of patterns not only requires a well-structured
approach to develop new patterns but also a guidance to
validate patterns in order to ensure a high quality. Although
there are a number of different patterns and pattern languages
available, it is still unclear how to validate patterns in a
structured way. Within this paper, we aim to fill this gap
by introducing a Quality Criteria Framework developed on
the basis of existing pattern research. Particularly, five main
quality criteria for patterns will be presented and discussed
in detail. The idea of our framework is to provide structured
guidance for validating patterns in a comprehensive way by
using quality criteria. In order to show the applicability of
the quality criteria framework in practice, a case study using
selected criteria from the framework for validating an existing
pattern collection was conducted. This case study showed the
appropriateness of our framework for validating patterns and
iterating them on the basis of the validation results.

Keywords-patterns; validation; quality framework; valida-
tion methods; case study.

I. INTRODUCTION

This paper aims to give a detailed overview on current
research on the validation of patterns and to thoroughly
introduce a comprehensive framework for validating patterns
based on our previous work presented at the PATTERNS
2009 conference [1]. This work is part of our research
towards contextual user experience patterns within the Chris-
tian Doppler Laboratory for “Contextual Interfaces”. The
framework was already applied in a specific context, namely
the case study presented in this paper (audiovisual systems)
and is currently explored in other contexts. Thereby, knowl-
edge gained on contextual user experience [2] is preserved
by using the pattern approach.

In general, patterns are characterised by capturing useful
design solutions and generalizing them to address similar
problems [3]. Borchers [4] defines design patterns as a
structured textual and graphical description of a proven
solution to a recurring design problem. This also underpins
the reusability of patterns which was especially emphasized
by Martin, Rouncefield, and Sommerville, [5]. Tidwell [6]

stresses the fact that patterns are neither heuristics nor com-
plete step-by-step descriptions of how to solve a problem
but descriptions of best practices.

Since patterns have been introduced in urban architecture
in the 1970s by Christopher Alexander [7], they have turned
out to be an important tool for communicating, documenting,
and looking up best practices for both novices and experts in
different domains. According to van Welie [8], documenting
and looking up best practices improves the quality of design
solutions and can reduce time and effort for designing new
projects considerably, provided that the patterns themselves
are of high quality. Moreover, patterns facilitate commu-
nication between different stakeholders (e.g., designers and
programmers) as they support the forming of a collective vo-
cabulary and thus avoid misunderstandings and ambiguities
[9].

Patterns have become popular in different domains,
involving architecture [10], software engineering (e.g.,
[11][12][13]), human-computer interaction and interface de-
sign (e.g., [14][15][16][6][17][18][19]), ubiquitous comput-
ing [20], game design [21], and pedagogics [22].

Despite the broad application range of patterns, there
is still a lack of research on the validation of patterns.
In particular, there is a lack of consistent quality criteria
for patterns and pattern languages as well as appropriate
validation methods. According to Dearden & Finlay [23],
the evaluation of how useful selected patterns are in practice
is important but has been hardly considered up to now. Sim-
ilarly, McGee [21] claims that there is a need for materials
to support the creation and revision of patterns. Although
there have been some attempts to validate patterns, these
validations have focused on specific application domains or
have only regarded selected aspects. Thus, a comprehensive
framework for validating patterns in different application
areas involving all relevant criteria which account for the
quality of a pattern is still missing.

Within this paper we aim to fill this gap by present-
ing a common and comprehensive validation approach for
patterns. By introducing a so-called quality criteria frame-
work, a novel way of validating patterns based on clearly
defined quality criteria is described. In order to define a

252

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

comprehensive framework, we first collected and analyzed
existing criteria, guidelines and requirements for patterns.
Based on this extensive desktop research, we developed our
own validation framework. To prove the applicability of our
framework in practice, we finally applied it for improving an
existing pattern collection. Therefore, we conducted a case
study with an existing pattern collection. On the basis of
quality criteria chosen from our framework, selected patterns
of the collection were iterated and improved using both
qualitative (interactive pattern workshop) and quantitative
(pattern checklist) methods.

The present paper is structured as follows: In the first
part of the paper we will introduce related work and discuss
existing criteria, guidelines, and requirements for the pat-
terns we use for clustering and developing a comprehensive
quality criteria framework. The second part of the paper is
dedicated to the development and description of our quality
criteria framework, in which each component is presented in
detail. Next, we show how we applied the developed quality
criteria framework for validating and improving an existing
pattern collection. Finally, we discuss insights gathered from
the validations done on the basis of our framework and give
an outlook for future work.

II. RELATED WORK

Patterns have to be evaluated to prove their quality. How-
ever, the question of how to evaluate patterns profoundly is
still vague and remains a challenge for those who develop
and improve patterns and pattern languages.

A. Quality Criteria for Patterns

There are several collections of criteria, guidelines, and
requirements available which aim at defining what makes
patterns and pattern languages high-quality. The five pre-
sented collections range from a focus on single patterns
themselves to an overall view on pattern languages and
frameworks, deriving from different pattern domains, e.g.,
design, human-computer interaction (HCI), and software de-
velopment. We have analyzed these collections with regard
to differences and similarities of the used quality criteria as
presented in Table I. Based on the related work, we have
clustered the collected criteria for patterns and/or pattern
languages and used them as a starting point for our quality
criteria framework.

One collection of quality requirements for pattern lan-
guages was compiled by Niebuhr, Kohler, and Graf [24].
Based on the challenges they experienced when identifying
and developing patterns, they state four successive quality
criteria which should be considered. The “problem fit”
criterion is achieved when a pattern has successfully been
identified as appropriate to a design or development problem.
A high-quality pattern makes it easy to understand its
content, and consequently the idea of the pattern (“under-
standability”). Once the pattern has been discovered and

understood, it needs to offer a valid solution to the problem
(“correctness”). The final challenge for the pattern user
lies in realizing the pattern solution to solve the design or
development problem (“concretization”).

Another attempt to describe requirements for the qual-
ity of patterns comes from McGee [21], who described
general characteristics of patterns. A pattern is required to
be “operational and precise” in order to be transferable
to a concrete solution and to be “positive”, which means
that it demonstrates ‘good practices’ instead of bad ones.
Further, a pattern should be “flexible” in such a way as
to offer several solutions to a problem and “debatable”,
meaning that it is comprehensible enough to be discussed.
Furthermore, a “testable” pattern allows an empirical confir-
mation of improvements through pattern implementation and
an “end-user oriented” pattern strives for a consideration
of end-users’ perspectives. McGee [21] also introduced
the characteristic “positive” for patterns, which we have
not considered as valuable as a quality criterion for our
framework, since patterns represent best practices and are
therefore positive by definition.

Furthermore, Khazanchi, Murphy, and Petter [25] defined
the following guidelines for evaluating patterns according
to Christopher Alexander’s vision of a ‘quality without a
name’. The “plausibility” criterion is related to the con-
sistency of knowledge embedded in the pattern of existing
knowledge in the field of design or development. Thus,
the pattern has to reach a level of believability among the
pattern users. When a pattern achieves the “feasibility”
criterion it can be operationalized and applied to a problem.
Further, the description of a pattern has to be understandable
(“effectiveness”) which comprises qualities like e.g., com-
prehensiveness, consistency, and completeness. Consistency
is not only necessary among parts of a pattern, but also
within patterns which belong to the same problem area
(“pragmatic”). Furthermore, pattern descriptions need to
include “empirical” evidence in order to verify the intended
pattern output. Finally, Khazanchi, Murphy, and Petter [25]
consider a pattern to be “predictive” by nature, when it is
reliable in its effect every time it is applied.

A great deal of the previously described criteria is exam-
ining in detail the structural quality of patterns and pattern
languages, but misses a broader view on the context of their
usage. Borchers [4] defined a set of requirements for an in-
terdisciplinary pattern language framework for the design of
interactive systems, which also includes domain-specific as-
pects. He emphasizes that a pattern framework requires to be
understandable for people from different disciplines (“cross-
discipline readability”). The involvement of different do-
mains (e.g., HCI, software engineering) additionally leads
to the necessity of a “domain-independent, uniform, well-
defined format” for pattern languages. Again, “empirical
evidence” of the pattern is regarded as important to prove the
pattern’s validity. Further, the collection of patterns should

253

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I
COLLECTION OF QUALITY CRITERIA FOR PATTERNS AND/OR PATTERN LANGUAGES BASED ON A LITERATURE REVIEW AS WELL AS THE DERIVED

CRITERIA USED WITHIN THIS PAPER (ON THE RIGHT COLUMN).

Niebuhr et al. McGee (2007) Khazanchi et al. Borchers (2001) Dearden et al. This Paper
(2008) (2008) (2008)
Problem Fit Findability

Domain-appropriate,
design-supporting hierarchy

Pragmatic
Understandability Debatable Effectiveness Understandability

Flexible
Cross-discipline readability
Design dimension coverage
Domain-independent,
uniform, well-defined
format

Concretisation Operational and precise Feasibility Generative design Helpfulness
Lifecycle integration

Correctness Testable Empirical Empirical evidence Empirical verification
Predictive
Plausibility Overall acceptability

End-user oriented
Positive

Empowering users
Life-enhancing outcomes

be arranged in a hierarchical order, following the logic
of the design/development process (“domain-appropriate,
design-supporting hierarchy”). The next criterion, “design
dimension coverage”, is used to consider domain-specific
dimensions for the pattern language. The descriptions of
interaction patterns, for example require the inclusion of a
temporal dimension as an important characteristic of inter-
actions. Furthermore, a pattern language framework requires
to give hints on how it can be integrated into the software
development lifecycle (“lifecycle integration”).

The last criteria collection of Table I refers to the stake-
holders who deploy patterns. The two main stakeholders are
usually designers and developers who have to be supported
by patterns in specific ways [26]. In addressing a participa-
tory design approach, Dearden, Finlay, Allgar, and McManus
focused on the suitability of pattern languages as design
tools for users acting as non-professional designers [27]. In
other words, patterns and pattern languages do not only have
to be valuable for professional designers and developers,
but also be comprehensible for non-professionals. In line
with the position of Christopher Alexander, Dearden, Finlay,
Allgar, and McManus discussed three criteria for evaluating
patterns. First, pattern languages have to be written in
a way which enables users to generate complete designs
(“generative design”). Second, the pattern language needs
to be valuable for “empowering users” to participate in
a design process and third, the deployment of the pattern
should lead to “life-enhancing outcomes” for the users.

As shown in Table I, quality criteria of patterns and/or
pattern languages from different sources and theories some-

times overlap, and sometimes they put their focus on differ-
ent aspects.

In this paper, we aim at a conflation of the different
aspects into a unified quality criteria framework, which
should aid the validation of patterns and pattern languages
and thereby the iterative development/improvement of the
patterns. Based on the related work we have identified five
types of quality criteria, which are listed in the right column
of Table I and discussed in detail in the following sections.
A further challenge is how to apply these criteria for the
validation of patterns and pattern languages, namely finding
the right methodological validation approach.

B. Validation of Patterns

For validating patterns against certain quality aspects,
mainly two approaches are considered:

1) Expert/stakeholder based evaluation of patterns fusing
for instance heuristics, checklists, workshops, etc.

2) Practical usage and evaluation of patterns with
stakeholders, such as designers and developers.

The first approach is based on heuristics, guidelines,
and peer-reviewing. An established way of investigating the
quality of patterns together with peers (designers, developers
of a system) is to conduct shepherding and writer’s work-
shops (see [28][29]). Specific requirements and as well as
checklists were also used for validating patterns.

Borchers [4] evaluated whether the developed interaction
pattern framework meets a set of requirements. In order to
get insights about the didactic usefulness of patterns, he

254

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

additionally distributed a survey to HCI design students. This
survey revealed information about the amount of memorized
patterns as well as the patterns’ usefulness for their project
and for reuse in future design projects [4]. It turned out that
the students considered patterns as useful and easy to use.
However, a constraint of this study is the fact that it lacks
comparison with other types of design advices.

Similar to Borchers [4], McGee [21] provided his design
students with a game design pattern guideline as well as a so-
called evaluation checklist in the form of questions. These
materials were intended to support the pattern creation as
well as to find weaknesses of existing patterns. In general,
they can support developers in creating and improving
innovative games.

Dearden, Finlay, Allgar, and McManus [27] evaluated
the usefulness of patterns as tools for participatory design.
Therefore, they defined three criteria and investigated these
criteria by involving six participants in a participatory design
task. According to the authors, the results of their study
show that patterns can have a benefit in empowering users
to participate in the design process. A comparison with
alternative methods was not made.

The second approach of empirical evidence is based on
many researchers’ claim (e.g., [30]) that it is important to put
patterns into use to judge their quality. For example, Chung
et al. [20] conduced a controlled study with designers to
evaluate the helpfulness of design patterns for ubiquitous
computing. Two groups of designers had to complete tasks,
one with and the other one without the help of design
patterns. Afterwards, the results from both groups were
analyzed comparing the quality differences in the design
output and investigating the usefulness of the patterns for
design. From their findings the authors conclude that the
patterns supported both new and experienced designers who
are not familiar with ubiquitous computing. In particular,
their patterns facilitated the generation and communication
of ideas and avoided design problems early in the design
process.

Cowley and Wesson [31] conducted an experimental study
on the usefulness of patterns, investigating the use of design
patterns in comparison to the use of guidelines. The task was
to evaluate and redesign an existing website. For this task, an
experimental group used a selection of patterns, whereas a
control group used guidelines similar to the selected patterns.
Based on their preliminary results, the authors concluded
that developers were more positive about design patterns
than guidelines with respect to potential for evaluation,
redesign, and new design.

Kotzé, Renaud, and Biljon [22] compared the effective-
ness of patterns and anti-patterns in education. In order to
identify the differences, they conducted two studies. Ac-
cording to their findings the authors claim that patterns are
easier to learn from than anti-patterns. Thus, they consider
the pattern-approach as more promising for educational

purposes. In a more general way, their results can also be
interpreted as evidence that negatively framed guidance is
harder to learn from than positively framed guidance.

In a qualitative case study, Segerståhl and Jokela [32]
investigated and compared the usability of two popular
pattern collections. In the practical context of an industrial
development project, they explored and compared Tidwell’s
‘Common Ground” collection, and Van Welie’s pattern
collection. As a result of their study, the researchers gave
suggestions on how to improve collections of design patterns
and thus make them easier to use.

In our paper we address the challenge of how to apply
the criteria for the validation of patterns, namely finding
the right methodological validation approach, and to validate
selected UX patterns using our quality criteria framework.

III. QUALITY CRITERIA FRAMEWORK

In order to have a theoretical basis for the validation of
patterns, we developed a quality criteria framework based
on existing research as presented in the previous section.
The framework aims to summarize and extend knowledge
in this area and therefore represents a “meta-view” on what
constitutes a high-quality pattern.

As shown in Table I, five superior quality criteria rep-
resenting the most important characteristics of high-quality
patterns were defined. The following superior criteria were
identified for the quality criteria framework and further
divided into sub-criteria if appropriate - see overview in
Figure 1. Clearly, the present categorization is not always
selective, i.e. some sub-criteria could also be subsumed
under another criterion. This particularly applies to the sub-
criteria of understandability and helpfulness. For example,
the sub-criterion problem-centeredness (subsumed under the
criterion understandability) could also be subsumed under
the criterion helpfulness. In the following sections, each
criterion will be described in more detail.

A. Findability

Our criterion called “findability” states that a pattern
has to be found easily and quickly within a pattern col-
lection/pattern language. It is based on the assumption that
if it takes too much time or effort for a potential pattern
user to find a suitable pattern for a specific problem, the
adoption of patterns fails already at the beginning. Therefore,
the fact that a pattern can be easily found within a set of
patterns seems to be an essential indicator for the quality
of a pattern collection/language. When investigating this
criterion, it could, for instance, be checked if the patterns
of a pattern collection/pattern language are organized in a
hierachical manner, guiding the user top-down to a suitable
pattern.

The findability criterion is in line with a requirement for
an interdisciplinary pattern language framework defined by

255

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Comprehensibility
of Pattern Parts

Comprehensibility
of Pattern Parts

Comprehensibility
of Pattern Parts

Comprehensibility
of Pattern Parts

Figure 1. Overview on Components of the Quality Criteria Framework.

Borchers [4], namely the requirement asking for a “domain-
appropriate, design-supporting hierarchy”. Similarly, Khaz-
anchi, Murphy, and Petter [25] consider the consistency
of a pattern within other patterns in a problem class as
“pragmatic”, and Niebuhr, Kohler, and Graf [24] mention
a quality requirement for patterns called “problem fit”. The
identified “findability” quality criteria stands for its own and
does not comprise sub-criteria.

B. Understandability

Our criterion “understandability” deals with the fact that
the pattern must be easily understood by its users. Ensuring
the comprehensibility of every pattern part (name, problem,
forces, etc.) improves the applicability of the pattern in
practice. For assessing this criterion, it could be asked if
one finds the name of the pattern meaningful and can
figure out the main idea of the pattern (when reading its
name). This mainly addresses the quality of the sub-criterion
comprehensibility of pattern parts (see enumeration below).

Niebuhr, Kohler, and Graf [24] state that the wording and
notation of the pattern description must be understandable
in order to successfully identify and apply the pattern.
McGee [21] indicates that a pattern should be debatable
as well as flexible in the sense that there is more than
one solution. According to Khazanchi, Murphy, and Petter
[25], a guideline for evaluating patterns is to prove the
pattern’s effectiveness. In line with this, Borchers [4] poses
the requirements of a “cross-discipline readability”, “design
dimension coverage”, and “domain-independent, uniform
and well-defined format”. In order to describe the under-
standability criterion as well as possible and thus provide a
basis for the operationalization of this criterion, we defined
the following sub-criteria:

a) Completeness of Information
A pattern should contain all relevant description of
forces, problems, solutions, and examples to clarify
its notion. The quality of a pattern therefore depends
on its completeness. A pattern should be considered
as “complete” when the necessary information is given
in the pattern.

b) Language
A pattern should use a language which is easy to un-
derstand. For example, the terms used should be well-
known and the sentences should not be too complex.
Overall, patterns should be written in a way which
is acceptable and appealing to every user, regardless
of the discipline he comes from. The clearness of a
pattern as well as a well-readable writing style are thus
indicators for the quality of a pattern/pattern language.

c) Problem-Centeredness
A pattern should be centered around a problem. There-
fore, all parts of a pattern (e.g., name, forces, solution)
should be derived from the problem. For example,
the relationship between the problem and the solution
should be clear. A pattern in which all parts are
related to the problem description therefore represents
a pattern of high quality.

d) Balance between Concreteness and Abstractness
A pattern should neither be too abstract nor too con-
crete. If it is too abstract, one can not figure out how
to apply the pattern to other applications/systems. If it
is too concrete, the solutions can not be generalized.
A high-quality pattern should therefore have a good
balance between concreteness and abstractness.

e) Comprehensibility of Pattern Parts
All parts of a pattern description should be compre-
hensible to the pattern users. One should know what

256

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is meant by them. For example, the name of the
pattern should be meaningful so that the main idea
of the pattern can be figured out instantly. The stated
forces should provide enough background informa-
tion, and the context of application should be clear.
The provided solutions should be concrete enough
and should not impose new questions. The examples
given should be comprehensible and plausible. A high-
quality pattern should therefore be characterized by a
high comprehensibility of each single pattern part.

C. Helpfulness

This category implies that the pattern has to be (or is sup-
posed to be) helpful for the pattern user. For being helpful,
the implementation of the pattern has to be feasible for the
pattern user, meaning that the pattern description gives the
user sufficient information about how to realize the pattern
in practice. The category helpfulness can be further divided
into “subjective” and “objective” helpfulness, differentiating
between the supposed and the actual helpfulness (objectively
measured by case studies, etc). Therefore, this category is
based on the assumption that if the pattern/pattern collection
is not supposed to be helpful, it will not be used (subjective
helpfulness) or that if the pattern/pattern collection has not
been helpful, it will not be reused (objective helpfulness).
The helpfulness criterion could be investigated for example
by letting participants summarize the main content of a
pattern which was presented to them some time ago, in one
sentence. The results give insight about the quality of the
sub-criterion memorability (see enumeration below).

In their paper, Khazanchi, Murphy, and Petter [25] refer
to this characteristic as “feasibility”. Similarly, Niebuhr,
Kohler, and Graf [24] identify the process of transferring
a rather abstract pattern description to a concrete solution as
“concretization”. Borchers [4] claims that a pattern language
has to specify a way how the patterns can be integrated in
the development lifecycle. McGee [21] characterizes a good
pattern as “operational and precise”, and Dearden, Finlay,
Allgar, and McManus [27] state that pattern languages
should support “generative design”.

In order to describe the helpfulness criterion as com-
prehensive as possible and thus provide a basis for the
operationalization of this criterion, we defined the following
sub-criteria:

a) Improvement of Design/Architecture
A pattern should serve as a design or development
aid. With the help of a pattern, the development of
new applications and the improvement of existing
applications is supported. Therefore, the high quality
of a pattern is indicated by the fact that the pattern
helps to improve the design or development of systems
(depending on the application area of the patterns).

b) Problem Solving
A pattern should be able to provide best practices and

solutions to common problems. Upon knowing proven
solutions or best practices beforehand, one can avoid
certain problems. Therefore, a pattern which helps to
avoid common problems represents a pattern of high
quality concerning this criterion.

c) Support of Communication
Designers, developers, and researchers do not always
speak the same “language”. Patterns should therefore
serve as a common ground for discussions about
design and development issues. A pattern of high
quality should therefore provide a common basis for
designers, developers, and researchers and thus sup-
port (interdisciplinary) communication.

d) Capturing of Knowledge
A pattern represents a tool for capturing previously
gained knowledge. The knowledge described in a
pattern should appear relevant to the pattern user.
A pattern which captures relevant knowledge about
its application domain thus represents high quality
regarding this criterion.

e) Memorability
A pattern has to be easy to remember in terms of both
recognition and recall. When talking about a pattern,
its content should be memorized thoroughly in order
to support efficient communication and usage of the
pattern. A pattern whose main idea can be retrieved
in a quick and easy way therefore represents a pattern
of high quality.

f) Feasibility
A pattern should be easy to realize or implement in
practice. In order to support the right implementation
of a pattern, particularly the solution must be clear
for the pattern user. A pattern which can be easily
applied in real situations accounts for the high quality
of a pattern.

D. Empirical Verification

Our criterion “empirical verification” describes the fact
that a pattern is approved by empirical data. This can be
either achieved by creating patterns which are based on
results of empirical studies or by verifying existing pattern
collections empirically.

We claim that an empirically verified pattern is of higher
quality than a pattern which is “only” based on a person’s ex-
periences and observations. For example, if there is empirical
evidence which approves the “correctness” of the pattern, the
quality of the pattern is high.

Niebuhr, Kohler, and Graf [24] ask for empirical or
theoretical evidence in order to ensure the “correctness” of
a pattern. In line with Niebuhr et al., McGee [21] claims
that a pattern should be “testable”, i.e. offer the possibility
to empirically test the effects of using a certain pattern.
Khazanchi, Murphy, and Petter [25] claim that patterns
should have an empirical nature in order to make them

257

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

verifiable. Moreover, they claim that a pattern should be
“predictive”, meaning that it produces the same general
effect every time it is applied. Borchers [4] points out that
the examples given within a pattern should contain empirical
evidence of the validity of the solution whenever possible.
For this criteria we defined no further sub-criteria.

E. Overall Acceptability

The criterion “overall acceptability” describes to what
extent a pattern user believes in the pattern, meaning how
much he agrees with its content. This category is based on
the assumption that if a potential pattern user does not agree
with the content of a pattern at all (for example because
it completely conflicts with previous experiences), he will
not accept the pattern and thus will not use it. Therefore,
the quality of a pattern is also affected by an individual’s
subjective acceptance of a pattern/pattern language. In order
to investigate the overall acceptability of a pattern, one
could ask if the reader of a pattern finds himself nodding in
agreement as he reads the pattern description. Assessing this
question would be an indicator for the sub-criterion “overall
agreement with pattern” (see enumeration below).

Khazanchi, Murphy, and Petter [25] refer to the term
“plausibility”, which means that a pattern should be coherent
and consistent with the knowledge of a particular domain.
According to McGee [21], a pattern should be “end-user
oriented”, meaning that not only developers or designers
appreciate a pattern, but also end-users who interact with
the system to be developed/designed. In order to describe
this criterion in a more focused way and thus provide a
basis for the operationalization of this criterion, we defined
the following sub-criteria:

a) Overall Believe in Pattern
This sub-criterion deals with the overall believe in a
certain pattern. A high belief in a pattern represents a
high (subjectively experienced) quality of a pattern.

b) Overall Agreement with Pattern
This sub-criterion deals with the fact that a user should
be convinced of a pattern, i.e. the user should “find
himself nodding in agreement as he reads the pat-
tern description” [21]. High (subjectively experienced)
quality of a pattern is therefore affected by a high
overall agreement with its content.

Based on the framework and its criteria defined above, a
case study showing its practicability was conducted.

IV. CASE STUDY UX PATTERNS: PATTERN VALIDATION
BASED ON THE FRAMEWORK

In the three-year CITIZEN MEDIA research project,
focusing on the user experience (UX) of audiovisual net-
worked applications, we used the pattern approach to de-
velop so-called user experience patterns [33].

Our UX patterns are intended to show best practices
for common problems in the area of audiovisual systems,
providing designers and developers of audiovisual systems
with proven solutions on how to improve a user’s experience
when interacting with an audiovisual system.

Based on user evaluation data collected in three different
European testbeds (Germany, Austria, Norway) involving
over 8000 users, we developed about 30 UX patterns. An
actual version of the UX patterns can be found on the UX
pattern website1.

In Figure 2 the iterative development process of our
UX patterns is visualized. An initial pattern collection was
defined based on the results of the first evaluation phase
of the research project. This collection of patterns was then
iterated by conducting a writer’s workshop with researchers,
resulting in an extended UX pattern collection. Another
iteration was made on the basis of new results achieved
during the second evaluation phase as well as based on
feedback given by an independent expert, resulting in a
revised UX pattern collection.

Next, we wanted to make a validation of our pattern
collection in order to improve its quality. However, we had
to realize that there is still a lack of a common validation
approach for patterns. Therefore, we aimed to fill this gap
by introducing a comprehensive quality criteria framework
for validating patterns in general. By means of this quality
criteria framework we made two more iterations of our UX
pattern collection, showing that this framework is applicable
in practice.

In the following, the case study should exemplify how
our quality criteria framework allows the structured oper-
ationalization and investigation of a pattern’s/pattern lan-
guage’s quality. The following UX patterns were selected
for validation from our collection of 30 UX patterns:

• Pattern 1: Self Presentation
• Pattern 2: Fun Factor
• Pattern 3: Initial Support
• Pattern 4: Real-Life Integration
• Pattern 5: Privacy Management
In order to describe the application of the framework in

practice, we shortly present the two methods we used - the
pattern workshop and the pattern checklist - following the
expert/stakeholder based validation approach (see Section
II, B). Table II gives an overview on the two conducted
validation sessions.

Due to time constraints during the validation sessions, we
focused on the (for us) most important criteria to improve
the existing UX patterns. Moreover, not all components of
our quality framework were applicable in the sessions. For
instance, exploring “findability” or “empirical verification”
require practical usage of the patterns.

1http://hciunit.org/uxpatterns/

258

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Results of first evaluation phase

Initial UX Pattern collection

Definition & Structure
of UX Patterns

Writer’s workshop
with researchers

Extended UX Pattern collection

Results of second
evaluation phase

Feedback on UX Patterns
by independent expert

Revised UX Pattern collection

Interactive Pattern Workshop

Revised UX Pattern collection

Pattern Checklist

Revised UX Pattern collection

Iteration

Iteration

Iteration

Iteration

Figure 2. Steps in the UX Pattern Creation Process.

1) Interactive Pattern Workshop: In order to validate
and improve the quality of our UX patterns, an interactive
pattern workshop was conducted in April 2009.

Set-up: For the validation of the UX patterns, five
patterns were selected from the collection and analyzed in
detail during the workshop. Figure 3 presents the criteria
from the quality criteria framework which were chosen to
be validated in the workshop. Thus, the UX patterns were
validated with regard to their understandability, helpfulness
and overall acceptability.

The workshop was conducted at a stage in the pattern
development process where all defined elements of a UX
pattern description were available (name, problem, solution,
examples). Familiarity with media design processes as well
as good command of English were defined as prerequisites

for the workshop participants. The participants of the
workshop were six multimedia design students (5 females,
1 male) with a mean age of 22. The participants had about
five years of design experience on average. Four of the
participants did not know design patterns, and two of the
participants knew design patterns but never used them so far.

Procedure: For each of the five patterns, the following
questions were addressed in detail:

1) Is the pattern easy to understand? Especially: Is the
pattern comprehensible?

2) Is the pattern helpful for the designers? Especially: Is
the pattern easy to remember?

3) Do the participants accept the presented patterns?
In order to address the questions presented above, the

following procedure was deployed: At first, the participants
were welcomed and invited to shortly introduce themselves.
Next, the workshop leaders gave a short introduction about
the workshop goals, the role of patterns within the design
process, and the specific role of UX patterns. Then, the
workshop participants were asked to do several exercises,
addressing the questions presented above.

The first question presented above (understandability)
aims at investigating if the wording and the descriptive text
of the UX pattern are easy to understand by the designers.
Therefore, the comprehensibility of the UX pattern name
was investigated in detail using the so-called “name guessing
exercise”. In general, the name of a pattern should be short
and meaningful, expressing the aim of the pattern clearly.
To investigate the comprehensibility of a pattern’s name,
the participants were presented the name of the pattern
and then had to write one sentence about its supposed
aim. After guessing about the aim, the actual aim of the
pattern was presented, and the naming as well as suggestions
for improvement of the naming were discussed with the
participants.

Next, the comprehensibility of the other parts of the
UX pattern description was evaluated by the participants.
Therefore, the participants were given a so-called “compre-
hensibility questionnaire” (see Figure 5) to rate the compre-
hensibility of the pattern parts (problem, forces, solution) on
a five-point scale (from “absolutely agree” to “don’t agree
at all”). The participants had to read through the pattern
descriptions displayed on the beamer and fill in the com-
prehensibility questionnaire. After each pattern round, the
incomprehensible parts were discussed and suggestions for
improvement were collected. Additionally, the questionnaire
contained two items asking the participants for an overall
rating of the pattern (see Figure 7) addressing the overall
acceptability (third question presented above).

In order to address the memorability of the selected UX
patterns (second question presented above), a so-called
“remembrance exercise” was conducted. Therefore, the
participants were handed out a sheet of paper containing

259

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Comprehensibility
of Pattern Parts

Figure 3. Overview on Components of the Quality Criteria Framework covered by the Workshop.

Table II
OVERVIEW ON THE VALIDATION SESSIONS OF THE CASE STUDY

Validation method No. of participants Participants’ expertise Type of feedback Date of conduction
Interactive Pattern Workshop 6 Multimedia Design Students Qualitative April 2009
Pattern Checklist 6 Computer Science Students Quantitative June 2009

(again) only the name of a pattern. Having the name
of one of the five selected UX patterns, the participants
were requested to write down the main characteristics of
the pattern in one or two sentences. To get insights into
the supposed helpfulness in general, an open discussion
about the participants’ opinion on the helpfulness of the
presented UX patterns was conducted. Amongst others,
the participants were asked to discuss about the question
if patterns can support designers in giving users a more
positive experience and to describe the advantages and
disadvantages of patterns. Moreover, possible difficulties
in the usage of patterns as well as the usage of patterns
for real application design were discussed. Additionally,
the participants were asked to compare patterns with any
other type of design advice (design guidelines, UI Design
Principles) to judge their value. Furthermore, suggestions
for improvement were also subject of the discussion.

2) Pattern Checklist: In order to validate the quality of
the UX patterns a second time and thus further improve
their quality, a follow-up validation session using a so-called
“pattern checklist” was conducted in June 2009.

Set-up: Based on the first validation (interactive
pattern workshop), a checklist covering selected criteria
from the quality criteria framework was composed; the
selected criteria are shown in Figure 4. For this follow-up
validation, the same UX patterns as in the interactive

pattern workshop were used. Overall, the UX patterns were
validated with regard to their understandability, helpfulness,
and acceptability. At the point of time when this follow-up
validation was conducted, the UX pattern description was
complete and already iterated on the basis of the first
validation (see Figure 2). In order to cover the target group
of designers as well as developers, the intended participants
were developers this time (first validation was conducted
with designers). As the UX patterns are written in English,
another prerequisite for the participant selection was a good
command of English. The follow-up validation was then
conducted with six students of computer science.

