


The International Journal on Advances in Life Sciences is published by IARIA.

ISSN: 1942-2660

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Life Sciences, issn 1942-2660

vol. 15, no. 3 & 4, year 2023, http://www.iariajournals.org/life_sciences/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Life Sciences, issn 1942-2660

vol. 15, no. 3 & 4, year 2023, <start page>:<end page> , http://www.iariajournals.org/life_sciences/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2023 IARIA



International Journal on Advances in Life Sciences

Volume 15, Number 3 & 4, 2023

Editor-in-Chief

Les Sztandera, Thomas Jefferson University, USA

Editorial Advisory Board

Åsa Smedberg, Stockholm University, Sweden
Piero Giacomelli, SPAC SPA -Arzignano (Vicenza), Italia
Ramesh Krishnamurthy, Health Systems and Innovation Cluster, World Health Organization - Geneva, Switzerland
Anthony Glascock, Drexel University, USA
Hassan Ghazal, Moroccan Society for Telemedicine and eHealth, Morocco
Hans C. Ossebaard, University of Twente, the Netherlands
Juergen Eils, DKFZ, German
Trine S Bergmo, Norwegian Centre for Integrated Care and Telemedicine, Norway
Anne G. Ekeland, Norwegian Centre for Integrated Care and Telemedicine / University Hospital of North Norway |
University of Tromsø, Norway
Kari Dyb, Norwegian Centre for Integrated Care and Telemedicine / University Hospital of North Norway |
University of Tromsø, Norway
Hassan Khachfe, Lebanese International University, Lebanon
Ivan Evgeniev, TU Sofia, Bulgaria
Matthieu-P. Schapranow, Hasso Plattner Institute, Germany

Editorial Board

Dimitrios Alexandrou, UBITECH Research, Greece

Giner Alor Hernández, Instituto Tecnológico de Orizaba, Mexico

Ezendu Ariwa, London Metropolitan University, UK

Eduard Babulak, University of Maryland University College, USA

Ganesharam Balagopal, Ontario Ministry of the Environment, Canada

Kazi S. Bennoor , National Institute of Diseases of Chest & Hospital - Mohakhali, Bangladesh

Trine S Bergmo, Norwegian Centre for Integrated Care and Telemedicine, Norway

Jorge Bernardino, ISEC - Institute Polytechnic of Coimbra, Portugal

Tom Bersano, University of Michigan Cancer Center and University of Michigan Biomedical Engineering

Department, USA

Razvan Bocu, Transilvania University of Brasov, Romania

Freimut Bodendorf, Universität Erlangen-Nürnberg, Germany

Eileen Brebner, Royal Society of Medicine - London, UK

Julien Broisin, IRIT, France

Sabine Bruaux, Sup de Co Amiens, France

Dumitru Burdescu, University of Craiova, Romania

Vanco Cabukovski, Ss. Cyril and Methodius University in Skopje, Republic of Macedonia

Yang Cao, Virginia Tech, USA

Rupp Carriveau, University of Windsor, Canada

Maiga Chang, Athabasca University - Edmonton, Canada



Longjian Chen, College of Engineering, China Agricultural University, China

Dickson Chiu, Dickson Computer Systems, Hong Kong

Bee Bee Chua, University of Technology, Sydney, Australia

Udi Davidovich, Amsterdam Health Service - GGD Amsterdam, The Netherlands

Maria do Carmo Barros de Melo, Telehealth Center, School of Medicine - Universidade Federal de Minas Gerais

(Federal University of Minas Gerais), Brazil

Kari Dyb, Norwegian Centre for Integrated Care and Telemedicine / University Hospital of North Norway |

University of Tromsø, Norway

Juergen Eils, DKFZ, German

Anne G. Ekeland, Norwegian Centre for Integrated Care and Telemedicine / University Hospital of North Norway |

University of Tromsø, Norway

El-Sayed M. El-Horbaty, Ain Shams University, Egypt

Ivan Evgeniev, TU Sofia, Bulgaria

Karla Felix Navarro, University of Technology, Sydney, Australia

Joseph Finkelstein, The Johns Hopkins Medical Institutions, USA

Stanley M. Finkelstein, University of Minnesota - Minneapolis, USA

Adam M. Gadomski, Università degli Studi di Roma La Sapienza, Italy

Ivan Ganchev, University of Limerick, Ireland / University of Plovdiv “Paisii Hilendarski”, Bulgaria

Jerekias Gandure, University of Botswana, Botswana

Xiaohong Wang Gao, Middlesex University - London, UK

Josean Garrués-Irurzun, University of Granada, Spain

Hassan Ghazal, Moroccan Society for Telemedicine and eHealth, Morocco

Piero Giacomelli, SPAC SPA -Arzignano (Vicenza), Italia

Alejandro Giorgetti, University of Verona, Italy

Anthony Glascock, Drexel University, USA

Wojciech Glinkowski, Polish Telemedicine Society / Center of Excellence "TeleOrto", Poland

Francisco J. Grajales III, eHealth Strategy Office / University of British Columbia, Canada

Conceição Granja, Conceição Granja, University Hospital of North Norway / Norwegian Centre for Integrated Care

and Telemedicine, Norway

William I. Grosky, University of Michigan-Dearborn, USA

Richard Gunstone, Bournemouth University, UK

Amir Hajjam-El-Hassani, University of Technology of Belfort-Montbéliard, France

Lynne Hall, University of Sunderland, UK

Päivi Hämäläinen, National Institute for Health and Welfare, Finland

Anja Henner, Oulu University of Applied Sciences, Finland

Stefan Hey, Karlsruhe Institute of Technology (KIT) , Germany

Dragan Ivetic, University of Novi Sad, Serbia

Sundaresan Jayaraman, Georgia Institute of Technology - Atlanta, USA

Malina Jordanova, Space Research & Technology Institute, Bulgarian Academy of Sciences, Bulgaria

Attila Kertesz-Farkas, University of Washington, USA

Hassan Khachfe, Lebanese International University, Lebanon

Valentinas Klevas, Kaunas University of Technology / Lithuaniain Energy Institute, Lithuania

Anant R Koppar, PET Research Center / KTwo technology Solutions, India

Bernd Krämer, FernUniversität in Hagen, Germany

Ramesh Krishnamurthy, Health Systems and Innovation Cluster, World Health Organization - Geneva, Switzerland

Roger Mailler, University of Tulsa, USA



Dirk Malzahn, OrgaTech GmbH / Hamburg Open University, Germany

Salah H. Mandil, eStrategies & eHealth for WHO and ITU - Geneva, Switzerland

Herwig Mannaert, University of Antwerp, Belgium

Agostino Marengo, University of Bari, Italy

Igor V. Maslov, EvoCo, Inc., Japan

Ali Masoudi-Nejad, University of Tehran , Iran

Cezary Mazurek, Poznan Supercomputing and Networking Center, Poland

Teresa Meneu, Univ. Politécnica de Valencia, Spain

Kalogiannakis Michail, University of Crete, Greece

José Manuel Molina López, Universidad Carlos III de Madrid, Spain

Karsten Morisse, University of Applied Sciences Osnabrück, Germany

Ali Mostafaeipour, Industrial engineering Department, Yazd University, Yazd, Iran

Katarzyna Musial, King's College London, UK

Hasan Ogul, Baskent University - Ankara, Turkey

José Luis Oliveira, University of Aveiro, Portugal

Hans C. Ossebaard, National Institute for Public Health and the Environment - Bilthoven, The Netherlands

Carlos-Andrés Peña, University of Applied Sciences of Western Switzerland, Switzerland

Tamara Powell, Kennesaw State University, USA

Cédric Pruski, CR SANTEC - Centre de Recherche Public Henri Tudor, Luxembourg

Andry Rakotonirainy, Queensland University of Technology, Australia

Robert Reynolds, Wayne State University, USA

Joel Rodrigues, Institute of Telecommunications / University of Beira Interior, Portugal

Alejandro Rodríguez González, University Carlos III of Madrid, Spain

Nicla Rossini, Université du Luxembourg / Università del Piemonte Orientale / Università di Pavia, Italy

Addisson Salazar, Universidad Politecnica de Valencia, Spain

Abdel-Badeeh Salem, Ain Shams University, Egypt

Matthieu-P. Schapranow, Hasso Plattner Institute, Germany

Åsa Smedberg, Stockholm University, Sweden

Chitsutha Soomlek, University of Regina, Canada

Monika Steinberg, University of Applied Sciences and Arts Hanover, Germany

Les Sztandera, Thomas Jefferson University, USA

Jacqui Taylor, Bournemouth University, UK

Andrea Valente, University of Southern Denmark, Denmark

Jan Martijn van der Werf, Utrecht University, The Netherlands

Liezl van Dyk, Stellenbosch University, South Africa

Sofie Van Hoecke, Ghent University, Belgium

Iraklis Varlamis, Harokopio University of Athens, Greece

Genny Villa, Université de Montréal, Canada

Stephen White, University of Huddersfield, UK

Levent Yilmaz, Auburn University, USA

Eiko Yoneki, University of Cambridge, UK



International Journal on Advances in Life Sciences

Volume 15, Numbers 3 & 4, 2023

CONTENTS

pages: 62 - 71
Study of Generalization Performance on Non-Contact Estimation of Lumbar Load Using Webcam Image by Deep
Learning for Stationary Standing Forward Bending Posture
Riku Nishimoto, Kochi University of Technology, Japan
Kyoko Shibata, Kochi University of Technology, Japan

pages: 72 - 86
Analyzing and Reporting Wearable Sensor Data Quality in Digital Biomarker Research
Hui Zhang, Eli Lilly and Company, USA
Regan Giesting, Eli Lilly and Company, USA
Guangchen Ruan, Eli Lilly and Company, USA
Leah Miller, Eli Lilly and Company, USA
Neel Patel, Eli Lilly and Company, USA
Chakib Battioui, Eli Lilly and Company, USA
Ju Ji, Eli Lilly and Company, USA
Ming Zhong, Eli Lilly and Company, USA
Andrew Kaczorek, Eli Lilly and Company, USA
Tianran Zhang, Brown University, USA
Yi Lin Yang, Purdue University, USA

pages: 87 - 98
A Framework for Developing and Evaluating Modular Mobility Aids for People with Visual Impairment: An
Indoor Navigation Use Case
Florian von Zabiensky, Technische Hochschule Mittelhessen University of Applied Sciences, Germany
Grigory Fridman, Technische Hochschule Mittelhessen University of Applied Sciences, Germany
Sebastian Reuter, Technische Hochschule Mittelhessen University of Applied Sciences, Germany
Oguz Özdemir, Technische Hochschule Mittelhessen University of Applied Sciences, Germany
Michael Kreutzer, Technische Hochschule Mittelhessen University of Applied Sciences, Germany
Diethelm Bienhaus, Technische Hochschule Mittelhessen University of Applied Sciences, Germany

pages: 99 - 108
Comprehensive Machine Learning Analysis of Key Residues in Variants and Polymorphisms for Ace2-Spike
Interaction in SARS-CoV-2
Ana Luísa Rodrigues de Ávila, Departament of Genetics. Ribeirao Preto Medical School, University of Sao Paulo,
USP, Brazil
Ana Carolina Damasceno Sanches, Departament of Genetics. Ribeirao Preto Medical School, University of Sao
Paulo, USP, Brazil
Arthur Scorsolini Fares, Departament of Engineering, Computing and Exact, University of Ribeirão Preto, UNAERP,
Brazil
Levy Bueno Alves, Departament of Genetics. Ribeirao Preto Medical School, University of Sao Paulo, USP, Brazil
Silvana Giuliatti, Departament of Genetics. Ribeirao Preto Medical School, University of Sao Paulo, USP, Brazil



Study of Generalization Performance on Non-Contact Estimation of Lumbar Load 

Using Webcam Image by Deep Learning                                                                       

for Stationary Standing Forward Bending Posture 

 

Riku Nishimoto 

Kochi University of Technology 

Miyanokuchi 185, Tosayamada, Kami, Kochi, Japan 

Kochi, Japan 

email: nishimoto.riku19990917@gmail.com 

 

Kyoko Shibata 

Kochi University of Technology 

Miyanokuchi 185, Tosayamada, Kami, Kochi, Japan 

Kochi, Japan 

email: shibata.kyoko@kochi-tech.ac.jp

 

 

Abstract - To prevent lumbago, it is effective to have a system 

that enables people to improve their habitual bad posture. 

Therefore, we will develop a method of estimating body load 

without user burden for constant observation of posture. 

Hence, this study proposes the use of a web camera, which 

everyone has and can acquire images on a daily basis without 

any burden, as a non-contact sensing method, and the use of 

deep learning as a means of estimating body load from web 

images. Deep learning models are created by deriving body 

load values using musculoskeletal analysis based on skeletal 

position coordinates extracted from posture images and 

labeling the images with these as true values. Thus, if a pre-

trained deep learning model is created in advance, body load 

can be estimated from images alone, without the use of 

specialized software or cloud communication. If it is possible to 

easily visualize one's own body load in daily life, the system can 

be developed to provide feedback on posture evaluation and 

improvement plans based on the estimated body load. We 

consider that this will further increase the users' awareness of 

improvement and lead to the maintenance and promotion of 

health. In this paper, as the first step, a deep learning model is 

created for a stationary standing forward bending posture, and 

the accuracy of the lumbar load estimation by the deep 

learning model is evaluated. The results of individual learning 

using untrained data allowed us to estimate the lumbar load 

with high accuracy. Hence, the possibility of applying the 

proposed method to certain individuals is indicated. The other 

is, the results of ensemble learning confirmed models with high 

and low accuracy. Hence, the deep learning models that 

estimated untrained participants showed large variations in 

accuracy and insufficient generalization performance.  

Discussion of the results confirms that data bias is a 

contributing factor to the accuracy loss and indicates the 

possibility of obtaining generalization performance by 

improving data bias. 

Keywords- Deep learning; Single camera; Estimation; 

Musculoskeletal model simulation; Lumbar load. 

I.  INTRODUCTION 

Many people of all ages and genders experience lumbago, 
and lumbago has become a social problem because of its 
potential impact on daily life. One of the causes of lumbago 

is the habit of a broken posture, which is very demanding on 
the body. From this, to prevent lumbago, it is useful to 
constantly observe posture in daily life. In cases where 
posture is out of balance, it is effective to have a system that 
allows people to improve their posture by themselves. To 
achieve this, this research group has been considering the 
quantitative estimation of the load on the lower back in order 
to determine whether the posture is good or bad. In the past, 
the lumbar region has been measured using optical motion 
capture, wearable inertial sensors, and bending sensors to 
non-invasively estimate lumbar load using biomechanics and 
statistics [2] [3] [4] [5] [6]. These estimation results showed 
qualitatively similar trends to the measured lumbar load 
ratios of Nachemson et al. [7] and Wilke et al. [8] and 
confirmed the usefulness of the estimation method. However, 
since specialized equipment and analysis are required, and 
users are burdened during measurement and estimation, it is 
difficult to apply this method to the observation, estimation, 
and evaluation of posture in daily life.  

Therefore, in this study, as a way to reduce the burden on 
the user during measurement, consider using an easily 
accessible, non-wearing sensing device. Muto et al. [9] 
evaluated the posture of an elderly person using Kinect v2 
for Windows (Microsoft), a depth camera, as a non-contact 
sensing device. However, the depth cameras essential to this 
research are not widely available to the public. On the other 
hand, several systems have been commercialized to evaluate 
posture based on the skeletal position that is detected by AI 
from 2D images that lack depth information (e.g., Posen 
[10]). Although joint angles and other factors are visualized 
in these systems, however, the loads applied to the body are 
not quantified. Hence, this study proposes a method for 
estimating body load using AI from a single camera image, 
which is a readily available device, as a method of constantly 
observing posture by self and quantitatively estimating body 
load [1]. If the proposed method can be realized, by creating 
a deep learning model in advance using specialized software, 
it will then be possible to visualize one's own body load in 
daily life simply by inputting posture images, without going 
through the cloud. In addition, it can be developed into a 
system that provides feedback on posture evaluation and 
improvement plans and evaluations based on this, it will 
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enable posture condition to be evaluated without burden and 
lead to the prevention of lumbago. 

In this paper, as the first step in creating the proposed 

system, the deep learning model is created with only the 

lumbar load as the body load and the posture as a static 

standing forward-bending posture. After that, the proposed 

method will be evaluated by the accuracy of the lumbar load 

estimation using the deep learning model created. In the 

previous paper [1], a deep learning model was created using 

multiple experimental participants as training data and 

estimation using untrained data from participants used for 

training data. The results were shown to be useful, as high 

correlations and small errors were identified. However, 

scope of application remains unclear since the estimation of 

training participants by a deep learning model was created 

using several participants. Therefore, this paper verifies 

scope of application of the proposed method. First, it is 

verified that the proposed method is applicable to specific 

individual. A deep learning model is created using specific 

participant as training data, and its accuracy is confirmed by 

estimation using untrained data from the same participant. 

Furthermore, to verify the generalization performance of the 

proposed method. A deep learning model is created using 

multiple participants as training data, and the accuracy is 

confirmed by performing estimation on untrained 

participants.  
The rest of this paper is organized as follows. Section II 

describes the methods of the lumbar load estimation system 
proposed in this paper. Section III determines the criteria for 
evaluating the accuracy of the deep learning model. Section 
IV provides the methods and conditions for creating the 
lumbar load estimation system proposed in this paper, and 
discusses the experimental results based on the evaluation 
criteria identified in Section III. Section V discusses the 
results of Section IV. Finally, the conclusions close the paper. 
 

Figure 1. Overview of the proposed body load estimation system. [1] 

 

II. LUMBAR LOAD ESTIMATION SYSTEM 

This section describes the system proposed in this study. 

Figure 1 shows an overall view of the system to be 

developed in this study, as proposed in the previous report 

[1]. During system operation, user inputs an image of 

his/her posture, along with his/her height and weight, into 

the system, which estimates the body load and outputs 

improvement plans based on this. To achieve this, a deep 

learning model is created in advance during development.  

A method for deriving the body load to be learned by the 

deep learning model is described. Tagawa et al. [11] 

proposed a device to visualize the dynamic load of various 

body parts from video alone using skeletal detection 

software. In this system, the body load is calculated using 

the Newton-Euler method based on the coordinates of the 

detected skeletal position. However, it is not suitable for 

estimating static posture, which is the participant of this 

study, because no acceleration occurs. In addition, it is 

difficult to obtain an accurate body load from an estimation 

based on skeletal position alone, because muscle activity 

and other factors cannot be considered. Therefore, in this 

study, body load is derived using AnyBody [12]. AnyBody 

is a musculoskeletal analysis software that can derive 

various human body information by creating a virtual 

human body model from skeletal positions. Also, AnyBody 

can be obtained the account the amount of muscle activity 

and other factors to determine the force, moment (torque), 

and muscle tension applied to a region. In the field of 

healthcare, much research has been conducted that make 

effective use of AnyBody. Previous research used AnyBody 

to analyze the effects of age and height on the lumbar region 

during manual material handling [13] and the effects of 

lumbar disc herniation on spin loading characteristics [14]. 

However, the input data for AnyBody are the skeletal 

coordinate positions of the human body. An optical motion 

capture camera is generally used, although this device 

cannot obtain information from the images. Therefore, AI 

skeletal detection software is used to detect skeletal 

coordinates from images. The skeletal coordinates detected 

using such software are used as input data to AnyBody. 

Thus, in this study, the skeletal position coordinates are 

detected from images using VisionPose [15]. VisionPose is 

one of the AI skeleton detection software, a highly accurate 

AI posture estimation engine that can detect skeletons from 

2D camera images without using markers or depth sensors. 

VisionPose detects a total of 30 skeletal positions, including 

the hip and shoulder joints shown in Figure 2. Hence, in this 

study, the load applied to the body using AnyBody is 

derived from the skeletal position coordinates detected using 

VisionPose from the images. Out of the 30 locations 

detected by VisionPose shown on the right in Figure 2, the 

15 locations in deficit are used to derive the load by 

AnyBody. After that, a deep learning model is created by 

labeling this as the true value with the image. As described 

above, during system development, specialized software 

such as AnyBody and VisionPose is used to create deep 
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learning models. Then, based on this, when the system is 

used by the user, a structure will be built to enable 

estimation using only AI applications, without the need for 

several specialized software. These are the primary 

characteristics of the proposed system. It is a novel 

approach to combine AnyBody with AI.  

In this paper, since we focus on lumbago, we use the 

lumbar load as the body load. In this process, a deep 

learning model is created for each body load that is 

appropriate for the posture to be observed because AnyBody 

can derive the load that occurs in any region from single 

image data. That is, many body loads can be estimated and 

visualized by the proposed system from single image data. 

Next, the lumbar loading used in this paper is described. 

