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Abstract—The Transmission Control Protocol/Internet Proto-
col (TCP/IP) based firewall is a notorious non-evolvable system.
Changes to the firewall often result in unforeseen side effects,
resulting in the unavailability of network resources. The root
cause of these issues lies in the order sensitivity of the rule base
and hidden relationships between rules. It is not only essential
to define the correct rule. The rule must be placed at the right
location in the rule base. As the rule base becomes more extensive,
the problem increases. According to Normalized Systems, this is
a Combinatorial Effect. In previous research, an artifact has been
proposed to build a rule base from scratch in such a way that
the rules will be disjoint from each other. Having disjoint rules
is the necessary condition to eliminate the order sensitivity and
thus the evolvability issues. In this paper, an algorithm, based
on the Iterated Local Search metaheuristic, will be presented
that will disentangle the service component in an existing rule
base into disjoint service definitions. Such disentanglement is a
necessary condition to transform a non-disjoint rule base into a
disjoint rule base. The math behind the algorithm is presented,
a demonstration using multiple firewall exports from a real
operational environment is provided and the implications of the
artifact are discussed.

Index Terms—Firewall; Rule Base; Evolvability; Metaheuristic;
Iterated Local Search.

I. INTRODUCTION

This paper is an extended version of [1], and applies the
researches discussed in [1] to operational firewall exports
provided by Engie (an utilities multinational at which one of
the author works). This paper also provides additional insights
in the implications of using the research in an operational
environment, as discussed in the PhD dissertation of one of
the authors [2].

The TCP/IP based firewall has been and will continue
to be an essential network security component in protecting
network-connected resources from unwanted traffic. The in-
creasing size of corporate networks and connectivity needs has
resulted in firewall rule bases increasing considerably. Large
rule bases have a nasty side effect. It becomes increasingly
difficult to add the right rule at the correct location in the
firewall. Anomalies start appearing in the rule base, resulting
in the erosion of the firewall’s security policy or incorrect

functioning. Making changes to the firewall rule base becomes
more complex as the size of the system grows. An observation
shared by Forrester [3] and the firewall security industry [4]
[5]. A more detailed literature review on the topic can be found
in [6].

Normalized Systems (NS) theory [7] defines a Combinato-
rial Effect (CE) as the effect that occurs when the impact of
a change is proportional to the nature of the change and the
system’s size. According to NS theory, a system that suffers
from CE is considered unstable under change or non evolvable.
A firewall suffers from CE. The evolvability issues are the root
cause of the growing complexity of the firewall as time goes
by.

The order sensitivity plays a vital role in the evolvability
issues of the rule base. The necessary condition to remove
the order sensitivity is known, being non-overlapping or dis-
joint rules. However, firewall rule bases do not enforce that
condition, leaving the door open for misconfiguration. While
previous work investigates the causes of anomalies [8] [9],
detecting anomalies [10] [11] [12] and correcting anomalies
at the time of entering new rules in the rule base [10], to the
best of our knowledge and efforts, no work was found that
tries to construct a rule base with ex-ante proven evolvability
(= free of CE). While previous methods are reactive, this work
proposes a proactive approach.

Issues with evolvability of the firewall rule base induce
business risks. The first is the risk of technical communication
paths not being available to execute business activities prop-
erly. The second is that flaws in the rule base may result in
security issues, making the business vulnerable for malicious
hacks resulting in business activities’ impediment.

In this paper, we propose an artifact, an algorithm, that
aims at converting an existing non-evolvable rule base into
an evolvable rule base. Design Science [13] [14] is suited for
research that wants to improve things through artifacts (tools,
methods, algorithms, etc.). The Design Science Framework
(see Figure 1) defines a relevance cycle (solve a real and
relevant problem) and rigor cycle (grounded approach, usage
of existing knowledge and methodologies).
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Fig. 1. The Design Science Framework - from [13] .

The Design Science Process (see Figure 2) guides the
artifact creation process according to the relevance and rigor
cycle. What follows is structured according to the Design
Science process.

Fig. 2. The Design Science Process - from [14].

Section II introduces the basic concepts of firewalls, firewall
rule relationships, Normalized Systems, and the evolvability
issues of the firewall. In Section III, we will discuss the
requirements for an algorithm that will transform a non-
evolvable rule base, into an evolvable rule base. Section IV
will build the different components of the proposed algorithm
using the Iterated Local Search metaheuristic. In Section V,
the algorithm will be demonstrated with real operational data.
In Section VI, we evaluate and discuss our findings and we
wrap-up with a conclusion in Section VII.

II. PROBLEM DESCRIPTION

The first part of this section will explain how a firewall
works and the concept of firewall group objects. The second
part will discuss the relationships between firewall rules and
introduces the Normalized Systems theory.

Fig. 3. Firewall concepts.

A. Firewall basics

An Internet Protocol Version 4 (IP4) TCP/IP based firewall,
located in the network path between resources, can filter traffic
between the resources, based on the Layer 3 (IP address) and
Layer 4 (TCP/UDP ports) properties of those resources [15].
UDP stands for User Datagram Protocol and is, next to TCP, a
post based communication protocol at the 4th level of the Open
Systems Interconnection Model (OSI Model) [16]. Filtering
happens by making use of rules. A rule is a tuple containing
the following elements: <Source IP, Destination IP, Protocol,
Destination Port, Action>. IP stands for IP address and is a
32-bit number that uniquely identifies a networked resource on
a TCP/IP based network. The protocol can be TCP or UDP.
Port is a 16-bit number (0 - 65.535) representing the TCP or
UDP port on which a service is listening on the 4th layer of
the OSI-stack.

When a firewall sees traffic coming from a resource with IP
address =<Source IP>, going to resource =<Destination IP>,
addressing a service listening on Port = <Destination port>,
using Protocol = <Protocol>, the firewall will look for the
first rule in the rule base that matches Source IP, Destination
IP, Protocol and Destination Port, and will perform an action =
<Action>, as described in the matched rule. The action can be
“Allow” or “Deny”. See Figure 3 for a graphical representation
of the explained concepts. A firewall rule base is a collection
of order-sensitive rules. The firewall starts at the top of the
rule base until it encounters the first rule that matches the
traffic. In a firewall rule, <Source IP>, <Destination IP>,
<Destination Port> and <Protocol> can be one value or a
range of values. In the remainder of this paper, protocol and
port are grouped together in service (for example, TCP port
58 or UDP port 58 are 2 different services).

The firewalls discussed in this work are stateful, meaning
that filtering happens on inbound traffic (towards the destina-
tion), but that the same firewall does not require rules to allow
the response from the destination to the source. The firewall
keeps track of the allowed inbound traffic and by default allows
the response toward the source. In a stateless firewall this is
not the case. A more elaborate discussion about the impact of
inbound and outbound traffic on the evolvability of the firewall
can be found in [2].
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B. Firewall group objects

Rules containing IP addresses for source/destination and
port numbers, are difficult to interpret by humans. Modern
firewalls allow the usage of firewall objects, called groups,
to give a logical name to a source, a destination, or a port,
which is more human-friendly. Groups are populated with IP
addresses or ports and can be nested. The groups are used in
the definition of the rules. Using groups should improve the
manageability of the firewall. See Figure 4 for an example.

Fig. 4. Firewall concepts, including groups.

C. Firewall rule relationships

Based on [11], the relationships between rules and rule
components are defined as follows:

• Field: A field in a rule is defined as a source, destination
or service. A field is a set of values, with a minimum of
size one.
Example: The source field of a rule contains 3 IP
addresses/values - (10.10.10.1, 10.10.10.2, 10.10.10.3)

• Equal Fields: Two corresponding fields of two rules are
equal if the set of values of the fields are the same.
Example: The source field of a rule R1 and source field
in rule R2 contain the same 3 IP addresses - (10.10.10.1,
10.10.10.2, 10.10.10.3)

• Inclusive Fields: Two corresponding fields of two rules
are inclusive if the set of values of the field of the first
rule are a subset of, but not equal to, the second rule
field’s set of values.
Example: The source field of R1 contains (10.10.10.1,
10.10.10.2) and the source field of R2 contains
(10.10.10.1, 10.10.10.2, 10.10.10.3). The IPs (10.10.10.1,
10.10.10.2) are a subset of (10.10.10.1, 10.10.10.2,
10.10.10.3). The source field of R1 is inclusive with
regards to the source field of R2.

• Correlated Fields: Two corresponding fields of two rules
are correlated if there are some values, but not all, of the
field of the first rules that are equal to some values, but
not all, of the field of the second rule. The intersection
between the sets of values of the fields is not empty, but
the fields are not equal or inclusive either.

Example: The source field of R1 contains (10.10.10.1,
10.10.10.2, 10.10.10.3) and the source field of R2 con-
tains (10.10.10.2, 20.20.20.20, 30.30.30.30). The two
source fields are correlated as they intersect with the IP
10.10.10.2.

• Distinct Fields: Two corresponding fields in two rule
are distinct if they are not equal, not inclusive or not
correlated. The intersection between the sets of values of
the fields is empty.
Example: Source field (10.10.10.10) of rule R1 and
source field (10.10.10.100) of rule R2 are distinct.

• Matching Fields: Two corresponding fields in two rules
match if they are equal or inclusive.
Example: Source field of R1 = (10.10.10.1, 10.10.10.10)
and the source field of R2 = (10.10.10.1, 10.10.10.10,
10.10.10.30), are matching.

• Exactly Matching Rules: Rules R1 and R2 are exactly
matched if every field in R1 is equal to the corresponding
field in R2.
Example: Rule R1: (source = (10.10.10.10); destina-
tion = (20.20.20.20); service = (TPC 100); action =
allow) and R2: (source = (10.10.10.10); destination =
(20.20.20.20); service = (TPC 100); action = deny), are
exactly matching rules.

• Completely Disjoint Rules: Rules R1 and R2 are com-
pletely disjoint if every field in R1 and R2 is distinct.
Example: Consider rule R1: (source = (10.10.10.10);
destination = (20.20.20.20); service = (TPC 100); ac-
tion = allow) and rule R2: (source = (30.30.30.30,
30.30.30.21); destination = (40.40.40.40, 40.40.40.41);
service = (TPC 200,201); action = deny). Both rules are
completely disjoint.

• Partially Disjoint Rules or Partially Matching Rules:
Rules R1 and R2 are partially disjoint (or partially
matched) if there is at least one field in R1 and R2 that
is distinct. The other fields can be equal, inclusive or
correlated.
Example: Consider rule R1: (source = (10.10.10.10);
destination = (20.20.20.20); service = (TPC 100); action
= allow) and rule R2: (source = (10.10.10.10); des-
tination = (40.40.40.40, 40.40.40.41); service = (TPC
100,201); action = deny). R1 and R2 are partially
disjoint, as destination is a distinct field.

• Inclusively Matching Rules: Rules R1 and R2 are
inclusively matched if there is at least one field that is
inclusive, and the remaining fields are either inclusive or
equal.
Example: Consider Rule R1: (source = (10.10.10.10);
destination = (20.20.20.20); service = (TPC 100); action
= allow) and R2: (source = (10.10.10.10, 10.10.10.11);
destination = (20.20.20.20, 20.20.20.21); service = (TPC
100); action = deny). Then rule R1 inclusively matches
rule R2.

• Correlated Rules: Rules R1 and R2 are correlated there
is at least one field that is correlated, while the remaining
fields are either equal or inclusive.
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Example: Consider rule R1: source = (10.10.10.10,
10.10.10.11); destination = (20.20.20.20, 40.40.40.41 );
service = (TPC 100); action = allow) and rule R2:
(source = (10.10.10.10); destination = (40.40.40.40,
40.40.40.41); service = (TPC 100,201); action = deny).
Rules R1 and R2 are correlated.

Figure 5 represents the different relations in a graphical
manner. Exactly matching, inclusively matching and correlated
rules can result in the following firewall anomalies [10]:

• Shadowing Anomaly: A rule Rx is shadowed by another
rule Ry if Ry precedes Rx in the policy, and Ry can
match all the packets matched by Rx. The result is that
Rx is never activated.

• Correlation Anomaly: Two rules Rx and Ry can cause a
correlation anomaly if, the rules Rx and Ry are correlated
and if Rx and Ry have different filtering actions.

• Redundancy Anomaly: A redundant rule Rx performs the
same action on the same packets as another rule Ry so
that if Rx is removed the security policy will not be
affected.

A fully consistent rule base should only contain disjoint
(completely or partial) rules. In that case, the order of the
rules in the rule base is of no importance, and the anomalies
described above will not occur [8] [9] [10] . However, due
to several reasons such as unclear requirements, a faulty
change management process, lack of organization, manual
interventions, and system complexity [13], the rule base will
include correlated, exactly matching, and inclusively matching
rules, and thus resulting in evolvability issues.

Fig. 5. Possible relationships between rules (from [11]).

D. Normalized Systems concepts

Normalized Systems (NS) theory [7] [17] originates from
the field of software development. NS theory takes the con-
cept of system theoretic stability from the domain of classic
engineering to determine the necessary conditions a modular
structure of a system must adhere to in order for the system to
exhibit stability under change. Stability is defined as Bounded
Input results in Bounded Output (BIBO). Transferring this
concept to software design, one can consider bounded input
as a certain amount of functional changes to the software
and the bounded output as the number of effective software

changes. If the amount of effective software changes is not
only proportional to the amount of functional changes but also
the size of the existing software system, then NS theory states
that the system exhibits a CE and is considered unstable under
change.

NS theory proves that, in order to eliminate CE, the software
system must have a certain modular structure, were each
module respects four design rules. Those rules are:

• Separation of Concern (SoC): a module should only
address one concern or change driver.

• Separation of State (SoS): a state should separate the use
of a module by another module during its operation.

• Action Version Transparency (AVT): a module, perform-
ing an action should be changeable without impacting
modules calling this action.

• Data Version Transparency (DVT): a module performing
a certain action on a data structure, should be able to
continue doing this action, even is the data structures has
undergone change (add/remove attributes).

NS theory can be used to study evolvability in any system,
which can be seen as a modular system and derive design
criteria for the evolvability of such a system [18] [19].

III. REQUIREMENTS FOR THE SOLUTION

In [1] [2] [6] the necessary conditions for an evolvable
firewall rule base are discussed. All the rules in the rule base
must be disjoint or partially disjoint from each other. In [6]
an artifact, a method, is proposed to create disjoint rules.
Following the method will result in a firewall rule base that is
free from CE for ADD and REMOVE changes.

For a given network N, containing Cj sources and Hj
destinations, offering 217 services (protocol/port) (= the max
amount of possible UDP and TCP ports according to the
TCP/IP V4 standard), and having a firewall F between the
sources and the destinations, it can be shown (see [6]) that
fmax is the number of possible rules (including both ”allow”
and ”deny” rules) that can be defined on the firewall F (the
solution space):

fmax = 2.

(
Hj∑
a=1

(
Cj

a

))
.

(
Hj∑
a=1

(
Hj

a

))
.

 217∑
k=1

(
217

k

)
(1)

where Cj and Hj are function of N: Cj = fc(N) and Hj =
fh(N)

Out of this design space, the amount of firewall rules that
will exhibit ex-ante proven evolvability are the explicit ”allow”
rules that are disjoint, and it equal to:

fdisjoint = Hj.2
17 (2)

where Hj is the number of hosts connected to the network. Hj
= fh(N) and 217 the max amount of services available on a
host.

Applying the artifact drastically reduced the solution space.
The artifact describes the green-field situation; building a rule
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base from scratch. The luxury of a green-field is often not
present. We require a solution that can convert an existing rule
base, into a rule rule base that only contains disjoint rules. Of
course, the original filtering strategy expressed in the rule base
must stay the same. From [1] [2] [6] we know that we require
disjoint service definitions. If we can disentangle the service
definitions, and adjust the rules accordingly, we have our basic
building block for a disjoint rule base. For each disjoint service
definition, we need to create as many destination groups as
there are host offering that service (lookup in rule base),
and for each host-service combination, we require one source
group definition. All components are then present to expand a
non-evolvable rule base into a normalized evolvable rule base.
Figure 6 visualizes what we want the solution to do.

Fig. 6. Algorithm objective.

IV. ARTIFACT DESIGN

In this section we will discuss a different artifact, the brown-
field artifact, that will convert a non evolvable rule base into an
evolvable rule base, by disentangling the service definitions.
The different components that comprise the algorithm will be
discussed in dept. We begin by rationalizing the choice for
Iterated Local Search (ILS) as metaheuristic [20] [21] [22].
We will discuss the nature of the initial solution, the set of
feasible solutions, and the objective function associated with
a solution. We continue by defining the move type, move
strategy, perturbation and stop condition of the Iterated Local
Search. The final part of this section provides a high level
algorithm that represents the brown-field artifact.

A. Metaheuristic Selection

The objective is to disentangle/reshuffle the service defini-
tions into a set of new service definitions that are disjoint but
maximally large. The simplest solution is to create one service
definition per port. However, some ports belong together to
deliver a service. This filtering logic is embedded in the rule
base and service definitions. It must be preserved.

Service definitions containing ports that appear in multiple
service definitions must be split into non-overlapping service

definitions. The result should be that the degree of overlap
(or disjointness) of all service definitions decreases as more
service definitions are split.

Let us say that a user measures the degree of disjointness
of the entirety of the service definitions (pre-change and post-
change) and then observes a post-change improvement in the
degree of disjointness. It would be correct to conclude that the
change represents an improvement to the previous version.

A Local Search (LS) heuristic is a suitable method for
organizing such gradual improvement processes. To avoid
getting stuck in a local optimum (see further), the Local Search
will be upgraded to an Iterated Local Search. The Iteration
component should result in avoiding becoming stuck in a local
optimum where we can no longer perform splits and improve
the disjointness. The Iteration component should perform a
special kind of split called a ”perturbation” that will allow the
continuation of the search for improvement.

