

The International Journal on Advances in Security is published by IARIA.

ISSN: 1942-2636

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Security, issn 1942-2636

vol. 12, no. 3 & 4, year 2019, http://www.iariajournals.org/security/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Security, issn 1942-2636

vol. 12, no. 3 & 4, year 2019, <start page>:<end page> , http://www.iariajournals.org/security/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2019 IARIA

International Journal on Advances in Security

Volume 12, Number 3 & 4, 2019

Editors-in-Chief

Hans-Joachim Hof,

- Full Professor at Technische Hochschule Ingolstadt, Germany

- Lecturer at Munich University of Applied Sciences

- Group leader MuSe - Munich IT Security Research Group

- Group leader INSicherheit - Ingolstädter Forschungsgruppe angewandte IT-Sicherheit

- Chairman German Chapter of the ACM

Birgit Gersbeck-Schierholz

- Leibniz Universität Hannover, Germany

Editorial Advisory Board

Masahito Hayashi, Nagoya University, Japan
Daniel Harkins , Hewlett Packard Enterprise, USA
Vladimir Stantchev, Institute of Information Systems, SRH University Berlin, Germany
Wolfgang Boehmer, Technische Universitaet Darmstadt, Germany
Manuel Gil Pérez, University of Murcia, Spain
Carla Merkle Westphall, Federal University of Santa Catarina (UFSC), Brazil
Catherine Meadows, Naval Research Laboratory - Washington DC, USA
Mariusz Jakubowski, Microsoft Research, USA
William Dougherty, Secern Consulting - Charlotte, USA
Hans-Joachim Hof, Munich University of Applied Sciences, Germany
Syed Naqvi, Birmingham City University, UK
Rainer Falk, Siemens AG - München, Germany
Steffen Wendzel, Fraunhofer FKIE, Bonn, Germany
Geir M. Køien, University of Agder, Norway
Carlos T. Calafate, Universitat Politècnica de València, Spain

Editorial Board

Gerardo Adesso, University of Nottingham, UK
Ali Ahmed, Monash University, Sunway Campus, Malaysia
Manos Antonakakis, Georgia Institute of Technology / Damballa Inc., USA
Afonso Araujo Neto, Universidade Federal do Rio Grande do Sul, Brazil
Reza Azarderakhsh, The University of Waterloo, Canada
Ilija Basicevic, University of Novi Sad, Serbia
Francisco J. Bellido Outeiriño, University of Cordoba, Spain
Farid E. Ben Amor, University of Southern California / Warner Bros., USA
Jorge Bernal Bernabe, University of Murcia, Spain
Lasse Berntzen, University College of Southeast, Norway
Catalin V. Birjoveanu, "Al.I.Cuza" University of Iasi, Romania
Wolfgang Boehmer, Technische Universitaet Darmstadt, Germany
Alexis Bonnecaze, Université d'Aix-Marseille, France
Carlos T. Calafate, Universitat Politècnica de València, Spain
Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain

Zhixiong Chen, Mercy College, USA
Clelia Colombo Vilarrasa, Autonomous University of Barcelona, Spain
Peter Cruickshank, Edinburgh Napier University Edinburgh, UK
Nora Cuppens, Institut Telecom / Telecom Bretagne, France
Glenn S. Dardick, Longwood University, USA
Vincenzo De Florio, University of Antwerp & IBBT, Belgium
Paul De Hert, Vrije Universiteit Brussels (LSTS) - Tilburg University (TILT), Belgium
Pierre de Leusse, AGH-UST, Poland
William Dougherty, Secern Consulting - Charlotte, USA
Raimund K. Ege, Northern Illinois University, USA
Laila El Aimani, Technicolor, Security & Content Protection Labs., Germany
El-Sayed M. El-Alfy, King Fahd University of Petroleum and Minerals, Saudi Arabia
Rainer Falk, Siemens AG - Corporate Technology, Germany
Shao-Ming Fei, Capital Normal University, Beijing, China
Eduardo B. Fernandez, Florida Atlantic University, USA
Anders Fongen, Norwegian Defense Research Establishment, Norway
Somchart Fugkeaw, Thai Digital ID Co., Ltd., Thailand
Steven Furnell, University of Plymouth, UK
Clemente Galdi, Universita' di Napoli "Federico II", Italy
Birgit Gersbeck-Schierholz, Leibniz Universität Hannover, Germany
Manuel Gil Pérez, University of Murcia, Spain
Karl M. Goeschka, Vienna University of Technology, Austria
Stefanos Gritzalis, University of the Aegean, Greece
Michael Grottke, University of Erlangen-Nuremberg, Germany
Ehud Gudes, Ben-Gurion University - Beer-Sheva, Israel
Indira R. Guzman, Trident University International, USA
Huong Ha, University of Newcastle, Singapore
Petr Hanáček, Brno University of Technology, Czech Republic
Gerhard Hancke, Royal Holloway / University of London, UK
Sami Harari, Institut des Sciences de l'Ingénieur de Toulon et du Var / Université du Sud Toulon Var, France
Daniel Harkins , Hewlett Packard Enterprise, USA
Ragib Hasan, University of Alabama at Birmingham, USA
Masahito Hayashi, Nagoya University, Japan
Michael Hobbs, Deakin University, Australia
Hans-Joachim Hof, Munich University of Applied Sciences, Germany
Neminath Hubballi, Infosys Labs Bangalore, India
Mariusz Jakubowski, Microsoft Research, USA
Ravi Jhawar, Università degli Studi di Milano, Italy
Dan Jiang, Philips Research Asia Shanghai, China
Georgios Kambourakis, University of the Aegean, Greece
Florian Kammueller, Middlesex University - London, UK
Sokratis K. Katsikas, University of Piraeus, Greece
Seah Boon Keong, MIMOS Berhad, Malaysia
Sylvia Kierkegaard, IAITL-International Association of IT Lawyers, Denmark
Hyunsung Kim, Kyungil University, Korea
Geir M. Køien, University of Agder, Norway
Ah-Lian Kor, Leeds Metropolitan University, UK
Evangelos Kranakis, Carleton University - Ottawa, Canada
Lam-for Kwok, City University of Hong Kong, Hong Kong
Jean-Francois Lalande, ENSI de Bourges, France
Gyungho Lee, Korea University, South Korea
Clement Leung, Hong Kong Baptist University, Kowloon, Hong Kong
Diego Liberati, Italian National Research Council, Italy

Giovanni Livraga, Università degli Studi di Milano, Italy
Gui Lu Long, Tsinghua University, China
Jia-Ning Luo, Ming Chuan University, Taiwan
Thomas Margoni, University of Western Ontario, Canada
Rivalino Matias Jr ., Federal University of Uberlandia, Brazil
Manuel Mazzara, UNU-IIST, Macau / Newcastle University, UK
Catherine Meadows, Naval Research Laboratory - Washington DC, USA
Carla Merkle Westphall, Federal University of Santa Catarina (UFSC), Brazil
Ajaz H. Mir, National Institute of Technology, Srinagar, India
Jose Manuel Moya, Technical University of Madrid, Spain
Leonardo Mostarda, Middlesex University, UK
Jogesh K. Muppala, The Hong Kong University of Science and Technology, Hong Kong
Syed Naqvi, CETIC (Centre d'Excellence en Technologies de l'Information et de la Communication),Belgium
Sarmistha Neogy, Jadavpur University, India
Mats Neovius, Åbo Akademi University, Finland
Jason R.C. Nurse, University of Oxford, UK
Peter Parycek, Donau-Universität Krems, Austria
Konstantinos Patsakis, Rovira i Virgili University, Spain
João Paulo Barraca, University of Aveiro, Portugal
Sergio Pozo Hidalgo, University of Seville, Spain
Yong Man Ro, KAIST (Korea advanced Institute of Science and Technology), Korea
Rodrigo Roman Castro, University of Malaga, Spain
Heiko Roßnagel, Fraunhofer Institute for Industrial Engineering IAO, Germany
Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster / North-
German Supercomputing Alliance, Germany
Antonio Ruiz Martinez, University of Murcia, Spain
Paul Sant, University of Bedfordshire, UK
Peter Schartner, University of Klagenfurt, Austria
Alireza Shameli Sendi, Ecole Polytechnique de Montreal, Canada
Dimitrios Serpanos, Univ. of Patras and ISI/RC ATHENA, Greece
Pedro Sousa, University of Minho, Portugal
George Spanoudakis, City University London, UK
Vladimir Stantchev, Institute of Information Systems, SRH University Berlin, Germany
Lars Strand, Nofas, Norway
Young-Joo Suh, Pohang University of Science and Technology (POSTECH), Korea
Jani Suomalainen, VTT Technical Research Centre of Finland, Finland
Enrico Thomae, Ruhr-University Bochum, Germany
Tony Thomas, Indian Institute of Information Technology and Management - Kerala, India
Panagiotis Trimintzios, ENISA, EU
Peter Tröger, Hasso Plattner Institute, University of Potsdam, Germany
Simon Tsang, Applied Communication Sciences, USA
Marco Vallini, Politecnico di Torino, Italy
Bruno Vavala, Carnegie Mellon University, USA
Mthulisi Velempini, North-West University, South Africa
Miroslav Velev, Aries Design Automation, USA
Salvador E. Venegas-Andraca, Tecnológico de Monterrey / Texia, SA de CV, Mexico
Szu-Chi Wang, National Cheng Kung University, Tainan City, Taiwan R.O.C.
Steffen Wendzel, Fraunhofer FKIE, Bonn, Germany
Piyi Yang, University of Shanghai for Science and Technology, P. R. China
Rong Yang, Western Kentucky University , USA
Hee Yong Youn, Sungkyunkwan University, Korea
Bruno Bogaz Zarpelao, State University of Londrina (UEL), Brazil
Wenbing Zhao, Cleveland State University, USA

International Journal on Advances in Security

Volume 12, Numbers 1 & 2, 2019

CONTENTS

pages: 153 - 163
Verified Metrics for Continuous Active Defence
George O. M. Yee, Aptusinnova Inc. and Carleton University, Canada

pages: 164 - 176
A Guideline on the Analysis of Stochastic Interdependencies in Critical Infrastructures
Sandra König, Austrian Institute of Technology, Austria
Thomas Grafenauer, Austrian Institute of Technology, Austria
Stefan Rass, Universität Klagenfurt, Austria
Stefan Schauer, Austrian Institute of Technology, Austria
Manuel Warum, Austrian Institute of Technology, Austria

pages: 177 - 193
An Advanced Approach for Choosing Security Patterns and Checking their Implementation
Sébastien Salva, University Clermont Auvergne, LIMOS laboratory, France
Loukmen Regainia, University Clermont Auvergne, LIMOS laboratory, France

pages: 194 - 202
Network Analysis of City Streets: Forecasting Burglary Risk in Small Areas
Maria Mahfoud, CWI National Research Institute for Mathematics and Computer Science, The Netherlands
Sandjai Bhulai, Vrije Universiteit Amsterdam, The Netherlands
Rob van der Mei, CWI National Research Institute for Mathematics and Computer Science, The Netherlands
Dimitry Erkin, CWI National Research Institute for Mathematics and Computer Science, The Netherlands
Elenna Dugundji, Vrije Universiteit Amsterdam, The Netherlands

pages: 203 - 222
Deploying Artificial Intelligence to Combat Disinformation Warfare: Identifying and Interdicting Disinformation
Attacks Against Cloud-based Social Media Platforms
Barry Cartwright, Simon Fraser University, Canada
George Weir, University of Strathclyde, Scotland, UK
Richard Frank, Simon Fraser University, Canada
Karmvir Padda, Simon Fraser University, Canada

pages: 223 - 235
Reaching Grey Havens: Industrial Automotive Security Modeling with SAM
Markus Zoppelt, Nuremberg Institute of Technology, Germany
Ramin Tavakoli Kolagari, Nuremberg Institute of Technology, Germany

pages: 236 - 247
Enabling Financial Reports Transparency and Trustworthiness using Blockchain Technology
Van Thanh Le, Free University of Bolzano, Italy
Claus Pahl, Free University of Bolzano, Italy
Nabil El Ioini, Free University of Bolzano, Italy
Gianfranco D'Atri, Calabria University, Italy

Verified Metrics for Continuous Active Defence

George O. M. Yee
Computer Research Lab, Aptusinnova Inc., Ottawa, Canada

Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada
email: george@aptusinnova.com, gmyee@sce.carleton.ca

Abstract—As a sign of the times, headlines today are full of
attacks against an organization’s computing infrastructure,
resulting in the theft of sensitive data. In response, the
organization applies security measures (e.g., encryption) to
secure its vulnerabilities. However, these measures are often
only applied once, with the assumption that the organization is
then protected and no further action is needed. Unfortunately,
attackers continuously probe for vulnerabilities and change
their attacks accordingly. This means that an organization must
also continuously check for new vulnerabilities and secure them,
to continuously and actively defend against the attacks. This
paper derives metrics that characterize the security level of an
organization at any point in time, based on the number of
vulnerabilities secured and the effectiveness of the securing
measures. The metrics are verified in terms of their soundness
using the author’s recently published procedure for deriving
good security metrics. The paper then shows how an
organization can apply the metrics for continuous active
defence.

Keywords- sensitive data; vulnerability; security level; verified

metrics; continuous defence.

I. INTRODUCTION

This work extends Yee [1] by adding explanations and
related work, elaborating the application areas, and including
a new section on verifying the soundness of the proposed
metrics.

Headlines today are full of news of attacks against
computing infrastructure, resulting in sensitive data being
compromised. These attacks have devastated the victim
organizations. The losses have not only been financial (e.g.,
theft of credit card information), but perhaps more
importantly, have damaged the organizations’ reputation.
The first half of 2019 had 3,800 publicly disclosed breaches
with 4.1 billion records exposed, an increase of 54% in the
number of reported breaches when compared to the first half
of 2018 [2]. Here are just two of those breaches [2]:

• March 22 and 23, 2019, Capital One: The number of
records breached was 106 million, including names,
addresses, postal codes, phone numbers, email
addresses, birthdates, and self-reported income. Also
exposed in some cases were customer credit scores,
credit limits, balances, and payment history. The breach
affected about 100 million consumers in the United
States and about 6 million in Canada. A hacker accessed

the servers of a third-party cloud services company
contracted by Capital One. The hacker hacked the
servers on March 22 and 23, 2019 and has since been
arrested. According to CNN Business, Capital One
expected losses of $100 million to $150 million related
to the hack, for expenses incurred in notifying affected
customers, providing free credit monitoring, legal
defense, and fixing the vulnerability.

• August 1, 2018 to March 30, 2019, American Medical
Collection Agency: Here the number of records breached
was over 20 million, including social security numbers,
birthdates, payment card data, credit card information,
and bank account information. American Medical
Collection Agency collected overdue payments for
medical labs. This long running breach exposed the
records of the labs’ customers including the above
sensitive data. A cybersecurity firm found the breached
information on the dark web. American Medical
Collection Agency filed for bankruptcy in June 2019,
citing IT costs, possible lawsuits, and the loss of business
from its customers.

Hard hit data breach victims in 2018 [3] include toymaker

Vtech Technologies (a cyberattack exposed the personal data
of an estimated 6.4 million children worldwide), Under
Armour (a cyberattack stole the personal data of 150 million
users of its app), and major airlines such as Air Canada,
British Airways, and Cathay Pacific (hackers made off with
the personal data of a combined 9.8 million customers). The
year 2017 [4] saw a total of 5,207 breaches and 7.89 billion
information records compromised.

In response to attacks, such as the ones described above,
organizations determine their computer system
vulnerabilities and secure them using security measures.
Typical measures include firewalls, intrusion detection
systems, two-factor authentication, encryption, and training
for employees on identifying and resisting social engineering.
However, once the security measures have been
implemented, organizations tend to believe that they are safe
and that no further actions are needed. Unfortunately,
attackers do not give up just because the organization has
secured its known computer vulnerabilities. Rather, the
attackers will continuously probe the organization’s
computer system for new vulnerabilities that they can exploit.
This means that the organization must continuously analyze
its computer system vulnerabilities and secure any new ones
that it discovers. In order to do this effectively, it is useful to

153

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

have quantitative metrics of the security level at any
particular point in time, based on the number of
vulnerabilities secured and the effectiveness of the security
measures, at that point in time. An acceptable security level
can be set, so that if the security level falls below this
acceptable level due to new vulnerabilities, the latter can be
secured to bring the security level back to the acceptable
level. This work derives such metrics and shows how to apply
them for continuous active defence, i.e., continuous
vulnerabilities evaluation and follow up. Further, this work
verifies that the proposed metrics are sound, a term that will
be defined below.

The objectives of this work are: i) derive straightforward,
clear metrics of the resultant protection level obtained by an
organization at any point in time, based on the use of security
measures to secure vulnerabilities and based on the
effectiveness of the measures, ii) show how these metrics can
be calculated, iii) verify that these metrics are sound, and iv)
show how the metrics can be applied for continuous active
defence and discuss some application areas. We seek
straightforward, easy to understand metrics since
complicated, difficult to understand ones tend not to be used
or tend to be misapplied. We base these metrics on securing
vulnerabilities since this has been and continues to be the
method organizations use to secure their computer
infrastructure.

The rest of this paper is organized as follows. Section II
discusses sensitive data, attacks, and vulnerabilities. Section
III derives the metrics, shows how to calculate them, and
presents various aspects of the metrics, including some of
their strengths, weaknesses, and limitations. Section IV
verifies that the metrics are sound. Section V explains how to
apply the metrics for continuous active defence and presents
some application areas. Section VI discusses related work.
Section VII gives conclusions and future work.

II. SENSITIVE DATA, ATTACKS, AND VULNERABILITIES
Sensitive data is data that needs protection and must not

fall into the wrong hands. It includes private or personal
information [5], which is information about an individual,
can identify that individual, and is owned by that individual.
For example, an individual’s height, weight, or credit card
number can all be used to identify the individual and are
considered as personal information or personal sensitive data.
Sensitive data also includes non-personal information that
may compromise the competitiveness of the organization if
divulged, such as trade secrets or proprietary algorithms and
formulas. For government organizations, non-personal
sensitive data may include information that is vital for the
security of the country for which the government
organization is responsible.

DEFINITION 1: Sensitive data (SD) is information that must
be protected from unauthorized access in order to safeguard
the privacy of an individual, the well-being or expected
operation of an organization, or the well-being or expected
functioning of an entity for which the organization has
responsibility.

DEFINITION 2: An attack is any action carried out against
an organization’s computer system that, if successful,
compromises the system or the SD held by the system.

An attack that compromises a computer system is
Distributed Denial of Service (DDoS). One that compromises
the SD held by the system is a Trojan horse attack in which
malicious software (the Trojan) is planted inside the system
to steal SD. Attacks can come from an organization’s
employees, in which case the attack is an inside attack. For
example, a disgruntled employee secretly keeps a copy of a
SD backup and sells it on the “dark web”.

DEFINITION 3: A vulnerability of a computer system is any
weakness in the system that can be targeted by an attack with
some expectation of success. A vulnerability can be secured
to become a secured vulnerability through the application of
a security measure.

An example of a vulnerability is a communication
channel that is used to convey sensitive data in the clear. This
vulnerability can be targeted by a Man-in-the-Middle attack
with reasonable success of stealing the sensitive data. This
vulnerability can become a secured vulnerability by
encrypting the sensitive data that the communication channel
carries.

A computer system can undergo upgrades, downgrades,
and other modifications over time that changes its number of
secured and unsecured vulnerabilities. It is thus necessary to
specify a time t when referring to vulnerabilities. Clearly, the
number of secured and unsecured vulnerabilities of a
computer system at time t is directly related to the security
level of the system at time t. This idea is formalized in the
next definition.

DEFINITION 4: A computer system’s security level (SL) at
time t, or SL(t), is the degree of protection from attacks that
results from having q(t) secured vulnerabilities, and p(t)
unsecured vulnerabilities, where the system has a total of N(t)
= p(t)+q(t) secured and unsecured vulnerabilities. SL(t) is
uniquely represented by the pair (p(t), q(t)).

Clearly SL(t) increases with increasing q(t) and decreases
with increasing p(t). Figure 1 shows 3 SL(t) points on the
(p(t), q(t)) plane for N(t)=100.

Figure 1. SL(t) points corresponding to a computer system with
N(t)=100. SL(3) is higher security than SL(2), which is higher
security than SL(1).

0 10 20 30 40 50 60 70 80 90 100

100
 90
 80
 70
 60
 50
 40
 30
 20
 10
 0

p(t)

q(t)

SL(3): (20, 80)

SL(2): (50, 50)

SL(1): (80, 20)

higher
SL(t)

lower SL(t)

154

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In Figure 1, the higher values of q(t) correspond to higher
security levels, and the higher values of p(t) correspond to
lower security levels.

Definition 4 requires p(t) to be known. Of course, it is
next to impossible to determine all the vulnerabilities in a
typical computer system, so the exact value of p(t) is most
likely undeterminable. Thus, a value for p(t) can only be a
“best effort” value, and consequently, a value for SL(t) is not
the true value, but a “best effort” value. It is in this context
that the values of p(t) and SL(t) are to be understood.

III. METRICS FOR CONTINUOUS ACTIVE DEFENCE
While the pair (p(t), q(t)) uniquely represents SL(t), it

cannot be used to calculate the value of SL(t), which would
be useful in tracking the security of a system over time as its
vulnerabilities change. In this section, we derive two metrics
for the value of SL(t), one assuming that the measures
securing vulnerabilities are totally reliable; the other with the
measures only partly reliable. Both metrics are applied right
after the vulnerabilities have been determined, and possibly
before any of them have actually been secured. Determining
vulnerabilities is discussed in Section III.C below.

A. Metric with Totally Reliable Securing Measures

We seek a metric STRM(t) (STRM is an acronym for “SL
with Totally Reliable Measures”) for a computer system’s
SL(t), where all securing measures are totally reliable.
Suppose that p(t) and q(t) are as in Definition 4. Let Pt(e)
represent the probability of event e at time t. Let “exploit”
mean a successful attack on a vulnerability. Let “all exploits”
mean exploits on 1 or more vulnerabilities. Let Uk(t) denote
an unsecured vulnerability k at time t. We have
 SL(t) = Pt(no exploits) = 1-Pt(all exploits) (1)
However, the only exploitable vulnerabilities are the
unsecured vulnerabilities since the securing measures are
totally reliable. Therefore

 Pt(all exploits) = Sk [Pt(exploit of Uk(t))]
by applying the additive rule for the union of probabilities,
assuming that 2 or more exploits do not occur
simultaneously. Let uk(t) be a real number with 0 < uk(t) ≤
p(t) and Skuk(t) = p(t). Set
 Pt(exploit of Uk(t)) ≈ uk(t)/(p(t)+q(t)) (2)
By substitution using (2)
 Pt(all exploits) ≈ Sk [uk(t)/(p(t)+q(t))]

 = Skuk(t)/(p(t)+q(t))
 = p(t)/(p(t)+q(t)) (3)
The condition 0 < uk(t) ≤ p(t) is needed to ensure that there is
some probability for an unsecured vulnerability to be
exploited. The condition Skuk(t) = p(t) is necessary in order
for Pt(all exploits) ≤ 1. Expression (2) gives a way of
assigning values for Pt(exploit of Uk(t)) based on a risk
analysis [5]. However, expression (3) ensures that such
assignment is not needed for calculating STRM(t). In other
words, the fact that some vulnerabilities are more likely to be

exploited than others does not affect the value of STRM(t).
Substituting (3) into (1) gives
 SL(t) ≈ 1-[p(t)/(p(t)+q(t))]
 = q(t)/(p(t)+q(t)) if p(t)+q(t) > 0
 = 1 if p(t)+q(t) = 0
(Note that mathematically, we cannot divide by 0.) We obtain
STRM(t) by assigning as follows:
 STRM(t) = q(t)/(p(t)+q(t)) if p(t)+q(t) > 0 (4)

 = 1 if p(t)+q(t) = 0 (5)
We see from (4) that 0 ≤ STRM(t) ≤ 1 if p(t)+q(t) > 0 and has
value 0 if q(t)=0 (the system has no secured vulnerabilities)
and 1 if p(t)=0 (all of its vulnerabilities are secured). We see
from (5) that STRM(t)=1 if p(t)+q(t)=0 (no vulnerabilities,
which is unlikely). The values of the metric are therefore as
expected.

B. Metric with Partially Reliable Securing Measures

Here, we seek a metric SPRM(t) (SPRM is an acronym
for “SL with Partially Reliable Measures”) for a computer
system’s SL(t) where the measures securing the
vulnerabilities are only partially reliable.

Let Vk(t) denote a secured vulnerability k at time t. The
reliability rk(t) of the measure securing Vk(t) can be defined
as the probability that the measure remains operating from
time zero to time t, given that it was operating at time zero
[6]. The unreliability of the measure is then 1-rk(t). We have
the events
 [exploit of Vk(t)] if and only if [Vk(t) selected for exploit]
 AND [measure securing Vk(t) unreliable]
Since the two right-hand side events are independent,
 Pt(exploit of Vk(t)) = Pt(Vk(t) selected for exploit) x
 Pt(measure securing Vk(t) unreliable)
Set Pt(Vk(t) selected for exploit) ≈ 1/(p(t)+q(t)) (6)
since attackers will have no preference to attack one secured
vulnerability over another secured vulnerability (they should
not even see them as vulnerabilities). Again, applying the
additive rule for the union of probabilities,
 Pt(all Vk(t) exploits) = Sk[Pt(Vk(t) selected for exploit) x

 Pt(measure securing Vk(t) unreliable)]
 = Sk [(1/(p(t)+q(t)))(1-rk(t))]
 = [Sk(1-rk(t)]/[p(t) + q(t)]
 = [q(t)-Skrk(t)]/[p(t) + q(t)]
 =[q(t)/(p(t)+q(t))]-Skrk(t)/(p(t) + q(t)) (7)

Now, since both Uk(t) and Vk(t) can be exploited,

Pt(all exploits)=Pt(all Uk(t) exploits) + Pt(all Vk(t) exploits)
 ≈ [p(t)/(p(t)+q(t))] + [q(t)/(p(t)+q(t))]-
 Skrk(t)/(p(t) + q(t))
 = 1 - Skrk(t)/(p(t) + q(t)) (8)

by substitution using (3) and (7), where (3) is Pt(all Uk(t)

155

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

exploits). Finally, by substitution using (1) and (8),
 SL(t) ≈ 1 – 1 + Skrk(t)/(p(t) + q(t))
 = Skrk(t)/(p(t) + q(t)) if p(t) ≥ 0, q(t) > 0
 = 1 if p(t)+q(t) = 0
 = 0 if p(t)>0, q(t) = 0
We obtain SPRM(t) by assigning as follows:
 SPRM(t) = Skrk(t)/(p(t)+q(t)) if p(t) ≥ 0, q(t) > 0 (9)

 = 1 if p(t)+q(t) = 0 (10)
 = 0 if p(t)>0, q(t)=0 (11)

We see from (9) that 0 < SPRM(t) < 1 for p(t) ≥ 0, q(t) > 0
(all vulnerabilities may or may not be secured), and from (10)
that SPRM(t) = 1 for p(t)+q(t) = 0 (no vulnerabilities, which
is unlikely). We see from (11) that SPRM(t) = 0 for p(t)>0,
q(t) = 0 (no secured vulnerabilities). We also see that for rk(t)
= 1, SPRM(t) is the same as STRM(t). The values of the
metric are therefore as expected.

C. Calculating the Metrics

Calculating STRM(t) requires the values of p(t) and q(t)
at a series of time points of interest. SPRM(t) requires the
values of p(t), q(t), and the reliability value for each measure
used to secure the vulnerabilities.

To obtain the values of p(t) and q(t), an organization may
perform a threat analysis of vulnerabilities in the
organization’s computer system that could allow attacks to
occur. Threat analysis or threat modeling is a method for
systematically assessing and documenting the security risks
associated with a system (Salter et al. [7]). Threat modeling
involves understanding the adversary’s goals in attacking the
system based on the system’s assets of interest. It is
predicated on that fact that an adversary cannot attack a
system without a way of supplying it with data or otherwise
accessing it. In addition, an adversary will only attack a
system if it has some assets of interest. The method of threat
analysis given in [7] or any other method of threat analysis
will yield the total number N(t) of vulnerabilities to attacks at
time t. Once this number is known, the organization can select
which vulnerabilities to secure and which security measures
to use, based on a prioritization of the vulnerabilities and the
amount of budget it has to spend. A way to optimally select
which vulnerabilities to secure is described in [8]. Once
vulnerabilities have been selected to be secured, we have q(t).
Then p(t) = N(t) – q(t). The threat analysis may be carried out
by a project team consisting of the system’s design manager,
a security and privacy analyst, and a project leader acting as
facilitator. In addition to having security expertise, the
analyst must also be very familiar with the organization’s
computer system. Further discussion on threat analysis is
outside the scope of this paper. More details on threat
modeling can be found in [8]. Vulnerabilities may be
prioritized using the method in [5], which describes
prioritizing privacy risks.

The reliability values for hardware measures used to
secure the selected vulnerabilities may be obtained from the
hardware’s manufacturers (e.g., hardware firewall).

Reliability values for software and algorithmic measures are
more difficult to obtain (e.g., encryption algorithm). For
these, it may be necessary to estimate the reliability values
based on the rate of progress of technology. For example, one
could estimate the reliability of an encryption algorithm
based on estimates of the computer resources that attackers
have at their disposal. If they have access to a super computer,
an older encryption algorithm may not be sufficiently
reliable. One could also opt to be pessimistic and assign low
reliability values, which would have the net effect of boosting
security by securing more vulnerabilities, in order to meet a
certain SL(t) level (see Section V). Reliability values for
security measures represent a topic for future research.

It is important to note that at each time point where the
metrics are calculated, the values of p(t) and q(t) are
generated anew. Vulnerabilities secured previously with
totally reliable measures would not appear again as
vulnerabilities. On the other hand, vulnerabilities secured
with only partially reliable measures should be identified
again as vulnerabilities. Further, it is not necessary to have
actually implemented the securing measures before
calculating the metrics.

D. Graphing the Metrics

The metrics STRM(t) and SPRM(t) are both functions of
p(t), q(t), and t. Figure 2 shows a 3-dimensional graph of
these metrics with axes for STRM(t)/SPRM(t), p(t), and q(t).
Time is not shown explicitly as an axis since we would need
4 dimensions, but is instead represented as time period
displacements of the metrics’ values.

Figure 2 shows 4 values of one of the metrics, labeled

according to the times it was evaluated, namely t1, t2, t3, and
t4 where t1 < t2 < t3 < t4. The intervals between these times may
be 1 week or 1 month, for example. T is a threshold, below
which the metric values should not drop (see Section V.A).
At t1, one of the metrics was evaluated producing the value

STRM(t) /
SPRM(t)

q(t)

p(t)

0

1 t1

t2

t3
t4

Figure 2. STRM(t)/SPRM(t) values at times t1 < t2 < t3 < t4.

T

156

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

shown. At t2, the metric was again evaluated, but this time the
value was found to be much lower than at t1, and in fact, the
value dropped below T. The reason for this was that new
vulnerabilities were found that had not been secured. The
organization decides to secure the additional vulnerabilities.
At t3, another evaluation was carried out, and this time, the
metric had improved, reaching above T. The organization
finds some surplus money in its budget and decides to secure
2 other vulnerabilities. An evaluation of the metric at t4 finds
the value a little higher than at t3, due to the 2 additional
vulnerabilities secured. It is thus seen that the security level
of a computer system changes over time, in accordance with
the system’s number of secured and unsecured
vulnerabilities.

E. Strengths, Weaknesses, and Limitations

Some strengths of the metrics are: a) conceptually
straightforward, and easily explainable to management, and
b) flexible and powerful, i.e., they have many application
areas, as described in Section V.

Some weaknesses are: a) threat modeling to determine the
vulnerabilities is time consuming and subjective, and b) the
SL will involve more factors than vulnerabilities and secured
vulnerabilities. Moreover, as mentioned above, it is next to
impossible to find all the p(t), so the SL determined by the
metrics can never be the true SL. For weakness a), it may be
possible to automate or semi-automate the threat modeling.
Related works [18] and [28] are good starting points for
further research. For weakness b), it may be argued that the
metrics as presented are sufficient for their envisaged
application when other sources of error are considered (e.g.,
it is difficult to tell where an attacker will strike or how he
will strike), and that adding more factors would only make
the metrics unnecessarily more cumbersome and time
consuming to evaluate with little additional benefit. It is next
to impossible to determine the true SL anyway.

Some mathematical limitations of the metrics follow.
First of all, the metrics are only estimates of the security level,
not the security level itself (and can never be the true SL due
to unknowable p(t) as mentioned above). This was indicated
in assigning the probabilities as approximate in expressions
(2) and (6) above. Second, as noted in Section III.A, it makes
no difference to the values of the metrics whether one
unsecured vulnerability is more likely to be exploited than
another. This means that the metrics are insensitive to one
exploited vulnerability causing more damage than others, and
may be due to the fact that the metrics are estimating the total
security of the computer system, and therefore the total
number of exploitable vulnerabilities is what’s important, not
whether a particularly damaging vulnerability is exploited.
Third, we applied the additive rule for the union of
probabilities above, requiring that 2 or more exploits do not
occur simultaneously. This condition holds in general but if
it is violated, the metrics will be inaccurate. This may not be
very significant, since they are only estimates. An additional
limitation may be that a secured vulnerability may not in
reality be secured because the attacker has a secret way of
defeating the securing measure. However, this additional
limitation is true of other security methods as well.

IV. VERIFICATION OF SOUNDNESS
This section examines the soundness (as defined below)

of the proposed metrics using a procedure in this author’s
previously published paper [9]. In that paper, this author
pointed out some flaws that can unintentionally be included
in the definition of security metrics, leading to invalid
conclusions. The flaws can be found in a number of existing
security metrics that were presented in [9]. This author then
proposed a procedure that can be used to design “good” or
sound security metrics that would be free of the flaws. As it
turns out, the procedure can also be used to check existing
security metrics to verify that they are sound.

Consider the metric number of viruses detected and
eliminated at a firewall. The purpose of this metric is to
assess the effectiveness of a firewall at filtering out viruses,
which impacts the organization’s level of security.
Unfortunately, this metric says nothing about the viruses that
were not detected and got through. If 50 viruses were detected
and eliminated but 100 got through, basing the firewall’s
effectiveness solely on the 50 viruses that were detected and
not on the 100 that got through would falsely inflate the
firewall’s effectiveness and the level of security. Thus, this
metric fails its purpose. Another often-used security metric is
time spent on a security-related task, such as software
patching or security incident investigation. The purpose of
this metric is to gauge the level of security, assuming that
more time spent means higher security. This metric may be
useful for project management, to make sure that there is
sufficient time to complete the project, but it is practically
useless as an indicator of security. The assumption is wrong:
more time spent does not necessarily mean better security.
For example, the extra time may have been due to inefficient
procedures or work processes. Thus, this metric also fails its
purpose. To avoid problematic metrics such as the foregoing,
this author proposed the following procedure [9] for
designing good or sound security metrics.

A. Steps for Designing Sound Security Metrics (SDSSM)

1. Definition: Define the quantity to be measured, i.e. the
candidate metric. Check that this quantity is meaningful,
objective, and unbiased as a measure of the component or
components of the security level of “something”, where
that “something” could be the organization, the
organization’s computer system, or even a software
product. Check also that this quantity can be obtained
with undue hardship or costs. If the quantity passes all
these checks, proceed to Step 2. Otherwise, repeat this
step to obtain a new quantity. Note that the quantity can
only measure a component or components of the security
level since the actual security level has many
components, such as the number of unsecured
vulnerabilities, security flaws in software, disgruntled
employees, and so on. An example quantity is number of
software security patches issued in a month, which is a
component of the security level of the software.

2. Sufficiency: Verify that the quantity is a sufficient
measure of the component or components of the security
level (as in necessary and sufficient conditions for

157

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

something to be true, see [10]). It is enough to verify
sufficiency since there are usually many ways to measure
a component, so necessity will not apply in most cases.
Verify sufficiency by asking and answering the questions
in Table I. For the quantity to be sufficient, the answers
to questions 1, 2, and 3 must be “yes”, “yes”, and “no”
respectively. If the quantity is found to be sufficient,
proceed to Step 3. Otherwise, repeat from Step 1 to obtain
a new quantity. For example, the quantity time spent on a
security-related task is not a sufficient estimator since
spending more time does not mean that the security level
will be consistently higher (or lower), as discussed above.
Thus, the answer is “no” to question 1. Since this answer
must be “yes” for sufficiency, this quantity is not
sufficient.

TABLE I. QUESTIONS FOR DETERMINING SUFFICIENCY

No. Question
1 If the quantity goes up, do you believe that the security level

consistently goes up (or down)?
2 Does the quantity have a direct impact on the security level?
3 Are there any aspects missing from the definition of the

quantity that are needed for it be effective as a measure of the
component or components of the security level?

3. Divisibility: Verify if the quantity is divisible into other
constituent quantities, or is expressible mathematically in
terms of other constituent quantities. If not, proceed to
step 4. Otherwise, formulate a mathematical expression
that equates the quantity to the constituent quantities, and
proceed to Step 4. For example, the quantity number of
software security patches issued in a month is not further
divisible, whereas the quantity outstanding
vulnerabilities after threat analysis each month may be
divided into and equated to the number of non-secured
vulnerabilities from last month plus the number of new
vulnerabilities found during threat analysis.

4. Progression: Verify that the quantity has the
“progression property”, that when evaluated over a
sufficiently large time period, from past to future, the
quantity progresses to an acceptable target level that
corresponds to an acceptable or maximal security level. If
the quantity has this property, proceed to Step 5.
Otherwise, repeat from Step 1 to obtain a new quantity.
For example, in the case of number of software security
patches issued in a month, suppose that this metric is
evaluated at the first of the month for the last month.
Suppose that the target level for the quantity is zero. Thus,
over a sufficiently large number of months in which
patches are issued, there are corresponding increases in
the security level of the software toward some level. The
security level of the software increases with each patch
issued until at some point, there is consistently no new
patch issued (target zero reached). At this point, the
security level of the software is maximal (but not
necessarily maximized since there may still be
undiscovered security bugs). The quantity has progressed
to its target level with corresponding maximal security.

5. Reproducibility: Verify that the quantity is reproducible
by third-party verifiers. This means that the latter may
evaluate the quantity or arrive at its value using the same
inputs or procedure and obtain the same result. If the
quantity is reproducible, stop. The quantity is now
considered a sound security metric. Otherwise, repeat
from Step 1 to obtain a new quantity. For example, if the
quantity is number of software security patches issued in
a month, a third-party verifier would add up the software
security patches issued for a particular month, and find
the same number as the organization that is using the
metric. If the quantity is outstanding vulnerabilities after
threat analysis each month, which we know is equated to
the number of non-secured vulnerabilities from last
month plus the number of new vulnerabilities found
during threat analysis, the third-party verifier would do
the latter addition and verify that the total is the same as
obtained by the organization using the metric.

Procedure SDSSM can be used not only to design a sound
security metric but also to verify if an existing security metric
is sound. This verification is carried out by checking if the
metric satisfies each of the steps in SDSSM except for STEP
3, which is not a condition to be checked. STEP 3 is only used
when designing a security metric, in order to allow the metric
to take on a clearer form. This verification of soundness is
captured in the following definition.

DEFINITION 5: A security metric is sound if it satisfies
every step in SDSSM, excluding STEP 3.

We now apply definition 5 to verify that the metrics
proposed in Section III are sound. These metrics are:

 STRM(t) = q(t)/(p(t)+q(t)) if p(t)+q(t) > 0
 = 1 if p(t)+q(t) = 0

 SPRM(t) = Skrk(t)/(p(t)+q(t)) if p(t) ≥ 0, q(t) > 0

 = 1 if p(t)+q(t) = 0
 = 0 if p(t)>0, q(t)=0

It suffices to check that these metrics satisfy the

conditions in each step of SDSSM, as follows.

STEP 1: Definition. The security of the computer system is
directly related to the number of secured vulnerabilities in the
system: the higher this number, the higher the security, and
the lower this number, the lower the security. Consequently,
since both metrics express the security level in terms of the
proportion of secured vulnerabilities to total vulnerabilities,
both metrics are clearly meaningful for assessing the security
level (note that the numerator in SPRM(t) is really the number
of secured vulnerabilities as a fractional or real number). The
metrics are objective since secured vulnerabilities relate
directly to the security of the system. They are unbiased since
their values, based on secured and unsecured vulnerabilities,
cannot be overstated or understated. Finally, one can
evaluate these metrics without undue hardship or cost by
doing a vulnerability or threat analysis, deciding which
vulnerabilities to secure, and using the reliabilities of the

158

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

securing measures where available. Thus, these metrics are
considered to have passed Step 1 and we proceed to Step 2.

STEP 2: Sufficiency. We answer the questions in Table I. The
first question asks if the security would consistently go up (or
down) if the quantity (metric) goes up. Clearly if the value of
STRM(t) goes up, the number of secured vulnerabilities must
consistently go up since the denominator is a constant. In
other words, the security consistently goes up. The same can
be said of SPRM(t), since its numerator is the number of
secured vulnerabilities as a real number. So, the answer to the
first question is “yes” for both metrics. The second question
asks if the quantity has a direct impact on the security level.
The answer is again “yes” for both metrics, since the higher
their values, the higher the security level, and the lower their
values, the lower the security level. Finally, the third question
asks if the quantity is missing any components or aspects that
are needed for it to be effective. The answer here is “no” for
both metrics, since they are ready to be used “as is” for
effectively assessing the security level. The answers to the
three questions conform to the answers required for
sufficiency. We declare the metrics sufficient and proceed to
Step 4, since STEP 3 is not needed for verifying soundness.

STEP 4: Progression. Suppose that vulnerabilities are
determined (through a threat analysis) and one of the metrics
(STRM(t) if no reliability values are available, SPRM(t)
otherwise) is re-calculated at regular time intervals, e.g.,
monthly. Suppose also that Company A’s management has
agreed on a goal of 95% for the metric, at which level the
computer system is considered “safe”, i.e. management is
willing to live with the risks arising from the remaining non-
secured vulnerabilities. With this goal in mind, management
will want to secure vulnerabilities at each opportunity until
the metric attains 95%. This doesn’t mean that the metric will
increase monotonically, since it is possible that a particular
threat analysis identifies so many new vulnerabilities that the
metric is actually lower than when it was last calculated.
However, the metric will eventually reach 95%, given that
management wants to secure new vulnerabilities until this
goal is reached, which is all we mean by having the
progression property. Since this analysis applies to both
metrics, we can consider them as having passed Step 4 and
proceed to Step 5.

STEP 5: Reproducibility. Given the expression for STRM(t),
anyone will calculate the same value for it given the same
values for p(t) and q(t). Similarly, given the expression for
SPRM(t), anyone will calculate the same value for it given
the same values for the reliabilities, p(t), and q(t). Thus, the
metrics are reproducible.

Thus, according to Definition 5, the metrics STRM(t) and
SPRM(t) are sound.

To show that the application of SDSSM can find that a
metric is not sound, consider its application to the flawed
metric mentioned above, namely the metric number of viruses
detected and eliminated at a firewall. Applying SDSSM to
this metric leads to it failing STEP 1 Definition, since it is
biased towards overstating the firewall’s effectiveness. Thus,
according to Definition 5, this metric is not sound. Note that

the metric time spent on a security-related task would also be
found by SDSSM as not sound since it failed STEP 2
Sufficiency, as indicated in the description of SDSSM above.

V. APPLICATION AREAS
In this section, we present some applications for the

metrics. In Section V.A, we discuss how they can be used for
continuous active defence of a computer system. In Section
V.B, we present other application areas, such as critical
infrastructure and defence.

A. Continuous Active Defence

Attackers do not attack once, and finding that you are well
protected, go away. Rather, they continuously probe your
defences in order to find new vulnerabilities to exploit. It is
thus necessary to continuously evaluate the computer
system’s vulnerabilities using threat modeling, and add
additional security by securing new vulnerabilities when
necessary. We call this “Continuous Active Defence” or
CAD. How do we know when it is necessary to add more
security? This is where the metrics can be applied.
Continuous Active Defence involves the following steps:
1. Decide on a threshold for SL(t) below which the values

of the metrics should not drop.
2. Decide on the frequency with which to perform threat

modeling, e.g., every week, every month, exceptions.
3. Begin Continuous Active Defence by carrying out the

threat modeling at the frequency decided above. After
each threat modeling exercise, calculate either STRM(t)
(if reliability data is not available) or SPRM(t) (if
reliability data is available). If the value of the metric
falls below T (see Figure 2), secure additional
vulnerabilities until the value is above T.

4. If there has been a change to the system, such as new
equipment or new software, do an immediate threat
analysis, calculate one of the metrics, and add security if
necessary based on T. Then, proceed with the frequency
for threat modeling decided above.

The value of T and the frequency of threat modeling can
be determined by the same threat analysis team mentioned
above. The values would depend on the following:
• The potential value of the sensitive data – the more

valuable the data is to a thief, a malicious entity, or a
competitor, the higher the threshold and frequency
should be.

• The damages to the organization that would result, if the
sensitive data were compromised – of course, the higher
the damages, the higher the threshold and frequency.

• The current and likely future attack climate – consider
the volume of attacks and the nature of the victims, say
over the last 6 months; if the organization’s sector or
industry has sustained a large number of recent attacks,
then the threshold and frequency need to be higher.

• Consider also potential attacks by nation states as a result
of the political climate; attacks by individual hacktivist
groups such as Anonymous or WikiLeaks may also
warrant attention.

159

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In general, a computer system should be as secure as
possible. Therefore, T above 80% and a frequency of weekly
would not be uncommon. However, whatever the threshold
and frequency, the organization must find them acceptable
after considering the above factors. The financial budget
available for securing vulnerabilities also plays an important
role here, since higher thresholds call for securing more
vulnerabilities, which means more financial resources will be
needed.

B. Other CAD Application Areas

CAD may also be applied to a specific type of
vulnerabilities. An example of this application is dealing with
inside attacks. If the organization is particularly susceptible
to inside attacks, it can decide to apply CAD to vulnerabilities
that can be exploited for inside attacks. In this case, some of
the vulnerabilities may be weaknesses of the organization
itself, e.g., ineffective screening of job applicants, and the
securing measures may not be technological, e.g., having an
ombudsman for employee concerns. A list of questions that
can be used to identify vulnerabilities to inside attack is given
in [8].

CAD may be applied to a specific subset of vulnerabilities
that the organization deems are crucial to its mission. For
example, a cloud service provider would deem the protection
of clients’ data crucial to its mission. It can choose to apply
CAD to vulnerabilities that are specific to its data storage
capabilities, and also apply CAD to its computer system as a
whole.

CAD may also be applied to code level vulnerabilities. In
this case, the frequency of application will depend on how
often the code is changed, due to patching and the addition or
deletion of functionality. The threat modeling would have to
be tailored to code and would be more of a code inspection
exercise.

Finally, CAD may be applied to protect critical
infrastructure and defence systems. The power grid is an
example of critical infrastructure. The development of the
metrics only considers vulnerabilities and reliabilities, which
are also found in critical infrastructure and defence systems.
However, the threat analyses would involve different types of
threats, and the securing measures, would of course, need to
be appropriate for the vulnerability. For example, the
vulnerability of transformer sabotage in a power grid may
need to be secured by the use of intrusion alarms. As another
example, the vulnerability of a retaliatory missile site being
preemptively destroyed may need to be secured by putting
the missile on a mobile platform. The application of CAD to
protect these areas is a subject of future research.

C. Where CAD May and May Not Be Applied

Fundamentally, CAD may be applied to organizations
and systems that have the following elements:

a) Possess “something” that attackers want
b) Vulnerabilities that change over time and that attackers

can attack to access the “something”
c) Measures (or controls) that can be used to secure the

vulnerabilities from attack

An examination of the above CAD application areas will find
these elements present in each area. Organizations or systems
that are missing any of these elements are therefore not
suitable for the application of CAD. An example of such a
“system” may be an expensive bicycle. In this case, it is the
bicycle itself that thieves (attackers) want. Its vulnerability is
that it can be stolen if the bicycle is not suitably secured. The
measure that can be used to secure the bicycle is a strong lock.
However, the bicycle’s vulnerability to being stolen is not
changing over time. This vulnerability will be the same
always, even if the bicycle becomes less attractive to thieves
over time. This bicycle is not a suitable system for the
application of CAD.

VI. RELATED WORK
Related work found in the literature includes attack

surface metrics, risk and vulnerabilities assessment,
vulnerabilities classification, threat analysis, an “other”
category, and this author’s previous work. We discuss each
of these categories in turn, starting with attack surface
metrics.

A system’s attack surface is related to a SL; it is
proportional to the inverse of a SL since the lower the attack
surface, the higher the SL. Manadhata and Wing [11]
formalize the concept of a system’s attack surface and
propose an attack surface metric for systematically measuring
the attack surface. They claim that their metric does not
depend on the software system’s implementation language
and can be used on systems of all sizes. They further provide
demonstrations of the metric and have conducted empirical
studies to validate it. Stuckman and Purtilo [12] present a
framework for formalizing code-level attack surface metrics
and describe activities that can be carried out during
application deployment to reduce the application’s attack
surface. They also describe a tool for determining the attack
surface of a web application, together with a method for
evaluating an attack surface metric over a number of known
vulnerabilities. Munaiah and Meneely [13] propose function
and file level attack surface metrics that allow fine-grained
risk assessment. They claim that their metrics are flexible in
terms of granularity, perform better than comparable metrics
in the literature, and are tunable to specific products to better
assess risk.

In terms of risk and vulnerabilities assessment, Islam et
al. [14] present a risk assessment framework that starts with
a threat analysis followed by a risk assessment to estimate the
threat level and the impact level. This leads to an estimate of
a security level for formulating high-level security
requirements. The security level is qualitative, such as “low”,
“medium”, and “high”. Vanciu et al. [15] compare an
architectural-level approach with a code-level approach in
terms of the effectiveness of finding security vulnerabilities.
Wang et al. [16] discuss their work on temporal metrics for
software vulnerabilities based on the Common Vulnerability
Scoring System (CVSS) 2.0. They use a mathematical model
to calculate the severity and risk of a vulnerability, which is
time dependent as in this work. Gawron et al. [17] investigate
the detection of vulnerabilities in computer systems and
computer networks. They use a logical representation of

160

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

preconditions and post conditions of vulnerabilities, with the
aim of providing security advisories and enhanced
diagnostics for the system. Wu and Wang [18] present a
dashboard for assessing enterprise level vulnerabilities that
incorporates a multi-layer tree-based model to describe the
vulnerability topology. Vulnerability information is gathered
from enterprise resources for display automatically. Farnan
and Nurse [19] describe a structured approach to assessing
low-level infrastructure vulnerability in networks. The
approach emphasizes a controls-based evaluation rather than
a vulnerability-based evaluation. Instead of looking for
vulnerabilities in infrastructure, they assume that the network
is insecure, and determine its vulnerability based on the
controls that have or have not been implemented. Neuhaus et
al. [20] present an investigation into predicting vulnerable
software components. Using a tool that mines existing
vulnerability databases and version archives, mapping past
vulnerabilities to current software components, they were
able to come up with a predictor that correctly identifies about
half of all vulnerable components, with two thirds of the
predictions being correct. Roumani et al. [21] consider the
modeling of vulnerabilities using time series. According to
these researchers, time series models provide a good fit to
vulnerability datasets and can be used for vulnerability
prediction. They also suggest that the level of the time series
is the best estimator for prediction. Li et al. [22] present
VulPecker, a tool for automatically detecting whether source
code contains a particular vulnerability. Pang et al. [23]
propose a technique based on a deep neural network to predict
vulnerable software components. They claim that their
technique can predict vulnerable Java classes in Android
applications with high accuracy. Anand et al. [24] propose a
model for classifying security patterns according to the type
of vulnerability they address, claiming that their model helps
software developers to select an appropriate security pattern
once they know the type of vulnerability they would like to
remove. The authors also claim that their classification
scheme identifies missing security patterns, when no patterns
can be found for particular vulnerabilities. Salfer and Eckert
[25] consider the attack surface and vulnerability assessment
of automotive electronic control units (ECUs). They propose
a method and metric for assessing the attack surface and
predicting the effort for a code injection exploit using ECU
development data. They also provide an application of their
method and metric to a graph-based security assessment.

With regard to vulnerabilities classification, Spanos et al.
[26] look at ways to improve CVSS. They propose a new
vulnerability scoring system called the Weighted Impact
Vulnerability Scoring System (WIVSS) that incorporates the
different impact of vulnerability characteristics. In addition,
the MITRE Corporation [27] maintains the Common
Vulnerability and Exposures (CVE) list of vulnerabilities and
exposures, standardized to facilitate information sharing.

In terms of threat analysis, Schaad and Borozdin [28]
present an approach for automated threat analysis of software
architecture diagrams. Their work gives an example of
automated threat analysis. Sokolowski and Banks [29]
describe the implementation of an agent-based simulation
model designed to capture insider threat behavior, given a set

of assumptions governing agent behavior that pre-disposes an
agent to becoming a threat. Sanzgiri and Dasgupta [30]
present a taxonomy and classification of insider threat
detection techniques based on strategies used for detection.
Manzoor et al. [31] claim that contemporary cloud threat
analysis approaches fail to include variants of identified
vulnerabilities in their analyses. They target achieving a
holistic cloud threat analysis procedure by designing a multi-
layer cloud model, employing Petri Nets to comprehensively
profile the operational behavior of the services in cloud
operations. They use this model to identify threats within and
across different operational layers. They further claim that
their approach also looks at the variants of potential
vulnerabilities to infer the cloud attack surface. Valani [32]
looks at Secure DevOps threat modeling and concludes that
maintaining speed to support business needs is difficult due
to the fact that the threat modeling is too slow. He proposes
the use of a lightweight threat modeling approach that uses a
correlation matrix created from common lists and application
abstractions, that is quicker and can be applied where detailed
threat modeling is unnecessary.