According to previous research [16], positive agreement 

was observed between in vivo measurements of disc 

compression forces between L4L5 and the values derived by 

AnyBody, demonstrating the suitability of the AnyBody 

model. Based on these results, this paper uses the 

compression force of the intervertebral disc between L4L5 

derived from AnyBody as the lumbar load. In a previous 

report [17], as a preliminary step in creating a deep learning 

model, we evaluated the compression force of intervertebral 

disc between L4L5 derived by AnyBody using the skeletal 

position coordinates detected by VisionPose from web 

images of standing forward bending posture. This result 

showed an increasing trend of disc compression force with 

forward bending of the upper body, as measured by 

Nachemson et al. [7]. In response to this result, as one of the 

training data for the compression force of the deep learning 

model, the intervertebral disc between L4L5 derived by 

AnyBody is used as the true value in this paper. 

 

III. ESTABLISHMENT OF CRITERIA FOR EVALUATING THE 

ACCURACY OF DEEP LEARNING MODELS 

In deriving the true value of the disc compression force 

for the proposed method, the relationship between the error 

in skeletal detection by VisionPose and the anterior tilt 

angle and the disc compression force will be clarified. This 

determines the evaluation criteria for the accuracy of the 

deep learning model to be created. 

 

A. Experiment 

Three male participants (age 21 ± 1.00, height 1.70 ± 

0.02 [m], weight 67.0 ± 1.70 [kg]) agreed to participate in 

the experiment in advance after obtaining approval from the 

University Ethics Committee and explaining the 

experimental details to the participants. A standing static 

posture image is acquired for them to obtain the anterior tilt 

angle and lumbar load by skeletal detection with VisionPose. 

One webcam (StreamCam: logicool) is used to get video. 

The camera is placed at the distance of 3 [m] from the 

center of the participant's body and at a height of 0.85 [m] 

from the floor. The movies are shot at 1080p/30fps. Three 

pictures are taken in each of the following conditions using 

the webcam: upright posture (0 degrees), 10 degrees, 20 

degrees, and 30 degrees of forward tilt angle of the upper 

body. The angle ofc forward bend is determined by pressing 

the board against the lower back and measuring with a 

digital angle meter. 

Based on the obtained images, one is, the skeletal 

position coordinates indicating the body center shoulder and 

hip positions detected by VisionPose are used to calculate 

the anterior tilt angle using a trigonometric function. After 

that, the error is calculated from the results of the measured 

and calculated values. The other is, based on the images, the 

skeletal position coordinates are detected from each image 

using VisionPose, and the skeletal position coordinates are 

input to AnyBody to derive the compression force of 

intervertebral disc between L4L5. In this process, the height 

and weight in the human body model in AnyBody are 

standardized to the participant's average in order to 

eliminate differences in the participant's physique in the 

derived values.  

 

B. Estimation Results 

Table I shows the error between the calculated and 

measured values of each forward tilt angle of the upper 

body, and the compression force of the intervertebral disc 

between L4L5 derived by AnyBody. Table I shows that the 

average absolute error of the forward tilt angle of the upper 

body detected by VisionPose is 3.20 [°]. Furthermore, the 

mean of standard deviation of the derived disc compression 

force between L4L5 was 13.1 [N], which is approximately 

2.00 [%] of the mean body weight, indicating a high 

accuracy with little variation between participants of the 

data. In addition, from the derivation results shown in 

Figure 3, it can be read that the L4/L5 intervertebral disc 

 

 

Figure 2. Skeletal position coordinates to be detected by VisionPose. 
Skeletal positions to be used for AnyBody are shown in red.    

(Source [15] on the left of the image) 
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TABLE I. MEAN ABSOLUTE ERROR BETWEEN CALCULATED AND MEASURED VALUES AND COMPRESSION FORCE OF INTERVERTEBRAL DISC BETWEEN L4L5 

AT EACH UPPER BODY FORWARD TILT ANGLE 

 

 

Figure 3. Compression force of intervertebral disc between L4L5 derived 
using AnyBody for each angle of forward tilt of upper body. 

 

load increases almost linearly in 10-degree increments. The 

estimation results captured the trend of increased lumbar 

loading due to forward tilt of the upper body, as described in 

orthopedic clinical practice. Therefore, the lumbar load 

derived by AnyBody from the skeletal position coordinates 

detected by VisionPose can be used as the true value of the 

training data for the deep learning model. Following the 

results, the slope of the linear function of the approximate 

line was calculated to obtain an average change in 

compressive force per unit angle of 21.1 [N]. These results 

will be used to evaluate the deep learning models to be 

created in subsequent sections. 

 

IV. ESTIMATION OF LUMBAR LOAD USING DEEP 

LEARNING MODEL 

This section describes the experimental methods used to 

collect training and validation data, the preprocessing 

applied to the measured data, and the training conditions for 

CNN. Furthermore, the created deep learning model is used 

to estimate the lumbar load and confirm its accuracy.  

 

A. Experiment 

Three male participants (age 23.2 ± 0.748, height 1.73 ± 

3.49 [m], weight 67.2 ± 4.35 [kg]) agreed to participate in 

the experiment in advance after obtaining approval from the 

Universi ty Ethics Committee and explaining the 

experimental details to the participants. To efficiently 

acquire posture images for use in the creation and accuracy 

validation of the deep learning model, video is captured for 

the forward bending motion of standing posture. The 

 

equipment used and camera locations are the same as in the 

experiment in Section III. The body gradually bends from 

an upright standing posture to about 30 degrees in 2 seconds, 

then the body gradually raises in 2 seconds to an upright 

standing posture. This is taken as one trial, and 5 trials are 

obtained. A total of three videos are obtained for each 

participant. 
 

B. Estimation Methods 

In this estimation, it is desirable to obtain the posture 

load at a specific point in time, so frame-by-frame images 

should be used for learning and estimation, rather than 

processing with video that includes time information. Hence, 

the video obtained by the experiment for a total of 15 trials 

for 5 using the Python module OpenCV (image processing 

library). The video of each participant is converted to an 

image at each frame rate, generating 1800 images per 

participant for a total of 9000 images. In addition, the 

lumbar load to be used as the true value is obtained by using 

VisionPose to detect the skeletal position coordinates from 

the videos of 15 participants in the trials. The first through 

fourth images of each trial as training data and the fifth 

image as validation data. The training data for each model 

are 1440 images and the of 5 participants in the same 

experiment. The derived disc compression force is 

normalized by dividing it by height and weight to eliminate 

differences due to body size. The normalized values are 

labeled as the true values for each frame of training data to 

create a deep learning model. After that, using the deep 

learning model created, estimation of lumbar load is 

performed on the validation data, and the normalized values 

are converted to disc compression force [N] by multiplying 

by height and weight.  

TABLE II. CNN LEARNING CONDITIONS 

 Set value 

Batch size 64 

Classes 100 

Epochs 200 

Dropout 0.2 

Convolution layer 

Filter size1 32 

Filter size2 64 

Stride 1 

Pooling layer Size (2, 2) 

Fully connected layer 64 

Upper body forward tilt angle [°] 0 10 20 30 Mean value 

Mean absolute error of angle [°] 2.17 ± 0.3 2.58 ± 1.1 4.58 ± 0.9 3.46 ± 4.3 3.20 ± 0.924 

L4/L5 intervertebral disc load [N] 365 ± 16.4 584 ± 6.50 798 ± 10.3 998 ± 19.2  
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Figure 4. The structure of the CNN learning conditions. 

 

In this paper, we use Convolutional Neural Network 

(CNN) for deep learning to estimate lumbar load.  

Numerical estimation is based on images, we consider that 

the same mechanism can be used for estimation as in the 

classification problem. The values of each parameter are 

shown in Table II. Figure 4 shows the structure of the CNN 

learning conditions used in this report. The CNN structure 

in the deep learning model consists of an input layer, 

followed by two convolutional layers, one pooling layer, 

two convolutional layers with dropout to prevent overfitting, 

one pooling layer, smoothing to prevent dropout to prevent 

overfitting, and output to an output layer after passing 

through all coupled layers one layer. The Relu function is 

used as the activation function in the convolution layer, the 

Relu function is used in the all-coupling layer, the Softmax 

function is used in the output layer, and Adam [18] is used 

for optimization. Keras Documentation [19] was used to 

create the above structure in Python. 

Keras.Callbacks.EarlyStopping is used as the termination 

condition, with the training error used as the monitor and 

auto as the mode. 

 

C. Individual Learning 

In this section, a deep learning model created for an 

individual confirms the applicability of the proposed 

method to a specific individual. A total of five deep learning 

models (Models A, B, C, D, and E) are created for each 

validation data, which are 360 images. The accuracy of the 

lumbar load estimated by the deep learning model is 

evaluated from each of the 360 images of the validation data. 

Figure 5 plots the estimates for each angle of forward tilt. 

The anterior tilt angle is calculated using a trigonometric 

function with the skeletal position coordinates indicating the 

body-centered shoulder and hip positions detected by 

VisionPose, based on the upright posture as 0 [°]. All model 

estimation results captured the trend of increased lumbar 

load due to upper body forward tilt as described in 

orthopedic clinical practice. Then, the lumbar load derived 

from the same verification data using AnyBody is compared 

to the estimated value as the true value. Figure 6 plots the 

estimated values from the deep learning model and the true 

values derived by AnyBody. Table III shows the Pearson's 

correlation coefficient and mean absolute error for each 

deep learning model. Pearson's correlation coefficients were 

0.993 at maximum, 0.978 at minimum, and 0.987 ± 0.00770 

at mean, indicating a high correlation in all models. In 

addition, the mean absolute error between the deep learning 

estimates and the true values derived by AnyBody was a 

maximum of 28.8 [N], a minimum of 22.5 [N], and an 

average of 26.3 ± 5.22 [N]. This is approximately 3.91 [%] 

of the average weight. Further, based on the results of the 

experiment described in Section III-B, the compression 

force changes by 21.1 [N] per 1 [°] of forward tilt angle. 

The average absolute error of the results of this experiment 

is equivalent to an error of 1.25 [°] of forward tilt angle, 

which is smaller than the average detection error of 3.20 [°] 

for the forward tilt angle in VisionPose. Therefore, the error 

is small. 

In response to this result, the deep learning model for the 

standing forward bending posture that was created was able 

to estimate the lumbar load of the participant with high 

accuracy, and the proposed method is applicable as a lumbar 

load estimation method for the individuals used in the 

training.  Thus, the user can check the posture change by 

own self by creating a deep learning model specialized for 

own self in advance. 

 

TABLE III. PEARSON'S CORRELATION COEFFICIENT AND MEAN ABSOLUTE ERROR FOR EACH DEEP LEARNING MODEL CREATED FOR AN INDIVIDUAL 

 Model A Model B Model C Model D Model E 

Pearson's correlation coefficient 0.983 ± 0.0101 0.994 ± 0.00172 0.993 ± 0.00271 0.978 ± 0.0178 0.990 ± 0.00617 

Mean absolute error [N] 28.4 ± 4.05 25.1 ± 3.79 26.8 ± 5.91 28.8 ± 7.39 22.5 ± 4.94 
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Figure 5. Intervertebral disc compression forces estimated for untrained 
data by a deep learning model created for an individual at each 

anterior tilt angle. For example, Model A plots the results of a deep 
learning model created for participant a using the first through fourth 
images of each trial as training data, and the fifth image of each trial 

is estimated as validation data. 

 

 

Figure 6. Comparison of disc compression forces estimated for untrained 
data by a deep learning model trained on an individual with the true 

values derived by AnyBody. 

 

D. Ensemble Learning 

In this section, a deep learning model created for several 

participants is used to verify the generalization performance 

of the proposed method. A total of five deep learning 

models (Models 1, 2, 3, 4, and 5) are created by cross- 

validating four of the five participants as training data and 

one as validation data. The training data for each model are 

7200 images and the validation data are 1800 images. 
Evaluate the accuracy of the lumbar load estimated by the 

deep learning model from each of the 1800 images of the 

validation data. Figure 7 plots the estimated values for each  

 

Figure 7. Intervertebral disc compression forces estimated for untrained 
persons by deep learning models trained on multiple people for each 
anterior tilt angle. For example, Model 1 plots the results of a deep 
learning model created with participants B, C, D, and E as training 

data, with participant A estimated as validation data. 

 

 

Figure 8. Comparison of disc compression forces estimated for untrained 
participants by a deep learning model trained on multiple people 

with the true values derived by AnyBody. 

 

angle of forward tilt. Although there were some outliers, all 

models captured the trend of increased lumbar load due to 

forward tilt of the upper body, as described in orthopedic 

clinical practice. Then, the lumbar load derived from the 

same verification data using AnyBody is compared to the 

estimated value as the true value. Figure 8 plots the 

estimated values from the deep learning model and the true 

values derived by AnyBody. Table IV shows the Pearson's 

correlation coefficient and mean absolute error for each 

deep learning model. Pearson's correlation coefficient was 

0.966 at maximum, 0.800 at minimum, and 0.888 ± 0.0274 

at the mean, indicating a high correlation, although inferior 

to individual learning. However, Figure 8 shows that 
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TABLE IV. PEARSON'S CORRELATION COEFFICIENT AND MEAN ABSOLUTE ERROR FOR EACH DEEP LEARNING MODEL WITH MULTIPLE PEOPLE TRAINED 

 

outliers were observed when the estimated values were 

between 300 and 400 [N]. In addition, the mean absolute 

error between the deep learning estimates and the true 

values derived by AnyBody was 126 [N] at maximum, 54.2 

[N] at minimum, and 79.2 ± 9.84 [N] on average. This is 

approximately 11.9 [%] of the average weight. Based on the 

results of the experiment described in Section III-B, the 

compression force changes by 21.1 [N] per 1 [°] of forward 

tilt angle. The average absolute error of the results of this 

experiment is 3.75 [°] of forward tilt angle, which is a 

higher value than the average detection error of 3.20 [°] for 

the forward tilt angle in VisionPose. Therefore, the error is 

large.  
However, Model 1 with the smallest average absolute 

error has an error equivalent to a forward tilt angle of 2.57 

[°], which is smaller than the average detection error of 3.20 

[°] for the VisionPose's forward tilt angle, and thus can be 

estimated with a small error. 

The deep learning models created for the standing 

forward bending posture target did not show sufficient 

generalization performance in estimation for untrained 

participants, due to variations in accuracy caused by some 

models satisfying the evaluation criteria and others not. 

 

V. CONSIDERATION 

The deep learning model created in Section IV-3 was 

used to estimate the lumbar load of untrained participants in 

several participants. The results showed that the estimation 

accuracy varied and the proposed method did not 

demonstrate sufficient generalization performance. This 

section considers the causes of this result and offers 

prospects for improving the accuracy of deep learning 

models. 

First, Figures 9 and 10 show the error rate and accuracy 

of Model 1. Model 1 has a relatively good Pearson's 

correlation coefficient and mean absolute error, with few 

outliers, among all deep learning models. Figure 9 shows 

the error rate per epoch during training for the Model 1 deep 

learning model. In the training data, the loss function 

decreases as the number of epochs increases. However, in 

the validation data, the loss function increases after a certain 

point. Furthermore, Figure 10 shows the accuracy per epoch 

during training for the Model 1 deep learning model. In the 

training data, the percentage of the accuracy increases as the 

number of epochs increases. However, in the validation data, 

there is no change in the accuracy value at a certain point in 

time. These figures suggest that overfitting has occurred. 

Citation [20] has been validated using MNIST and states 

that one of the causes of overfitting is lack of data. The 7200 

training data for the deep learning model created in this 

paper are extremely small compared to the 50000 training 

data for CIFAR-100, a data set with the same number of 

classifications. This indicates insufficient training data. 

Hence, the deep learning model is expected to be improved 

by increasing the training data. However, collecting huge 

amounts of data through experiments is costly and labor 

intensive. Therefore, one idea is to artificially edit image 

data through data expansion, as in previous research [21], to 

increase the training data without involving any actual 

experiments. Thus, it is expected to lead to an improvement 

in the accuracy of deep learning models. 

Second, Figure 11 shows the distribution of the image 

data acquired from the experiment for per normalized disc 

compression force. Figure 12 shows the distribution of 

 

 

Figure 9. Error rates for training and validation data for Model 1. 

 

 

Figure 10.   Accuracy for training and validation data for Model 1. 

 
Model 1 Model 2 Model 3 Model 4 Model 5 

Pearson's correlation coefficient 0.947 ± 0.0226 0.801 ± 0.0357 0.966 ± 0.00509 0.921 ± 0.0237 0.803 ± 0.0498 

Mean absolute error [N] 54.2 ± 10.4 89.4 ± 9.44 126 ± 9.49 57.0 ± 6.13 69.5 ± 13.8 
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Figure 11. Distribution of the number of image data acquired in the 
experiment per normalized disc compression force. 

 

 

Figure 12. Distribution of the number of images used as training data for 
Model 1 per normalized disc compression force. 

 

image data per normalized disc compression force used to 

train Model 1. Figure 12 shows that the amount of image 

data in the range of 30 to 35 normalized compressions used 

to train Model 1 was more than the other compressions. 

Further, a similar trend can be seen in all other models. 

Hence, the occurrence of outliers due to bias in the number 

of training data is another factor thought to reduce accuracy. 

Therefore, to verify the occurrence of outliers due to the 

bias in the number of training data, the number of image 

data is randomly deleted so that the number of image data 

between 30 to 35 becomes 800, the same level as the other 

range. A deep learning model was created using training 

data that had been adjusted to reduce bias in a simplified 

manner by this process, and the accuracy of the model was 

verified. Figure 13 plots the estimated values for each angle 

of forward tilt. All results of model estimation captured the 

trend of increased lumbar load due to forward tilt of the 

upper body as described in orthopedic clinical practice. 

Figure 14 plots the estimated values by the deep learning 

model using the training data after bias adjustment and the 

true values derived by AnyBody. Table V shows the 

Pearson's correlation coefficient and mean absolute error for 

each deep learning model created using the training data 

after bias adjustment. Pearson's correlation coefficients were 

0.971 at maximum, 0.843 at minimum, and 0.936 ± 0.0361 

at the mean, reducing the outliers seen in Figure 8 when the 

estimates were 300~400 [N], and showing a higher 

correlation than the results in Section IV-3, in which the 

training data were biased. In addition, the mean absolute 

error between the deep learning estimates and the true 

values derived by AnyBody was 126 [N] at maximum, 44.7 

[N] at minimum, and 80.1 ± 12.37 [N] on average. Next, the 

bias adjustment is made to confirm what changes occur in 

each of the deep learning models. For Model 2 and Model 5,  

 

 

Figure 13. Intervertebral disc compression forces estimated for untrained 
persons by deep learning models trained on multiple people using 

bias-adjusted training data for each anterior tilt angle. 

 

 

Figure 14. Comparison of disc compression forces estimated for untrained 
participants by a deep learning model trained on multiple people 
using bias-adjusted training data with the true values derived by 

AnyBody. 
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TABLE V. PEARSON'S CORRELATION COEFFICIENT AND MEAN ABSOLUTE ERROR FOR EACH DEEP LEARNING MODEL WITH MULTIPLE PEOPLE TRAINED 

USING BIAS-ADJUSTED TRAINING DATA 
 

Model 1 Model 2 Model 3 Model 4 Model 5 

Pearson's correlation coefficient 0.843 ± 0.159 0.938 ± 0.00524 0.972 ± 0.00439 0.960 ± 0.00674 0.968 ± 0.00590 

Mean absolute error [N] 80.0 ± 35.2 73.8 ± 3.18 126 ± 9.47 80.3 ± 6.65 44.7 ± 7.32 

 

where many outliers can be seen in Figures 7 and 8, the bias 

adjustment significantly improved the outliers. 

Accompanying this improvement was an increase in 

accuracy in both Pearson's correlation coefficient and 

absolute mean error. However, Model 1 after bias 

adjustment was less accurate than Model 1 before bias 

adjustment for both Pearson's correlation coefficient and the 

absolute value of the mean error. Otherwise, Model 4 after 

bias adjustment improved the correlation coefficient and 

worsened the mean absolute error. Model 3 confirmed no 

change in accuracy due to bias adjustment. 

In the two indices used to evaluate the accuracy of this 

paper, the accuracy by average of all models was lower than 

the results in Section IV-3, in which the training data were 

biased. In some of these cases, the correlation coefficient 

improved and the mean absolute error worsened, while in 

other cases both Pearson's correlation coefficient and mean 

absolute error worsened. Although, the outliers are 

eliminated in all models. Figures 15 and 16 show the error 

rate and the accuracy per epoch during training for the 

Model 1 deep learning model after bias adjustment. 