B. Initial Solution and Neighborhood

The initial solution is the rule base containing all of the
service definitions. It is the rule base with all the service defi-
nitions. The set of all service definitions is our neighborhood.
We will have to pick a service definition, confirm whether or
not it is disjoint and, if not, split it and see how this affects
the solution - that is whether or not disjointness has improved.
The solution space (SP) for the service definitions consists of
all possible combinations of ports. If the number of distinct
ports in the service groups equals P, then the SP is:

SP =

P∑
k=1

(
P
k

)
(3)

P can be max 217. We are looking to find a new solution that
is part of the solution space, in which all service definitions
are disjoint yet grouped within groups of maximum size.

C. Objective Function

To know whether or not the splitting of a service definition
results in improving the solution, we need a mechanism to
express the degree of disjointness of a service definition and
of the total rule base.

Let p represent a service port.

Let S be a set of ports, representing a service definition.
S = { p1...pnS}
where| S | = nS = number of ports in the service definition.

Let σ be the set of all service definitions Si used in
the firewall rule base.
σ = {S1...Snσ}
where| σ | = nσ= number of service definitions

Let PF(px)σ be the port frequency of port px in σ, as
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the number of times px is used in services of σ.

PF(px)σ =

nσ∑
i=1

| Si ∩ px | (4)

We define the Disjointness Index DI(Sx)σ , of a service
definition Sx, in σ as the sum of the port frequencies PF(px)σ
of the ports px of Sx, divided by the number of ports in Sx.

DI(Sx)σ =

∑nx
i=1 PF (px)σ

nx
(5)

where nx = | Sx |= number of ports in Sx.

A disjoint service is a service whereby each port p appears
in only one service definition. The DI of a disjoint service will
have a value of 1 and a value greater then 1 if the service is
not disjoint.

We define the Objective Function OFσ , in σ, as the sum
of all DI(Sx)σ and of all service definitions in σ.

OFσ =

nσ∑
i=1

DI(Si)σ (6)

with nσ the number of service definitions in the solution.

We define an Optimal Solution as a solution where OFσ
equals the number of service definitions, as this means that
all DI of all service definitions are equal to 1.

OFσ =| σ | (7)

An Optimal Solution is not necessarily a Global Optimum
as making service definitions of one port would also yield an
objective function value that is equal to the total number of
service definitions.

D. Feasible Solutions

Whatever kind of splits we will be performing, the original
filtering logic of the rule base must be maintained. When a
service is split, all rules that contain this service must to be
modified. The original service must be replaced by the result
of the split. As we want a rule to contain only one service
definition, it may be required to split the rules containing the
split result.
Example: R1 contains service Sx. Sx is split into Sx1 and Sx2.
To reflect this, we replace Sx with Sx1 and Sx2 in rule R1.
However, a rule must only contain one service. R1 needs to be
split into R1.1 and R1.2, where R1.1 is a copy of R1 but with
Sx being replaced by Sx1, and R1.2 is a copy of R1 but with
Sx being replaced by Sx2. Both rules are put in consecutive
locations in the rule base.

E. Move Type

Before we decide on the move type, we must first investigate
the impact that splitting of service definitions has on the
objective function. Based on this analysis, a selection of type
of split (move type) will be made.

1) The Impact of Splitting Service Definitions on the OF:
A service definition can:

• be a subset of existing service definitions.
• be the superset of existing service definitions.
• be partially overlapped with other service definitions.
• be a combination of the above.

Let Sca be the candidate service we will split.{
Sca = {p1...pnca}
nca = | Sca | = number of ports in the Sca

Let Sco be an arbitrary set of ports that are part of Sca, making
up the new service Sco, that is to be extracted from Sca.

Sco = {pj...pj+nco}
nco = | Sco | = number of ports in the Sco.
Sca∩Sco = {pj...pj+nco}
|Sca∩Sco|=nco

Let S’ca be the new service comprised of ports that are part of
Sca but not of Sco. S’ca is what is left of Sca, after splitting-up
or carving-out Sco{

S’ca = Sca\Sco = {p1...pj-1, pj+nco+1,...pnca}
| S’ca | = nca - nco

Let σSca
be the set of services that contains ports that are

also part of service Sca.
σSca

= {SV1...SVn}
∀SVx x=1→n |
* |Sca∩SVx|≠ ∅
* | SVx | = Vnx
* |Sca∩SVx | = qx = the amount of port overlap between Sca and SVx

See Figure 7 for a visual representation of these definitions.

When the split or carve-out of Sco from Sca is performed, the
port frequencies, the DI and the OF change, depending on
the effect of the split. We shall now investigate under which
conditions the split will improve the objective function.

Let σB be the set of services before the split and σA

be the set of services after the split. We want to know which
conditions will improve the Objective Function, or

∆OF = OFσB
− OFσA

> 0

∆OF > 0 means OF improved (=lowered).
∆OF < 0 means OF deteriorated (=increased).

Sco is a random subgroup of Sca, meaning not necessarily
part of σB . Subsequent to a split Sca becomes S’ca. Both S’ca
and Sco are part of σA.

There are three possible cases:
• S’ca and Sco also exist in σB . The split results in two ex-

isting services. We merge them into the existing services
— the split results in a reduction of the total number of
services with 1.
| σA | - | σB | = -1
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Fig. 7. Split example

• S’ca or Sco exists in σB . The split results in a new service
and an existing service. The existing service merges and
the split results in an equal number of services.
| σA | - | σB | = 0

• S’ca and Sco do not exist in σB . The split results in two
new services and the split results in an increase of the
total number of services with 1.
| σA | - | σB | = +1

We shall now investigate what kind of change in Objective
Function value we can expect, based on the three following
cases.

Case 1: | σB | - | σA | = -1
S’ca and Sco are elements of σA and σB .
Sca only exists in σB .
Sca = {p1...pnca}
As Sca is not part of σA, the port frequencies of all ports of
Sca decreased by 1 in σA.

∀p ∈ Sca | (PF(p)σA
= PF(p)σB

− 1 (8)

See Figure 8 for a graphical representation.

As the port frequencies of all ports that are part of
Sca decrease, the DI of all groups that contain one or more
port of Sca are also impacted. These are all SVi service groups.

When calculating ∆OF, only the impacted service groups
must be taken into account.

∆OF = OFσB
− OFσA

=⇒ ∆OF = [DI(Sca)σB
+ DI(S’ca)σB

+ DI(Sco)σB
+∑n

i=1 DI(SV i)σB
] − [DI(S’ca)σA

+ DI(Sco)σA
+∑n

i=1 DI(SV i)σA
]

=⇒ ∆OF = DI(Sca)σB
+ [DI(S’ca)σB

− DI(S’ca)σA
] +

[DI(Sco)σB
− DI(Sco)σA

] + [
∑n

i=1 DI(SV i)σB
−∑n

i=1 DI(SV i)σA
]

Taking (5) and (8) into account:

(a) DI(S’ca)σA
=

∑nca−nco
i=1 PF(pi)σA

nca−nco

=⇒ DI(S’ca)σA
=
∑nca−nco

i=1 PF(pi)σB
−(nca−nco)

nca−nco

=⇒ DI(S’ca)σA
= DI(S’ca)σB

− 1

=⇒ DI(S’ca)σB
− DI(S’ca)σA

= 1

(b) DI(Sco)σA
=

∑nco
i=1 PF(pi)σA

nco

=⇒ DI(Sco)σA
=
∑nco

i=1 PF(pi)σB
−(nco)

nco = DI(Sco)σB
− 1

=⇒ DI(Sco)σB
− DI(Sco)σA

= 1

(c)
∑n

i=1 DI(SV i)σB
−
∑n

i=1 DI(SV i)σA
=∑n

i=1

∑nvi
j=1 PF(pj)σB

nvi −
∑n

i=1

∑nvi
j=1 PF(pj)σA

nvi =∑n
i=1

∑nvi
j=1 PF(pj)σB

nvi −
∑n

i=1

∑nvi
j=1 PF(pj)σB

−qvi

nvi

=⇒
∑n

i=1 DI(SV i)σB
−
∑n

i=1 DI(SV i)σA
=
∑n

i=1
qvi
nvi

Putting (a), (b) and (c) into ∆OF

∆OF = DI(Sca)σB
+ 2 +

∑n
i=1

qvi
nvi

Conclusion: If | σB | - | σA | = -1, then ∆OF is
always > 0 (all terms are positive), and the Objective
Function always improves.

Case 2: | σB | - | σA | = 0
S’ca or Sco are part of σA or σB (exclusive OR).
Assume Sco already exists in σB (carve-out of an existing
group)
Sca does not exist in σA, but S’ca does exist in σA. The port
frequencies of all ports of S’ca do not change.

∀p ∈ Sca \ Sco | PF(p)σA
= PF(p)σB

(9)

Sco already exists in σB . The group cancels out in σB and the
port frequencies of all ports in Sco decrease.

∀p ∈ Sco | PF(p)σA
= PF(p)σB

− 1 (10)
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Fig. 8. Split case 1

See Figure 9 for a graphical representation.

As the port frequencies decrease, the DI of all groups
that contain one or more port of Sco are also impacted. These
are all SVi service groups.

When calculating ∆OF, only impacted service groups
must be taken into account.

∆OF = [DI(Sca)σB
+ DI(Sco)σB

+
∑n

i=1 DI(SV i)σB
] −

[DI(Sca)σA
+ DI(Sco)σA

+
∑n

i=1 DI(SV i)σA
]

=⇒ ∆OF = [DI(Sca)σB
− DI(S’ca)σA

] + [DI(Sco)σB
−

DI(Sco)σA
] + [

∑n
i=1 DI(SV i)σB

−
∑n

i=1 DI(SV i)σA
]

Taking (5) and (10) into account and using the same
type of calculations as in Case 1:

(d) DI(Sca)σB
− DI(S’ca)σA

= DI(Sca)σB
− DI(S’ca)σB

(e) DI(Sco)σB
− DI(Sco)σA

= 1

(f) DI(S’ca)σA
+ DI(Sco)σA

+
∑n

i=1 DI(SV i)σA
=
∑n

i=1
qvi
nvi

(see case 1)

Putting (d), (e) and (f) into ∆OF

Fig. 9. Split case 2

∆OF = DI(Sca)σB
− DI(S’ca)σB

+ 1 +
∑n

i=1
qvi
nvi > 0

The same result is obtained when the assumption is
made that S’ca already exits in σB

Conclusion: If | σB | - | σA | = 0, then ∆OF (due
to −DI(S’ca)σB

) can be < 0, and the Objective Function
can thus deteriorate

Case 3: | σB | - | σA | = 1
Sca splits into 2 mutually-exclusive new services (S’ca and
Sco). Neither S’ca nor Sco are part of σB .
S’ca and Sco are both part of σA.
The port frequencies PF of any p do not change. No other
services are impacted.

∀p ∈ Sca | PF(p)σA
= PF(p)σB

(11)

The only factors playing a role in the calculation of ∆OF are
DI(Sca)σB

,DI(S’ca)σA
, and DI(Sco)σA

∆OF= DI(Sca)σB
− DI(S’ca)σA

− DI(Sco)σA

∆OF= DI(Sca)σB
− DI(S’ca)σB

− DI(Sco)σB
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Conclusion: If | σB | - | σA | = 1, then ∆OF can
be < 0 (due to −DI(S’ca)σB

− DI(Sco)σB
), and the

Objective Function can thus deteriorate).

See Figure 7 for a visual representation of this case.

Only case 1, | σB | - | σA | = -1, provides full certainty of
how OF will evolve. To gain more certainly, we shall also
investigate the relationship between the DI of service Sca and
the DIs of sub services S’ca and Sco.

Relationship between DIs

(1) DI(Sca)σ =
∑nca

i=1 PF(pi)σ
nca =

∑1
i=1 PF(pi)σ+

∑j+nco
i=j+1 PF(pi)σ+

∑nca
i=j+nco+1 PF(pi)σ

nca

=⇒ nca.DI(Sca)σ −
∑j+nco

i=j+1 PF(pi)σ=∑j
i=1 PF(pi)σ +

∑nca
i=j+nco+1 PF(pi)σ

(2) DI(S’ca)σ =
∑nca

i=1 PF(pi)σ+
∑nca

i=j+nco+1 PF(pi)σ
nca−nco

(3) nco.DI(Sco)σ =
∑j+nco

i=j+1 PF(pi)σ

Putting (1), (2) and (3) together

DI(S’ca)σ =
nca.DI(Sca)−

∑j+nco
i=j+1 PF(pi)σ

nca−nco

=⇒ DI(S’ca)σ = nca
nca−nco .DI(Sca)σ − nco

nca−nco .DI(Sco)σ

=⇒ nca
nca−nco .DI(Sca)σ = DI(S’ca)σ + nco

nca−nco .DI(Sco)σ

=⇒ DI(Sca)σ = nca−nco
nca .DI(S’ca)σ + nco

nca .DI(Sco)σ

Let α = nco
nca be the split-factor, where 0 ≤ α ≤ 1

Then

DI(Sca)σ = (1− α).DI(S’ca)σ + α.DI(Sco)σ (12)

This formula expresses DI(Sca)σ as the linear interpolation
between DI(S’ca)σ and DI(Sco)σ , with α as the interpolation
factor. See Figure 10 for a visualization of this linear
interpolation function.

Two cases are possible:
• Case a: DI(S’ca)σ > DI(Sco)σ
• Case b: DI(Sco)σ > DI(Sca)σ

Based on the relationship between DIs, we may conclude
that:

If | σB | - | σA | = 1
then ∆OF= DI(Sca)σB

− DI(S’ca)σB
− DI(Sco)σB

< 0
as according to (12) either DI(S’ca)σB

or DI(Sco)σB
is

Fig. 10. Linear interpolation

> DI(Sca)σB
.

The Objective Function thus deteriorates when | σB | - | σA |
= 1.

If | σB | - | σA | = 0
then ∆OF = DI(Sca)σB

− DI(S’ca)σB
+ 1 +

∑n
i=1

qvi
nvi can

be < 0
if ∆OF < 0 then DI(Sca)σB

< DI(S’ca)σB
must be ¡ 0

Taking (12) into account, we can rewrite ∆OF as:

(1− α).DI(S’ca) + α.DI(Sco)− DI(S’ca) + 1 +
∑n

i=1
qvi
nvi

=⇒ −α.(DI(S’ca)− DI(Sco) + 1 +
∑n

i=1
qvi
nvi > 0

=⇒ ∆OF > 0 if α <
1+

∑n
i=1

qvi
nvi

DI(S’ca)−DI(Sco)

Thus, a smaller α gives a higher probability of an OF
improvement.

2) Split Selection: From the preceding, we conclude that
carving-out subgroups has a high likelihood to result in an
improvement of the Objective Function. We will even go
a step further and define our move type as the carving-out
of all subgroups of a service definition. We call our split
operator the full-carve-out move. Example: A service defi-
nition S={1,2,3,4,5,6,7}. There also exists service definitions
S1={1,2} and S2={5,7}. Carving out S1 and S2 from S gives,
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S1= {1,2}, S2={5,7} and S’={3,4,6}.
This move type, however, is unable to handle partial over-

lapping service definitions. It is expected, therefore, that when
all carve-outs are done, there will be a number of overlaps
remaining that require a different type of operation.

F. Move Strategy

All services with a DI greater than one are candidates for
splitting. It seems logical to begin by splitting the service with
the largest DI. If that service cannot be split (no subgroups),
then the second-largest DI is taken, etc. If a group can be
split, the impact of the split is calculated. When OF improves
(=descends), the move is accepted and executed. If not, the
next service in the sorted service DI list is chosen. The move-
strategy is a variant of the First Improvement strategy of the
ILS meta heuristic; a variant as we first order the service DI
list and take the top element from the list.

G. Perturbation

The carve-out of subgroups cannot remove all forms for
non-disjointness. Correlated (partially overlapping) service
definitions cannot be split this way. This creates a requirement
for a new split operator when no additional carve-outs are
possible. The operator will determine if a service definition
overlaps with another service definition. If it does, the inter-
section is split-off. By splitting off this intersection, a new
services definition will be created. Splitting off an intersection
will result in | σB | - | σA | = 1. In the previous section
we observed that the Objective Function will deteriorate.
This is a transitory situation, due to the fact that the newly-
formed service definitions may be subgroups of the existing
service definitions. We consciously allow the OF temporary
deterioration so that a better optimum may be found in the
next Local Search iteration. We consider this kind of split as
the perturbation.

H. Stop Conditions

Once all possible carve-outs and perturbations are complete,
then there are no more inclusively matching and correlated
rules. All port frequencies are equal to one, all service group
DI’s are equal to one, and OF will equal the number of service
definitions. The solution cannot be additionally improved.

Figure 11 shows how we expect the Objective Function
to evolve over time, via consecutive local searches (doing
full-carve-out moves) and perturbations (doing intersection-
carve-out-moves), until the end condition is reached (i.e., full
services are disjoint).

I. Algorithm Overview

The algorithm has been implemented in JAVA. The different
components of the solution are implemented as JAVA classes.
We attempted to stay as true as possible to NS principles by
defining data classes, which only contain data and convenience
methods to get and set the data, and task classes used to
perform actions and calculations on the data objects. A high
level overview of algorithm can be found in Algorithm 1. More

Fig. 11. Expected evolution of the Objective Function

algorithm details and implementation details can be found in
[2].

V. ARTIFACT DEMONSTRATION

The artifact outlined in the previous section will be applied
to operational firewall rule bases provided by Engie. In [1] a
manually created test rule base (containing a lot of exceptions
to properly test the algorithm encoding) was used to validate
the concept and the implementation. We now apply the artifact
to operational data to see the real impact it has on a rule
base. Before an export from a firewall can be used as input
for the algorithm, some pre-processing is required. We start
this section by explaining these operations. We continue by
discussing the components we added to the algorithm that
allow the adjustments to the rule base and thus measure the
impact of service disjointness on the size of the rule base.
The different demonstration sets will be elucidated before they
become subject to the algorithm. We conclude with a summary
of the algorithm’s results and a description of some in-depth
behavioral characteristics of the algorithm.

