

The International Journal On Advances in Software is Published by IARIA.

ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal On Advances in Software, issn 1942-2628

vol. 1, no. 1, year 2008, http://www.iariajournals.org/software/"

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal On Advances in Software, issn 1942-2628

vol. 1, no. 1, year 2008,<start page>:<end page> , http://www.iariajournals.org/software/"

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2008 IARIA

International Journal On Advances in Software

Volume 1, Number 1, 2008

Editorial Board

First Issue Coordinators

Jaime Lloret, Universidad Politécnica de Valencia, Spain

Pascal Lorenz, Université de Haute Alsace, France

Petre Dini, Cisco Systems, Inc., USA / Concordia University, Canada

Software Engineering

 Marc Aiguier, Ecole Centrale Paris, France

 Sven Apel, University of Passau, Germany

 Kenneth Boness, University of Reading, UK

 Hongyu Pei Breivold, ABB Corporate Research, Sweden

 Georg Buchgeher, SCCH, Austria

 Dumitru Dan Burdescu, University of Craiova, Romania

 Angelo Gargantini, Universita di Bergamo, Italy

 Holger Giese, Hasso-Plattner-Institut-Potsdam, Germany

 Jon G. Hall, The Open University - Milton Keynes, UK

 Herman Hartmann, NXP Semiconductors- Eindhoven, The Netherlands

 Hermann Kaindl, TU-Wien, Austria

 Markus Kirchberg, Institute for Infocomm Research, A*STAR, Singapore

 Herwig Mannaert, University of Antwerp, Belgium

 Roy Oberhauser, Aalen University, Germany

 Flavio Oquendo, European University of Brittany - UBS/VALORIA, France

 Eric Pardede, La Trobe University, Australia

 Aljosa Pasic, ATOS Research/Spain, NESSI/Europe

 Robert J. Pooley, Heriot-Watt University, UK

 Osamu Takaki, Center for Service Research (CfSR)/National Institute of Advanced Industrial

Science and Technology (AIST), Japan

 Michal Zemlicka, Charles University, Czech Republic

Advanced Information Processing Technologies

 Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania

 Michael Grottke, University of Erlangen-Nuremberg, Germany

 Josef Noll, UiO/UNIK, Sweden

 Olga Ormandjieva, Concordia University-Montreal, Canada

 Constantin Paleologu, University ‘Politehnica’ of Bucharest, Romania

 Liviu Panait, Google Inc., USA

 Kenji Saito, Keio University, Japan

 Ashok Sharma, Satyam Computer Services Ltd – Hyderabad, India

 Marcin Solarski, IBM-Software Labs, Germany

Advanced Computing

 Matthieu Geist, Supelec / ArcelorMittal, France

 Jameleddine Hassine, Cisco Systems, Inc., Canada

 Sascha Opletal, Universitat Stuttgart, Germany

 Flavio Oquendo, European University of Brittany - UBS/VALORIA, France

 Meikel Poess, Oracle, USA

 Kurt Rohloff, BBN Technologies, USA

 Said Tazi, LAAS-CNRS, Universite de Toulouse / Universite Toulouse1, France

 Simon Tsang, Telcordia Technologies, Inc. - Piscataway, USA

Geographic Information Systems

 Christophe Claramunt, Naval Academy Research Institute, France

 Dumitru Roman, Semantic Technology Institute Innsbruck, Austria

 Emmanuel Stefanakis, Harokopio University, Greece

Databases and Data

 Peter Baumann, Jacobs University Bremen / Rasdaman GmbH Bremen, Germany

 Qiming Chen, HP Labs – Palo Alto, USA

 Ela Hunt, University of Strathclyde - Glasgow, UK

 Claudia Roncancio INPG / ENSIMAG - Grenoble, France

Intensive Applications

 Fernando Boronat, Integrated Management Coastal Research Institute, Spain

 Chih-Cheng Hung, Southern Polytechnic State University, USA

 Jianhua Ma, Hosei University, Japan

 Milena Radenkovic, University of Nottingham, UK

 DJamel H. Sadok, Universidade Federal de Pernambuco, Brazil

 Marius Slavescu, IBM Toronto Lab, Canada

 Cristian Ungureanu, NEC Labs America - Princeton, USA

Testing and Validation

 Michael Browne, IBM, USA

 Cecilia Metra, DEIS-ARCES-University of Bologna, Italy

 Krzysztof Rogoz, Motorola, USA

 Sergio Soares, Federal University of Pernambuco, Brazil

 Alin Stefanescu, SAP Research, Germany

 Massimo Tivoli, Universita degli Studi dell'Aquila, Italy

Simulations

 Robert de Souza, The Logistics Institute - Asia Pacific, Singapore

 Ann Dunkin, Hewlett-Packard, USA

 Tejas R. Gandhi, Virtua Health-Marlton, USA

 Lars Moench, University of Hagen, Germany
 Michael J. North, Argonne National Laboratory, USA

 Michal Pioro, Warsaw University of Technology, Poland and Lund University, Sweden

 Edward Williams, PMC-Dearborn, USA

International Journal On Advances in Software

Volume 1, Number 1, 2008

Foreword

Finally, we did it! It was a long exercise to have this inaugural number of the journal featuring extended

versions of selected papers from the IARIA conferences.

With this 2008, Vol. 1 No.1, we open a long series of hopefully interesting and useful articles on

advanced topics covering both industrial tendencies and academic trends. The publication is by-

invitation-only and implies a second round of reviews, following the first round of reviews during the

paper selection for the conferences.

Starting with 2009, quarterly issues are scheduled, so the outstanding papers presented in IARIA

conferences can be enhanced and presented to a large scientific community. Their content is freely

distributed from the www.iariajournals.org and will be indefinitely hosted and accessible to everybody

from anywhere, with no password, membership, or other restrictive access.

We are grateful to the members of the Editorial Board that will take full responsibility starting with the

2009, Vol 2, No1. We thank all volunteers that contributed to review and validate the contributions for

the very first issue, while the Board was getting born. Starting with 2009 issues, the Editor-in Chief will

take this editorial role and handle through the Editorial Board the process of publishing the best

selected papers.

Some issues may cover specific areas across many IARIA conferences or dedicated to a particular

conference. The target is to offer a chance that an extended version of outstanding papers to be

published in the journal. Additional efforts are assumed from the authors, as invitation doesn’t

necessarily imply immediate acceptance.

This particular issue covers papers invited from those presented in 2007 and early 2008 conferences.

The papers cover mechanisms, techniques and applications using agile technology, modular design,

process-aware and workflow diagrams for life cycles. Particular experiments are reported on semantic

data processing and security-critical applications.

We hope in a successful launching and expect your contributions via our events.

First Issue Coordinators,

Jaime Lloret, Universidad Politécnica de Valencia, Spain

Pascal Lorenz, Université de Haute Alsace, France

Petre Dini, Cisco Systems, Inc., USA / Concordia University, Canada

International Journal On Advances in Software

Volume 1, Number 1, 2008

CONTENTS

Goal sketching: An Agile Approach to Clarifying Requirements

Kenneth Boness, University of Reading, UK

Rachel Harrison, Stratton Edge Consulting Ltd., UK

Kecheng Liu, University of Reading, UK

1 - 13

Verification of Evidence Life Cycles in Workflow Diagrams with Passback Flows

Osamu Takaki, National Institute of Advanced Industrial Science and Technology (AIST), Japan

Takahiro Seino, National Institute of Advanced Industrial Science and Technology (AIST), Japan

Izumi Takeuti, National Institute of Advanced Industrial Science and Technology (AIST), Japan

Noriaki Izumi, National Institute of Advanced Industrial Science and Technology (AIST), Japan

Koichi Takahashi, National Institute of Advanced Industrial Science and Technology (AIST), Japan

14 - 25

A Framework for the Modular Design and Implementation of Process-Aware

Applications

Davide Rossi, University of Bologna, Italy

Elisa Turrini, University of Bologna, Italy

26 - 42

Trisolda: The Environment for Semantic Data Processing

Jiří Dokulil, Charles University in Prague, Czech Republic

Jakub Yaghob, Charles University in Prague, Czech Republic

Filip Zavoral, Charles University in Prague, Czech Republic

43 - 58

Modeling Security-Critical Applications with UML in the SecureMDD Approach

Nina Moebius, University of Augsburg, Germany

Wolfgang Reif, University of Augsburg, Germany

Kurt Stenzel, University of Augsburg, Germany

59 - 79

1

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Goal sketching: An Agile Approach to Clarifying Requirements

Kenneth Boness

University of Reading,

Berkshire, RG6 6AY UK

k.d.boness@reading.ac.uk

Rachel Harrison

Stratton Edge Consulting Ltd,

GL7 2LS, UK

rachel.harrison@strattonedge.com

Kecheng Liu

University of Reading,

Berkshire, RG6 6AY UK

k.liu@reading.ac.uk

Abstract

This paper describes a technique that can be used

as part of a simple and practical agile method for

requirements engineering. It is based on disciplined

goal-responsibility modelling but eschews formality in

favour of a set of practicality objectives. The technique

can be used together with Agile Programming to

develop software in internet time. We illustrate the

technique and introduce lazy refinement, responsibility

composition and context sketching. Goal sketching has

been used in a number of real-world development

projects, one of which is described here.

Keywords: goal-oriented requirements engineering,

agile development, evolving systems.

1. Introduction

Our motivation for goal sketching is to help

stakeholders who need to make project critical

decisions in projects which develop emergent systems.

The agility here concerns the manner of obtaining and

maintaining the rationale of problem and solution

requirements so as to be able guide projects. Hence

goal sketching applies to, but is not limited to, software

projects using agile development methodologies.

Decisions about investment and requirements

priorities are the responsibility of stakeholders and can

only be made rationally when supported by a coherent

depiction of what is known about the requirements. It is

well known that this is problematical: for example the

importance of “creating realistic expectations in the

minds of stakeholders” has been noted [1] and the

observation that “..customers on agile projects are often

asked to make critical, project-defining decisions, and

very little of the methodology can help them make

those calls.” [2].

In contrast we suggest that (at least in principle)

given enough time, information and skill, goal-

responsibility refinement models can be constructed to

represent the stakeholders' expectations for a system-

to-be that will operate in an expected environment, in

fulfilment of a contract. Such models can be produced

using KAOS [3] and some use-case methodologies

[4,5]. Each has a structured argument framework that

allows the rationale to be verified and thus affords the

possibility of formulating systematic evaluation of the

adequacy and feasibility of the intended system.

However the prerequisite criteria (time, information

and skill) are not satisfied in the situations with which

we are concerned. Hence our research question which

we are investigating with an action research

methodology is: can a lightweight adaptation of KAOS

style goal-responsibility modelling meet the practical

demands of the analysts and designers?

Of paramount importance is the clarity of the

disciplined structure of goal-responsibility

argumentation (with its quasi hierarchical depiction) as

a possible basis for capturing what is known about the

requirements and the agreed rationale for their

satisfaction. Our methodology has 4 objectives:-

Table 1. Objectives of goal sketching

1. To maintain a coherent depiction of the intention

(the agreed-upon requirements and the rationale

for their satisfaction) as it unfolds over time.

2. To be simple enough to allow a project manager

or analyst to achieve a first draft, at a resolution

good enough to steer high level priority

decisions, at the outset of the project.

3. To keep the depiction understandable to business

as well as technical stakeholders.

4. To support formal rigour on a “just enough” and

“when needed” basis [6].

The methodology we are developing is called goal

sketching [7,8]. It is also the foundation for our work

on appraising development projects [9] called goal-

2

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

responsibility appraisal of soft projects (GRASP). It

embraces established practices evolved to cope with

uncertainty such as spiral [10] and breadth before

depth [11] techniques. Similarly 'just enough'

approaches such as in [12] inform our approach to

time-constrained development.

This paper proceeds as follows. In section 2 we

introduce the concept of structurally complete goal-

responsibility (G-R) models and their adaptation to our

purpose. In section 3 we present the current state of our

goal sketching methodology. Section 4 reinforces the

description using a hypothetical exemplar and section 5

uses an industrial application to illustrate our efficacy

in regard to the above four objectives.

2. Goal-Responsibility Models

An example of what we mean by goal-responsibility

model is shown in Figure 1. Models like this are used

in goal oriented requirements engineering (GORE)

such as the KAOS and also (with provision for the

representation of responsibilities [8]) in some use case

techniques.

Figure 1. Goal-Responsibility model

Each box in Figure 1 is referred to as a 'goal

oriented proposition' (GOP). In keeping with

propositional logic each GOP must be defined in such a

way that it may be refuted. The figure uses two types

of proposition: assumption and goal. There is more to

say about types but for now it is enough to note that a

G-R graph can record explicit assumptions as well as

goals. The aim when constructing a G-R graph is to

capture the logic of the problem in hand moving by

step-wise refinement from relatively abstract root

propositions (e.g. goal P) to relatively concrete

propositions that may be operationalized (e.g. goals

S,T and R) or assumptions (which can only be trusted

but not operationalized). Although the structure is

hierarchical the analysis to create it is rarely top down;

an analyst typically works with GOPs at all levels of

abstraction. The aim (and skill) of the analyst (in goal

sketching at least) is to organise the GOPs into a

convincing rationale. In doing this it is usual that the

analyst may discover gaps in the argument and then

invents additional GOPs in order to complete it.

Each step of refinement is a satisficing argument

where a proposition is refined into sub propositions

such that the sub-propositions can be agreed to be

collectively sufficient and individually pertinent to

adequately satisfy the parent. We call this the

refinement argument criterion.

Each argument step is deemed valid if by some

defensible criteria (e.g. expert judgement and/or

'policy' such as in goal structuring notation (GSN) [13]

or 'root definition' as in soft systems methodology

(SSM) [18]).

The model is said to be structurally complete if (as

in the figure) all objectives are ultimately satisfied by

actors of the system-to-be. Thus P is satisfied by the

combined actions and qualities of Actors 1, 2 and 3. It

is important to note that in this type of representation

the necessary behavior (and other qualities) that must

be instantiated is described only at the leaves of the

model; it is not distributed across the model. So if Q

harbours required behavior to be explicitly represented

in S and T then a further GOP should be added along

with S and T [8].

When a G-R model is constructed in a formal logic

(such as KAOS) there are calculi to verify the

argumentation. Hence if the model is also structurally

complete and all necessary root GOPs are included the

model should amount to an adequate intention for the

stakeholders. Further, if the responsibilities are

individually and collectively operationalizable within

the constraints of the project the intention can be said

to be feasible.

This potential for systematically evaluating the

adequacy and feasibility of an informally produced G-

R model is a key intended benefit of our goal sketching

technique; especially since for our purposes (with our

assumption of a incomplete information) structural

completeness is only possible if the analyst places

assumptions and, or very low precision GOPs into the

rationale. A G-R model constructed this way, out of

necessity, is a rich resource to draw on to promote

informed negotiation among the stakeholders.

3

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

3. Goal Sketching Technique

In this section we present the details of the

technique so far developed through our programme of

action research. We outline a methodology for using

the technique and then proceed to particular details

concerning the support of building refinement

arguments.

3.1. Using the Technique

Our goal sketching technique starts with the

creation of a goal graph which expresses the high level

motivations behind the intention to develop the

software. This is typically a coarse but structurally

complete sketch of what is understood about the overall

intention. In general there is often a vague long-term

vision coupled with some short-term clarity. A series of

staged developments are planned using the system

graph as a guide. This compliments the practice of

sprinting in Scrum [14], and the increments in an

iterative and incremental development process [15].

Each stage is preceded by taking a portion of the

system graph in its current state and refining it so that

there are no remaining vague intentions. This is called

the ‘stage graph’. In the execution of any stage it is

possible that the stage graph will be updated as a result

of the usual agile practice of improving the quality of

the work in hand. At the completion of each such stage

its graph is used to update the system graph. Thus the

true goal graph emerges by successive iterations and

refactoring and so becomes the inventory, recording the

associated rationale for posterity.

When preparing each stage the goals are refined

only as far as necessary for the stage in hand (a

technique called lazy refinement) relying on stories, use

cases or activity sketches. (This does not preclude the

use of formality as problem frames [16] or temporal

logic etc may be used when necessary.)

We advocate using pair sketching, in which the

goal graphs are sketched by two people working

together (often the analyst with a stakeholder) to ensure

that the refinement argument is sound, in a manner akin

to pair programming. Once an acceptable goal graph

has been produced it is incorporated into the system

goal graph. The system graph may need to be re-

factored for the next stage.

The goal graphs are exported to a database for

subsequent analysis. From the database we can produce

matrices to expose composition issues which may arise

from cross-cutting concerns for analysts, designers,

developers and testers.

3.2. Refinement Argument Supports

In our goal sketching the GOPs are written in

natural language and must satisfy the refinement

argument criterion. This is a very simple principle but

in practice it can be very difficult to do. Errors that we

have observed in students and would-be industrial

practitioners, and ourselves, include:-

1. Mixing two or more problem contexts (e.g. mixing

operation with construction of the system-to-be) in

a confusing argument.

2. Expressing 'milestone' refinement patterns [3] as

multi-level rather than single level refinements.

This leads to an invalid though seemingly

structurally complete G-R model.

3. Volatile functional refinement arguments that

depend upon the current outlook of the analyst.

As mentioned above, pair sketching helps but we

have found that it is very important to to be mindful of

four aspects of a GOP, which we list Table 2 as support

to the practitioner.

Table 2. Aspects of GOPs

1. The type of proposition: e.g. assumption or

objective.

2. The proposition owner: e.g. a stakeholder role or

a system.

3. The problem context of the proposition in terms

of where operationalization can be enacted; e.g.

in the domain of the operating system-to-be or

the domain of the development of the system-to-

be.

4. The refinement level: i.e. to try to keep all sub-

propositions of a proposition at similar levels of

abstraction.

These supports are are discussed in the following

sub-sections.

Type. A goal oriented proposition is a refutable

statement written in natural language which as shown

in Figure 2 we specialize into five types.

4

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Figure 2. Goal types

/m/ is a motivation goal representing the agreed-

upon concerns of the stakeholders that motivate the

project; in terms of KAOS they are likely to be “soft

goals”. They may harbour refinement implications that

require refinements in different problem contexts with

different time-spans (e.g. project time or system run-

time). Even when they apply to a single context they

can only be satisficed [17] and their refinement should

include an assumption giving the justifying world-view

(similar to weltanschauung [18]). For example the

refinement of 'achieve greater efficiency' might include

goals such as 'provide data at point of need' but it

would depend upon an assumption linking the

provision of data to greater efficiency.

/b/ is a behavior goal explicitly required by the

stakeholders or by force of circumstance and necessary

for completeness. It 'affords' [19,5] an option or

freedom to a user, whether or not the user chooses to

exploit it. It combinines the capability and condition

elements of a 'well formed requirement' in the IEEE

recommendations on systems requirements [20].

/c/ is a constraint: a nonfunctional requirement that

limits the possible system implementation solutions. It

is a factor that is imposed on the solution by force or

compulsion and may limit or modify the design

changes. This is consistent with [20].

/a/ is an assumption: something that is stated on

trust but is necessarily true for the rationale to present a

defensible argument; i.e., it is 'load bearing' [21]. An

assumption may be a simplifying argument used to find

an acceptably easy goal refinement argument or it may

be a KAOS domain property [3].

/o/ is an obstacle used as in KAOS to oppose the

satisfactory fulfilment of any other proposition. These

propositions are not discussed further in the following

models as they remain substantially as used in KAOS.

The /b/ and /c/ propositions are strictly bound to

system run-time whereas the /a/ propositions may be

either project or run time.

Problem Domains and Context. Jackson ties

requirements statements to domains in a rigorous

fashion [16] as illustrated in Figure 3 where the

requirement is understood as referring to phenomena in

the domain.

Figure 3. Requirements context

A requirement straddling multiple domains is

shown by a dashed line to each [16] and the associated

phenomena are referenced exclusively in each domain.

In goal sketching we advocate tying GOPs to their

relevant domains in a similar fashion. In such diagrams,

see Figure 4, we use {} to show that we mean a GOP.

Figure 4. GOP context

The domain may be a large domain such as a

business operation. Inside the business operation there

might be sub-domains to which we attach lower level

GOPs. It is in the nature of /m/ propositions that they

may imply references to phenomena in the domain with

different enactment contexts. We identify three such

contexts in Table 3.

Table 3. Three common contexts

1. The system-to-be.

2. A system to manage the life-cycle of the

system-to-be.

3. The project to manage business change and

the construction of the 'kit' [22].

In goal sketching we choose goal refinement steps

that lead rapidly to referencing phenomena of single

contexts. This technique helps to distinguish

constituent domains that would obfuscate the G-R

graph.

Starting with an agreed outer problem domain the

problem context is established by attaching the root

GOPs and any global constraints and assumptions (as a

set of /m/, /a/ and /c/). This can be refined by then

exposing the important inner domains and then

attaching agreed GOPs (this time possibly including /b/

types). This technique echoes the work in [23] where

problem frames are used to guide a goal refinement

using business process modelling but is more

lightweight.

5

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

We find that just as the goals require sketching

(especially early-on) it is usual to sketch the domains;

again adding precision on a just good enough basis.

Owner. In colloquial use a goal would be owned by a

person (or group of people). For example: Owner “To

make a profit.”; or user “To reserve a book”. This kind

of ownership dominates use-case based GORE [4,5]. In

branches of system engineering it may also be said that

a goal is owned by the system (or indeed a machine) in

the sense that it is an embedded objective. For

example:the goal of a heat seeking missile is to find its

target. This is the usual kind of ownership in KAOS.

Generally in goal-sketching ownership passes from

people to system as operationalization is approached.

Structurally Complete Refinement. In goal sketching

the aim is to capture the logic moving from /m/ to

operationizable propositions which will be a collection

of /b/ and /c/ propositions and en passent it may be

necessary to add assumptions /a/. We apply the

following rules to guide the construction of a

structurally complete refinement such as illustrated in

Figure 1.

Table 4. Goal sketching rules for a structurally
complete G-R model

1. The roots of a goal graph must be /m/

propositions.

2. The leaves of a goal graph can only be /b/

and/or /c/ and/or /a/ propositions.

3. Every leaf of type /b/ or /c/ must have a complete

set of responsible actors (see below) assigned.

4. Any /b/ or /c/ proposition may be refined into

combinations of sub-propositions of types /b/

and/or /c/ and/or /a/ in the same temporal and

contextual mode

5. Any /a/ may only refine into /a/ sub-propositions.

6. Any /m/ may refine into

i. /m/ sub-propositions, or

ii. /b/ and/or /c/ and/or /a/ sub-propositions.

In case (ii) there must be at least one /a/ that

expresses the binding/justifying world view.

7. Refinement arguments must satisfy the

refinement argument criterion.

Note that as information improves it may become

necessary to convert one type of proposition into

another and then reconsider the refinement arguments

and reapply the rules. This is typically the refactoring

mentioned above in terms of stage and system graphs.

3.4. Lazy Refinement

Refinement should always halt when just enough

detail is exposed to allow safe operationalization.

Hence in goal sketching the degree of refinement

applied is kept to a minimum. Often, especially early in

a project, it must be halted owing to a lack of

information. In terms of sprint based agile development

there is an implied set of such goals pending

exploration at a suitable time in the future. But it is

important to capture such lack of information in a

context that is informative to the sponsors and other

stakeholders. In goal sketching this is left as a

refinement TBD (to be determined) and is explicitly

recorded on the graph.

In the interests of efficiency refinement can be

halted at a relatively abstract level where the

implications of operationalization are well known; i.e.

they are normal [24] to the community (the key

stakeholders). On the other hand where they are not

understood (perhaps radical [24] to the community) a

more rigorous refinement may be called for; this can be

provided as problem frames and,or fully dressed use

case analysis [4] and,or the usual methods of KAOS.

3.3. Operationalization

In Figure 1 the actors (aka agents in KAOS) are

entities of the system-to-be that can take responsibility

for the necessary enactments of the leaf goals. For

example: Actor 1 is responsible to enact, effect or be

whatever goal proposition S requires. In this case no

other actor is involved. In the case of goal proposition

R it requires two actors in collaboration. The nature of

the collaboration will be interpreted from the

specification of R.

For lazy refinements the specification may be

informal such as: a simple statement, a software

engineering template specification [25], an eXtreme

style story or a use case. It is typical in lazy refinement

to have multiple actors collaborating.

In full refinement, as in KAOS, the objective is to

have a unitary relationship between a requirement or

expectation (equivalent to goal propositions) and an

agent (actor in goal sketching). Alternative methods of

achieving and specifying full refinement, which we

prefer include Jackson's Problem Frames [16], activity

diagrams [8] and use-cases. These are also illustrated in

the example below.

6

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

3.5. Composition

When creating clear refinement arguments goal

sketching favors a strict policy of separation of

concerns. This implies decomposition and thus

necessitates a late re-composition [16] as cross-cutting

concerns (e.g. collaboration between responsible agents

to indicate necessary superimposition of capabilities,

constraints and conditions). In our experience this

approach minimizes the number of goals with multiple

parents and thus reduces visual tangling in the goal

graph. The price for this benefit is that the composition

concerns are not explicit. However a lightweight

solution is to annotate the assigned responsibilities

using a system of composition tags (see Figure 5). In

contrast KAOS uses object and operation models to

accommodate composition concerns. This can be

rigorous but tends to be heavyweight.

Figure 5. Responsibility annotation

Figure 5 shows three versions of the responsibility

assignments. Each is shown as an oval with the name of

an assigned agent followed by a full stop. The

architectural precision of the agent depends upon the

underlying domain analysis being used; e.g. an object

in a UML model or a sub-domain of a Jackson context

diagram [16]. An optional system of semantic tagging

is allowed after the full stop. Each tag is written in the

form “<MYTAG>” or <@MYTAG>. Any

responsibility with a given tag (say <MYTAG>) is a

target for composition with a similar named tag

including the “@”. Thus a responsibility marked

<@MYTAG> composes with all responsibilities

tagged with <MYTAG>; i.e. the goal associated with

the ‘@’ symbol is added to or changes the goal

associated with the other responsibilities. This feature

allows strict separation of cross-cutting concerns and

subsequent re-composition. The semantic tags are

created and managed by the analyst either manually or

with tool support.

Any conflicts that emerge through this composition

will need to be resolved by design or by negotiation.

3.6. Accelerating Functional Goal Sketching

In [7] and [8] we mention problems that people may

experience with functional goal refinement: for

example the tendency to interpret 'how' as project flow

and elaboration that is unjustified in the circumstances.

In [8] we introduce the idea of dual use of goal graphs

and activity diagrams. The former give coherence and

the latter facilitate refinement of functionality.

The approach depends on the idea that an activity

diagram has a goal that is satisfied by its activities plus

a special goal to guarantee its logic (guards, flow etc).

Thus an activity diagram such as Figure 6can be said to

have an objective GO and will be a goal proposition of

type /b/. Similarly the objectives of the activities A1,

A2 and A3 are G1, G2 and G3. This gives the

corresponding goal graph shown in Figure 7.

A1

A2 A3

 [Guard]

Figure 6. An activity diagram representing a /b/

It is important to note the goal in Figure 7 'Impose

Process A' as a /b/ type proposition. Its purpose is to

represent the need to guarantee the flow of the activity

diagram as a leaf goal in the structure. If the activity

diagram is informally drawn then the logic to be

guaranteed in 'Impose Process A' can be

correspondingly informal (the use of such informal

sketches is an area we are currently investigating).

 G0

G2 G3G1
Impose

process A

Figure 7. Goal graph corresponding to Figure 6

If any of the activities A1 to A3 in Figure 8 have

sub-activities these are appended to their goals in

Figure 6. In this way nesting of activities is a dual of

goal refinement. This approach has been used in one of

our industrial examples.

7

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

4. Example

To illustrate the technique we will use an example

involving the calculation of body mass index.

The customer, WeighCom, wishes to develop new

walk-on scales that can be installed in public places

and used by any passers-by to measure their weight,

height and body mass index (BMI) and receive a

business card sized printed record on the spot.

Normal operation is for the user to step onto a

pressure mat facing an instruction screen and stand

under an acoustic ranger. The measurements are

made once the user pays a fee of 1 Euro into a

receptor.

WeighCom specifies that the solution must use

certain components: pressure mat (PM); coin

receptor (CR); acoustic ranger (AR) and integrated

processor with alpha numerical visual display and

user selection touch screen (IP). All of these are to be

controlled through software using an API. These

components support an existing assembly in which

the whole is weather proof and vandal proof.

WeighCom currently installs personal weighing

equipment in public places for coin operated use by

the public. They have an excellent reputation, which

is of paramount importance to them, for always

providing a reliable service or repaying. They have a

call centre which customers can call if their

installations appear to be malfunctioning.

Figure 8. Problem statement

Scrutiny of the problem statement suggests the

following primary concerns:-

● Operation in public places.

● Normal operation (i.e. accepting payment

through to printing a card)

● Use of prescribed components.

● WeighCom's reputation.

From the problem statement we can also reasonably

place these in context as shown in Figure 9 where we

can see that there are likely to be concerns associated

with the call centre. Further we might speculate that

there is a maintenance problem domain for which we

have no expressed concerns. Table 3 shows that we

might associate the use of prescribed components to an

additional problem domain concerned with the project

but since there are no other concerns stated here we

will ignore the project problem domain. We also have

no express concerns about an installation problem

domain; which would probably affect a maintenance

domain. What matters is that we can agree with the

stakeholders that Figure 9, with the attached

assumptions, represents the problem under discussion.

Figure 9. Context of WeighCom goals

The corresponding G-R modelling is shown in the

first level refinement in Figure 10 where all the GOPs

are owned by stakeholders.

 Satisfy
primary

concerns /m/

Satisfy concerns
for operation in

public places /m/

Satisfy

reputation
concerns /m/

Use prescribed
components /c/

Satisfy normal
operation

concerns /m/

Project,
maintenance

and installation
concerns are
TBD and are

ignored /a/

TBD
 /a/

TBD
 /a/

Execute the
normal operation

story. /b/

Scales.
<@ALLOP>

Scales, User.
<ALLOP>

Figure 10. Structurally complete G-R model

8

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

If and when the assumption 'project maintenance..'

is reversed a separate refinement argument would be

created for other problem domains (project,

maintenance etc.) and these are likely to crosscut as

constraints on the responsibilities in Figure 10 .

Figure 10 has been made structurally complete by

adding a lazy refinement ('execute..') and assumptions

declared TBD. In this case the transition between the /

m/ and /b/ goals has not needed a weltanschauung

assumption as the /m/ goal itself applies to the scales

domain in which all activity in the /b/ goal takes place.

Note also that the responsibility to use prescribed

components rests on the actors of the scales. The tag

ALLOP was created, and catalogued, to refer to all

normal operation behavior.

The refinement of the 'execute...' is an example of

functional refinement. There are two potential

problems (see Table 2) when creating a stable

refinement argument at consistent levels of abstraction

and getting business stakeholders to review the

argument. This is a good opportunity to use the activity

diagram technique. A plausible analysis is shown in

Figure 11.

Measure

Advertise whilst
waiting

(Story S1)

Initiate
Transaction
(Story S2)

Print results
(Story S3)

Display
useful

messages
(Story 4)

Monitor and
manage

operational
error states

[Paid]

[Cancelled]

Figure 11. Normal operation story as an
activity diagram sketch

Figure 11 itself is a sketch as there is no pretence at

full rigour. However it is suitable for discussion with

stakeholders to reveal the required activity. Thus the

activity diagram allows the stakeholders to design a

solution rationale. Each activity must be supported

either by a specification (here stories have been used)

or a further level of refinement (e.g. as in 'measure').

Our experience is that this approach is easier for

stakeholders to comprehend than looking at mixed

'case' and 'milestone' KAOS refinements. The two

floating activities are read as occurring concurrently

with all other activities between the fork/join lines.

Figure 12 Shows all the activities in Figure 11 plus

an 'impose..' goal as the refinement of 'execute..' in

Figure 10.

 Satisfy normal
operation

concerns /m/

Impose: Normal
Operation AD

logic /b/

Initiate
Transaction

(Story S2) /b/

Measure

Print results
(Story S3)

/b/

Monitor and
manage

operational
error states

(TBD) /b/

Display useful
messages

(Story S4) /b/

Scales.
<@NO, ALLOP>

User,Scales.
<NO, ALLOP>

Scales.
<NO, ALLOP>

Scales.
<NO, ALLOP>

Figure 12. Goal sub-refinement for Figure 11

The 'impose process..' goal in Figure 12

emphasizes the need for the glue logic and can be

developed to an appropriate level of precision (on a

scale from leaving it to the developer's intuition, to

detailed narrative, up to fully developed UML or

formal logic). The 'measure' goal is further refined (not

shown in detail here). The figure will be structurally

complete provided that the refinement of 'measure' is

actually complete and that the 'monitor and manage.'

goal is replaced by an assumption that it is not to be

implemented in the current stage. All these matters

being negotiated and prioritized as apart of stakeholder

negotiation for a stage of the development.

An example simple story is provided in Figure 13.

The level of precision shown would be enough for

many developments. If more precision becomes

necessary then the story may be replaced with one in

more detail, a use-case, a problem frame or by a full

KAOS refinement.

9

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

“When a customer pays €1 into the CR they may

either confirm the payment or cancel the payment. If

they cancel then the CR refunds the payment. If they

confirm then the service is initiated.”

Figure 13. Transaction initiation (Story S2)

This simple example has allowed a demonstration

of the techniques. In the next section concerning real

projects we can observe how well we meet the

objectives set down in Table 1.

5. Industrial Projects

We have improved our method using a number of

industrial applications. These include products

supported by venture capital, a management

information system (MIS) for a food processing

company, a university infrastructure project and

support for services in healthcare. We start here with

some general observations and then look at some

details of a healthcare project and a venture capital

project. The first is chosen because it seems

representative of the general method and the second

because it makes a slightly different use of our method

and shows a situation that often arises in agile backlog

driven projects. Most of the projects have been

mentioned in [7,8,9].

The staffing profiles for these projects involved

managers, executives, developers and testers; all with

very different perspectives and analytical abilities. In

all cases the managers and executives were not

involved with detailed requirements analysis, whereas

the developers and testers were.

The analyst (one of the authors) worked with key

staff members (project and/or product managers). From

the beginning it was clear that our industrial colleagues

were not familiar with goal based requirements

methods. In order to reach out to the executive and

other non-technical stakeholders, whose participation

was essential, we developed an approach which used

the familiar sales terminology: 'pain' (things that are

presently unsatisfactory in the problem domain) and

'gain' (new opportunities to improve the problem

domain) [26]. To this we added 'maintain' (things that

should not change as a result of dealing with the pain

and gain concerns).

Thus armed, our first step involved analyzing the

problem domain and the stakeholders' concerns (i.e. the

root GOPs). Inevitably lower level concerns (design

fragments, particular functions etc) arose but they were

put aside until the root problem was agreed. One of our

projects was a retrospective study and it is clear that the

project lacked shared understanding.

We find that the cost of reaching an agreed problem

domain and root GOPs is only a few staff days unless

there are conflicts that need to be resolved. The smaller

(health-care) projects took only a few hours to reach

this point. Importantly what they all established firmly

were the 'load bearing' assumptions.