The following publications fall into the other category.
Kotenko and Doynikova [33] investigate the selection of
countermeasures for ongoing network attacks. They suggest
a selection technique based on the countermeasure model in
open standards. The technique incorporates a level of
countermeasure effectiveness that is related to the reliability
of measures securing vulnerabilities, used in the SPRM(t)
metric proposed in this work. Ganin et al. [34] present a
review of probabilistic and risk-based decision-making
techniques applied to cyber systems. They propose a
decision-analysis-based approach that quantifies threat,
vulnerability, and consequences through a set of criteria
designed to assess the overall utility of cybersecurity
management alternatives. Pendleton et al. [35] provide a
systematic survey of systems security metrics. Based on this
survey, they propose that an overall system security metric
can be represented by the following dimensions of metrics:
vulnerabilities, defenses, attacks, and situations. The
situation dimension is focused on the current security state of
a given system at a particular point in time, in order to
account for dynamics related to system security states,
including the level of vulnerabilities, attacks, and system
defenses.

This author’s directly related work includes [36], [8], and
[1] where [8] is an expanded version of [36]. Yee [1]
improves on [36] and [8] by a) adding time dependency,
together with the notion that an organization’s security level
needs to be continuously evaluated, b) adding a new metric
incorporating the reliability of the securing measures, and c)
adding a description of new application areas. This work
extends Yee [1] by adding the material mentioned at the start
of Section I.

VII. CONCLUSION AND FUTURE WORK
Since attackers continuously probe for new

vulnerabilities to exploit, an organization cannot afford to
assess its computer system’s vulnerabilities once, secure
some of the vulnerabilities, and then do nothing further.

161

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Rather, the organization needs to assess and secure its
vulnerabilities on a continuous basis, i.e., perform CAD.
This work has proposed two conceptually clear SL metrics,
verified as sound, that can be used to evaluate a computer
system’s security level at any point in time for CAD. One
metric assumes that the measures securing vulnerabilities are
totally reliable; the other considers the measures to be only
partially reliable. CAD may be applied to specific types of
vulnerabilities (e.g., vulnerabilities to insider attack),
groupings of vulnerabilities that require special attention,
specific application areas such as critical infrastructure and
defence, and even at the code level. CAD may not be applied
to areas that are missing any of the elements listed in Section
V.C.

There are many security metrics in the literature, as seen
in Section VI. The metrics in this work have the advantages
of being easy to understand, and easy to calculate, which may
be needed to convince management to provide the necessary
resources required for CAD.

Future work includes formulations of other security
metrics, the application of security metrics to critical
infrastructure and defence, improving the methods for threat
modeling, and exploring how this work may complement
work in the literature and in the standardization community.

REFERENCES
[1] G. Yee, “Metrics for continuous active defence,” Proc. Twelfth

International Conference on Emerging Security Information,
Systems and Technologies (SECURWARE 2018), pp. 92-98,
2018.

[2] D. Rafter, “2019 Data Breaches: 4 Billion Records Breached
So Far,” Norton, retrieved December, 2019 from:
https://us.norton.com/internetsecurity-emerging-threats-2019-
data-breaches.html

[3] Identity Force, “2018 Data Breaches – The Worst of Last
Year,” retrieved November, 2019 from:
https://www.identityforce.com/blog/2018-data-breaches

[4] Dark Reading, “2017 Smashed world’s records for most data
breaches, exposed information,” retrieved November, 2019
from: https://www.darkreading.com/attacks-breaches/2017-
smashed-worlds-records-for-most-data-breaches-exposed-
information/d/d-
id/1330987?elq_mid=83109&elq_cid=1734282&_mc=NL_D
R_EDT_DR_weekly_20180208&cid=NL_DR_EDT_DR_we
ekly_20180208&elqTrackId=700ff20d23ce4d3f984a1cfd31cb
11f6&elq=5c10e9117ca04ba0ad984c11a7dfa14b&elqaid=831
09&elqat=1&elqCampaignId=29666

[5] G. Yee, “Visualization and prioritization of privacy risks in
software systems,” International Journal on Advances in
Security, issn 1942-2636, vol. 10, no. 1&2, pp. 14-25, 2017.

[6] ITEM Software Inc.,“Reliability prediction basics”, retrieved
November, 2019 from:
http://www.reliabilityeducation.com/ReliabilityPredictionBasi
cs.pdf

[7] C. Salter, O. Saydjari, B. Schneier, and J. Wallner, “Towards a
secure system engineering methodology,” Proc. New Security
Paradigms Workshop, pp. 2-10, 1998.

[8] G. Yee, “Optimal security protection for sensitive data,”
International Journal on Advances in Security, vol. 11, no.
1&2, pp. 80-90, 2018.

[9] G. Yee, “Designing good security metrics,” Proceedings of the
2019 IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC), Milwaukee, WI, USA, pp. 580-585,
July 15-19, 2019.

[10] N. Swartz, “The concepts of necessary conditions and
sufficient conditions,” Department of Philosophy, Simon
Fraser University, 1997, retrieved November, 2019 from:
https://www.sfu.ca/~swartz/conditions1.htm

[11] P. K. Manadhata and J. M. Wing, “An attack surface metric,”
IEEE Transactions on Software Engineering, vol. 37, no. 3, pp.
371-386, May/June, 2011.

[12] J. Stuckman and J. Purtilo, “Comparing and applying attack
surface metrics,” Proceedings of the 4th International
Workshop on Security Measurements and Metrics (MetriSec
’12), pp. 3-6, Sept. 2012.

[13] N. Munaiah and A. Meneely, “Beyond the attack surface,”
Proceedings of the 2016 ACM Workshop on Software
Protection (SPRO ’16), pp. 3-14, October 2016.

[14] M. Islam, A. Lautenbach, C. Sandberg, and T. Olovsson, “A
risk assessment framework for automotive embedded
systems,” Proc. 2nd ACM International Workshop on Cyber-
Physical System Security (CPSS ’16), pp. 3-14, 2016.

[15] R. Vanciu, E. Khalaj, and M. Abi-Antoun, “Comparative
evaluation of architectural and code-level approaches for
finding security vulnerabilities,” Proceedings of the 2014 ACM
Workshop on Security Information Workers (SIW ’14), pp. 27-
34, Nov. 2014.

[16] J. A. Wang, F. Zhang, and M. Xia, “Temporal metrics for
software vulnerabilities,” retrieved: November, 2019.
http://www.cs.wayne.edu/fengwei/paper/wang-csiirw08.pdf

[17] M. Gawron, A. Amirkhanyan, F. Cheng, and C. Meinel,
“Automatic vulnerability detection for weakness visualization
and advisory creation,” Proc. 8th International Conference on
Security of Information and Networks (SIN ’15), pp. 229-236,
2015.

[18] B. Wu and A. Wang, “A multi-layer tree model for enterprise
vulnerability management,” Proceedings of the 2011
Conference on Information Technology Education (SIGITE
’11), pp. 257-262, October 2011.

[19] O. Farnan and J. Nurse, “Exploring a controls-based
assessment of infrastructure vulnerability,” Proc. International
Conference on Risks and Security of Internet and Systems
(CRiSIS 2015), pp. 144-159, 2015.

[20] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller,
“Predicting vulnerable software components,” Proc. 14th ACM
Conference on Computer and Communications Security (CCS
’07), pp. 529-540, 2007.

[21] Y. Roumani, J. Nwankpa, and Y. Roumani, “Time series
modeling of vulnerabilities,” Computers and Security, Vol. 51
Issue C, pp. 32-40, June 2015.

[22] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “VulPecker: an
automated vulnerability detection system based on code
similarity analysis,” Proceedings of the 32nd Annual
Conference on Computer Security Applications (ACSAC’16),
pp. 201-213, Dec. 2016.

[23] Y. Pang, X. Xue, and H. Wang, “Predicting vulnerable
software components through deep neural network,”
Proceedings of the 2017 International Conference on Deep
Learning Technologies (ICDLT’17), pp. 6-10, June 2017.

[24] P. Anand, J. Ryoo, and R. Kazman, “Vulnerability-based
security pattern categorization in search of missing patterns,”
Proceedings of the 2014 Ninth International Conference on
Availability, Reliability and Security (ARES), pp. 476-483,
Sept. 2014.

[25] M. Salfer and C. Eckert, “Attack surface and vulnerability
assessment of automotive electronic control units,”
Proceedings of the 12th International Conference on Security
and Cryptography (SECRYPT 2015), pp. 317-326, 2015.

[26] G. Spanos, A. Sioziou, and L. Angelis, “WIVSS: A new
methodology for scoring information system vulnerabilities,”
Proc. 17th Panhellenic Conference on Informatics, pp. 83-90,

162

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2013.
[27] MITRE, “Common vulnerabilities and exposures”, retrieved

November, 2019 from: https://cve.mitre.org/
[28] A. Schaad and M. Borozdin, “TAM2: Automated threat

analysis,” Proc. 27th Annual ACM Symposium on Applied
Computing (SAC ’12), pp. 1103-1108, 2012.

[29] J. Sokolowski and C. Banks, “An agent-based approach to
modeling insider threat,” Proc. Symposium on Agent-Directed
Simulation (ADS '15), pp. 36-41, 2015.

[30] A. Sanzgiri and D. Dasgupta, “Classification of insider threat
detection techniques,” Proc. 11th Annual Cyber and
Information Security Research Conference (CISRC ’16),
article no. 25, pp. 1-4, 2016.

[31] S. Manzoor, H. Zhang, and N. Suri, “Threat modeling and
analysis for the cloud ecosystem,” Proceedings of the 2018
IEEE International Conference on Cloud Engineering, pp. 278-
281, 2018.

[32] A. Valani, “Rethinking Secure DevOps threat modeling: the
need for a dual velocity approach,” Proceedings of the 2018
IEEE Secure Development Conference (SecDev), pp. 136,
2018.

[33] I. Kotenko and E. Doynikova, “Dynamical calculation of
security metrics for countermeasure selection in computer
networks,” Proc. 2016 24th Euromicro International
Conference on Parallel, Distributed, and Network-Based
Processing, pp. 558-565, 2016.

[34] A. Ganin, P. Quach, M. Panwar, Z. A. Collier, J. M. Keisler,
D. Marchese, and I. Linkov, “Multicriteria decision framework
for cybersecurity risk assessment and management,” Risk
Analysis, pp. 1-17, 2017.

[35] M. Pendleton, R. Garcia-Lebron, J.-H. Cho, and S. Xu, “A
Survey on Systems Security Metrics,” ACM Computing
Surveys (CSUR), Vol. 49, Issue 4, Article No. 62, pp. 1-35,
February 2017.

[36] G. Yee, “Assessing security protection for sensitive data,”
Proc. Eleventh International Conference on Emerging Security
Information, Systems and Technologies (SECURWARE
2017), pp. 111-116, 2017.

163

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Guideline on the Analysis of Stochastic
Interdependencies in Critical Infrastructures

Sandra König, Thomas Grafenauer,
Stefan Schauer, Manuel Warum

Austrian Institute of Technology GmbH
Digital Safety & Security Department

Vienna, Austria
{sandra.koenig, thomas.grafenauer,

stefan.schauer, manuel.warum}@ait.ac.at

Stefan Rass
Universität Klagenfurt

Institute of Applied Informatics
Klagenfurt, Austria
stefan.rass@aau.at

Abstract—Protecting Critical Infrastructures (CIs) requires
decisions made about systems with complex dynamics, which
rarely admits accurate descriptions or precise predictions. For
this reason, simulation models are often probabilistic, embodying
known (physical) laws to the extent possible, but generally adding
a random element to account for unexpected events that security
management is primarily concerned with. One such complex
element is the interplay between different components of a CI, i.e.,
the dynamic inside a CI, which is more than just the sum of the
mutual dependencies. Another important factor is the interplay
between CIs, which might be understood between two specific CIs
but less well known when it comes to mutual impacts. Simulations
can help assessing these dependencies, but only to the extent as
they are accurately specifiable. This work addresses the practical
issues of using a probabilistic model to simulate cascading
effects in interdependent CIs by proposing methods to allow
for specifications carrying subjective uncertainty. The description
follows a running example of a fictitious water provider, where a
stochastic simulation model of incident propagation is embedded
into its existing risk management process. Our exposition runs
up to the final question of the decision maker about where to
take action and how to prioritize assets regarding their need
for protection, but also their role in impact propagation. The
final picture delivered by the method outlined here is meant
as a support for risk management decisions, containing possible
concrete scenarios in an aggregate form. The value for a decision
maker is the revelation of previously unseen influences and
impacts besides the known causes and threats being subject of
the risk management. This paper demonstrates how a stochastic
model of dependencies between CIs can be integrated in a
standard risk management process and illustrates each step for
the case of a fictitious water provider.

Keywords-critical infrastructure; dependencies; risk man-
agement; water supply

I. INTRODUCTION

Critical Infrastructures (CIs) are essential pillars of today’s
society that relies on availability of water, power, health care
and transportation but also on the availability of food. Due of
the high impact of a failure of even one of these infrastructures
on society, a lot of research focuses on investigation of CIs. Of
particular interest are the various interdependencies between
CIs as these increase in number and type. For example, a
hospital nowadays does not only depend on electricity, water
and food supply, and a well functioning transportation system

but also on information and control systems for intensive
care or surgery. Even worse, interdependencies may amplify
consequences of an reduced availability of one CI due to cas-
cading effects. Such effects need to be taken into account when
conducting a risk analysis [1]. While the local protection of
a CI is possible using respective domain knowledge, securing
the compound of several interacting CIs requires cross-domain
expertise that is hardly available to the expert(s) in charge.
Thus, to understand wide-range impacts cascading over several
interdependent CIs, simulations are an indispensable tool to
discover scenarios that require an orchestrated defence in-
volving a collaboration of security officers in several distinct
CI. Our model meets this need by letting each domain expert
describe its own local CI, and leaving the interdependencies
between two CIs as a matter of two domain experts agreeing
on how their individual CIs interact with and depend on one
another.

Since risk analysis is only one step in a more comprehensive
risk management process, we here illustrate how such an
advanced risk analysis can be integrated in an existing risk
management process with the aim of yielding more accurate
results. Our analysis uses the simulation tool described in [2].
The paper gives a step-by-step description of how to integrate
a mathematical model into risk management processes and
illustrates the procedure with an example. Practical aspects
such as the use of expert opinions are discussed.

Related Work

Interdependencies between CIs have increased during the
past decade and turned formerly loosely dependent CIs into
a complex and highly interconnected network of CIs. The
increasing complexity gave rise to numerous models of the
dynamics inside a CI and between CIs. Early methods to
describe those dynamics include Hierarchical Holographic
Modeling (HHM) [3], followed by a multi-graph model for
random failures [4] or input-output models [5]. However, most
of these methods do not pay enough attention to nowadays
interdependencies that yield to manifold effects of a single
incident. The unpredictability of consequences shifted the
focus towards stochastic models. While Markov models are

164

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

popular due to their simple structure, the applicability is
often limited due to the exponentially growing state space.
Models trying to cope with this issue allow for memory
[6] but are challenging to put to practice due to their high
complexity. The Interdependent Markov Chain (IDMC) model
describes cascading failures in interdependent infrastructures
in power systems [7], where every infrastructure is described
by one discrete-time Markov chain where interdependencies
between these chains are represented by dependent transition
probabilities. A stochastic model allowing different degrees
of failure while still being relatively simple to implement has
been introduced in [8]. This paper extends previous work in
the filed of cascading effects in interconnected networks [8],
[9] but is also similar to approaches in IT security such as
[10].

Incidents such as the disruption of electric power in Califor-
nia in 2001 [11], a power outage in Italy in 2003 [12] or failure
of the nuclear plant in Fukushima, Japan, have demonstrated
that interdependencies between various systems exist of which
even experts were not aware. Intentional attacks such as the
hacking of the Ukrainian power grid in 2015 [13], the Stuxnet
worm [14] or the WannaCry ransomware (that hit hospitals
particularly hard [15]) demonstrated the vulnerability of CIs
due to the growing digitalization. Awareness of vulnerability
due to cyberattacks has increased after recent attacks such as
botnets [16] that nowadays also focus on critical information
infrastructures [17]. Despite these well-known events, data is
sparse and not sufficient to enable statistical analysis. Instead,
simulation of such events and discussions with experts are
needed to investigate consequences of incidents. The incidents
of interest are both natural events (such as natural disasters)
and man-made events, including unwanted interventions like
cyberattacks or human error. Especially cyberattacks have re-
cently moved into the center of attention and the EU Directive
2016/1148 on cyber security (also called the NIS-directive)
describes regulations to increase the protection of CIs [18].
Simulating the consequences of an incident only requires
knowledge about propagation dynamics and not about the type
of incident (i.e., about the trigger) but even this information
is typically difficult to get due to missing experience. Sim-
ulation methods are available to some extent, e.g., [19], and
allow comparison of different models for specific situations.
Motivated by the consequences of recent incidents, there is a
growing interest in resilience of critical infrastructures [20].
An overview on models on interdependent CIs is presented
in [21], while [22] gives an extensive review and comparison
of different models of cascading effects in power systems. A
general review on interdependencies between infrastructures
with a focus on the different types of dependencies is given
in [23]. The amount of research focusing on water supply and
water providers seems to be more limited. A study focusing on
security weaknesses of Industrial Control Systems (ICSs) and
Supervisory Control and Data Acquisition (SCADA) systems
and how to find good practices for water providers can be
found in [24]. So far, there is only limited research focusing
on incidents affecting a water provider. The impact of an

Advanced Persistent Threat (APT) on a water provider has
been investigated in [25] and [26].

In the following we demonstrate how to take interdependen-
cies into account when analysing a critical infrastructure. The
method is described for any critical infrastructure, as defined
according to the European Commission [27].

‘Critical infrastructure’ means an asset, system or
part thereof located in Member States which is
essential for the maintenance of vital societal func-
tions, health, safety, security, economic or social
well-being of people, and the disruption or destruc-
tion of which would have a significant impact in a
Member State as a result of the failure to maintain
those functions.

The approach is illustrated focussing on a water provider.

Paper Outline

Since this article aims at illustrating the use of a theoretical
model in practice, the remainder of this paper illustrates the
various steps in detail for a example CI. Section II describes
step by step how to integrate the analysis of stochastic
dependencies between CIs in a risk management process.
Section III then illustrates how the risk management process
can be implemented for a fictitious water provider. Section IV
provides concluding remarks and points out some directions
of future work.

II. INCORPORATING STOCHASTIC DEPENDENCIES IN A
RISK MANAGEMENT PROCESS

This section illustrates how stochastic interdependencies be-
tween CIs can be incorporated in a standard risk management
process. The process follows the ISO 31000 framework [28]
and provides a step by step guide whose application will be
illustrated by the analysis of a fictitious water provider in the
following section. Our focus lies on the risk analysis (Step
C below) as this is where the interdependencies between CIs
have the biggest effect.

The upcoming analysis is based on modelling a CI as a set
of interdependent assets (i.e., the relevant components of the
CI) as a directed graph whose nodes represent the assets and
edges represent the dependencies between them. Each asset
carries the following information:

• Criticality: How important is the asset for the overall
functionality of the CI?

• Dependencies: How critical is the asset for the function-
ality of other related assets?

• Status indicator: What is the level of functionality of each
asset?

As for the last question, we here use different states on
the scale {1, 2, 3} to express increasing degrees of affection,
ranging from status “working” (represented by value 1) up
to the worst case status “outage” (represented by value 3),
where the intermediate status level corresponds to limited
functionality. More granular scales are possible but these three
states are enough for illustration purposes.

165

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Remark 1: It is important to note that we use the general
term “asset” here, as in the standard risk management litera-
ture, when investigating risks within a CI. When interested
in dependencies between CIs, e.g., the interplay between
power providers, hospitals and water suppliers, a high-level
perspective may see each CI as an asset and apply the model
of stochastic dependencies. In this work, we focus on a single
CI’s situation and will thus hereafter use the term asset to
describe a component of a CI.

A. Establishing the context

As a very first step it is necessary to understand the situation
at hand. This includes both a description of how the water
provider works internally as well as a deeper understanding
of the overall context, i.e., dependencies to other CIs that
provide input or require input for their part to ensure smooth
operation. Dependencies between CIs are manifold and require
a thorough analysis. In particular, dependencies are in no way
limited to visible physical and known cyber connections but
the analysis should also take into account logical interdepen-
dencies between different parts, as in the case of a control
system.

A useful way to obtain an overview of the situation (and
to discover potential missing dependencies) is visualization
through a graph. To this end, a full list of components of the
infrastructure as well as a full list of providers they depend
on is represented in a network model. In a large network it
may be useful (or even necessary) to classify dependencies
according to their properties and only assign values to every
class of connection, such as assigning one of the types “water”,
“communication” or “electricity” to every connection. This
allows for distinction of different relationships but at the same
time avoids an excessive amount of assessments.

Finally, context and focus of the risk management process
are determined, defining which parts of the organization is
covered by the analysis (which assets are relevant) and which
criteria are used to evaluate the significance of risks, but also
answering organizational questions such responsibilities and
resources for the upcoming analysis.

B. Risk Identification

Next, it is important to identify the relevant risks. It is useful
to distinguish the terms “threat”, “vulnerability” and “risk”
in the following: a threat is any factor or condition that can
impact the correct functionality or security of a system. A
vulnerability is any condition or property of a system that can
lead to affection by a threat. A risk is the coincidence of threat
and vulnerability. A security incident is then the physical event
of a threat that hits some vulnerability and thereby causes an
impact on the system. Quantitatively, risk is understood as the
product of impact and the likelihood for the impact to occur.

In order to get a comprehensive overview, several sources
need to be taken into account. General technical vulnerabilities
are collected in databases such as the National Vulnerability
Database (NVD) [29] while specific vulnerabilities of software

and hardware components may be detected by use of auto-
mated vulnerability scanners such as Nessus [30] or OpenVAS
[31]. Historic data help identify threats specific to the CI and
discussions with experts form the field help understand which
of these threats are actually risks. This step yields a list of the
relevant risks that are analysed in the following.

C. Risk Analysis

This step is about getting a deeper understanding of the risks
identified in the last step. Which assets are directly affected
by each risk? What are the indirect consequences? How likely
is each risk to occur?

Reports on past incidents are a good source to enhance
understanding of risks. However, such data is not always
available, either due to the rare occurrence or due to the fact
that only necessary information is reported.

Consequences of an Incident

This step aims at estimating the consequences of an in-
cident, i.e. of a realisation of each of the risks considered.
To this end we apply the stochastic model introduced in [8]
that also allows simulation. The simulation assumes that a
certain incident has just occurred and directly affects one or
more assets by putting them from functional into affected or
even outage state. Based on the dependency information the
status of related (dependent) assets is updated accordingly,
where each asset may individually undergo different status
changes, depending on the importance of the other asset (e.g.,
a mild affection may occur if the failed asset provides only a
small part of the supply, or a severe affection may occur if an
asset vitally depends on another yet failed asset). This reveals
cascading effects, i.e., indirect impacts of a realisation of a risk
scenario that are not evident at first sight. State transitions
are supposed to happen probabilistically to cover cases of
deterministic dependencies (e.g., a pump is fully relying on
a continuous electricity supply) as well as probabilistic de-
pendencies (e.g., water shortage can temporarily be overcome
by backup water reservoirs). Application of the model [8] asks
experts to provide assessments for the identified risks and to
discuss the consequences of a realisation of each of these risks.
While the model describes the propagation mechanisms and
provides an estimate of the overall impact of an incident on a
CI it requires knowledge about the effect of a failure of one
single component on the ones directly depending on it. The
core duty of the modeling then boils down into two major
tasks:

1) Enumerate all assets and identify interdependencies be-
tween them as detailed as possible. In the following, we
use the arrow notation A→ B to denote a dependency of
asset B on asset A (cf. Figure 1, e.g., where the pump B
depends on the water A). A directed graph may be used
to illustrate the situation.

2) Based on this information, specify probabilities for state
changes in a dependent asset B, if the provider asset A
is not working properly (i.e., is in state 2 or 3).

166

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The first step typically collects information that is known
and available to the CI operator. The challenging part is
specification of the transition probabilities in the second step.
This is a general issue in any probabilistic model (i.e., not
specific to the one applied here), together with the occurring
costs to the CI operator in terms of human resources.

The sought transition probabilities describe how likely it
is that limited functionality or a complete shutdown of one
component affects the dependent components. While historic
data may provide some information on these transitions such
data is rarely (publicly) available so that expert knowledge is
the only remaining source. Despite the human resource cost to
the CI this source is of high value since experienced employee
often have a profound knowledge that is not available in
written form. Still, experts may find it hard to provide precise
estimates of likelihoods but rather have an idea about what
is likely to happen next (based on past incidents). Aware of
this problem, we avoid asking for precise numerical values
but rather look for an assessment on a qualitative scale,
as recommended in risk management (e.g., by the German
Federal Office for Information Security (BSI) [32]). One way
to address this problem is to ask for a qualitative prediction
combined with a statement on the confidence of this estimate
[1]. According to this approach we ask experts to answer the
following two questions for each transmission probability tij
that needs to be estimated.

If the provider is in state i, how likely is it that this
will put the dependent asset into state j?

Since this is usually hard to answer, we replace it by the
following two simpler questions.

1) “If the provider is in state i, what is the most likely state
j that the dependent asset will be in after this incident?”

2) “How certain are you about this prediction?”
The answers are to be chosen from a set of predefined values,
namely from the set of states {1, . . . , k} for 1) and a set of
possible confidence levels for 2). Even if the expert is unsure
about the consequences, he typically still has a reasonable idea
about the intensity of the consequences, i.e., if the expected
consequences will be “close” to the predicted value. Because
of this, the method assumes that in the case of uncertain
assignments similar values as the predicted one are also likely
to occur. In case an expert does not feel competent enough to
make a prediction it is assumed that all possible values occur
with the same likelihood. This intuition can be formalized and
yields a probability distribution over the set of all possible
states as shown in Table I.

TABLE I. Distribution over the CI’s possible next state based on the
expert’s assignment

prediction totally sure somewhat unsure totally unsure
1 (1,0,0) (2/3, 1/3, 0) (1/3,1/3,1/3)
2 (0,1,0) (1/4, 2/4, 1/4) (1/3,1/3,1/3)
3 (0,0,1) (0, 2/3, 1/3) (1/3,1/3,1/3)

Exact predictions may be difficult to provide even for very
experienced people working in the respective domain. In order
to capture this fact, the model can be extended to allow experts

to be mistaken with a small probability ε even when they are
sure about their prediction. We discussed this problem and a
possible solution in [1] but will not go into detail here to keep
the focus on the overall risk management process.

The input to the simulation is a network graph of connected
assets of a critical infrastructure where each of these assets
is in one specific state representing its functionality level.
This graph resembles the picture in Figure 1 but additionally
augments each node with matrices indicating the status change
probabilities for each dependency. Dependencies may change
over time, i.e., a short-term outage of a providers it typically
less severe than a lasting reduced availability. This is partic-
ularly true for power supply (that is the backbone of every
CI) where emergency power supply should prevent damage
for a limited time period. The simulation will thus need a
state transition probability matrix per dependency and per time
frame.

The simulation prototype [2] distinguishes short, medium
and long-term dependencies. For each of these time frames
the probabilities tij = Pr(B is in state j|A switches into state
i) describe the transition regimes. While the stochastic model
allows a recovery (i.e., switching back into a better status), this
is not yet implemented in the current version of the prototype.

The simulation starts when a risk scenario becomes reality,
imitating probabilistic transitions (as for a Markov chain), and
stops after a predefined time horizon (with the rationale that
far-fetching forecasts become increasingly unreliable and hop-
ing that after a decent amount of time some countermeasures
can be taken). Each simulation run yields a time series of state
transitions for all assets of the CI.

Given a number of simulations of a risk scenario (that may
contain several risk, see [1]), the final states per assets can
be averaged to get an estimate of the likelihood that this part
of the CI is affected. For visualization it is helpful to apply
color codes, ranging from green (symbolizing a working state)
to red (symbolizing an outage), alerting about the criticality
of the current condition. Numerically, the simulation results
may be summarized as a table that lists the number of
components which are on average in any of the possible states.
The OMNeT++ tool is used here to support the visualization
and execution of our simulation, as described in [2]. Various
additional outputs are possible, such as plots of time-lines
relating to a single simulation run. This would display the
times when a CI asset changes its state, and would show the
temporal development of the cascading impacts.

Remark 2: It must be kept in mind that the simulation does
not provide information about the likelihood for an incident
to occur but starts from a given scenario that is assumed to
have happened. The simulation then yields information on the
likelihood of the consequences of this scenario.

D. Risk Evaluation

Risk evaluation is concerned with prioritizing the risks
identified in Step II-B according to the criteria chosen in
Step II-A. Classical risk management approaches use a cost-
benefit analysis to decide on which risks are treated first. More

167

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

advanced approaches based on game theory allow optimizing
several goals simultaneously, thus also take into account non-
monetary factors such as reputation or employees satisfaction
[33].

As part of the overall risk management process, risk evalua-
tion takes the results of the risk analysis step II-C into account.
Based on this, it is possible to compare the different risks in
terms of the impact they have on the CI (according to the
considered goals). Ordering risks is doable in manifold ways,
such as taking expectations (i.e., risk = impact × likelihood)
or by lexicographic order on impacts. This is our choice in
the following, based on the HyRiM stochastic ordering [34].
This approach corresponds to minimization of the likelihood
of the worst possible damage.

E. Risk Treatment

Risk Treatment classically focuses on ways to mitigate risks
by means of improving existing controls or implementing new
controls in order to either reduce the likelihood of occurrence
or the magnitude of the consequences and the selection of
the controls to be implemented is often subjective. Advanced
approaches apply game theory to find (a mix of) optimal
controls [35] by considering various defence actions and
selecting an optimal selection of these.

Based on the risk evaluation step II-D, risk treatment evalu-
ates mitigation actions tailored to the specific risk scenario. In
order to achieve that, it is necessary to have information on the
reasons for a failure (root cause analysis), which simulations
can deliver (we will illustrate this in Section III-E). Based
on this information, we can proceed to find precautions and
defence actions that provide optimal protection. Once these are
implemented, risks can be reassessed (following the same steps
but using updated assessment reflecting the new situation) to
measure the effectiveness of the treatment.

Another way to treat the analysed risks is to identify
mitigation strategies. Since resources are limited, an important
task is selecting from a set of potential strategies. A method
to solve this optimization problem is to consider the different
risks as strategies of an attacker (nature in this case) and let
the operator of the CI defend his system. At first sight, this
might be an inappropriate model for two reasons. First, game
theory assumes rational players that are able to predict the
(best) responses of the other players to their actions. Still game
theory is able to provide reasonable results when applying a
zero sum game, as this type of game assumes that the attacker
want to cause maximal damage. When the defender plays his
optimal attack for this worst case, he will only be better off
if the attacker deviates from his optimal strategy due to the
characterization of a Nash equilibrium. The identified solution
may not be as efficient as if we knew the attackers intentions
but they yield an upper bound to the expected damage. The
second issue with game theoretic models is the traditional
assumption that payoffs are real valued. This assumption can
however be generalized under very mild assumptions [36] such
payoffs may be random. Thus the impact can be estimated
through a simulation model as described above and payoffs

of the game are the estimated distributions over all possible
states. A Nash equilibrium can be computed numerically, e.g.,
in R [37]. Application of this game theoretic setting to CIs are
illustrated in [35], [38].

III. ANALYSING A WATER PROVIDER

This section demonstrates how to put the process described
in Section II into practice for a specific CI. In the following, we
analyse risks faced by a fictitious water provider following the
steps laid out above. All assessments and estimates presented
in this paper are illustrative only, since any such data is
sensitive and hence protected. However, the data used is based
on discussions with experts of the field to be as realistic as
possible. The main goal is to illustrate how to analyse the
consequences of a risk scenario affecting a CI that is part of
an entire network of interdependent CIs, i.e., depends on some
CIs and in turn provides important input to other CIs.

In the following, we consider a European water provider
of average size providing its services to a town with several
hundred thousands inhabitants as well as some municipalities
in the surrounding area. The water provider is responsible for
planning, building and maintaining the entire water network,
but his main focus is on the availability of the drinking water.
In order to ensure a sustainable water quality, the provider
supports water processing and sewage cleaning by using an
ICS. The considered use case assumes various sources for
water, namely a mountain spring, a river and a well. The
two latter use pumps to lift the water above ground level.
The water is further treated at the water plant to increase
the quality (e.g., through removal of undesired chemicals or
adding of minerals). Transportation paths are short due to
the geography of the landscape and the number of necessary
lines is correspondingly low. Several reservoirs are available to
ensure water supply in case of high demand, e.g., to extinguish
fire.

The water provider relies on the transportation system, in
particular on roads, e.g., to be able to perform maintenance and
manual checks, and as many other CI it crucially depends on
electricity. In this scenario, we consider an internal power plant
that contributes approximately 30% of the required energy
while the remaining power comes from external providers.
Redundancy in the system and an emergency power supply
help to mitigate the criticality of this dependency. In case of a
reduction or an interruption of electricity, the utility provider
is still able to guarantee supply with drinking water up to three
days due the precautionary measures.

On the other hand, the water provider is important for
numerous other CIs in the region. It supplies drinking water to
hospitals, schools and grocery stores but also cooling water for
both hospitals and industrial companies. The actual relevance
of each of these connections can only be assessed by the
CIs depending on it, which requires discussions with the
corresponding experts and thus goes beyond the scope of this
use case that focuses on the risk management for a water
utility. The remainder of this section presents an analysis
of the effects stemming from the realisation of a risk using

168

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a qualitative risk assessment performed by experts from the
water domain.

A. Establishing the context

The main input to context establishment is discussion with
experts. In detail, we discussed the importance of each asset
for the functionality of water supply which yielded a list as
given in Table II. Besides the elements required for production
(river and well pump), purification (water plant) and storage
(water reservoir) this list also contains essential elements of
water distribution, namely two parts of a distribution network.
Functionality of this network is essential for the delivery
of water to dependent CIs. In order to at least indicate the
complexity of this distribution network we composed it of two
different parts where the second part is located at a higher
altitude than the first part such that a pump is required for
transportation. Both the river pump and the well pump are
abstract nodes that are supposed to describe the behaviour
of all pumps of the corresponding type (if more than one
exist). This abstraction allows us to model situations where a
significant number of pumps fail so that it affects availability
of water.

TABLE II. List of Infrastructures and Providers

Number Object
1 Water Plant
2 Mountain Spring
3 Well
4 Well Pump
5 Water Reservoir
6 River
7 River Pump
8 Power Grid
9 Communication
10 SCADA server
11 Distribution network 1
12 Distribution Pump
13 Distribution network 2

Besides the assets themselves, emergency systems and back-
ups need to be accounted for in the modeling process, e.g., we
assume the existence of emergency power stations as required
by (Austrian) law. Such components are indirectly taken into
account when assessing the dependencies (in particular when
setting up the transmission regime; shortage in power supply
only affects other parts after a certain time) rather than being
assets themselves.

The situation of the fictitious water provider is displayed
in Figure 1 showing all relevant interdependencies between
the assets. Initially, we assume that the everything is working
smoothly, i.e., every asset is in states 1, until an incident
happens. In our small example, we refrain from categorising
the connections but rather assess every single connection.

B. Risk Identification

In order to identify the relevant risks we discussed potential
threats with experts. The most significant ones for a water
provider turned out to be the following ones.

Fig. 1. Visualization of water use case

• R1: flooding
• R2: extreme weather conditions
• R3: leakage of hazardous material (water contamination)
• R4: cyberattack (e.g., on SCADA server)

Risk R2 indicates the general vulnerability of water supply on
the weather. For the upcoming analysis however, we need to
be more specific in order to analyse the risk in the next step.
Short-term heavy rain is not as a severe problem for a water
provider (it certainly is for other CIs), since the main source of
the water provider is groundwater. While it may cause smaller
damage to the infrastructure, it will not interrupt water supply
which is the core interest of our fictitious water provider.
Some experts see flash floods an underestimated hazard and
raise awareness [39]. Currently, droughts are considered more
problematic for a water utility, in particular because they are
likely to become more frequent in near future. Thus, we
analyse the risk R2 to be a heat wave in the following.

C. Risk Analysis

Knowing the relevant risks, it is necessary to understand
each of these in detail. First, we identify the likelihood of each
asset to be directly affected by a realisation of each of the risks.
A flooding affects single sites (such as a well) but is typically
not critical for the overall functionality for the water supply.
Further, a realisation of risk R1 may yield a limited operation
of wells and springs as water may be contaminated by particles
(germs, bacteria and others) induced by the flood. Depending
on the degree of contamination, water may be boiled to make
it drinkable or needs to be purified technically, which is a
costly and time-consuming process. Recent floods such as the
flooding in central Europe in 2002 [40] and 2013 [41], [42]
indicate an increased likelihood of occurrence [43]. Concern-
ing a realisation of R2 we here focus on an extraordinarily
dry period. Various water sources may dry up, in particular
rivers or wells, but we assume that at least some sources

169

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

like ground water remain available. A drought implies also an
increased need for water and thus yields a peak in consumption
which in turn challenges the infrastructure. Peaks will cause
additional costs for the provider but are not considered here
any further since this does not affect other parts of the system.
The effect of leakage of hazardous material strongly depends
on the circumstances of the leakage and to some extent on the
material. The crucial factor is the extent of the leakage as this
changes the impact significantly. A bounded contamination is
not a severe issue as long as the water network is close-meshed
(i.e., there is enough redundancy in the network). However, if
groundwater or a large number of wells are affected, water
purification may take several months. For our use case, we
assume a realisation of R3 that is a limited spreading, affecting
mainly the river and only with small likelihood also affects the
mountain spring or the well. Since contamination seriously
affects the quality of drinking water [44], the probability that
it switches to the worst possible state 3 is high. A realisation of
R4 is most challenging to investigate because data is typically
(and luckily) sparse. Recent incidents in ports [45]–[47] and
in particular prominent attacks such as Wannacry [15] or
NotPetya [48] allow a heuristic estimation of consequences.
In order to perform simulations it is necessary to make some
basic assumptions about the spreading process (e.g., does it
spread via email or not).

Understanding a risk includes identifying those assets that
are directly affected by a realisation of the risk and estimating
the expected impact. Tables III, IV, V and VI give the esti-
mated probability distributions over the various states for short,
medium and long-term of those assets that are directly affected
(those not directly affected are omitted and the corresponding
likelihoods set to zero). Note that the tables only contain the
necessary information, i.e., the chance that the asset is not
affected by the considered risk (stays in state 1) is such that
the sum of the corresponding row is one.

TABLE III. Direct Impact of R1 on Assets

Asset Impact Short Medium Long
Mountain Spring limitation 0.3 0.4 0.5

failure 0.2 0.3 0.4
Well limitation 0.2 0.3 0.4

failure 0.1 0.2 0.3

TABLE IV. Direct Impact of R2 on Assets

Asset Impact Short Medium Long
Mountain Spring limitation 0.1 0.2 0.3

failure 0.0 0.2 0.3
Well limitation 0.2 0.3 0.4

failure 0.0 0.1 0.2
River limitation 0.6 0.4 0.2

failure 0.2 0.4 0.6

Identification of indirect consequences of a risk on each
of the assets is supported by the simulation, as described in
Section II-C and will be demonstrated in detail in the next
paragraph.

TABLE V. Direct Impact of R3 on Assets

Asset Impact Short Medium Long
Mountain Spring limitation 0.0 0.0 1/3

failure 1.0 1.0 2/3
Well limitation 0.0 0.0 1/3

failure 1.0 1.0 2/3
River limitation 0.0 0.0 1/3

failure 1.0 1.0 2/3

TABLE VI. Direct Impact of R4 on Assets

Asset Impact Short Medium Long
Communication limitation 0 1/3 1/3

failure 1 2/3 2/3
SCADA limitation 1/2 1/3 1/3

failure 1/4 1/3 2/3

Finally, the likelihood of occurrence is estimated for each
risk to add to the picture. Additionally, the likelihood of failure
and impairment of the CI due to a realisation of each risk
are rated as “negligible”, “low”, “medium”, “high” or “very
high” by experts. Where available, public reports and statistics
may complement such subjective assessment and yield refined
estimates. In case of a cyberattack the estimates highly depend
on the assumptions about the attacker, e.g., whether he plans
a highly sophisticated APT or a more general malware attack.
The values for this use case are given in Table VII.

TABLE VII. Overall Likelihood Assessment for Risks

Risk Occurrence Failure Impairment
R1: flooding medium negligible negligible
R2: heat wave medium negligible medium
R3: contamination low negligible medium
R4: cyberattack medium low medium

Consequences of an Incident

The consequences of a realisation of a risk are estimated
based on a simulation model, as described in Section II-C.
The dependencies between the assets are assessed for three
different time horizons, taking into account the dynamic nature
of CIs. For example, if emergency power supply is available,
the likelihood for a pump to switch to the outage state 3 given
the electricity goes off is zero for the first couple of hours, and
changes to 1 if the emergency generator runs out of fuel, unless
the original power supply has recovered in the meantime. The
assessments given in Tables VIII, IX and X are based on
several discussion with domain experts. Impact was measured
on the three-tier scale “negligible” (state 1), “medium” (state
2) and “high” (state 3) while the experts’ confidence in the
provided prediction is described as “totally sure”, “somewhat
unsure” or “totally unsure”. Note that these assessments need
to be made for each specific connection and do neither contain
information about potential substitutes (e.g., if several pumps
are available) nor take into account the option of repair or
recovery. The assessment is solely concerned about the nature
of this specific dependency between the two assets.

The assessments from Tables VIII, IX and X are mapped to
the corresponding transition matrices as described in Table

170

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VIII. Short-term impact assessment

Link Problem Prediction Confidence
River Pump → limitation negligible totally sure
Water Plant failure negligible totally sure
Mountain Spring → limitation negligible totally sure
Water Plant failure negligible totally sure
Communication → limitation medium somewhat unsure
Water Plant failure negligible totally sure
Water Reservoir → limitation negligible totally sure
Water Plant failure negligible totally sure
SCADA → limitation high somewhat unsure
Water Plant failure high somewhat unsure
Well → limitation negligible totally sure
Well Pump failure negligible somewhat unsure
Communication → limitation medium somewhat unsure
Well Pump failure negligible totally sure
Power Grid → limitation negligible totally sure
Well Pump failure negligible totally sure
SCADA → limitation medium somewhat unsure
Well Pump failure high somewhat unsure
River → limitation negligible totally sure
River Pump failure negligible somewhat unsure
Communication → limitation medium somewhat unsure
River Pump failure negligible totally sure
Power Grid → limitation negligible totally sure
River Pump failure negligible totally sure
SCADA → limitation medium somewhat unsure
River Pump failure high somewhat unsure
Well Pump → limitation negligible totally sure
Water Reservoir failure negligible totally sure
Water Plant → limitation negligible totally sure
Distribution 1 failure negligible totally sure
Water Reservoir → limitation negligible totally sure
Distribution 1 failure negligible totally sure
Water Reservoir → limitation negligible totally sure
Distribution 2 failure negligible totally sure
Distribution Pump → limitation negligible totally sure
Distribution 2 failure negligible somewhat unsure
Power Grid → limitation negligible totally sure
Distribution Pump failure negligible totally sure
Distribution 1 → limitation negligible totally sure
Distribution Pump failure negligible somewhat unsure

I, e.g., yielding transition regimes as shown in Table XI
corresponding to the first few rows of Table VIII. The fact that
dependencies may change over time is here captured by the
three different time horizons ”short”, ”medium” and ”long”.
The simulation requires definitions for all three time periods
for each dependency. Table XII shows the definitions applied
in this use case. Time starts at zero and the numbers given in
each column are the upper bound of the corresponding range,
e.g., for the connection River Pump → Water Plant short-
term is a duration up to 12 hours, medium-term is between
12 an 48 hours and long is between 48 and 72 hours (when
the simulation stops). For consistency, the lower limits are
excluded and the upper ones are included, e.g., medium-term
means t ∈ (12, 48]. The time definitions for the impacts are all
equal and set to 1 hour for short-term, 12 hours for medium-
term and 48 hours for long-term.

With this information the simulation can be run to estimate
the impact of a realisation of the identified risks. Figure 2
shows the results of one run of the simulation (for a realisation
of a contamination). The colouring of the nodes represents the
state of the assets where dark grey indicates failure (state 3),

TABLE IX. Medium-term impact assessment

Link Problem Prediction Confidence
Pump → limitation negligible totally sure
Water Plant failure negligible somewhat unsure
Mountain Spring → limitation negligible totally sure
Water Plant failure negligible somewhat unsure
Communication → limitation negligible totally sure
Water Plant failure negligible totally sure
Water Reservoir → limitation negligible totally sure
Water Plant failure negligible somewhat unsure
SCADA → limitation medium somewhat unsure
Water Plant failure medium somewhat unsure
Well → limitation medium somewhat unsure
Well Pump failure high somewhat unsure
Communication → limitation negligible totally sure
Well Pump failure negligible totally sure
Power Grid → limitation negligible totally sure
Well Pump failure negligible totally sure
SCADA → limitation medium totally sure
Well Pump failure medium totally sure
River → limitation medium somewhat unsure
River Pump failure high somewhat unsure
Communication → limitation negligible totally sure
River Pump failure negligible totally sure
Power Grid → limitation negligible totally sure
River Pump failure negligible totally sure
SCADA → limitation medium totally sure
River Pump failure medium totally sure
Well Pump → limitation negligible totally sure
Water Reservoir failure negligible somewhat unsure
Water Plant → limitation negligible totally sure
Distribution 1 failure negligible somewhat unsure
Water Reservoir → limitation negligible totally sure
Distribution 1 failure negligible somewhat unsure
Water Reservoir → limitation negligible totally sure
Distribution 2 failure negligible somewhat unsure
Distribution Pump → limitation negligible somewhat unsure
Distribution 2 failure high somewhat unsure
Power Grid → limitation medium somewhat unsure
Distribution Pump failure negligible somewhat unsure
Distribution 1 → limitation medium somewhat unsure
Distribution Pump failure negligible somewhat unsure

medium grey indicates limited availability (state 2) and light
grey means normal operation (state 1). Since the simulation
contains stochastic elements, it is necessary to run a large
number of repetitions. With the parameters specified above,
we run the simulation 1000 times and estimate the probability
distribution over the possible states for each asset. For a
realisation of R1, we considered the scenario of a flooding
that lasts 4 days. The empirical probability distributions over
the possible states for each asset are shown in Table XIII.
For a realisation of R2, we considered the scenario of heat
wave lasting 7 weeks. The empirical probability distributions
over the possible states for each asset are shown in Table
XIV. For a realisation of R3, we considered the scenario of
a contamination that lasts 7 weeks. The empirical probability
distributions over the possible states for each asset are shown
in Table XV. For a realisation of R4, we considered the
scenario of a cyberattack that lasts 2 hours. The empirical
probability distributions over the possible states for each asset
are shown in Table XIII.

Note that the impact scale is influenced by the interests of
the CI provider. The degree of damage could be measured in

171

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE X. Long-term impact assessment

Link Problem Prediction Confidence
Pump → limitation negligible totally sure
Water Plant failure medium somewhat unsure
Mountain Spring → limitation negligible totally sure
Water Plant failure medium somewhat unsure
Communication → limitation negligible totally sure
Water Plant failure negligible totally sure
Water Reservoir → limitation negligible totally sure
Water Plant failure medium somewhat unsure
SCADA → limitation medium somewhat unsure
Water Plant failure medium somewhat unsure
Well → limitation medium somewhat unsure
Well Pump failure high totally sure
Communication → limitation negligible totally sure
Well Pump failure negligible totally sure
Power Grid → limitation negligible totally sure
Well Pump failure high totally sure
SCADA → limitation medium totally sure
Well Pump failure medium totally sure
River → limitation medium somewhat unsure
River Pump failure high totally sure
Communication → limitation negligible totally sure
River Pump failure negligible totally sure
Power Grid → limitation negligible totally sure
River Pump failure high totally sure
SCADA → limitation medium totally sure
River Pump failure medium totally sure
Well Pump → limitation negligible totally sure
Water Reservoir failure medium somewhat unsure
Water Plant → limitation negligible somewhat unsure
Distribution 1 failure medium somewhat unsure
Water Reservoir → limitation negligible totally sure
Distribution 1 failure negligible somewhat unsure
Water Reservoir → limitation negligible totally sure
Distribution 2 failure negligible somewhat unsure
Distribution Pump → limitation medium somewhat unsure
Distribution 2 failure high totally sure
Power Grid → limitation medium somewhat unsure
Distribution Pump failure high somewhat unsure
Distribution 1 → limitation medium somewhat unsure
Distribution Pump failure high totally sure

TABLE XI. Short-term transition probabilities

Pshort
river pump →water plant =


swp=1 swp=2 swp=3

srp=1 1 0 0
srp=2 1 0 0
srp=3 1 0 0



Pshort
mountain spring →water plant =


swp=1 swp=2 swp=3

sms=1 1 0 0
sms=2 1 0 0
sms=3 1 0 0



Pshort
communication →water plant =


swp=1 swp=2 swp=3

scom=1 1 0 0
scom=2 1/4 2/4 1/4
scom=3 1 0 0



TABLE XII. Time assessments for short-, medium- and long-term

Link Short Medium Long
River Pump → Water Plant 12 hours 48 hours 72 hours
Mountain Spring → Water Plant 12 hours 48 hours 72 hours
Communication → Water Plant 12 hours 48 hours 72 hours
Water Reservoir → Water Plant 12 hours 48 hours 72 hours
SCADA → Water Plant 1 hour 2 hours 6 hours
Well → Well Pump 12 hours 48 hours 72 hours
Communication → Well Pump 12 hours 48 hours 72 hours
Power Grid → Well Pump 8 hours 48 hours 72 hours
SCADA → Well Pump 1 hour 2 hours 6 hours
River → River Pump 12 hours 48 hours 72 hours
Communication → River Pump 12 hours 48 hours 72 hours
Power Grid → River Pump 8 hours 48 hours 72 hours
SCADA → River Pump 1 hour 2 hours 6 hours
Well Pump → Water Reservoir 12 hours 48 hours 72 hours
Water Plant → Distribution1 12 hours 48 hours 72 hours
Water → Distribution1 12 hours 48 hours 72 hours
Water Reservoir → Distribution2 12 hours 48 hours 72 hours
Distribution Pump → Distribution2 24 hours 48 hours 72 hours
Power Grid → Distribution Pump 8 hours 48 hours 72 hours
Distribution1 → Distribution Pump 12 hours 48 hours 72 hours

ok
limitation
failure

Distribution 1 Distribution
Pump

Distribution 2

WaterPlant Water Reservoir Well Mountain Spring

River Pump Well Pump

River

Communication

SCADA

Power Grid

Fig. 2. Results of one run simulating scenario R3

TABLE XIII. Estimated Impact of R1

state 1 state 2 state 3
Water Plant 0.384 0.422 0.194
Mountain Spring 0.011 0.325 0.664
Well 0.099 0.380 0.521
Well Pump 0.122 0.200 0.678
Water Reservoir 0.427 0.398 0.175
River 1.000 0.000 0.000
River Pump 1.000 0.000 0.000
Power Grid 1.000 0.000 0.000
Communication 1.000 0.000 0.000
SCADA server 1.000 0.000 0.000
Distribution network 1 0.672 0.290 0.038
Distribution Pump 0.690 0.148 0.162
Distribution network 2 0.670 0.137 0.193

terms of the number of affected customers, the time needed
reassure availability of drinking water, the amount of resources
necessary to overcome a shortage (in terms of money or person

172

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XIV. Estimated Impact of R2 on Assets

state 1 state 2 state 3
Water Plant 0.144 0.547 0.309
Mountain Spring 0.228 0.344 0.428
Well 0.191 0.547 0.262
Well Pump 0.227 0.268 0.505
Water Reservoir 0.584 0.286 0.130
River 0.013 0.188 0.799
River Pump 0.023 0.093 0.884
Power Grid 1.000 0.000 0.000
Communication 1.000 0.000 0.000
SCADA server 1.000 0.000 0.000
Distribution network 1 0.524 0.394 0.082
Distribution Pump 0.551 0.196 0.253
Distribution network 2 0.565 0.150 0.285

TABLE XV. Estimated Impact of R3 on Assets

state 1 state 2 state 3
Water Plant 0.032 0.492 0.476
Mountain Spring 0.000 0.000 1.000
Well 0.000 0.000 1.000
Well Pump 0.000 0.000 1.000
Water Reservoir 0.145 0.600 0.255
River 0.000 0.000 1.000
River Pump 0.000 0.000 1.000
Power Grid 1.000 0.000 0.000
Communication 1.000 0.000 0.000
SCADA server 1.000 0.000 0.000
Distribution network 1 0.361 0.525 0.114
Distribution Pump 0.388 0.262 0.350
Distribution network 2 0.406 0.185 0.409

TABLE XVI. Estimated Impact of R4 on Assets

state 1 state 2 state 3
Water Plant 0.070 0.305 0.625
Mountain Spring 1.000 0.000 0.000
Well 1.000 0.000 0.000
Well Pump 0.230 0.553 0.217
Water Reservoir 0.811 0.139 0.050
River 1.000 0.000 0.000
River Pump 0.230 0.565 0.205
Power Grid 1.000 0.000 0.000
Communication 0.000 0.000 1.000
SCADA server 0.230 0.487 0.283
Distribution network 1 0.346 0.507 0.147
Distribution Pump 0.385 0.250 0.365
Distribution network 2 0.432 0.149 0.419

hours), the reputation damage due to the incident (e.g., in case
of insufficient protection against cyberattacks) or many more.
Further, assessing a criticality level to each asset is possible to
represent the importance of each asset for the overall process.
Such criticality levels may also have different meaning for
individual scenarios; e.g., if a pump or water tower fails for
one day, this is more critical than a water contamination,
since in the latter case, households can be advised to boil
the water before drinking it, whereas a failure of the pump
may completely cut off the household from water supply.

D. Risk Evaluation

In order to evaluate the different risks, consequences of the
risks are compared. As we use an ordinal scale to measure

the impact of each risk, the stochastic ordering mentioned
in Section II-D simplifies to a lexicographic ordering with
following interpretation. If one risk has a lower likelihood of
worst case impact (state 3) than the other, we prefer this one; in
case these are equal, the likelihoods of the second worst impact
(state 2) are compared, and so on (and we randomly decide
on the ordering of two risks with identical distributions).

Risk evaluation focuses on an asset of special interest (e.g.,
due to its vital importance to the CI) and is here illustrated
with a focus on the water plant, comparing the impacts the all
four identified risks on this asset. Figures 3, 4, 5 and 6 show
the estimated impacts of the corresponding risks on the water
plant.

