

The International Journal On Advances in Intelligent Systems is Published by IARIA.

ISSN: 1942-2679

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal On Advances in Intelligent Systems, issn 1942-2679

vol. 1, no. 1, year 2008, http://www.iariajournals.org/intelligent_systems/"

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal On Advances in Intelligent Systems, issn 1942-2679

vol. 1, no. 1, year 2008,<start page>:<end page> , http://www.iariajournals.org/intelligent_systems/"

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2008 IARIA

International Journal On Advances in Intelligent Systems

Volume 1, Number 1, 2008

Editorial Board

First Issue Coordinators

Jaime Lloret, Universidad Politécnica de Valencia, Spain

Pascal Lorenz, Université de Haute Alsace, France

Petre Dini, Cisco Systems, Inc., USA / Concordia University, Canada

Autonomus and Autonomic Systems

 Michael Bauer, The University of Western Ontario, Canada

 Radu Calinescu, Oxford University, UK

 Larbi Esmahi, Athabasca University, Canada

 Florin Gheorghe Filip, Romanian Academy, Romania

 Adam M. Gadomski, ENEA, Italy

 Alex Galis, University College London, UK

 Michael Grottke, University of Erlangen-Nuremberg, Germany

 Nhien-An Le-Khac, University College Dublin, Ireland

 Fidel Liberal Malaina, University of the Basque Country, Spain

 Jeff Riley, Hewlett-Packard Australia, Australia

 Rainer Unland, University of Duisburg-Essen, Germany

Advanced Computer Human Interactions

 Freimut Bodendorf, University of Erlangen-Nuernberg Germany

 Daniel L. Farkas, Cedars-Sinai Medical Center - Los Angeles, USA

 Janusz Kacprzyk, Polish Academy of Sciences, Poland

 Lorenzo Masia, Italian Institute of Technology (IIT) - Genova, Italy

 Antony Satyadas, IBM, USA

Advanced Information Processing Technologies

 Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania

 Kemal A. Delic, HP Co., USA

 Sorin Georgescu, Ericsson Research, Canada

 Josef Noll, UiO/UNIK, Sweden

 Liviu Panait, Google Inc., USA

 Kenji Saito, Keio University, Japan

 Thomas C. Schmidt, University of Applied Sciences – Hamburg, Germany

 Karolj Skala, Rudjer Bokovic Institute - Zagreb, Croatia

 Chieh-yih Wan, Intel Corporation, USA

 Hoo Chong Wei, Motorola Inc, Malaysia

Ubiquitous Systems and Technologies

 Matthias Bohmer, Munster University of Applied Sciences, Germany

 Dominic Greenwood, Whitestein Technologies AG, Switzerland

 Arthur Herzog, Technische Universitat Darmstadt, Germany

 Reinhard Klemm, Avaya Labs Research-Basking Ridge, USA

 Said Tazi, LAAS-CNRS, Universite Toulouse 1, France

Advanced Computing

 Dumitru Dan Burdescu, University of Craiova, Romania

 Simon G. Fabri, University of Malta – Msida, Malta

 Matthieu Geist, Supelec / ArcelorMittal, France

 Jameleddine Hassine, Cisco Systems, Inc., Canada

 Sascha Opletal, Universitat Stuttgart, Germany

 Flavio Oquendo, European University of Brittany - UBS/VALORIA, France

 Meikel Poess, Oracle, USA

 Said Tazi, LAAS-CNRS, Universite de Toulouse / Universite Toulouse1, France

 Antonios Tsourdos, Cranfield University/Defence Academy of the United Kingdom, UK

Centric Systems and Technologies

 Razvan Andonie, Central Washington University - Ellensburg, USA / Transylvania University of

Brasov, Romania

 Kong Cheng, Telcordia Research, USA

 Vitaly Klyuev, University of Aizu, Japan

 Josef Noll, ConnectedLife@UNIK / UiO- Kjeller, Norway

 Willy Picard, The Poznan University of Economics, Poland

 Roman Y. Shtykh, Waseda University, Japan

 Weilian Su, Naval Postgraduate School - Monterey, USA

GeoInformation and Web Services

 Christophe Claramunt, Naval Academy Research Institute, France

 Wu Chou, Avaya Labs Fellow, AVAYA, USA

 Suzana Dragicevic, Simon Fraser University, Canada

 Dumitru Roman, Semantic Technology Institute Innsbruck, Austria

 Emmanuel Stefanakis, Harokopio University, Greece

Semantic Processing

 Marsal Gavalda, Nexidia Inc.-Atlanta, USA & CUIMPB-Barcelona, Spain

 Christian F. Hempelmann, RiverGlass Inc. - Champaign & Purdue University - West Lafayette,

USA

 Josef Noll, ConnectedLife@UNIK / UiO- Kjeller, Norway

 Massimo Paolucci, DOCOMO Communications Laboratories Europe GmbH – Munich, Germany

 Tassilo Pellegrini, Semantic Web Company, Austria

 Antonio Maria Rinaldi, Universita di Napoli Federico II - Napoli Italy

 Dumitru Roman, University of Innsbruck, Austria

 Umberto Straccia, ISTI – CNR, Italy

 Rene Witte, Concordia University, Canada

 Peter Yeh, Accenture Technology Labs, USA

 Filip Zavoral, Charles University in Prague, Czech Republic

International Journal On Advances in Intelligent Systems

Volume 1, Number 1, 2008

Foreword

Finally, we did it! It was a long exercise to have this inaugural number of the journal featuring extended

versions of selected papers from the IARIA conferences.

With this 2008, Vol. 1 No.1, we open a long series of hopefully interesting and useful articles on

advanced topics covering both industrial tendencies and academic trends. The publication is by-

invitation-only and implies a second round of reviews, following the first round of reviews during the

paper selection for the conferences.

Starting with 2009, quarterly issues are scheduled, so the outstanding papers presented in IARIA

conferences can be enhanced and presented to a large scientific community. Their content is freely

distributed from the www.iariajournals.org and will be indefinitely hosted and accessible to everybody

from anywhere, with no password, membership, or other restrictive access.

We are grateful to the members of the Editorial Board that will take full responsibility starting with the

2009, Vol 2, No1. We thank all volunteers that contributed to review and validate the contributions for

the very first issue, while the Board was getting born. Starting with 2009 issues, the Editor-in Chief will

take this editorial role and handle through the Editorial Board the process of publishing the best

selected papers.

Some issues may cover specific areas across many IARIA conferences or dedicated to a particular

conference. The target is to offer a chance that an extended version of outstanding papers to be

published in the journal. Additional efforts are assumed from the authors, as invitation doesn’t

necessarily imply immediate acceptance.

This particular issue covers papers invited from those presented in 2007 and early 2008 conferences.

The papers reflect the evolution of the society from advanced use of the technology for education to

user-centric aspects in socio-semantic networks, and complexity of the new environments dealing with

adaptive monitoring, load-balancing, and policy-driven autonomic computing.