A. Firewall Export Pre-Processing

Engie provided firewall rule base exports that are im-
plemented on Palo Alto firewalls (a leading manufacturer
and provider of firewalls). Those exports required some pre-
processing before the brown-field artifact can be used. The
pre-processing steps include:

• Remove non-relevant information from the exported CSV
files. This is the only manual step.

• Prepare data structures that allow historization (tracking
of all changes to the rule base and services during
algorithm execution) of the rule base and services.

• Replace firewall group objects that aggregate other group
objects and adjust the rules accordingly.

• Adjust the rule base such that each rule only contains one
service group.

• Version the rules and services (for historization).
• Remove non-unique services.

B. Adjusting the Rules

Each time a sub-service gets carved-out or an intersection
between two services gets split off, adjustments to the rules
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base are required. All the rules containing the original service
must be adjusted to reflect the result of the split. The rules
must also be split on the basis that rules must adhere to our
SoC design criteria. Adjustments to the rule base occur at two
instances of the algorithm: when a successful sub services
carve-out is performed and when a successful overlapping
services carve-out is performed.

C. Demonstration Data Sets

Engie provided exports from 15 Palo Alto firewalls in use
within Belgium- and Paris-based data centers. The data centers
contain multiple firewalls with different filtering strategies. We
requested firewall exports that would represent the different
types of filtering strategies. Additional contextual information
for each firewall can be found below.

• AIMv2: Firewall used to filter in- and outbound traffic of
Internet-exposed resources.

• AdminBE: Firewall used to filter traffic between data
center client hosting zones and a shared management
zone containing services as backup, and monitoring and
system management tools. The firewall is located in the
Belgium-based data center.

• AdminFR: Idem as AdminBE but for a firewall located
in the Paris-based data center.

• AWSDCN: Firewall that acts as a filter between the Engie
backbone network and the AWS Direct Connect (dedi-
cated connection to AWS cloud data center in Dublin).

• HOSTING-BE-EBL: Firewall protecting the client host-
ing zone for Electrabel (a business unit of the Engie
Group) in the Belgium-based data center.

• HOSTING-BE-ORES: Firewall protecting the client host-
ing zone for ORES (a former part of Electrabel, no longer
part of the Engie Group), in the Belgium-based data
center.

• HOSTING-BE-RAS: Firewall protecting Remote Access
Resources, in the Belgium-based data center.

• HOSTING-BE-SHARED: Firewall protecting resources
that are shared between various business units of the
Engie Group, in the Belgium-based data center.

• HOSTING-BE-TRACTEBEL: Firewall protecting the
client hosting zone for
TRACTEBEL (a business unit of the Engie Group), in
the Belgium-based data center.

• HOSTING-FR-COFELY: Firewall protecting the client
hosting zone for COFELY (a business unit of the Engie
Group), in the Paris-based data center.

• HOSTING-FR-GRDF: Firewall protecting the client host-
ing zone for GRFD (a former business unit of the GDF,
no longer part of the Engie Group), in the Paris-based
data center.

• HOSTING-FR-RAS: Firewall protecting Remote Access
Resources, in the Paris-based data center.

• HOSTING-FR-SHARED: Firewall protecting resources
that are shared between various business units of the
Engie Group, in the Paris-based data center.

Algorithm 1: ILS for service list normalization
load initial solution (= rule base);
create neighborhood list (= list of services and their DI);
fully disjoint = FALSE;
end of neighborhood = FALSE;
objective function improvement = FALSE;
calculate current objective function (sum of all service DI of

neighborhood);
while NOT full disjoint AND NOT end of neighborhood do

sort neighborhood list (highest DI at top of list);
neighborhood pointer = 1 (top of list);
objective function improvement = FALSE;
while NOT improvement objective function AND NOT

fully disjoint AND NOT end of neighborhood do
service to split = service to which

neighborhood pointing is referring;
perform full-carve-out move on service to split;
calculate new objective function;
objective function improvement =

(new objective function <
current objective function?);

if objective function improvement = TRUE then
reset neighborhood based on full-carve-out

move;
reflect full-carve-out move in rule base;
current objective function =

new objective function
fully disjoint = (are all service DI of the

neighborhood = 1);
else

neighborhood pointer ++
end
end of neighborhood = (neighborhood pointer

pointing to last element in neighborhood list?);
end
if end of neighborhood then

look for overlapping services in the neighborhood
if overlapping services exists then

perform intersection-carve-out move;
reset neighborhood based on

intersection-carve-out move;
reflect intersection-carve-out move in rule base;
calculate new objective function;
current objective function =

new objective function
fully disjoint = (are all service DI of the

neighborhood = 1);
end of neighborhood = FALSE;

else
end of eighborhood = TRUE;

end
end

end
if fully disjoint then

PRINT “Probably the Global Optimum has been found”;
else

PRINT “Local Optimum found”;
end
PRINT RESULT = neighborhood;
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• IAF: Firewall protecting access between the resources
of the user network and data center, via Identify Aware
filtering rules.

• IoT-BE: Firewall protecting IoT related resources in the
Belgium-based data center.

The demonstration data set also contains an artificially-
created rule base entitled Demoset which was used to test the
algorithm. Demoset contains as many anomalies as possible
to test special conditions that could occur but that are difficult
to filter out of the given exports.

D. Demonstration Results
In the following subsections, we review the demonstration

environment, the summary table of the demonstrations, and the
relationship between the Objective Function and the number
of rules in the rule base. We continue with a discussion of the
impact of the algorithm on the number of service definitions,
and have a closer look at the evolution of the Objective
Function during the algorithm’s execution. We conclude with
an example of how rule and service definition changes are
tracked during algorithm execution.

1) Demonstration Environment: The algorithm is written in
JAVA using JAVA SDK 1.8.181, developed in the NetBeans
IDE V8.2. The demonstration ran on an MS Surface Pro (5th
Gen) Model 1796 i5 - Quad Core @ 2.6 GHz with 8 GB of
memory, running Windows 10.

2) Demonstration Overview: The algorithm results for the
different rule bases can be found in Table I which contains
the following information:

• Initial Number of Rules (NoR): number of rules as read
from the firewall export files.

• Initial Number of Services (NoS): number of services as
read from the firewall export files.

• Initial Number of Service Groups (NoSR): number of
service groups as read from the firewall export files.

• Pre-Processing Number of Rules (NoR): number of rules
after pre-processing.

• Pre-Processing Number of Unique Services (NoUS):
number of unique services after pre-processing.

• Pre-Processing OF: the value of the Objective Function,
after pre-processing and thus at start of the algorithm.

• Final Number of Rules (NoR): the number of rules after
applying the algorithm.

• Final Number of Services (NoS): the number of service
definitions after applying the algorithm.

• Final OF: the value of the Objective Function after
applying the algorithm.

The algorithm performance indicators can be found in Table II.
• Algorithm execution time: time required to disentangle

the services and adjust the rules.
• Total execution time: time required to perform the data

loading, pre-processing, disentanglement, to print the end
result and log, and for the result to be displayed on the
screen.

• Level 1 Iterator: number of times the outer loop of the
algorithm has run.

• Level 2 Iterator: number of times the inner loop of the
algorithm has run.

TABLE I
OVERVIEW DEMONSTRATION RESULTS

Rule Base Initial After Pre-Processing Final
NoR NoS NoSG NoR NoUS OF NoR NoS OF

AIMV2 207 250 6 498 226 577.9 1,263 288 288
AdminBe 461 597 41 1,443 547 3,214.1 8,994 547 547
AdminFR 655 717 46 2,584 699 4,469.3 29,377 668 668
AWSDCN 13 13 1 13 13 14.9 22 13 13
Demoset 21 24 8 104 21 44.9 249 34 34
HOSTING-BE-EBL 350 304 10 759 259 877.6 3,841 256 256
HOSTING-BE-ORES 462 336 13 1,306 274 1,205.6 4,936 267 267
HOSTING-BE-RAS 20 16 0 28 16 17.5 29 16 16
HOSTING-BE-SHARED 107 120 7 223 10 7 188.7 360 106 106
HOSTING-BE-TRACTEBEL 10 5 1 10 5 5 10 5 5
HOSTING-FR-COFELY 10 9 1 16 9 9 16 9 9
HOSTING-FR-GRDF 118 46 4 213 42 50 223 40 40
HOSTING-FR-RAS 21 16 1 29 16 17,5 30 16 16
HOSTING-FR-SHARED 198 139 6 359 126 250.2 509 127 127
IAF 32 10 0 34 10 10 34 10 10
IOT-BE 23 28 0 38 25 36.5 47 24 24

TABLE II
PERFORMANCE OF THE ALGORITHM

Rule Base Execution Information
ILS (ms) Total (ms) L1 L2

AIMV2 187,227 396,000 25 1,507
AdminBe 520,944 824,000 135 13,609
AdminFR 820,847 1,242,000 154 23,165
AWSDCN 811 18,000 2 3
Demoset 1,358 120,000 22 430
HOSTING-BE-EBL 76,039 265,000 34 2,016
HOSTING-BE-ORES 193,436 632,000 59 2,587
HOSTING-BE-RAS 99 1,000 2 3
HOSTING-BE-SHARED 35,139 202,000 12 427
HOSTING-BE-TRACTEBEL 63 1,000 2 2
HOSTING-FR-COFELY 54 1,000 2 2
HOSTING-FR-GRDF 122 1,000 3 6
HOSTING-FR-RAS 96 1,000 2 36
HOSTING-FR-SHARED 78,503 210,000 19 929
IAF 68 1,000 2 2
IOT-BE 28,731 130.000 3 19

TABLE III
%OF IMPROVEMENT VS INITIAL NUMBER OF RULES (NOR)

Rule Base Initial NoR %OF Improvement
HOSTING-BE-TRACTEBEL 10 0%
HOSTING-FR-COFELY 10 0%
AWSDCN 13 10%
HOSTING-BE-RAS 20 9%
Demoset 21 24%
HOSTING-FR-RAS 21 9%
IOT-BE 23 34%
IAF 32 0%
HOSTING-BE-SHARED 107 44%
HOSTING-FR-GRDF 118 20%
HOSTING-BE-SHARED 198 49%
AIMv2 207 61%
HOSTING-BE-EBL 350 71%
AdminBE 461 83%
HOSTING-BE-ORES 462 78%
AdminFR 655 85%

3) Objective Function and the Number of Rules: In Ta-
ble III and Figure 12, we represent the relationship between
the % of OF improvement and the number of initial rules in
the rule base (NoR).
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Three out of the sixteen firewalls contain fully disjoint
service definitions: HOSTING-BE-TRACTEBEL, HOSTING-
FR-COFELY and IAF. Those are also the firewalls with the
fewest rules and service definitions. The algorithm detects the
full disjointness and leaves the service definitions and rule
base as is.

Six out of the sixteen firewalls are fairly close to having
disjoint service definitions: AWSDCN, Demoset, HOSTING-
BE-RAS, HOSTING-FR-GRDF and IOT-BE. Those firewalls
have a number of rules and services definitions that are below
100 (HOSTING-FR-GRDF having a number of rules a bit
above 100). The total improvement of the OF is limited to
about 25 %.

The remaining eight firewalls contain many more rules and
service definitions and the value of the difference between
the initial and final value of the OF is at least 50 %, with
a maximum of 85 %. These numbers confirm that, without
proper rule design criteria, the probability of getting a non-
evolvable rule base drastically increases with the size of the
rule base. The trend between the size of the rule base and the
percentage of OF improvement (a good indicator for the status
of the initial evolvability ), should be an asymptotic function
trending toward 100 %. A logarithmic regression provides a
good fit.

Fig. 12. %OF Improvement vs number of rules in the rule base

In Table IV and Figure 13, we represent the relationship be-
tween the % OF improvement and the % of extra rules (growth
rule base) due to the service disentanglement algorithm.

4) Impact of the Algorithm on the Number of Service Defini-
tions: Upon examination of the number of service definitions
at the end of the algorithm, we note that splitting the service
definitions does not have a large impact on the total number
of services. See Figure 14 for an overview. There is even
a tendency toward the total number of service definitions
decreasing slightly. It seems to be that the algorithm rearranges
the ports into more suitable groups, without having the number
of service definitions proliferate.

5) Evolution of the Objective Function During Algorithm
Execution: To visualize what occurs during the algorithm
execution, three indicators are tracked: the OF, the outer
loop iterations, and the inner loop iterations. The ”Level 1

TABLE IV
% OF IMPROVEMENT VS %GROWTH RULE BASE

Rule Base %OF Improvement %Growth Rule Base
HOSTING-BE-RAS 9% 4%
HOSTING-FR-RAS 9% 3%
AWSDCN 10% 69%
HOSTING-FR-GRDF 20% 5%
Demoset 24% 139%
IOT-BE 34% 24%
HOSTING-BE-SHARED 44% 61%
HOSTING-FR-SHARED 49% 42%
AIMv2 61% 154%
HOSTING-BE-EBL 71% 406%
HOSTING-BE-ORES 78% 278%
AdminBE 83% 523%
AdminFR 85% 1037%

Fig. 13. % extra rules vs %∆OF

Fig. 14. Impact of the algorithm on number of services.

Indicator” is the number of times that the outer DO loop of the
algorithm has run. The indicator measures the number of times
a perturbation or successful carve-out is done. The ”Level 2
Indicator” (L1I) is the number of times the inner DO loop of
the algorithm runs within a given number of level 1 iterations.
Each time the ”Level 1 Iterator” increments, the ”Level 2
Iterator” (L2I) is reset. We plot the evolution of these three
indicators against the cumulative number of level 2 iterations
for two of the firewalls with a number of rules below 100,
in Figure 15 and Figure 16. In Figure 17 and Figure 18 we
show the evolution of the three indicators for two firewalls
containing in excess of 100 rules.
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Fig. 15. OF, L1 and L2 for the Demoset firewall.

Fig. 16. OF, L1 and L2 for the HOSTING-FR-GRDF firewall.

Fig. 17. OF, L1 and L2 for the AdminBE firewall.

6) Tracking of Rule and Service Definition Changes: The
algorithm tracks all changes that are made to the rules. As an
example, the log excerpt below shows the evolution of rule
6 from the Demoset, as provided by the algorithm at end of
execution.

• During pre-processing, the Service Group ”SERVICE25”,
is replaced by its members ”SERVICE17” and ”SER-
VICE19”. The rule now has 6.1 as identifier.

• During pre-processing, the rule is split into two rules,
6.1.1 and 6.1.2 since rule 6.1 was contained in two service
definitions.

• Duinrg pre-processing, rules 6.1.1 and 6.1.1.2 get the

Fig. 18. OF, L1 and L2 for AdminFR firewall.

versioned service definitions. At this point, rule 6 is
replaced by 6.1.1.1 and 6.1.2.1.

• During the ILS, the service ”SERVICE17 V0” gets split
into ”Service 17 V0.2” and the existing service ”SER-
VICE19 V0”, and the rule 6.1.1.1 splits into 6.1.1.1.1
and 6.1.1.1.2.

6;R6;SERVICE25,
*6.1;R6.1;SERVICE17,SERVICE19,
**6.1.1;R6.1.1;SERVICE17,
***6.1.1.1;R6.1.1.1;SERVICE17 V0,
****6.1.1.1.1;R6.1.1.1.1;SERVICE19 V0,
****6.1.1.1.2;R6.1.1.1.2;SERVICE17 V0.2,
**6.1.2;R6.1.2;SERVICE19,
***6.1.2.1;R6.1.2.1;SERVICE19 V0,

In summary, rule 6 was replaced by rules 6.1.1.1.1, 6.1.1.1.2
and 6.1.2.1.

The evolution of the services is tracked in a similar manner.
In the log excerpt below, the evolution of ”SERVICE17” and
”SERVICES19” is shown (versioning, splitting).

SERVICE17;UDP;40-41
*SERVICE17 V0;UDP;40-41
**SERVICE19 V0;UDP;40
**SERVICE17 V0.2;UDP;41

SERVICE19;UDP;40
*SERVICE19 V0;UDP;40

VI. EVALUATION AND DISCUSSION

This section starts with evaluating the functioning of the
artifact followed by the analysis of the worst case number
of operations required to complete the algorithm and the
comparison with the artifact performance. We continue with
pondering on the question whether the artifact has found the
most optimal solution, and by analysing the impact of the
algorithm on size of the rule base and firewall scaling. We
continue with discussing the entropy present in a rule base
and how the algorithm measures this entropy. We finish by
positioning the artifact in a firewall management tool.

A. Algorithm functioning

Based on the demonstration, we can conclude that an
algorithm based on an ILS meta-heuristic disentangles service
definitions and is able to adjust the rule base accordingly. The
algorithm is an essential building block in a solution that can
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convert an existing firewall rule base into a rule base that is
fully compliant with the green-field artifact.

It is an essential building block but not the sufficient build-
ing black. It is possible that fully-overlapping rules emerge
during the algorithm execution.
Example:
Take a rule R1 that has C1 as source, H1 as destination, and
S1 as service.
Now take a rule R2 that has C1 as source H1 as destination,
and S2 as source.
Let’s consider that S1 and S2 overlap. The overlapping service
is S3
Applying the algorithm would give:
– R1: C1 H1 S’1
– R2: C1 H1 S3
– R3: C1 H1 S’2
– R4: C1 H1 S3
As can be seen, R2 and R3 become identical rules which still
need to be filtered out.

The demonstration has provided insight into how the Ob-
jective Function evolves during algorithm execution, as well
as into the relationships between the number of initial rules
in the rule base and the corresponding value of the objective
function, and the number of rules at the end of the algorithm
execution and the change in Objective Function.