Although a minute change, the results of the validation data 

track the results of the training data, indicating that 

overfitting can be prevented by correcting the bias in the 

data. Hence, the possibility of improving the accuracy of the 

deep learning model was observed by homogenizing the 

training data. Furthermore, in this study, the training data 

was acquired through continuous repetition of forward 

bending movements, thus there is probably room for 

improvement with respect to this approach. 

If these problems can be improved and applied to 

untrained users, it will be possible to estimate lumbar load 

with a deep learning model prepared in advance, without 

having created a deep learning model specific to the 

individual in advance. That is, the scope of application can 

be expanded to include untrained user for general use. As a 

result, the system will not only improve the posture of users 

who habitually have bad posture, but also enable healthy 

users to easily use the system as a preventive measure. 

 

VI. CONCLUSIONS 

To prevent lumbago, it is effective to constantly observe 

the posture of daily life. Therefore, we will develop a 

method to quantitatively estimate and visualize the load 

applied to the user's own body without any burden on the 

user. To achieve this, this study proposes a body load 

estimation method used on a deep learning model that uses 

web images and body load derived by AnyBody as training  

 

data. In this paper, as a preliminary step, we created a deep 

learning model using only lumbar load as the body load and 

assuming a stationary standing forward bending posture. 

After that, the accuracy of estimating lumbar load from web 

images using the created deep learning model was evaluated. 

In the individual learning model, a high correlation was 

obtained between the estimates by the deep learning model 

and the true values derived by AnyBody, indicating that the 

errors were small. Therefore, it is possible to create a deep 

learning model in advance specifically for a specific user by 

using specialized software to create a deep learning model 

to be applied to that user. Thereafter the user to estimate the 

lumbar load in the target posture simply by inputting images, 

and can check the posture transition by own self. Hence, 

improvement of posture suited to individual will be possible 

without repeated visits to the hospital. 

 

 

Figure 15. Error rates for training and validation data for Model 1 after bias 
adjustment. 

 

Figure 16.    Accuracy of training and validation data for Model 1 after bias 
adjustment. 
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The other is, ensemble learning models showed high 

correlations, but models with high and low accuracy were 

identified, with a large variation in accuracy, and they did 

not show sufficient generalization performance. However, it 

was confirmed that data bias was one of the contributing 

factors to the lower accuracy. Therefore, if the data bias is 

improved, the proposed method has the potential to be 

applicable as a lumbar load estimation method to untrained 

persons.  

The deep learning model created in this paper only 

covers the estimation of lumbar load in the forward bending 

posture of the upper body. However, the AnyBody used to 

derive the lumbar load in this paper can derive various body 

loads on the body from single measured data. Therefore, 

various body loads are obtained from a single image data, 

and a new deep learning model is created using this as 

training data. That is, it is possible to estimate selected body 

loads in each posture by acquiring various loads applied to 

each body part from images of postures that are considered 

to have a large load on the lumbar, such as hunching back 

and warped back, including the upper body forward bending 

posture targeted in this paper, and learning them together 

with the images. In addition, the accuracy of the deep 

learning model is improved by optimizing the program 

through filtering and attention mechanisms.  
If these methods can be used to estimate the body load 

of any posture with a high degree of accuracy, the system 
can be developed into a system that quantifies and presents 
the load based on the proposed methods, allowing users to 
observe their own posture without burden. Thus, raise 
awareness of improvement, prevent lumbago, and ultimately, 
maintain and promote health.  
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Abstract—Digital Health Technologies (DHT) utilize a combina-
tion of computing platforms, connectivity, software, and sensors for
healthcare-related uses. Today, these technologies collect complex
digital data from participants in clinical investigations, including
a large amount of wearable sensor signals. These collected data
are used to develop digital biomarkers (dBMs), which can act as
indicators for health outcomes for monitoring life quality and
measuring drug efficacy. One essential step towards realizing
the full potential of these complex digital data is to define the
fundamental principles and methods to demonstrate sufficient
data quality and fidelity needed for the research. This paper aims
to develop a digital data quality assessment framework across
the complete data life cycle in dBM research, including data
quality metrics and methods to analyze and report digital data
quality. Aggregating and reporting digital data quality is often
challenging and error-prone. We developed Magnol.Ai, a data
platform equipped with data quality assessment and reporting
tools that allow us to define data compliance criteria and view
data quality reports at different levels in a consumable fashion.

Keywords—digital health technology; connected clinical trial;
sensor data; data quality assessment; data visualization; digital
biomarker.

I. INTRODUCTION

Digital biomarkers (dBMs) are patient-generated physio-
logical and behavioral measures collected through connected
digital devices. The collected data are then used to explain,
influence, or predict an individual’s health-related outcomes
(see [1], [2]). While the development of dBMs invests heavily
in advanced analytics, effective results depend on trusted and
understood data collected from digital devices. An established
data quality assessment framework is thus needed to define
the expectation of data, monitor the data for conformance to
expectations throughout trials, and report various measures to
assess the data quality (see, e.g., [3]). Establishing a meaningful
data quality function will help reduce risk throughout the dBM
research activities, ultimately ensuring that the criteria for
success are met.

Today, we use DHT (see, e.g., [4]) to collect some of the
most complex digital data from patients for dBM research.
There has been an overall need for better understanding of

data, as well as easier access to both data quality and trusted
digital data to support operational and analytical activities in
the research. Establishing a data quality assessment framework
and building software tools to facilitate the assessment is an
emerging industry capability. Some unique challenges for this
class of data quality strategy include:

• Complexity of digital data — We collect some of the
most complex digital data in the dBM context, including
sensor signals from wearables, patient-reported outcomes
from hand-held devices, and labels and annotations pro-
cessed and used as ground truth information for algorithm
development. Handling the wearable sensor data can be
challenging. For example, with a sampling frequency of
50Hz, over 4 million 3-axial data points are collected from
an accelerometer sensor for a single day to understand a
patient’s daily activities. Similar sensor data streams in-
clude, e.g., continuously collected photoplethysmography
(PPG) and electrocardiogram (ECG) signals from trial
participants.

• Full-spectrum quality expectations — Defining quality
expectations for digital data and monitoring their con-
formance to expectations are full-spectrum in the data
life cycle. For example, given that data can be collected
in a free living environment, scanning the invalid values
and noises in wearable sensor signals is often the first
profiling step. Identifying the wearable sensor signal’s
useable (wear-compliant) portions is also a leading data
quality function. The ultimate answer to the digital data
quality question is the extent that our digital data satisfies
the specific requirements needed for dBM analysis.

• Aggregation and reporting — Generating various mea-
sures to assess digital data quality is not trivial. For
example, aggregating compliance information from signal
level to the number of analyzable digital measures at
the visit and study levels can often be tedious and error-
prone. More challenging is reporting data quality in an
efficient and effective means across the data life-cycle, and
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with more difficulty, at individual participant level, which
requires tools to extract and report quantified compliance
information, including patterns.

In this paper, we build upon our prior work [1] in the field of
data quality assessment. Our contributions can be summarized
into two significant parts:

• Introduction of Magnol.Ai Data Platform: We introduce
Magnol.Ai, a comprehensive data platform tailored to
support digital dBM research. At its core, Magnol.Ai
incorporates an enhanced data quality assessment frame-
work as an integral component. We begin by offering an
overview of the primary digital data categories central
to our research focus. Subsequently, we delve into the
various metrics employed for profiling digital data quality
and their application at multiple aggregation levels.

• Data Quality Reporting Dashboard: This paper also
presents our innovative Data Quality Reporting Dashboard
integrated within Magnol.Ai. The dashboard unifies and
streamlines all data quality assessment functions into a
cohesive system. It empowers data stewards and quality
analysts by allowing them to work seamlessly with
specific study data. Users can run processes through
interactive workflows and effortlessly generate consumable
data quality reports within a centralized, cloud-based
ecosystem.

This paper is organized as follows. Section II presents the
related work. We present our digital data quality assessment
framework and the visual interfaces and tools we developed
in Section III. In Section IV, we showcase the data quality
reporting portal and the underlying data infrastructure of
Magnol.Ai and finally, we conclude the paper in Section V.

II. RELATED WORK

Developing dBMs requires conducting studies in a lab or
free-living settings to collect raw sensor data, often with
appropriate labels and annotations (e.g., reported patient
outcomes). Collection and analysis of wearable sensor data,
together with other digital data sets, has thus become an
emerging capability needed in dBM development.

Industry players have begun exploring cost-effective and
purpose-built solutions in the past few years. For example,
the Medidata sensor cloud [5] is used to manage wearable
sensor and DHT data for clinical trials. The Koneksa platform
[6] provides support to improve compliance monitoring and
patient engagement, and other representative efforts to store and
deliver raw or processed data from devices in trials, including
Evidation [7] and DHDP [8].

Meanwhile, good data is more important than big data in
dBM development. Given that wearable sensor data can be
collected from participants in a free-living environment, noises,
missingness, and invalid values in wearable sensor signals are
inherent. To extract and leverage useful and meaningful sensor
data, we need to monitor the quality and eventually standardize
and process them to support dBM research, as digital data
quality is of fundamental importance to developing algorithms
for new dBMs (see, e.g., [9] [10] [11]).

In this paper, we are mainly concerned with digital data sets
that fall into four general categories:

• Raw Sensor Signals. A device typically collects data from
multiple sensor signals at varied pre-configured sampling
frequencies to minimize study participants’ burden under
free living conditions. In most cases, the sensor signals
are collected in a nonstop 24 ∗ 7 fashion throughout
the entire study, which generally runs between weeks
to months. Therefore, assessing potential issues, such as
sensor malfunctioning, or wear non-compliance due to
participants’ behaviors, is critical to ensure data quality
can satisfy the downstream analytics needs. Meanwhile,
the quality and coverage of sensor data directly correlate
to the dBMs derivation, which will be discussed in the
later sections of this paper.

• Scored Data, or Digital Biomarkers. In addition to
raw sensor signals, device companies usually have their
proprietary algorithms to analyze sensor data and derive
dBMs from it. For example, heart rate and blood volume
pulse can be derived from the raw photoplethysmography
(PPG) sensor signal. Derived dBMs are at a much lower
resolution than the sensor signal, often at the minute or
half-minute level.

• Labels/Annotations. As algorithms and machine learning
models used in developing dBMs become more complex,
requirements for large annotated data sets grow. Annotat-
ing data for machine learning applications is especially
challenging in the biomedical domain as it requires the
domain expertise of highly trained specialists to perform
the annotations. Annotations can come as interval-based
events, with precise timestamps to label the onset and
offsets of disease events.

• Clinical Records. Apart from raw sensor data and derived
dBMs, one yet important piece of data is clinical records
that provision key mappings, e.g., device ID to participant
ID, participant ID to the treatment cohort, visit dates to
treatment phases, etc.

Unique challenges arise from these digital data and have
made a case for us to develop a data quality assessment
framework to define the expectation of these digital data (e.g.,
completeness, uniqueness, validity, integrity), to monitor the
data for conformance to expectations throughout the dBMs
trials, and, finally, a user interface as the front-end of Magnol.Ai
to display the findings to support operational and analytical
activities.

III. DIGITAL DATA QUALITY ASSESSMENT FRAMEWORK

The key functions in our data quality assessment framework
should now be clear in Figure 1. The logical series of modeling
steps, the problems they induce, and the ultimate resolution of
the problems are in the rest of this section as follows.

A. Signal Data Quality Metrics

In the pre-study phase, we establish the Data Transfer
Agreement (DTA), to clearly define data quality metrics
regarding signal data, including raw sensor signals and dBMs.
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Figure 1: The overall data quality assessment scenario — from establishing the data transaction report (DTA) in the pre-study phase, to
compliance monitoring in the live phase, and finally to the quality assessment and reporting in the post-Database Lock (DBL) phase.

TABLE I: EXAMPLE OF A SIGNAL DATA QUALITY METRICS TABLE FOUND IN A TYPICAL DTA DOCUMENT.

Channel Description Units Min Value Max Value Invalid Value Sampling Frequency (Hz)
accelx Accelerometer X Vector gravity/1024 -32768 32767 None 50
accely Accelerometer Y Vector gravity/1024 -32768 32767 None 50
accelz Accelerometer Z Vector gravity/1024 -32768 32767 None 50
ec ECG signal µV -10000 10000 32767 125
st Step count Steps 0 65535 None 1
hr Heart rate beats/min 30 200 0 0.25
re Respiration rate beats/min 4 42 0 0.25
po Posture Enum 0 11 5 1

• Laying Down = 0
• Standing = 2
• Walking = 3
• Running = 4
• Unknown = 5
• Leaning = 11

Below we list the typical quality metrics, and Table I gives an
example of the data quality metrics table we find in the DTA,
where accex, accely, accelz and ec are raw sensor signals,
st, po (categorical) are derived dBMs (or, scored data) from
accelerometry data, and hr and re are the scored ones from
ec.

• Sampling Frequency — For raw sensor signals, the
sampling frequency is the preconfigured average number
of samples obtained in one second. For derived dBMs, it
is the resolution of resultant features from analyzing raw
sensor data.

• Valid Range — For numerical variables (i.e., sensor
signals and dBMs), the valid range is indicated by
minimum and maximum values that can be measured.
For enumerated variables, the valid range is a list of

predefined categorical values. One example is the rest
classification biomarker, which has the following classes:
“awake”, “sleep”, “toss and turn” and “interrupted”.

• Invalid Value/Error Code — In addition to the valid
range, devices often provision specific invalid values or
error codes to indicate different statuses of malfunctioning,
which help pinpoint the underlying issue.

B. Signal Data Quality Assessment

Connected clinical trials for dBM research often are con-
ducted under a free living condition, i.e., participants wear
sensor devices on a best effort basis using instructions com-
municated during study enrollment. Inevitably, the free living
conditions, potential for device failure or malfunction, and
device wearing compliance introduce data issues such as
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Figure 2: Illustration of sensor signal data issue. Visualized sensor data show different patterns when worn correctly versus incorrectly.

missing data or invalid data collected when participants do
not wear or incorrectly wear the devices. Figure 2 illustrates
how valid signals (i.e., correctly worn signals) can mix with
invalid signals (i.e., incorrectly or not worn signals) in the
data collection and how they differ when plotted. Therefore,
a qualitative means is needed to tell whether a device was
operating normally and worn correctly (i.e., data usefulness).

To fulfil this goal, the quality assessment is performed in
two stages, as discussed in the following.

• Validity Check. Data validity checks leverage signal data
metrics, as discussed in Section III-A. We immediately
know how many valid data points we expect to receive for
a sensor signal or dBM using its pre-configured sampling
frequency. We can filter out invalid values with a valid
value range to get valid data coverage, i.e., coverage of
valid data points.
Since raw sensor signal directly correlates with derived
dBMs, we can perform a validity check against the two
independently and then align their valid data coverage
to check the consistency. We may further overlay device
incident events to understand the root cause of observed
issues better.

• Non-wear Detection. After dropping out invalid data
through the validity checking process, the subsequent task
is to detect moments when the devices were not correctly
worn. The non-wear detection can be challenging as data
from such moments can be entirely valid in terms of falling
within its valid data range. Instead of reinventing the wheel,
we rely on Biobank [12] [13], an accelerometer data
processing pipeline whose non-wear detection module is
widely adopted as a standard. Below are two key concepts
in non-wear detection.

– Epoch — Although data points are collected initially
at a high resolution, e.g., 50Hz sampling frequency,
the processing is conducted on aggregated values
(e.g., 1 or 5 second short epochs or 15 minutes long
epochs) due to the following reasons: (1) collapsing
data to epoch summary measures helps to standardize
differences in sample frequency across studies; (2)
there is little evidence that raw data is an accurate
representation of body acceleration, and all scientific

evidence so far has been based on epoch averages;
(3) collapsing data to epoch summary measures also
helps to average out different noise levels making
results more comparable across sensor brands.

– Non-wear Detection — Accelerometer non-wear time
is estimated based on the standard deviation and the
value range of the raw data from each accelerometer
axis. Classification is done per 30-second epochs
based on the characteristics of a larger window cen-
tered at these 30-second epochs. Specifically, Biobank
identifies stationary periods in 10-second windows
where all three axes have a standard deviation of
less than 13.0mg (1mg = 0.0098m · s−2). These
stationary periods are then used to define whether a
window is stationary or not.

C. Signal Data Quality By Granularity

In addition to qualitative assessment as discussed in Sec-
tion III-B, quantitative measures that define how much usable
data is in a specific period (i.e., data quality at different levels)
are required before statisticians can begin analysis.

The Data Quality Model. Based on Biobank’s non-wear
classification on 30-second epoch level, we can further generate
data quality that can be used for analysis at different time
resolutions. Each phase in our data quality derivation flow is
illustrated in Table II to Table V and expanded upon below.

• Epoch Level — This table is generated from Biobank’s
30-second epoch classification. It serves as the working
basis for subsequent data quality tables. Note that we have
one additional column, “Subject,” to indicate participant
ownership of an epoch.

• Hourly Level — From the epoch quality table, we can
apply a filter to only keep correctly worn epochs and
in turn infer hourly data coverage in terms of compliant
minutes. This hourly data quality table is the source for
data quality reporting at the finest granularity.

• Daily and Intraday Window Level — From the hourly
data quality table we can summarize the total coverage
for each day and produce daily level data quality tables.
In addition, for analysis purposes, we are often interested
in specific intraday windows from which digital endpoints
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TABLE II: EPOCH LEVEL
QUALITY.

Subject Timestamp Non-wear

1002 2021-09-15 false
19:15:00

. . . . . . . . .

1005 2021-10-18 true
09:45:30

TABLE III: HOURLY LEVEL
QUALITY.

Subject Date Hr Coverage
(minute)

1002 2021- 19 45
09-15

. . . . . . . . . . . .

1005 2021- 09 60
10-18

TABLE IV: DAILY AND INTRADAY
LEVEL QUALITY.

Subject Date Coverage Window
(minute)

1002 2021- 1440 pa daily
09-15

. . . . . . . . . . . .

1005 2021- 720 sleep night
10-18

TABLE V: EXTENDED QUALITY WITH EXTERNAL MAPPINGS.

Site Subject Date Trial Day Index Visit Coverage Window
(minute)

101 1002 2021-09-15 1 0 1440 pa daily
(PreTreatment)

. . . . . . . . . . . . . . . . . . . . .

103 1005 2021-10-18 32 4 720 sleep night

are derived — for instance, walking time or step count
during the daytime (i.e., daily physical activity) and sleep
hours during the nighttime. Thanks to the “Hour” column
in the hourly quality table, intraday window coverage can
be easily derived by applying filters.

• Extended Quality with External Mappings — We
can further extend the data quality table with additional
mappings when they become available as the study
progresses, for instance, mapping between patients and
sites/visits, as reported from the clinical operation site.
These extra fields allow analysis-specific filtering and
aggregation, e.g., to find out which participants have
sufficient data and set up individual baselines. We use
this table to look for the patients with at least three valid
days (>= 20 hours of data for a day to be qualified as a
valid day) during a pre-treatment visit.

D. Representing Digital Data Quality

Fully understanding the quality of a large dataset, especially
one that contains data from wearable device sensors, is not
always a trivial undertaking. With numerous considerations to
be cognizant of, as discussed in Section III-C, the most logical
first step is to present the data with visualizations. Thoroughly
understanding the data coverage and quality requires more than
one visualization, simply because there is more than one aspect
to check. This section presents a family of commonly used
visualization examples in our data quality strategy.

• Identifying Outliers and Missing Data. Certain metrics
must fall between threshold ranges depending on the
study and associated data sources. One example is heart
rate, which falls within a specified range of 30 to 200
beats/minute for one study. This range is outlined in the
DTA for the study and must be applied to all heart rate
data points collected. By plotting these signals against the
specified thresholds, outliers can be immediately detected
by viewing a plot. If outliers exist, further investigation
will be completed for that participant’s data to see if

there are outliers for other metrics. Further, gaps in
data can be identified within the same visualization, as
demonstrated in Figure 3(a). Detailed data quality reports
are generated in conjunction with the visualizations created
for displaying outliers and missing data. For example, we
convert the signal data from 3(a) to a sequence of colored
blocks in Figure 3(b), with green blocks indicating valid
sensor signal value in the corresponding period and red
indicating missing or invalid signal value identified. In
Figure 3(c), we compute the valid data ratio, and therefore
can represent the data quality with a numeric value, or
with a color from the color palette, keyed to the valid
data ratio (see e.g., Figure 3(d)).

• Data Quality Map with Levels of Detail. The quality
of sensor signal data must be examined on various levels,
each offering a specific level of detail. While certain levels
are more useful for identifying distinct patterns, we will
focus on the hourly, daily, and study levels on both a
patient and population level:

– Minute-by-Minute Quality Map for a Day — Exam-
ining signals on a minute level can help to identify
the minutes where a device may have intermittent
connectivity, or more minor issues can be identified
and further inspected, as seen in Figure 4(a).