Procedure: The main research question of the follow-
up validation was if the presented UX patterns would meet
the selected quality criteria. In more detail, the following
questions were addressed:

1) Is the pattern easy to understand? (Covering all sub-
criteria)

2) Is the pattern helpful for developers? (Covering sub-
criteria a)-d))

3) Do the participants accept the presented patterns?
In order to address these questions, a checklist was

composed. This checklist was intended to find quality prob-
lems in (selected) patterns, similar to a traditional heuristic
evaluation in the field of usability engineering. By reading
the pattern description and going through the heuristics, the
evaluators (participants) should judge the patterns’ compli-

260

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Comprehensibility
of Pattern Parts

Figure 4. Overview on Components of the Quality Criteria Framework covered by the Checklist.

ance with the quality criteria.
The checklist was organized in the following manner

(see Figures 5, 6 and 7): The first part of the checklist
(see Figure 5) contained the comprehensibility questionnaire
already used in the workshop and was intended to give
insights about the comprehensibility of all pattern parts. The
second part of the checklist (see Figure 6) covered all other
sub-criteria selected from the framework. Each item of the
checklist was intended to cover one single quality criterion.
The items of the checklist were formulated like heuristics
and the agreement with each item had to be indicated on a
five-point rating scale (ranging from “absolutely agree” to
“don’t agree at all”). Again, the acceptance of the presented
patterns was evaluated via the third part of the checklist (see
Figure 7) .

ICT&S, Human-Computer Interaction & Usability Unit www.icts.sbg.ac.at

Participant Code: ___

Quality criteria for Pattern 1 (Self Presentation)

All parts of a pattern description should be comprehensive to the pattern users. One should know what

is meant by them.

 absolutely

agree
rather

agree
neutral rather

don’t
agree

don’t

agree
at all

don’t

know

The name of the pattern is meaningful to
me. I can figure out the main idea of the

pattern.

[] [] [] [] [] []

The stated problem is clear to me.

[] [] [] [] [] []

The stated forces provide me enough

background information. [] [] [] [] [] []

I know to which context the pattern is
applicable.

[] [] [] [] [] []

The provided solutions are concrete

enough and don’t impose new questions.

[] [] [] [] [] []

The given examples are comprehensible

and plausible.

[] [] [] [] [] []

A pattern should contain all relevant description of forces, problems,

solutions and examples to make it clear to the user. For example all relevant

forces should be considered.

I would consider the pattern as “complete”, meaning that the
necessary information is given in the pattern.

 [] absolutely agree
 [] rather agree

 [] neutral
 [] rather don’t agree

 [] don’t agree at all

 [] don’t know

A pattern should use a language which is easy to understand. For example,

the terms used are well-known and the sentences are not too complex.
Overall, patterns should be written in a way which is acceptable and

appealing to every user (designer, developer …).

The “language” of the pattern is clear to me. The style in which the
pattern is written is well-readable to me.

 [] absolutely agree

 [] rather agree
 [] neutral

 [] rather don’t agree
 [] don’t agree at all

 [] don’t know

A pattern should be centered around a problem. Therefore, all parts of a

pattern (e.g. name, forces, solution) should be build on the problem. For
example, the relationship between the problem and the solution is clear.

I think the pattern is problem-centered, i.e. all parts (e.g. name,

forces, solution) are related to the problem description.

 [] absolutely agree

 [] rather agree
 [] neutral

 [] rather don’t agree
 [] don’t agree at all

 [] don’t know

Figure 5. Part one of the Pattern Checklist - Comprehensibility Question-
naire.

The procedure of the validation session was the following:
First, there was an introduction phase. During this phase, the
participants were informed about the goals of the validation,

the pattern approach and the specific role of UX patterns.
Furthermore, the quality criteria were explained so that the
participants were familiar with them before the validation
started. Then, the participants were asked to introduce
themselves, what they study and how much experience and
knowledge they have with patterns.

Next was the pattern review phase. In this phase, the
participants were given one of the five selected patterns as
well as the pattern checklist. The participants were then
asked to rate how much they think the quality criteria
applied to each of the patterns. In case of a low rating
they were asked to further state a reason. This phase was
followed by the discussion phase. After each pattern review,
the review ratings per pattern (and found problems) were
discussed in the group. Finally, the validation session was
closed with an overall discussion on the presented patterns.

3) Results and Implications of the Validations: The two
approaches for measuring the quality of patterns with regard
to certain aspects showed that the quality criteria framework
turned out as a valuable method for validating selected UX
patterns. Both validations yielded consensus based quality
judgements of the selected UX patterns as well as sug-
gestions for improvement of the presented patterns. Both
methods complemented each other in a good way and were
useful for improving the UX patterns. The workshop yielded
more qualitative data and focused on discussion, whereas
the checklist enabled a more structured feedback for further
refinements of the patterns. The iterative deployment of
both methods proved to be helpful, as feedback from the
workshop could be integrated into the checklist.

At this point, we will only present the most important
implications for the development and restructuring of the
UX patterns based on the validations. One issue arising

261

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A pattern should contain all relevant description of forces, problems,

solutions and examples to make it clear to the user. For example all relevant

forces should be considered.

I would consider the pattern as “complete”, meaning that the
necessary information is given in the pattern.

 [] absolutely agree
 [] rather agree

 [] neutral
 [] rather don’t agree

 [] don’t agree at all

 [] don’t know

A pattern should use a language which is easy to understand. For example,

the terms used are well-known and the sentences are not too complex.
Overall, patterns should be written in a way which is acceptable and

appealing to every user (designer, developer …).

The “language” of the pattern is clear to me. The style in which the
pattern is written is well-readable to me.

 [] absolutely agree

 [] rather agree
 [] neutral

 [] rather don’t agree
 [] don’t agree at all

 [] don’t know

A pattern should be centered around a problem. Therefore, all parts of a

pattern (e.g. name, forces, solution) should be build on the problem. For
example, the relationship between the problem and the solution is clear.

I think the pattern is problem-centered, i.e. all parts (e.g. name,

forces, solution) are related to the problem description.

 [] absolutely agree

 [] rather agree
 [] neutral

 [] rather don’t agree
 [] don’t agree at all

 [] don’t know

ICT&S, Human-Computer Interaction & Usability Unit www.icts.sbg.ac.at

A pattern should neither be too abstract nor too concrete. If it is too

abstract, one can’t figure out how to apply the pattern to other
applications/systems. If it is too concrete then the solutions can’t be

generalized.

I think that the balance between concreteness and abstractness is

good.

 [] absolutely agree

 [] rather agree
 [] neutral

 [] rather don’t agree

 [] don’t agree at all

 [] don’t know

Overall, a pattern should serve as a design/development aid. With the help

of a pattern, the development of new applications and the improvement of
existing applications are supported.

I think that the presented pattern helps to develop better A/V
systems with regard to the user’s experience.

 [] absolutely agree
 [] rather agree

 [] neutral
 [] rather don’t agree

 [] don’t agree at all

 [] don’t know

The pattern should be able to provide best practices and solutions to

common problems. When knowing these solutions beforehand, one can
avoid these problems. E.g. by applying this pattern in the development of

A/V systems, one avoids the problem of users not experiencing themselves
as part of a community.

I think that the presented pattern makes the user’s experience
while using the system more positive. Common usage problems are

avoided.

 [] absolutely agree

 [] rather agree
 [] neutral

 [] rather don’t agree

 [] don’t agree at all

 [] don’t know

Designers, developers and researchers do not always speak the same

“language”. Patterns serve as a common ground for discussing about design

and development issues.

I think the presented pattern supports the communication of
designers, developers and researchers by providing a common

basis.

 [] absolutely agree
 [] rather agree

 [] neutral
 [] rather don’t agree

 [] don’t agree at all

 [] don’t know

A pattern represents a tool for capturing knowledge gained before.

Knowledge described in a pattern should appear relevant to the pattern

user.

I think the presented pattern captures relevant knowledge about
user experience.

 [] absolutely agree
 [] rather agree

 [] neutral
 [] rather don’t agree

 [] don’t agree at all

 [] don’t know

Overall, do you “believe” the Pattern?

[] Yes [] No [] Don’t know

Do you find yourself nodding in agreement as
you read the Pattern description?

[] Yes [] No [] Don’t know

Comments:

Figure 6. Part two of the Pattern Checklist - Heuristics for Understand-
ability and Helpfulness.

ICT&S, Human-Computer Interaction & Usability Unit www.icts.sbg.ac.at

A pattern should neither be too abstract nor too concrete. If it is too

abstract, one can’t figure out how to apply the pattern to other
applications/systems. If it is too concrete then the solutions can’t be

generalized.

I think that the balance between concreteness and abstractness is

good.

 [] absolutely agree

 [] rather agree
 [] neutral

 [] rather don’t agree

 [] don’t agree at all

 [] don’t know

Overall, a pattern should serve as a design/development aid. With the help

of a pattern, the development of new applications and the improvement of
existing applications are supported.

I think that the presented pattern helps to develop better A/V
systems with regard to the user’s experience.

 [] absolutely agree
 [] rather agree

 [] neutral
 [] rather don’t agree

 [] don’t agree at all

 [] don’t know

The pattern should be able to provide best practices and solutions to

common problems. When knowing these solutions beforehand, one can
avoid these problems. E.g. by applying this pattern in the development of

A/V systems, one avoids the problem of users not experiencing themselves
as part of a community.

I think that the presented pattern makes the user’s experience
while using the system more positive. Common usage problems are

avoided.

 [] absolutely agree

 [] rather agree
 [] neutral

 [] rather don’t agree

 [] don’t agree at all

 [] don’t know

Designers, developers and researchers do not always speak the same

“language”. Patterns serve as a common ground for discussing about design

and development issues.

I think the presented pattern supports the communication of
designers, developers and researchers by providing a common

basis.

 [] absolutely agree
 [] rather agree

 [] neutral
 [] rather don’t agree

 [] don’t agree at all

 [] don’t know

A pattern represents a tool for capturing knowledge gained before.

Knowledge described in a pattern should appear relevant to the pattern

user.

I think the presented pattern captures relevant knowledge about
user experience.

 [] absolutely agree
 [] rather agree

 [] neutral
 [] rather don’t agree

 [] don’t agree at all

 [] don’t know

Overall, do you “believe” the Pattern?

[] Yes [] No [] Don’t know

Do you find yourself nodding in agreement as
you read the Pattern description?

[] Yes [] No [] Don’t know

Comments:

Figure 7. Part three of the Pattern Checklist - Acceptance Questions.

from the “guessing exercise” and “remembrance exercise”
as well as from the discussions was the naming of the UX
patterns. The participants indicated that the naming often
did not clearly express the aim of the pattern, or that the
meaning was not clear. Especially verbs in the name of
the patterns (for example “Provide Personal Information”)
were often confusing for the participants. A poor rating
of the comprehensibility of the pattern name always came
along with a bad performance of the participants in the

remembrance exercise, thus confirming that the name did not
express the meaning sufficiently. Based on the participants’
suggestions for improvement, their ratings as well as their
comments on the questionnaires, the names of all patterns
were iterated and verbs were removed from the pattern
names.

The “problem” part of the UX patterns was also iterated in
detail after the validations. The participants mainly disliked
that the problem statement was too general or abstract. Thus,
iterated versions of the patterns contain a more concrete
problem description.

The overall agreement with the presented patterns was
rather good. This confirms the results of the discussions,
where the participants stated that they liked and understood
the structure and the content of the patterns.

Concerning the helpfulness of the patterns, the partici-
pants first did not seem to be convinced. However, after
going through some patterns, they changed their opinion
and recognized patterns as an important tool for support-
ing the design/development process. The suggestion of the
participants to group the patterns according to more general
problems was realized after the first validation.

A. Lessons Learned from the Case Study

When applying our framework in practice, its structure
(classification in criteria and more specific sub-criteria)
turned out to be helpful for the development of evaluation
materials. It allowed us to pick out relevant criteria, which
we wanted to investigate within the validation sessions, and
supported a more creative approach for investigating specific
criteria. For example, we decided to investigate the quality
of our patterns regarding their memorability, i.e. how easy
they are to remember (sub-criterion five of the criterion help-
fulness). The precise definition of memorability given within
the framework brought us to the idea of developing a so-
called “remembrance exercise”. As we benefited from such
a structured approach, we will also base the development of
future pattern evaluation material on such a framework.

Within the interactive patterns workshop, which was con-
ducted with design students, it turned out that our criteria
mostly matched with the requirements on patterns from a de-
signer’s point of view. During the discussions, the designers
considered findability, understandability and helpfulness as
very important for a pattern of high quality. However, the
helpfulness criterion was seen somewhat twofold: on the one
hand, designers indicated that support in solving common
problems by the use of patterns would be beneficial for them.
On the other hand, they were critical of too much support,
as this could be negative for the designer’s creativity, i.e.
lowering the creative thinking process.

Comparing the results of the two validation sessions,
a fundamental difference can be stated. The first valida-
tion session, conducted as an interactive pattern workshop,
brought many practically applicable results for improving

262

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the selected patterns but less quantitative judgements about
the quality of the patterns. In the second validation session, a
pattern checklist was used for rating selected quality criteria.
This brought quantitative results, but did hardly deliver
suggestions for the improvement of lower ranked patterns.
We therefore argue that the ideal way of validating and
at the same time improving a pattern is to combine both
approaches, i.e. to combine an interactive pattern workshop
with a pattern checklist.

V. CONCLUSION AND FUTURE WORK

The development of patterns is an iterative process. As the
iteration should lead to an improvement in quality, structured
support on how to improve a pattern’s quality is needed. In
this paper, we aim at giving such a structured support by
introducing a so-called quality criteria framework.

To show the framework’s practicability, it was applied
in a case study for validating the quality of selected User
Experience (UX) Patterns. Therefore, relevant criteria were
selected from the quality criteria framework and validated
by means of an interactive pattern workshop and a pattern
checklist. The results of the workshop and the checklist
provided important insights on the quality of the patterns
and thus helped to improve the patterns’ quality. By applying
these two methods successively (on the same patterns), an
iterative improvement of the patterns was achieved.

The case study indicates that our framework supports
the validation of a pattern’s quality. On the one hand,
the framework provides a structured selection of quality
aspects which should be validated and improved, and on the
other hand, using the framework ensures that no criterion is
ignored unintendedly. Furthermore, the methods applied in
the validation sessions (interactive pattern workshop, pattern
checklist) turned out to be valuable validation methods,
yielding helpful implications for the improvement of a
pattern’s quality.

An advantage of our validation framework is its broad
perspective, which should ensure a broad applicability. Cur-
rent approaches (see chapter on related work) often focus
on single aspects and criteria to judge patterns, but miss a
broader view. With our framework we provide a comprehen-
sive view (based on an extensive literature review) on what
is important to ensure a high quality for different kinds of
patterns. Thus, the risk to forget important issues is lowered.

Moreover, our framework supports the operationalization
of the quality criteria by introducing sub-criteria, which can
be selected depending on the pattern status and relevance
within an iterative validation process. This also influences
the selection of the method. Based on the experiences made
during our case study we assume that a pattern in its early
state benefits more from open discussion and qualitative
data (e.g., interactive pattern workshop), whereas a more
mature pattern can be better improved based on quantitative
feedback (e.g., pattern checklist).

As future work we plan to investigate the components
of our quality criteria framework in more detail. As already
pointed out, the present categorization is not always selective
as some sub-criteria could also be subsumed under other
criteria. Therefore, we aim to find out more about the
relationship of the criteria and sub-criteria, perhaps result-
ing in a more hierarchical framework. We further plan to
validate our UX patterns on the basis of our quality criteria
framework, especially dealing with the criteria not applied so
far. For example, criterion 4, “Empirical Validation”, should
be investigated in real design and development processes.
Overall, the second important validation approach, i.e. the
practical usage of patterns, should be deployed for validating
our patterns.

Additionally, we plan to extend our UX pattern website,
not only containing the UX patterns collection but also the
quality criteria framework as well as methods and tips for
pattern validation.

Furthermore, we currently extend our UX pattern collec-
tion to other contexts beyond the presented case study on
audiovisual systems. Within the Christian Doppler Labora-
tory for “Contextual Interfaces” we work on special context
areas, namely on the context car and factory. By applying
our quality criteria framework to these different contexts,
we want to further assure the general applicability of our
validation framework.

ACKNOWLEDGMENT

The financial support by the Federal Ministry of Economy,
Family and Youth and the National Foundation for Research,
Technology and Development is gratefully acknowledged
(Christian Doppler Laboratory for “Contextual Interfaces”).
This work was partly also funded by the CITIZEN MEDIA
research project (funded by FP6-2005-IST-41).

REFERENCES

[1] D. Wurhofer, M. Obrist, E. Beck, and M. Tscheligi, “Introduc-
ing a comprehensive quality criteria framework for validating
patterns,” in 2009 Computation World: Future Computing,
Service Computation, Cognitive, Adaptive, Content, Patterns.
IEEE Computer Society, 2009, pp. 242–247.

[2] M. Obrist, M. Tscheligi, B. de Ruyter, and A. Schmidt,
“Contextual user experience: How to reflect it in interaction
designs?” in CHI ’10: Proceedings of the SIGCHI conference
on Human factors in computing systems. ACM, 2010.

[3] A. Cooper, R. Reimann, and D. Cronin, About Face 3: The
Essentials of Interaction Design. Indianapolis: Wiley, 2007.

[4] J. Borchers, A Pattern Approach to Interaction Design.
Chichester, England: John Wiley & Sons, 2001.

[5] D. Martin, M. Rouncefield, and I. Sommerville, “Applying
patterns of cooperative interaction to work (re)design: e-
government and planning,” in CHI ’02: Proceedings of the
SIGCHI conference on Human factors in computing systems.
New York, NY, USA: ACM, 2002, pp. 235–242.

263

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[6] J. Tidwell, Designing Interfaces : Patterns for Effective In-
teraction Design. O’Reilly Media, Inc., 2005.

[7] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern
Language: Towns, Buildings, Construction (Center for Envi-
ronmental Structure Series). Oxford University Press, 1977.

[8] M. van Welie and G. van der Veer, “Pattern languages in
interaction design,” in Proceedings of IFIP INTERACT03:
Human-Computer Interaction. IFIP Technical Committee
No 13 on Human-Computer Interaction, 2003, p. 527.

[9] T. Erickson, “Lingua francas for design: sacred places and
pattern languages,” in DIS ’00: Proceedings of the 3rd con-
ference on Designing interactive systems. New York, NY,
USA: ACM, 2000, pp. 357–368.

[10] C. Alexander, The timeless way of building. Oxford Univer-
sity Press, New York, 1979.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[12] M. Bernstein, “Patterns of hypertext,” in Hypertext, 1998, pp.
21–29.

[13] M. Nanard, J. Nanard, and P. Kahn, “Pushing reuse in
hypermedia design: golden rules, design patterns and con-
structive templates,” in HYPERTEXT ’98: Proceedings of the
ninth ACM conference on Hypertext and hypermedia : links,
objects, time and space—structure in hypermedia systems.
New York, NY, USA: ACM, 1998, pp. 11–20.

[14] D. A. Norman and S. W. Draper, User Centered System
Design; New Perspectives on Human-Computer Interaction.
Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1986.

[15] E. Bayle, R. Bellamy, G. Casaday, T. Erickson, S. Fincher,
B. Grinter, B. Gross, D. Lehder, H. Marmolin, B. Moore,
C. Potts, G. Skousen, and J. Thomas, “Putting it all together:
towards a pattern language for interaction design: A chi 97
workshop,” SIGCHI Bull., vol. 30, no. 1, pp. 17–23, 1998.

[16] T. Erickson, “The Interaction Design Patterns Page,” Web-
site, 2005, available online at http://www.visi.com/∼snowfall/
InteractionPatterns.html; retrieved at July 30th 2009.

[17] M. Van Welie, “A Pattern Library for Interaction Design,”
Website, 2005, available online at http://www.welie.com; re-
trieved at July 30th 2009.

[18] C. Crumlish and E. Malone, Designing Social Interfaces.
O’Reilly, 2009.

[19] C. Kruschitz and M. Hitz, “The anatomy of hci design pat-
terns,” in Patterns2009: Proceedings of the First International
Conferences on Pervasive Patterns and Applications. IEEE,
2009.

[20] E. S. Chung, J. I. Hong, J. Lin, M. K. Prabaker, J. A.
Landay, and A. L. Liu, “Development and evaluation of
emerging design patterns for ubiquitous computing,” in DIS
’04: Proceedings of the 5th conference on Designing interac-
tive systems. New York, NY, USA: ACM, 2004, pp. 233–242.

[21] K. McGee, “Patterns and computer game design innovation,”
in IE ’07: Proceedings of the 4th Australasian conference on
Interactive entertainment. Melbourne, Australia, Australia:
RMIT University, 2007, pp. 1–8.

[22] P. Kotzé, K. Renaud, and J. v. Biljon, “Don’t do this - pitfalls
in using anti-patterns in teaching human-computer interaction
principles,” Comput. Educ., vol. 50, no. 3, pp. 979–1008,
2008.

[23] A. Dearden and J. Finlay, “Pattern languages in hci: A critical
review,” Human-Computer Interaction, vol. 1, pp. 49–102,
2006.

[24] S. Niebuhr, K. Kohler, and C. Graf, “Engaging patterns:
Challenges and means shown by an example,” in Engineering
Interactive Systems. Berlin/ Heidelberg: Springer, 2008, pp.
586–600.

[25] D. Khazanchi, J. Murphy, and S. Petter, “Guidelines for evalu-
ating patterns in the is domain,” in MWAIS 2008 Proceedings,
http://aisel.aisnet.org/mwais2008/24, 2008, p. Paper 24.

[26] C. Graf, “A requirements engineering perspective to reposi-
tories for interaction patterns,” Accepted position paper for
EuroPLOP 2007 Focus Group, 2007.

[27] A. Dearden, J. Finlay, L. Allgar, and B. McManus, “Evaluat-
ing pattern languages in participatory design,” in Proceedings
of the Conference on Human Factors in Computing Systems.
ACM New York, NY, USA, 2002, pp. 664–665.

[28] T. Schummer, J. Borchers, J. C. Thomas, and U. Zdun,
“Human-computer-human interaction patterns: workshop on
the human role in hci patterns,” in CHI ’04: CHI ’04 extended
abstracts on Human factors in computing systems. New
York, NY, USA: ACM, 2004, pp. 1721–1722.

[29] J. O. Borchers, “Chi meets plop: an interaction patterns
workshop,” SIGCHI Bull., vol. 32, no. 1, pp. 9–12, 2000.

[30] J. Borchers, “Interaction design patterns: Twelve theses,”
Position paper for the workshop Pattern Languages for In-
teraction Design: Building Momentum, CHI 2000, 2000.

[31] N. L. O. Cowley and J. L. Wesson, “An experiment to measure
the usefulness of patterns in the interaction design process,”
in INTERACT, 2005, pp. 1142–1145.

[32] K. Segerståhl and T. Jokela, “Usability of interaction pat-
terns,” in CHI ’06: CHI ’06 extended abstracts on Human
factors in computing systems. New York, NY, USA: ACM,
2006, pp. 1301–1306.

[33] M. Obrist, D. Wurhofer, and M. Tscheligi, “User experience
patterns: A useful way to support social media develop-
ment,” in Proceedings of NordiCHI 2008 workshop. TAPIR
Akademisk Forlag, 2008, pp. 80–85.

264

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Adaptable and Adaptive Visualizations
in Concept-oriented Content Management Systems

Hans-Werner Sehring
Experience Design and Emerging Technologies

T-Systems Multimedia Solutions GmbH
Dresden, Germany

hans-werner.sehring@t-systems.com

Abstract—One task of content management is the publication
of content. The necessary means to render content into
documents are usually developed alongside other aspects of
content management systems, in particular the content’s
schema. There are content management applications, however,
that require open and dynamic content modeling and
management. These concept-oriented content management
(CCM) systems have been studied carefully. As a consequence,
content visualization in this kind of applications has to be
adaptive and cannot be statically tailored to one given content
structure alone. This paper gives a roundup of CCM, discusses
means to abstractly define content visualizations, and presents
an approach to adaptive visualization. The paper is an
extended version of [1].

Keywords-concept-oriented content management; adaptive
user interfaces; personalization; content distribution

I. INTRODUCTION
In practice, there is no sharp definition of content

management. There is agreement, though, that content
management has to support the separation of layout,
structure, and content [2]. To this end a typical content
management system (CMS) allows to define structure
through a content schema or content model, to manage
content as data, and to render content into documents
following a specified layout through templates (static view
components plus code for the representation of content)
during playout.

CMSs are applied in different scenarios, though. In
particular there are cases where content is itself the primary
entity of interest – when digital content is considered like in
digital image collections, video portals, and Web 2.0
applications – and there are cases when content is used to
represent real-world entities that cannot adequately be
represented by structured data.

For the latter class of applications we have introduced
Concept-oriented Content Management (CCM). In addition
to the above-mentioned general requirements, Concept-
oriented CMSs (CCMSs) have to support personalization of
both data [3] and schemata [4] as a means to express
subjective interpretations of content. Additional requirements
follow from these properties: content models have to be open
to changes and CCMSs have to follow model changes
dynamically, while users need to be able to communicate

with each other in the presence of personalized content
(models) that may differ to a certain degree.

Earlier papers reported on the technical foundations of
CCM that allow handling schema evolution and
individualized communication in CCMSs. In this paper we
discuss visualization matters for such systems, both for
editing content according to personalized models as well as
the rendering of content into documents that can be
published independently of a content schema.

The remainder of this paper is organized as follows: in
Section II we revisit CCM as a content management
approach. Since the technical details of the CCM approach
have been described thoroughly in other publications [4], the
paper gives a summary of these topics. In Section III,
however, we provide a more detailed look on content
modeling with CCM. Sections IV and V cover the main topic
of this paper, adaptive visualization of content. In Section IV
adaptable visualizations for CCMSs are discussed in general,
and specifically details on view models. Section V discusses
the modeling of controllers to handle interaction. The paper
concludes in Section VI with an outlook on future research.

II. CONCEPT-ORIENTED CONTENT MANAGEMENT
The CCM approach has been designed for content

management applications that require handling content as
personalized variants rather than in one standardized form.
Two major requirements to CMSs have been identified for
this kind of applications: content models have to be open to
schema changes (openness), and CCMSs have to follow
model changes dynamically (dynamics).

As a means to meet these requirements, three major
contributions have been identified for the CCM approach: a
language for open content modeling, a model compiler that
translates content schema definitions into CCMSs that both
implement a given schema and allow communication
between subsystems with different variants of a schema, and
a CCMS architecture that allows systems evolution through
incremental compilation.

In this section we describe the definition of CCM models
and the technology to implement CCMSs.

A. Foundations of Concept-oriented Content Management
Various projects have shown the need for a form of

content management that is concerned about content that
represents real world entities. This form of content

265

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

management usually is employed for entities that cannot
accurately be described by structured data, e.g., by records in
databases. One example for a class of such entities is that of
pieces of art. A piece of art can be enjoyed as content, but it
also represents the process of its creation, in particular the
epoch in that it has been created, the artist and her or his way
of living, as well as the message that shall be conveyed by
the artwork (an opinion of the artist, or a statement of the
employer as it is the case for politically motivated art,
advertisements, etc.).

Content that represents entities is – in contrast to
structured data – subject to individual interpretations.
Content can be stored, shared, etc., but it will necessarily
lead to subjective views on the represented entities.

Collaborative work with content that represents entities
requires support to make those aspects of interpretations
explicit that are intended by the author. In accordance with
observations already made by others (in fact, they have been
made as early as by Cassirer’s works [5]), we propose to
provide a conceptual model that accompanies the content.

We call the union of content and a conceptual model that
both describe the same real-world entity an asset.

In order to be able to express subjective views, CCMSs
support personalization, in particular personalization of asset
instances, models, and presentations. As already mentioned,
they do so by providing model openness and systems
dynamics.

B. Asset Definition Language
The asset definition language (ADL) allows expressing

entity models as laid out in the previous subsection. In this
subsection we give a small glimpse of the ADL syntax, while
we discuss modeling with assets in Section III.

Asset schemata are given as models. Models contain
classes with members (content handles and attributes) and
instance definitions. Furthermore, classes can be imported
from other models, thus allowing model reuse (see
Section III).

The following code shows an example of an asset model:
model MyModel
from SomeOtherModel import SomeClass
class MyClass
class MySubClass refines SomeClass
let myAsset :MyClass := …
Here, two classes and one instance are defined as part of

the model called MyModel, where one class is defined as a
refinement of an existing class imported from another model.

In the let statement for the definition of the named
instance myAsset a type constraint can be seen after the
colon. By using such type information a more general type
than that of the actual instance can be given.

A type is given by the name of a class. If an asterisk
follows the class name then the type refers to a set-valued
type over the given base type.

Classes separate the two aspects of an asset – content and
concept view – in respectively named compartments:

class MyClass refines SomeClass {
 content someContentHandle :HandleType
 concept … ; see below
}

Each content handle is given by a name and a type
constraint (introduced by the colon). Please also note the
semicolon introducing a one-line comment.

Since assets are similar to signs considered in Semiotics,
we loosely base the concept part of assets on Peirce [6], in
particular his distinction of three description categories.

The first category of the conceptual model consists of
attributes that contain values that are inherent to instances:

class MyClass {
 concept characteristic c :T
 characteristic d :T2 := … }
Characteristic values are not first class citizens of an

asset model. The usable types (in the example: T and T2) are
borrowed from an underlying implementation language.
Currently, we use Java for this purpose: any Java class from
the standard or other class libraries can be used as a type, and
Java expressions can be used in initializations (“:=”).

If an asset can be related to other assets, named and typed
relationships can be defined as the second kind of attribute:

class MyClass {
 concept relationship r1 :C
 relationship r2 :D* }
Here, a relationship r1 to an instance of asset class C and

a many-to-many relationship r2 to instances of type D are
defined.

The third contribution of class definitions is that of
regular definitions on the type level. These apply to all
instances of the respective class (and, by means of
inheritance, that of subclasses). Of course, classes itself as
well as the type constraints are already regular contributions.
Nevertheless, the need for application-specific constraints
often arises:

class MyClass {
 concept constraint constraint1 c = x
 constraint constraint2 c < y
 onviolation … }
These definitions define the value of c to always be equal

to x and less than y (where the comparison operators are
defined in a type-specific way). Changes to the asset that
would violate the first constraint are forbidden and lead to
runtime errors. The second constraint contains a productive
rule that establishes (or at least tries to establish) a situation
that conforms to the constraint.

There are seven built-in operators to check for equality
(“=”), inequality (“#”), ordering (“<”, “<=”, “>”, “>=”), and
similarity (“~”). These are implemented in a type-specific
way. E.g., “<” tests for a subtype for classes, and for a subset
for asset sets.

Named asset instances can be referred to by their name.
Members of instances can be accessed by the projection
operator (“.”), e.g., myAsset.x. Asset sets are given by a
comma-separated asset enumeration in brackets.

The asset creation and manipulation sublanguage
controls the lifecycle of asset instances. It allows creating
and modifying asset instances through operations like:

create MyClass { c := x }
create MyClass someMyClassInstance
modify someAsset { c := x }
modify someAsset someOtherAsset
delete someAsset

266

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The statements are available in intentional form (giving
member values) and in extensional form (giving a
prototype). A set of prototypes can be given in the
extensional forms; then statements are applied element-wise.

The asset query sublanguage allows finding asset
instances using statements like

lookfor MyClass { c # y }
Operations can be combined by means of concatenation.

The following sample statement updates all instances of
MyClass with a value x of attribute c so that c becomes y:

modify lookfor MyClass { c=x } { c:=y }
Concatenation follows the implicit rules that (1) sets of

sets of instances are flattened to sets of instances, that (2)
there is no distinction between singleton sets and single
instances, and that (3) projection can be applied to sets
element-wise. For example, the statement

{lookfor MyClass { c = x },
 lookfor MyClass { c = y }}.c

retrieves the union of all instances of MyClass with a c
value of x or y and projects it to the value(s) of the attribute
c (this can result to {}, x, y, or {x,y}, depending on the
existing asset instances).

C. On Open Content Modeling
Asset models are units of model reuse. Through the

import statement classes can be imported and used for two
reasons: for domain interrelation and for personalization.

The first way of reuse, domain interrelation, allows
integrating definitions in order to use a domain as a related
domain or subdomain. If studying art history, for example,
one will want to reuse some work of historians.

One specific property of the ADL is its ability to redefine
content classes in a specific context. By this means the ADL
can be used for personalization and for the management of
content revisions and content variants. Imports of classes for
this reason are the second use of model reuse.

The redefinition of classes can include the addition of
attributes, the removal of attributes, and changes to the
inheritance hierarchy. For example, based on

model SomeModel
class SomeClass {
 concept characteristic c :T1
 characteristic d :T2 }

some user may define
model MyModel
from SomeModel import SomeClass
class MyBaseClass
class SomeClass refines MyBaseClass {
 concept
 characteristic c :T3 ; changed type
 characteristic d unused ; omitted
 characteristic e :T4 } ; new attribute
Note that class redefinition has neither subtype semantics

nor does is create revisions of types. Instead, each model is
checked for consistency separately. Therefore, regardless of
class definitions being based on imports, changes like a
modified class hierarchy and the omission of attributes
(keyword unused) are sound when looking at one model
alone. Relationships between models (for model
personalization etc.) are handled by explicit inter-model

relationships established by, e.g., initializations with default
or computed values. For example, a class C like

model BaseModel
class C { concept characteristic i :int }

can be changed using the origin reference to the original
class definition to become:

model DerivedModel
from BaseModel import C
class C { concept characteristic i :String
 := Integer.toString(origin.i) }
This way one can change the type of an attribute and

have the new value computed, e.g., when passing an instance
from a BaseModel context to one using DerivedModel.