We hope in a successful launching and expect your contributions via our events.

First Issue Coordinators,

Jaime Lloret, Universidad Politécnica de Valencia, Spain

Pascal Lorenz, Université de Haute Alsace, France

Petre Dini, Cisco Systems, Inc., USA / Concordia University, Canada

International Journal On Advances in Intelligent Systems

Volume 1, Number 1, 2008

CONTENTS

ARTICLE WITHDRAWN 1 - 10

Polling Schedule Optimization for Adaptive Monitoring to Scalable Enterprise Systems

Fumio Machida, NEC Service Platforms Research Laboratories, Japan

Masahiro Kawato, NEC Service Platforms Research Laboratories, Japan

Yoshiharu Maeno, NEC Service Platforms Research Laboratories, Japan

11 - 22

Effective Design of Trust Ontologies for Improvement in the Structure of Socio-Semantic

Trust Networks

Nima Dokoohaki, Royal Institute of Technology (KTH), Sweden

Mihhail Matskin, Royal Institute of Technology (KTH), Sweden // Norwegian University of Science

and Technology, (NTNU), Norway

23 - 42

On Choosing a Load-Balancing Algorithm for Parallel Systems with Temporal Constraints

Luís Fernando Orleans, Federal University of Rio of Janeiro, Brazil

Geraldo Zimbrão, Federal University of Rio of Janeiro, Brazil

Pedro Furtado, University of Coimbra, Portugal

43 - 53

Modelling Reinforcement Learning in Policy-driven Autonomic Management

Raphael M. Bahati, The University of Western Ontario , Canada

Michael A. Bauer, The University of Western Ontario , Canada

54 - 79

11

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

Polling Schedule Optimization for Adaptive Monitoring to Scalable

Enterprise Systems

Fumio Machida, Masahiro Kawato, Yoshiharu Maeno

NEC Service Platforms Research Laboratories

1753, Shimanumabe, Nkahara-ku, Kawasaki, Knagawa 211-8666, Japan

{h-machida@ab, m-kawato@ap, y-maeno@aj}.jp.nec.com

Abstract

Adaptive monitoring is a promising technique to

automate configurations of a monitoring server in

enterprise systems according to the dynamic system

reconfigurations such as server scale-out and virtual

machine migration. Even after the system

reconfiguration, the monitoring server need to be

configured properly for providing the fresh

information to clients with stabilized server load. In

this paper, we propose an adaptive monitoring system

that automatically changes the monitoring schedule to

satisfy the required freshness under the limited server

load after system reconfigurations. The adaptive

monitoring system consists of a polling-based

monitoring architecture and an algorithm for polling

schedule generation. Since the problem for polling

schedule generation is classified in NP-hard, we

propose an approximation algorithm. According to the

results from the experiments with real system

reconfiguration scenarios, the adaptive monitoring

system improves the variation coefficients of changes

of CPU usages and network traffics in the monitoring

server by at most 80%. We extend the proposed

adaptive monitoring system to be scalable by

introducing a hierarchical architecture.

Keywords: Adaptive monitoring, Polling schedule,

Virtualization, System reconfigurations, Information

freshness

1. Introduction

The emergence of virtual machine technologies

enlarges the flexibility of the current enterprise systems.

Virtual machine software such as Xen [8], VMware

Infrastructure [22] and Microsoft Virtual Center [23]

offer a function to create multiple execution

environments on a single computer. Enterprise systems

can be scale out easily by using virtual machine

software and creating a virtual machine on the existing

physical environments. System reconfigurations like

change of server allocation, server scale out,

components replacement and software updates are

usually required in common enterprise system

administration. Virtual machine can reduce the troubles

related to hardware during system reconfigurations

because virtual machine does not depend on the

physical devices directly.

Although virtual machine enables easy system

reconfigurations, frequent system reconfigurations

increase administrative operations for the management

systems to adapt to the reconfigured target systems. For

example, when an administrator adds some virtual

machines to the existing systems, he or she has to

register the additional targets to monitoring systems or

some management tools, and apply appropriate settings.

The process of the reconfiguration can be executed

automatically by using virtual machines. However,

registrations and configuration changes of existing

systems need manual operations of administrators.

Configuration changes after system reconfigurations

are especially important for monitoring systems.

Missing registrations and improper setting of

monitoring intervals lead to the degradation of the

availability and performance of the systems.

We proposed an adaptive monitoring system to

reduce administrative operations for reconfigurable

enterprise systems. The reduction of the operations for

the monitoring settings after system reconfigurations

enables easy and speedy adaptation to the target

systems. The proposed method generates a monitoring

schedule that is a set of monitoring setting satisfying

the required freshness of the monitored information and

the limited monitoring server load. The system

administrator does not need to estimate the impact on

the performance and the availability result from the

12

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

change of monitoring settings. The schedule generation

problem is an integer programming that is classified as

NP-hard [7]. If the target system consists of dozens of

servers, an optimal schedule is not computable in

realistic time. Therefore, we proposed an

approximation algorithm for schedule generation. The

proposed algorithm generates an optimal schedule

under a specific condition. Furthermore, we extend the

proposed adaptive monitoring system to be scalable by

introducing a hierarchical architecture. A single

monitoring server is not realistic for managing

thousands of monitoring targets in terms of the load of

monitoring server. In the monitoring system using

multiple monitoring servers, the query turnaround time

and information freshness depend on the number of

transit monitoring servers and schedules. To satisfy the

requirements from clients for query response time and

information freshness, the schedules for multiple

monitoring servers need to be optimized. We

formulized the problem to decide schedules for

multiple monitoring servers configured hierarchically

and an approximation algorithm to solve the problem.

The rest of this paper is organized as follows.

Section 2 describes the requirements for an adaptive

mechanism for monitoring server in enterprise systems.

Section 3 presents our adaptive monitoring architecture

and an algorithm for polling optimization. Section 4

shows experimental results. Section 5 describes the

extension of the adaptive monitoring system and the

schedule generation algorithm. Section 6 describes

related work and, finally, Section 7 provides the

conclusion.

2. Enterprise System Monitoring

Most of enterprise systems have monitoring systems

to manage system resources such as servers, network

devices, storages and applications. Some commercial

products such as HP OpenView Network Node

Manager (NNM) [17] and IBM Tivoli NetView [18]

provides functions for monitoring resources based on

(Simple Network Management Protocol) SNMP [10].

ZABBIX[19], OpenNMS [20] and Nagios [21] come

to be known as powerful free monitoring tools that can

be used for enterprise-level systems.

Adaptive monitoring appeared in our previous work

is a promising technique for enterprise systems to adapt

to the change of system configurations and states [1].