– Hour-by-Hour Quality Map for a Trial — Zooming
out, we can look at each hour across all days in
the study. The hourly level aggregation mentioned in
Section III-C is used to configure the day level plot,
shown in Figure 4(b). This figure shows minutes of
data coverage for each hour across all study days. This
type of visualization allows us to look at compliance
trends for a patient that may persist during certain
hours of each day. Figure 4(b) shows an interesting
device wearing pattern for the participant — taking
off the wearable device to charge the battery for a
couple of hours in the middle of each day of the trial
has resulted in missing data, visualized as a sequence
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(a)

(b) (c)

−−−−→
60.61%

(d)

Figure 3: Visualization for sensor data quality. (a) Heart rate data (beats/minute) observed for one participant between 2021-02-15 07:49:00.000
and 2021-02-15 08:11:00.000. Valid range between 30 - 200 beats/minute, as denoted by threshold lines. Invalid data was observed multiple
times. Missing data was observed between 2021-02-15 08:01:08.994 and 2021-02-15 08:06:09.000 with nearly 5 minutes of no data. (b)
Use colored blocks to represent sensor signal data quality. (c) Deriving numeric representation of the data quality, i.e., valid data ratio. (d)
Interpreting data quality with color.

(a)

(b)

(c)

(d) (e)

Figure 4: Plots showing (a) minute-level quality representation throughout a participant day, (b) hourly-level quality representation for a
participant throughout an entire trial, (c) daily-level quality for a population throughout the entire trial, (d) number of compliant days across
all days in a study and (e) data coverage and device wearing issues observed throughout a study.

of red blocks in the center area of the map.
– Day-by-Day Population-level Quality Map for a Trial

— Plotting data quality for all hours, days, and
participants in a study yields the observation of data
quality patterns seen in Figure 4(c). This study-level
visualization can help us gain insights into the overall
data quality at the population level and the compliance

trends at the participant level throughout the trials.
– Compliant Days Throughout a Trial — In addition to

the number of hours per day, it is also useful to view
the number of compliant In addition to the number of
hours per day, it is also useful to view the number of
compliant days throughout the study, with a definition
of compliance dependent on a study’s protocol. One
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(a) (b) (c)

Figure 5: Putting together compliance reports for Intervention-Specific Appendices (ISAs) under Chronic Pain Master Protocol (CPMP). (a)
Generated compliance reports on the patient level. (b) Compliance by visit. (c) Customizable compliance report at patient level.

can recognize device-wearing patterns by plotting the
number of patients compliant daily in a given study.
As seen in Figure 4(d), the number of compliant days
in a study decreased due to reduced device wearing
as the study progressed.

• Identifying and Aligning Data Issues. In many clin-
ical trials, it is a requirement that patients visit a site
periodically. Whether it be for receiving dosing of a
drug, having their vitals checked, or obtaining a device,
information is collected by the sites and stored in various
reports. One type of report, device reports, are used during
data processing and can help understand the device’s
overall performance, specifically if any device issues exist.
Additionally, information derived from these reports can
be used to populate visualizations such as Figure 4(e). By
combining this visualization with the information received
in site reports, patterns specific to potential device issues
and wearing patterns can be derived.
From the aforementioned data visualizations, various
issues and patterns can be identified. When these are
paired with actionable recommendations and delivered to
the study team promptly, the study team can notify the
corresponding site and participant to ensure the issue is
rectified. This process leads to a quick turnaround time for
potential improvements to data collection and can resolve
the challenges that create low compliance in studies.

E. Generating Compliance Reports

Visualizing data is key to understanding data quality, as
discussed in Section III-D. However, it is equally important
to have a standardized reporting system for compliance to
distribute quality and compliance information. Such systems
generate reports that outline compliance on three levels: trial,

site, and patient. In addition, automated generation allows
systems to be configured at the start of a trial and run at
set cadences to produce consistent quality assessment reports
efficiently.

For each report, regardless of the level or contents, the
thresholds used to configure and derive data metrics and
visualizations are based on the expectations outlined in the
study protocol. Each report aims to give insights into the
population’s compliance behavior:

• Trial Summary: A single comprehensive trial report can
be generated and contains metadata regarding the number
of patients, sites, and overall compliance percentages.

• Study-Level Compliance: A study-level report, such
as Figure 5(a), will typically contain metrics displaying
overall enrollment and compliance on a site level. These
can allow a clinical trial team to gauge the progress of
a specific study easily, i.e., the number of patients who
have completed their time in the study and the number
of patients still in progress.

• Site-Level Compliance: Generating reports based on sites,
as seen in Figure 5(b), allows clinical teams to efficiently
identify which sites may be experiencing issues regarding
low compliance across their assigned patients. Typically,
site reports contain information for overall performance,
with specifics for patients that may fall below a set
compliance threshold. The patients with low compliance
are labeled with a potential issue- such as low compliance
during the nighttime. The potential issues are derived from
the hourly compliance for that patient. From here, sites
can identify which of their patients contribute most to
low compliance and attempt to resolve the issues linked
to the low compliance.

• Patient-Level Compliance: Reports on a patient level
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Figure 6: A plot of sensor signals overlaid with annotation labels is used to assess the data quality of annotations in conjunction with sensor
signals.

can give insight into their specific patterns of device
wearing. In these reports, as seen in Figure 5(c), the
number of visits, compliant days within each visit, and
compliance percentage per visit are displayed. In addition,
an hourly compliance heatmap is visible, allowing for
further understanding of when patients wear their devices
across the study duration.

F. Data Quality in Novel Digital Endpoint Development

For novel digital endpoint development, raw sensor signals
are collected along with annotations or labels, considered the
ground truth. Annotations describe events explaining the status
of the patient. As such, it is critical to assess the data quality
of annotations and sensor signals to identify and address as
many defects as possible.

Assessing Annotation Quality. Annotations are typically
collected through patient reporting via a survey system or are
labeled via software by trained clinicians who observe patient
behavior. We first check for defects in the annotations. Defects
may include improper data structure, invalid label categories,
incomplete annotations, duplicates, and impossibly overlapping
annotations. Defects could be caused by bugs in the annotation
software or improper training on how to label.

Assessing Annotation Quality with Sensor Signals. Eval-
uating annotation quality in isolation is insufficient because
digital endpoint development requires both annotations and
raw sensor signals. So, we must also assess the data quality of
annotations and raw sensor signals in conjunction. Therefore,
we plot annotated time segments along with raw sensor signals
(e.g., Figure 6) to facilitate the data quality assessment.

Discrepancies in the alignment of annotations and raw
sensor signals can vary considerably due to time tracking
configurations and device properties in each step of the
data collection process. Misalignment between annotation and
raw sensor signals can be caused by improper device time
configuration or the precision of the sensor device’s initial
time configuration. In addition, if the sensor device’s time
tracking is not periodically synced, the device’s internal Real-
time clock (RTC) will slowly drift over time. We measure
drift using the sensor signal overlaid with annotation plots.
Once the misalignment from the initial configuration time and

RTC drift are measured, we align the raw sensor signals to the
annotations.

After the annotations and sensor signals have been properly
aligned, we observe the plots to identify possible defects
in annotation quality. Defects could include improper labels,
annotated events that are not apparent in the sensor signals,
and time segments that appear to be missing annotations or
sensor signals. Specific time segments of concern are selected
and validated with the source to determine if further action is
needed.

Lastly, depending on study-specific requirements, we may
apply other methods to assess data quality. For example, output
from movement detection algorithms can be compared to
annotated time segments that describe the movement to check
annotation validity and coverage. Using various methods to
assess data quality from different approaches is essential to
maintain the data quality needed for novel digital endpoint
development.

Throughout a clinical trial, accessing data quality metrics
is critical to upholding our outlined principles. Therefore, in
addition to the compliance reports generated, an interactive
data quality assessment tool is needed to monitor data quality
throughout a trial. We are thus motivated to establish a data
platform, i.e., Magnol.Ai, that allows users to customize the
plots to view digital data and the associated data quality reports
through various lenses, utilizing filters and other user controls.
For example, users may want to view the raw sensor data at
the scale and resolution they desire, review derived compliance
reports on a day, visit, or patient level. Figure 7(a) is such a
typical screen image of the dashboard of Magnol.Ai where users
can select the level and the metric for which the visualization
will show accordingly. A user wants to view compliance for
all patients in a study on the visit level, as seen in Figure 7(b).
They define compliance as having at least 12 hours of data
daily, with 3 days each visit comprising a compliant visit. By
selecting the compliance type, which in this case is visit, and
inputting the number of hours and days for defining compliance,
the user can see the population’s compliance report with these
specific thresholds, as seen in Figure 7(a). Additionally, they
can easily compare and contrast different levels and compliance
thresholds within Magnol.Ai’s dashboard.
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(a)

(b) (c)

Figure 7: The platform features displaying (a) filters for customizable compliance reports, (b) compliance by visit, and (c) generated
compliance reports on the patient level.

In addition to the compliance assessment, data quality
visualizations, such as Figure 4, are created and customized
within the platform. For example, as seen in Figure 7, a user can
select a specific time range or time level to view the data. This
zoom in and out can be used to identify and trace patterns of
device wearing. The sensor data visualization, supplemented by
the data quality assessment capability allows for customizable,
real-time, informative visualizations that enable insights into
patient compliance and device-wearing data patterns. The study
team can process and act upon these key insights with these
visualizations housed in a centralized, consistent, and efficient
platform.

IV. MAGNOL.AI — PUTTING TOOLS TOGETHER FOR
DIGITAL BIOMARKER RESEARCH

In this section, we focus on a few key building blocks of
our data platform, i.e., Magnol.Ai, which continuously ingests,
visualizes, and profiles digital data for quality analysis and
digital measure derivation. We introduce how we organize the
various digital data sets collected from studies, and then how
we present these digital data sets with interactive dashboards to
help researchers navigate and explore these digital data, view
the data quality reports and uncover data insights. Finally
we focus on the technologies we leverage for cloudifing,
versioning, and parallelizing Magnol.Ai’s computing jobs for
quality analysis and digital measure derivation.

A. Organizing Digital Data in Magnol.Ai

Organizing and presenting digital data from wearables is vital
to the success of using digital technologies in a clinical study,
and is a key consideration to regulators. Inside Magnol.Ai
these wearable sensor data are stored and organized at study
level for authorized visualization and access, with a few key
attributes that can be leveraged to further subset or group the
digital data in Magnol.Ai’s data portal:

• ISA: There are cases where an overarching study consists
of various unique studies, or a ‘suite’ of studies. In this
case, each individual study is described as being an ISA.
Using the aforementioned CPMP study suite, we see
that there various ISAs. As seen in Figure 8, Magnol.Ai
handles this case by treating each ISA as an individual
study, under the umbrella of the overarching CPMP study.

• Cohort: A cohort is a grouping of participants in a given
study that is specific to an activity or criteria as outlined
in the study protocol. For example, in a drug trial, there
can be a cohort for each specific drug dosage, as well
as a placebo cohort. In an observational study, there can
be cohorts that contain subjects who have varying levels
of severity for a given disease state, as well as a healthy
population cohort.

• Participant: Wearable sensor data are collected from
participants enrolled in each clinical study. Displaying
various sensor data collected from each participant as well
as the derived features and data compliance is one typical
way for one to explore sensor data using Magnol.Ai’s
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Figure 8: A typical “study suite” view in Magnol.Ai, where there are multiple ISAs, i.e., individual studies, under this overarching “suite”.

(a) (b) (c)

Figure 9: Navigating studies and exploring digital data sets with Magnol.Ai’s dashboards. Key visuals: (a) side navigation panel, (b) study
overview dashboard example, and (c) sensor data and derived features visualizations.

dashboard (see e.g., Figure 9(c)).
• Time Range: Magnol.Ai allows one to view the full

spectrum of all digital data collected in studies, or use
controls to explore the data at the scale or resolution
desired by the user.

By designing Magnol.Ai to work with various organizational
hierarchies for study design, it can properly house and display
the needed information, including an overview of a study, as
seen in Figure 9(b). When beginning data exploration for a
given study, users need to know the basic overview of study
activities and study population. Magnol.Ai’s custom design
allows all study overview information to be viewed in one
single dashboard. The study overview page contains high-level,
universal metrics including the number of devices, endpoint
descriptions, and study timeline.

B. Visualizing Wearable Sensor Data and Reporting Quality
In addition to the study overview page, each study contains

various dashboards belonging to each type of data, including
sensor data, ePRO data, and compliance data. Users can
easily navigate to a given dashboard within a study directly
from the study overview page. With each tab holding specific
information, organizing the information from studies becomes
as simple as making a new dashboard for each desired type of
data. Taking compliance data as an example, a user would need
to see an overview of compliance on a study level, as well
as compliance on a participant level. By building dashboards

representative of these two aggregation levels, these dashboards
can be housed under ‘Compliance’.

Compliance Overview The compliance overview dashboard
shows aggregated levels of compliance at the study-level. These
metrics account for all subjects, regardless of cohort, site, visit,
or other grouping and often contain the following:

• Number of Completed Participants — The total number
of participants who have completed the study.

• Number of In-Progress Participants — The total number
of participants who are currently in the study.

• Average Daily Compliance — The average percentage of
daily device wearing.

• Average Daily Wearing Hours — The average number of
hours where a device was worn.

As shown in Figure 7, various visualizations showing compli-
ance including daily, weekly, or visit heatmaps, distribution
plots of average daily wearing compliances, and compliance
metrics by site are often included.

Compliance at Participant Level The compliance analysis
at participant level displays compliance metrics and detail plots
corresponding to each participant with more granularity —-
hour by hour throughout the entire trial. Additional filters can
be applied including visit information or trial day information.
While some kind metrics, such as average daily compliance per-
centage, are also used on the compliance overview dashboard,
visualizations on the ‘Compliance by Participant’ dashboard
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(a)

(b)

(c)
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Figure 10: Magnol.Ai offers the power to visualize and directly compare raw sensor signals (a), derived features — sleep measure (b), step
count (c), and daily wearing compliance (d) to fully understand the quality of the data.

can show more detailed information about a subject including:

• Visit Compliance — With the addition of a visit selection
dropdown, users can select a visit and view compliance
for each hour during a given visit in a study (Figure 7(b)).

• Hourly Compliance — A heatmap showing the number
of wearing minutes for each hour across the duration of
a study, offering more insights to wearing patterns of a
given subject (Figure 7(c)).

Sensor Data Visualization Sensor data can also be organized
and displayed similarly to compliance information (see Figure
9(c).) For each device in a study, there is a designated dashboard
under the ‘Devices’ section in the side navigation panel, as
seen in Figure 9(a). When navigating to a given dashboard,
users can see visualizations of raw sensor data processed sensor
data, and the derived features. Across types of visualizations,
the data is synchronized to zoom / aggregate to the same level
in the same view. This can be accomplished by 1) clicking and
dragging to zoom into a specific time range (see e.g., Figure 6),
or 2) utilizing the date-picker at the top of the page to select
a date on a calendar, or type in a specific date and time (see
e.g., Figure 9(c)).

Data Quality The true power of Magnol.Ai comes in the

form of visualizing data quality. With the capability to view
various types of data aligned to the same date and time range,
users can easily identify the story that the data is telling.
Examining Figure 10, we see the raw accelerometer data
coming from a wrist-worn device. We can compare the raw
sensor signals to the derived sleep minute features. Additionally,
we can view the device wearing compliance for each day the
device was worn, in form of a heatmap. With all three data
visualization channels aligned to the same date and time range,
users easily view the quality of the data and assess which
segments of the data are most useful to analysis.

We have designed Magnol.Ai to view data in this way in
order to directly compare data and fully understand the quality
of the data. This capability is not limited to only viewing
sensor data, but rather, we can apply the same methodology
to comparing patient reported events to raw sensor data
and derived features, as well as ePRO data, including pain
ratings. With the capability to compare virtually any type of
data, Magnol.Ai allows unlimited exploration, including data
coverage, quality, and compliance.
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C. Cloudifying, Versioning, and Parallelizing Data Pipelines

Motivation Our data processing and digital measure deriva-
tion pipelines previously run on company’s on-premises High
Performance Computing (HPC) systems. As our computational
needs grow significantly following limitations are identified:

• Limited Scalability — On-premises HPC systems often
have fixed hardware resources, which can limit the
scalability of data processing pipelines. As data sets grow
in size or processing demands increase, it may become
challenging to accommodate the additional workload
efficiently. This can lead to performance bottlenecks and
longer processing times.

• Dependency Management — Running pipelines on ded-
icated on-premises systems might involve managing
various dependencies, libraries, and runtime environments
manually. Ensuring consistent environments across dif-
ferent systems can be challenging and may lead to
compatibility issues and version conflicts.

• Lack of Elasticity — On-premises HPC systems have fixed
capacity, which means they cannot easily adapt to varying
workloads. During periods of low activity, resources
may be underutilized, wasting valuable computing power.
Conversely, during periods of high demand, the system
may struggle to handle the load efficiently, leading to
delays in data processing.

• Reproducibility Challenges — Reproducing pipeline re-
sults can be challenging on on-premises HPC systems
due to potential differences in hardware, configurations,
and software versions. This lack of standardization can
hinder the ability to validate and replicate research findings
reliably.

• High Maintenance Costs — Maintaining and upgrading on-
premises HPC infrastructure can be expensive, requiring
significant capital investments and ongoing operational
costs. Additionally, specialized personnel are needed to
manage and support the infrastructure, which can add to
the overall expenditure.

In contrast, containerizing pipelines and migrating to cloud-
based environments like AWS using Docker addresses many
of these drawbacks. Containerization is a lightweight and
portable approach to software development and deployment.
It is a method of packaging an application along with all
its dependencies, libraries, and configurations into a single
unit called a container. This container acts as a self-contained
execution environment, allowing the application to run con-
sistently and predictably on any platform that supports the

containerization technology. Unlike traditional virtual machines,
which require a full operating system for each application,
containers share the host OS kernel, making them much more
efficient and lightweight. This efficiency not only reduces
resource overhead but also facilitates rapid deployment and
scaling, making containerization an ideal solution for modern
cloud-based architectures.

Cloud-based containerization offers elasticity, scalability, and
cost-effectiveness, allowing researchers to efficiently process
large datasets, optimize resource utilization, and adapt to
varying workloads. Docker’s containerization approach ensures
consistent environments, simplifies dependency management,
and enhances reproducibility, making it easier to validate
research findings and collaborate with others seamlessly.
Additionally, cloud providers handle infrastructure maintenance,
disaster recovery, and offer a pay-as-you-go model, reducing
the need for extensive upfront investments and ongoing
maintenance costs. In below we detail the advantages of
containerization.

Cloudifying Public cloud providers, such as AWS, Google
Cloud Platform (GCP), and Microsoft Azure, offer robust
support for container-based parallel and distributed processing
services. AWS provides Elastic Container Service (ECS)
and Elastic Kubernetes Service (EKS), GCP offers Google
Kubernetes Engine (GKE), and Azure has Azure Kubernetes
Service (AKS) and Azure Container Apps. These cloud-native
services enable seamless deployment and management of
containerized applications at scale, aligning perfectly with
our needs for parallel data processing.

Migrating from on-premises high-performance computing
to the cloud aligns with our company’s strategy to leverage
cloud-based storage and computation. By adopting container-
based processing in the cloud, we can take advantage of the
cloud’s elasticity, scalability, and cost-effectiveness. Cloud
infrastructure allows us to dynamically allocate resources based
on demand, optimizing utilization and reducing operational
costs. Additionally, it reduces the burden of managing and
maintaining on-premises hardware, providing us with more
flexibility and agility to adapt to changing research requirements
and workloads.

Versioning Ensuring the reproducibility of results is crucial
in scientific research and data processing. Dockerizing our
pipelines allows us to version both the algorithm source code
and the entire environment in which the processing takes place.
This means that we can track changes to the pipeline code
over time, allowing us to roll back to previous versions if
needed. Moreover, capturing the entire environment, including
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libraries, configurations, and runtimes, guarantees that the
data processing pipeline will produce consistent and replicable
results, regardless of the underlying infrastructure or platform.

Furthermore, provenance tracking, which involves recording
the origin and history of data and processes, is essential for
maintaining data integrity and traceability. Docker containers
act as self-contained units that encapsulate all the dependencies
and configurations required for data processing. By versioning
the container images, we can precisely track the exact envi-
ronment in which data processing occurred, ensuring that any
future analysis or audits can be confidently performed based on
the same conditions. This level of versioning and provenance
tracking enhances the credibility of our research and allows
other researchers to reproduce our findings with ease.

Parallelization The data processing pattern for digital
measures, such as step count and sleep duration, often follows
an embarrassingly parallel computing paradigm. This means
that the processing of data for each subject day can be
performed independently, without any need for inter-process
communication or coordination.