Figure 14 illustrates the root problem for one of the

healthcare projects. This project was motivated by a

benefactor organization wishing to sponsor a tool to be

supplied to assist the care of patients with a particular

disease. A group of physicians (the Forum) were to be

the initial beneficiaries. They would be called upon to

help specify an initial product, limited by budget, and

would use the product as a support to their normal

consultations and supplementing their usual medical

system (MedSys).

Figure 14. The agreed problem statement

The figure shows a key simplifying assumption

arrived at after negotiation and constraints arising from

data confidentiality and security protocols and from the

wishes of the benefactor and Forum to have their roles

acknowledged in product branding (logos and style

etc). All these concerns attached to the outside of the

problem domain box affect (cross-cut) everything

inside the box. A research centre (RC) and the Forum

Practices are the principal sub-domains of the problem

domain and inside the Forum Practices are a Master

repository (in one of the practices) and the MedSys and

medical staff sub-domain (in all of the practices as

10

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

indicated by notation {Practice}). Inside the problem

domain box are more localized concerns including a

concern about 'Kit Installation'; an example of a

domain context that has a different time-scale to the

normal system-operation (see Table 3).

Figure 14 was constructed on the basis of a two

hour discussion between stakeholders and remained

stable throughout the development. It satisfied our

third objective (Table 1)and laid a foundation for the

first. In our earliest attempts at goal sketching we did

not realize the importance of first obtaining an agreed

problem domain and concerns diagram and invariably

paid the price of taking much longer to establish root

GOPs and this compromised our second objective.

After achieving Figure 14 it was a straightforward

process to finish a structurally complete GR model by

pair sketching and cross-checking with the

stakeholders. We proceeded rapidly to a complete G-R

model (taking about one day) but here whilst being

confident that we are satisfying three of our objectives

for goal sketching it must be noted that the third is

challenged as it remained fully understandable only to a

subset of stakeholders. The situation was remedied by a

two stage process: (1) talk through the contents and (2)

debate the correctness of the contents. Nevertheless the

project manager could always use the representation to

ensure that the right questions were asked and to ensure

that the key assumptions were recorded.

 List the cohort of

interest for the

usual

prescribers . /m/

Do 'List

Management

Process ' (See

LMP_AD)

The at risk list shall

comply with the

'Practice at Risk List '

Specification /c/

The ‘List Management

Process’ shall be

restartable on

demand . /c/

Assume the

user will

restart the 'List

Management

Process ' to fit

practice

routine. /a/
User, Tool, MedSys,
<LMP, XOUT, PARL>

Tool,<@PARL> Tool,<@LMP>

Figure 15. Figure 2 G-R model for one concern of
Figure 14

Figure 15 illustrates one of the concerns from Figure

14and amounts to about 1/6th of the whole G-R model.

It includes the responsibilities (which we usually only

expose to the technical stakeholders): The actor

MedSys is a sub domain of the Practice Domain. The

semantic tag XOUT reflects cross-cutting of the

regulatory concerns. The PARL and LMP tags show

constraints acting on the “Do 'List ..” goal. This

particular goal is interesting as it is an example of

hiding a detailed refinement that was constructed and

negotiated using the activity diagram approach shown

in Figure 16. The full G-R accommodates this figure in

the manner illustrated in the scales example above.

Collect Coarse
Cohort (see Coarse

Cohort Specification)

Create new Coarse
Cohort tables (See
Create New Coarse

Cohort)

Append and update
Coarse Cohort tables

(see Append and
Update rules);

preserving prior DPR
edits.

View and edit COI
(See DPR

Specification)

[Coarse Cohort
Imported to Tool]

Expect the user initiate
these activities in an ad
hoc, repeatable manner
driven by practice
timetable. /a/

Export practice
‘at risk’ list

<PARL>

[End]

[Restart]

[Roll back]

Assume that Roll-
back to state prior
to appending and
updating Coarse
Cohort tables is

not required. /a/

Export
outcomes slot

<XOUT>

Figure 16: List management process

There is a significant simplifying assumption in

Figure 16 agreed by all stakeholders for this stage of

11

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

development (to set aside roll-back). The need to

surface such assumptions can easily be missed in less

disciplined approaches. But where feasibility and

adequacy are in conflict, as they were here, it is crucial

to help the stakeholders make a decision. Figure 16 was

reviewed on several occasions by the stakeholders; and

thus improves our score on our third objective (Table

1).

Our tool support for our method allows us to

annotate the G-R model. Included is a traffic-light

annotation on each GOP to indicate our confidence in

the refinement argument and/or its feasibility. Further

we can export the leaves of the model into a project

management spreadsheet to define the developments

and procurements to be accomplished and the load-

bearing assumptions to be monitored. This has been

helpful to project managers.

In one of our venture capital supported

development projects the main use of our method was

to guide the development of acceptance testing. The

test team found that working from a requirements

backlog failed to provide sufficient understanding of

the behavior that was being warranted by their product

(see [8]. After several backlogs driven sprints the

coherent picture of the intended user experience

became unclear. This made test design very difficult

and led to problems of product regression. The remedy

was to use activity diagrams in the manner described

here to reverse engineer the entire functionality of the

product. This produced a set of four level nested

activity diagrams upon which the acceptance tests

could be designed. Converting these to a G-R model

showed that they needed to pay more attention to the

'Impose Logic' goals described in previous sections. It

also allowed the cross-cutting effects of the non-

functional requirements to be included systematically

in the tests. Recently the company has applied formal

inspections, guided by the G-R model, to guarantee that

the activity diagrams comply with all engineering and

product management stakeholders' expectations. We

will report further on this separately.

6. Related Work

We have mentioned some related work in the

introduction. In addition we comment here on related

requirements engineering material.

Work has been done on how some of the best

practices of requirements engineering could enrich

agile approaches [27]. The practices described include

customer interaction, requirements analysis, non-

functional requirements and managing change. The

paper suggests that ways of adapting requirements

management practices for agile processes are needed.

However note that [27] simply describes how to

include requirements engineering methods in an agile

development process, rather than describing a method

for requirements engineering that is agile. Similarly

Nawrocki et al propose a way in which documented

requirements could be introduced into XP through the

use of automated tools, the Web and on-line

documentation [28].

Cao and Ramesh have reported on how agile

requirements engineering differs from traditional

requirements engineering [29]. Their study showed

that the agile case is more dynamic and adaptive than

the traditional.

Orr suggests that it is possible to combine

requirements and agile development by using up-to-

date hardware and sophisticated graphical software

[30]. Prototypes are suggested as a way to improve the

process of defining requirements. However this work

emerged from practice rather than from a theoretical

technique such as goal-oriented requirements

engineering.

Ambler describes an agile approach to modeling

requirements, utilizing approaches such as the planning

game of Extreme Programming and the Scrum

methodology [31]. Similarly Leffingwell and Widrig

discuss an agile requirements technique that is based on

use-case specifications [32]. They also provide

guidelines for selecting which requirements method

(extreme, agile, or robust) is right for a particular

project. However, again these approaches do not have a

formal method such as goal-oriented requirements as a

basis.

7. Further Work

The work reported here concerns the basics of the

goal sketching technique. We are undertaking the

following investigations to advance the work:-

1. Application to more industrial projects to confirm

the applicability and practicality of the method for

use in Agile projects.

2. The relationship between SSM[18] and the problem

of transforming stakeholders concerns into goals.

3. Development of tools to accelerate the speed of

sketch drafting and refactoring. In this area we are

currently exploring the use of UML diagrams such

as activity diagrams as these are well suited to the

problem of determining behavioral goal refinements.

4. Development of metrics and supporting tools to

exploit the structure of goal graphs in conjunction

with expert judgments to quantify the adequacy and

12

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

feasibility of the intention expressed in a goal graph.

It is anticipated that this will contribute significantly

to the better planning of project stages and the

improved sharing of expectations amongst the key

stakeholders.

5. Tools to export goals sketches into KAOS for cases

that justify upgrading from a goal sketch to a

rigorous KAOS analysis.

8. Conclusion

In this paper we began by observing the problem of

helping stakeholders set realistic expectations and take

decisions. The problem is particularly pronounced in

agile projects but is not limited to them. We have

proposed a disciplined method of goal responsibility

modelling as the basis for supporting stakeholders but

also argue that success depends upon a set of practical

objectives. We have also presented a goal sketching

technique aimed to satisfy these objectives. Our

experience shows that goal sketching in its present state

performs well against our objectives although more

validation is still needed.

The emphasis of goal sketching has been to provide

a disciplined method of appraising the validity of a set

of requirements for a project. Our method can be used

alongside other requirements methods (especially use-

cases) and can play an important part in reinforcing the

coherence of agile requirements engineering based on

backlogs.

9. Acknowledgements

The authors would like to acknowledge their

industrial collaborators. In particular: Nick Gradwell,

Product Manager of ClearPace Ltd; Dr Steve Moyle

and James Wilson of Secerno Ltd., Ian Lycett KTP

Associate at Image Farm Ltd; and Sean O’Mahoney,

Martin Roskell and Richard Olearczyk of Oskis

Informatics Ltd.

10. References

[1] D. Nevo, and M. Wade, “How to avoid disappointment

by design”, Communications of the ACM, 2007, Vol

50, No.4 .

[2] A. Desilets, “The Agile Physician”, letter, IEEE

Software, vol. 24, No. 3, 2007.

[3] A. Dardenne, A. van Lamsweerde, and S. Fikas, “Goal-

Directed Requirements Acquisition”, Science of

Computer Programming Vol. 20, pp. 3-50, North

Holland., 1993, pp. 3-50.

[4] A. Cockburn, Writing Effective Use Cases, Addison-

Wesley, Boston, 2001.

[5] I.F., Alexander, and R. Stevens, Writing Better

Requirements, Addison Wesley, 2002.

[6] A.van Lamsweerde, "Goal-Oriented Requirements

Engineering: A Round trip from Research to Practice",

12th IEEE International Requirements Engineering

Conference (RE'04), 2004.

[7] K. Boness, and R. Harrison, "Goal Sketching: Towards

Agile Requirements Engineering," ICSEA,

International Conference on Software Engineering

Advances (ICSEA 2007), 2007, pp.71-6.

[8] K. Boness, and R. Harrison,"Goal Sketching with

Activity Diagrams," ICSEA, International Conference

on Software Engineering Advances (ICSEA 2008),

2008

[9] K. Boness, and R. Harrison, and A. Finkelstein, “A

lightweight technique for assessing risk in requirements

analysis”, Software, IET, 2008, Volume: 2, Issue: 1

pp. 46-57.

[10] I. Sommerville, and P. Sawyer, Requirements

Engineering – a good practice guide, Wiley,

Chichester. 1997.

[11] S. Adolph, and P. Bramble, Patterns for effective Use

Cases, Addison-Wesley, 2003.

[12] A.M. Davis, Just Enough Requirements Management,

Dorset House Publishing, New York, 2005.

[13] T.P. Kelly, and R.A. Weaver, “The Goal Structuring

Notation –A Safety Argument Notation.” Proceedings

of the Dependable Systems and Networks 2004

Workshop on Assurance Cases, July 2004.

[14] L. Rising, and N. Janoff, “The Scrum Software

Development Process for Small Teams,” IEEE

Software July/August 2000.

[15] B. Boehm., “A Spiral Model of Software Development

and Enhancement”, Computer, May 1988, pp. 61-72.

[16] M. Jackson, Problem Frames: Analysing and

Structuring Software Development Problems, Addison

Wesley, 2000.

[17] J. March, and H.A. Simon, Organisations, New York:

Wiley, 1958.

[18] P. Checkland, and J. Scholes, Soft Systems

Methodology in Action, John Wiley and Sons, 1990.

[19] J. Gibson, “The Theory of Affordances”. In Perceiving,

Acting, and Knowing, Eds. R. Shaw, and J. Bransford,

ISBN 0-470-99014-7. 1977.

[20] IEEE, “IEEE Guide for Developing System

Requirements Specifications” IEEE Std-1223 (1998).

[21] J.A. Dewar, and C.H. Builder, et al., "Assumption-

Based Planning: A Planning Tool for Very Uncertain

Times", Santa Monica, RAND. 1993.

[22] I. Alexander, “A Taxonomy of Stakeholders,” Int’l J.

Tech. and Human Interaction, vol. 1, no. 1. 2005.

13

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

[23] S.J. Bleistein, K. Cox, and J. Verner, “Requirements

Engineering for e-business Systems: Integrating

Jackson Problem Diagrams with Goals Modelling and

BPM”, Proceedings of 11th Asia-Pacific Software

Engineering Conference (APSEC'04) IEEE, 2004.

[24] W. G. Vincenti, “What Engineers Know and How They

Know It:”, Analytical Studies from Aeronautical

History: The Johns Hopkins University Press, 1990.

[25] T. Gilb, Principles of Software Engineering

Management, Addison-Wesley, 1988.

[26] S. Deep, and L. Sussman, Close the Deal: 120

Checklists for Sales Success, Sandler Institute.

[27] A. Eberlein, and J. Cesar Sampaio do Prado Leite,

“Agile Requirements Definition: A View from

Requirements Engineering”, International Workshop on

Time-Constrained Requirements Engineering TCRE'02,

Essen, Germany, Sep, 2002.

[28] J. R. Nawrocki, M. Jasiñski, B. Walter, and A.

Wojciechowski, “Extreme Programming Modified:

Embrace Requirements Engineering Practices”,

Proceedings of the 10th Anniversary IEEE Joint

international Conference on Requirements Engineering

(September 09 - 13, 2002). RE. IEEE Computer

Society, Washington, DC, 303-310.

[29] L. Cao, and B. Ramesh, “Agile Requirements

Engineering Practices: An Empirical Study”. IEEE

Software. 25, 1 (Jan. 2008), 60-67. 2008.

[30] K. Orr, “Agile Requirements: Opportunity or

Oxymoron?” IEEE Software, 21, 3 (2004), 71-73.

[31] S.W. Ambler, Agile Modelling: Effective Practices for

eXtreme Programming and the Unified Process, John

Wiley & Sons, 2002.

[32] D. Leffingwell, and D. Widrig, 2003 Managing

Software Requirements: a Use Case Approach. 2.

Pearson Education.

14

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Verification of Evidence Life Cycles in Workflow Diagrams with Passback Flows∗

Osamu Takaki, Takahiro Seino, Izumi Takeuti, Noriaki Izumi and Koichi Takahashi
National Institute of Advanced Industrial Science and Technology (AIST)

2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan
{o-takaki, seino-takahiro, takeuti.i, n.izumi, k.takahashi}@aist.go.jp

Abstract

We introduce the Evidence Verification Algorithm (EVA)
in this paper, which verifies consistency of life cycles of ev-
idences (evidence documents) in workflow diagrams. We
used the AIST Workflow Language (AWL) as the syntax for
workflow diagrams, which has additional information about
evidences. A workflow diagram of AWL is essentially the
same as a Unified Modeling Language (UML) activity dia-
gram. EVA verifies the existence of consistent sequences of
flows between the occurrences of evidences in a workflow
diagram. It is important to verify consistency of life cycles
of evidences, since some defects in the workflow diagram
itself can be found by checking inconsistent life cycles of
evidences in a workflow diagram.

Keywords: workflow diagram, verification, evidece life cy-
cle

1. Introduction

We define a consistency property of life cycles of evi-
dences described in a workflow diagram in this paper and
introduce an algorithm that verifies the consistency prop-
erty. Here “evidence” is a technical term which means an
annotation on a workflow diagram, which denotes a doc-
ument on which information is written, and/or with which
something is approval, during the process of an operation.
Workflow diagrams play a central role in describing busi-
ness processes in the development of large-scale informa-
tion systems, especially in analyzing the requirements of
these systems. There have been several standard workflow
languages such as BPMN [1] or XPDL [15], and numerous
investigations into methodologies of verifying several con-
sistency properties in workflow diagrams (e.g., see [12]).

∗The authors are grateful to anonymous referees for their fruitful com-
ments. This work was supported by ’Service Research Center Infrastruc-
ture Development Program 2008’ from METI and Grant-in-Aid for Scien-
tific Research (C) 20500045.

However, verifying consistency properties in the life cy-
cles of documents, which are described in workflow dia-
grams, has not been sufficiently investigated. In large or-
ganizations such as large enterprises or governments, doc-
uments such as order forms, estimate sheets, specification
descriptions, invoices, and receipts play significant roles
for purposes of feasibility, accountability, traceability, or
transparency of business. Tasks involve workers with dif-
ferent roles in such organizations, and these are carried out
by circulating documents. Such documents are considered
as kinds of evidences for the purposes above. We describe
such documents with evidences in this paper. For simplic-
ity, we often call such documents themselves “evidences”.

Some evidences require office workers to carry out vari-
ous tasks. Some evidences are manuals that teach workers
how to conduct tasks. Some workers check evidences and
sign them in when they accept their content. Therefore, nu-
merous actual operations are currently based on evidences
even if they are carried out with information systems. Con-
sequently, it is important to consider workflow diagrams
in which one can concretely and precisely describe the life
cycles of evidences to analyze requirements in developing
large-scale information systems.

When someone develops workflow diagrams, they often
make errors in describing evidences, because their states are
subtly affected by other evidences around them. Moreover,
many inconsistencies in evidences come from inconsisten-
cies in constructing the diagrams. The larger a diagram be-
comes, the harder it is to find inconsistencies in evidences
that is in it.

However, verifying the consistency of evidence helps us
to confirm correctness of the diagrams. In fact, we can find
numerous defections and redundancies in flows by finding
inconsistencies in evidences around the flows. Therefore, it
is worth verifying evidences formally and/or automatically.

We define the consistency property of life cycles of ev-
idences in a workflow diagram in this paper, which is de-
scribed with a new language for workflow diagrams called
AIST Workflow Language (AWL), and introduce the Evi-
dence Verification Algorithm (EVA), which verifies the con-

15

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

sistency property of a given workflow diagram.
A workflow diagram of AWL is essentially the same as a

Unified Modeling Language (UML) activity diagram. The
control flows in the workflow diagrams of AWL as well as
major workflow languages are described by arrows. More-
over, one can describe how to control evidences by using
the arrows in the workflow diagrams of AWL. Since most
operations are carried out with some specific evidences, it is
rational for a single arrow to denote both a control flow and
a flow of an evidence. By describing the flows of evidences
with appropriate control flows, one can easily describe and
understand the life cycles of the evidences. This paper tar-
gets AWL instead of UML, because AWL is used in the ac-
tual development of large-scale information systems at the
National Institute of Advanced Industrial Science and Tech-
nology (AIST) [9].

Roughly, the life cycles of evidences mean a series of
states of the evidences, and consistency of evidence life cy-
cles in a workflow means that the workflow has no incon-
sistent life cycles of evidences. A consistent evidence life
cycle is defined in a workflow diagram with correct struc-
ture, where “correct structureff is defined in [4] and [10].

EVA receives a workflow diagram as input data and re-
turns a list of subgraphs as output data, each of which de-
stroys a consistent evidence life cycle. EVA checks the “lo-
cal evidence conditions”, which we will define in this paper,
to verify the consistency of evidence life cycles in a work-
flow diagram.

EVA is designed to verify life cycles of evidences in
acyclic workflow diagrams. We introduce the Removing
Algorithm of Passback Flows (RAPF), where a “passback
flow” in a workflow diagram denotes a kind of flow that ap-
pears at the boundary of a “main stream” and the “replay
of an operation” in the workflow diagram in order to apply
EVA to cyclic workflow diagrams. We will define passback
flows in a workflow by using the graph-theoretical prop-
erties of the workflow diagram, and define RAPF, which
translates a workflow diagram into various workflow dia-
gram(s) with no passback flows, which can be applied to
EVA.

We implemented both EVA and RAPF, and used them to
verify workflow diagrams in actual development at AIST.
Although both EVA and RAPF target workflow diagrams
of AWL, one can easily apply these algorithms to activity
diagrams of UML.

This paper is based on a previous paper [7] but differs
from it in three respects. First, we discuss the consistency
property of life cycles of evidence and its verification algo-
rithm based on workflow diagrams in AWL instead of UML
activity diagrams. Second, we introduce RAPF to apply the
verification algorithm to cyclic workflow diagrams. Third,
we add proofs of the main lemmas, which we omitted from
[7].

Figure 1. An example of a workflow diagram

The remainder of this paper is organized as follows. We
introduce AWL in Section 2 and explain the consistency of
life cycles of evidence in workflow diagrams in 3. We in-
troduce EVA in Sections 4 and 6. We define local evidence
conditions in Section 5 and introduce RAPF in Section 7.
Section 8 explains the experimental results, by using an
implementation of EVA. The experimental results indicate
EVA could effectively be used to test and verify the consis-
tency of life cycles of evidence to substantiate the construc-
tion of the workflow itself was consistent.

2. AIST workflow language

In this section, we explain a language of workflow di-
agrams [9], which is called “AWL” (AIST Workflow Lan-
guage). AWL is defined to be appropriate to compose work-
flow diagrams for human workflow easily, and to verify
consistency of evidence life cycles in workflow diagrams.

2.1. Overview of AWL

Comparing standard workflow languages such as BPMN
or XPDL, the main feature of AWL is that in a workflow
diagram of AWL one can assign to each activity a list of
evidences (evidence documents) which are used in the ac-
tivity.

The figure 1 is a workflow diagram describing a work
of planning of a research. In the diagram, the rectangles
and the pentacle denote operations needed for planning of a
research. The figures near the polygons above denote evi-
dences (evidence documents) used on the operations.

In this example, first a researcher composes a proposal
of a research, and then a director checks the proposal. If
the proposal passes the checking, then the proposal is re-
turned to the researcher and he/she applies the budget on
an accounting and finance system based on the proposal,
and finally the proposal is stored by the researcher. If the

16

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Figure 2. Shapes of nodes in workflow dia-
grams

proposal does not pass the checking, then the proposal is
returned to the researcher and he/she remakes the proposal.

In this paper, we discuss only control flow and evidence
life cycles in a workflow diagram. Therefore, we omit no-
tions that are not relevant to control flow of workflows or
evidences. For example, in this paper we do not consider
data flows or actors in workflow diagrams.

2.2. Control flow of AWL

In the perspective of control-flow, workflow diagrams of
AWL are similar to those in BPMN or XPDL, which are the
most standard workflow languages, or workflows in previ-
ous researches such as [3], [5] or [13].

Definition 2.1 A workflow in the perspective of control-
flow denotes a directed graphW := (node,flow) that sat-
isfies the following properties.

1. node is a non-empty finite set, whose element is
called a node inW .

2. flow is a non-empty finite set, whose element is called
a flow inW . Each flowf is assigned to a node called
a source off and another node called a target off .

3. Each node is distinguished, as follows: start, end, ac-
tivity, XOR-split (branch), XOR-join (merge), AND-
split (fork) and AND-join (rendezvous).

4. Whenever a flowf has a nodex as the target (or the
source) off , x hasf as an incoming-flow (resp. an
outgoing-flow) ofx. The numbers of incoming-flows
and outgoing-flows of a node are determined by the
type of the node. We itemize them in the following
table.

incoming-flows outgoing-flows
start 0 1
end 1 0

activity 1 1
XOR-, AND-split 1 = 2
XOR-, AND-join = 2 1

Table 1. Numbers of incoming- and outgoing-
flows of a node

5. W has just one start and at least one end.

6. Activity diagrams are “simple” graphs, that is, for each
activity diagramA, and for each nodesN1, N2 in A
there isone edge (flow) fromN1 andN2 at most.
Moreover, each activity diagram hasno circle edge,
that is, there is no flow from a nodeN to the same
nodeN .

7. For a nodex in W , there exists a path onW from the
start node ofW to x, where a path froms to x denotes
a sequenceπ = (f0, . . . , fn) of flows inW such that
the source off0 is s, the target offn is x and that
the target offi is the source offi+1 for eachi < n.
Moreover, there exists an end nodee and another path
onW from x to e.

2.3. Evidence

By “an evidence” in workflow diagrams one means a pa-
per document or a data (a data file) of a document. In this
paper, we regard an evidence as a paper document, which
is composed, referred, re-written, judged, stored or dumped
in some activities. Unlike data files, an evidence does not
increase. Though one can make a copy of it, the copy is
regarded not to be the same thing as the original evidence.
Moreover, unlike data in a system multiple people can ac-
cess simultaneously, an evidence can not be used by multi-
ple people at the same time.

In formulating workflow diagrams, especially, those for
human workflows, evidences are still very important even
through a lot of paper documents are replaced by data (data
files) in information systems. In a workflow diagram of
AWL, evidences used in an activity is explicitly described
in the activity, in order to describe and verify life cycles of
evidences more correctly.

In the technical perspective, a list of evidences with
length at least 0 is assigned to an activity, and an evidence
E is defined to be a triple(e, created , removed), wheree
is a label, andcreated andremoved are boolean values. In
what follows, we fix a non-empty setE.

Definition 2.2 Evidenceis a triple (e, created , removed),
wheree is an element ofE andcreated andremoved are
boolean values, that is, they are elements of{true, false}.
For each evidenceE := (e, created , removed), we calle
theevidence labelof E.

Remark 2.3 In what follows, we denoteE by the follow-
ing ways.

(i) If created = false and removed = false, then we
abbreviateE to “e”.

(ii) If created = false and removed = true, then we
abbreviateE to “(−)e”.

17

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Figure 3. A workflow diagram of paper sub-
mission

(iii) If created = true and removed = false, then we
abbreviateE to “(+)e”.

(iv) If created = true andremoved = true, then we ab-
breviateE to “(+)(−)e”.

For a workflow diagramW , we consider an allocation
which assigns to each activity inW a string of evidences.
Note that such an allocation may assign to some activities
the empty string, i.e., the string with length 0. By using
workflow diagrams, one can express a lot of workflows. In
order to explain evidences, we give an example of a work-
flow diagram which explains how to submit a paper, as fol-
lows.

For each workflow diagramW , each activityA inW and
for each evidenceE in the string assigned toA, we callE an
evidenceonA and callA an activityhavingE. Moreover,
if the evidence label ofE is denoted bye, we often calle
the evidence labelonA and callA an activityhavinge.

Moreover, for simplicity, we often identify each evi-
dence with its evidence label. So, in what follows,we often
abbreviate “an evidence label” to “an evidence”.

Remark 2.4 In what follows, we assume that, for each
workflow diagramW and each activityA in W , A does
not have multiple evidences sharing the same evidence la-
bel. We call the conditionthe basic evidence condition. 1

Since each workflow diagramW is assume to satisfy the
basic evidence condition, if an activityA in W has an evi-
dence labele, A has just one evidenceE with labele. So,

1We assume that each evidence can be differentiated from others even
if some evidences share the same content. For example, ifE is the set of
documents, and if an evidencee is copied in an activityA, then one should
not consider thatA has twoes, but should consider thatA hase and a copy
of e.

we often say thate is created (or removed) onA if A has an
evidenceE having the(+)-mark (or the(−)-mark, respec-
tively).

3. Consistency properties of workflow dia-
grams

The main subject of this paper is to verify consistency
property of evidence life cycles in a workflow diagram.
However, the consistency property is closely related to an-
other consistency property of control flow of a workflow
diagram. Thus, in this section, we first explain consistency
property of control flow of a workflow diagram, and then
we explain consistency property of evidence life cycles in
the workflow diagram.

In the following subsections of this section and the three
coming sections 4∼6, we will treat onlyacyclic workflow
diagrams. That is, we assume that any workflow do not have
a loop, where a loop denotes a sequence of flows

N0 −→f0 N1 −→f1 · · · −−→fn−1 Nn −→fn N0.

We will treatcyclicworkflow diagrams in Section 7.

3.1. Correctness of Workflows

Consistency verification of workflows on the control
flow perspective is one of the most important issues in re-
search area of workflow verifications. There are a lot of re-
searches of consistency properties of workflows in the view-
point of control flow of them such as [2], [4], [5], [10], [11],
[13] and [14].

An inconsistency of structures of workflows comes from
a wrong combination of XOR-split/join nodes and AND-
split/join nodes. Such inconsistencies are known as “dead-
lock” and “lack of synchronization” [5]. An acyclic work-
flow which is deadlock free and lack of synchronization free
is said to be “correct” [13].

Definition 3.1 For an acyclic workflowW , an instanceof
W denotes a subgraphV of W that satisfies the following
properties.

1. V contains just one start node. Moreover, for each
nodex in V , there exists a path onV from the start
node tox.

2. If V contains an XOR-splitc, thenV contains just one
outgoing-flow ofc.

3. If V contains a nodex other than XOR-split, thenV
contains all outgoing-flows ofx.

Definition 3.2 LetW be an acyclic workflow.

18

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

1. An instanceV of W is said to bedeadlock freeif, for
every AND-joinr in V , V contains all incoming-flows
of r.

2. An instanceV of W is said to be lack ofsynchroniza-
tion free if, for every XOR-joinm in V , V contains
just one incoming-flow ofm.

Definition 3.3 An acyclic workflowW is said to becor-
rect if every instanceV of W is deadlock free and lack of
synchronization free.

Instances of a workflow diagram are not used not only
to define correctness property but also to define consistency
property of evidence life cycles in the workflow, which we
will define in the next section.

3.2. Consistency property of evidence life
cycles

Roughly, the “life cycle” of an evidence means that a se-
ries of states of the evidence. To be more exact, the life cy-
cle of an evidencee (in E) means whene is created, howe is
moved to some activities, and whene is removed (archived
or destroyed).

In order to define consistent life cycles of evidences in
workflow diagram in a rigorous manner, we introduce some
new concepts.

Since workflow diagrams have XOR-split nodes, one can
regard each activity diagramA as an gathering of flow-
sequences, each of which is obtained fromA based on
XOR-split nodes inA. Based on the point, we introduce
the following definition.

Definition 3.4 Let W be a workflow diagram andC the
set of all XOR-splits onW . Then, aphenomenonon W
denotes a functionψ : C → flow(W) satisfying thatψ(c)
is an outgoing-flow ofc for eachc ∈ C, whereflow(W)
denotes the set of all flows inW .

Lemma 3.5 For a workflow diagramW and a phenomenon
ψ onW , there exists a unique instanceV ofW such that for
every XOR-splitc in V the outgoing-flow ofc in V isψ(c).
We refer to the instanceV asW (ψ).

Conversely, for a instanceV of W , there is a phe-
nomenonψ with V = W (ψ).

The lemma above is easily shown.
One can consider eachW (ψ) as the workflow diagram

obtained fromW by extracting all activities and flows
which take place under the phenomenonψ.

Definition 3.6 For a workflow diagramW , a line in W is a
sequence of flows inW

L = (A1 −−→f1 A2 −−→f2 · · · −−→fn−1 An)

which satisfies the following properties.

(i) A1 is an activity or the start inW .

(ii) An is an activity or an end inW .

(iii) A2, . . . , An−1 are nodes inW , each of that is not any
activity, the start, nor any end.

For a lineL above,A1 is called thesourceof L, An the
target of L andfn−1 thetarget flowof L.

Definition 3.7 A line L is said to beequivalentto another
lineL′ if L andL′ share the source and the target.

Definition 3.8 A sequenceπ of lines is said to beequiv-
alent to another sequenceπ′ of lines if there exist lines
L1, . . . , Ln andL′

1, . . . , L
′
n such that

π = (A1 −−→L1 A2 −−→L2 · · · −−→Ln−1 An)

π′ = (A1 −−→L′
1 A2 −−→L′

2 · · · −−→L′
n−1 An)

and that, for eachi = 1, . . . , n, Li is equivalent toL′
i.

L ∼ L′ (or π ∼ π′) denotes thatL is equivalent toL′

(π is equivalent toπ′, respectively). Note that every line is
equivalent to itself, and so is every sequence of lines.

Definition 3.9 Let W be an acyclic workflow diagram,ψ
a phenomenon ofW and lete be an evidence inW . Then,
theconsistent life cycleof e onW (ψ) is the sequenceπ of
lines inW (ψ)

π := (A0 −→L0 A1 −→L1 · · · −−→Ln−1 An)

which satisfies the following properties.
(i) Every activityAi hase.
(ii) e is created onA0.
(iii) e is not created onAi for anyi with 0 < i 5 n.
(iv) e is removed onAn.
(v) e is not removed onAi for anyi with i < n.

Definition 3.10 An acyclic workflow diagramW is said to
have consistent evidence life cyclesif, for each phenomenon
ψ of W , each activityA in W (ψ) and for each evidencee
onA, there is an essentially unique consistent life cycleπ
of e which containsA.

The statement “there is an essentially unique consistent
life cycleπ of e containingA” means that there is a consis-
tent life cycleπ of e containingA and thatπ ∼ π′ for each
consistent life cycleπ′ of e containingA.

19

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

4. Verification algorithm of evidence life cycles

The main body of this paper is to introduce an algorithm
verifying consistency of evidence life cycles in a given
acyclic workflow diagram, which is calledEVA (Evidence
Verification Algorithm).

Although details of EVA is described in the section 6, we
here explain input and output data and the main property of
EVA.
Input data of EVA : a correct workflow diagramW and all
instances{W (ψ)} of W .
Output data of EVA : a string consisting of pairs(L, e),
whereL denotes a sequence of flows ande an evidence.

Each(L, e) in output data denotes a defect of an evi-
dence life cycle in input data.

Theorem 4.1 For each correct workflow diagramW , if the
output data ofW by EVA is the empty string, thenW has
consistent evidence life cycles, and vice versa.

This theorem is a corollary of Lemma 6.2 described in
Section 6.

Remark 4.2 Here we omit explanations about how to ex-
tract instances from a workflow diagram and how to verify
correctness of it. For details, see [6]. One can also refer to
[2], [10], [11], [13] and [14],

5. Local evidence conditions

Actually, in order to verify consistency of evidence life
cycles of a given correct workflow diagramW , EVA checks
whether or notW satisfies “local evidence conditions”. In
order to explain there conditions, we first introduce a propo-
sition and some definitions.

Proposition 5.1 For each workflow diagramW , each line
L and for each evidencee contained inL, just one of the
following properties holds.
(1) The sourceS and the targetT of L sharee, ande is not
removed onS ande is not created onT .
(2) The sourceS and the targetT of L sharee, ande is
removed onS, ande is created onT .
(3) The sourceS of L hase, e is removed onS, and the
target ofL does not havee.
(4) The targetT of L hase, e is created onT , and the source
of L does not havee.
(5) The targetT of L hase ande is not created onT . More-
over, if the sourceS of L hase, thene is removed onS.
(6) The sourceS of L hase and e is not removed onS.
Moreover, if the targetT of L hase, thene is created onT .

One can easily show the proposition above.

Remark 5.2 Let L be an line with sourceS and targetT
activities, and lete be an evidence, for example, a document
used inS orT or both ofS andT . Moreover, assume thatL
contains no AND-split and no AND-join. Then, ifS hase
ande is not removed onS, e should exist onT . Therefore,
(6) above can be regard as an wrong state. Similarly, ifT
hase ande is not created onT , e should “come from”S,
and hence, (5) above can be regard as an wrong state as well
as (6).