B. Big O of the Artifact

The Big O of an algorithm expresses the algorithm’s
complexity, calculated based on the worst-case scenario in
terms of the number of operations required in function of the
size of the problem to be solved. This formula reflects the
worst-case effort required to complete the algorithm execution.
The algorithm contains two nested loops that both can iterate
over the full neighborhood, meaning the algorithm will be
quadratic with respect to the size of the neighborhood. The
number of operations performed in the innermost loop, such
as Service DI list Creator, Service split Evaluator are also
proportional to the size of the neighborhood.

We may thus conclude that the Big O of the complete
algorithm is cubic - O = n3, where n is the size of the
neighborhood (= size of the solution = the number of service
definitions).

C. Performance of the Artifact

Algorithm execution time is measured as the time it takes to
disentangle the services after pre-processing. Figure 19 shows
the relationship between the initial size of the neighborhood
(number of unique services) and algorithm execution time.
The exponent of the power function is a bit above two. This
is consistent with the Big O, where we expected a worst-case
exponent of three.

Measures could be taken to ensure better algorithmic per-
formance. The innermost loop iterates over all services until it
locates one that contains subgroups. All services that already
have a DI of 1 should not be further investigated. As the
neighborhood is sorted from high to low DI at the start of the

TABLE V
ARTIFACT PERFORMANCE

Rule Base Number of Unique Algorithm Execution
Services (NoUS) Time (ms)

HOSTING-BE-TRACTEBEL 5 63
HOSTING-FR-COFELY 9 54
IAF 10 68
AWSDCN 13 811
HOSTING-BE-RAS 16 99
HOSTING-FR-RAS 16 96
Demoset 21 1,358
IOT-BE 25 28,731
HOSTING-FR-GRDF 42 122
HOSTING-BE-SHARED 107 35,139
HOSTING-FR-SHARED 126 78,503
AIMv2 226 187,227
HOSTING-BE-EBL 259 76,039
HOSTING-BE-ORES 274 193,436
AdminBE 547 520,944
AdminFR 699 820,847

Fig. 19. Artifact performance

inner loop, the inner loop could stop as of the first service
where a DI of 1 is encountered. According to meta-heuristics,
this value represents a form of algorithmic memory, indicating
parts of the neighborhood that can no longer improve and
should thus not be investigated.

D. Global Optimum

Does the heuristics-based algorithm establish the Global
Optimum? It is quite difficult to formally prove that heuristic
algorithms always provide the most optimal solution. After all,
the full solution space of all possible groups combining all
possible ports is exponential (see combinatorics) and quickly
becomes impossible to fully search.

We do think that, given the initial solution, we have
succeeded in converging on the most optimal solution. Sub-
optimal solutions always will have either subgroup and/or
overlapping groups. The algorithm filters out all subgroups
in the inner loop and, if no additional subgroups are found, it
searches for overlaps, after which it again scans for subgroups.
As both inner and outer loop iterations search the entire
neighborhood, all possible subgroups and overlaps are located
and eliminated. While we are not presently able to provide
formal proof, we nonetheless believe that, from a given initial
solution, the set of services that are disjoint and maximum in
size is found.
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Fig. 20. Scaling of firewalls with an evolvable rule base

E. Implication of the Artifact on Firewall Rule Base Size and
Scaling

In all application of NS on design of systems, the result is
a more fine grained structure [7] [17] [18]. Applying NS on a
firewall, and thus making it more evolvable, is no exception.
From the previous section we can clearly see that the amount
of extra rules can increase considerably. This brings forward
the question of firewall performance - how quickly will the
firewall find the rule to apply to the traffic.

In an evolvable rule base, all the rules are disjoint from
one another and each network package can only hit one rule.
This rule can be located in the beginning or near the end of
the rule base. As there is only one rule that can be hit, the
rule base may be split into multiple parts and distributed in
parallel across different firewalls.

Let F be a firewall rule base containing only disjoint rules
created according to the green-field artifact. As visualized in
Figure 20, F can be split into fw sub rule bases, which are
spread over fw parallel firewalls. Each of the fw rule bases
conclude with the “Default Deny” rule.

A network package will attempt to traverse each firewall,
but only one of the firewalls has a rule it can hit.

F =
∑f=fw

f=1 Ff

Let ϕf(Ff,Pa) be the firewall filtering function that takes rule
base Ff and package Pa as input.

• ϕf(Ff,Pa) = 0 if the package is blocked - there is no rule
R in Ff such that the package is allowed

• ϕf(Ff,Pa) = 1 if the package is allowed - there is a rule
R in Ff such that the package is allowed

Let ΦP
fw be the parallel firewall filtering function. Then:

ΦP
fw(PA)=

∑f=fw
f=1 ϕf(Ff,Pa)

Where:

• Φp
fw(Pa) = 0, if Pa is blocked by all of the fw firewalls.

• Φp
fw(Pa) = 1 if Pa is allowed by one of the fw firewalls.

• ∃!Ff ∈ F for f = 1 → fw =⇒ | R ∈ Fj

A rule base that exclusively contains disjoint rules can scale
horizontally (i.e., employ parallel firewalls). Firewalls with a
non-evolvable rule base can only scale vertically (i.e., employ
a larger firewall). Scaling, however, does not come without
significant cost. Modern firewalls allow virtualization, but each
virtual instance comes at a cost as well.

In addition to the horizontal scaling possibilities of an
evolvable rule base, the performance of an evolvable rule base
can be boosted by moving the most frequently used rules to
the top. Check Point, a firewall vendor, suggests locating the
rules that are most frequently hit (and applied) at the top of
the firewall table. In a rule base that is order-sensitive, this is a
real issue. In a rule base that is not order-sensitive, one could
monitor the firewall to determine which rules are hit most
and then prioritize those rules without having to worry about
the potential impact to other rules. Doing this dynamically
would be even more powerful as the firewall would be able to
reorganize its rules according to variable daily traffic.

F. Measuring the entropy of a filewall rulebase

We will now examine the question ”What is the impact
of the service group disjointness level of a rule base on
the size of the aforementioned rule base after application
of the brown-field artifact?”. We shall define the Services
Disjointness Index (SDI) as the ratio between the value of
the objective function OF and the number of services S.

SDI = OF
S

SDI is 1 in a rule base exclusively containing disjoint
services and greater then 1 if the rule base contains non-
disjoint services. We would like to know whether or not we
may determine the increase in number of rules as a result of
the application of the brown-field artifact, based on the initial
value of SDI.

The SDI is a fairly accurate measure for the statistical
entropy of a rule base. The macro-state is the number of
services in a rule base, the micro-states being the number of
possible services within a rule base. An evolvable and perfectly
stable rule base would have a ratio of micro-states to macro-
state equalling 1. There are multiple configurations of services
that deliver a statistical entropy of 1. We are aware of at least
two: one port per service, and the one we discovered with
the brown-field algorithm by disentangling the services. The
SDI is, however, an imperfect representation of the statistical
entropy of the rule base. Indeed, we have demonstrated that
the brown-field algorithm may result in shadowing rules. An
additional operationalization to measure this would be required
in order to fully express the statistical entropy of a rule base.
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TABLE VI
RNIR VS SDI

Rule Base SDI RNIR
HOSTING-BE-TRACTEBEL 1 0
HOSTING-FR-COFELy 1 0
IAF 1 0
HOSTING-BE-RAS 1.0938 0.0357
HOSTING-FR-RAS 1.0938 0.035
AWSDCN 1.1069 0.6923
HOSTING-FR-GRDF 1.1905 0.0469
IOT-BE 1.4600 0.2368
HOSTING-BE-SHARED 1.7632 0.6143
HOSTING-FR-SHARED 1.9853 0.4178
Demoset 2.1377 1.3942
AIMv2 2.5573 1.5361
HOSTING-BE-EBL 3.3882 4.0606
HOSTING-BE-ORES 4.3999 2.7795
AdminBE 5.8759 5.2328
AdminFR 6.3938 10.3688

In our experiment, the independent variable is SDI and the
dependent variable is the relative increase in the number of
rules due to application of the treatment (i.e., application of
the brown-field artifact). The relative increase in the number
of rules (RINR) is calculated as the difference between the
number of rules (NR) after and before application of the
artifact, divided by the number of rules before application of
the artifact.

RINR =
NRafter−NRbefore

NRbefore

The result can be found in Table VI and Figure 21. The
correlation between the independent and dependent variable
is 0.9257.

Fig. 21. RINR vs SDI

G. The Firewall Rule Base Analyser and Normalizer System

As the firewall provides considerable design freedom which
could potentially lead to evolvability issues, firewall manage-
ment should be undertaken outside of the firewall, ideally

using a specialized tool that incorporates the artifacts discussed
in this dissertation. We characterize this tool as a Firewall Rule
Analyser and Normalizer System or FRANS (see Figure 22).
Such a tool would ideally have the following features:

• Enforces the usage of the green-field artifact.
• Analyzes an existing rule base — measures disjointedness

levels — with the brown-field artifact.
• Converts an existing rule base into an evolvable rule base

using the brown-field artifact.
• Will centrally manage all definitions: services, sources,

destinations, rules.
• Provides full traceability on all changes performed on the

definitions.
• Makes firewalls scale horizontally.
• Changes the rule order dynamically to increase perfor-

mance.
All firewall rule management activities are done in the tool
as opposed to via firewall management consoles. As modern
firewalls publish their management functionalities via APIs,
the tool can use these APIs to change rules and objects.

The creation of the fine-grained rule base by humans is an
issue. The green-field artifact defines criteria for groups and
rules that need to be followed strictly. The creation of a catalog
of all possible services is required. For standard services and
tools, lists of assigned ports/protocols and international stan-
dardization organizations related to the Internet (e.g., iana.org)
exist and may be reused.

FRANS should expand the firewall rules in the fine-grained
format, in accordance with the naming conventions. Checks
must also be performed against the group definitions and con-
tent in accordance with the green-field artifact and via a user-
friendly interface. With this configuration, the tool could then
push the rules towards the firewall, which would effectively
separate the management from the implementation of rules.
Such tools exist on the market. Examples include Algosec,
Tufin, Firemon. However, none of those tools consciously
restrict the design space for the purpose of enforcing the
creation of an evolvable rule base.

While defining a rule for each service may be considered
cumbersome, it is possible to create roles such as ”monitoring
and management” (i.e., establishing which is a grouping of
smaller, disjoint services) in order to mitigate this. In this ex-
ample, the firewall administrator could create a rule specifying
this ”monitoring and management” role to express that the
server needs to allow access to all monitoring and management
services. The tool would ideally expand these roles into the
individual rules for each disjoint service. Examples:

• ”Monitoring and Management” = SSH + SFTP + FTP +
SMTP + TELNET

• Host = x
• Rule : C Hx SMaM; Hx S MaM; S MaM; allow
• Will be expanded to :

– C Hx S SSH; Hx S SSH; S SSH; allow
– C Hx S SFTP; Hx S SFTP; S SFTP; allow
– C Hx S FTP; Hx S FTP; S FTP; allow
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– C Hx S SMTP; Hx S SMTP; S SMTP; allow
– C Hx S TELNET; Hx S TELNET; S TELNET;

allow

Fig. 22. Firewall management tool

The brown-field artifact should be included in the tool to
read and analyze an existing rule base. The Disjoint Index of
all groups and the total value of the Objective Function can
be calculated. These are important indicators for the level of
evolvability and the impact the firewall normalization process
will have on the size of the rules base. Highly non-evolvable
rule bases may require additional firewall infrastructure to
allow horizontal scaling. The tool could create new firewall
instances on a virtual infrastructure or spin up new cloud based
firewalls on a cloud platform.

FRANS should convert existing rule bases into evolvable
rule bases and deploy those on the firewall infrastructure. As
FRANS should be a central firewall management platform, it
could compare at all times the defined policy in the tool to
the active policy on the firewall. This would allow detection
of rule adjustments made directly on the firewall and even
make firewall rule bases immutable. In FRANS, additional
information reflecting why rules are deployed and links with
application management tools could be made in order to allow
centralized and easily understandable security documentation.

VII. CONCLUSION

In this section, we will summarize important conclusions.
We start with pointing out that the artifact allows the measur-
ing of the evolvability of the firewall. We continue by stating
that the artifact leads to a fine-grained rule base and by stating
that such fine-grained rule bases allow true horizontal scaling.
We finish be pointing out some limitations, lack of comparison
with related literature and proposing future work.

A. Measuring the Evolvability of a Firewall

We were able to operationalize one aspect of the evolv-
ability of a firewall, namely the need for disjoint services.
Independent from the meaning and functions of the various
service ports within the rule base, the SDI is an important
indicator for the evolvability of the firewall. If SDI is greater

than 1, the door is left open to the creation of non-evolvable
rules. The SDI represents the statistical entropy of the service
configurations in a rule base and is a good proxy for the
statistical entropy of the rule base.

To measure all aspects of evolvability and statistical entropy
in accordance with the green-field artifact, a second index
concerning the destinations would need to be developed.

B. Impact of the Brown-Field Artifact on the Size of the Rule
Base

As SoC has been meticulously applied, the choice of a fine-
grained rule base is unsurprising. The relationship between
the level of service disjointness and extra rules has been
investigated. Additional runs of the algorithm with firewalls
from different companies would provide further insight into
the complexity of this relationship (and establish whether it is
linear, polynomial or exponential).

C. Firewall Scaling

The artifacts produce a fine-grained rule base. A large num-
ber of rules in a rule base will have a detrimental impact on
performance. But creating an evolvable rule base also provides
the answer to this problem, given that only an evolvable rule
base will scale truly horizontally.

D. Artifact Limitations

The artifact tracks all changes in the service definitions by
means of continuously changing the name of the services via
a versioning mechanism. Although the end result is disjoint
services according to the green-field artifact, the naming of
those services is not compliant with the naming convention put
forward in the green-field artifact. A mechanism to generate
meaningful names is currently lacking. According to the green-
field artifact, we should add a rules in the rule base for each
host-service combination. The current version of the brown-
field artifact only disentangles the services. Although this leads
to disjoint rules, it can still lead to CE [2]. It is quite straight
forward to add this step as it just a matter of splitting rules
to make sure they only contain one destination and not an
aggregation of destinations. The brown-field artifact can result
in identical rules and so can the above mentioned splits in
destinations. The algorithm does not filter those out. An extra
pass through the rule base is required to eliminate those.

E. Related Literature

A more detailed literature study related to this work can
be found in [2]. We would however like to stress that, to
the best of our knowledge, no other work has been found
that addresses the evolvability issues of the firewall. Over
the past 40 years, sufficient research has been done boosting
performance of the firewall and on problems with firewall
management. We have not found work that does an analysis
based on a grounded theory of evolvability such as NS. The
concept of true horizontal scaling of firewall has also not been
observed in literature. The closest we found is work that put
an amount of firewalls in parallel but all firewalls contain the
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same rule base [23]. This will indeed boost performance as
each firewall has less traffic to handle but each firewall still
has the same rule base size. In our solution, the size of the rule
base can be reduced by spreading it over multiple firewalls.

F. Future Work

This work is an important yet incomplete step toward the
evolvable TCP/IP firewall. The green-field artifact needs to
be converted into software that will take a high-level security
requirement as input, ”expand” it into the required fine-grained
rules, and push the rules to a firewall. The artifact discussed in
the paper (the brown-field artifact) needs to be extended to re-
organize the destinations and sources in accordance with the
green-field artifact, and requires a solution to naming services
such that they are in line with the green-field artifact.

While the requisite groundwork has been established, the
remainder needs to be built. We thus regard this not as future
research, but rather as future work.

This work has limited itself to the TCP/IP based firewall,
which provides a basic security layer like decent locks on the
doors and windows of a house. Other security devices, such
as application level firewalls, operate at other layers of the
OSI stack, above TCP/IP. Filtering rules are installed there
as well and if again the filtering rules overlap or contradict,
evolvability issues may appear. It is also native to only rely
on application level firewalls and no longer on TCP/IP based
firewalls, as it is like removing locks from doors and windows
and only react on camera surveillance - by the some something
shows up on camera, the damage can already be done. Multi
level security applies in both the physical and virtual world.
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Abstract—Critical infrastructure systems have recently become 
more vulnerable to attacks on their data systems through 
internet connectivity. If an attacker is successful in breaching a 
system’s defenses, it is imperative that operations are restored 
to the system as quickly as possible. This research focuses on 
damage assessment and recovery following an attack. We 
review work done in both database protection and critical 
infrastructure protection and establish our own definitions of 
how damage affects the relationships between data and 
software. Then, we propose a model using a graph construction 
to show the cascading effects within a system after an attack. We 
also present an algorithm that uses our graph to compute an 
optimal recovery plan that prioritizes the most important 
damaged components first so that the vital modules of the 
system become functional as soon as possible. This allows for the 
most critical operations of a system to resume while recovery for 
less important components is still being performed. Lastly, we 
show results from simulations using our algorithm on data 
graphs with various parameters. 

Keywords-critical infrastructure; damage assessment; 
recovery. 

I. INTRODUCTION 
Critical infrastructure systems are those that are 

considered extremely critical to the functioning of a 
government or a country. As described in [2], critical 
infrastructures are like the vital organs of a body that need to 
perform their own roles for the human body to function 
efficiently and painlessly. The US Department of Homeland 
Security [3] declares that such systems are “so vital to the 
United States that their incapacity or destruction would have 
a debilitating impact on our physical or economic security or 
public health or safety.” Therefore, the protection and smooth 
functioning of our nation’s critical infrastructures are 
indispensable and cannot be ignored. 

These systems are becoming prime targets of attackers – 
primarily state actors and organized crime – and a major 
attack on one can cripple the economy of the victim nation.  
These systems are also more likely to be connected to the 
internet now to provide benefits like cost reduction (where 
large systems can be remotely managed over the public 
network), increased capability (by providing sufficient 
computing resources for infrastructure hardware with less 
capability power), and improved efficiency and transaction 
speed.  This connectivity unfortunately makes it easier for 
attackers to hack into these systems. Consider the New York 
Times report about the attack on Colonial Pipeline [4]. While 

the details of the attack are not yet disclosed, a group of 
cybercriminals was able to compromise data systems using 
the internet, which resulted in Colonial Pipeline shutting 
down their pipeline. This outage affected mass transit and 
other industries across the entire U.S. East Coast and exposed 
a lack of preparation for such a crisis. This illustrates how an 
external system can have a relationship with a critical 
infrastructure system and how such relationships can be 
exploited to carry out an attack. 