The number of monitoring targets in enterprise systems

increases and changes dynamically according to the

system reconfiguration caused by business

requirements and system upgrades. The adaptive

monitoring system reduces the administrative

operations for monitoring server by automatically

optimizes the monitoring configurations at the system

reconfigurations. Since virtual machines allow easy

system reconfiguration, the concept of adaptive

monitoring is especially important in the consolidated

server environment using virtual machines.

As a related technique to support the adaptive

monitoring, discovery is a well-known useful technique

to find a newly attached device in the network [9].

NNM provides the discovery function by collecting

Address Resolution Protocol (ARP) tables in the target

network. If a new server is connected to the target

network, the monitoring tool supporting discovery can

detect this new target. Although the detection of the

new target is automated by discovery, the appropriate

configurations for monitoring are up to the

administrators. The administrators have to categorize

the detected target and set the appropriate monitoring

schedule not to have an adverse impact on the existing

system.

Our adaptive monitoring system focuses on the

quality of the monitoring service, specifically,

information freshness and load of monitoring server.

Appropriate configurations for monitoring server are

important to maintain the quality of monitoring.

Freshness is one of the important metrics for quality of

resource monitoring [2]. If a monitoring interval is set

to a large value, the data stored in the monitoring

server is not up to date. The elapsed time from data

generation exceeds the required time to live (TTL) and

it causes the freshness degradation. To keep the

freshness in the required level is important for

monitoring aware applications and middleware. The

stale (i.e. not fresh) information may cause the

incorrect decision and control of monitoring aware

applications. The load of the monitoring servers is

another quality concern of monitoring systems.

Monitoring processes consume system resources such

as CPU time and network bandwidth. Excessive

processes for information collection in a short time

adversely affects system components sharing system

resources as well as monitoring server. The processes

for information collection need to be scheduled not to

gather in a short time period.

3. Adaptive Monitoring System

In this section, we describe an architecture of an

adaptive monitoring system and an algorithm for

polling schedule generation.

3.1. Architecture

13

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

We designed an adaptive monitoring architecture

based on the Web Service Polling Engine (WSPE) [2]

that is a resource information service for server clusters.

WSPE collects resource information from target server

nodes via web service protocols, store the information

into the temporal cache, and provide the information to

the cluster users through the query interface. To keep

the fresh information in the cache, WSPE updates the

cache repeatedly as per the predefined update schedule.

We improved this architecture to reconfigure the

update schedule dynamically adapting to the system

reconfigurations.

Information Collector

Schedule Optimizer

Event Handler

Cache

provider states

query client management tool / administrator

provider

query notify changes

collect resource information

monitoring server

Polling Schedule

•required freshness
•limit of server load

PC: polling count

update

lookup

generate

invoke

Figure 1. Adaptive monitoring system architecture

Figure1 shows an overview of the proposed

monitoring architecture. The monitoring server consists

of Information Collector, Schedule Optimizer, Event

Handler, Cache and Polling Schedule. The

Information Collector collects resource information

from providers running on the target servers and

updates the Cache with collected resource information.

All queries from clients are performed on the Cache.

The availability of each provider is also checked in the

information collection process and is managed as

provider states. An unavailable resource is dropped

from the polling targets. The Information Collector

counts the Polling Count (PC) that indicates the

number of occurrences of polling cycles from the start-

up. The target information that needs to be updated in

one polling cycle is specified in the Polling Schedule.

The Polling Schedule is determined so as to keep the

freshness of resource information in the cache and the

limit of server load. Since an optimum Polling

Schedule is changed by the configuration and

availabilities of target systems, the Schedule Optimizer

calculates an optimum Polling Schedule in adapting to

the latest system configurations. The trigger of

schedule optimization is handled by Event Handler that

receives several notifications about system

reconfigurations from management middleware or

administrators and determines the needs for schedule

optimization. When the Schedule Optimizer receives a

request for schedule optimization, it identifies the latest

system configurations and generates a new Polling

Schedule by a schedule optimization algorithm that is

described in the later section.

The Polling Schedule is specified by the Next PC

and the Interval PC for each resource as shown in

Figure 2. The Next PC specifies the next PC at which

to update resource information. When the PC in the

Information Collector reaches a value of a Next PC,

the Information Collector adds this target to the polling

targets and collects the latest resource information from

the provider. In order to reduce the risk of unexpected

peak load caused by polling processes, dispersed

values should be used for the Next PCs of different

resources. If a large number of target resources have

the same value of Next PC, the next polling process has

to collect a large amount of resource information in one

polling cycle and it may induce a heavy workload on

the monitoring server. On the other hand, the Interval

PC specifies the number of polling cycles between two

consecutive updates. After a polling process to update

resource information finishes, the value of the Next PC

is calculated by adding the previous value of the Next

PC to the Interval PC. The smaller value of Interval PC

is preferable to keep the required freshness. The

optimum Interval PCs are determined in consideration

of the tradeoff between the required freshness and

monitoring server load.

Update

host01 1 3

host02 2 3

host03 3 3

vm01 1 5

vm02 2 5

Next PC Interval PC
PC1 2 3 4 5 6 7 8 9 10 11 12

host01

host02

host03

vm01

vm02

Time chartData structure

Resource

The number of update processes at PC=6 is 2
Figure 2. An example of update schedule

The max number of update processes in one cycle of

polling must be limited to a certain range of values in

consideration of the peak load of the monitoring server.

Unexpected peak load called flush peak sometimes

causes serious system trouble. Since the load of

monitoring server depends on the number of target

resources having the same Next PC, the peak load of

the monitoring server is predictable by the Polling

Schedule in the proposed system. By optimizing the

Polling Schedule to keep the number of updates in one

14

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

polling cycle in a certain level, we can avoid the risk of

the flush peak.

monitoring targets

Monitoring Profile

Gold 2 sec 5 sec

Silver 2 sec 10 sec

Bronze 5 sec 15 sec

lower limit upper limit Profile

Gold Silver Bronze

Monitoring
Server

required TTL 3 s 3 s 7 s 7 s 8 s 11 s 13 s 13 s

Figure 3. Monitoring profile to group resources

The monitoring profile figured in Figure 3 is

introduced for grouping the target resources that have

the same class of quality level. As the quality of the

resource information, the freshness is specified by the

TTL in detail. TTL indicates the elapsed time from

data generation. The monitoring profile defines the

lower limit and the upper limit of the update interval.

Since a monitoring profile corresponds to a specific

quality level, system administrator create a new

monitoring profile when a new quality level is required.

Each resource is assigned a monitoring profile and

does not belong to the multiple monitoring profiles.

Administrators simply manage the allocation of each

resource to the specific monitoring profile instead of

editing TTL for each resource. By using monitoring

profile, the operation for the target addition and the

change of monitoring frequency becomes much easier.

3.2. Schedule Generation Problem

The method to generate an optimal polling schedule

is an essential part of the adaptive monitoring system.

The polling schedule has to satisfy the required

freshness of resource information and minimize the

number of concurrent updates.