We next assume thatL has an AND-splitF and another
line L′ hasS as its source. Then, whenS hase, e is not
removed onS, and whenT does not havee, it is possible
thate “pass” fromS to the target ofL′. In such a case, one
can not assure that (6) is wrong. One can consider several
similar cases.

Definition 5.3 A pair (L, e) of a lineL and an evidencee
is called aline-evidence.

Definition 5.4 To each line-evidence(L, e), we assign one
of the following states.
(1) SCS (State of Consistent Succession) if(L, e) satisfies
(1) in Proposition 5.1.
(2) SIR (State of Inconsistent Redundancy) if(L, e) satisfies
(5) in Proposition 5.1.
(3) SID (State of Inconsistent Defection) if(L, e) satisfies
(6) in Proposition 5.1.
(4) SCNS (State of Consistent Non-Succession) if(L, e)
satisfies one of (2)∼(4) in Proposition 5.1.

Definition 5.5 For a correct workflow diagramW , W is
said to satisfieslocal evidence conditionsif, for each phe-
nomenonψ of W , the restricted graphW (ψ) satisfies the
following conditions.
(1) For each lineL in W (ψ) and for each evidencee, if
(L, e) is assigned SIR, then there exists a lineL′ sharing
the target withL such that(L′, e) is assigned SCS.
(2) For each lineL in W (ψ) and for each evidencee, if
(L, e) is assigned SID, then there exists a lineL′ sharing
the source withL such that(L′, e) is assigned SCS.
(3) There are not two line-evidences(L, e) and (L′, e),
which are assigned SCS, and which share the source (or the
target), but which do not share any node as their targets (or
their sources, respectively).

The following lemma indicates that, for a workflow dia-
gramW , if W is correct, local evidence conditions suffice
to verify consistency of evidence life cycles inW .

Lemma 5.6 For each correct workflow diagramW , if W
satisfies local evidence conditions, thenW has consistent
evidence life cycles, and vice versa.

We show this lemma in Appendix A of this paper.

20

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

6. Definition of EVA

By virtue of Lemma 5.6, in order to verify consistency of
evidence life cycles of a given correct workflow diagramW ,
it is sufficient to check thatW satisfies local evidence con-
ditions. So, we establish EVA as an algorithm finding line-
evidences(L, e) which violate local evidence conditions of
a given correct workflow diagram.

Definition of EVA

(I) Input and output data of EVA are described in Section 4.

(II) The content of EVA is defined, as follows.
(EVA.1) Prepare three empty setsSuc, Inq and Res,
which are provided for recording line-evidences.
(EVA.2) Execute EV.2.1 and EV.2.2 below in parallel.
(EVA.2.1) For a givenW , starting the start ofW , search all
flows f in W by an appropriate graph search algorithm,2

and all lines with target flowf .
(EVA.2.2) For each lineL and for each evidencee con-
tained inL, check the state of(L, e), and classify(L, e),
as follows.

Case (i) where(L, e) is assigned SCS.

If L contains an AND-split or an AND-join, put(L, e)
into Suc. Otherwise, dump(L, e).

Case (ii) where(L, e) is assigned SIR.

If L contains an AND-join, put(L, e) into Inq. Oth-
erwise, put(L, e) into Res.

Case (iii) where(L, e) is assigned SID.

If L contains an AND-split, put(L, e) into Inq. Oth-
erwise, put(L, e) into Res.

Case (iv) where(L, e) is assigned SCNS.

Dump(L, e).

(EVA.3) For each phenomenonψ of W , execute
(EVA.3.1)∼(EVA.3.3) below.
(EVA.3.1) SetSuc(ψ) := Suc ∩ W (ψ) andInq(ψ) :=
Inq∩W (ψ), whereW (ψ) is regarded to be the set of line-
evidences onW (ψ).
(EVA.3.2) For each element(L, e) of Inq(ψ), check
whether or not there exists an element(L′, e) of Suc(ψ)
such that(L, e) and(L′, e) satisfy the property (1) or (2) in
the definition of local evidence conditions. If(L, e) does
not have such a(L′, c), put(L, e) into Res.
(EVA.3.3) Check whether or not there exist multiple ele-
ments ofSuc(ψ) violating the property (3) in the definition
of local evidence conditions. If there exist such elements,
put them intoRes.
(EVA.4) OutputRes.

2We use a depth first search algorithm for implementation of EVA.

Remark 6.1 In most cases, it does not need to prepare all
instances, since some instancesW (ψ), . . . ,W (ψ′) share
the same figure even thoughψ, . . . , ψ′ are not the same.

At the last, we show correctness of EVA.

Lemma 6.2 (Correctness of EVA) For each correct work-
flow diagramW , EVA terminates in finite steps. Moreover,
all lines violating local evidence conditions ofW are con-
tained in the output ofW by EVA, and vice versa. In par-
ticular, Theorem 4.1 holds.

We show this lemma in Appendix B.

7. Application of EVA to cyclic workflow dia-
grams

Until now, we have dealt with acyclic workflow dia-
grams. From now, we will discuss verification of correct-
ness and consistency of evidence life cycles over cyclic
workflow diagrams. In order to apply EVA to cyclic work-
flow diagrams, we extend the definitions of consistency
properties in the previous sections to those over cyclic
workflow diagrams. Thus, in order to extend the definitions
of consistency properties, we consider a translation of cyclic
workflow diagrams.

The main body of this section refers to [8].
Before defining the translation, we explain an observa-

tion of “real” workflow diagrams.

7.1. Observation of real workflow diagrams

By virtue of investigation of about 460 workflow dia-
grams, which have been composed in development of real
large-scale information systems, we have the following ob-
servations about real workflow diagrams.

• Observation 1. Most loops in workflow diagrams
contain flows which we call “passback flows”.

A passback flow in a workflow diagram denotes a kind of
a flow which appears at a boundary of a “main stream” and
a “replay of an operation” in the workflow diagram. For ex-
ample, in the figure 1, the main stream in the workflow is de-
scribed by the sequence of flows between activities: “Make
a proposal”, “Check the proposal”, “Apply the proposal”
and “Store the proposal”. On the other hand, if the proposal
does not pass in the activity “Check the proposal”, the pro-
posal will be turned back to the previous activity “Make a
proposal” via the flow labeled “no”. In this case, the re-
searcher have to replay the activity “Make a proposal”. So,
the flow “no” is a passback flow.

Workflow diagrams in the investigation above contain no
loop which is considered in usual programs and assured its

21

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

termination property. That is, most loops in the workflow
diagrams express replays of operations in the workflow di-
agrams. Thus, most loops contain passback flows.

• Observation 2. Every information described in a
workflow diagram is treated as a “static” information.
In particular, no information about operations after an
operation is turned back via a passback flow.

For example, in the figure 1, in the case where a pro-
posal is turned back to the activity “Make a proposal” via
the passback flow ”no“, the researcher should not “make”
a proposal, but “remake” the proposal. However, there is
actually no modification for such a case in a workflow dia-
gram.

It maybe possible to reconstruct such a workflow so that
there is not such an inconsistency above which occurs on
the target of the passback flow. Thus, one can select a pol-
icy which prohibit inconsistencies on the targets of pass-
back flows like the example above. However, in many cases,
this constraint is so strong that workflow diagrams have too
large size or too complex structure. Therefore, in the real
development, they do not select such a policy. Thus, we
do not consider inconsistency between the target and the
source of a passback flow in a workflow. Actually, from the
real workflow diagrams in the investigation, we also have
the following observation.

• Observation 3. The change of evidences during a
passback flow is not described in the workflow dia-
gram. In other words, even if there is some incon-
sistency between the evidences on the source node of
(the first flow of) a path containing a passback flow and
those on the target node of (the last flow of) the path,
one should not regard it as an error.

In principle, evidences on each node in a workflow di-
agram are described only when a job stream arrived at the
point for the first time. For example, the activity “Make
a proposal” in the figure 1 has an evidence “(+)proposal”,
which is information described at the first time when the
job stream arrives at the activity node from the start node.
The evidence “(+)proposal” is not what is described in the
case where a job stream arrives at the activity via the pass-
back flow “no”. Therefore, we should not consider that the
evidence “proposal” in the activity “Check the proposal”
changes to the evidence “(+)proposal” in the activity “Make
a proposal” via the flow “no”.

The observations above indicate that a verification algo-
rithm should not output inconsistency between evidences on
the source node of a path containing a passback flow and the
target node of the path as an error. As a consequence of the
discussion, we take the stance to deal with passback flows
as special ones.

There maybe a workflow diagram in which a passback
flow must not be regarded as a special one. We can not
apply our methodology to such cases. We do not care about
that, because such cases are rare.

7.2. Translation of cyclic workflow diagrams

In order to translate a cyclic workflow diagram into
those to which EVA are applicable, we remove all pass-
back flows in the cyclic. In this section, we first formalize
passback flows in a workflow diagram, by using only graph-
theoretical properties of the workflow diagram. Moreover,
we introduce an algorithm which removes all passback
flows in a given workflow diagram. For more details, see
[8].

A path(f1, . . . , fn) in a workflow diagramW satisfying
the following properties is called alariat path.

1. The source off1 is a start node inW .

2. The target offn is the source of one off2, . . . , fn.

3. For eachi andj with i 6= j, fi andfj do not share the
same source.

The last flowfn of a lariat pathσ := (f1, . . . , fn) is
called thetail of σ.

A path(f1, . . . , fn) in a workflow diagramW satisfying
the following properties is called adirectly ending path.

1. The source off1 is a start node inW .

2. The target offn is an end node inW .

3. For eachi andj with i 6= j, fi andfj do not share the
same source.

In the following two paragraphs, we consider what a
passback flow is.

First, a passback flow heads in the opposite direction to
a primary job stream and reaches such a job stream. There-
fore, a passback flow is the tail of a lariat path.

Next, consider a flow contained in some directly ending
path. Then, the flow is considered a member of a directly
ending path, and the change of evidences during the flow is
described in the workflow diagram, even if it is the tail of a
lariat path. Therefore, the flow is not considered a passback
flow.

By virtue of the discussion above, we can formalize pass-
back flows, as follows.

Definition 7.1 A flow f in a workflow diagramW is called
apassback flowif f is the tail of a lariat path inW and there
is no directly ending path inW which containsf .

22

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Figure 4. A workflow diagram of proposal
submission

For example, in the figure 4,G is a passback flow, while
F is not, even thoughF is the tail of a lariat path.

Now we define an algorithmRAPF (Removing Algo-
rithm of Passback Flows) [8], which translates a workflow
diagramW into some workflow diagram(s) with no pass-
back flows, as follows.

1. Detect all flows inW and record tailst1, . . . , tn of all
lariat paths inW .

2. Detect all directly ending paths and letp1, . . . , pm be
tails each of which is not contained in any directly end-
ing path. These tails are passback flows inW .

3. Replace targetsT1, . . . , Tm of p1, . . . , pm by new end
nodesE1, . . . , Em, respectively. These end nodes are
calledadditional end nodes. Note that the number of
incoming flows of eachTi decreases.

4. Execute the following operations corresponding to the
number of incoming flows of eachTi. (Note that each
Ti is an XOR-join or AND-join node.)

(a) If Ti has more than or equal to two incoming
flows, then leaveTi as it is.

(b) If Ti has just one incoming flow, then replace the
target of the incoming flow by the target of the
outgoing flow ofTi, and then removeTi as well
as the outgoing flow ofTi.

(c) If Ti has no incoming flow, then replace the
source of the outgoing flow ofTi by a new start
node and removeTi. The new start node is called
aadditional start node.

RAPF makes no new lariat path. Moreover, any flow in
a directly ending path does not become not to be contained

Figure 5. RAPF may divide a workflow dia-
gram into multiple workflow diagrams

in any directly ending path by RAPF. Thus, we have the
following proposition.
Proposition. RAPF translates a workflow diagramW into
RAPF(W), each element in which is a workflow diagram
with no passback flows.

RAPF may output multiple workflow diagrams. We
show an example in the figure 5. The operation on this ex-
ample is executed mechanically by RAPF.

By RAPF, one can extend the definitions of correctness
and consistency of evidence life cycles of acyclic workflow
diagrams to those over cyclic workflow diagrams. In order
to do so, we only have to redefine instances defined in Def-
inition 3.1.

Definition 7.2 For an cyclic workflowW , an instanceof
W denotes a subgraphV of RAPFW that satisfies the prop-
erties 1)∼3) in Definition 3.1.

By using the instances above, one can extend the defini-
tions of correctness and consistency of evidence life cycles
of acyclic workflow diagrams to those over cyclic workflow
diagrams.

The role of RAPF is to extract a designer’s intention of
a workflow diagram. Here, the “designer’s intention” is the
intention which flows to be exceptional ones around which
evidence life cycles should not be checked, and which flows
to be usual ones around which evidence life cycles should
be checked. Such a designer’s intention is not completely
formalizable, and hence, RAPF may not extract the de-
signer’s intention completely. However, from the observa-
tion of actual workflow diagrams, we claim that RAPF has
enough ability to extract designers’ intentions about pass-
back flows correctly.

RAPF is not an algorithm which translates cyclic work-
flow diagrams to acyclic ones. Cyclic workflow diagrams
are not contained in the range of EVA. Moreover, some

23

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

cyclic workflow diagrams are not translated into acyclic
ones by RAPF. One can not apply EVA to such diagrams.
However, such diagrams are rare, and we do not care about
them.

8. Experimental results

The algorithm EVA is implemented as a java program
called “evidenceVerifier”, the input data of which is an xml-
file expressing a workflow diagram, and the output data of
which is an xml-file expressing a string of line-evidences
which violate life cycles of evidences.3 More properly
speaking, evidenceVerifier has functions which execute the
following for each input dataW .
(1) verification of syntax and graph-theoretical properties
(for example, connectivity) ofW .
(2) translation ofW to (an) acyclic workflow diagram(s)
W ∗ by RAPF in Section 7.
(3) extraction of instances{S1, . . . , Sn} of W ∗.
(4) verification of basic and local evidence conditions of
W ∗ based on{S1, . . . , Sn}.

In this paper, we omit explanations of algorithms which
(1) and (3) are based on (one can refer to [6] for the algo-
rithm of (3)).

By using the program, we verify a set of real workflows,
which is a subset of the set of workflows used to design a
real large enterprise application system of AIST. The subset
consists of 60 workflows. Each of them has 5∼34 nodes
and 5∼31 flows. All workflows are reviewed in a manual
way in advance.

The output data of the workflows above by evidenceVer-
ifier are classified into the following types.

(i) defects coming from complications of
structures of workflows

6

(ii) defects coming from inconsistencies of
structures of workflows

8

(iii) defects by trivial mistakes 26
(iv) superfluous error messages 10

Every execution time is within 0.5 second.
Important defects are those in (i) and (ii).
Defects in (i) come from unexpected flows of activities

in workflows. For example, 2 defects in (i) come from a
gap coming from changing flows of activities in a workflow
in the later phases. It is difficult to find such defects by
manual.

Defects in (ii) come from designers’ essential misun-
derstanding on some activities or inconsistent structure of

3Properly speaking, input data express workflows corresponding to
workflow diagrams. Moreover, output data have several additional infor-
mations.

workflow diagrams. In particular, we could find 3 inconsis-
tent flows of activities by the defections in (ii) above. This
indicates that, in order to verify construction of a workflow,
it is worth to verify consistency of evidence life cycles in it.

Defects in (iii) are defects which come from forgetting
adding (+)-marks, forgetting removing (+)-marks, typos of
evidence labels or forgetting describing evidences.

The error messages in (iv) consist of 3 messages by de-
signers’ informal omission and 7 messages by the relations
to other workflow diagrams. As for designers’ omission,
designers sometimes omit some evidences on purpose. Our
program does not corresponds to such omissions. As for
the relations to other workflow diagrams, the program has
not yet been implemented any function analyzing relation-
ships between multiple workflow diagrams. For example,
there is a workflowA which is a successive part of another
workflowB, and an evidenceE which is created inB and
still occurs inA. Then the designer does not add (+)-mark
to the first occurrence ofE onA. However, our program
outputs an error message to that. This is a superfluous error
message.

9. Conclusion and future work

In this paper, we have defined a consistency property
of evidence life cycles of a workflow diagram in AWL
(AIST Workflow Language), and an algorithm EVA (Ev-
idence Verification Algorithm), which verifies the consis-
tency property of each workflow diagram. We also have de-
fined local evidence conditions which are necessary and suf-
ficient conditions for each workflow diagram to have con-
sistent evidence life cycles (Definition 5.5 and Lemma 5.6).
Moreover, we have shown that, for each correct workflow
diagramW , EVA can determine whether or notW has con-
sistent evidence life cycles (Theorem 4.1).

In Section 7, in order to apply EVA to cyclic workflow
diagrams, we introduce an algorithm to translate them into
acyclic ones. We first formalize a passback flow, which ex-
presses (a boundary of a main stream and) a reply of an
operation in a workflow. We formalize this flow with only
graph-theoretical properties of the workflow diagram. We
then give an algorithm RAPF, which detects and removes
all passback flows in a given workflow diagram, and which
translates cyclic workflow diagrams to acyclic ones, which
EVA is applicable to.

In Section 8, we experimented with an implementation
“evidenceVerifier” of EVA and 60 workflow diagrams of
a real large enterprise application system, and have shown
that evidenceVerifier could find 38 defects of evidence life
cycles of the workflow diagrams and that we could find sev-
eral defects of structure of the workflow diagrams from the
defects of evidence life cycles of them.

As a future work, we are developing the way to verify

24

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

other kinds of life cycles of workflow diagrams, for exam-
ple, life cycles of operations and data in databases which
are described on activities.

References

[1] Business Process Management Initiative (BPMI).Business
Process Modeling Notation (BPMN) Version 1.0. Technical
report, BPMI.org, 2004.

[2] H. Lin, Z. Zhao, H. Li, and Z. Chen. A novel graph reduction
algorithm to identify structural conflicts. InProceedings of
the 35th Annual Hawaii International Conference on System
Science (HICSS). IEEE Computer Society Press, 2002.

[3] R. Liu and A. Kumar. An analysis and taxonomy of unstruc-
tured workflows. InProceedings of 3rd International Con-
ference on Business Process Management (BPM), LNCS
3649, pages 268–284. Springer, 2005.

[4] W. Sadiq and M. E. Orlowska. On correctness issues in con-
ceptual modeling of workflows. InProceedings of the 5th
European Conference on Information Systems (ECIS), pages
943–964, 1997.

[5] W. Sadiq and M. E. Orlowska. Analyzing process mod-
els using graph reduction techniques.Information Systems,
25(2):117–134, 2000.

[6] O. Takaki, T. Seino, I. Takeuti, N. Izumi, and K. Taka-
hashi. Algorithms verifying phenomena independence and
abstracting phenomena subgraphs ofUML activity dia-
grams. InSoftware Engineering Saizensen 2007, pages 153–
164. Kindaikagaku-sha (in Japanese), 2007.

[7] O. Takaki, T. Seino, I. Takeuti, N. Izumi, and K. Takahashi.
Verification algorithm of evidence life cycles in extended
UML activity diagrams. InProceedings of The 2nd Interna-
tional Conference on Software Engineering Advances (IC-
SEA 2007). IEEE Computer Society Press, 2007.

[8] O. Takaki, T. Seino, I. Takeuti, N. Izumi, and K. Taka-
hashi. Quality improvement of workflow diagrams based on
passback flow consistency. InProceedings of the 10th In-
ternational Conference on Enterprise Information Systems
(ICEIS 2008), pages 351–359. INSTICC, 2008.

[9] O. Takaki, T. Seino, I. Takeuti, N. Izumi, and K. Takahashi.
Workflow diagrams based on evidence life cycles. InPro-
ceedings of the 8th Joint Conference on Knowledge - Based
Software Engineering 2008 (JCKBSE 2008), Frontiers in
Artificial Intelligence and Applications, pages 145–154. IOS
Press, 2008.

[10] W. M. P. van der Aalst. Verification of workflow nets. InAp-
plication and Theory of Petri Nets 1997, LNCS 1248, pages
407–426. Springer, 1997.

[11] W. M. P. van der Aalst. The application of petri nets to
workflow management.The Journal of Circuits, Systems
and Computers, 8(1):21–66, 1998.

[12] W. M. P. van der Aalst. Business process management de-
mystified: A tutorial on models, systems and standards for
workflow management. InLectures on Concurrency and
Petri Nets, LNCS 3098, pages 1–65. Springer, 2004.

[13] W. M. P. van der Aalst, A. Hirnschall, and H. M. W. Verbeek.
An alternative way to analyze workflow graphs. InProceed-
ings of the 14th International Conference on Advanced In-
formation Systems Engineering (CAiSE), LNCS 2348, pages
535–552. Springer, 2002.

[14] H. M. W. Verbeek, T. Basten, and W. M. P. van der Aalst. Di-
agnosing workflow processes using woflan.The Computer
Journal, 44(4):246–279, 2001.

[15] Workflow Management Coalition (WfMC).Workflow Man-
agement Coalition Workflow Standard: Workflow Process
Definition Interface - XML Process Definition Language
(XPDL). (WfMC-TC-1025), Technical report, Workflow
Management Coalition, Lighthouse Point, Florida, USA,
2002.

A. Proof of Lemma 5.6

In this subsection, we first show that, for a correct work-
flow diagramW , if W satisfies local evidence conditions,
thenW has consistent evidence life cycles, and then we
show the converse proposition.

Here we consider only an acyclic workflow diagrams.

Definition A.1 For an acyclic workflow diagramW and a
noden in W , thedegreeof n in W denotes the maximum
of the lengths of the paths from the start node ofW to n.
Moreover, theheightof n in W denotes the maximum of
the lengths of the paths fromn to some end node ofW .

LetW be a correct workflow diagram,ψ a phenomenon
of W ,A an activity inW (ψ) and lete be an evidence inA.

Now we construct a consistent evidence life cyclesF of
e onW (ψ)

F := (A0 −−→L0 · · · −−→Ln−1 An = A

= B0 −−→R0 · · · −−→Rm−1 Bm),

whereLn, . . . , L0, R0, . . . , Rm−1 andRm are lines.
Claim 1. There is an essentially unique sequence of lines
A0 −−→L0 · · · −−→Ln−1 An = A which satisfies the following
properties

(i) Every activityAi hase.

(ii) e is created onA0.

(iii) e is not created onAi for anyi with i > 0.

(iv) e is not removed onAi for anyi with i < n.

Proof of Claim 1. We constructA0 −−→L0 · · · −−→Ln−1 An, by
using induction on the degree ofA in W .
(1) If e is created onA, then we setA0 to beA.
(2) Assume thate is not created onA. Then, by local evi-
dence conditions, there exists an essentially unique lineL
with targetA. Moreover, the sourceS of L containse,

25

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

which is not removed onS, and the degree ofS is less than
that ofA. Therefore, by induction hypothesis, there is an
essentially unique sequence of linesS0 → · · · → Sk = S.
Thus, we obtain the desired sequenceS0 → · · · → Sk −→L
A. Moreover, by the definition of equivalence relation
on sequences of lines, the desired sequence is essentially
unique.2
Claim 2. There is an essentially unique sequence of lines
A = B0 −−→R0 · · · −−→Rm−1 Bm which satisfies the following
properties

(i) Every activityBi hase.

(ii) e is removed onBm.

(iii) e is not created onBi for anyi with i > 0.

(iv) e is not removed onBi for anyi with i < m.

Proof of Claim 2. One can show the claim in the similar
way to the proof of Claim 1, by using induction on the
height ofA in W . 2

By Claims 1 and 2, we obtain an essentially unique con-
sistent life cycle ofe in W (ψ). Therefore, we have shown
that if W satisfies local evidence conditions, thenW has
consistent evidence life cycles.

Now we assume thatW has consistent evidence life cy-
cles and show thatW satisfies local evidence conditions.
That is, we show thatW (ψ) satisfies the properties (1)∼(3)
in Definition 5.5.
(1) LetL be a line inW (ψ) and(L, e) a SIR line-evidence.
Then, the targetT containse bute is not created onT . Thus,
by consistency of evidence life cycles inW , there exists an
essentially unique consistent evidence life cycle

A0 → · · · → Ak−1 −−→Lk−1 Ak = T → · · · → An

with k > 0. SinceAk−1 containse but e is not removed on
Ak−1, (Lk−1, e) is a SCS line-evidence. We have the result.

One can show the properties (2) and (3) in the similar
way to the proof of (1) above.2

B. Proof of Lemma 6.2

Since it is clear that EVA terminates in finite steps, we
show that, for a given correct workflow diagramW , the
output ofW by EVA is the set of all line-evidences which
violate local evidence conditions ofW .

We first remark that the division of line-evidences in the
step EVA.2.2 in the definition of EVA does not depend on
instances, since the state of a line-evidence(L, e) is deter-
mined only by the state ofE on the source and the target of
L.

We now show that every line-evidence which violates the
property (1), (2) or (3) in Definition 5.5 is contained in the

setRes at the step (EVA.4) in the definition of EVA. Let
W (ψ) be an instance ofW and (L, e) a line-evidence in
W (ψ).

(1) If (L, e) violates the property (1) in Definition 5.5,
(L, e) is assigned SIR, but there exists no SCS line-
evidence(L′, e) such thatL′ is contained inW (ψ) and
shares the target withL. Thus, ifL contains no AND-
join, (L, e) is put intoRes in the step (EVA.2.2).(ii). If
L contains an AND-join, then(L, e) is put intoInq in
the step (EVA.2.2).(ii), and moved toRes in the step
(EVA.3.2). So,(L, e) is contained inRes in the step
(EVA.4).

(2) If (L, e) violates the property (2) in Definition 5.5, one
can obtain the same result in the similar way to (1)
above.

(3) If (L, e) violates the property (3) in Definition 5.5,
(L, e) is assigned SCS, and there exists another SCS
line-evidence(L′, e) such thatL′ is also contained
in W (ψ) and shares the target or source withL.
Thus, (L, e) and (L′, e) are put intoSuc in the step
(EVA.2.2).(i), and moved toRes in the step (EVA.3.3).
So,(L, e) is contained inRes in the step (EVA.4).

We finally show that every line-evidence inRes violates
the property (1), (2) or (3) in Definition 5.5. Let(L, e) be
a line-evidence inRes. Then, it is put inRes in the step
(EVA.2.2.(ii)), (EVA.2.2.(iii)), (EVA.3.2) or (EVA.3.3).

(1) If (L, e) is put inRes in the step (EVA.2.2.(ii)),(L, e)
is assigned SIR butL contains no AND-join. Thus, for
any instanceW (ψ) which containsL, there is no line
which shares the same target withL, sinceL contains
no AND-join. So, (L, e) violates the property (1) in
Definition 5.5.

(2) If (L, e) is put in Res in in the step (EVA.2.2.(iii)),
one can show that(L, e) violates the property (2) in
Definition 5.5 in the similar way to (1) above.

(3) It is clear that every line-evidence which is put into
(EVA.3.2) or (EVA.3.3) violates one of the properties
in Definition 5.5.

Thus, we have completed the proof of Lemma 6.2.2

26

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

A FRAMEWORK FOR THE MODULAR DESIGN AND IMPLEMENTATION OF
PROCESS-AWARE APPLICATIONS

Davide Rossi and Elisa Turrini

Dept. of Computer Science
University of Bologna

Mura Anteo Zamboni, 7
I-40127, Bologna, Italy
{rossi | turrini}@cs.unibo.it

ABSTRACT

Process-aware software systems are establishing themselves
as prominent examples of distributed software infrastruc-
tures. Workflow Management Systems, web service or-
chestration platforms, Business Process Management sup-
port systems are relevant instances of process-aware soft-
ware systems. These systems, because of their own nature,
are all characterized by presenting a behavioral perspective,
that is a perspective describing the steps that can be exe-
cuted during the enactment of the process.

In this paper we present a framework for the design and
implementation of the behavioral perspective in modular
process-aware architectures. This approach can be applied
across different application domains. The modularity of
the resulting architectures is well-known as a key factor in
achieving software qualities such as reliability, extensibility,
robustness, maintainability and ease of use.

Our framework is based on EPML [21][22], an exe-
cutable process modeling language, and on its enactment
engine. EPML has been designed with the aim of promot-
ing separation of concerns, easing the modular approach to
the design of process-aware software architectures. A no-
table advantages of the presented approach is that of using
the same modeling language and the same modular software
component to support the behavioral perspective across dif-
ferent application domains. As an example we show how it
is possible to use EPML and its engine in the modeling and
the implementation of a wide spectrum of software archi-
tectures, from those supporting business process simulation
to those supporting web service orchestration.

Keywords

Process-aware systems, Process modeling, EPML, Software
engineering.

1. INTRODUCTION

Process-aware software systems are establishing themselves
as prominent examples of coordination-based software in-
frastructures, following a trend that sees computer systems
shifting their focus from data to processes. Workflow Man-
agement Systems (WfMSs), web service orchestration plat-
forms, Business Process Management support systems are
relevant instances of this class of systems. A modular ap-
proach to the design of architectures supporting process-
aware systems is that based on perspectives (a concept intro-
duced in [11] and later refined in [13] and [28]). A process
can be characterized by different perspectives: the func-
tional, describing what has to be executed; the organiza-
tional (or resource), describing who (software component or
human) is in charge of the execution; the informational (or
data), describing what data has to be processed and the be-
havioral (or process, or control-flow) describing when part
of the process has to be executed during its enactment. In
this work we focus on the latter perspective, by presenting a
framework to address it, based on an effective separation of
concerns. This promotes modularity and allows the design
of process-aware architectures able to support a wide spec-
trum of applications. Our approach is based on EPML, a
graphical, executable, process modeling language and on its
enactment engine. As a result the very same notation can be
used to model the process perspective in workflow systems,
business process simulation systems, web service orches-
tration systems, process-aware web applications and other
process-aware software systems. Moreover, the software
architectures supporting these systems can be designed in
a modular fashion, composing together application-domain
specific components and the EPML engine.

This paper is structured as follows: section 2 outlines the
main issues we tried to address in designing our proposal;
section 3 introduces EPML and its enactment engine. The
sections 4, 5, 6 and 7 show sample methods and architec-
tures to design and implement process-aware applications

27

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

using our modular EPML-based framework. Section 8 dis-
cusses our proposal with respect to related work. Section 9
concludes the paper.

2. COORDINATION FOR PROCESS-AWARE
APPLICATIONS

The Babel of business process notations, workflow and web
service orchestration languages keeps growing day by day.
Most of these languages/notations have not been designed
to provide improvements in the description of the dynamic
behavior of process-aware applications but, rather, to ad-
dress some domain-specific issue (like supporting web ser-
vices invocation to coordinate an orchestration or manag-
ing resources in a workflow). This forces the members of
the development team to learn different tools to address the
same aspect: the behavioral perspective. Moreover, it may
well be the case that in a single, large application, coor-
dinating users connected to different software systems and
remote components, the behavioral perspective has to be
addressed with different languages/notations at the design
level and with different enactment engines at the implemen-
tation level.

A partial solution to this problem is provided by BPMN
[16]. BPMN is a graphic notation to model business pro-
cesses that has not an associated formal semantics and that
does not produce executable specifications. A BPMN di-
agram could, however, be transformed into different exe-
cutable notation. BPMN’s specifications, for example, sug-
gest a mapping to transform a diagram into BPEL. From a
conceptual point of view the same approach can be taken
with respect to different “target” notations, providing a uni-
fied high-level modeling tool. This would imply that, at
least at the design level, a single modeling notation can be
used to be later transformed into one or more executable
ones. As discussed in section 4, however, this solution suf-
fers several limitations. It is our opinion then that, while
BPMN is a highly valuable contribution for high level pro-
cess modeling in early phases of the software development
process and for documentation purposes, an executable no-
tation (and possibly a single one used within one process)
has clear advantages in the design-related activities.

These are the reasons that lead us to the development of a
framework to address the behavioral perspective in different
application domains using the same tools. This approach is
based on EPML, an exogenous [7] coordination language
that has been designed in order to obtain an effective separa-
tion of concerns, easing the modular approach to the design
on process-aware software architectures. It should be no-
ticed that EPML defines the interactions that can take place
between the actors in the system, but cannot change them at
run time like, for example, Manifold [8] and other control-
driven [18] coordination languages can do. Process mod-

eling languages, in fact, can be instances of different coor-
dination models (control-driven, data-driven, space-based,
rule-based and so on) and, while EPML’s characteristics are
shared with most existing workflow languages and process
modeling languages (that are flow languages in the broad
sense of languages that describe the process in term of, po-
tentially concurrent, flows of executions, their interactions
and their synchronizations) there are contexts in which dif-
ferent paradigms are more suitable and should be preferred.

EPLM is a graphical, executable language with a formal
semantics and high level of expressiveness. It is our opin-
ion that these characteristics are essential in this kind of
tools. While some of the reasons for this are rather obvi-
ous (a diagram is easier to understand than a sequence of
text lines) some are less immediately apparent. As an ex-
ample of this consider the following issue: WSBPEL [6] is
a textual (XML-based) web service orchestration language
that has no graphical representation but most of the available
tools that support WSBPEL development provide a graphi-
cal modeler based on a proprietary notation. The diagrams
produced with these tools become artifacts of the software
development process introducing non-standard notations in
the process and causing potential vendor lock-in problems.

Details about EPML and its engine can be found in sec-
tion 3; in this section we focus on how a process modeling
language can be designed to maximize separation of con-
cerns. Separation of concerns is a well-known topic in soft-
ware engineering in general and has specific relevance in
the research area related to coordination models and lan-
guages. Separation (orthogonality) between coordination
and computation is a cornerstone for this area [12]. In a
coordinated process the computation is carried out by soft-
ware components or human beings (actors) participating in
the process; the coordination is carried out by a coordination
runtime. The distinction between coordination and compu-
tation however is, in our opinion, too coarse. Coordina-
tion should really be split in interaction model and process
logic. The interaction model defines the execution flows,
i.e. the possible interactions among the involved entities.
The process logic defines which, among all possible execu-
tion flows, have to be activated. To show the relevance of
the process logic and the fact that its importance is often
neglected we use BPEL again as a paradigmatic example
(in this article we use BPEL to refer to either BPEL4WS
[3] or WSBPEL, the two versions of the language). BPEL
uses XPath expressions as predicates to support control flow
decisions; there are cases in which, however, these deci-
sions imply a computational effort for which XPath is not
well suited. In these cases the decisions are delegated to
activities that have to be created ad hoc for this task; as a
consequence two different perspectives get mixed together
(besides the impact on software qualities such a solution
also implies that new web services have to be created and

28

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

hosted somewhere in order to support the behavioral per-
spective). Implicitly acknowledging this limitation all ex-
isting commercial BPEL engine implementations we are
aware of, include custom extensions that allow to activate
software components implementing the process logic. The
latest version of BPEL, WSBPEL, also provides a standard-
ized extension mechanism for this. For the same reason,
BEA and IBM (some of the partners that supported the de-
velopment of BPEL) proposed an extension of BPEL4WS:
BPEL-J [2]. In BPEL-J, Java code snipets can be embedded
in a BPEL specification reducing the need to delegate to ex-
ternal components. The main drawback of this approach is
that the process logic can be expressed using a specific lan-
guage only. This implies that only users proficient in Java
can benefit from BPEL-J; moreover, from a technological
point of view, workflow engines must be able to activate
Java programs.