By dockerizing these pipelines and running them in a public
cloud environment like AWS, we can easily take advantage
of the cloud’s ability to handle data processing in parallel
and at scale, enabling faster and more efficient analysis of
large datasets. To be more specific, docker containerization
provides a straightforward way to manage parallel computing
tasks efficiently. With the ability to spawn multiple containers
simultaneously, we can distribute the data processing workload
across a cluster of containers, enabling concurrent execution
of tasks. This scalability not only speeds up the overall
data processing but also ensures that we can handle large
volumes of data without overwhelming the system. Furthermore,
container orchestration tools like Kubernetes make it easy to
manage the deployment, scaling, and monitoring of containers,
simplifying the management of parallel processing in the cloud
environment.

Additionally, the elasticity of cloud resources ensures that
we can dynamically adjust the number of container instances
based on the workload, optimizing resource utilization and cost
efficiency.

Pipeline Cloudifying Steps
Figure 11 summarizes the steps of cloudifying a traditional

pipeline and below we detail these steps.
• I/O Refactor and Pipeline Wrapper — During the process

of containerizing the pipeline, a significant aspect that
required attention was the handling of file input/output,
which originally relied on local storage. To make the
pipeline cloud-ready and to ensure seamless data process-
ing in a distributed environment, a crucial refactoring step
was undertaken to implement an I/O layer that interacts
with cloud storage, specifically an S3 bucket.
During the I/O refactoring phase, a thoughtful design
approach was adopted to seamlessly integrate cloud-based
file input/output functionalities without modifying the
original pipeline code. The design centered around the
creation of a wrapper that serves as an intermediary

layer between the pipeline and the cloud I/O services,
specifically the S3 bucket. This wrapper encapsulates
the necessary code to interact with the cloud storage,
enabling the pipeline to leverage the benefits of cloud-
based file management while maintaining the integrity
of its core functionality. By isolating the cloud I/O layer
in the wrapper, the underlying pipeline code remains
untouched and agnostic to the storage medium. This
design preserves the pipeline’s portability and allows it to
be run with minimal modifications in diverse computing
environments.
By leveraging Amazon S3’s object storage service, the
pipeline can now read input data from and write output
data to the S3 bucket, providing a scalable and durable
storage solution. The refactored I/O layer ensures that the
pipeline can effectively handle cloud storage, making it
well-suited for deployment in public cloud environments
like AWS.

• Docker Image Building —
The Dockerfile presented in Listing 1 serves as a blueprint
for building a containerized environment tailored to
process sensor data to derive digital measures using GGIR.
It starts by utilizing the base image of R, upon which
subsequent instructions are layered to set up the required
configuration. For instance, setting up GGIR pipeline in
R (line 5), installing dependent python libraries required
by our driver (line 14). Lastly, the Dockerfile defines
the command to run the application (driver ‘ggir.py’
in our case) upon container launch (line 20). Through
this Dockerfile, researchers can create a self-contained
environment with all necessary components, enabling
seamless and consistent data processing across various
platforms and environments. Once Docker image being
fully validated, we deposit it to AWS Elastic Container
Registry (ECR).

1 # Base image for R
2 FROM rocker/r-ver:4.3.1
3

4 # Install GGIR version 2.8-6
5 RUN R -e

"devtools::install_github(’wadpac/GGIR@2.8-6’)"
6

7 # Install Python 3.9
8 RUN apt-get -y install python3.9
9

10 WORKDIR /app
11

12 # Install dependencies through requirements.txt
13 COPY requirements.txt .
14 RUN pip install --no-cache-dir -r requirements.txt
15

16 # Copy Python driver program and other files
17 COPY . .
18

19 # Set the entry point as the Python driver
20 ENTRYPOINT ["python", "ggir.py"]

Listing 1: Sample GGIR Dockerfile.

• Task Definition Registration —
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1 family="pipeline-ggir"
2 task_role_arn="ecs-task"
3 execution_role_arn="dh-tti-ecs-exec"
4 # CPU units, 1,024 CPU units per vCPU
5 cpu=2048
6 # in MiB
7 memory=8192
8 container_name="ggir"
9 image_uri="dhrd-pipeline-ggir:2.8.6"

10

11 response=$(aws ecs register-task-definition \
12 --family "${family}" \
13 --task-role-arn "${task_role_arn}" \
14 --execution-role-arn "${execution_role_arn}" \
15 --network-mode awsvpc \
16 --requires-compatibilities FARGATE \
17 --cpu ${cpu} \
18 --memory ${memory} \
19 --container-definitions "[{
20 "name": "${container_name}",
21 "image": "${image_uri}",
22 "essential": true,
23 "cpu": ${cpu},
24 "memory": ${memory} }]" \
25 )

Listing 2: Sample script to register GGIR task definition.

In the provided sample shell script as shown in Listing 2,
the task definition registration is a crucial step in deploying
containerized applications on AWS. ECS task definitions
define the configuration for individual tasks, specifying
essential parameters such as the Docker container image,
CPU and memory requirements, network settings, and
task roles. By registering a task definition using the AWS
CLI (Command Line Interface), we effectively create a
blueprint for the containerized application that ECS can
use to launch and manage instances of the task. The
registration process associates the task definition with a
specific family name, such as ”pipeline-ggir” in this case,
making it easily identifiable and reusable across ECS
services.
In addition, task definitions support the concept of revi-
sions. A revision represents a specific version or iteration
of a task definition. Whenever a task definition is updated,
either to change container configurations, environment
variables, or other parameters, a new revision is created.
This approach allows ECS to maintain a historical record
of changes to the task definition over time. This helps
to maintain a history of configuration changes, which is
useful for auditing, rollback purposes, and understanding
the evolution of our pipelines over time.

• Running Tasks in Parallel — Following the successful
registration of the ECS task definition, the next crucial
step in our containerized data processing pipeline is to
launch ECS tasks for each input/output file pair, as shown
in Listing 3. The script employs a for loop to iterate over
the lists of input and output file paths. For each pair, a
separate ECS task is initiated using the AWS CLI’s aws
ecs run-task command. The run-task API call submits tasks
in an asynchronous fashion, enabling ECS to efficiently
run tasks in parallel based on the available resources in
the designated cluster, in this case, “dbm-pipeline”. The
tasks are executed using the specified Fargate launch type,

which manages the underlying infrastructure, allowing us
to focus solely on defining the task requirements in the task
definition. The ‘–overrides’ flag within the script allows us
to pass dynamic input and output directories to the Docker
container as command-line arguments. This enables the
containerized application to process the corresponding
input data from S3 and store the results in the specified
output location. By launching tasks in parallel, ECS
leverages the underlying cloud infrastructure’s scalability,
making it a well-suited solution for processing large-scale
datasets in an efficient and resource-effective manner.

1 # List of input file paths
2 input_folders=("s3://...", ...)
3

4 # List of output file paths
5 output_folders=("s3://...", ...)
6

7 cluster_name="dbm-pipeline"
8 task_definition_name="pipeline-ggir"
9

10 # Iterate over the input/output lists
11 # and run the Docker container for each pair
12 for i in "${!input_folders[@]}"; do
13 input="${input_folders[i]}"
14 output="${output_folders[i]}"
15

16 # Run the Docker container as a separate ECS task
17 aws ecs run-task \
18 --cluster $cluster_name \
19 --launch-type FARGATE \
20 --task-definition $task_definition_name \
21 --overrides "{"containerOverrides":
22 [{
23 "name": "${container_name}",
24 "command": [
25 "--inputdir", "${input}",
26 "--outputdir", "${output}" ]}]}"
27 done

Listing 3: Sample script to run parallel GGIR tasks.

V. CONCLUSION AND FUTURE WORK

As DHT continue to evolve and collect more complex
digital data in clinical trials, the need for a digital data quality
assessment platform is increasing. By defining and imple-
menting the fundamentals of data quality into the digital data
quality framework and platform, we can generate automated
compliance reports, customizable visualizations, and real-time
quality metrics. In addition, the methods for facilitating dBMs
research have been simplified with the centralized digital data
quality assessment platform. As dBMs research continues, so
will the use of the digital data quality assessment platform.
Future directions include the use of visual mining and data
mining technologies to help identify data quality in a novel
way to facilitate data quality assessment.
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Abstract—Electronic Travel Aids are devices that help people
with visual impairments navigate and orient themselves. The
development of such devices is often associated with a loss
of time in repetitive work, resulting in slow progress in this
field. A collaborative community that shares its expertise could
accelerate this progress and lead to truly useful and market-
ready products for visually impaired people. To make such an
exchange efficient, a standardized, component-based ecosystem
is required. So far, such an approach for Electronic Travel Aids
has not been pursued in the literature and is therefore addressed
in this paper. To this end, a model for identifying component
boundaries is presented and illustrated by a project in the form
of an ultra-wideband indoor navigation system. The advantages
of such a component-based development in general are described.
In particular, the use of the Robot Operating System 2 (ROS 2)
for the implementation is highlighted and its suitability for such
an ecosystem is discussed based on practical experience with
it. The evaluation of such an ETA with the use of the ROS 2
ecosystem and a component-based ETA are also highlighted. The
contribution of this work is a framework that reduces the effort
for the development and evaluation of electronic travel aids and
allows an early involvement of users in the development process.

Index Terms—ETA; electronic travel aid; mobility aid; ROS 2;
ROS; robot operating system; component-based development; user-
centered design

I. INTRODUCTION

This paper was originally presented at the SMART AC-
CESSABILITY 2023 conference with a focus on developing
electronic travel aids (ETAs) [1]. For the journal article it
was extended by a user evaluation of the described ETA to
show the possibilities of the presented framework beyond the
development and the advantages it offers for user-centered
development.

In the field of ETA an active research takes place. ETAs
are devices that help people who are visual impaired or blind
in travelling tasks like orientation, navigation, and obstacle
avoidance. Several overview papers summarize relevant and
representative research [2]–[5]. It is important to continually
expand the possibilities of these aids and thus increase the
mobility of those people.

However, when looking at the systematic literature review
of Khan et al., one can find tables containing groups of papers
classified by the technology or hardware components used [2].
If the projects behind those papers rely on the same technology
or hardware, the efficiency of their development could be
increased by sharing common source code or libraries. This
would increase the time that can be spent, e.g., on design-
ing user interfaces. For example, if one researches a novel
approach to the acoustic representation of obstacles, he can
focus on his research, knowing there is a pool of hardware
components, simulation methods and algorithms for locating
obstacles in the environment. In this way, all human resources
can be concentrated on the novel representation to achieve
faster and better results.

This example is only possible, if the development of ETAs is
based on common principles. For this purpose, we divide ETAs
into interchangeable components and propose a framework
to develop ETA components that can be shared. Such a
development is presented with an indoor navigation system
as an example.

The experiences made during the development of this sys-
tem, as well as the development itself, are finally discussed to
openly present the positive and negative sides and to justify a
recommendation for such a development.

This paper is structured as follows. First, it presents sev-
eral literature reviews that summarize and classify numerous
concrete projects from ETA research in section II. Section
III discusses the problems identified in the research. As a
solution proposal, section IV describes a specialized Human
Machine Interface (HMI) for ETAs to divide ETAs into their
components, as well as the Robot Operating System 2 (ROS 2)
as a software development kit. To discuss this solution, section
V applies it to an indoor navigation system as an example
for development and evaluation. Section VI discusses the
practical experience of the development, with its advantages
and disadvantages. Section VII concludes the results and gives
an outlook to further work needed to be done.

87

International Journal on Advances in Life Sciences, vol 15 no 3 & 4, year 2023, http://www.iariajournals.org/life_sciences/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



II. RELATED WORK

With a focus on ETAs, there are several development
projects in the field of navigation systems for blind and
partially sighted people. These projects use different ap-
proaches to help these individuals navigate safely in both
indoor and outdoor environments. With the digital transfor-
mation of healthcare, Internet of Things devices can enhance
the capabilities that can be achieved in this area. Khan et
al. [2] conducted a systematic literature review to analyse
the challenges and opportunities of such ’smart navigation
devices’ that have been researched and developed over the
last decade. Using structured selection criteria, the review
identified 191 relevant articles published between 2011 and
2020 in six different peer-reviewed digital libraries.

Khan et al. [2] categorized various approaches to navigation
systems for blind and visually impaired individuals into three
parts. The study provides a comprehensive list of commonly
used systems, tools, and hardware components as examples.

1) Approaches reported for navigation system development
e.g.:
• Indoor navigation system
• Mobile application
• Wearable navigation systems with e.g., smart watches

2) Technologies/tools proposed for navigation assistant de-
velopment e.g.:
• Raspberry Pi microcomputer
• Android-based applications
• Microcontroller

3) Hardware components proposed for obstacle avoidance
e.g.:
• Bluetooth beacons
• Haptic devices
• Ultrasonic sensors
• Global Positioning System (GPS)

It is evident that various projects developed in these fields
share similarities in terms of system level, technology, and
hardware components used, indicating that multiple develop-
ment efforts can result in similar or identical solutions. This
indication is present in most of the recent survey papers in
the field of ETAs [2]–[5]. A similar situation in the field of
robotics was part of the driver for the Robot Operating System
[8].

III. PROBLEM STATEMENT

In 2007, then PhD students Eric Berger and Keenan
Wyrobek discovered a fundamental problem in robotics re-
search. A pattern was emerging, in which researchers wanted
to build on a proof-of-concept presented in a paper to imple-
ment their own idea. Either they lack details of the software
used, or it is unusable for whatever reason, so they are
often forced to spend 90 percent of their time rewriting other
people’s code and developing their own prototype test-bed.
This leaves only the remaining 10 percent to develop their own
innovation, which then lacks quality but enables the intended

publication. This creates a cycle of reinventing the wheel and
wasting a huge amount of time. This led to the idea of creating
a kind of Linux for robotics with the Robot Operating System
(ROS), containing a common set of software and developer
tools that would allow roboticists to build innovative ideas on
the successes of others [9].

Looking at the numerous projects that have already emerged
in the field of ETAs [2], one discovers this problem pattern
again in many respects. In particular, the description of the
selection process of the literature to be evaluated shows that
many projects are similar and only a few add value to the state
of the art. Additionally, these findings are rarely translated into
products that benefit the end user. One reason for this might
be that the projects are usually developed from scratch and
thus valuable resources are lost to be put into the actual core
of the work. For example, the categorization in [2] of some of
the ETA prototypes known from research according to their
hardware components makes it easy to see that many projects
use similar, if not the same, subsystems and devices. The same
concepts and technologies are being used for similar, if not
identical, tasks. This leaves little time for iterative improve-
ments and testing with visually impaired people. To counteract
this, this paper presents a component-based development that
contributes to the exchange between working groups and thus
to a faster and more efficient prototype cycle. To this end,
we built upon ROS 2, the successor of the above-mentioned
ROS, which also serves as a motivator. In the field of mobile
robotics, ROS 2 has helped components to be exchanged and
to communicate with each other in a uniform manner, so that
individual working groups can work much more efficiently
on their research problems. In this paper, the development
of an indoor navigation system using a vibration vest as an
output device is presented. This project is not put in focus
because there are other projects with similar results. The focus
of this paper is on how the development can be made more
efficient, and this will be shown and evaluated using the indoor
navigation example.

IV. SOLUTION APPROACH

If we look at the model of a human-machine interface
in a very abstract way, it can be broken down according to
Kantowitz and Sorkin [10] into the subcomponents shown in
Fig. 1. A person (left) has the ability to acquire information
through the senses available to him or her. This information is
processed in the brain to make decisions based on it, such
as operating the machine (right). The control components
provided by the machine for this purpose have an influence
on the internal state of the machine, from which outputs
are generated to present information to the person. The two
transitions between the human side and the machine side are
called human-machine interfaces.

This model can also be used in an extended form to describe
a visually impaired person and his mobility aid, where the
physical environment is added as a crucial component (see
Fig. 2). The ETA itself takes on the role of the machine
by sensing relevant information about the environment (e.g.,
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Fig. 1. Human-machine-interface model according to Kantowitz and Sorkin
[10]

obstacles) and making it available to the person through an
accessible information channel. The person’s sensory system
(the senses and perceptions available to him or her) takes in
both this information and the information perceived directly
from the environment (e.g., a car horn) and uses it to construct
a mental environment model in the brain. The person can then
influence the environment through their motor skills and, by
interacting with the mobility aid, control its machine state
and the digital environment model based on it. Other external
information channels (e.g., online weather services) can also
be used to enrich this digital model.

Looking into ETAs, the following system components,
which are directly linked to the internal machine state, can
be identified:

1) Sensors: Used to gather information from the immediate
environment to build up an internal system state.

2) Controls: Used to directly control the assistive device
without having to go through the environment.

3) Additional Information Sources: Sources of information
not associated with the system itself, but which contribute
to the construction of the internal state of the system.

4) Displays: Used to present information to the user, for
visually impaired people to substitute the sense of sight,
usually in acoustic or haptic form.

An overall system thus represents a composition of concrete
instances of these components and a kind of business logic that
receives information from Sensors, Controls and Additional In-
formation Sources, converts it into a digital environment model
thanks to certain algorithms, and provides a representation of
it via Displays.

By defining good and consistent interfaces for individ-
ual component types, there are two advantages to such a
component-based view. On the one hand, you can achieve easy
interchangeability of individual components without having
to adapt much to the overall system. Consider, for example,
a navigation system that uses GPS to determine the current
position of the user. Developing the same navigation system,
but using RFID technology, would now require very little
overall effort with a common interface, since only the sensors
component would need to be changed. On the other hand,

reusability increases with different overall systems that use
the same subcomponents. As an example, consider an obstacle
detection system and a navigation system, both of which
use a vibration belt as a display component. The former
uses it to signal obstacles in a particular direction, and the
latter to indicate the direction of travel. If developed within
a component-based framework, it would only be necessary to
determine the obstacle or walking direction from the digital
environment model, but not to redevelop the vibration belt as
a component.

When developing mobility aids, avoiding collisions with ob-
stacles, following certain navigation routes or, more generally,
minimizing dangerous situations play a crucial role. However,
the testing of such dangerous situations is essential for the
evaluation of the developed prototypes, which is why a simu-
lation environment has great advantages in the development
of ETAs. On the one hand, it increases reproducibility by
allowing test persons to be led through the same scenarios
and their behaviour to be recorded and statistically evaluated.
It also increases variability, as a simulation environment can be
freely parameterized and configured to meet a wide range of
system requirements. For example, weather conditions, which
often strongly influence the behaviour of a sensor- or camera-
based ETA, can be changed with little effort. It is also possible
to generate custom obstacles, roads, traffic situations, etc. Such
variability is difficult to achieve in the real world. In addition,
the dangerous situations mentioned above can be mitigated, as
real collisions are impossible or can be provoked for testing
purposes in a controlled environment.

Considering that individual components are to be used in a
simulation environment with little effort, it makes sense to
embed this environment in the model shown in Fig. 2. In
principle, any of the components on the ETA side can be sim-
ulated, the most obvious being the physical environment and
the sensors. The former is a virtual reality in the simulation,
which requires it to be sensed by virtual sensors. Since such
sensors can provide perfect, noise-free environmental data, it
is possible to test displays, controls and the algorithm used to
build the internal state of the machine individually and in a
controlled manner. In the indoor navigation system presented
in the next chapters, this is demonstrated in more detail using
an example.

Looking at past research projects on ETAs, one can see the
presented component-based structure in many of these overall
systems, mentioned by Khan et al. in their literature review
[2]. Often the boundaries between the individual components
become blurred because they are very closely related, but the
basic structure remains the same. This suggests that, again,
components could be easily exchanged and reused in similar
systems if they were developed within a standardized, common
ecosystem.

One such component-based ecosystem is ROS 2, which is a
set of software libraries and tools for developing applications
that originated in robotics (especially mobile robotics). It
is open source and aims to support developers from differ-
ent industries from research to prototyping, deployment and
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production using a standard software platform. The modular
and flexible architecture allows easy integration of different
hardware and software components, enabling the development
of complex overall systems. A standardized real-time capable
communication protocol enables efficient and reliable com-
munication between different subcomponents of a system. It
is not tied to a specific platform, nor is it domain or vendor
specific. Because of its origins in mobile robotics, it provides
many algorithms and sensor drivers to address problems of en-
vironmental perception, navigation and orientation, problems
that are also common in the field of mobility aids. ROS 2
simplifies the development and testing of complex systems by
providing debugging, visualization and, above all, simulation
tools.

In ROS 2, development is strictly based on the “divide and
conquer” principle by providing the following architectural
components [6]:

1) Nodes: Independent processes that communicate with
each other through different mechanisms.

2) Topics: Named event channels that allow nodes to com-
municate with each other. Nodes can publish messages
to a topic, and other nodes can subscribe to that topic
to receive those messages. Topics can have multiple
publishers and subscribers, making it possible to build
complex communication patterns between nodes.