38.4%

42.2%

19.4%

Waterplant - Flooding

ok

limitation

failure

Fig. 3. Estimated Impact of R1 on Water Plant

14.4%

54.7%

30.9%

Waterplant - Heat Wave

ok

limitation

failure

Fig. 4. Estimated Impact of R2 on Water Plant

Comparing the probabilities we find that R4 has the biggest
chance of failure (62.5%), followed by R3 (47.6%), R2

(30.9%), and R1 (19.4%). Thus, we think of R4 as being
the most dangerous one and R1 as the one with the smallest
chance of causing the most severe problems, i.e., we can write

R1 ≤ R2 ≤ R3 ≤ R4.

173

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3.2%

49.2%

47.6%

Waterplant - Contamination

ok

limitation

failure

Fig. 5. Estimated Impact of R3 on Water Plant

7.0%

30.5%

62.5%

Waterplant - Cyber Attack

ok

limitation

failure

Fig. 6. Estimated Impact of R4 on Water Plant

E. Risk Treatment

As the last step of the risk management process, risk
treatment deals with the understanding of the relevant risks
and their effects on the CI can (and should) be used to identify
ways to mitigate the risks. This is what risk treatment is
about as the last step in the risk management process. Several
methods may be used here to identify controls that need to
be implemented or improved but in any case it is helpful to
know the trigger of the failure. Figure 7 shows a pie chart
illustrating which assets were responsible for failure of the
water plant during a contamination (i.e., a realisation of R3).

The most frequent cause for failure of the water plant is
clearly the mountain spring which is not surprising during a
contamination if it happens near the mountain spring. This
problem is not easily fixed (purification is an expensive and
long-lasting process). In such a case it is faster to substitute
water, e.g., through an agreement with other water providers
to help out in such a critical situation. However, the analysis
provides more information, it shows that also limited operation
of the river pump as well as the water reservoir may lead to a

53.32%

39.00%

7.68%

Waterplant - Responsibility
for Failure

Mountain Spring

River Pump

Water Reservoir

Fig. 7. Triggering factors for failure of the water plant during a
contamination

failure of the water plant. While both problems are very likely
to be also due to the contamination, it might sometimes be a
bit easier to fix these indirect issues and to reduce the overall
likelihood of failure due to a risk. Similarly, Figure 8 shows
the different triggers for a limitation of the water plant in case
of a contamination. The triggers are the same as in the case of
failure but the mountain spring is now clearly the main source
of problem while the water reservoir does not significantly
trigger a limitation of the water plant.

80.02%

19.08%
0.90%

Waterplant - Responsibility
for Limitation

Mountain Spring

River Pump

Water Reservoir

Fig. 8. Triggering factors for limitation of the Water Plant during a
contamination

For a practitioner, the simulation’s outcome is like a heat
map, directly pointing out the most vulnerable spots in the
network of critical infrastructures, which each CI domain
expert can be informed about afterwards (see Figure 2 for
an example scenario, from which each CI security officer
can instantly see the degree of affection due to an incident).
Towards a more fine-grained understanding of the affection’s
extent, the domain expert can continue by asking how likely
an affection is to be medium or severe, which the pie charts

174

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(see Figures 3 to 6) directly tell. Given this knowledge about
the local affection, the expert may then strive for a root cause
analysis, which the pie chart in Figures 7 and 8 help with:
here, the domain expert gets the information of who is the
most relevant “neighboring” CI that has the strongest impact
on one’s own CI. That is, if some CI C has relations on two
other CIs A and B, an incident at A may be more or less
severe than an incident happening at B. For example, Figure
7 explains that a failure of the water plant in a contamination
scenario is most likely due to a problem with the mountain
spring, or possibly also due to a problem with the river pump,
but least likely, the cause is found at the water reservoir. This
can be a guidance for fixing the problem in practice. Similarly,
Figure 8 would advise the expert, upon an incident, to first look
at the mountain spring as an external trigger of the local issue,
but only in rare cases, the water reservoir will have caused the
trouble.

IV. CONCLUSION

Applying simulation is a straightforward proposal to extend
the understanding of how security incidents propagate through
and affect one or more critical infrastructures. Setting up
proper simulation models, and using the information that these
deliver is, however, a different story with its own challenges.
This work used a hypothetical water provider in the back-
ground to describe a step by step method of
(i) how to specify interdependencies between critical infras-

tructures in a way that allows domain experts to include
their subjective uncertainty,

(ii) how the data and specification for a concrete simulation
model (chosen here for illustration) could look like, and

(iii) how the simulation model’s results could be compiled
into a digestible form to ease decision making by re-
vealing previously unexpected roles of assets in incident
propagation and loss estimation.

Open issues includes accuracy assessments of such a sim-
ulation (relative to reported incidents in real life), but equally
important, a study of usability from domain experts perspec-
tives. Having an accurate model is not enough, unless people
outside the scientific realm and concerned with the practical
things feel capable of using it. The “tutorial” style of this work
shall be a step towards bridging this gap.

REFERENCES

[1] S. König, T. Grafenauer, S. Rass, and S. Schauer, “Practical risk analysis
in interdependent critical infrastructures - a How-To,” in The Twelfth
International Conference on Emerging Security Information, Systems
and Technologies (SECURWARE) 2018. IARIA XPS Press, 2018, pp.
150–157.

[2] T. Grafenauer, S. König, S. Rass, and S. Schauer, “A simulation
tool for cascading effects in interdependent critical infrastructures,” in
International Workshop on Security Engineering for Cloud Computing
(IWSECC 2018), collocated with the 13th International Conference on
Availability, Reliability and Security (ARES 2018), 2018, (in press).

[3] Y. Y. Haimes, “Hierarchical Holographic Modeling,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 11, no. 9, pp. 606–617, 1981.

[4] N. K. Svendsen and S. D. Wolthusen, “Analysis and statistical properties
of critical infrastructure interdependency multiflow models,” in 2007
IEEE SMC Information Assurance and Security Workshop, June 2007,
pp. 247–254.

[5] R. Setola, S. D. Porcellinis, and M. Sforna, “Critical infrastructure
dependency assessment using the input-output inoperability model,” In-
ternational Journal of Critical Infrastructure Protection (IJCIP), vol. 2,
pp. 170–178, 2009.

[6] S.-J. Wu and M. T. Chu, “Markov chains with memory, tensor formu-
lation, and the dynamics of power iteration,” vol. 303, pp. 226–239,
2017.

[7] M. Rahnamay-Naeini and M. M. Hayat, “Cascading failures in inter-
dependent infrastructures: An interdependent markov-chain approach,”
IEEE Transactions on Smart Grid.

[8] S. König and S. Rass, “Stochastic dependencies between critical in-
frastructures,” in SECURWARE 2017: The Eleventh International Con-
ference on Emerging Security Information, Systems and Technologies.
IARIA, 2017, pp. 106–110.

[9] S. König, S. Schauer, and S. Rass, “A stochastic framework for pre-
diction of malware spreading in heterogeneous networks,” in Secure
IT Systems: 21st Nordic Conference, NordSec 2016, Oulu, Finland,
November 2-4, 2016. Proceedings, B. B. Brumley and J. Röning, Eds.
Springer International Publishing, 2016, pp. 67–81.

[10] A. V. Uzunov, E. B. Fernandez, and K. Falkner, “Securing distributed
systems using patterns: A survey,” Computers & Security, vol. 31, no. 5,
pp. 681–703, 2012.

[11] S. Fletcher, “Electric power interruptions curtail California oil and gas
production,” Oil Gas Journal, 2001.

[12] M. Schmidthaler and J. Reichl, “Economic Valuation of Electricity
Supply Security: Ad-hoc Cost Assessment Tool for Power Outages,”
ELECTRA, no. 276, pp. 10–15, 2014.

[13] J. Condliffe, “Ukraine’s Power Grid Gets Hacked Again,
a Worrying Sign for Infrastructure Attacks,” 2016. [Online].
Available: https://www.technologyreview.com/s/603262/ukraines-power-
grid-gets-hacked-again-a-worrying-sign-for-infrastructure-attacks/

[14] D. Kushner, “The real story of stuxnet,” IEEE Spectrum, vol. 3, no. 50,
pp. 48–53, 2013.

[15] National Audit Office, “Investigation: Wannacry cy-
ber attack and the nhs,” 2017. [Online]. Avail-
able: https://www.nao.org.uk/wp-content/uploads/2017/10/Investigation-
WannaCry-cyber-attack-and-the-NHS.pdf

[16] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[17] Z. Bederna and T. Szadeczky, “Cyber espionage through botnets,”
Security Journal, Sep 2019.

[18] European Parliament, “Directive (EU) 2016/1148 of the European
Parliament and of the Council: concerning measures for a
high common level of security of network and information
systems across the Union,” Official Journal of the European
Union, 2016. [Online]. Available: https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:32016L1148&from=EN

[19] S. Rinaldi, J. Peerenboom, and T. Kelly, “Identifying, understanding,
and analyzing critical infrastructure interdependencies,” IEEE Control
Systems Magazine, pp. 11–25, 2001.

[20] A. Gouglidis, B. Green, J. Busby, M. Rouncefield, D. Hutchison, and
S. Schauer, Threat awareness for critical infrastructures resilience.
IEEE, 9 2016.

[21] S. M. Rinaldi, “Modeling and simulating critical infrastructures and their
interdependencies,” in 37th Annual Hawaii International Conference on
System Sciences, 2004. Proceedings of the. IEEE, 2004, p. 8 pp.

[22] H. Guo, C. Zheng, H. H.-C. Iu, and T. Fernando, “A critical review of
cascading failure analysis and modeling of power system,” Renewable
and Sustainable Energy Reviews, vol. 80, pp. 9–22, dec 2017.

[23] S. Saidi, L. Kattan, P. Jayasinghe, P. Hettiaratchi, and J. Taron,
“Integrated infrastructure systems—A review,” Sustainable Cities and
Society, vol. 36, pp. 1–11, Jan 2018.

[24] E. Luiijf, M. Ali, and A. Zielstra, “Assessing and improving SCADA
security in the Dutch drinking water sector,” International Journal of
Critical Infrastructure Protection, vol. 4, no. 3-4, pp. 124–134, 2011.

[25] A. Alshawish, M. A. Abid, H. de Meer, S. Schauer, S. König,
A. Gouglidis, and D. Hutchison, “G-dps: A game-theoretical decision-
making framework for physical surveillance games,” in Game Theory
for Security and Risk Management: From Theory to Practice. Cham:
Springer International Publishing, 2018, pp. 129–156.

[26] A. Gouglidis, S. König, B. Green, K. Rossegger, and D. Hutchison,
“Protecting water utility networks from advanced persistent threats: A
case study,” in Game Theory for Security and Risk Management: From

175

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Theory to Practice. Cham: Springer International Publishing, 2018, pp.
313–333.

[27] European Comission, “COUNCIL DIRECTIVE 2008/114/EC of 8 De-
cember 2008 on the identification and designation of European critical
infrastructures and the assessment of the need to improve their protec-
tion,” Official Journal of the European Union, no. L345, pp. 75–82,
2008.

[28] ISO International Organization for Standardization, ISO 31000:2018
Risk management - Guidelines. Geneva, Switzerland: ISO International
Organization for Standardization, 2018.

[29] National Institute of Standarts and Technology (NIST), “National Vul-
nerability Database (NVD),” https://nvd.nist.gov/, accessed: 2019-12-05.

[30] “Nessus vulnerability scanner,” https://www.tenable.com/products/nessus-
vulnerability-scanner, accessed: 2019-08-22.

[31] “OpenVAS: Open Vulnerability Assessment System,”
http://www.openvas.org/, accessed: 2019-08-22.

[32] I. Münch, “Wege zur Risikobewertung,” in DACH Security 2012,
P. Schartner and J. Taeger, Eds. syssec, 2012, pp. 326–337.

[33] S. Schauer, “A risk management approach for highly interconnected net-
works,” in Game Theory for Security and Risk Management. Springer
International Publishing, 2018, pp. 285–311.

[34] S. Rass, S. König, and S. Schauer, “Decisions with uncertain con-
sequences—a total ordering on loss-distributions,” vol. 11, no. 12, p.
e0168583.

[35] ——, “Defending against advanced persistent threats using game-
theory,” vol. 12, no. 1, p. e0168675. [Online]. Available:
http://dx.plos.org/10.1371/journal.pone.0168675

[36] S. Rass, S. König, and S. Schauer, “Uncertainty in games: Using
probability-distributions as payoffs,” in Lecture Notes in Computer
Science. Springer International Publishing, 2015, pp. 346–357.

[37] S. Rass and S. König, “Package ’HyRiM’: Multicriteria risk
management using zero-sum games with vector-valued payoffs that
are probability distributions,” 2019. [Online]. Available: https://cran.r-
project.org/web/packages/HyRiM/index.html

[38] S. König, “Choosing ways to increase resilience in critical infrastruc-
tures,” in Proceedings of the 16th ISCRAM Conference – Valencia, Spain
May 2019, Valencia, 2019, pp. 1245–1251.

[39] Zurich, “Flash floods: The underestimated natural hazard,” Zurich In-
surance Company Ltd, Tech. Rep., 2017, accessed: 2019-08-22.

[40] J. H. Christensen and O. B. Christensen, “Severe summertime flooding
in europe,” Nature, vol. 421, no. 6925, pp. 805–806, 2003.

[41] A. H. Thieken, T. Bessel, S. Kienzler, H. Kreibich, M. Müller, S. Pisi,
and K. Schröter, “The flood of june 2013 in Germany: how much do we
know about its impacts?” Natural Hazards and Earth System Sciences,
vol. 16, no. 6, pp. 1519–1540, 2016.

[42] K. Schröter, M. Kunz, F. Elmer, B. Mühr, and B. Merz, “What
made the June 2013 flood in Germany an exceptional event? a
hydro-meteorological evolution,” Hydrology and Earth System Sciences,
vol. 19, pp. 309–327, 2015.

[43] Z. W. Kundzewicz, U. Ulbrich, T. brücher, D. Graczyk, A. Krüger, G. C.
Leckebusch, L. Menzel, I. Pińskwar, M. Radziejewski, and M. Szwed,
“Summer floods in central europe – climate change track?” Natural
Hazards, vol. 36, no. 1-2, pp. 165–189, 2005.

[44] J. A. Brown and W. P. Darby, “Predicting the probability of contamina-
tion at groundwater based public drinking supplies,” vol. 11, pp. 1077–
1082, 1988.

[45] C. Cimpanu. (2018) Port of San Diego suffers cyber-
attack, second port in a week after Barcelona.
[Online]. Available: https://www.zdnet.com/article/port-of-san-diego-
suffers-cyber-attack-second-port-in-a-week-after-barcelona/

[46] (2018) 2018 highlights: Major cyber attacks reported in
maritime industry. [Online]. Available: https://safety4sea.com/cm-
2018-highlights-major-cyber-attacks-reported-in-maritime-industry/

[47] World Maritime News. (2018) COSCO shipping lines
falls victim to cyber attack. [Online]. Avail-
able: https://worldmaritimenews.com/archives/257665/cosco-shipping-
lines-falls-victim-to-cyber-attack/

[48] A. Greenerg. The untold story of NotPetya, the most
devastating cyberattck in history. Accessed: 2019-08-23. [Online].
Available: https://www.wired.com/story/notpetya-cyberattack-ukraine-
russia-code-crashed-the-world/

176

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Advanced Approach for Choosing Security Patterns and Checking their
Implementation

Sébastien Salva∗, Loukmen Regainia†
LIMOS - UMR CNRS 6158

University Clermont Auvergne, France
Email: ∗ sebastien.salva@uca.fr, † loukmen.regainia@uca.fr

Abstract—This paper tackles the problems of generating
concrete test cases for testing whether an application is vulner-
able to attacks, and of checking whether security solutions are
correctly implemented. The approach proposed in the paper
aims at guiding developers towards the implementation of
secure applications, from the threat modelling stage up to
the testing one. This approach relies on a knowledge base
integrating varied security data, e.g., attacks, attack steps, and
security patterns that are generic and re-usable solutions to
design secure applications. The first stage of the approach
consists in assisting developers in the design of Attack De-
fense Trees expressing the attacker possibilities to compromise
an application and the defenses that may be implemented.
These defenses are given under the form of security pattern
combinations. In the second stage, these trees are used to
guide developers in the test case generation. After the test
case execution, test verdicts show whether an application is
vulnerable to the threats modelled by an ADTree. The last
stage of the approach checks whether behavioural properties
of security patterns hold in the application traces collected
while the test case execution. These properties are formalised
with LTL properties, which are generated from the knowledge
base. Developers do not have to write LTL properties not to
be expert in formal models. We experimented the approach on
10 Web applications to evaluate its testing effectiveness and its
performance.

Keywords-Security Pattern; Security Testing; Attack-Defense
Tree; Test Case Generation.

I. INTRODUCTION

Today’s developers are no longer just expected to code
and build applications. They also have to ensure that ap-
plications meet minimum reliability guarantees and security
requirements. Unfortunately, choosing security solutions or
testing software security are not known to be simple or
effortless activities. Developers are indeed overloaded of
new trends, frameworks, security issues, documents, etc.
Furthermore, they sometimes lack skills and experience for
choosing security solutions or writing concrete test cases.
They need to be guided on how to design or implement
secure applications and test them, in order to contribute in
a solid quality assurance process.

This work focuses on this need and proposes an approach
that guides developers devise more secure applications from
the threat modelling stage, which is a process consisting in
identifying the potential threats of an application, up to the
testing one. The present paper is an extended version of [1],

which provides additional details on the security test case
generation, the formalisation of behavioural properties of
security patterns with Linear Temporal Logic (LTL) proper-
ties, and on their automatic generation. We also provide an
evaluation of the approach and discuss the threats to validity.

In order to guide developers, our approach is based
upon several several digitalised security bases or documents
gathered in a knowledge base. In particular, the latter in-
cludes security solutions under the form of security patterns,
which can be chosen and applied as soon as the application
design. Security patterns are defined as reusable elements
to design secure applications, which will enable software
architects and designers to produce a system that meets
their security requirements and that is maintainable and
extensible from the smallest to the largest systems [2].
Our approach helps developers chose security patterns with
regard to given security threats. Then, it builds security test
cases to check whether an application is vulnerable, and test
whether security patterns are correctly implemented in the
application. More precisely, the contributions of this work
are summarised in the following points:

• the approach assists developers in the threat modelling
stage by helping in the generation of Attack Defense
Trees (ADTrees) [3]. The latter express the attacker
possibilities to compromise an application, and give the
defenses that may be put in place to prevent attacks.
Defenses are here expressed with security patterns.
We have chosen this tree model because it offers the
advantage of being easy to understand even for novices
in security;

• the second part of the approach supports developers
in writing concrete security test cases. A test suite is
automatically extracted from an ADTree. The test suite
is made up of test case stubs, which are completed
with comments or blocs of code. Once completed,
these are used to experiment an application under
test (shortened AUT), seen as a black-box. The test
case execution provides verdicts expressing whether
the AUT is vulnerable to the threats modelled in the
ADTree;

• the last part of the approach allows developers to check
whether security patterns are correctly implemented in

177

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the application. Kobashi et al. dealt with this task by
asking users to manually translate security pattern be-
haviours into formal properties [4]. Unfortunately, few
developers have the required skills in formal modelling.
We hence prefer proposing a practical way to generate
them. After the security pattern choice, our approach
provides generic UML sequence diagrams, which can
be adapted to better match the application context.
From these diagrams, the approach automatically gen-
erate LTL properties. After the test case execution, we
check if these properties hold in the application traces.
The developer is hence not aware of the LTL property
generation.

We have implemented this approach in a tool prototype
available in [5]. This tool was used to conduct several
experiments on 10 Web applications to evaluate the security
testing and security pattern testing effectiveness of the tool
as well as its performance.

Paper Organisation: Section II outlines the context of this
work. We recall some basic concepts and notations about
security patterns and ADTrees. We also discuss about the
related work and our motivations. Section III briefly presents
the architecture of the knowledge base used by our approach.
The approach steps are described in Section IV. These steps
are gathered into 3 stages called threat modelling, security
testing, and security pattern testing. Subsequently, Section
V describes our prototype implementation, and Section VI
evaluates the approach. Finally, Section VII summarizes our
contributions and presents future work.

II. BACKGROUND

This section recalls the basic concepts related to security
patterns and Attack Defense trees. The related work is
presented thereafter.

A. Security Patterns

Security patterns provide guidelines for secure system
design and evaluation [6]. They also are considered as
countermeasures to threats and attacks [7]. Security pat-
terns have to be selected in the design stage, integrated
in application models, and eventually implemented. Their
descriptions are usually given with texts or schema. But,
they are often characterised by UML diagrams capturing
structural or behavioural properties.

Several security pattern catalogues are available in the lit-
erature, e.g., [8], [9], themselves extracted from other papers.
In these catalogues, security patterns are systematically or-
ganised according to features and relationships among them.
Among these features, we often find the solutions called
intents, or the interests called forces. A security pattern
may have different relationships with other patterns. These
relations may noticeably help combine patterns together and
not to devise unsound composite patterns. Yskout et al.
proposed the following annotations between two patterns

Figure 1. Class layout of the security pattern “Intercepting Validator”.

[10]: “depend”, “benefit”, “impair” (the functioning of the
pattern can be obstructed by the implementation of a second
one), “alternative”, “conflict”.

Figure 1 depicts the UML structural diagram of the
security pattern “Intercepting Validator”, which is taken
as example is the remainder of the paper. Its purpose is
to provide the application with a centralized validation
mechanism, which applies some filters (Validator classes)
declaratively based on URL, allowing different requests to be
mapped to different filter chains. This validation mechanism
is decoupled from the other parts of the application and each
data supplied by the client is validated before being used.
The validation of input data prevents attackers from passing
malformed input in order to inject malicious commands.

B. Attack Defense Trees

ADTrees are graphical representations of possible mea-
sures an attacker might take in order to compromise a
system and the defenses that a defender may employ to
protect the system [3]. ADTrees have two different kinds of
nodes: attack nodes (red circles) and defense nodes (green
squares). A node can be refined with child nodes and can
have one child of the opposite type (linked with a dashed
line). Node refinements can be disjunctive or conjunctive.
The former is recognisable by edges going from a node
to its children. The latter is graphically distinguishable by
connecting these edges with an arc. We extend these two
refinements with the sequential conjunctive refinement of
attack nodes, defined by the same authors in [11]. This
operator expresses the execution order of child attack nodes.
Graphically, a sequential conjunctive refinement is depicted
by connecting the edges, going from a node to its children,
with an arrow.

For instance, the ADTree of Figure 2 identifies the ob-
jectives of an attacker or the possible vulnerabilities related
to the supply of untrusted inputs to an application. The root
node is here detailed with disjunctive refinements connecting
three leaves, which are labelled by attack referenced in a
base called the Common Attack Pattern Enumeration and
Classification (CAPEC) [12]. The node CAPEC-66 refers
to “SQL Injection”, CAPEC-250 refers to XML injections
and CAPEC-244 to “Cross-Site Scripting via Encoded URI
Schemes”.

178

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. ADTree example modelling injection attacks

An ADTree T can be formulated with an algebraic
expression called ADTerm and denoted ι(T). In short, the
ADTerm syntax is composed of operators having types given
as exponents in {o, p} with o modelling an opponent and p
a proponent. ∨s,∧s,−→∧ s, with s ∈ {o, p} respectively stand
for the disjunctive refinement, the conjunctive refinement
and the sequential conjunctive refinement of a node. A
last operator c expresses counteractions (dashed lines in the
graphical tree). cs(a, d) intuitively means that there exists
an action d (not of type s) that counteracts the action a (of
type s). The ADTree of Figure 2 can be represented with the
ADTerm ∨p(∨p(CAPEC-66, CAPEC-250), CAPEC-244).

C. Related Work

The literature proposes several papers dealing with the
test case generation from Attack trees (or related models)
and some other ones about security pattern testing. As these
topics are related to our work, we introduce them below and
give some observations.

1) Security Testing From Threat Models: the generation
of concrete test cases from models has been widely studied
in the last decade, in particular to test the security level
of different kinds of systems, protocols or software. Most
of the proposed approaches take specifications expressing
the expected behaviours of the implementation. But, other
authors preferred to bring security aspects out and used
models describing attacker goals or vulnerability causes of
the system. Such models are conceived during the threat
modelling phase of the system [13], which is considered
as a critical phase of the software life cycle since ”you
cannot build a secure system until you understand your
threats!” [14]. Schieferdecker et al. presented a survey paper
referencing some approaches in this area [15]. For instance,
Xu et al. proposed to test the security of Web applications
with models as Petri nets to describe attacks [16]. Attack
scenarios are extracted from the Reachability graphs of the
Petri nets. Then, test cases written for the Selenium tool
are generated by means of a MIM (Model- Implementation
Mapping) description, which maps each Petri net place
and transition to a block of code. Bozic et al. proposed a
security testing approach associating UML state diagrams to
represent attacks, and combinatorial testing to generate input

values used to make executable test cases derived from UML
models [17].

Other authors adopted models as trees (Attack trees,
vulnerability Cause Graphs, Security Activity Graphs, etc.)
to represent the threats, attacks or vulnerability causes that
should be prevented in an application. From these models,
test cases are then written to check whether attacks can be
successfully executed or whether vulnerabilities are detected
in the implementation. Morai et al. introduced a security
testing approach specialised for network protocols [18].
Attack scenarios are extracted from an Attack tree and
are converted to Attack patterns and UML specifications.
From these, attack scripts are manually written and are
completed with the injection of (network) faults. In the
security testing method proposed in [19], data flow diagrams
are converted into Attack trees from which sequences are
extracted. These sequences are composed of events com-
bined with parameters related to regular expressions. These
events are then replaced with blocks of code to produce
test cases. The work published in [20] provides a manual
process composed of eight steps. Given an Attack tree,
these steps transform it into a State chart model, which
is iteratively completed and transformed before using a
model-based testing technique to generate test cases. In [21],
test cases are generated from Threat trees. The latter are
previously completed with parameters associated to regular
expressions to generate input values. Security scenarios are
extracted from the Threat trees and are manually converted
to executable test scripts. Shahmehri et al. proposed a passive
testing approach, which monitors an AUT to detect vul-
nerabilities [22]. The undesired vulnerabilities are modelled
with security goal models, which are specialised directed
acyclic graphs showing security goals, vulnerabilities and
eventually mitigations. Detection conditions are then semi-
automatically extracted and given to a monitoring tool.

We observed that the above methods either automatically
generate abstract test cases from (formal) specifications or
help write concrete test cases from detailed threat models.
On the one hand, as abstract test cases cannot be directly
used to experiment an AUT , some works proposed test case
transformation techniques. However, this kind of technique
is at the moment very limited. On the other hand, Only
a few of developers have the required skills to write threat
models or test cases, as a strong expertise on security is often
required. Besides, the methods neither guide developers in
the threat modelling phase nor provide any security solution.
We focused on this problem and laid the first stone of the
present approach in [23], [24], [25]. We firstly presented
a semi-automatic data integration method [23] to build
security pattern classifications. This method extracts security
data from various Web and publicly accessible sources
and stores relationships among attacks, security principles
and security patterns into a knowledge base. Section III
summarises the results of this work used in this paper, i.e.,

179

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the first meta-model version of the data-store. In [24], we
proposed an approach to help developers write ADTrees and
concrete security test cases to check whether an application
is vulnerable to these attacks. This work was extended in
[25] to support the generation of test suites composed of
lists of ordered GWT test cases, a list being devoted to
check whether an AUT is vulnerable to an attack, which
is segmented into an ordered sequence of attack steps. This
test suite organisation is used to reduce the test costs with
the deduction of some test verdicts under certain conditions.
However, it does not assist developers to ensure that security
patterns have been correctly implemented in the application.
This work supplements our early study by covering this part.

2) Security Pattern Testing: the verification of patterns
on models was studied in [26], [27], [28], [4], [29]. In these
papers, pattern goals or intents or structural properties are
specified with UML sequence diagrams [26] with expres-
sions written with the Object Constraint Language (OCL)
[27], [28], [4] or with LTL properties [29]. The pattern
features are then checked on UML models.

Few works dealt with the testing of security patterns,
which is the main topic of this paper. Yoshizawa et al.
introduced a method for testing whether behavioural and
structural properties of patterns may be observed in ap-
plication traces [28]. Given a security pattern, two test
templates (Object Constraint Language (OCL) expressions)
are manually written, one to specify the pattern structure
and another one to encode its behaviour. Then, developers
have to make templates concrete by manually writing tests
for experimenting the application. The latter returns traces
on which the OCL expressions are verified.

We observed that these previous works require the mod-
elling of security patterns or vulnerabilities with formal
properties. Instead of assuming that developers are expert
in the writing of formal properties, we propose a practical
way to generate them. Intuitively, after the choice of security
patterns, our approach provides generic UML sequence
diagrams, which can be modified by a developer. From these
diagrams, we automatically generate LTL properties, which
capture the cause-effects relations among pairs of method
calls. After the test case execution, we check if these prop-
erties hold in the application traces, obtained while the test
case execution. The developer is hence not aware of the LTL
property generation. As stated in the introduction, this work
provides more details on test case generation and on the
formalisation of behavioural properties of security patterns
with LTL properties. We also complete the transformation
rules allowing to derive more LTL properties from UML
sequence diagrams. We also provide an evaluation of the
approach targeting the security pattern testing stage and
discuss the threats to validity.

III. KNOWLEDGE BASE OVERVIEW

Our approach relies on a knowledge base, denoted KB in
the remainder of the paper. It gathers information allowing
to help or automate some steps of the testing process. We
summarise its architecture in this section but we refer to [23]
for a complete description of its associations and of the data
integration process.

A. Knowledge Base Meta-Model

Figure 3 exposes the meta-model used to structure the
knowledge base KB. The entities refer to security properties
and the relations encode associations among them. The
entities in white are used to generated ADTrees, while those
in grey are specialised for testing. The meta-model firstly as-
sociates attacks, techniques, security principles and security
patterns. This is the result of observations we made from
the literature and some security documents, e.g., the CAPEC
base or security pattern catalogues [8], [9]: we consider that
an attack can be documented with more concrete attacks,
which can be segmented into ordered steps; an attack step
provides information about the target or puts an application
into a state, which are reused by a potential next step. Attack
steps are performed with techniques and can be prevented
with countermeasures. Security patterns are characterised
with strong points, which are pattern features extractable
from their descriptions. The meta-model also captures the
inter-pattern relationships defined in [10], e.g., ”depend” or
”conflict”. Countermeasures and strong points refer to the
same notion of attack prevention. But finding direct relations
between countermeasures and strong points is tedious as
these properties have different purposes. To solve this issue,
we used a text mining and a clustering technique to group the
countermeasures that refer to the same security principles,
which are desirable security properties. To link clusters and
strong points, we chose to focus on these security principles
as mediators. We organised security principles into a hierar-
chy, from the most abstract to the most concrete principles.
We provide a complete description of this hierarchy in [24].
In short, we collected and organised 66 security principles
covering the security patterns of the catalogue given in [9].
The hierarchy has four levels, the first one being composed
of elements labelled by the most abstract principles, e.g.,
“Access Control”, and the lower level exhibiting the most
concrete principles, e.g., “File Authorization”.

Furthermore, every attack step is associated to one test
case structured with the Given When Then (GWT) pattern.
We indeed consider in this paper that a test case is a
piece of code that lists stimuli supplied to an AUT and
responses checked by assertions assigning (local) verdicts.
To make test cases readable and re-usable, we use the
behaviour driven approach using the pattern “Given When
Then” (shortened GWT) to break up test cases into several
sections:

180

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Data-store meta-model

• Given sections aim at putting the AUT into a known
state;

• When sections trigger some actions (stimuli);
• Then sections are used to check whether the conditions

of success of the test case are met with assertions. In the
paper, the Then sections are used to check whether an
AUT is vulnerable to an attack step st. In this case, the
Then section returns the verdict “Passst”. Otherwise,
it provides the verdict “Failst”. When a unexpected
event occurs, we also assume that “Inconclusivest”
may be returned.

The meta-model of Figure 3 associates an attack step with
a GWT test case by adding three entities (Given When and
Then section) and relations. In addition, a test case section
is linked to one procedure, which implements it. A section
or a procedure can be reused with several attack steps or
security patterns. The meta-model also reflects the fact that
an attack step is associated with one “Test architecture”
and with one “Application context”. The former refers to
textual paragraphs explaining the points of observation and
control, testers or tools required to execute the attack step
on an AUT . An application context refers to a family, e.g.,
Android applications, or Web sites. As a consequence, a
GWT test case section (and procedure) is classified accord-
ing to one application context and one attack step or pattern
consequence.

We finally updated the meta-model in such a way that

a security pattern is also associated to generic UML se-
quence diagrams, themselves arranged in Application con-
texts. Security pattern catalogues often provide UML se-
quence diagrams expressing the security pattern behaviours
or structures. These diagrams often help correctly implement
a security pattern with regard to an application context.

B. Data Integration
We integrated data into KB by collecting them from

heterogeneous sources: the CAPEC base, several papers
dealing with security principles [30], [31], [32], [33], [34],
the pattern catalogue given in [35] and the inter-pattern
relations given in [10]. We details the data acquisition and
integration steps in [23]. Six manual or automatic steps are
required: Steps 1 to 5 give birth to databases that store
security properties and establishing the different relations
presented in Figure 3. Step 6 consolidates them so that
every entity of the meta-model is related to the other ones as
expected. The steps 1,2 and 6 are automatically done with
tools.

The current knowledge base KB includes information
about 215 attacks (209 attack steps, 448 techniques), 26 se-
curity patterns, 66 security principles. We also generated 627
GWT test case sections (Given, When and Then sections)
and 209 procedures. The latter are composed of comments
explaining: which techniques can be used to execute an
attack step and which observations reveal that the application
is vulnerable. We manually completed 32 procedures, which

181

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cover 43 attack steps. Security patterns are associated to at
least one UML diagram. This knowledge base is available
in [5].

It is worth noting that KB can be semi-automatically
updated if new security data are available. If a new threat or
type of attack is discovered and added to the CAPEC base,
the steps 1, 2 and 5 have to be followed again. Likewise, if
a new security pattern is proposed in the literature, the steps
3,4 and 5 have to be reapplied.

IV. SECURITY TESTING AND SECURITY PATTERN
VERIFICATION

A. Approach Overview

We present in this section our testing approach whose
steps are illustrated in Figure 4. As illustrated in the figure,
the purpose of this approach is threefold:

1) Threat modelling: it firstly aims at guiding developers
through the elaboration of a threat model (left side
of the figure). The developer gives an initial ADTree
expressing attacker capabilities (Step 1). By means
of KB, this tree is automatically detailed and com-
pleted with security patterns combinations expressing
security solutions that may be put in place in the
application design (Step 2). The tree may be modified
to match the developer wishes (Step 3). The resulting
ADTree, which is denoted Tf , captures possible attack
scenarios and countermeasures given under the form
of security pattern combinations. The set of security
patterns chosen by the developer is denoted SP (Tf).

2) Security testing: from Tf , the approach generates test
case stubs, which are structured with the GWT pattern
(Step 4). These stubs guide developers in the writing
of concrete test cases (Step 8). The final test suite
is executed on the AUT to check whether the AUT
is vulnerable to the attack scenarios expressed in the
ADTree Tf (Step 9).

3) Security pattern verification: the last part of the
approach is devoted to checking whether security
pattern behaviours hold in the AUT traces. A set of
generic UML sequence diagrams are extracted, from
KB, for every security pattern in SP (Tf) (Step 5).
These show how security patterns classes or compo-
nents should behave and help developers implement
them in the application. These diagrams are usually
adapted to match the application context (Step 6).
The approach skims the UML sequence diagrams
and automatically generates LTL properties encoding
behavioural properties of the security patterns (Step 7).
While the test case execution, the approach collects the
AUT method-call traces on which it checks whether
the LTL properties are satisfied (Step 10).

The remaining of this section describes more formally the
steps depicted in Figure 4.

B. Threat Modelling, Security Pattern Choice (Step 1 to 3)

Step 1: Initial ADTree Design
The developer draws a first ADTree T whose root node

represents some attacker’s goals. This node may be refined
with several layers of children to refine these goals. Different
methods can be followed, e.g., DREAD [36], to build this
threat model. We here assume that the leaves of this ADTree
are exclusively labelled by CAPEC attack identifiers, since
our knowledge base KB is framed upon the CAPEC base.
Figure 2 illustrates an example ADTree achieved for this
step. The leaves of this tree are labelled by CAPEC attacks
related to different kinds of injection-based attacks. Its
describes in general terms attacker goals, but this model is
not sufficiently detailed to generate test cases or to choose
security solutions.
Step 2: ADTree Generation

KB is now queried to complete T with more details about
the attack execution phase and with defense nodes labelled
by security patterns. For every leave of T labelled by an
attack A, an ADTree T (A), is generated from KB. We refer
to [24] for the description of the ADTree generation.

We have implemented the ADTree generation with a tool,
which takes attacks of KB and yields XML files. These can
be edited with the tool ADTool [3]. For instance, Figures 6
and 7 show the ADTrees generated for the attacks CAPEC-
66 and CAPEC-244. The ADTrees generated by this step are
composed of several levels of attacks, having different levels
of abstraction. The attack steps have child nodes referring to
attack techniques, which indicate how to carry out the step.
For instance the technique 1.1.1 is “Use a spidering tool
to follow and record all links and analyze the web pages to
find entry points. Make special note of any links that include
parameters in the URL”. An attack step node is also linked
to a defense node expressing security pattern combinations.
Some nodes express inter-pattern relations. For instance,
the node labelled by “Alternative” has children expressing
several possible patterns to counter the attack step.

Figures 6 and 7 also reveal that our generated ADTrees
follow the structure of our meta-model of Figure 3. This
structure has the generic form given in Figure 5: ADTrees
have a root attack node, which may be disjunctively refined
with other attacks and so forth. The most concrete attack
nodes are linked to defense nodes labelled by security
patterns. We formulate in the next proposition that these
nodes or sub-trees also are encoded with specific ADTerms,
which shall be used for the test case generation:

Proposition 1 An ADTree T (A) achieved by the previous
steps has an ADTerm ι(T (A)) having one of these forms:

1) ∨p(t1, . . . , tn) with ti(1 ≤ i ≤ n) an ADTerm also
having one of these forms:

2) −→∧ p(t1, . . . , tn) with ti(1 ≤ i ≤ n) an ADTerm having
the form given in 2) or 3);

182

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ADTree generation

Initial ADTree modelling

ADTree for each CAPEC attack

Security pattern choice &
ADTree edition

Threat modelling stage

GWT test case
completion

Test case
execution

Security Testing verdits
Vulnerable(Tf)

1

2

3

GWT test case
generation

4

8

9

Automatic stepManual step

UML seq. Diag.
extraction

5

UML seq. Diagram
Optional edition

6

LTL property
generation

7

)

verification
10

Security pattern
verification verdits

Unsat(SP(Tf))

Final ADTree Tf
Security patterns SP(Tf)

GWT Test case stubs
(Eclipse project) UML Seq. Diag.

Method-call
Traces

Traces(AUT

Security testing stage Security pattern verification stage

Figure 4. Overview of the 10 steps of the approach

Figure 5. Genenal form of the generated ADTrees

3) cp(st, sp), with st an ADTerm expressing an attack
step and sp an ADTerm modelling a security pattern
combination.

The first ADTerm expresses child nodes labelled by more

concrete attacks. The second one represents sequences of
attack steps. The last ADTerm is composed of an attack
step st refined with techniques, which can be counteracted
by a security pattern combination sp = ∧o(sp1, . . . , spm).
In the remainder of the paper, we denote the last expres-
sion cp(st, sp) a Basic Attack Defence Step, shortened as
BADStep:

Definition 2 (Basic Attack Defence Step (BADStep)) A
BADStep b is an ADTerm of the form cp(st, sp), where st
is a step only refined with techniques and sp an ADTerm of
the form:

1) sp1, with sp1 a security pattern,
2) ∧o(sp1, . . . , spm) modelling the conjunction of the

security patterns sp1, . . . ,
spm(m > 1).

defense(b) =def {sp1} iff sp = sp1, or defense(b) =def

{sp1, . . . , spm} iff sp = ∧o(sp1, . . . , spm).
BADStep(T) denotes the set of BADSteps of the ADTree
T .

Step 3: Security Pattern Choice and ADTree Edition

183

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. ADTree of the Attack CAPEC-66

Figure 7. ADTree of the Attack CAPEC-244

The developer may now edit every ADTree T (A) gen-
erated by the previous step and choose security patterns
when several possibilities are available. We assume that
the defense nodes linked to attack nodes have conjunctive
refinements of nodes labelled by security patterns only.
Figure 8 depicts an example of modified ADTree of the
attack CAPEC-244.

Every attack node A of the initial ADTree T is now
automatically replaced with the ADTree T (A). This step
is achieved by substituting every term A in the ADTerm

ι(T) by ι(T (A)). We denote ι(Tf) the resulting ADTerm
and Tf the final ADTree. It depicts a logical breakdown of
the options available to an attacker and the defences, materi-
alised with security patterns, which have to be inserted into
the application model and then implemented. The security
pattern set found in Tf is denoted SP (Tf).

This step finally builds a report by extracting from KB
the test architecture descriptions needed for executing the
attacks on the AUT and observing its reactions.

184

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Final ADTree of the Attack CAPEC-244

C. Security Testing
We now extract attack-defense scenarios to later build test

suites that will check whether attacks are effective on the
AUT . An attack-defense scenario is a minimal combination
of events leading to the root attack, minimal in the sense
that, if any event of the attack-defense scenario is omitted,
then the root goal will not be achieved.

The set of attack-defense scenarios of Tf are extracted by
means of the disjunctive decomposition of ι(Tf):

Definition 3 (Attack scenarios) Let Tf be an ADTree and
ι(Tf) be its ADTerm. The set of Attack scenarios of Tf ,
denoted SC(Tf) is the set of clauses of the disjunctive
normal form of ι(Tf) over BADStep(Tf).
BADStep(s) denotes the set of BADSteps of a scenario

s.

An attack scenario s is still an ADTerm. Its satisfiability
means that the main goal of the ADTree Tf is feasible
by achieving the scenario formulated by s. BADStep(s)
denotes the set of BADSteps of s.

Step 4: Test Suite Generation
Let s ∈ SC(Tf) be an attack-defense scenario and

b = cp(st, sp) ∈ BADStep(s) a BADSteps of s. Step 4
generates the GWT test case TC(b) composed of 3 sections
extracted from KB with the relations testG, testW and
testT : we have one Given section, one When section and
one Then section, each related to one procedure. This Then
section aims to assert whether the AUT is vulnerable to the
attack step st executed by the When section.

The final test suite TS, derived from an ADTree Tf ,
is obtained after having iteratively applied this test case
construction on the scenarios of SC(Tf). This is captured
by the following definition:

Definition 4 (Test suites) Let Tf be an ADTree, s ∈
SC(Tf) and b ∈ BADStep(s).
TS = {TC(b) | b = cp(st, sp) ∈ BADStep(s) and s ∈
SC(Tf)}.

@capec244
Feature: CAPEC-244: Cross-Site Scripting via

Encoded URI Schemes
#1. Explore
Scenario: Step1.1 Survey the application
Given prepare to Survey the application
When Try to Survey the application
assertion for attack step success
Then Assert the success of Survey the

application

Figure 9. The test case stub of the first step of the attack CAPEC 244

We have implemented these steps to yield GWT test case
stubs compatible with the Cucumber framework [37], which
supports a large number of languages. Figure 9 gives a test
case stub example obtained with our tool from the first
step of the attack CAPEC-244 depicted in Figure 7. The
test case lists the Given When Then sections in a readable
manner. Every section is associated to a generic procedure
stored into another file. The procedure related to the When
and Then sections are given in Figure 10. The comments
come from KB and the CAPEC base. In this example, the
procedure includes a generic block of code, which may be
reused with several applications; the “getSpider()” method
relates to the call of the ZAProxy1 tool, which crawls a
Web application to get its URLs.

Step 8: Test Case Stub Completion
In the beginning of this step, the test case procedures are

generic, which means that they are composed of comments
or generic block of codes that help developers complete
them. In the previous test case example, it only remains for
the developer to write the initial URL of the Web application
before testing whether it can be explored. Unfortunately,
with other test cases, the developer might have to implement
it completely.

After this step, we assume that the test cases are correctly

1https://www.owasp.org/index.php/OWASP Zed Attack Proxy Project

185

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

@When("Try to Survey the application for user
-controllable inputs")

public void trysurvey(){
// Try one of the following techniques :
//1. Use a spidering tool to follow and record

all links and analyze the web pages to find
entry points. Make special note of any
links that include parameters in the URL.

//2. Use a proxy tool to record all user input
entry points visited during a manual
traversal of the web application.

//3. Use a browser to manually explore the
website and analyze how it is constructed.
Many browsers’ plugins are available to
facilitate the analysis or automate the
discovery.

String url ="";
ZAProxyScanner j = new

ZAProxyScanner("localhost", 8080, "zap");
j.spider(url);
}
@Then("Assert the success of Survey the

application for user-controllable inputs")
public void asssurvey(){
// Assert one of the following indications :
// -A list of URLs, with their corresponding

parameters (POST, GET, COOKIE, etc.) is
created by the attacker.

ZAProxyScanner j = new
ZAProxyScanner("localhost", 8080, "zap");

int x =
j.getSpiderResults(j.getLastSpiderScanId())

.size();
Assert.assertTrue(x>0);
}}

Figure 10. The procedure related to the When and Then sections of Figure
9

developed with assertions in Then sections as stated in
Section III: a Then section of a test case TC(b) returns the
verdict ”Passst” if an attack step st has been successfully
applied on the AUT and ”Failst” otherwise; when TC(b)
returns an unexpected exception or fault, we get the verdict
”Inconclusivest”.

Step 9: Test Case Execution
The experimentation of the AUT with the test suite TS is

carried out in this step. A test case TC(b) of TS, which aims
at testing whether the AUT is vulnerable to an attack step
st leads to a local verdict denoted Verdict(TC(b)||AUT):

Definition 5 (Local Test Verdicts) Let AUT be an appli-
cation under test, b = cp(st, sp) ∈ BADStep(Tf), and
TC(b) ∈ TS be a test case.
Verdict(TC(b)||AUT) =

• Passst, which means AUT is vulnerable to the attack
step st;

• Failst, which means AUT does not appear to be
vulnerable to the attack step st;

• Inconclusivest, which means that various problems
occurred while the test case execution.

We finally define the final verdicts of the security test-
ing stage with regard to the ADTree Tf . These ver-
dicts are given with the predicates Vulnerable(Tf) and
Inconclusive(Tf) returning boolean values. The interme-
diate predicate Vulnerable(b) is also defined on a BAD-
Step b to evaluate a substitution σ : BADStep(s) →
{true, false} on an attack-defense scenario s. A scenario
s holds if the evaluation of the substitution σ to s, i.e.,
replacing every BADStep term b with the evaluation of
Vulnerable(b), returns true. The predicate Vulnerable(s)
expresses whether an attack-defense scenario of Tf holds.
In that case, the threat modelled by Tf can be achieved on
AUT . This is defined with the predicate Vulnerable(Tf):

Definition 6 (Security Testing Verdicts) Let AUT be an
application under test, Tf be an ADTree, s ∈ SC(Tf) and
b = cp(st, sp) ∈ BADStep(s).

1) Vulnerable(b) =def true if Verdict(TC(b)||AUT) =
Passst; otherwise, Vulnerable(b) =def false;

2) Vulnerable(s) =def true if eval(sσ) returns
true, with σ : BADStep(s) → {true, false}
the substitution {b1 → Vulnerable(b1), . . . , bn →
Vulnerable(bn)}; otherwise, Vulnerable(s) =def

false;
3) Inconclusive(s) =def true if ∃b ∈ BADStep(s):

Verdict(TC(b)|| AUT) = Inconclusivest; other-
wise, Inconclusive(s) =def false.

4) Vulnerable(Tf) =def true if ∃s ∈ SC(Tf) :
Vulnerable(s) = true; otherwise, Vulnerable(
Tf) =def false;

5) Inconclusive(Tf) =def true if ∃s ∈ SC(Tf),
Inconclusive(s) = true; otherwise, Inconclusive(Tf)
=def false.

D. Security Pattern Verification

Our approach also aims at checking whether security
patterns are correctly implemented in the application. The
security testing stage is indeed insufficient because the
non-detection of vulnerability in the AUT does not imply
that a security pattern is correctly implemented. As stated
earlier, we propose to generate LTL properties that express
the behavioural properties of a security pattern. Then, these
are used to check whether they hold on the AUT traces.
The originality of our approach resides in the fact that we
do not ask developers for writing formal properties, we
propose to generate them by means of KB.

Steps 5 and 6: UML Sequence Diagram Extraction and
Modification

After the threat modelling stage, this step starts by ex-
tracting from KB a list of generic UML sequence diagrams
for each security pattern in SP (Tf). These diagrams show
how a security pattern should behave once it is correctly
implemented, i.e., how objects interact in time. We now

186

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. UML sequence diag. of the pattern Intercepting Validator

suppose that the developer implements every security pattern
in the application. At the same time, he/she may adapt the
behaviours illustrated in the UML sequence diagrams. In this
case, we assume that the diagrams are updated accordingly.

Figure 11 illustrates an example of UML sequence
diagram for the security pattern “Intercepting Validator”.
The diagram shows the interactions between an external
Client, the pattern and the application, but also the
interactions among the objects of the pattern. Here,
the Intercepting Validator Object is called to validate
requests. These are given to another object ValidatorURL,
which filters the request with regard to the URL type.
If the request is valid, it is processed by the application
(Controller object), otherwise an error is returned to the
client side.

Step 7: Security Pattern LTL Property Generation
This step automatically generates LTL properties from

UML sequence diagrams by detecting the cause-effect re-
lations among method calls and expressing them in LTL.
Initially, we took inspiration in the method of Muram
et al. [38], which transforms activity diagrams into LTL
properties. Unfortunately, security patterns are not described
with activity diagrams, but with sequence diagrams. This
is why we devised 20 conversion schemas allowing to
transform UML sequence diagram constructs, composed of
two or three successive actions, into UML activity diagrams.
Table I gives 6 of these schemas. Intuitively, these translate
two consecutive method calls found in a sequence diagram
by activity diagrams composed of action states. The other
schemas (not all given in Table I) are the results of slight
adaptations of the five first ones, where the number of
objects or the guards have been modified. For instance, the
last schema of Table I is an adaptation of the first one, which
depicts interactions between two objects instead of three.

Then, we propose 20 rules to translate these activity
diagrams into LTL properties. The last column of Table I
lists 6 of these rules. Some of these rules are based on those
proposed by Muram et al, but we devised other rules related
to our own activity diagrams, which are more detailed. For
instance, we take into account the condition state in the

second rule to produce more precise LTL properties.
At the end of this step, we consider having a set of LTL

properties P (sp) for every security pattern sp ∈ SP (Tf).
Although the LTL properties of P (sp) do not necessarily
cover all the possible behavioural properties of a security
pattern sp, this process offers the advantages of not asking
developers for writing LTL formula or to instantiate generic
LTL properties to match the application model or code.

Table I
UML SEQUENCE DIAGRAMS TO LTL PROPERTIES TRANSFORMATION

RULES.

Sequence Diag. Activity Diag. LTL properties

�(B.1 −→ ♦C.2)

�(B.1 −→ ♦
B.2) xor (¬B.1
−→ ♦C.3))

�(B.1 −→
(♦B.2)and(♦C.3))

�(B.1xorC.3 −→
♦B.3)

�(B.1andC.3 −→
♦B.3)

�(B.1 −→ ♦B.2)

From the example of UML sequence diagram given in
Figure 11, 4 LTL properties are generated. Table II lists
them. These capture the cause-effect relations of every pair
of methods found in the UML sequence diagram.
Step 10: Security Pattern Verification

As stated earlier, we consider that the AUT is instru-
mented with a debugger or similar tool to collect the methods
called in the application while the execution of the test cases
of TS. After the test case execution, we hence have a set
of method call traces denoted Traces(AUT).

187

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table II
LTL PROPERTIES FOR THE PATTERN INTERCEPTING VALIDATOR.

p1 �(SecureBaseAction.invokes −→
♦InterceptingV alidator.validate

p2 �(InterceptingV alidator.validate −→
♦V alidatorURL.create)

p3 �(V alidatorURL.create −→ ♦V alidatorURL.validate)
p4 �((V alidatorURL.validate −→ ♦Controller.call) xor

(¬V alidatorURL.validate −→ ♦SecureBaseAction.error))

Table III
TEST VERDICT SUMMARY AND RECOMMENDATIONS.

Vulnera-
ble(Tf)

Unsatb(
SP (Tf))

Incon
(Tf)

Corrective actions

False False False No issue detected
True False False At least one scenario is successfully applied on AUT .

Fix the pattern implementation. Or the chosen patterns
are inconvenient.

False True False Some pattern behavioural properties do not hold. Check
the pattern implementations with the UML seq. diag. Or
another pattern conceals the behaviour of the former.

True True False The chosen security patterns are useless or incorrectly
implemented. Review the ADTree, fix AUT .

T/F T/F True The test case execution crashed or returned unexpected
exceptions. Check the Test architecture and the test case
codes.

A model-checking tool is now used to detect the non-
satisfiability of LTL properties on Traces(AUT). Given a
security pattern sp, the predicate Unsatb(sp) formulates the
non-satisfiability of a LTL property of sp in Traces(AUT).
The final predicate Unsatb(SP (Tf)) expresses whether all
the LTL properties of the security patterns given in Tf hold.

Definition 7 (Security Pattern Verification Verdicts) Let
AUT be an application under test, Tf be an ADTree, and
sp ∈ SP (Tf) be a security pattern.

1) Unsatb(sp) =def true if ∃p ∈ P (sp),∃t ∈
Traces(AUT), t 2 p; otherwise, Unsatb(sp) =def

false;
2) Unsatb(SP (Tf)) =def true if ∃sp ∈

SP (Tf),Unsat
b(sp) = true; otherwise,

Unsatb(SP (Tf)) =def false;

Table III informally summarises the meaning of some test
verdicts and some corrections that may be followed in case
of failure.

V. IMPLEMENTATION

Our approach is implemented in Java and is released
as open source in [5]. At the moment, the AUT must be
a Web application developed with any kind of language
provided that the AUT may be instrumented to collect
method call traces. The prototype tool consists of three
main parts. The first one comes down to a set of command
lines allowing to build the knowledge base KB. The data
integration is mostly performed by calling the tool Talend,
which is specialised into the extract, transform, load (ETL)
procedure. An example of knowledge base is available in
[5].