This way, one can even change attribute kinds, e.g., lift a
characteristic value

class Painting {
 concept characteristic painter :String }
to a relationship
class Painting {
 concept relationship painter :Painter
 :=lookfor Painter{name=origin.painter}}

D. A Model Compiler for Concept-oriented CMSs
Due to the openness and dynamics requirements CCMSs

call for specific implementations. Both well-known extreme
software development approaches, individual development
and generic software, fail to meet these requirements:
individual software is not dynamic since it needs interference
of programmers when model changes occur. Generic
software does not meet the openness constraint since it
prescribes certain model constructs that cannot be overcome
and require the user to translate concepts as expressed in the
generic language. Therefore, automatic software generation
in conjunction with a fine-grained architecture is necessary
to allow dynamics of information systems.

There are different approaches to the problem of
generating whole software systems which are composed of
various parts that are produced by independent generators:
(1) the generated software modules have to be adapted in
order to be composed [7], (2) generic software modules are
wrapped in a domain-specific way [8], (3) glue code to
combine modules needs to be generated [9], or (4) the
generators need to cooperate in order to create a consistent
set of modules. For the fully automatic generation approach
required for CCM we favor the latter approach for content
management systems.

Writing coordinated generators is a complex task, mainly
because setting up an infrastructure for them [10] is difficult.
Therefore, our model compiler for content management
systems is designed as a framework. In conjunction with a
facility for code generation it constitutes a domain-
independent meta-programming infrastructure [11].

An instance of the compiler framework is defined by
providing a parser, one or more dictionaries, several
generators, and a configuration of the framework [12].

A typical compiler is divided into frontend and
backend [13] in order to decouple source language
recognition from target language generation. To this end, a
compiler frontend creates an intermediate representation of
the input definitions. Such an intermediate representation

267

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Activity diagram of a sample CCM compiler framework application.

forms the input of a compiler’s backend that generates code
in the target language. This allows compiler setups for
multiple targets as well as – at least in theory – to process
different source languages.

The model compiler for our conceptual language is built
in an object-oriented fashion. The classical division into
frontend and backend has been translated into a framework
architecture that allows configuring compilers for the
generation of dynamic content management systems. This
framework addresses the need to generate multiple targets in
conjunction.

A set of parsers is readily available for model compiler
instances. The one most commonly used reads files
containing asset language expression as defined in Section B.
Other options are parsers for different syntactical forms, e.g.,
in XML, or parsers that adapt an internal model
representation from modeling tools. For the purpose of user
interface generation, an input language that is related to
established presentation technology could be used (see
Section V.B).

Alike a programming language compiler that creates an
intermediate code representation the frontend in the compiler
framework creates intermediate model representations in
which asset class definitions are available as an object graph.

CCM model compilers have access to one or more
dictionaries in which model definitions are stored. This way
a compiler gets access to the models named in import

statements. It furthermore registers information on the
generated code in an own dictionary. This includes the
names of implementation classes (e.g., fully qualified Java
class names) that have been created for asset classes.
Through the dictionaries compilers can create model
interrelationships by accessing the information that has been
stored by earlier compiler runs.

Code generators constitute the most important extension
point of the model compiler framework. Each generator
produces one module of a CCMS (see subsequent
subsection) in one particular technology. The framework
schedules the generators with respect to their dependencies.

There is a direct correspondence between generators and
the modules of content management systems. For each
implementation of one of the module kinds introduced below
there is at least one generator. Often more than one generator
contributes to the creation of a module. For example, client
modules for database access are typically created by a pair of
generators; one of them creates the database schema, the
other one creates code to access the database as well as to
store and retrieve asset instances.

Sets of generators are given in model compiler
configurations. Generator instances out of the set of known
generator implementations are chosen by means of selecting
a configuration. In the context of user interface generation,
for example, there are typically different configurations for
different presentation technologies used for a CCMS.

268

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Traditional compilers use symbol tables to store
information about the language constructs recognized. Our
model compiler for content management systems builds on
the concept of symbol tables, but extends it significantly:
these tables are not only used in the frontend of a compiler,
but they are the means by which generators communicate
during the generation process.

Symbol tables contain detailed information about the
artifacts that were created by the respective generator. The
aim of symbol tables is to make access to the artifact
descriptions explicit for generators that rely on artifacts
created by others (and most generators do). Without symbol
tables, generators further down the chain would have to
make assumptions about naming and would have to recover
the corresponding pieces from the whole of the generated
artifacts.

Each generator fills its symbol table during its execution
and passes the symbol table back to the compiler framework
afterwards. The framework in turn gives available symbol
tables to further generators making them the essential means
of generator communication.

A complete system is normally built from artifacts in
several languages. Different meta-programming facilities are
available to the generators that share a common intermediate
model to create their output.

Figure 1. illustrates the cooperation of generators within
the compiler framework. The main task of the frontend is to
parse a CCM model definition and to create an intermediate
model from it.

As part of the initialization of the generators in the
backend, the framework determines the symbol tables each
generators needs as input. Based on this information a
schedule for generator execution is computed.

The compiler backend passes the CCM model (in the
form of an intermediate model) and the required symbol
table(s) to each generator. The example shows a setup with
three generators. The first one, the API generator, is found in
every setup. It creates the uniform module interface with
respect to the CCM model. The current implementation
creates Java interfaces.

The other two generators together create a client module
(s.b.) for use with a relational database management system.
One generator creates a relational schema out of the asset
model, the other one a module implementation using JDBC
to access the database according to the generated schema.

The JDBC generator will always be scheduled last since
it requires information on both the schema (to create the
proper “embedded” SQL statements) and the module API (in
order to make the JDBC module implement it).

The final compilation step is the component assembly. A
CCMS component is assembled from the generated modules
and parameterizations of third party products when all
contributing generators have finished their task. This
includes two activities: actually building the modules and
combining them in a component of a CCMS.

Modules are built from the generated artifacts. Each
generated artifact needs a special final treatment: source code
needs to be compiled, database schemata have to be
deployed, etc.

E. An Architecture for Concept-oriented CMSs
A model-driven code generator – in contrast to

programming language compilers – is in full charge of the
architecture of the software it generates. This enables the
CCM compiler to generate CCMSs in a form that allows
incremental compilation. Consequently we have designed an
architecture that allows CCMSs to evolve dynamically, thus
meeting the dynamics requirement of our content
management approach.

The creation of such an evolvable system can in some
cases entail changes to its setup. The architecture of the
system must therefore allow for flexible reconfiguration. A
monolithic system is certainly not capable of such flexible
change. Quite the contrary, we propose a modular system
architecture that is built of many small modules.

Consequently, the most important concepts of the CCMS
architecture are components and modules [4]. Conceptually,
components are units of model reuse, while modules
establish code reuse.

Components are logical units that implement one asset
model. They are in turn implemented by modules that are
each generated specifically for one functionality aspect – like
persistence, distribution, transformation, etc. – in one
component.

A component is implemented by a combination of
modules, usually arranged in layers. Components as software
artifacts themselves provide several services to their
modules: resolution of identifiers, management of module
lifecycles, and initialization of modules at system startup.
Each module can use other modules and can also be used by
several others. However, the setup of modules in a
component always must be a directed acyclic graph.

All modules have a uniform interface and can therefore
freely be composed in layers. The module interface reflects
the capabilities of the asset language to create, modify, delete
and query for asset instances. Each module can thus express
its functionality in terms of calls to the module(s) on the
underlying layer. This makes it possible to always combine
modules in the way most appropriate to the task at hand.

Figure 2. Six kinds of modules of CCMSs.

Figure 2. illustrates the kinds of modules for the most
frequently occurring tasks:
• Components are accessed via server modules using

standard protocols.
• Asset instances (content, characteristic values, and

relationships) are stored in third party systems,
databases in most cases. Client modules perform the
mapping of assets from asset models to schemata for
such third party systems.

269

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• A central building block of the architecture of
generated content management systems is the
mediator architecture [14]. Modules of two kinds
implement it in our approach. The first are mediation
modules that delegate requests to other modules
based on the request (operation and assets involved).

• The other modules are transformation modules. By
encapsulating mappings in such modules, rather than
integrating this functionality into other modules,
mappings can be added dynamically (compare [15]).

• Hub modules uniformly distribute calls to a larger
number of underlying modules.

• By use of distribution modules components can
reside at different physical locations and
communicate by exchanging data, e.g., XML
documents generated from the asset definitions
(comparable to the approach of [16]).

These module kinds have been identified with respect to
the requirements of content management systems. They
provide basic services by the principle of Separation of
Concerns.

The functionality of a content management system is
implemented by a component configuration that composes
selected modules. Important building blocks are typical
module constellations, the perhaps most important one being
an implementation of the mediator pattern [14] consisting of
a transformation and a mediation module. Figure 3.
illustrates it. Mediator pattern applications are discussed
below.

Figure 3. Architectural building block for evolution in CCMSs

For each kind of module used and for each supported
implementation technology there needs to be one generator
to equip the compiler framework with.

According to the two ways of combining asset models –
model interrelation and personalization – openness and
dynamics in CCMSs happen along two dimensions: (1) the
organization and (2) the application structure [17]. Along
the organization structure users can define their own views
(by personalizing content and schema). Along the
application structure, entity descriptions are shared and
reused across domains.

In our approach the architecture of the generated systems
allows changes along the organization structure by its ability
to enable dynamic system evolution and personalization

through open redefinition of assets and dynamic invocation
of the model compiler [4].

Schema evolution leads to a mediator combination of
client, transformation, and mediation modules as indicated in
Figure 3. Evolution or personalization requires a mediation
module that implements the desired personalization
functionality (mmed in the figure). Typically this includes the
delegation of requests in such way that new instances are
created in the component for the new schema (M2),
modifications lead to the creation of a modified copy in that
component while removing it from the component holding
the outdated model (M1), and search queries and deletion
requests are posed on both components. Such a mediation
module can be generated based on the input information,
namely a base model and the changes applied to it in a
derived model.

Personalization is quite similar, with the difference that
modification of an asset leads to the creation of a copy that
contains a reference to the personalized asset (instead of
deleting the original), and deletion leads to the creation of a
null asset hiding the original.

The association of models along the application structure
is realized by component configurations. Figure 4. shows a
configuration that combines two domains – regent and artist
descriptions – into the new domain of political iconography.
The component is accessed via mediation module mmed1. It
distributes requests according to the type of the assets on
which operations are invoked. If assets from one of the base
domains Regents or Artists are affected, requests are
delegated to the mediation module mmed2. This mediation
module similarly delegates requests further to one of the
components holding theses models. These components are
accessed via distribution modules mdistrib1 and mdistrib2. In the
example of Figure 4. the components consist of client
modules mclient1 and mclient2 and the respective base systems
only. Requests to the derived model Political_Iconography
are forwarded by mmed1 to the client module mclient that
manages the users' assets from the political iconography.

Figure 4. Sample CCMS components for domain interrelation.

As can be seen in Figure 4. the components for Regents
and Artists are integrated into the overall CCMS for Political

270

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Sketch of a CCM model for the domain of political iconography.

Iconography without modification. This way the components
remain unaffected, thus preserving their autonomy, i.e., to be
maintained by experts from the respective domains.

III. CONCEPT-ORIENTED CONTENT MODELING
As a running example for the discourse on visualization

led in the next section we introduce a tiny asset model in this
section. It is a rather condensed extract from a model used in
one actual project.

Figure 5. shows an overview in the form of a UML class
diagram with attributes for asset characteristics and
associations for asset relationships.

A. A Sample Structural Content Definition
The following code shows two simple sample classes:
class Document refines Extent {
 content docHandle :my.pkg.Handle }
class Picture refines Document {
 concept characteristic title :String
 relationship painter :Painter }
The content handle docHandle refers to document

data, e.g., a digitized picture for a Picture instance. Let
the Java class Handle be some class to handle references to
such data.

The asset class Picture describes picture entities like
paintings. In inherits the document handle, and defines a
conceptual model consisting of a picture’s title and a
reference to a Painter asset.

B. Sample Content Classification by Relationships
Apart from the (structural) definition of the document

descriptions it is necessary to define a hierarchy of
(semantic) classifiers, here modeled as instances of class
Subject. The base class Extent of Document defines
the extent of subjects.

These are provided in the form of subject terms and
corresponding relationships:

class Subject {
 content term :String
 concept
 relationship narrowed :Subject*
 relationship broader :Subject
 = lookfor Subject {narrowed>={self}}
 relationship extent :Extent* }
The content term is the subject term itself, and Java’s

standard String class is used for instances. The relationship
narrowed points to more specific subject terms, and
extent to the documents classified under the term at hand.
The reverse of narrowed, broader, is modeled by a
constraint that returns the broader terms based on the
(persistent) relationship narrowed.

C. A Sample Content Evaluation Rule
The intended form of classification with the sample

model given so far is the following: each document is
classified under the most specific subject terms that apply. If

271

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

one wants to use the typical subsumption – documents also
showing up under more general terms than those assigned
directly – with the definitions made so far this has to be
handled by, e.g., the visualization layer.

To make such evaluation rules part of the asset model,
additional classes can be introduced for this purpose. For our
example we would like to define a special Subject with a
“deep” extent that takes extents from narrower terms into
consideration:

class SubjectRec refines Subject {
 concept
 relationship extent :Extent* := {
 origin.extent,
 (create SubjectRec narrowed).extent }}
To further stress the importance of a rule-based level,

please note that the transitive extent can be expressed by
means of relationships (with the help of a productive rule to
keep the relationships up-to-date):

class SubjectRec2 refines Subject {
 concept constraint deepExtent
 extent >= narrowed.extent
 onviolation modify self {
 extent += narrowed.extent }}
This way the recursive extent is materialized in each

subject. Of course, the usual problems arise from this
redundancy, e.g., updates of extents on picture removal.

IV. OPEN DYNAMIC ASSET REPRESENTATIONS
In this section we shed a light on the second typical task

of CMSs, the rendering of representations of content.
The openness and dynamics properties of CCMSs require

user interfaces (UIs) to follow model changes. This can only
partially be achieved since suitable presentations require
manual design [18]; there is no means to automatically
produce a visualization that is guaranteed to meet the users’
demand for adequateness and ergonomics.

Nevertheless, if visualizations are handled like content,
then openness like that of content models can be achieved for
them: visualizations can be defined in conjunction with
domain models, e.g. group-wise, they can be passed between
users that share the same domain models, and then they can
be personalized group-wise or individually.

With this kind of user interface modeling presentations
are not automatically generated from domain models, but
users can define presentations on their own, using a language
they are using anyhow. By the correspondence between
domain and visualization models the CCM personalization
capabilities are beneficial for user interface modeling. Not
every user has to define a complete presentation. Usually,
domain experts build their models reusing those of other
domain experts (by means of personalization) or they use
models of neighboring domains (by means of cooperation).
Together with the reuse of domain models also
accompanying presentation models can be reused.

To this end, we need to avoid “programming” of
templates as found in typical CMSs. Instead, declarative
definitions of visualization constructs are needed similar to
the idea of Model-Based User Interface Development
Environments [19]. Our aim is to express visualization using
the ADL since domain experts already use it (compare [20]),

and it allows direct links to domain models. It should be
noted that the difference between content and a rendered
document is in the eye of the beholder: view classes can be
seen as normal classes from the domain of “views”.

For the asset-based visualization descriptions we suggest
models that follow the Model-View-Controller pattern. In
this section the view part of the user interface models is
presented. The subsequent section discusses the
interrelationship between views and models, as well as the
definition of controllers.

Three interrelated models for (1) abstract definitions of
presentation components, (2) presentation technologies, and
(3) component implementations are provided to CCMS users
who can define asset visualizations with the help of these
basic contributions for visualization specification.

The models apply to both pure presentations, like web
pages, and interactive applications, e.g., for content editing.

Figure 6. gives an overview of the usage of the models
presented in the remainder of this paper. The packages
Components and Technologies represent two of the models
discussed in this section (elsewhere called platform
model [21]). The model of component implementations is
omitted from the figure since it is not of interest to the
domain expert using the models; it is exclusively used by the
compiler. The package Layout sketches an application of the
models (elsewhere called presentation model [21]). The
relationships to the DomainModel are explained in the
subsequent section.

A. Presentation Component Model
A very basic contribution for declarative UI descriptions

is the presentation component model. This model enumerates
abstract descriptions of visual components that are usually
available in the supported visualization technologies. The
following small model excerpt gives an impression of the
class definitions, showing a base class of containers for other
UI components and a text label class (to display some text):

model UIComponents
class UIComponent
class Container refines UIComponent {
 content children :UIComponent* }
class TextLabel refines UIComponent {
 content text :String }
Such an abstract component library is used to specify

presentations for assets in a platform-independent way:
model MyPresentationModel
from UIComponents import ImageLabel,
 Panel, TextField, TextLabel
let picturePanel :Panel := create Panel {
 children := {
 create ImageLabel,
 create Panel {
 children := { create TextLabel,
 create TextField }
 } } }
In this example a user defines a Panel consisting of an

image, a text label, and a text field. It might be used to
display pictures by showing the content (the picture data
itself) and its title, where the text label is displaying “Title:”
as a label to the text field, and the text field is holding the
actual picture’s title.

272

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. CCM models for user interface component implementations.

B. Presentation Technologies Model
The second basic contribution, the technologies model, is

rather simple: it just enumerates the supported technologies
by defining an asset class for each of them.

A snippet from a technologies model looks like this:
model UITechnologies
class UITechnology
class SGMLDescription refines UITechnology
class HTML refines SGMLDescription
class Java refines UITechnology
class AWT refines Java
class Swing refines Java
class SWT refines Java
The sole purpose of these classes is to be referenced in

the component implementations model and being passed as a
parameter to the presentation generator (see Section D).

C. Presentation Component Implementations Model
The third basic contribution is a model that contains

implementations of components in certain technologies.
Again a quite small excerpt shall present the basic idea:

model UIImplementations
from AssetMetaModel import AssetClass
from UIComponents import Panel,UIComponent
from UITechnologies
 import HTML, Swing, UITechnology
class UIImplementation {
 content prototype :java.lang.Object
 concept relationship component
 :AssetClass < UIComponent
 relationship technology
 :AssetClass < UITechnology }
create UIImplementation {
 prototype := my.HtmlUtils.element("div")
 component := Panel
 technology:= HTML }

create UIImplementation {
 prototype := new javax.swing.JPanel()
 component := Panel
 technology := Swing }
The model contains one class UIImplementation

whose instances refer to prototypical implementations (in the
current implementation given as Java objects) of abstract
component definitions. The set of UIImplementation
instances defines the pool of implementation artifacts that a
UI generator (see Section D) can benefit from.

The link between abstract components and technologies
is made by referencing the respective asset classes. The class
AssetClass is imported from the ADL’s metamodel (that
is also available in ADL itself) for the required type
constraints that furthermore restrict the referable classes to
UIComponent and UITechnology, respectively.

The example sketches implementations of the abstract
component Panel in HTML (here assuming a helper class
to create HTML elements) and in Java Swing.

The definitions in UIImplementations are in fact
written using more compact statements, but the necessary
linguistic means have not been introduced in this paper.

D. Presentation Generation Using Abstract Models
User interface code is generated from the models

presented to far, with one addition: links are established
between presentation component instances and domain
model entities in order to be able to create the demanded
adaptive code. The links are based on the AssetView and
MemberView assets as indicated in Figure 6. They will be
discussed in Section V.A.

The actual rendering of assets is based on a rather simple
algorithm: for each asset class c of the domain model to
visualize and a technology (from the technologies model) t,

273

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a UI generator first looks for the UI component(s) to use in
the model relating content assets to UI component assets:

let v := (lookfor AssetView { type >= c }
).view
Then implementation prototypes for the UI components

can be found in the component implementations model:
let p := (lookfor UIImplementation {
 component <= v.type
 technology = t }).prototype
The prototypes are used to create fresh instances that are

assembled to a UI as prescribed in the presentation
component model. Assembly of the implementations usually
has to be performed in a technology-specific way, so that
there are specific generators for the supported technologies.
These can be easily included in the asset compiler
framework (see Section II).

The generated code does not create a static presentation.
Instead, the user interface adapts to the asset bound to the
presentation (see Section V.A). Such code forms an
“adaptation engine” as proposed in [22] and establishes a
type-based clustering ([23] presents a time-based clustering).

To this end, the code adjusts the presentation to the
bound asset by selecting only those components that are
defined for an asset type that matches the current asset’s
class. The selected components are added to the presentation,
and child components that do not apply anymore (because
they were added for a previously bound asset) are removed
(equivalent to “generation at execution-time” in [24]).

How this adaptation is performed depends on the
visualization technology. In Java (AWT, Swing, or SWT)
applications, container components can dynamically be
altered. Web pages need to be reloaded, or there could be
JavaScript code to perform changes dynamically using
AJAX (not yet implemented).

Figure 7. shows screenshots of a running Swing
application. The screenshots show a GUI with a bound
picture asset (a) and a movie asset (b). The panel in the lower
right adapts to the bound asset. As can be seen, the artist
(Künstler) of a picture is given as a relationship to a painter
(Jacques-Louis David), while the director (Regisseur) of a
movie is a characteristic string (Abel Gance).

(a) A CCM GUI showing a picture asset.

(b) A CCM GUI showing a movie asset.

Figure 7. Screenshots of a generated CCM visualization.

274

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Sample layout models for a user interface like the one shown in Figure 7.

V. MODEL BINDINGS AND CONTROLLER MODELS
In the previous section the static layout of visualizations of
assets of specific types has been presented, and it was
already specified that the asset presentations should depend
on the type of assets bound to the view. This section is
concerned about the behavioral aspects of user interfaces.
Following the model-view-controller pattern views are

related to the two other interface components, models and
controllers.

Bindings from the view layout to the domain model are
covered by Section A. Section B presents and alternative
form of defining layouts and model bindings.

Controllers typically serve one of two purposes: updating
the view, e.g., by navigating between assets, and updating
the model, e.g., by creating, modifying, or deleting one or

model ViewWithLinksToModel
from DomainModel import Picture, Subject
from UIComponents import horizontal, ImageLabel, Movie, Orientation, Panel,
 TextField, TextLabel, UIComponent, vertical
class LabelAndField refines Panel {
 concept relationship label :UIComponent
 relationship field :UIComponent
 relationship children :UIComponent* = { label, field }
 relationship orientation :Orientation := horizontal }
class DocumentPanel refines Panel {
 concept relationship iconPanel :LabelAndField
 relationship children :UIComponent* := { iconPanel }
 relationship orientation :Orientation := vertical }
class MoviePanel refines DocumentPanel {
 concept relationship directorPanel :LabelAndField
 relationship children :UIComponent* := {super.children, directorPanel}}
class PicturePanel refines Panel {
 concept relationship titlePanel :LabelAndField
 relationship painterPanel :LabelAndField
 relationship children :UIComponent*
 := { super.children,titlePanel,painterPanel } }
let classifierTree := create TreeView {
 nodeRenderer := create TextLabel }
let extentList := create ListView {
 itemRenderer := create TextLabel }
let moviePanel := create MoviePanel {
 iconPanel := create LabelAndField {
 label := create TextLabel { text := "Icon:" }
 field := create ImageLabel
 }
 directorPanel := create LabelAndField {
 label := create TextLabel { text := "Director:" }
 field := create TextField
 } }
let picturePanel := create PicturePanel {
 iconPanel := create LabelAndField {
 label := create TextLabel { text := "Icon:" }
 field := create ImageLabel
 }
 titlePanel := create LabelAndField {
 label := create TextLabel { text := "Title:" }
 field := create TextField
 }
 painterPanel := create PicturePanel {
 label := create TextLabel { text := "Painter:" }
 field := create TextLabel
 } }

275

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. CCM model interrelating views and model classes.

more assets. CCM models to define controllers for view
updates are covered by Section C and such to define
controllers for model updates in Section D. All kinds of
controllers work on regular CCM assets.

A. Relating Content to Presentation Components
Users define the presentations they need on the basis of

the abstract UI components model. They have to provide two
kinds of definitions: an implementation-independent layout
description as sketched in Section IV.A and links from
content to the UI components that shall display that content.

In easy cases the link between content and a UI
component can be made by referring to the content from the
content compartment of a UI component. Additionally, the
UI component is responsible for the access to the attributes
of the asset to be visualized: the selection of members and
the decision which relationships to follow (and to which
depth). An example for a Picture instance p would be:

model ViewWithValues
from UIComponents import ImageLabel,
 Panel, TextLabel, vertical
create Panel {
 children := {
 create ImageLabel {image:=p.docHandle},
 create TextLabel {text :=p.title} }
 orientation := vertical }
This way of linking content to UI components allows

explicitly choosing the presentation for an asset instance, but
it requires a complete definition of one instance per content
type and desired visualization, without code reuse through
classes. Compared to conventional implementations this is

typical for simple manually programmed GUIs or such
created with the help of interface design tools.

Some reuse can be achieved by defining UI classes for
specific content (types) that are instantiated for a matching
content instance. This is what typical template languages do.

A higher degree of reuse can be achieved by defining
rules for the linkage of content to UIs.

The basis for such user-based visualization descriptions
is a fourth basic model that defines class-based relationships:

model AssetUI
from AssetMetaModel
 import AssetClass, Member
from UIComponents import UIComponent
class AssetView {
 concept relationship type :AssetClass
 relationship view :UIComponent }
class MemberView {
 concept relationship member :Member
 relationship view :UIComponent }
The asset class Member is defined in the ADL’s meta

model like the metaclass AssetClass is.
Such a basic model can be used for definitions like the

views shown in Figure 8. and the relationships shown in
Figure 9. according to the graphical sketch in Figure 6.

The example shows a small excerpt of a model that
defines a GUI like that from Figure 7. It consists of a tree
showing the Subject hierarchy, the Extent list of one
Subject, and a panel with the selected Extent.

Standard components are used for the tree and for the list
in the example. These are configured with one component to
render tree nodes and list items, respectively.

model ViewWithLinksToModel
from DomainModel import Movie, Picture, Subject
from AssetUI import AssetView, MemberView
create AssetView {
 type := Subject view := classifierTree }
create MemberView {
 member := Subject.term view :=classifierTree.nodeRenderer }
create AssetView {
 type := Extent* view := extentList }
create MemberView {
 member := Document.name view := extentList.itemRenderer }
create AssetView {
 type := Picture view := picturePanel }
create MemberView {
 member:=Picture.docHandle view := picturePanel.iconPanel.field }
create MemberView {
 member := Picture.title view := picturePanel.titlePanel.field }
create MemberView {
 member := Picture.painter view := picturePanel.painterPanel.field }
create AssetView {
 type := Movie view := moviePanel }
create MemberView {
 member := Movie.docHandle view := moviePanel.iconPanel.field }
create MemberView {
 member := Movie.title view := moviePanel.directorPanel.field }

276

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For the Extent assets one Panel per type is defined (the
example of Figure 8. shows just excerpts of the panels for
Movie and Picture instances). To be able to correctly set
the horizontal orientation of, e.g., labels and text fields, and
the vertical orientations of the components for the attributes,
a helper class LabelAndField is defined. It allows to
define orientations at the class level.

As sketched in Section IV.D, view components have to
be related to domain model elements. Using the AssetUI
model sketched above, the instantiations of AssetView
and MemberView prescribe the rendering of all assets of a
user-defined type. In the example of Figure 9. Picture
(and subtypes) instances are defined to be rendered by a
picture view, and values of their title attributes are rendered
in a text field. (Expressions like Picture.title return
the Member instance describing the named member.)

As can be seen in the example, a dedicated Panel class
for Picture instances is defined. It is important to note
that a relationship between the class Picture – not a
Picture instance – and the instance picturePanel
with its child components is established.

Whenever an asset is to be visualized, a suitable UI
component can be found depending on its type as shown in
Section IV.D. The component implementation instance is
used in two ways: the first use is by a UI generator that uses
it as a pattern for the generation of code that creates a
component implementation at runtime. Examples are Java
code that produces a rich Swing client or a JSP page that
incorporates HTML fragments.

The second use is the running code itself that adapts a UI
to a new or changed asset instance that is to be visualized by
it. To this end, the information from the layout model and the
links to the domain model are included in the generated
code.

B. An Alternative Asset Language for Web Presentations
As indicated in Section II.D the CCM compiler

framework allows using custom parsers for specific syntactic
forms of model definitions. We currently investigate the use
of HTML for layout definitions with embedded tags for the
relationship to domain assets.

Specifying user interfaces by HTML with embedded tags
allows using web design tools (as long as they leave the
custom tags intact). Though this violates the idea of
dynamics to some extent, it is important in projects where
web designers create visualizations for users of a domain.

There are two custom tags that allow to express the
AssetView and MemberView relationships. The
semantics of the <assetview> tag is the following: if the
asset currently to be displayed is of the type given by the
type attribute, then the content of that tag is rendered;
otherwise, it is excluded from the page.

The <memberview> tag is evaluated to the asset’s
member given by the name attribute. Following the example
of the JavaServer Pages Standard Tag Library (JSTL) it
optionally allows to define a variable. Then the tag is not
expanded to the member’s value, but instead the named
variable is initialized with it. Later on the variable can be

referenced by using the Expression Language (EL) of
JavaServer Pages.

A page definition using this language might look like in
the following example:

<html>
 …
 <ccmui:assetview type="Document"><table>
 <tr>
 <th>Icon</th>
 <td><ccmui:memberview
 var="icnsrc"
 name="docHandle"
 format="url"
 /></td>
 </tr>
 <ccmui:assetview type="Picture"><tr>
 <th>Title</th>
 <td><ccmui:memberview name="title"
 /></td>
 </tr></ccmui:assetview>
 </table></ccmui:assetview>
 …
</html>
In this example a table is rendered for Document

instances. If the current asset is actually a Picture, then
the table has two rows, one for the image (in this example,
docHandle is supposed to always refer to an image file)
and one for the title. For all other document instances
(e.g., movies) the table contains only the row with the image
content.

Of course, users can still alter such enriched HTML
layouts since they are processed by a CCM compiler. But
this requires users to have knowledge on HTML as well as
on the custom tags.

C. View Controllers
There are interactive view elements that update other

views, in particular by navigating from one asset to another.
View updates can be formulated using the ADL by defining
constraints on the view assets.

The following definitions establish synchronization
between the subject tree and the extent list in the sample
client shown in Figure 7.

class TreeListSynchronizer {
 concept
 relationship tree :TreeView
 relationship list :ListView
 constraint listInSyncWithTree
 (tree.selection=na and list.model=na)
 or (tree.selection # na
 and tree.selection.extent
 = list.model)
 onviolation modify list {
 model := tree.selection.extent } }
create TreeListSynchronizer {
 tree := classifierTree
 list := extentList }
In this example we use a constraint on the subject tree

and the extent list. We define a class for the pair of them and
create an instance so that the constraint is active. A
TreeView has a selection relationship holding the
currently selected tree node. If no node is selected (na as the

277

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

null value for no asset) then the list should be empty,
meaning its model does not refer to an asset set. Otherwise,
we require the model of the extent list to be equal to the
extent of the selected subject.

When this constraint is violated the repair code in the
onviolation clause assigns the list model according to
the definition. Note that in case of an empty selection the
expression in the modify statement results to na, and the
list model is thus correctly cleared.

D. Controllers to Manipulate Models
Since both the domain model and the view model are

formulated using the ADL, no specific technology is
required to alter domain assets from within a user interface.
The usual asset manipulation language commands can be
used to modify assets from the domain model, and the CCM
model compiler will create suitable target code from these
commands.

To trigger commands on the domain model these can be
wrapped in Action assets. Action is a predefined user
interface class that has one relationship perform. This
relationship can be defined with a constraint to form a kind
of function. Instances are used at runtime by interactive
components: these can be assigned an Action asset, and
generated code will use the relationship perform to trigger
the defined command that can, as a side-effect, modify assets
from the domain model.

The following class definition gives an example for an
action to store the modifications applied to a Document
currently visible in the document panel. Let docPanel be a
reference to the currently used document panel in the client,
e.g., picturePanel in the case of a Picture:

class CommitAction refines Action {
 concept
 relationship perform :Asset*
 = modify docPanel.model {
 title := titlePanel.field.text
 …
 } }
When the Action from the example is related to an

interactive UI component, e.g., a menu item, the modify
statement on the docPanel’s model will be executed when
interaction takes place (by dereferencing the Actions’s
perform relationship). It updates the currently bound asset
in that way that it assigns the updated values from the input
fields to the asset’s attributes.