First, the Interval PC for each resource ri is decided

by the allocated monitoring profile p and the current

polling interval tpoll. The minimum integer j that

satisfies the limits defined in the profile is chosen as

Interval PC. The Interval PC is expressed as the

following expression:

}ULLL,|min{)(IntervalPC poll ppi
jtjjr ≤⋅≤∈= N

 (1)

where LLp is the lower limit of the update interval for

monitoring profile p and ULp is the upper limit of that.

If any possible values are not found, the

administrator should modify the monitoring profile or

the polling interval to get a possible Interval PC.

Meanwhile, the limited number of concurrent updates

(LCU) in a polling cycle is decided in consideration to

the acceptable load of the monitoring server.

Next, the Next PC for each resource is decided so

that the number of the concurrent updates is not over

the LCU. The number of the concurrent updates is

changed by each PC and the way to set the Next PC.

Since the update processes are executed repeatedly

according to each Interval PC, the change in the

number of the concurrent updates appears with a period

of the least common multiple of Interval PCs (LCMI).

We define the polling schedule generation problem as

follows.

Problem: Polling Schedule Generation

For each resource information ri, the update interval

PC is defined as IntervalPC(ri)
�

N. Solve the

NextPC(ri)
�

N for all ri, so that the number of

concurrent updates is under the LCU at any k from 1 to

LCMI.

Solve:)(NextPC, iri∀

Where:

LCU),(U),LCMI1(
1

≤≤≤∀ ∑
=

n

i

irkkk (2)

 ≡−

=
otherwise0

))(IntervalPC(mod0)(NextPC1
),(U

ii

i

rrk
rk

 (3)

)(IntervalPC)(NextPC1 ii rr ≤≤ (4)

The schedule generation problem is an integer

programming of NextPC(ri), that is classified as NP-

hard. It takes exponential time of the number of targets

“n” to decide if any possible schedule exists or not. If

there are a large number of targets in the system, the

above problem cannot be solved in practical time.

3.3. Schedule Generation Algorithm

To solve the schedule generation problem in

practical time, we propose an algorithm by using an

approximate method.

Algorithm 1:

1) Make groups that have the same value of

IntervalPC(ri).

})(IntervalPC|{ jrrG iij == (5)

Define J as a set of possible values as j.

15

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

2) For each group, generate schedule that minimizes

the concurrent updates. Label all ri in Gj as ri,k

)1(jGk ≤≤ and set the NextPC(ri,k) based on this

label.

))(IntervalPC(mod)(NextPC , iki rkr = (6)

The number of max concurrent updates for Gj

is calculated by:

j

G j

3) Combine all generated schedules and calculate

sum of the number of concurrent updates.

∑
∈

Jj

j

j

G (7)

Compare the sum of the number of concurrent

updates to the LCU. If the sum of the number of

concurrent updates is smaller than LCU, output

the generated schedule as a possible schedule.

Otherwise, give up the schedule generation.

Algorithm 1 divides the all ri into the groups that

have the same value of IntervalPC(ri) and solves the

partial optimal schedule for each group. By gathering

the partial schedules, the max number of concurrent

updates is minimized in most situations. Furthermore,

the algorithm always outputs a result in O(n) time.

If each pair of IntervalPC(ri)s of the different

groups is relatively prime, the Algorithm 1 always

solves the optimal schedule (i.e. minimize the number

of the concurrent updates) by the following theorems.

Theorem 1:

When all of the IntervalPC(ri) have the same value,

the max number of the concurrent updates of the

schedule is equal to or more than

)(IntervalPC ir

n ,

where n is the number of targets.

Proof 1:

Let α be the max number of the concurrent

updates. All of ri have to be updated during

IntervalPC(ri) within α update processes.

)(IntervalPC irn ⋅≤ α (8)

Because α is an integer value, the following condition

is obtained.

≥

)(IntervalPC ir

n
α

 (9)

■

Theorem 2:

Gp and Gq are groups of resource information that

has intervals of p and q. If p is coprime to q, the max

number of the concurrent updates of the update

schedule for all elements of Gp and Gq is equal to or

more than

+

q

G

p

G qp .

Proof 2:

For any rp1 ∈ Gp and any rq1 ∈ Gq, the PC to

update: tp(rp1) and tq (rq1) are generally represented by:

)(NextPC)(11 pppp
rpmrt +⋅= (10)

)(NextPC)(11 qqqq rqmrt +⋅= (11)

where, mp and mq are any positive integer values.

Here, for any NextPC(rp1) and any NextPC(rq1),

there exists a pair of mp and mq satisfying tp(rp1) = tq

(rq1) modulo pq. This is derived from the Chinese

remainder theorem [6].

Therefore, there exists a case where the number of

concurrent updates is 2 for any pair of rp1 and rq1. The

max number of the concurrent updates, α , is given by:

qp ααα += (12)

where
pα and

q
α are the max number of the

concurrent updates for Gp and Gq.

From the Theorem 1, the following condition is

obtained.

+

≥

q

G

p

G qp
α

 (13)

■

Because the max number of the concurrent updates

of the schedule generated by the Algorithm 1 is

∑
∈

Jj

j

j

G , the output schedule is always optimal if each

pair of IntervalPC(ri)s of the different groups is

relatively prime.

4. Evaluation

This section describes the experimental evaluations

of the proposed adaptive monitoring system using a

system reconfiguration scenario.

4.1. Monitoring load estimation

The load of the monitoring server such as CPU

usage and the amount of the network traffic depends on

the number of concurrent update processes. By

investigating the relationship between the load of the

monitoring server and the number of the concurrent

updates, the load of the monitoring server at real

16

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

y = 0.5336x + 1.5633
R² = 0.9989

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 C

P
U

 u
s
a
g

e
 (
%

)

Number of concurrent updates

y = 0.6471x + 3.0902
R² = 0.9935

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

M
a
x
 C

P
U

 u
s
a
g

e
 (
%

)

Number of concurrent updates

y = 24.44x + 1.8874
R² = 0.9997

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 T

ra
n

m
is

s
io

n
 (
K

b
p

s
)

Number of concurrent updates

y = 34.757x + 6.4035
R² = 0.999

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8

M
a
x
 T

ra
n

m
is

s
io

n
 (
K

b
p

s
)

Number of concurrent updates

(a) Average CPU usage (b) Max CPU usage (c) Average NW Transmission (d) Max NW Transmission

Figure 4. The relationship between the number of concurrent updates and the monitoring loads

execution can be estimated from the installed polling

schedule.

The experimental environment has a monitoring

server that has 3GHz Intel Pentium4 processor and 2.3

GB of RAM. On this server, WSPE collects resource

information from several physical and virtual machines.

Each target provides 12 KB of resource information.