A second software program semi-automatically generates
ADTrees and GWT test cases. ADTrees are stored into
XML files, and may be edited with ADTool [3]. GWT test
cases are written in Java with the Cucumber framework,
which supports the GWT test case pattern. These test cases
can be imported as an Eclipse project to be completed
and executed. This software program also provides UML
sequence diagrams stored in JSON files, which have to be
modified to match the AUT functioning. LTL properties are
extracted from these UML sequence diagrams.

The last part of the tool is a tester that experiments Web
applications with test cases and returns test verdicts. While
the test case execution, we collect log files including method
call traces. The LTL property verification on these traces is
manually done by these steps: 1) the log files usually have to
be manually filtered to remove necessary events 2) the tool
Texada [39] is invoked to check the satisfiability of every
LTL property on the log files. This tool takes as inputs a
log file, a LTL property composed of variables and a list of
events specifying variables in the formula to be interpreted
as a constant event. Texada returns the number of times that
a property holds in a log file. We have chosen the Texada
tool as it offers good performance and can be used on large
trace sets. But other tools could also be used, e.g., the LTL
checker plugin of the ProM framework [40] or Eagle [41].

VI. PRELIMINARY EVALUATION

First and foremost, it is worth noting that we carried out
in [24] a first evaluation of the difficulty of using security
patterns for designing secure applications. This evaluation
was conducted on 24 participants and allowed us to conclude
that the Threat modelling stage of our approach makes the
security pattern choice and the test case development easier
and makes users more effective on security testing. In this
paper, we propose another evaluation of the security testing
and security pattern testing parts of our approach. This
evaluation addresses the following research questions:

• Q1: Can the generated test cases detect security issues?
• Q2: Can the generated LTL properties detect incorrect

implementation of patterns?
• Q3: How long does it take to discover errors (Perfor-

mance)?

A. Empirical Setup

We asked ten teams of two students to implement Web
applications written in PHP as a part of their courses.
They could choose to develop either a blog, or a todo
list application or a RSS reader. Among the requirements,
the Web applications had to manage several kinds of users
(visitors, administrators, etc.), to be implemented in object-
oriented programming, to use the PHP Data Objects (PDO)
extension to prevent SQL injections, and to validate all the
user inputs. As a solution to filter inputs, we proposed them

188

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to apply the security pattern Intercepting Validator. But its
use was not mandatory.

Then, we applied our tool on these 10 Web applications
in order to:

• test whether these are vulnerable to both SQL and XSS
injections (attacks CAPEC-66 and CAPEC-244). With
our tool, we generated the ADTrees of Figures 6 and 7,
along with GWT test cases. We completed them to call
the penetration testing tool ZAProxy (as illustrated in
Figure 10). All the applications were vulnerable to the
steps “Explore” of the ADTrees (application survey),
therefore we also experimented them with the test cases
related to the steps “Experiment” (attempt SQL or XSS
injections);

• test whether the behaviours of the pattern Intercepting
Validator are correctly implemented in the 10 Web
applications. We took the UML sequence diagram of
Figure 11 and adapted it ten times to match the context
of every application. Most of the time, we had to change
the class or method names, and to add as many validator
classes as there are in the application codes. When a
class or method of the pattern was not implemented, we
leaved the generic name in the UML diagram. Then, we
generated LTL properties to verify whether they hold
in the application traces.

B. Q1: Can the generated test cases detect security issues?

Procedure: to study Q1, we experimented the 10 appli-
cations with the 4 GWT test cases of the two Steps Explore
and Experiment of the attacks CAPEC-66 and CAPEC-244.
As these test cases call a penetration testing tool, which
may report false positives, we manually checked the reported
errors to only keep the real ones. We also inspected the
application codes to examine the security flaw causes and
to finally check whether the applications are vulnerable.

Results: Table IV provides the number of tests for both
attacks (columns 2 and 3), the number of security errors
detected by these tests (columns 4 and 5) and execution
times in seconds (column 6). As a penetration testing tool is
called, a large amount of malicious HTTP requests are sent
to the applications in order to test them. The test number
often depends on the application structure (e.g., number of
classes, of called libraries, of URLs, etc.) but also on the
number of forms available in an application.

Table IV shows that errors are detected in half of the
applications. After inspection, we observed that several
inputs are not filtered in App. 1, 5 and 6. On the contrary,
for App. 3 and 7 all the inputs are checked. However,
the validation process is itself incorrectly performed or
too straightforward. For example, in App. 3 the validation
comes down to checking that the input exists, which is
far from sufficient to block malicious code injections. For
the other applications, we observed that they all include a
correct validation process, which is called after every client

request. After the code inspection and the testing process, we
conclude that they seem to be protected against both XML
and SQL injections. These experiments tend to confirm
that our approach can be used to test the security of Web
applications.

Table IV
RESULTS OF THE SECURITY TESTING STAGE: NUMBER OF REQUESTS

PERFORMED, NUMBER OF DETECTED SECURITY ERRORS, AND
EXECUTION TIMES IN SECOND

App. # XSS
tests

SQL
tests

XSS
detection

SQL
detection

time(s)

1 1610 199 1 0 14
2 12358 796 0 0 924
3 8209 398 10 4 29
4 7347 199 0 0 81
5 2527 398 3 0 1137
6 5884 597 1 1 30
7 9954 1194 1 0 49
8 2464 796 0 0 1478
9 1709 796 0 0 47
10 16441 796 0 0 93

C. Q2: Can the generated LTL properties detect incorrect
implementation of patterns?

Procedure: To investigate Q2, the PHP applications were
instrumented with the debugger Xdebug, and we collected
logs composed of method call traces while the test case
execution. Then, we used the tool Texada to check whether
every LTL property holds in these method call traces. When
the pattern is strictly implemented as it is described in the
UML sequence diagram of Figure 11 (1 class Validator), 4
LTL properties are generated, as in Table I. However, the
number of LTL properties may differ from one application
to the other, with regard to the number of classes used to
implement the security pattern. When there are more than 4
LTL properties for an application, the additional ones capture
the call of supplementary Validator classes and only differ
from the properties of Table I by the modification of the
variable ValidatorURL. To keep our results comparable from
one application to another, we denote with the notation pi
the set of properties related to the property pi in I.

Furthermore, both authors independently checked the val-
idation part in every applications to assess how the security
pattern is implemented in order to ensure that a property
violation implies that a security pattern behaviour is not
correctly implemented.

Results: Table V lists in columns 2-5 the violations of
the properties derived from those given in Table I for the 10
applications. These results firstly show that our approach
detects that the security pattern Intercepting Validator is
never correctly implemented. The pattern seems to be almost
implemented in App. 2 because only p4 does not hold
here. An inspection of the application code confirms that
the pattern structure is correctly implemented as well as
most of its method call sequences. But we observed that

189

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the application does not always return an error to the user
when some inputs are not validated. This contradicts one of
the pattern purposes.

App. 3, 4, 7-10 include some sorts of input filtering
processes at least defined in one class. But, these do not
respect the security pattern behaviours. Most of the time,
we observed that the validation process is implemented in
a single class instead of having an Intercepting Validator
calling other Validator classes. This misbehaviour is detected
by the violations of the properties p2 and p3. Besides,
we observed that the input validation is not systematically
performed in App. 1, 5 and 6. This is detected by our
tool with the violation of p1. As a consequence, it is not
surprising to observe that these applications are vulnerable
to malicious injections. We also observed that when App.
5 validates the inputs, it does not define the validation
logic in a class. The fact that the security pattern is not
invoked is detected by the violation of p1. But, this property
violation does not reveal that there is another validation
process implemented.

In summary, our application code inspections confirmed
the results of Table V. In addition to assessing whether
the security pattern behaviours are correctly implemented,
we observed that our approach may also help learn more
information about the validation process, without inspecting
the code. For instance, the properties based on p1 check
whether a validation method defined in a class is called
every time a client request is received. The properties based
on p4 give information about the error management. Their
violations express that users are not always warned when
invalid inputs are provided to the applications.

Table V
RESULTS OF THE SECURITY PATTERN TESTING STAGE: VIOLATION OF

THE LTL PROPERTIES AND EXECUTION TIMES IN SECOND

App. p1 p2 p3 p4 Time(min)
1 X X 4,02
2 X 51,15
3 X X 19,12
4 X X 29,34
5 X X X X 6,5
6 X X X X 14,40
7 X X 24,77
8 X X X 7,24
9 X X X 5,56
10 X X 67,03

D. Q3: How long does it take to discover errors (Perfor-
mance)?

Procedure: We measured the time consumed by the tool
to carry out security testing and security pattern verification
for the 10 applications. Execution times are given in Tables
IV and V. Furthermore, we also measured the number of
LTL properties that are generated for 11 security patterns,
which are often used with Web applications, as the LTL
property number influences execution times.

Figure 12. Execution times of the security testing stage for the ten
applications

Results: The plot chart of Figure 12 shows that security
testing requires less than 2 minutes for 7 applications inde-
pendently on the number of tests, whereas it requires more
than 15 minutes for the 3 others. The security testing stage
depends on several external factors, which makes it difficult
to draw consistent conclusions. It firstly depends on the test
case implementation; in our evaluation, we choose to call
a penetration testing tool, therefore, execution times mostly
depend on it. Another factor is the application structure (nb
of classes, calls of external URLS, etc.). Therefore, we can
only conclude here is that execution times are lower than
25 minutes, which remains reasonable with regard to the
number of requests sent to applications.

The time required to detect property violations in method
call traces is given in Column 6 of Table V. Execution
times vary here between 4 and 67 minutes according to
the number of traces collected from the application and the
number of generated LTL properties. For example, for App.
1O, 17237 security tests have been executed, and 17237
traces of about 30 events have been stored in several log
files. Furthermore, 7 LTL properties have been generated
for this applications. These results, and particularly the size
of the trace set, explain the time required to check whether
the LTL properties hold. In general terms, we consider that
execution times remain reasonable with regard to the trace
set sizes of the applications.

Table VI finally shows the number of LTL properties
generated from generic UML properties (without adapting
them to application contexts) for 11 security patterns whose
descriptions include UML sequence diagrams. For these
patterns, the property number is lower or equal than 13. For
every pattern, the property number is in a range that seems
reasonably well supported by model checkers. However,
if several security patterns have to be tested, the property
number might quickly exceed the model-checker limits. This
is we have chosen in our approach to check the satisfiability
of each LTL property, one after the other, on method call
traces.

190

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table VI
LTL PROPERTY GENERATION FOR SOME SECURITY PATTERNS

Security pattern # UML diag. # LTL properties
Authentication Enforcer 3 9
Authorization Enforcer 3 13
Intercepting Validator 2 4
Secure Base Action 2 5

Secure Logger 2 5
Secure Pipe 2 10

Secure Service Proxy 2 6
Intercepting Web Agent 2 9

Audit Interceptor 2 7
Container Managed Security 2 7
Obfuscated Transfer Object 2 10
Obfuscated Transfer Object 2 10

E. Threat to Validity

This preliminary experimental evaluation is applied on
10 Web applications, and not on other kinds of software
or systems. This is a threat to external validity, and this
is why we avoid drawing any general conclusion. But, we
believe that this threat is somewhat mitigated by our choice
of application, as the Web application context is a rich field
in great demand in the software industry. Web applications
also expose a lot of well-known vulnerabilities, which helps
in the experiment set-up. In addition, the numbers of secu-
rity patterns considered in the evaluation were insufficient.
Hence, it is possible that our method is not applicable to
all security patterns. In particular, we assume that generic
UML sequence diagrams are provided in the security pattern
descriptions. This is the case for the patterns available in
the catalogue of Yskout et al. [35], but not for all the
patterns listed in [8]. To generalise the approach, we also
need to consider more general patterns and employ large-
scale examples.

The evaluation is based on the work of students, but this
public is sometimes considered as a bias in evaluations.
Students are usually not yet meticulous on the security
solution implementation, and as we wished to experiment
vulnerable applications to check that our approach can detect
security flaws, we consider that applications developed by
students meet our needs.

A threat to internal validity is related to the test case devel-
opment. Our approach aims at guiding developers in the test
case writing and security pattern choice. In the evaluation,
we chose to complete test cases with the call of a penetration
testing tool. The testing results would be different (better or
worse) with other test cases. Significant advances have been
made in these tools, which are more and more employed
in the industry. Therefore, we believe that their use and the
test cases considered in the experiments are close to real use
cases. In the same way, we manually updated UML sequence
diagrams to generate LTL properties that correspond to the
application contexts. But, it is possible that we inadvertently
made some mistakes, which led to false positives. To avoid

this bias, we manually checked the correctness of the results
by replaying the counterexamples returned by the model-
checker and by inspecting the application codes.

VII. CONCLUSION

Securing software requires that developers acquire a lot
of expertise in various stages of software engineering, e.g.,
in security design, or in testing. To help them in these
tasks, we have proposed an approach based on the notion of
knowledge base, which helps developers in the implemen-
tation of secure applications through steps covering threat
modelling, security pattern choice, security testing and the
verification of security pattern behavioural properties. This
paper proposes two main contributions. It assists developers
in the writing of concrete security test cases and ADTrees.
It also checks whether security patterns properties are met
in application traces by automatically generating LTL prop-
erties from the UML sequence diagrams that express the
behaviours of patterns. Therefore, the approach does not
require developers to have skills in (formal) modelling or
in formal methods. We have implemented this approach in
a tool prototype [5]. We conducted an evaluation of our
approach on ten Web applications, which suggests that it
can be used in practice.

Future work should complement the evaluation to confirm
that the approach can be applied on more kinds of applica-
tions. We also mentioned that security pattern descriptions
do not all include UML sequence diagrams, which are yet
mandatory by our approach. We will try to solve this lack
of documentation by investigating whether security pattern
behavioural properties could be expressed differently, e.g.,
with annotations added inside application codes. In addition,
we intend to consider how our ADTree generation could
support the teaching of security testing and security by
design.

REFERENCES

[1] L. Regainia and S. Salva, “A practical way of testing security
patterns,” in Thirteenth International Conference on Software
Engineering Advances (ICSEA’18), Nice, France, Oct. 2018,
pp. 1–7.

[2] E. Rodriguez, “Security Design Patterns,” in 19th An-
nual Computer Security Application Conference (ACSAC’03),
2003.

[3] B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer,
“Attack–defense trees,” Journal of Logic and Computation,
pp. 1–38, 2012.

[4] T. Kobashi, M. Yoshizawa, H. Washizaki, Y. Fukazawa,
N. Yoshioka, T. Okubo, and H. Kaiya, “Tesem: A tool for
verifying security design pattern applications by model test-
ing,” in 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST), April 2015, pp.
1–8.

191

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] L. Regainia and S. Salva. (2019) Security pattern
classification, companion site. (Date last accessed march
2019). [Online]. Available: http://regainia.com/research/
companion.html

[6] J. Yoder, J. Yoder, J. Barcalow, and J. Barcalow, “Architec-
tural patterns for enabling application security,” Proceedings
of PLoP 1997, vol. 51, p. 31, 1998.

[7] M. Schumacher, Security Engineering with Patterns: Origins,
Theoretical Models, and New Applications. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2003.

[8] R. Slavin and J. Niu. (2017) Security patterns repository.
[Online]. Available: http://sefm.cs.utsa.edu/repository/

[9] K. Yskout, R. Scandariato, and W. Joosen, “Do security
patterns really help designers?” in Proceedings of the 37th
International Conference on Software Engineering - Volume
1, ser. ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015,
pp. 292–302.

[10] K. Yskout, T. Heyman, R. Scandariato, and W. Joosen, “A
system of security patterns,” 2006.

[11] R. Jhawar, B. Kordy, S. Mauw, S. Radomirović, and
R. Trujillo-Rasua, “Attack trees with sequential conjunc-
tion,” in IFIP International Information Security Conference.
Springer, 2015, pp. 339–353.

[12] Mitre corporation. (2019) Common attack pattern
enumeration and classification, url:https://capec.mitre.org/.
(Date last accessed march 2019). [Online]. Available:
https://capec.mitre.org/

[13] P. Torr, “Demystifying the threat modeling process,” IEEE
Security Privacy, vol. 3, no. 5, pp. 66–70, Sept 2005.

[14] M. Howard and D. LeBlanc, Writing Secure Code, M. Press,
Ed., 2003.

[15] I. Schieferdecker, J. Grossmann, and M. A. Schneider,
“Model-based security testing,” in Proceedings 7th Workshop
on Model-Based Testing, MBT 2012, Tallinn, Estonia, 25
March 2012., 2012, pp. 1–12.

[16] D. Xu, M. Tu, M. Sanford, L. Thomas, D. Woodraska,
and W. Xu, “Automated security test generation with formal
threat models,” IEEE Transactions on Dependable and Secure
Computing, vol. 9, no. 4, pp. 526–540, July 2012.

[17] J. Bozic, D. E. Simos, and F. Wotawa, “Attack pattern-based
combinatorial testing,” in Proceedings of the 9th International
Workshop on Automation of Software Test, ser. AST 2014.
New York, NY, USA: ACM, 2014, pp. 1–7.

[18] A. Morais, E. Martins, A. Cavalli, and W. Jimenez, “Se-
curity protocol testing using attack trees,” in 2009 Interna-
tional Conference on Computational Science and Engineer-
ing, vol. 2, Aug 2009, pp. 690–697.

[19] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu,
“Security test generation using threat trees,” in 2009 ICSE
Workshop on Automation of Software Test, May 2009, pp.
62–69.

[20] O. El Ariss and D. Xu, “Modeling security attacks with
statecharts,” in Proceedings of the Joint ACM SIGSOFT Con-
ference – QoSA and ACM SIGSOFT Symposium – ISARCS
on Quality of Software Architectures – QoSA and Architecting
Critical Systems – ISARCS, ser. QoSA-ISARCS ’11. New
York, NY, USA: ACM, 2011, pp. 123–132.

[21] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu, “A
threat model-based approach to security testing,” Softw. Pract.
Exper., vol. 43, no. 2, pp. 241–258, Feb. 2013.

[22] N. Shahmehri et al., “An advanced approach for modeling
and detecting software vulnerabilities,” Inf. Softw. Technol.,
vol. 54, no. 9, pp. 997–1013, 2012.

[23] S. Salva and L. Regainia, “Using data integration to help
design more secure applications,” in Proceedings of the 12th
International Conference on Risks and Security of Internet
and Systems. Dinard, France: Springer-Verlag, Aug. 2017.

[24] ——, “Using data integration for security testing,” in Pro-
ceedings 29th International Conference, ICTSS 2017, St.
Petersburg, Russia, Oct. 2017, pp. 178–194.

[25] ——, “An approach for guiding developers in the choice
of security solutions and in the generation of concrete
test cases,” Software Quality Journal, vol. 27, no. 2,
pp. 675–701, January 2019. [Online]. Available: https:
//hal-clermont-univ.archives-ouvertes.fr/hal-02019145

[26] J. Dong, T. Peng, and Y. Zhao, “Automated verification of
security pattern compositions,” Inf. Softw. Technol., vol. 52,
no. 3, pp. 274–295, Mar. 2010.

[27] B. Hamid, C. Percebois, and D. Gouteux, “A methodology for
integration of patterns with validation purpose,” in Proceed-
ings of the 17th European Conference on Pattern Languages
of Programs, ser. EuroPLoP ’12. New York, NY, USA:
ACM, 2012, pp. 8:1–8:14.

[28] M. Yoshizawa et al., “Verifying implementation of security
design patterns using a test template,” in 2014 Ninth Inter-
national Conference on Availability, Reliability and Security,
Sept. 2014, pp. 178–183.

[29] L. Regaigna, C. Bouhours, and S. Salva, “A systematic
approach to assist designers in security pattern integration,”
in Second International Conference on Advances and Trends
in Software Engineering (SOFTENG 2016), Lisbon, Portugal,
Feb. 2016.

[30] J. H. Saltzer and M. D. Schroeder, “The protection of in-
formation in computer systems,” Proceedings of the IEEE,
vol. 63, no. 9, pp. 1278–1308, 1975.

[31] J. Viega and G. McGraw, Building Secure Software: How to
Avoid Security Problems the Right Way, Portable Documents.
Pearson Education, 2001.

[32] J. Scambray and E. Olson, Improving Web Application Secu-
rity, 2003.

[33] V. Dialani, S. Miles, L. Moreau, D. De Roure, and M. Luck,
“Transparent fault tolerance for web services based architec-
tures,” in Euro-Par 2002 Parallel Processing. Springer, 2002,
pp. 889–898.

192

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[34] J. Meier, “Web application security engineering,” Security &
Privacy, IEEE, vol. 4, no. 4, pp. 16–24, 2006.

[35] K. Yskout, R. Scandariato, and W. Joosen. Security
pattern catalog. (Date last accessed march 2019). [Online].
Available: https://people.cs.kuleuven.be/∼koen.yskout/icse15/
catalog.pdf

[36] OWASP. (2019) Owasp testing guide v3.0 project.
(Date last accessed march 2019). [Online]. Avail-
able: http://www.owasp.org/index.php/Category:OWASP\
Testing\ Project\#OWASP\ Testing\ Guide

[37] (2019) The cucumber framework. (Date last accessed march
2019). [Online]. Available: https://cucumber.io/

[38] F. U. Muram, H. Tran, and U. Zdun, “Automated map-
ping of UML activity diagrams to formal specifications
for supporting containment checking,” in Proceedings 11th
International Workshop on Formal Engineering approaches
to Software Components and Architectures, FESCA 2014,
Grenoble, France, 12th April 2014., 2014, pp. 93–107.

[39] C. Lemieux, D. Park, and I. Beschastnikh, “General ltl spec-
ification mining (t),” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Nov
2015, pp. 81–92.

[40] F. M. Maggi, M. Westergaard, M. Montali, and W. M. P.
van der Aalst, “Runtime verification of ltl-based declarative
process models,” in Runtime Verification, S. Khurshid and
K. Sen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 131–146.

[41] H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Pro-
gram monitoring with ltl in eagle,” in 18th International
Parallel and Distributed Processing Symposium, 2004. Pro-
ceedings., April 2004, pp. 264–272.

193

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Network Analysis of City Streets: Forecasting Burglary Risk in Small Areas

Maria Mahfoud1, Sandjai Bhulai2, Rob van der Mei1, Dimitry Erkin1, and Elenna Dugundji1

1 CWI National Research Institute for Mathematics and Computer Science
2 Vrije Universiteit Amsterdam, Faculty of Science, Department of Mathematics

Email: M.Mahfoud@cwi.nl, S.Bhulai@vu.nl, R.D.van.der.Mei@cwi.nl, Dimitry.Erkin@gmail.com, E.R.Dugundji@vu.nl

Abstract—Predicting residential burglary can benefit from un-
derstanding human movement patterns within an urban area.
Typically, these movements occur along street networks. To take
the characteristics of such networks into account, one can use two
measures in the analysis: betweenness and closeness. The former
measures the popularity of a particular street segment, while
the latter measures the average shortest path length from one
node to every other node in the network. In this paper, we study
the influence of the city street network on residential burglary
by including these measures in our analysis. We show that the
measures of the street network help in predicting residential
burglary exposing that there is a relationship between conceptions
in urban design and crime.

Keywords–predictive analytics; forecasting; street network; be-
tweenness centrality; closeness centrality; residential burglary

I. INTRODUCTION

Residential burglary is a crime with high impact for
victims. Substantial academic research has accordingly been
dedicated to understanding the process of residential burglary
in order to prevent future burglaries [1]. In this attempt, several
studies have focused on the role of the urban configuration
in shaping crime patterns; this is regarded as one of the
fundamental issues in environmental criminology, e.g., [2].

According to [3], environmental criminology is based on
three premises. The first premise states that the nature of the
immediate environment directly influences criminal behavior,
thus a crime is not only reliant on criminogenic individuals,
but also on criminogenic elements in the surroundings of a
crime. The second premise states that crime is non-randomly
distributed in time and space, meaning that crime is always
concentrated around opportunities which occur on different
moments in a day or week, or different places in a given
geographical area. The third premise argues that understanding
the criminogenic factors within a targeted environment, and
capturing patterns and particular characteristics of that area,
can reduce the number of crimes within that area.

Understanding human movement patterns within an urban
area is essential for determining crime patterns [4]. These
movements occur along a street network consisting of roads
and intersections. Throughout the city street network, various
places are connected, allowing transportation from one point to
the next. Within the network, a street segment can be described
as the road, or edge, linking two intersections, or nodes. In
their study, [5] found that crime is tightly concentrated around
crime hotspots that are located at specific points within the
urban area. The urban configuration influences where these
hotspots are located, suggesting that it is possible to deal with

a large proportion of crime by focusing on relatively small
areas. They found that crime hotspots are characterized by
being stable over time, and that the hotspots are influenced by
social and contextual characteristics of a specific geographical
location. To be able to understand and prevent crime, it is
important to examine these very small geographic areas, often
as small as addresses of street segments, within the urban area.
In an analysis of crime at street segment level, [6] reveal that
crime trends at specific street segments were responsible for
the overall observed trend in the city, emphasizing the need
for understanding the development of crime at street segment
level.

In urban studies, betweenness is a measure used to de-
termine popularity or usage potential of a particular street
segment for the travel movements made by the resident or
ambient population through a street network [7], [8]. In crimi-
nology, betweenness represents the collective awareness spaces
developed by people, including offenders, during the course
of their routine activities. This metric provides a means to
represent concepts, such as offender awareness, in empirical
analysis [9]. Several studies have been conducted to uncover
the effects of betweenness on crime. [9] investigated whether
street segments that have a higher user potential measured by
the network metric betweenness, have a higher risk of burglary.
Also included in their research was the geometry of street
segments via a measure of their linearity and different social-
demographic covariates. They concluded that betweenness is
a highly significant covariate when predicting burglaries at
street segment level. In another study conducted by [10], a
mathematical model of crime was presented that took the street
network into account. The results of this study also show an
evident effect of the street network.

In this research, we examine for small urban areas (4-digit
postal codes: PC4) what the influence of the city street network
is on residential burglary by applying betweenness as well
as another centrality measure, closeness. These two centrality
measures give different indications of the accessibility of an
area and we study whether a more accessible area has a higher
risk of residential burglary compared to a less accessible area.
For comparison, we consider the same areas defined in our
previous research [11]. In this earlier study, we predicted
residential burglaries within different postal code areas for
the district of Amsterdam-West. We extend the model of our
earlier research by including the centrality measures closeness
and betweenness as explanatory variables. Furthermore, we
investigate which of the two centrality measures gives better
outcomes, closeness or betweenness.

This paper is organized as follows. Section II describes

194

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the dataset and the data analysis. Section III provides the
methodological framework of this research. The results of the
analysis are discussed in Section IV. In Section V, conclusions
and recommendations for further research are presented.

II. DATA

The data used for this research is collected from three
different data sources. The first dataset is provided by the
Dutch Police and ranges from the first of January 2009 to
30 April 2014. The original dataset includes all recorded
incidents of residential burglaries in the city of Amsterdam
recorded at a monthly level and grouped into grids of 125
× 125 meters resulting in 94,224 records. Next to residential
burglary, the dataset includes a wide range of covariates. These
covariates provide information on the geographic information
of the grid such as the number of Educational Institutions
(EI) in the grid. In addition to these covariates, the data
includes also spatial-temporal indicators of the following crime
types: violation, mugging, and robbery. These spatial-temporal
indicators measure the number of times a crime type happened
within a given grid cell for a given time lag. The second
dataset is obtained from the Statistics Netherlands (CBS) and
includes various demographic and socio-economic covariates
such as the average monthly income. This data is provided on
a six alphanumeric postal code level where the first two digits
indicate a region and a city, the second two digits indicate a
neighborhood and the last two letters indicate a range of house
numbers usually a street or a segment of a street. The third
dataset is an internal dataset containing different centrality
measures calculated on the street network of Amsterdam.

As this research focuses on explaining and predicting
residential burglaries at the four-digit postal code level (PC4),
the data should be aggregated at this level. Before aggregating
the data we perform some pre-processing steps. First, we
check the crime records for missing postal codes: if the postal
code is missing then all linked data from CBS and the street
network will be missing. We observed that 309 of the total
1,812 grid cells had a missing postal code (PC6). Some of
these grid cells (34) were subsequently updated manually;
other grid cells referred to industrial areas, bodies of water,
railroads, grasslands, and highways. As a double check, we
also confirmed whether there were residential burglaries in
the remaining grid cells with missing postal codes; in our
case, there were indeed none. These grid cells were further
removed from the dataset and the data were aggregated based
on PC4 conditioning on the district as some postal codes
(PC4) can cover different police districts. Discrete covariates
were aggregated by taking the sum of the covariate on all
PC6. For continuous covariates, this was done by taking the
average on all PC6. Exploring the data is done in a similar
way as discussed in [11], where an extensive data analysis
is applied to the crime data and the CBS data. To analyze
this data we extend the final set of covariates by the different
centrality measures and repeat the same step again. The dataset
was assessed for outliers and collinearity. The presence of
outliers was graphically assessed by the Cleveland dot plot
and analytically by the Local Outlier Factor (LOF) with 10
neighbors and a threshold of 1.3. Results of this analysis show
that the training data exhibits a percentage of outliers of 7.6.
The majority of these occurred in December and January. Due
to the high percentage of outliers in the training set, we decided

●

●●

●

●

●

●

●

●

●

●

●

●

●

1013 1052 1054 1056 1058 1060 1062 1064 1066 1068

0
5

10
15

20
25

30

fPC4

N
R

B

Figure 1. Boxplot of the number of burglaries conditional on the postal code
indicating heterogeneity of variance in the number of burglaries within the

different postal codes.

to apply the analysis initially without outliers then apply the
analysis with the outliers.

The collinearity was assessed by the calculating the vari-
ance inflation factor values (VIF) that measures the amount by
which the variance of a parameter estimator is increased due to
collinearity with other covariates rather than being orthogonal,
e.g., [12]. A VIF threshold of 2 is used to assess collinearity
[11]. This analysis results in the following set of covariates:
the temporal covariate MONTH; the number of educational
institutions (sEI), the number of restaurants (sRET), percentage
of single-person households (aSH), the number of persons that
generate income (sNPI), the total observed mugging incidents
in the grid and its direct neighborhood in the last three months
(sMuGL3M) and finally, the average monthly income (aAMI).

Furthermore, the relationship between residential burglaries
and the categorical covariates was assessed using conditional
box plots. Results show a temporal monthly effect and a spatial
postal code effect on the burglaries. The effect of the postal
codes on the burglaries is illustrated in Figure 1 where a clear
difference in the mean and in the variance of the monthly
number of burglaries is observed between the different postal
codes.

III. METHODOLOGY

A. Centrality measures

Before discussing the centrality measures, we first need to
introduce some important concepts of graph theory. A network
represented mathematically by a graph is defined as a finite
non-empty set V of vertices connected by edges E. A graph
is usually written as G = (V,E) where V is the set of vertices
and E represents the set of edges where the number of vertices
in G is called the order and the number of its edges is called
the size. Two vertices u and v are said to be adjacent if there
is an edge that links them together. In this case, u and v are
also neighbors of each other. If two edges share one vertex
then these edges are called adjacent edges. Using this concept
of adjacency between all vertices represented in a matrix form

195

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

results in an adjacency matrix that summarizes all information
describing a network.

Another concept for understanding centrality measures is
the one of paths and shortest paths. Informally, a path is a
way of traveling along edges from vertex u to vertex v without
repeating any vertices [13]. Formally, a path P in a graph G
is a subgraph of G whose vertices form an ordered sequence,
such that every consecutive pair of vertices is connected by
an edge. A path P is called an u− v path in G if P = (u =
x0, x1, . . . , xj = v) s.t. x0x1, x1x2, . . . , xj−1xj are all edges
of P . The number of edges in a path is called its length. The
path u−v with the minimum length is called the shortest path
between u and v.

In the context of our analysis, a vertex represents an inter-
section between streets and an edge is a transport infrastructure
supporting movements between the two intersections.

Paths can be considered as the key elements in defining
centrality measures. In a transportation network, these central-
ity measures describe the flow of traffic on each particular
edge of the network identifying the most important vertices in
it. Some of these centrality measures that we will use in this
paper are the closeness (CC) centrality and the betweenness
centrality (BC).

Closeness is a very simple centrality measure to calculate.
It is a geometric measure where the importance of a vertex
depends on how many nodes exist at every distance. Closeness
centrality can be defined as the average of the shortest path
length from one node to every other node in the network and
is given by:

CC(ν) =
1∑

d(u,ν)<∞ d(u, ν)
, (1)

where d(u, ν) is the distance between u and ν. Informally,
closeness centrality measures how long it will take to spread
information from node ν to all other nodes in the network
and it is used to identify influential nodes in the network. The
closeness of an edge u − v can be calculated by taking the
average closeness values of the nodes u and v.

The betweenness centrality BC is a path-based measure
that can be used to identify highly influential nodes in the
flow through the network. Given a specific node ν, the intuition
behind betweenness is to measure the probability that a random
shortest path will pass through ν. Formally, the betweenness of
node ν, BC(ν) is the percentage of shortest paths that include
ν and can be calculated as follows:

BC(ν) =
∑

u6=w 6=ν∈V

σu,w(ν)

σu,w
, (2)

where σu,w is the total number of shortest paths between
node u and w. Moreover, σu,w(ν) is the total number of
shortest paths between node u and w that pass through ν.
The betweenness of an edge e can be regarded as the degree
to which an edge makes other connections possible and can be
calculated in the same way by replacing the node ν by an edge
e. An edge with high betweenness value forms an important
bridge within the network. Removing this edge will severely

1
23

4

5 6
7

8

9

10
11

12 13

High node closeness

High node betweenness

Figure 2. Illustration of high node (edge) betweenness and closeness.

hamper the flow of the network as it partitions the network
into two large subnetworks.

High betweenness or closeness values indicate that a vertex
or an edge can reach other vertices or edges, respectively, on
relatively short paths. An example of a network is illustrated
in Figure 2. In this example, node 3 has the highest closeness
and node 4 the highest betweenness. The edge connecting the
nodes 3 and 9 has the highest closeness within this network.
This edge has also the highest betweenness together with the
edge connecting the nodes 3 and 4.

In practice, it is almost impossible to calculate the exact
betweenness or closeness scores. To make the calculations
feasible, one can set a cut-off distance d and allow only paths
that are at distances shorter or equal to d.

B. GAMM including centrality measures

In our paper [11], we used generalized additive mixed-
effect models with different structures of the random compo-
nent and showed that the one-way nested model with postal
code as a random intercept has the optimal structure of the ran-
dom component. Further, we showed that using the population
as offset captures the most variation in the data. Moreover, the
covariates month and the average monthly income seem to
be the most important predictors for the number of burglaries
within postal codes. In this paper, the optimal model discussed
in [11] will be extended by two different centrality measures
as covariates. We assess the effect of these centrality measures
on explaining and forecasting the number of burglaries within
the postal code. This model is given by:

yi,t ∼ Poisson(µi,t),

µi,t = exp(basei,t + CMi + ai),

ai ∼ N(0, σ2
PC4),

(3)

where ai is a random intercept for the postal code and CMi

represents the closeness CCi or the betweenness BCi. The
basei,t is given by:

basei,t =1 + sEIi + sRETi + aSHi + sNPIi +

sMugL3Mi,t + f1(aAMIi) + f2(Montht).
(4)

The models were fitted using the Laplace approximate
maximum likelihood [14]. This allows comparing the models

196

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

based on the Akaike Information Criterion (AIC). All analyses
were conducted using the gamm4 package [15].

To assess the predictive performance of the models, the
Root Mean Squared Error (RMSE) is calculated for an out-of-
sample test. If yi,t denotes the realization in postal code i and
in month t, and ŷi,t denotes the forecast in the same postal
code and in the same month, then the forecast error is given
by ei,t = yi,t − ŷi,t and the RMSE is given by:

RMSE =

√√√√ 1

NT

N∑
i=1

T∑
t=1

e2i,t. (5)

C. Space-time model including centrality measures

In our paper [11], we have shown that adding the centrality
measure as a covariate to a random intercept model has
improved the performance of the model. We also showed that
using the closeness as centrality measure with smaller thresh-
olds results in better model performance. The betweenness as
a centrality measure leads to better model performance using
larger thresholds (larger than 4 minutes). In this paper, we
will assess the effect of the centrality measures on burglary
risk when modeling the spatial and temporal effects explicitly.
Instead of using a random intercept model to account for extra
variation within the postal codes, we will model the spatial
effect taking into account the spatial autocorrelation.

The main spatial effect ξi of area i will be modeled as the
sum of a structured effect ui and an unstructured spatial effect
νi. The structured spatial effect will be modeled by the mean
of a first order intrinsic Gaussian Markov random field [16],
[17]. In this specification, the mean of ui is given by the
mean of the adjacent ui’s and the variance of ui is inversely
proportional to the number of neighbors Ni of area i. The
unstructured spatial effect is modeled using exchangeability
among the different postal codes. Moreover, the temporal trend
of burglary risk is modeled by the mean of a structured and an
unstructured component. The temporally structured component
is modeled dynamically using a random walk of order 2 and
the unstructured component is specified as zero-mean white
noise with precision τν .

yi,t ∼ Poisson(µi,t),

µi,t = exp (basei,t + CMi + ui + νi + γt + φt) ,

νi ∼ N
(

0,
1

τν

)
,

ui|{uj ; j 6= i}, τu ∼ N
(1

Ni

n∑
j=1

aijuj ,
1

Niτu

)
,

γt|γt−1, γt−2 ∼ N(2γt−1 + γt−2, σ
2),

φt ∼ N(0, 1/τφ),

(6)

where aij is 1 if the area’s i and j are neighbors, and 0 oth-
erwise. CMi represents the closeness CCi or the betweenness
BCi. The basei,t is given by:

basei,t =1 + sEIi + sRETi + aSHi + sNPIi +

sMugL3Mi,t + f1(aAMIi) + f2(Montht).
(7)

The models are fitted using the Integrated Laplace Approx-
imation (INLA) implemented in the R package INLA [18]. The

model selection is performed using two selection criterions
based on the deviance. First, we use the deviance information
criterion (DIC), proposed by Spiegelhalter et al. [19]. The DIC
is defined as:

DIC = D(θ̄) + 2pD, (8)

where D(θ̄) is the deviance using the posterior mean of the
parameters, and pD is the effective number of parameters. As
the posterior marginal distributions of some hyperparameters
might be highly skewed, especially the precisions, INLA evalu-
ates the DIC at the posterior mode of the hyperparameters. For
the latent field, INLA uses the posterior mean [20]. We used
also the Watanabe-Akaike information criterion (WAIC) [21].
This criterion is based on the data partition and is closely
linked to the Bayesian leave-one-out cross-validation. The
WAIC is considered to be an improvement on the DIC cri-
terion [22].

To assess the predictive performance of the models, the
Root Mean Squared Error (RMSE) and the Weighted Absolute
Percentage Error (WAPE) are calculated using an out-of-
sample data set. As before, if yi,t denotes the realization in
postal code i and in month t, and ŷi,t denotes the forecast in
the same postal code and in the same month, then the forecast
error is given by ei,t = yi,t − ŷi,t. The RMSE is given by
Equation (5), and the WAPE is given by Equation (9) defined
as follows.

WAPE =

∑N
i=1

∑T
t=1 | ei,t |∑N

i=1

∑T
t=1 yi,t

. (9)

IV. RESULTS

In this section, we first present the results of the centrality
measures. Then, we will discuss the results of the two models
including these centrality measures as covariates.

A. Centrality measures

As discussed in Section III-A, in practice it is computa-
tionally very expensive to calculate the exact betweenness and
closeness scores. In general, these can be estimated by setting
up a buffer zone using a cut-off distance d and calculating
these centrality measures by considering only the paths at a
shorter length than d. Using historical data, the average speed
per street segment was calculated and five different time cut-
offs were used. Segments that are reachable within one to five
minutes are used to calculate the centrality measures. Note that
these averages make sense because the centrality measures are
calculated for the whole city and not for each area separately.

The betweenness and the closeness on the street segment
level using a cut-off of four minutes are illustrated in Fig-
ure 3 and Figure 4, respectively. The corresponding average
betweenness and closeness per area are illustrated in Figure 5
and Figure 6, respectively. Figures 3 and 4 show a wide red
road running from top to bottom. This road corresponds with
the A10, which is the ring road of Amsterdam. Figure 3 also
shows that the roads with high betweenness correspond to the
main access roads within this district. Figure 4 reveals that the
roads within the areas situated on the right-hand side of the
A10 have a higher closeness in general. This part of the city
was built mainly before the Second World War [23] and has
a higher density due to enclosed building blocks creating a

197

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Betweenness of the street segments in Amsterdam West. The
betweenness is calculated using the average speed on the street segment and

a time threshold of four minutes.

Figure 4. Closeness of the street segments in Amsterdam West. The
closeness is calculated using the average speed on the street segment and a

time threshold of four minutes.

more finely meshed network of roads when compared to the
left-hand side of the ring road. This part was built after the
Second World War and is characterized by a lower density
due to more open building blocks with an emphasis on more
green areas and better enclosure of the residential area via
main access roads. The blank areas in the district correspond
with green areas, such as parks, lakes and agricultural land.

B. GAMM including centrality measures

Adding a centrality measure to the GAMM model results
in a better prediction based on the RMSE. The RMSE of
the GAMM model without centrality measure was about
4.5519 and as can be seen from Table I, extending the model
with the betweenness or the closeness results in a generally
lower RMSE. It is noteworthy that the closeness leads to
better predictions when using lower thresholds (lower or equal
3 min); see Figures 7 and 8. If the threshold is four minutes
or higher including the betweenness in the model results in

Figure 5. Average betweenness per postal code.

Figure 6. Average closeness per postal code using a threshold of four
minutes.

better predictions. This can be explained by the average time
an offender might need to flee from the scene of the crime
on a residential street to the nearest main access road. In this
case, the closeness describes the number of different routes the
offender can take during his flight. Within 4 or 5 minutes, the
offender can be traveling on the main access road in order to
create as much distance as possible from the crime scene.

The results in the area with the postal code 1067 differ from
the other areas. Including the closeness and betweenness does
not improve the model, the error on the other hand increased.
Taking a closer look at this area revealed that this area mainly
consists of green areas with few roads. With less alternative
routes available, the closeness gives a higher error.

When looking at the other areas, it is possible to say that the

Table I. ROOT MEAN SQUARED ERROR (RMSE) VALUES FROM FITTING
THE GAMM MODEL WITH CLOSENESS AND BETWEENNESS USING

DIFFERENT THRESHOLDS.

Model 1 min 2 min 3 min 4 min 5 min
GAMM + CC 4.5297 4.5323 4.5366 5.5437 4.5478
GAMM + BC 4.5562 4.5497 4.5405 4.5279 4.5326

198

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2
4

6
8

PC4

R
M

S
E

10
13

10
51

10
52

10
53

10
54

10
55

10
56

10
57

10
58

10
59

10
60

10
61

10
62

10
63

10
64

10
65

10
66

10
67

10
68

10
69

GAMM + CC
GAMM + BC
GAMM

Figure 7. RMSE per PC4 base on an out-of-sample for the GAMM model,
the GAMM + CC and the GAMM + BC using a threshold of 1 minute.

building density influences the effectiveness of the centrality
measures on the models. In areas with a lower density, the
centrality measures have almost no influence on the outcomes,
whereas in the urban areas with a high building density adding
the centrality measures to the model improves the outcomes
of the model.

Most studies use betweenness as a centrality measure,
however, these studies focus on social networks. Given our
results, we believe that the closeness is a better centrality
measure for modeling crime based on small geographic areas.
However, as shown there is a difference in effectiveness of this
centrality measure related to the building density of the area.

C. Space-time model including centrality measures

In this section, we will present the results from fitting the
space-time models with the betweenness and the closeness
using the different thresholds. First, we fit the models including
all covariates and compare their DIC and WAIC values.
Table II shows that the model with the closeness centrality
with a threshold of five minutes provides the lowest DIC and
WAIC values. However, the differences remain small. Looking
at the estimated posterior mean values and their 95% credible
intervals (CI), we can see that the betweenness centrality
and the average number of educational institutions are not
important as the zero lies within the 95% CI. In contrast,
the closeness centrality seems important regardless of the
threshold used, see Figure 9.

Based on the DIC and the WAIC values, the best perform-
ing model is selected. This model has a closeness measure
with a threshold of five minutes and includes all covariates,
except the average number of educational institutions and the
average number of persons generating income.

The estimated parameters of the best-obtained model on
logarithmic scale are presented in Table III. From this table,

2
4

6
8

10

PC4

R
M

S
E

10
13

10
51

10
52

10
53

10
54

10
55

10
56

10
57

10
58

10
59

10
60

10
61

10
62

10
63

10
64

10
65

10
66

10
67

10
68

10
69

GAMM + CC
GAMM + BC
GAMM

Figure 8. RMSE per PC4 base on an out-of-sample for the GAMM model,
the GAMM + CC and the GAMM + BC using a threshold of 4 minutes.

we can see that the number of retail stores in the postal code,
the number of mugging incidents, and the average closeness
with a threshold of five minutes have a positive effect on
burglaries. The number of households with a single parent
has a negative effect on burglaries. To assess the exact effect
of these covariates on residential burglaries, we converted the
posterior distributions from the logarithmic scale to the original
scale of the data. Then we calculated the posterior mean and
the 95% credible intervals on the original scale. From Table IV,

● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

● ●
● ● ●

● ● ● ●
●

● ● ● ● ●
● ● ●

●
●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
●

●

● ● ● ● ●
● ● ● ● ●

(Intercept)

aSH.std

CM.std

sEI.std

sMugL3M.std

sNPI.std

sRET.std

−6

−4

−2

0

−0.3

−0.2

−0.1

0.0

0.0

0.1

0.2

−0.05

0.00

0.05

0.00

0.02

0.04

0.06

0.08

−0.15
−0.10
−0.05

0.00

0.00

0.05

0.10

0.15

ST_B1 ST_B2 ST_B3 ST_B4 ST_B5 ST_C1 ST_C2 ST_C3 ST_C4 ST_C5
Parameters

P
os

te
rio

r
m

ea
n

va
lu

es
 a

nd
 9

5%
 C

I

Figure 9. Posterior mean values and 95% credible intervals for all regression
parameters obtained using the different models.

199

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table II. DIC and WAIC values of the models including all covariates.

Criterion BC1 BC2 BC3 BC4 BC5 CC1 CC2 CC3 CC4 CC5
DIC 3991.795 3991.877 3992.044 3992.049 3991.902 3991.591 3991.725 3991.507 3991.445 3991.434
WAIC 4019.198 4019.266 4019.338 4019.357 4019.263 4018.372 4018.613 4018.255 4018.217 4018.217

Table III. The posterior mean and 95% credible intervals of the fixed effects
on logarithmic scale.

Estimate Mean Std.dev 0.025 quantile 0.975 quantile
Intercept -7.486 0.019 -7.525 -7.448
sRET.std 0.086 0.028 0.030 0.142
aSH.std -0.279 0.044 -0.365 -0.190

sMugL3M.std 0.043 0.016 0.013 0.074
avgCloseness5.std 0.160 0.033 0.094 0.225

Table IV. The posterior mean and 95% credible intervals of the fixed effects
on the natural scale.

Estimate Mean Std.dev 0.025 quantile 0.975 quantile
Intercept 0.00056085 1.07431e-05 0.00053957 0.000582493
sRET.std 1.09048 0.0303216 1.03077 1.15139
aSH.std 0.757577 0.0331817 0.694364 0.825984

sMugL3M.std 1.04458 0.0161383 1.01311 1.07653
avgCloseness5.std 1.17414 0.038402 1.09919 1.25157

we can conclude that an increase in one unit in the number of
retail stores, the number of muggings and in the closeness is
associated with an increase of 9.05%, 4.46%, and 17.41%,
respectively, in the risk of burglary. Among all covariates,
the closeness has the most impact on the risk of residential
burglaries. In contrast, the average number of households with
a single parent results in a decrease in the risk of burglaries.

After taking account of the covariates, the residual relative
risk of each area (exp(ξ)) and their posterior probability of
exceeding one (Pr(ξi > 0 | y)) are represented in Figures 10

[0.947,0.98]

(0.98,1.01]

(1.01,1.05]

(1.05,1.08]

Figure 10. Posterior mean of the residual relative risk for each PC4.

and 11, respectively. As can be seen from Figure 10, the
postal code area 1057 has the highest relative risk of burglaries
compared to the whole Amsterdam West. This area also has
a higher probability of excess risk on burglaries next to
the postal codes 1063 and 1051. These results are in line
with our expectations. The postal code area 1057 is a pre-
war build neighborhood along the main excess road. These
neighborhood houses have many problems such as a higher
poverty rate [24] and a higher pollution rate [25]. According
to OIS Amsterdam (2017), the adjacent neighborhood inhabits
many crime-suspects [24].

The posterior temporal trends are illustrated in Figure 12.
This figure represents the structured and the unstructured tem-
poral components modeled dynamically by means of an RW(2)
model and an exchangeable Gaussian prior, respectively. As
can be seen from this figure, a clear seasonal pattern in
burglaries can be observed with a higher risk of burglaries
between September and February in general. As expected,
peaks are observed for December and January. The same figure
reveals that June and July are the months with the lowest
risk of burglaries. It is also noteworthy to mention that the
second year (2010) clearly has a lower risk of burglaries during
the dark months compared to the other years. The temporally
unstructured effect, exp(φt) fluctuates around one.

Finally, we assessed the predictive performance of the
models based on out-of-sample data and compared the results
to the best obtained GAMM models with the one of the space-
time model with a closeness considering a threshold of four

[0.12,0.32]

(0.32,0.53]

(0.53,0.73]

(0.73,0.93]

Figure 11. Posterior mean of the residual excess risk for each PC4.

200

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 5 10 15 20 25 30 35

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

Month of the year

P
os

te
rio

r
te

m
po

ra
l t

re
nd

Figure 12. Model with closeness with a threshold of 4 minutes.

minutes. This concerns the GAMM models with the closeness
considering a threshold of 1 minute and the GAMM model
with the betweenness considering a threshold of 4 minutes.
To compare the models we used the RMSE and the WAPE
accuracy measures. First, we compared the total performance
of the models, then we compared the performance of the
models for each postal code separately. The space-time model
including the closeness centrality (ST.CC4) clearly results in
lower RMSE and WAPE errors compared the GAMM models,
see Table V. When we compare the predictive performance of

2
4

6
8

10

PC4

R
M

S
E

10
13

10
51

10
52

10
53

10
54

10
55

10
56

10
57

10
58

10
59

10
60

10
61

10
62

10
63

10
64

10
65

10
66

10
67

10
68

10
69

ST + CC4
GAMM + BC4
GAMM + CC1

Figure 13. RMSE per PC4 based on out-of-sample data for the ST model
including CC5, GAMM + CC1 and the GAMM + BC4.

Table V. Predictive performance of the models based on out-of-sample data.

Model RMSE WAPE (%)
ST.CC4 3.98 30.47
GAMM.CC1 5.05 36.82
GAMM.BC5 5.35 38.34

the models for each postal code, we can see that ST.CC4 per-
forms clearly better compared to the other models, especially
in PC4 1056, see Figures 13 and 14.

V. CONCLUSION AND FUTURE WORK

During this research, we have tried to determine the
influence of accessibility of the street network within small
urban areas on residential burglary by applying the centrality
measures closeness and betweenness. Given the results in the
literature, it is natural to study this problem in the context
of GAMM models. We have found that adding the centrality
measures as a variable to the GAMM model has improved the
performance of this model as can be concluded from the lower
RMSE. Furthermore, we have shown that there is a relation
between the different conceptions in urban design over time
and residential burglary. Our results show that the pre-world
War II neighborhoods suffer from more residential burglary
than the neighborhoods built after the Second World War.

Rather contrastingly, differences in the performance of the
two centrality measures were found when using the GAMM
model. Closeness as a centrality measure gives better predic-
tions when taking into consideration a threshold smaller than 4
minutes. If the threshold is 4 minutes or larger, the betweenness
gives better predictions. This contradiction disappears when
modelling the spatial and temporal effects explicitly. In that
case, the model with the closeness centrality with a threshold

20
30

40
50

60

PC4

W
A

P
E

10
13

10
51

10
52

10
53

10
54

10
55

10
56

10
57

10
58

10
59

10
60

10
61

10
62

10
63

10
64

10
65

10
66

10
67

10
68

10
69

ST + CC4
GAMM + BC4
GAMM + CC1

Figure 14. WAPE per PC4 based on out-of-sample data for the ST model
including CC5, GAMM + CC1 and the GAMM + BC4.

201

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of five minutes provides the best results, and even beats the
best GAMM model.

Our study has shown that there is a relationship between the
conceptions in urban design and crime. Neighborhoods built
under a certain conception of urban design tend to have a
higher risk of residential burglary, which can be explained by
how the public space is designed. Further research is necessary
to confirm this hypothesis.

REFERENCES

[1] M. Mahfoud, S. Bhulai, and R. van der Mei, “Forecasting burglary risk
in small areas via network analysis of city streets,” in Proceedings of
the 7th International Conference on Data Analytics. IARIA, 2018, pp.
109–114.

[2] P. J. Brantingham, P. L. Brantingham et al., Environmental criminology.
Sage Publications Beverly Hills, CA, 1981.

[3] R. Wortley and M. Townsley, Environmental criminology and crime
analysis. Taylor & Francis, 2016, vol. 18.

[4] P. Brantingham and P. Brantingham, “Crime pattern theory,” in Envi-
ronmental criminology and crime analysis. Willan, 2013, pp. 100–116.

[5] D. Weisburd, E. R. Groff, and S.-M. Yang, The criminology of place:
Street segments and our understanding of the crime problem. Oxford
University Press, 2012.

[6] D. Weisburd, S. Bushway, C. Lum, and S.-M. Yang, “Trajectories of
crime at places: A longitudinal study of street segments in the city of
Seattle,” Criminology, vol. 42, no. 2, 2004, pp. 283–322.

[7] L. C. Freeman, “Centrality in social networks conceptual clarification,”
Social networks, vol. 1, no. 3, 1978, pp. 215–239.

[8] P. Crucitti, V. Latora, and S. Porta, “Centrality measures in spatial
networks of urban streets,” Physical Review E, vol. 73, no. 3, 2006,
p. 036125.