It is clear from past incidents and recent reports [5]-[8], 
(to cite just a few) that attacks on critical infrastructures are 
occurring frequently, which indicates that prevention 
mechanisms are not enough to stop them.  Thus, it is of 
utmost importance to aggressively prepare for post-attack 
activities, which include damage assessment and recovery 
mechanisms that are critical to making the affected systems 
available at full functioning mode as soon as possible.  This 
research aims at meeting this important goal. 

We propose a framework that models damage spread 
within a set of data objects based on object dependencies and 
prioritizes making repairs to the most critical objects first. 
The framework is based on some of the models explored in 
critical infrastructure protection and uses a version of 
previously proposed repair methods that is modified to focus 
on meeting specific goals when determining the order in 
which repairs are made. 

The rest of the paper is an extension of the work in [1] 
and is organized as follows.  Section 2 offers some work 
performed in this area.  Section 3 defines the problem that we 
aim to build our model for. In section 4, the types of 
relationships that exist in data systems are explained. We 
provide details on our model in section 5, which includes 
three subsections to explain our definitions, model 
description, and algorithm. We then show experiments using 
our model and present the results in section 6. Section 7 
concludes our work. 

II. RELATED WORKS 
This paper aims to examine methods and frameworks 

used for database and critical infrastructure protection and 
apply them towards protecting a set of data objects. This 
section describes some of the publications that are relevant to 
our proposed framework. Various types of critical 
infrastructure objects are described in [17]. The focus of our 
work falls under network and network nodes, which are 
defined as a “structure with one dominating dimension”, and 
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junctions within the network, respectively. Furthermore, [18] 
establishes the concept of resilience, a cyclical process by 
which a system undergoes recovery, adaptation, and 
prevention between attacks. Turning this concept into a 
concrete value that can be used in risk assessment has been a 
point of interest in protecting systems [20]. Efforts have also 
been made to quantify vulnerability as a measurement that 
can be used to determine how frequently or severely a system 
can be at risk [19]. One of the major works on damage 
assessment and recovery within a database uses data 
dependency to find data affected by an attack to optimize 
recovery [9]. While this method relies on the direct 
relationships between data items, an alternate model to 
recover data from an attack instead uses the transaction log 
for assessment [10].  

Kotzanikolaou et al. describe a model in [11] that assists 
in risk assessment for possible scenarios that can result in 
cascading failures within a CI system. For critical 
infrastructures with data-rich operations, the use of Cyber-
Physical Systems can cause new vulnerabilities as described 
in [12]. Their model analyzes threats that can appear due to 
these vulnerabilities and analyzes the potential cascading 
damage they can cause. System dynamics modeling can also 
be used to analyze disruptive events to characterize such 
disruptions to critical infrastructure by risk assessment and 
various impact factors as shown in [13].  

Rehak et al. [14] model an infrastructure system as 
elements and linkages with different types of relationships 
establishing dependencies and interdependencies. They note 
that these elements can have varying criticality, causing some 
elements to cascade more damage into the system than others 
in the event of a failure. This work is important because by 
establishing criticality, they quantify damage within a 
system. We use this concept of criticality later in this paper 
to direct the optimal repair path of data objects.  

We also consider models that assist with recovery during 
an attack. In [15], an algorithm is proposed to restore 
damaged element paths by recursively breaking down 
demand flows into simpler problems. They use a centrality 
metric to rank damaged nodes and determine which ones 
should be repaired first and expand on the use of centrality to 
make repair decisions in further work [16]. We use the 
concept of centrality to rank data objects in a case where two 
or more are equally critical. In our algorithm, we also utilize 
their method of simplifying damage paths to find the fastest 
route to restoring intermediate data objects.  However, the 
novelty of our approach is twofold: we must repair all 
components within the system because data objects cannot 
have computations rerouted, unlike the network components 
in the work we have reviewed, and we aim to restore the most 
important components first so that their functions can be 
restored while repairs to the system are still ongoing. 

III. PROBLEM DEFINITIONS 
On the occasion when an adversary information attack 

succeeds, the victim must have the capability to degrade 

gracefully and recover damaged data and/or services in real-
time if it is to survive.  It is necessary to immediately carry 
out damage assessment and recovery process in order to bring 
the systems to working states.  Otherwise, the damage would 
spread to other unaffected systems that are interconnected.  
This happens when a valid user or an unaffected system 
module reads a damaged object during its computation and 
updates another object based on the compromised value, 
causing the latter damaged as well. As time goes on, more 
and more objects become affected in this manner causing the 
spread of damage to fan-out through the system quickly.   

State-of-the-art assessment and recovery currently exist 
in types of critical infrastructure other than data systems. A 
review of threats that influence how critical infrastructures 
are protected is done in [22]. Among other threats, important 
ones that affect this research are cyber-attacks and cascading 
effects. A data system is especially vulnerable to the 
cascading effects of a cyber-attack, because of the nature of 
constant updates being made between different systems using 
data. In [21], a dynamic inoperability input-output model is 
introduced to determine how damage in one part of a system, 
such as power plants, water collectors, and transmitters can 
ultimately cascade down to end-users of the system. This 
method, as well as other similar methods in [23] and [24], 
primarily focus on physical threats to critical infrastructure. 
This research focuses on applying the same kind of resilience 
to data operations of critical infrastructures to protect them 
from digital threats.  

For damage assessment and recovery purposes 
information about all processes that have been executed must 
be stored in the log (more on this presented later).  This will 
help in determining the relationships among the processes, 
thus helping in establishing the damage trail.  Moreover, 
during recovery, the operations of processes that have spread 
the damage have to be undone and then redone in order to 
produce the correct states of affected objects.  The problems 
with existing systems are: (1) They do not store process 
execution information in the log, and they purge the log 
periodically, (2) their recovery mechanisms are not designed 
to undo the effects of executed processes, (3) the size of the 
log, as it must not be purged, will make it almost impossible 
to continue the recovery process in real-time, and (4) during 
the damage assessment and recovery process, the system 
remains unavailable to users.  This delay induces a denial-of-
service attack, which is highly undesirable in time-critical 
applications that the critical infrastructures are designed to 
provide.  Due to the massive amount of data in the log that 
needs to be processed, the problem becomes even worse. 

The goal of this research is to develop fast, accurate, and 
efficient damage assessment and recovery techniques so that 
critical information systems not only survive the attacks 
gracefully but will continue to operate providing as many 
vital services and functions as possible even before the 
system is fully recovered. In the next section, we explain how 
the relationships between different parts of critical systems 
can affect the spread of damage. 
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IV. TYPES OF DAMAGE DEPENDENCIES 

Attacks can affect not only data systems, but also 
software that produces data. This happens when the software 
is maliciously changed to perform unintended actions. In this 
section, we discuss possible attack scenarios involving 
damaged data objects and software and how they can cascade 
into other systems. 

A. Data to Data Damage 
Data objects are frequently dependent on other data 

objects for computational updates. This makes their systems 
vulnerable to malicious attacks and cascading damage. Once 
a data object uses a damaged object to make a change, it 
becomes damaged too. This can happen to as many objects 
as the initially attacked objects have that are dependent on it. 
Figure 1 shows an example of cascading damage between 
data objects. If node C is targeted for an attack, then node E 
will become damaged due to its dependency on C. Then, node 
F and node G are also damaged because they are dependent 
on E. 

 
Figure 1: Cascading Damage from a Data Object 

B. Software to Software Damage 

If damaged software is used to influence computing done 
by another software, then the output of that software is also 
considered damaged. An example of a dependency between 
software is the use of libraries for applications. A damaged 
procedure within a library will result in damaged output for 
any software that calls that procedure. One difficulty with 
recovering from cascading damage from software to software 
is that it may be difficult to identify which cross-software 
calls used damaged procedures for computation. Consider a 
program P that uses two library functions A and B. A is an 
undamaged function and provides an undamaged output, 
while B is damaged and results in a damaged output. Even 
though we know the library is damaged, it is difficult to find 
which functions within the library are specifically damaged 
due to the library already being compiled into binary format. 

Therefore, we do not know if A or B is damaged, and after the 
library has been recovered, we must execute P entirely to 
ensure that we get the correct output, which causes recovery 
time to increase. After recovery, the resulting output from A 
is unchanged, while the output from B is corrected to the 
desired result. An example of software-to-software damage 
is shown in Figure 2. Even though the data is correct, a 
maliciously changed library can result in the software 
changing the output data. 

 
Figure 2: Cascading Damage from Software 

C. Software to Data Damage 

Any data changed by damaged software is also 
considered damaged. This is the simplest scenario involving 
damaged software because it is functionally the same as 
cascading damage between two data objects. After the 
software is repaired, any data that was damaged by the 
software must be computed again to complete recovery. 

D. Data to Software Damage 

Software that uses damaged data will not become 
damaged as a result. However, its output data will be 
considered damaged. This is because once a program is 
compiled, it cannot be changed by its input data. Therefore, 
if a software uses incorrect data to produce a damaged output, 
it is considered data-to-data damage instead. In Figure 3, a 
damaged node A is used as input for computation in a 
software. While the software itself is not damaged, its output 
nodes D and E become damaged. 

 
Figure 3: Cascading Damage from Data through Software 

In the next section, we explain how our model can 
identify and recover damage optimally in detail.  While it is 
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important to consider the possibility of damaged software 
affecting a system, our model focuses on the spread of 
damage within data objects. This is because damage can 
spread much faster through data objects than in software, and 
usually does so more frequently. Furthermore, the software 
can also be quickly fixed, while data objects are more 
numerous and may need many computations to get the 
desired output after repairs. 

V. THE MODEL 
In this section, we describe our model in detail. The first 

subsection defines important graphs and metrics that we use 
for our model. In the next subsection, we describe how the 
model is built and is used to determine an optimal recovery 
plan. Finally, we describe the algorithm we use to implement 
our model. 

 

A. Definitions 
We first define the concept of information flow in a 

system.  This also defines dependencies among various 
objects in the system and is used in our graph-based model. 
Definition 1:  Given two objects Oi and Oj in a system, if the 
value of Oj is calculated using the value of Oi, we say that 
there is information flow from Oi to Oj.  Thus, Oj is said to be 
dependent on Oi and is denoted as Oi → Oj. 

The above definition helps in determining the spread of 
damage in the system.  That is, if an object is damaged, then 
all its dependent objects will be considered damaged.  During 
recovery, the parent (pre-cursor) object must be recovered 
before any of its dependent objects can be recovered. 

Next, we define a graph containing the set of objects and 
all possible paths among them. We call it Possible Paths 
graph and it spans the entire system of objects and all 
dependency paths among them. An example of this graph is 
shown in Figure 4(a).  

 
Figure 4a: The Possible Paths Graph (PPG) 

Definition 2:  Consider a system containing the set of objects 
O.  The Possible Paths Graph (PPG) is built by having a 
node Ni for each object in O.  There exists an edge Eij from 
Ni to Nj in the PPG if there is a possibility that information 
may flow from Ni to Nj, that is, Nj may be modified based on 
the value of Ni. 

The purpose of building a PPG is that it will help during 
the damage assessment preparation phase.  By assuming the 
point of attack one can identify the set of items that may be 

affected consequently. Thus, security officers can be 
prepared for different types of eventualities. 

The second set of objects contains the actual paths that 
were used to make changes in the system within a specified 
period, which for the purposes of the third graph that will be 
defined, is usually the time passed since an object has been 
damaged. This set is represented by the Active Paths Graph 
(APG), and all objects and dependencies in this set exist in 
the PPG. This graph will help in determining the damage flow 
in case of an attack.  Given an initial attack point (an object), 
one can determine which objects in the system may be 
affected by the attack and which ones will not be.  Therefore, 
the ability of the system to carry out its intended functions 
can be calculated.  That is, during the recovery process, the 
set of damaged objects will be made unavailable while the 
rest can be made accessible. Knowing which objects will 
remain unaffected, one will be able to identify what services 
the system will be able to offer while the recovery continues. 
Definition 3:  The Active Paths Graph (APG) contains nodes 
N and edges E such that for every Ni є N and every Eij є E, 
both Ni and Eij are also present in PPG, and Eij illustrates an 
actual information flow; that is Nj was updated based on the 
value of Ni. 

 
Figure 4b: The Active Paths Graph (APG) 

Figure 4(b) provides an example of an Active Paths 
Graph and as can be seen, it is a sub-graph of Figure 4(a).  As 
discussed before, once an initial attack point is determined, 
the APG will help in accurately determining the damage flow 
and the set of objects affected by the attack.  As discussed 
before, as time goes on, more and more objects will be 
affected as new objects will be updated based on the value of 
an affected object.  Thus, to stop the spread of damage, all 
affected objects must be quickly identified and taken offline 
as soon as possible.  This can be achieved by doing a flow 
assessment using the APG.  This leads to the concept of 
actual damage spread path showing exactly which objects 
were affected by an attack. If a system is damaged, we 
represent the spread of damage as the third set of objects, the 
Damage Spread Graph (DSG). The set of objects and 
dependencies in this graph must exist within the APG, as 
damage spread occurs when objects make changes based on 
their dependencies. Like how the APG is a subsection of the 
PPG, the DSG is a subsection of the APG. Figure 4(c) is an 
example of what a damage path may look like. It is important 
to note that over time, a damaged object will always cascade 
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its damage down to dependent nodes included in the APG.  
Definition 4 formally defines the DSG. 
Definition 4: A Damage Spread Graph (DSG) contains 
nodes N and edges E such that for every Ni є N and every Eij 
є E, both Ni and Eij are also present in APG and every node 
in N is damaged through an attack on the system.   Moreover, 
an edge Eij depicts that Ni was damaged first and then Nj was 
damaged through the flow of information from Ni to Nj. 

 
Figure 4c: The Damage Spread Graph (DSG) 

Note that the edges between two objects may be 
bidirectional or recursive.  For example, if an object Oj can 
have a dependency on object Oj and vice versa, then there 
will be a bidirectional edge between Oj and Oj.  Similarly, if 
an object can be dependent on itself, it will result in a 
recursive graph.  To clarify, let us consider an object “salary”.  
When an employee receives an increment that is based on a 
percentage of the current salary of the employee, it causes the 
new salary to be dependent on the old salary and is depicted 
by using an edge from salary to salary itself.   However, it 
must be noted that, for simplicity, we use neither bidirectional 
nor recursive edges in APG or DSG.  Rather, when an object 
is modified, we note that as a new version of the object, thus 
creating a new node for the object with the version number. 

To minimize the time needed to restore the most 
important objects within a system of object dependencies, we 
also define criteria used to determine the order in which 
repairs are made: 
Definition 5:  The criticality of a node N is its predetermined 
level of importance to the system’s functions. This must be 
predetermined for the flexibility of the model to fit various 
systems and align the model with the goals of each specific 
system. For example, one system may need to prioritize 
certain components that other systems do not. The criticality 
of a component can be measured by various characteristics 
such as the intensity or scope of an impact caused by its 
failure as described in [14]. 

We assign a positive whole number to each node N to 
represent criticality. A lower assigned value indicates higher 
criticality. For example, a node Ni with a criticality of 2 would 
be considered more important than a node Nj with a criticality 
of 4. It is important to note that criticality values are not 
unique, meaning multiple nodes can have the same criticality 
value. When that happens, we use the following metric in the 
next definition to serve as a first “tiebreaker”.  
Definition 6:  Objects that have more damaged dependencies 
take longer to repair. Therefore, the repair time of a node N 

is defined as how many inward-flowing edges Ei it is 
receiving damage from.  

When two or more objects are assigned the same 
importance, we choose to first repair the one that has a lower 
repair time. For example, consider two nodes Ni and Nj that 
are equally critical. If Ni needs 5 other nodes repaired to 
repair it, and Nj needs 3 other nodes to repair it, then we will 
repair Nj first, because its operation can be restored more 
quickly than that of Ni. 
Definition 7:  The centrality of a node N is the number of 
outward-flowing edges Eo it has.  

We use the above metric to decide the next object to 
repair when two or more are equal in both criticality and 
repair time. An object with a higher number of Eo will have 
higher centrality. Figure 5a and Figure 5b show two 
subsections of a DSG that highlights centrality. As shown in 
Figure 5a, N4 has three nodes that are dependent on it: N1, N2, 
and N3, while as Figure 5b depicts, N6 only has a single node 
N5 dependent on it. Assume that the repair algorithm has 
repaired the parent node(s) of N4 and that of N6.  To clarify 
the situation, N4 and N6 need not have the same parents; it is 
just that both are in line to be repaired next.  In this scenario, 
repairing N4 before N6 reduces the repair time for the three 
dependent nodes of N4 instead of only one of N6, which can 
make future repairs be performed faster. Therefore, N4 is 
considered to have a higher centrality than N6. 

 

 
Figure 5a: A parent node with high centrality 

 

 
Figure 5b: A parent node with low centrality 

 
Definition 8: The relationships between all nodes n in a data 
system can be expressed by an adjacency matrix Α, where 
each element represents an edge ei,j between nodes ni and nj 
such that the parent node is given by the element’s row and 
the child node is given by the element’s column. The value 
of each element is binary – if an edge going from one node to 
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another exists, then the value of its respective element is 1, 
otherwise, it is 0. Therefore, for each element 𝑎𝑎𝑖𝑖,𝑗𝑗 in Α: 

        𝑎𝑎𝑖𝑖,𝑗𝑗 = �1 if (𝑖𝑖, 𝑗𝑗) ∈  𝑁𝑁𝑖𝑖
0 if (𝑖𝑖, 𝑗𝑗) ∉  𝑁𝑁𝑖𝑖

.        (1) 

Figure 6 depicts the PPG shown in Figure 4a. as an 
adjacency matrix. Each cell with a value of 1 is an existing 
edge on the graph. For example, node D has 3 parent nodes 
and 2 child nodes. The edges coming from nodes A, B, and 
C are highlighted on D’s row. Likewise, its outgoing edges 
toward nodes F and G are highlighted on D’s column. All 
node relationships are translated this way, so as there are 8 
edges in the graph, there is also 8 highlighted elements in 
Figure 6. 