All nodes used in the experiments are connected by

100 Mbps ethernet.

In this testing environment, we measured several

system metrics like CPU usages, memory usages, disk

I/O and network traffics by varying the number of

concurrent updates. The relationship between the

system metrics and the number of concurrent updates

can be characterized by regression analysis. Figure 4

(a) shows the plots of the measured values of CPU

usages under the limited number of the concurrent

updates. The relationship is expressed as the following

expression by applying the least square method to the

observed values.

5633.15336.0 +⋅= xy (14)

where x is the number of concurrent updates in a

polling cycle and y is the average CPU usage. The

regression coefficients change depending on the

resource capacities and states of usage. For example,

the more CPU power the monitoring server can use, the

smaller value the gradient of the regression line for the

CPU usage. As far as this experimental environment is

used, the average CPU usage of the monitoring server

is predictable by the obtained regression formula. In

addition to the average CPU usage, the max CPU usage,

the average and max network transmission traffic also

have the linear relation with the number of concurrent

updates (see Figure 4). The other performance data

such as network receive traffic, memory usage and disk

I/O does not have linear relationship with the number

of concurrent updates in our testing environment. From

the results of this investigation, we can find an

appropriate value of the number of concurrent updates

to keep the load of monitoring server in a certain level.

4.2. Adaptation to system reconfigurations

vm01

hostA1

vm02

hostA2

hostB1

hostB2

hostB3

hostB4

hostB5

vm01

hostA1

vm02

hostA2

hostB1

hostB2

hostB3

hostB4

hostB5

hostC1

hostC2

hostC3

hostC4

hostC5

hostC6

hostC7

hostC8

hostC9

hostC10

hostC11

hostC12

hostC13

hostC14

hostC15

Step1: Initial state

Step2: Addition of Cluster-C

cluster-A cluster-B

cluster-A cluster-B cluster-C

vm01

hostA1

vm02

hostA2

vm01

hostA1

hostA2

hostC1

hostC2

hostC3

hostC4

hostC5

hostC6

hostC7

hostC8

hostC9

hostC10

hostC11

hostC12

hostC13

hostC14

hostC15

hostC1

hostC2

hostC3

hostC4

hostC5

hostC6

hostC7

hostC8

hostC9

hostC10

hostC11

hostC12

hostC13

hostC14

hostC15

vm03

Step3: Removal of Cluster-B

Step4: VM defragmentation on Cluster-A

cluster-A cluster-C

cluster-A cluster-C

Figure 5. VM defragmentation scenario

The monitoring adaptation mechanism was

evaluated by a scenario involving the virtual machine

defragmentation as depicted in Figure 5. The

monitoring setting is automatically changed by the

proposed adaptation mechanism for each step of the

17

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

scenario. The experimental environment consists of

three different clusters, cluster-A, cluster-B and cluster-

C. The cluster-A is established on the virtualized

environment using Xen 2.0 on Fedora Core 4. Cluster-

B consists of 5 nodes and Cluster-C has 15 nodes.

In the first step of the scenario (step 1), the cluster-

A and the cluster-B are monitored from the monitoring

server running on a management server. In the second

step (step 2), the cluster-C is added to the monitored

target of the monitoring server. In the third step (step 3),

the cluster-B is removed from the monitored target. In

the final step (step 4), the defragmentation of virtual

machines on the cluster-A is performed. The

defragmentation moves the virtual machine instance

vm02 to the hostA1, then merges instances of vm01

and vm02, and finally starts a new virtual machine

instance vm03 in the created resource space on the

hostA2. In this experiment, the merge process simply

stops the vm02 and expands the resource allocation to

vm01.

All physical servers and virtual machines have

corresponding monitoring profiles. Table 1 shows the

four different monitoring profiles used in the

experiments. The polling interval tpoll is set to 1 second

and the value of LCU is set to 8. For each step of the

scenario, the optimization algorithm generates the

optimal update schedule that meets the conditions

specified in monitoring profiles and minimizes the

number of concurrent updates under LCU. The

generated update schedules for each step are shown in

Table 2.

Besides the optimization approach, the simple

polling approach and the without-optimization

approach were also evaluated by this scenario for the

sake of comparison. The simple polling approach

updates all of information at regular intervals like

SNMP polling. The regular interval was set to 10

seconds. The without-optimization approach updates

resource information at specific intervals requested

from each monitoring profile. Although this approach

satisfies the conditions of the monitoring profiles, the

number of concurrent updates is not bounded.

Table 1. Monitoring profiles
 lower limit upper limit

Platinum 3s 10s

Gold 5s 15s

Silver 7s 20s

Bronze 11s 30s

Table 2. Update schedules for each step

c
lu

ster

n
o

d
e

p
r
o

file

In
ter

v
a

l

P
C

Next PC

S
tep

 1

S
tep

 2

S
tep

 3

S
tep

 4

A

hostA1 Platinum 3 1 1 1 1

hostA2 Platinum 3 2 2 2 2

vm01 Bronze 11 1 1 1 1

vm02 Bronze 11 2 2 2

vm03 Bronze 11 2

B

hostB1 Platinum 3 3 3

hostB2 Platinum 3 1 1

hostB3 Platinum 3 2 2

hostB4 Platinum 3 3 3

hostB5 Platinum 3 1 1

C

hostC1 Gold 5 1 1 1

hostC2 Gold 5 2 2 2

hostC3 Gold 5 3 3 3

hostC4 Gold 5 4 4 4

hostC5 Gold 5 5 5 5

hostC6 Gold 5 1 1 1

hostC7 Gold 5 2 2 2

hostC8 Gold 5 3 3 3

hostC9 Gold 5 4 4 4

hostC10 Gold 5 5 5 5

hostC11 Silver 7 1 1 1

hostC12 Silver 7 2 2 2

hostC13 Silver 7 3 3 3

hostC14 Silver 7 4 4 4

hostC15 Silver 7 5 5 5

���������������
����� ����� ����	 ����

�� ��
������ ���������� ��������� ������ ������ ��� ���������������

����� ����� ����	 ����

�� ��

������ ���������� ��������� ������������ ���
(a) CPU usage (b) Network Transmissions (c) Network Receives

��������
��	�	�

����� ����� ����	 ����

�� ��

������ ���������� ��� ������ ������������ ���

Figure 6. Variation coefficients of CPU usages and network traffics

18

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

�����������������������������
 !"#� !"#� !"#$!"#�%&'&()&*+,-./0123 456 7 89:;<= ;><<9?@ 456 7 AB> >;C9:9DEC9>?456 7 >;C9:9DEC9>? 5FG 7 89:;<= ;><<9?@5FG7 AB> >;C9:9DEC9>? 5FG 7 >;C9:9DEC 9>?�������$�����H�����

 !"#� !"#� !"#$!"#�I*+J2KL22LMJ*+,-./0123 456 7 89:;<= ;><<9?@ 456 7 AB> >;C9:9DEC9>?456 7 >;C9:9DEC 9>? 5FG 7 89:;<= ;><<9?@5FG7 AB> >;C9:9DEC 9>? 5FG 7 >;C9:9DEC9>?�����
����

 !"#� !"#� !"#$!"#�NOPQRST&UV3 456 7 89:;<= ;><<9?@ 456 7 AB> >;C9:9DEC 9>?456 7 >;C9:9DEC9>? 5FG7 89:;<= ;><<9?@5FG 7 AB> >;C9:9DEC9>? 5FG7 >;C9:9DEC9>?
(a) CPU usage (b) Network Transmissions (c) Network Receives

Figure 7. Max and average values of CPU usages and network traffics

0

1

2

3

4

5

6

0 1 2 3 4 5 6

e
s

ti
m

a
te

d
 v

a
lu

e
 (
%

)

observed value (%)

4

5

6

7

8

9

10

4 5 6 7 8 9 10

e
s
ti

m
a
te

d
 v

a
lu

e
 (

%
)

observed value (%)

50

70

90

110

130

150

50 70 90 110 130 150

e
s
ti

m
a

te
d

 v
a

lu
e

 (
K

b
p

s
)

observed value (Kbps)

50

90

130

170

210

250

50 90 130 170 210 250

e
s
ti

m
a

te
d

 v
a

lu
e

 (
K

b
p

s
)

observed value (Kbps)

(a) Average CPU usage (b) Max CPU usage (c) Average NW Transmission (d) Max NW Transmission

Figure 8. Observed values versus estimated values by regression functions

We observed the variation coefficients of CPU

usages and network traffics for each step of the

scenario (see Figure 6). All these variation coefficients

were calculated from the time-series performance data

of three minutes duration in each step. The variation

coefficient of optimization approach is the lowest in

any case and the values do not change significantly

over the steps. Compared to the without-optimization

approach, the variation coefficient of network

transmission traffic is reduced by 80% at step 3 (see

Figure 6 (b)). The results indicate that the proposed

adaptive monitoring system stabilize the load of

monitoring server by optimizing the polling schedule

according to the system reconfigurations.

Meanwhile the max values of CPU usages and

network traffics during the three minutes for each step

are shown in Figure 7. The results provide a study of

risk for flash peak of the resource usage. The

optimization approach can lower down the max values

of CPU usages and the network traffics by dispersing

the update processes over time. Compared to the

without-optimization approach, the max transmission

traffic is reduced by 62% at step3 (see Figure 7 (b)).

The proposed optimization approach reduces the risk

of the flash peak.

Additionally the approximate max values are

predicted by using the regression function described in

Section 4.1. Figure 8 shows the relationship between

the measured values and estimated values. The results

show that the estimation provides a good indicator for

availability of the monitoring server.

5. Scalable adaptive monitoring

In this section, we extend the adaptive monitoring

system to hierarchical configurations. To satisfy the

requirements for TTLs from lots of clients, we propose

an algorithm for multiple schedules generation.

5.1. Requirements for scalable monitoring

Large scale enterprise systems distributed in

multiple locations have thousands of monitoring targets

such as servers, routers, switches and applications. A

single monitoring server is not enough to collect the

resource information from thousands of monitoring

targets from the concern for the load of monitoring

19

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

server and network. Generally, for such a large-scale

system, multiple monitoring servers are configured

hierarchically to integrate the resource information.

HP's NNM can manage 25000 of devices by organizing

monitoring servers hierarchically. MDS [15] and

Ganglia [16] support hierarchical architecture to

aggregate resource information from thousands of

nodes in the grid environment.

Although the hierarchically architecture improves

the scalability of monitoring systems, the overhead of

multiple monitoring servers degrades the query

performance and freshness of resource information.

Users and applications using the monitored information

require the specific level of the query performance and

information freshness. Configurations for monitoring

servers for satisfying the quality requirements are much

more complex than the case with a single server.

Adaptive monitoring that reduces the manual

operations for monitoring settings after system

reconfiguration is also valuable in the large scale

enterprise systems.

For the large scale enterprise systems, we extend the

WSPE to hierarchical configurations. Each WSPE

handles the event of system reconfigurations and adapts

the polling schedule automatically to the target systems.

By optimizing the polling schedule in each WSPE, all

of requirements are satisfied under the capacity

limitations of monitoring servers.

5.2. Hierarchical configuration of WSPEs

WSPE

cache

schedule

WSPE

cache

schedule

WSPE

cache

schedule

WSPE

cache

schedule

WSPE

cache

schedule

clientclientclient

clientclientclient

clientclientclient

clientclientclient

targets targets targets
Figure 9. Hierarchically-configured WSPEs

Figure 9 shows a hierarchical configuration of

WSPEs to collect resource information from widely-

distributed systems. Each WSPE has own polling

schedule to keep the freshness of the resource

information in the cache. Some WSPEs collect

resource information from the other WSPE instead of

collecting directly from the target resources. It reduces

traffics to the target resources and distributes the load

of monitoring servers. Clients query the resource

information to the nearest WSPE that has the target

information in the cache. The query response time is

estimated by the turnaround time from the client to the

nearest WSPE.

The TTL of resource information ri in the query

results depends on the polling intervals of all WSPEs

on the path from the client ch to the target resource ri.

Here we denote the polling interval for resource ri in

the WSPE wj as tpoll(wj, ri). Let Wh,i be the set of

WSPEs on the path from the client ch to the target

resoruce ri. The TTL of resource information ri for the

client ch is bounded as the following expression:

∑
∈

+≤

ihjw

ijihih rwtrwctrct
,W

poll

1

respTTL),(),,(),((15)

where tresp(ch, w
1
, ri) is the time taken to deliver the

information ri from the nearest WSPE
h,iw W1

∈ (see

Figure 10).

ch w1 wj ri

tresp(ch,w
1,ri)

treq(ch,w
1,ri)

tpoll(wj,ri)

Wh,i

tpoll(w
1,ri)

client WSPE WSPE target

Figure 10. Model of hierarchical WSPEs

Let treq(ch, w
1
, ri) be the time taken to request the query

for ri from ch to w
1
. The query response time is

expressed as follows:

),,(),,(),,(1

resp

1

req

1

query ihihih rwctrwctrwct += . (16)

If the tquery(ch, w
1
, ri) does not meet the required

performance of ch due to the limitations of network

performance or server capacity, an additional

placement of a WSPE near the client improves the

query performance at the expense of the information

freshness.

We assume the number of WSPEs and networks are

given by the requirements for the query response time

of each client and the limitation derived from the

network topology. We discuss the problem of polling

schedule optimization to guarantee the required TTLs

for all clients under the limitations of server loads.

5.3. Multiple Polling Schedules Generation

Polling schedules for all WSPEs need to be

optimized for satisfying the requirements for TTL of

20

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

resource ri from the client ch: RTTL(ch, ri) under the

limitation of server loads given by the LCU of each

WSPE. For a single WSPE, the Interval PCs are

determined by the formula (1) based on the monitoring

profiles. However, for the hierarchically-configured

WSPEs where many clients request to guarantee the

TTL of resource information, the Interval PCs need to

be determined by considering the requested RTTLs and

polling intervals of other WSPEs.