3) Services: Remote procedure calls that allow nodes to
request a specific task or information from another node
in a synchronous way. Nodes that provide services and
respond to requests are called servers, while nodes that
request services are called clients.

4) Parameters: Parameters are used to store configuration
data for nodes. Parameters can be set and retrieved by
nodes, and they can be changed dynamically during
runtime.

5) Launch files: Used to simplify the process of starting and
configuring a ROS 2 system by specifying a collection

of ROS 2 nodes, their parameters and other configuration
details without having to start each node individually and
configure it manually.

6) Packages: Collection of nodes, configuration and launch
files and documentation, representing a subcomponent of
a ROS 2 system. They provide a modular and extensible
way to organize and distribute code, making it easier
for developers to share and reuse code across different
projects.

This architecture divides a system into a set of intercom-
municating nodes, which are in turn organized into packages,
providing a modular and extensible way to organize and
distribute code, making it easier for developers to share and
reuse code across projects. Beneath others, defining stan-
dard interfaces and the component-based development made
it possible to build up a large and active community that
constantly extends ROS’s vast array of code libraries, hardware
drivers, documentation and support. The community supports
a continuous exchange between scientists and developers of
new products.

V. PROOF OF CONCEPT

Our proof of concept represents an indoor navigation system
developed specifically for blind and visually impaired individ-
uals.

A. Indoor navigation system

The following components were used in this particular use
case.

• bHapticsX40 vibration vest by bhaptics® to provide hap-
tic feedback for navigation instructions.

• An ultra-wideband (UWB) real time location system
(RTLS) by Pozyx® to determine the indoor position and
orientation of a person using anchors placed in the room
and a tag attached to the person.
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• Smartphone App for configuring the system and for
recording and navigating along routes. Its compass fea-
ture can also be used as an alternative to the Pozyx tag
for providing orientation information.

• A Raspberry Pi 4 is used for computing operations such
as handling services for route recording, providing head-
ing correction for navigation instructions and feedback
generation through vibration modes.

To operate the system, all components must be connected
to the same network. The Raspberry Pi serves as the primary
hub for most of the nodes required in the ROS 2 ecosystem.
The vibration vest, with a Pozyx tag attached, can transmit its
current position and orientation data to the Raspberry Pi.

A smartphone app provides necessary communication in-
terfaces to the ROS 2 ecosystem, allowing the user to change
the parameters of the system and so reconfigure it at runtime.
In addition, he can record new routes and navigate along
already recorded ones. When a route is selected, the navigation
system running on the Raspberry Pi estimates the nearest
navigation point available on the route and calculates a heading
correction based on the real-time data from the Pozyx tag. This
heading correction is translated into an appropriate vibration
pattern on the vest to indicate the direction, in which the
user should move for safe navigation along the predefined
path. As an alternative, audio feedback displayed over the
headphones connected to the smartphone can be used for
navigation instructions.

The system can be adapted to the model presented in
section IV by breaking it down into its components. Here
the vest takes on the role of the display, the Pozyx tag or
the smartphone compass corresponds to the sensors and the
remaining features of the smartphone application represent
the controls part. The internal machine state is formed by
the navigation algorithm and business logic running on the
Raspberry Pi. The part of the business logic responsible for
recording, persisting and retrieving routes can be seen as an
additional source of information that enriches the internal
machine state and the digital environment model it contains
(see Fig. 3).

To demonstrate the practical use of a simulation environ-
ment in relation to the development of ETAs in general and
specifically with ROS 2, the simulation tool CARLA, which
is widely used in autonomous driving research, was used. It
is also open source and, in addition to existing maps, actors
and assets, allows the creation of custom scenarios and the
free configuration of environmental factors such as weather
and lighting conditions. It also offers a range of different
virtual sensors such as LIDAR, cameras, GPS, etc. However,
the biggest advantage for the concept proposed in this paper is
CARLA’s built-in integration with ROS 2 via a bridge. Using
predefined ROS 2 topics, it is possible to both read simulated
sensor data and control the movement of virtual actors such as
pedestrians. In the use case presented here, CARLA replaces
the indoor environment and the Pozyx system for determining
position and orientation (see Fig. 4). This makes it possible,
for example, to test the display components separately without

having to deal with sensor inaccuracies or the influence of a
test person’s behaviour.

Now we will look at the development process and architec-
ture of this system and how ROS 2 supports it and helps to
achieve component-based reusability and interchangeability.

B. Development process

Starting with the core functionality, navigation, the nec-
essary nodes, inputs and outputs were defined. The central
node provides a single output, a heading correction value. To
provide correct and up-to-date values, it requires the route to
be followed and the current position and orientation of the user.
Inputs and outputs lead to the definition of their respective
interfaces and the nodes that provide the necessary inputs.
This means that the navigation logic consists of three nodes
and has five interfaces (see Fig. 5).

1) Navigate route (action), provided by the navigation and
called by the user over the smartphone app

2) Position (topic), provided by the Pozyx RTLS or the
CARLA simulation

3) Orientation (topic), provided by the Pozyx RTLS, the
smartphone compass or the the CARLA simulation

4) Load route (service), provided by the Route Management
and called by the navigation logic

5) Heading correction (topic), provided by the navigation
system and consumed by the feedback device (bHap-
ticsX40 or headphones)

The result is a fully functional navigation system with a
freely configurable setup of sensing and user interface devices
– even swapping devices on the fly is possible. Each device
requires its own node or set of nodes to transfer data to and
from the ROS 2 ecosystem and to satisfy the interfaces owned
by the navigation service. For example, the software for the
bHapticsX40 vest currently consists of two nodes: A driver
node responsible for connecting to the vest via Bluetooth, and
a feedback node that translates the heading correction feedback
into different motor patterns (see Fig. 6).

To enhance usability beyond direct control via command
line terminals, a user interface application must access a
service client node. The interaction between the user interface
and the service client node is the least clean implementation
detail, as ROS 2 does not inherently support direct user
interaction.

As the manual creation of routes as sets of coordinates
was rather tedious and error-prone, the second service, for
route recording, was conceived. It allows the user to record
their current location and save it as a route for later retrieval
by the navigation service. This route recording service was
easily implemented using the existing nodes for the navigation
service and proved to be a significant improvement over
manually entering coordinates. At this stage, control of both
services was limited to launching the required nodes with
a set of parameters. To increase control and make it more
dynamic, separate control nodes with additional user interfaces
were next designed and implemented. As the number of nodes
and possible configurations increased, it became necessary to
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Fig. 4. Indoor navigation system with CARLA simulation as environment and sensors substitution

organize the startup configurations using a modular system
of ROS 2 launch files. A semi-automated deployment method
allowed different distributions of nodes among hardware com-
ponents to be tested. The actual (graphical) user interfaces in
the form of the smartphone app were the last components to
be implemented.

C. Architecture

The resulting architecture follows a microservices approach.
For example, the existing system with two services, the
navigation itself and a utility for recording the route, can be
easily extended, both by adding new types of services and by
redundancy of existing ones. This guarantees the degree of
scalability and elasticity required by possible use cases, such
as indoor navigation in public buildings.

The internal structure of the existing services has many
similarities. Both consist of controller, business logic and
helper components realized by ROS 2 nodes. The controller
nodes provide the user-facing interfaces necessary to control
the services and translate ROS external user input for the
ROS 2 system. The business logic nodes produce the service
functionality, possibly with the help of utility nodes. They
interface with the controller nodes via ROS 2 interfaces, i.e.,
actions and services. By structuring services as a collection
of nodes, a single service can be distributed across several
separate hardware systems if a specific use case requires it.
If this flexibility is not required, the nodes of a service can
be run on a single system and configured to run in shared-
memory mode to optimize performance. The trade-offs can
be considered on a case-by-case basis without changing the
node implementation.
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The general trade-offs of the chosen architecture can be
summarized as follows: Future requirements for new addi-
tional functionality, scalability and elasticity can be easily met.
Components, especially sensing and user interface devices, can
be added and replaced at low cost. Performance is limited by
the degree of distribution chosen for a particular deployment.
Even with only two services, the actual implementation is
structurally and operationally complex.

VI. RESULTS AND EVALUATION

Looking at the architecture of the indoor navigation system
just presented, one can see the benefits of reusability and
interchangeability of individual components presented in sec-
tion IV for the HMI-ETA model. The bHapticsX40 vibration
vest, which acts as a displays component and is represented
by a package in ROS 2, will serve as an example. The
navigation package provides an azimuth and elevation angle
via the heading correction topic, which is consumed by the
bHapticsX40 package. By defining this asynchronous data
channel independent of the display component in the form of
a ROS 2 topic, a low degree of coupling is achieved between
the package providing the navigation feedback and the package
consuming it. This loose coupling allows interchangeability on
both sides of the data channel. On the one hand, the display
component can be replaced by a headset package, for example,
which communicates the feedback to the user acoustically
using a text-to-speech algorithm. In this case, both the topic
and its message format, as well as the navigation package,
could be reused. On the other hand, the indoor navigation of
pre-recorded routes could be replaced by any other navigation
package (e.g., outdoor navigation using GPS and an external
map service), as long as it respects the heading correction
topic as an interface to the display component. Again, neither
the data channel nor the display component (whether vest or
headphones) needs to be touched.

However, ROS 2 supports modularized development of
reusable components not only at the level of entire components
of the HMI model, but also within the individual components.
Fig. 6 illustrates this clearly. It shows the structure of the
bHapticsX40 component as a composition of two ROS 2
nodes and the physical vibration vest. The separation into
a ROS 2 driver node, which handles the actual Bluetooth
communication with the vest, and a feedback generation
node, which transforms the received heading correction into
a concrete vibration pattern, again promotes loose coupling
of the software components. While the former is independent
of the concrete overall system and can therefore be reused at
any time, the latter can be exchanged in the presented project
depending on, which of the two feedback representation modes
is used. If, on the other hand, you were to use a similar vest
made by a different manufacturer that uses a Wi-Fi connection
instead of Bluetooth, replacing the driver node would allow
you to quickly reuse the entire system.

R

R

R

R

R

Fig. 6. FMC model of the vibration vest implementation regarding exchange-
able algorithms. The red parts are visualized for a full overview and not
part of the software system. The bHapticsX40 component is a display device
according to Fig. 2

In addition to the simple definition of generic communi-
cation interfaces and the resulting loose coupling, the inter-
changeability of components in ROS 2 is also made possible
by the definition of launch files. This is where the entire system
is assembled and configured using so-called launch arguments.
Components in the form of packages and nodes can be added
to or removed from the system as needed and can be adjusted
by specifying node parameters.

Generally speaking, ROS 2 proved to be very accessible.
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The first few tutorials provided enough knowledge to design
and implement the whole navigation system with the ROS 2
Python API. Designing a distributed system did not require
any additional work thanks to the node structure and the
topic, service, and action interfaces. This pre-structuring also
assisted with the definition of clean interfaces and division
of labour within the team. Deployment, together with launch
configurations, was less accessible and considerably less well
documented. Only the myriad of existing ROS 2 projects and
the associated launch files provided any orientation in this
regard.

The lack of documentation in some cases may be due to
the fact that ROS 2 is an open-source framework. Although
the ROS 2 community is usually very active and helpful, there
is no guarantee of support compared to proprietary systems,
which can make the lack of documentation all the more
problematic. However, the open-source status does have some
advantages, including complete transparency in the provision
of the source code. This means that issues or vulnerabilities
can be discovered and addressed more quickly by the commu-
nity. It also allows everyone to contribute to the development
and to share knowledge and expertise, features that could drive
forward ETA research. However, it must be recognized that
building up a community can be a long and arduous process.
Even ROS, which was developed at Stanford University in
2007 and evolved into its now well-known successor ROS 2
in 2015, did not immediately have the reputation it has today
and took years to build such a large community.

The types of problems encountered in robotics have many
similarities with those encountered in the indoor navigation
project. This means that many of the robotics-oriented pack-
ages created for ROS 2 could be adapted accordingly. An
example of this is the tf2 package provided by the ROS 2
community, which makes it possible to track the temporal
evolution of several interdependent coordinate systems and to
perform transformations between these frames in a simple and
efficient way. This is an essential component in robotics, as
such calculations are the basis for calculating the individual
joints of a robot arm, for example. In the indoor navigation
project presented here, tf2 was able to help transform coordi-
nates from the global coordinate system of the Pozyx system
to that of the person being navigated, and thus determine a
heading correction.

For the same reason, there are already some packages for
hardware components for ROS 2 that allow the integration of
different sensors from different manufacturers, although this is
not visible in the proof of concept. Examples include camera,
LIDAR or ultrasound drivers that can be used in robotics as
well as ETA development without much expertise or training.

Simulation in ROS 2 is also well-supported. Nodes are
configurable for a simulated environment without the need
for any code changes. The debugging tools within the ROS
2 ecosystem proved to be extremely helpful and easy to use,
as well. Not surprisingly, GUI functionality is an aspect not
supported within the ROS 2 ecosystem, but various types of
bridge tools provide the possibility to access ROS 2 interfaces.

In order to be able to evaluate the assumptions for the
evaluation of a system in reality, an evaluation of 4 different
user interfaces was carried out. The user interfaces were used
in simulation and in reality. This experimental setup is shown
in Fig. 7 and Fig. 8. In addition to the existing nodes, there
was a metric node during the test execution, which recorded
the positions of the subjects every second and determined the
deviations from the ideal route. In addition, the times between
waypoints of the route and the total time were recorded. In
simulation a single route was run, in reality a total of four.
Only sighted people were used to perform the test, and they
ran the routes in reality with their eyes open so that there
was no risk of injury. Future evaluation runs will be made
with people who have different visual impairments. In the
simulation, the other extreme was chosen and there was no
feedback on position or movement, except for statements about
whether someone was standing or moving, or rotating around
a point. This minimized the perception of one’s presence in
the virtual environment. According to Witmer and Signer, this
has a weak but consistent effect on task performance, the task
in this case being the traversal of a route [11]. The four display
components are:

Device 1 A bHapticsX40 vibration vest that continuously
vibrates in the target direction.

Device 2 A bHapticsX40 vibration vest that vibrates contin-
uously. It vibrates to the left or right depending on
the direction, in which a user is to turn, or straight
ahead if a user is aligned with the target point.

Device 3 A text-to-speech interface that announces the tar-
get direction as the time. Only 12 or 6 o’clock
are replaced by the statements “Perfect” or “Turn
Around”.

Device 4 A text-to-speech interface that aligns a person to the
target direction using “Left”, “Right”, and “Perfect”
instructions.

This paper focuses more on the development and evaluation
of ETA components than on the results of evaluations of
specific ETA components. Therefore, the focus is on the
implementation of the evaluation and the lessons learned.
During the execution, each test subject had to complete eight
scenarios, each resulting from the use of the four different
display components in both simulated and real-world environ-
ments. Four different routes were used in reality to prevent
the participants from knowing them after the first scenario.
Therefore, the individual points of a route had to be navigated,
which were spread out in space. The simulation utilized only
one route due to the lack of feedback regarding the environ-
ment or the subject’s movements. To implement a scenario,
an entire system must be started along with the simulation if
required. The availability of ROS 2 launch files can be helpful
while starting the whole system. Launch files are utilized to
initiate the entire system with all software nodes and the
scenario’s parameters. This method enhances reproducibility
by describing a device’s configuration and parameterization
in its constellation. It minimizes the susceptibility to errors
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Fig. 7. Four alternative user interfaces for a real-world navigation task.
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Fig. 8. Four alternative user interfaces for a navigation task in simulation.
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that may occur during manual start and parameterization of
the components. The participants benefit from reduced waiting
times for the preparatory work during a scenario change.

In the experiments, a software node was launched for
recording metrics. The software node measures the distance,
the user’s pose, and the current time. Based on this informa-
tion, the software node makes a recording every second and
writes it to a file, which can be reviewed later. Consequently,
information about the user’s pose and the distance deviation
from the target is available every second. Initially, this data is
used to compare devices or algorithms with each other. Sub-
sequently, the information serves as the basis for observations
that can be used to enhance the execution of experiments or
achieve better results.

Further findings suggest that statements regarding the use
of assistive devices in simulation are initially incomparable to
their real-world use. This may be attributed to the experimental
setup, i.e., participants could work in the real world with full
sensory support but relied entirely on the assistive device’s
feedback without any other sensory perception in simulation.
Feedback on the degree of turning can be highly beneficial,
particularly when comparing the effectiveness of device 2
compared to device 1 in terms of distances and times per
meter, to reach the waypoints of the route (see Fig. 9). The
current angle of orientation is represented in device 2 as
±22.5°. Since the participants could not perceive the angle of
rotation in the simulation, the midpoint between these ±22.5°
was often not determined correctly. Incorporating the results
of Device 3 and Device 4 could expose a contradiction at this
point. Nevertheless, based on a survey of the participants, it
became evident that processing the time information required
additional effort, contributing to the further complication of
this issue. The times between waypoints support these results.

One notable observation made during the implementation
process and supported by the data evaluation is the significant
difference in freedom of movement between reality and simu-
lation. This can be seen by comparing Fig. 9 and Fig. 10. Ex-
amining the distances to the target route, the simulation range
of 1-4 meters (see Fig. 9) exhibits less precision compared
to the 0-0.9 meter range in reality (see Fig. 10). In reality, a
subject has complete control over their speed and orientation.
This is illustrated in Fig. 3 through direct interaction and
perception with the surroundings. This type of interaction is
more restricted, but only if the environment is simulated. At
that point, an interface like a keyboard determines, which
movement takes place in the simulation. Yet, the simulation,
not the subject, has control over the motion as it interprets
a keystroke. The statement is equivalent to the argumentation
above in terms of necessary feedback. Nonetheless, the effect
differs. Navigation and other algorithms rely on data from the
virtual environment, where only rough motor movements are
possible. Therefore, tolerances must be larger than those in
reality. This was particularly noticeable in our case in terms
of navigation, as it heavily relies on user behavior. The system
only switches to the next point on the path when a point within

Fig. 9. Simulation results related to the devices. The distance to the route
denotes the distance measured towards the designated route every second,
expressed in meters. The value of n denotes the number of datasets utilized
for the plot. The time between waypoints describes the time spent between
waypoints divided by the length between the starting point and the end point.

a radius is reached. While not ideal, this serves as a good
example of algorithms that rely on the user’s motor skills.

The benefits of interchangeable subsystems in evaluation
have been demonstrated. When evaluating display compo-
nents, a greater level of comparability can be achieved by
ensuring identical test setups and data generation procedures.
This is necessary because differences in results, despite equiv-
alent interfaces, may be caused by various influences at each
level of data generation or even in the test setup. Fig. 7 and
Fig. 8 demonstrate that the presented development approach
enables a purely interchangeable display component, and that
the results are comparable, especially with an unchanged
rest of the system. When comparing reality with simulation,
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Fig. 10. Real-world results related to the devices. The distance to the route
denotes the distance measured towards the designated route every second,
expressed in meters. The value of n denotes the number of datasets utilized
for the plot. The time between waypoints describes the time spent between
waypoints divided by the length between the starting point and the end point.

problems arise due to the strong influence of virtual presence
and motor activity on the results.

In summary, ROS 2 provides the necessary building blocks
for loose coupling thanks to the provided architecture com-
ponents such as topics, nodes, packages and launch files,
thus supporting a modularized, component-based development
of ETAs from the ground up. The challenges and work
areas known from (mobile) robotics, which also need to be
addressed in ETA development, such as navigation or envi-
ronmental perception, are facilitated by the tools and drivers
already available in ROS 2, allowing most of the time to be
spent on the actual development of innovative ideas.

VII. CONCLUSION

While research into ETAs and mobility aids for the blind
and visually impaired in general has produced numerous
research papers and demonstrators over the past decades,
reviews of these technologies show that the wheel is often
reinvented. Both the individual hardware components and the
algorithms used to generate feedback, among other things, are
redeveloped instead of shared. A lack of exchange between re-
search groups and the use of different development ecosystems
means that these software and hardware components often
have to be developed and integrated from scratch. This takes
up valuable resources that are then not available elsewhere,
e.g., for developing innovative concepts or testing them with
visually impaired users.

This paper presented an approach to this problem by intro-
ducing a framework for a component-based development of
ETAs that promotes the reusability and interchangeability of
components across projects within a standardized ecosystem.
To this end, a mode for identifying ETA component borders by
using a human-machine interaction view was presented (see
Fig. 2). The components were identified as displays, sensors,
controls, a machine internal state and additional information
services. It can be concluded that an ETA is generally suitable
for decomposition into loosely coupled building blocks. This
subdivision can also be seen in systems already known from
related literature. Furthermore, individual components can be
replaced by a simulation, allowing certain other components
to be tested in a more flexible and risk-free manner.