To better support separation of concerns, in EPML the
computation, the interaction model and the process logic
are addressed by distinct elements, that is, respectively, ac-
tivities, processors and processors’ logic. The first two are
(graphical) elements of the language; processors’ logic is
a program fragment (expressed with any suitable language)
supporting the decisions associated to processors. This clear
distinction between these three aspects is propaedeutical in
promoting a high level of modularity allowing us to use the
framework based on EPML to support the behavioral per-
spective in several different application domains as we show
in this paper.

Another aspect which is essential for the wide applica-
bility of our framework is related to the expressive power
of EPML. The expressive power of workflow languages has
been subject to several investigations in the last few years,
these studies can be (and have been) applied to process mod-
eling languages as well. The main problem addressed in this
research field is the fact that there is not a formal metric to
evaluate the expressive power. One of the most success-
ful approaches is the one based on the workflow patterns
[5]; this is an analysis strategy that evaluates the languages
with respect to their ability to model a set of predefined
(sub)processes. Expressive power is a critical parameter
to increase the suitability of a process modeling language
(for the quite obvious fact that a language that cannot easily
model the interactions within a process surely poses large
limitations to its own usage). Most existing workflow lan-
guages, for example, cannot easily model a large number of
common real-world interactions. A workflow pattern-based
analysis shows that EPML supports all the 20 patterns de-
scribed in [5] (with the partial support of implicit termina-
tion because of a design decision); an extended pattern set
has been presented in [25], EPML support most of these
42 patterns with minor exceptions (like interleaved parallel
routing and critical section); extending the semantics of the

n

processor activity

Processors decorations

Basic elements

start end par

andjoin (with
threshold)

Processors decorations

Connections

edge exception
edge

main edge
in and

processors

sub-process

 event triggers

bang

Fig. 1. The components of a EPML diagram

language to capture all patterns is possible but that would
make the language itself more complex so, at this time, we
decided to not support them. In the design of EPML, in fact,
we addressed the workflow patterns but we also strive to
achieve a good compromise between simplicity and power.

3. EPML

EPML is a graphical process modeling language that en-
ables the representation of a process interaction model using
a directed graph in which oriented edges are used to define
the execution flow structure.

In this paper we call EPML specification a process mod-
eled with EPML. The specification can be a diagram or an
XML document. It is possible to translate an EPML dia-
gram in its XML representation and vice versa. A process
specification (in form of XML document) can be executed
by an engine; we refer to a specification in execution as a
process instance.

The purpose of this section is not to provide a detailed
description of EPML (interested readers can refers to [21])
but only to briefly introduce its main features.

The components of EPML are shown in Fig 1.
Two types of nodes exist in EPML: activities (repre-

sented with squares) and processors (represented with cir-
cles); subprocesses (represented with rounded rectangles)
really are just folding of subgraph with specific characteris-

29

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

tics. Activities are elements of computation: they can be ei-
ther external applications or work items allocated to a work-
flow participant (possibly a human actor). An activity can
have an entry edge, an exit edge, and, potentially, an ex-
ception edge. Processors are elements of coordination: they
implement the process logic possibly using a standard pro-
gramming language. A processor is like a gateway: it can
perform synchronizations and uses the process logic to per-
form routing decisions; as such it can have multiple entry
edges and multiple exit edges.

Each execution flow is represented by a token. A to-
ken contains the data associated to the flow and produced
and/or used by activities and processors. Moreover tokens
also contain identifiers that allow to implement flows syn-
chronization. Similarly to other formalisms (e.g. place-
transition networks), the set of tokens present in a given mo-
ment, and their location in the diagram, represent the state
of the system.

Each time a flow (i.e. a token) reaches a node, and its
associated entry condition, if present, has been satisfied, the
node activates (a new node instance is created). Concurrent
activations of the same node are possible inside the same
process.

In EPML, two types of edges exist : the standard edges
and the exception edges. The latter are activated only in the
case of anomalies (an exception raised by an activity or by
an unsatisfiable join associated to a processor). Activating
an edge means sending a flow over it, (i.e. putting the token
representing the flow into the edge’s destination node).

A processor can be decorated with the decorations shown
in Fig. 1; the entry decorations (and, join, join-with-
threshold) and the exit decorations (bang, par) can be used
for representing control-flow operations like join, split and
sub-flow creation.

In the following paragraphs we briefly describe the se-
mantics of every decoration that can be associated to the
processor nodes. The decoration(s) a processor supports
characterize(s) the type, and then the behavior, of the pro-
cessor itself.

The start processor and the end processor (obtained dec-
orating a processor with a start and end decoration, respec-
tively) represent the start point and the end point of a pro-
cess.

A processor with no decorations is a simple processor.
It manipulates the data received by the previous node(s) in
order to select the exit edge on which the execution flow
will be routed.

A processor with a bang decoration (bang processor) en-
ables to split a single process execution flow in parallel
flows, and route them on one or more exit edges. The exit
edges of a par processor can be labeled with a cardinality
notation (à la UML) indicating the minimum and/or maxi-
mum number of process flows that can be routed in parallel

A C

(a)

B

(b)

A CB

D

Fig. 2. Examples of how par and join processors can be
composed

on the edge(s). If such a notation is not present, no limita-
tion about the number of flows is imposed.

A processor with a par decoration (par processor) has a
behavior which is similar to that of a bang processor, with
the difference that the flows produced by this processors are
sub-flows of the entry flow, that can be later synchronized.
Technically this is accomplished by extending the token’s
identifier (which is a sequence) with new unique elements
shared among all the related sub-flows.

The goal of a processor decorated with a join decoration
(join processor) is to synchronize process flows (generated
by one or more par processors) that are executing in paral-
lel. The join semantics in EPML is quite sophisticated and
it significantly contributes to make powerful the EPML ex-
pressiveness. For this reason, we present the peculiarities of
the join semantics and discuss some examples. Intuitively,
we can say that a join processor activates when all flows
produced by the same instance of a par processor reach it,
or when at least one flow is arrived and the other flows pro-
duced by the same par processor instance cannot reach it
any more (for example because they have been canceled or
they have been routed elsewhere). The join processor re-
moves from the flow(s) the identifiers that have been used
to implement the synchronization and merges the sub-flows
in a unique flow.

The first example we discuss is shown in Fig. 2a. In
this graph, when the flow reaches the par processor A, an
instance of it is created and the associated process logic is
executed. Let us suppose that this instance generates two
flows marked with the same identifier, e.g. A1. Whenever
one of these flows reaches the activity B, a new activity in-
stance is created. When an activity instance completes, the
flow is routed on the exit edge (notice that the termination

30

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

order of the activities instances can be different from the ac-
tivation order). The processor C activates when it receives
both flows marked with A1 (that is when both executions of
B complete).

It is important to remark that the synchronization oper-
ated by the join processor is related to the sub-flows gener-
ated by the same par processor instance. For example, let us
suppose the par processor A activates twice; the first time it
produces two flows (with identifiers A1), while the second
time it produces three flows (with identifiers A2). In this
case the join processor activates both when it receives the
two flows marked with A1 and when it receives the three
flows marked with A2 (again, notice that these flow can in-
terleave in different ways).

We would like to point out that, according to the join se-
mantics, a join decoration is satisfied even in the case at least
one flow has reached the join processor and the other flows
produced by the same par processor instance cannot reach
the join processor any more. Cases like that can occur, for
example, in a process fragment like the one depicted in Fig.
2b. Let us suppose that the par processor A generates two
flows marked with the same identifier, e.g. A1. Both flows
arrive in the simple processor B, then it activates twice. Let
us suppose that one of the flow is then redirect to the join
processor C. This processor receives the flow but it cannot
activate, since another flow marked with A1 (that at the mo-
ment is in B) can reach it. In this situation B could:

• route the flow on the edge that conduces to the proces-
sor D;

• route the flow on the edge that conduces to the join
processor C;

In the first case, the join processor C can activate as soon as
the flow is sent on the edge; In the second case the join pro-
cessor C can activate as soon as it receives the flow. In both
cases, indeed, the activation of the join processor C is pos-
sible as no other flows generated by the same par processor
instance can reach the processor anymore.

In a EPML graph, nodes can be connected in a free struc-
ture; this implies that, in general, there is not a 1-to-1 rela-
tion between a par processor and a join processor. A join
processor can then synchronize flows coming from differ-
ent par processors. To this end, a join processor maintains a
list of par processors it refers to (we named this list par set)
and activates only when all process flows generated by the
par processor present in the par set reach the join processor.
The par sets are calculated by means of an algorithm based
on a network coloring mechanism (for sake of conciseness
the algorithm is not described in this paper). This algorithm
runs before the process specification starts to execute; the
par set of a node is the same for every process instance and
does not vary during the process execution. The rationale of
this algorithm is that the par set of each join processor must

a b c d

parset={a}parset={b}
a

b

c

parset={a,b}

(a)

(b)

Fig. 3. Examples of structured and unstructured par-join
composition

contain all par processors that are directly connected to it
(in the sense that there is a path between the two with no
other join processor in the between) or indirectly connected
(in the sense that there is a path between the two in which
each par processor has a complementary join processor later
in the path).

In Fig. 3 are shown two examples of structured and un-
structured par-join composition. In Fig. 3a the parset of
the join processor C contains the par processor B, and the
parset of the join processor D contains the par processor A.
This means that C synchronizes the flows produced by B
while D synchronizes the flows produced by A. In Fig. 3b
the par set of the join processor C contains both the par pro-
cessors A and B. This means that C synchronizes the flows
produced by both A and B.

A process decorated with a join-with-threshold decora-
tion (join-with-threshold processor) is a special type of join
processor. The threshold (i.e. the number n written inside
the decoration) indicates the number of process flows the
join processor has to wait before activating. The threshold
can be positive, negative or zero. If it is positive, the pro-
cessor waits for n flows; otherwise it waits for the number
of generated flows minus |n|. Note that, if the threshold is
zero, the joinWT processor waits for all the flows produced
by the par processor instance. When the joinWT decora-
tion can not be satisfied (i.e. no other flow can reach the
joinWT processor), the joinWT does not activate and the
flow is routed on the exception edge (if present).

A processor decorated with an and decoration (and pro-
cessor) implements a different kind of synchronization. The
and processor must have a main entry edge and can activate
only when the following conditions are satisfied: (1) flows
must arrive in all its entry edges; (2) incoming flows must

31

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

be sub-flows of the flow coming from the main edge. Only
the flow coming from the main edge is driven forward, the
other flows are simply discarded.

A processor decorated with an event decoration (event
processor) activates only if the entry decoration (if present)
has been satisfied and an event is arrived. Events can be
permanent or transient. Permanent event can be stored and
used subsequently; on the contrary transient events are lost
if the processor can not be activated at the moment the event
arrived.

EPML supports subprocesses. A subprocess is just fold-
ing of subgraph with specific characteristics. When an ex-
ecution flow enters in a subprocess, a new subprocess in-
stance is created; the entering flow is considered as a new
flow, that is all identifiers associated to that flow are ignored
(they will return valid only when the flow exits from the sub-
process). Processors inside a subprocess can add identifiers
to the flow, however those identifiers are valid only inside
the subprocess instance that created them, and are canceled
when the flow exits from the subprocess.

EPML has a cancellation construct that enables to define
a cancellation area. A cancellation area is a set of nodes and
can be graphically depicted with a dashed perimeter con-
nected to a node. When the node is activated, the flows and
the node instances inside the cancellation area are removed
or forced to terminate, respectively (in general, the flow that
activates the cancellation and the canceled flows have to be
generated by a common par processor instance).

EPML also makes available language elements that are
just syntactic sugar, this is the case for the messaging (or
asynchronous) activities and for timed activities and sub-
processes. Messaging activities are depicted like activities
decorated with the same glyph used to represent events in
event triggers. Despite their graphical appearance, these
really are processors whose process logic generates events
(by interfacing with the enactment engine run-time system).
When these events are used to communicate with compo-
nents that have to be coordinated the usage of an activity-
like element remarks the interaction with the functional per-
spective. A timed activity is an activity for which a deadline
is set as soon as its execution starts. If the execution does not
end before the deadline the activity is canceled. An excep-
tion edge can exit from a timed activities; when a time-out
occurs the entry flow is routed on this edge. Being syntac-
tic sugar a timed activity is internally expanded into regular
EPML elements that support the aforementioned semantics.
Timed sub-processes behave in a similar fashion.

As hinted above, EPML also includes elements related to
the informational perspective. In this perspective we find
two classes of data: production data and control data. Pro-
duction data comprise all data that are essential for an appli-
cation area. Control data can be either information related
to the internal state of a process or pointers to production

data (allowing process elements to access the information
that has to be processed). In EPML a data bag (an asso-
ciative map) associated to each token is used to manage the
control data. By using special shared and transient entries,
EPML provides a simple way to manage global data (that is
data that has to be shared among all the processes hosted by
an engine); process data (data that has to be shared by all
the instances of a specific process); instance data (data that
has to be shared within a single process or subprocess); and
transient data (data that is automatically removed after the
execution of an activity). For example process data has to be
set (and retrieved) using the $process entry automatically
added to the data bag of all generated tokens. This entry is
a new associative map shared among all the instances of a
specific process.

A formal semantics for EPML, based on a transition sys-
tem, is described in [21] (although it is not updated to the
latest version of the language). A formal semantics can be
the starting point for the formal verification of specific prop-
erties (reachability, liveness, etc.). It is our opinion, how-
ever, that this argument is of less importance with respect
to the ability to define the behavior of the language with no
ambiguities. Anyone that had the chance of working with
these languages to model complex processes went through
the “try and see what happens” approach: when interactions
get complex, the only way to be sure about the actual behav-
ior of the system is to enact the process in a testing environ-
ment (and, quite frequently, the observed behavior is not the
one expected by reading the manuals).

3.1. The EPML engine

A process modeled with EPML can be enacted by means of
a software component called EPML engine; it takes as in-
put an XML representation of the EPML specification and
it executes it. The EPML engine is a software component
written in Java 1.5 (and thus portable to most platforms).
It has been designed as an event-based architecture: it con-
sumes events and produces both events and state transitions.
An event can represent an external event, the termination or
the activation of a node instance. A state transition can en-
tail modifying tokens or moving them in the network.

In many situations, the engine is expected to interact with
human actors and/or software components. This implies the
integration with a software architecture designed for a spe-
cific application domain. This integration has been imple-
mented managing the events that the engine produces (out-
put events) and generating the events that the engine con-
sumes (input events). The input events can be start events,
external events, and end-activity events. The start event trig-
gers the execution of a new process instance; the external
events are those caught by an event processor and typically
are generated by the environment in which the process is en-
acted, and the end-activity events notify to the engine that an

32

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

activity has terminated its execution. The output events can
be termination-process events or start-activity event. They
notify the external component that the process is terminated
or that a new activity instance has been created and can start
its execution.

In our system, the event notification is achieved exploit-
ing the implicit invocation principle. To notify an input
event to the engine the software architecture invokes an en-
gine method that adds the event to its input-event queue; it
will be then examined and proper actions (e.g. processor ac-
tivation) will be taken. To notify an exit event to an external
component the engine invokes a method on it.

The activities are not part of the engine, but they are ex-
ternal components that interact with the engine by means
of a Java class that extends an ActivityWrapper. This
class has a method (named run) that is invoked by the en-
gine to start the activity execution. The run method contains
the code that enacts the activity execution. Such execution
can imply, for example, either the invocation of an external
software component or the addition of a task into an actor
task list. When the activity has terminated its execution, the
ActivityWrapper produces a termination-activity event
and passes it to the engine.

The architecture just described is very flexible as it en-
ables the interaction among most kinds of external com-
ponents. The engine integration in an existing architecture
does not require any modification in the engine itself, but
can be achieved by extending the ActivityWrapper class
and putting into it the code that enables the interaction with
the external component.

The activities execution is coordinated by the processors
and specifically by the process logic. Technically speaking,
the process logic can manipulate both production and con-
trol data. In some context, the process logic could also be
required to decide which actor(s) the activity(-ies) has(have)
to be assigned to. Such feature is typically related to the
resource perspective in a workflow system. It can be inte-
grated in EPML in a way transparent to the engine, that is
specifying, in the token’s data bag, which actor is in charge
of executing the activity.

The process logic has to be specified by means of a suit-
able formalism. This could be a generic programming lan-
guage, a scripting language or a language based on XML
(e.g. XQuery or XSLT), provided that specific adapters im-
plementing proper bindings are provided to interface to the
engine. It is also possible to specify the name of a Java
class implementing the process logic. The engine makes
available to the process logic mechanisms for manipulating
the tokens’ data bags; the process logic has to inform the
engine about which exit edge(s) has(have) to be activated.

loan
approver

loan
assessor

 yes

no

 low
 high

risk

less than 10K? set up reply data

Fig. 4. A loan process

4. EPML.WS

EPML.WS is a software architecture for web services or-
chestration based on EPML. In order to support this specific
applications class EPML.WS complements EPML with
components that address the interaction with synchronous
and asynchronous web services and allow a EPML-enacted
process to be accessed as a web service.

EPML.WS is designed to be hosted inside a JEE archi-
tecture supporting JSR 109 (Implementing Enterprise Web
services) and JSR 181 (Web Services Metadata for the Java
Platform).

A very thin layer of software adapters have been provided
in order to create the EPML.WS architecture. This includes:

• an adapter to transform incoming web services invo-
cations (SOAP messages) into external events that are
feed to the EPML engine;

• an activity wrapper (ActivityWSWrapper) to imple-
ment activities execution as web services invocation;

• a process logic wrapper (WSXQueryLogic) to use
XQuery for routing decisions and for process data
management.

Web services that have to be orchestrated are mapped into
activities and the data perspective is managed using the sim-
ple integrated data perspective of EPML (that is using the
data bags associated to the tokens). As usual, with EPML,
the logic of the processor can be implemented with several
languages. Given the fact that the data model used by web
services is based on XML we provided a specific process
logic adapter that allows to use XQuery (WSXQueryLogic).
This adapter first creates the XML document against which
the provided XQuery expression has to be run, it executes
the XQuery expression and then parses the generated output
to activate one or more exit edges and to modify the token’s
data bag (used to store process-related data and parameters
for subsequent web service invocations).

We now use an example to give a basic idea of how to set
up a web services orchestration with EPML.WS.

33

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Consider the process depicted in Fig. 4. The activities
loan approver and loan assessor are external web
services that participate in a basic loan approval process.
The process is initiated with the event associated to the start
processor; in our case this event has been mapped to an in-
coming web service invocation by using the aforementioned
adapter. The less than 10k processor has two duties:
implement a routing decision (activating the outgoing yes

or no edges) and prepare the parameters needed in the in-
vocation of the two subsequent web services (associated to
the loan assessor and the loan approver activities).
Specific entries of the tokens’ data bag are used to store in-
coming SOAP request messages and to set up invocation pa-
rameters. less than 10k has then to access the data asso-
ciated to the SOAP request received at the beginning of the
process to implement the routing decision and has to pre-
pare the parameters for the forthcoming invocations. less
than 10k has been set up to use WSXQueryLogic and it
uses the same XML document associated to the original in-
coming SOAP request for the XQuery (element properties
in the XML process description are used to specify how the
XML document has to be produced from specific entries in
the token’s data bag; in this case a special $wsin elements
containing the SOAP message of the incoming call). The
XQuery expression, in this case, is as follows:

<xq_result>
<edges>
{
if(data(//amount) > 10000)
then <edge>yes</edge>
else

<edge>no</edge>
<wsout>

<param name="name">
{data(//name)}</param>

<param name="first name">
{data(//firstName)}</param>

<param name="amount">
{data(//amount)}</param>

</wsout>
}
</edges>
<data>
<entry name="name">

{data(//name)}</entry>
<entry name="first name">

{data(//firstName)}</entry>
<entry name="amount">

{data(//amount)}</entry>
</data>

</xq_result>

Once the query has been executed WSXQueryLogic

parses the result in order to extract the information about
the outgoing edge that has to be activated (this information

is in an edge element), stores in the token’s data bag all
the name-value pair contained in data and sets up a special
entry, $wsout in the aforementioned data bag (that is used
to set up the parameters of the invocation of either load
approver or loan assessor), by analyzing the wsout

element.
If we assume that the body of the original SOAP request

is as follows (namespace references have been omitted for
clarity):

<body>
<firstName>John</firstName>
<name>Doe</name>
<amount>1000</amount>

</body>

the previous XQuery expression produces:

<xqresult>
<edges>
<edge>no</edge>

</edges>
<data>
<entry name="name">Doe</entry>
<entry name="first name">John<entry>
<entry name="amount">1000</entry>

<data>
<wsout>
<param name="name">Doe</param>
<param name="first name">John<param>
<param name="amount">1000</param>

</wsout>
</xqresult>

The information in this XML fragment is then processed
as described before, activating the no outgoing edge and
putting the name, first name and amount data both in the
data bag (these are used later by the reply activity) and
in the special entry used to set up the invocation parame-
ters for loan approver. Before the process completes,
the set up reply data processor, linked to the end pro-
cessor, sets up (in the data bag) a special entry that is used
by the web service adapter to create a reply message to the
original process invocation.

EPML.WS poses itself as an alternative to systems based
on WSBPEL. With respect to these systems EPML.WS has
the following advantages:

• graphical notation;

• higher expressive power;

• ability to implement complex process logics without
relying on external components.

It should be noticed that WSBPEL has not a “native”
graphical notation but there are specific guidelines about the

34

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

usage of BPMN to model BPEL processes. From a practi-
cal point of view, however, the mapping of a process mod-
eling language into another is a very complex issue. The
details for the mapping of BPMN into BPEL, for exam-
ple, are largely incomplete and it is well possible to create a
BPMN diagram for which the translation into BPEL is un-
determined. Even when using techniques which are more
advanced with respect to those presented in BPMN’s spec-
ifications, the resulting BPEL code (when it possible to ob-
tain it) is often a bad example of “spaghetti BPEL”, which
does not only pose a readability problem, it also creates
monitoring problems (at which conceptual point of the pro-
cess is the program executing this piece of spaghetti BPEL?)
and modification tracking problem (modifications in the re-
sulting BPEL code can hardly be reported into the BPMN
diagram). For an in-depth analysis of this problem the inter-
ested reader can refer to [17]. These kind of problems are
not only limited to the BPMN to BPEL mapping, but are
usually found whenever a transformation between two pro-
cess modeling languages have to be performed. It is easy to
realize this is the case considering that most languages have
different expressiveness (as defined in [5]), so most of the
times a transformation has to map interaction patterns that
are easily supported in the original notation and not easily
(if at all) available in the target one.

To test EPML.WS against BPEL we set up a simple ex-
periment. We used the very same process described above
(which is a sample from the ActiveBPEL [1] distribution)
we “unplugged” the BPEL engine and we replaced it with
EPML.WS obtaining a working orchestrated process pre-
senting the very same behavior and the very same (web
service-based) interface. Another interesting part of this
experiment was the analysis the effort needed to setup a
BPEL-based solution and the EPML.WS one. While we did
not run formal tests to access a vague parameter like “effort”
our experience with computer science students shows that
the same task (modeling a process of average complexity)
can be accomplished using EPML.WS in about one tenth of
the time with respect to BPEL, factoring out the time needed
to address the link relationship problems (that are addressed
in a very complex, yet powerful, way by BPEL and are not
addressed at this time by EPML.WS).

EPML.WS has been mainly designed as a proof-of-
concept. A working prototype has been implemented but
it still has a few limitations (for example bindings have to
be programmed by hand). Nevertheless EPML.WS is the
proof that it is possible (and relatively easy) to design, and
implement, a software architecture for a specific application
domain in which advanced coordination mechanisms are re-
quired to govern interactions among distributed actors.

5. EGO

EGO (E-Game Orchestration) [20] is a software platform
to deliver e-learning games based on EPML. EGO allows
multiple users to be engaged in collaborative or competitive
games by using a web-based interface. With EGO, games
with various interaction patterns among the actors can be
modeled, such as the ones occurring in turn-based and
concurrent games (with or without synchronization steps).
Given the large amount of possible interactions that can take
place among actors, games are good candidates as case stud-
ies to test coordination models. One of the basic concepts
in EGO’s game modeling is the interface (in the sense of
user interface). In EGO an interface is an activity assigned
to an actor. The idea is that a game can be assimilated to
a workflow system in which the interaction of players with
their gaming interface corresponds to the execution of work
items assigned to actors. By making their moves (using the
interface) the players accomplish the work items. One of
the main differences of this system with respect to classical
workflow systems is that a single interface is usually as-
signed to the actors (otherwise a player might have to inter-
act with multiple user interfaces to participate in the game).
This problem can be solved with two different approaches.
The first one is to explicitly cancel the activities that have
been assigned (and not accomplished) to an actor right be-
fore assigning a new one. This solution entails no modifi-
cation to the semantics of standard workflow languages but
the specification becomes soon cluttered with cancellations.
A second solution, the one we adopted, is letting the upper
layer in the software architecture to take care of notifying
the engine that the an actor finishes a previously assigned
work item whenever a new work item is assigned to him by
the engine. Please notice that while this solution can be per-
ceived as a violation of the semantics of EPML this is not
actually the case. The semantics that is violated is that of a
workflow system, something that EPML is not. In EPML, in
fact, the resource perspective is out of scope, since the focus
is in the process perspective. Tokens’ data bags can be used
to transfer information related to the resource perspective,
but this concept is not intrinsic to EPML.

As stated above EGO is a web-based platform and it has
been designed within the JEE framework. Its structure is
quite simple: the engine interacts with a web application
hosted in a JEE servlet container. The interaction takes
place by means of input and output events. The web ap-
plication is composed by two servlets (Dispatcher and
Process) and a software component that captures the start-
activity events produced by the engine and maintains the as-
sociation between actors and activities. The Dispatcher

servlet queries this software component in order to obtain
the activity that has to be assigned to an actor and then dis-
patches the associated interface to the player. When a player

35

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

wait

play

wait

wait

Fig. 5. The beginning of a simple turn-based game

submits its move, the move is processed by the Process

servlet that produces an end-activity event embedding into
it the data coming from the request sent by the player’s
browser. The event produced is then notified to the engine.

In Fig. 5 the first steps of a turn-based games are mod-
eled. One player have a master role and is in charge of set-
ting up the game environment for the other players. This
player starts the game sending a message that triggers the
creation of a new process instance. Other players join by
sending a message that triggers the new player proces-
sor. The wait asynchronous activities are used to notify
the players they have to wait for the other players to join
before the game can proceed. Asynchronous activities are
used to dispatch web pages for which no user input has to
be reported back to the process. Once all the players have
joined the game the turns can begin. During the turns one
player is associated to the play activity (which is not an
asynchronous activity, since the result of the play has to be
reported to the process) while all the others players receive
the wait interface. Once the play has been performed a new
turn can start or the game can proceed with other phases.

EGO has been used to model several games and it is being
currently used for e-learning purposes (with business simu-
lation games). We also developed a version that is able to
interact with AJAX-based presentation technologies.

6. PROCESS-AWARE WEB APPLICATIONS WITH
EPML.WEB

EPML.WEB [23][24] is a platform (a model and a reference
architecture) for the design and development of process-
aware web applications based on EPML. The use of EPML
in the context of process-aware web applications is moti-
vated by the consideration that such applications should be
able to support not just simple navigation and data access
activities but (potentially complex) business processes. In
this respect, we propose to model the business process with
EPML and extend the engine architecture with software
components that interact with the web navigational struc-
ture of the web application.

submit
proposal

assign
reviewers

make
review

cancel
review

decide

applicant coordinator reviewer

Fig. 6. A review process in EPML

While navigating in the web application, users can access
pages that are not related to any process or can visit process-
related pages. We refer to the former as standard navigation
mode and to the latter as process flow mode. To enter pro-
cess flow mode the users follow specific process-aware hy-
perlinks. Process-aware hyperlinks can be used to create
a (sub)process, to resume a previously started process that
has been left (probably by using navigation links that drove
the user outside the process flow), or to join an existing pro-
cess created by another actor. In process flow mode, the
sequence of the pages that are dispatched to the users may
depend on the control flow of the process rather than on the
navigation structure of the web application. Specifically, in
our approach, the pages in process flow mode correspond to
the tasks assigned to the users by the process.

Consider the process depicted in Fig. 6: it is a high level
model of a simple project grant review process. In this di-
agram, standard EPML elements have been enriched with
stick figures in order to model an elementary resource per-
spective. Applicants submit their projects for review, the
coordinator assigns the actual reviews to a given number
of reviewers, the reviewers make the reviews. A review is
actually composed by two steps: a first evaluation is given
considering an anonymous subset of the documents in the
proposal, a second evaluation is given considering all the
information related to the project, including the applicants’
identity. While waiting for the reviewers to complete their
work, the coordinator can decide to cancel a review (be-
cause it is delaying the process or for other reasons). When
all the reviews have either been completed or canceled, the
coordinator decides to reject or to fund the project. Please
notice that the modeled process is a highly simplified ver-
sion of what actually takes place in the real word. EPML
has been designed with an high expressive power right be-
cause the authors acknowledge that real world (business)
processes are far more complex than what academic papers
seem to suggest. Nevertheless, given the focus of this work,
an oversimplified example is reasonable.

To decide if a proposal should be funded or rejected, co-
ordinators have to join the flow of the process generated by

36

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

First
review
step

Second
review
step

Fig. 7. The make review sub-process

the applicants when they submitted a proposal. In order to
do that from within the web application, coordinators have
to follow a process-aware hyperlink that drives them to a
page related to the decide activity. This page should be
available only when the decide activity has been assigned
to the coordinator and it is a reasonable design strategy to
prevent the generation of process-aware hyperlinks related
to processes for which no activity is assigned to the current
user. In the specific case of the aforementioned example,
the decide hyperlink should be available from the proposal
details page only when all the reviews have either been re-
ceived or canceled. In general only process-aware hyper-
links used to start a new process can be always available.
Even hyperlinks used to start sub-processes are not gener-
ally available (in the example, the make review sub-process
can be started by reviewers only when they have been as-
signed the review of a proposal).

Consider now Fig. 7: it depicts the make review sub-
process. As discussed above this sub-process is composed
by two steps and it is very well possible that reviewers leave
the sub process when finished the first step, before com-
pleting the second. As a consequence the make review

hyperlink that is available from the pending reviews page
can lead reviewers to the forms associated to the first or to
the second review step depending on the state of the make
review sub-process for that specific proposal.

Note that the web application framework must be able to
interface to the process enactment engine in order to query
the activities assigned to specific users and to signal the
completion of activities. From the modeling point of view,
the following issues have to be addressed:

• the modeling of process-aware hyperlinks;
• the modeling of non-navigational sequences of views

in process-flow mode and
• the modeling of associations between the pages in the

navigation model and the related activities in the pro-
cess model.

In Fig. 8 is depicted a model for the make review (sub) pro-
cess that uses a simple extension of a WAE [10] navigation
diagram (a stereotyped UML class diagram that is part of
the user experience model) and a EPML diagram. We de-
cided to use WAE for mainly two reasons: first, to remain
agnostics with respect to other web applications develop-
ment methods like [9, 15, 26, 27] that have been extended

<<p.screen>>
First review

step

<<p.screen>>
Second review

step

<<input form>>
First review

form

<<input form>>
Second review

form

<<screen>>
Confirm first
step grades

<<screen>>
Confirm second

step grades

<<process>>
Make Review Process

First
review
step

Second
review
step

<<screen>>
Proposals

<<process link>>

<<process link>>

<<input form>>
Confirm first

step

<<input form>>
Confirm

second step

yes yes

nono

Fig. 8. Modeling the review sub-process

in order to model process-aware applications and, second,
because it is a quite “lightweight” method that easily al-
lows simple extensions. This is mostly because WAE is not
targeted at model driven development and, thus, the design
models are not overloaded with details.

From this example it is easy to see how the aforemen-
tioned issues can be addressed. Process-aware hyperlinks
are modeled with navigational associations that connects to
a process-stereotyped class. In order to remark the specific
behavior of these associations we also used the process link
stereotype, but it is not really essential. The p.screen stereo-
type is used (for inner classes inside a process-stereotyped
class) to mark the entry points of sub-sequences related to
an action in the EPML model. The active sub-sequence can
be easily inferred since the name of the p.screen-stereotypes
classes correspond to the names of the action in the pro-
cess model. When a navigational subsequence in process-
flow mode returns the control to the process-flow, a navi-
gation connection is made between the last screen (or its
aggregated forms) and the outer process class that contains
it (as in the two input confirmation forms of the example).
Process-stereotyped classes admit only one exit association
that leads to the subsequent page (or process) that is visited
when the (sub)process ends. In our example this association
too is process link-stereotyped.

As far as implementation strategies are concerned, sev-
eral options are available, depending on the used web appli-
cation framework. The solution we present here is based on
Java EE (which is a natural choice, since the EPML engine
is written in Java) and the Struts MVC framework; similar
solutions, however, can be implemented with different tech-
nologies. Basically, the functions that have to be supported
by the framework in order to address the issues related to
process-aware web applications that we mentioned above
are:

• implement process-aware links to create, resume or
join a process;

37

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

• dispatch the correct sequence of pages in process-flow
mode;
• hide process-aware links that would lead to processes

in which there are no actions (or there is not a specific
action) assigned to the current user.

When using a MVC framework like Struts these issues
can be easily addressed by writing specific process-aware
controllers that, interfacing with the engine, dispatch the
correct view given the current user (in our implementations
we assume this information can be extracted from the user’s
session data) and the process the link points to. In the case
of processes in which more than one action can be associ-
ated to the same user (this is an event that does not show
up in our example) an additional parameter specifies which,
among the available actions, has to be used as a starting
point for the current flow. Process-aware hyperlinks can
then be created simply pointing to a process-aware con-
troller. The same controller can be used to dispatch the cor-
rect sequence of pages in the process flow. Finally, generic
parts of a web page can be hidden by using a conditional
custom tag that queries the engine about the availability of
an action for the current user in the target process.