An interactive UI component can be a standard
component, e.g., a menu item or a button as well as a
complex component [25]. E.g., a document panel as sketched
above may trigger actions if any of the enclosed text fields
has its value changed.

VI. OUTLOOK
The first research direction that needs attention is a

higher level of abstraction for the view component model.
The initial design was targeted at fat clients and web pages.
For these kinds of user interface approaches the presented
view model is suitable. But new platforms arise, the most

important one being mobile devices, but also interactive
whiteboards, tables, etc. For some of these platforms there is
no one-to-one mapping from logical view components to
component implementations. Instead, some components are
realized in a completely different way as they are on
conventional graphical user interfaces.

To target such devices more abstract view models are
required, and an additional processing step has to create a
concrete view for a specific device. Only then the simple
construction algorithm based on prototypes as presented in
this paper can be applied.

The additional processing step can be realized by model-
to-model transformations [26] that generate target asset
models from source asset models. The CCM compiler
framework can be used for such a model-driven software
development approach. Generators that realize device-
specific presentation patterns can process source models with
more abstract view definitions and create more concrete
view models for, e.g., device-specific layouts.

A second major research topic is that of UIs
incorporating more than one technology. In practice, such
hybrid definitions are regularly used, e.g., web presentations
often use a mixture of layout descriptions and program code,
like HMTL embedding Java that in turn embeds SQL, or the
current trend to enrich web pages with flash animations and
JavaScript code, eventually forming AJAX or Flex clients.
Yet, a theoretic foundation for such hybrid language
approaches is largely missing.

The aim of the CCM approach is to enable domain
experts to create models on their own regardless of software
development constraints. Currently they do so by using the
ADL to formally define their information needs. But for
many users the presentation level is the means to argue about
models. One goal is to allow users to change presentations in
order to express the demand for domain model changes or
personalization, and to analyze the changes in order to derive
the appropriate domain model changes. Though this should
be undecidable for general changes, it might be tractable to
recognize certain patterns. This approach would lead to some
kind of agile user-centric design approach.

ACKNOWLEDGMENT
The author thanks Joachim W. Schmidt for countless

discussions on the topic CCM and the seemingly never-
ending energy still going into it. Furthermore we appreciate
the cooperation with numerous project partners. In particular,
we want to thank our colleagues from art history for sharing
their insights into the description and management of
multimedia artifacts with us. Finally, the author thanks his
employer, the T-Systems Multimedia Solutions GmbH, for
the opportunity to follow his scientific ambitions.

REFERENCES
[1] Hans-Werner Sehring, “Adaptive Content Visualization in

Concept-oriented Content Management Systems,”
Proceedings of the First International Conference on Creative
Content Technologies, Athens, Greece, 2009.

[2] Gerd Kamp, “Multichannel publishing,” OBJEKTspektrum,
2001.

278

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] Gustavo Rossi, Daniel Schwabe, and Robson Guimarães,
“Designing personalized web applications,” Proc. World
Wide Web 2001, ACM Press, 2001, pp. 275-284

[4] Hans-Werner Sehring and Joachim W. Schmidt, “Beyond
Databases: An Asset Language for Conceptual Content
Management,” Proceedings of the 8th East European
Conference on Advances in Databases and Information
Systems, LNCS, vol. 3255, Springer-Verlag, 2004, pp. 99-112

[5] Ernst Cassirer, Language, Mythical Thought, and The
Phenomenology of Knowledge. Vol. 1-3, The Philosophy of
Symbolic Forms, Yale University Press, 1965.

[6] C.S. Peirce, Collected Papers of Charles Sanders Peirce.
Harvard University Press, Cambridge, 1931.

[7] Johan Brichau, “Integrative Composition of Program
Generators,” PhD thesis, Vakgroep Informatica, Vrije
Universiteit Brussel, 2005

[8] Gopal Gupta, “A Language-centric Approach to Software
Engineering: Domain Specific Languages Meet Software
Components,” Electronic Proceedings of the CoLogNet Area
Workshop Series on Component-based Software
Development and Implementation Technology for
Computational Logic Systems, 2002

[9] Uwe Assmann, “Meta-programming Composers In Second-
Generation Component Systems,” J. Bishop and N. Horspool,
Systems Implementation 2000 – Working Conference IFIP
WG 2.4, Chapman and Hall, 1998

[10] Yannis Smaragdakis and Don Batory, “Scoping Constructs
for Program Generators,” technical report, no. CS-TR-96-37,
University of Texas at Austin, 1996

[11] Yannis Smaragdakis, Shan Shan Huang, and David Zook,
“Program generators and the tools to make them,” PEPM~'04:
Proceedings of the 2004 ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-based Program
Manipulation, ACM Press, 2004, pp. 92-100

[12] Hans-Werner Sehring, Sebastian Bossung, and Joachim W.
Schmidt, “Content is capricious: a case for dynamic system
generation,” Proceedings of the 10th East European
Conference on Advances in Databases and Information
Systems, LNCS, vol. 4152, Springer-Verlag, 2006, pp. 430-
445

[13] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman,
“Compilers: Principles, Techniques, and Tools,” Addison-
Wesley, 1986

[14] G. Wiederhold, “Mediators in the architecture of future
information systems,” IEEE Comp., vol. 25, 1992, pp. 38-49

[15] Mira Mezini, Linda Seiter, and Karl Lieberherr, “Component
integration with pluggable composite adapters,” Software
Architectures and Component Technology, Kluwer, 2000

[16] German Shegalov, Michael Gillmann, and Gerhard Weikum,
“XML-enabled work-flow management for e-services across
heterogeneous platforms,” VLDB Journal, vol. 10, no. 1,
2001, pp. 91-103

[17] Hans-Werner Sehring, “Konzeptorientiertes Content
Management: Modell, Systemarchitektur und Prototypen,”
dissertation (in German), Hamburg University of Science and
Technology (TUHH), 2004

[18] Pedro J. Molina, “A Review to Model-Based User Interface
Development Technology,” Hallvard Trætteberg, Pedro J.
Molina, and Nuno Jardim Nunes, "MBUI 2004, Making
model-based user interface design practical: usable and open
methods and tools, Proceedings of the First International
Workshop on Making model-based user interface design
practical: usable and open methods and tools, CEUR
Workshop Proceedings, volume 103, 2004

[19] Paulo Pinheiro Da Silva, “User Interface Declarative Models
and Development Environments: A Survey,” Proceedings of
DSV-IS2000, LNCS, vol. 1946, Springer-Verlag, 2000,
pp. 207-226

[20] Jürgen Falb, Roman Popp, Thomas Röck, Helmut Jelinek,
Edin Arnautovic, and Hermann Kaindl, “Fully-automatic
generation of user interfaces for multiple devices from a high-
level model based on communicative acts,” HICSS '07:
Proceedings of the 40th Annual Hawaii International
Conference on System Sciences, IEEE Computer Society,
2007

[21] Jacob Eisenstein, Jean Vanderdonckt, and Angel Puerta,
“Applying Model-Based Techniques to the Development of
UIs for Mobile Computers,” Proceedings of the 6th
international conference on Intelligent user interfaces, Santa
Fe, New Mexico, United States, ACM, New York, NY, USA,
2001, pp. 69-76

[22] Steffen Lohmann, J. Wolfgang Kaltz, and Jürgen Ziegler,
“Model-driven dynamic generation of context-adaptive web
user interfaces,” Models in Software Engineering, LNCS,
vol. 4364, 2007, pp. 116-125

[23] Mittapally Kumara Swamy and Polepalli Krishna Reddy, “An
Efficient Context-Based User Interface by Exploiting
Temporality of Attributes,” APSEC '09: Proceedings of the
2009 16th Asia-Pacific Software Engineering Conference,
IEEE Computer Society, 2009, pp. 205-212

[24] Windson Viana and Rossana M. C. Andrade, “XMobile: A
MB-UID environment for semi-automatic generation of
adaptive applications for mobile devices,” Journal of Systems
and Software, vol. 81, no. 3, Elsevier Science Inc., 2008, pp.
382-394

[25] Sébastien Romitti, Charles Santoni, and Philippe François, “A
design methodology and a prototyping tool dedicated to
adaptive interface generation,” Proceedings of the 3rd ERCIM
Workshop, 1997

[26] Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp, “A
Taxonomy of Model Transformations,” Jean Bezivin and
Reiko Heckel, Language Engineering for Model-Driven
Software Development, Dagstuhl Seminar Proceedings, no.
04101, Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany, 2005

279

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Practical Approach to Distributed Metascheduling

Janko Heilgeist∗‡, Thomas Soddemann∗, and Harald Richter†

∗Fraunhofer SCAI, Sankt Augustin, Germany

Email: {janko.heilgeist, thomas.soddemann}@scai.fraunhofer.de

†Clausthal Technical University, Clausthal-Zellerfeld, Germany

Email: harald.richter@tu-clausthal.de

Abstract—The paper describes a metascheduler for high-
performance computing (HPC) grids that is build upon a
distributed architecture. It is modelled around cooperating
peers represented by the local proxies deployed by each partic-
ipating site. These proxies exchange job descriptions between
themselves with the aim of improving user-, administration-,
and grid-defined metrics. Relevant metrics can include, e.g.,
reduced job runtimes, improved resource utilization, and
increased job turnover. The metascheduler uses peer-to-peer
algorithms to discover under-utilized resources and unserviced
jobs. A selection is made based on a simplified variant of
the Analytic Hierarchy Process that we adapted to the special
requirements imposed by the Grid. It enables geographically
distributed stakeholders to participate in the decision and
supports dynamic evaluation of the necessary utility values.
An exemplary decision making process is presented, where
user and resource provider jointly decide upon the resource
where a job will be computed. Finally, we identify four intrinsic
problems that obstruct the implementation of metaschedulers
in general.

Keywords-Grid computing; metascheduling; resource discov-
ery; decision making

I. INTRODUCTION

The problem of optimally scheduling jobs across loosely

coupled distributed compute resources is still to be solved.

Products such as Gridway [2] or Platform’s LSF [3, 4]

promise to provide out of the box solutions. On closer

examination, most of these solutions still have problems

ingrained in their design. A major drawback from our point

of view is that despite the fact that resources are distributed,

some of them work in a centralized fashion and resemble

a staging queue in a classical batch system. Others are

somewhat distributed, but intrusive as far as the interaction

with a site’s local batch scheduling system is concerned.

Unlike batch schedulers, a metascheduler supports the

exchange of job descriptions across the boundaries of differ-

ent sites. Such a migration can arise either directly from a

‡Present address: QAware GmbH, Aschauer Str. 32, 81549 München,
Germany; Email: janko.heilgeist@qaware.de

Extended version of the paper originally presented at the International
Conference on Advanced Engineering Computing and Applications in
Sciences, 2009 [1].

user’s explicit request for a remote resource or indirectly

from a metascheduler’s attempt to perform a grid-wide

load-balancing. In the latter case, it is the metascheduler’s

responsibility to discover the best destination. Yet, existing

batch schedulers provide no separate point of entry for

metaschedulers. A metascheduler can therefore not control

the underlying hardware but has to use the site’s local batch

schedulers — or, more commonly, a grid middleware. It has

to extract the job description from a queue at the source

site and submit it, customarily assuming the original user’s

identity, into a target queue. However, migration should be

transparent to end users, who should, optimally, never notice

that their computations were performed non-locally.

The architecture of a metascheduler can be designed

to be either centralized or distributed [5]. A centralized

metascheduler is controlled by a dedicated entity that is

installed at a single site and has, typically, all the required

information for a decision on whether, when and where

to migrate a job. That is, it collects data on which sites

participate in the grid, which hardware they provide, what

the speed of their connection to the grid is, which load their

hardware has to bear, and to which degree their queues are

filled, etc.

On the other hand, in a distributed (or decentralized)

architecture the metascheduler is split up into multiple

independent instances that cooperate among each other. Each

instance is separately deployed and represents its site in the

grid, that is, it is responsible for all jobs entering and leaving

its site via the grid. We call such an instance a proxy of the

metascheduler. Naturally, a proxy has only limited informa-

tion to act on compared to the centralized design, as it only

gathers data locally and from its neighbors for performance

reasons. It is therefore necessary to provide a proxy with

sufficient additional input to perform its scheduling. This

input can be obtained, e.g., by inter-proxy communication,

by a shared pool of available jobs, or by overlapping the

local job pools of adjacent sites [5, 6].

While the centralized concept of metascheduling is easier

to design, implement, deploy, and maintain, its drawbacks

nevertheless outweigh its benefits. We see three crucial

280

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

problems that need to be addressed: First, a centralized

metascheduler always represents a single point-of-failure.

Problems with the metascheduler will have an immediate

impact on the grid because access to remote resources

is disrupted. Failures like a broken Internet link separate

parts of a grid from the central scheduler. Furthermore, a

successful attack on the scheduler compromises a grid.

Second, the centralized design suffers from reduced scal-

ability when faced with increasing demand. The metasched-

uler represents a serious bottleneck as it is solely responsible

for the migration of jobs in the grid. As the number of sites,

users, and jobs grows, it will become more and more difficult

to collect all the information that is required to determine the

optimal schedule. The common countermeasure to deploy

multiple backup servers running the metascheduler software

prolongs the decline in performance but leads to additional

costs and complexities.

Finally, the largest problem of the centralized architecture

is of a political nature. Grids span across multiple ad-

ministrative zones, companies and institutions, countries, or

continents. Each site has its own local policies that a central

metascheduler knows nothing about. This can simply be to

prefer local users contending for the limited resources or can

be as strict as national laws to prevent certain user-groups

from accessing HPC resources. Additionally, the willingness

of administrators to relinquish control over their hardware

to an external entity is unpredictable.

All of the above problems do not emerge in a distributed

design. Resilience is increased because a proxy failure

affects mostly its home site. Link failures don’t disable the

grid, as separate sub-grids will continue to function indepen-

dently. The overall performance scales with the size of the

grid as the computation of the schedule is distributed across

the grid nodes. And finally, political issues are mitigated by

each site’s ability to configure its proxy independently.

However, with only limited information to act on, dis-

tributed metaschedulers usually produce sub-optimal sched-

ules. While it would be theoretically possible to achieve

full information at every proxy through a complete data

exchange between all sites, the cost of O(n2) is prohibitive

and makes this idea infeasible. Determining good schedules

is an algorithmic problem that is, as of now, best tackled by

contenting oneself with approximations. Overall, we favor a

distributed approach to metascheduling over the centralized

design.

In the remaining sections of this paper, we will describe a

distributed architecture that is currently being implemented

for the Distributed European Infrastructure for Supercom-

puting Applications (DEISA 2, [7]). There, its decentralized

design will be fully exploited in an international grid envi-

ronment of autonomous sites.

In Section II, we present the architecture of the meta-

scheduler and describe the general interaction between a

proxy and its peers. The P2P algorithms required for this

(C) site batch scheduler

(LL, LSF, PBS, ...)

(GT4, Unicore 6, ...)

(B) site middleware

(A) meta−scheduler proxy

(D) site HPC resources

web services to

other proxies

unication interface to local

grid middleware

OGSA−compliant comm−

b
y

p
ass

unication interface to users

and tools

OGSA−compliant comm−

O
p

en
 G

ri
d

 S
er

v
ic

es
 A

rc
h

it
ec

tu
re

G
lo

b
u

s
T

o
o

lk
it

 4

L
o

ad
L

ev
el

er

L
o

ad
 S

h
ar

in
g

 F
ac

il
it

y

P
o

rt
ab

le
 B

at
ch

 S
ch

ed
u

le
r

O
G
S
A
:

G
T
4
:

L
L
:

L
S
F
:

P
B
S
:

A
cr
o
n
y
m
s:

Figure 1: Architecture of the distributed metascheduler at the

site level. Relevant references are OGSA [8], GT4 [9, 10],

UNICORE 6 [11], LL [12], LSF [3, 4], PBS [13].

communication are portrayed in Section III and the idea

of situation-based selection is introduced. Afterwards, the

implementation of the metascheduler is explained in Sec-

tion IV, where we will also present the details of the decision

making algorithm. A full example of decision making is

shown in Section V, where a decision must be made, which

of a given set of resources is selected to execute a job.

Then, an overview of related work on methods for resource

discovery is given in Section VI. Finally, we finish this paper

in Section VII with a conclusion and an outlook.

II. ARCHITECTURE

The architecture uses cooperating peers rather than a

centralized master. Grid administrators install a local proxy

software, whose block diagram is displayed in Figure 1.

The figure shows the metascheduler proxy (A), the grid

middleware (B), and the local batch scheduler (C). The

proxy will have to interact with users, remote proxies,

grid middleware, and local batch schedulers. Towards the

user, the proxy provides web services that are compatible

with the standards of the Open Grid Services Architecture

(OGSA, [8]). Thereby, users and administrators can continue

to use existing tools and client software to monitor jobs and

hardware, oblivious to the fact that they communicate with

a proxy.

Among themselves, the proxies will communicate using

custom-designed but open web services. However, the com-

munication will be mostly restricted to the search for avail-

able computing resources and the exchange of scheduling

281

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

information. For the actual migration of the job descriptions,

the proxies rely on the grid middleware. The interface

between proxy and middleware is compatible to the OGSA

standard. Thus, the proxy can use any OGSA-supporting

middleware. Popular examples include, e.g., Globus Toolkit

(GT4, [9, 10]) and UNICORE 6 [11].

The actual metascheduling work of the proxies is per-

formed in three stages by 1.) deciding that a job is to

be migrated, 2.) discovering available resources, and 3.)

deciding to which target site the job is to be migrated. In the

first stage, the proxy determines which job to migrate away

from the current site. Jobs may be selected for migration,

e.g., because they require resources not available locally,

access remote data, or reduce utilization of the resource by

fragmenting the schedule. Which criteria are considered is

usually determined by the site operator.

Afterwards, resource discovery is carried out in an active

as well as passive fashion. In the first case, a proxy actively

searches for available resources, while in the second case it

only listens for messages sent by other proxies announcing

underutilized resources. Having received a collection of

offers from its peers, a proxy re-enters the decision making

phase with the goal to select the best offer to accept. Now,

the criteria considered include, e.g., the bandwidth available

at a remote site, the cost incurred by using a resource, or

other potential benefits offered to the user.

The remote side in this scenario influences the sequence of

events twice: first, when it receives a request for computation

time, it opts to either provide an offer itself or to ignore

the request. Second, if it has disseminated an announce-

ment about available resources, it chooses between all the

candidates that took an interest in this offer. The criteria

that control the decision in this case could be selected to,

e.g., prefer jobs that best utilize the vacant resource, are

immediately available for execution, or belong to a site that

should be recompensed for previously accepting jobs itself.

The preceeding paragraphs exhibited the fact that schedul-

ing is based on local pieces of information and policies.

While the examples focused mostly on criteria that resource

providers find profitable, the decision making process can

be easily extended to include measures that benefit users or

the grid community. Currently, we restrict ourselves to the

criteria queue size, average waiting time, and waiting time.

They cover an acceptable range of interests insofar as their

optimization is designed to result in improved utilization of

resources, increased fairness, and greater customer satisfac-

tion. Furthermore, these values can be simply determined

and should be deducible from the information provided by

any existing local batch scheduler. The real accomplishment

will be to find a weighting of the criteria that considers the

advantages of all parties involved in a grid environment.

In addition to the illustrated processes, there are other

details to be accounted for in the migration of a job

description. An offer obtained by a site will usually be

valid only for a limited time. An offering site may 1.)

reserve the offered timeslot until acknowledged or canceled

by the receiving site, 2.) reserve the offered timeslot for

a limited time, or 3.) don’t provide any guarantees on the

period of availability at all. Each of these scenarios requires

a receiving site to react accordingly, by either canceling

unused offers in a timely fashion, acknowledging offers

within their restricted lifetime, or re-issuing a request if

previous offers are withdrawn.

In an unstructured grid of independent peers, all these

scenarios may occur and have to be supported by a meta-

scheduler proxy. For this reason, our decision making al-

gorithm ranks the offers in order of decreasing preference.

It iterates through this list and tries to acknowledge the

offers successively. The first offer that is available will be

accepted and the remaining offers explicitly canceled. Thus,

the algorithm will always return the best possible resource

for the job regardless of the types of offers received.

III. RESOURCE DISCOVERY WITH P2P-ALGORITHMS

Over the last decade, peer-to-peer (P2P) networks have

changed the way a search algorithm’s usability is evaluated.

With sizes of hundreds of thousands of simultaneous peers,

they have rendered most traditional algorithms obsolete.

Instead, a whole new class of distributed hashtable (DHT)

based search algorithms has been created such as CAN [14],

Chord [15], Pastry [16], and Tapestry [17]. The combination

of a particular network overlay structure with an efficient

routing algorithm makes them especially suited to deal with

large distributed networks.

Unfortunately, their approach of hashing a search request

is not particular useful in a grid environment. Here, most

search requests are multi-criteria queries, e.g., “10 nodes

with 32 CPUs each for 5 hours”, and composed of ranged

criteria, e.g., “10–15 nodes”. Hashing such a request results

in loss of valuable information. Recent research tackles this

problem by mapping these extended queries to the routing

layers of, e.g., CAN or Chord. We describe three examples

of such algorithms in Section VI. An excellent overview and

a taxonomy for grid-enabled DHT-based algorithms is given

in [18].

DHT-based algorithms derive their scalability, speed, and

fault-tolerance from the fact that queries are distributed

evenly amongst the participants of a network. This spread

is a direct result of the mathematical properties of the used

cryptographic hashing functions such as SHA-1. However,

in a grid environment the necessary difference between

query values is not always guaranteed. It is typical to

encounter limited types of different hardware, common

software stacks, and restrictions by resource providers on

the requestable numbers of nodes and runtimes of jobs. All

of these constraints reduce the possible values an attribute

can adopt. As a result, the routing of queries focuses on a

few grid nodes and a DHT-based algorithm’s benefits are

282

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

seriously diminished. Considering the cost and complexity

and their fairly insubstantial benefits for grids of the targeted

size, we decided against using DHT-based algorithms.

A. Forwarding-based Algorithms

Instead, we employ traditional forwarding-based search

algorithms. As their name suggests, these algorithms work

by forwarding a request from one peer to another peer.

Starting at an initial site, a request recursively spreads

through the grid until some stop criterion is met. Each

receiving peer tries to satisfy the request locally or, else,

forwards it to its direct neighbors. Resource offers take the

reverse path of a request back to the initial site.

In most instances, different algorithms vary in the way a

request is routed, a stop criterion is chosen, or additional

information is collected to augment the routing. Two ex-

emplary algorithms that are representative of the class of

forwarding-based algorithms are the Breadth-First-Search

(BFS) and k-RandomWalks.

Breadth-First-Search: The BFS is the simplest of the

forwarding-based algorithms without all the bells and whis-

tles other variants attach to it. A request is endowed with an

integral “time-to-live” (TTL) that is chosen by the initial site.

Each peer that receives a request decrements the request’s

TTL by one. If it hasn’t reached zero yet, the peer forwards

a copy of the request to all of its neighbors indifferently.

Afterwards, the peer tries to generate offers matching the

request and returns them to the initial site.

Basic details will usually differ between implementations

of this algorithm. In general, peers will check whether they

have already seen a request before handling and forwarding

it a second time. In this spirit, they will not forward a

request to the neighbor they originally received it from

either. Further, an implementation will usually see to it

that each peer aggregates all offers from its neighbors. By

bundling the replies at each peer, the number of return

messages is kept down. But even with these enhancements,

the number of requests grows exponentially with the depth of

a search. Also, because the requests continue to be forwarded

even if a satisfying offer was discovered, there is no chance

to abort a search early.

Still, the BFS exhaustively examines the grid up to the

search depth. If there is a matching resource on any of the

peers it can reach in TTL hops, then the BFS is guaranteed

to discover it. In an unstructured distributed grid, the BFS is

the only algorithm with this kind of promise. Nevertheless,

the algorithm is too expensive to be employed on its own.

k-RandomWalks: The k-RandomWalks algorithm is a

variant of BFS that reduces the number of messages dis-

seminated in the grid. The initial peer issues its request to a

maximum of k neighbors. Each subsequent peer will forward

the request only to a single random neighbor of its own.

Therefore, the number of messages is bound by k × TTL,

and any of the two parameters can be adjusted independently.

The BFS’ major drawback — its huge cost in terms

of messages — is somewhat reduced by k-RandomWalks.

By modifying the parameters k and TTL the character of

the algorithm can be changed. Increasing or decreasing

TTL directly influences the distance that can lie between a

requesting site and the potential offers it receives. Increasing

or decreasing k controls the thoroughness with which the

grid is searched for results.

However, regardless of the values of the parameters the

algorithm will never yield the quality of results produced

by the BFS. Instead, it will often find no results even

though a matching resource is nearby. For this reason, the

k-RandomWalks is rarely employed by itself, too.

B. Situation-dependent algorithm selection

The balance between proper results and incurred costs

is crucial when employing forwarding-based algorithms.

Naturally, there are more advanced algorithms in this class

than the cited examples BFS and k-RandomWalks. Variants

such as, e.g., Adaptive Probabilistic Search (APS, [19]) and

Distributed Resource Location Protocol (DRLP, [20]) learn

from previously performed searches. They collect data about

which neighbor returned promising results and adjust their

routing correspondingly. Nevertheless, the costs associated

with these variants can not be justified by their results in

general.

Instead of designing yet another forwarding-based algo-

rithm, we chose to examine the existing methods more

closely. It emerged that most algorithms are not to be re-

jected out of hand. Rather, it is the situation that determines

the suitability of a method. No algorithm is always perfectly

applicable. But given the right circumstances and an intel-

ligently selected technique, the results can be acceptable.

Therefore, it is advantageous to investigate the situations in

which a search algorithm is to be invoked.

Coming back to our metascheduler, we discovered two

main cases in which a P2P algorithm is necessary: I.)

resource requests, that is, active inquiries into available re-

sources matching specific requirements, and II.) resource an-

nouncements, that is, the dissemination of vacant resources

that other peers passively listen for. We further identified two

sub cases each: I.a.) necessary and I.b.) optional requests

and, on the other hand, announcements of II.a.) immediate

and II.b.) future resource vacancy. Of these four cases, each

makes other demands on an appropriate search algorithm.

The key difference between the main cases lies in the

way a particular message needs to be distributed. In I.) the

system seeks a resource that matches detailed requirements.

Thus, it is beneficial to employ algorithms that, e.g., learn

from previously performed searches and can route a request

specifically to sites where such a resource is known to

exist. A similar design could theoretically be used with

resource announcements in II.) to find jobs that can take

advantage of a vacant resource. However, jobs are transient

283

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

compared to HPC resources. Although the probability to find

a compatible job is higher on sites with a similar resource,

other sites are not to be neglected.

The difference between a situation’s sub-classes lies in

the urgency, by which a metascheduler requires its results.

In the cases I.a.) and II.a.) a higher priority is placed on

the search than in the corresponding counterparts I.b.) and

II.b.). Due to the higher priority, it is especially important

to find actual results and preferably in a speedy manner.

Extra cost incurred by an expensive search algorithm is

acceptable due to the urgency of the request. For instance, it

is more important to obtain jobs for an immediately available

resource than for a resource available in the future. In the

latter case, a sequence of cheap searches with a reduced

chance of success may still yield a result in time.

Each class of situations requires another type of algorithm.

It will always lead to an inferior performance if a single

technique is chosen. Therefore, we opted to implement

various forwarding-based algorithms and dynamically select

the particular method to apply in a situation. Compared

to DHT-based algorithms, the forwarding-based algorithms

are mostly easy to implement and make no demands on a

specific network overlay structure. With a basic framework

in place, the simplicity of implementing these techniques

allows us to support several methods simultaneously.

Each time a P2P search algorithm is about to be in-

voked, the circumstances are analyzed and the situation is

categorized into one of the four classes I.a, I.b, II.a, and

II.b. Then the appropriate algorithm is determined and the

search initiated. Which algorithm is deemed appropriate can

be configured by an administrator of a site. While it is

necessary that every proxy supports all employed algorithms,

each proxy can be differently configured. However, not every

combination will actually lead to improvements. Due to the

limited amount of space, we refer the interested reader to

[21] for feasible configurations.

IV. SOFTWARE DESIGN

A huge part of the development time of any complex

software system is spent dealing with secondary issues such

as handling threads, writing web service stubs and skeletons,

and managing database access. Therefore, we decided to

build the metascheduler as an enterprise application archive

(EAR) that is deployable in any application server conform-

ing to the JavaEE 5 standard [22]. The environment provided

by a JavaEE application server supports the programmer by

taking over many of the more arduous tasks.

Moreover, an administrator benefits from an easy installa-

tion, configuration, and maintenance of the final application.

Still, minor adjustments are generally required before an

EAR can be deployed in a container since the JavaEE speci-

fication grants compliant implementations some leeway. Our

development team uses the Apache Geronimo [23] appli-

cation server because it offers a free, open, and complete

implementation of the JavaEE 5 standard. In addition, we

plan to actively support Red Hat’s JBoss [24] and SUN’s

Glassfish [25] in the fourth quarter of 2009, too.

The metascheduler is structured into three main modules:

1.) resource discovery, 2.) decision making, and 3.) resource

management. Whereas the first two constitute the core

modules of the scheduler, the latter embodies the interface

to grid middleware or batch scheduler. Additional auxiliary

components provide the glue binding the three main modules

together. They are secondary to the logical modular design

however, and we will neglect them for now.

The resource discovery module is chiefly responsible

for the discovery of remote resources that match certain

specified requirements. This task includes the active search

for resources as well as the dissemination of vacant re-

sources to other sites. The module incorporates the various

forwarding-based P2P algorithms referred to in Section III-A

and exposes them as web services to the remote peers. In

cooperation with the decision making module, it implements

the situation-based selection of one of these algorithms.

In the decision making module, we have concentrated

the logic that steers the metascheduler. A variant of the

Analytic Hierarchy Process (AHP) [26, 27] is used through-

out the system to choose between alternative solutions. Its

hierarchical design allows us to consolidate the opinions

of several parties into an overall decision. The selection

of the target site of a migration can therefore incorporate

different viewpoints such as the interests of job owner,

resource provider, and grid community. In contrast to the

standard AHP, the utilities of an alternative are determined

dynamically and with minimal human interaction.

Finally, the resource management module serves as an

interface between the metascheduler and the lower layers

of a site’s scheduling stack. It provides a set of abstract

methods that allow the reservation and management of

timeslots of the underlying hardware resource. Different grid

middleware will generally require different implementations

of this module. But with an OGSA-compatible default

implementation, the metascheduler is adequately equipped

to handle a majority of the existing installations on a grid.

A. Resource Discovery

The implementation of a P2P algorithm’s web services

follows the “contract first” design approach. First, the ab-

stract web services are unambiguously described in the Web

Service Description Language (WSDL, [28]). Then, JAX-

WS-compliant (Java API for XML Web Services, [29]) tools

are used to generate an interface from this description. The

interface contains the definitions of the web service methods.

Implementing these methods and deploying the code into an

application server results in a usable web service.

Each P2P search algorithm supported by a metascheduler

proxy is made available as a separate web service under its

own URL. Thus, a proxy is characterized by a bundle of

284

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

GenericSearchHandler

search(Request req) : List<Reservations>

announce(Resource res)

BFSSearchService

DRLPSearchService

GUESSSearchService

APSSearchService

KRandomWalksSearchService

A)

OfferEvaluator

rank(List<Offer> offers)

AHPEvaluator

B)

ResourceManager

listOffers(Request req) : List<Offer>

createReservation(Offer offer) : Reservation

cancelReservation(Reservation res)

OGSAResourceManager

C)

Figure 2: Software modules of the distributed metascheduler.

different service URLs. It is therefore reasonable to provide

a specialized “get-to-know-service” that serves as a central

point of entry for remote peers. It can be seen as some

kind of directory that a remote peer can query to identify

the additional services offered by a proxy. We call this

service the gatekeeper service. Note, that this is not a central

directory service but a local web service provided by a proxy

to supply information about itself in agreement with the

distributed nature of the design.

The information supplied by a gatekeeper currently con-

tains a user-friendly name and a list of all locally available

web services. The name is used exclusively as a convenience

for users, while proxies identify themselves by their gate-

keeper URLs instead. It can be specified by an administrator

to label a managed resource, e.g., “IBM Power6 system at

RZG”. In the list of services, each available web service is

identified by its fully-qualified name (FQN) and mapped to

its respective local URL. We established the provided infor-

mation as scarce and restricted to the absolute minimum. It

is easily extendable to include, e.g., a free text description of

a resource, usage policies, service level agreements, detailed

costs, etc.

Search algorithms are defined via a generic abstract

web service displayed in part A) of Figure 2. An actual

algorithm needs to implement only two methods: search

and announce. The search method takes a resource

request as an argument and returns a list of matching

reservations. Where these reservations actually come from,

e.g., multiple reservations from a queried proxy itself or

additional reservations from remote sites, depends on the

particular algorithm considered. Naturally, reservations will

have to contain the appropriate pieces of information that a

querying site requires to positively identify the source of an

offer.