Since an adjacency matrix can be used to represent the 
relationships between data nodes in a uniform manner, it is 
used for our implementation of a damage assessment 
algorithm, which will be covered in the next two subsections. 

 
Figure 6: An adjacency matrix of Figure 4a. 

B. Model Description 
 The model uses the three graphs defined in the previous 
section to construct a representation of a given system and its 
sustained damage from the time of the initial attack. The PPG 
is a preprocessed map of all components and dependency 
paths within a system. We assume that we know how much 
time has passed since the initial attack and build the APG by 
including components and dependency paths that were used 
in a transaction log in that period. By knowing the component 
where the initial attack occurred, we build the DSG by tracing 
the damage through the transaction log. For damage to spread 
from one component to the next, it must follow two criteria: 
1) there is a damage node Ni that has an edge Eij flowing from 
it to node Nj and 2) Eij is used for a transaction while Ni is 
damaged. For the DSG to exist, the initial attack must occur 
within the APG, otherwise there is no cascading damage. 

The goal of the model is to find the optimal sequence of 
repairs to restore the most important operations of a system 
as quickly as possible. We use the metrics defined in the 
previous section to decide which components should be 
repaired first. The first metric is criticality – the most critical 
components must be restored first to resume important 
operations. However, these components may also be 
dependent on other components that are damaged. These 

components must be repaired first before the base component 
can be repaired. At this point, the same problem is applied to 
the dependency components, and the most critical one is 
chosen first. If there is a tie, then components with a lower 
repair time are picked first. For example, a component that 
has two damaged parent components will be prioritized over 
a component with three or more damaged parent components 
if both components are equally critical.  

To clarify, let us consider the graph presented in Figure 
7.  As shown in the figure, nodes N1, N2, and N3 are dependent 
on N4.  Assume that the damage assessment method identified 
N4 as damaged; thus, nodes N1, N2, and N3 are also identified 
as damaged.  During the recovery process, N4 was recovered 
before the other three nodes.  However, since it has three 
dependents all of which are damaged, the question is, which 
one should be repaired first. As our goal is to have the vital 
functions of the system to be made available before the other 
operations, our algorithm would choose the node among N1, 
N2, and N3 having the most criticality.   

 

 
Figure 7: Recovery sequence decision 

Repair time is not affected by how the parent 
components are ordered. For example, consider two 
scenarios with nodes N1, N2, N3, and N4. In the first scenario, 
node N1 is dependent on nodes N2, N3, and N4. In the second 
scenario, node N1 is dependent on node N2, node N2 is 
dependent on node N3, and node N3 is dependent on node N4. 
In both scenarios, nodes N4, N3, and N2 must all be repaired 
before node N1 can be repaired, so N1 will always have the 
same repair time. In short, repair time can simply be 
considered as the number of upstream components. 
Similarly, the third metric, centrality, can be considered as 
the number of downstream components. This is the third 
metric used to determine repair order in case multiple 
components are equal in criticality and repair time. This 
metric is not prioritized over the first two because it does not 
directly contribute toward the stated goals of our model, but 
it can optimize future repairs by lowering the repair time of 
more components than repairing other components would. 

C. The Algorithm 
 First, we discuss the primary objective of our work.  Let 
us consider the notations used in Table I. 
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TABLE I.  NOTATIONS 

Notations Descriptions 
𝑃𝑃 = (𝑉𝑉,𝐸𝐸) Possible Path Graph 
𝐴𝐴 = (𝑉𝑉𝐴𝐴,𝐸𝐸𝐴𝐴) Active Path Graph ( 𝑉𝑉𝐴𝐴 ⊆ 𝑉𝑉,𝐸𝐸𝐴𝐴 ⊆ 𝐸𝐸) 
𝐷𝐷 = (𝑉𝑉𝐷𝐷,𝐸𝐸𝐷𝐷) Damage Spread Graph ( 𝑉𝑉𝐷𝐷 ⊆

𝑉𝑉𝐴𝐴,𝐸𝐸𝐷𝐷 ⊆ 𝐸𝐸𝐴𝐴) 
𝐷𝐷 = (𝑉𝑉𝐶𝐶 ,𝐸𝐸𝐶𝐶) Critical Node Graph (  𝑉𝑉𝐶𝐶 ⊆ 𝑉𝑉𝐷𝐷,𝐸𝐸𝐶𝐶 ⊆

𝐸𝐸𝐷𝐷) 
𝛿𝛿𝑖𝑖𝑗𝑗 Decision to fix edge 𝑖𝑖 to 𝑗𝑗 
𝛿𝛿𝑖𝑖 Decision to fix node 𝑖𝑖 
𝑡𝑡𝑖𝑖 Time to fix node 𝑖𝑖 
𝑐𝑐𝑖𝑖  Centrality of node 𝑖𝑖 
𝑃𝑃𝑖𝑖𝑗𝑗 Dependency indicator of node 𝑖𝑖 and 𝑗𝑗 

Our objective is to find min∑ 𝑡𝑡𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖∈𝑉𝑉𝐷𝐷  subject to  
𝛿𝛿𝑖𝑖 ∑ 𝑃𝑃𝑖𝑖𝑗𝑗𝑗𝑗∈𝑉𝑉𝐶𝐶 ≤ ∑ 𝑃𝑃𝑖𝑖𝑗𝑗𝛿𝛿𝑗𝑗𝑗𝑗∈𝑉𝑉𝐶𝐶   ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉𝐶𝐶          (2) 
𝛿𝛿𝑖𝑖𝑐𝑐𝑖𝑖 ≥  ∑ 𝛿𝛿𝑖𝑖𝑗𝑗(𝑖𝑖,𝑗𝑗)∈𝐸𝐸𝐶𝐶    ∀𝑖𝑖 ∈ 𝑉𝑉𝐶𝐶                         (3) 
𝑃𝑃𝑖𝑖𝑗𝑗 ∈ {0,1}    ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉𝐶𝐶                                    (4) 
𝛿𝛿𝑖𝑖, 𝛿𝛿𝑖𝑖𝑗𝑗 ∈ {0,1}   ∀𝑖𝑖 ∈ 𝑉𝑉𝐶𝐶 , (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸𝐶𝐶               (5) 

 That is, the goal is to minimize the time required to fix 
all critical nodes subjected to conditional constraints of the 
system. To make sure that each preceding nodes of 𝑖𝑖 are fixed 
before node 𝑖𝑖 being processed, condition (2) is used. For 
example, if there is a node 𝑗𝑗 connecting to 𝑖𝑖 but in a prequel 
order, the sum product of all nodes 𝑗𝑗 status and dependency 
indicator 𝑃𝑃𝑖𝑖𝑗𝑗  should be greater or equal than the product of 
sum of all dependency indicator 𝑃𝑃𝑖𝑖𝑗𝑗  with node 𝑖𝑖. To make 
sure that there would not be more out-going flows than the 
given capability of node 𝑖𝑖, equation (3) is imposed to make 
sure the total out-going edge would not surpass the centrality 
of node 𝑖𝑖. Conditions (4) and (5) were built to impose the 
binary attribute of the dependency indicator 𝑃𝑃𝑖𝑖𝑗𝑗 , the decision 
whether to fix node 𝑖𝑖 or edge from node 𝑖𝑖 to node 𝑗𝑗. 
 The algorithms provided in this section use the model 
described in the previous section to compute the optimal 
order of repairs to restore the most important functions of a 
system first. When an attack occurs, we expect an Intrusion 
Detection System (IDS) to identify the attack and provide the 
initial point of damage.  The working principles of IDSs are 
not within the scope of this work and so, not described here. 
 Algorithm 1 creates the PPG from the system’s data. The 
PPG must record all possible dependency paths, including 
those that may not have been used by the system yet. 
Therefore, it is necessary to consult the system’s designers so 
the algorithm can be provided full information on the 
system’s data objects to fully construct the PPG. As stated in 
Definition 8, the PPG, APG, and DSG are all represented by 
a binary adjacency matrix, where child nodes and parent 
nodes are represented by the columns and rows, respectively. 
Each element in one such matrix is the edge between the 
given parent and child node, with a value of 1 indicating that 
the edge does exist in the graph and a value of 0 indicating 
that it does not exist. 
 

Algorithm 1: Initializing the Possible Paths Graph 
Result: Adjacency matrix 𝑀𝑀PPG representing the PPG 
1 for each object 𝑂𝑂𝑥𝑥 and 𝑂𝑂𝑦𝑦 in the system 

1.1 if edge 𝐸𝐸𝑥𝑥𝑦𝑦can exist 
1.2   𝑀𝑀PPG(𝑥𝑥,𝑦𝑦) = 1 
2 Return 𝑀𝑀PPG 

 
 After receiving notification from an IDS, a precise 
damage assessment is performed.  If the damage assessment 
process is unable to make accurate assessment, i.e., in case a 
damaged node is not correctly identified, it and its dependent 
nodes, which are also damaged, will remain unrecovered.  
This will result in valid users or procedures reading them and 
spreading damage by updating other objects, as discussed 
earlier.  For a detailed discussion on damage assessment, one 
may review [9] and [10], which were developed particularly 
for database systems.  However, the methods are still 
applicable to critical infrastructure systems.  Below we 
provide a basic mechanism to carry out the assessment. 
 Damage assessment begins with the APG, which shows 
the actual dependency relationships among the objects in the 
system (Note that the APG can be built as transactions are 
executed and dependencies are established among various 
nodes of the PPG). Given the initial attack point, the 
corresponding node is then marked as damaged.  This is the 
starting node of the DSG. Then by scanning the log from the 
corresponding location of the attack point, transactions that 
read the marked node are identified.  Any objects written by 
those transactions are then marked as damaged in the APG.  
This process continues until the end of the log.  Finally, all 
unmarked nodes and the edges showing their dependencies 
are removed.  The resulting graph is the completed DSG. 
 The APG is constructed in Algorithm 2. This algorithm 
reads the transaction log and creates a node each time a new 
data object is mentioned in the log. The object’s 
dependencies are depicted as the node’s edges in the APG. 
When an existing data object is updated, it becomes a new 
object in the transaction log. As described earlier, this is done 
to prevent recursive dependencies in the APG. 
 Once damage assessment is carried out, recovery 
procedure must begin immediately in order to make the 
system operational quickly.  We use Algorithm 3.1 as the 
main procedure to initialize an object set for repairs. The 
algorithm starts by initializing the set of damaged objects O. 
Each node N within O consists of a system component and its 
relationships with other nodes in O. As mentioned previously 
under Definition 4, some system components may have 
recursive or bidirectional dependencies between each other. 
Therefore, system components can have repeat nodes within 
O to represent their different versions. Each node is assigned 
values for criticality, repair time, and centrality. Using those 
metrics, the algorithm determines an initial target node N0 
based on criticality. If there are two or more nodes with the 
highest criticality, then the node with the lower repair time is 
selected. In the event of another tie, the node with higher 
centrality is selected. Further ties are broken by random 

26

International Journal on Advances in Security, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/security/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 
 

selection. N0, along with O and the repair queue Q, are used 
to make the first call to the recursive function Algorithm 3.2 
at step 4.5. Algorithm 3.1 proceeds until O is completely 
empty, and then the repair queue is finalized, and Q is printed. 

As previously discussed, a node must have its parent 
nodes repaired before it can be considered eligible for repairs. 
Algorithm 3.2 ensures that nodes are scheduled for repairs in 
the proper order while still adhering to the rules set for 
determining priority. It does this by using a while loop to 
check the currently selected node N for repair eligibility. If N 
is eligible for repairs, then it is removed from O and Q is 
updated, then returned. If N is not eligible, then O’, a 
subsection of O made up of all dependency paths above the 
currently selected node is created and used to find the next 
highest priority node N’ within O’. Algorithm 3.2 is 
recursively called using N’ and O’, which can either result in 
the node’s repair or another node being selected for repair 
again. The recursive nature of this algorithm ensures that 
each time a decision needs to be made on which node needs 
to be repaired next, it will prioritize criticality and efficiency 
among all the nodes that can be repaired at any given step. In 
this way, the bulk of the work done by the algorithm is 
choosing the next object for repair within each iteration. Each 
function call will result in one object being repaired and 𝑛𝑛 −
1 additional function calls, where 𝑛𝑛 is the number of nodes 
within the set of nodes being passed. Since repaired objects 
need to be removed from the DSG, function calls will need to 
update and return the global DSG and Q. 
 
Algorithm 2: Initializing the Actual Paths Graph 
Result: Adjacency matrix 𝑀𝑀APG representing the APG 
Parameters: transaction log T, containing the set of edges E that 
were used to make updates 
1 For each edge 𝐸𝐸𝑥𝑥𝑦𝑦 in T 

1.1 𝑀𝑀APG(𝑥𝑥, 𝑦𝑦) = 1 
2 Return 𝑀𝑀APG 

Algorithm 3.1: Initialization for object set repair 
Result: Queue of objects ordered by repair priority 
1 Initialize set of damaged objects O 
2 Preprocess object priority using criticality, repair   
   time, and centrality 
3 Initialize repair queue Q  
4 while O has damaged nodes remaining 
   4.1 Select the highest critical node(s) N within O 
   4.2 if Two or more nodes are tied for highest  
         criticality 
         4.2.1 Select the node(s) N with the lowest repair  
                  time R within O 
   4.3 if Two or more nodes are tied for lowest repair  
         time 
         4.3.1 Select the node(s) N with the highest  
                  centrality within O 
   4.4 if Two or mode nodes are tied for highest  
         centrality 
         4.4.1 Select a single node at random from those  
                  still tied 

   4.5 Update repair queue(N0, O, Q) → Q  
5 Print Q 
Algorithm 3.2: Recursive repair function  
Result: Schedules a node N for repairs and returns the 
updated repair queue Q 
1 Update repair queue(Selected node N, object set O, repair queue 
Q): 
2 while Current object has unrepaired dependencies: 
   2.1 Create subset of damaged nodes O’ of all nodes  
         N’ and edges E’ that N is dependent on 
   2.2 Select the highest critical node(s) N’ within O’ 
   2.3 if Two or more nodes are tied for highest  
         criticality 
         2.3.1 Select the node(s) N’ with the lowest  
                  repair time R within O 
   2.4 if Two or more nodes are tied for lowest repair  
         time 
         2.4.1 Select the node(s) N’ with the highest  
                  centrality within O 
   2.5 if Two or mode nodes are tied for highest  
         centrality 
         2.5.1 Select a single node at random from those  
                  still tied 
   2.6 Update repair queue(N’0 , O’, Q) → Q 
   2.7 Remove the most recent object in repair queue  
         from O 
3 Repair N 
4 Add N to Q 
5 Return Q 

The algorithm produces a list of system nodes in the 
order in which they should be repaired. Recovery procedure 
then continues to the next step to begin repairs on the system. 
It is important to note that while repairs are simulated by the 
algorithm, the process for repairing the actual components of 
the system is not within the scope of this work. 

VI. EXPERIMENTS AND ANALYSIS 

In this section we present the results from simulations 
done using our model. We first describe the setup used for 
our experiment, then present the results from each simulation 
that we ran and explain the implications of the results.  

A. Experiment Description 

We evaluated the efficiency of our method by using it to 
find the number of nodes needed to repair every critical node 
in a DSG simulation with various parameters. The simulation 
constructed a DSG with randomly assigned relationships 
between nodes. The parameters used to build each DSG were 
total nodes, percentage of critical nodes, maximum number 
of parent nodes per node, and maximum number of children 
nodes per node. After the DSG was built, the set of critical 
nodes was randomly picked from the entire DSG for our 
method to compute the repairs required to bring all critical 
nodes back into a good state. For each simulation, 25 
different sets of critical nodes were tested, and the average 
number of required repairs was reported by the simulation. 
We ran four experiments to test the changes to the number of 
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required repairs caused by changing each parameter. For 
every experiment, we set the control variables to be 10,000 
total nodes, 5% critical nodes, and a maximum of 6 parent 
nodes and 6 child nodes per node. We compared our method 
to modified versions of two common traversal algorithms: 
breadth-first search (BFS) and depth-first search (DFS). The 
BFS algorithm repaired nodes starting with all the root nodes, 
then all the children of the root nodes, and then the next set 
of child nodes until it reached the bottom. On the other hand, 
DFS repairs a single parent node, then repairs one of its child 
nodes, and repeats that process until it reaches a node with no 
children. When that happens or if it has already repaired all 
child nodes for a given node, it goes back up to the previous 
node and repairs another child node. The exception to this 
process is if a node has other parent nodes that have not been 
repaired yet. The algorithm will break the traditional BFS or 
DFS order to ensure that the node is eligible for repair. We 
include the results for the BFS and DFS repair algorithms 
with our own method. 