[9] T. Davies and S. D. Johnson, “Examining the relationship between road
structure and Quantitative Criminology, vol. 31, no. 3, 2015, pp. 481–
507.

[10] T. P. Davies and S. R. Bishop, “Modelling patterns of burglary on street
networks,” Crime Science, vol. 2, no. 1, 2013, p. 10.

[11] M. Mahfoud, S. Bhulai, R. van der Mei, and D. Kardaras, “Spatio-
temporal modeling for residential burglary,” in Proceedings of the 6th
International Conference on Data Analytics. IARIA, 2018, pp. 59–64.

[12] D. Liao and R. Valliant, “Variance inflation factors in the analysis of
complex survey data,” Survey Methodology, vol. 38, no. 1, 2012, pp.
53–62.

[13] A. Benjamin, G. Chartrand, and P. Zhang, The fascinating world of
graph theory. Princeton University Press, 2015.

[14] R. H. Baayen, D. J. Davidson, and D. M. Bates, “Mixed-effects
modeling with crossed random effects for subjects and items,” Journal
of memory and language, vol. 59, no. 4, 2008, pp. 390–412.

[15] S. Wood and F. Scheipl, gamm4: Generalized additive mixed models
using mgcv and lme4, 2014, r package version 0.2-3. [Online].
Available: http://CRAN.R-project.org/package=gamm4

[16] J. Besag, J. York, and A. Mollié, “A bayesian image restoration with
two applications in spatial statistics ann inst statist math 43: 1–59,” Find
this article online, 1991.

[17] H. Rue and L. Held, Gaussian Markov random fields: theory and
applications. CRC press, 2005.

[18] H. Rue, S. Martino, and N. Chopin, “Approximate bayesian inference
for latent gaussian models by using integrated nested laplace approx-
imations,” Journal of the royal statistical society: Series b (statistical
methodology), vol. 71, no. 2, 2009, pp. 319–392.

[19] D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. Van Der Linde,
“Bayesian measures of model complexity and fit,” Journal of the Royal
Statistical Society: Series B (Statistical Methodology), vol. 64, no. 4,
2002, pp. 583–639.

[20] M. Blangiardo and M. Cameletti, Spatial and spatio-temporal Bayesian
models with R-INLA. John Wiley & Sons, 2015.

[21] S. Watanabe, “Asymptotic equivalence of bayes cross validation and
widely applicable information criterion in singular learning theory,”
Journal of Machine Learning Research, vol. 11, no. Dec, 2010, pp.
3571–3594.

[22] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and
D. B. Rubin, Bayesian data analysis. CRC press Boca Raton, FL,
2014, vol. 2.

[23] G. Amsterdam. De groei van amsterdam. [Online]. Available:
https://maps.amsterdam.nl/bouwjaar/?LANG=nl (2018)

[24] “Ois amsterdam,” https://www.ois.amsterdam.nl/publicaties/de-staat-
van-de-stad-amsterdam/?50159, last access date: 1 March, 2019.

[25] “Wonen in amsterdam 2017: leefbaarheid,”
https://www.ois.amsterdam.nl/publicaties/de-staat-van-de-stad-
amsterdam/?50159, last access date: 1 March, 2019.

202

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Deploying Artificial Intelligence to Combat Disinformation Warfare

Identifying and Interdicting Disinformation Attacks Against Cloud-based Social Media Platforms

Barry Cartwright

School of Criminology
Simon Fraser University

Burnaby, Canada

Email: bcartwri@sfu.ca

George R. S. Weir

Department of Computer & Information Sciences
University of Strathclyde

Glasgow, Scotland, UK

Email: george.weir@strath.ac.uk

Richard Frank

Karmvir Padda

School of Criminology

Simon Fraser University

Burnaby, Canada

Email: {rfrank; karmvir_padda}@sfu.ca

Abstract—Disinformation attacks that make use of Cloud-

based social media platforms, and in particular, the attacks

orchestrated by the Russian “Internet Research Agency,”

before, during and after the 2016 U.S. Presidential election

campaign and the 2016 Brexit referendum in the U.K., have

led to increasing demands from governmental agencies for

technological tools that are capable of identifying such attacks

in their earliest stages, rather than identifying and responding

to them in retrospect. This paper reports on the interim results

of an ongoing research project that was sponsored by the

Canadian government’s Cyber Security Directorate. The

research is being conducted by the International CyberCrime

Research Centre (ICCRC) at Simon Fraser University

(Canada), in cooperation with the Department of Information

and Computer Sciences at the University of Strathclyde

(Scotland). Our ultimate objective is the development of a

“critical content toolkit,” which will mobilize artificial

intelligence to identify hostile disinformation activities in

“near-real-time.” Employing the ICCRC’s Dark Crawler,

Strathclyde’s Posit Toolkit, Google Brain’s TensorFlow, plus

SentiStrength and a short-text classification program known as

LibShortText, we have analyzed a wide sample of social media

posts that exemplify the “fake news” that was disseminated by

Russia’s Internet Research Agency, comparing them to “real

news” posts in order to develop an automated means of

classification. To date, we have been able to classify posts as

“real news” or “fake news” with an accuracy rate of 90.7%,

90.12%, 89.5%, and 74.26% using LibShortText, Posit,

TensorFlow and SentiStrength respectively.

Keywords-Social media; disinformation warfare; machine

learning.

I. INTRODUCTION

This paper elaborates on an earlier paper on the subject
of fighting disinformation warfare through the use of
artificial intelligence, presented at the Tenth International
Conference on Cloud Computing, GRIDs, and

Virtualization, held in Venice, Italy, in May 2019 [1]. As
observed in our earlier conference paper, the key challenges
facing law enforcement agencies, intelligence agencies,
cybersecurity personnel and business owners-operators
worldwide are how to monitor and effectively respond to
dynamic and emerging cybersecurity threats, with increasing
attention being paid to hostile disinformation activities in
Cloud-based social media platforms [1]. To illustrate,
Cambridge Analytica, through an app that it developed,
managed to scrape data from over 80 million Facebook
pages worldwide. This information was in turn used to
micro-target voters through Facebook advertisements, which
were premised upon the demographic profiles and known
political leanings of those voters, in turn based upon
information which had been extracted with the help of the
Cambridge Analytica app [2], [3]. In July 2018, Facebook
was fined £500,000—the maximum allowable under British
law—for its mishandling of data in the Cambridge Analytica
scandal [4]. In July 2019, the US Federal Trade Commission
fined Facebook five billion USD for its failure to protect user
privacy [5]. The nexus between Cambridge Analytica,
WikiLeaks, and Russian interference in the 2016 U.S.
Presidential election remained under investigation by the
U.S. Congress as recently as the Summer of 2019 [6].

According to a 2017 Intelligence Community
Assessment, prepared jointly by the Central Intelligence
Agency (CIA), the Federal Bureau of Investigation (FBI) and
the National Security Agency (NSA), a number of other
Cloud-based social media, including Twitter and Instagram,
have also been implicated as (possibly unaware) participants
in the hosting and dissemination of disinformation attacks
associated with the Russian “Internet Research Agency”
(IRA) [7]. According to Special Counsel Robert Mueller’s
recently released report into Russian interference in the U.S.
Presidential election [8], Facebook and Twitter accounts
targeted certain groups, such as Blacks (through the
Blacktivist Facebook page), Southern Whites (through the

203

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Patriototus Facebook page), and the right-wing anti-
immigration movement (through the Secured Borders
Facebook page), as well as through Twitter feeds such as
@TEN_GOP (which falsely claimed to have a connection to
the Republican Party of Tennessee), and @America_1st (an
anti-immigration account). In the U.K., the “fake news”—
which primarily stoked Islamaphobic and anti-immigration
passions—made extensive use of Twitter, employing Twitter
handles such as ReasonsToLeaveEU, or #voteleave [9], [10],
[11], [12]. Evidence also indicates that the Russian IRA
maximized use of social media bots in their 2016 assaults on
the U.S. Presidential election and the U.K. Brexit referendum
[9], [10], [13], [14], thus amplifying the content in order to
reach and influence a much wider audience. More will be
said about Russian involvement in disinformation warfare in
Section II of this paper, wherein we present our literature
review.

Our research, sponsored by the Canadian government’s
Cyber Security Cooperation Program, and conducted by the
International CyberCrime Research Centre at Simon Fraser
University, in cooperation with the Department of
Information and Computer Sciences at the University of
Strathclyde, involves the development of a tool for
identifying hostile disinformation activities in the Cloud.
This research project commenced with a dataset of 2,946,219
“fake news” Twitter messages (tweets), identified as
emanating from the Russian IRA. Later, our research came
to include datasets that combined both Twitter and Facebook
“fake news” messages, eventually including a number of
comparator datasets of “real news” messages, plus a
potential “training” dataset for machine learning that we
have not yet explored fully, the latter consisting of a wide
range of “real news” and “fake news” [15]. It is anticipated
that the knowledge generated by this research will establish
the foundation for more advanced work, eventually
culminating in the construction of a “critical content toolkit,”
which will aid governmental agencies in the rapid and
accurate pinpointing of disinformation attacks in their very
early stages.

The research team has several years of collaborative
experience in collecting and analyzing data from online
extremist forums, child pornography websites, social media
feeds and the Dark Web. Our previous experience in data
classification has demonstrated that we are able, through
automation, to achieve predictive accuracy in the 90-95%
range when it comes to detecting the nuanced text found in
extremist content on the Web [1], [16], [17], [18]. From this
background, we have a methodology that is applicable to the
analysis and classification of data from Cloud-based social
media platforms. In the past, our predictive accuracy was
accomplished by applying a combination of technologies,
including the Dark Crawler, SentiStrength, and Posit [1]. For
the present study, we have employed the Dark Crawler,
Posit, SentiStrength, TensorFlow, and LibShortText.
Additional information on these research tools is provided in
Section III, wherein we set out our methodology. Our
research results are reported in Section IV, and elucidated
further in Sections V and VI, wherein we discuss our results,

set out the directions that our future research endeavors are
expected to take, and present our interim conclusions.

II. LITERATURE REVIEW

As noted in our introductory comments in Section I,
Cloud-based social media platforms have come under
increasing scrutiny for permitting hostile foreign actors to
manipulate public opinion through the creation of fake social
media accounts that disseminate false information, often
referred to as “fake news” [19], [20], [21]. This false
information, or fake news, can be broken down into two
broader categories: misinformation and disinformation. The
less sinister of the two, misinformation, is simply inaccurate
or false information. Misinformation may be based upon a
genuine misapprehension of the facts, as opposed to having
been created with any particular intention of deceiving or
manipulating people [22], [23], [24]. Disinformation, on the
other hand, especially when employed by hostile foreign
actors, is information that is created and spread intentionally,
for the express purpose of deception and manipulation of
public opinion [22], [24], [25].

The activities of Russia’s IRA during the 2016 U.S.
Presidential election would be a prime example of a
disinformation campaign mounted by a hostile foreign actor
[10], [13], [26], [27]. In February 2108, U.S. Special Counsel
Robert Mueller, duly appointed to investigate Russian
interference in the U.S. election, obtained a grand jury
indictment against the IRA (which was bankrolled by
Yevgeniy Prigozhin, often referred to as “Putin’s chef”), plus
Prigozhin’s American-based companies Concord
Management and Consulting LLC and Concord Catering as
well as Prigozhin himself, along with a dozen Russian
“trolls” who were employed by Prigozhin’s IRA. The
indictment stated that the accused had “operated social media
pages and groups designed to attract U.S. audiences” in order
to advance divisive issues and create dissension, falsely
claiming that those pages and groups were controlled by
American activists [9], [28].

The dozen Internet “trolls” who were described in the
indictment obtained by Mueller belonged to an identifiable
sub-group of a much larger workforce, comprised of 1,000 or
more Russian trolls, all employed by Prigozhin’s IRA [29],
[30], [31]. These IRA employees, working in a building in
the Russian city of St. Petersburg, toiled around the clock in
two, 12-hour shifts (a day shift and a night shift), with the
objective of fomenting division, distrust, dissent, and
hostility within and between targeted groups in the American
populace [32], [33], [34]. In particular, it has been said that
these IRA trolls were instructed to spread disinformation that
would buttress Donald Trump’s campaign for the U.S.
Presidency, and at the same time, undermine the campaign of
Hillary Clinton [7], [30], [34], [35].

The Computational Propaganda Project, a multi-national
project housed primarily in the Oxford Internet Institute, has
reported that 19 million identifiable “bot” accounts tweeted
in support of Trump or Clinton in the week leading up to the
2016 Presidential election, with 55.1% of those in favour of
Trump, and only 19.1% in favour of Clinton [36], [37], [38].
The evident disparity in Twitter support would seem difficult

204

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to account for, other than in terms of highly-orchestrated and
deliberate political interference, given that Hillary Clinton
received 65,844,954 votes, compared to 62,979,879 votes for
Donald Trump [39].

A 2017 study by Zannettou et al. revealed that 71% of
these “fake” accounts were created prior to the 2016 election
[34]. In fact, the 2017 Intelligence Community Assessment,
prepared jointly by the CIA, FBI and NSA, indicated that
Russian operatives had begun researching U.S. electoral
processes and election-related technology and equipment as
early as 2014, two years prior to the election, and that the
Prigozhin-led IRA had started advocating on behalf of
Donald Trump’s candidacy as early as 2015, one year prior
to the election [7]. Zannettou et al. reported that 24 accounts
were created on July 12, 2016, approximately one week
before the Republican National Conference (at which Donald
Trump was formally nominated as the Republican candidate
for the 2016 Presidential election) [34]. The study also found
that the Russian Internet trolls attempted to mask their
disinformation campaign by adopting different identities,
changing their screen names and profile information, and in
some cases, deleting their previous tweets. In their
examination of tweets posted between January 2016 and
September 2017, for example, Zannettou et al. found that
19% of the accounts operated by IRA trolls changed their
screen names as many as 11 times, and unlike other Twitter
users, often deleted their tweets in large batches, in order to
start again with a clean slate [34].

Much has been said about the use of social media bots in
the U.S. Presidential election and the U.K. Brexit referendum
[9], [10], [13], [14]. Briefly, the transfer and transformation
of information on the Internet is not accomplished by people,
but rather, by algorithms—scripts which convert
mathematical expressions into instructions for the Internet
[37]. The Internet Relay Chat System would be an early
example of where bots were being used to manage and
regulate social interaction on the Internet. These bots, which
still comprise an integral part of the architecture of Cloud-
based social media sites such as Twitter and Facebook, are
capable of interacting with Internet users, answering simple
questions, and collecting data. More sophisticated bots can
also be deployed to crawl the Web, scrape social media sites
for data, parse the information gleaned, and even manipulate
political opinion [37]. Some online stores/companies, such as
AliExpress, use these AI bots for managing the extensive
help systems on their site. If you have an issue, you chat with
the bot. The Cambridge Analytica app, which attracted so
much negative attention to Facebook in the aftermath of the
2016 U.S. Presidential election and the 2016 U.K. Brexit
referendum, would be an example of an algorithm that was
designed for the express purpose of collecting and evaluating
behavioral data such as the likes, dislikes and political
proclivities of the Facebook users whose data it harvested
[40].

To express it differently, the bots (robots) described
herein are Cloud-based social media accounts that are
controlled by software, rather than by real people. These
social media bots are estimated to comprise between 5-9% of
the overall Twitter population, and to account for

approximately 24% of all tweets [41]. Users of social media
may spend considerable time liking and disliking bots,
sometimes arguing with (or even flirting with) bots, all the
while thinking that they are interacting with a real person.
Stories that “go viral”—i.e., that rise to the top of Twitter
feeds—are often pushed there by these social media bots
through manipulation of the social media platform’s
algorithms [41].

The main problem with “fake news” is that its consumers
tend to accept what they read at face value. According to The
Pew Research Center, 12% of Americans get their news
from Twitter [42]. Of those who use the platform regularly,
close to 60% depend on Twitter as their source of news [26],
[42], [43]. With respect to the type of “fake news” that is the
subject of this present study, it can be said that the frequent
tweeting and re-tweeting by bots leads to ever-increasing
exposure, resulting in an “echo chamber effect” [33]. To add
to the mix, evidence suggests that many individuals are
unable to distinguish between factual and non-factual content
found on Twitter and Facebook [44], [45]. Indeed, according
to a Stanford University study, far too many are inclined to
accept images or statements that they come across on social
media at face value, without questioning the source of those
images or statements, or for that matter, asking whether they
even represent what they purport to represent [9], [44], [45].

Russian interference in the U.S. Presidential election and
the U.K Brexit referendum has been well documented, and
has been the subject of considerable governmental and
academic research, e.g., [7], [8], [9], [10], [12], [13], [14],
[20], [27], [34]. However, such Russian interference is by no
means restricted to the U.S. and the U.K. To illustrate, in
2019, the European Commission—along with the European
External Action Service and other EU institutions and
member states—released a progress report on its Action Plan
Against Disinformation. According to the Commission’s
progress report, evidence gathered throughout 2018 and
early 2019 confirmed ongoing disinformation activities
originating from Russian sources, believed to be undertaken
for the purpose of influencing voter preferences and
suppressing voter turnout in the EU Parliamentary elections
[23], [46].

Moreover, a recent study of Canadian Twitter data
suggests that Russian trolls were behind “fake news” stories
that attempted to stoke fear and distrust between Muslims
and non-Muslims following the 2017 shooting deaths of six
worshippers at a mosque in Quebec City, leading to renewed
concerns that Russian trolls might attempt to interfere in the
Fall 2019 Canadian federal election [47]. With this in mind,
the research team recently collected a sample of 3,500 tweets
from hashtags such as #TrudeauMustGoToJail,
#TrudeauMustGo, and #TrudeauMustResign, some of which
were suspected of containing “fake news” which was
intended to influence the outcome of the 2019 Canadian
federal election. In addition, we are currently focusing our
efforts on collecting Canadian-specific “fake news”
Facebook items, from The Buffalo Chronicle-Canadian
Edition, Canadian Truth Seekers, Million Canadian March,
The Canadian Defence League, The Silent Majority Canada,
The Angry Cousin, Proud Canadians, and Canada Proud.

205

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This Facebook dataset presently consists of 3,737 discrete
data items.

Russian-orchestrated disinformation campaigns are long-
standing in nature. The Kremlin reportedly founded a school
for bloggers as far back as 2009, apparently foreseeing the
long-range possibilities of utilizing Cloud-based social media
in political influence campaigns [48]. In fact, Russian
disinformation activities have been documented in the Czech
Republic and Slovakia as far back as 2013 [49], and in the
2014 election in the Ukraine, which itself followed shortly
after Russia’s annexation of the Crimean Peninsula [50],
[51]. This is not to suggest that all known disinformation
campaigns have been launched by Russia, or that such
campaigns have been restricted only to those countries
mentioned above. Using a combination of qualitative content
analysis, secondary literature reviews, country case studies
and consultations with experts, a 2019 inventory compiled
by the Oxford Internet Institute found evidence of
disinformation campaigns in 70 different countries around
the world, including but by no means limited to Armenia,
India, Malaysia, Mexico, The Philippines, Saudi Arabia, The
United Arab Emirates and Venezuela [52]. In many cases,
however, the campaigns are spreading pro-party or pro-
government propaganda, or attacking the political
opposition, and in the absence of evidence to the contrary,
they could well be mounted by local (rather than foreign)
actors. That said, countries other than Russia, such as China
and Saudi Arabia, are believed to be making increasing use
of disinformation campaigns beyond their own borders [53].
In any event, the focus of this present paper is the Russian-
orchestrated attacks on the 2016 U.S. Presidential election.

A number of researchers have mobilized artificial
intelligence in an effort to counter the type of disinformation
warfare employed by Russia during the 2016 U.S.
Presidential election and the 2016 U.K. Brexit referendum.
In 2017, Darren Linvill and John Walker (from Clemson
University) gathered and saved vast numbers of Twitter and
Facebook postings (prior to their removal from the Internet
by the respective social media platforms), thereby preserving
the evidence and making the data available to the academic,
cyber-security and law enforcement communities for further
study [54]. Linvill and Walker investigated the Twitter
handles used by the Russian IRA, both qualitatively and
quantitatively, breaking them down into troll accounts and
bot accounts, and into right trolls, left trolls, fear mongers,
news feeders and hash tag gamers. Our research team has
made extensive use of the IRA’s Twitter and Facebook
postings that were gathered, saved and made available by
Linvill and Walker. In 2017, William Yang Wang from the
University of California at Santa Barbara released his LIAR
dataset, which included 12,836 statements labeled for their
subject matter, situational context, and truthfulness, broken
down into training, validation and test sets, along with
instructions for automatic fake news detection [15]. In
addition, William Wang reported that the open source
software toolkit, LibShortText, developed by the Machine
Learning Group at National Taiwan University, had been
shown to perform well when it came to short text
classification [15], [55]. The dataset provided by Linvill and

Walker, and the suggestion by William Wang about using
LibShortText, have both been used by us to inform and
refine the machine learning and automated analysis
processes described in the following sections on
Methodology and Research Results.

In his above-mentioned study using the LIAR dataset,
William Wang found that when it came to automatic
language detection, a hybrid, convoluted deep neural
network that integrated both meta-data and text, produced
superior results to text-only approaches [15]. We are
employing a somewhat similar approach to that of William
Wang, in that we are using a combination of deep neural
networks (Tensor Flow) [56], a text-reading program (Posit)
that also produces meta-data or mark-up [57], [58], and the
LibShortText program developed by the Machine Learning
Group at National Taiwan University [55]. Employing
techniques of machine learning and natural language
processing, a 2018 study of Twitter troll activity in the 2016
U.S. Presidential election found that a model blending
measurements of “precision” and “recall” failed to accurately
classify 34% of troll posts, suggesting that such models
could not be relied upon to identify and screen out fake news
[48]. However, a 2019 paper, entitled “Defending Against
Neural Fake News,” reports on the development of
GROVER, a computer model that can both generate and
detect neural fake news, premised on the notion that while
most fake news is presently generated by humans, the fake
news of the future may be generated by machines. The
authors of this paper report additionally that they have been
able to discriminate fake news with an accuracy of 92%, as
opposed to the more standard 73% accuracy exhibited by
other fake news discriminators [59]. Our research results,
reported below, come much closer to approximating those
described in this 2019 study.

Some researchers have sought to identify disinformation
campaigns by employing “bot” detection, instead of relying
upon automated text-reading software. Essentially, much of
what may be regarded as “fake news” is thought to be spread
and/or amplified by the use of bots [37], [40], [41]. Thus, the
goal of bot detection is to discriminate accurately between
bot-generated and human-generated activity on social media.
Morstatter, Carley and Liu, for example, have proposed what
they call “a new approach to bot detection,” again blending
measurements of “precision” and “recall” [41], similar to the
measurements employed in the above-mentioned 2018 study
of Twitter troll activity in the 2016 U.S. Presidential election.
In their 2019 study, Morstatter et. al found that they could
successfully classify bot activity in 76.55% of instances.
Another approach, outlined by Gorodnichenko, Pahm and
Talavera, identifies suspected bot activity in the Brexit
referendum and the U.S. Presidential election, by measuring
such variables as when the Twitter account was first created,
the number of tweets per day, the timing of daily and hourly
tweeting, and the number of tweets containing the same
content. This is premised on the understanding that many of
these bot accounts are created for the purpose of spreading
disinformation, and that bots send more messages than
humans, at all times of the day (even when human activity is
much reduced), and that they re-send the same messages

206

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

over and over again [60]. Using this approach,
Gorodnichenko et. al found that they could classify bots and
non-bots with 90% accuracy. While we have not employed
bot detection in this present study, it is an avenue that we
plan to explore as our work progresses.

III. METHODOLOGY

Our analysis of “fake news” messages posted by the
Internet Research Agency (IRA), before, during and after the
2016 U.S. Presidential election, employed a variety of
approaches, including collection of IRA posts and “real
news” datasets using the Dark Crawler, plus machine
analysis of large samples of the posts using Posit,
TensorFlow, SentiStrength and LibShortText [55].

Although this research was geared primarily toward
machine learning and the development of an artificial
intelligence tool to aid in the rapid and accurate pinpointing
of disinformation attacks in their early stages, we also
conducted qualitative, textual analysis of 1,250 of the IRA
“fake news” Twitter posts, to probe into the alleged degree
of Russian involvement in the disinformation campaign [8],
[13], [26], [31], assess the veracity of claims that the posts
were intended to support Donald Trump’s campaign for the
U.S. Presidency whilst simultaneously undermining the
campaign of Hillary Clinton [7], [30], [34], [35], [36], [37],
[38], and investigate the degree to which some of the posts
were grounded in “real news,” rather than in what is
commonly referred to as “fake news” [9], [19], [20], [21],
[22].

A. Research Tools

The Dark Crawler is a custom-written, web-crawling
software tool, developed by Richard Frank of Simon Fraser
University’s International CyberCrime Research Centre.
This application can capture Web content from the open and
Dark Web, as well as structured content from online
discussion forums and various social media platforms [61]
[62], [63]. The Dark Crawler uses key words, key phrases,
and other syntax to retrieve relevant pages from the Web.
The Crawler analyzes them, and recursively follows the links
out of those pages. Statistics are automatically collected and
retained for each webpage extracted, including frequency of
keywords and the number of images and videos (if any are
present). The entire content of each webpage is also
preserved for further manual and automated textual analysis.
Content retrieved by the Dark Crawler is parsed into an
Excel-style worksheet, with each data element being
identified and extracted. In previous studies of this nature,
we have employed this same procedure to collect over 100
million forum posts from across a vast number of hacking
and extremist forums, to be used for later analysis [61], [62].

The Posit toolkit was developed by George Weir of the
Department of Computer and Information Sciences at the
University of Strathclyde. Posit generates frequency data and
Part-of-Speech (POS) tagging while accommodating large
text corpora. The data output from Posit includes values for
total words (tokens), total unique words (types), type/token
ratio, number of sentences, average sentence length, number
of characters, average word length, noun types, verb types,

adjective types, adverb types, preposition types, personal
pronoun types, determiner types, possessive pronoun types,
interjection types, particle types, nouns, verbs, prepositions,
personal pronouns, determiners, adverbs, adjectives,
possessive pronouns, interjections, and particles, for a total
of 27 features in all [9], [57], [58]. This process generates a
detailed frequency analysis of the syntax, including multi-
word units and associated part-of-speech components.

As it was configured for previous studies, the Posit
toolkit created data on the basis of word-level information;
thus, the limited content of the Russian IRA tweets that we
were examining meant that many of the original features
might have zero values. For this particular research project,
Posit was extended to include analysis of character-level
content, to assist with the analysis of short texts. To this end,
the system supplemented the standard word-level statistics,
generating an additional 44-character features for each
instance of text data. These new features included
quantitative information on individual alphanumeric
characters, plus a subset of special characters—specifically,
exclamation marks, question marks, periods, asterisks and
dollar signs. The extension of Posit to embrace character-
level as well as word-level data maintained the domain-
neutral nature of Posit analysis. As a result of this extended
Posit analysis, each data item (tweet) was represented by a
set of 71 features, rather than the usual twenty-seven [1].

TensorFlow, originally developed by the Google Brain
Team, is a machine learning system that employs deep
neural networks [56], inspired by real-life neural systems.
The learning algorithms are designed to excel in pattern
recognition and knowledge-based prediction by training
sensory data through an artificial network structure of
neurons (nodes) and neuronal connections (weights). The
network structure is usually constructed with an input layer,
one or more hidden layers, and an output layer. Each layer
contains multiple nodes, with connections between the nodes
in the different layers. As data is fed into this neural system,
weights are calculated and repeatedly changed for each
connection [63].

Textual content was further analyzed using
SentiStrength, which assigns positive or negative values to
lexical units in the text [61], [62], [64]. This value is a
measure that provides a quantitative understanding of the
content of information being found online—specifically, the
extent to which positive and negative sentiment is present.
The program automatically extracts the emotions or attitude
of a text and assigns them a value that ranges from
“negative” to “neutral” to “positive.”

In the case of Posit and SentiStrength, the resultant data
were input to the Waikato Environment for Knowledge
Analysis (WEKA) data analysis application [65]. For
SentiStrength, the data, comprised of the noun keywords for
each textual item, along with the associated sentiment score
and the manual classification for that page, then employed
WEKA’s standard J48 tree classification method with ten-
fold cross-validation. In this cross-validation, 10% of the
data was hidden, and conditions were sought that would split
the remaining 90% of the dataset in two, with each part
having as many data-points as possible belonging to a single

207

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

class. Accuracy of the tree was then considered relative to
the hidden 10% of the data. This process was repeated 10
times, each time with a different hidden 10% subset. WEKA
produced a measure of how many of the pages were
correctly classified.

For Posit, we applied the standard J48 tree WEKA
classification method, plus the Random Forest classification
method [65], [66], both with ten-fold validation (as described
above). WEKA then produced a measure of how many of the
text items were correctly classified. In the Random Forest
method, classification trees (of the type found in WEKA) are
independently constructed, by employing a bootstrap sample
of the entire dataset, and then relying on a simple majority
vote for predictive purposes, rather than relying on earlier
trees to boost the weight of successive trees [67].

Finally, to better enhance the machine learning process,
and to improve our future classification accuracy, we turned
our attention to the LibShortText toolkit, as William Yang
Wang of the University of California at Santa Barbara had
indicated that this tool produced superior results when it
came to the accurate classification of shorter items of text,
such as tweets or brief Facebook posts [15]. LibShortText,
an open source software package developed by the Machine
Learning Group at National Taiwan University, is said to be
more efficient and more extensible than other generalized
text-mining tools, allowing for the conversion of short texts
into sparse feature vectors [68].

B. Research Sample

At the beginning of the project, the research team
downloaded a dataset of 2,946,219 Twitter messages
(tweets) from git.hub, which had been posted online by
fivethirtyeight.com. This dataset of tweets was collected and
assembled by the aforementioned professors from Clemson
University, Darren Linvill and Patrick Warren [54]. These
tweets were described as originating from the Russian IRA,
also referred to in common parlance as the Russian troll
factory, a hostile foreign agency that was believed to have
intentionally interfered in the 2016 U.S. Presidential election
and the 2016 U.K. Brexit referendum [7], [8], [9], [10], [13],
[14], [26], [27], [28], [29], [30], [31], [33].

As the various approaches used in our research (i.e.,

qualitative analysis, Posit, TensorFlow, SentiStrength and

LibShortText) were designed to read English text, a decision

was made to extract only those entries that were labeled as

being “English,” so in the process, we excluded languages

such as Albanian, Bulgarian, Catalan, Croatian, Dutch,

Estonian, French, German, Italian, Russian, Ukrainian,

Uzbek, Vietnamese. As a consequence, 13 new Excel

spreadsheets were created, with 2,116,904 English-speaking

tweets remaining in the dataset following the removal of all

non-English tweets.
Having acquired the Russian (IRA) Twitter data, we then

sought a second Twitter dataset that would allow us to
develop a classification model based upon comparison
between “real news” and what has often been referred to
simply as “fake news” [19], [20], [21], [22], [24], [25], [30].
To this end, we analyzed the textual content from the full set

of IRA tweets (or “fake news”) using Posit, in order to
identify frequently occurring terms, and more specifically,
nouns. The resultant “keyword” list was used by the
International CyberCrime Research Centre’s Dark Crawler,
in order to retrieve a set of matching “real news” Twitter
posts from legitimate news sites.

The Dark Crawler harvested Twitter feeds maintained by
more “traditional,” mainstream news sources, such as the
Globe and Mail, CBC News, CTV News, the BBC, the New
York Times, the Daily Telegraph, the Wall Street Journal,
Asahi Shim-Bun, Times of India, the Washington Post, the
Guardian, and Daily Mail Online, collecting tweets posted
between the beginning of January 2015 and the end of
August 2018 (within the approximate time frame of the IRA
tweets). Tweets from the “real news” dataset that were
posted after August 2018 were removed, as the data from the
IRA tweets did not extend beyond that time frame. We
started with 90,605 tweets, but with the removal of 10,602
tweets that had been posted in late 2018 and early 2019, we
were left with 80,003 individual cases or tweets that
exemplified “real” or “legitimate” news sources. For the
purpose of Posit, SentiStrength and LibShortText analysis, a
further research decision was made to random sample both
datasets, creating two datasets of equal size, each consisting
of 2,500 tweets, or roughly .001% of the larger “fake news”
dataset, and 3% of the “real news” dataset. Unique identifiers
were assigned to each of the data items, to ensure a means of
fixed reference.

A somewhat different sample was assembled for the

TensorFlow analysis, because for TensorFlow to operate

effectively, a larger dataset is desirable. To achieve this, we

combined the 2,116,904 English-speaking “fake news”

tweets that remained (following the removal of all non-

English cases) with the 90,605 “real news” tweets that were

downloaded by the Dark Crawler (prior to removal of tweets

that extended beyond the time frame of the IRA activities).

This dataset was supplemented with 2,500 Facebook

messages posted by the IRA, plus an additional “real news”

set of Facebook items. Thus, a large dataset of 2,709,204
million tweets and Facebook posts was analyzed in

TensorFlow following the merging of these multiple

datasets.

For SentiStrength analysis and LibShortText analysis,

we consolidated four smaller, 2,500 item datasets into one

larger, 10,000 item dataset. This larger, 10,000 item dataset

consisted of the above-mentioned set of 2,500 randomly

sampled “fake news” Twitter messages derived from the

dataset of 2,946,219 Twitter messages collected by Clemson

University professors Linvill and Warren, the above-

mentioned set of 2,500 randomly sampled “real news”
Twitter messages derived from the 90,605 tweets collected

by the Dark Crawler from traditional, mainstream news

sources, plus 2,500 “fake news” posts from Facebook and

2,500 comparator “real news” posts [9]. The 2,500 “fake

news” Facebook messages that formed part of this larger,

10,000 item dataset were posted on Facebook by Russia’s

Internet Research Agency between 2015 and 2017, and were

208

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

again collected and made available by Clemson University

professors Linvill and Warren [54]. To secure a source of

“real news” data for our comparison with the Facebook

“fake news,” we obtained a second “real news” dataset, this

time of actual Facebook posts made available at github.com
by data scientist Max Woolf. The data that we retrieved was

originally comprised of 164 sets of publicly accessible

Facebook status posts. From these status posts, we manually

selected Facebook IDs that appeared to be associated with

traditional news sources, such as USA Today, the New York

Times, and CNBC. From these, we randomly selected 2,500

“real news” Facebook posts to serve as our comparator

dataset [9].

C. Data Analysis

1) Qualtiative Textual Analysis
Qualitative textual analysis was conducted on the first

1,250 messages appearing in the above-mentioned set of
2,500 randomly sampled “fake news” Twitter posts, these
2,500 posts having been derived (winnowed down) from the
dataset of 2,946,219 Twitter posts collected by Clemson
University professors Linvill and Warren [54]. To express it
differently, one half of the 2,500 randomly sampled “fake
news” Twitter posts were read and classified manually. This
process involved two experienced qualitative researchers,
sitting side-by-side, reading each of the posts together, in
many cases several times, until agreement on an appropriate
classification was reached. Where there was disagreement, or
where there was insufficient information upon which to
arrive at a conclusion, the classification was designated as
“undetermined.” The classification for each of the 1,250
Twitter posts was recorded carefully in an Excel spreadsheet,
with both researchers watching over each other’s shoulder, to
ensure the integrity of the data entry.

In a number of cases, the qualitative classification
process included a Google search, to determine whether or
not the content of the post was entirely fictional, partially
true, or mostly true (i.e., grounded in “real news”). The two
researchers were already familiar with some of the “real
news” events that appeared and re-appeared in these posts,
having conducted previous qualitative research on a different
“fake news” dataset of messages emanating from the Russian
Internet Research Agency, in this other case investigating
fake Facebook accounts, rather than Twitter hashtags [9].

2) Posit
Following the creation and cleansing of the datasets, we

extracted features from the texts using Posit, which is
designed to generate quantitative data at the level of word
and part-of-speech content of texts. Posit analysis was
applied to each of the 5,000 tweets in order to produce a 27-
item feature list for each tweet. This was supplemented by an
additional feature, to indicate the “real” or “fake”
characteristic of each tweet.

Previous research has indicated that Posit’s domain-
independent meta-data can be effective as a feature set for
use in such text classification tasks [16], [17], [18]. In the
present study, however, the target textual data was made up

entirely of tweets. These have a limited maximum length of
280 characters, so they are inherently short and contain
relatively few words. To illustrate, one of the tweets said
only: “@realDonaldTrump True,” while another said only:
“Stay strong! #MAGA.” With this shorter content in mind,
Posit was extended such that the system supplemented the
standard word-level statistics by generating an additional 44-
character features for each instance of text data. As noted
above, the result of this extended Posit analysis was that each
data item (tweet) was represented by a set of 71 features,
rather than the standard 27 features [1], [9].

The list of tweet features generated by Posit was
formulated as an arff file format, suitable for direct input to
the Waikato Environment for Knowledge Analysis (WEKA)
data analysis application [65]. In WEKA, we applied the
standard J48 tree classification method and the Random
Forest classification method [66], [67], both with ten-fold
validation. WEKA produced a measure of how many of the
tweets were correctly classified.

3) TensorFlow
In this project, TensorFlow was used for processing the

data with a Deep Neural Network (DNN) [56], [63]. A large
dataset was initially fed into TensorFlow, in order to conduct
DNN learning. The DNN results either updated an existing
model or created a new model. TensorFlow then compared
the same data against the constructed DNN model, and
utilized that model to predict the category for each data
entry.

In order to build an initial TensorFlow model, a large
dataset of 2,709,204 million tweets was created by merging
multiple datasets. The more data that could be collected for
training a model, the better the accuracy should be. However,
the individual data files were inconsistent, since they were
collected from various online resources, and were formatted
in very different ways. Thus, in the process of combining
them into a single dataset, we opted for Microsoft Access,
which allowed us to create a large, unified database table. All
of the datasets were merged into this Access database, after
which a class label column “category” was defined, denoting
whether the data represented “fake” or “real” news.

The model was evaluated for its accuracy in predicting
class values for the “fake” or “real” news category. To
simplify the analysis, we decided to build our DNN model
based on the content of the 2,709,204 tweets, without any
further pre-processing. The DNN model used was a
TensorFlow Estimator.DNNClassifier.

In the early stages of experimentation, we employed
TensorFlow with default settings for the parameters
pertaining to the number of partitions, epochs, layers,
learning rate, and regularization. With respect to
regularization, data was partitioned into groups according to
the order in which it appeared in the dataset. Thus, if the
majority of “fake news” appeared in the beginning of the
dataset, it would be difficult to maintain consistent accuracy
when conducting X-fold cross validation. To overcome this
issue, the data was randomized as it became partitioned.
Furthermore, each partition maintained the same data across
all X-fold cross validation tests, so that the accuracy of the
results could be compared properly.

209

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

With TensorFlow, epochs refer to the number of times
the dataset is processed during training. The greater the
number of epochs, the higher the accuracy tends to be. The
learning rate determines the rate at which the model
converges to the local minima. Usually, a smaller learning
rate means it that it would take longer for the model to
converge at the local minima [69]. With a larger learning
rate, the model would get closer to this convergence point
more quickly. The values for these parameters—i.e., the
number of partitions, epochs, layers, learning rate, and
regularization (L1 & L2)—were then tested to identify an
optimal set of parameter values.

4) SentiStrength
For the SentiStrength analysis [61], [64], the general

sentiment of the consolidated, 10,000 item dataset was first
calculated without using any keywords. As there were no
immediate trends identified between the “fake news” and
“real news” items, keywords were generated using the top
100 nouns that appeared in the 10,000 posts. This produced a
100 x 10,000 matrix, against which we ran various
algorithms in WEKA [56], again in an effort to distinguish
between the “fake news” and “real news” items. This
analysis included an examination of WEKA’s decision trees,
Naïve Bayes, BayesNet, and Multilayer Perceptron, the latter
being a deep neural net algorithm, similar to that found in
TensorFlow, in that it employs neurons, weights, and hidden
layers [56], [63], [70], [71].

5) LibShortText
As noted earlier, LibShortText is an open source software

package, developed by the Machine Learning Group at
National Taiwan University. The use of LibShortText was
recommended in a 2018 paper by William Yang Wang of the
University of California at Santa Barbara, wherein he also
described (and provided access to) his benchmark LIAR
dataset. This LIAR dataset, which included 12,836
statements labeled for their subject matter, situational
context, and truthfulness, was broken down into training,
validation and test sets, and accompanied by instructions for
automatic fake news detection [15]. For this particular
research project, we employed LibShortText, but did not
make use of William Wang’s LIAR dataset. We plan to
return to the LIAR dataset for purposes of additional
machine training on short text items, as we progress in the
development of our critical content toolkit.

LibShortText is said to be more efficient and more
extensible than other generalized text-mining tools, allowing
for the conversion of short texts into sparse feature vectors,
and also for micro- and macro-level error analysis [59]. For
our research project, we built a model using the default
settings that came with the LibShortText software. We
employed the “$ python text-train.py trainfile” command
which generated a “trainfile.model” for our given training
file (“trainfile”). Working with this previously built model,
we set out to predict the classification labels of the test set, or
“trainfile” using the instructions: “$ python text-predict.py -f
testfile trainfile.model predict_result,” followed by “Option -
f” to overwrite the existing model file and predict_result. The
LibShortText software is available for free download from

the National Taiwan University at:
https://www.csie.ntu.edu.tw/~cjlin/libshorttext/.

IV. RESEARCH RESULTS

A. Qualitative (Textual) Analysis

As discussed in Section III (above), qualitative textual
analysis was conducted on the first 1,250 messages that
appeared in the set of 2,500 randomly sampled “fake news”
tweets posted by the Internet Research Agency (IRA). These
tweets were read and classified manually by two experienced
qualitative researchers, who read the posts together, and
jointly assigned an appropriate classification for each
individual tweet. The classification for each of these 1,250
tweets was recorded in an Excel spreadsheet.

One of the patterns that became apparent early in the
process was that close to one-third (31.92%, n = 399) of the
1,250 tweets that were read manually consisted of what
could best be described as “apolitical chatter” (see Table I,
below). Tweets that were classified as apolitical chatter did
not appear to be re-circulating “real news,” either to targeted
or untargeted audiences. Moreover, they did not appear to be
supporting the candidacy of either Donald Trump or Hillary
Clinton, nor were they overtly attempting to advance divisive
issues, create dissension, or otherwise undermine democratic
processes. Examples of apolitical chatter would include
tweets such as: “#TerribleHashTagIdeas
MostRomanticKissAfterVomiting,” “#ToFeelBetterI get
high,” “#ThingsYouCantIgnore Christmas sales,” and
“#DontTellAnyoneBut I prefer sex with the lights on.”

There are a number of possible explanations when trying

to account for the presence of so much apolitical chatter. One

explanation could be that the Russian IRA simply did not get
its money’s worth when hiring some of these Internet trolls.

To illustrate, whichever troll (or group of trolls) was

responsible for the IRA hashtag BOOTH_PRINCE

generated a disproportionate number of apolitical tweets, for

example: “#ThereIsAlwaysRoomInMyLifeForDrake,”

“#tofeelbetteri think about Iphone 7S” and

“#MyAmazonWishList FEMBOTS.” On the other hand, the

hashtag BOOTH_PRINCE also produced some Anti-Clinton

tweets, such as: “A plastic fork too cut a steak

#ThingsMoreTrustedThanHillary,” and another referring

sarcastically to then-Democratic President Barack Obama,
and to Hillary Clinton’s opponent in the Democratic

primaries, Bernie Sanders: “#ObamasWishList Bernie,

actually.” Thus, it seems more likely that the political

messaging was intentionally interspersed with a lot of

apolitical chatter, in an effort to make these IRA-sponsored

hashtags and tweets appear more akin to the type of

discourse typically found on social media.

Another possible explanation for the high number of

messages that we found necessary to classify as “apolitical

chatter” would be the difficulties we encountered when

trying to retrieve the videos or twitter feeds that were linked
to these IRA tweets. While the tweets themselves seemed

relatively innocuous, at least on the surface, it is conceivable

210

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that they may have been targeted toward specific, pre-

identified groups, and may have included links to political

messaging and political advertising, as has been suggested

by various other observers [7], [8], [9], [10],[11], [12], [13],

[14], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37],
[38].

TABLE I. RESULTS OF QUALITATIVE, TEXTUAL ANALYSIS

Classification Frequency %

Apolitical Chatter 399 31.92

Pro-Trump/Anti-Clinton 328 26.24

Undetermined 171 13.68

Real News 152 12.16

Pro-Clinton/Anti-Trump 81 6.48

Racist 57 4.56

Helpful Advice 35 2.80

Anti-Racist 27 2.16

Total 1250 100.00

A similar explanation might apply to the 171 tweets

(13.68%) where we could not arrive at a classification
decision, and where the intent of those tweets thus ended up
being classified as “undetermined” (see Table I, above). To
illustrate the difficulties in the classification process,
amongst the 1,250 tweets that we read manually, there were
seven that contained a link to “#RejectedDebateTopics,” and
three that contained a link to
“#BetterAlternativesToDebates,” both of which were
reportedly subsidiary hashtags created by the Russian troll
army [72], [73]. An examination of what little remained of
the Internet content from these two hashtags suggested that
they were mostly pro-Trump or anti-Clinton, but there were
embarrassing images of—and embarrassing statements
about—Trump as well as Clinton; therefore, it was
impossible to determine with certainty to which variety of
Internet content the readers were being directed.

Despite the pro-Trump bias of “#RejectedDebateTopics,”
one of the Russian IRA tweets that we examined that was
linked to this hashtag could safely be classified as being Pro-
Clinton/Anti-Trump, because it irreverently asked: “Which
Eastern European country will Trump's next wife come
from?” However, another one from the same hashtag,
#RejectedDebateTopics asked: “which Kardashian is least
likely to have an STD?” The Kardashians were supporters of
Hillary Clinton during the 2016 U.S. Presidential election,
which allowed us to classify this second tweet as pro-Trump,
anti-Clinton. On the other hand, one tweet that was linked to
#RejectedDebateTopics asked simply: “who killed the
Kennedy’s ?” [sic], presumably referring to the Kennedy
family, famous for producing Democratic President John F.
Kennedy, Democratic Presidential candidate Robert
Kennedy, and Democratic Senator Ted Kennedy. Another
tweet, this time linked to #BetterAlternativesToDebates,
talked about “smoke signaling using Bill’s special cigars,”
perhaps referring to Bill Clinton, the former Democratic
President of the United States, and the husband of Hillary
Clinton. It is conceivable that both of the above-mentioned
tweets were pro-Trump or anti-Clinton, but it was agreed that
there was insufficient information to arrive at a decision in

this regard. Thus, to err on the side of caution, both were
assigned to the “undetermined” category.

Many of the 1,250 tweets that were read and classified
manually were actually engaged in the re-circulation (or
regurgitation) of “real news” stories, and thus ended up being
classified as “real news.” These “real news” tweets
accounted for 12.16% (n = 152) of the dataset. This is
comparable to our findings in a companion research project
that involved the analysis of a sample of 2,500 Russian-
generated Facebook posts, wherein we learned that 13.5% of
the Facebook posts were based to one extent or another on
recognizable, named entities, such as people, places, and
specific dates or events [9]. Many of the “real news” tweets
that are reported in this present paper were innocuous news
stories and did not appear to be either pro-Trump or pro-
Clinton. Examples of such tweets include: “The Latest:
Sister says crash victim was retired from FBI,” “San Antonio
loses another popular radio star after on-air announcement
#art,” “University of Texas-Arlington police consider
roaming robot” and “Texas appeals court overturns ex-
Baylor player's conviction.” Again, there are a couple of
possible explanations, one being that the Russian IRA did
not get its money’s worth from these trolls, the other being
that there was a concerted effort to make these IRA-
sponsored hashtags and tweets look more like the typical
discourse found on social media, the latter being the more
likely of the two. To express it differently, they could be
described as “background noise,” intended to obfuscate the
real motivation behind this online activity.

There were also 35 tweets that appeared to be providing
“helpful advice.” Examples of such “helpful advice” tweets
would include: “Free And Cheap Things To Do In #London
27-28 January 2017 More Info Here,” “How to Get
Magazines to Review Your Music,” and “Q&A: “What are
trans fats and why are they unhealthful? #news.” Again, it is
entirely possible that there was a concerted effort to make
these IRA-sponsored hashtags and tweets look more like the
typical discourse found on social media, by throwing in
some “chaff” with the “wheat,” or that they were put in
simply to create background noise. In any event, tweets that
were classified as providing “helpful advice” were few and
far between, comprising only 2.8% of the 1,250 “fake news”
messages that were read and classified manually.

Of the 1,250 tweets analyzed manually, the 328 tweets
that overtly supported the presidential candidacy of Donald
Trump, or that were blatantly anti-Clinton, comprised the
second largest group overall (after “apolitical chatter”), and
vastly outnumbered the 81 tweets that supported the
candidacy of Hillary Clinton (or in the alternative, were anti-
Trump), by a ratio of four to one (see Table I, above). An
example of a pro-Trump tweet that attempted to cover all of
the main talking points of Trump and his supporters in one
shot would be: “OUR MAN–He will get us out of the last 8
year mess against our Religion, Jobs, Illegal & Refugee
Overkill, Homeless Vets & more–NEED HIM!.” Other
exemplars of unabashedly Pro-Trump tweets would be: “I
just spoke to @realDonaldTrump and he fully supports my
plan to replace Obamacare the same day we repeal it. The
time to act is now,” “Because all legal citizens vote Trump!

211

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

#VoteTrump,” and “Trump is making manufacturing great
again.”

Tweets that were intended to undermine the campaign of
Hillary Clinton, whilst simultaneously buttressing the
campaign of Donald Trump, were in abundance: “Hillary
Clinton to Fundraise with Anti-Christ (No, not Obama a
different one),” “@SheriffClarke: If Trump made me his FBI
Director I would be arresting Hillary Clinton today.
#Comey,” and “BREAKING: Julian Assange Is Back! And
He Just Put The Nail In Hillary’s Coffin.” The latter tweet
was clearly referring to the hack of the Democratic National
Committee’s email server by Russia’s General Main Staff
Intelligence Unit (the GRU), and to the subsequent leak of
potentially embarrassing internal emails on WikiLeaks [7],
[8]. Another tweet, again related to WikiLeaks, stated that:
“WikiLeaks CONFIRMS Hillary Sold Weapons to ISIS...
Then Drops Another BOMBSHELL! Breaking News.” One
anti-Clinton tweet targeted her daughter, saying: “Chelsea
Clinton has received another award, this time for a day’s
worth of work.” Yet another targeted Clinton’s husband,
saying: “Remember when Trump got a $1 million birthday
gift from Saudi Arabia? Oh wait, that was Bill Clinton!”

There were 81 tweets (6.48% of the 1,250 tweets that
were manually classified) that arguably supported Hillary
Clinton, or in the alternative, talked negatively about Donald
Trump, but most were not so blatantly in favour of one
candidate over the other as the tweets supporting Donald
Trump, or those attacking Hillary Clinton. To illustrate, one
tweet that was classified as being pro-Hillary, anti-Trump,
announced that: “Keith Ellison Plays Race Card, Claims
Trump Brings White Supremacy to the White House.” This
tweet could also have been classified as “real news,” in that
it was reporting about Democrat Congressman Keith Ellison,
who was running in 2018 for the Attorney General position
in the state of Minnesota [74]. This was evidently some time
after the 2016 Presidential campaign, but it has been widely
reported that the Russian IRA carried on with its pro-Trump,
pro-Republican, anti-Clinton, anti-Democrat agenda
throughout 2017 and 2018 [75], [76]. The above tweet was
“generously” classified as being anti-Trump, because it
mentioned “Trump” and “White Supremacy” in the same
breath. However, a closer examination of the news of the day
might suggest that it could have been classified as pro-
Trump, given that Ellison’s invocation of the “race card” was
viewed by some as a sign of desperation on his part. But to
err on the side of caution, and in view of the oft-repeated
claims by Donald Trump that alleged Russian interference in
the 2016 Presidential election is “a hoax” or “fake news”
[77], [78], this tweet was classified as being anti-Trump.

Another example of erring on the side of caution would
be the following tweet: “BEHNA: ABSURD! Secret Service
Agent Declares She Wouldn’t Take A Bullet For Trump.”
This too was generously classified as being “anti-Trump,”
because it talked about a secret service agent who apparently
would not perform her obligatory duties to protect the
President, due to her personal animosity toward Donald
Trump. It could just as well have been classified as “real
news,” because the story also appeared in mainstream news
sources [79]. And it could arguably have been classified as

“pro-Trump,” because the sender of the tweet appeared to be
saying that the behaviour of the secret agent was “absurd.”
However, we sought at all times to maintain a neutral stance
in our qualitative textual analysis. In any event, if we had
taken in-between messages such as these, that seemed at
least on the surface to be saying something negative about
Donald Trump, and classified them instead as “pro-Trump,”
then the four-to-one ratio of tweets in favour of Trump
would have widened measurably.

Indeed, many of the tweets that were classified as pro-
Clinton and/or anti-Trump could have gone either way or
could have been classified as “undetermined” in their intent.
The following tweet serves to illustrate this classification
conundrum: “Donald Trump's Frog Meme ‘SINISTER,’
Clinton Campaign Warns.” This tweet talked about a
warning from the Clinton campaign concerning “sinister”
activity on the part of Donald Trump and was thus classified
as being pro-Clinton. However, it may well have been
intended as a sarcastic “dig” toward Hillary Clinton and her
team, or could even have been intended to direct the
followers of the tweet to a video in which Donald Trump
was “poking fun” at Clinton (this was not possible to verify,
as the attachment has since been removed from the Internet,
presumably because of the political fallout and furor
following the detection of the Russian disinformation
campaign).

This is not to say that there was a total dearth of pro-
Clinton, anti-Trump messages. One example of a clearly pro-
Clinton tweet would be: “#ImStillWithHer; She's
#MyChoice #MyPresident #MyHero.” Another example of a
pro-Clinton tweet would be: “I think people also assume that
folks who may vote for HRC won't push her. That couldn't
be further from the truth.” There were also a number of
tweets that were clearly anti-Trump, such as: “The Latest:
GOP senator says party has gone 'batshit crazy' #Texas,”
“Protesters in Texas seek release of Trump tax returns,” and
“Designer of Make America Great Again dress is an
immigrant,” not to mention “#anderr LOL : Mad Max
Reveals THE EXACT MONTH Trump Will be Impeached.”
But such overtly pro-Clinton or anti-Trump messages were
comparatively few and far between, and in many cases, had
to be “teased out” of the dataset.