As of now, a resource request incorporates a requirements

definition in the format of the Job Submission Description

Language (JSDL, [30]) plus a data block each for search

algorithm and decision making algorithm. These blocks are

used to map a received request to the appropriate algorithm

implementation and, additionally, used by the particular

algorithms to attach custom data to a request. Regarding

the search algorithms, such a piece of custom data can,

e.g., include timeout or original source of a request, routing

directives, etc.

The announce method takes a structure similar to

the request as an argument but has no return value. An

argument’s JSDL component is used to describe the offered

resource including the address of the offering site. A return

value is not required, because a site that wishes to apply for

the resource, is required to submit its request in a separate

step. Thus, an announcement can be handled as a “fire and

forget” message. By removing the reply message for this

type of search, an announcement’s costs is kept down.

B. Decision Making

The module in charge of decision making is a sim-

plified implementation of the Analytic Hierarchy Process

(AHP) [26, 27, 31] displayed in part B) of Figure 2. It

considers various facets of an item to sort a given set of

similar items in order of preference. The module is applied

in several stages of the metascheduling process to rank

available timeslots, received offers, migration candidates,

etc. By making the algorithm a replaceable module, the

different sites could, in theory, employ different decision

making modules without interfering with each other.

The AHP is a hierarchical multi-criteria decision making

algorithm originally developed for the domain of economics.

Its decision is based on a tree of criteria that have been

chosen as relevant to the decision at hand. Figure 3 shows

an exemplary AHP tree with two levels that combines several

criteria relevant to a migration decision. Inner nodes of a tree

define meta-criteria that are fully described by their child

nodes. Leaf nodes represent criteria where the utility of an

option can be explicitly determined. Each criterion in the tree

has a weight assigned by a human. These weights determine

the importance of a criterion with regard to its corresponding

parent node.

The ranking of alternatives starts at the leaves of a tree.

Here, each alternative item is evaluated and has its utility

computed. In the original AHP, an item’s utility is deter-

mined based on pairwise comparisons provided by a human

285

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

grid

community

resource

provider
user

waiting

time
costs

global

fairness

load

balancing

local

fairness

load policies

0.09 0.74 0.17

goal

0.5 0.50.83 0.17

0.07

0.28 0.65

Figure 3: Exemplary AHP hierarchy with multiple parties.

The weights of each node’s children add up to 1.0.

decision maker. For this purpose, each pair of items has to be

judged and the preference for an item has to be expressed

on a scale of nine values. These values represent notions

from “equally preferred” to “extremely preferred” defined by

Saaty [26]. A pairwise comparison matrix A = (aij)1≤i,j≤n

is the result of this rating process. Finally, the normalized

principal Eigenvector of A is determined and its kth entry

is used as the utility of the kth alternative.

Utilities with regard to inner nodes of a tree are computed

recursively. At every node, the utility of an alternative is

determined as the weighted sum of corresponding values at

the child nodes. That is, for each inner node the utilities at its

immediate child nodes are multiplied by the corresponding

child’s weight. These products are then added and result

in an alternative’s utility with respect to the parent node.

As a by-product of using normalized utilities at the leaves

and using normalized weights, the process also produces

normalized utilities at each inner node. The obtained values

are then used at the root node to rank alternatives from best

to worst.

Usually, consent in an AHP context is reached by personal

interaction: stakeholders come together to debate pairwise

comparisons. In a grid, involved parties are geographically

distributed, yet situations where a decision has to be reached

are abundant. Because debate and direct interaction are

infeasible, we exploit the hierarchical structure of a criteria

tree to account for distinct opinions. Each stakeholder is

allowed to build its own tree from a common set of criteria

and assign its own weights. These separate trees are brought

together under a common root to construct the final tree.

At this point, the persistent normalization protects an

automated decision making process from malicious users. As

utilities at each subtree’s root are normalized, the expressed

opinions are initially of equal strength. In the next step, every

subtree is connected to the root of the final hierarchy with

its own weight. These root weights exclusively control the

share of participation given to a particular stakeholder. In a

grid environment, it is reasonable to assume that resource

providers will reserve the right to define these values to

themselves. As root weights can be defined on a per resource

basis, different providers will not interfere with each other.

Additionally, a provider can encourage participation — and

even advertise the possibility thereof — without loss of

control.

In our metascheduler, three stakeholders participate in

a decision: 1.) the owner of a job, 2.) the provider of a

resource, and 3.) the grid community. The lifetime of a

subtree will vary according to the party that defined it. A

user’s tree is optionally created as part of the job submission

process and permanently attached to a job description. It

exists only as long as a job remains in the grid. A provider’s

tree is specific to a particular resource and part of a proxy’s

configuration. It will generally be constant for extended

periods of time and will be used in every local decision

making process. Finally, a grid community’s tree is defined

at the grid level and assumed to be part of the initial

agreement to found a grid. It is configured at the proxy level,

too, but identical across all participating sites. Typically, this

tree will be the most static of the three subtrees. The root

weights are configured in the same XML document that sets

provider and grid community subtrees.

Furthermore, we extended the original AHP to dynami-

cally compute utilities at the leaves of a tree. Such an ex-

tension is necessary, before AHP can be employed in a grid

environment. Here, alternatives are defined by measurements

or predictions such as waiting time (in minutes), cost (in

dollars), and utilization (in percent). Again, AHP is clearly

focused on human interpretation of the alternatives. Saaty

gives several examples in [27], where a human decision

maker’s preference may differ significantly from the values

suggested by a standard scale. We tried to accommodate

this view and simultaneously make the algorithm feasible

for a grid environment. Hence, we made the computation of

utilities configurable based on an underlying criterion.

We provide two evaluation methods in the stock instal-

lation of a metascheduler: a direct mapping module and a

hyperbolic tangent [32] based module. The direct mapping

module allows a provider to map ranges of input values to

specific utilities. It supports open ranges, ranges bounded

above or below, and exact values. The resulting utility

function is obviously non-continuous. It might be tempting

to use this method for continuous criteria to express, e.g.,

that only waiting times of up to 5 hours are acceptable.

However, this is generally a bad idea, because it leads to

situations where the priorities do not reflect a stakeholder’s

intent. A job with a predicted waiting time of 4:59h is in

most cases only marginally more preferred than a job with

286

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0.0

0.2

0.4

0.6

0.8

1.0

 0 50000 100000 150000 200000 250000

u
ti
lit

y

physical measure

dominant cluster

h
e
ig

h
t

=
 m

a
x
H

e
ig

h
t
×
 0

.7

control box

outliers

Figure 4: Continuous utility function for minimization cri-

teria based on the hyperbolic tangent. The control box

is determined automatically from the distribution of the

measures.

5:01h waiting time. Thus, this method should only be used

for discretely valued criteria such as user IDs, group IDs,

queue names, etc.

In contrast, the evaluation method based on a hyperbolic

tangent is designed for continuous criteria. It reflects the

idea, that distinct utilities should be computed for the range

of input values where the majority of the alternatives are

located. Above average quality should yield higher utilities

but eventually be bounded. An analogous reasoning is true

for below average quality. We chose the hyperbolic tangent

as the underlying utility function because it converges to 0
(resp. 1) for small (resp. large) input values. The notion of a

control box is used to scale and shift the hyperbolic tangent

with the aim of focusing its transition from 0 to 1 on average

alternatives (see Figure 4).

Upon receiving a set of alternatives, the evaluation module

first starts to determine the dominant cluster with regard

to a given criterion. It iteratively aggregates the closest

input values until a cluster exceeds 51% of all values.

Horizontal position and width of a control box are set

to reflect the position and width of this dominant cluster.

Vertically, the box is centered around the midpoint 0.5 of

the available utilities. The height of a control box is at most

0.8 and scaled with the ratio of elements in the dominant

cluster. Determining a control box is independent of whether

the current criterion is about maximizing or minimizing

measures.

Finally, the hyperbolic tangent is scaled and shifted to

match a control box, i.e., the curve runs through the lower

left and upper right corners of a control box for maximizing

criteria. Accordingly, it runs through the upper left and lower

right corners for minimizing criteria. The resulting function

is used to map input values to raw utility values, which are

then normalized to bring them in a form suitable for use in

AHP.

Direct mapping and hyperbolic tangent based evaluation

represent two methods designed for non-continuous and con-

tinuous criteria, respectively. In Section V, we present a full

example that uses both mapping techniques. However, the

metascheduler is easily extendable with additional evaluation

methods.

C. Resource Manager

The interface between metascheduler and locally installed

grid middleware or batch scheduler is represented by the

resource manager module displayed in part C) of Figure 2.

It provides the means to inquire for a set of offers matching

a request’s JSDL description and, optionally, to fix such

an offer into a reservation. The definitions of offer and

reservation are deliberately kept as broad as possible to

account for different systems, which a metascheduler is

required to interact with.

Conceptually, an offer represents a timeslot on some

resource that is endowed with additional metadata. The

contents of the structure must allow the resource manager

to identify the offered resource and assign a job correctly to

it. The attached pieces of metadata constitute a mapping

of arbitrary criteria to corresponding measures taken or

predicted by a resource manager. An offer satisfies the pre-

conditions put forth by the decision making module. Thus,

a set of offers can be ranked in order of preference if some

weighting of the criteria is supplied externally.

As mentioned previously, the metascheduler currently

supports the criteria queue size, average waiting time, and

waiting time. These points of comparison were selected be-

cause every existing batch scheduler should be able to supply

them easily. However, the metascheduler is not restricted to

any fixed set but can be configured to understand arbitrary

criteria. Thus, the set can be freely extended as long as a

resource manager knows how to obtain the related values.

A reservation is just a wrapper around an offer that

optionally assigns an owner to it. Whether this assignment

is for a limited period of time, until the reservation is

explicitly canceled, or not authoritative at all is up to the

particular resource manager or its site. The main reason

for a separation of offer and reservation was to distinguish

between the mere availability of a timeslot and its dedication

to a particular party.

V. DECISION MAKING — AN EXAMPLE

Two unique features distinguish the described metasched-

uler from existing solutions. First, its concurrent use of mul-

tiple forwarding-based search algorithms that selects the best

algorithm for a given situation. Second, its generic decision

making algorithm that supports multiple stakeholders for

each scheduling decision.

287

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The same basic principles of decision making will even-

tually be used in both search module and generic DM

module. Forwarding-based search algorithms are then plain

implementations of existing techniques that generally require

no customization. For this reason, the following example

will focus on the new concepts in decision making. We

will show a selection process that is common to scheduling:

which resource from a given set of alternatives will be

used to execute a compute job. In the process, we will pay

particular regard to the observance of individual interests in

a joint decision.

A user has used the metascheduler to submit a job

that requires 9,216 CPU-hours to run to completion. It is

assumed, that the job is moldable and will scale perfectly

to any number of CPUs, i.e., it can run in 3 days on 128

CPUs or in 18 hours on 512 CPUs. Such an assumption

is rather naive and more realistic models for the speedup of

parallel programs exist. For instance, Cirne and Berman [33]

presented a generator that models sets of moldable jobs

according to Downey [34]. However, an explanation of these

concepts is beyond the scope of this example.

As part of the submission process, the user selected

three criteria that he wishes the metascheduler to optimize.

His goals are to minimize the cost of computing his job,

to minimize the waiting time until his computation will

start, and to minimize the overall completion time until

the results are returned to him. Then, he used the method

established by AHP to judge the three criteria with regard

to their relative importance on a verbal scale. The user

stated that he preferred lowering the cost strongly over

lowering the waiting time and, moderately over lowering

the completion time. Likewise, he preferred lowering the

completion time moderately over lowering the waiting time.

From these judgments, normalized weights were derived for

cost, waiting time, and completion time as, respectively,

wcost = 0.637, wwait = 0.105, wcomp = 0.258.

Note that weights derived through the AHP will always add

up to 1.0.

The metascheduler issued a search on behalf of the user’s

job to acquire offers for a matching slot on an HPC resource.

Eventually, the search returned five offers from three differ-

ent resources. For the sake of simplicity, we are working

with several assumptions about these resources and offers.

First, the discovered resources were filtered such that they

fulfill all necessary requirements with regard to software,

disk space, memory, etc. Second, the user is authorized to

use any of the three HPC resources. And third, all resources

belong to the same resource provider. This third assumption

is most restrictive, but allows us to keep the number of

parties participating in the decision down to the user and

his provider.
Like the user, the resource provider selected two criteria

that the metascheduler is supposed to optimize. The first

goal is to maximize the average load of the resources, and,

therefore, to favor resources with a low utilization during

scheduling. Then, explicit queue priorities were manually

defined for queues and job classes. On resource A, medium-

sized jobs that used at most 64 CPUs are favored over large

jobs that used up to 512 CPUs in parallel. This decision was

made to increase the number of users served simultaneously

and, therefore, maximize the perceived fairness. Also, guests

on resource C are penalized by a lower priority with

regard to regular users for political reasons. The second

goal is to stay true to these priorities and consider them

in the scheduling process. Finally, both criteria were judged

by an administrator who stated that better utilization was

moderately preferred over adherence to the queue policies.

The resulting normalized weights are

wutil = 0.750, wprio = 0.250

for utilization and queue priorities, respectively.

Furthermore, the root weights that govern the share of

participation were established in cooperation with a user

representative. Instead of using the AHP, the values were

obtained by external means and set to

wuser = 0.16, wprov = 0.84,

for users and provider. In other words, a share of 16% in

the overall decision is granted to users.
Table I shows the relevant characteristics of the three

resources that the metascheduler found. For each resource

the cost in dollars per CPU-hour was chosen consistent with

the values calculated by Walker [35]. All remaining prop-

erties were defined based on on our experience with HPC

resources. Table II lists five offers and their characteristics

with regard to the decision making criteria. An offer’s cost is

determined by multiplying the job size of 9,216 CPU-hours

with the corresponding resource’s cost. Waiting times were

picked randomly to provide some variance in the quality

of each offer. Finally, completion time is derived from the

waiting time and the job’s runtime using the maximum

number of CPUs allowed for each queue. Utilization and

queue priority associated with an offer can be obtained from

Tab. I.
Now, the next step is to evaluate all offers with regard

to all criteria specified by the participating decision makers.

For cost, waiting time, completion time, and utilization, the

style of automatic prioritization illustrated in Section IV-B is

used. Queue priorities, however, already represent priorities

themselves. They are an example for a direct mapping

technique where discrete values — in this case the queue

names — are mapped to static utility values. On resource C,

however, the mapping can be implemented purely numerical

by detecting user or guest status based on the user ID. Still,

the resulting utilities are not normalized yet. Therefore, they

are divided by the sum of all five queue priorities to fit into

the generic hierarchical prioritization scheme.

288

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Resource Cost Utilization Queues Queue Priority Policy

($/CPU/hour)

A 0.07 0.95
jumbo 1.0 max. 512 CPUs

medium 1.2 max. 64 CPUs

B 0.045 0.90 1.0 max. 128 CPUs

C 0.10 0.70
users 1.0 max. 64 CPUs

guests 0.6 max. 64 CPUs

Table I: Characteristics of the available HPC resources.

Offer-ID Resource Queue Cost Waiting time Completion time

($) (hours) (hours)

offer-1 A jumbo 645.12 36 54

offer-2 A medium 645.12 16 160

offer-3 B 414.72 20 92

offer-4 C users 921.60 4 148

offer-5 C guests 921.60 8 152

Table II: Characteristics of the resource offers.

The four utility mappings with automatically derived

hyperbolic tangents are shown in Figure 5. It can be seen,

that the algorithm adjusts itself to distribution and magnitude

of the underlying measures regardless of the actual criterion.

For instance, most of the waiting times lay in the range

between four and 20 hours with a negative outlier at 36

hours. Here, the algorithm maps the average offers to (unnor-

malized) utilities between 0.18 and 0.82, while it singles out

“offer-1” and assigns an utility that marks it as unacceptable.

On the other hand, three out of five completion times fall

between 148 and 160 hours with two positive outliers at

54 and 92 hours. Again, the mapping assigns values in the

middle spectrum of utility to the cluster, but it awards “offer-

1” and “offer-3” with utilities close to the maximum. Also

note, how the algorithm accommodates the height of the

control box to the share of options in the dominant cluster.

Figure 6 shows the normalized utilities for all offers and

criteria in comparison.

In a final aggregation step, the singular utilities are com-

bined for each set of elements in the criterion hierarchy until

the root is reached. To illustrate, let’s consider “offer-1”,

which is characterized by five independent utilities:

u
(1)
cost = 0.198, u

(1)
wait = 0.005, u(1)

comp = 0.279,

u
(1)
util = 0.080, u

(1)
prio = 0.208.

A weighted sum of these values is calculated to determine

the utilities from the point of view of the user and the

resource provider, respectively. The user’s utility for “offer-

1” is, therefore,

u(1)
user = wcostu

(1)
cost + wwaitu

(1)
wait + wcompu

(1)
comp = 0.198

cost

waiting
time

completion
time

utilization

queue
priority

 0 0.1 0.2 0.3 0.4 0.5 0.6

utility

offer-1

offer-2

offer-3

offer-4

offer-5

Figure 6: Utilities of each resource offer with regard to the

leaf criteria.

and the provider’s utility

u(1)
prov = wutilu

(1)
util + wpriou

(1)
prio = 0.112.

Finally, these utilities are combined with the root weights to

obtain the final overall utility of the first offer.

Intermediate utilities, i.e., utilities with regard to user,

provider and the overall goal, are shown in Figure 7. It

is noticeable, that the overall utilities are closely related to

the provider utilities. The reason for this similarity is, of

course, the large share of the root weights granted to the

resource provider. Nevertheless, the user’s strong preference

for the third offer is not ignored. Despite his minor power,

the third option is judged as marginally more preferable

than the fourth option in the final prioritization. Using the

289

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600 800 1000 1200

u
ti
lit

y

cost (dollars)

3
/5

 ×
 m

a
x
H

e
ig

h
t

of
fe

r-1
 a

nd
 o

ffe
r-2

of
fe

r-3

of
fe

r-4
 a

nd
 o

ffe
r-5

0.0

0.2

0.4

0.6

0.8

1.0

 0 5 10 15 20 25 30 35 40

u
ti
lit

y

waiting time (hours)

4
/5

 ×
 m

a
x
H

e
ig

h
t

of
fe

r-1

of
fe

r-2

of
fe

r-3

of
fe

r-4

of
fe

r-5

0.0

0.2

0.4

0.6

0.8

1.0

 0 50 100 150 200

u
ti
lit

y

completion time (hours)

3
/5

 ×
 m

a
x
H

e
ig

h
t

of
fe

r-1

of
fe

r-2

of
fe

r-3

of
fe

r-4

of
fe

r-5

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.2 0.4 0.6 0.8 1

u
ti
lit

y

utilization (percent)

3
/5

 ×
 m

a
x
H

e
ig

h
t

offer-1
 and offer-2

of
fe

r-3

of
fe

r-4
 a

nd
 o

ffe
r-5

Figure 5: Automatic utility mappings derived for the criteria cost, waiting time, completion time, and utilization.

user

provider

overall

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

utility

offer-1

offer-2

offer-3

offer-4

offer-5

Figure 7: Per-party and overall utilities of each resource

offer.

overall utilities as a guideline, the metascheduler would try

to acknowledge the offers in decreasing order of preference

offer-3 > offer-4 > offer-5 > offer-2 > offer-1.

The first offer that would actually be accepted by both sides

of the bargain is assigned to the job; remaining offers are

subsequently canceled.

VI. RELATED WORK

Current grid scheduling solutions focus on centralized

resource discovery approaches. UNICORE 6 [11] is a grid

middleware that is widely deployed, e.g., in the DEISA 2

grid [7] and in parts of the German D-Grid [36]. It performs

resource discovery via a single registry called Common

Information Provider (CIS). The CIS collects static and

dynamic information on a grid’s resources, which is pro-

vided by CIS Information Providers (CIP) monitoring each

resource. A CIP publishes an Atom-feed that is periodically

polled by the CIS by means of a web service protocol.

The migration of job steps in a workflow is performed

by so-called Service Orchestrators. They employ different

290

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

brokering strategies, which in turn use the information from

the CIS to reach their decisions.

A similar approach is taken by the second major grid

middleware Globus Toolkit 4 [9, 10]. The resource manage-

ment is contained in the Monitoring and Discovery Service

(MDS), which consists of Aggregator Framework, Index, and

Trigger. Index is the counter-part to UNICORE’s CIS. There

are one or more index servers per virtual organization (VO)

that store all the information about a VO’s resources. The

Aggregator Framework is used locally to monitor a resource

by periodically spawning shell scripts. Obtained data is then

pushed into the central index.

Finally, the Trigger component can be configured to

perform actions whenever a predefined event occurs. While

the Aggregator Framework is the primary way of updating

an index, Trigger can also be used to poll information into

the registry. Globus Toolkit 4 has no support for automatic

migration of jobs by itself. It requires the help of additional

software such as Gridway metascheduler [2] to provide this

functionality. The Gridway information manager accesses

the MDS index via its web service interface to discover

remote resources. Based on this data it reaches its schedul-

ing decisions. Another centralized scheduling approach that

resides on top of GT4 is described in [37].

Distributed designs for resource discovery have previously

been produced in theory. Here, the focus has been on the

transfer of grid principles to the domain of P2P networks.

Examples for such algorithms are MAAN [38], Squid [39],

and QuadTree [40]. We sketch these three methods because

they represent interesting and unique approaches to the prob-

lem of mapping ranged criteria and multi-criteria queries

to the underlying DHT-based substrates. Many more grid-

enabled DHT-based algorithms are described in [18].

Multi-Attribute Addressable Network (MAAN) uses two

separate procedures to augment the underlying Chord al-

gorithm. First, multi-criteria requests are resolved by main-

taining distinct hashing functions and querying separately

for each involved attribute. Second, MAAN employs a

locality preserving hashing function, that is, a function that

maintains the order relation between numerical values for

their hashed values. Each query for a ranged criterion is

then represented by the actual sought-after value and the

minimum and maximum allowed values. MAAN forwards a

request from the node responsible for the minimum value via

its successors in the Chord ring to the node corresponding

to the maximum value. Whatever results have been found at

this point are returned to the querying node.

The Squid [39] algorithm is based on a Chord routing

layer, too. It interprets the d criteria or attributes relevant to

a grid-style query as spanning a d-dimensional space. This

space is mapped to a 1-dimensional space by means of space

filling curves (SFC). The resulting scalars are conventionally

hashed and mapped to grid nodes using the Chord routing

layer. Each multi-criteria query corresponds to a point or,

in case of ranged criteria, a sub-region of the d-dimensional

space. It is mapped by the SFC to distinct clusters of scalars.

Each cluster corresponds to individual nodes in the grid,

which have to be queried separately. The results obtained

by several of these traditional DHT-queries are then merged

to receive the final results of a grid-enabled DHT-query.

Another method that gets by with a single Chord DHT-

layer is the QuadTree algorithm [40]. It recursively sub-

divides the d-dimensional attribute space with the help of

quad-trees. Each block is identified by its centroid and

mapped to a Chord node. A ranged multi-criteria query

intersects with one or more blocks. To execute a query, those

relevant blocks are determined and the corresponding grid

nodes are contacted. The combined results of these distinct

queries form the final response. The performance of the

QuadTree algorithm is further improved by a cache. Here,

each node stores the addresses of its immediate children in

the tree to reduce the number of lookups performed.

With regard to decision making, the scheduling heuristic

of Maui Cluster Scheduler [41] bears certain similarity to

the hierarchic approach we propose in this article. However,

Maui’s hierarchy is static and weights are the only mecha-

nism by which an administrator can modify the criteria. A

direct modification of the tree is infeasible, since aggrega-

tion of the individual per-criteria priorities is not generic.

Instead, criteria derive priorities from their child criteria in

unique ways, e.g., applying minima or maxima along the

way. Furthermore, the definition of weights is restricted to

the administration of a resource, and, in contrast to our

design, users can not participate in a scheduling decision.

Maui, though, supports fairshare criteria that favor a fair

distribution of the resource amongst the users. Thus, user

interests are considered in the scheduling at least indirectly.

VII. CONCLUSION AND FUTURE WORK

We have presented our implementation of a hybrid algo-

rithm for a distributed metascheduler that efficiently links

available resources and matching jobs. It supports the ex-

change of jobs between resources and, thereby, achieves

improved resource utilization and shorter turn over times.

The metascheduler is currently being implemented and will

be deployed as part of the DEISA2 grid in fall of 2009.

The design of the metascheduler fully supports the JavaEE

specification’s security framework. Accordingly, the meta-

scheduler can be extended to integrate existing security

infrastructure including virtual organizations, Community

Authorization Service [42], and Shibboleth [43]. Towards

middleware or local batch schedulers it acts transparently,

hence, letting these layers provide their own security ar-

rangements.

Finally, we provided an example for a decision making

process that is common to scheduling. The example showed

how the prioritization algorithm uses clustering to reward or

penalize options of particular merit or demerit, respectively.

291

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Furthermore, it illustrated how the opinion of a job’s owner

can be regarded in a decision without loss of control for the

resource provider.

During the design and implementation of the scheduler,

we gained intense experience with input queues and local

resource management systems (LRMS) of HPC sites. In

cooperation with the authors of [37], we have isolated

four intrinsic problems that have to be solved to make

metascheduling a fully working feature in the future.

First, the grid scheduler generally has only the role of a

“power user” from the perspective of the LMRS and has to

compete with other users, e.g., other grid schedulers in the

same grid. As a consequence, an optimal schedule is not

possible for any individual metascheduler.

Second, grid schedulers have no control over a site’s

policy, and, therefore, over the prioritization of the jobs

waiting in queues. Thus, no control exists over the respective

local resource management system for the metascheduler.

Third, every site uses a custom configuration of queues,

and processors can be shared among queues or dedicated

exclusively. Usually, the information from the LRMS does

neither allow one to reliably determine the number of free

processors nor does it allow one to determine the total num-

ber of processors. The only statistics commonly available are

the number of running and waiting jobs. Some sites do not

even provide this information because of nondisclosure. To

conclude, local schedulers currently do not provide sufficient

information for a good schedule.

Finally, resources are highly utilized and waiting times at

clusters can last up to hours. Therefore, queue waiting time

considerably exceeds the actual execution time for small

jobs. Since small jobs constitute the majority of all jobs,

input queue waiting time is the dominant factor. However,

input queue waiting time and input queue length have shown

to be not continuously differentiable functions over time.

Instead, they can vary within minutes by a factor of thousand

or more. They behave more like fractals than continuous

functions. This makes predictions of future queue waiting

times and queue lengths a delicate task. However, scheduling

always relies on such predictions. Future work will focus on

finding solutions to these obstacles.

REFERENCES

[1] J. Heilgeist, T. Soddemann, and H. Richter, “Design

and implementation of a distributed metascheduler,” in

Advanced Engineering Computing and Applications in

Sciences, 2009. ADVCOMP ’09. Third International

Conference on. IEEE Computer Society, Oct. 2009,

pp. 63–72.

[2] “Gridway,” http://www.gridway.org, The Globus Al-

liance, [accessed: 2010-06-19].

[3] “Platform Computing,” http://www.platform.com, [ac-

cessed: 2010-06-19].

[4] S. Zhou, “LSF: Load sharing in large-scale heteroge-

nous distributed systems,” in Proc. Workshop on Clus-

ter Computing, 1992.

[5] V. Hamscher, U. Schwiegelshohn, A. Streit, and

R. Yahyapour, “Evaluation of job-scheduling strategies

for grid computing,” in GRID ’00: Proc. 1st IEEE/ACM

Intl. Workshop on Grid Computing. Springer-Verlag,

2000, pp. 191–202.

[6] Q. Wang, X. Gui, S. Zheng, and Y. Liu, “De-centralized

job scheduling on computational grids using distributed

backfilling: Research articles,” Concurr. Comput. :

Pract. Exper., vol. 18, no. 14, pp. 1829–1838, 2006.

[7] “Distributed European Infrastructure for Supercom-

puting Applications (DEISA 2),” http://www.deisa.eu,

[accessed: 2010-06-19].

[8] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui,

A. Grimshaw et al., “The Open Grid Services Archi-

tecture (OGSA),” http://www.ogf.org/documents/GFD.

80.pdf, Open Grid Forum, July 2006.

[9] I. Foster, “Globus toolkit version 4: Software for

service-oriented systems.” in IFIP Intl. Conf. on Net-

work and Parallel Computing, ser. Lecture Notes in

Computer Science, H. Jin, D. Reed, and W. Jiang, Eds.,

vol. 3779. Springer-Verlag, 2005, pp. 2–13.

[10] “Globus Toolkit,” http://www.globus.org, The Globus

Alliance, [accessed: 2010-06-19].

[11] “UNICORE,” http://www.unicore.eu, Jülich Supercom-

puting Centre, [accessed: 2010-06-19].

[12] IBM Load Leveler: User’s Guide, IBM Corp., Sept.

1993.

[13] R. Henderson and D. Tweten, “Portable Batch Sys-

tem: External reference specification,” NASA Ames

Research Center, Tech. Rep., 1996.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Schenker, “A scalable content-addressable network,”

in SIGCOMM ’01: Proc. 2001 Conf. on Applications,

Technologies, Architectures, and Protocols for Com-

puter Communications. ACM Press, 2001, pp. 161–

172.

[15] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and

H. Balakrishnan, “Chord: A scalable peer-to-peer look-

up service for internet applications,” in SIGCOMM ’01:

Proc. 2001 Conf. on Applications, Technologies, Archi-

tectures, and Protocols for Computer Communications.

ACM Press, 2001, pp. 149–160.

[16] A. Rowstron and P. Druschel, “Pastry: Scalable, de-

centralized object location, and routing for large-

scale peer-to-peer systems,” in Middleware ’01: Proc.

IFIP/ACM Intl. Conf. on Distributed Systems Plat-

forms. Springer, 2001, pp. 329–350.

[17] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph,

and J. Kubiatowicz, “Tapestry: A resilient global-scale

overlay for service deployment,” IEEE J. Sel. Area

Comm., vol. 22, no. 1, pp. 41–53, 2004.

292

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[18] R. Ranja, A. Harwood, and R. Buyya, “Peer-to-peer

based resource discovery in global grids: A tutorial,”

IEEE Commun. Surveys Tuts, vol. 10, no. 2, pp. 6–33,

2008.

[19] D. Tsoumakos and N. Roussopoulos, “Adaptive proba-

bilistic search for peer-to-peer networks,” in P2P ’03:

Proc. of the 3rd Intl. Conf. on Peer-to-Peer Computing.

IEEE Computer Society, 2003, p. 102.

[20] D. Menascé and L. Kanchanapalli, “Probabilistic scal-

able P2P resource location services,” SIGMETRICS

Perform. Eval. Rev., vol. 30, no. 2, pp. 48–58, 2002.

[21] J. Heilgeist, T. Soddemann, and H. Richter, “Algo-

rithms for job and resource discovery for the meta-

scheduler of the DEISA grid,” in Advanced Engineer-

ing Computing and Applications in Sciences, 2007.

ADVCOMP 2007. International Conference on. IEEE

Computer Society, Nov. 2007, pp. 60–66.

[22] “Jsr-000244: Java EE 5.0 specification,” http://jcp.

org/en/jsr/detail?id=244, Sun Microsystems, Inc., [ac-

cessed: 2010-06-19].

[23] “Apache Geronimo,” http://geronimo.apache.org, The

Apache Software Foundation, [accessed: 2010-06-19].

[24] “JBoss Enterprise Middleware,” http://www.jboss.org,

Red Hat Middleware, LLC., [accessed: 2010-06-19].

[25] “Sun GlassFish,” https://glassfish.dev.java.net, Sun Mi-

crosystems, Inc., [accessed: 2010-06-19].

[26] T. Saaty, Multicriteria Decison Making: The Analytic

Hierarchy Process, 1988, revised and published by the

author; Original version published by McGraw-Hill,

New York, 1980.

[27] ——, “How to make a decision: The Analytic Hier-

archy Process,” Eur. J. Oper. Res., vol. 48, no. 1, pp.

9–26, 1990.

[28] “Web Service Description Language (WSDL),” http:

//www.w3.org/TR/wsdl, World Wide Web Consortium

(W3C), [accessed: 2010-06-19].

[29] “The Java API for XML-based Web Services (JAX-

WS),” http://jcp.org/en/jsr/detail?id=224, Sun Micro-

systems, Inc., [accessed: 2010-06-19].

[30] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows,

A. Ly, S. McGough, D. Pulsipher, and A. Savva,

“Job Submission Description Language (JSDL),” http://

www.ogf.org/documents/GFD.136.pdf, Open Grid Fo-

rum, July 2008.

[31] T. Saaty, Fundamentals of the Analytic Hierarchy Pro-

cess. RWS Publications, 2000.

[32] M. Abramowitz and I. A. Stegun, Eds., Handbook of

Mathematical Functions with Formulas, Graphs, and

Mathematical Tables, 9th printing. Dover, 1972, ch.