ROS 2 was proposed as an existing open-source framework
to support the component-based development of ETAs. The
development with ROS 2 and the component-based develop-
ment was shown in the form of an indoor navigation system.
This example uses UWB technology for localization with a
vibration vest taken from the virtual reality gaming domain,
to present the advantages and disadvantages of such an ETA
development. This paper also shows an evaluation of that
system and highlights the possibilities of exchangeable feed-
back devices as well as CARLA as an open-source simulation
environment used in autonomous driving. It is highlighted that
the results of a simulation highly depend on the feedback
available to the user inside the simulation, like when changing
orientation or position.

Two features of ROS 2 proved to be particularly important
advantages. One is the background of ROS 2, which is
mainly in mobile robotics. The overlap between the problems
addressed in robotics and ETAs, and the technologies used
to address them, is remarkably large. Examples include real-
time navigation and environmental perception, for which ROS
2 already provides appropriate sensor drivers, standardized
interfaces and algorithms, and tools for testing and visualizing
the systems. The use of simulations is also commonplace in
robotics.

On the other hand, ROS 2 is designed to support a
component-based development. A loose coupling between
ROS 2 nodes and packages is enabled by the definition of
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custom asynchronous data channels and launch files, in which
components can be configured and integrated. This creates the
reusability and interchangeability identified in this paper as
important drivers of ETA development.

Despite the fact that ROS 2, as an open-source framework,
has limitations, such as a lack of documentation or support, it
enables rapid results and innovation, not least because of the
large and active community, especially for research.

Considering the possible implications for the future de-
velopment of ETAs using ROS 2, the framework we have
started and presented would need to be extended with even
more components and system compositions to further illus-
trate how generic and versatile it is. To facilitate exchange
between different research groups, an open platform could be
created where components, algorithms and complete systems
could be published in the form of ROS 2 nodes, packages
and launch files. However, to ensure compatibility between
components from different developers and systems, a more
concrete policy for their creation needs to be formulated by
defining rules and specifications. Then new components could
be easily integrated. Although, experience with other open-
source frameworks has shown that building a community to
collaboratively share knowledge and expertise can be chal-
lenging.
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Abstract— The invasion of SARS-CoV-2 into host cells depends 

on the interaction of the Spike protein with the human 

angiotensin-converting enzyme 2 (Ace2). Specific Ace2 

polymorphisms have been associated with increased 

susceptibility to SARS-CoV-2, potentially affecting the risk of 

infection and the severity of COVID-19. Furthermore, SARS-

CoV-2 has a high probability of mutating and adapting to the 

environment. However, the effect of these genetic variations on 

the stability and affinity of the Spike-Ace2 interaction is not 

well understood. For a deeper understanding of this 

interaction, molecular dynamics simulations are used. Despite 

generating extensive data, these simulations do not easily 

facilitate the identification of essential residues that influence 

protein interaction. To address this challenge, we combined 

molecular dynamics simulations and supervised machine 

learning techniques to identify the residues that are subtly 

important in the interaction and dynamics of the complexes. 

The molecular dynamics simulations revealed subtle trajectory 

variations, emphasizing key residues and loop regions residues. 

While complexes show stable behavior with slight differences, 

machine learning techniques offer deep insights into how 

genetic variations in both the virus and host receptor influence 

the interaction region of these proteins. 

Keywords-COVID-19; Bioinformatics; Virus-host 

interaction; Polymorphism; Variants. 

I.  INTRODUCTION 

On March 11, 2020, the World Health Organization 
characterized COVID-19 as a pandemic, identifying it as an 
infectious disease caused by the Severe Acute Respiratory 
Syndrome of Coronavirus-2 (SARS-CoV-2) [1] [2]. To date, 
August 2023, more than 691 million cases have been 
confirmed, with the global death toll surpassing 6.9 million 
[3]. In Brazil, listed as one of the most impacted countries, 
records exceed 37 million confirmed cases and almost 704 
thousand deaths [4]. COVID-19 is a respiratory disease 
primarily transmitted through virus-containing particles that 
are expelled when  an infected person coughs, sneezes, or 
talks.  The severity of the disease can vary from mild cases 
to severe cases that can lead to Acute Respiratory Distress 
Syndrome  and, in more serious situations, organ failure [5]. 
People with pre-existing comorbidities and/or who are 

experiencing some degree of immunosuppression are 
generally more susceptible to developing severe forms of the 
disease. Although some people may experience the severe 
form of COVID-19, others remain asymptomatic [5][6]. 

The entry of the virus into the host cell is one of the most 
important processes in viral infection. The virus establishes 
interactions with specific receptors present on the cell 
surface, followed by a fusion or endocytosis process, which 
enables the release of its genetic material into the cell 
cytoplasm. This viral entry step is a critical target in the 
development of vaccines and antiviral drugs, as inhibiting or 
blocking this process can effectively prevent or limit viral 
replication and spread. The invasion of SARS-CoV-2 into 
host cells depends on the interaction of the Spike protein 
with the human angiotensin-converting enzyme 2 (Ace2), 
which is present in the cell membrane. Certain 
polymorphisms of the Ace2 protein have been associated 
with increased susceptibility to SARS-CoV-2 [5][6]. These 
genetic variations in Ace2 can influence how effectively the 
virus attaches and enters into host cells, potentially affecting 
the risk of infection and the severity of the resulting COVID-
19 disease. 

Furthermore, SARS-CoV-2 has a high probability of 
mutating and adapting to the environment [7]. The virus has 
multiple Variants of Concern (VOC) during the course of the 
pandemic, each with specific mutations that have raised 
global health concerns. Notable VOCs include Omicron 
(B.1.1.529 – several countries), Alpha (B.1.1.7 - United 
States), Beta (B.1.351 – South Africa), Gamma (P.1 - Brazil) 
and Delta (B.1.617.2 - India) [2]. In addition, there were 
region-specific variants of interest, such as the P2 (or Zeta 
variant) (B.1.1.28.2), which was detected in the Rio de 
Janeiro city, Brazil, in October 2020. The mutations 
observed in SARS-CoV-2 variants, in conjunction with the 
Ace2 polymorphisms, raise questions about whether genetic 
variability of both the virus and the host could explain the 
different degrees of severity observed in infection cases. 

Understanding the complex interaction between viral 
mutations and host genetic variations is crucial to unraveling 
the factors that influence disease outcomes. One of the areas 
of investigation is how these variations impact the stability 
and affinity of the Spike-Ace2 complexes, which are critical 
for viral entry into host cells. Certain mutations in the Spike 

99

International Journal on Advances in Life Sciences, vol 15 no 3 & 4, year 2023, http://www.iariajournals.org/life_sciences/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



can increase the ability of the virus to interact more tightly 
with the Ace2 receptor, potentially leading to increased viral 
replication and infectivity. Unraveling the mechanisms by 
which these mutations influence viral entry and replication 
could open new avenues for therapeutic interventions. 

Molecular dynamics (MD) simulations offer valuable 
information for exploring the effects of mutations and 
evaluating the stability and affinities between complex 
structures. However, the trajectories resulting from these 
simulations generate large amounts of data from thousands 
of atoms at each time interval. The analysis of complex 
trajectories can be performed through various approaches, 
including temporal trajectory analysis, evaluation of 
thermodynamic properties, and investigation of the bonds 
and interactions present. 

Despite these analytical approaches, the highly 
dimensional nature and noisy output for the simulations 
present significant challenges in extracting crucial features 
from the trajectories. Consequently, it becomes difficult to 
gain a deeper understanding of molecular processes, such as 
regions or residues that may subtly contribute to protein 
interactions. Interpreting and extracting significant 
information from these trajectories requires robust analysis 
and is not a simple task. 

Machine learning techniques are utilized to analyze 
extensive datasets, helping to identify crucial distinctions 
between trajectories obtained in MD simulations, even when 
these differences are subtle. Fleetwood et al. (2020) 
demonstrated the utility and potential of machine learning 
techniques in understanding biomolecular processes [8]. 
Their work involved the successful application of both 
supervised and unsupervised methods to investigate three 
distinct biological systems. In the field of viral interactions 
with human hosts, Pavdola et al. (2021) employed MD 
simulations and machine learning techniques to investigate 
the differences in how SARS-CoV and SARS-CoV-2 
interact with the human Ace2 receptor [9]. Inspired by these 
studies, our research aimed to further explore the interaction 
between SARS-CoV-2 and Ace2,  aiming to fill the 
knowledge gap about the interaction between viral mutations 
and genetic variations of the host. 

In our previous study, we investigated the effects of 
genetic variability in SARS-CoV-2 on the interaction with 
wild type Ace2 [1]. Extensive MD simulations were 
performed to evaluate the stability of the formed protein 
complexes and, subsequently, supervised machine learning 
methods were used considering the trajectories obtained in 
the simulations as input data. In this study, we expand our 
analyzis to address the interaction of Spike variants with 
wild type Ace2, in addition to including new investigations 
into the effects of Ace2 polymorphisms. The combining of 
MD simulations and machine learning methods has allowed 
us to gain deeper insights into how genetic variations in both 
the virus and the host receptor can impact the region of 
interaction between these essential proteins. 

The structure of this work is outlined as follows: Section 
II elucidates the methods employed at each stage of this 
study. Moving forward, Section III elaborates on the results 
and subsequent discussions, while Section IV summarizes 

the conclusion and describes the next steps of this research. 
The article concludes with acknowledgements. 

II. MATERIAL AND METHODS 

In this section, we will outline the methods employed to 
perform molecular dynamics simulations and implement 
machine learning architectures. 

A. Molecular Dynamics 

The tertiary structure of the complex Spike receptor-
binding domain (RBD) and Ace2 (PDB ID: 6LZG) was 
obtained from the Protein Data Bank [10] and the Modeller 
software v9.23 [11] was used to fill the missing atoms and 
residues. The mutant complexes for Spike variants and Ace2 
polymorphisms were generated by using the UCFS 
CHIMERA software version 1.14 [12]. Seven complexes 
Ace2_Spike-RBD were analyzed: Ace2_Spike-RBD (Wild 
complex), Ace2_Spike-RBD variants (Omicron, Delta and 
P2) and Ace2_Spike-RBD complexes with the Ace2 
polymorphisms (K26R, R219C, K341R). The Ace2 
polymorphisms were selected using the Genome 
Aggregation Database (GnomAD – 
https://gnomad.broad.institute.org) and Brazilian Online 
Mutations Archive (ABraOM – http://abraom.ib.usp.br). The 
selection of non-synonymous Ace2 mutations was carried 
out using the following criteria: amino acid residues located 
in the region of the peptidase domain of Ace2 (19-614 
residues) and identified, according to the literature, as critical 
residues in the interaction between Ace2 and Spike-RBD, 
polymorphisms found in samples of the Brazilian population 
deposited in the ABraOM database and which are in high 
frequency in the population according to GnomAD data. 

The systems were solvated in a cubic box with a 
minimum distance of 1.25 nm from the solute to the edge of 
the box. GROMACS package version 2020.5 [13] was used 
in the MD simulations of complexes. The force field used 
was CHARMM36 [14]. The molecules were solvated with 
TIP3P water molecules and neutralized by adding the 
appropriate number of Na+Cl ions considering the ionic 
concentration of 0.15 M. The energy minimization was 
performed using the steepest descent method with a 
maximum force of 1000 KJ.mol-1.nm-1. After minimization, 
the systems were equilibrated in two stages: a canonical 
NVT set followed by an isothermal-isobaric NPT set. The 
NVT equilibrium was performed with a constant temperature 
of 300 K for 500 ps. The NPT equilibrium was performed 
with a constant pressure of 1 bar and a constant temperature 
of 300 K for 500 ps. The v-rescale and Parrinello-Rahman 
algorithms were utilized to keep constant temperature and 
pressure. The production step was conducted at 300 K for 
100 ns and the trajectories were saved every 10 ps. 

The Root Mean Square Deviation (RMSD) and Root 
Mean Square Fluctuation (RMSF) were calculated as metrics 
to evaluate the structural stability and dynamic fluctuations 
of the systems. While RMSD measures the average distances 
between matching atoms in two structures, usually 
comparing frames obtained during MD simulations with the 
initial frame (t = 0 ns), RMSF calculates the average squared 
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fluctuations of atom positions in relation to their average 
positions throughout a simulation. 

To estimate the binding energy and determine the 
energetic contributions of residues in protein-protein 
interactions, we utilized the MM/PBSA method [15]. For the 
MM/PBSA calculations, we included all frames from the 
final 10 ns of production for each complex.  We selected the 
last 10 ns of the simulations, as during an extended 
simulation, the systems attain a state of dynamic equilibrium 
where relevant properties for calculating binding free energy 
become stabilized. This time window is appropriate for 
sampling the conformation and properties of the system, not 
requiring high computational power. Additionally, a shorter 
time interval helps minimize the effects of initial system 
fluctuations, allowing for a more accurate estimation of the 
binding energy. 

B. Machine Learning 

Based on Fleetwood et al. [8], correlation matrices of 
filtered contact maps from MD trajectories were used as 
inputs for supervised ML techniques. In order to reduce the 
influence of a single model and enhance the stability of our 
results, we utilized two different classification strategies: 
Multilayer Perceptron (MLP) and Random Forest (RF). Both 
methods were used to identify residues that contribute to the 
difference in dynamic behavior between the complexes (Fig. 
1). 

 

 
 

Figure 1. Workflow of the Machine Learning methods used in this study. 

 
The MLP is an artificial neural network with multiple 

layers between the input and output layers. It is particularly 
suited for capturing complex, non-linear relationships in 
data. On the other hand, RF is an ensemble learning 
technique that builds multiple decision trees and combines 
their outputs through majority voting. The performance and 
capability of RF to manage noisy and incomplete data make 
it a valuable resource in various scenarios. By utilizing both 
RF and MLP, we ensure a comprehensive exploration of 
intrinsic relationships and distinctive patterns within the 

dataset, which ultimately results in more accurate predictions 
and valuable insights in our analysis. 

What constitutes the input features for the MLP are 
correlation matrices obtained from contact distances between 
Ace2 and Spike-RBD residues. The distances were 
calculated as the minimum distance between the heavy 
atoms of residues in the interaction region and then filtered, 
leaving only the distances less than 15 Å, in order to 
establish a predetermined range of analysis for the studied 
regions. The values were then inverted and normalized to be 
used for the calculation of the correlation matrix, which was 
also filtered. Correlations over 0.9 were discarded, as the 
objective was to identify residues that are not easily 
recognized as significant contributors to the interaction. 

In the MLP, four additional profiles were generated for 
each complex using bootstrapping, aiming to enhance the 
classifiers performance. As a result, five profiles were 
obtained for each complex. 

The MLP was implemented using the open-source ML 
library Scikit-learn in Python [16]. We also used the data 
analysis and manipulation library Pandas [17], and the 
numerical computing library NumPy [18]. For the structure 
of the MLP, 8 hidden layers were used, with 100, 75, 50, 40, 
30, 20, 10, and 5 neurons respectively, each with the ReLU 
function as activation. The labels (Ace2_Spike-RBD 
complex) were one-hot encoded to represent categorical data 
numerically and the training process used the Adam 
optimizer [19] to adjust node weights. A train-test split was 
applied, with 80% of the data in the training set and 20% in 
the test set. 

This network was trained with each of the profiles, 
resulting in 5 total MLPs for the complexes with Spike-RBD 
variants and Wild type (WT) and 5 for the complexes with 
the Ace2 polymorphisms and WT. 

Since the classification task itself does not directly 
indicate which were the important features that influenced 
the prediction, an explanation algorithm was applied for the 
model. The one selected was the Layer-Wise Relevance 
Propagation (LRP) [20] with the LRP-0 rule. This algorithm 
indicates which inputs had the most impact on a specific 
prediction made by the model,  obtaining this through the 
allocation of a normalized relevance score to each individual 
feature. Therefore, making the decision-making of the neural 
network more transparent. 

The RF classifier, also implemented with Scikit-learn, 
receives as inputs the distances matrix, since it  uses an 
internal bootstrapping process to produce consistent profiles, 
and the number of decision trees was set to 100.  Our model 
utilized the Gini impurity coefficient, ranging from zero to 
one. Zero indicating a pure split and one indicating 
maximum impurity. We aimed to select splits that would 
lower Gini impurity, resulting in more homogeneous 
distribution of classes within the leaves of the tree. 

To calculate the importance of a specific state in the RF 
model, the one-versus-the-rest approach was employed. This 
strategic method decomposes the problem into multiple 
binary classification instances and endeavors to discriminate 
each individual case. 
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III. RESULTS AND DISCUSSION 

The outcomes achieved at each step of our work will be 
detailed in the subsequent subsections. 

A. Analysis of trajectory stability 

The simulation data was used to compute RMSD for 
Ace2_Spike-RBD complexes, considering two distinct 
approaches: the first one considering the interaction between 
Ace2 WT and Spike-RBD variants; and the second one 
analyzing the interaction between Ace2 polymorphisms and 
Spike-RBD WT. Fig. 2 shows the RMSD values for the 
Ace2 and Spike-RBD proteins. 

 

 
 

Figure 2. Analysis of the RMSD trajectories obtained in the MD 

simulations. (A) RMSD of Ace2 WT interacting with Spike-RBD variants; 

(B) RMSD of Spike-RBD variants interacting with Ace2 WT; (C) RMSD 
of Ace2 polymorphisms interacting with Spike-RBD WT; (D) RMSD of 

Spike-RBD WT interacting with Ace2 polymorphisms. 

 

In the Ace2 chain trajectory (Figs. 2A and 2C) involving 

the interaction with Spike-RBD, the RMSD showed similar 

values (between 0.2 nm and 0.4 nm) and low standard 

deviation, implying their stability. The trajectory of the 

Ace2 WT had a subtle higher RMSD value compared to the 

other complexes, revealing greater structural variation over 

the analyzed time. The Spike-RBD trajectories (Figures 2B 

and 2D) of all complexes remained in equilibrium, with 

RMSD values between 0.2 and 0.6 nm. All analyzed 

trajectories of the Spike-RBD complex interacting with 

Ace2 polymorphisms similarly exhibited stability 

throughout the simulation. 

Stable trajectories indicate that the simulation is 

converging to an equilibrium state, where the properties of 

the systems stop showing significant variations. This 

stability enhances the reliability and precision of the 

simulation data, providing valuable insights into the 

behavior and interactions of the studied complexes. 

 

B. Analysis of the Atomic Position Variation 

The RMSF represents the degree of variation in the 
position of a given atom during the course of time. Higher 
values of RMSF per residue characterize greater flexibility, 
and vice versa [21]. The RMSF results of the interaction 
between Ace2 WT and Spike-RBD variants, along with the 
interaction between Ace2 polymorphisms and Spike-RBD 

WT, are presented and discussed in sections 1 and 2, 
respectively. 

 
1) Mobility Analysis of Ace2 WT Associated with Spike-

RBD Variants.: The RMSF analysis revealed the residues 
that exhibited the most significant fluctuations in the 
trajectories of the Ace2 protein (Fig. 3A) and Spike-RBD 
(Fig. 3B). On the Ace2 trajectories, the most pronounced 
fluctuations occur predominantly in loop regions, 
specifically in residues near Pro138, Gln287, Asn290, 
Gln340, and Phe428 (Fig. 3C). Notably, Gln340 exhibited 
the highest peak in the trajectory of the Delta variant (0.67 
nm), with a difference of 0.36 nm from the other 
trajectories. Among these residues, Gln340 is the only one 
located in a loop relatively close to the Spike-RBD. 
 

 
 

Figure 3. Analysis of residual RMSF from Ace2 protein interacting with 
Spike-RBD variants. (A) Residual RMSF of Ace2 WT in the Ace2_Spike-

RBD complex; (B) Residual RMSF of Spike-RBD variantes in the 
Ace2_Spike-RBD complex; (C) Fluctuations in Ace2 WT  loop regions; (D) 
Fluctuations in Arg408 residue of Spike-RBD variants; (E) Fluctuations in 

residues Ile434 and Lys444 of Spike-RBD variants. 

 
Regarding the Spike-RBD trajectories (Fig. 3B), notable 

fluctuations were observed for the Arg408, Ile434 and 
Lys444 residues. The RMSF values showed that Arg408 
residue of the Delta variant obtained a slightly lower RMSF 
value (0.13 nm) compared to the WT (0.21 nm), Omicron 
(0.25 nm) and P2 (0.28 nm) variant complexes. This residue 
is situated in an alpha-helix, near the interaction interface of 
Spike-Ace2 (Fig. 3D). 