There were quite a few blatantly racist messages in the
first 1,250 “fake news” tweets (4.56%, n = 57), some of
which could arguably have been categorized as pro-Trump
and anti-Clinton, as they mimicked Donald Trump’s
portrayal of Mexicans as criminals, drug traffickers and
rapists [80], favoured his “Muslim ban” [81], supported his
anti-immigration stance, and generally concurred with his
description of Haiti, El Salvador and certain African nations
as “shithole countries” [82], all of which was reportedly
intended by Trump—and by the Russian IRA—to foster an
atmosphere of distrust, divisiveness and fear with respect to
immigrants and racial minorities, in order to “rile up”
Trump’s voter base [7], [8], [32], [33], [34]. Examples of
anti-Mexican or Anti-Central American tweets include: “11
dumped from Rio Grande raft rescued by Border Patrol,” and
“A mayor was just shot dead in Mexico on the day after she
took office.” Messages targeting African-Americans were

212

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

also in evidence, with exemplars including such tweets as:
“When a tall ass nigga, sees a short ass nigga w/ a tall
girlfriend,” or “Young Black folks keep saying they're not
like the ancestors. And I keep saying that's the problem,” or
“They steal everything. Black folks have to be wiser.” Anti-
Muslim messaging could be found in abundance, in tweets
such as: “‘The Koran is a fascist book which incites
violence. This book, just like Main Kampf [sic], must be
banned.’- G. Wilders,” or “5-year-old girl was raped by
muslim immigrants and nobody's talking about that!
#IsalmIsTheProblem,” or “Did you know that Muslims are
now allowed to have sex with slave woman even after their
death?! #BanIslam.” The overall thrust of these anti-Muslim,
anti-immigration, anti-refugee messages is best encapsulated
in the following tweet: “See those countless women and
children? Neither do I https://t.co/tZOkWo7OjZ #banIslam
#Rapefugees https://t.co/XoETkXAidV.”

The above-mentioned racist messages, many of which
clearly supported the Trump political agenda, were counter-
balanced by approximately half as many anti-racist messages
(2.16%, n = 27). Anti-racist tweets included the following:
“We deserve to feel safe in our cars, our businesses, our
parks, our homes and our churches.
#BlackSkinIsNotACrime,” “New Mexico Store in Trouble
for Controversial Obama, Anti-Muslim Signs,” and “34-
year-old African-American man in Wisconsin brought 3
different documents to DMV & still couldn’t get voter ID.”
Again, we imagine that the inclusion of this comparatively
small number of anti-racist tweets was likely intended to
offset the overtly pro-Trump, anti-immigration bias that was
in evidence throughout the dataset, and to make these
Russian-generated hashtags and tweets look more like the
typical discourse found on social media. Quite apart from
that, ostensibly anti-racist tweets such as these could actually
have been crafted in such a way as to stoke fear and distrust
among immigrants and racial minorities (thereby suppressing
their vote), with comments about their overall lack of safety,
and the difficulties that they could expect to experience when
attempting to register to vote.

The findings of our qualitative textual analysis of the first
1,250 messages that appeared in the set of 2,500 randomly
sampled “fake news” tweets posted by the Russian IRA
strongly support the oft-reported conclusion that these
Twitter feeds were intended to buttress the Presidential
campaign of Donald Trump, and to stoke dissension, distrust,
anger and fear in the American voting populace [7], [8], [9],
[13], [26], [28], [35], [36], [37], [38]. Although it was
sometimes difficult to tease out, we also adduced evidence
that the hashtags and tweets were indeed generated by
Russian sources, which runs counter to the White House
narrative about “the Russian hoax” [77], [78]. To illustrate,
one tweet announced: “Nikolai Nikolaevich Ge - _ Russian
realist painter famous for his works on historical and
religious motifs - was born today.” Another noted that “The
Russian band Leningrad is bringing its smashing program
titled '20 Years for Joy' to the US,” while still another
reported that “For the first time since 2010, the MoscowState
University has returned to the top 100 of QS World
University Rankings global ranking.” While such news

stories might have held some interest for the Russian Internet
trolls, it seems unlikely that they would have been of
particular interest to American users of Twitter.

B. Posit Results

As noted earlier, the Posit toolkit generates frequency
data and Part-of-Speech (POS) tagging while
accommodating large text corpora. The Posit analysis
produced a feature set with corresponding values for each of
the 5,000 tweets, that is, the 2,500 "fake news” tweets and
the 2,500 "real news” tweets. The feature set was loaded into
WEKA as a basis for testing the feasibility of classification
against the predefined “fake” and “real” news categories.
Using the “standard” set of 27 Posit features—and the
default WEKA settings with 10-fold cross validation—the
J48 and Random Forest classifiers gave 82.6% and 86.82%
correctly classified instances respectively. The confusion
matrix for the latter performance is shown in Table II, below.

TABLE II. CONFUSION MATRIX FOR POSIT: 27 FEATURES (RANDOM

FOREST: DEFAULT WEKA SETTINGS)

n=5,000 Predicted:

NEGATIVE

Predicted:

POSITIVE

Actual:

NEGATIVE

2,190 310 2,500

Actual:

POSITIVE

340 2,160 2,500

As indicated previously, Posit was enhanced with an
additional 44 character-based features, resulting in a total of
71 features, rather than the standard 27 features [1]. This was
done in order to address the fact that tweets have a limited
maximum length of 280 characters; thus, they are inherently
short, and contain relatively few words. Using this extended
feature set on the 5,000 tweets—and the default WEKA
settings with 10-fold cross validation—the J48 and Random
Forest settings classifiers gave 81.52% and 89.8% correctly
classified instances respectively. The confusion matrix for
the latter performance is shown in Table III, below.

Changing the number of instances (trees) from the
default value of 100 to 211 in Random Forest provided a
boost to the level of correctly classified instances to 90.12%.
The confusion matrix for this performance is shown in Table
IV, below.

TABLE III. CONFUSION MATRIX FOR POSIT: 71 FEATURES (RANDOM

FOREST: DEFAULT WEKA SETTINGS)

n=5,000 Predicted:

NEGATIVE

Predicted:

POSITIVE

Actual:

NEGATIVE

2,266 234 2,500

Actual:

POSITIVE

276 2,224 2,500

213

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. CONFUSION MATRIX FOR POSIT: 71 FEATURES (RANDOM
FOREST: INSTANCES AT 211 IN WEKA SETTINGS)

n=5,000 Predicted:

NEGATIVE

Predicted:

POSITIVE

Actual:

NEGATIVE

2,269 231 2,500

Actual:

POSITIVE

263 2,237 2,500

Our best performance results (90.12%) were obtained
from the Posit classification using the 71-feature set with
Random Forest (instances at 211). The “detailed accuracy by
class” for this result is shown in Table V.

TABLE V. DETAILED ACCURACY BY CLASS FOR BEST POSIT RESULT

Class TP Rate FP Rate Precision Recall F-Measure

NEGATIVE 0.908 0.105 0.896 0.908 0.902

POSITIVE 0.895 0.092 0.906 0.895 0.901

Weighted

Avg.

0.901 0.099 0.901 0.901 0.901

Following these classification efforts using Posit, the two
datasets (the real and fake tweets) were subjected to further
analysis. The aim at this point was to determine whether any
obvious characteristics in the data might skew the
classification results. Several checks were made on the
complexion of the two sets of data, focusing particularly on
their relative content in terms of words and characters—since
these features are the focus of the Posit analyses.

A comparison was made of the length of tweets in the
two datasets. This revealed some differences in the
distribution of tweets according to their length measured in
words (Figure 1). Generally, distribution by length in words
for the real news tweets rose above the curve for distribution
by length in words for the fake tweets. Conceivably, this
would ease the challenge of discriminating between the two
datasets.

Figure 1. Comparison of Tweet Lengths (Words)

Since tweets are limited to 280 characters in length, a

natural contrast was to consider the relative lengths of tweets
by number of characters. This comparison (Figure 2),
revealed a further distinctive trend in the real as opposed to
the fake tweet content.

Figure 2. Comparison of Tweet lengths (Chars)

Figure 2 indicates that, as with length measured in

number of words, length as measured by number of
characters showed a distinctive trend for the real tweet
content above the fake tweet content. As before, this may
reasonably ease the task of differentiating real from fake
tweets.

This post-classification analysis revealed one further
notable insight on the character-lengths of real tweets. As
shown in Figure 2 (above), some tweets with real content
exceeded the 280-character maximum size permitted on
Twitter. In total, twelve tweets in the real category of tweets
were found to exceed 280 characters. Upon further
investigation, this was found to be due to the presence of
appended URLs in these tweets that had not been removed
during the data cleaning stage. While this accounted for only
0.48% of the total real tweets, the excessive length of these
tweets single them out as different from every example of
fake tweet.

Additional insight on data complexion was derived from
comparison of average and median values for length by
words and length by characters (Table VI). This showed little
difference in average and median tweet lengths in words and
a wider separation in terms of characters.

TABLE VI. AVERAGE AND MEDIAN TWEET LENGTHS

Real Fake

Average tweet length (words) 15 13

Median tweet length (words) 14 12

Average tweet length (chars) 130 102

Median tweet length (chars) 125 104

A final contrast was made across the real and fake tweet

datasets in terms of the use of specific characters. Two
factors were considered: the presence of ‘special characters’
and the number of character types (i.e., unique characters) in
the tweets.

The character-level Posit analysis generates several
features based upon use of special characters for each data
item. In this case, the special characters are full-stop,
question mark, exclamation mark, dollar sign and asterisk,
i.e., five possible special characters.

The contrast between real and fake tweet content in terms
of how many different special characters appear in each
tweet is illustrated in Figure 3 (below). This reveals notable

214

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

differences between the two types of tweet. Fake tweets
avoid all special characters more commonly than real tweets.
While many of both types deploy one special character,
many more of the fake tweets deploy two special characters.
There is less difference between the varieties of tweet at the
three special character level while no tweets combine use
four or five of these special characters.

Figure 3. Comparison of Special Character Usage

Our comparison of the number of unique characters
present across the tweet datasets, surveyed the presence of
the alphanumeric set of characters (not case-sensitive) and
the special characters noted above. This contrast is illustrated
in Figure 4 (below) and further indicates a subtle difference
between real and fake tweet content.

As noted earlier, the classification performance using
Posit as a basis for feature generation gave a best
performance match to the manual classification of 90.12%.
While balanced in sample size, classification performance on
this relatively small data subset of 2,500 real and 2,500 fake
tweets, may have been influenced positively by the data
characteristics described above. As a step toward eliminating
such a potential anomaly, we deployed a much larger dataset
when classifying with Tensorflow.

Figure 4. Comparison of Unique Character Usage

C. TensorFlow Results

Recall that in this project, TensorFlow (developed by
Google Brain) was used for processing the data with a Deep
Neural Network (DNN) [56], [63]. Posit analyzed a

randomized sample of 5,000 tweets, that is, the 2,500 "fake
news” tweets, and the 2,500 "real news” tweets. A much
larger dataset, consisting of 2,709,204 million tweets and
Facebook posts, was fed into TensorFlow upon
commencement, in order to conduct DNN learning. Then,
the DNN results either updated an existing model, or created
a new model. TensorFlow next compared the same data
against the constructed DNN model, and utilized that model
to predict the category for each data entry. In the early stages
of experimentation, using default TensorFlow parameters for
number of partitions, epochs, layers, learning rate, and
regularization, the accuracy results yielded an average of
around 60%. Many parameter values (for each parameter:
number of partitions, epochs, layers, learning rate, and
regularization) were then tested to identify an optimal set of
parameter values. This resulted in an increase in accuracy to
89.5%, a substantial improvement from the earlier results.
These parameters are described below, with the post-training
optimal values shown in Table VII.

To be able to run large numbers of experiments, we
wrapped all code into a standalone function, so that large
numbers of various scenarios could be designed, set up, and
tested continuously. These batch jobs allowed us to evaluate
different combinations of parameters. The parameters of
each run, and the corresponding results, are also shown
below. Tests were run using 10 partitions, with training on
the first 5 partitions, and testing on the last 5 partitions.

D. SentiStrength Results

SentiStrength assigns positive or negative values to
lexical units in the text [61], [64]. Recall that this value is a
measure that provides a quantitative understanding of the
content of information—specifically, the extent to which
positive and negative sentiment is present. The program
automatically extracts the emotions or attitude of a text and
assigns a value that ranges from “negative”’ to “neutral” to
“positive.” For SentiStrength analysis, we consolidated four
smaller, 2,500 item datasets into one larger, 10,000 item
dataset. This larger, 10,000 item dataset consisted of the set
of 2,500 randomly sampled “fake news” Twitter messages,
the set of 2,500 randomly sampled “real news” Twitter
messages, the set of 2,500 “fake news” posts from Facebook,
and the set of 2,500 comparator “real news” posts.

For initial SentiStrength analysis, the “general sentiment”
was calculated (i.e., without keywords), but all scores were
negative, without any apparent distinguishing trends—
between “fake news” and “real news,” or between Twitter
items and Facebook items. We then proceeded to use
keywords, by calculating the top 100 nouns out of the 10,000
posts, and running sentiment analysis again, this time with
respect to the 100 identified nouns. This produced a 10,000 x
100 matrix (4 x 2,500 = 10,000 rows, one for each post, and
100 columns for each noun, or keyword). On this matrix, we
ran various algorithms using WEKA [65] and TensorFlow
[56], in an effort to differentiate between the four classes,
that is, “fake news” Twitter messages, “real news” Twitter
messages, “fake news” posts from Facebook, and the
comparator “real news” posts. This too proved to be futile, as

215

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

there were too many missing values for the decision trees to
handle properly, and given that the reported predictive
accuracy was not much better than a random guess.

TABLE VII. TENSORFLOW PERFORMANCE RESULTS

Layers Learn

Rate

Partition Size Time Accuracy

[500, 500] 0.003 0 674941 44.683 0.873

[500, 500] 0.003 1 675072 48.102 0.873

[500, 500] 0.003 2 674613 45.654 0.873

[500, 500] 0.003 3 675109 45.638 0.873

[500, 500] 0.003 4 9479 2.562 0.871

[700, 700] 0.003 0 674941 217.444 0.873

[700, 700] 0.003 1 675072 57.929 0.874

[700, 700] 0.003 2 674613 59.508 0.873

[700, 700] 0.003 3 675109 58.923 0.873

[700, 700] 0.003 4 9479 3.020 0.872

[500, 500] 0.03 0 674941 128.865 0.882

[500, 500] 0.03 1 675072 59.551 0.882

[500, 500] 0.03 2 674613 60.684 0.881

[500, 500] 0.03 3 675109 61.396 0.882

[500, 500] 0.03 4 9479 3.205 0.895

Finally, as were primarily interested in distinguishing

“fake news” from “real news,” we collapsed the four datasets
into two classes, “real news” and “fake news,” each
consisting of 5,000 items. The results of this final sentiment
analysis are shown in Table VIIII (below). While the
BayesNet and Naïve Bayes indicated 56.85% and 58.06% of
correctly classified instances respectively, these would be
considered barely better than random guesses, at 50.00%.
However, the MultiLayer Perceptron, a deep neural net
algorithm, similar to that found in TensorFlow, in that it
employs neurons, weights, and hidden layers [56], [63], [69],
[71], yielded a classification accuracy of 74.26%. This would
be considered “acceptable,” or at least more acceptable than
barely better than random guesses, but not up to the
standards that we are presently seeking.

TABLE VIII. DETAILED ACCURACY BY ALGORITHM FOR BEST

SENTISTRENGTH RESULT

Algorithm Accuracy

Random Guess 50.00%

Decision trees 50.33%

BayesNet 56.84%

Naïve Bayes 58.06%

Multilayer Perceptron 74.26%

E. LibShortText Analysis

For LibShortText analysis, we again consolidated four

smaller, 2,500 item datasets into one larger, 10,000 item
dataset, identical to the one used for the SentiStrength

analysis (see above). This 10,000 item dataset was split into

two randomly sorted 5,000 item datasets, one for training

purposes, and the other for testing purposes. For our

research project, we built a model using the default settings

that came with the LibShortText software [68]. On the first

attempt, our classification accuracy was 80.56%,

substantially better than the accuracy yielded by the

SentiStrength analysis. Our second attempt resulted in a

classification accuracy of 90.2%, comparable to the

classification accuracy yielded by Posit, at 90.12%, albeit

using a larger and more diverse dataset than the one input to

Posit.

V. DISCUSSION

We were disappointed with the SentiStrength analysis,
given that when we combined SentiStrength with the WEKA
standard J48 decision-tree classification method in an earlier
study of online extremist content, we were able to correctly
classify 80.51% of the webpages [16]. In fact, with our
earlier extremism study, the binary anti-extremist and pro-
extremist categories had even higher degrees of correctly
identified pages, with 92.7% of the pro-extremist cases and
88% of the anti-extremist cases correctly identified. This
indicated to us that the decision tree worked well when it
came to classifying extremist content [16]. In this present
study, the MultiLayer Perceptron (a deep neural net
algorithm) yielded a classification accuracy of 74.26%,
which is comparable to the results of other studies that have
employed sentiment analysis on tweets [59], [83]. We are
hoping that further machine training, perhaps enhanced by an
expanded list of keywords provided by the ongoing
qualitative analysis, will improve upon these SentiStrength
results.

TensorFlow epitomizes machine-learning and artificial
intelligence, in that it gradually teaches itself, once provided
with sufficient data and the requisite training/learning
epochs. It is anticipated that the predictive accuracy of the
TensorFlow component will ultimately exceed 90% once it
is fully trained and fully operational. In a current trial
experiment, we demonstrated that the predictive accuracy of
TensorFlow does indeed improve with the amount of
inputted data. For the first round of analysis, we randomly
selected 10,000 Facebook items from another “real news”
dataset and 10,000 items from another “fake news” dataset
that we had recently generated using the Dark Crawler, next
merging and shuffling the two files to create one file
containing 10,000 Facebook items. In this case, the
predictive accuracy of TensorFlow was only 48.65% when
analyzing the content alone, and 50.4% when analyzing the
content along with tagged text generated by Posit. On the
other hand. TensorFlow’s predictive accuracy increased to
79.84% and 79.94% (with the Posit features) when we used
90,000 Facebook items from our “real news” dataset and
10,000 items from our “fake news” dataset to create a larger
file containing 100,000 Facebook items.

That said, TensorFlow requires big data and significant
processing times. Thus, while TensorFlow will be
instrumental in analysing the massive amount of data to be
harvested, it will likely not be capable of providing the type
of near-real-time alerts on hostile information activities
required for our anticipated “critical content toolkit.” Rather,
we expect that it will provide ongoing, deep-level analysis of
all of the data as it is collected, and assist in the building of
new models in response to any changes in the strategies and
tactics of hostile foreign actors. As a consequence, we
anticipate that we will be turning to other (companion)
models to enhance the prospects for near-real-time alerts.

216

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. The TensorFlow Model

The TensorFlow model on which we are presently

working (see Figure 5, above) commences with The Dark
Crawler searching the Internet and downloading all relevant
content onto The Dark Crawler server. The data from the
stored content is then converted into an Excel file containing
all of the pertinent information for each individual data item
(e.g., the time and date of the message, text, or post; the
hashtag, Facebook page or publication source; the forum and
subforum, if taken from a forum; the Internet address, if
available; the title of the text or message, if any; the body of
the text or message; the number of likes, re-posts or re-
tweets; etc.). This data is input to TensorFlow for deep
neural network analysis, leading to the generation of a model
for measuring the presence of hostile information activities
on the Web—a tool which will then predict/classify social
media messaging and other sources of online news as “fake”
or “real.”

Given the limited number of words and word varieties in
most tweets, the performance of the Posit analysis using the
default 27 word-level features proved to be better than
expected, with 86.82% correctly classified instances using
Random Forest. The addition of character-level information
enhanced this performance to a creditable 90.12% correctly
classified instances, again using Random Forest. This result
was somewhat surprising, given that alphanumeric details
seem far removed from tweet content-level [1].

The Posit toolkit is limited by the speed at which it can
read and analyze large volumes of text. Posit is not as slow
as TensorFlow, and when combined with WEKA, it has an
initial classification accuracy that exceeds that of
TensorFlow and in some cases matches that of LibShortText.
Nevertheless, while Posit does not excel in reading and
analyzing large text corpora as quickly as LibShortText, or in
analyzing the vast amounts of data that can be input into
TensorFlow for machine learning purposes, it does bring an
entirely different dimension to the model that we are
building, in that the Posit toolkit generates frequency data
and Part-of-Speech (POS) tagging, with data output
including values for total words (tokens), total unique words
(types), type/token ratio, number of sentences, average
sentence length, number of characters, average word length,

noun types, verb types, adjective types, adverb types,
preposition types, personal pronoun types, determiner types,
possessive pronoun types, interjection types, particle types,
nouns, verbs, prepositions, personal pronouns, determiners,
adverbs, adjectives, possessive pronouns, interjections
particles. As Posit recognizes and records individual words
and characters, it can aid significantly in the adaptation of
the overall model to the changing strategies and tactics of
hostile foreign actors, and at the same time, glean unique
keywords or key phrases from incoming data so that the
activities of hostile foreign actors can be identified quickly
and targeted more precisely.

Figure 6. The Posit/WEKA Model

The Posit model that we envision (see Figure 6, above)

differs from the TensorFlow Model, in that once the data is
harvested, organized, and ready for input, it first goes into
Posit for analysis, and then into WEKA for secondary
assessment of classification accuracy. Posit (in combination
with WEKA) has at times generated classification accuracy
in the 98-99% range when it comes to processing various of
the recently generated data sets that we have on hand.

 The LibShortText results were very encouraging, with a
creditable classification accuracy of 90.2%, comparable to
the 90.12% classification accuracy yielded by Posit.
Recently, in conjunction with our work with LibShortText,
we downloaded and configured LibLinear, a companion
open source software package, again developed by the same
Machine Learning Group at National Taiwan University that
developed LibShortText [84]. LibShortText is a text analysis
program, while LibLinear is a classification program.
LibLinear predicts the accuracy of the classification
performed by LibShortText, much like WEKA predicts the
accuracy of the classification performed by Posit. Another
advantage to LibLinear is that is supports incremental and
decremental learning, or to express it differently, the addition
and removal of data in order to improve optimization and
decrease run time. LibShortText, on the other hand, does not
readily support updating of the model.

217

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. The LibShortText/LibLinear Model

Generally speaking, LibShortText and LibLinear have

been outperforming TensorFlow and Posit in a number of
our current trial experiments. To illustrate, when analyzing
1,000 randomly selected data items taken from our more
recently generated “real news” datasets, contrasted with
1,000 randomly selected data items taken from our more
recently generated “fake news” datasets, we found that
LibShortText and LibLinear exhibited classification
accuracies of 93% and 92% respectively, as opposed to Posit
and WEKA at 72.7%, TensorFlow (using Posit-generated
.arff content at 54.5%, TensorFlow (using content only) at
52.5%, and TensorFlow (using tagged text) at 48%. We
would consider these TensorFlow numbers to be no better
than tossing a coin, but these results were not entirely
unexpected, as TensorFlow thrives on large data, and this
experiment was conducted using only 2,000 discrete data
items.

This LibShortText/LibLinear Model (see Figure 7,
above) is essentially the same as the TensorFlow Model set
out in Figure 5 (above), in that it commences with The Dark
Crawler searching the Internet and downloading all relevant
content onto The Dark Crawler server. The data from the
stored content is then converted into an Excel file containing
all of the pertinent information for each individual data item.
This data is input to either LibShortText or LibLinear for the
generation of a model for measuring the presence of hostile
information activities on the Web—a tool which will then
predict/classify social media messaging and other sources of
online news as “fake” or “real,” much more quickly than
TensorFlow or Posit.

In this model, LibShortText and LibLinear can be used
almost interchangeably, in most cases without unduly
affecting the processing times or predictive accuracy. We
did, however, encounter limitations with LibShortText on the
training and testing file sizes when using only 4GB of RAM.
We received “memory exhausted” notifications, and
instructions to “restart python.” After upgrading to 32GB of
RAM, this problem was resolved. That said, the required
RAM size is an issue to be borne in mind as we design the
final model.

VI. CONCLUSION

Through the research process outlined above, we have: 1)

developed typologies of past and present hostile activities in

Cloud-based social media platforms; 2) identified indicators

of change in public opinion (as they relate to hostile

disinformation activities); 3) identified the social media

techniques of hostile actors (and how best to respond to

them); and 4) undertaken cross-cultural analyses, to

determine how hostile actors seek to fuel tensions and

undermine social cohesion by exploiting cultural

sensitivities.
Our current research will ultimately generate an

algorithm that can automatically detect hostile
disinformation content. In the longer term, we will use the
knowledge generated by this research project to further
expand and integrate the capabilities of the Posit toolkit and
the Dark Crawler, in order to facilitate near-real-time
monitoring of disinformation activities in the Cloud. Further,
we plan to add a feature that will permit us to capture
disinformation messages prior to their removal by social
media organizations attempting to delete those accounts,
and/or their removal by actors seeking to conceal their online
identities. Ideally, this integrated, “critical content toolkit”
will be able to recalibrate itself when confronted with ever-
changing forms of disinformation.

During the research process, we also downloaded 2,500
“fake news” Facebook messages that had been posted by the
IRA on Facebook pages known variously as Blacktivist,
Patriototus, LGBT United, Secured.Borders, and United
Muslims of America. (These 2,500 Facebook messages were
included in our TensorFlow, SentiStrength and LibShortText
analysis). All 2,500 of these messages have been subjected to
a preliminary review in the qualitative research tool, NVivo,
and also, to preliminary review in Posit [9]. Early insights
from this companion study revealed that many of the
allegedly “fake news” items were founded to one degree or
another in contemporaneous “real news” events.

Following the initial rounds of data collection described
earlier in this paper, we broadened and enriched our selection
of data sources, focussing primarily on Facebook, Twitter,
and other web-based news sources. A “fake news” list of
Facebook pages was generated by searching for Facebook
pages that belonged to websites described by
MediaBiasFactCheck.com as coming from “questionable
sources.” MediaBiasFactCheck was founded and is edited by
Dr. David Van Zandt—a professor, lawyer, and current
president of The New School—along with his team of
volunteers. In all, we harvested 96,219 Facebook “fake
news” items, posted between January 2014 and September
2019. This was recently supplemented by a set of 3,736
Canadian Facebook “fake news” items, posted from May
2014 up to the present.

 Data for the expanded Twitter dataset, specifically
assembled by the research team for this ongoing project,
were also extracted the same way as the set of “fake”
Facebook posts, that is, by using the list of 530 “questionable
sources” published by MediaBiasFactCheck.com. From this,
181 Twitter accounts were identified for data collection,

218

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

accounting for 43,193 data items posted between March
2009 up to the present. Only Twitter accounts that contained
a link to the websites identified as suspect by
MediaBiasFactCheck.com were included in this sample.

Our third category of “fake news” was recently derived
from Web sites presenting themselves as legitimate sources
of real news but considered “fake.” News articles were
collected from four publicly available datasets: (1) ISOT
Fake News, (2) Getting Real About Fake News, (3) Fake
News Corpus, and (4) FA-KES: A Fake News Dataset
around the Syrian War. ISOT Fake News was created by the
Information Security and Object Technology (ISOT)
research lab at the University of Victoria [85]. The dataset
contains both fake and real news. The former was obtained
from websites considered unreliable by Politifact, a website
dedicated to fact-checking U.S. news. Real news was
obtained from the website Reuters.com. In total, there were
21,417 real news and 23,481 fake news items. Getting Real
About Fake News was created in 2016 by Megan Risdal, a
Product Lead at Kaggle (an online data science community).
This dataset contains 12,999 news articles from 244 sources
obtained from the BS Detector Chrome extension. The
articles are labeled according to their credibility as fake,
conspiracy, hate, bias, satire, junk science, and “bullshit.”

Fake News Corpus is an open source dataset from 2018
that contains 9,408,908 news articles, created by GitHub user
“several27.” News articles were obtained from a list of 745
domains from www.opensources.com, as well as the New
York Times and webhose English news articles. For the
current project, after cleansing the dataset by removing
unlabelled items, we have retained 779,882 fake news items
and 1,783,529 credible news items. Finally, the FA-KES
dataset, created at the American University of Beirut with the
intention of helping train machine learning models, contains
805 news articles about the conflict in Syria, of which 46 are
labelled as “fake,” with the remaining 378 labelled as “real”
[86].

Comparator “real news” Facebook and Twitter data sets
have been collected from official news sources representing
the top 24 Canadian newspapers in accordance with their
known circulation in 2016. We also included Huffington Post
Canada and two TV News sources with large online
followings—CBC News and CTV News. Apart from the
CBC, CTV and the Canadian edition of the Huffington Post,
we obtained data from 24 sources, for example, The Globe
and Mail, The National Post, The Toronto Star, Le Journal
de Montreal (French), Le Journal de Quebec (French), Le
Soleil (French), The Vancouver Sun, The Toronto Sun, The
Calgary Herald, The Winnipeg Free Press, The Ottawa
Citizen, and The Montreal Gazette, to mention a few of the
sources. In total, we recently collected 31,557 “real news”
Facebook data items from these “trustworthy” news sources,
dating from July 2018 to the present. We also collected
253,936 “real news” Twitter data items from these
“trustworthy” news sources, dating from December 2013
through September 2019.

This vast databank of recently acquired “real news” and
“fake news” (and everything in between real and fake) has
been assembled for use in conjunction with our ongoing

qualitative analysis, as well as to provide a basis for our
ongoing quantitative analysis and machine-learning-based
classification. In fact, data drawn from these new datasets
were used in our recent comparison tests involving Posit,
TensorFlow, LibShortText and LibLinear, as outlined above
in our Discussion section. The data collection and data
analysis processes are in progress and robust. We anticipate
developing a “proof-of-concept” model of our “critical
content toolkit” in the near future.

ACKNOWLEDGMENTS

This research project would not have been possible
without funding from the Cyber Security Cooperation
Program, operated by the National Cyber Security
Directorate of Public Safety Canada. We would also like to
thank our research assistants, Soobin Rim (TensorFlow) and
Aynsley Pescitelli (NVivo).

REFERENCES

[1] B. Cartwright, G. R. S. Weir and R. Frank, “Fighting Disinformation

Warfare with Artificial Intelligence: Identifying and Combatting
Disinformation Attacks in Cloud-based Social Media Platforms,”

Tenth International Conference on Cloud Computing, GRIDs, and
Virtualization, pp. 73-77, May 2019. URL:

http://thinkmind.org/index.php?view=article&articleid=cloud_comput

ing_2019_5_30_28006 [Last accessed: 2019.07.28]

[2] D. Ebner and C. Freeze, “AggregateIQ, Canadian data firm at centre
of global controversy, was hired by clients big and small,” Globe and

Mail, April, 2018. URL: www.theglobeandmail.com/canada/article-
aggregateiq-canadian-data-firm-at-centre-of-global-controvery-was

[Last accessed: 2019.04.8]

[3] R. Rathi, “Effect of Cambridge Analytica’s Facebook ads on the 2016
US Presidential Election,” Towards Data Science, 2019. URL:

https://towardsdatascience.com/effect-of-cambridge-analyticas-
facebook-ads-on-the-2016-us-presidential-election-dacb5462155d

[Last accessed: 2019:07.20]

[4] J. Russell, “UK watchdog hands Facebook maximum £500K fine over
Cambridge Analytica data breach,” TechCrunch, 2018. URL:

https://techcrunch.com/2018/10/25/uk-watchdog-hands-facebook-

500k-fine/ [Last accessed: 2019.07.18]

[5] M. H. McGill and N. Scola, “FTC approves $5B Facebook settlement

that Democrats label 'chump change,'” Politco, July 12, 2019 URL:
https://www.politico.com/story/2019/07/12/facebook-ftc-fine-5-

billion-718953 [Last accessed: 2019.07.18]

[6] I. Lapowsky, “House Probes Cambridge Analytica on Russia and
Wikileaks,” Wired, 2019. URL:

https://www.wired.com/story/congress-democrats-trump-inquiry-

cambridge-analytica/ [Last accessed: 2019.07.20]

[7] Office of the Director of National Intelligence, “Assessing Russian

Activities and Intentions in Recent US Elections,” 2017. URL:
www.dni.gov/files/documents/ICA_2017_01.pdf [Last accessed:

2019.07.28]

[8] R. S. Mueller III, “Report on the Investigation into Russian

Interference in the 2016 Presidential Election,” pp. 1-448, 2019.
URL: www.justsecurity.org/wp-content/uploads/2019/04/Muelller-

Report-Redacted-Vol-II-Released-04.18.2019-Word-Searchable.-

Reduced-Size.pdf [Last Accessed: 2019.07.28]

[9] B. Cartwright, G. R. S. Weir, L. Nahar, K. Padda and R. Frank, “The

Weaponization of Cloud-Based Social Media: Prospects for
Legislation and Regulation,” Tenth International Conference on

Cloud Computing, GRIDs, and Virtualization, pp. 7-12, May 2019.
URL:

http://thinkmind.org/index.php?view=article&articleid=cloud_comput

ing_2019_2_10_28021 [Last accessed: 2019.07.28]

219

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10] M. T. Bastos and D. Mercea, “The Brexit botnet and user-generated
hyperpartisan news,” Social Science Computer Review,

0894439317734157, 2017. URL: https://journals-sagepub-
com.proxy.lib.sfu.ca/doi/pdf/10.1177/0894439317734157 [Last

Accessed: 2019.07.28]

[11] M. Field and M. Wright, “Russian trolls sent thousands of pro-Leave

messages on day of Brexit referendum, Twitter data reveals:
Thousands of Twitter posts attempted to influence the referendum and

US elections,” The Telegraph, 2018. URL:
www.telegraph.co.uk/technology/2018/10/17/russian-iranian-twitter-

trolls-sent-10-million-tweets-fake-news/ [Last accessed: 2019.04.8]

[12] G. Evolvi, “Hate in a Tweet: Exploring Internet-Based Islamophobic
Discourses,” Religions, 9(10), pp. 37-51, 2018. URL:

https://www.mdpi.com/2077-1444/9/10/307 [Last accessed:

2019.07.21]

[13] A. Badawy, E. Ferrara and Lerman, K., “Analyzing the Digital Traces

of Political Manipulation: The 2016 Russian Interference Twitter
Campaign,” arXiv, 2018 URL: https://arxiv.org/abs/1802.04291 [Last

accessed: 2019.07.28]

[14] C. Shao, P. M. Hui, L. Wang, X. Jiang, A. Flammini, F. Menczer and
and G. L. Ciampaglia, “Anatomy of an online misinformation

network,” PloS one, 13(4), e0196087, 2018. URL:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.019

6087 [Last Accessed: 2019.07.28]

[15] W. Y. Wang, “‘Liar, Liar Pants on Fire’: A New Benchmark Dataset
for Fake News Detection,” arXiv preprint arXiv:1705.00648, 2018.

URL: https://arxiv.org/abs/1705.00648 [Last accessed: 2019.07.15]

[16] G. Weir, R. Frank, B. Cartwright and E. Dos Santos, “Positing the
problem: enhancing classification of extremist web content through

textual analysis,” International Conference on Cybercrime and
Computer Forensics (IEEE Xplore), June 2016. URL:

https://ieeexplore-ieee-org.proxy.lib.sfu.ca/document/7740431[Last

accessed: 2019.08.13]

[17] G. Weir, K. Owoeye, A. Oberacker and H. Alshahrani, “Cloud-based
textual analysis as a basis for document classification,” International

Conference on High Performance Computing & Simulation (HPCS),
pp. 672-676, July 2018. URL: https://ieeexplore-ieee-

org.proxy.lib.sfu.ca/document/8514415 [Last accessed: 2019.08.13]

[18] K. Owoeye and G. R. S. Weir, “Classification of radical Web text
using a composite-based method, IEEE International Conference on

Computational Science and Computational Intelligence, December
2018. URL:

https://pure.strath.ac.uk/ws/portalfiles/portal/86519706/Owoeye_Wei
r_IEEE_2018_Classification_of_radical_web_text_using_a_composit

e_based.pdf [Last accessed: 2019.08.13]

[19] H. Berghel, “Lies, damn lies, and fake news,” Computer, 50(2), pp.
80-85, 2017. URL:

https://www.computer.org/csdl/magazine/co/2017/02/mco201702008

0/13rRUzp02jw [Last accessed: 2019.07.29]

[20] N. W. Jankowski, “Researching fake news: A selective examination

of empirical studies,” Javnost-The Public, 25(1-2), pp. 248-255,
2018. URL: https://www-tandfonline-

com.proxy.lib.sfu.ca/doi/full/10.1080/13183222.2018.1418964 [Last

accessed: 2019.07.29]

[21] E. C. Tandoc Jr, Z. W. Lim and R. Ling, “Defining ‘fake news’: A

typology of scholarly definitions,” Digital Journalism, 6(2), pp. 137-
153, 2018. URL:

https://www.researchgate.net/publication/319383049_Defining_Fake
_News_A_typology_of_scholarly_definitions [Last accessed:

2019.07.29]

[22] D. M. Lazer, M. A. Baum, Y. Benkler, A. J. Berinsky, K. M.
Greenhill, F. Menczer and M. Schudson, “The science of fake news,”

Science, 359(6380), pp. 1094-1096, 2018. URL: https://science-
sciencemag-rg.proxy.lib.sfu.ca/content/359/6380/1094 [Last

Accessed: 2019.07.21]

[23] M. de Cock Buning, L. Ginsbourg and S. Alexandra, Online

Disinformation ahead of the European Parliament elections: toward
societal resilience, European University Institute, School of

Transnational Governance, April 2019 URL:
https://cadmus.eui.eu/bitstream/handle/1814/62426/STG_PB_2019_0

3_EN.pdf?sequence=1&isAllowed=y [Last accessed: 2019.07.15]

[24] S. Desai, H. Mooney and J.A. Oehrli, "Fake News," Lies and

Propaganda: How to Sort Fact from Fiction, 2018. URL:

https://guides.lib.umich.edu/fakenews [Last accessed: 2019.07.15]

[25] N. Kshetri and J. Voas, “The Economics of ‘Fake News,’” IEEE

Computer Society, pp. 8-12, (2017). URL: https://ieeexplore-ieee-
org.proxy.lib.sfu.ca/stamp/stamp.jsp?tp=&arnumber=8123490&tag=1

[Last accessed: 2019.07.15]

[26] H. Allcott and M. Gentzkow, “Social Media and Fake News in the
2016 Election,” Journal of Economic Perspectives, 31(2), pp. 211-

236, 2017. URL:
https://web.stanford.edu/~gentzkow/research/fakenews.pdf [Last

Accessed: 2019.07.28]

[27] W. L. Bennett and S. Livingston, “The disinformation order:
Disruptive communication and the decline of democratic

institutions,” European Journal of Communication, 33(2), pp. 122-
139, 2018. URL: https://journals-sagepub-

com.proxy.lib.sfu.ca/doi/pdf/10.1177/0267323118760317 [Last

accessed: 2019.07.28]

[28] United States v. Internet Research Agency LLC, Case 1:18-cr-00032-

DLF, The United States District Court for the District Of Columbia,
February 26, 2018. URL: www.justice.gov/file/1035477/download

[Last accessed: 2019.04.8]

[29] J. J. Green, “Tale of a Troll: Inside the ‘Internet Research Agency’ in
Russia,” WTOP, 2018. URL: https://wtop.com/j-j-green-

national/2018/09/tale-of-a-troll-inside-the-internet-research-agency-

in-russia/ [Last accessed: 2019.07.15]

[30] L. Reston, “How Russia Weaponizes Fake News: The Kremlin's
influence campaign goes far beyond Trump's victory. Their latest

unsuspecting targets: American conservatives,” The New Republic,
2017. URL: https://newrepublic.com/article/142344/russia-

weaponized-fake-news-sow-chaos [Last accessed: 2019.07.20]

[31] K. Wagner, “Facebook and Twitter worked just as advertised for
Russia’s troll army: Social platforms are an effective tool for

marketers — and nation states that want to disrupt an election,”
Recode Daily, 2018. URL:

https://www.vox.com/2018/2/17/17023292/facebook-twitter-russia-

donald-trump-us-election-explained [Last accessed: 2019.07.20]

[32] A. Marwick and R. Lewis, Media Manipulation and Disinformation

Online, New York: Data & Society Research Institute, pp. 1-106,
2017. URL: https://datasociety.net/output/media-manipulation-and-

disinfo-online/ [Last accessed: 2019.07.29]

[33] K. Shu, A. Silva, S. H. Wang, J. Tang and H. Liu, “Fake News
Detection on Social Media: A Data Mining Perspective,” pp. 1-15,

2017. URL: https://arxiv.org/abs/1708.01967 [Last accessed:

2019.07.29]

[34] S. Zanettou, T. Caulfied, E. de Cristofaro, M. Sirivianos, G.

Stringhini and J. Blackburn, “Disinformation Warfare: Understanding
State-Sponsored Trolls on Twitter and Their Influence on the Web,”

pp. 1-11, 2019. URL: https://arxiv.org/pdf/1801.09288.pdf [Last

accessed: 2019.07.29]

[35] M. Papenfuss, “1,000 Paid Russian Trolls Spread Fake News On

Hillary Clinton, Senate Intelligence Heads Told,” Huffington Post,
March 2017. URL: https://www.huffingtonpost.ca/entry/russian-

trolls-fake-news_n_58dde6bae4b08194e3b8d5c4 [Last accessed:

2019.07.29]

[36] The Computational Propaganda Project, “Resource for Understanding
Political Bots,” 2016. URL:

https://comprop.oii.ox.ac.uk/research/public-scholarship/resource-for-

understanding-political-bots/ [Last accessed: 2019.07.29]

[37] P. N. Howard, S, Woolley and R. Calo, “Algorithms, bots, and

political communication in the US 2016 election: The challenge of
automated political communication for election law and

administration,” Journal of Information Technology & Politics, 15(2),
81-93, 2018. URL: https://www-tandfonline-

220

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

com.proxy.lib.sfu.ca/doi/full/10.1080/19331681.2018.1448735 [Last

accessed: 2019.07.18]

[38] G. Resnick, “How Pro-Trump Twitter Bots Spread Fake News,” The
Daily Beast, July 2017. URL: https://www.thedailybeast.com/how-

pro-trump-twitter-bots-spread-fake-news [Last accessed: 2019.07.29]

[39] G. Krieg, “It's official: Clinton swamps Trump in popular vote,” CNN
Politics Data, December 2016, URL:

https://www.cnn.com/2016/12/21/politics/donald-trump-hillary-
clinton-popular-vote-final-count/index.html [Last accessed:

2019.07.29]

[40] L. Stark, “Alorithmic psychometrics and the scalable subject,” Social
Studies of Science, 48(2), pp. 204-231, 2018 URL: https://journals-

sagepub-com.proxy.lib.sfu.ca/doi/pdf/10.1177/0306312718772094

[Last accessed: 2019.08.03]

[41] F. Morstatter, L. Wu, T. H. Nazer, K. N. Carley and H. Liu, “A new

approach to bot detection: Striking the balance between precision and
recall,” IEEE/ACM Conference on Advances in Social Networks

Analysis and Mining, pp. 553-540, August 2016. URL:
https://ieeexplore-ieee-org.proxy.lib.sfu.ca/document/7752287 [Last

accessed: 2019.08.03]

[42] E. Shearer and K. E. Matsa, “News Use Across Social Media
Platforms 2018: Most Americans continue to get news on social

media, even though many have concerns about its accuracy,” Pew
Research Center, 2018. URL: www.journalism.org/2018/09/10/news-

use-across-social-media-platforms-2018/ [Last accessed: 2019.07.30]

[43] J. Gottfried and E. Shearer, “News Use Across Social Media
Platforms 2016,” Pew Research Center, URL:

https://www.journalism.org/2016/05/26/news-use-across-social-

media-platforms-2016/ [Last accessed: 2019.07.30]

[44] N. Kshetri and J. Voas, “The Economics of ‘Fake News,’” IEEE
Computer Society, pp. 8-12, (2017). URL: https://ieeexplore-ieee-

org.proxy.lib.sfu.ca/stamp/stamp.jsp?tp=&arnumber=8123490&tag=1

[Last accessed: 2019.07.15]

[45] S. Wineburg, S. McGrew, J. Breakstone and T. Ortega, “Evaluating

Information: The Cornerstone of Civic Online Reasoning,” Stanford
Digital Repository, 2016. URL:

https://stacks.stanford.edu/file/druid:fv751yt5934/SHEG%20Evaluati

ng%20Information%20Online.pdf [Last accessed: 2019.07.15]

[46] European Commission, A Europe that protects: EU reports on

progress in fighting disinformation ahead of European Council, June
2019. URL: https://ec.europa.eu/commission/commissioners/2014-

2019/ansip/announcements/europe-protects-eu-reports-progress-
fighting-disinformation-ahead-european-council_en [Last accessed:

2019.06.15]

[47] A. Al-Rawi and Y. Jiwani, “Trolls Stoke Fear: Russian disruption a

concern in Fall vote,” Vancouver Sun, p. G2, August 2016.

[48] C. Falk, “Detecting Twitter Trolls Using Natural Language Processing

Techniques Trained on Message Bodies,” July 2018. URL:
http://www.infinite-machines.com/detecting-twitter-trolls.pdf [Last

accessed: [2019.07.15]

[49] I. Smoleňová, “The pro-Russian disinformation campaign in the Czech
Republic and Slovakia,” Prague: Prague Security Studies Institute,

2015. URL: http://www.pssi.cz/download/docs/253_is-pro-russian-

campaign.pdf [Last accessed: 2019.07.21]

[50] I. Khaldarova and M. Pantti, “Fake news: The narrative battle over
the Ukrainian conflict, “Journalism Practice, 10(7), pp. 891-901,

2016. URL: https://www-tandfonline-
com.proxy.lib.sfu.ca/doi/full/10.1080/17512786.2016.1163237 [Last

accessed: 2019.07.21]

[51] U. A. Mejias and N. E. Vokuev, “Disinformation and the media: the
case of Russia and Ukraine. Media,” Culture & Society, 39(7), pp.

1027-1042, 2017. URL: https://journals-sagepub-
com.proxy.lib.sfu.ca/doi/full/10.1177/0163443716686672 [Last

accessed: 2019.07.21]

[52] S. Bradshaw and P. N. Howard, “The Global Disinformation Order:
2019 Global Inventory of Organized Social Media Manipulation.”

URL: https://comprop.oii.ox.ac.uk/wp-

content/uploads/sites/93/2019/09/CyberTroop-Report19.pdf [Last

Accessed: 2019.11.16]

[53] D. Alba and A. Satariano, “At Least 70 Countries Have Had
Disinformation Campaigns, Study Finds,” New York Times, September

2019. URL:
https://www.nytimes.com/2019/09/26/technology/government-

disinformation-cyber-troops.html [Last Accessed: 2019.11.16]

[54] D. L. Linvill and P. L. Warren, “Troll factories: The Internet
Research Agency and state-sponsored agenda-building,” Resource

Centre on Media, 2018. URL:
https://www.google.com/search?q=Troll+factories%3A+The+Internet

+Research+Agency+and+state-sponsored+agenda-
building&oq=Troll+factories%3A+The+Internet+Research+Agency+

and+state-sponsored+agenda-
building&aqs=chrome..69i57j69i60l3.354j0j7&sourceid=chrome&ie

=UTF-8 [Last accessed: 2019.07.21]

[55] H. F. Yu, C. H. Ho, Y. C. Juan and C. J. Lin, “LibShortText: A
Library for Short-text Classification and Analysis”, Department of

Computer Science, National Taiwan University, 2013. URL:
https://www.csie.ntu.edu.tw/~cjlin/papers/libshorttext.pdf [Last

accessed: 2019.08.4]

[56] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R.

Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,V. Vasudevan,
P. Warden, M. Wicke, Y. Yu and X. Zheng, “TensorFlow: A system

for large-scale machine learning,” 12th USENIX Symposium on
Operating Systems Design and Implementation, pp. 265-283,

November 2016. URL:
https://www.usenix.org/system/files/conference/osdi16/osdi16-

abadi.pdf [Last accessed: 2019.08.4]

[57] G. R. S. Weir, “The posit text profiling toolset,” 12th Conference of
Pan-Pacific Association of Applied Linguisitics, pp. 106-109, 2007.

URL:
https://www.researchgate.net/publication/228740404_The_Posit_Text

_Profiling_Toolset [Last accessed: 2019.08.4]

[58] G. R. S. Weir, “Corpus profiling with the Posit tools,” Proceedings of
the 5th Corpus Linguistics Conference, July 2009. URL:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.9606&

rep=rep1&type=pdf [Last accessed: 2019.08.4]

[59] R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi, F. Roesner
and Y. Choi, “Defending Against Neural Fake News,” arXiv preprint

arXiv:1905.12616, 2019. URL: https://arxiv.org/abs/1905.12616

[Last Accessed: 2019.11.17].

[60] Y. Gorodnichenko, T. Pham and O. Talavera, Social media, sentiment

and public opinions: Evidence from# Brexit and# USElection, No.
w24631, National Bureau of Economic Research, 2018. URL:

https://www.nber.org/papers/w24631.pdf [Last Accessed:

2019.11.19].

[61] J. Mei and R. Frank, “Sentiment crawling: Extremist content

collection through a sentiment analysis guided webcrawler,” 2015
IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining, pp. 1024-1027, August 2015. URL:
esearchgate.net/publication/301444687_Sentiment_Crawling_Extrem

ist_Content_Collection_through_a_Sentiment_Analysis_Guided_We

b-Crawler [Last accessed: 2019.08.4]

[62] A. T. Zulkarnine, R. Frank, B. Monk, J. Mitchell and G. Davies,

“Surfacing collaborated networks in dark web to find illicit and
criminal content,” 2016 IEEE Confernce on Intelligence and Security

Informatics (ISI), pp. 109-114, September 2016. URL:
https://ieeexplore-ieee-org.proxy.lib.sfu.ca/document/7745452 [Last

accessed: 2019.08.4]

[63] T. C. Kietzmann, P. McClure and N. Kriegeskorte, “Deep neural
networks in computational neuroscience,” bioRxiv, pp. 133504-

133527, 2018. URL:
https://www.biorxiv.org/content/10.1101/133504v2 [Last accessed:

2019.08.4]

[64] M. Thelwall, K. Buckley, G. Paltoglou, D. Cai and A. Kappas,
“Sentiment strength detection in short informal text,” Journal of the

221

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

American Society for Information Science and Technology, 61(12),
2544–2558, 2010. URL:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.278.3863&

rep=rep1&type=pdf [Last accessed: 2019.08.4]

[65] M. Hall, E. Frank, H. Geoffrey, B. Pfahringer, P. Reutemann and I.
Witten, “The Weka data mining software: an update,” SIGKDD

Explorations, vol. 11, pp. 10-18, 2009. URL:
https://www.kdd.org/exploration_files/p2VD:\BTSync\Ricsi\Academi

c Work\2019\20190508 - Venice Cloud Conference11n1.pdf [Last

accessed: 2019.08.4]

[66] L. Breiman, “Random Forests,” Machine Learning, vol. 45, pp. 5-32,

2001. URL:
https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf [Last

accessed: 2019.08.4]

[67] A. Liaw and M. Wiener, “Classification and regression by
randomForest,” R News, vol. 2, pp. 18-22, 2002. URL: https://www.r-

project.org/doc/Rnews/Rnews_2002-3.pdf [Last accessed: 2019.08.4]

[68] H. F. Yu, C. H. Ho, Y. C. Juan and C. J. Lin, “LibShortText: A
Library for Short-text Classification and Analysis”, Department of

Computer Science, National Taiwan University, 2013. URL:
https://www.csie.ntu.edu.tw/~cjlin/papers/libshorttext.pdf [Last

accessed: 2019.08.4]

[69] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli and Y.
Bengio, “Identifying and attacking the saddle point problem in high-

dimensional non-convex optimization,” Advances in neural
information processing systems, pp. 2933-2941, 2014. URL:

https://papers.nips.cc/paper/5486-identifying-and-attacking-the-
saddle-point-problem-in-high-dimensional-non-convex-optimization

[Last accessed: 2019.08.4]

[70] D. R. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley and B. W. Suter,
“The Multilayer Perceptron as an Approximation to a Bayes Optimal

Discriminant Function,” IEEE Transactions on Neural Networks,
1(4), pp. 296-298, 1990. URL: https://ieeexplore-ieee-

org.proxy.lib.sfu.ca/document/80266 [Last accessed: 2019.08.6]

[71] W. S. Sarle, “Neural Networks and Statistical Models,” Nineteenth

Annual SAS Users Group International Conference, April 1994.
URL: https://people.orie.cornell.edu/davidr/or474/nn_sas.pdf [Last

accessed: 2019.08.6]

[72] S. Chadha, “Text Analytics on Russian Troll Tweets-Part 1,” n.d.,
URL: https://www.kaggle.com/chadalee/text-analytics-on-russian-

troll-tweets-part-1 [Last accessed: 2019.08.7]

[73] CNN, “Big Tech braces for first presidential debates, a target of
Russian trolls in 2016,” June 2019. URL:

https://m.cnn.com/en/article/h_8d2922458b2b4c80698925b2be1ab87

9 [Last accessed: 2019.08.7]

[74] M. Choi, “Keith Ellison reeling after abuse allegations: The No. 2 at

the Democratic National Committee is running behind in his bid for
Minnesota attorney general,” Politico, October 2018. URL:

https://www.politico.com/story/2018/10/27/keith-ellison-abuse-

allegations-minnesota-ag-2018-943086 [Last accessed: 2019.08.10]

[75] E. Nakashima, “U.S. Cyber Command operation disrupted Internet

access of Russian troll factory on day of 2018 midterms,” Washington
Post, February 2019. URL:

https://www.washingtonpost.com/world/national-security/us-cyber-
command-operation-disrupted-internet-access-of-russian-troll-

factory-on-day-of-2018-midterms/2019/02/26/1827fc9e-36d6-11e9-
af5b-b51b7ff322e9_story.html?noredirect=on [Last accessed:

2019.08.10]

[76] T. Starks, L. Cerulus and M. Scott, “Russia's manipulation of Twitter
was far vaster than believed,” Politico, June 2019. URL:

https://www.politico.com/story/2019/06/05/study-russia-

cybersecurity-twitter-1353543 [Last accessed: 2019.08.10]

[77] M. Lander, “Trump Says He Discussed the ‘Russian Hoax’ in a
Phone Call With Putin,” The New York Times, May 2019. URL:

https://www.nytimes.com/2019/05/03/us/politics/trump-putin-phone-

call.html

[78] Baltimore Sun, “Even if Trump is right about collusion, Russia story

is big (not fake) news,” October 2017. URL:
https://www.baltimoresun.com/opinion/editorial/bs-ed-1101-trump-

russia-20171031-story.html [Last accessed: 2019.08.10]

[79] R. Dicker, “Secret Service Agent Says She Wouldn't Take A Bullet
For Trump: Agency says it is taking quick action, “ Huffington Post,

January 2017. URL: https://www.huffingtonpost.ca/entry/secret-
service-agent-says-she-wouldnt-take-a-bullet-for-

trump_n_58887d4be4b0441a8f71e671 [Last accessed: 2019.08.10]

[80] M. Y.H. Lee, “‘Rapists?’ Criminals? Checking Trump’s facts,” The
Philadelphia Inquirer, July 2015. URL:

https://www.inquirer.com/philly/news/politics/20150709__Rapists__
_Criminals__Checking_Trump_s_facts.html [Last accessed:

2019.08.11]

[81] J. Hing, “This Is the Beginning of Donald Trump’s Muslim Ban:
Friday’s executive order extended to seven countries—but that list

could grow,” The Nation, January 2017. URL:
https://www.thenation.com/article/this-is-the-beginning-of-donald-

trumps-muslim-ban/ [Last accessed: 2019.08.11]

[82] L. Gambino, “Trump pans immigration proposal as bringing people
from 'shithole countries',” The Guardian, January 2018. URL:

https://www.theguardian.com/us-news/2018/jan/11/trump-pans-
immigration-proposal-as-bringing-people-from-shithole-countries

[Last accessed: 2019.08.11]

[83] M. Bouazizi and T. Ohtsuki, “Multi-Class Sentiment Analysis on

Twitter: Classification Performance and Challenges,” Big Data and
Mining Analytics, vol. 2, pp. 181-194, 2019. URL:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8681053

[Last Accessed: 2019.11.24]

[84] C. H. Tsai, C. Y. Lin, and C. J. Lin, “Incremental and decremental

training for linear classification” Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data

mining, pp. 343-352, 2014. URL:
https://www.csie.ntu.edu.tw/~cjlin/papers/ws/inc-dec.pdf [Last

Accessed: 2019.11.24]

[85] H. Ahmed, I. Traore and S. Saad, “Detecting opinion spams and fake
news using text classification,” Journal of Security and Privacy, vol.