4.5 Hyperbolic Functions, pp. 83–86.

[33] W. Cirne and F. Berman, “A model for moldable

supercomputer jobs,” in IPDPS ’01: Proceedings of the

15th International Parallel and Distributed Processing

Symposium. IEEE Computer Society, 2001, p. 10059b.

[34] A. B. Downey, “A model for speedup of parallel

programs,” Computer Science Division, University of

California, Berkeley, Technical Report UCB/CSD-97-

933, Jan. 1997.

[35] E. Walker, “The real cost of a CPU hour,” Computer,

vol. 42, no. 4, pp. 35–41, Apr. 2009.

[36] “D-Grid Initiative,” http://www.d-grid.de, [accessed:

2010-06-19].

[37] D. Sommerfeld and H. Richter, “A two-tier approach

to efficient workflow scheduling in MediGRID,” in

Grid-Technologie in Göttingen - Beiträge zum Grid-

Ressourcen-Zentrum GoeGrid, U. Schwardmann, Ed.

Göttingen, Germany: GWDG, 2009, vol. 74, pp. 39–51.

[Online]. Available: http://www.gwdg.de/forschung/

publikationen/gwdg-berichte/gwdg-bericht-74.pdf

[38] M. Cai, M. Frank, J. Chen, and P. Szekely, “MAAN:

A multi-attribute addressable network for grid informa-

tion services,” 4th Intl. Workshop on Grid Computing,

p. 184, 2003.

[39] C. Schmidt and M. Parashar, “Flexible information dis-

covery in decentralized distributed systems,” in HPDC

’03: Proc. of the 12th IEEE Intl. Symp. on High

Performance Distributed Computing. IEEE Computer

Society, 2003, p. 226.

[40] E. Tanin, A. Harwood, and H. Samet, “Using a dis-

tributed quadtree index in peer-to-peer networks,” The

VLDB Journal, vol. 16, no. 2, pp. 165–178, 2007.

[41] D. B. Jackson, Q. Snell, and M. J. Clement, Job

Scheduling Strategies for Parallel Processing, ser. Lec-

ture Notes in Computer Science. Berlin/Heidelberg,

Germany: Springer, 2001, vol. 2221/2001, ch. Core

algorithms of the Maui scheduler, pp. 87–102.

[42] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and

S. Tuecke, “A community authorization service for

group collaboration,” in Proc. of the 3rd Intl. Workshop

on Policies for Distributed Systems and Networks,

2002, pp. 50–59.

[43] “Shibboleth,” http://shibboleth.internet2.edu, Internet2

Middleware Initiative, [accessed: 2010-06-19].

293

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Accelerating Cellular Automata Evolution on Graphics Processing Units

Luděk Žaloudek, Lukáš Sekanina, Václav Šimek
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

izaloude@fit.vutbr.cz, sekanina@fit.vutbr.cz, simekv@fit.vutbr.cz

Abstract—As design of cellular automata rules using
conventional methods is a difficult task, evolutionary
algorithms are often utilized in this area. However, in that
case, high computational demands need to be met. This
problem may be partially solved by parallelization. Since
parallel supercomputers and server clusters are expensive and
often overburdened, this paper proposes the evolution of
cellular automata rules on small and inexpensive graphic
processing units. The main objective of this paper is to
demonstrate that evolution of cellular automata rules can be
accelerated significantly using graphics processing units.
Several methods of speeding-up the evolution of cellular
automata rules are proposed, evaluated and compared, some
with very good results. Also a comparison is made between
mid-end and high-end graphics accelerator card based on the
results of evolution speedup. The proposed methods are
evaluated using two benchmark problems.

Keywords–cellular automata; parallel computing; GPU; CUDA;
genetic alghorithm

I. INTRODUCTION

The recent development of the SIMD-oriented general
computation on Graphics Processing Units (GPUs) has
motivated the research on new approaches to the acceleration
of various computational models. Among others,
accelerators of cellular automata (CA) and evolutionary
algorithms (EA) have been proposed because of inherently
parallel nature of these bio-inspired computing systems [1, 2,
6, 8].

Since their conception in 1950s [21], cellular automata
have found many applications. These include physical
systems modeling, road traffic simulation, random number
generation, artificial life simulation, cracking of encryption
standards [5, 7, 18, 20], etc. CA utilize several key features
which make them unique computational models. Among
these features are massive parallelism, locality of cell
interactions, simplicity of basic building blocks and complex
emergent behavior on a global level.

Because of inherent complexity, design of cellular
automata is a difficult task for a human engineer. For
example, Langton’s self-replicating CA loops are based on
identical cells; each of them has more than 280 transition
rules [13]. In order to increase the efficiency when designing
CA rules, evolutionary algorithms have been introduced to
the field [14, 19]. By means of EA, the space of possible
solutions to the problems of CA design may be explored

efficiently. For example, Sipper has developed so-called
“Cellular programming approach” [19] which allowed the
CA rules to be evolved using a parallel cellular EA.

CA may be evolved either directly in hardware (such as
FPGA) or in software, using simulators. This paper deals
with the evolution of CA rules in a software CA simulator.
However, design by EA is very computationally demanding.
Not only is it necessary to simulate the CA which may
consist of thousands of cells, but whole populations of CA
have to be simulated and each CA may have many possible
initial configurations, which need to be evaluated in order to
determine the quality of a candidate solution.

One of possible ways to accelerate the CA simulation
and, therefore, the execution of an EA is parallelization. Not
surprisingly, there are some problems: Desktop CPUs with
more than 6 cores are still not available (June 2010) and hi-
end servers, supercomputers or computing clusters are highly
expensive or overburdened if accessible. Since our interest
lies with very large CA, we need a processing power capable
of effectively accommodating hundreds of threads in order to
justify the parallelization effort and the increased cost.
However, with modern GPUs one can obtain computing
power of supercomputers for a price of a hi-end PC.

The goal of the paper is to propose a GPU accelerator for
evolutionary CA design. We will, in fact, propose and
compare several architectures with the aim to identify the
most efficient one. This paper extends our previous work [1]
in the following aspects: (i) Models of CA and EA
computation are presented in a greater detail. (ii) More
experiments have been performed to evaluate the proposed
architectures. (iii) We included another platform (9600 GT)
for comparison. (iv) We have not investigated the speedup
factor only; we have also measured the efficiency of the
evolutionary algorithm using a simple benchmark problem.

The rest of the paper is organized as follows. Section II
introduces one-dimensional cellular automata. Relevant
evolutionary algorithms are to be briefly surveyed in Section
III. Section IV describes the basic concept of general
computing on GPUs. Section V proposes several methods
how to utilize the parallel computing power of modern GPUs
in CA rule evolution, whereas the benchmark problems – CA
counter and majority – is defined in Section VI. Section VII
describes in detail the experiments for the evaluation of the
methods described in sections V and VI. Results of the
conducted experiments are summarized in Section VIIII.
While Section IX discusses obtained results, Section X

294

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

concludes this paper and proposes several possibilities of
further development.

II. 1D CELLULAR AUTOMATON

A cellular automaton is an n-dimensional grid of
identical cells, each working as a finite state automaton [3].
In its synchronous version, the state of the cells is
periodically updated using a local transition function. If all
the cells use the same local transition function, the
automaton is known as uniform; otherwise, it is non-
uniform. The next state of each cell is a function of its
current state and the states of its neighboring cells. In case of
1D CA (n = 1), the neighborhood is defined using radius of
r. In theory, the cellular automaton model supposes that the
number of cells is infinite. However, in the case of practical
applications the number of cells is finite. Then, it is
necessary to define the boundary conditions, i.e. the setting
of the boundary cells. Boundary conditions for the cells on
the edges of the CA are usually either cyclic or constant (i.e.,
the states are taken from the opposite edge of CA or from the
last cell). The state of the CA in the beginning of the run is
called the initial configuration.

Experiments described in this paper deal only with 1D
CA for simplicity and clarity purposes. The binary one-
dimensional non-uniform CA of finite size may be described
formally [17] as a 7-tuple A = (Q, N, R, z, b1, b2, c0), where:

Q = {0, 1} is a binary set of states,
N denotes a neighborhood (Ζ⊆N),
z denotes the number of cells,
b1 and b2 are boundary values,
c0 is an initial configuration, and
a mapping R : S → (QN → Q) assigns to each cell of the

grid S = {1, 2, …, z} a local transition function δ1, …, δz,
where δi : Q

N → Q, i ∈S.
A configuration of A is a mapping c ∈QS which assigns

a state to each cell A. If only a single neighborhood N = {-1,
0, 1} (i.e., r = 1) is considered, then the global transition
function G : QS → QS is defined as:

where ci denotes the CA configuration in a step i. G is used
to define a sequence of configurations c0, c1, c2, … such that
cj = G(cj-i), for j ≥ 1. This sequence represents the
computation of A.

Consider a uniform version of A, with the nearest
neighbors neighborhood (i.e., |N| = 3) and cyclic boundary
conditions. Each such cellular automaton is defined by a
mapping {0, 1}N → {0, 1} uniquely. Hence there are 28 such
cellular automata, each of which is uniquely specified by the
following (transition) rule

000 → a0
001 → a1
010 → a2
011 → a3
100 → a4

101 → a5
110 → a6
111 → a7.

We can speak of the cellular automaton with rule i, where i is
an integer (0 ≤ i < 256) with the binary representation
a7a6a5a4a3a2a1a0. For example, Figure 1 shows the behavior of
the cellular automaton with rule 150 that starts its
computation from the initial configuration c0 = …00100…
(the black square represents logic 1).

Figure 1. Development of 1D CA with rule 150.

The properties of cellular automata have been
investigated by means of analytic as well as experimental
methods. In general, the objectives are either to (i) find a
method for the design of cellular automaton rules for a given
application or (2) predict the global behavior of a given
cellular automaton if the rules and the initial configuration
are known. Because of the inherent complexity of cellular
automaton, evolutionary design of CA rules has been
adopted [19].

III. EVOLUTIONARY ALGORITHMS

Evolutionary algorithms are stochastic search methods.
They are inspired by Darwin’s theory of biological
evolution. Instead of working with one solution at a time (as
random search, hill climbing and other search techniques
do), these algorithms operate with the population of
candidate solutions (candidate CA rules in our case). Every
new population is formed by genetically inspired operators
such as crossover (a part of CA rules is taken from one
parent, the rest from another one) and mutation (inversion of
some bits of the CA rule) and through a selection pressure,
which guides the evolution towards better areas of the search
space. The EAs receive this guidance by evaluating every
candidate solution to define its fitness value. The fitness
value calculated by the fitness function indicates how well
the solution fulfills the problem objective.

The most common form of EA is a genetic algorithm
(GA) which has the following form:

1. create randomly initialized population of individual
solutions

2. evaluate the population – assign the fitness value to
each individual

3. select the best individuals based on their fitness
value

4. apply genetic operators (crossover and mutation) on
the selected individuals and create a new population

5. if termination criteria are met (fitness, number of
generations), finish, otherwise continue with 2

295

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In our case, a candidate solution will be encoded as a
finite size binary string composed of substrings that define
the transition function for every cell.

It has been shown that EA may generate innovative
results in many fields. However, the scalability of
representation and scalability of fitness calculation were
identified as major problems of the evolutionary approach
[22]. In this work, the scalability problem is approached
using parallelization of the CA rules evolution.

IV. NVIDIA GPUS AND CUDA

Although there are other universal computation-capable
graphic accelerators with GPU programming interfaces such
as ATI Stream from AMD, the most notable is nVIDIA with
their Computer Unified Device Architecture (CUDA).

Figure 2. Performance of nVIDIA GPUs compared with Intel CPUs [15].

Supposed performance [16] is provided for the last chips as there are no
official data yet (June 2010).

nVIDIA graphic accelerators contain GPUs with
manycore streaming multiprocessors (MP) capable of
outperforming general-purpose CPUs in some tasks
(Figure 2). Each of these accelerators has from 4 to 30
multiprocessors with 8 scalar processor cores, two special
units for transcendentals, a multithreaded instruction unit and
on-chip shared memory (Figure 3). The multiprocessor
creates, manages and executes concurrent threads in
hardware with zero scheduling overhead [15].

Up until recently, direct programming for this hardware
was not possible and indirect practices using OpenGL or
DirectX had to be employed [11]. That changes with CUDA,
which is a direct GPU programming interface.

CUDA works as a C language extension providing
abstractions of thread groups, shared memories and barrier
synchronization. This renders fine-grained data and thread
level parallelism.

The code is separated into two classes: Host code which
is executed on the CPU and device code which is executed
on the GPU. Memory is differentiated in similar way,
although it is possible to access device memory from host
and vice versa trough the CUDA runtime library.

There are several types of device memory: Constant,
shared, global, local and texture. Constant, texture and
shared memory space is cached (4 clock cycles latency) but

limited opposed to local and global memory (400 to 600
clock cycles latency) [15]. Effective usage of fast cached
memory is key to high performance of the parallel
application.

Figure 3. nVIDIA GPU structure [15]

Notable is the thread hierarchy used in CUDA programs:
Threads may be arranged into blocks, where each block runs
on one multiprocessor. It is possible to have more blocks
than multiprocessors and more threads per block than cores.
Shared memory may be accessible only within the block and
thread synchronization is possible also only within the block.
This is a possible drawback in some applications.

In recent years, CA have been implemented in GPUs, for
example in [8]. As mentioned before, previous
implementations of CA used Open GL or similar “shading”
languages which brought several disadvantages: General
purpose programming with Open GL or DirectX is overly
complicated due to their specialization to computer graphics
and also it does not enable direct control over the GPU’s
parameters, possibly rendering the computations ineffective.

V. PROPOSED METHODS OF PARALLELIZATION

In order to parallelize a GA, a computational complexity
of its components must be considered. In the case of
evolutionary design of CA rules, the evaluation of candidate
rules (fitness) is surely the most demanding part. CA
consisting of possibly thousands of cells must be simulated
for a pre-specified number of simulation steps. Furthermore,
many possible initial CA configurations have to be
evaluated.

When determining the quality of CA, e.g. in the majority
task [19] (a benchmark task for a 2-state CA which

296

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

determines whether the initial configuration contains more 1s
then 0s by filling all the cells with the prevalent state after a
number of steps), a 1D CA with 64 cells has 264 possible
initial configurations. This problem is dealt with by
evaluating only several thousand randomly generated
training vectors and measuring the success rate.

In GA, each generation has a population of possibly
hundreds of individuals which further multiplies the number
of calls to the fitness function.

Three possible approaches to parallelization will be
proposed in following subsections.

A. The Level of Cells

First approach executes parallel lookup of transition rules
in cells. There are as many threads as there are cells within
the CA. The cell states are kept in the shared memory so the
threads have to be synchronized after each step in order to
guarantee the proper sequence of simulation steps.

The algorithm follows:

/*host part*/
Generate the initial CA configuration
Load the configuration into device
shared memory;
Load the CA transition rules into
device shared memory;

/*device part*/
For each thread do
 Repeat for S steps

Compute transition function for
one cell and update the cell;
Synchronize the shared memory;

/*host part*/
Load the final CA configuration into
host memory;

This limits the algorithm only to one MP due to lack of

synchronization between blocks. Graphical representation of
the algorithm is shown in Figure 4.

Figure 4. Simulation of CA with parallelization on the level of cells.

Here, S denotes the number of CA simulation steps

B. The Level of Training Vectors

Second approach utilizes parallelization on the level of
training vectors. There are as many threads as there are
training vectors. Because there is no dependency between
two same automata running two different simulations, it is
possible to use more parallel blocks (i.e. multiprocessors)
than one.

The algorithm ensues:

/*host part*/
Generate V initial configurations;
Load the CA configurations into device
global memory;
Load the CA transition rules into
device shared memory;

/*device part*/
For each thread do

Load one CA configuration into
registers/local memory;
Simulate the CA for S steps;
Calculate the fitness function;
Update the fitness result into
device global memory;

/*host part*/
Load the fitness results from device
global memory into host memory;
Calculate fitness for the individual;

Graphical representation of the main part of the

algorithm is depicted in Figure 5.

Figure 5. Parallelization of CA simulation on the level of training vectors.

Here V denotes the number of training vectors per individual CA and S
denotes the number of CA simulation steps

C. The Level of Individual Solutions

The last approach is to evaluate one individual per
thread. There are as many threads as there are individuals
within the GA population.

297

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

However, this approach is the most memory consuming,
because we need to hold not only multiple CA configurations
but also multiple transition rules.

The algorithm follows:

/*host part*/
Load the CA transition rules into
device global memory;

/*device part*/
For each thread do

Load the CA transition rules into
local memory;
Generate training vectors;
For each training vector do
Simulate the CA for S steps;
Update the fitness into device
global shared memory;

/*host part*/
Load the fitness results from device
global memory into host memory;

Graphical representation of the algorithm is shown in

Figure 6.

Figure 6. Parallelization of CA simulation on the level of individuals. I

denotes the number of individuals and threads.

D. Problems Without Training Vectors

Previous subsections proposed parallelization approaches
for problems which require evaluation with sets of training
vectors. However, there are also problems which do not
require such measures because the initial configuration of the
CA is known. Such problems include applications as
counters or random number generators, which were not
mentioned in [1].

VI. BENCHMARK PROBLEMS

A. 4-bit Counter

A counter is a device (in this case implemented by means
of CA), which is able to generate a certain sequence of

numbers or in this case a certain sequence of CA
configurations. For example a 4-bit counter seeded by the
value of 5 has to generate a sequence seq(5) = 5-6-7-8-9-10-
11-12-13-14-15-0-1-2-3-4. The sequence is encoded in four
cells, each with 2 possible states (0, 1).

The goal will be to evolve a simple 1D non-uniform CA
which will generate the desired sequence. The CA will have
a simple neighborhood with radius r = 1. The non-uniform
CA was selected because non-uniform cellular automata
enable us to perform more complex tasks than with uniform
CA of the same number of cells [19]. Generating a certain
sequence is not a simple task in this context.

Since training vectors aren’t used, the proposed approach
will be different from the scenarios assumed in Section V.
The evaluation of the candidate solution works in the
following way: The CA is simulated for 16 steps (because
we have 16 numbers in the sequence) and in each step, the
configuration is compared with a desired number. So for
example, the second step configuration is compared with the
value 6, the third step configuration with the value 7 etc. In
the end, all 16 configurations should correspond with the 16
desired numbers. Each match is awarded with a point to the
fitness value, so the maximum fitness is 16 and minimum is
1 (the initial configuration is counted automatically).

It is needed to keep as many rules as there are cells,
because a non-uniform CA is used. A non-uniform CA does
not need to have necessarily the same number of rules as the
number of cells (some rules may apply for more than one
cell) but in this case, the encoding is simple and keeping
references to rules and interpreting them may prove
unnecessary and too complex. Also there are no training
vectors, so it is not possible to parallelize a single individual
with the same set of transition rules which are placed in the
shared memory within the same block. So either the cell
parallelization approach has to be used (Section V.A) or an
approach similar to the parallelization on the level of
individuals mentioned in Section V.C. The latter approach
seems more promising, so we will use it. Fitting more
transition rules into the GPU memory several times could
prove to be challenging but the CA has a simple
neighborhood and 2 possible states, so in this case, it is not a
serious problem.

B. Majority

The second benchmark problem is the majority task
defined in Section V. A 2-state CA computing the majority
task has to determine whether the initial configuration
contains more 1s then 0s by filling all the cells with the
prevalent state after a number of steps. Usually, the number
of steps equals double the number of cells in the automaton
and the quality of the solution is determined by randomly
generating certain number of training vectors and measuring
the proportion of successful CA runs [19].

VII. THE EXPERIMENTS

A. The Evolution of CA Rules for the Majority Problem

Several experiments were conducted in order to evaluate
the speedup of proposed parallelization methods. Two

298

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

different computers were used: (i) A laptop with Intel Core 2
Duo processor at 1.83 GHz with 667 MHz FSB and low-end
nVIDIA GeForce 8600M GS graphic accelerator with 4
multiprocessors; (ii) A workstation with Intel Core 2 Duo
processor at 3.33 GHz with 1333 MHz FSB and hi-end
nVIDIA GeForce FX 285 (iia) graphic accelerator with 30
multiprocessors or a mid-end nVIDIA GeForce 9600 GT
(iib) graphic accelerator with 8 multiprocessors, however
(iib) was used only in later experiments described in
Subsection B.

The programs were compiled with MS Visual C++ 9.0
compiler (serial versions) and with CUDA 2.3 SDK (parallel
versions).

Each parallelization approach was tested on both
computers and the execution times were compared with
those of serial versions of the programs. This means the
serial versions were run on a single CPU core without the
use of GPU. The whole program execution time was
measured.

The 1D 2-state uniform CA with 64 cells, r=3 (7 cell
neighborhood) and cyclic edge conditions was used for the
experiments. Each simulation lasted 128 synchronization
steps. The CA rule is represented as string of 128 integers.

First approach (Section V.A) was tested both only on a
number of CA simulations without the GA (and without
fitness evaluation!) and with the GA, which was a standard
algorithm with 10 generations, crossover rate of 70% and
mutation rate of 1%. The crossover was one-point and the
mutation probability is meant for a single gene (i.e. bit).
Two-step tournament selection was used. Population size
was 100 and 240 training vectors were used. Note that 10
generations are not sufficient to find a good solution,
however we are interested in the speedup analysis only.

The rest of the experiments (based on Section V.B and
V.C) were executed with the same GA. The size of the
population and the number of training vectors varied for the
last experiments (240 vectors and 100 individuals for the
training vector approach and vice versa) but the number of
fitness evaluations was proportionally the same. The number
240 was conveniently selected because the number of
processing cores within the GTX 285 accelerator.

Additionally, several more experiments were conducted
focusing on the scalability of the proposed algorithms. The
same parameters were used except for the number of training
vectors or individuals within the population. Sizes of the
problems were increased up to hundredfold relative to the
original problem sizes.

The fitness function of the GA consists of V simulation
runs of the individual CA each for S simulation steps, where
V is the number of training vectors and S is equivalent to
double the width of the CA. At the end of each simulation
run, the success of the run is evaluated based on the majority
task (selected for demonstration purposes): All cells of the
CA should be in the state prevalent at the initial
configuration.

B. Further Experiments With Majority

Based on the results of previous experiments (see Section
V), the best approach was selected and more detailed results

were obtained. The focus of these experiments was to
determine best block-size setting policy and to make a more
detailed comparison between two accelerators on the same
machine (iia and iib).

Different problem sizes (namely 240, 480, 1200, 2400,
4800. 9600 and 24000 training vectors) and block sizes were
evaluated (8, 10, 15, 20, 40, 80, 120, 160, 240 and 320
threads per block). Not all the results could be obtained for
some tasks because the number of threads per block must be
an integer.

C. The Evolution of Binary Counters

The other proposed approach mentioned in Section VI
was also evaluated. The 4-bit counter design was selected as
a benchmark since is not complicated in terms of search
space, so the best solution is well known due to experiments
with brute force search [17]. The problem has best solution
with fitness 10 which means that the CA can approximate
only 10 numbers from the sequence.

The initial configuration of 5 was chosen deliberately,
because the CA has the best results with this. For example,
the seq(0) has best fitness of 8 and seq(2) has best fitness of 9.
Best result for seq(5) generates the sequence 5-2-7-4-9-14-11-
12-13-6-15-0-1-2-7-4. The incorrect numbers are in bold
[16].

The experiment was designed as follows: The CA was
1D non-uniform 4-cell with r=1 (3-cell neighborhood) and
static boundary conditions. Each CA simulation lasted 16
steps.

The evolution of the desired CA was performed with the
standard GA. The population was set to 32 individuals,
crossover rate of 70% and mutation rate of 18%. The
crossover was one-point and the mutation probability is
meant for a single gene (i.e. bit). Two-step tournament
selection was used. The GA parameters match the
experiment conducted in [17] to maintain the best possible
quality of solutions and comparability to previous result.

The termination was set to the achievement of the
maximum fitness and several hundred runs were conducted
with the serial version and several dozen with the parallel
version. The machine for the parallel version was the same
workstation as in previous experiments (ii), fitted either with
GeForce 9600 GT or with GeForce GTX 285. The serial
experiments were conducted on several dozen of blade
servers comparable with the workstation (Intel Xeon 2.8-3.2
GHz processors with 1 GHz FSB). The goal was to measure
the average generation needed to find the best solution
(fitness 10). Also, the time was measured for the serial and
for the parallel versions.

VIII. RESULTS

The objective of this paper was to evaluate the
performance of several parallel algorithms incorporated into
an EA. The majority problem was selected only to
conveniently pose as the EA’s goal in the first series of
experiments and so we are not interested in the quality of
evolved solutions. The only relevant information is the
achieved speedup compared to serial implementations.

299

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The results for the laptop are shown in Table I while the
results for the workstation are shown in Table II. The values
in the tables are averages of 10 runs.

Fitness evaluation means the simulation of one CA with
one training vector (e.g. 100 individuals with 240 training
vectors each and over 10 generations means 24000 fitness
evaluations).

TABLE I. RESULTS FOR LAPTOP WITH 8600M GS

Approach Fitness
evaluations

Serial time Parallel
time

Speedup

Simulation
of CA only

50000 347.39 0.56 621.68

Parallelization of GA

CA cells 240000 1787.23 2597.60 0.69

Training
vectors

240000 1787.74 251.20 7.12

Individuals 240000 1784.26 821.04 2.17

TABLE II. RESULTS FOR WORKSTATION WITH GTX 285

Approach Fitness
evaluations

Serial time Parallel
time

Speedup

Simulation
of CA only

50000 187.33 0.38 489.75

Parallelization of GA

CA cells 240000 981.34 1597.60 0.61

Training
vectors

240000 980.38 72.18 13.58

Individuals 240000 980.95 105.21 9.32

The scaling properties of the three proposed algorithms

are summarized in Table III. Only the best results from both
testing computers are shown. The result for 24000k fitness
evaluations with the cell level parallelization is not shown
because the computation did not terminate before 10 hours
reserved for parallel computation.

TABLE III. SCALING PROPERTIES OF PROPOSED PARALLEL
ALGORITHMS

Fitness
evaluations

240k 2400k 24000k

Approach Speedup

CA cells 0.69 0.69 N/A

Training
vectors

14.36 127.16 417.36

Individuals 9.32 28.41 192.88

After this, several extremely long runs (more than 240k

fitness evaluations) were computed with the training vector
approach and the best results approached a speedup of 420.

The other series of experiments shows results of
comparison between serial version, workstation with 9600
GT (iib) and workstation with GTX 285 (iia). Note that the
original contribution [1] included result with GTX 280. In
this article the accelerator was replaced with its more modern
version GTX 285. The difference between GTX 280 and 285
is in higher core and memory operating frequencies, other
characteristics remain the same. More details on the
accelerators may be found in [4].

As mentioned in Section V.B, several variations of the
task were evaluated. Table IV. shows the best results for
different problem sizes (number of training vectors) and
different thread-per-block setup. The results are average
speedup over several runs with respect to serial run described
in Section VII. The best results for each accelerator are
highlighted.

TABLE IV. SPEEDUP FOR 9600 GT AND GTX 285

Problem size [training vectors] Block
size 240 600 1200 2400 4800 9600 24000

 9600 GT

8 13.95 26.14 22.66 26.72 26.77 28.09 28.39

10 14.14 27.08 33.02 33.28 33.29 35.29 34.99

15 14.36 27.86 34.30 44.65 52.33 52.51 52.64

20 13.99 27.42 59.38 61.26 61.18 61.42 64.13

40 13.97 27.27 62.54 92.90 97.37 98.59 97.96

80 13.84 27.50 64.47 106.06 108.02 110.00 109.64

120 13.65 27.09 60.92 97.18 98.68 118.61 121.03

160 N/A 26.71 N/A 108.56 101.22 120.32 126.34

240 12.69 25.15 61.00 83.97 98.44 123.19 121.02

320 N/A N/A N/A N/A 109.68 110.49 111.10

 GTX 285

8 13.58 27.00 64.21 64.00 83.28 97.20 94.61

10 13.57 27.02 65.27 117.72 118.85 122.58 120.79

15 13.58 27.04 66.08 126.68 124.73 161.32 170.53

20 13.22 26.68 65.27 125.01 215.24 218.03 218.67

40 13.25 26.49 65.45 125.99 222.77 286.31 272.57

80 13.14 26.32 64.82 127.16 232.85 350.96 329.73

120 12.96 25.92 64.21 125.87 222.62 351.56 387.20

160 N/A 25.55 N/A 124.10 236.04 370.48 417.36

240 12.08 24.10 59.75 117.43 224.61 302.47 387.37

320 N/A N/A N/A N/A 208.42 371.04 377.95

Figure 7 shows best results for different accelerators and

problem sizes only for the optimal block size settings. The
results are average execution time obtained from several
runs. Figure 7 indicates the difference in performance
growing with the problem size.

The last series of experiments measured the speed of
evolution designing the solution for the 4-bit counter
problem.

The average generation needed to achieve the maximum
fitness was 14509 and the average time to achieve it was
5.25 seconds.

300

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

With the 9600 GT accelerator (iib), the average
generation was 14591 and the time needed 8.5 seconds.

For the GTX 285 accelerator (iia), the average results
were 14374 generations and 8.77 seconds.

0

100

200

300

400

500

600

700

800

0 5000 10000 15000 20000 25000

Problem size [training vectors]

T
im

e
[s

]

9600 GT GTX 285

Figure 7. Execution time for different problem sizes and best block size

settings for GeForce 9600 GT and GTX 280

It can be seen that no actual improvement of the GA was
achieved. However, this was to be anticipated. Moreover, not
even a speedup of computation was achieved but on the
contrary, the result was slower than serial computation. The
reason for this is too small population of the used GA. The
overhead required to start the parallel computation on the
GPU is larger than the speedup. The result is summarized in
Table V.

TABLE V. SPEEDUP OF EVOLUTION WITH POPULATION OF 32

GPU Avg. generation Time [s] Speedup
Serial 14509 5.25 N/A

9600 GT 14591 8.50 0.62
GTX 285 14374 8.77 0.60

In order to prove that accelerating the GA has any sense,

another experiment was conducted. This time the population
was increased tenfold to 320 individuals. An unsolvable
fitness condition was set and the computation was terminated
at generation 15000. This had to be done in order to actually
measure something, because otherwise the GA would end
too soon. This time the experiment proved the conclusion of
the previous one: The new problem was large enough, that
the parallelization could pay off with a speedup of 38.66 for
(iib) and 38.11 for (iia). Results may be found in Table VI.

TABLE VI. SPEEDUP OF EVOLUTION WITH POPULATION OF 320

GPU Avg. generation Time [s] Speedup
Serial 15000 54.12 N/A

9600 GT 15000 1.40 38.66
GTX 285 15000 1.42 38.11

IX. DISCUSSION

A. Speedup vs. Cost

As can be seen in Tables I and II, the parallelization of
the CA simulation on the level of CA cells shows massive
speedup. More surprisingly, those results were obtained with
only one multiprocessor in the GPU due to the inter-block
synchronization problem mentioned in Section IV. The
possible explanation is the effective use of the device shared
memory which is much faster than ordinary memory. The
results from the laptop GPU are better, because they were
compared with much slower processor in the laptop opposed
to the hi-end processor in the workstation.

However, when the simulator was inserted into a GA, the
speedup declined due to more memory accesses and fitness
evaluation. The one-block approach utilizing only one
multiprocessor shows its weaknesses and the overall result is
even worse than the serial approach.

The results for the parallel GA (the approach from
Section V.B) with threads executing individual training
vectors are the best of the experiments. The maximum
speedup for the workstation is 417.36 and the speedup for
the laptop is only 31.34 for the largest problem. As opposed
to the cell parallelization approach from Section V.A, this
algorithm has to upload large quantities of data to and from
the device memory but it has more processor cores and the
data don’t conflict with each other.

As seen in Table III, there was no speedup drop with
larger problems (2400 and 24000 training vectors) and the
performance was even better than for the smaller problem
(240 training vectors).

The individual-per-thread approach (Section V.C)
showed smaller speedup than training vector-per-thread
approach. The lower performance is probably caused by
more memory transfers (several sets of CA rules per block
opposed to only one set of CA rules per block).

There are also some problems with graphic accelerator
cards used as primary display adapters due to graphic driver
timeouts caused by long thread execution times so this
approach may not be suitable for this reason. This problem
may be solved by using second graphics adapter as the
primary display adapter at the expense of increased cost in
hardware.

The scaling capabilities of the last approach are also good
as seen in Table III. The conclusion for the experiments is
that parallelization on the level of evaluation of training
vectors is the most effective due to utilization of all
multiprocessors in the GPU and quick and small parallel
kernel (code for the GPU - as opposed to parallelization on
the level of individuals where the kernel lasts longer).