The management of the data perspective introduces some
subtle issues and, while it is slightly out of the main topic
of this article, we are going to discuss possible solutions.
The main problem, in this context, is that almost every soft-
ware system has some kind of data perspective; this is the
case for EPML too, since some kind of data management
is needed at least to allow the processors to take decisions
when needed. It turns then out that we are trying to mix two
sub-systems that have two distinct data perspectives. Dupli-
cating the application data in both perspectives is unfeasi-
ble and error prone, so reasonable solutions are: using one
of the two data perspectives and adapting the other system
(if possible) to interface to the selected data management
solution or using an external sub-system that addresses the
data perspective and adapting the remaining sub-systems to
interface to it. The correct solution depends on the specific
overall architecture. In our case, for example, if we are deal-
ing with a large business process that interfaces with sev-
eral systems and is just partially participated using a web
application, then using the existing data perspective and de-
sign the web application in order to interface to it is the
better solution. On the other side, if we are dealing with a
fully web-based business process, using the data perspec-
tive that is managed by the web application framework (in
the case of Java Enterprise Edition, session data for the web
tier - persistent data via EJBs or Hibernate for the business
tier) is a feasible solution. Assuming the second scenario in
our example application, Java Enterprise Edition-based so-
lutions are used to address the data perspective: then, in this
case the process logic of the EPML processors has to be de-
signed so that it can access the web framework data (in other

words the processors in EPML have to be able to interface to
HTTPServletRequest-accessible data - query strings, form
submitted-data, session data, etc. - and to the model com-
ponents). Designing this solution is trivial using Java En-
terprise Edition and the EPML engine in which we simply
have to add the relevant references into the data bag of the
token associated to the current flow each time a terminate
activity event is dispatched to the engine (typically when a
process-aware controller is activated as a consequence of a
process-related interaction returning the control to the pro-
cess flow). In the project proposal review application this
happens, for example, when the reviewers confirm the first
review step. A processor positioned between the First re-
view step and the Second review step activities (which is
actually present in our example but is not shown in the dia-
gram for conciseness) takes decisions about outgoing flows
by accessing the form data filled by the reviewer. In our pro-
totype, to better separate the two sub-systems, the relevant
web framework data are used to create an XML document
that is put in the flow data. The processor uses XQuery as
seen before for EPML.WS.

7. EPML.SIM

Business Process Simulation (BPS) is widely acknowledged
as an effective technique to increase the chance for success
of Business Process (re-)Engineering projects and, in gen-
eral, to drive strategic business decisions.

In this context, we have designed and implemented
EPML.SIM, a tool for modeling and simulating processes
based on EPML. In particular, we propose to use EPML for
modeling the control-flow perspective of a process, while
ancillary (potentially pluggable) software systems can be
used to support the remaining perspectives and to drive the
discrete event simulation. This approach allowed us to de-
sign an effective simulation tool with a minimal footprint.

7.1. Architecture of the simulator

The simulation tool is built around three main components:
the EPML engine, a driver with the responsibility of man-
aging the (simulated) events (events generated by the en-
vironment, end task events, timeouts, ...) and a pluggable
resources model. The driver also initializes the engine by
specifying the process model to be enacted, its initial state
and how the process logic and the code of the activities have
to be overridden for simulation purposes. The tool, in fact,
assumes that the EPML model is a generic model, possi-
bly designed to support the enactment of the process in a
real software system (and, in fact, a snapshot of the state
of a running process can be used as the simulation’s initial
state).

The original process logic (that is the code associated to

38

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

the processors) could reference data and components that
are not available during the simulation. As an elementary
example, consider a processor that implements a routing
decision by analyzing the data produced by a previously
run activity. In this case the processor’s code can be over-
ridden for simulation purposes with a pre-defined compo-
nent that performs the decision on a random basis given
a probability for each of the outgoing branches, thus ob-
taining the behavior of most of the aforementioned simu-
lation tools. If a more detailed modeling is required, the
processor’s code can also be overridden by a code snip-
pet (EPML directly supports all the languages compliant
with JSR 223 which includes Java, BeanShell, Groovy,
JavaScript, Python, Ruby, TCL, XPath and others), even
a code accessing the cell of a spreadsheet in order to take
its decision (we actually used this solution in a simulation
where a detailed financial model of the organization was
available).

As stated above, also the code associated to the activities
can be overridden. Pre-defined activities returning only du-
ration informations on the basis of a probability distribution
(chosen among constant, uniform, normal, gamma and ex-
ponential) or by historical data stored in a text file or in a
column of a spreadsheet, are available. If a more detailed
model is required, any kind of code can be used (as seen be-
fore for the processors), allowing the interaction with other
business models (or with other software systems). Using
this technique we can address the functional perspective.

The data perspective is addressed by using the basic data
handling capabilities provided by the EPML engine. In
EPML tokens are used to keep track of the status of a pro-
cess. The EPML engine allows tasks to access a data bag
(implemented as an associative map) associated to the to-
ken(s) that activate the task. The data bag is also used to
carry information about the items processed during the sim-
ulation. This is implemented by specifying which events
are used to generate new items (for example the event rep-
resenting the arrival of a new request to be processed can
be tagged as a request generator). Tokens enabled by these
special events are tagged (by adding the relevant informa-
tion to their data bag) and are subject to statistical recording
by the driver component.

The organizational perspective is implemented by a plug-
gable component (a Java class implementing a specific in-
terface). The driver queries this component when a new
activity has to be executed in order to obtain the needed re-
sources (and to know their costs). The component is also
notified when a resource is (or more resources are) released
(because of the end of an activity). A basic component is
provided which implements a simple role-resources matrix
combined with an availability matrix. Yet again, if a more
detailed organizational model is required a new Java class
implementing the details of this specific model has to be

Check for
complete-

ness

Request
additional

info

Perform
checks

Make
decision

Notify
acceptance

Notify
rejection

Deliver
Credit Card

Receive
review
request

Fig. 9. The credit card application process

created. Notice, however, that this solution does not sup-
port a resource model with preemption (that is a resource
model in which a resource can be reclaimed by a high pri-
ority task while performing a lower priority one, which is
canceled). This is because in EPML.SIM the canceling of a
task is possible only from the control-flow perspective, that
means that when such a behavior is required it has to be im-
plemented in the process model (by using the cancellation
support of EPML).

7.2. Simulating a Business Process with
EPML.SIM

In this section we show how a Business Process can be ef-
fectively simulated by using EPML.SIM. To this end we
use, as an example, the credit card application process de-
picted in Fig. 9 (inspired to the example from [29]).

The behavior of the modeled process is quite straightfor-
ward; the event associated to the start processor represent
a new incoming application and is used to generate a new
instance of the process; the clock icon associated to the
Receive review request represents a time-out: if the
activity is not performed within a specified amount of time
the path exiting from the clock icon (an exception path) is
activated.

This diagram corresponds to an XML file (that can
be produced with EPML modeler, a graphical editor cre-
ated with Adobe Flex). In this example we call this file
process.xml. This XML file, along with another XML
file (simulation.xml) specifying which (and how) proces-
sors/activities have to be overridden and, optionally, with
an initial state description, are used by EPML.SIM. In
our example we suppose that the activity Check for

completeness is characterized by a duration depending
on a normal probability distribution. We then override the
behavior of this activity in simulation.xml with the follow-
ing XML fragment:

<activity activityId="CheckForCompleteness"

39

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

classname="epml.simulator.executors.
ProbabilityActivityDuration">

<param name="distribution">normal</param>
<param name="unit">minute</param>
<param name="mean">5</param>
<param name="stdDev">2</param>

</activity>

where ProbabilityActivityDuration is the name of a
pre-defined Java class that returns the duration of the activ-
ity by using a probability distribution (normal, in this case,
with mean 5 and standard deviation 2).

For the subsequent processor (implementing a choice be-
tween two possible paths in the process structure) we can
use a similar approach by redefining it in simulation.xml as
follows:

<processor processorId="choice1"
classname="epml.simulator.executors.

ProbabilityProcessSwitch">
<param name="e6">.1</param>
<param name="e7">.9</param>

</processor>

where ProbabilityProcessSwitch is the name of a pre-
defined Java class that implements a random choice between
the outgoing edges, listed as parameters, associated to dif-
ferent probabilities (e6 and e7 are the ids of the outgoing
edges as defined in process.xml).

By using a similar approach for other activities and pro-
cessors, and by setting up the details of the built-in re-
sources model, it is possible to create a simple simulation.
Please notice that, at the time of this writing, the file sim-
ulation.xml has to be edited by hand. An extension to the
EPML modeler tool to set up the details of a simulation is
in the works.

As stated above, however, EPML.SIM allows to produce
more accurate simulations where more detailed models are
available. As an example consider the Make decision ac-
tivity and its subsequent processor. We could override the
activity using the ProbabilityActivityDuration and
the processor using the ProbabilityProcessSwitch as
seen above. In this case, however, we suppose we want the
decision being implemented by the action dependent on a
parameter representing the request rate (calculated in an-
other point of the process and added to the token’s data bag).
We can use two approaches: override the code associated to
the processor with an ad hoc script fragment or override the
code associated to the activity. In this second case, assum-
ing that the processor implements the decision by analyzing
the information returned by the Make decision action, we
have to override the action so that it returns the same values
assumed by the processor. This latter approach is best suited
for when we use a process model created for the actual en-
actment of the process. An example is as follows:

<activity activityId="MakeDecision"
classname="epml.simulator.executors.
ActivityInstanceExecutor">

<param name="language">BeanShell</param>
<param name="code">
<![CDATA[
Double requestRate = ((Double)

(((Map)tokenData.
get("simulation")).
get("requestRate"))).doubleValue();

boolean accept = requestRate > 10;
((Map)tokenData.get("transient")).

set("return", new Boolean(accept));
((Map)tokenData.get("simulation")).

set("duration", new Double(10));
]]>

</param>
</activity>

where transient is a special entry in the token’s data bag that
is used for information that can be discarded when a new
activity is executed and is typically used to store the return
values of an activity. The simulation entry is also a special
entry that is used to carry information related to the simula-
tion (in this case for accessing the previously calculated re-
quest rate and for setting the simulated duration, in seconds,
of the activity). Please notice that the code in the example
may look complex at first sight because of the way Java (and
thus BeanShell) accesses maps; language verbosity aside it
just sets and retrieves values from (nested) associative data
structures.

Once the models have been set up, the simulation can
be launched. To this end an horizon has to be decided.
In EPML.SIM the analyst can decide to stop a simulation
after a specified amount of (simulated) time, at a specific
date/time, after having processed a certain amount of items
or by using a generic script that is called after the process-
ing of each event (when the script returns a false boolean
value, the simulation ends). Support for ending a simula-
tion when a service level agreement (related to the duration
of the activities, to the utilization of the resources or to the
costs) is not met is on the works. At the time of this writ-
ing EPML.SIM does not support animations to give visual
feedback on the simulation’s progress. At the end of the
simulation a report is produced. The report can be either in
plain text format or in Open Office Calc format (which in-
cludes charts and is formatted in such a way that it can be
used to easily generate a PDF report). A fragment of a sam-
ple report is depicted in Fig. 10. In a report are shown the
simulation parameters and results, such as the total simula-
tion time, the total cost, the throughput, how many activities
(or items) have been simulated and, for each activity, its cost
and the maximum and the average queue length.

40

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

36,000

Total cost: 11,617,540

Total items processed: 325

Throughput (number of items processed per hour): 32.50

Activity Name Cost Avg queue length Max queue length
40.800 3,38 7

1.625.000 19,46 45
14.900 0 0

3.113.240 34,38 56
1.148.000 13,36 25

344.400 18,32 34
4.875.000 12,19 34

456.200 5,64 13

Total simualtion time (in secs):

NotifyRejection
PerformCheck
RequestReceiveInfo
CheckForCompleteness
DeliverCreditCard
NotifyAcceptance
MakeDecision
ReceiveReviewRequest

Activities Costs

NotifyRejection
PerformCheck
RequestReceiveInfo
CheckForComple-
teness
DeliverCreditCard
NotifyAcceptance
MakeDecision
ReceiveReview-
Request

N
ot

ify
R

ej
ec

tio
n

P
er

fo
rm

C
he

ck

R
eq

ue
st

R
ec

ei
ve

In
fo

C

he
ck

Fo
rC

om
pl

et
en

es
s

D
el

iv
er

C
re

di
tC

ar
d

N
ot

ify
A

cc
ep

ta
nc

e

M
ak

eD
ec

is
io

n

R
ec

ei
ve

R
ev

ie
w

R
eq

ue
st

0

10

20

30

40

50

60

Avg queue length

Max and Avg Queues Length

Q
ue

ue
 le

ng
th

Fig. 10. A report produced by EPML.SIM

8. RELATED WORK

In the last few years, a large spectrum of workflow lan-
guages and process modeling tools ([14, 6, 4, 19, 16], to
name a few) have been proposed from the industry and the
academia. Most of these solutions use different strategies
to model a process and each of them shows specific strong
and weak points, making hard to compare the different so-
lutions. We propose to use expressive power and suitabil-
ity as reasonable metrics to this end. As far as expressive
power is concerned most of the proposals show strong lim-
itations. For example, on the basis of our hands-on experi-
ence, common real-world processes turn out to be very hard
(if at all possible) to model with most existing languages
without modifying its semantics or producing an overmuch
complex specification. Suitability too is related to expres-
sive power but it is also related to the ability to adapt to
different application domains. This is often related to the
ability to be integrated in different software architectures.
Some of the most recent proposals (like YAWL and Orc [14]
- all coming from the academia) try to address the problem
of expressive power by implementing all (or most of) the
classic workflow control-flow patterns (the first language
to claim to support all the patterns is YAWL, not surpris-
ingly designed by the same research group that originally
defined the patterns, what is surprising is that this claim is
still not supported by a proof). YAWL is a powerful lan-
guage and comes with a formal semantics (that is actually
used to check specifications properties) and a reference im-
plementation. Its main limits are related to its suitability
outside the workflow domain, both because of its Petri nets-
inspired model, and because of its engine architecture.

Another proposal that deserves to be referenced is
BPMN. BPMN is a OMG-endorsed specification that is re-
ceiving a great deal of attention by the industry. This is
mostly due to the fact that a large number of process based
applications, and a large number of software products to de-
velop them, already exists. Most of these applications are

related to business process management (ERP, workflow,
supply chain management) and they are urged to support
a high degree on interoperability. In this context a process
modeling-related standard is badly needed. The problem
with BPMN is that it tries to address too many issues. It
presents itself as a tool for high level - conceptual process
modeling that can be used to outline a process without defin-
ing its detailed semantics but it also claims to support MDA-
like translations into executable specifications (in this case
using BPEL). But in the article we already pointed out the
limits of this approach. It is our opinion that BPMN is a
good modeling notation (the ”UML for processes”) but it
falls short when it comes at programming in the small.

9. CONCLUSION AND FUTURE WORK

The wide array of applications, belonging to different do-
mains, that we designed and implemented by using our
EPML-based framework witness that a modular approach
to process-aware application is possible from both a design
and an implementation point of view. This implies that the
large number of existing process modeling languages and
systems cannot be justified only by the large spectrum of
application domains. In our opinion this is mostly due to
the lateness of the academia with respect to the needs of
the industry: the latter, lacking strong indications from the
former, went its own way proposing a large number of in-
herently limited tools. The separation of concerns, in the
form of a clear distinction between computation, interaction
model and process logic, that is at the roots of EPML, pro-
vided a solid framework for achieving a high level of mod-
ularity. We hope that these concepts can help in defining
the priorities around which next generation process model-
ing languages should be designed (or around which current
languages should evolve, as in the case of a possible forth-
coming executable BPMN specification).

Our work on EPML continues. While the language has
reached a good level of maturity and no major changes are
foreseeable the runtime-system and the support tools are
subject to a continuous evolutions. For example: while a
graphical modeling tool based on Adobe Flex is already
available, another tool based on Eclipse is on the works.
As for the runtime-system: the engine supports state sav-
ing/restoration by using a relational database as a backend;
checkpointing and recovery is still not fully implemented.
These are just examples of a long todo list that never shrinks
as new possible applications of our framework continue to
emerge.

10. REFERENCES

[1] Activebpel open source engine project. http://
www.activebpel.org/. Accessed January 2009.

41

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

[2] BPELJ: BPEL for Java technology. White
paper. Available at http://www.ibm.
com/developerworks/library/
specification/ws-bpelj/. Accessed
January 2009.

[3] Business Process Execution Language for
Web Services version 1.1. http://www.
ibm.com/developerworks/library/
specification/ws-bpel/. Accessed January
2009.

[4] W. M. P. V. D. Aalst and A. H. M. T. Hofstede. YAWL:
Yet Another Workflow Language. Information Sys-
tems, 30(4):245–275, 2005.

[5] W. M. P. V. D. Aalst, A. H. M. T. Hofstede, B. Kie-
puszewski, and A. P. Barros. Workflow Patterns. Dis-
tributed and Parallel Databases, 14(14):5–51, 2003.

[6] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch,
F. Curbera, M. Ford, Y. Goland, A. Guizar, N. Kartha,
C. K. Liu, R. Khalaf, D. Konig, M. Marin, V. Mehta,
S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu.
Web Services Business Process Execution Language
Version 2.0. http://docs.oasis-open.org/
wsbpel/2.0/wsbpel-v2.0.html. Accessed
January 2009.

[7] F. Arbab. What do you mean, coordination? Technical
report, Bulletin of the Dutch Association for Theoret-
ical Computer Science, NVTI, 1998.

[8] F. Arbab, I. Herman, and P. Spilling. An overview of
manifold and its implementation. Concurrency: Prac-
tice and Experience, 5(1):23–70, 1993.

[9] M. Brambilla, S. Ceri, P. Fraternali, and I. Manolescu.
Process modeling in web applications. ACM Trans.
Softw. Eng. Methodol., 15(4):360–409, 2006.

[10] J. Conallen. Building Web Applications with
UML. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[11] B. Curtis, M. I. Kellner, and J. Over. Process model-
ing. Commun. ACM, 35(9):75–90, 1992.

[12] D. Gelernter and N. Carriero. Coordination languages
and their significance. Communications of the ACM,
35(2):97–107, 1992.

[13] S. Jablonski. Mobile: A modular workflow model and
architecture. In Proceedings of the 4th International
Working Conference on Dynamic Modelling and In-
formation Systems, 1994.

[14] D. Kitchin, W. Cook, and J. Misra. A Language
for Task Orchestration and its Semantic Properties.
In Proceedings of the International Conference on
Concurrency Theory (CONCUR), pages 477–491.
Springer Berlin / Heidelberg, 2006.

[15] N. Koch, A. Kraus, C. Cachero, and S. Meliá. Integra-
tion of business processes in web application models.
Journal of Web Engineering, 3(1):22–29, 2004.

[16] OMG. Business Process Modeling Notation (BPMN)
version 1.0. http://www.bpmn.org/.

[17] C. Ouyang, M. Dumas, A. H. M. ter Hofstede, and
W. M. P. van der Aalst. From BPMN process
models to BPEL Web Services. In Proceedings of
the IEEE International Conference on Web Services
(ICWS 2006), pages 285–292, Washington, DC, USA,
2006. IEEE Computer Society.

[18] G. A. Papadopoulos and F. Arbab. Coordination mod-
els and languages. Advances in Computers, 46:330–
401, 1998.

[19] D. Rossi. X-Folders: documents on the move. Con-
curr. Comput.: Pract. Exper., 18(4):409–425, 2006.

[20] D. Rossi and E. Turrini. EGO: an E-Games Orches-
tration Platform. In Proceedings of the 8th annual Eu-
ropean GAMEON R©Conference on Simulation and AI
in Computer Games. EUROSIS-ETI, 2007.

[21] D. Rossi and E. Turrini. EPML: Executable Process
Modeling Language. Technical Report UBLCS-2007-
22, Department of Computer Science, University of
Bologna, 2007.

[22] D. Rossi and E. Turrini. Using a process modeling lan-
guage for the design and implementation of process-
driven applications. In Proceedings of the Interna-
tional Conference on Software Engineering Advances
(ICSEA 2007). IEEE Computer Society, 2007.

[23] D. Rossi and E. Turrini. Designing and architecting
process-aware web applications with EPML. In Pro-
ceedings of the ACM symposium on Applied comput-
ing (SAC 2008), pages 2409–2414, New York, NY,
USA, 2008. ACM.

[24] D. Rossi and E. Turrini. An executable lan-
guage/enactment engine approach for designing and
architecting process-aware web applications. Inter-
national Journal of E-Business Research (IJEBR),
5(3):1–13, 2009.

[25] N. Russell, A. H. ter Hofstede, W. M. van der Aalst,
and N. Mulyar. Workflow control-flow patterns: A
revised view. Technical report, BPMcenter.org, 2006.

42

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

[26] H. A. Schmid and G. Rossi. Modeling and designing
processes in e-commerce applications. IEEE Internet
Computing, 8(1):19–27, 2004.

[27] O. D. Troyer and S. Casteleyn. Modeling complex
processes for web applications using WSDM. In Pro-
ceedings of the Third International Workshop on Web-
Oriented Software Technologies, 2003.

[28] W. M. P. van der Aalst. Workflow verification: Finding
control-flow errors using Petri-net-based techniques.
In Business Process Management, volume 1806 of
Lecture Notes in Computer Science, pages 19–128.
Springer, Berlin / Heidelberg, 2000.

[29] M. T. Wynn, M. Dumas, C. J. Fidge, A. H. M. ter Hof-
stede, and W. M. P. van der Aalst. Business process
simulation for operational decision support. In Pro-
ceedings of the Third International Workshop on Busi-
ness Process Intelligence (BPI 2007), volume 4928
of Lecture Notes in Computer Science, pages 66–77,
Berlin / Heidelberg, 2007. Springer-Verlag.

43

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Trisolda: The Environment for Semantic Data Processing

Jǐŕı Dokulil, Jakub Yaghob, Filip Zavoral
Charles University in Prague, Czech Republic
{dokulil, yaghob, zavoral}@ksi.mff.cuni.cz

Abstract

In order to support research and development of web
semantization tools, methods and algorithms we have
designed and implemented the Trisolda infrastructure.
It is built around a semantic repository which is sup-
plemented by import, query and data processing inter-
faces. The Trisolda application server can be extended
by plug-ins for advanced semantic analysis and pro-
cessing. We propose the TriQ RDF query language;
its compositionallity and closedness make it useful for
complex semantic querying.

Keywords: Semantic web, infrastructure, reposi-
tory, query languages

1 Suffering of the Semantic Web

One of the main goals of the Semantic Web is to
create a universal medium for the exchange of data.
The Web can reach its full potential only if it becomes
a place where data can be shared and processed by
automated tools as well as by people. For the Web
to scale, tomorrow’s programs must be able to share
and process data even when these programs have been
designed totally independently [19].

Unfortunately, it seems, this goal has not yet been
reached, albeit years of research by numerous re-
searchers and large number of published standards by
several standardization organizations.

We believe the Semantic Web is not yet widespread
due to three prohibiting facts: missing standard in-
frastructure for Semantic Web operation, lack of inter-
est from significant number of commercial subjects (al-
though this started to improve recently), and the last
but not least absence of usable interface for common
users.

A nonexistence of a full-blown, working, high-
performance Semantic Web infrastructure inhibits ef-
fective research of web semantization. Whereas the
‘old web’ has clearly defined infrastructure with many

production-ready infrastructure implementations (e.g.,
Apache [20], IIS [21]), the Semantic Web has only
experimental fragments of infrastructure with catas-
trophic scalability (e.g., Sesame [4], Jena [22]).

We have tried, during our experimental research, to
convince commercial subjects to make somehow their
data accessible on the Internet (of course with some
reasonable level of security), and they all refused to
make external access to their data. Commercial sub-
jects do not intend to participate willingly in the ideas
of the Semantic Web, because for them it either means
to share their business data openly or to invest a lot of
time and money for securing access to them.

Current standards in the Semantic Web area do not
allow it to be used by common users. Whereas any
user of WWW can easily navigate using hyperlinks in
an available, production-quality WWW client, a con-
tingent Semantic Web user has only a choice from a
set of complicated query languages (e.g., SPARQL [13],
SeRQL [3]). These query languages are not intended
for casual users, only small number of people are able
to use them.

Although SPARQL is probably the most popular
RDF query language in the semantic web commu-
nity, its overcomplicated definition and low expressive
power make it unsuitable for most web semantization
projects. Therefore we propose the TriQ query lan-
guage that is based on the time proven ideas behind
relational algebra and SQL.

The following chapters are organized as follows: af-
ter an overview of the infrastructure there is a descrip-
tion of the application server in Section 3 and the query
API in Section 4. Sections 5 to 7 propose the TriQ lan-
guage. Two final sections contain performance compar-
ison and conclusions.

1.1 Related Work

Of course, the Trisolda infrastructure is not the only
attempt to create an infrastructure for the Semantic
web. One important example is the WSMX environ-

44

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

ment [15], which also represents a different approach to
building the infrastructure. Unlike Trisolda, which is
centered around the RDF database and Trisolda server,
WSMX is concerned with semantic web services. It’s
purpose is to allow discovery (using Web Service Mod-
eling Ontology [14]), mediation, invocation and inter-
operation of the services.

2 Infrastructure overview

We have recognized and described the problem of a
missing, standard infrastructure for the Semantic Web
in [17], where we have proposed a general ideas of a
Semantic Web infrastructure and later refined the pro-
posal in [7]. During the last year we have made a signif-
icant progress: we have implemented full-blown, work-
ing, fast, scalable infrastructure for the Semantic Web
called Trisolda.

The figure 1 depicts the overall scheme of its infras-
tructure. In this picture rectangles represent processes,
diamonds are protocols and interfaces, and grey bar-
rels represent data-storages. All solid-line shapes de-
picts implemented parts of our infrastructure, whereas
all dashed-line shapes represent possible experimental
processes implemented by researchers playing with our
infrastructure.

2.1 Trisolda repository

The heart of Trisolda infrastructure is a repository.
It is responsible for storing incoming data, retrieving
results for queries, and storing the used ontology. It
consists of the a data-storage, which is responsible for
holding semantic data in any format. Import inter-
face enables fast, parallel data storing and hides details
about background a data-storage import capabilities.
The query interface has two tasks: to be independent
on a query language or environment and to be indepen-
dent on the Trisolda data-storage query capabilities.
The last part of the repository is Trisolda Application
Server. It is a background worker that does the infer-
encing, makes data unifications, and fulfills the task of
a reasoner as well. It utilizes import and query inter-
faces for data manipulation.

2.2 Import paths

We use two distinguishable sources of data. The
simplest one is a data import through importers from
external data-storages. The task of importers is map-
ping external data-storage data-scheme to the SemWeb
repository ontology. The second source of data crawls
the wild Web using a web crawler; we have used

Egothor [9] in the pilot implementation. The crawled
web pages are stored in a Web pages data-store, where
they can be accessed in parallel by deductors, which
can deduce data and their ontologies from web pages
and map them to our ontology.

SemWeb

repository

SemWeb

datastore

EgothorRUTPCollocator

Web pages

repository

D
e

d
u

c
to

r
1

D
e

d
u

c
to

r
n

Import

interface

Query

interface

SemWeb

server

DS1 DSn

Im
p

o
rt

e
r

1

Im
p

o
rt

e
r

n

Query environment 1 Query environment n

SemGet

P
o

s
N

L

Plug-in

Plug-in

Conductor 1 Conductor n

Executor 1 Executor nExecutor 2

Internet

Web Services

Figure 1. Infrastructure overview

2.3 Query environments

Query environments present outputs from Trisolda
repository. They make queries using query API and

45

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

present results to users in any feasible manner. We
have implemented a SPARQL compiler as an example,
which translates SPARQL queries to the internal query
API requests.

2.4 Data-storage access

We have designed and implemented an object ori-
ented library in C++ for a data-storage access inde-
pendent on a background data-storage implementation.
This library is used for a low-level access to the data in
all interfaces to data-storages. It allows us to change an
underlaying data-storage without modifying the code
of our infrastructure.

2.5 Portability

Unlike other many research projects implemented
usually in Java, we have decided to implemented nearly
all parts (excluding Egothor implemented in Java in-
dependently on our project) in ISO/IEC 14882 C++.
The main reasons are speed, more controlled comput-
ing environment (e.g., memory management), and, al-
though it seems absurdly comparing to Java, stability.

When properly used, using ISO C++ brings full
portability among different systems and compilers.
Moreover, it allows us to implement bindings to other
broadly used languages, e.g., Java or C#.

3. Trisolda Application Server

The main active part of the Trisolda repository is
Trisolda Application Server. It is a background worker
that does the inferencing, makes data unifications, and
fulfills the task of a reasoner as well. It utilizes the
import and query APIs for data manipulation.

It should be noted, that the server is not a web server
in a conventional meaning. It does not handle any
HTTP requests.

3.1. The server’s role

We believe, we do not need to have all accurate data
and inferences at the moment of data import. Just like
the real world, the world knowledge changes at each
moment and we are not able to catch it in one snap-
shot. Therefore postprocessing data in the background
by Trisolda Application Server and computing some
additional data in the background is acceptable and
feasible.

The server is only a framework offering unified con-
nection, interface and task management for experimen-
tal plug-ins, as described in the next sections.

3.2. Server’s plug-ins

Trisolda Application Server’s plug-ins are indepen-
dent modules, which simultaneously perform differ-
ent operations on SemWeb storage in the background.
Whereas import and query APIs are only libraries en-
abling the access to the Trisolda storage, the server
allows active operations upon the storage.

Each plug-in must conform to an interface requested
by the server, whereas the server offers several classes
of services for plug-ins.

3.3. Implementation

Plug-ins are implemented as dynamically loaded li-
braries. This is an important feature, which allows
selective loading and unloading of any server’s plug-in
without interrupting overall infrastructure operation.

Although we use C++ to implement the whole
project, the interface requested by Trisolda Application
Server is in a C-like style, because there is currently no
possibility to make a portable C++ dynamic library
interface.

3.4. Executors

The results of querying semantic data can be inter-
preted by many methods. From relationally oriented
data-set through set of references well-known by web
search engines or set of mutually semantically related
entities and their attributes up to application-level ser-
vices using service oriented architectures.

Traditional result representation is tightly coupled
to query method. SDE displays interconnected pages
containing result data together with their structure and
relationships, search engine displays web links with ap-
propriate piece of text, and SPARQL returns rows of
attribute tuples.

While many researchers are satisfied with making
queries, the users (based on the ideas presented in [2])
would expect more from the Semantic Web. They ex-
pect it to take care of things, not just answer queries
in a Google-like fashion.

The technique of executors brings process models
into this infrastructure. The task of executor is to re-
alize semantic action, i.e. interaction of result data
with an outstanding (not only semantic) world. These
atomic executors can be assembled to complex com-
posed executors. Orchestration, i.e. mutual executor
interconnection to achieve more complex functionality
is executed by the Conductor module.

The technique of executors may be illustrated by fol-
lowing example. One’s mother has gone ill, she needs a

46

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

medicine. A query module searches nearby pharmacies
with the medicine available. One executor is responsi-
ble for buying the medicine, while the other arranges
delivery to mothers home. The Conductor orchestrates
these two executors to synchronize, mutually cooper-
ate, and pass relevant data between them.

3.5 Retrieving web documents

In the original proposal [17], there was a direct
Egothor plugin for semantic data and metadata ac-
quisition. This runtime structure would have several
disadvantages.

The plugin dedicated to semantic experiments would
run in the same environment as the general-purpose
web robot. This would cause deficiencies in stability
and performance. Moreover, it is harder to debug in
this environment. Many semantic experiments need to
apply several algorithms to a data set. Multiple data
acquisition would cause unacceptable load to both the
extractor and data providers. The web robot couldn’t
be dedicated to semantic data acquisition - it executes
tasks for a lot of clients. Thus the delay between an
initial request and document set completeness could
be too long. We have decided to separate the web
gathering and the semantic processing, both in time
and space.

The retrieving document is converted into a stream
of SAX events which enables us to process its inter-
nal structure more comfortably. This stream is then
sent by a Robot UDP Transmitter Protocol (RUTP) [8]
to a Collocator. The server reads document requests
stored into the database, converts them into RUTP
commands, sends them to the robot, receives streams
of SAX events, completes them, computes tree in-
dexes and in case of successful transmission stores each
parsed document into the database.

The database stores each document in a structure
similar to a XML Region Tree [11] or a NoK pattern
tree [18]. The main feature of this structure is query
effectivity - for a given element, all its ancestors or de-
scendants in an element set can be queried with optimal
cost.

4 Query API

The Query API is based on simple graph matching
and relational algebra. Simple graph matching allows
only one type of query. It consists of a set of RDF
triples that contain variables. The result of the query
is a set of possible variable mappings. This set can
easily be interpreted as a relation with variable names
used as a schema for the relation.

Relational algebra operations (e.g., joins or selec-
tion) are used on the relations created by simple graph
matching. These operations are widely known from
SQL, which was a major argument for this choice.
Database developers are already familiar with these op-
erations and a lot of work has been put into optimizing
these operations.

So far, we decided to support only some of the com-
mon relational operations. Since the schema of elemen-
tary relations (results of basic graph patterns) consists
of variable names, it is defined by the query and not
in the database schema. For this reason, we use only
natural joins. Variable names are used to determine
which columns should the join operation operate on.

4.1 Selection

Selection operation revealed several problems spe-
cific to RDF querying. While in traditional relational
algebra it is easy to maintain type information for each
column, it is not possible in RDF. Even a simple query
can produce a result that contains values with different
data types in one column.

Having this in mind, we have to consider behavior
of relational operators when it comes to different data
types. For instance, in SPARQL [13] the operators
should consider data types for each value separately,
so one operator in one query compares some values
lexicographically by their string value and some other
values numerically by their value.

This is a serious performance problem that for in-
stance makes it impossible to use indexes to evaluate
expressions like x < 5 and especially x < y. On the
other hand, such behavior is often not necessary be-
cause the user has certain idea about data type of x
in x < 5. So we decided to make the type information
part of the query. Then x <integer 5 yields true for in-
tegers smaller than 5, false for integer greater or equal
to 5 and error if x is not integer. This error always
removes the whole row from the result.

This definition makes translation of queries to SQL
more simple and efficient since it can be easily evalu-
ated by a functional index that stores integral values.
Conditions like 8 < x and x < 10 can be evaluated by
simply traversing a small part of this index.

4.2 Query language

We decided not to create yet another SQL-like query
language. Since the query interface is intended to be
used not by people but rather software, the query in-
terface is actually a set of classes (an API). An example
of a simple query tree:

47

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

• Natural join

– Left natural join

∗ Basic graph pattern P1
∗ Basic graph pattern P2

– Basic graph pattern P3

Had we created a query language, our form of query
would basically be a derivation tree of a query in that
language.

4.3 Query example

Following C++ code shows a simple query that out-
puts first and last name of all people that have both of
them and whose last name is either “Tykal” or starts
with “Dokulil”.

Triples triples;

triples.push_back(Triple(

Variable("x"), URI("http://example.org/lastn"),

Variable("y")

));

triples.push_back(Triple(

Variable("x"), URI("http://exmpl.org/firstn"),

Variable("z")

));

Table *query_tab= new Filter(

BasicGraph(triples),

OrExpression(TestSubstringExpression(

NodeExpression(Variable("y")),

NodeExpression(Literal("Dokulil")), T, F

),

EQExpression(

NodeExpression(Variable("y")),

NodeExpression(Literal("Tykal"))

)));

std::vector<Variable*> vars;

vars.push_back(new Variable("y"));

vars.push_back(new Variable("z"));

Query query(vars,query_tab,false);

The query consists of a basic graph query with two
triples and three variables. Then a selection is applied
to the result and finally a projection is used to return
only columns with first and last name.

4.4 Query evaluation

We did not want to limit ourselves to just one system
for data storage. Since the beginning of development
we have been using four different data storages with
several other in mind. Each of the systems offered dif-
ferent query capabilities from just evaluating all stored
RDF triples to sophisticated query languages.