 
Figure 8a: Required repairs based on Total Nodes 

 
Figure 8b: Required repairs based on Critical Node Percentage 

 

B. Results and Analysis 

We present two graphs for each round of simulations in 
Figures 8 and 9. The former figure is a bar graph highlighting 
the different in required repairs between our algorithm and 
BFS and DFS traversals. Figure 9 shows the changes in the 
percentage of nodes repaired between each parameter of a 

simulation. Our results for required repairs based on total 
nodes is shown in Figure 8. It shows that the required repairs 
maintain a constant ratio between them and the total nodes 
with the given control variables, as each experiment resulted 
in a little less than 25% of the total nodes needing to be 
repaired. Figure 8b shows the results for required repairs 
needed for different percentages of critical nodes. We found 
that while the number of required repairs increases as the 
percentage of critical nodes increases, less additional repairs 
are needed when the percentage is higher. Therefore, a high 
number of critical nodes require less repairs per critical node 
than a lower number of critical nodes. Figures 8c and 8d show 
the change in required repairs for different maximums of 
children and parent nodes per node respectively. We found 
that with a low number of maximum children per node, more 
repairs are required. This is because the system of nodes 
becomes narrower in shape. In contrast, when there is a 
higher maximum of parent nodes per node, the required 
repairs see an increase. This indicates that a critical node is 
more likely to have additional parent nodes, which would 
require more repairs than a critical node with fewer parent 
nodes. Across all graphs, we can see that targeting specific 
nodes for repair drastically shortens the time needed to 
recover critical functions, as the average required repairs for 
the BFS and DFS algorithm in most simulations was slightly 
less than the total number of nodes in the simulation. 

 
Figure 8c: Required repairs based on Maximum Number of Child Nodes 

 
Figure 8d: Required repairs based on Maximum Number of Parent Nodes 
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C. On BFS and DFS algorithms 

Before running our simulations, we expected our 
algorithm to outperform BFS and DFS searches due to it 
specifically targeting critical nodes for repair first. However, 
these two algorithms ended up traversing nearly the entire 
system before repairing all critical nodes. The best way to 
explain this is to consider the order by which each algorithm 
repairs nodes as a static ordered list. Our algorithm sorts this 
list after nodes are assigned criticality, so the final critical 
node that needs to be repaired ends up being close to the front 
of this list. On the other hand, BFS and DFS do not consider 
criticality when sorting this list, so each node’s criticality on 
their lists after sorting is effectively random. What 
determines how many nodes need to be repaired is ultimately 
the final critical node in the list, so the odds of this node not 
being in the final thousand or even hundred nodes are quite 
low. Therefore, BFS and DFS will need to repair almost all 
the nodes except for when the percentage of critical nodes is 
lower. When that happens, it is more likely that the final 
critical node will be closer to the middle of the repair order 
instead. 

 
Figure 9a: Changes in required repairs based on maximum number of 

parent nodes 
 

 
Figure 9b: Changes in required repairs based on the percentage of critical 

nodes 

VII. CONCLUSION 
In this research, we have presented a method to repair 

data objects that prioritizes quick recovery for the most 
important components of a system. This allows for the partial 
restoration of functions during the recovery process with an 
emphasis on restoring service to the most necessary 
functions. This was first done by building out three graphs to 

represent the entire system, what changes the system made 
after an attack, and the cascading damage as a result of those 
changes. Next, we developed an algorithm to optimally 
schedule repairs by using those graphs to find damage paths 
that affect the most critical nodes of a system and calculate 
the fastest repair order to fully restore those nodes. Lastly, we 
presented results from a simulation of our algorithm and the 
effects on changing the parameters of the damage paths. Our 
work is most applicable to protecting critical infrastructure 
systems where services need to be restored as quickly as 
possible to avoid economic or societal disruptions.  

Further work includes considering the frequency at 
which an object is used to update its dependencies. Objects 
that are updated at a higher frequency would be prioritized as 
more important. Additionally, a method to select the order of 
repairs for non-critical objects after all critical objects have 
been repaired is also needed. 

 
 

 
Figure 9c: Changes in required repairs based on the maximum number of 

child nodes per node 
 

 
Figure 9d: Changes in required repairs based on the maximum number of 

parent nodes per node 
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Abstract—Clock glitching is an attack surface of many micro-
processors. While fault resistant processors exist, they usually
come with a higher price tag, resulting in their cheaper alterna-
tives being used for small embedded devices. After describing the
effects of fault attacks and their application to modern micro-
processors, this paper presents the concept and implementation
of a novel software based approach at protecting programs from
fault attacks. Even though the protection mechanism can be
automatically added to a given program in a special compiler
step, its use case is not to protect the full program. As shown
by the performance analysis in this paper, the approach comes
with heavy performance implications, making it only useful for
protecting important parts of programs, such as initialization,
key exchanges or other cryptographic implementations.

Index Terms—computer security; clocks; microcontrollers; pro-
gram compilers; program control structures

I. INTRODUCTION

Hardening software against glitching attacks manually is a
tedious task and requires a trained developer. Hardware based
glitch detection on the other hand increases cost of production.
Thus the most efficient approach in order to protect against
glitch attacks is with generalized and automated software
mechanisms. The goal of this paper is to introduce and rate
a software based approach, protecting a program from clock
glitching attacks.
In order to introduce this approach, first, the nature and effects
of glitching attacks in general and clock glitching attacks in
particular are described in Section II. Section III discusses
state of the art software based protection mechanisms. Then
an approach at detecting glitch attacks is introduced in Section
IV. This paper is the extended version of Löw et al. [1], it
introduces an implementation of the glitch detection approach
in Section V. The performance impact of the approach is then
rated using this implementation in Section VI.

II. GLITCHING ATTACK MODELS

In embedded IT Security, glitching attacks are a special kind
of side channel attacks. Their target is to trigger misbehaviours
of the target processor in order to alter execution or data flow.
A typical goal of a glitch attack is changing the execution
flow, such that one instruction is skipped. For example, when
glitching the conditional branch instruction of a signature
check, the check is skipped and the program continues even
if the signatures did not match. Triggering a glitch while

the processor is loading a value from memory can cause the
memory load to not finish correctly and often results in a
zero value being loaded instead. Thus, glitching the data flow
is often used to attack cryptographic algorithms by glitching
the load of keys from memory or by glitching arithmetic
operations [3].
The next Subsection will first describe clock glitching attacks,
which this paper focuses on, in detail. Afterwards Section
II-B will cover the exact effects of clock glitches targeting
microprocessors using Atmels AVR microarchitecture.

A. Clock Glitching

Clock glitching is a specific form of glitching attacks. A
glitch in the target processor is triggered by altering the pro-
vided clock signal. Normally a clock signal is generated by an
oscillator with a constant frequency; Rising that frequency is
called overclocking. Each processor has a maximum operating
frequency, if the clock frequency rises above this threshold the
processor starts to behave abnormally.
In a classical clock glitching attack, only a single targeted
glitch is inserted into the clock signal, i.e., a second high signal
is inserted causing the current instruction to not complete
before the next one starts its execution. The effects depend on
various parameters as well as on the processors architecture
and design.
Figure 1 shows the electrical potential of a clock line during a
clock glitch attack. The first Section, labeled as cycle A, shows
a regular clock cycle, while cycle B shows a clock cycle with
a glitch inserted [6].

B. Effects of Clock Glitches on AVR Microprocessors

The research by Balasch et al. [6] goes into detail about
what exactly happens when a microprocessor is attacked by a
glitching attack. They used a Field Programmable Gate Array
(FPGA) to generate a clock signal for ATMega163 based smart
cards. The FPGA allows clock signal modifications, such as
inserting a glitch at a specific location. The ATMega runs
a special firmware, which places all registers in a known
state, executes the instruction targeted by the glitch and then
examines the state of all registers of the microprocessors. From
the transformations between the start state and the result state
the executed instruction can be derived. This, however, is a non
trivial task. For example, when before the instruction the value
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Fig. 1: Injection of a Clock Glitch

0x0f was in register r18 which changed to 0xf0 afterwards
the executed instruction could either be a 4-bit left shift or
an addition with 0x51. Multiple runs with the same glitch
period, the same instruction but different input states have to
be performed in order to be able to identify the actual executed
instruction.
With these methods Balasch et al. [6] show the actual effect
of clock glitches with different glitch periods on a target
instruction. During instruction fetching the value of the in-
struction to execute next changes from the previous instruction
to zero and then to the value of the following instruction. By
injecting a glitch into this transition, depending on the length
of the glitch period, either a decayed version of the previous
instruction or a decayed, i.e., not yet fully loaded, version
of the current instruction can be executed. Figure 2 shows
this behaviour for a Set all Bits in Register (SER) instruction
followed by a Branch if Equal (BREQ) instruction. In this
specific case, for a glitch period up to 28 ns a decayed version
of the BREQ instruction is executed. From 32ns and upwards
an intermediate value of the transition from zero to SER is
executed [6].

Glitch
period Instruction Opcode (base 2)

TST R12 0010 0000 1100 1100
- BREQ PC+0x02 1111 0000 0000 1001

SER R26 1110 1111 1010 1111
≤ 57ns LDI R26,0xEF 1110 1110 1010 1111
≤ 56ns LDI R26,0xCF 1110 1100 1010 1111
≤ 52ns LDI R26,0x0F 1110 0000 1010 1111
≤ 45ns LDI R16,0x09 1110 0000 0000 1001
≤ 32ns LD R0,Y+0x01 1000 0000 0000 1001
≤ 28ns LD R0,Y 1000 0000 0000 1000
≤ 27ns LDI R16,0x09 1110 0000 0000 1001
≤ 15ns BREQ PC+0x02 1111 0000 0000 1001

Fig. 2: Instruction decay based on glitch period

C. Glock glitching with modern Microprocessors

As microcontrollers such as the AVR tiny and mega series
usually clock between 1 and 8 MHz they tend to have a direct
clock input line, where a oscillator with the desired clock
frequency has to be attached.
On higher clocking microcontrollers such as the ARM Cortex
M0 series operating on a clock frequency of usually around
50MHz to 100MHz a phase locked loop (PLL) is used to
generate the clock signal [11]. A PLL uses an input signal
of an oscillator and is able to multiply that signal allowing
it to generate higher frequencies [4]. This is achieved by
dividing the output of a voltage controlled oscillator (VCO)
and synchronizing this divided voltage with an input voltage
obtained from a quartz oscillator. This way the input frequency
is effectively multiplied achieving a higher frequency.
A PLL output does not immediately respond to changes in
the input frequency, which means a classical clock glitch
has little to no effect on the actual clock frequency of the
microprocessor. Increasing the input frequency for a longer
period of time, does however make the PLL output frequency
rise. This effect is used by B. Selmke et al. in [11] to induce
glitches into an ARM Cortex M0 processor even though it
utilizes a PLL based clock multiplier. Figure 3 shows the
principle of this approach: By increasingt he input frequency
for a specific duration the processor frequency generated by
the PLL increases. While the processor might be able to be
slightly overclocked over the nominal frequency, at a specific
point the frequency becomes too high for the processor to
work correctly, at which point the processor shows faulty
behaviour. The frequency required for entering the CPU fault
zone depends on the chip kind, quality and even on the
instructions executed. This makes glitching processors with
PLLs hard, but [11] proves it is still achievable by attacking
an AES implementation running on an ARM Cortex M0.
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Fig. 3: Glitching a processor with a PLL

III. EXISTING SOFTWARE BASED GLITCH DETECTION
TECHNIQUES

Papers covering fault based attacks on cryptographic im-
plementations date back to 1997, and there are already mul-
tiple papers covering protection mechanisms against fault
attacks using software or hardware based countermeasures.
The software based countermeasures are usually based on
either duplicating instructions or validating computations. The
following sections describe some of the common approaches
at glitch detection by example, before a novel approach is
discussed in Section IV.

A. Instruction duplication mechanisms

A very common approach at protecting code from glitch
attacks is instruction duplication or even triplication. It is
usually implemented at a very late stage in the compilation
process and works by simply duplicating memory load or
even arithmetic instructions and checking their results for
equality. A simple ARM64 assembly example is shown in
Figure 4. Instead of only loading the value at x0 once into
register w0 it is loaded a second time into w1. If a glitch
occured in one of the two instructions, i.e., a wrong value
was read from memory, the comparison check fails and an
error handler is called.

ldr w1, [x0]
ldr w0, [x0]
cmp w1, w0
bne glitch_error

Fig. 4: Validation using instruction duplication

While this approach is simple to implement it is flawed,
especially when using modern microcontrollers with multi
stage pipelines. As shown by Yuce et al. in [8] injecting a
single glitch can affect multiple instructions. This is possible,
because the two load instructions are not executed one after
another, but rather go simultaneously through various stages
in the processor pipeline.

In general placing the validation of an instruction too close to
the instruction itself renders the validation vulnerable to single
glitch attacks.

B. Loop count validation

In [10], Proy et al. describe an automated compiler based
glitch detection mechanism. Instead of validating arbitrary
expressions as shown later in this paper, the approach from
[10] focuses on validating loop exit conditions and iteration
counts. The goal is to prevent attacks which weaken the
security of cryptographic algorithms by reducing the number
of encryption rounds.
A special compilation pass is added to LLVM, a very
common compiler infrastructure. When encountering a loop
with a iteration variable this optimization pass add a a second
iteration variable which gets incremented or decremented the
same as the original variable and thus allows to validate the
loop exit condition after the loop exited. For example, the
loop shown in 5a is modified to include a second variable and
a condition check turning it into code for the loop shown in 5b.

int i = 0;
while(i < 10) {
// ...
i++;

}

(a) Loop with iteration variable

int i = 0;
int j = 0;
while(i < 10) {
// ...
i++;
j++;

}

assert(j >= 10);

(b) Loop from 5a with validation

Fig. 5: Basic loop validation example

This optimization works best for loops with simple iteration
calculation, i.e., adding or subtracting a constant from the
iteration variable each iteration. Loops which contain break
statements or which use a complex iteration modification
however increase complexity of correct validations. The code
listings in Figure 6 demonstrate these special loop forms.
A glitch attack on the calculation of x in Figure 6b would
affect not only the iteration variable, but also a possible
validation variable. Thus, for glitch robustness not only the
iteration variable needs to be duplicated and recalculated, but
also all variables used to modify it. In [10] this is achieved by
tracing through the expressions used to modify the iteration
variable and recalculating all these expressions.
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The following Section describes a similar, but broader ap-
proach, which not only validates loop conditions but rather
all expressions calculated in a function.

int i = 0;
while(i < 10) {

// ...
int x = // ...
if(x == 42)
break;

i++;
}

(a)

int i = 10;
while(i > 0) {
// ...
int x = // ...
i -= x;

}

(b)

Fig. 6: Advanced loop validation examples

C. Mathematical validation of computed values

The paper [5] by Aumüller et al. focuses on protecting
the Rivest-Shamir-Adleman (RSA) cryptosystem. Instead of
classical instruction duplication or expression validation tech-
niques as described in Sections III-A and III-B it makes
modifications and validations on a higher level. Rather than
looking at algorithm implementations or even machine code,
the computation is validated by modifying the RSA CRT
algorithm, a common optimization to RSA using the Chinese
Reminder Theorem (CRT).
Given a message m, two primes p and q, and the exponent
d, the regular RSA CRT algorithm consists of the following
steps to calculate the signature S of a message m:

dp = d mod (p− 1) (1)

dq = d mod (q − 1) (2)

Sp = mdp mod p (3)

Sq = mdq mod q (4)

S = Sq + q · ((Sp − Sq) · q−1 mod p) (5)

Aumüller et al. [5] extend the calculation of Sp and Sq shown
in (3) and (4) with a third, smaller prime t and two random
numbers r1 and r2:

p′ = p · t (6)

d′p = dp + r1 · (p− 1) (7)

S′p = md′
p mod p′ (8)

q′ = q · t (9)

d′q = dq + r2 · (q − 1) (10)

S′q = md′
q mod q′ (11)

The two values S′p and S′q can then be used to calculate Sp

and Sq and thus S using Equation (5).

Sp = S′p mod p (12)

Sq = S′q mod p (13)

This modified algorithm allows validation of the result using
the conditions shown in equations (14) to (19). [5]:

0 ≡ p′ mod p (14)

0 ≡ q′ mod q (15)

dp ≡ d′p mod (p− 1) (16)

dq ≡ d′q mod (q − 1) (17)

0 ≡ S − S′p mod p (18)

0 ≡ S − S′q mod q (19)

While this approach allows to implement a glitch hardened
RSA implementation it only applies to RSA. It is not a gen-
eral approach at hardening algorithms against glitch attacks.
While its principles could be applied to other algorithms
each requires manual work by a developer, rather than e.g.,
automatically applying protection using a compiler pass as
shown in the following section.

IV. DETECTING GLITCHES USING EXPRESSION
VALIDATIONS

Traditionally, glitch detection techniques use instruction
duplication or even triplication. While this works for some
architectures, as described in Subsection III-A, a duplicate
instruction is still vulnerable to a single fault on processors
featuring a multi stage pipeline. Thus, in order to increase the
robustness of glitching detection mechanism, the validation
has to be placed as far away from the original computation
as possible. In compiler engineering functions are divided
into multiple blocks through which execution flows linearly.
Moving validations out of the basic block of the original
computation, means the number of instruction executed be-
tween computation and validation can vary between just a
few computations to multiple calls to other functions. Placing
validations farther away from their original computations
makes it harder for an attacker to glitch both computation
and validation.
The following sections, based on the short version of this
paper [1], describe how to find the optimal locations for vali-
dations and how to validate both computations and conditional
branches.
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A. Identifying Locations for Validations

As described in Subsection III-A glitch detection mecha-
nisms are still vulnerable to a single glitch fault when the
duplicated instruction, in our case the second computation, is
placed close to the original instruction. Placing the validation
as far away from the original computation as possible ensures
its robustness against single fault attacks.
The last possible location for a validation check is usually the
end of the scope a value is defined in. For a value defined
in a conditional or loop body this results in the check being
placed at the end of the conditional or loop respectively. For
a value defined in a function the last possible check is right
before the function returns. Figure 7 shows an example with
these two cases.

int main(int argc, char **argv)
{

int x = argc * 10 - 2;
if(argc > 1)
{

int y = x * 3;

if(argc > 2)
puts(argv[1]);

// <-- validate ‘y‘ here
}

// <-- validate ‘x‘ here
return x;

}

Fig. 7: Example Code

While it is trivial to find the optimal location for immutable
variables in program code, a mutable variable might be
changed between its first initialization and the end of the
scope. In order to correctly validate all values of a mutable
variable the location has to be determined during a later stage
in the compilation process. The Static Single Assignment
(SSA) form is a very common form of representing a program
in compilers. In SSA form each variable is immutable and only
assigned once, variables which are originally mutable and set
multiple times are split up into seperate variables for each
assignment. Additionally, a function in SSA form is usually
represented as basic blocks rather than loops and branches.
Figure 8 shows how gcc represents the code listed in Figure
7 internally after SSA creation.
The validation of x, labeled x_5 in Figure 8, can be placed
in block 5 (B5). But there does not exist a block for the
optimal location to validate y_7. It cannot be placed in B5,
as that block is also reachable from B2 where y_7 does not
exist. Thus a new block has to be created, with B3 and B4 as
predecessors and B5 as successor. The edges B3 → B5 and
B4 → B5 have to be removed. The validation of y_7 can

then be placed inside the newly created block.
In general, a variable x created in block Bx can only be
validated in Bx itself or in a block Bi where all predecessors
prec(Bi) are direct or indirect successors of Bx. The optimal
location for the validation is by definition the block that is
the farthest away from Bx while still meeting the required
condition.
Figure 9 shows the SSA block graph of Figure 7 with
validations. Block B5 is the newly inserted block and B6 the
former block 5.