The comparison of graphic accelerators showed partly
interesting results. A GeForce 9600 GT with 8
multiprocessors showed a nice speedup not falling so far
behind the GTX 285 with 30 multiprocessors in some cases.
The mid-end card was even faster in some of the smallest
tasks. This could be influenced by slightly larger scheduling
overhead with the more complex GPU. This opposes the
manufacturer’s claim about the zero scheduling overhead
[15]. No other explanation seems to fit and since precise

301

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

details about GPU hardware are obfuscated by the
manufacturers, we may only guess the real reason.

Of course, when the problem size increased sufficiently,
GTX 285 manifested its higher number of processors which
could be used to full capacity and the speedup was
significantly higher. The interesting part is, that 9600 GT
costs about 80 Euro and the GTX 285 about 370 Euro (Jan
2010, retail price for the Czech Republic). The low-end card
shows no promise for scientific computation for two main
reasons: It is mounted in a laptop and the memory bus is too
slow.

B. Other Tasks for GPU

It seems that the mid-end card is the most cost-effective
for small and medium-sized tasks. However, the results may
be different with other parallelization tasks. It is important to
note the two laws for parallel computation. First is the
Amdahl’s law [12] which states:

S(P) = P / (1 + α (P – 1)),

where S(P) is the speedup, P is the number of processors and
α is the sequential part of the task. The equation clearly
shows that a fixed task speedup is severely limited by the
sequential part, no matter how many processors are used.

The second law is attributed to Gustafson [12]:

S(P) = P – α (P – 1)

and it may be applied to a class of problems, where the non -
sequential part of the task is limited by the number of
processors and when a new processor is added, we may
assign it the same amount of work as to the other processors.

This class of problems includes evolutionary design of
CA rules which need to be evaluated by high number of
training vectors. More training vectors means more accurate
results and more fine-grained fitness function which may
contribute to better evolution results.

There is also another class of evolutionary design
problems which is limited by the first law. This class
includes CA design, which needs to evaluate a small fixed
number of steps or possibilities and is not suitable for
parallelization. These problems may be also limited by the
number of individuals within the GA population, as was the
case with the 4-bit counter evolution, where the best
population size is 32 [17]. Some of these problems may drift
to the area where the task size could be expanded and so
Gustafson’s law may be applied. Thankfully, many CA
design tasks by means of EA fall in this category like our
example with the majority benchmark. The 4-bit counter is
only a simple demonstration and evolution of larger non-
uniform CA will probably need larger populations.

The last conclusion obtained from the results is the fact
that block size settings greatly impacts the GPU’s
performance. Table IV. shows that the optimal settings
changes with the size of the problem. The reason for the
need to tailor the settings for a certain task is the way the
GPU dispatches threads within the blocks.

The GPU programming model uses several levels of
data- and thread-parallelism which enable the simultaneous
execution of data-independent threads [15]. This concept
works in concert with the hardware which offers scheduling
consistent with multi-threading concept. This enables the
threads within one block to be scheduled as the need arises.

The threads are executed on groups called “warps” which
are 16 threads wide and which work in a SIMD concept.
That means that each thread within the warp has to execute
the same instruction, of course on different data. If the blocks
are not large enough, significant parts of the warp may be
wasted. Also, the warps are scheduled depending on their
availability. If one warp waits for a memory access, several
more warps may be executed, even from different blocks.
Figure 8 illustrates simultaneous execution of warps on three
different multiprocessors.

Figure 8. Warps executing on three different multiprocessors (MP): Each
warp contains 16 threads and each is executing the same instruction. Warps

are scheduled according to readiness for execution.

X. CONCLUSION

The experiments have shown that evolution on GPUs has
several limitations. The most significant one is the fact, that
the amount of device shared memory and registers is limited
thus restricting the size of evolved CA, the number of
training vectors or the size of the EA population.

Dealing with this problem may be the objective of further
research and development. Possible solutions include
partitioning the computation and serializing the parts in order
to save memory. Another solution may be using device
global memory instead of shared memory and local memory
instead of registers. However, both of these approaches

302

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

would result in slower performance. Future accelerators may
possess larger shared memory [16].

Another possibility for development is testing
combinations of the three proposed approaches. E.g. it would
be possible to evaluate several individuals of the GA
population each in one block while running parallel lookup
of cell transition rules in that block.

Further improvement of methods mentioned in this paper
could lead into fast parallel version of Sipper’s Cellular
programming approach [19].

Cellular programming is a methodology developed to
design non-uniform CA systems capable of computing
complex tasks such as synchronization, majority or sorting.
Speeding up the evolution of CA systems may prove to be
appropriate step in perfecting such systems via simulation
and implementing them in hardware.

The most recent language contribution to the field of
GPGPU (General Purpose GPU computing) is OpenCL
(Open Computing Language). OpenCL is a C language
extension similar in use to CUDA but there is one significant
improvement: It supports many different GPU or CPU
architectures, being almost universal. OpenCL uses
abstractions independent of manufacturers which can be
automatically transformed into efficient code for any
supported architecture by means of compilation. With Open
CL, it is possible to run the same program on nVIDIA and
ATI. The language and its tools started to become available
only recently, so this article deals only with CUDA. Future
plans include transferring current and prospective work to
this new language.

Generally the future of GPGPU looks bright.
Manufacturers like nVIDIA and ATI compete with each
other in GPU performance pushing the development further.
Right now more advanced GPU are being planned and
developed. Example of this new generation may be nVIDIA
Fermi which will include 512 cores (64 MPs) and such
technologies as simultaneous kernel execution, shared cache
memory for the entire GPU or ECC (error checking and
correction) [16].

Moreover with the introduction of OpenCL the
programming of competitor’s hardware will be unified,
further improving the programmer’s experience. The
architecture is also designed as scalable from the start
enabling to connect several GPUs together or to migrate old
programs to newer versions just by adjusting the problem
size and block settings. More cores and higher operating
frequency means more computing power for problems which
can be enlarged in accordance with Gustafson’s law.

ACKNOWLEDGMENT

This work was partially supported by the grant Natural
Computing on Unconventional Platforms GP103/10/1517,
the FIT grant FIT-10-S-1 and the research plan Security-
Oriented Research in Information Technology,
MSM0021630528.

REFERENCES
[1] Žaloudek, L., Sekanina, L., Šimek, V.: “GPU Accelerators for

Evolvable Cellular Automata”, Computation World: Future

Computing, Service Computation, Adaptive, Content, Cognitive,
Patterns, Athens, GR, IEEE, 2009, pp. 533-537.

[2] Chitty, D.M.: “A data parallel approach to genetic programming
using programmable graphics hardware”, GECCO ’07: Proceedings
of the 9th annual conference on Genetic and evolutionary
computation, Volume 2., London, ACM Press, 2007, pp. 1566–1573.

[3] Codd, E., Cellular Automata, Academic Press, 1968.

[4] CUDA-Enabled GPU products - NVIDIA
URL: <http://www.nvidia.com/object/cuda_learn_products.html>
[cit. 29.1.2010]

[5] Durbeck, L. and Macias, N., “The Cell Matrix: An Architecture for
Nanocomputing”, Nanotechnology 12, IOP Publishing 2001, pp.
217–230.

[6] Fok, K.L., Wong, T.T., Wong, M.L.: “Evolutionary computing on
consumer graphics hardware”, IEEE Intelligent Systems, Vol. 22,
No. 2, IEEE, 2007, pp. 69–78.

[7] Gardner, M., “Mathematical games: The fantastic combinations of
John Conway’s new solitaire game ‘Life’”, Scientific American 223,
Oct 1970, pp. 120-123.

[8] Gobron, S., Devillard F., Heit B., “Retina simulation using cellular
automaton and GPU programming”, Machine Vision and
Applications Journal 66, Springer, 2007, pp. 331–342.

[9] Harding, S.: “Evolution of Image Filters on Graphics Processor Units
Using Cartesian Genetic Programming”, 2008 IEEE World Congress
on Computational Intelligence, Hong Kong: IEEE CIS, 2008, pp.
1921–1928.

[10] Harding, S. and Banzhaf, W.: “Fast genetic programming on GPUs”,
Proceedings of the 10th European Conference on Genetic
Programming, LNCS 4445, Springer, 2007, pp. 90–101.

[11] Harris, M.: “Mapping computational concepts to GPUs”, ACM
SIGGRAPH 2005, ACM, New York, NY, 2005.

[12] Henessy, J. and Patterson, D.:Computer Architecture A Quantitative
Approach, The Morgan Kaufmann Series in Computer Architecture
and Design, Morgan Kaufmann Publishers, 2003.

[13] Langton, C.G., “Self-Reproduction in Cellular Automata”, Physica D:
Nonlinear Phenomena 10(1-2), Elsevier, 1984, pp. 135-144.

[14] Lohn, J.D., and Reggia, J.A., “Automatic discovery of self-replicating
structures in cellular automata”, IEEE Transactions on Evolutionary
Computation, vol.1, no. 3, IEEE CS, 1997, pp. 165-18.

[15] nVIDA CUDA Programming Guide, Version 3.0
URL: <http://developer.nvidia.com/object/
cuda_3_0_downloads.html.>
[cit. 14.6.2010]

[16] Next Generation CUDA Architecture, Code Named Fermi
URL: <http://www.nvidia.com/object/fermi_architecture.html>
[cit. 31.1.2010]

[17] Sekanina, L.: Evolvable Components: From Theory to Hardware
Implementations, Natural Computing Series, Springer-Verlag, Berlin
Heidelberg, DE, 2004.

[18] Šimek, V., Dvořák, R., Zbořil, F., V., Kunovský, J. “Towards
Accelerated Computation of Atmospheric Equations using CUDA”,
Proceedings of Eleventh International Conference on Computer
Modelling and Simulation, Cambridge, GB, IEEE CS, 2009, pp. 449-
454.

[19] Sipper, M., Evolution of Parallel Cellular Machines: The Cellular
Programming Approach, Springer Verlag, Heidelberg, 1997.

[20] Tomassini, M., Sipper, M., Perrenoud, M., "On the generation of
high-quality random numbers by two-dimensional cellular automata,"
Computers, IEEE Transactions on , vol.49, no.10, Oct 2000, pp.1146-
1151.

[21] Wolfram, S.: A New Kind of Science, Wolfram Media Inc.,
Champaign, IL, 2002.

[22] Yao, X. and Higuchi, T., “Promises and Challenges of Evolvable
Hardware”, IEEE Transactions on Systems, Man, and Cybernetics
29(1), IEEE, 1999, pp. 87–97.

303

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Service-Oriented Integration
Using a Model-Driven Approach

Philip Hoyer, Michael Gebhart, Ingo Pansa, Aleksander Dikanski, Sebastian Abeck
Research Group Cooperation & Management

Karlsruhe Institute of Technology
Zirkel 2, 76131 Karlsruhe, Germany

{ hoyer | gebhart | pansa | a.dikanski | abeck } @ kit.edu

Abstract — Provision of processes supported by Information
Technology (IT) spreading around several different units of
one organization requires the integration of existing
distributed legacy applications. Typically the part of the
application’s functionality used in a process is offered through
proprietary interfaces, complicating the integration. A possible
solution to this issue is to construct standards-based, service-
oriented interfaces offering only the required functionality.
Existing approaches within this field mostly focus on the
technical issues of the integration using Web services and
hardly consider the integration from the perspective of the IT-
supported processes. In this article, we introduce a
development approach for modeling an IT-supported process
which is enhanced by the automatic generation of necessary
Web service artifacts. Our approach is exemplified by a
scenario at the Karlsruhe Institute of Technology (KIT) that
implements a process to visualize the study progress of a
student.

Keywords—model-driven development; service-oriented
integration; Web services; Unified Modeling Language

I. INTRODUCTION

Due to fast changing markets and emerging
requirements, an organization’s Information Technology (IT)
needs to be flexible in order to quickly provide new
functionality. Usually this flexibility is required at the high
level of rapidly changing business processes, which
necessitates the implementation of IT-supported business
processes. Several applications already exist and are in
practical use within today’s organizations, providing basic
functionality and data. Often these existing legacy
applications can hardly be replaced or enhanced with new
functionality due to high costs or the associated high
complexity. If new functionality has to be added, it should
reuse existing functionality in order to reduce costs. Thus,
the realization of new functionality requires the integration
of these existing applications. Using existing applications in
an integration scenario is complicated by the proprietary
interfaces these applications provide. Additionally not all of
the functionality of an application might be used in a new IT-
supported process. To overcome these issues, a service-
oriented architecture (SOA) is a widely accepted approach
for process-oriented integration scenarios, but still the
development of standardized interfaces is carried out by

hand, leading to high development costs as well as to long
and error-prone development cycles.

In a typical top-down integration approach, in which the
needed functionality of the legacy applications is determined
by the IT-supported process to be implemented, the process
has to be formally modeled beforehand. It describes the flow
of actions that have to be performed for the new
functionality. Each action represents a functionality provided
by one of the existing applications. The workflow that
integrates the existing applications can be formalized using
Activity Diagrams of the Unified Modeling Language
(UML) [2]. In a next step, the existing applications have to
be made accessible to reuse existing functionality. For this
purpose, adapters have to be developed to perform the
integration on a technical level. They enable the access to
existing functionality in a convenient way. Figure 1
illustrates this approach of developing new functionality by
integrating existing functionality. As technology to realize
the adapters, Web services can be used as they represent a
standardized technology that is platform and programming
language neutral. Web services are de facto standard in the
context of service-oriented architectures. To provide the
functionality using Web services, the interface description
and the data schemas have to be developed using the Web
Service Description Language (WSDL) [3] and XML
Schema (XSD) [4]. Providing the functionality as a Web
service enables a convenient usage of it within different
contexts. To decouple the Web service from the existing
applications, it is desirable to abstract from existing data
types within the existing application and to create the data
schema used within the Web service from a more conceptual
view.

Existing integration approaches mostly focus on
solutions on technical levels. That means that they focus on
the development of Web service adapters including technical
aspects such as the usage of various Web service standards.
The conceptual issues such as the modeling of an IT-sup-
ported process that can be effectively realized are subject of
further investigation. This requires the analysis of the
existing applications to avoid unnecessary data transforma-
tions when realizing the workflow that integrates the existing
applications. For example, the data types available within the
existing application can provide an indication about how to
design an appropriate IT-supported process.

304

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In this article we propose a development approach that
supports the developer in creating the IT-supported process
and helps to speed up the workflow that integrates the
existing applications by automatically generating Web
service adapters for existing applications and a Web service
for the newly developed functionality. The presented
approach in this paper extends our model-driven
development method described in [1]. To get a better
understanding of the IT-supported process, we start with
mock-ups and sketches of graphical user interfaces (GUI).
They enable the identification of required functionality. As a
complement a domain model is created, allowing the
derivation of conceptual data types that are independent of
existing applications. Afterwards, an analysis of existing
applications is performed that provide the required
functionality identified with the help of the GUI sketches.
This analysis enables the creation of the process with a
reduced set of data transformations. The process is
formalized using Activity Diagrams of the Unified Modeling
Language (UML). In a next step, the Web services and data
schemas are automatically derived from the formalized
process and the domain model using an enhanced version of
our model-driven development method [1]. The
enhancement lies in the usage of the domain model which
enables the decoupling of the Web service providing the new
functionality from existing applications by creating data
types that are independent from existing applications.

The derivation of the Web service artifacts is a two step
process, starting with a platform-independent model
representing the service interfaces and data schemas on a
conceptual level and the final platform-specific realization
using Web services. The approach targets a service-oriented
integration in which functionality is provided as a service.
The approach itself is model-driven, which means that the
required Web service interface descriptions using WSDL and
the data schemas using XML are generated automatically
from the workflow that integrates the existing applications
and the domain model. To realize our approach, existing
work in the context of developing Web service adapters is
reused. Also, existing guidelines how to derive data schemas
from a domain model are applied.

Our approach is exemplified by a university scenario at
the Karlsruhe Institute of Technology (KIT). In this scenario,
the goal is to provide a new feature that allows students to
gain insight into their current study progress, by combining
and visualizing their data from disparate sources. The
required functionality and data is shared across several
existing applications, so that an integration workflow is
necessary, which accesses these applications and combines
the collected data. In a first step, the requirements are
analyzed. The domain model for the study progress scenario
and several GUI sketches are created. Based on these
requirements, the required applications are identified and the
process is created and formalized. Afterwards, the process
and the domain model are transformed into a description of
the required services. In a last step, the necessary Web
service interfaces using WSDL and data schemas using
XML Schema are created.

The rest of the article is structured as follows: Section 2
introduces the background and gives general information
about integration issues and their solutions. In Section 3 the
concept of our approach of a service-oriented integration
using a model-driven approach is described. The practical
implications and issues of our approach are exemplified by
the aforementioned case study of a study progress
visualization in Section 4. Section 5 presents the most
relevant related work in the context of integrating existing
functionality, modeling workflow with the UML and
transformation into Web services. Section 6 concludes this
article, discusses the achieved results, and presents an
outlook as well as suggestions for future research work.

II. BACKGROUND

The necessity for building integrative solutions comes
along with the evolution of the way Information Systems are
used. We thereby define an Information System (IS) as all
the components and algorithm that are necessary for
enabling IT-based computation of information. In the very
beginning of supporting business activities through IT, the
typical architecture of an IS was structured using two logical
layers – a layer representing the client side and a layer
representing the centralized business logic and data stores –

New Application

Functionality N
…

Adapter
(Web Service)

Adapter
(Web Service)

Existing Application ZExisting Application A

Functionality 1 Functionality 2

Functionality

integrates existing
functionality

Workflow Model

Workflow

Existing Application A Existing Application Z

Functionality N

inputParameter

Functionality 1

Functionality 2

outputParameter

outputParameter

inputParameter

Workflow Model

Workflow

Existing Application A Existing Application Z

Functionality N

inputParameter

Functionality 1

Functionality 2

outputParameter

outputParameter

inputParameter

1 2

3

described by

Figure 1. Integration of Existing Functionality

305

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

typically on a single tier or host. The availability of today’s
high performance networks connecting datacenters all over
the world has lead to a multi-layer and multi-tier structuring
of distributed business logic and distributed data stores.
Figure 2 shows a comparison of these two approaches (based
on [20]). It is obvious that while in the late 1960’s one
centralized datastore and computation logic served multiple
clients, we are faced not only with distributed computation
logic today but also distributed data stores that might be
connected with many-to-many relationships amongst
together.

Client

Centralized
Logic & Datastore

Distributed
Logic

Distributed
Datastores

Late 1960 Today

Client

1

*

*

*

*

*

Client

Centralized
Logic & Datastore

Distributed
Logic

Distributed
Datastores

Late 1960 Today

Client

Client

Centralized
Logic & Datastore

Distributed
Logic

Distributed
Datastores

Late 1960 Today

Client

1

*

*

*

*

*

Figure 2. Evolution of Information Systems

Although separating the business logic from the data
stores and enabling access to these components in a
distribution way has many advantages, a logically holistic
access to the information these systems contain is desired.
Furthermore, not only access to information is needed but
also an evolution of functionality is desired. Therefore
reasons for aiming for integrative solutions in order to
capture a holistic access to information are manifold:
increasing the efficiency of business-related tasks, extending
existing applications with new functionality, reusing existing
applications, saving of software investments, avoid the costs
of introducing a new software system. According to [21] the
term “application integration” describes a strategic approach
to couple different existing applications for the purpose of
simplifying business-related tasks. The benefit of integration
within these scenarios is more than just a conciliation of
existing functionality. Rather, the idea is to leverage
synergetic effects and thus to increase efficiency of IT-
supported business activities.

For the purpose of constructing software-based solution
logic, a clear distinction of the necessary development steps
is necessary. There exists several different classification
schema for describing levels and approaches for application
integration [20],[21]. A common agreement to a basic
classification scheme comprises four categories:
information-oriented application integration (IOAI), service-
oriented application integration (SOAI), business process-
oriented application integration (BPOAI) and user interface-
oriented application integration, which is also referred to as
portal-oriented application integration (POAI). For a better
understanding of the conceptual contribution of our work, at

least some basic knowledge of the fields of application of
each of the single possibilities is necessary, which is why we
briefly describe each single category and highlight the main
points of interest.

A. Information-Oriented Application Integration

Information-oriented integration is a simple approach for
integrating several existing systems by considering the
extraction of information of a source system and deciding
how to convict this information into one or many different
target systems. Almost any information system that is used
today in a typical business scenario follows an n-tier
architecture based on a database or a data store component
enabling the information-based integration to easily be
introduced. This is often the only possibility if changes to the
business logic of an existing information system cannot be
performed.

Source
Data Source

Source
Schema

Destination
Schema

Logical Mapping

Destination
Data Source

Middleware

describes

describes

Q
u

e
ry

Q
u
e

ry
re

su
lt

U
p
d

a
te

Mapping
Compiler

Source
Data Source

Source
Schema

Destination
Schema

Logical Mapping

Destination
Data Source

Middleware

describes

describes

Q
u

e
ry

Q
u
e

ry
re

su
lt

U
p
d

a
te

Mapping
Compiler

Figure 3. Concepts in Information-Oriented Application Integration

Figure 3 outlines the principles of this approach. The
different data sources are described using different schema
descriptions. These descriptions have to be logically mapped
to each other, which can either be done at runtime or in less
frequent cases, at design time.

Although the advantages of this approach are its
simplicity and often fast-to-develop solution, this approach
bares a couple of disadvantages. Often it is not clear in
advance to what extends the desired solution needs to be
based on integrated data stores. This leads to a couple of
single integrative island with a total amount A where
 connections for different data stores
ending in solutions that are hard to maintain or to evolve.

Further, this approach is not aligned with requirements
derivable from the overall business processes, making
changes at the business level hard to be propagated to the
supporting IT level.

B. Service-Oriented Application Integration

Often it is not sufficient to only consider the information
that existing applications operate on but also to enable access
to functional capabilities the existing applications offer. By
focusing the functionality in means of interface-oriented

306

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

semantics, one can think of a service a distinct application
offers, leading to a new aspect of layering the possibilities of
integration: service-oriented application integration (SOAI).

Simply speaking, SOAI allows applications to share
common business logic [21]. The idea is to identify objects
of reuse within an organization and enable access to these
reusable objects through standardized service interface.
Although the concept of reuse can hardly be assumed in
advance, in the last years a couple of technologies and
platforms to realize this vision have surfaced, namely Web
service technology with its standardized interface
descriptions and access methods using WSDL [3], XML [4]
and SOAP [22].

Service-orientation is rather a design decision than a
concrete solution to all the integration issues. Many
questions are still open, for instance, it often is not clear how
to design services in order to fulfill certain quality attributes
such as loose coupling.

C. Business Process-Oriented Application Integration

While IOAI occurs at the level of data exchange [21], the
concept of business process-oriented application integration
(BPOAI) can be seen as an advancement of the IOAI and
SOAI by focusing not only the data level of each single
application but considering the overall process that each of
the single applications participate with. Therefore, BPOAI
takes the flow of information on a more abstract level,
enabling an admission to the integration issue on a level that
is more independent of the concrete data schemas.

Having the existing applications organized using service-
oriented interfaces can be seen as a requirement for an
efficient support of the business processes. Typical
implementations of service-oriented integration scenarios are
based on Web services, thus enabling the descriptions of
interfaces and exchanged data schemas using XML. Such a
standardized approach enables the usage of models for the
descriptions of the processes and is proposed to lead to a
more formal approach to solve integration issues, as models
can easily be reused. Therefore, great efforts have been made
to introduce modeling languages that are based on formal
meta models in order to support direct transformations from
the modeled business process to a concrete architecture
supporting these modeled processes. Examples of these
languages include the UML Activity Diagrams or the
Business Process Modeling Notation (BPMN) [23] with its
upcoming release 2.0 but also approaches that are based on
mathematical formalism such as Petri nets [24] or event-
driven process chains [25].

D. User Interface-Oriented Application Integration

Focusing the user interface for solving integration issues
aims at enabling a single point of access to a multitude of
existing user interfaces the existing applications have. While
the first three approaches (IOAI, SOAI, and BPOAI)
consider the exchange of information for the purpose of
automating parts of business processes, the application
integration on the level of user interfaces takes the human
factor into account. Still many steps of business processes
cannot be fully automated today, thus the need for enabling

access to information or operations distributed applications
provide are still a requirement. One of the biggest problems
with user interface-based integration is the fact that almost
any graphical user interface (GUI) of traditional business
applications is tightly coupled with monolithic frameworks
making it all but impossible and infeasible to make the
functionality a GUI offers available to external software
artifacts.

In the recent yeas, the concept of portals evolved for
Web-based applications. User interface-oriented application
integration therefore is often called portal-oriented
application integration (POAI). A portal thereby is a Web
browser-based approach for constructing a distributed
architecture consisting of a portal server, a framework for
generating and operating pluggable parts (portlets) of the
user interface and a couple of connectors to access the
existing applications.

E. Discussion

We currently observe a shift from simple information-
based approaches to service-oriented approaches because of
the several advantages of SOAI and because of the
disadvantages of the other approaches pointed out in the
previous descriptions. Although IOAI can be the solution to
choose in small scenarios, SOAI proposes to have a better
acceptance due to the enablement of business process-
oriented aspects. A clear separation of IOAI and SOAI can
be given by arguing that IOAI solely focuses the exchange of
information, while SOAI considers not only the information
but also the methods that operate on the information. As a
major goal of the integration project we applied our
development approach on was to create a solution that is
accepted by a wide range of students having different skills
in using Web-based information systems, the integration of
the existing applications should lead to a single user interface
that can be extended with further functionality on demand.
Figure 4 relates the different aspects of integration of our
approach, showing the flow of information across all
elements of the architecture to be integrated.

Study Portal

Web Service Web Service

Account Data Examination Data

Web Browser

Study Data

Web Service

POAI

SOAI /
BPOAI

Existing
Applications

Study Portal

Web Service Web Service

Account Data Examination Data

Web Browser

Study Data

Web Service

POAI

SOAI /
BPOAI

Existing
Applications

Figure 4. Different Aspects of Integration in our Approach

Our development approach therefore focuses the
construction of service-interfaces for supporting both a
flexible realization of business processes and usage of portal
technology. For the purpose of simplifying the development
method, we equivalently use the term “business process” and
“workflow” as we focus on the technical representation of a
business process which we consider to be a workflow [36].

307

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This is not a constraint in our opinion as we argue that a
technical representation of a business process can be found
and the relevant automatable steps can be identified. For
increasing the quality of the engineered solution, we use
models and model transformations to omit unnecessary
manual steps in code generation. Figure 5 outlines the steps
in our development process that are based on model
transformations and shows which of the development steps
have to be performed using manual model transitions.

III. SERVICE-ORIENTED INTEGRATION USING A

MODEL-DRIVEN APPROACH

In this chapter we describe our model-driven software
development approach for a service-oriented integration of
legacy applications using the Unified Modeling Language
(UML). The overall goal of the development process is to
develop a new high-level service by integrating legacy
applications via service adapters (low-level services) and
specify a workflow to compose those low-level services in
such a way that they create the high-level service. Since
existing applications used in the composition might be
substituted in the future by newer applications, which
provide new or better functionalities, the final solution must
consider the adaption to a changing IT-landscape with
reasonable time and effort.

The proposed development process contains six steps but
does not cover the whole software lifecycle. For example,
the test and deployment step is omitted as it does not
significantly differ from other software development
processes. Furthermore our solution should be adapted to the
requirements of the integration project, adding new steps or
leaving out steps described here.

Our development process starts with the definition of the
requirements (Figure 5: A). Due to our experience we
suggest the development of a prototype of the graphical user
interface, but other methods can also be used. After
capturing the requirements the next step is to develop a
domain model (Figure 5: B). It contains the entities derived
from the requirements. The domain model is of conceptual
nature and independent from concrete applications. Having
completed the domain model, the development process
continues with the design of the workflow according to the
defined requirements (Figure 5: C). In this step we regard the
available legacy applications but also use the entities from
the domain model created in the previous step. This allows
us to avoid dealing with data transformation issues, since in
the legacy systems the entities might be represented as
different data types. Afterwards, model-driven transforma-
tion techniques are applied, generating formal interface
descriptions and executable workflow definitions by
transforming the workflow model and the domain model into
a service model (Figure 5: D). All created and generated
models so far are independent from a concrete technology. A
final transformation step generates the necessary Web
service artifacts – WSDL for service interfaces, XML
Schema for data types and BPEL for workflow definition
from the service model (Figure 5: E). Note that we use Web
service technologies for the integration solution since it is
most common, yet the transformations can be rewritten to

generate artifacts based on other technologies than Web
services using the same models (as suggested by the concept
of Model-Driven Architecture). At last the Web service
adapters are implemented based on the generated WSDL
interfaces, which is still done by manual work (Figure 5: F).
The adapter can either accesses a database used by the legacy
application or uses a native interface provided by the legacy
application.

Figure 5. Model-Driven Development Process Overview

In the following the development process is described in
detail.

A. Capturing the Requirements

The requirements needed for designing the integration
solution can be captured using manifold techniques. All
techniques for requirement analysis have in common that
there is a close collaboration between the customer and the
architect or similar roles, since only the customer knows
what he expects from the final software solution, but cannot
express it in an unambiguously and well-formed way.

Some traditional techniques for requirement elicitation
are introspection, questionnaires, interviews or brainstorming
[11]. Representation-based techniques use descriptions of
scenarios or use cases. Our development approach does not
prescribe a concrete technique but rather allows the
developer to choose one that fits best to the project. Since we
propose an approach for integration scenarios, an important
part after the requirement elicitation is to analyze existing
applications and systems, which are required to fulfill the
functional requirements.

308

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A common approach that works well in our experience is
the prototyping of the graphical user interface, since it gives
the customer a “look-and-feel” of what the final solution
might look like. The requirements can than be deduced from
that prototype.

B. Creating the Domain Model

Based on the defined requirements, the next step is to
create a domain model. A domain model is a static model
that contains relevant entities of that domain and their
relations [26]. It does not contain dynamic issues, like
sequences or information flows. Consequently we use UML
class diagrams so that each entity in the domain model is
formalized as an UML Class with typed Properties.
Furthermore we use Associations and Generalizations (note
that all UML meta classes are written in italic) to specify
relations between entities. All Properties should be typed as
primitive data types (like string, integers, boolean values
etc.). Relations between entities are formalized by modeling
Associations between the corresponding Classes. Packages
can be used to classify entities into logical groups.

In contrast to the approach described in [1] this approach
propose to design the entities rather abstract by under-
standing the domain the integration project is settled in and
not derive them from the existing legacy applications. Nouns
and noun phrases in the requirements specified in the
previous step can help to identify relevant entities. Although
this seems to be a rather complex and time-consuming task
than deriving the entities directly from the legacy
applications, the effort put into the domain model will pay
off later when new or changing requirements have to be
implemented or new applications substituting the legacy
applications have to be integrated into the existing solution.
We also recommend using or building upon existing
standardized domain models, such as ebXML in the domain
of electronic business [35], complementing our use of open
standards for describing the service interfaces and data types.
Using such standardized domain models simplifies the
integration of functionality of third party services as well as
it provides the ability to offer the service to third parties.

With the domain model, our integration solution use data
types that are independent from the concrete legacy
applications. The workflow only operates with data objects
from the domain model and therefore does not have to cope
with transformations of different data types representing the
same entity that otherwise would be necessary to implement
in the workflow. At runtime the data transformations
between the legacy applications and the workflow are carried
out in the service adapters. Hence the service adapter
transforms native data objects from the legacy application
into data objects as defined in the domain model and vice
versa. The legacy applications can be replaced by new
applications at the cost of rewriting the relevant service
adapters, but the workflow does not have to be adapted, since
the interface of the service adapter remains the same.

C. Designing the Workflow Model

After the completion of the domain model, the next step
is to design the workflow model in a bottom-up way. During

the execution of the workflow, the legacy applications are
invoked and provide required data or execute actions. In
contrast to the domain model, the workflow model is a
dynamic model. The workflow model makes use of the
entities defined in the domain model though. In the model
the workflow itself is represented by an UML Activity (c.f.
Figure 8: Source model, Activity “Wf”).

Many workflows require some initial data transferred
from the invoking application before the workflow can be
executed. Also after the completion of most workflows some
data is returned to the application that has called the
workflow. To specify those data objects, the activity can
have ActivityParameterNodes attached to it (Figure 8:
“wfIn”, “wfOut”). An ActivityParameterNode always has a
reference to a Parameter. The Parameter is either typed with
a primitive type or a concrete Class from the domain model.
Furthermore the Parameter requires a direction type that
indicates if the value of the Parameter is passed into the
workflow or from the workflow.

To represent the legacy applications in the workflow
model that are invoked at runtime ActivityPartitions are used
(Figure 8: “AppX”). ActivityPartitions are usually used to
group Actions in an Activity that share some common
characteristics, e.g., belonging to the same organization unit.
The Activity representing the workflow must contain at least
one ActivityPartition, because otherwise there would be no
legacy application to call.