The contrast between a complex query API we
wanted to give to the user and only basic query ca-
pabilities provided by the data storage system made
it obvious that Trisolda must be capable of evaluat-
ing the queries itself. By implementing all operations
within our system, we have reduced the requirements
for the data storage engine to just one; the engine has
to be able to list all stored triples. Thus the system
is capable to use extremely simple storage engine that
does nothing but read RDF triples from a Turtle file [1].

One of the other storage engines is an Oracle
database. It would be highly inefficient to use the
database only to list all triples, we want to utilize much
of the Oracle optimized operations.

As a result, Trisolda is capable of evaluating any
query itself, but tries to use any help the storage engine
can provide. The same goes for adding new features to
the query interface. Once the feature is implemented in
our system, it is immediately available with all storage
engines. Of course, performance of query evaluation
will probably be suboptimal.

4.5 Evaluation algorithm

Since every storage engine can have specific capa-
bilities, we could not establish a set of rules to decide
what can be evaluated by the engine. Thus each engine
contains an algorithm to determine whether it is able
to evaluate a query. For query Q the evaluation plan
is found like this:

• If the storage engine can evaluate Q then this eval-
uation plan is used.

• If Q is basic graph pattern then it is decomposed
into individual triples, the evaluation plan for each
triple is found and the results are joined together.

• If Q is an algebraic operation, evaluation plan for
each operand is determined and the operation is
applied to the results by Trisolda.

The limitation of this algorithm is, that it does not
try to rearrange the query in order to achieve better
performance either by choosing a more efficient evalu-
ation plan or by allowing the storage engine to evaluate
greater part of the query itself, which will probably be
more efficient. This problem is a more complex version
of optimization of relational algebra expressions and
will be a subject of our further research.

4.6 Remote queries

Creating a data interface between different program-
ming languages is not an easy task. To allow queries

48

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

RemoteQuery

server

SemWeb

repository
Query

interface

Network
connection

Remote

Query

library

Remote

application

Figure 2. Remote query

from languages other than C++ we created a HTTP-
based API that is language independent. The client
issues a HTTP GET command that contains the query
to be executed and receives a HTTP response that con-
tains the results.

To make this possible, we had to create a way to send
a query over HTTP. Since we do not use any textual
query language, this required some work to be done.
But due to a simple tree structure of the queries, serial-
izing a query to a character string was a relatively easy
task. The name of the class is stored in the string fol-
lowed by the data. The data are either strings (stored
directly) or other classes (the same serialization algo-
rithm is recursively called to store them to the string).

An example of such encoded query could be this:

Query{0;BasicGraph{Triple{Variable{x};
URI{http://www.is.cuni.cz/stoh/schema/
ot_osoba#prijmeni};Literal{Dokulil;;}}
};x}

Furthermore, the format of the results has to be de-
cided. To make the server as fast as possible the in-
memory data format used internally by the server is
used. The format is suitable for transfer over network
to different platforms - it has no little/big endian or
32/64 bit compatibility issues and it only uses small
amount of information other then the actual data.
Only 5 bytes plus size of a URI (encoded as UTF-8)

is required to transfer the URI, 5 bytes plus length for
untyped literal, 9 bytes plus length of value and type
for typed literal, . . .

We have implemented and successfully tested a C#
client library.

4.7 Complex query languages

One of the ways in which the query API can be
used, is to build more sophisticated query languages.
An example is a limited SPARQL [13] evaluator or the
Tequila query language [10]. The languages represent
very different approach to RDF querying but they both
use the same API and thus access the same data.

The Tequila language is based on named patterns
and supports recursive queries. An interesting exam-
ple is a selecting employees from a list. The lists in
RDF are recursive, which makes the following query
impossible in SPARQL.

prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix ex: <http://www.example.org/term#>

ex:list(?N)
{
{
?N rdf:first ?F.
?N rdf:rest ?R.
use ex:list(?R)

}
union
{
filter ?N = rdf:nil.

}
}
get
{
ex:department ex:employees ?list.
use ex:list(?list)

}

The ex:list named pattern has one parameter and is
used recursively to traverse the whole list.

Although this is only a very basic example, it clearly
demonstrates the possible diversity of query languages
that can be build over Trisolda.

5 TriQ

Querying is one of the important issues for any data
format. In the case of RDF, many query languages
have been developed, including the SPARQL language

49

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

[13], which is a W3C recommendation, or SeRQL [3],
which is supported by the popular Sesame RDF frame-
work [4].

Many are inspired by SQL (although not all of them,
e.g., Lisp-like Versa [12]). But the inspiration is usu-
ally manifested (besides the fact that the queries syn-
tax may look a bit like SQL) in the fact that the RDF
graph is transformed by some graph pattern matching
operation into some table-like form and these tables
are then further processed. We believe that the inspi-
ration should have been a little different. An important
feature of SQL (and its theoretical background – the
relational algebra [5]) is the fact, that it is a closed
system. Relations are transformed into relations. This
way, a result of a query can be used as an input for
another, more complex query, which is impossible in
SPARQL and SeRQL.

The following parts of this paper present our pro-
posal for TriQ – a SQL-inspired, closed RDF query
system. To make the system closed, we couldn’t have
used relations as our data model. We use RDF. But the
operations are inspired by relational algebra – we use
selection, projection, (inner and outer) joins, etc. The
semantics of these operations is not exactly the same
(after all, we have a very different data model) but the
ideas behind them are the same. We believe that this
(and the fact that it is closed) makes the whole query
system more accessible for wider audience of develop-
ers, especially those with long SQL experience.

5.1 Data model

Since we want a closed query system, we require ev-
ery operation to take some RDF graphs (zero or more)
as its input and produce an RDF graph as its output.
But to make the operations simple to use, we need to
add some further information. We use the very RDF
that contains the data for the task and add additional
triples to the data – decorate it.

Namespaces To make decoration simple we define
several namespaces. URIs starting with theses names-
paces are prohibited in the queried data. The names-
paces are
dec is http://ulita.ms.mff.cuni.cz/Trisolda/
GQL/decoration
ptr is http://ulita.ms.mff.cuni.cz/Trisolda/
GQL/pointer
graph is http://ulita.ms.mff.cuni.cz/Trisolda/
GQL/graph

5.2 Decoration of nodes and edges

We can decorate either nodes of the RDF graph, in
which case we add a new triple where the decorated
node is the object of the triple, or edges, in which case
we have to reify the edge (unless the triple is already
reified) and then decorate the reification. To be more
specific, to decorate the edge S P O with decoration
triple DS DP ? (the question mark is the decorated
object) we add the following triples:

• X dec:subject S, X dec:predicate P, X
dec:object O

• DS DP X

The X denotes an anonymous node. Note that we do
not use the standard reification defined by RDF, but
rather use the dec namespace to avoid potential “col-
lisions”. This way we can always distinguish state-
ments added during decoration and statements that
were present in the original data.

Decoration options There are two types of deco-
ration edges. Let X be the decorated object (either
a node or reification of an edge), G an URI from the
namespace graph (each graph has a globally unique
URI) and P an URI from the namespace ptr. The
possible decoration triples are:

1. G dec:contains X

2. P G X

There are no restrictions for the second type of
triples. The only restriction for the first type is that ev-
ery node and edge of the decorated graph is decorated
by at least one such edge.

5.3 Meaning of decoration

The purpose of decoration is to help user define a
structure in the queried graph and exploit it to de-
fine further operations. Furthermore, we would like
the whole query system to resemble relational algebra,
that works with relations – sets of tuples with a well
defined schema.

The first type of decoration triples is used to make
the (one) RDF graph appear as if it was a (multi)set
of smaller graphs so that each of the smaller graphs
resembles one tuple of a relation (row of a table). The
triple G dec:contains X tells us that the graph G con-
tains X. So if we take all such X for one G, we get one
small RDF graph.

50

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

(a) Multiple graphs in one graph (b) Table analogy

Figure 3. Meaning of decoration

The second type of decoration triples were intro-
duced as a parallel to schema of a relation (for an ex-
ample see the Figure 3). The set of all values from the
namespace ptr used in the graph are schema of the
graph. All values of X from all triples P G X for a graph
G correspond to a value of column P in a row G of
a table. But unlike SQL that allows zero (NULL) or
one value, we allow zero or more values. Although we
could restrict it to just one value, we believe it would
unnecessarily limit the graph-handling capabilities of
the query system. For instance, we would like to be
able to create such set of graphs, where each graph
contains information about one person (e.g., first and
last name) and all of his or her e-mails. And to make
handling of the data convenient, we would like to have
a pointer ptr:first-name point to the first name of the
person, ptr:last-name to the last name and ptr:mail to
all of the emails. That way, we could for example eas-
ily find people with more than one email or get the
number of emails for each person.

6 Graph pattern operation

The graph pattern operation is in a certain sense the
very basic operation of the query system. It is used to
find patterns in the whole queried data. The very basic
principle is that the operation specifies an RDF graph
where some nodes or edges are replaced by variables.
The evaluation is done by finding possible substitutions
for these variables so that the we get a graph that is a
subgraph of the queried data. This graph is then one
member of the result set.

The operation gives the data a structure that helps
us reference certain concepts in further query oper-

ations. For example, if the pattern looks like ?x
ex:has-name ?y (where ?x and ?y are variables), we
know that the actual nodes bound to ?x are people
and ?y their respective names (provided we have rea-
sonable data).

Each node and edge can of the pattern can have a
pointer assigned to it. In that case, the corresponding
node or edge of the result is then pointed to by that
pointer.

Why? Many RDF query languages (e.g., SPARQL
[13], Trisolda query API [7],. . .) use some kind of graph
patterns to transform the RDF graph to a table (or
something analogous like set of variable mappings in
the case of SPARQL). In other words, they use it to
transform the queried data into some other form suit-
able for further processing.

At the moment, we believe this is the only operation
that should work with “raw” data and that all other
operations can assume to be working with decorated
data. This is not as important from the technical or for-
mal point of view, but rather from the “average user’s”
point of view. It would allow him or her to construct
the query in two steps. First, well structured pieces
of data are defined by the pattern operation. Second,
the structure is exploited to combine the pieces of data
into the final result. The second phase should be as
close as possible to writing a query in SQL.

6.1 Definition

The previous sections briefly and informally ex-
plained what capabilities the proposed pattern match-
ing possesses. This section gives a more formal view of
the operation.

51

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Let Uri be a set of all URIs, Lit set of all RDF lit-
erals, Blank set of all blank nodes, and V ar an infinite
set of variables.

Let V ⊆ Uri ∪ Lit ∪ V ar. The pattern P is then
defined as a non-empty set of triples P ⊆ V × (Uri ∪
V ar) × V . V is the set of all nodes in the pattern P ,
V ar(P) denotes set of all variables used in the pattern
P . The pattern can be viewed as a directed, labeled
multigraph. We require that each two nodes in V are
connected by an undirected path.

Each edge or node of the patter can be assigned a
pointer (i.e. URI from the namespace ptr). The same
pointer may be assigned to more objects (edges and
nodes).

Let Pb be a pattern and Vb nodes of Pb. Let G be
the queried data.

A variable mapping is a function µ : V ar → Uri ∪
Lit ∪ Blank. We extend the variable to triples t ∈ Pb

and the whole pattern Pb in the natural way (each vari-
able v used in t or the whole Pb are replaced by µ(v)).
We always use the variable mapping µ in conjunction
with a pattern P , in which case we consider only min-
imal mapping, i.e. dom(µ) = V ar(P).

We say, that an RDF graph Mb is a match for Pb

iff there are mappings µ and η such that the following
statement holds: Mb = µ(Pr) b G where b is a rela-
tion between RDF graphs. The basic version of TriQ
assumes that (A b B) ≡ (A ⊆ B).

Then we say that the tuple 〈µ,Mb〉 is a result for
the pattern Pb. Note that we only consider minimal
µ mappings, i.e. mappings that only map variables
used in Pb. The Mb graph still has to be properly
decorated according to the pointers that were assigned
to the pattern Pb. We add decorating triples to the
set Mb in the way described in the Chapter 5.1 – if a
pointer was assigned to a node or edge of the pattern,
we add the appropriate decoration to its image under
µ(Pb).

7 Algebraic operations

This section describes algebraic operations, that run
on the decorated data and further filter and transform
it. Although, strictly speaking, these operations could
be run on undecorated data, but there is usually no
reason to do so. In such case, each node and edge of
the undecorated data would be decorated by the first
type of decoration triples, which would assign the whole
data to one graph.

We do not give formal definitions for these operation
as they are quite straightforward and usually obvious.
They would only add a few pages of not very interesting
technicalities to the paper.

7.1 Selection

The selection operation has one argument and tests
a condition for each graph g in the argument multi-
set. If the condition is true, the graph is added to the
result. The basic idea is the same as in relational al-
gebra, but there is some added complexity due to the
fact that one pointer can have more than one value
(within one graph) or no value at all. We use a lan-
guage derived from the first-order predicate calculus
to construct the expressions. The main difference from
SQL is the addition of quantifiers. The quantifiers are
always in the form Qx∈X where x is a variable, X a
pointer from the schema of the operand and Q either
∀ or ∃. The rest of the expression is formed from the
variables, functions, predicates and logical operators.
There are some limitations. One variable cannot be
used in more than one quantifier and whole expression
must be closed (meaning that there is no unquantified
variable and no variable is used outside of the range
of the quantifier for that variable). ∀x∈X denotes that
the quantified condition must be true for each x from
PtrV al(X, g) and ∃x∈X denotes that there mast be at
least one x in PtrV al(X, g) such that the quantified
condition is true. PtrV al(X, g) denotes values of all
nodes pointed to by X in the graph g and predicates
of all edges pointed to by X in the graph g.

Example: (∃p∈ptr:Payment(p > 1000)) ∧
(∀r∈ptr:Person∃c∈ptr:Customer(r = c)). This means
that the graph must have a value p for variable
Payment that is more than 1000 and that for each
value of Person there is the same value for Customer.

The formal definition is very strict, but the actual
query language can be more relaxed, allowing the user
to write less verbose queries as long as there is a clearly
defined transformation to the form defined here.

We do not attempt to list all functions and pred-
icates. In general, we assume that there is always a
(hidden) parameter that carries the currently processed
graph as its value – in the strict definition of the model
it is a pair containing the whole graph and subset iden-
tifier from the namespace graph.

Some of the functions and predicates we would like
to include are:

• PathLength(x, y) that return length of a path
between nodes x and y.

• Sum(A), Max(A), Min(A), Count(A) that re-
turn the sum, maximum, minimum or number of
nodes that the pointer A points to.

• IsURI(x), IsLiteral(x) that check, whether the
value of x is of the specified type.

52

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

• TypeOf(x) that returns the data type of the lit-
eral x.

A detailed proposal of the language would include
several basic functions and data type conversion rules
as well as extension mechanism that would allow im-
plementations to add further functions.

7.2 Projection

The purpose of the projection operation is to re-
move unneeded parts from the data. It has one ar-
gument and the operation is specified by a set S of
URIs from the namespace ptr. Any reasonable set S
should be a subset of the schema of the argument, but
it is not required. The operation removes triples from
its argument. There are two versions – induced and
non-induced.

The non-induced version removes all non-decoration
triples that are not pointed to by a member of S and
all decoration triples that represent pointers not in S.
Then all decoration triples g dec:contains o (graph
membership) are removed if there is no triple p g o
where p ∈ S. Note that if we remove a decoration triple
that decorated an edge, we remove the three reification
triples as well.

The induced works the same as non-induced except
that it does not remove edges, where both endpoints
are being pointed to by members of S.

The Figure 4 gives an example where S =
{Person,Mail}.

7.3 Distinct

So far, each operation generated a multiset of
graphs. The distinct operation takes one argument and
eliminates all duplicates. The equivalence of the graphs
does consider decoration as well, i.e. for two graphs to
be equal, even the pointers in both graph must point
to equal nodes and edges.

7.4 Joins

Joins are an important part of relational algebra and
SQL. As we are trying to get close to these languages,
we also introduce join operations. Join is a binary op-
eration that produces results by making a Cartesian
product of the arguments and then filters the results
according to a condition. There are special variants of
the operation – outer joins (left, right and full). The
basic (inner) join could be defined as a combination of
cross join (i.e. Cartesian product) and selection, but
the outer joins are more complex so we have decided
to include “whole” join operation.

(a) Input

(b) Induced projection

(c) Non-induced projection

Figure 4. Projection

The join can be seen as an operation that generates
one small RDF graph for each pair of graphs where
one is from the first argument and the other from the
second argument. The graphs are union-ed together
and if the produced graphs fulfills the join condition,
it is added to the result.

The outer joins work just like in SQL. Consider for
example left join. If there is a graph l in the left argu-
ment such that there is no graph r in the right argu-
ment that l∪r fulfill the join condition, then l is added
to the result.

An example of a left join is in the Figure 5. The
left and right operands are joined by a left join on a
condition Person1 = Person2 (of course, the actual
condition should contain the appropriate quantifiers).

53

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

(a) Left operand (b) Right operand (c) Result

Figure 5. Left join of names and e-mails

7.5 Group by

In SQL, the “group by” construct is almost exclu-
sively used with aggregation. But as our data model
allows more values per “row”, we can use “group by”
as a standalone operation that groups related data to-
gether. To be more specific, it joins (makes a union)
graph, that have the exactly the same values for a spec-
ified set of pointers.

The Figure 6 shows an example where two graphs
are grouped by the value of the “Person” pointer into
one graph.

7.6 Aggregation

A very important feature in SQL are aggregation
functions. An important difference between our data
model and SQL is that a pointer can point to more than
one value within each graph. So there are two possibil-
ities, where aggregation functions can be used. They
can either aggregate values within one graph or make
aggregations over whole data. We decided to allow
both. A local aggregation has the form fnc(ptr)→ res
where fnc is an aggregation function (min, max, sum,
count, avg and “distinct” variants of sum, count and
avg), ptr is a pointer and res is a pointer. The aggre-
gation function is evaluated for each graph g and for a
result v, the triples g gql:contains v and res g v are
added to the data.

The global aggregation has the form
fncg(fncl((ptr)) → res where fncg and fncl are
from the same set of functions as in the local variant.
The function fncl is used to compute aggregation over
each graph and then fncg combines these results into
one final value v. The result contains only one graph
g with triples g gql:contains v and res g v. Because
the data are “destroyed” more global aggregations can
be specified in one aggregation operation.

An example that demonstrates why we decided
to define global aggregation like this is the follow-
ing. Consider the already familiar data about peo-
ple and e-mails. We can use a global aggregation
max(count(Mail)) → MaxMail to get the maxi-
mal number of e-mails the people have. Then, on
the same source data, we run a local aggregation
count(Mail) → MailCount. Then we join the data
on MaxMail = MailCount to get information about
everyone with maximal number of e-mails. Note, that
since we included the aggregation functions among the
function that can be used in the selection operations,
we could omit the local aggregation step in the exam-
ple and use MaxMail = Count(Mail) as the join
condition.

7.7 Set operations

Some set operations are also present in SQL – union,
union all, intersect, and minus. The equivalent of union

54

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

(a) Input (b) Grouped data

Figure 6. Group by

all is obvious, it simply returns union of the two graphs
(since we require that graphs are identified by globally
unique identifiers, there can be no “collision”). The is
no such natural equivalent for the other three opera-
tions. The problem is that in our data model, “schema”
is much more relaxed concept than in SQL – multiple
values of a pointer, nodes and edges without pointers
or with several different pointers, etc. Should the set
operations be performed only with the data in graphs
without regard to pointers (and what would be the
pointers of the result) or with pointers? Perhaps it
would be best to let the user specify a set of pointers
and the operations only consider nodes and edges with
these pointers.

But this creates a completely new problem. If we
make an intersection of two sets and each of them con-
tains a graph that is different, but the values pointed
to by the specified set of pointers are the same. What
should get into the result? The first or the sec-
ond? That would make the intersection operation non-
commutative.

We decided to use the following definition for the
operations (A and B are operands, S is a set of point-
ers, g[S] denotes a projection of graph g to the set of
pointers S):

• A unionS B is a shortcut for grouping operation
with columns S applied to A unionall B

• A minus B are all graphs g of A such that there
is no graph g′ in B for which g[S] = g′[S] holds.
Projection g[S] is either induced or non-induced –
the exact version is specified by the user.

• A intersect B is not included as an operation. Al-
though we came up with several possible seman-

tics, none of them seemed more natural than the
others. This and the fact that they could all be
transformed into some combination of other oper-
ations led us to the decision not to include any of
them as a build-in operation.

7.8 Constructors

Transformation from one RDF graph to a different
one is a big problem for all RDF query languages.
Many of them contain some kind of CONSTRUCT
concept – a graph pattern is specified and new RDF
graphs are generating by substituting each row of the
query result into the pattern. Since we have no rows
in the result (only an analogy that cannot help us in
this case), we cannot use this approach.

Such operation would be extremely useful addition
to our query system, since we could use it anywhere in
the query and immediately perform other operations
on the transformed data. Unfortunately, we have yet
to find a simple and convincing definition for the op-
eration. It is one of our immediate goals, perhaps the
most important one.

7.9 Implementation concerns

We have defined operations of a RDF query system.
We have not defined a query language, nor are we go-
ing to do so in this section. However important it may
seem, it is in fact only a technical problem of defin-
ing a suitable textual representation for the presented
operations. It has to be done and it has to be done
carefully, since a bad language with complex grammar
that makes it unclear and unreadable would certainly

55

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

discourage developers from using the whole query sys-
tem, no matter what the underlying operations and
data model are.

From the database point of view, the implemen-
tation of the query system would probably be more
complex than in the case of the table-oriented RDF
query languages, that can often be easily transformed
into SQL queries over some representation of the RDF
triples in a relational database. Although there are
some significant performance issues involved, they can
be greatly reduced. And the huge amount of work and
money that have been spent on improving reliability
and performance of RDBMS products are a great ad-
vantage of such solutions.

Although storage and transaction handling for an
implementation could most likely be built on top of
some existing solution, query processing and optimiza-
tion will have to be written from scratch.

8 Performance tests

We have made three sets of tests. The first one was a
comparison between load time into one of existing RDF
repositories based on a relational database and Trisolda
data store that is also based on relational database.
The second one was designed to predict the load time
curve for large semantic data and the last one compared
query times between Trisolda RDBMS-based and non-
RDBMS-based data stores. Tests used different data
described in Table 1.

8.1 Test environment

The test environment consist of two machines. The
first one hosts a Oracle db server (2xCPU Xeon 3.06
GHz, DB instance was assigned 1.0 GB RAM) and the
second one is an application server (2xCPU Quad-Core
Xeon 1.6 GHz, 8GB RAM).

All tests used relatively large data containing
2.365.479 triples (303 MB Turtle [1] file).

Name Description
DATASET 1 2.365.479 triples,

184.461 URIs,
53.997 literals,
303 MB Turtle [1] file

DATASET 2 26.813.044 triples,
2.020.212 URIs,
1.043.337 literals,
3396 MB Turtle file

Table 1. The data used in tests.

8.2 Data import

The main goal of this test was to compare Trisolda
data store with an existing solution based on a rela-
tional database. As an example of an existing Semantic
Web data store was chose the Sesame v1.2 due to its
popularity in the Semantic web community. New ver-
sion of Sesame (Sesame v2.0) doesn’t support relational
databases. Both Sesame-db and Trisolda data store
were connected to a local instance of Oracle database.

We tried to load 150 000 triples DATASET 1 into
both of them. The Trisolda data store loads this data in
780 seconds. The Sesame-db finished loading near 118
000 loaded triples and failed with a database error. The
error reported was low space in the TEMP tablespace.

0

5000

10000

15000

20000

25000

30000

35000

40000

0.5 1 1.5 2 2.5 3

Triples (millions)

Lo
ad

 ti
m

e
(s

)

Trisolda
DLDB-OWL
Sesame-mem
Sesame-DB

Figure 7. Data import comparison

Load times for the Sesame-db and the Trisolda data
store are shown on Figure 7. The load time of Trisolda
data store has almost linear dependency on the size of
the processed data, but the Sesame-db exhibits rather
exponential growth. The behavior of Sesame-db is ex-
pected and it is the same as described in [16].

One of the major design goals of Trisolda was stor-
ing huge semantic data. On the other hand, the Sesame
database schema and SQL statements are not very suit-
able for loading huge data.

According to the test, smaller data (up to 110 000
triples in the machine configuration we used) may be
loaded in Sesame-db, but it is not suitable to use the
Sesame-db for larger data.

8.3 Huge data load

The main goal of this test was to determine whether
the Trisolda data store is capable of loading huge RDF
data (DATASET 2). During the implementation, we
tried to identify possible bottlenecks and were able to

56

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

eliminate some of them. There are still some perfor-
mance issues; it is one of the subjects of our further
work.

The data was loaded in 100k triples batches. Whole
load took 22 hours and 54 minutes, out of which 13
hours and 44 minutes were spent transferring data from
source data file to temporary tables in the database and
another 30 minutes were spent on cleanup actions.

8.4 Query performance

Although we have tried to implement the algorithms
used in query evaluation in an efficient manner the al-
gorithms themselves are only basic versions so the per-
formance of the query evaluation leaves a lot of space
for improvement.

We have tested three storage engines: BerkeleyDB
based storage that stores triples in a B-tree, fully in-
memory engine, Oracle-based RDF storage.

First, we measured the performance of evaluation of
the query presented in section 4.3.

The BerkeleyDB-based storage engine required 1.8
seconds to complete the query, while in-memory en-
gine took only 0.7 seconds. The performance of Oracle-
based engine was the worst, requiring 6.4 seconds.

We have expected these results. The current in-
memory engine is read-only and is optimized for best
performance in queries similar to the one we tested. On
the other hand, we used the Oracle database only to
provide us with plain RDF triples and performed the
join operations in our system. But this is not the main
reason for the bad performance. The problem is, that
the Oracle database is placed on another server and
network delays for each returned triple add together.
Had we used the Oracle database to join and filter the
results the performance would have been much better
due to smaller network trafic and better optimization
of joins in Oracle. Our measurements showed that time
required to evaluate this query is around 0.2 seconds.

8.5 Oracle query performance

We have performed several performance tests over
our Oracle-based RDF store. The queries were com-
pletely translated to SQL and then evaluated by the
Oracle server. An example of a very basic query (basic
graph pattern with one triple) looks like this:

SELECT x_l.lit_rec_type AS x_kind,
x_l.lit_value AS x_value,
(SELECT lng_value

FROM adt_lang
WHERE lng_id = x_l.lit_lang_id)

AS x_lang,
(SELECT dtp_value

FROM adt_data_type
WHERE dtp_id = x_l.lit_type_id)

AS x_type
FROM (SELECT x
FROM (SELECT tri_subject_lit_id AS x
FROM dat_triple t, dat_literal s,

dat_uri p, dat_literal o
WHERE t.tri_subject_lit_id=s.lit_id
AND t.tri_object_lit_id=o.lit_id
AND t.tri_predicate_uri_id

= p.uri_id
AND tri_predicate_uri_id =

(SELECT uri_id
FROM dat_uri
WHERE uri_value

= :p1_predicate)
AND tri_object_lit_id =

(SELECT lit_id
FROM dat_literal

WHERE lit_value
= :p1_object))) q

LEFT JOIN dat_literal x_l
ON q.x = x_l.lit_id

In the following text, some queries are said to com-
plete instantaneously. This means, that their evalua-
tion time was comparable to the network latency (the
database resides on a different server).

The queries in the following text are written as
triples, where ?x denotes variable x, <uri1> denotes a
URI with a value ’uri’ and ”value” denotes literal with
value ’value’. The actual values are not given, as they
are rather long and would be meaningless to the reader
without deeper knowledge about the data used in the
experiment.

The first query consists of basic graph pattern with
one triple in the form ?x, <uri>, ”literal”. This query
returned 10 rows and evaluated instantaneously.

The second query contained two triples: ?x <uri1>
”literal1”, ?x <uri2> ”literal2”. The query evaluated
instantaneously and returned one row.

The next query was ?x ?y ”literal”. This query re-
quired 8 seconds to evaluate and returned 4 rows. On
the other hand, the query <uri> ?x ?y evaluated in-
stantaneously returning 28 rows.

A more complex query ?x <uri1> ”literal1”, ?y
<uri2> ?x, ?y <uri3> ?z, ?y <uri4> ”literal2”, ?y
<uri5> ?w, ?w <uri6> ”literal3” that returned only
one row took as much as 200 seconds to evaluate. With
the knowledge about the structure of the data, one
could easily come up with an evaluation plan that
would evaluate (nearly) instantaneously. But due to

57

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

the way that data are stored in the database, the statis-
tics that the Oracle server utilizes are unable to provide
this. Dealing with this problem will be one of the sub-
jects of our future research.

All queries presented so far only returned small re-
sult sets. We also measured one query ?x <uri1> ?y1,
?x <uri2> ?y2, ?x <uri3> ?y3 that returned 88964
rows. This took 70 seconds.

Another ’big’ query was ?x <uri1> ?y, ?z <uri2>
?x, z<uri3> ?w and produced 184179 rows in 66 sec-
onds.

The main reason for relatively long evaluation times
is not caused by transferring the results from the Ora-
cle database over the network. This transfer is just a
matter of seconds even for the largest result set. Most
of the time was spent on the actual evaluation of the
query by the Oracle database.

The experiments have shown, that queries like “give
me first and last names of all people in the database”
are much slower than what they would be if the data
was stored in a traditional relational database. The
fact that each triple is stored separately and table join
has to be performed is one obvious factor. Less obvi-
ous but just as important is the fact that the statistics
used by the Oracle optimizer to create query evalua-
tion plans do not work well if the data is stored like
this (all triples are stored in one table) and the op-
timizer makes wrong assumptions. This means, that
the optimizer works with inaccurate estimations of the
size of data at most places of the evaluation tree. This
makes the optimizer select wrong order of the joins and
also inefficient methods (like using nested loops to join
large relations). The problems are very similar to those
identified in [6].

9 Conclusion

We have implemented and thoroughly tested the in-
frastructure for gathering, storing and querying seman-
tic data. We have focused our efforts on efficiency,
extensibility, scalability and platform independence.
Both our experiences and benchmarks show that this
goal is feasible.

Trisolda is currently used as a platform for further
web semantization research. We expect to enhance
both interfaces and functionality to support these se-
mantic experiments.

Our immediate goal is to implement the TriQ eval-
uator within the Trisolda environment.

We have two long-term goals. The first one is
an implementation of a Semantic Web-specialized dis-
tributed parallel data-storage, which can significantly

improve the behavior and performance of the Semantic
Web repository.

As the second long-term goal, we plan to intercon-
nect diverse semantic repositories, possibly with differ-
ent implementation. Such interface-based loosely cou-
pled network could become a nucleus of really usable
semantic web, both for academic and practical pur-
poses.

Acknowledgement

This work was supported by the Grant Agency of
the Czech Republic, grant number 201/09/0990 - XML
Data Processing.

References

[1] D. Beckett. Turtle - terse rdf triple language, 2004.
http://www.dajobe.org/2004/01/turtle/.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The se-
mantic web. Scientific American, May 2001.

[3] J. Broekstra and A. Kampman. SeRQL: A Second
Generation RDF Query Language. In Proceedings of
the Workshop on Semantic Web Storage and Retrieval,
Netherlands, 2003.

[4] J. Broekstra, A. Kampman, and F. Harmelen. Sesame:
A Generic Architecture for Storing and Querying RDF
and RDF Schema. In Proceedings of the First Interna-
tional Semantic Web Conference, pages 54–68, Italy,
2002.

[5] E. F. Codd. A relational model of data for large shared
data banks. Commun. ACM, 13(6):377–387, 1970.

[6] J. Dokulil. Evaluation of SPARQL queries using rela-
tional databases. In I. Cruz, editor, 5th International
Semantic Web Conference, ISWC 2006, Athens, GA,
USA, November 5-9, 2006, volume 4273 of Lecture
Notes In Computer Science, pages 972–973, 2006.

[7] J. Dokulil, J. Tykal, J. Yaghob, and F. Zavo-
ral. Semantic web repository and interfaces. In
SEMAPRO07: International Conference on Mobile
Ubiquitous Computing, Systems, Services and Tech-
nologies, pages 223–228, Los Alamitos, 2007. IEEE
Computer Society.

[8] L. Galambos. Robot UDP Transfer Protocol, 2007.
http://www.egothor.org/RFC/RUTP-v02.pdf.

[9] L. Galamboš. Dynamic inverted index maintenance.
International Journal of Computer Science, 2006.

[10] J. Galgonek. Query languages for the semantic web.
Master thesis at Charles University in Prague, 2008.

[11] H. Jiang, H. Lu, W. Wang, and B. C. Ooi. Xr-tree:
Indexing xml data for efficient structural joins. In Pro-
ceedings of the 19th International Conference on Data
Engineering (ICDE03). IEEE, 2003. 1063-6382/03.

[12] M. Olson and U. Ogbuji. Versa, 2002.

58

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

[13] E. Prud’hommeaux and A. Seaborne. SPARQL
Query Language for RDF. W3C Working Draft,
2005. http://www.w3.org/TR/2006/WD-rdf-sparql-
query-20060220/.

[14] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara,
M. Stollberg, A. Polleres, C. Feier, C. Bussler, and
D. Fensel. Web service modeling ontology. Applied
Ontology, pages 77–106, 2005.

[15] T. Vitvar, A. Mocan, M. Kerrigan, M. Zaremba,
M. Zaremba, M. Moran, E. Cimpian, T. Haselwanter,
and D. Fensel. Semantically-enabled service oriented
architecture: Concepts, technology and application.
Journal of Service Oriented Computing and Applica-
tions, 2007.

[16] S. Wang, Y. Guo, A. Qasem, and J. Heflin. Rapid
benchmarking for semantic web knowledge base sys-
tems. Technical Report LU-CSE-05-026, CSE Depart-
ment, Lehigh University, 2005.

[17] J. Yaghob and F. Zavoral. Semantic web infras-
tructure using datapile. In Proceedings of the 2006
IEEE/WIC/ACM International Conference on Web
Intelligence and Itelligent Agent Technology, pages
630–633, Los Alamitos, California, 2006. IEEE. ISBN
0-7695-2749-3.

[18] N. Zhang, V. Kacholia, and M. Tamer. A succinct
physical storage scheme for efficient evaluation of path
queries in xml. In Proceedings of the 20th Inter-
national Conference on Data Engineering (ICDE04).
IEEE, 2004. 1063-6382/04.

[19] W3C Semantic Web Activity Statement, 2001.
http://www.w3.org/2001/sw/Activity.

[20] The Apache Software Foundation.
http://www.apache.org.

[21] Microsoft Internet Information Services.
http://www.microsoft.com/WindowsServer2003/iis.

[22] Jena A Semantic Web Framework for Java.
http://jena.sourceforge.net/.