The problem to solve the polling schedules of

WSPEs under the conditions about RTTLs and LCUs

is defined as follows.

Problem: Multiple Polling Schedules Generation

Solve the IntervalPC(wj, ri) and NextPC(wj, ri) for

each WSPE wj to satisfy all requirements of RTTL(ch,

ri), under the limitations of the number of concurrent

updates LCU(wj).

Solve:),(NextPC),,(IntervalPC,, ijij rwrwji ∀∀

Where:

),RTTL(),(, TTL ihih rcrcth ≤∀ (17)

)LCU(),,(U,
1

j

n

i

ij wrwkk ≤∀ ∑
=

 (18)

 ≡−

=
otherwise0

)),(IntervalPC(mod0),(NextPC1

),,(U

ijij

ij

rwrwk

rwk

 (19)

),(IntervalPC),(NextPC1 ijij rwrw ≤≤ (20)

Constraint (17) states the limitation from the

requirements for RTTL(ch, ri). Constraints (18) and

(19) state the limitation of the LCUs. The problem of

multiple polling schedules generation is an integer

programming and NP-hard as well as the schedule

generation problem discussed in Section 3.2.

5.4. Multiple Schedules Generation Algorithm

We propose an algorithm to generate multiple

polling schedules satisfying the requirements of RTTLs

and the limitations of LCUs for hierarchically-

configured WSPEs. The proposed algorithm generates

polling schedules satisfying the constraints (18) by

applying algorithm 1 for each WSPE and readjusts the

Interval PCs so as to satisfy the constraints (17) by

changing the assignment of monitoring profiles.

Algorithm 2:

1) Generate polling schedules for all wj by applying

algorithm 1 with the default monitoring profiles

and the limitation of LCU that are set in each

WSPE.

2) For all requirements for TTL of resource ri from

the client ch, check if the max value of tTTL(ch, ri)

calculated by (15) is below the RTTL(ch, ri). If all

RTTLs are satisfied, output the schedules and

finish the schedule generation process. Otherwise,

go to the following steps to readjust the polling

schedules.

3) Let w
k
)W1(,ihk ≤≤ be the sequence of WSPEs

on the path to the ri from ch. The sequence starts

from w
1
 that is the nearest WSPE from ch. In the

sequence, search a w
k
 that can readjust schedule

so as to satisfy the requirements of RTTL(ch, ri)

by the following step 4. If the w
k
 that can readjust

schedule is not found by the iteration of step 4,

give up the multiple schedule generation.

4) In the given w
k
, for resource ri, change the

allocation of profile that satisfies both of the

following conditions.

)(),(-),RTTL(UL

)(),(-),RTTL(LL

pollTTL

pollTTL

iihihp

iihihp

rtrctrc

rtrctrc

+≥

+≤

 (21)

where LLp is the lower limit of the update interval

for monitoring profile p and ULp is the upper limit

of that. If any profile p that satisfies the

conditions (21), calculate a new IntervalPC(wj, ri)

by the expression (1) with the new profile and

generate a schedule by the algorithm 1. Repeat

finding the possible profiles until get the schedule

or check all profiles.

Since the algorithm 2 is an approximation algorithm,

it does not always output the multiple polling schedules

even if there is a possible solution. However, the

algorithm can change the polling schedules locally to

satisfy the requirements of RTTL(ch, ri) instead of

globally optimization. The algorithm gives the

advantage to adapt the existing polling schedules to the

change of RTTL(ch, ri). Since the monitoring profiles

are edited by system administrator as necessary, the

number of monitoring profiles is limited. The routine of

step 4 is processed in the finite execution time.

6. Related work

Scalable performance monitoring systems have

been well studied in the context of grid computing. A

white paper summarized and evaluated lots of

presented grid monitoring systems [13]. Some

advanced monitoring systems such as Remos [11] and

Network Weather Service (NWS) [12] have a function

21

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

to forecast the performance changes. In contrast to

several existing works for the grid monitoring systems,

we focus on the quality of the monitoring service,

namely freshness of resource information, in the large

scale enterprise systems.

The quality of monitoring is important especially in

the grid and autonomic computing. The monitoring

requirements differ across applications hosted on the

server and change over time corresponding to the

system configurations. QMON [4] provides a function

to classify and configure the quality of monitoring

based on service level agreement (SLA). QMON

changes the monitoring configuration dynamically by

using the concept of "monitoring channel". However,

the current QMON does not support the adaptation

mechanism to the target system reconfiguration such as

server addition and deletion.

Although freshness is important for applications

using monitored data, the significant emphasis on the

freshness results in a "flash crowd" caused by

monitoring processes [14]. The monitoring system

must manage the server load to avoid the flash crowd.

Our experimental results show that the flash crowd is

avoidable by the optimized schedule.

For the network management, an efficient polling

technique for SNMP is proposed [5]. This technique

provides a function to minimize the polling queries to

the SNMP agents by using the usage parameters

defined by the applications. However, any method to

avoid the flash crowd is not supported.

The necessity of the polling optimization is also

described in the grid monitoring system using slacker

coherence model [3]. The slacker coherence model is

useful to minimize the polling with consideration to the

out-of-sync period of the data. Although this model

considers the load of the target nodes, the server-side

load is not considered. Therefore, there is no guarantee

that the flash crowd does not occur.

7. Conclusion

This paper proposed the adaptive monitoring system

to reduce the administrative operations in the large-

scale enterprise systems. The monitoring server

guarantees the freshness of resource information in the

cache by the polling based cache updates. The update

processes are scheduled to satisfy the requirements of

freshness and the limitation of monitoring server load.

We presented a schedule generation algorithm and

proved that the algorithm generates an optimal

schedule minimizing the max number of concurrent

updates. From the experimental results, the variation

coefficients of CPU usages and network traffics are

improved by at most 80%, and the max values at the

load peak are decreased by at most 62%. The results

show that the proposed method can stabilize the load of

monitoring server and can reduce the risk of flash peak

according to the current system configuration. We

presented as well the extension of the adaptive

monitoring system to be scalable with the algorithm for

generating multiple polling schedules. By applying the

proposed algorithm to hierarchically-configured

WSPEs, we can guarantee all requirements for

freshness of resource information from multiple users

under the limited loads of monitoring servers.

References

[1] F. Machida, M. Kawato and Y. Maeno, Adaptive

Monitoring for Virtual Machine Based Reconfigurable
Enterprise Systems, 3rd International Conference on
Autonomic and Autonomous Systems (ICAS2007),
2007.

[2] F. Machida, M. Kawato and Y. Maeno, Guarantee of
Freshness in Resource Information Cache on WSPE:
Web Service Polling Engine, 6th IEEE International
Symposium on Cluster Computing and the Grid
(CCGrid2006), 2006.