Arg408 is adjacent to residue 417, which has mutated 
into the Omicron variant, resulting in an amino acid switch 
from lysine to asparagine (K417N). In the Spike WT, 
Lys417 forms a very stable salt bridge with the aspartate at 
residue 30 of the Ace2 receptor. The replacement of lysine 
for asparagine or threonine largely disrupts binding at this 
position, as it induces a loss of the salt bridge at this position 
[22]. 

As for the Omicron variant complex, the Ile434 residue 
showed a slightly higher fluctuation (0.12 nm) compared to 
the Spike-RBD WT (0.7 nm), in addition to Delta (0.7 nm) 
and P2 (0.6 nm) variants. Ile434 is located in a beta-sheet, 
but it is not close to the Spike-RBD (Fig. 3E). Isoleucine, 
being a non-polar amino acid, plays an important role in the 
structural stabilization of proteins due to hydrophobic 
interactions within its interior. Furthermore, Ile434 is close 
to the S375F and N440K mutations in the Omicron variant. 
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Such mutations decrease the protein stability, which may 
explain the greater fluctuation observed in this variant [22]. 

The Lys444 residue of the Delta variant had the highest 
fluctuation peak of 0.20 nm, followed by the Omicron 
variant (0.16 nm), P2 variant (0.16 nm), and Spike-RBD WT 
(0.14 nm). Lys444 is located in a loop close to Gly446, 
Tyr449, Gln498, Thr500 and Asn501 in Spike WT, which 
are involved in polar interactions with Ace2 (Fig. 3E) [23]. 
The L452R mutation of the Delta variant, which is relatively 
close to the Lys444 residue, reduces protein stability [24]. 
 

2) Mobility Analysis of Spike WT Associated with Ace2 

Polymorphisms: The RMSF results for Ace2 

polymorphisms and Spike-RBD are shown in Figs. 4A and 

4B, respectively. The most prominent RMSF fluctuations 

are observed in loop regions, which were previously 

highlighted in the previous section and are represented in 

Fig. 3C. However, a few subtle fluctuations have been 

identified near the Ace2 polymorphisms regions, such as 

those observed in Gln325, Trp328, and Arg582. 
The Gln325 residue is situated in an alpha-helix near the 

Spike-RBD and exhibited a slightly reduced fluctuation in 
the trajectory of the complex with the K341R polymorphism 
(0.18 nm), followed by WT (0.26 nm), R219C (0.27 nm), 
and the largest, K26R (0.30 nm). Similarly, Trp328 also 
showed a smaller fluctuation in the trajectory of the K341R 
polymorphism, with a difference of 0.16 nm compared to the 
other complexes. The tryptophan residue is located in an 
alpha-helix next to the Spike-RBD. Both Gln325 and Trp328 
are positioned near the K341R polymorphism (Fig. 4C). 

The residue Arg582 of the Ace2 WT obtained a slightly 
lower RMSF value (0.07 nm) compared to the complexes 
with the polymorphisms K26R (0.25 nm), R219C (0.20 nm) 
and K341R ( 0.19 nm). Residue Arg582 is located in an 
alpha helix close to the R219C polymorphism (Fig. 4D). 

 

 
 

Figure 4. Analysis of Residual RMSF from Spike WT interacting with Ace2 
polymorphisms. (A) Residual RMSF of Ace2 polymorphisms  in the 

Ace2_Spike-RBD complex; (B) Residual RMSF of Spike-RBD in the 
Ace2_Spike-RBD complex; (C) Fluctuations in residues Gln325 and Trp328 

of Ace2 polymorphisms; (D) Fluctuations in Arg582 residue of Ace2 
polymorphisms; (E) Fluctuations in Trp436 and Ser443 residues of Spike-

RBD. 

 
In the RMSF plot of the Spike-RBD chain (Fig. 4B), the 

Ace2_Spike-RBD complex featuring the K26R 
polymorphism demonstrated a slightly elevated RMSF value 
at residue Trp436 within the Spike protein (with a 0.1 nm 

difference) compared to complexes involving other 
polymorphisms. The Arg26 polymorphism represents a polar 
residue located within an alpha helix, near to the Spike-RBD, 
while Trp436 is an aromatic amino acid with non-polar 
characteristics, positioned within a beta sheet structure (Fig. 
4E). Additionally, the complex with the G211R 
polymorphism exhibited marginally higher RMSF values in 
the Ser443 residue, showcasing a difference of 0.27 nm in 
relation to the other polymorphisms. Situated adjacent to 
Spike-RBD within an alpha helix, the residue Ser443 
emerges as an uncharged polar element. 
 

C. MM/PBSA Binding Free Energy Analysis 

The MM/PBSA calculation was performed to estimate 

the binding energies between the Ace2 and Spike proteins, 

along with to comprehend the factors contributing to the 

stability or instability of the interaction. The binding energy 

values are summarized in Table 1, revealing that the 

Omicron variant demonstrates a more affinity with Ace2, 

showing a binding energy of -2572.23 ± 144.92 KJ.mol-1, 

followed by the Delta and P2 variants, which record values 

of -1875.71 ± 132.97 and -1837.21 KJ.mol-1, respectively. 

The analysis of MM/PBSA residual energy decomposition 

has revealed that it is the electrostatic interactions that 

predominantly influence the stability of the Spike-RBD 

variants in the protein-protein interaction. On the other 

hand, the values obtained for the Van der Waals energy 

components, solvation polar energy and SASA did not show 

significant variations. Regarding the interaction of Spike-

RBD WT with Ace2 polymorphisms, the estimated values 

for binding energy did not exhibit significant variations. 

This can be attributed to the point-wise changes in Ace2 

polymorphisms, which were not sufficient to differentiate 

the binding interaction energy. 

TABLE I.  RESIDUAL DECOMPOSITION AND BINDING ENERGY 

(GIVEN IN KJ.MOL
-1

 ) IN THE PROTEIN-PROTEIN INTERACTION. 

 
 

Fig. 5 illustrates the per-residue energy decomposition 
through MM/PBSA of the analyzed complexes. Although 
Ace2 residues showed subtle variations in interaction with 
the Spike variants (Fig. 5A), variations within Spike residues 
themselves were more pronounced (Fig. 5B).  Specifically, 
the residues at positions 408, 417, 440, 452, 478, 484, 493, 
and 498 exhibited significant energetic variations. 

In the Spike-RBD chain (Fig. 5B), the Omicron variant 
shows a slightly decreased binding energy at the Arg408 
residue in comparison to WT and other variants. 
Furthermore, Lys417 residue in the Omicron variant shows a 
weaker binding energy than in the other complexes (-4.72 
KJ.mol-1), with a discrepancy greater than 200 KJ.mol-1. As 
previously mentioned, the substitution of lysine with 
asparagine, as observed in the Omicron variant, disrupts a 
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highly stable salt bridge interaction between Lys417 and 
Ace2 residue 30, consequently destabilizing the complex. In 
addition, the N440K mutation present in the Omicron variant 
records a value of -225,52 KJ.mol-1, differing by more than 
200 KJ.mol-1 from the other complexes. 

 

 
 

Figure 5. MM/PBSA per-residue energy decomposition for the 
trajectories obtained in the MD simulations. (A) Contribution energy of 

Ace2 WT residues in interaction with Spike-RBD variants; (B) Contribution 
energy of Spike-RBD variants residues in interaction with Ace2 WT; (C) 
Contribution energy of Ace2 polymorphism residues in interaction with 
Spike-RBD WT; (D) Contribution energy of Spike-RBD WT residues in 

interaction with Ace2 polymorphisms. 

 
In the Delta variant complex, the L452R mutation 

showed a binding energy of -200.19 KJ.mol-1, while in the 
other complexes the residue reached values around -1 
KJ.mol-1. The residue L452R is located in the hydrophobic 
region of the Spike protein and does not interact with the 
Ace2 receptor. However, there is a possibility that the 
mutation induces structural changes by promoting its 
interaction with the Ace2 receptor [25]. 

The T478K mutation, identified in the Delta and 
Omicron variants, resulted in binding energies of -186.69 
and -175.78 KJ.mol-1, respectively. In contrast, the WT and 
P2 complexes showed binding energies around -1 KJ.mol-1. 
Replacement of the polar and uncharged threonine residue 
with the positively charged basic amino acid lysine increases 
the electrostatic potential contribution within the Spike-
RBD, promoting stronger affinity with the Ace2 receptor. 
Furthermore, the elongated lysine side chain could increase 
the steric effects of the Delta variant, potentially elucidating 
the increased interaction between Spike-RBD and the Ace2 
receptor [26]. 

The Glu484 residue is mutated in the Omicron variant, 
involving the replacement of glutamine by alanine, and 
likewise in the P2 variant, but with the replacement of 
glutamine by lysine. Notably, the E484K mutation in the P2 
variant produced a higher binding energy (-211.87 KJ.mol-1), 
contrasting with the E484A mutation observed in the 
Omicron variant (-1.76 KJ.mol-1). The E484A mutation 
within the Omicron variant abolishes the weak binding of 
Glu484 to Ace2 in the WT, while mitigating the 
destabilization arising from conceivable electrostatic 
repulsion between Glu484 from WT and Glu35 from Ace2 
after transition to Ala484. Consequently, the E484A 

mutation has no influence on the binding free energy, in 
contrast to the E484K mutation observed in P2, which 
increases the interaction. 

Q493R and Q498R are mutations present in the Omicron 
variant that showed a reduction in binding energy, with 
values of -226 and -252 KJ.mol-1, respectively, with a 
difference of more than 200 KJ.mol-1 from the Delta and 
WT. The combination of the Q498R and N501Y mutations 
significantly increases Ace2 binding capacity due to the 
formation of two new strong salt bridges between Arg493 
and Arg498 of Omicron, and Glu35 and Asp38 in Ace2 [27]. 

Regarding the complexes between Ace2 polymorphisms 
and Spike-RBD WT, no significant values were observed in 
the MM/PBSA results for the residues in question (Figs. 5C 
and 5D). However, the residues Val343 and His345, located 
in the Ace2 chain of the complex containing the K341R 
polymorphism, showed slightly weaker binding energy 
compared to the other complexes (Fig. 5C). Val343 and 
His345 are situated close to the K341R polymorphism, all 
within the loop region and relatively near the Spike-RBD. 

D. Discriminatory Residues of Spike Variants through 

Machine Learning 

Table 2 shows the five most significant residue pairs for 
each complex. In the MLP, the importance values of each 
residue pair were derived by calculating the average of the 
associated LRP-0 attributes. On the other hand, in the RF, 
the importance was evaluated based on the reduction of Gini 
impurity. Key residues responsible for variations in binding 
between Spike-RBD variants and Ace2 WT were identified, 
some of them already reported in previous studies. 
 

TABLE II.  IMPORTANT RESIDUES OBTAINED FROM MLP AND RF FOR 

SPIKE VARIANTS INTERACTING WITH ACE2 WT. THE PAIRS HIGHLIGHTED IN 

BOLD ARE SUPPORTED BY THE LITERATURE AND ARE DISCUSSED IN THIS 

STUDY. 

 
 

Fig. 6 illustrates the importance values of the pairs 
obtained through MLP (Fig. 6.A) and RF (Fig. 6B), 
highlighting the most relevant residues that distinguish the 
variants from the WT (Figs. 6C-E). 
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Figure 6. Pairs of residues determined as most important for distinguishing the binding between Ace2 WT and Spike-RBD variants. (A) Pairs identified by 
MLP; (B) Pairs identified by RF; (C) Pairs of important residues found for Spike-RBD WT and P2; (D) Pairs of important residues found for Spike-RBD WT 
and Omicron; (E) Pairs of important residues found for Spike-RBD WT and P2. Important residues are composed of highly distinct pairs of distances between 

Ace2 WT and the studied Spike-RBD variants. 
 

The residue pairs identified by the RF model differed 
from those identified by the MLP model. However, some 
residues were identified by both methods. The analysis of the 
results emphasizes the importance of the main residues of 
Ace2 in the interaction with Spike-RBD, as mentioned by 
Ali and Vijayan (2020), which include Gln24, Thr27, Asp30, 
Glu37, Gln42, and Lys353 [28]. Furthermore, the Ser19 
residue of Ace2 protein, which was commonly seen among 
pairs, is also important. Ser19 participates in a network of 
hydrogen interactions, particularly interacting with Pro462 
[29]. 

The results obtained by the MLP suggest that Ser19 can 
subtly interact with residues near Pro462, forming pairs with 
Pro479 in the Spike-RBD WT, and Asn477 and Pro479 in 
the P2 variant. The S477N mutation, present in the P2 
variant, may favor a greater interaction with Ser19 of Ace2 
protein. In addition, a mutation S19P increased the 
interaction between Ace2 and Spike-RBD [30]. This 
suggests that the Ser19 residue plays a critical role in 
modulating the interaction between Ace2 and Spike, 
potentially influencing the infection capability and viral 
transmissibility of the P2 variant. The mentioned pairs may 
be of importance in distinguishing between the binding of 
Spike-RBD WT and P2 to Ace2 (Fig. 6C). 

In the RF model, the mutations K417N and Q498R of the 
Omicron variant formed interesting residue pairs. The 
K417N mutation may have significant effects with residues 
Ile21, Gln24, Ala25, and The27, while the Q498R mutation 
may affect Lys353 of Ace2 protein (Fig. 6D). Studies 
indicate that the K417N mutation leads to a reduction in the 
binding affinity of the Spike to Ace2; however, it is an 
immune escape mutation, which helps SARS-CoV-2 escape 
the natural immune defenses of the host, contributing to 
increased viral transmissibility. On the other hand, Q498R is 
associated with an increase in viral infection. The Lys353-
Arg498 pair had an importance of 0.94. The study by Zhang 
et al. (2022) suggests that Q498R is structurally incompatible 
with Lys353 in Ace2, but is structurally adapted to Asp38 
[31]. 

The E484K mutation, found in the P2 variant, is 
associated with a reduction in neutralizing antibodies. This 

mutation results in a tighter binding interface between Spike-
RBD and Ace2 protein, contributing to an increase in 
binding affinity [32]. Our results indicate the presence of two 
pairs related to this residue, namely Ser106-Lys484 with a 
significance of 1.00, and Ser105-Lys484 with a significance 
of 0.79 (Fig. 6E). 

E. Discriminatory Residues of Ace2 polymorphisms 

through Machine Learning 

 

Table 3 shows the five pairs responsible for variations in 
the binding between Ace2 polymorphisms and Spike-RBD. 
Both the RF and MLP models identified identical residue 
pairs, such as Phe356-Tyr495 in K26R, and Gly104-Phe486 
and Ser105-Tyr489 in K341R. For ACE2 WT and R219C 
polymorphism, the residue pairs identified by the RF model 
differed from those identified by the MLP model. However, 
the residue Phe486 (in R219C) and Gln325 (in WT) were 
identified in both methods. Notably, the Ser19 residue in the 
Ace2 protein received high scores for all the polymorphisms, 
including K26R, K341R, and R219C identified by MLP, in 
addition to the WT identified by RF. 

TABLE III.  IMPORTANT RESIDUES OBTAINED FROM MLP AND RF FOR 

ACE2 POLYMORPHISMS INTERACTING WITH SPIKE-RBD WT. THE PAIRS 

HIGHLIGHTED IN BOLD AND MARKED WITH ASTERISKS APPEARED IN BOTH 

MLP AND RF ANALYSES. THE REMAINING BOLD PAIRS ARE ALSO 

DISCUSSED IN THIS STUDY. 
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Figure 7. Pairs of residues determined as most important for distinguishing the binding between Spike-RBD WT and Ace2 polymorphisms. (A) Pairs identified 
by MLP; (B) Pairs identified by RF; (C) Pairs of important residues found for Ace2 WT and K26R; (D) Pairs of important residues found for Ace2 WT and 

K341R. Important residues are composed of highly distinct pairs of distances between Ace2 polymorphisms and the Spike-RBD. 

 
Fig. 7 shows the significance of the pair values obtained 

using MLP (Fig. 7A) and RF (Fig. 7B), emphasizing the key 
residues that differentiate the variants from the WT, as 
demonstrated in Figs. 7C and 7D. 

Ace2 K26R increases susceptibility to SARS-CoV-2 due 
to a higher binding affinity with the Spike protein [30]. In 
this polymorphism, Phe326 forms a pair with Tyr495. 
Phe356 is located near residues Tyr41, Gln42, Lys353, and 
Arg357, which interact with the Spike-RBD, while Tyr495 
participates in a hydrogen bonding network with Ace2. 
However, there is currently no literature available on the 
specific importance of Phe356 in the K26R polymorphism 
when interacting with the Spike-RBD. 

The K341R mutation, which replaces lysine with 
arginine, results in a larger mutant residue, which can cause 
protrusions [33]. Our research findings highlight significant 
variations in the pairs Gly104-Phe486 and Ser105-Tyr489. 
The roles of some of these residues have been documented 
by Ali et al. (2020) [28]. Specifically, Phe486 participates in 
important polar interactions with Tyr83 and hydrophobic 
interactions with Leu79 of Ace2. Tyr489 is involved in polar 
interactions with Thr27 and Lys31, as well as hydrophobic 
interactions with Phe28, Tyr83, Thr27, Phe32, and Phe72 
from Ace2. 

IV. CONCLUSIONS AND FUTURE WORK 

The interaction between the Spike and Ace2 proteins 
plays a crucial role in determining the replication rate of 
SARS-CoV-2 and has implications for  the disease 
progression in infected individuals. The virus exhibits a 
pronounced propensity for mutations, as evidenced by the 
emergence of various variants in recent years. Ace2 genetic 
polymorphisms have the potential to influence susceptibility 
to the disease, along with its subsequent intensity and clinical 
outcome. However, a comprehensive understanding of how 
mutations and polymorphisms impact the stability and 
interaction dynamics within the SARS-CoV-2-Ace2 
complex remains an ongoing effort. 

In our research, we combined MD simulations and 
machine learning techniques to explore the interaction 
between different SARS-CoV-2 variants and human Ace2 
polymorphisms. Through these simulations, we obtained 
valuable information about the protein-protein interaction. 
Concurrently, employing machine learning techniques 
allowed us to pinpoint critical amino acid residues within the 
binding region that subtly contribute to this interaction. 

The MD simulations revealed similar stability patterns 
among the studied complexes. Furthermore, the resulting 
trajectories indicated a convergence of the simulations into 
an equilibrium state. The stability of the Ace2 protein 
complex with Spike-RBD WT was slightly diminished, as 
evidenced by the RMSD values, in contrast to the SARS-
CoV-2 variant complexes. This observation is consistent 
with the anticipated effect of mutations in the Spike 
interaction region leading to increased stability. 

Although the most significant fluctuations were observed 
in loop regions, some residues near the interaction interface 
exhibited notable fluctuations. Arg408 and Lys444 of the 
Spike-RBD showed slightly higher RMSF values in the 
Delta variant. Gln325 and Trp328 residues of the Ace2 
protein showed lower fluctuations in the trajectories of the 
K341R polymorphism, whereas Trp436 and Ser443 
exhibited higher fluctuations for WT and G211R, 
respectively. Significant changes in RMSF in these regions 
may suggest important conformational alterations for the 
biological activity in the Ace2-Spike interaction. 

The Omicron variant demonstrates a stronger affinity 
with Ace2, as evidenced by the MM/PBSA values, where the 
Q493R and Q498R mutations contributed more significantly 
to the binding energy. Regarding the complexes formed 
between Ace2 polymorphisms and the Spike-RBD, no 
significant differences were identified in the MM/PBSA 
results for the considered residues. These point 
polymorphisms were not sufficient to generate detectable 
notable variations using the MM/PBSA method. 

Regarding the Machine Learning methods, we achieved a 
precision score of 1 and loss values below 0.005 for both 
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approaches using the test dataset. The high precision and low 
loss on the test data suggest that the model is performing 
well, but they do not ensure the absence of overfitting. A 
more comprehensive evaluation, utilizing other data sources 
such as cross-validation, is necessary to determine the 
presence of overfitting. 

The ML and RF approaches successfully identified key 
residues from both proteins responsible for differences in 
binding region, some of which have been previously reported 
in the literature. This demonstrates that our method was able 
to identify residues that significantly contribute to the 
distinction between virus and host interaction due to Spike 
variants and Ace2 polymorphisms,  extending even to those 
pairs of residues that have been not previously documented 
in the existing literature. 

Our study shows that machine learning can simplify the 
complexity of virus-host interactions by reducing 
dimensionality and identifying crucial residues. Our findings 
indicate that there may be additional important residues 
beyond those previously considered above that may impact 
the interaction between Spike and Ace2 proteins. These 
residues may account for differences in stability and affinity, 
leading to varying levels of susceptibility to SARS-CoV-2 
and resulting in varying degrees of disease severity. In our 
work, we aim to gain a deeper understanding of the 
relationship between mutations and the affinity between 
Spike-Ace2 by not only exploring other variants, but also 
incorporating various machine learning methods. 
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