59

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Modeling Security-Critical Applications with UML
in the SecureMDD Approach

Nina Moebius, Wolfgang Reif, Kurt Stenzel
Department of Software Engineering and Programming Languages

University of Augsburg
86135 Augsburg, Germany

{moebius, reif, stenzel}@informatik.uni-augsburg.de

Abstract—Developing security-critical applications is very dif-
ficult and the past has shown that many applications turned out
to be erroneous after years of usage. For this reason it is desirable
to have a sound methodology for developing security-critical
applications. We present our approach, called SecureMDD, to
model these applications with the unified modeling language
(UML) extended by a UML profile to tailor our models to security
applications. We automatically generate a formal specification
suitable for verification as well as an implementation from the
model. Therefore we offer a model-driven development method
seamlessly integrating semi-formal and formal methods as well
as the implementation. This is a significant advantage compared
to other approaches not dealing with all aspects from abstract
models down to code. Based on this approach we can prove
security properties on the abstract protocol level as well as the
correctness of the protocol implementation in Java with respect to
the formal model. In this paper we concentrate on the modeling
with UML and some details regarding the transformation of this
model into the formal specification. We illustrate our approach
on an electronic payment system called Mondex [1]. Mondex has
become famous for being the target of the first ITSEC evaluation
of the highest level E6 which requires formal specification and
verification.

Index Terms—model-driven software engineering, UML, secu-
rity, cryptographic protocols, verification

I. I NTRODUCTION

We focus on secure applications such as electronic ticketing
or electronic payment systems. In this paper we concentrate
on smart card applications. To guarantee the security of these
(usually) distributed applications security protocols based on
cryptographic primitives are used. Since it is very hard to
design such protocols correctly and without errors, we propose
to use formal methods for verification.

UML describes different views on various parts of a system.
There exist several kinds of diagrams emphasizing different
aspects of an application. In our approach we use use cases
to describe the functional and security requirements of the
system under development. Class diagrams are used to model
the static view of an application. To design the protocols
resp. to define the interaction steps between the components
of the system we use sequence diagrams. To define the
processing of messages and internal behavior of components
we additionally use activity diagrams. The communication
structure of the system and the abilities of the attacker are
modeled by deployment diagrams. At the moment, we only

model functional behavior, security properties are added on
the formal level.

In the paper we only introduce the models showing the final
view of the system which is used to generate code and the
formal model. Of course, the creation of these models is a
process that consists of several iterations and the UML dia-
grams evolve step-by-step. A disadvantage of UML is the lack
of a comprehensive semantics directly usable in a verification
system. This leads to difficulties for verification of modelsas
well as for generation of code. This is solved by defining
a mapping from the semi-formal to a formal presentation
using abstract state machines (ASM) [2]. These have a well-
defined and relatively simple semantics [3] [2]. Our formal
specification is a combination of algebraic specifications and
ASMs. Algebraic specifications are used for the descriptionof
the used data types as well as the attacker model. ASMs are
used for the protocol dynamics. For verification we use the
interactive theorem prover KIV [4].

Furthermore, we generate Java resp. Java Card code for
smart card applications. Our group proposes a method to prove
that an implementation is a refinement of the abstract formal
model [5] by using the Java Calculus [6] [7] implemented in
KIV.
The major advantage of our approach with respect to other
existing techniques (e.g. [8]) is that we give a method seam-
lessly integrating modeling, formal methods as well as an
implementation.

In this paper we describe the first part of the development
process, i.e. the modeling of the application with UML. It isan
extended and improved version of [9]. Our approach is focused
on an easy to learn, and intuitive way of building the required
models, and abstracts from details of the formal specification
or the implementation. To model internal behavior, we extend
activity diagrams with a UML-like language and use a syntax
that is close to the one of an object oriented programming
language. Our approach provides an opportunity to generate
a formal model as well as runnable code without paying
attention to the specifics of the formal specification and
implementation which are harder to create and understand than
the UML models.

Section II gives an overview of our SecureMDD approach.
In Section III the SecureMDD UML profile and the used
security data types are presented and a short introduction to

60

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

the Model Extension Language (MEL) is given. Our modeling
technique is illustrated by an electronic payment application
called Mondex that is introduced in Section IV. In Section
V we present the modeling of a security-critical application
on the platform-independent level in detail and describe the
platform-specific model in Section VI. Section VII gives some
details about the MEL syntax and grammar. In Section VIII
we shortly address some specifics regarding the generation of
Java Card code, Section IX exemplifies some details of the
transformation from UML into the formal model. Section X
addresses related work and Section XI concludes.

II. T HE SECUREMDD A PPROACH

In this section we give an overview of our framework
which aims to develop secure applications (see Fig. 1). The
approach is based on model-driven software development
(MDSD) methods. The developer creates a UML model of
the system under development. Then, several model-to-model
(M2M) and model-to-text (M2T) transformations are applied
and finally, Java(Card) code as well as a formal model are
generated.

UML Model

Extended UML

 Model

UML ModelUML Model

Formal ASM ModelJava Model

platform-

independent

models

platform-specific

implementations

platform-specific

models

Formal Model based on

Abstract State Machines
Java(Card) Code

M2M

M2MM2M

M2MM2M

M2TM2T

{

{
2

5

4

3

1

Fig. 1. Overview of the SecureMDD Approach

The approach starts with the modeling of a security-critical
application with UML. We model the complete application,
i.e. the static view, the structure of the system as well as the
dynamic parts of an application. Since UML does not provide
abilities to model the whole dynamic view, we extend the
UML, especially UML activity diagrams, by a language called
Model Extension Language (MEL). This language allows for
modeling of e.g. assignments and creation of objects.

In the first step, the developer creates a UML model of
the system under development (1 '!&"%#$). This model is platform-
independent, i.e. it does not contain any specifics regarding

the formal model or Java(Card) code. To model the flow of
information and the processing of messages, activitiy diagrams
extended with MEL expressions are used.

In a next step, the MEL expressions are parsed and stored
in an abstract syntax tree. The ’Extended UML Model’ is
an instance of the UML metamodel which is extended by an
abstract syntax tree of the MEL language (2 '!&"%#$). The generation
is done automatically using model-to-model transformations.

Afterwards, as well with model-to-model transformations,
different platform-specific models (PSM) are generated (3 '!&"%#$).
On this level, the UML meta model is used. On the one
hand, a model showing the smart card specific information is
generated. This includes primitive types used in Java Card,
Java Card expressions in activity diagrams as well as the
translation of the stereotypes used in the previous model to
Java classes. More details about the PSM can be found in
Sect. VI. A smart card application always consists of one
or more cards as well as a terminal with a card reader
that communicates with the smart card. The terminal can be
implemented using any programming language but Java is
used in our approach. Since in this paper we concentrate on
the modeling of the smart card part of an application, we omit
the platform-specific model for generating the terminal code.
On the other hand, we generate a platform-specific model
containing details regarding the formal model which is based
on algebraic specifications and abstract state machines (ASM).
The expressions given as a MEL model are translated into
syntactically correct ASM rules.

In a next step, a ’Java Model’ resp. a ’Formal ASM Model’
is generated from the platform-specific models. The Java
model is an abstract syntax tree of Java whereas the ASM
model is an abstract syntax tree of ASMs. Then, in a model-
to-text (M2T) transformation, these models are transformed
into Java Card code resp. a formal specification (5 '!&"%#$). The
latter can be used to prove security properties of the modeled
application using our interactive theorem prover KIV [10].For
hand-written formal models we already developed a method
to prove security properties [11] [12].

The model-to-model transformations are implemented with
the language QVT [13] and all model-to-text transformations
with XPand [14].

III. T HE SECUREMDD PROFILE AND THE MODEL

EXTENSION LANGUAGE

In this section some security related data types and a UML
profile which is tailored to cope with specifics regarding
security-critical smart card applications are introduced. Fur-
thermore, the Model Extension Language (MEL) that is used
to extend UML activity diagrams is explained.

A. Predefined Security Datatypes

To model a security-critical application with UML it is
expedient to define a few data types that are useful in these
applications. Figure 2 shows the data types defined for the
SecureMDD approach.

61

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

EncData

-encrypted : String

<<primitive>>

Number

<<primitive>>

String

HashedData

-hashed : String

SignedData

-signed : String

Secret

-secret : String

Nonce

-nonce : String

Key

-key : String

<<primitive>>

Boolean

PrivateKey SymmkeyPublicKey

Fig. 2. Security Datatypes defined for the SecureMDD Approach

One important aspect is the use of keys. Thus, we define
an abstract classKey that contains a cryptographic key. To
capture the difference between symmetric and asymmetric
encryption, i.e. public and private, keys, three subclasses of
theKey class exist. Furthermore, a classNonce representing
nonces, i.e. random numbers used only once, is given. For
example, nonces are used in cryptographic protocols to avoid
replay attacks. Besides we define a typeSecret which
contains values that have to be kept secret, e.g. pin numbersor
pass phrases. We explicitly distinguish secrets from primitive
strings because this simplifies the formal verification of se-
curity properties. The classesHashedData, SignedData
andEncData represent data that is hashed, digitally signed
resp. encrypted. To facilitate the modeling on an abstract
level without committing to an implementation language we
additionally use primitive classes calledNumber, String
and Boolean that represent numbers, strings as well as
boolean values.

B. The SecureMDD Profile

Since UML is designed only to model standard application
scenarios there is a need to extend it to specific application
domains. For this reason the Object Management Group
(OMG) [15] provides a mechanism to extend the scope of
UML in a lightweight way by defining UML profiles. A profile
extends the UML meta model and defines a set of stereotypes,
tagged values and constraints.

In this section the SecureMDD UML profile is introduced.

Fig. 3. UML stereotypes defining the components smart card and terminal

Figure 3 illustrates the stereotypes defined for the com-
ponents of a smart card application, i.e. one stereotype to
annotate a class representing a smart card and one stereotype

to label a class representing a smart card terminal with a
card reader. These stereotypes are used in class diagrams
to describe the static view of the application as well as in
deployment diagrams to define the structure of the system. In
deployment diagrams we use the meta model elementNode
to describe the components of the system. Since theNode
element is derived from the meta model elementClass it is
sufficient to extend the meta classClasswith the stereotype.

In the SecureMDD approach the message types exchanged
during a protocol run are modeled as classes instead of
operations. This is motivated by the fact that data in smart
card applications is sent from resp. to the card in the form of
sequences of bytes. Thus, the idea is to have a message as a
(serialized) object instead of a remote method call. In Figure
4 the stereotypes annotating message classes are given.

Fig. 4. UML stereotypes annotating message classes

Here, we distinguish message objects exchanged between
the card and the terminal and message objects sent from the
user of the system to the system, for example by entering
data using a GUI. The latter is explicitly modeled because for
verification we need a formal model of the whole application,
including the user inputs. Since the messages are defined in
the class diagram, the stereotypes extend the meta classClass.

Figure 5 shows the stereotypes to label data classes and
constants.

Fig. 5. UML stereotypes defining data, constants and status

These classes extend the meta classClass. Classes an-
notated with stereotype≪data≫ are non-cryptographic data
types. Classes not annotated with any stereotype are consid-
ered as≪data≫ data type. To define constants used in the
models the stereotype≪Constant≫ is used. The stereotype
≪status≫ indicates the state of a component. While executing
a protocol it is often essential to keep track of the step
in the protocol that must be executed next. Depending on
this step, the component may react differently by processing
the next message or abort if the received message differs
from the expected one. All possible states are modeled as an
enumeration. An association between the component class, i.e.
the terminal or the smart card, to the state class (annotatedwith
stereotype≪status≫) indicates the state of the component.

Figure 6 shows the stereotypes defined for digital signatures,
encryption and hashing.

62

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Fig. 6. UML stereotypes for encryption, hashing and signatures

If data modeled in the diagram is going to be signed,
encrypted or hashed, it is annotated with stereotype
≪SignData≫, ≪PlainData≫ resp. ≪HashData≫. These
stereotypes extend the meta classClass. Furthermore, we
define stereotypes that denote the signing, encryption resp.
hashing of data. If data is going to be encrypted during
a protocol run, the data class is marked with stereotype
≪PlainData≫. If this data is encrypted and the result stored
in a field of, e.g. the smart card or a message object,
the corresponding association between this object and the
PlainData object is annotated with stereotype≪encrypted≫.
In the class diagram we do not specify which key is used
for encryption. Since this is a dynamic aspect, the concrete
encrypt operation including the specification of the used key
is specified in activity diagrams. Note that the generation of the
formal model and Java Card code would also be possible if we
omit the use of the stereotypes≪SignData≫, ≪PlainData≫
and ≪HashData≫, i.e. all required information is already
given when using the remaining stereotypes. However, we feel
that it is good practice to use them because they increase the
readability of the platform-independent models.

To verify certain security properties that have to hold for the
modeled system it is necessary to describe a possible attacker
resp. his abilities. An attacker may be able to interfere with
the communication between smart card and terminal. This can
be modeled appropriately with deployment diagrams. We use
the communication path element to annotate the capabilities
an attacker has to affect the communication. For this purpose
we define the stereotype≪Threat≫. The stereotype has three
tagsread, send andsuppress that indicate if the attacker
is able to read messages sent over that path, send or suppress
messages. In some scenarios an attacker may try to forge a
component, e.g. he may program his own smart card. If a
fake component is conceivable it is annotated with stereotype
≪forgeable≫. The stereotypes defined to describe the attacker
are shown in Figure 7.

C. The Model Extension Language (MEL)

The Model Extension Language (MEL) is used to extend
activity diagrams. It is a simple language whose expres-
sions are used inAction elements,SendSignalActions,
AcceptEventActions as well as inguards to model e.g.
object creation, assignments, conditions, or the sending of a

Fig. 7. UML stereotypes specifying the attacker capabilities

message. The aim is to have a language that can be used to
model cryptographic protocols and at the same time is more
abstract than a programming language. For example, MEL has
a copy semantics and the developer does not have to take care
about memory management and object creation which must
be handled with care on smart cards. Since MEL is tailored to
model the protocols of security-critical applications, itcontains
several keywords resp. predefined methods to express e.g.
encryption, decryption, the generation of nonces and hash
values. More details about MEL are given in Section VII.

IV. M ONDEX

The SecureMDD approach is illustrated with the Mondex
application which is introduced in this section.

Mondex cards are smart cards that are used as electronic
purses with the aim of replacing coins by electronic cash.
Mondex is owned by Mastercard International [1]. The main
field of application is the secure transfer of money from one
smart card to a second card. To perform a transfer both cards
are inserted into a smart card terminal that also acts as user
interface. The security properties that have to be verified for
Mondex are that no money can be created and any value must
be accounted for. In detail, this means that no money can
be loaded onto a Mondex card without subtracting it from
another card. Furthermore, if a transaction fails, no money
should be lost. The Mondex case study recently received a lot
of attention because its formal verification has been set up as
a challenge for verification tools [16] that several groups [17]
as well as our group [18] [19] worked on. For Mondex, sev-
eral approaches dealing with formal methods and verification
(model-checking, theorem proving and constraint solver) exist.
But, they are not combined with an engineering discipline for
system development. Rather, they use only formal techniques
for specification and verification of the Mondex application.
In the SecureMDD approach software engineering techniques
and formal methods are integrated.

The Mondex application is another example that the design
of security-critical systems is difficult. While verifying the
security of the application our group has found a flaw in the
original protocol [16]. Exploiting this flaw it is possible to
cause a denial of service attack that fills the memory of the
card. In this state the card is disabled unless the owner returns
it to the bank. More details about the flaw can be found in [18].
The protocol given in this paper is a slight modification of the
original protocol introduced in [20] and avoids the denial of
service attack.

63

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

V. M ODELLING OF SECURITY-CRITICAL SMART CARD

APPLICATIONS WITH UML

In this section our method to develop a security-critical
application is introduced. All steps and artefacts are exem-
plified by the Mondex application. In subsection V-A the
description of functional and security requirements usinguse
cases is given. In subsection V-B our methodology to describe
cryptographic protocols on a very abstract level is introduced.
In subsection V-C the modeling of the static view using class
diagrams is presented, subsection V-D describes the specifi-
cation of the dynamic behavior using activity diagrams and
the Model Extension Language. Subsection V-E introduces the
modeling of the communication model as well as the attacker
abilities using deployment diagrams.

A. Use Cases describing functional and security requirements

Use cases are used to capture functional requirements of
the system in an informal way. As in a traditional software
engineering process one or more use cases are written that
describe the interaction between the system and external actors
or systems. They describe the application in a way that can
easily be understood. In our modeling method, use cases are
the basis for the sequence and activity diagrams that are used
to build the formal model as well as executable code. Below
five of the use cases for Mondex are given. The first one,
Person-to-Person Payment, is then used as running example
in the following subsections.

Person-to-Person Payment
Basic Flow:

1) The customer of a shop wants to pay with his Mondex
card.

2) He as well as the shop owner insert their cards into the
corresponding card reader.

3) The shop owner enters the amount to pay.
4) The customer confirms the amount and starts the transfer

of money.
5) The entered amount is transferred from the card of the

customer to the card of the shop owner.
6) The system confirms the transfer by returning a receipt.
7) Both participants remove their cards from the reader.

Alternative Flows:

• 3) The entered amount is wrong: The shop owner cancels
the process.

• 4) The customer does not agree with the entered amount:
He cancels the transfer and the system aborts.

• 5) The balance of the customer card is lower than the
amount to pay: The systems aborts and returns an error
message.

• 5) The entered amount added to the current balance of
the shop card exceeds the maximum value that can be
loaded: The system aborts and returns an error message.

• 5) An error occurs while transferring the money or one of
the participants removes his card too early: The system
aborts and returns an error message. If the amount was

already reduced on the customer card but has not been
added to the card of the shop owner this is recorded
on both cards. To recover the original balance of the
customer card both cards have to be shown at the bank
(see use case ”Recovery of Money”).

Security Requirements:
• No money is lost: If a transfer fails, either no money is

charged from the customer card or if money was already
charged it can be recovered correctly.

• An attacker is not able to program his own card such that
he can use it as customer card and pay with it.

• It is not possible to load money onto a card without
subtracting the same amount from a second card, i.e. no
money can be created.

• It is not possible that a shop owner debits a higher amount
than has been agreed.

Payment using Internet
Basic Flow:

1) A customer wants to pay with his Mondex card using
an internet shop.

2) He inserts his card into his card reader (which is
connected to his PC) and opens the web presentation
of the shop.

3) He selects the products he wants to buy, enters his postal
address for shipment and selects that he wants to pay
now.

4) A connection to the remote card reader of the shop
owner is established. The Mondex card of the shop
owner is in this reader.

5) The amount to pay is transferred from the card of the
customer to the card of the shop owner.

6) The system confirms the transfer.
7) The customer removes his card from the reader.
8) The shop owner sends the goods to the customer.

Alternative Flows:
• 3) The balance of the customer card is lower than the

amount to pay: The systems aborts and returns an error
message.

• 4) The entered amount added to the current balance of
the shop card exceeds the maximum value that can be
loaded: The system aborts and returns an error message.

• 5) An error occurs while transferring the money or one of
the participants removes his card too early: The system
aborts and returns an error message. If the amount was
already reduced on the customer card but has not been
added to the card of the shop owner this is recorded
on both cards. To recover the original balance of the
customer card both cards have to be shown at the bank
(see use case ”Recovery of Money”).

Security Requirements:
• see use case ”Person-to-Person Payment”

Recovery of Money
Basic Flow:

64

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

1) If a transaction fails (i.e. money was charged from the
customer card but has not been added to the shop card)
both participants of the transfer go to the bank.

2) Showing their Mondex cards it can be discovered if and
what amount of money was reduced from the customer
card.

3) The system adds the corresponding amount to the cus-
tomer card.

Alternative Flows:
• 3) If the amount added to the current balance of the

customer card exceeds the maximum balance of the card
the amount will be paid out in cash.

Security Requirements:
• If money was lost it can be recovered only once, i.e.

showing the cards again it is not possible to force a
recovery again.

• It can be detected if the transfer has been aborted after
the amount was added to the shop card. In this case no
money is recovered.

Recharge of money at an automatic teller machine (ATM)
Basic Flow:

1) The card owner goes to the ATM (within his bank) and
inserts his Mondex card.

2) The card owner specifies the details of his bank account.
3) He authorizes by entering his PIN number.
4) The system checks that the PIN is correct.
5) The card owner enters the amount he wants to recharge.
6) The entered amount is debited from the bank account of

the card owner and loaded onto the card.
7) The card owner removes his card from the terminal.

Alternative Flows:
• 4) The entered PIN is not correct: The system returns

an error message and asks for retry. After three times
entering a wrong PIN the card is locked.

• 5) The balance of the owners bank account is less than
the entered amount: The system returns an error message
and requests to enter a lower amount.

• 5) The entered amount added to the current balance of
the card exceeds the maximum value that can be loaded:
The system returns an error message and requests to enter
a lower amount.

Security Requirements:
• The amount loaded onto the card equals the one charged

from the bank account. It is not possible to load money
onto a card without reducing the bank account by the
correct amount.

Discharge at an ATM
Basic Flow:

1) The card owner inserts his card into an ATM at the bank.
2) He selects that he wants to have repaid the money.
3) The ATM pays out the amount currently stored onto the

card and sets the current balance of the card to zero.

4) The customer removes the card from the reader.

Alternative Flows:

• 3) The customer removes his card from the reader too
early: No money is paid out.

Security Requirements:

• The amount paid out in cash equals the balance of the
card.

• If returning the cash to the card owner the balance of the
card is set to zero.

Other use cases cover the viewing of the last transactions,
storing money of different currencies on the same card or
payments using mobile phones. Also the recharge of money
using the internet or the use of money in cash instead of a bank
account for recharge is possible. Since the entire application is
too large to present here we only model the transfer of money
between a shop owner card and a customer card (Use Case
Person-to-Person Payment).

B. The Protocol Description

Our goal is to give an intuitive way to model security
protocols. A reader of the model should be able to understand
the protocol without getting lost in details. We use sequence
diagrams to specify the protocol steps and the flow of infor-
mation. The idea is to start with a very abstract view of the
possible protocols and refine these sequence diagrams step by
step. The diagram shown in Fig. 8 shows the final sequence
diagram for ”Person-to-Person Payment”. At this point the
protocol which is later implemented is already elaborated.This
diagram is used as basis to develop the complete dynamic
behavior of the system using activity diagrams. Note that we
do not show the diagrams that were drawn while working out
the final models.

The sequence diagram contains one lifeline for each compo-
nent participating in the protocol and additionally one lifeline
for the ”user”. The user represents the customer of the service
and usually initiates a protocol, i.e. ’sends’ the first message.
For Mondex, we distinguish the card of the shop owner (in
the following calledto purse) and the card of the customer
(in the following calledfrom purse). Since a Mondex card can
act asto card as well asfrom card this distinction is only to
achieve a better readability of the diagrams.

The protocol used for payments between two persons (see
Fig. 8) works as follows:

The user, i.e. the shop owner, initiates the protocol run
by sending the value to be transferred to the terminal
(UTransferMoney). Afterwards the terminal queries theto
purse to provide its data, e.g. its name (= unique number), by
sending the instructiongetData. The to purse returns this
data (messageResGetData). In a next step the terminal
sends a message calledStartFrom to the from purse
which initiates the transfer on thefrom purse. This message
contains all information required to start the transfer, i.e. the
value to be transferred as well as the unique data of the other
purse. Then, thefrom purse sends aStartTo message to

65

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

<<Smartcard>>

from : Purse

<<Smartcard>>

to : Purse

<<Terminal>>

term : Terminal

User

StartTo5:

Val9:

ResGetData3:

Req7:

Ack11:

GetData2:

StartFrom4:

Req8:

10: Val

Ack12:

StartTo6:

UTransferMoney1:

Fig. 8. Protocol Description for Person-to-Person Payment

the terminal which forwards it to theto purse. This message
contains all data required to run a transfer and, after receiving
it, the to purse initiates the transfer. Note that from now on
the terminal only forwards message that it receives, i.e. if
receiving a message from thefrom purse, it forwards it to the
to purse without modifying the message or its state. In a next
step, after checking that the received transfer information is
correct, theto purse generates aReq(uest) message to request
a transfer, i.e. requests the decrease of the balance of thefrom
purse. After receiving this message thefrom purse decreases
its balance and sends back aVal(ue) message which states
that its balance has been decreased. Then, theto purse
increases its balance and sends back anAck(nowledgement)
message that confirms the transfer.

C. Static View of the System

In the following the modeling of the static view of a smart
card application is introduced. To model specifics regarding
the domain of security-critical applications we use the UML
profile as well as the security data types defined in Section
III. The method is exemplified by the Mondex application but
is applicable for smart card applications in general.

Fig. 9 illustrates the class diagram of the Mondex applica-
tion. Note that the diagram only shows the part of the static
view which is needed for Person-to-Person payments, other
parts e.g. regarding the recovery or recharge of money are
omitted.

Every component of the system, i.e. smart card and ter-
minal, are represented by a class annotated with stereotype
≪Smartcard≫ resp.≪Terminal≫. This distinction is neces-

sary because the generated code (e.g. Java Card vs. Java) and
the formal model differ depending on the type of component.
In the Mondex application we have the classPurse which is
representing the smart card as well as theTerminal.

The message types are modeled as classes. Here, we use an
abstract class annotated with stereotype≪Message≫ from
which all concrete message classes are derived. In Fig. 9
several concrete message classes, e.g.Req, Val and Ack,
are defined. Note that these messages are derived from the
messages modeled in the corresponding sequence diagram (see
Fig. 8).

All data types are modeled as classes and annotated
with corresponding stereotypes, i.e.≪data≫ for non-
cryptographic data types and≪PlainData≫, ≪HashData≫
and ≪SignData≫ for data that is going to be encrypted,
hashed or signed. In the Mondex model we have defined
the data classPurseData that consists of the unique name
of the purse as well as a sequence number that increases
after every protocol run and ensures the uniqueness of every
PayDetails. A PayDetails object records the details of
the current transaction, i.e. the participating purses as well
as the amount to transfer. Furthermore, we define one class
calledMsgcontent that is going to be encrypted and thus
annotated with stereotype≪PlainData≫. This class contains
the pay details of the current transaction and a message flag
denoting if the (encrypted) data belongs to aReq, Val or
Ack message. If this flag is omitted, the following atack is
possible.

An attacker captures and suppresses aReq message and
uses the contained encrypted data to send a correctVal
message to the sender. Receiving this message, the sender of
theReq message, i.e. theto purse, assumes that thefrom purse
has decreased its balance correctly and increases its balance.
Then, the balance of theto purse has been increased without
decreasing the balance of thefrom purse.

Since an object of typeMsgcontent is encrypted and
afterwards sent with aReq, Val or Ack message, the
corresponding associations are annotated with stereotype
≪encrypted≫. To denote the types of used attributes we use
the self defined primitive typesNumber, Boolean as well
as String and the security data types described in III-A.
To cover associations with multiplicity greater than one we
use a predefined list. For example, thePurse class has an
exception log for failed transactions. This is modeled by an
association with multiplicity 0..LOGLENGTH. This exception
log is translated to a list that can be accessed with predefined
methods e.g. to add an object to the list. These predefined
operations are later used in the activity diagrams.

The possible states a component may be in are defined as
an enumeration. An association from a component to this
enumeration, annotated with stereotype≪status≫ defines the
states of a component. A purse may be in stateIDLE, EPR
(expecting request),EPV (expecting value) orEPA (expecting
acknowledge). Since the terminal simply forwards messages
to the cards and accepts all kinds of messages, it needs no
state.

66

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

-value : Number

+PayDetails(value : Number, from : PurseData, to : PurseData)

<<data>>

PayDetails

<<Constant>>

Constants

-REQ
-VAL
-STARTTO
-ACK
-LOGLENGTH : Number = 10

<<data>>

PurseData

-name : String
-sequenceNo : Number

ResGetBalance

-balance : Number

<<PlainData>>

Msgcontent

-msgflag : Number

<<Terminal>>

Terminal

-value : Number

StartFrom

-value : Number

<<Smartcard>>

Purse

-balance : Number
-sesskey : Symmkey
-exlogcounter : Number

<<enumeration>>

State

IDLE

EPV
EPA

EPR

<<Message>>

Message

ResGetData

GetBalance

GetData

StartTo
Ack

ValReq

<<encrypted>>

-encmess 1

-pd

1

<<encrypted>> -encmess

1

1
<<encrypted>>

-encmess1

-dataTo

1

-to

1 -from

1

-data

1

<<encrypted>>

-encmess 1

-pdAuth

1

0..LOGLENGTH

-exlog

<<status>>
-state

-dataTo

1

Fig. 9. Static View of the Mondex application

D. Dynamic Behavior

Sequence diagrams describe the sequence of messages that
is exchanged between components but do not capture internal
actions or the behavior in case an error occurs. For this
reason we additionally use activity diagrams that extend the
sequence diagrams and describe changes in the internal state
of the components after processing a message. The activity
diagram describes the communication as well as the sequence
of actions taken as a result of receiving a message. At this
point we use our Model Extension Language (MEL) which
was shortly introduced in Section III. MEL allows to describe
e.g. creation of objects, assignments or guards of conditions.
We use activity diagrams instead of UML state diagrams
because they turned out to be hard to read and confusing for
applications we focus on (with many condition checks).

For each use case we define one activity diagram. For a
better readability we additionally allow the definition of sub
activities that are called within an activity. In Fig. 10 onepart
of the activity defining the protocol executed for Person-to-

Person payments is given. The whole activity diagram can be
found in the appendix.

For each component participating in the protocol one swim
lane exists in the diagram. As in the sequence diagram we
have a swim lane for the user, theto as well as from
purse and for the terminal. A protocol can be divided into
segments where one segment consists of one protocol step. A
protocol step has the following parts: A component receivesa
message, performs several tests to check whether the message
is correct and can be handled and processes the data. Finally,
the component may send a message to another component.
We useSendSignalActions to denote the sending of a
message,AcceptEventActions to indicate the receiving
of a message as well asAction elements to denote MEL
expressions like object creation, assignments and calls of
predefined operations.

The segment in Fig. 10 shows the swim lane of the terminal
on the left as well as the one of thefrom purse. The terminal
sends aStartFrom message to thefrom purse. This message
contains thevalue to be transferred as well as the data of the
to purse. Thefrom purse receives this message. The content of

67

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Fig. 10. Mondex Activity Diagram showing the sending, receiving and processing of aStartFrom message. On the left side one can see the swim lane
of the terminal, on the right side the one of thefrom purse

it, i.e. the value and data, are handled as local variables. Then,
the purse checks if the counter which counts the exception log
entries is less than the possible maximum length. If not, the
protocol aborts. The abort step is defined in a separate activity
diagram and is called from this protocol (defined by a rake
element). A sub activity has access to the properties of a com-
ponent but not to the local variables. If the condition is satisfied
it is tested whether thestate of the purse is set toIDLE.
Next, it is checked if the received value and sequence number
of the to purse fulfill certain conditions, for example that the
value to be transferred is greater than zero. These checks are
also defined in a separate activityCheckValueSeqnoFrom
which has two parameters and returns a boolean value with
the result of the tests. Since a sub activity has no acces to
the local variables, these have to be passed as arguments.
The sub activity can be found in the appendix. If one of the
checks fails theABORT sub activity is called. Otherwise, the
purse modifies some fields, e.g. the fieldpdAuth is filled
with the current pay details, the purse’ssequenceNo is
increased and thestate is updated toEPR. Our Model
Extension Language has a copy semantics but updates of fields
modify the fields of the original object. In a next step, a
local variableencmess of typeMsgcontent is created and,
in the next action, encrypted with the symmetric key stored
in field sesskey. The encrypt method is predefined in

MEL and used for symmetric and asymmetric encryption.
The result of the encryption of data is an object of type
EncData that consists of a string containing the encrypted
data (see Section III). ThisEncData object is stored in a local
variable enc. Afterwards aStartTo message containing
the createdenc object is sent to the terminal. The terminal
receives this message and forwards it to theto purse. The
keyword via denotes to which components the message is
sent resp. denotes the used port (see subsection V-E for more
details). If the communication path is unique, e.g. the purse
only communicates with the terminal, thevia keyword can
be omitted.

Activity diagrams are used to define the communication
between the different components as well as the processing of
a message, i.e. they are used to model cryptographic protocols.
In applications with large protocols it may be desirable to
add some code by hand after generating the modeled parts of
the system instead of creating activity diagrams for the whole
application. For this reason the developer can add own method
calls where the corresponding method bodies are added later
by hand on code level. Note that this causes problems resp.
inconsistencies when verifying the security of the system
using a formal model automatically generated from the UML
models. To ensure that the security properties which are proved
on the formal model also hold on code level, the formal model

68

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

has to be a suitable representation of the code. This means
that all changes and additions which are made on the code
(by hand) have to be done on the formal model as well.

E. Attacker and Communication Model

To verify cryptographic protocols it is necessary to for-
mally specify the communication infrastructure as well as
an attacker model. Almost all formal approaches (e.g. [21]
[22]) for verifying cryptographic protocols use a rather simple
model of communication and the Dolev-Yao [23] threat model.
There, no constraints regarding the communication structure
are given and it is assumed that the attacker may access all
communication links, i.e. he can read all messages sent over
that link, suppress them or write messages on that channel. In
these approaches (mainly addressing internet protocols) it is
ignored that certain components cannot communicate directly
with other components for physical reasons.

Also, the possibility that some connections are secure
against eavesdropping and others are not, is abstracted away.
In contrast, our formal model is not limited to Dolev-Yao
attackers. The main reason for an attacker model with reduced
(but more realistic) abilities is that it becomes possible to
have simpler protocols still preserving the desired security
properties.

In our approach we explicitly model the existing connec-
tions. For each connection we denote if the attacker is able to
read or suppress messages and whether he can send messages
over that channel. But these annotations do not suffice to
describe all possibilities an attacker might have. For example,
an attacker could program his own forged smart card. If the
protocol has a flaw such that the forged card takes advantage
of the weakness of the protocol it may be possible that the
attacker gains some information e.g. about secret keys.

UML provides the use of deployment diagrams to define the
physical structure of a system. In our approach we use them to
describe the communication structure as well as the attacker
model of our application. Fig. 11 shows the deployment
diagram for the Mondex application.

The components participating in the application are modeled
as nodes. The terminal has one connection to theto purse, one
to the from purse as well as one to the user. If a component
sends a message it has to be determined which connection
is used for sending. To be able to reference the connections
the connection ends, also called ports, are named. If multiple
connections exist between two components, the connection
that is used for sending is addressed using thevia keyword
in the activity diagram.

For Mondex we assume that an attacker may have full
access to the connections between terminal and cards.
Thus, these connections are marked withread, send and
suppress. Furthermore, an attacker may program his own
smart card and use it as a Mondex card to attack the system.

VI. PLATFORM-SPECIFICSMARTCARD MODEL

Based on the platform-independent model of the applica-
tion a platform-specific model (PSM) is generated for each

<<Smartcard>>
<<forgeable>>

Smartcard
<<Terminal>>

Terminal

User

<<Threat>>

{read,

send,

suppress}

-CardFrom-TermFrom

<<Threat>>

{read,

send,

suppress}

-CardTo-TermTo

-UserTerm

-TermUser

Fig. 11. Deployment Model for Mondex

platform. For the Mondex application, we distinguish three
platforms: one for the terminal, one for the smart card as well
as one for the formal model. In this section we present the
static view of the platform-specific model for the smart card
in more detail.