Fig. 8: Basic Block graph in SSA form of 7 without validations
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Fig. 9: Basic Block graph in SSA form of 7 with validations

B. Validating Calculations

Without deeper knowledge of the implemented algorithm
validating calculations often boils down to simply recomputing
all values and thus duplicating the entire calculation.
For example, the statement int x = argc * 10 - 2;
from Figure 7, results in the SSA shown in the following
listing:

_1 = argc_9(D) * 10;
x_10 = _1 + -2;

For a full validation both the SSA values _1 and x_10 have
to be recalculated and validated:

_5 = argc_9(D) * 10;
__builtin_validate (_1, _5);
_6 = _5 + -2;
__builtin_validate (x_10, _6);

A simpler approach is to only validate the outermost result
of one or more chained calculations. For the above exam-
ple this is achieved simply by removing the first instance
of __builtin_validate resulting in the code shown
in 9. For larger entangled calculations removing redunant
validations allows to greatly reduce the amount of validations
required. For instance all variables in the following C code can
be validated using a single validation of z instead of having
to validate all variables or even all intermediate SSA values
one by one.

int x = a * 10 + 3;
int y = x / 7;
int z = x * y * 13;

The __builtin_validate function acts similar to an
assert equals function, it continues with execution if the two
values are identical and cancels execution otherwise. In a pro-
duction environment the function can be inlined producing an
inequality check and a conditional jump to an error function,
resulting in code similar to what gcc produces for calls to
assert. Figure 10 shows the validation of x from Figure 7.

Fig. 10: Validation in production

C. Validating Comparisons and Conditional Jumps

In gcc the condition of a branch can not only be a single
SSA value, but also a comparison operation. An example is
the if (argc_4(D) > 1) statement at the end of block
2 in Figure 8. This is because in most processor architectures
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a comparison of two values used for a conditional jump is
done without storing the result in a common register, i.e.,
the comparison result is only stored in a flags register, which
is then immediately used by the following conditional jump
instruction.
As there exists no SSA name for the result of such compar-
isons in gcc it cannot be validated as described in Subsection
IV-B. A block with a conditional branch at the end always
has two successors, one for when the condition is true,
one for when its false. Therefore, in order to validate the
condition, two validations, one for each successor have to be
created. Each validation follows the same rules as described
in Subsection IV-A with their initial blocks being the targets
of the conditional edges.
In general, for a block Bi with multiple successors, the
branching condition can be validated using one validation
placed as if a value j has been created in Bj for all edges
Bi → Bj .
If one of the successors Bj is also a direct or indirect successor
of any of the other successors of Bi a new block between Bi

and Bj has to be inserted. This is usually the case for loops
and if statements without an else block. For example, in Figure
8 the validation for the condition of B2 being false cannot be
placed in B5, as B5 is also a successor of B3.

D. Performance Considerations of Expression Validations

Simple instruction duplication mechanisms as described in
III-A duplicate the runtime of the protected instructions. This
holds true for simple microprocessors where each instruction
takes a fixed amount of clock cycles. For advanced processors,
which incorperate memory caching, a second load of a specific
address will result in a cache hit, which is usually faster than
a load from memory.
The novel glitch detection approach described in Section
IV also duplicates instructions and thus has similar effect
during runtime. The bigger impact, howver, is its prevention
of possible compiler optimizations resulting in the generation
of less performant instructions. Normally a compiler analyzes
the lifetime of variables and the collisions between those
lifetimes. The lifetime of a variable starts when the variable
is first set and ends with its last usage. Two lifetimes collide
when they are both alive at any given point in the function.
When two lifetimes do not collide they can be placed in the
same processor register. With too many lifetime collisions
the compiler might run out of registers to assign and has
to place variables in memory instead [7]. By definition, the
optimal location for validation, as given in Subsection IV-A,
extends the lifetime of variables to the maximum possible.
Thus, with the novel detection approach, the register allocator
of the compiler will have to place variables in memory
more often, resulting in more memory accesses and decreased
performance.
For example, the SSA variable y_12 of Figure 9 would
normally live only for a short time in B3. Its validation in B5

extends its lifetime, making it collide with the SSA variables
_2, _3 and _4.

In order to decrease the performance impact expression val-
idation can only be enabled for security relevant functions
such as cryptographic implementations or credential checks
by disabling validations for all functions and adding a special
compiler attribute to relevant ones.

V. PROOF OF CONCEPT IMPLEMENTATION OF EXPRESSION
VALIDATIONS

In order to test the feasability and actual performance
impact of expression validations, the validations as described
in Section IV were implemented into an existing compiler
backend. The compilation library GNU libjit was picked as a
framework for the implementation, as its internal immediate
representation (IR) is simple and it already includes the live-
ness algorithms described in [7]. The liveness information will
also be used in the following sections in order to implement
the validation placement as described in Section IV-A.

A. libjit Immediate Representation

A compilation unit in libjit is a function. Each function
consists of one or more basic blocks. Each basic block contains
instructions, which are executed linearly. Having a call, jump
or conditional jumps ends the current basic block and starts
a new one. This way execution always flows linearly through
a basic block. A block a, which may jump to another block
b, is called bs predecessor and a is called a successor of b.
Each block can have multiple successors as well as multiple
predecessors. The control flow graph (CFG) of a function is
a representation of the functions control flow using a directed
graph G with a node vi for each basic block i and edges vij
for each successor vj of vi.
An instruction in libjits immediate representation consists of
an operator op and up to three values. These values are
named dest, value1 and value2. Thus the usual form of
an instruction is dest = value1 op value2. Complex
mathematical expressions have to be broken down to a series
of such instructions with the use of temporary values. For
example the expression y = 2 * x + 7 in libjit IR uses a
temporary value i0 as shown in the following listing:

i0 = 2 * x
y = i0 + 7

There however exist many instructions where neither dest
nor value2 exist or just one of them. One example for such
instructions are the conversion instructions, such as converting
a 64-bit integer to a 64-bit floating point value denoted as
dest = long_to_float64(value1).
Each instruction includes flags what kind of operation is
performed and which of the three values are used. For the
purpose of expression validations only arithmetic and compar-
ison instructions are relevant. These instructions can simply be
cloned and given a new dest value, which is then compared
to the original dest.
Libjit does not represent instructions in SSA form. This means
a value used as a destination for an instruction might be
used as a destination for other instructions too and thus its
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value might change. This makes determining locations for
expression validations harder, as a cloned instruction might
depend on a value changed between the original computation
and the duplicated one.

B. Liveness Flags in libjit

Libjit implements liveness and dataflow analysis as de-
scribed by Cooper and Torczon in [7]. Each basic block is
fitted with flags about killed, upwards exposed and living out
values. A value k is killed in block vi if its value is changed
inside vi. A value is upwards exposed when it is used without
being or before being killed. A value k lives out a block vi
when one of vi successors has k upwards exposed.
In libjit these three attributes are stored in bitsets for each
block, with one bit for each value that exists in the function.
As libjit expressions are not in SSA form, for expression
validation mainly the kill set of a block is relevant, that is when
trying to validate an instruction in the form of c = a + b
the validation cannot be placed after a modification of a, b or
c.

C. Basic Block Domination

In Graph theory a node vi in control flow graph G is said to
be dominated by another node vj when all possible paths from
the entry point to vi go through vd. Thus in program execution
when vi is executed the instructions in vd have been executed
at least once.
Block domination is easily described in a recursive manner:
A block vj is dominated by itself and the intersection of all
dominators of its preceeding nodes vi:

Dom(vj) = {vj} ∪ (∩vi∈preds(vj)Dom(vi)) (20)

This recursive definition can be implemented using a fix
point algorithm as shown in Figure 11. This direct implemen-
tation has a complexity of O(n2) with n being the number of
blocks in the control flow graph. In 1979 Lengauer et Tarjan
described a faster algorithm for finding block dominators with
a runtime of O(m · log(n)) with m being the number of edges
and n the number of nodes [2].
With m and n staying below 1000 in all test cases and because
the latter algorithm comes with a higher implementation
complexity, the direct implementation, shown in Figure 11,
was chosen for libjit.

dominators[v0] = {};

foreach vi in G:
dominators[vi] = {v0, v1, ..., vn};

while dominators changed:
foreach vj in G:

dominators[vj] = \
{vj} ∪ (∩vi∈preds(vj)dominators[vi]);

Fig. 11: CFG Dominator Algorithm

D. Finding Expression Validation Locations in libjit

Section IV-A described the optimal validation location,
based on program code with the concept of scopes. In libjit
IR the concept of scopes does not exist directly, as it operates
on a lower level than regular program code. In program code
a scope ends when the execution flow of multiple possible
branches join without all branches being created within the
given scope. In the example code in Figure 7 the scope where
variable y was created ends with the end of the outer if
statement. However the scope where variable x was created
does not end at that location, as both the if and else branch
were created within the scope of x.
When mapping the scope lifetime to basic blocks a scope of
variable k is exactly alive in all blocks, which are dominated
by the block creating k. This means a variable k can be
validated in all blocks vi where the creating block vk of k
is dominating vi: vk ∈ Dom(vi).
Additionally, as described in Section V-B, in libjit a block
vj is not a possible validation candidate when k is killed by
one of its direct or indirect predecessors vi, without vi being
the block with the original instruction that is to be validated.
While applying these rules to all blocks gives us the list of
possible validation locations what we are actually looking for
is the last possible location for a validation. A block vi is
the last possible location for a validation of a value created
in vk when not all of its successors vj are possible validation
candidates for k, i.e., when not all successors are dominated
by vk.
When an instruction cannot be validated by any other block
than the creating block itself the validation has to be placed at
the end of the block. When the destination value or one of the
operands is killed later inside the same block the validation
has to be placed inside of the block, before the kill occurs.

E. Placing Expression Validations in libjit

In order to validate an instruction, first the original computa-
tion has to be recomputed and afterwards its result compared to
the original computation result. In case of inequality a branch
to a specific expression validation failure label is performed.
Because of this conditional branch placing a validation actually
starts a new basic block at the validation location. Adding new
blocks invalidates the computed dominating block information
as well as the control flow graph itself. Therefore, all expres-
sion validation locations are first computed and collected in a
list before actually placing them into the libjit IR code.
Validations of instructions can either occur at the start or at
the end of a basic block. Placing them at the start is easier,
as a new basic block can simply be prepended before the first
instruction. Placing validations at the end of a block requires
moving the last instruction to another new block.

VI. PERFORMANCE IMPACT OF EXPRESSION VALIDATIONS

As described in Section IV-D the expected runtime increase
is at least 100%. This section measures the actual performance
impact of the reference expression validation implementation
in libjit. As libjit is simply a library used for compiling
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low level instructions to machine code a higher level lan-
guage called PointerScript is used for implementing the test
algorithms. PointerScript is a language with JavaScript like
syntax, but direct access to C functions through its built-in
foreign function interface. For the purpose of performance
measurements several common algorithms such as array sort-
ing, simple addition loops as well as special worst case
scenarios were implemented and ran both with expression
validations enabled and disabled.

A. Performance Test Setup and Programs

As libjit is a JIT compilation library the total program
execution time normally also includes the compilation steps of
the program code. For the purpose of this paper only the actual
code runtime after compilation was measured. Even though
for programs running multiple seconds compilation time only
takes a small amount of the runtime, this way the additional
compilation time caused by expression validation placement
is ignored.
The POSIX gettimeofday function is called before and after
calling the compiled program code and the difference is used
for measuring the runtime of the programs. Each test program
is run ten times and their runtimes are averaged. As runtime
differs based on processor model and speed, for comparison
not the actual runtime, but rather the runtime increase in
percent is used as a metric.
The first test program is a simple loop calculating the sum of
numbers between 1 and n. Its code is shown in Figure 12
The second test program partly listed in Figure 13 is a textbook
implementation of the bubble sort sorting algorithm applied
to an array of n random integers generated using the rand
function.
The last code snippet shown in Figure 14 is an example crafted
especially to visualize the performance overhead introduced by
expression validations. It includes six variables all initialized
with a random value and used in a tight loop with a high
iteration count. Between the initialization of the variables and
the actual loop is a call to an external function. Because of
this function call all values created before the call have to be
placed either in callee saved registers or in memory. Without
expression validations there are exactly six values used after
the call, which is identical to the amount of callee saved
registers in the System V ABI on the x86-64 architecture.
With expression validations enabled the register allocator has
to spill some of the values, i.e., place them in memory instead.
Figures 15 and 16 show this effect in the disassembly of Figure
14 with validations disabled and enabled respectively.

var sum = 0;
for(var i = 0; i < 10000000000; i++)
{

sum += i;
}

Fig. 12: Non-Gauß Addition

for(var i = 0; i < len; i++)
{
for(var j = 0; j < len - 1; j++)
{
if(parts[j] > parts[j + 1])
{

var tmp = parts[j + 1];
parts[j + 1] = parts[j];
parts[j] = tmp;

}
}

}

Fig. 13: Bubblesort

var x = rand();
var a = x + 1;
var b = x + 2;
var c = x + 3;
var d = x + 4;
var e = x + 5;

printf("");

for(var i = 0; i < 100000000; i++)
{
a++; b++; c++; d++; e++;

}

Fig. 14: Register Allocation Spill Triggering Code

48 ff c3 inc %rbx
49 ff c4 inc %r12
49 ff c5 inc %r13
49 ff c6 inc %r14
49 ff c7 inc %r15

Fig. 15: Disassembly of the loop body from Figure 14 with
validations disabled

4c 8b 4d f8 mov -0x8(%rbp),%r9
4d 8d 51 01 lea 0x1(%r9),%r10
49 8b c2 mov %r10,%rax
48 89 45 f8 mov %rax,-0x8(%rbp)
4c 8b 5d f0 mov -0x10(%rbp),%r11
4d 8d 73 01 lea 0x1(%r11),%r14
49 8b c6 mov %r14,%rax
48 89 45 f0 mov %rax,-0x10(%rbp)

Fig. 16: Disassembly of just two of the increments from Figure
14 with validations enabled
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B. Performance Impact of Expression Validations

Figure 17 shows the relative runtimes of the three code
samples. Each runtime is normalized to the runtime of the
program with glitch detection disabled.
As expected the minimum runtime increase is around 100%,
i.e., the runtime is doubled compared to running the same code
without expression validations. This is especially true for the
code samples listed in figures 12 and 13, where the only impact
of expression validations is the added second computation of
expressions within the loop.
For the code sample listed in Figure 14 however the expression
validations do not only duplicate computations, but also have
an impact on the register allocator and thus result in a signifi-
cantly worse performance decrease. Running the program with
expression validations enabled results in an approximatily 4.5
times as long execution time. The forth pair of measurements
in Figure 17 describes the runtime increase of 14 with libjits
graph coloring register allocator disabled. The execution time
in this case is given relativly to the code running with the
advanced allocator enabled. The overhead factor is reduced
to around 3, which is mainly caused by the non-validated
program also storing and loading values from memory and
becoming nearly two times slower, while the runtime with
expression validations only increases from 4.5 to 5.5 times
slower than the runtime with advanced register allocation and
without expression validations.

Fig. 17: Relative runtimes of 12, 13, 14 and 14 using only a
basic register allocator

VII. CONCLUSION

After giving an introduction to glitching attacks and clock
glitches in particular, we discussed various software based
approaches at hardening against glitching attacks. While the
common protection mechanism discussed in Subsection III-A
can easily be applied to a program via an additional compila-
tion pass, it is also shown to be ineffective [8]. The protection
mechanism discussed in Subsection III-B by Proy et al. [10]
can easily be applied to existing codebases, but only validates

loop conditions and loop iterators.
The approach described in Section IV tries to combine the
best traits of the three described previous mechanisms. It is
similar to the mechanism by Proy et al. [10] as it also comes
in the form of a compiler pass and it also adds validations of
existing computations to the program. However, it not only
validates loop conditions, but rather generalizes validation
of arbitrary computations and branch conditions. This allows
it to also protect the program from glitch attacks targeting
value computations or substitutions, instead of only protecting
against attacks aimed at modifying loop execution counts.
Section V discusses the steps of implementing the glitch
detection technique, first described by Löw et al. in [1], into
existing compiler architectures and gives details about the
implementation into the GNU libjit compiler backend. Section
VI shows the performance impact of this proof of concept
implementation based on three representative code samples.
It shows the assumptions about runtime usually doubles, as
assumed in Section IV-D, but also shows the performance
impact can be way worse in specific scenarios. Thus the
approach is best applied only selectively to specific parts
of a program, keeping performance impact low while still
providing protection to curcial code parts.
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