1, pp. 1-15. URL:
https://www.uvic.ca/engineering/ece/isot/assets/docs/SPY_Detecting

%20opinion%20spams%20and%20fake%20news%20using%20text%

20classification.pdf [Last Accessed: 2019.11.24]

[86] F. K. A. Salem, R. Al Feel, S. Elbassuoni, M. Jaber and M. Farah,

“FA-KES: A Fake News Dataset around the Syrian War,”
Proceedings of the International AAAI Conference on Web and Social

Media, vol. 13, pp. 573-582, 2019. URL:
https://aaai.org/ojs/index.php/ICWSM/article/view/3254/3122 [Last

Accessed: 2019.11.24]

222

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Reaching Grey Havens

Industrial Automotive Security Modeling with SAM

Markus Zoppelt

Department of Computer Science
Nuremberg Institute of Technology

Nuremberg, Bavaria 90489
Email: markus.zoppelt@th-nuernberg.de

Ramin Tavakoli Kolagari

Department of Computer Science
Nuremberg Institute of Technology

Nuremberg, Bavaria 90489
Email: ramin.tavakolikolagari@th-nuernberg.de

Abstract—Autonomous vehicles have a greater attack potential
than any previous individual mobility vehicle. This is primarily
due to the considerable communication demands of the vehicles,
which on the one hand emerge for reasons of functionality and
safety, and on the other hand for reasons of comfort. Driverless
vehicles require communication interfaces to the environment,
direct connections (e.g., Vehicle-to-X) and connections to an
original equipment manufacturer backend service or a cloud.
These communication connections could all be used as backdoors
for attacks. Most existing countermeasures against cyber attacks,
e.g., the use of message cryptography, concentrate on concrete
attacks and do not consider the complexity of the various access
options offered by modern vehicles. This is mainly due to a
solution-oriented approach to security problems. The model-
based technique SAM (Security Abstraction Model) adds to the
early phases of (automotive) software architecture development
by explicitly documenting attacks and managing them with
the appropriate security countermeasures. It additionally estab-
lishes the basis for comprehensive security analysis techniques,
e.g., already available attack assessment methods. SAM thus
contributes to an early, problem-oriented and solution-ignorant
understanding combining key stakeholder knowledge. This paper
provides a detailed overview of SAM and evaluates this security
technology using interviews with industry experts and a grounded
theory analysis. The resulting analyses of this evaluation show
that SAM puts the security-by-design principle into practice
by enabling collaboration between automotive system engineers,
system architects and security experts. The application of SAM
aims to reduce costs, improve overall quality and gain competitive
advantages. Based on our evaluation results, SAM is highly
suitable, comprehensible and complete to be used in the industry.

Keywords–Automotive Security; Automotive Software Engineer-
ing; Security Modeling; Model-based Security; Autonomous Driv-
ing.

I. INTRODUCTION

Modern vehicles are interconnected computer networks
in which many electronic control units (ECUs) communicate
with one another and with the environment (Vehicle-to-X
communication). In recent years, car manufacturers have been
producing vehicles that have an online connection and offer
cloud services, such as the mobile app from Tesla, BMW iDrive
or Audi Connect. In most cases, the user can actually monitor
or control parts of the vehicle via a mobile application or cloud
service. These convenience features are intended to attract new
customers, but can also be access points for new attacks [1].

Considering the fact that autonomous vehicles will continue
rather than reverse the trend towards more communication
interfaces for reasons of functionality, safety and comfort,
making collective research efforts in the field of vehicle security
understandable; after all, human lives are at stake every time
these “driving computers” are the target of attacks.

As far as security experts are concerned, it should be noted
that car attackers do not target cars the same way as they attack
desktop computer systems, because cars use different networks,
protocols and architectures [2], [3]. In addition, vehicles
often contain obsolete legacy mechanisms with unsecure and
unencrypted protocols (e.g., Controller Area Network (CAN)) in
their system design, because they were originally not designed
in accordance with today’s security principles [4], [5]. Secure
automotive network architectures were not prioritized in the
past due to the general prejudice that cars are secure due to
their technical complexity (security by obscurity). Sluggish
development processes, lack of standard guidelines and low
societal pressure, due to little attack experience in practice,
lead to a rather slow transformation of automotive development
processes, which systematically implement security by design.

Most existing countermeasures against cyber attacks, e.g.,
the use of message cryptography for encrypting, authenticating
or randomizing vehicle-level network messages, focus on
concrete attacks and do not consider the complexity of the
access options offered by modern vehicles, as shown by Zoppelt
et al. [6]. This is mainly due to a solution-oriented approach
to security problems.

The model-based technique SAM (Security Abstraction
Model) [7] adds to the early, solution-ignorant phases of
(automotive) software architecture development by explicitly
documenting attacks and managing them with appropriate secu-
rity countermeasures. The documentation of the attacks together
with their motivation, vulnerability, attackable property and
other relevant properties is put in relation to the entire system
description by SAM being an annex to the domain-specific
architecture description language EAST-ADL [8]. Thus, all
available information about the system is linked with potential
attack scenarios at an early stage of the automotive system
development and cooperation between the key stakeholders is
made possible. The problem-oriented documentation allows
automotive system developers and security experts to gain a
comprehensive picture of the overall attack situation before

223

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

developing a solution that otherwise may be too short-sighted.
Zoppelt et al. [7] presented a Security Abstraction Model

(SAM) for automotive software systems. In this publication, for
the first time, we present a comprehensive description of SAM,
put it in context with key security challenges for autonomous
driving and evaluate it using grounded-theory evaluation based
on interviews.

In this paper, we show:

• A systematic discussion of the current state of the
art for security techniques along the V-Model as a
common software engineering practice.

• A detailed description of SAM, including all of its
metamodel entities.

• An evaluation of the security technique via grounded-
theory interviews with industry experts.

The rest of this paper is structured as follows: Section II
reviews related work on security architectures for automotive
software systems. Section III reviews the state of the art on
attacks on modern vehicles and automotive security modeling.
Section IV discusses possible attack scenarios and the security
challenges in the automotive domain. Section V describes
the Security Abstraction Model in detail, including all of
its metamodel entities. In Section VI we evaluate SAM and
elaborate on the interviews and qualitatively analyse the results
via grounded theory. Section VII concludes the paper and gives
an outlook on future work.

II. RELATED WORK

The ISO/SAE 21434 “Road Vehicles—Cybersecurity engi-
neering” standard [9], which is currently under development at
the time of writing this paper, proposes the introduction of se-
curity work packages, security concepts and architectures along
the V-Model [10]. It suggests security support before after-sales.
Specifically, during product validation and production ramp-up.
The standard is being delegated between an consortium of 12
countries. The scope of the standard is to define a framework to
include requirements for cybersecurity processes and a common
language for communicating and managing cybersecurity risk
among stakeholders. Our work considers the early efforts and
design principles of the ISO/SAE 21434 and integrates them
into the EAST-ADL.

The SAE J3061 “Cybersecurity Guidebook for Cyber-
Physical Vehicle Systems” [11], also only available as a work in
progress, wants to establish a set of high-level guiding principles
for cybersecurity as it relates to cyber-physical vehicle systems,
including lifecycle process frameworks and information on
common existing tools and methods.

Although not much final information on those standards is
currently available, we join and unite many of the proposed
methods and principles in our contribution and show its practical
applicability in a system model.

PRESERVE was an “EU-funded project running from
2011 to 2015 and contributed to the security and privacy of
future vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2X) communication systems. It provides security require-
ments of vehicle security architectures” [12]. The EVITA
project tries to “design, verify and prototype an architecture
for automotive on-board networks where security-relevant
components are protected against tampering and sensitive

data are protected against compromise. It focuses on V2X
communications and provides a base for secure deployment
of electronic safety applications” [13]. Holm [14] features a
Cyber Security Modeling Language (CySeMoL) for enterprise
architectures. Juerjens [15] introduces UMLSec, which allows
to express security-relevant information within the diagrams
in a system specification. Other solutions include INCOSE
work on integrating system engineering with system security
engineering [16], NIST SP 800-160 [17] and other NIST work
on cyber-physical systems [18].

All these solutions have one essential downside: Other
than SAM (see Section V), they are stand-alone and are
not integrated into an existing system model. SAM is fully
integrated into EAST-ADL. In comparison with alternative
solutions, a tightly coupled solution with the system model
enables a seamless integration of a security model into a system
model that is extensively used in the automotive industry. This
helps overall acceptance and increases probability for adoption.
The tight interplay of SAM with existing system models
architectural considerations and practical security considerations
together.

III. STATE OF THE ART

The automotive core development process is organized
according to the traditional software engineering V-Model [10].
Each phase of the V-Model stands for a coherent set of process
steps in which a set of artifacts are produced. The phases
are logically organized, not temporally. In the system analysis
phase, requirements are elicited and documented, in the system
design phase, a logical, function-oriented architectural structure
is developed that is the basis for both the hardware and software
development phases, which results in the implementation
of the automotive system. In the following, we discuss the
current state of the art for security techniques along the
V-Model as a common software engineering practice. For
that, we will differentiate between the four major phases of
software engineering, namely analysis phase, design phase,
implementation phase and software test. Moreover, we will also
touch on the topic of security techniques during maintenance,
since this is part of the extended V-Model.

A. Security Techniques in Analysis Phase
In the system analysis phase, requirements are elicted and

documented. The current state of the practice for security
techniques in this phase is to capture requirements from
a specification or textual annotations of the system model.
Security experts identify threats and vulnerabilities of a system,
while software engineers fix bugs and implement security
functionality, e.g., cryptographic functions. System architects
define the architecture of the system (i.e., the software and
hardware topology), taking—among other things—security
requirements into consideration.

A case study conducted by Zoppelt et al. [7] has shown that
textual annotations cannot fully explain security scenarios in
a detailed, yet compact manner. The technical details and the
relevance of the threat get lost because the software engineers
could not decide for what purpose or security goal textual notes
were intended. Security has an inner complexity, especially
considering the requirements entailed. Requirements alone are
not sufficient enough. System architects and security experts
need to be able to mutually annotate the same model. Only

224

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

then they can make the necessary adjustments to the system’s
architecture. A better practice is to define a set of security
goals and systematically derive security requirements from a
common architecture model and reference architectures.

Threat modeling and risk assessment is a basis for security
requirements. Studies like Kadhirvelan’s work [19] have shown
that new processes, standards, methods and tools are necessary
for evaluating the security and safety of software-intensive
automotive systems.

Results of the analysis phase (mostly requirements) are then
used in the design phase to deduce attack vectors and think of
solutions according to derived requirements.

B. Security Techniques in Design Phase
In the system design phase, a logical, function-oriented

architectural structure is developed utilizing the requirements
(for both software and hardware) from the analysis phase. Many
design decisions can be derived from knowing, analyzing or
building different attack vectors a potential adversary has to
target the system.

Attack vectors are a path or means by which an adversary
can gain unauthorized access to a target system [20] or which
hurts one or more security goals. Attack vectors can be
identified and extracted via attack trees. Attack trees can be
used to illustrate complex attack structures. The root of an
attack tree describes the main goal or motivation of an attack,
e.g., controlling certain functions of the target vehicle. Every
sub-attack needs to be completed in order to fulfill the parent
attack in the tree. The leafs of the attack tree are atomic actions
or conditions. A complete path from one of the leaves to the
root of the tree represents a concrete attack vector.

Moreover, security techniques in design phase utilize various
systems for attack rating and threat analyses. Those techniques,
e.g., the CVSS [21], allow for an early evaluation of essential
security measures. The CVSS is an acclaimed industry standard
for rating vulnerabilities in computer systems. The CVSS
bundles the result of threat analyses via multiple different
metrics, e.g., attack complexity, security goal impacts, etc.
and produces a numerical score reflecting its severity. Forcing
developers to think about attack vectors and vulnerability
already in design phase and conducting a CVSS analysis,
ensures that errors are detected early. This way, expensive
corrections can be prevented from the beginning. Unfortunately,
this is not the case. The current state of the practice shows that
OEMs forego this analysis at an early stage. We are trying to
contribute to this problem with the solution approach presented
in this paper. Alongside CVSS—which is not per-se automotive
related—more scoring systems exist, e.g., the SecL levels from
the SAHARA method [22].

Another significant design choice is how modern vehicles
communicate critical- and safety-relevant commands between
different types of ECUs. The most popular broadcast network
used for communication—even today—is the CAN bus [23].
CAN bus messages are unencrypted and unsigned by default, be-
cause back in the 80’s—when CAN was designed—automotive
security was not perceived a major issue. Remote exploitation
of a single ECU item on the CAN bus causes a major security
threat because it allows an attacker to send valid (and potentially
harmful) messages over the bus to critical parts of the vehicle’s
ECU network. Modern vehicles have a tremendous amount

of remote attack surfaces like wireless protocols, mobile
application support and more. Examples of specific remote
technologies are the passive anti-theft system (PATS), tire
pressure monitoring systems (TPMS), remote keyless entry
(RKE), Bluetooth, radio data systems (3G, 4G, LTE, 5G,
etc.), Wi-Fi and telematics. Typically, infotainment systems
tend to feature Internet access and support for third-party
applications. Various attacks [24] have shown that adversaries
are able to cause serious threats by compromising a vehicle’s
ECU (or adding an external device) and sending malicious
CAN commands to the devices listening on the bus. Once the
adversary has the ability to send arbitrary CAN messages, she
is able to control the braking system, engine behaviour, the
air vents, (un-)lock the doors, etc. Therefore, there is a strong
need to secure the vehicle before the adversary can gain access
to the CAN bus. If the adversary has access to the powertrain
it is already too late.

Common countermeasure decisions in design phase con-
sider network bus separation. By conceptually and physically
separating safety-relevant ECUs from the remaining network
system, many attack vectors can be mitigated. In reality, many
ECUs are still connected physically, but are being separated
through higher protocol abstractions, e.g., Unified Diagnostic
Service (UDS) or virtualized applications. Those happen in
implementation phase.

C. Security Techniques in Implementation Phase
According to the V-Model, the proposed countermeasures

are deployed in the implementation phase.
On the hardware side, implementation may differ by

different physical bus systems and wiring. If one or some
of these applications or services become vulnerable to hacking
attacks over the network, an adversary might be able to
control a crucial participant in the physical network of the
vehicle: the CAN bus. Another approach in the automotive
domain is Automotive Ethernet, though, it is not expected
to fully replace the CAN bus. CAN will continue to exist
as a low-cost component, for example for connecting low-
cost and computationally weak actuators and sensors with
their corresponding ECUs or gateways, rather than be used
as the main powertrain. As of today, the LIN-bus (Local
Interconnect Network) is used for this type (low-cost, low-
risk) of connection.

Cost is a limiting factor as well, when it comes to
implementing expensive hardware into the vehicle. Automobile
manufacturers prefer to spend more money on the salaries of
programmers (fixed costs; used for entire fleet) rather than
spending a cent more on a hardware part of a vehicle (variable
costs; for each vehicle) because of the huge market scale. This
means that hardware modules like TPMs (Trusted Platform
Modules) are unattractive (cost, weight, space) as a key storing
solution for each and every communicating part in the vehicle.

On software side, different protocol variations can be used
to implement security measures. Some network protocols like
ISO-TP, UDS and OBD2 are on a higher level of abstraction
that remedy a few shortcomings of CAN. Figure 1 illustrates
selected automotive protocols discussed in this paper in the
ISO/OSI reference model.

Although the CAN specification describes CAN as un-
encrypted by default, a sound solution for encryption and

225

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Selected automotive protocols classified in the ISO/OSI reference
model

authentication is necessary to ensure a safe and secure distri-
bution of critical new software over this public channel. In
the automotive domain, there are not only software updates
to consider, but hardware updates as well. If a workshop, for
instance, replaces one of the brakes in a vehicle, they might
also replace the corresponding ECU. In that scenario, how
will the new cryptographic key (for message cryptography) be
obtained? Common key distribution techniques like the Diffie-
Hellman key exchange [25] are difficult to implement, since
many of the smaller network participants are low-cost and
computationally weak ECUs. These ECUs often do not feature
enough memory or CPU power to perform those cryptographic
algorithms and methods. Message cryptography on the CAN
bus is not only hard to realize due to the strong network
complexity, where key distribution is a difficult problem, but
because an adversary in control of an ECU also gets access
to the keys stored on that device. For some parts of the
vehicle, where stronger threat models are required, e.g., keyless
entry systems, emerging technologies like Password Hardened
Encryption (PHE) services [26] are promising candidates
for securing system components where classic challenge-and-
response techniques are insufficient. Protocol implementations
of UDS, for example, feature a security seed mechanism that
hinders attackers from getting advanced security access. It
is shown, however, that weak ciphers or a badly executed
implementation of such protocols still allow for successful
attacks, e.g., shown by Garcia et al. [27].

D. Security Techniques during Software Test

The implemented countermeasures for the attack vectors an-
alyzed in design phase are tested during software test. Software
test in the V-Model verifies that the software is built according
to the specification given by the client. Additionally, security
testing techniques are quite different to classic software test.
Mostly—as is later shown in the evaluation section—security
techniques are not even part of the software engineering process.
Penetration testing and vulnerability assessments are familiar
techniques to check a system for vulnerabilities and security
measures. Currently, OEMs are starting to integrate those
techniques into their existing processes. Known penetration
testing techniques are to reverse engineer bus network traffic
or disassembling ECU firmware images trying to get access to
keys, secrets or specific messages.

E. Security Techniques during Maintenance
Vehicles have to be maintained and tested after delivery, thus

over-the-air (OTA) updates are important, albeit challenging,
because there is no secure OTA interface, yet. A clever solution,
like PHE with an authentication scheme could resolve this issue.
In addition, a fully secured and encrypted system excludes
workshops and third-party service providers, which require
open access, e.g., for resetting error codes, etc.

OTA updates are most often pulled and received via the
infotainment unit, which has access to a 4G, LTE or 5G
broadband connection. From there, each and every ECU that
needs to receive an update has to get the new firmware or
software patch from the infotainment unit via the CAN bus.
Rolling out sensitive data, especially new firmware or security
patches in case of OTA updates over the CAN bus is incredibly
critical and a major liability. OEM updates must be checked
and validated before they can be deployed to the range of ECUs
connected to the CAN bus. Faulty network configurations and
the lack of authentication checks for OTA updates and patches
increase the risk of cloud and botnet attacks, e.g., Mirai [28].
Basically, cloud features and OTA updates have to be considered
skeptically from the start. Even if the distribution source of
the software is the OEM, attacks are still possible. A potential
attacker might have found a way to distribute his malware over
the OEM’s infrastructure (e.g., their servers) and as a result
a trust problem arises. It is fair to assume that any kind of
roll-out (software updates, cloud data) is untrusted until the
key distribution problem has been solved. Even if a solution
for key distribution in heterogeneous CAN bus networks is
developed, the number of remote attack vectors will rise harshly
in comparison to the number of direct attack vectors.

IV. AUTOMOTIVE ATTACK SCENARIOS

This section describes the motivation of our approach. This
motivation is necessary to highlight the threats and dangers of
automotive attack scenarios and attack vectors. Section V will
describe how to assess them in more detail with SAM.

Security goals like authenticity, integrity, confidentiality, etc,
are especially important to make sure that the safety-critical
software of the vehicle stays untampered. The following is a
non-exhaustive list of attack vectors that cause major threats
to automotive software systems:

• Injection of CAN frames from ECUs that were taken
over after the remote attack (e.g., replay attacks,
spamming attacks, etc.) [24], [29], [30]

• Reverse engineering of CAN frames by filtering by
arbitration IDs and identifying frames via tools like
cansniffer or other can-utils [31]

• Rolling out malicious (possibly unsigned) firmware to
ECUs [24], [29], [30], [32], [33], [34], [35], [36]

• Gaining remote control access to the vehicle using
the OEMs cloud and/or mobile application’s infrastruc-
ture [33], [35], [37], [38]

• Getting SecurityAccess via Unified Diagnostic Services
(UDS) [39]

• Controlling the car via Onboard Diagnostic (OBD)
injection [40]

• Remotely breaking into the telematics unit [41]

226

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Exploiting remote keyless entry with software-defined
radios [27]

• Denial of Service (DoS) attacks, e.g., as shown by
Palamanca et al. [42]

• Infecting the system with ransomware. [43]

The easiest way to understand the SAM metamodel is to
explain which piece of information the individual language
components (on the M2 level) actually represent in a concrete
M1 model. Therefore, in this section we present an already
published attack, which we use to make the individual language
building blocks accessible in an exemplary manner in addition
to the conceptual explanation. SAM presented in this paper
is a tangible solution for this kind of security analysis and
security by design. All information needs to be documented
in a system model that takes attack modeling for automotive
software systems into account. The latest version of SAM
introduces new attributes for rating these kinds of attacks.

V. DESCRIPTION OF THE SECURITY ABSTRACTION MODEL

In this section we describe our innovative contribution:
a Security Abstraction Model (SAM) language specification
for the automotive modeling environment as an extension for
the EAST-ADL. We clarify the differences between security
modeling and functional safety modeling and describe our
metamodel entities of SAM to provide a comprehensive
modeling environment for automotive security modeling. The
entities can be used on the type-level (M1) to create functional
architectures for safe and secure automotive systems. SAM is
available as an open source project [44] and contains a concrete
set of security modeling entities that are fully compliant to
the EAST-ADL and AUTOSAR [45] specifications. As such,
SAM is a proposition for an annex extending EAST-ADL with
security modeling facilities, which are currently not covered
by the existing language specification.

A. SAM Metamodel
For the sake of better understanding, we will use a published

attack from the literature as a modeling example. In the
following, brief descriptions of the attack details are given
along with the SAM entity description used for representing
the attack details. The full SAM metamodel is illustrated in
Figure 2. Afterwards, the complete SAM model figure is shown
on type-level (M1) in Figure 3.

We describe the attack in detail in the following. The Tesla
Remote Control Attack [33], [35], [37]: This attack enables an
adversary to break into the vehicle via the infotainment unit. The
researchers of Tencent Keen Security Lab have demonstrated
how to remotely control and steer the vehicle, how to disturb
the autowipers and how to eliminate the lane detection of the
vehicle.

Attack: Represents a cyber-physical attack on the system
described by an attack vector. An attack vector is a path or
means by which an adversary can gain unauthorized access
to a target system [20] or hurts one or more SecurityGoals.
Attack vectors can be identified and extracted via attack trees.
In an attack tree, child nodes are conditions which must be
satisfied to make the direct parent node true. When the root
is satisfied, the attack is complete. Typically, child nodes on
the same level are linked with “OR” conditions. SAM uses a

SubAttackGroup to also allow “AND” conditions and any other
project-specific conditions between the grouped subattacks.

The attack can be performed over a remote network connection.
The vehicle user does not need to interact actively with the
vehicle to allow for the attack to work. The privileges required
for this attack are high. Also, impact on confidentiality, integrity
and availability is high as well. As a result, an adversary can
cause serious harm to passengers and other road users. As this
attack is a research approach by security experts, the actual
adversaries are not real-world attackers with bad intentions.
They do have a knowledge-level, however, which they can
provide for ill-minded attackers.

Adversary: Attacks are performed by either an individual or
the system’s environment. Either way, adversaries are derivates
of the system environment because they are not part of the main
systems model and interact from the outside. An adversary
can, however, come from within the system, e.g., from an
unauthorized part or device.

Environment: This entity describes a collection of the
environment functional descriptions. Many circumstances may
be important for the attack description and a better under-
standing of the attack vector. Adversaries and security experts
are conceptionally part of the environment. The Environment
is not a newly introduced entity as it already exists in its own
package, though it is extended due to the adversary’s ability
to use the environment for her attacks, e.g., external or real
world attacks via adversarial examples [46], [47].

In a real world scenario where adversaries with bad intentions
perform the attack, the motivation behind such an attack would
be to harm car occupants or other road users by crashing the
vehicle. The attack therefore has a high safety relevance.

AttackMotivation: An abstract representation of the adver-
sary’s motivations. This motivation is especially useful, when
no other information, e.g., broken security goals, is available
from the start. In that case, it offers an easy differentiation of
the degree of severity and one can prioritise attacks according
to their motivation. Moreover, it is fairly easy to find out if
certain attack motivations are causing safety hazards, e.g., when
tampering with safety-critical systems or modifying software-
components related to the reliability of the system. The safety
relevance can either be “High” (system failures), “Low” (fail-
safe) or “None”. It turns out that every single attack (or
sub-attack) is part of a larger attack motivation. Through
generalization methods we found out that there are only four
higher motivations behind each attack: Harm, information
retrieval, financial gain and product modification. There is also
the motivation of prestige and other abstract ideals but those
inherently cause consequences in at least one of the other
motivations so they are not listed here. There is at least one
AttackMotivation in an attack tree (its root). AttackMotivations
collide with SecurityGoals. All attacks can be subsumed under
one of those higher motivations:

Harm: A threat by an attack meant to actively or passively
harm passengers and other road users, e.g., crashing the vehicle
or causing a threat to other road users.

InformationRetrieval: A threat by an attack meant to, e.g.,
invade the privacy of passengers, other road users and other sit-
uational or political stakeholders, e.g., the OEM. Furthermore,

227

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. SAM Metamodel

getting access to other types of info, e.g., software/firmware
by performing reverse engineering. Even research interest to
break into the system for academic reasons is subsumed by
this motivation.

FinancialGain: A threat by an attack meant to steal or
cause financial or material gain for the adversary, service
workshops or insurance companies. This usually leads to a

financial loss for the owner or the OEM.

ProductModification: A threat by tampering with the
product’s specification, e.g., getting more functionality out the
car or tampering with the software in general, e.g., down-
/upgrading or performance tuning.

The affected item in the Tesla Remote Control Attack is the

228

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

AutoPilot ECU (APE).
Item: The Item entity identifies the scope of safety/security

information and the safety/security assessment. Safety/security
analyses are carried out on the basis of an item definition and
the safety/security concepts are derived from it.

The exploited vulnerability in the Tesla attack is the Webkit
browser framework of the infotainment unit, which offers the
JSArray function and can be used for privilege escalation.

Vulnerability: An abstract failure of a set of items, i.e.,
an inability to fulfill one or several of its requirements. In
order to represent the weak spots in the system architecture,
a vulnerability describes the weakness and affiliation to one
or more Items. Vulnerabilites are concrete definitions of faulty
software or configurations and requirements must be derived
from them. Vulnerabilites have a scope. The scope of a
vulnerability is changed, if a successful attack affects more
security goals and vulnerabilities, i.e., enabling follow-up
attacks.

In case of a successful attack, adversaries can cause functional
safety hazards by tampering with or disabling safety-critical
functions of the Tesla vehicle.

Hazard: The hazard metaclass represents a condition or
state in the system that may contribute to accidents. The hazard
is caused by malfunctioning behavior of E/E safety-related
systems including interaction of these systems.

The exploited vulnerability changes the scope of the attack,
meaning that all six security goals are broken if the attack is
performed successfully.

SecurityGoal: This entity offers enumerations for common
security goals [48] across any communication or data flow.
These goals are: Confidentiality, Integrity, Availability, Authen-
ticity, Reliability and Accountability.

The exploited vehicle feature is Tesla’s Autopilot, used for
autonomous driving. In this case there exists a 1:1 relationship
between item and vehicle feature.

VehicleFeature: Provided by the Dependability package, a
VehicleFeature represents a special kind of feature intended for
use on Vehicle Level. Items consist of a set of VehicleFeatures.

The JSArray function is the attackable property the adversary is
looking for, i.e., his anchor of the attack. Attackable properties
are concrete characteristics that describe the potential attack
surface, e.g., if they have known security bugs and flaws like
the JSArray function.

AttackableProperty: Characteristics or certain properties
of Items an adversary searches / needs for his attack to succeed,
e.g., wireless communication capabilities, used ciphers, features,
etc. If exploited, attackable properties allow the adversary to
successfully perform an attack and define a vulnerability.

After analysing the attack properties via the CVSS metrics,
one can calculate the base score and temporal score of the
attack and derive the requirement: code signing protection for
over-the-air (OTA) updates.

Score: Score is the entity for attack rating. SAM allows for
any generic type of scoring system. Properties of other entities
will provide all the relevant information that are needed for
attack rating. The attribute calculationFormula describes which
scoring system is used, e.g., CVSS, SecL, etc. Alternatively, an
empirical value or expert opinion can be given if this attribute
is left empty. Section V-C will explain scoring systems for SAM
in broader detail.

Requirement: To define requirements to fix vulnerabilities,
a so-called requirement is the packed result of lesson’s learned
and is derived from an attack. It represents a capability or
condition that must (or should) be satisfied.

The described attack is only possible when the vehicle is “Slow
or Standing”. Otherwise, the vehicle does not allow to use the
Webkit browser. The Tesla remote control attack is possible
in any operational situation of the vehicle. Once the adversary
has gained full access over the system she can fully control
the system over the CAN bus.

OperationalSituation: In security modeling, it is often
beneficial to know about this situation, e.g., whether the car is
standing, driving or in parking mode. An operational situation
is a state, condition or scenario in the environment that may
influence the vehicle. It may be further detailed by a functional
definition in the EnvironmentModel. Examples are: “Driving
on highway”, “Driving in city”, “In reverse gear”, “Parking”,

“Any”, etc.

SAM has no explicit specifications for a security concept.
However, SAM proposes Common Criteria (CC) ISO/IEC
15408 protection profiles [49] as a possible solution. Common
Criteria is an established standard in the security domain
to provide guidance during the development of dependable
systems.

SecurityConcept: Represents the set of security require-
ments that together fulfill at least one SecurityGoal. An
exemplary structure and classification of respective security
requirements can be found in Common Criteria (CC) ISO/IEC
15408. Ideally, the security concept is motivated by analyses of
the documented attacks connected to the respective item (in this
case, the motivatedBy property is set to “documentedAttacks”).
Otherwise, security concepts can just as well be motivated
by standard or certification demands (then, the motivatedBy
property is set to either “standard” or “certification”.)

SecurityConceptMotivation: This entity offers enumera-
tions for motivations of security requirements. These motivations
are: “standard”, “certification” and “documentedAttacks”.

B. Methodical Context for SAM

In order to protect and defend a system from attacks and
threats it is necessary to identify and classify these threats
first. The categorization of AttackMotivations already creates
methodological benefits with regard to the identification of
attacks. Systematic security analyses can be used to quantify the
required effort for a potential attack. There is a constant battle
between the attacker’s efforts and the layers of security devised
by system engineers. Because no system can be completely
secured against all sorts of attack, system engineers compromise
on varying levels of security abstractions to reach an acceptable

229

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. SAM model of Tesla Remote Control Attack—CVSS v3.0 Vector String: CVSS:3.0/AV:N/AC:H/PR:H/UI:N/S:C/C:H/I:H/A:H/E:P/RL:O/RC:C

degree of security. Hence, any security system ultimately results
in a trade-off.

Although SAM does not instill security in the system design,
it enforces reflection about attacks and their consequences for
the system, ideally as a collaboration between system engineers
and security experts. While SAM’s metalevel is rather abstract,
its application becomes concrete on metalevel M1. Notice that
the multiplicity from AttackMotivation to Item is 1..* to 1..*,
requiring the system engineer to describe at least one attack
motivation for every item of the automotive system. This is an
important methodical support for the discovery of threats. If a
single item has no associated motivation for an attack, increased
caution is required, e.g., because no attack against the item is
known yet. In this case, system engineers might simply desist
to scrutinize an item for possible attack motivations. With the
1..* multiplicity, however, they are forced to think about at least
one attack motivation for every item. Therefore, the reason for
this decision is to eagerly enforce the methodology of SAM’s
security approach.

The main difference between safety risks and security threats
is that security threats do not happen at random (i.e., they are not
bound by probability) but always occur in worst-case scenarios.
For safety hazards, a statistical probability can be assumed.
Cyber attacks are performed by an intelligent attacker at the
most suitable time for the adversary and at the lowest defense
barrier. Furthermore, it can be misleading to confuse safety
goals with security goals. Security threats, however, can cause

safety hazards and vice-versa. Though it is not recommended
to treat them in the same way during the system design phase
for reasons mentioned above. Additionally, text annotations
are bad practice. Usually, the transfer from annotations in
natural language is imprecise and the original intent of the
security experts, which is needed to represent the system model
and its security mechanisms accordingly, might be lost during
the transfer. An extensive reuse of security solutions can be
established by embedding SAM in the “Dependability” package
of EAST-ADL and the subsequent integration into AUTOSAR.
This makes it possible to keep the development effort at a
minimum and to implement comprehensive safety and security
solutions in a wide range of applications in the vehicle.

SAM offers the possibility to model socio-technical systems
by providing the modeling entity Adversary. Security goals
need to be fulfilled in a socio-technical context or a socio-
technical system. The definition of a socio-technical system is
an organized group of humans and connected technologies,
which are constructed in a certain manner to produce a
specific result [48]. Nevertheless, trying to improve security
simply by adding cryptography to the system is a fallacy. At
best, cryptography can ensure confidentiality but cannot cover
security goals like availability, reliability or accountability. With
our approach, we offer co-engineering processes of security
and safety for automotive software engineering (security and
safety by design).

230

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Using Generic Scoring Systems for SAM

The latest major release of SAM [1] introduced many new
attributes to the modeling entities, which allow for using well-
known security scoring systems like CVSS [21]. In order to
be able to keep SAM up-to-date and gain some flexibility
by not making a strong commitment to one particular system
we designed SAM to use any generic scoring system. When
modeling attack scenarios, users of SAM can choose among
their favorite. Here, we will use the CVSS. The latest version of
SAM is available open source [44]. The architecture description
has been completed to the extent that common scoring systems
are now able to find the necessary information and thus perform
their analyses. Inspired by the CVSS, which is an acclaimed
industry standard for rating vulnerabilities in computer systems,
we added new attributes to some of SAM’s entities. The
CVSS proposes three different metric groups for calculating
the vulnerability scores. In the following, an explanation of
the interplay between SAM and the metrics is given. The
assignment of the attributes to the meta entities and partly their
naming does not come from CVSS, but was developed by the
athors.

The Base Metric Group reflects the intrinsic properties
of Attack: from SAM’s automotive-oriented perspective, this
group therefore indicates the characteristics that result if the
attack in question is aimed at the automotive domain in
general. The entity AttackableProperty refers to the prop-
erties of the attacked item that are beyond the control of
the attacker and must exist in order to exploit the vulner-
ability, for example, in the case of a side channel attack,
the use of shared caches within a multicore system. The
attribute conditionPrerequisiteComplexity (“Low”
and “High”) in the AttackableProperty refers to the complexity
of encountering or creating such conditions. For example,
in the case of the side channel attack mentioned above,
the conditionPrerequisiteComplexity is “Low” be-
cause shared caches are to be expected nowadays. It would
be “High” if the attack made it necessary for all tasks on
all cores to use one single common cache. When evaluating
this property, all user interaction requirements for exploiting
the vulnerability must be excluded (these conditions are
recorded in the property privilegesRequired of Attack
instead). If the conditionPrerequisiteComplexity
is “Low”, the attack is more dangerous than if the
conditionPrerequisiteComplexity is “High”. The
property privilegesRequired describes the level of priv-
ileges an attacker must possess before successfully exploiting
the vulnerability. This metric is greatest if no privileges are
required. Also, the Attack entity has been extended with the
attributes accessRequired and userInteraction. The
attribute accessRequired describes the context in by which
vulnerability exploitation is possible. It must not be confused
with general attack vector handling in SAM, which describes
the path from attack motivation of an attack tree to one of
its leafs. Whether the user or driver of the vehicle needs to
interact with the system in a certain way, e.g., by pressing a
button, is captured in userInteraction. Attacks that do not
require any user interaction increase the score of the attack. The
Temporal Metric Group allows for adjustment of the score
after more information of the exploited vulnerability is available.
If, for example, exploit code has been published or the
report confidence of a vulnerability is confirmed, the

temporal score rises. In SAM, temporal metrics are part of the
vulnerability. The Environmental Score Metrics additionally
enable the general CVSS Score (resulting from the Base
Metric Group) to be adapted to the specific (automotive)
company. The metrics are the modified equivalent of the
base metrics weighting properties related to the concrete
company’s infrastructure and business risk. SAM offers a
fully comprehensive basis to analyse the CVSS Base Metric
Group, which means that SAM can also be used to evaluate the
Environmental Metric Group. Environmental Metrics do not
require any additional information beyond the Base Metrics,
but merely a readjustment of the analysis perspective towards
the concrete company. This means that the security scoring
analysis can be carried out entirely by an analyst based on the
available information provided by SAM.

This allows for more flexibility and SAM does not have to
be adapted for any future CVSS updates. All attributes used
for attack assessment are of the type String. This allows for
SAM to be used with generic assessment techniques and is not
tightly coupled with the CVSS attribute descriptions. In the
model itself, or from the model itself, a CVSS score cannot
be calculated automatically anyway. Doing so would happen
in a behaviour model while SAM models are structure models.
But if a security analyst is familiar with the CVSS, she will be
able to calculate the CVSS score with all the information that
is provided by the structure model. It is therefore still possible
to find related information about the attribute types (“High”
and “Low”, etc.) in the notes of the meta model, but does not
lead to problems in case of non-compliance.

The additional benefit of having SAM models compared
to directly giving the properties and a vulnerability score is
that not only the CVSS (or scoring systems in general) is
used, but also the possibility to construct attack trees via
sub-attacks and follow-up attacks. SAM is also a method for
hierarchical processing of attack vectors. In terms of substance,
this goes beyond the classic attack rating. SAM makes the
scoring system available to the software architect or in other
words: SAM’s strength lies in its ability to integrate with
existing automotive architectures. What is brought together are
architectural considerations with pure security considerations
as regards the attack itself (attack vectors that can be derived
from it, motivations, target areas) and all scoring systems that
are known, which can derive all necessary information from
the properties.

VI. EVALUATION

To prove that SAM is feasible, we have evaluated our
solution approach through “Grounded Theory” [50] interviews
with two experts (in the following we will refer to them as
E1 and E2) of two different automotive software companies
from the industry. Both interview partners have a professional
background in automotive systems engineering and/or em-
bedded security. The interviews were structured as follows:
First, we asked some general questions about automotive
security modeling and current processes in the analysis, design,
implementation and test phase. Afterwards, the authors gave
a brief introduction and explanation of SAM. During the
presentation, a real-world attack was shown and illustrated
to show how to use SAM. Together with the interview partners,
we jointly created a reference SAM model for a real-world
usecase. Figure 4 illustrates a Function Unlock Attack. The

231

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attack describes an attack vector that allows an adversary (here:
a third party workshop) to unlock specific vehicle functions for
the driver of the vehicle via tampering with the TimeServer item.
The answers for the remainder of our interview were related
to this modeling example. Finally, the industry experts were
asked questions about the five categories: suitability, scalability,
comprehensibility, completeness and tool support.

A. General Findings
Our interviews have shown that there is no clear process

for security engineering, yet. Companies are in the process of
creating them. Hopes are that the process will be similar to
the ISO 21434 and ISO 26262 standards for safety, which is
currently seen as a general guideline for automotive engineers.
The SAE J3061 standard would also be a good starting
point if engineers want to get started with this matter. Our
interviews show that a detailed development process for security
requirements is highly desired. Many projects in the industry
are done by service providers, where the instructed companies
integrate security into the finished standard components. On
the part of Tier 1 there are also no concrete specifications for
the security development process

Both experts confirmed that they are indeed working
according to the V-Model. They have quite clear process
models. Ideally, they get a specification, write a requirement
specification, create an architecture for the software, create
module specifications, derive tests from them, test the modules,
then test what is integrated. Depending on what needs to be
developed in the end, they then develop a piece of software or
an entire ECU. Afterwards, they go up (in the V-Model) until
they have finally tested all the specification requirements. They
do this for all requirements.

For some requirements, security is not in the focus. Even
if security is mentioned at all, it is only given implicitly by
implementation instructions or which software to use. Putting
a security concept in place especially for all phases of the
V-Model would be desirable, even though integration might be
challenging.

B. Suitability
We asked the experts how existing processes could use

SAM in their current workflow or if it could even be integrated
into their processes. We also explained the intention of SAM
to facilitate the exchange between security experts, software
architects and software engineers and asked, if it serves this
purpose. We tried to find out if SAM is a suitable solution
for the industry and whether or not it solves current industry
questions. Finally, for this category, we wanted to know if SAM
is ready for the development of autonomous vehicle systems
and what could be missing. The following is a summary of the
experts’ answers:

Both experts agreed that they could use SAM because it is a
good way of making attacks comparable. A missing process is
that items have to be seen in a way that potentially there has to
be an attack for each item at the time of module specification.
The main problem is that the process is actually driven only
once during development. Attacks, however, only happen during
maintenance. A visualization (like SAM models) would help,
however. A possible solution of integration SAM would be
using SAM models like bug reports for security. With SAM,
they would already have the constraints available. The current

process currently only entails development and delivery. Teams
would need a kind of “response team for security”. Someone
who monitors the whole systems and knows what kind of
hardware-software combinations are rolled out and what kind
of errors there are, e.g., SPECTRE [51]. This could suddenly
affect a huge portion of products that are out in the field. The
response team could classify attacks like this with SAM.

Integrating SAM into workflows is rather difficult for service
providers, but on OEM side it would very well possible.
Analogue to considering ASIL levels, i.e. according to ISO
26262, SAM could be well integrated on the OEM side. SAM
increases transparency and simplifies understanding attacks.
After a training of the team members, SAM would definitely
help and make communication easier, especially because there
are no alternatives. It can be, however, that one could not
understand a bad SAM model without additional textual
description.

Regarding suitability for autonomous driving, the experts
were unsure if this is even possible to answer at this point.
SAM would first have to prove itself in practice and people
would have to work with it so that it could be finally used.
Even if systems would become simpler, software development
would probably become more complex, because there would be
many more lines of code. Moreover, security has to guarantee
that the safety mechanisms still work and that there is a balance
of availability, security and safety. If a car goes into fail-safe
mode with the slightest security suspicion, autonomous driving
is not possible in this scenario.

According to one expert, some modeling entities for
machine learning components could be useful. This is rather
challenging, though, as machine learning components are black
boxes.

C. Comprehensibility
We asked the industry experts if something about SAM is

difficult to understand. Although they understood everything,
an introduction with examples would help beginners getting
started, because SAM is not that formal, rather practical.

D. Scalability
For this category we evaluated for what complexity or size

of a software project SAM is best suited and how developers
would ideally use SAM in practice.

Here, the industry partners disagreed. Although one could
easily create multiple SAM models for more complex scenarios,
one expert believes that SAM might not scale well for bigger
projects. There would be no way to see the overall security
for, e.g., a whole vehicle. To scale it, one would have to
link several SAM models together. Overall models could get
confusing because everything always depends on one item and
vehicles are very complex. However, he said, SAM would be
the right approach for smaller projects.

According to one expert, automotive engineers definitely
have to allocate time for security engineering. SAM would help
with that, because in the end, it would save time if everyone
speaks the same language. There would have to be support
for security techniques. Central offices that have an overview
of which products, which software and which hardware are
currently in the field could use SAM to determine that.

232

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. SAM model of Function Unlock Attack—CVSS v3.0 Vector String: CVSS:3.0/AV:L/AC:H/PR:H/UI:R/S:C/C:N/I:H/A:N/E:U/RC:U

In contrary, developers might not want to use SAM because
it is on a relatively high level of abstraction. Fortunately, SAM
has close familiarity to UML and developers could get used
to it quickly. Traceability over requirements would be a good
approach to make them adopt SAM, because they work very
strongly according to requirements and the V-Model and they
can validate their requirements.

E. Completeness
To make sure that SAM is indeed complete, we asked if

the explanations and attributes are complete or what could
be deleted from SAM. Moreover, we asked what a possible
solution would look like for how to add tests to SAM.

During the discussion with the experts it became clear that
some entities cover redundant information at that time. The
current version presented in this paper, however, includes the
latest changes, even the refined changes taken into account after
the interviews. Furthermore, one expert had the opinion that
the score entity might be redundant because all the relevant
information is already in the entities’ properties and could
also be calculated that way. This is theoretically redundant
information. If one would have a modeling tool now, it would
display it permanently and calculate it in the background. It
would not have to exist as an entity. As of right now, it is
shown in its own separate entity.

Overall feedback showed that if users of SAM are already
familiar with security, one could understand all the terms and

explanations presented in SAM. SAM is doing a good job of
illustrating the weak points. So one can deduce test cases from
the model, make them more concrete and test countermeasures
to achieve a certain CVSS score. One could use the score
to adapt the tests and cover the fact that, for example, an
attack is no longer possible and, if necessary, derive further test
cases. However, SAM would actually only show the problem
to engineers: the attack scenario. The resulting actions would
be twofold: Fixing and testing the bug. After the bug is found,
something in the architecture must be changed. Reusability is
an important factor. Someone would have to test the change
and then has to make sure that this bug will not happen again in
future models or products. Someone could consider whether he
can make the test abstract so that it will be fired in the future.
However, one would need a lot more details to automatically
turn it into a test. The tester should, however, be able to look
at the model and write a test from it himself.

F. Tool Support
There is no seamless tool support from SAM/EAST-ADL

to AUTOSAR as of right now. We asked whether or not it is
needed. Furthermore, we asked if an automatic generation of
SAM models (e.g., from tests or code) would be useful. Finally,
we asked for remaining comments, hints and feedback.

One expert was not sure if SAM must fit directly to
AUTOSAR. SAM would be useful for modeling attacks,
AUTOSAR is used for modeling software. Tool support, where

233

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

one could create SAM models with, or where the score is
calculated automatically would be helpful, though, and improve
usability. If SAM is easy to use and a suitable tool would exist,
developers would use it for sure.

The other expert disagreed and told us that an automatic
generation of SAM models would not be necessary at the
moment. He also said that the industry does not know whether
it will stay with AUTOSAR or not. However, SAM can be used
independently at the moment. His experience with AUTOSAR
told him that he would not build too much onto it. One
could automatically generate or update SAM models as post-
processing after modeling, just as one can already generate
code or header files, templates, etc. Leaving SAM the way it
is right now, i.e., without automatic generation, someone has
to think about security himself. It has to be thought of from
the beginning.

General advice we received, suggested a “Getting Started”
or “HowTo” document. This would be helpful for acceptance
in practice. Finally, SAM should be used more on the OEM
side, because vehicles are very complex products and only the
product owner currently have a complete overview over the
vehicle’s components. With SAM, someone can sufficiently
document security thoughts and research, including evaluation.

G. Overall Results
Our industrial evaluation has shown that SAM is indeed

suitable as a solution approach and integration of the methods
used into industry processes is feasible. Moreover, SAM is easy
to understand according to our interviewed industry experts.
Although SAM might not scale for bigger software projects, it
establishes a process to get started with on a smaller scale. Also,
our evaluation shows that SAM is indeed complete and offers
enough tools, methods and descriptions for threat modeling and
attack rating. Evaluation results regarding tool support were
twofold. Further investigations on a practical tool support are
necessary.

Table II shows a summary of the evaluation results. The
symbol keys are explained in Table I.

TABLE I. Symbol key for the evaluation results table

Symbol Meaning

++ High agreement or interest (E1 and E2 agreed)
+ Notable agreement or interest (E1 or E2 agreed)
o Moderate agreement or interest (neither E1 or E1 showed interest)
- Limited agreement or interest (E1 or E2 disagreed)
-- Low agreement or interest (E1 and E2 disagreed)

+/- Mixed agreement or interest (E1 and E1 were of different opinion)

VII. CONCLUSION AND FUTURE WORK

We have presented a detailed description of the Security
Abstraction Model, including all of its metamodel entities. We
have indications that the approch is feasible. The security tech-
nique has been evaluated with industry experts and a grounded
theory analysis. The resulting analyses of the evaluation show
that SAM puts the security-by-design principle into practice by
enabling collaboration between automotive system engineers
and security experts. Future work will concentrate on the
bottom-up approach, i.e., improving embedded security and
network security on the application layer and cryptographic
protocol design, e.g., utilizing PHE. Next steps need to develop

TABLE II. Summary of the evaluation results

Categories and codes Results

General
Process: Along the V-Model ++
Missing process for security ++
Suitability
Processes can use SAM ++
Integration in process ++
Exchange between security experts, architects and engineers ++
Solves relevant industry challenges o
Ready for autonomous driving (AD) +
Is something missing for AD? +/-
Comprehensibility
SAM is easy to understand ++
Scalability
Scales for all sizes of projects +/-
Developers have time to use SAM +/-
Completeness
Nothing should be removed from SAM o
Descriptions and entities are complete ++
Use SAM for testing ++
Tool Support
AUTOSAR tool support +/-
Automatic generation of SAM models --

automotive software solutions to actually be included in the
security concept. Our research focuses particularly on a PHE
authentication scheme for secure authentication in autonomous
car sharing scenarios and fingerprint entry systems. Our work
aims to support security by design in the automotive industry
and SAM offers the necessary insights and fundamentals to
continue conducting relevant research in this domain.

ACKNOWLEDGMENT

This work is funded by the Bavarian State Ministry
of Science and the Arts in the framework of the Centre
Digitisation.Bavaria (ZD.B).

M.Z. was supported by the BayWISS Consortium Digitiza-
tion.

REFERENCES

[1] M. Zoppelt and R. Tavakoli Kolagari, “UnCle SAM : Modeling Cloud
Attacks with the Automotive Security Abstraction Model,” in CLOUD
COMPUTING 2019, The Tenth International Conference on Cloud
Computing, GRIDs, and Virtualization, Venice, Italy, 2019, pp. 67–72.

[2] S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi, and L. Kilmartin,
“Intra-Vehicle Networks: A Review,” pp. 534–545, 2015.

[3] W. Zeng, M. A. Khalid, and S. Chowdhury, “In-vehicle networks outlook:
Achievements and challenges,” IEEE Communications Surveys and
Tutorials, vol. 18, no. 3, 2016, pp. 1552–1571.

[4] ISO/IEC, “ISO/IEC 15408-1:2009 - Evaluation Criteria for IT Security,”
vol. 2009, 2009, p. 64.

[5] A. Happel and C. Ebert, “Security in vehicle networks of connected
cars,” 15. Internationales Stuttgarter Symposium: Automobil- und
Motorentechnik, no. March, 2015, pp. 233–246.

[6] M. Zoppelt and R. Tavakoli Kolagari, “What Today’s Serious Cyber
Attacks on Cars Tell Us: Consequences for Automotive Security and
Dependability,” in International Symposium on Model-Based Safety
and Assessment, M. Papadopoulos, Yiannis and Aslansefat, Koorosh
and Katsaros, Panagiotis and Bozzano, Ed., Springer. Springer
International Publishing, 2019, pp. 270–285. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-030-32872-6 18

[7] M. Zoppelt and R. Tavakoli Kolagari, “SAM: A Security Abstraction
Model for Automotive Software Systems,” in Security and Safety
Interplay of Intelligent Software Systems. Springer, 2018, pp. 59–
74.

234

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] H. Blom, H. Lönn, F. Hagl, Y. Papadopoulos, M. Reiser,
C. Sjöstedt, D. Chen, and R. Tavakoli Kolagari, “EAST-
ADL–An Architecture Description Language for Automotive
Software-Intensive Systems–White Paper Version 2.1. 12,”
Hyperlink: http://www.maenad.eu/public/conceptpresentations/EAST-
ADL WhitePaper M2 [retrieved: December 2018], vol. 1.

[9] ISO/SAE, “ISO/SAE CD 21434 - ROAD VEHICLES – CYBERSECU-
RITY ENGINEERING,” https://www.iso.org/standard/70918.html.

[10] W. Dröschel, W. Heuser, and R. Midderhoff, Inkrementelle und objekto-
rientierte Vorgehensweise mit dem V-Modell 97. München: Oldenbourg,
1998.

[11] SAE, “SAE J 3061 - Cybersecurity Guidebook for Cyber-Physical
Vehicle Systems,” https://www.sae.org/standards/content/j3061/.