To call a legacy application, CallOperationActions are
modeled (Figure 8: “OpX”). CallOperationActions are more
specialized Actions, which have a reference to an Operation.
As a minor restriction, it is not possible to invoke more than
one application within one invocation. Therefore, each
CallOperationAction must be contained in exactly one
ActivityPartition. However, since one application can be
invoked in many ways to retrieve different data sets, an
ActivityPartition can contain several different Call-
OperationActions.

The activity diagram is refined by specifying the type of
data sent to or retrieved from the invoked applications. The
type of data sent to an application by one invocation is
modeled by adding InputPins and/or ValuePins to the Call-
OperationAction (Figure 8: “xIn”). In contrast, OutputPins
represent the data returned from an application (Figure 8:
“xOut”). According to the UML meta model [1], a Pin is
derived from the TypedElement and the MultiplicityElement
meta class by Generalization. The former enables the user to
type a Pin with a PrimitiveType (such as String, Integer, etc.)
or one of the data objects modeled earlier as a Class. The
later allows the collection of complex data structures in one
invocation. The same applies for the ActivityParameter-
Nodes.

To represent the data flow between the invocations, we
add ObjectFlows between InputPins and OutputPins. The
ObjectFlows also specify in which order the invocations
must be executed. Additionally, if a typed InputPin does not
have a matching incoming ObjectFlow, the required data has
to be collected by an additional invocation. In such a case,
we need to model new CallOperationActions, which return
the required data and provide an OutputPin for that. Of

309

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

course, the appropriate application which holds the data must
be known in advance. Thus the application has to be added
as an ActivityPartition, if not present yet.

The model containing the Activity formalizes the
workflow and the legacy applications to be invoked. Due to
the ObjectFlows it is further specified how data is processed
in the workflow and in which order the invocations occur.

D. Transformation to Service Model

To generate standardized Web service-based interface
descriptions and data types, the next step is to generate a new
model by using model-driven transformation techniques.
From the domain model and the workflow model a
transformation specification generates a service model [7],
which, among other details, specifies the interfaces for each
legacy application and the study progress workflow itself.

Since the transformation to the service model generates a
new model from existing models, the transformation rules
are formalized in the transformation language “Queries,
Views, Transformations” (QVT) [12], a standard specified
by the Object Management Group (OMG). Several QVT
implementation exists, e.g. in Borland Together [27], but
also as plug-ins for the Eclipse IDE (mediniQVT [28],
smartQVT [29]). Simply speaking, the transformation rules
are described by mapping the elements of the source meta
model to elements of the target meta model. Since the source
meta model and target meta model is the UML
Superstructure [2] the transformation itself is independent
from a concrete platform or technology and thus can be
reused for other integration projects of the same kind.

The transformation uses the created Activity and the
containing model elements as the source model and
generates a target model according to a set of transformation
rules. Since each ActivityPartition represents an application,
which will be invoked during the execution of the workflow,
each ActivityPartition is transformed into an Interface
(stereotyped as “ServiceInterface”) and a Component
(stereotyped as “ServiceComponent”) with a Realization
relationship between (c.f. Figure 8: Target model,
“AppXService” and “AppX”). Each CallOperationAction
contained in an ActivityPartition results in an Operation of
the created Interface (Figure 8: “+opX()”). Figure 6 shows
this transformation in the graphical notation of QVT.

CallOperationActionToOperation

when

ActivityPartitionToService(ap,wf,si,sc)

ap:ActivityPartition

coa:CallOperationAction

wf:Activity

<<domain>>

op:Operation

name=opName

sOp:Operation

si:ServiceInterface

implements

sc:ServiceComponent

<<domain>>

name=opName

wf:Workflow

C

s:Service

E

CallOperationActionToOperation

when

ActivityPartitionToService(ap,wf,si,sc)

ap:ActivityPartition

coa:CallOperationAction

wf:Activity

<<domain>>

op:Operation

name=opName

sOp:Operation

si:ServiceInterface

implements

sc:ServiceComponent

<<domain>>

name=opName

wf:Workflow

C

s:Service

E

Figure 6. QVT Transformation of CallOperationAction

Finally, InputPins and OutputPins of the
CallOperationActions are converted into Parameters of the
Operation (Figure 8: “wfIn” and “wfOut”). The direction
property of each Parameter is set to “in” if it is an InputPin
and no corresponding OutputPin of the same type and name
is attached to the same CallOperationAction (Figure 7). An
OutputPin results in the direction “out”. If a
CallOperationAction has an InputPin and an OutputPin with
the same name, the same type and the same multiplicity, the
direction property of the Parameter is set to “inout” and the
OutputPin is ignored.

CallOperationActionToOperation(coa,op)

xIn:InputPin

id=xInName
type=xInType

coa:CallOperationAction

<<domain>>
p:Parameter

op:Operation

name=xInName
direction=ParameterDirectionKind.in
type=xInType

<<domain>>

InputPinToOperationParameter

when

wf:Workflow

C

s:Service

E

CallOperationActionToOperation(coa,op)

xIn:InputPin

id=xInName
type=xInType

coa:CallOperationAction

<<domain>>
p:Parameter

op:Operation

name=xInName
direction=ParameterDirectionKind.in
type=xInType

<<domain>>

InputPinToOperationParameter

when

wf:Workflow

C

s:Service

E

Figure 7. QVT Transformation of InputPin

In order to invoke the workflow itself an additional
Interface and Component are generated from the Activity
(Figure 8: “WfService” and “Wf”). The Interface contains
exactly one Operation named “execute<ActivityName>”
(Figure 8: “+executeWf()”). The Parameters for this
Operation are generated according to the
ActivityParameterPins attached to the Activity (Figure 8:
“wfIn” and “wfOut”). In total, n + 1 Interfaces are generated,
whereby n correlates to the number of invoked applications
(or ActivityPartitions). Finally, the generated Component has
Uses relationship to all other Interfaces generated from the
ActivityPartitions.

Figure 8. Transformation to the Service Model

It is not required to transform the entities from the
domain model. Still, the specified data types are needed in
the target model. Therefore the Classes from the source
model, which represent the data types can either be imported
in the target model or copied to the target model. The same
applies for the Activity and the containing Actions. The
property “operation” of the CallOperationActions can now
be associated with the generated Operations of the
Interfaces.

310

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E. Transformation into Web Service Artifacts

As the final modeling step, we transform the three UML
models into concrete XML artifacts. The transformation
converts the domain model into XML Schema definitions
[4], the service model into WSDL documents [3], and the
workflow model into a BPEL process [17, 30]. As far as we
know the relatively new “MOF Model to Text
Transformation Language 1.0” [31] specified by the OMG is
currently not implemented in common UML tools. As we
also prefer a more established Model-to-Text transformation
language, we decided to use Xpand [32], a templated-based
approach from the openArchitectureWare toolkit, which is
now part of the Eclipse IDE.

TABLE I. DOMAIN MODEL TO XML SCHEMA

UML XML Schema

Package p <xsd:schema>

target namespace is derived from p and its parents

Class c <xsd:complexType>

name of complex type is name of c

<xsd:sequence>

model group for elements

Attribute a <xsd:element>

name of element is name of a, type of element is
used from a (Primitive types are matched to similar
build-in XSD types), minOccurs and maxOccurs of
element is cardinality of a

Association s <xsd:element>

name is set to name of s, type of element is complex
type of Class at AssociationEnd, minOccurs and
maxOccurs of element is cardinality of s

Enumeration e <xsd:simpleType>

name is set to name of e

<xsd:restriction>

base type of restriction is set to “string”

<xsd:enumeration>

for each EnumerationLiteral el, value is
name of the el

Generalization g <xsd:complexContent>

as child for complex type of specialized Class

<xsd:extension>

base type is set to complex type of generalized
Class

The entities defined in the domain model and specified as
UML Classes are transformed into XML Schema definitions
(XSD) [3]. Most transformation rules are mainly
straightforward (Table I). The name of the model and the
structure of UML Packages (if present) are used to generate
the target namespace of the XSD. UML Classes are
transformed into XSD complex types with a sequence model
group and all Properties of Classes into XSD elements of the
generated model group. These XSD elements are typed
depending on the kind of the UML Property: If it is an
Attribute with a primitive type, a build-in XSD data type is
used. If the Attribute uses a custom UML Enumeration, an
additional XSD simple type with a restriction of base type set

to “string”. For each literal of the Enumeration an
enumeration with the value set to the name of the literal is
generated. If an Association is used, the XSD element is
typed with the corresponding XML complex type of the
associated Class. Furthermore the cardinalities of Properties
are considered by using the “minOccurs” and “maxOccurs”
attributes in the XSD element definition. UML
Generalizations are also supported by complex content and
extensions in XSD, using the complex type of the
generalizing Class as “base” attribute of the “extension”
element.

TABLE II. SERVICE MODEL TO WSDL

UML Web Service Description Language (WSDL)

Component c <wsdl:definition>

name of definition is name of c

Interface i <wsdl:portType>

name of port type is name of i appended with
“PortType”

Operation o <wsdl:operation>

name of operation is name of o

<wsdl:input> and <wsdl:ouput>

name of message is name of o appended with
“Request” or “Response”

<wsdl:message>

name of message is name of o appended with
“Request” or “Response”

<wsdl:part>

name is “parameters” and element is
corresponding XSD element name

<xsd:element>

name of element is name of o, appended with
“Response” once

<xsd:complexType>

<xsd:sequence>

model group for Parameters

Parameter p <xsd:element>

name of element is name of p, containing model
group of element depends on p.direction (“in” or
“out”/“reply”), type of element is type of p (either a
build-in XSD type or a complex type)

The WSDL documents are generated from the service
model (Table II). Each UML Interface is transformed into a
WSDL document, importing the generated XSD files in the
“types” section of the WSDL document. Each interface is
transformed into an abstract part of a WSDL file with one
port type. The port type contains the operations as the UML
Interface specifies. The generation of the messages for the
input and output messages of the Web service depends on
the WSDL style. Since it is most common and recommended
by WS-I [13], we use the style “document/literal-wrapped”
[14]. For this style, each message element in the WSDL
document must contain exactly one part, even if multiple
UML Parameters are specified as input or output. To
distinguish between the Parameters, XML Schema is used to
build an RPC-like XML structure, using the operation name
as the top XML element and an embedded complex type

311

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

defining a sequence of child elements, which represent
Parameters. To generate the concrete parts of the WSDL file,
the proposed service model uses UML Components and
attached Ports, as in [6], [9]. A Port acts as a WSDL
binding, specifying a name and location information about
the service. It refers to the Interface as provided interface.

The workflow model is implemented in the Business
Process Execution Language (BPEL) [30] and is provided as
a Web service. The BPEL code is generated from the UML
Activity Diagram, which is already handled in some works
[17], [18]. The Activity and each ActivityPartition of the
workflow are defined as partner links in the BPEL process
and partner link types in the WSDL document of the BPEL
process. The defined ActivityParameterNodes of the Activity
transforms to the initial “receive” and the final “reply” action
in the BPEL process. In addition corresponding variables for
are generated. Each CallOperationAction is transformed to
an “invoke” action, using the partner link derived from the
ActivityPartition the CallOperationAction is placed in.
Corresponding variables in BPEL for the input and output
message of the “invoke” action are generated. ObjectFlows
in the Activity are transformed into “assign” actions, which
copy the content of the output variable of one invocation to
the input variable of a following invocation. The sequence in
which the BPEL actions occur is mainly determined by the
ObjectFlows. However, since UML Activity Diagrams are
based on graphs, whereas BPEL is structured in blocks, the
generation of the BPEL processes has certain limitations [33]
that we are aware of.

F. Implementing the Web Services Artifacts

To finalize the integration, the required Web services
have to be implemented. The generated WSDL and XML
Schema files are used to create skeletons for the adapter
logic implementation of the Web service. For this purpose,
existing approaches are applied that are part of several
development tools (like WSDL2Java from the Apache Axis2
framework [15]). The choice of the programming language
and the framework for generating and implementing the web
service adapters should be depend on the legacy application,
so that existing interfaces of the legacy application can be
used if possible. In addition the Web service adapter must
also provide the transformation into the data objects
specified in the domain model. To deploy the generated
BPEL process usually a deployment descriptor has to be
created, which is specific to the selected BPEL engine.

IV. CASE STUDY “STUDY PROGRESS”

The KIT offers its students the KIT-Portal [18], where
each student can access his/her personal data and perform
actions (e.g., to register for an examination) in a simple and
intuitive way. In this chapter, we apply our model-driven
software integration development process presented in the
previous chapter to the development of a service-oriented
application to visualize a student’s progress in his/her studies
for the KIT-Portal.

The KIT-Portal integrates several existing applications in
a service-oriented manner using Web technologies and Web
standards. At the KIT, several applications are available,

each storing and providing individual data for students.
However, none of the applications provides interoperable
interfaces, hence preventing an easy and straightforward
service-oriented integration. An important step towards
service-orientation is the development of standardized and
technology-neutral interfaces for accessing and manipulating
the data provided by existing legacy applications [9]. These
interfaces and the corresponding adapter logic have to be
developed to allow the integration of existing applications.

A. Analysing the Requirements for the “Study Progess”

One feature of the KIT-Portal to be developed is to
facilitate a student’s overview of his/her passed, failed or
outstanding examinations in a graphical and easily
understandable manner. Hence, several GUI sketches and
prototypes were created prior to starting the development
process, to get the look-and-feel for an adequate
visualization form of the study progress. A modified version
of a tree map provided the most promising results. It
visualizes all the learning modules of a study course by
rectangles using an equal width, but different height,
depending on the amount of credit points (c.f. European
Credit Transfer System, ECTS) of the module. The same
applies for the examinations allocated to a module. In
addition, each examination is color-coded depending on the
current state or result with regard to the student.

The required data for generating the study progress
visualization are persisted in two legacy systems: The study
system stores the degree programs and its structures, whereas
the examination system holds the data for the offered
examinations and the examination results for each student.

B. Creating the Domain Model “Study Progress”

Having defined the requirements, we model the domain
and needed data objects for the study progress tree map, such
as examination results or information about the student. We
create a UML model and model the entities as Classes. We
also add the data structure which is needed to generate the
study progress tree map (Figure 9: B).

C. Designing the Workflow “Study Progress”

Next we design the workflow bottom-up. The workflow
for visualizing the study progress is represented by a UML
Activity “StudyProgress” (Figure 9: C). To specify the data
types the workflow is called with respectively returns, the
Activity has two ActivityParameterNodes attached to it. The
KIT-Portal invokes the study progress workflow by passing
the login name from the KIT-Portal (student’s university e-
mail address) as initial input data (ActivityParameterNode
“loginEmail”) of type string. The workflow completes by
returning the output type of the workflow is the tree map
data type (ActivityParameterNode “studyProgress”). The
study system and the examination system are modeled as
ActivityPartitions (“Study” and “Examination”). The
invocation to one of the systems is modeled as a
CallOperationAction in the corresponding ActivityPartition
and in addition the type of data transferred to or from a
system on each invocation is added as Pins.

312

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For example in order to receive the student’s base data
from the study system we model the CallOperationAction
“GetStudentBaseData” in the ActivtyPartition “Study” and
add the OutputPin “student” of the type “Student” (the
classes modeled before). The call to the study system
requires the matriculation number and the current term, so
we model those by adding the two InputPins
“matricNumber” and “term”. Since the portal system only

knows the student’s university e-mail address, which has to
be entered during the KIT-Portal login, we add an
ActivityPartition for the accounting system and model the
CallOperationAction “GetMatricNumber” inside. It accesses
the accounting system, maps the student’s email address to
his/her matriculation number and returns the number
(OutputPin “matricNumber”). The current term can be
retrieved from the examination system. Thus, we add the

Figure 9. Model-Driven Development Process of the “Study Progress”

313

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CallOperationAction “GetCurrentTerm” in the
ActivtyPartition “Examination” with only one OutputPin
“term” containing the current term as an integer value.

To represent the data flow between the invocations, we
add ObjectFlows between InputPins and OutputPins that
have the same type. The ObjectFlows specify how data
objects flows from the outcome of a previous invocation to
the input of a following invocation during the execution of
the workflow. Thus the order in which invocations occur can
be derived from the ObjectFlows.

We have formalized which applications are invoked and
how the data is processed. Figure 9 shows the final workflow
model as an UML Activity Diagram labeled as “Study
Progress” in part C.

D. Transformation to the Service Model

Taking the activity diagram as a source model, we use a
QVT-based model-to-model transformation to generate
service interfaces using the QVT transformation rules
described above. The transformation generates a service
interface for each invoked application. In order to invoke the
workflow itself from the KIT-Portal, another service
interface “StudyProgressService” that contains the Operation
“executeStudyProgess” is generated. The Parameters for this
Operation are generated according to the
ActivityParameterPins.

Part D of Figure 9 shows the resulting Interfaces,
Components and the relations for each ActivityPartition and
the Activity itself.

E. Transformation into Web Service Artifacts

The model-to-text transformation creates an XML
Schema file [4] (“StudyProgressTypes.xsd”) from the

Classes in the domain model, four WSDL files [3] (one for
each service interface) from the Interfaces and Components
in the service model and a BPEL file (“StudyProgress.bpel”)
from the workflow model. To facilitate the reusability of the
XML Schema definitions the StudyProgressTypes.xsd file is
imported into the “types” section of each WSDL file. Also
all WSDL files are imported into the BPEL process file in
order to act as partner links.

Figure 9 illustrates the generated artifacts and the import
of the central XML Schema definition at the bottom. Part of
the WSDL document for the StudyService is also shown in
detail.

F. Implementing the Web Service Adapters

Finally, the generated WSDL documents are used to
create skeletons. We implement the adapter logic of the
required Web services using Java. We further use an XSL
transformation to generate XHTML from the tree map data
structure defined in the domain model. Figure 10 gives the
result of the engineered solution, showing a late prototype of
the study process.

V. RELATED WORK

As our approach targets a wide area of different artifacts
supporting a model-driven development approach (service
model, WSDL and Web services), there are several related
studies.

The idea of visualizing hierarchically structured
information in terms of tree maps initially was published by
Johnson and Shneiderman [37]. Based on their concepts,
Allerding, Buck et al. present an approach using tree map
concepts and focusing the requirements of students
managing their studies [38]. Adapting their idea of

Figure 10. Screenshot of the "Study Progress"

314

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

visualizing the study progress of a student, we used an early
sketch of a tree map as input for a model-driven
development approach. The execution of integration projects
following a model-driven development approach based on
Web service technologies is discussed in scientific and
commercial communities alike.

Considering the overall development approach, starting
with formal requirements and leading to a set of executable
code, Meijler, Kruithof et al. illuminate the advantages of
model-driven integration aligned with service-oriented
principles [5]. An integrated approach combining both top-
down (requirements to software components) and bottom-up
(existing tool assets) approaches is proposed. Therefore, we
decided not to strictly follow a top-down development
approach that would hinder the integration of existing
applications, but to follow a combined middle-out approach
enabling the description of existing applications early in the
transformation process.

Model-driven development of Web services has already
been discussed in several previous works, for instance in [6],
[7], [8]. Based on these approaches, we focused on capturing
business requirements with models and mapping these
models to existing distributed legacy applications.
Considering the integration of legacy applications using Web
services, a generic model for application integration is
presented in [9]. Since different legacy applications often use
different formats and standards for describing their data
schemas, a mapping of these different data schemas has to be
realized additionally. The proposed approach in [9] focuses
on the integration of several different data schemas by
implementing adapter components realized with Web
services. Within the special requirements of our scenario, not
only the integration of existing data schemas but also the
integration of existing business logic is needed; thus our
approach considers the aspect of integration from a system-
oriented direction.

Finally, the presented intermediate model for service
descriptions (c.f. chapter 3) is based on the work of Emig,
Krutz et al. [7]. While the approach presented in [7] targets
towards a holistic and technology-independent possibility for
describing service interfaces of service-oriented components,
we improved the proposed development approach by the
integration aspect of existing software assets. Similar to [7],
Johnson demonstrates the use of a technology-independent
approach for describing service-oriented software
components [10]. An UML 2.0 Profile [2] as an extension to
existing modeling tools is proposed, although specific
modeling elements are introduced regarding the very special
needs of the appointed vendor-specific tool chain.

VI. CONCLUSION

In this paper, we outlined a development approach for
integrating existing applications in a service-oriented manner
by using a model-driven approach in order to create new
functionality. In a first step GUI sketches help eliciting the
requirements of the new functionality. Additionally a domain
model is created statically describing the main concepts and
their relationship of the domain. Afterwards, the necessary
workflow, which determines the integration of the existing

functionality from existing legacy applications, is modeled
using UML Activity Diagrams. The workflow and the
domain model are used to automatically generate artifacts
which help in implementing the workflow. Such artifacts
include adapters for accessing only required functionality of
existing applications, relevant data types and an executable
workflow for which we used Web service adapters using
WSDL, data schemas described with XSD and BPEL
process definitions respectively. Due to the usage of the
domain model as source for the data types, the resulting
services abstract from existing applications and their specific
data types. This enables a wider usage of the created Web
services without knowledge about platform specific details.

To exemplify our approach, we demonstrated our
approach by realizing a study progress visualization at the
Karlsruhe Institute of Technology (KIT). In this scenario, the
goal was to provide a new feature that allows students to
gain insight into their current study progress, by combining
and visualizing their data from disparate sources. The
required functionality and data is shared across several
existing applications, so that they need to be integrated.

Even though a complete role model of an integration
process is not in the focus of our work we are certain that our
approach is helpful to all participants of an integration
project. Our approach helps IT architects with the
development of new functionality that requires the
integration of existing applications. Domain experts are
supported by visually describing the required functionality
and integration experts can use the workflow to map the
requested functionality to existing applications. Additionally
the workflow is used to derive implementation artifacts by
using automatic transformations, which helps in avoiding
transformation errors due to human interpretations. As the
approach started by gathering user requirements by means of
a GUI sketch, we consider our solution user-aligned and a
promising enhancement of existing integration approaches.

Although the application of model-driven approaches has
several advantages, such as the convenient transformation of
Web service adapters, data types and running BPEL
processes from formalized design models, the usage of this
modern technology is hampered by lack of a complete tool
support. The application of UML Activity Diagrams enables
the usage of several existing UML modeling tools and allows
a formalized and visual description of the workflow. While
there exist mature tools in the context of UML modeling, the
development of transformations is still a complex task.
The choice of using service-oriented architecture as the
integration platform proved to be the right choice for our
approach, as reusing the existing business logic of the
legacy applications can now achieved at a level of higher
abstraction. Yet, the full potential of service-orientation
such as the design of services to achieve certain design
characteristics, the security of data within the workflow, the
interaction with human users and the management of the
services were not considered within our approach so far.
These aspects are motivation for further work within this
context and are part of our outlook.

315

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. OUTLOOK

Based on our latest research results presented before,
there are several topics we want to investigate in more detail.
Firstly all functional components are provided as services via
Web service interfaces. Therefore these services have to
follow design principles to allow for loose coupling or to
achieve a certain granularity etc. So far our model-driven
approach does not take these design principles into account
during the transformation from workflow model to service
model. Focusing on service design principles, different
variations of transformation rules could be applied to achieve
a set of services with different attributes like granularity etc.
suitable for different scenarios [43].

Secondly human users have to interact within a process
by, e.g. inserting some data or making a decision. Hence user
interfaces have to be developed to enable theses human tasks
(c.f. [44]). Since the information which is to be passed along
by the human user is directly correlated to the domain model
[45], an automated generation of user interfaces can be
achieved. In the same manner it could be possible to
automatically generate several adapters like e.g. database
adapters which are commonly used among several processes.

As a third perspective one should think about the whole
application itself. As it consists of several services being
provided by likely different providers, the users like students
need to have a centralized way to report errors and to start a
problem solving process like e.g. ISO 20000’s Incident
Management Process [34]. Therefore the development
process also has to take management information and
management processes into account to allow for a
manageable and sustainable service-oriented application
[46].

Another important aspect of any service-oriented
integration scenario is the consideration of security aspects.
So far no information about the security requirements of the
newly composed services is incorporated into the
development approach. Even though the existing
applications might be secured in the sense of e.g., a secure
connection, the proposed approach would reduce it to a
secure point-to-point communication between the service
adapter and the application instead of providing a secure
end-to-end communication. A solution to this would be to
add additional information concerning security requirements
into the modeled process. Furthermore it can be seen from
the case study, that a user might have different identifiers to
access different applications and services in an organization
again using different authentication mechanisms. In the
current version of our approach this leads to a significant
amount of operation invocation to map the initial identifier to
every necessary identifier. A better approach would be to use
a global identifier at the service level and enhance the model-
to-text transformation presented to generate necessary
mapping code directly into the Web service adapters.

We have already presented some initial results on these
topics in [39, 40, 41, 42] and will now focus on integrating
our findings to our model-driven approach.

REFERENCES

[1] Hoyer P., Gebhart M., Pansa I., Link S., Dikanski A., Abeck S.: A
Model-Driven Development Approach for Service-Oriented
Integration Scenarios. First International Conferences on Advanced
Service Computing (SERVICE COMPUTATION), Athens, Greece,
November 2009.

[2] Object Management Group (OMG): Unified Modeling Language
(UML), Superstructure Version 2.2. http://www.omg.org/cgi-
bin/doc?formal/09-02-02

[3] World Wide Web Consortium (W3C): Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language.
http://www.w3.org/TR/wsdl20/

[4] World Wide Web Consortium (W3C): XML Schema Definition
Language (XSD) 1.1 Part 1: Structures.
http://www.w3.org/TR/xmlschema11-1/

[5] Meijler T.D., Kruithof G., Beest N.: Top Down Versus Bottom Up in
Service-Oriented Integration: An MDA-Based Solution for
Minimizing Technology Coupling, LNCS Volume 4294/2006.

[6] Marcos E., Castro V., Vela B.: Representing Web Services with
UML: A Case Study. 1st International Conference on Service-
Oriented Computing (ICSOC), Trento, Italy, December 2003.

[7] Emig C., Krutz K., Link S., Momm C, Abeck S..: Model-Driven
Development of SOA Services, Cooperation & Management,
Universität Karlsruhe (TH), Internal Research Report, 2008.

[8] Gronmo R., Skogan D., Solheim I., Oldevik J.: Model-driven Web
Service Development. International Journal of Web Services
Research, Volume 1, Number 4.

[9] Harikumar A., Lee R, Yang H., Kim H., Kang B.: A Model for
Application Integration using Web Services, Proceedings of the
Fourth Annual ACIS International Conference on Computer and
Information Science, July 2005.

[10] Johnston S.: UML 2.0 Profile for Software Services, IBM
developerWorks
http://www.ibm.com/developerworks/rational/library/05/419_soa/,
April 2005.

[11] Hay D.: Requirement Analysis – From Business Views to
Architecture. Prentice Hall, 2003.

[12] Object Management Group (OMG): Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification Version 1.0.
http://www.omg.org/spec/QVT/1.0

[13] Web Services Interoperability Organization: Basic Profile Version
1.2. http://www.ws-i.org/Profiles/BasicProfile-1_2(WGAD).html

[14] Butek R.: Which style of WSDL should I Use, IBM developerWorks,
2003. http://www.ibm.com/developerworks/webservices/library/ws-
whichwsdl/

[15] The Apache Software Foundation: Code Generator Wizard - eclipse
Plug-in, http://ws.apache.org/axis2/tools/1_0/eclipse/wsdl2java-
plugin.html

[16] Organization for the Advancement of Structured Information
Standards (OASIS): Web Services Business Process Execution
Language Version 2.0. http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[17] Mantell K.: From UML to BPEL. IBM developerWorks, 2005.
https://www.ibm.com/developerworks/library/ws-uml2bpel/

[18] Skogan D., Groemno R., Solheim I.: Web service compositions in
UML. Proceedings of Eudth International Enterprise Distributed
Object Computing Conference, September 2004.

[19] Karlsruhe Institute of Technology (KIT): The KIT study portal,
http://studium.kit.edu

[20] Conrad S., Haselbring W., Koschel A., Tritsch R.: Enterprise
Application Integration: Grundlagen – Konzepte - Entwurfsmuster –
Praxisbeispiele, Spektrum Akademischer Verlag, 2005, ISBN
3827415721.

[21] Linthicum D.: Next Generation Application Integration, Addison-
Wesley Information Technology Series, 2004, ISBN 02018445667

316

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[22] World Wide Web Consortium (W3C): SOAP Version 1.2,
http://www.w3.org/TR/soap/

[23] The Object Management Group (OMG): Business Process Model and
Notation (BPMN) 2.0 Beta 1, http://www.omg.org/cgi-
bin/doc?dtc/09-08-14.pdf

[24] Valk R., Girault C.: Petri Nets for Systems Engineering – A Guide to
Modeling, Verification, and Applications, Springer, 2001. ISBN 978-
3540412175.

[25] Keller G., Nüttgens M., Scheer A.-W.: Semantische
Prozessmodellierung auf der Grundlage „Ereignisgesteuerter
Prozeßketten (EPK)“. Veröffentlichungen des Instituts für
Wirtschaftsinformatik (IWi), Universität des Saarlandes, Heft 89,
Januar 1992.

[26] S. Johnston, “Rational UML Profile for business modeling”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
library/5167.html, 2004.

[27] Borland, Borland Together,
http://www.borland.com/de/products/together/index.html

[28] ikv++ technologies ag: medini QVT,
http://www.ikv.de/index.php?option=com_content&task=view&id=7
5&Itemid=77&lang=en

[29] SmartQVT, http://smartqvt.elibel.tm.fr/index.html.

[30] Organization for the Advancement of Structured Information
Standards (OASIS): Web Services Business Process Execution
Language Version 2.0, http://docs.oasis-
open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.pdf

[31] The Object Management Group (OMG): MOF Models to Text
Transformation Language V1.0,
http://www.omg.org/spec/MOFM2T/1.0/PDF

[32] Eclipse Foundation: Xpand, http://wiki.eclipse.org/Xpand.

[33] Ouyang C., Dumas M., Breutel S., Hofstede A.: Translating Standard
Process Models to BPEL, Advanced Information Systems
Engineering, 18th International Conference, CAiSE 2006,
Luxembourg, Luxembourg, June 5-9, 2006, Proceedings 2006.

[34] ISO/IEC, ISO/IEC 20000-1:2005: Information Technology – Service
Management, www.iso.org, 2005.

[35] Organization for the Advancement of Structured Information
Standards (OASIS): ebXML Technical Architecture Specification
v1.04, http://www.ebxml.org/specs/#technical_specifications.

[36] The Workflow Management Coalition Specification: Workflow
Management Coalition Terminology and Glossary (WFMC-TC-
1011),http://www.wfmc.org/standards/docs/TC011_term_glossary_v
3.pdf, 1999.

[37] Johnson B., Shneiderman B: Tree-Maps: A Space-Filling Approach
to the Visualization of Hierarchical Information Structures, IEEE
Computer Society Press, http://hcil.cs.umd.edu/trs/91-06/91-06.html,
October 1991.

[38] Allerding F., Buck J., Freudenstein P., Klosek B., Höllrigl T., Juling
W., Keuter B., Link S., Majer F., Maurer A., Nussbaumer M., Ried
D., Schell F.: Integriertes Service-Portal zur Studienassistenz,
Proceedings of the 38th GI Conference - Lecture Notes in
Informatics, München, Germany, Munich, 2008.

[39] Gebhart M., Abeck S.: Rule-Based Service Modeling, The
Fourth International Conference on Software Engineering Advances,
ICSEA 2009, 20-25 September 2009, Porto, Portugal 2009.

[40] Link S., Hoyer P., Kopp T., Abeck S.: A Model-Driven Development
Approach Focusing Human Interaction, Second International
Conference on Advances in Computer-Human Interaction, ACHI
2009, February 1-7, 2009, Cancun, Mexico 2009.

[41] Scheibenberger K., Pansa I.: Modelling dependencies of IT
Infrastructure elements, Proceedings of BDIM 2008, 3rd IEEE/IFIP
International Workshop on Business-Driven IT Management, April 7,
2008, Salvador, Brazil 2008.

[42] Klarl H., Wolff C., Emig C.: Identity Management in Business
Process Modelling: A model-driven approach, Business Services:
Konzepte, Technologien, Anwendungen. 9. Internationale Tagung
Wirtschaftsinformatik 25.-27. Februar 2009, Wien 2009.

[43] T. Erl, “SOA – Principles of Service Design”, Prentice Hall, 2007.
ISBN 978-0-13-234482-1.

[44] IBM: WS-BPEL Extenstion for People (BPEL4PEOPLE), 2007,
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
bpel4people/BPEL4People_v1.pdf

[45] Link S.: Benutzerinteraktion in dienstorientierten Architekturen,
Dissertation, 2009, http://digbib.ubka.uni-
karlsruhe.de/volltexte/1000012354

317

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO,
BIOSYSCOM, BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION,
COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, CLOUD COMPUTING, COMPUTATION TOOLS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM,
BIOINFO, BIOTECHNO

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE
COMPUTATION

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS,
CLOUD COMPUTING, COMPUTATION TOOLS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA

issn: 1942-2601