Figure 12 shows the platform-specific class diagram of the
Mondex application.

In the class diagram the abstract data types for the smart
card are replaced by Java Card [24] specific data types. Note
that Java Card does not support integers or strings. Thus, all
fields of typeNumber are translated to shorts,Strings are
translated into byte arrays andBoolean are replaced by the
Java type boolean. Furthermore, for each class a constructor
is added.

One main aspect of the PSM is the removal of stereo-
types dealing with cryptography which were used in the
platform-independent model. Instead, some classes and in-
terfaces are added. The resulting class diagram is close to
the structure of the Java Card code but omits some technical
details. Remember that in the platform-independent model
the encryption of data was modeled by adding a stereo-
type named≪encrypted≫ to the corresponding association.
The referenced class is then annotated with a stereotype
≪PlainData≫ which denotes that this data type can be
encrypted. In the platform-specific model we add an interface
calledPlainData which is implemented by all classes that
were marked as≪PlainData≫ in the PIM. Moreover, we
add the data typeEncData that represents encrypted data.
This class has a fieldencrypted of type byte array which
stores the encrypted data. Since the Java Card Crypto API
operates on byte arrays, it is of type byte[]. The class has two
static methods,encrypt and decrypt, which correspond
to the predefined methods of the same name defined in MEL.
The encrypt method takes an object of typeKey and a
PlainData object and returns anEncData. Thedecrypt
method operates on aKey and anEncData object and returns
the decryptedPlainData. The classesStartTo, Req, Val

69

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

PayDetails

-value : short

+PayDetails(value : short, from : PurseData, to : PurseData)

PurseData

-name : byte [0..*]
-sequenceNo : short

+PurseData(name : byte [0..*], sequenceNo : short)

Coding

+encode(c : Codeable, destination : byte [0..*])
+decode(in : byte [0..*], offset : short) : Codeable
+encodeShort(s : short)
+decodeShort(in : byte [0..*]) : short
+encodeByteArray(b : byte [0..*])
+decodeByteArray(in : byte [0..*]) : byte [0..*]
+encodeReq(r : Req)
+encodeEncData(e : EncData)
+decodeEncData(in : byte [0..*]) : short
+decodeReq(in : byte [0..*]) : Req
+encodePayDetails(pd : PayDetails)
+decodePayDetails(in : byte [0..*]) : PayDetails
+...()

EncData

-encrypted : byte [0..*]

+encrypt(k : Key, plain : PlainData) : EncData
+decrypt(k : Key, e : EncData) : PlainData
+EncData()

StartFrom

-value : short

+StartFrom(value : short, dataTo : PurseData)

Msgcontent

-msgflag : short

+Msgcontent(msgflag : short, pd : PayDetails)

Code

-REQ : byte = 1{readOnly}
-ENCDATA : byte = 2{readOnly}
-RESGETBALANCE : byte = 3{readOnly}
-GETBALANCE : byte = 4{readOnly}
-GETDATA : byte = 5{readOnly}
-STARTTO : byte = 6{readOnly}
-VAL : byte = 7{readOnly}
-ACK : byte = 8{readOnly}
-RESGETDATA : byte = 9{readOnly}
-STARTFROM : byte = 10{readOnly}
-MSGCONTENT : byte = 11{readOnly}
-PURSEDATA : byte = 12{readOnly}
-PAYDETAILS : byte = 13{readOnly}

ResGetData

+ResGetData(dataTo : PurseData)

ResGetBalance

-balance : short

+ResGetBalance(balance : short)

javacard.framework.Applet

StartTo

+StartTo(encmess : EncData)

SimpleComm

+process(apdu : APDU)
+sendMsg(msg : Message)
+process(msg : Message)

<<Smartcard>>

Purse

-balance : short
-sesskey : Symmkey

+process(msg : Message)

Req

+Req(encmess : EncData)

Ack

+Ack(encmess : EncData)

Val

+Val(encmess : EncData)

<<Constant>>

Constants

+REQ : byte = 1
+VAL : byte = 2
+STARTTO : byte = 3
+ACK : byte = 4
+LOGLENGTH : short = 10Codeable

+getCode(s : short)

<<enumeration>>

State

IDLE

EPV
EPA

EPR

PlainData

GetBalance

+GetBalance()

<<Message>>

Message

GetData

+GetData()
-data

1

-encmess

1

-dataTo 1

-c

1

0..LOGLENGTH

-exlog

<<status>>

-state

-encmess

1

-to

1

-pd

1

-from

1

-pdAuth

1

-dataTo
1

-encmess

1
-encmess

1

-coding

1

Fig. 12. Smart card-specific class diagram of the Mondex application

andAck were defined in the PIM with associations to the class
Msgcontent (annotated with≪PlainData≫). Now, these
classes have associations to the classEncData and hence
reflect the implementation with Java Card.

To communicate with the terminal we add a class
SimpleComm which defines two methods to receive and
process a message as well as a method for sending a message.
This class extends the classApplet defined in the Java Card
API. The classPurse that represents the smart card extends
the classSimpleComm.

Since the communication between card and terminal is
based on byte arrays we additionally need a serialization
mechanism that serializes the objects that are sent to the
terminal. This is realised by a class namedCoding that
defines methods for serialization and deserialization of each
object which is sent during a protocol run. More details about
the implementation in Java Card as well as the generation of
code can be found in [25].

The activity diagrams of the platform-specific model still
have the same structure but the MEL expressions are parsed
and replaced by Java Card expressions.

It is easy to see that our platform-independent model is an
abstracted view of a security-critical smart card application
that can be created without knowing technical details about
programming with Java Cards. It is possible to model an

application using the predefined stereotypes without thinking
about a possible implementation. Then, in a next step, these
abstract models are translated into more Java Card specific
models automatically.

VII. T HE MODEL EXTENSION LANGUAGE

In this section the MEL language is presented in detail. The
syntax of MEL is shown in Fig. 13. It is based on Java, but a
little bit more UML-like.

The description of the grammar can be read from top
to bottom. MEL can be used in UMLActions, in
UML guards, and in UML SendSignalActions and
AcceptEventActions which are treated differently. A
(normal) action can contain either one expression, or a list
of statements. A statement in MEL is simply an expression
followed by a semicolon. Java statements like conditional,
loop, return etc. are not supported, but must be modeled with
activity diagram elements. MEL expressions and types are
a subset of Java expressions and types. The most obvious
omissions are arrays and generic types. The idea is to use
more abstract data types like lists or sets instead of arrays.
Generic types may be added for non-Java Card applications
in the future. MEL contains anelseexpression that may only
be used on top-level in a guard (UML also defineselse as
a special guard). A local variable declaration (locvardeclin

70

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Start = Action| Guard
| SendSignalAction| AcceptEventAction

Action = Expr | Stm*
Guard = Expr
SendSignalAction = Expr
AcceptEventAction = Expr

Stm = Expr;
Expr = Locvardecl| Assignment| CreateExpr| MethodCall

| BinaryExpr | UnaryExpr| LiteralExpr | FieldAccess
| Name| (Expr) | else

ExprList = ε | Expr[, Expr]*

Locvardecl = Identifier: Type | Identifier : Type := Expr
Assignment = Expr:= Expr
CreateExpr = create Identifier(ExprList)
MethodCall = Identifier(ExprList)

| Expr . Identifier (ExprList)
BinaryExpr = Expr Binop Expr
UnaryExpr = Unop Expr| Expr Unop
LiteralExpr = true | false | NumberLiteral| StringLiteral
FieldAccess = Expr. Identifier
Name = Identifier| Name. Identifier

Identifier = Legal Java identifier (JLS 3.8)
Type = Name
Binop = == | != | < | > | <= | >= | + | -- | * | / | %

| and | or | via
Unop = + | -- | ++ | -- | not | #
NumberLiteral =Legal Java integer literal (JLS 3.10.1)
StringLiteral =Legal Java string literal (JLS 3.10.5)

Fig. 13. The MEL language used in activity diagrams

Fig. 13, technically not an expression in Java) has a UML-
like syntax, similarly an assignment (:= instead of simply=).
Logical operations must be written asand, or, not instead of
&& , ||, !. A new prefix operation is# that denotes the length
of a list or the size of a set. Another new operation isvia that
may only be used on top-level in send and accept actions and
specifies the communication paths over which a message is
sent or received.

After parsing a MEL expression an annotated abstract
syntax tree in the form of a model is created in the same
manner as by a Java compiler. Annotating MEL requires a
context (the classes of the class diagram), and a current class
(the swim lane of the activity diagram), and must be done
in sequential order following the control flow of the activity
diagram to capture the scope of local variables. Identifier are
classified as either local variables, fields, classes etc. and for
every method call a suitable method declaration must exist
(either in the class diagram, or in the predefined types, or in
a sub activity diagram), and so on.

An AcceptEventAction must be used as an entry point
into a swim lane. It must contain a method call of the form
Classname(id1,id2,. . .), optionally followed by avia Identifier.
The Classnamemust name a message class, and the identifier

id1, id2, . . . are interpreted as local variables with the types
of the attributes and associations ofClassname. For example,
StartFrom(val,pd) means that aStartFrom message
is received.val becomes a local variable of typeNumber that
is initialized with thevalue attribute, andpd becomes a local
variable of typePurseData containing value.dataTo
(see the class diagram in Fig. 9). The scope of a local variable
ends at the border of a swim lane.

MEL has a do-what-I-mean flavor that is very convenient
for modeling. This can be considered as syntactical sugar. For
example, the static members of a class can be accessed without
a classname: The name resolution will interpretstate ==
IDLE (see Fig. 10) asstate == State.IDLE. Further-
more, MEL ignores object identities. In a communication
scenario with cryptographic protocols objects are almost never
identical, because messages treat objects as data. Therefore,
== can be used to compare objects, and is interpreted as an
equals test that compares attributes.

The annotated abstract syntax tree is essential for error
checking as well as for the correct generation of code (e.g.
== may become anequals method call). The idea is to
make the MEL language easy to use for a modeler, but still as
precise as a programming language. In the future, MEL can be
extended if it is useful, for example with OCL-like constructs
for collections. However, control flow should be modeled with
activity edges.

VIII. G ENERATION OFCODE

Smart cards are small, secure computers with a size of 1
× 1 centimeters and a thickness of less than 1 millimeter.
For example, the subscriber identity module (SIM) of mobile
phones is a smart card, the new electronic passports containa
contactless smart card, and smart cards are used as payment
cards, health cards, for access control. Java Card [26], [27] is
a version of Java [28] tailored to smart cards. More than 3.5
billion Java smart cards have been issued up to now [29].

Java Card has the same syntax and semantics as Java, but
the programming style is usually very different from ‘normal’
Java programs. The reason for this are the severe resource
restrictions (memory and speed) of smart cards. Java Card
has no Strings, no floating point arithmetic, and no Integers.
Furthermore, threads and garbage collection are not supported.
The missing garbage collection means that the programmer
must be very careful when he creates objects or arrays because
the allocated memory will never be freed.

The communication with a smart card is realized by us-
ing APDUs [30] (application protocol data units), essentially
sequences of bytes in a predefined format. The Java Card
API for the communication works with byte arrays. The
missing garbage collection and the communication API induce
a programming style that is usually not object-oriented. Typ-
ically, Java syntax is used to manipulate byte arrays directly
omitting object-oriented paradigms like modularization and
encapsulation. Examples can be found in [31] that contains
two different Mondex implementations based on byte arrays.

71

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

In our opinion, one challenge of model-driven code gen-
eration approaches is to reduce the gap between input and
target platforms. For this reason, we decided to make further
use of the classes defined in the platform-independent models
(and later transformed to platform-specific classes) instead of
transforming the object-oriented view of the application into
a program consisting of byte array representations for each
object resp. class. Thus, the purse class implementing the
protocol steps of the cryptographic protocol operates on the
data types defined in the platform-independent model by the
developer.

However, the communication is still based on byte arrays.
This means, to transmit data between a smart card and a
terminal the message objects as well as associated objects must
be converted into byte arrays and back again. The easiest way
to do so is to serialize each message object before sending it
and after receiving a byte array message to convert it into the
corresponding message object. This is done using an encoding
similar to a TLV encoding [32], [33]. This encoding is highly
application dependent because Java Card does not support
reflection. Therefore it is ideally suited for automatic code
generation.

Another challenge is the missing garbage collection. The
required objects cannot be created during the protocol runsbut
must be allocated once beforehand and reused. In our approach
we generate code for an object store that allocates the required
objects and manages them, i.e. if an object is needed it is
requested from the store. More details on the code generation
can be found in [25].

IX. GENERATION OF A FORMAL MODEL FOR

VERIFICATION

To prove the security of the system under development we
automatically generate a formal model based on algebraic
specifications and abstract state machines suitable for our
interactive theorem prover KIV. The static aspects of the
modeled application are defined by algebraic specifications
whereas the dynamic part of the system is translated into an
abstract state machine (ASM) [2]. The formal model uses the
application-dependent data types which are defined in the class
diagram, i.e. specifications exist for the messages, plain data
and so on. We use application-dependent types instead of a
generic type as used in [34] [12]. Since the formal model is
used for interactive verification, it is very helpful to havea
formal model that is close to the UML models.

To model the attacker we define the attacker knowledge
which contains all (relevant) data known by the attacker
during a protocol run, similar to [34] and [35]. The attacker
knowledge contains all data that is part of a message and
can be analyzed by the attacker. In the Mondex example this
includes the encrypted content of theReq, Val and Ack
messages. If the attacker does not know the key he cannot
decrypt the content, but with an insecure protocol he may
later learn the key, and then decrypt the data. All non-security
critical data such as the amount to load is not explicitly stored

in the attacker knowledge because this data is not secret and
assumed to be known by the attacker.

In the formal model the components of the systems are
defined as differentagentsthat communicate by exchanging
messages. The formal model captures the behavior of the real
world that is related to the application. In the real world,
many Mondex cards exist. To model the transfer of money,
at least two cards (agents in the formal model) are needed.
Indeed, it may be possible that there exists an attack on the
protocol that needs three or more cards, and does not work
with only two cards. In this case a formal model with only
two cards would be grossly flawed, because the proofs of the
security properties would succeed for a protocol that is in
reality insecure. Therefore the formal model has an arbitrary,
but finite, number of cards (more precisely: instances for each
agent type). To represent the communication we explicitly
model the possible connections between two agents. Since
more than one communication path between two agents may
exist, we additionally use ports to distinguish the paths. The
information about communication paths and ports is taken
from the deployment diagram. To model the sending and
receiving of messages in the formal model we use inboxes
(essentially queues) for each component and port. An inbox
is of type message list and contains all messages that were
received by an agent but not yet processed.

The dynamic part of the system is modeled as an abstract
state machine (ASM). The state of the ASM consists of the
states of all agents. In the Mondex example the state of the
purse consists of the values of the attributes and associations of
thePurse class. A step of the ASM applies one ASM rule and
transforms the state. A run of the ASM is a sequence of single
steps and creates a trace, i.e. a sequence of its states. A trace
models arbitrary protocol runs that could happen in the real
world. Since many different events occur in the real world (e.g.
the attacker may choose to interfere with a communication or
not) an adequate formal model is the set of all possible traces.
If the protocol is secure for all possible traces we assume that
the protocol is secure in the real world. Therefore the ASM
must allow the same choices that are possible in the real world,
i.e. the ASM must be indeterministic. We model the real world
by defining an ASM rule that nondeterministically chooses an
agent which – if possible – executes a protocol step. If for
example thePurse agent is chosen, it is checked whether
the inbox (of the connection to the terminal) is non-empty.
If so, the first message is taken and processed. If the inbox
is empty, another agent is chosen by the ASM. If the first
message is of typeStartFrom, the ASM rule describing the
processing of aStartFrom message is executed. This rule
is shown in listing 1. To generate the ASM rule, the activity
diagrams are used as input (see Fig. 10).

It is not the purpose of this paper to describe the syntax
and semantics of the ASM rules as they are used in the KIV
system. Therefore, we give just an informal overview of the
example rule. The content of theStartFrom message, i.e.
thevalue and thePurseData of theto purse, are stored in
local variables (lines 2 and 3 in listing 1). Next, it is checked

72

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

1 STARTFROM#
2 let value = inmsg.value,
3 dataTo = inmsg.dataTo in
4 if exlogcounter(ag) < LOGLENGTH
5 then
6 if state(ag) = IDLE
7 then
8 ...
9 pdAuth(ag) .from := data(ag);

10 pdAuth(ag) .to := dataTo;
11 pdAuth(ag) .value := value;
12 data(ag) .sequenceNo := data(ag)
13 .sequenceNo + 1;
14 state(ag) := EPR;
15
16 let encmess = mkMsgcontent(
17 STARTTO,pdAuth(ag)) in
18 let enc = encrypt(
19 sesskey(ag),encmess) in
20 outmsg(ag) := mkStartTo(enc);
21 else ABORT#
22 else ABORT#

Listing 1. ASM rule of processing a StartFrom message

if the exception log has free entries (line 4). The expression
exlogcounter(ag) is specific for the formal model.ag
is a variable for aPurse agent. As mentioned previously,
the formal model contains an arbitrary number ofPurse
agents, andag is the agent chosen in this ASM step. Agents
are modeled with dynamic functions in the formal model, i.e.
exlogcounter is a function that maps aPurse agent to
the value of itsexlogcounter attribute. It can be read as
ag.exlogcounter. Similar functions exist for all attributes
and associations ofPurse (pdAuth(ag), state(ag),
. . .). Then the ASM rule checks whether the state of the
card is set toIDLE (line 6) and performs some additional
checks. If all tests succeed, several attributes and associations
of the considered agentag, in this case the purse agent, are
updated (lines 9 - 14). An update means that the corresponding
dynamic function is modified (therefore the function is called
‘dynamic’). In a next step, a local variableencmess of type
Msgcontent is created with themsgflag STARTTO that
indicates aStartTo message and the current pay details (line
16). Then, this variable is encrypted by using a predefined
encrypt function (line 18). The dynamic functionoutmsg that
is generated automatically for each agent stores the message
that is going to be sent after termination of the ASM rule for
processing aStartFrom message. In our case, aStartTo
message is sent next and storedoutmsg (line 20). If one of
the checks made in the beginning fails, the protocol aborts (line
21 and 22). The abortion is defined in a separate ASM rule
called ABORT#. It can be seen that the structure of the ASM
rule follows the structure of the activity diagram, but usesa
different syntax, and has a semantics that is similar to MEL
(e.g. copy semantics), but not identical (dynamic functions and
inboxes are not part of MEL).

One relevant security property for Mondex is that the
sum of money stored on all Mondex cards plus the sum of
money stored in all (valid) exception logs does not increase
or decrease over the time. This implies that no money is lost
or created during a transfer of money, even in the presence of
an attacker. This property can be formulated as a theorem in
the formal model and proved with our theorem prover KIV.
Of course, since a card may be recharged, this holds only for
the use case ’Person-to-Person Payment’.
In previous work Haneberg [12] [36] developed a formal
model based on ASMs and verification techniques to prove the
security of an abstract model. This approach was successfully
used in several case studies. The formal model introduced
in this section is based on the one by Haneberg but uses
application-dependent data types instead of a generic data
format.

X. RELATED WORK

Basin et al. [37] [38] present a model-driven methodology
for developing secure systems which is tailored to the domain
of role-based access control. The aim is to model a component-
based system including its security requirements using UML
extension mechanisms. To support the modeling of security
aspects and of distributed systems several UML profiles are
defined. Furthermore, transformation functions are defined
that translate the modeled application into access control
infrastructures. The platforms for which infrastructuresare
generated, are Enterprise JavaBeans, Enterprise Servicesfor
.Net as well as Java Servlets.

Another approach that is related to ours is UMLSec devel-
oped by Jan J̈urjens [8]. As in our approach he proposes to
use UML for the development of security-critical applications.
UMLSec defines a UML profile which adds security-relevant
information to the UML diagrams. Security properties are
expressed by using stereotypes. Jürjens provides tool support
for verifying properties by linking the UML tool to a model
checker resp. automated theorem provers. By doing so, the
security properties mainly addressed are those that are ex-
pressed by the predefined stereotypes. The relevant formal
model reflects an abstracted view of parts of the entire system.
In our approach we concentrate on a transformation process
that generates a formal model of the entire application which
can be used for interactive verification of all system aspects.
Based on the generated formal model, we can express and
prove application dependent security properties such as ”No
money can be created within the Mondex application”. In
contrast to UMLSec we additionally focus on the generation
of running Java Card code as well as the proof that this code
is a refinement of the formal model.

In [39] Kuhlmann et al. model the Mondex system with
UML. Only static aspects of the application including method
signatures are defined by using UML class diagrams. To
specify the security properties that have to be valid the
approach uses the object constraint language (OCL). The
specified constraints are checked using the tool USE (UML-
based Specification Environment). USE validates a model by

73

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

testing it, i.e. it generates object diagrams as well as sequence
diagrams of possible protocol runs. The approach neither
considers the generation of code nor the use of formal methods
to prove the security of the modeled application. The models
are only validated by testing.

Alam et al. [40] present a model-driven security engineering
framework for B2B-workflows. They introduce a domain-
specific language for specifying access control policies which
is used in the context of UML models. Furthermore, a UML
profile for trust management is defined. After modeling a
B2B application with UML, it is then translated into low-level
web service artefacts using model-to-model and model-to-text
transformations.

Deubler et al. present a method to develop security-critical
service-based systems [41]. For modeling and verification the
tool AutoFocus [42] is used. AutoFocus is similar to UML and
facilitates the modeling of an application from different views.
Moreover, the tool is linkable to the model checker SMV. The
approach focuses on the specification of an application with
AutoFocus and, in a next step, the generation of SMV input
files and formal verification using SMV. The generation of
secure code is not part of the approach.

XI. CONCLUSION

We presented our SecureMDD approach for the modeling
of security-critical systems, especially smart card applications,
with UML. Using this model-driven method UML models
can be automatically translated into a formal model that
is used to verify the security of our models. Furthermore,
executable code can be generated automatically. In this paper
we focused on the modeling with UML, i.e. the use of our
UML profile which is tailored to security-critical applications
and our Model Extension Language that we use in activity
diagrams to describe cryptographic protocols. We propose a
modeling technique that is easy to learn and abstracts from
specifics regarding the formal specification or implementation.
One disadvantage of UML is that it is only semi-formally
defined. Since in our approach the UML models are translated
into abstract state machines, we give them a formal semantics.
We do not define a semantics for UML in general but only
consider those parts that are used in our approach and which
are interpreted in the context of security-critical applications.
Our technique has evolved over several case studies. E.g. we
have analyzed an application where a smart card is used as a
copycard for a library [35]. Another case study deals with an
application to buy cinema tickets using a mobile phone [12].

At the moment our approach is tailored to smart card
applications but we are going to extend it, e.g. to service-
oriented architectures, in the future. For example, the german
electronic health card which consists of smart card parts as
well as services that are realized as SOA, would fit into this
domain. Another focus of future research is to build in the
expression of security properties on the level of platform-
independent modeling, for example by supporting the use of
OCL expressions.

REFERENCES

[1] Mondex, MasterCard International Inc., URL: http://www.mondex.com.
[2] E. Börger and R. F. Stärk,Abstract State Machines—A Method for High-

Level System Design and Analysis. Springer-Verlag, 2003.
[3] Y. Gurevich, “Evolving algebras 1993: Lipari guide,” inSpecification

and Validation Methods, E. Börger, Ed. Oxford Univ. Press, 1995, pp.
9 – 36.

[4] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums, “Formal
system development with KIV,” inFundamental Approaches to Software
Engineering, T. Maibaum, Ed. Springer LNCS 1783, 2000.

[5] H. Grandy, K. Stenzel, and W. Reif, “A Refinement Method forJava
Programs,” in Formal Methods for Open Object-Based Distributed
Systems (FMOODS), ser. LNCS, vol. 4468. Springer, 2007.

[6] K. Stenzel, “A formally verified calculus for full Java Card,” in Algebraic
Methodology and Software Technology (AMAST) 2004, Proceedings,
C. Rattray, S. Maharaj, and C. Shankland, Eds. Springer LNCS3116,
2004.

[7] K. Stenzel, “Verification of Java Card Programs,” Ph.D. dissertation,
Universiẗat Augsburg, Fakultät für Angewandte Informatik,URL:
http://www.opus-bayern.de/uni-augsburg/volltexte/2005/122/,or
http://www.informatik.uni-augsburg.de/forschung/dissertations/, 2005.

[8] J. J̈urjens,Secure Systems Development with UML. Springer, 2005.
[9] N. Moebius, D. Haneberg, G. Schellhorn, and W. Reif, “A Modeling

Framework for the Development of Provably Secure E-Commerce
Applications,” in International Conference on Software Engineering
Advances (ICSEA) 2007. IEEE Press, 2007.

[10] M. Balser, W. Reif, G. Schellhorn, and K. Stenzel, “KIV 3.0 for Provably
Correct Systems,” inCurrent Trends in Applied Formal Methods, ser.
LNCS 1641, Boppard, Germany. Springer-Verlag, 1999.

[11] D. Haneberg, G. Schellhorn, H. Grandy, and W. Reif, “Verification of
Mondex Electronic Purses with KIV: From Transactions to a Security
Protocol,” Formal Aspects of Computing, vol. 20, no. 1, January 2008.

[12] H. Grandy, D. Haneberg, W. Reif, and K. Stenzel, “Developing Provably
Secure M-Commerce Applications,” inEmerging Trends in Information
and Communication Security (ETRICS), ser. LNCS, G. M̈uller, Ed., vol.
3995. Springer, 2006, pp. 115–129.

[13] “Eclipse Modeling Project,” http://www.eclipse.org/modeling/.
[14] “Open Architecture Ware,” http://www.openarchitectureware.org/.
[15] Object Management Group (OMG), “The unified modeling language,”

2006. [Online]. Available: www.uml.org/
[16] J. Woodcock, “First steps in the verified software grandchallenge,”IEEE

Computer, vol. 39, no. 10, pp. 57–64, 2006.
[17] C. Jones and J. Woodcock, Eds.,Formal Aspects of Computing.

Springer, January 2008, vol. 20 (1).
[18] G. Schellhorn, H. Grandy, D. Haneberg, N. Moebius, and W. Reif,

“A Systematic Verification Approach for Mondex Electronic Purses
using ASMs,” inDagstuhl Seminar on Rigorous Methods for Software
Construction and Analysis, U. G. J.-R. Abrial, Ed. Springer LNCS
5115, 2008.

[19] G. Schellhorn, H. Grandy, D. Haneberg, and W. Reif, “TheMondex
Challenge: Machine Checked Proofs for an Electronic Purse,” in Formal
Methods 2006, Proceedings, ser. LNCS, J. Misra, T. Nipkow, and
E. Sekerinski, Eds., vol. 4085. Springer, 2006, pp. 16–31.

[20] S. Stepney, D. Cooper, and J. Woodcock, “AN ELECTRONIC PURSE
Specification, Refinement, and Proof,” Oxford University Computing
Laboratory, Technical monograph PRG-126, July 2000.

[21] L. C. Paulson, “Inductive analysis of the internet protocol TLS,” Com-
puter Laboratory, University of Cambridge, Tech. Rep. 440, Dec. 1997.

[22] G. Lowe, “Breaking and Fixing the Needham-Schroeder Public-Key
Protocol Using FDR,” inTools and Algorithms for Construction and
Analysis of Systems, Second International Workshop (TACAS). Springer
LNCS 1055, 1996, pp. 147–166.

[23] D. Dolev and A. C. Yao, “On the security of public key protocols,”
in Proc. 22th IEEE Symposium on Foundations of Computer Science.
IEEE, 1981, pp. 350–357.

[24] Java Card 2.2 Specification, Sun Microsystems Inc., 2002,
http://java.sun.com/products/javacard/.

[25] N. Moebius, K. Stenzel, H. Grandy, and W. Reif, “Model-Driven Code
Generation for Secure Smart Card Applications,” in20th Australian
Software Engineering Conference. IEEE Press, 2009.

[26] Application Programming Interface Java Card Platform, Version 2.2.1,
Sun Microsystems Inc., URL: http://java.sun.com/products/javacard/.

74

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

[27] Sun Microsystems, “Java Card 3.0 Platform Specification,”
http://java.sun.com/javacard/3.0/specs.jsp, 2008.

[28] J. Gosling, B. Joy, G. Steele, and G. Bracha,The Java (tm) Language
Specification, Third Edition. Addison-Wesley, 2005.

[29] Sun Microsystems, “Press release,” April 22 2008. [Online]. Available:
http://www.sun.com/aboutsun/pr/2008-04/sunflash.20080422.1.xml

[30] ISO 7816-4 – Identification Cards – Integrated cicuit(s) cards with
contacts – Part 4: Organization, security and commands for interchange,
International Standards Organization, 1995.

[31] H. Grandy, N. Moebius, M. Bischof, D. Haneberg, G. Schell-
horn, K. Stenzel, and W. Reif, “The Mondex Case Study:
From Specifications to Code,” University of Augsburg, Technical
Report 2006-31, December 2006, uRL: http://www.informatik.uni-
augsburg.de/lehrstuehle/swt/se/publications/.

[32] H. Grandy, R. Bertossi, K. Stenzel, and W. Reif, “ASN1-light: A Verified
Message Encoding for Security Protocols,” inSoftware Engineering and
Formal Methods, SEFM. IEEE Press, 2007.

[33] O. Dubuisson,ASN.1 - Communication Between Heterogeneous Systems.
Elsevier-Morgan Kaufmann, 2000.

[34] L. C. Paulson, “The Inductive Approach to Verifying Cryptographic
Protocols,”Journal of Computer Security, vol. 6, pp. 85–128, 1998.

[35] D. Haneberg, H. Grandy, W. Reif, and G. Schellhorn, “Verifying Smart
Card Applications: An ASM Approach,” inInternational Conference on
integrated Formal Methods (iFM) 2007, ser. LNCS, vol. 4591. Springer,
2007.

[36] D. Haneberg, H. Grandy, W. Reif, and G. Schellhorn, “Verifying Security
Protocols: An ASM Approach,” in12th Int. Workshop on Abstract State
Machines, ASM 05, D. Beauquier, E. B̈orger, and A. Slissenko, Eds.
University Paris 12 – Val de Marne, Créteil, France, March 2005.

[37] D. Basin, J. Doser, and T. Lodderstedt, “Model Driven Security: From
UML Models to Access Control Infrastructures,”ACM Transactions on
Software Engineering and Methodology, pp. 39–91, 2006.

[38] T. Lodderstedt, D. A. Basin, and J. Doser, “SecureUML: AUML-Based
Modeling Language for Model-Driven Security,” inUML 2002 - The
Unified Modeling Language, 5th International Conference, 2002, pp.
426–441.

[39] M. Kuhlmann and M. Gogolla, “Modeling and validating Mondex
scenarios described in UML and OCL with USE,”Formal Aspects of
Computing, vol. 20, no. 1, pp. 79–100, January 2008.

[40] M. Alam, R. Breu, and M. Hafner, “Model-Driven Security Engineering
for Trust Management in SECTET,”JSW, vol. 2, no. 1, pp. 47–59, 2007.

[41] M. Deubler, J. Gr̈unbauer, J. J̈urjens, and G. Wimmel, “Sound devel-
opment of secure service-based systems,” inProceedings of the 2nd
International Conference on Service Oriented Computing. ACM, 2004,
pp. 115–124.

[42] M. Broy, F. Huber, and B. Schätz, “AutoFocus - Ein Werkzeugprototyp
zur Entwicklung eingebetteter Systeme,”Informatik, Forschung und
Entwicklung, vol. 14, no. 3, pp. 121–134, 1999.

APPENDIX

75

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Fig. 14. Mondex Activity Diagram for Transferring Money, Part 1

76

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Fig. 15. Mondex Activity Diagram for Transferring Money, Part 2

77

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Fig. 16. Mondex Activity Diagram for Transferring Money, Part 3

78

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Fig. 17. Mondex Activity Diagram for Subactivity Abort()

Fig. 18. Mondex Activity Diagram for Subactivity CheckValueSeqnoTo(value : Number, seqno : Number): Boolean

79

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

<<structured>>

CheckValueSeqnoFrom

seqno : Number

result : Boolean

result := true;

result :
Boolean;

value : Number

 result := false;

result := false;

p : Purse

 [seqno >= 0 and value > 0]

 [balance - value >= 0]

Fig. 19. Mondex Activity Diagram for Subactivity CheckValueSeqnoFrom(value : Number, seqno : Number): Boolean

80

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Preliminary 2009
Conference Schedule

http://www.iaria.org/conferences.html

NetWare 2009: June 14-19, 2009 - Athens, Greece

 SENSORCOMM 2009, The Third International Conference on Sensor Technologies and Applications

 SECURWARE 2009, The Third International Conference on Emerging Security Information, Systems and

Technologies

 MESH 2009, The Second International Conference on Advances in Mesh Networks

 AFIN 2009, The First International Conference on Advances in Future Internet

 DEPEND 2009, The Second International Conference on Dependability

NexComm 2009: July 19-24, 2009 - Colmar, France

 CTRQ 2009, The Second International Conference on Communication Theory, Reliability, and Quality of Service

 ICDT 2009, The Fourth International Conference on Digital Telecommunications

 SPACOMM 2009, The First International Conference on Advances in Satellite and Space Communications

 MMEDIA 2009, The First International Conferences on Advances in Multimedia

InfoWare 2009: August 25-31, 2009 – Cannes, French Riviera, France

 ICCGI 2009, The Fourth International Multi-Conference on Computing in the Global Information Technology

 ICWMC 2009, The Fifth International Conference on Wireless and Mobile Communications

 INTERNET 2009, The First International Conference on Evolving Internet

SoftNet 2009: September 20-25, 2009 - Porto, Portugal

 ICSEA 2009, The Fourth International Conference on Software Engineering Advances

o SEDES 2009: Simpósio para Estudantes de Doutoramento em Engenharia de Software

 ICSNC 2009, The Fourth International Conference on Systems and Networks Communications

 CENTRIC 2009, The Second International Conference on Advances in Human-oriented and Personalized

Mechanisms, Technologies, and Services

 VALID 2009, The First International Conference on Advances in System Testing and Validation Lifecycle

 SIMUL 2009, The First International Conference on Advances in System Simulation

NexTech 2009: October 11-16, 2009 - Sliema, Malta

 UBICOMM 2009, The Third International Conference on Mobile Ubiquitous Computing, Systems, Services and

Technologies

 ADVCOMP 2009, The Third International Conference on Advanced Engineering Computing and Applications in

Sciences

 CENICS 2009, The Second International Conference on Advances in Circuits, Electronics and Micro-electronics

 AP2PS 2009, The First International Conference on Advances in P2P Systems

 EMERGING 2009, The First International Conference on Emerging Network Intelligence

 SEMAPRO 2009, The Third International Conference on Advances in Semantic Processing