[12] N. Bißmeyer, S. Mauthofer, J. Petit, M. Lange, M. Moser, D. Estor,
M. Sall, M. Feiri, R. Moalla, M. Lagana, and F. Kargl, “PREparing
SEcuRe VEhicle-to-X Communication Systems,” 2014.

[13] O. Henniger, L. Apvrille, A. Fuchs, Y. Roudier, A. Ruddle, and
B. Weyl, “Security requirements for automotive on-board networks,”
in 2009 9th International Conference on Intelligent Transport Systems
Telecommunications, ITST 2009. IEEE, 2009, pp. 641–646.

[14] H. Holm, M. Ekstedt, T. Sommestad, and M. Korman, “A Manual for
the Cyber Security Modeling Language,” 2013, p. 110.

[15] J. Jürjens, “UMLsec: Extending UML for Secure Systems Develop-
ment,” in International Conference on The Unified Modeling Language.
Springer, 2002, pp. 412–425.

[16] INCOSE, “Systems Engineering Handbook,” in Systems Engineering,
no. August, 2000.

[17] R. Ross, M. McEvilley, and J. Carrier Oren, “Systems Security
Engineering: Considerations for a Multidisciplinary Approach in the
Engineering of Trustworthy Secure Systems,” vol. 160, no. November
2016, 2016.

[18] J. Lee, B. Bagheri, and H.-a. Kao, “A Cyber-Physical Systems architec-
ture for Industry 4 . 0-based manufacturing systems,” Manufacturing
Letters, vol. 3, 2015, pp. 18–23.

[19] S. P. Kadhirvelan and A. Söderberg-Rivkin, “Threat Modelling and
Risk Assessment Within Vehicular Systems,” Chalmers University of
Technology, no. August, 2014, p. 52.

[20] V. L. Thing and J. Wu, “Autonomous Vehicle Security: A Taxonomy
of Attacks and Defences,” in Proceedings - 2016 IEEE International
Conference on Internet of Things; IEEE Green Computing and Communi-
cations; IEEE Cyber, Physical, and Social Computing; IEEE Smart Data,
iThings-GreenCom-CPSCom-Smart Data 2016, 2017, pp. 164–170.

[21] Common Vulnerability Scoring System [retrieved: April, 2019]. [Online].
Available: https://www.first.org/cvss/

[22] G. Macher, A. Höller, H. Sporer, E. Armengaud, and C. Kreiner,
“A combined safety-hazards and security-threat analysis method for
automotive systems,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 9338, 2015, pp. 237–250.

[23] Bosch, “CAN Specification,” Robert Bosch GmbH, 1991.
[24] C. Miller and C. Valasek, “Remote Exploitation of an Unaltered

Passenger Vehicle,” Defcon 23, vol. 2015, 2015, pp. 1–91.
[25] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE

transactions on Information Theory, vol. 22, no. 6, 1976, pp. 644–654.
[26] R. W. F. Lai, C. Egger, M. Reinert, S. S. M. Chow, M. Maffei, and

D. Schröder, “Simple Password-Hardened Encryption Services,” in 27th
{USENIX} Security Symposium ({USENIX} Security 18). Baltimore,
MD: {USENIX} Association, 2018, pp. 1405–1421. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/lai

[27] F. D. Garcia, D. Oswald, T. Kasper, and P. Pavlidès, “Lock It and Still
Lose It—On the (In)Security of Automotive Remote Keyless Entry
Systems,” Proceedings of the 25th USENIX Security Symposium, 2016,
pp. 929—-944.

[28] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot:
Mirai and other botnets,” Computer, vol. 50, no. 7, 2017, pp. 80–84.

[29] C. Valasek and C. Miller, “Adventures in Automotive Networks and
Control Units,” Technical White Paper, vol. 21, 2013, p. 99.

[30] C. Miller and C. Valasek, “CAN Message Injection,” 2016, pp. 1–29.
[Online]. Available: http://illmatics.com/can message injection.pdf

[31] can-utils repository on GitHub [retrieved: April, 2019]. [Online].
Available: https://github.com/linux-can/can-utils

[32] T. Bécsi, S. Aradi, and P. Gáspár, “Security issues and vulnerabilities
in connected car systems,” in 2015 International Conference on Models
and Technologies for Intelligent Transportation Systems, MT-ITS 2015,
2015, pp. 477–482.

[33] S. Nie, L. Liu, Y. Du, and W. Zhang, “Over-the-Air : How We Remotely
Compromised the Gateway , Bcm , and Autopilot Ecus of Tesla Cars,”
Defcon, vol. 1, 2018.

[34] T. Zhang, H. Antunes, and S. Aggarwal, “Defending connected vehicles
against malware: Challenges and a solution framework,” IEEE Internet
of Things Journal, vol. 1, no. 1, 2014, pp. 10–21.

[35] Tencent Keen Security Lab, “Experimental Security Research of Tesla
Autopilot,” 2019, p. 38.

[36] C. Smith and S. Francisco, THE CAR HACKER ’ S HANDBOOK A
Guide for the Penetration Tester About the Contributing Author About
the Technical Reviewer, 2016.

[37] S. Nie, L. Liu, and Y. Du, “Free-fall: hacking tesla from wireless to can
bus,” Defcon, 2017, pp. 1–16.

[38] Tencent Keen Security Lab, “Experimental Security Assessment of BMW
Cars: A Summary Report,” 2018.

[39] J. den Herrewegen and F. D. Garcia, “Beneath the Bonnet: A Breakdown
of Diagnostic Security,” in European Symposium on Research in
Computer Security. Springer, 2018, pp. 305–324.

[40] Y. Zhang, B. Ge, X. Li, B. Shi, and B. Li, “Controlling a Car Through
OBD Injection,” in Proceedings - 3rd IEEE International Conference on
Cyber Security and Cloud Computing, CSCloud 2016 and 2nd IEEE
International Conference of Scalable and Smart Cloud, SSC 2016, 2016,
pp. 26–29.

[41] I. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast and
Vulnerable: A Story of Telematic Failures,” 9th USENIX Workshop on
Offensive Technologies (WOOT 15), 2015.

[42] A. Palanca, E. Evenchick, F. Maggi, and S. Zanero, “A stealth,
selective, link-layer denial-of-service attack against automotive networks,”
in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
M. Polychronakis and M. Meier, Eds. Cham: Springer International
Publishing, 2017, vol. 10327 LNCS, pp. 185–206.

[43] T. Ring, “Connected cars - The next target for hackers,” Network Security,
vol. 2015, no. 11, 2015, pp. 11–16.

[44] SAM repository on Bitbucket [retrieved: April, 2019]. [Online].
Available: https://bitbucket.org/east-adl/sam

[45] AUTOSAR Enabling continuous innovations https://www.autosar.org
[retrieved: July, 2019]. [Online]. Available: https://www.autosar.org/

[46] J. Hayes and G. Danezis, “Machine Learning as an Adversarial Service:
Learning Black-Box Adversarial Examples,” vol. 2, 2017.

[47] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in Machine
Learning: From Phenomena to Black-Box Attacks Using Adversarial
Samples,” 2016.

[48] F. Dalpiaz, E. Paja, and P. Giorgini, “Security requirements engineering
via commitments,” in 2011 1st Workshop on Socio-Technical Aspects
in Security and Trust (STAST). IEEE, 2011, pp. 1–8. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6059249

[49] H. C. A. Van Tilborg and S. Jajodia, Encyclopedia of Cryptography
and Security. Springer Science & Business Media, 2011. [Online].
Available: http://link.springer.com/10.1007/978-1-4419-5906-5

[50] B. G. Glaser, A. L. Strauss, and E. Strutzel, “The discovery of grounded
theory; strategies for qualitative research.” Nursing research, vol. 17,
no. 4, 1968, p. 364.

[51] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
IEEE Symposium on Security and Privacy (S&P’19), 2019.

235

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Enabling Financial Reports Transparency and Trustworthiness

using Blockchain Technology

Van Thanh Le, Claus Pahl, Nabil El Ioini,

Faculty of Computer Science,
Free University of Bolzano,

Bolzano, Italy
Email: {vanle,cpahl,nelioini}@unibz.it

Gianfranco D’Atri

Department of Mathematics and
Computer Science,
Calabria University,

Rende, Cosenza, Italy
Email: gdatri@mat.unical.it

Abstract—Financial report activity standardization becomes more
essential in Financial Services and Technology, to facilitate the
digitization of the process of communicating and acquiring busi-
ness information. The eXtensible Business Reporting Language
(XBRL) is one of the first steps towards this vision by providing
a general digital format of financial reports with different rules
and tags. Analyzing XBRL reports allow us to verify the quality
and transparency of the data and well as have the full history of
the stored transactions. Currently, checking and storing reports
are independent for each organization and country, which is less
transparent for the public and investors, who might be interested
in checking company’s records before investing in them. In this
paper, we propose a blockchain-based solution where all reports
analysis activities and results are recorded into a shared ledger
to guarantee their transparency and trustworthy. Specifically,
we design and implement a prototype to evaluate and store
financial statements using Ethereum blockchain following special
metrics. Moreover, we examine different architectural decisions
in terms of cost and performance and look at their advantages
and disadvantages.

Keywords–Blockchain; XBRL; Financial Reports; DLV; ASP;
On-Chain Computation.

I. INTRODUCTION

Financial statements are formal records of the financial
activities that companies use to provide an accurate picture
of their financial history. Their main purpose is to offer all the
necessary data, which allows for an accurate assessment of
the economic situation of a company and its ability to attract
investors.

The precision of financial reports can not be underesti-
mated, any missing numbers or assets in a balance sheet
could have a tremendous effect on a business, for instance, a
company actually lose their profit because they miss their tax.
The accuracy also supports to find mistakes of expenses or
internal process early, monthly reports can show the problem
to restructure procedures or wrong activities. Moreover, by
proposing a report in detail and correctness, businesses get
more trust from the community and attract more investors. In
a normal balance sheet, there are more than 100 fields needing
to be filled that will be a challenge for accountants if they do
in the traditional way, so we need a special tool to support the
process that will check any missing point, or in other words,
to verify the validity of a report, as a suggestion for company
managers.

Financial reports contain sensitive data that refer to the
company status, following the timeline, the data even affects
decision making for future work. For example, a manager
wants to examine the importance of an asset to decide whether
he will buy more, in case the asset is frequently deprecated
every year, his decision will change. However, the owner of the
assets could update its historical price in the database to hide
the downward trend that makes the storage becomes unreliable.
Even the distributed database is stable, high availability and
performance but it is still under controlled by authorities or
any third parties, thus, in the case, blockchain could bring
benefits for this model.

To this end, our goal is to investigate how blockchain can
be used to address these limitations to restore trustworthiness
in the financial reports. Our contribution is two-fold (i) pro-
vide methodologies to automatically evaluate and validate the
consistency of the generated reports in case of off-chain and
on-chain, (ii) use Ethereum smart contract to store financial
reports and track all updates that might take place in the
future. Additionally, an initial set of experiments is presented
to illustrate the cost and time factor of the proposed approach.

This paper develops on our previous work [1] by providing
i) An off-chain evaluator based iDLV ii) a trustworthy financial
report storage that is a baseline for our continuing work.

The remaining of this paper is organized as follows: Sec-
tion II illustrates our reference scenario. Section III provides
background information about the used technologies. Section
IV discusses the main related work studies connected to our
work. Section V describes the system architecture. Section VI
presents the implementation details. Section VII experimen-
tally evaluates the cost and performance of our approach and
Section VII gives our conclusions.

II. REFERENCE SCENARIO AND PROBLEM STATEMENT

A. Scenario
Our reference scenario focuses on the Italian legislation.

The financial statements are governed in Italy by Articles 2423.
Following the Italian Civil Code, submitting financial reports
is mandatory, and it needs to be done through the website of
Chamber of Commercial (webtelemaco.infocamere.it). Every
enterprise must prepare financial statements for each year
or two consecutive financial years. These essential reports
contain i) Balance Sheet, ii) Income Statement, iii) Cash Flow

236

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Statement, and iv) Explanatory note. Depending on the size
of the business, we can have different forms of submissions.
For example, micro-enterprises are able to skip cash flow
statements and explanatory notes. In our scope, we mainly
focus on the balance sheet, since it is the most common
statement for every company to submit.

Figure 1. Financial data flow

The use case we refer to is described in Figure 1, main
actors and components are:

• Business accounting is the systematic recording, ana-
lyzing, interpreting and presenting of financial infor-
mation.

• An accountant is a person who records business trans-
actions on behalf of an organization, reports on com-
pany performance to management, and issues financial
statements.

• Financial statements are a collection of reports about
an organization’s financial results, financial condition,
and cash flows.

• XBRL Accountant is a person who works with finan-
cial statements and XBRL tools to fill data to XBRL
financial reports.

• XBRL is the format for delivering financial reports in
an interactive digital format.

• Validating XBRL is the way we check the consistency
of XBRL asset values, for example, in Italy, the
validator is TEBENI, the tool provided by the Italian
Chambers of Commerce.

A company A wants to make a financial report for this
year, the manager assigns the task to the Chief Accounting
Officer (CAO). The CAO then collects business accounting
information from accountants as account payable, receivable,

expense for wages, etc. After that, a draft version of the
financial statement is made, and start preparing for XBRL
version, this is a standard digital format for financial reports
(XBRL stands for eXtensible Business Reporting Language).
The draft is sent to a specialist called XBRL accountant. The
specialist will find a suitable taxonomy following their country
and business status, for example, the latest XBRL taxonomy
version is PCI 2018-11-04, followed by [2]. The staff will map
and tag financial statement elements to corresponding elements
in the chosen taxonomy and use tools like Microsoft Excel or
up-to-date tools in [3] to fill the data to make the instance
document.

After getting an XBRL report, internal validation is nec-
essary as a pre-check. The validation contains two steps [4]:
i) validation of the markup and ii) validation of calculations.
Enhanced Validation and Strict XBRL Validation are two kinds
of validating calculations, in Enhanced Validation, it checks in
detail child elements of a parent element, if one of them misses
or the summary of calculation does not fit for both parent and
child elements, an error will be released. Strict one accepts
some missing elements. Because there are few companies can
fulfill entire fields in taxonomy so, in our investigation, we
accept some missing tag like the Strict Validation.

When the validation process finished, the CAO and the
company director board will review and give permission to
send the XBRL report to the Chambers of Commerce [5]).
This is an association or network of entrepreneurs designed
to promote and maintain the benefits of its members. The
office is also considered as a board of trade that includes
groups of businessmen sharing their interests even in the
international scope. A chairman will be chosen to negotiate
and debate with the government for policies in financial
aspects and overall economic environment. In the Chambers of
Commerce, there is a brief check for submitted reports before
publishing it into the website of the office for the public (e.g
http://www.registroimprese.it/). In order to access the database
on the website, in Italy, it costs around 3 EUR for a report
and data researching companies retrieve these data for their
analysis and audit.

Independent auditors will examine financial reports after
publishing on behalf of investors or customers, they give a
composed report containing their opinion about whether the
financial statement is fairly stated and comply in all material
respects.

In our view, we will follow the scenario to the work
of Chamber Of Commerce, auditors can access our public
database to investigate, even can refer our evaluation strategies.

B. Problem statement
We are focusing on the processes when XBRL files are

created. Evaluating files is a complicated endeavor since it
requires the validation of many steps by the local authority. In
case the files do not pass the validation process, they need to be
corrected, then the whole process needs to be executed again.
A standard evaluation system is needed for both companies
and governments.

Moreover, the traditional process is not transparent even
when the XBRL files are published in a public database. The
files can still be updated after years to cover mistakes from
the accountants, thus, the database should not be controlled
by companies and all changes need be traced.

237

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

III. BACKGROUND

The following section introduces the different technologies
used in the definition of the proposed architecture.

A. XBRL
Financial reports contain sensitive data that might have a

huge impact on the organization’s future in terms of invest-
ments and collaborations, which mandates careful management
and control mechanisms able to capture any inconsistencies
or manipulation of the published reports. The first step to-
wards this goal started with the introduction of the eXtensible
Business Reporting Language [6], which is the world-leading
standard for financial reporting. It facilitates inter-organization
communication and enables automatic reports processing and
analysis. XBRL relies on XML and XML based schema to
define all its constructs. Its structure consists of two main parts:

1) XBRL instance, containing primarily the business
facts being reported (see Figure 2).

Figure 2. Facts example

Each fact has the following components:
Concept name: contains namespace prefix of taxon-
omy schema like rp:CostOfSales.
Id: defines the unique fact but its optional.
Context Reference: shows the context of fact like
working year or location.
Unit refers to unit information of the fact value
Fact value: presents for the value of an asset

2) XBRL taxonomy, a collection of arcs, which define
metadata about these facts and their relationship with
other facts (see Figure 3 as example of calculation
linkbase).

Figure 3. XBRL Linkbase example

Totally, a taxonomy schema has five types of
linkbase:
Label linkbase: provides human-readable strings for
concepts, multiple languages are also supported here
for each language.
Reference Linkbase: is intended to contain relation-
ships between concepts and references to authorita-
tive statements.
Calculation Linkbase: contains mathematical rela-
tionships among numeric items.

Definition Linkbase: associates concepts with other
concepts using a variety of arc roles to express
relations between concepts in taxonomies
Presentation Linkbase: contains hierarchical presen-
tation relationships among concepts

Figure 4 depicts XBRL structure and the relations between
the different components.

Figure 4. XBRL Structure

B. I-DLV
As the complexity of XBRL structure increases, it could

reach a high number of definitions, which makes it impractical
to check and validate manually. Thus, several tools have been
developed to automate the validation process, Answer Set
Programming (ASP) [7] is a form of declarative programming
oriented towards difficult search problems, highly used in both
academia and industry. ASP programs consist of rules by the
form:

< head >: − < body > .

The rules are called facts, the symbol : − means if, if the
body is true, the head will exist. < body > includes b1∨ b2∨
..∨ b3, and < head > are h1∧h2∧ . . . ∧h3, so when all of b
value is true, one of h will be chosen to do other computations.

The possible use of an ASP language for analyzing XBRL
financial reports was explored by Gianfranco d’Atri in [8].
The tokenization and standardization of data supported by the
XBRL Consortium allow extensive and meaningful use of AI
techniques to support economic analysis and fraud detection.

I-DLV [9] is a new intelligent grounder of the logic-based
Artificial Intelligence system DLV [10], it is an ASP instantia-
tor that natively supports the ASP standard language. Beside
ASP features, external computation in I-DLV is achieved by
means of external atoms, whose extension is not defined by the
semantics within the logic program, but rather is specified by
means of externally defined Python programs, the so-called
external atom in the rule bodies, which are also one of the
most outstanding of I-DLV. Because of these features, in the
paper, we applied DLV queries to analyze and absorb valuable
knowledge from financial reports.

C. Blockchain technology
1) Distributed Ledge Technology: Distributed Ledger Tech-

nology (DLT) is an innovative data structure relying on a

238

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

decentralized and distributed peer-to-peer network to exchange
data and a consensus protocol to keep data consistent. The
main goal of DLT is to solve the double spending problem
and provide a single source of truth with no trustworthy or
centralized authority.

2) Blockchain: Blockchain [11] is a distributed ledger
technology, built out of a linked list of boxes called blocks,
linked together by hash codes. Each block references the
previous block by including its has in its header. The blocks
contain transactions that represent the information managed by
the network (e.g., financial transactions, identity transactions
. . .). The Bitcoin blockchain is considered to be the first
blockchain implementation, however, today, there more than
a hundred implementation with different flavors and target
different domains.

The main building blocks of a blockchain are [12]:

• Transactions, which are signed pieces of information
created by the participating nodes in the network
and then broadcast to the rest of the network. Every
transaction must be verified by nodes before recorded
into a public ledger, the verification node needs to
ensure that the spenders own the crypto-currency via
the digital signature, and has sufficient amount of
currency in their account.

• Blocks, that are collections of transactions that are
appended to the blockchain after being validated.

• A blockchain is a ledger of all the created blocks that
make up the network.

• The blockchain relies on public keys to connect the
different blocks (similar to a linked list).

• A consensus mechanism is used to decide, which
blocks are added to the blockchain.

Generally, there are three types of blockchain platforms:
public, consortium, and private [13]. In the public blockchain,
all participants can execute and validate transactions. In con-
sortium blockchain, the identity of the participants is known,
but they do not necessarily trust each other. The network is
moderated by one or more participants to keep access under
control. Different participants might have different roles. In
a private blockchain instead, the whole network is managed
by one single organization. In our context, we apply public
blockchain to publish financial reports to the public, where all
participants could check business working status.

3) Ethereum: Ethereum [14] is a general purpose
blockchain platform that enables the deployment of distributed
applications. The main feature of Ethereum is the introduction
of smart contracts, which are computer code residing in the
blockchain and which gets executed once certain conditions are
met. Smart contracts enable the development of decentralized
autonomous organization (DAO), that uses smart contracts as
functions to enforce governance mechanisms.

Since Ethereum is a public permissionless platform, it
relies on mining to generate the next blocks of the chain. The
transactions need to pay a fee in Gas [15], which is a unit that
measures how much work of a node for an action or a task.

IV. SYSTEM ARCHITECTURE

The goal of the proposed architecture is to provide an
end to end solution that leverages different technologies for

Figure 5. Smart contract execution

managing financial reports and trustworthy publishing and
updating.

Figure 6 depicts an overview of the proposed architectures.
It is divided into three main components: XBRL Reader,
XBRL Evaluator, and XBRL Storage but in different ap-
proaches with blockchain integration that guarantees various
levels of traceability.

Figure 6. Alternative architectural designs

239

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Components
We will start with each main component to understand its

roles in approaches.
1) XBRL Reader: XBRLReader is responsible for validat-

ing the XBRL formatting by checking that all the schema
is fully described. It takes as input an XBRL Instance that
contains facts and a link to the taxonomies to be used.

The output of XBRLReader is a list of facts and arcs that
are given to the XBRL Evaluator.

2) XBRL Evaluator: Facts and arcs from the first step are
evaluated in the module, only in the first approach (see Figure
6 - Approach 1), the part is separated with DLV solver, in
the others, the Evaluator is injected inside blockchain as a
function. We define the needed aspects to investigate in a
financial report here:

• Calculation consistency will check each value of
facts, even if the value is aggregated from other
asset’s values like the example GrossProfit =
RevenueTotal − CostOfSales, we will compare
the result of RevenueTotal − CostOfSales and
GrossProfit value with a threshold, the check ap-
plies for all the assets in the report, this kind of
check also shows the errors inside reports where the
difference between the actual value and the calculated
value is greater than the threshold.

• The rate between interest and debt: a financial report
normally shows data in 2 consecutive years, it could
calculate changes of interest/debt ratio during the
years, if the index is too high, an alert is crucial for
the company because it could be a potential sign for
bankruptcy.

• Financial item comparison: From many reports in a
year, we also compare financial item values among
businesses to find, for example, the company has the
highest revenue, or even filter companies do not pay
for the warehouse cost.

• Benford’s law checking: Benford’s law [16] is an
observation about the frequency distribution of leading
digits in real-life data sets. The law states that a set of
numbers is said to satisfy Benford’s law if the leading
first digit d (d ∈ 1, .., 9) occurs with probability (see
Figure 7):
P (d) = log10(d+ 1)− log10(d) = log10(

d+1
d)

The complicated formula is explained in [17] about
stock prices example with distributions. Benford’s law
could check the whole data set or each financial report.

We note that the evaluation process can result in valid
reports meaning that they satisfy all the pre-defined evaluation
criteria or invalid reports that violate one or more requirements.
At this point, it is up to the report owner to decide whether to
publish the report or not. We also note that if invalid reports are
published, they can be updated subsequently (e.g., add more
information) to a valid state.

3) XBRL Storage: Storing financial data in a trusted loca-
tion is a necessity to keep data safe and to be able to trace
all the updates occurring over time. The main pieces of data
of interest in our scenario are the financial facts and arcs.
Blockchain is used as the backend storage where each fact
and arc are stored in separate transactions. Once transactions

Figure 7. Benford’s law for the first digit [16]

are validated (i.e., added to the blockchain), the data becomes
available to the users of the network who can view them, and
any updates can be traced.

B. Structural design
We propose an architecture that relies on two main per-

spectives i) off-chain for a standalone computation to analyze
financial data ii) on-chain for enabling public execution in
blockchain for possible functions. We consider three typologies
(see Figure 6) demonstrating possible models with pros and
cons for our financial data controller.

1) Approach 1: the financial reports are read by the XBRL
reader, where all facts and arcs are extracted, then the Evalua-
tor runs iDLV solver to analyze them and generate the results.
The report owners can review the results before publishing
them in the blockchain. Afterward, the owner can still update
the inserted reports, and customers or the public can track the
changes via blockchain logs or historical data.

• Advantages: the off-chain evaluator reduces validation
time, especially when we are dealing with big data
analysis with many financial reports at once.

• Disadvantages: The evaluation is executed as a black
box and only the results are published. All the cal-
culations are hidden, which might affect the level of
trust from the public about the results.

2) Approach 2: facts and arcs also are results from the
Reader, and directly they are evaluated with on-chain functions
that are composed in a smart contract, after finishing the
computation, if the owner is satisfied with the results, they
can push it into blockchain. Any changes are accepted but
still under the evaluation and can backtrack.

• Advantages: the Evaluator is implemented on the
blockchain, therefore, everyone can verify its logic.
To update the evaluation function, we only extend the
current smart contract.

• Disadvantages: Sending a whole financial report
(around 2MB) at once to a view function requires
more time and it might cause the local node to crash

240

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(e.g., the view function contains an infinite loop),
which leads eventually to out of gas error.

Because of the negatives, approach 2 will not be imple-
mented for testing.

3) Approach 3: this approach reverses the data storage and
evaluation phases in comparison to approach 2. This allows
data to be stored in advance without affecting the evaluation
time.

• Advantages: data can be stored on-chain much prior
to the evaluation process. Therefore, the evaluator can
access the data without having to wait for it to load.

• Disadvantages: The computation runs on local nodes
for evaluation that makes the performance becomes so
slow for the whole financial report.

Generally, the positive and negative aspects of each ap-
proach are showed in Table I.

TABLE I. APPROACH QUALIFIES

Strategies Performance Cost Trust Feasible ?
Approach 1 high high low yes
Approach 2 low low high no
Approach 3 low low high yes

C. Working use cases
To illustrate the interaction between the different compo-

nents, we have defined a set of use cases addressed by the
proposed architecture. All scenarios assume that the user has
a company registered in the system, the user then chooses an
XBRL file and the evaluator shows four possible outcomes.
Fig. 8 depicts a sequence diagram that covers most of the
scenarios.

• If all aspects are satisfied (valid), the user publishes
the data into the blockchain.

• If one of the evaluation criteria is violated, the user is
advised to review the report and submit it later.

• If one of the evaluation criteria is violated, the user
can still publish it into the blockchain but it will be
flagged as invalid.

• Invalid reports already in the blockchain can be up-
dated by their owners (e.g., update report values). The
evaluator will check them again, if the updated report
is accepted, the flag will change to valid. We note that
if valid reports are updated with incorrect values they
will be also flagged invalid.

• Other users or any third party organizations could view
and evaluate any reports.

V. IMPLEMENTATION

The implementation of the proposed approach is conducted
using a three layer architecture. Each of the layers is detailed
in the following subsections. The current implementation is
a standalone application that interacts with the blockchain
network. For the Etherum network, we rely on Blockchain
network instance deployed at the University of Calabria, Italy
called Unical coin [18] with the following configuration in
Table II.

Figure 8. Report evaluation sequence diagram

The full implementation of the proposed approach can
be found in our Github repository [19]. The two chosen ap-
proaches share XBRL Reader and XBRL Storage as a common
part that we will describe in advance, only the evaluator for
each solution are different from process and input.

241

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. NETWORK CONFIGURATION

Properties Value
Original network Ethereum
Difficulty 0x90000
Gas limit 0x2fefd8
Running nodes 4
Network speed 53 Mbps in download and upload

A. XBRL Reader
XBRL Reader uses XBRLCore [20], a library to read

and extract data. It receives as input an XBRL file and
extracts all the relevant information for the validation process,
which include both XBRL instances and XBRL taxonomies
(arcs) according to the XBRL 2.1 Specification. XBRLCore
also has it own validation but it does not fit to the newest
taxonomy (for example with group of item). For example,
facts: RevenueTotal : 5000EUR, and CostOfSales :
3000, GrossProfit : 2000 and arcs: GrossProfit =
RevenueTotal−CostOfSales, could be presented as Figure
9.

Figure 9. Facts and Arcs example

B. XBRL Storage
Financial data from the evaluator are published into

blockchain via web3js and built smart contract. web3.js [21]
is the Ethereum compatible JavaScript API, which implements
the Generic JSON RPC specification, which is a collection of
libraries, which allow you to interact with a local or remote
Ethereum node, using an HTTP or IPC connection. Smart
contract will make the skeleton to store data of a report, a
company has many reports, each report has its own facts and
arcs (see Figure 10).

Functions facilitate users to fill data into the structure (see
Figure 11). As explained about the gas limitation above, adding
each fact and arc one by one will reduce the burden on the
network.

C. XBRL Evaluator
1) Approach 1: XBRL Evaluator stores facts and arcs

together with the queries in a query file to examine indices
in the reports, also report where there is the error by i-DLV
by calling from Java Runtime:

idlv xbrlFile.dlv calculation.py

xbrlFile.dlv includes the list of facts and arcs, queries (see
Figure 12), and calculation.py includes utility functions such
as real numbers operations and list functions (see Figure 13).
After running the command above, it prints invalidDocument
if the data is not correct otherwise it prints validDocument.
The code computes the assets’ values by i) choosing each
fact and its relation (arc) ii) multiple weight with asset value
of each arc, and iii) sum these values to get expected asset
value to compare with the actual value from fact. If they are
not equal, checkFact returns false and isV alidDocument
is also false, in other words, the document is not valid,

Figure 10. Companies structure

Figure 11. Storage functions

otherwise, it is accepted. With queries, we can verify one or
many documents at once with all defined metrics.

Figure 12. Query example

2) Approach 3: XBRL Evaluator will integrate with the
XBRL Storage as a view function in blockchain (see Figure
14). View functions do not cost any fee in execution but the
amount of gas is still calculated and is still limited in one
block, this is also a method of Ethereum to prevent infinite
loop. To evaluate a financial report, we need to scan the fact
and arc list with two for and four if that is cumbersome
for a local node, therefore, we break one big function into two
smaller function calls. calActualFactV alue finds related arcs
and the check it with checkArc before returning each chosen
fact actual value, and then we can compare it with the real

242

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Calulcation.py example

value in the dataset.
The result of the evaluation is not necessarily published

into the blockchain since anyone can verify via their local
nodes. Thus we can save more energy and Ether cost for the
transaction of validated values.

Figure 14. On chain evaluator functions

VI. EVALUATION

A. System configuration
We demonstrate the testing environment:

• Processing core: Intel Core i7-4710HQ (2.50 GHz, 6
MB L3 Cache).

• Chipset: Mobile Intel HM86 Express Chipset.
• RAM: 8.00 GB.
• Operating system: Ubuntu 16.04.4 LTS
• Hard Disk Drive: Solid State Drive (SSD) 1 TB

Toshiba

• Application: Java web project maven eclipse

Two important aspects to evaluate when considering
blockchain based solutions are cost and performance, we also
evaluate defined financial metrics to review the accuracy of
our methods.

B. Cost evaluation
We tested our system using 200 valid XBRL files, 22

invalid files (valid in calculation consistency) provided by
different business providers and are annual financial reports.
The calculation is performed by the XBRL Evaluator, which
implements the required mechanisms to check the soundness
and completeness of the given files. The tests consider all the
implemented functions of the smart contract. These tests have
been run on a test blockchain network and can be reproduced
by calling a set of REST endpoints. Endpoint returns the
amount of gas consumed while executing transactions. The
amount of gas used is multiplied by the gasPrice to obtain the
costs in Ether. The Ethereum to Euro conversion factor to these
prices allows computing the monetary cost. Table IV presents
the cost of executing the various contract functions.

TABLE III. COSTS OF SMART CONTRACT FUNCTIONS EXECUTION

Function Ether cost (GWei) Euro cost (e) Avg Time (ms)
registerNewCompany 0,00032 0,059 7022
addFact 0,01 1,83 7579
addArc 0,01 1,83 7579
addReport 0,0012 0,22 11705
updateFact 0,01 1,83 7579
updateArc 0,01 1,83 7579
updateValidatedValue 0.0012 0,22 12325

We note that on average an annual report contains around
129 facts and 61 arcs (192 transactions) which would cost
approximately 0.74 ETH (118.86 EUR at 28 August 2019
followed by [22]).

C. Time evaluation
In terms of time execution for XBRL Storage, we simulated

the scenario used in our approaches, that is the process of
publishing reports (addReport, addFact, addArc, updateVali-
datedValue). Figure 15 shows the average execution time for
the whole process. The x axis represents the total number of
facts and arcs as used in the process.

The results depicted show that the execution time for stor-
age is linear relative to the number of transactions. However,
other factors affect the execution time, mainly the variation of
gas price, which affects what transactions will be picked by
the miners first and the size of the network (i.e., how fast the
transactions are broadcasted).

Considering the time execution in evaluation, each strategy
performs differences as shown in Figure 16. The off-chain one
uses iDLV solver so the time is much faster than the other, the
maximum time evaluation in the case is only around 300 ms
in contrast of on-chain calculator, that is more than 30000 ms
(30 seconds) and the value will increase following the growth
of a number of facts and arcs. In a real report with around 129
facts and 61 arcs (192 transactions), blockchain takes around
17031ms (17 seconds) while it is only 5516ms (5 seconds) in
iDLV.

When executing transactions, we set the gas price as default
at 20 gwei, but following [23], execution time could change

243

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 15. Storage execution time.

Figure 16. Evaluation time.

based on the gas, the suitable gas price is 43 gwei. We are
using the private Ethereum chain so doing experiences with
gas price changes are not feasible in the environment, and we
will leave the question for future work when we can test the
price in the real network.

D. Metric evaluation
As discussed about the four possible metrics we need to

investigate, our dataset contains 120 financial reports in XBRL
format, in the context of 2000 and 2015. Following the service
provider, in these reports, there are:

• 100 valid files: the reports are accepted in any aspect
to publish to a public database.

• 20 invalid files: the 10 reports do not meet the calcula-
tion consistency requirement and the other 10 reports
miss important fields.

With the data set, we tested our algorithms that result in:

• Calculation consistency: the consistency is calculated
by comparing the expected value with its actual value
of all facts in reports. As the example above, the
expected value is determined by:
ExpectedV alue =

∑
subFactV alue ∗ arcWeight

Since building financial report is complicated, that is

cumbersome to correct all values, so we accept the fact
if the difference between its expected and actual value
is smaller than a threshold, we set a default threshold
in our model is 0.5, and the difference is calculated
by:
valueDifference = expectedV alue−actualV alue

actualV alue

With the configuration, we have 83 per 120 files are
correct, that means the service provider decision and
our outcomes are similar for each file. The other 37
files have differences in qualifying since our strategy
does not check some special essential fields that
need advice from experts, moreover, they also have
a middle man to fix unaware mistake to make sure
the reports are clean before publication.

• The rate of debt and interest: we compared the differ-
ences between the rates from two consecutive years
and a threshold that is fixed by 0.5, and all of the
reports have the higher values, thus the rate threshold
needs to be concerned to re-defined.

• Financial aspect comparison: by retrieving all values
from our reports, we have a big database, to be
explicit, in the context of 2016, there are more
than 4000 financial items that need to be reviewed.
itcc ci totalecreditiversosociversamentiancoradovuti
is the total receivables from shareholders for payments
must be shown to highlight both the portion that has
already been called by the company, and the portion
still to be called, we choose the item as an example,
and the result showed the item is missed in 88 files,
is zero in 23 files and has values in only 14 files.

• Benford’s law: we checked all first digits in re-
ports, choose two big groups in each report as
conto economico and stato patrimoniale, and also
review the law suitability in numbers of each report.
The law suitable comparison is made by

scarto =

√∑9
i=1(Pi−Bi)2

9 .
The scarto will be calculated in Table IV following
each first digits from 9 to 1, the negative and zero
value are also countable, the table also presents the dif-
ferences between the actual percentage in the dataset
and the benford’s law.
TABLE IV. Costs of smart contract functions execution.

Number Count Percentage (Pi) Benford’s law(Bj) Differences
9 750 4.72 4.6 0.12
8 806 5.08 5.1 -0.02
7 873 5.5 5.8 -0.3
6 985 6.21 6.7 -0.49
5 1303 8.21 7.9 0.31
4 1469 9.25 9.7 -0.45
3 2001 12.61 12.5 0.11
2 2820 17.76 17.6 0.16
1 4867 30.66 30.1 0.56
Negative 1731
Zero 4945

Scarto 0.33

For all financial documents, the scarto value is 0.33
as Table IV, but for the two groups, the scarto of
conto economico is 0.96 and stato patrimoniale is
1.33 that are compared with the stardard law in Figure
17.
We qualified Benford’s law in each report, the result is

244

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 17. Compare first digits of groups with Benford’s law

even worse when the maximum scarto for one report
is 1193.66 and the minimum one is 45.64.
The result from the larger amount of data gets closer to
the law, even with the whole dataset, it is only 0.33 in
differences but get higher with smaller dataset, we can
experience that the Benford’s law could check the data
of a company in case the financial report is exported
every month, and the checking can run after several
years.

VII. RELATED WORK

Providing trustworthy financial data is a challenging en-
deavor. Over the years different tools have been developed to
analyze the financial information generated by companies in
order to check its consistency and integrity. However, since
most of the proposed tools rely on third party organizations,
issues related to trustworthiness and privacy still need to be
solved.

Recently blockchain has found applications in different
domains including IoT [24] [25], finance [26], health care [27],
smart mobility [28] and others. In the literature, a number of
studies considered the implication of blockchain on financial
services and accounting. Byström [29] argues that blockchain
can help corporate accounting in many ways, especially in
terms of trustworthiness in accounting information and data
availability in a timely manner. In [30], the authors discuss
how blockchain can be an enabler technology for accounting
ecosystem auditing and transparency. In [31], Colgren dis-
cusses the advantages that blockchain can bring to companies
by allowing fast and public access to companies financial
statements. In [26], Bussmann has given a more general
overview of the potential disruption of blockchain on the
Fintech market.

For banking services, Ye Guo [32] suggests that blockchain
is able to replace the banking industry as external and internal
issues like economic deceleration and increasing credit risk and
non-performing assets. Thus, blockchain could synchronize
and verify financial transactions to eliminate the problems
of subsequent reconciliation. Q.K.Nguyen [33] indicated that
blockchain could potentially reshape the economy, but the
banking industry requires high speed of transaction execution
with high scalability that is still a limitation of blockchain. VAT
Fraud detection and prevention is a recommendation from [34]
that uses access keys to get the authorization when purchasing
cross border products. In [35], Reverse factoring and dynamic
discounting are two approaches that could get benefits from

blockchain, which becomes a financier to guarantee the future
payment or holding the cash from buyers to optimize the
working capital.

Applying blockchain as storage, Sven Helmer et al. built
MongoDB database functions into Ethereum in [36], that sep-
arates the driver and database to reduce the cost transactions.
The main goal of their approach is to keep all data on-chain.
Shafagh et al. in [37] proposes a solution for blockchain
auditable storage of IoT data by two layers of control plane
and data plane, in the architecture, we can define access rights
based on blockchain and control data from distributed off-chain
storage. A searching function is applied with distributed hash
table (DHT), nevertheless their strategy is not implemented yet
and they also did not specify, which tools are used. Another
approaches for public storage, [38] storj extends the function
to enable people to rent other free storage and bandwidth,
based on blockchain framework, it uses encryption, file sharing
to store files on a peer-to-peer network. IPFS [39] stands
for Interplanetary File System, it works on HTTP protocol
and uses DHT to store the data following content-addressing
technique that set a permanent link for any uploaded content,
content-addressing allows us to verify the data too and any
users in the network can access the content by its address.
The system now is still unstable and has a lot of bugs,
access content from other computers still take more time than
traditional storage, we can expect IPFS future release with
more stable versions.

We found few articles discussing about on-chain computa-
tion, Xu et al via [40] showed the comparison of on and off
chain solutions for data storage, computation, even based on
different blockchain models. Keeping data inside blockchain
is more expensive but this is a one-time cost for permanent
storage. Current blockchain technologies as Ethereum and
Bitcoin are suitable with simple computation, Digital Asset
Modeling Language (DAML) [41] is a new coming solution
for complex computing, this is a programming language for
financial institutions. DAML is designed to solve the issues
of the agreement without revealing its content, the model is
optimized for a private environment and the current version
can interact with Hyperledger [42]. Our purpose is to make a
public and trust network for the community, so DAML is not
reasonable for our adaption.

Considering big data in blockchain, there are many promise
use case presented in [43] about blockchain application for big
data like IoT or personal data area, Karafiloski et al. showed
current application as examples to extend for data analysis. L.
Yue et al. in [44] proposed a big data blockchain model with
several levels of data access and collection right, the smart
contract in the model will automatically encapsulate predefined
states and conversion rules, trigger executions. Mystiko [45]
is quite comprehensive to build a whole blockchain network
from scratch with up-to-date and high level technologies like
cassandra for storage, kafka for communication. The high
scalability, availability and elastic search enable it to be big
data friendly. However, the project is implemented for a private
chain that is suitable for multi party solutions, while we need
a public chain for high level of trust and public verification,
thus, applied strategies in Mystiko could be considered for our
next extended version.

In terms of tools related to XBRL, several tools are in
use, however, they are not able to guarantee the long term

245

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

trustworthiness of the reports on produced. With regard to the
analysis of financial reports in XBRL format, Arelle [46] is
an open source platform for XBRL financial reports format
analysis. Users can view the structure of a document and
use features with a GUI. Arelle provides many services that
can be integrated with other technologies. Altova [47] is also
well-known based on the XML development. With the help
of Altova, users can present XBRL maps and relationships
inside, including facts, context, and arcs. These tools have
their own evaluation tools but just check with basic concepts
even with some specific documents, so the result is not consis-
tent. Moreover, considering the transparent characteristics of
financial documents, we need a better approach that guarantees
transparency of the whole validation process.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented the design and a prototype
implementation of a blockchain based financial reports ledger.
The main goal of the proposed approaches is to increase trust
and transparency in published financial reports, which can have
a great impact on inter-organizational transactions. From the
side of authorities, they do not have to wait for the long process
of validation or storing reports, companies will submit and
verify it via the system automatically, and for investors or any
users want to check reports or changes in facts, they only
follow logs to reveal differences.

Using ASP as a core computation in the first approach
makes flexible and easy to maintain but get less trust since
the public can not read clearly the full code after deployment,
another strategy with on-chain computation get higher trust but
take more time in evaluation (around 100 times in comparison
with the off-chain version), the trade-off seems more accept-
able with the public. Combination the two methods could be
a solution in our future work when the companies can review
and fix mistakes with a draft of report evaluation by ASP and
the customers only need the on-chain function to check the
validity without off-chain solver investigation.

Although the study is limited to the Italian context and does
not provide a cross-analysis with other systems, the goal here
is to shed some light on the great potential of using distributed
ledger technologies in financial reports validation, storage, and
traceability. The proposed approach has been applied to the
niche area of financial reports, but the same approach may
have much wider applications in numerous contexts.

For future work, we are investigating the automatic cor-
rection of invalid XBRL documents such as typing mistakes
and facts missing value. Moreover, financial statements should
be based on the cash flow statements from organization to
organization. When we have all data flow, we can provide end
to end trustworthiness and reliability.

Additionally, since we are currently working in the context
of smart mobility infrastructure in the 5G CARMEN project
[48], which focuses on crossing organizational boundaries use
cases. Services such as cross border insurances and multimedia
content access require trustworthy collaboration among differ-
ent countries to generate and manage payments. This has a
great effect on the cash flow and therefore, financial reports of
international companies. Our work in this paper can contribute
to trust management by providing a standard and trustworthy
mechanism for financial transaction validation.

REFERENCES

[1] G. D’Atri, V. T. Le, C. Pahl, and N. El Ioini, “Towards trustworthy
financial reports using blockchain,” in Proceedings of The Tenth Inter-
national Conference on Cloud Computing, GRIDs, and Virtualization
(CLOUD COMPUTING 2019), Venice, Italy, 2019, pp. 37–42, ISBN:
978-1-61208-703-0.

[2] Agenzia per l’Italia digitale, “XBRL - Standard formato elettronico ed-
itabile per la presentazione dei bilanci,” 2019, URL: https://www.agid.
gov.it/it/dati/formati-aperti/xbrl-standard-formato-elettronico-editabile
[accessed: 2019-12-04].

[3] XBRL International, “Tools and Services,” 2019, URL: https://www.
xbrl.org/the-standard/how/tools-and-services/ [accessed: 2019-12-04].

[4] M. E. Phillips, T. E. Bahmanziari, and R. G. Colvard, “Six Steps
to XBRL,” 2008, URL: https://www.journalofaccountancy.com/issues/
2008/feb/sixstepstoxbrl.html [accessed: 2019-12-04].

[5] Investopedia, “Chamber of Commerce,” 2018, URL: https: / /www.
investopedia.com/terms/c/chamber-of-commerce.asp [accessed: 2019-
12-04].

[6] XBRL Organization, “An Introduction to XBRL,” 2001, URL: https:
//www.xbrl.org/the-standard/what/an- introduction- to-xbrl/ [accessed:
2019-12-04].

[7] Wikipedia contributor, “Answer set programming,” URL: https://en.
wikipedia .org/w/ index.php?title=Answer set programming&oldid=
898338706 [accessed: 2019-12-04].

[8] G. D’Atri, “Logic-based consistency checking of xrbl instances,” IJACT,
vol. 3–6, 2014, pp. 126–131.

[9] J. Zangari, “idlv,” 2018, URL: https://github.com/DeMaCS-UNICAL/I-
DLV/wiki [accessed: 2019-12-04].

[10] W. T. Adrian, M. Alviano, F. Calimeri, B. Cuteri et al., “The
asp system dlv: Advancements and applications,” KI - Künstliche
Intelligenz, vol. 32, no. 2, 2018, pp. 177–179. [Online]. Available:
https://doi.org/10.1007/s13218-018-0533-0

[11] M. Crosby, P. Pattanayak, S. Verma, and V. Kalyanaraman, “Blockchain
technology: Beyond bitcoin,” Applied Innovation, vol. 2, no. 6-10, 2016,
p. 71.

[12] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in
Workshop on Distributed Cryptocurrencies and Consensus Ledgers,
2016.

[13] N. El Ioini and C. Pahl, “A review of distributed ledger technologies,” in
On the Move to Meaningful Internet Systems. OTM 2018 Conferences.
Springer International Publishing, 2018, pp. 277–288, ISBN: 978-3-
030-02671-4.

[14] Ethereum Foundation, “Ethereum,” 2013, URL: https://www.ethereum.
org/ [accessed: 2019-12-04].

[15] G. Wood, “Ethereum yellow paper,” 2014, URL: https://github.com/
ethereum/yellowpaper [accessed: 2019-12-04].

[16] Wikipedia contributors, “Benford’s law — Wikipedia, The Free En-
cyclopedia,” 2019, URL: https://en.wikipedia.org/w/index.php?title=
Benford%27s law&oldid=912469307 [accessed: 2019-12-04].

[17] L. Pietronero, E. Tosatti, V. Tosatti, and A. Vespignani, “Explaining the
uneven distribution of numbers in nature: the laws of benford and zipf,”
Physica A: Statistical Mechanics and its Applications, vol. 293, 2001,
pp. 297–304.

[18] Unical Coin Team, “Unicalcoin,” 2017, URL: https: / /github.com/
marcuzzu/UnicalCoin [accessed: 2019-12-04].

[19] V. T. Le, “Trustable system for XBRL,” 2001, URL: https://github.com/
levanthanh3005/TrustableSystem-for-XBRL [accessed: 2019-12-04].

[20] Y.seki, “XBRL Core,” 2006, URL: https://sourceforge.net/projects/
xbrlcore/ [accessed: 2019-12-04].

[21] Ethereum Foundation, “web3.js - Ethereum JavaScript API — web3.js
1.0.0 documentation,” 2019, URL: https://web3js.readthedocs.io/en/v1.
2.1/ [accessed: 2019-12-04].

[22] Softo ltd, “Currencio — Cryptocurrency Converter,” 2001, URL: https:
//fcurrencio.co [accessed: 2019-12-04].

[23] GitBook, “ETH Gas Station API,” 2019, URL: https : / / docs .
ethgasstation.info [accessed: 2019-12-04].

[24] C. Pahl, N. El Ioini, S. Helmer, and B. Lee, “An architecture pattern
for trusted orchestration in iot edge clouds,” in Fog and Mobile Edge

246

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Computing (FMEC), 2018 Third International Conference on. IEEE,
2018, pp. 63–70.

[25] C. Pahl, N. El Ioini, and S. Helmer, “A Decision Framework for
Blockchain Platforms for IoT and Edge Computing,” in Proceed-
ings of the 3rd International Conference on Internet of Things,
Big Data and Security, no. IoTBDS, 2018, pp. 105–113, DOI:
10.5220/0006688601050113.

[26] O. Bussmann, “The future of finance: Fintech, tech disruption, and
orchestrating innovation,” in Equity Markets in Transition. Springer,
2017, pp. 473–486.

[27] M. Mettler, “Blockchain technology in healthcare: The revolution starts
here,” in e-Health Networking, Applications and Services (Healthcom),
2016 IEEE 18th International Conference on. IEEE, 2016, pp. 1–3.

[28] V. T. Le, C. Pahl, and N. El Ioini, “Blockchain based service continuity
in mobile edge computing,” in The 6th IEEE International Conference
on Internet of Things: Systems, Management and Security. IEEE,
2019.

[29] H. Byström, “Blockchains, real-time accounting and the future of credit
risk modeling,” Lund University, Department of Economics, 2016.

[30] J. Dai and M. A. Vasarhelyi, “Toward blockchain-based accounting and
assurance,” Journal of Information Systems, vol. 31, no. 3, 2017, pp.
5–21.

[31] T. D. Colgren, “Xbrl, blockchain, and new technologies,” Strategic
Finance, vol. 99, no. 7, 2018, pp. 62–63.

[32] Y. Guo and C. Liang, “Blockchain application and outlook in the
banking industry,” Financial Innovation, vol. 2, no. 1, 2016, p. 24, URL:
https://doi.org/10.1186/s40854-016-0034-9 [accessed: 2019-11-11].

[33] Q. K. Nguyen, “Blockchain - a financial technology for future sus-
tainable development,” in 2016 3rd International Conference on Green
Technology and Sustainable Development (GTSD), 2016, pp. 51–54,
DOI: 10.1109/GTSD.2016.22.

[34] R. Ainsworth and A. Shact, “Blockchain (distributed ledger tech-
nology) solves vat fraud,” SSRN Electronic Journal, 01 2016, DOI:
10.2139/ssrn.2853428.

[35] Y. Omran, M. Henke, R. Heines, and E. Hofmann, “Blockchain-driven
supply chain finance: Towards a conceptual framework from a buyer
perspective.” IPSERA 2017 - Budapest - Balatonfüred., 04 2017.

[36] S. Helmer, M. Roggia, N. El Ioini, and C. Pahl, “Ethernitydb –
integrating database functionality into a blockchain,” in ADBIS, 09
2018, pp. 37–44, ISBN: 978-3-030-00062-2.

[37] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy, “Towards
blockchain-based auditable storage and sharing of iot data,” in Proceed-
ings of the 2017 on Cloud Computing Security Workshop. ACM, 2017,
pp. 45–50.

[38] Storj Labs, “Storj : A Decentralized Cloud Storage Network Frame-
work,” Tech. Rep., 2018, URL: https://storj.io/storjv3.pdf [accessed:
2019-12-04].

[39] Protocol Labs, “IPFS Document,” Tech. Rep., 2019, URL:
https://docs.ipfs.io [accessed: 2019-12-04].

[40] X. Xu, I. Weber, M. Staples et al., “A taxonomy of blockchain-based
systems for architecture design,” in 2017 IEEE International Conference
on Software Architecture (ICSA). IEEE, 2017, pp. 243–252, DOI:
10.1109/ICSA.2017.33.

[41] D. Asset, “Introduction of DAML,” 2019, URL: https://docs.daml.com/
daml/intro/0 Intro.html [accessed: 2019-12-04].

[42] T. L. Foundation, “Hyperledger,” 2019, URL: https://hyperledger.github.
io [accessed: 2019-12-04].

[43] E. Karafiloski and A. Mishev, “Blockchain solutions for big data
challenges: A literature review,” in IEEE EUROCON 2017 -17th
International Conference on Smart Technologies, July 2017, pp. 763–
768, DOI: 10.1109/EUROCON.2017.8011213.

[44] L. Yue, H. Junqin, Q. Shengzhi, and W. Ruijin, “Big data model
of security sharing based on blockchain,” in 2017 3rd International
Conference on Big Data Computing and Communications (BIGCOM),
Aug 2017, pp. 117–121, DOI: 10.1109/BIGCOM.2017.31.

[45] E. Bandara, W. K. Ng, K. De Zoysa, N. Fernando, S. Tharaka,
P. Maurakirinathan, and N. Jayasuriya, “Mystiko—blockchain meets big
data,” in 2018 IEEE International Conference on Big Data (Big Data),
Dec 2018, pp. 3024–3032, DOI: 10.1109/BigData.2018.8622341.

[46] H. Fischer and D. Mueller, “Open source & xbrl: the arelle R© project,”
in 2011 Kansas University XBRL Conference, 2011, pp. 29–30.

[47] Altova, “XBRL Development Tools,” 2018, URL: https://www.altova.
com/xbrl-tools [accessed: 2019-12-04].

[48] 5G-Carmen, “5G for Connected and Automated Road Mobility in the
European UnioN,” 2018, URL: www.5gcarmen.eu [accessed: 2019-12-
04].

247

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

www.iariajournals.org

International Journal On Advances in Intelligent Systems

issn: 1942-2679

International Journal On Advances in Internet Technology

issn: 1942-2652

International Journal On Advances in Life Sciences

issn: 1942-2660

International Journal On Advances in Networks and Services

issn: 1942-2644

International Journal On Advances in Security

issn: 1942-2636

International Journal On Advances in Software

issn: 1942-2628

International Journal On Advances in Systems and Measurements

issn: 1942-261x

International Journal On Advances in Telecommunications

issn: 1942-2601