[3] R. Sundaresan, M. Lauria, T. Kurc, S. Parthasarathy and
Joel Saltz, Adaptive Polling of Grid Resource Monitors
Using a Slacker Coherence Model, 12th IEEE
International Symposium on High Performance
Distributed Computing (HPDC03), 2003.

[4] S. Agarwala, Y. Chen, D. Milojicic and K. Schwan,
QMON: QoS- and Utility-Aware Monitoring in
Enterprise systems, 3rd IEEE International Cofference
on Autonomic Computing (ICAC2006), 2006.

[5] M. Cheikhrouhou and J. Labetoulle, An Efficient
Polling Layer for SNMP, IEEE/IFIP Network
Operations and Management Symposium (NOMS2000),
2000.

[6] D. E. Knuth, The Art of Computer Programming,
Volume 2: Seminumerical Algorithms, 3rd Edition,
Section 4.3.2, page 286, Addison-Wesley, 1997.

[7] B. Korte, J. Vygen, Combinatorial Optimization:
Theory and Algorithms, Japanese Edition 2005, Section
15.7 NP-Hard Problems, Springer, 2005.

[8] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I.
Pratt, A. Warfield, P. Barham and R. Neugebauer, Xen
and the Art of Virtualization, 19th ACM Symposium on
Operating Systems Principles (SOSP19), 2003.

[9] Y. Breitbart, M. Garofalakis, C. Martin, R. Rastogi, S.
Seshadri, and A. Silberschatz, Topology discovery in
heterogeneous IP networks, 19th Annual Joint
Conference of the IEEE Computer and Communications
Societies (INFOCOM2000), 2000.

[10] J. Case, M. Fedor, M. Schoffstall and J. Davin, "Simple
Network Management Protocol (SNMP)", RFC 1157,
1990.

[11] P. Dinda, T. Gross, R. Karrer, B Lowekamp, N. Miller,
P. Steenkiste, and D. Sutherland, The architecture of the
remos system. In 10th IEEE International Symposium
on High Performance Distributed Computing (HPDC-
10), August, 2001.

22

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

[12] R. Wolski, Experiences with Predicting Resource
Performance On-line in Computational Grid Settings,
ACM SIGMETRICS Performance Evaluation Review,
Volume 30, Number 4, March, 2003, pp 41--49.

[13] M. Gerndt, R. Wismueller, Z. Balaton, G. Gombas, P.
Kacsuk, Z. Nemeth, N. Podhorzki, H. Truong, T.
Fahringer, M. Bubak, E. Laure and T. Margalef.
Performance Tools for the Grid: State of the Art and
Future, Automatic Performance Analisis: Real Tools
White Paper, 2004.

[14] R. Desai, S. Tilak, B. Gandhi, M. J. Lewis and N. B.
Abu-Ghazaleh, Analysis of Query Maching Criteria and
Resource Monitoring Models for Grid Application
Scheduling, 6th IEEE International Symposium on
Cluster Computing and the Grid (CCGrid2006), 2006.

[15] K. Czajkowski, S. Fitzgerald, I. Foster, and C.
Kesselman, Grid Information Services for Distributed
Resource Sharing, In Tenth IEEE International
Symposium on HighPerformance Distributed
Computing (HPDC10), IEEE Press, August 2001.

[16] M. L. Massie, B. N. Chun, and D. E. Culler, The
Ganglia Distributed Monitoring System: Design,
Implementation, and Experience, Parallel Computing,
Vol. 30, Issue 7, July, 2004.

[17] HP OpenView Network Node Manager (NNM): http://h
20229.www2.hp.com/products/nnm/index.html

[18] IBM Tivoli NetView: http://www-306.ibm.com/softwar
e/tivoli/products/netview/

[19] ZABBIX: http://www.zabbix.org/

[20] OpenNMS:
http://www.opennms.org/index.php/Main_Page

[21] Nagios: http://nagios.org/

[22] VMware: http://www.vmware.com/

[23] Microsoft Virtual Center: http://www.microsoft.com/wi
ndowsserversystem/virtualserver/

23

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

Abstract—Social ecosystems are growing across the web and

social trust networks formed within these systems create an
extraordinary test-bed to study relation dependant notions such
as trust, reputation and belief. In order to capture, model and
represent the semantics of trust relationships forming the trust
networks, main components of relationships are represented and
described using ontologies. This paper investigates how effective
design of trust ontologies can improve the structure of trust
networks created and implemented within semantic web-driven
social institutions and systems. Based on the context of our
research, we represent a trust ontology that captures the
semantics of the structure of trust networks based on the context
of social institutions and ecosystems on semantic web.

Index Terms—Semantic Trust, Trust Networks, Trust
Ontology, Semantic Social Networks, Ontology Engineering,
Structural Analysis.

I. INTRODUCTION

emantic web is described to be a web of knowledge having
properties such as heterogeneity, openness and ubiquity. In
such an environment where everyone has the ability to

contribute, trustworthiness of these people and their
contributions are of great importance and value. As stressed,
trust plays a crucial role in bringing the semantic web to its
full potential.

A trust network can be seen as a structure capturing metadata
on a web of individuals with annotations about their
trustworthiness. Considering social network as our context, a
trust network can be seen as an overlay above the social
network that carries trust annotations of the metadata based on
the social network, such as user profiles and information.
Social networks are gaining increasing popularity on the web

1Nima Dokoohaki is a PhD candidate at

Department of Electronics, Computer and Software Systems (ECS),
School of Information and Communications Technology (ICT),
Royal Institute of Technology (KTH), Stockholm, Sweden. Email:
nimad@kth.se

2Mihhail Matskin is a professor at Department of Electronics, Computer
and Software Systems (ECS),
School of Information and Communications Technology (ICT),
Royal Institute of Technology (KTH), Stockholm, Sweden and professor II
(adjunct professor) at Norwegian University of Science and Technology,
(NTNU), Trondheim, Norway. Email: misha@imit.kth.se

while semantic web and its related technologies, are trying to
bring social networks to their next level. Social networks are
using the semantic web technologies to merge and integrate
the social networking user profiles and information. Such
efforts are paving the path toward semantic web-driven social
ecosystems. Merging and integrating social networking data
and information can be of business value and use to web
service consumers as well as to web service providers of
social systems and networks. Ontologies, at the core of
semantic-web driven technologies lead the evolution of social
systems on the web. Describing trust relations and their sub-
components using ontologies, creates a methodology and
mechanism in order to efficiently design and engineer trust
networks.

“Structure of a given system is the way by which their
components interconnect with no changes in their
organization” according to [1]. Determining the structure of a
society of agents on a trust network structure within a
semantic social system, can help us determine the
organizational structure of a system. Having this capability we
can determine an organization’s certain factors such as
flexibility, change capacity, etc.

In this paper we investigate how effective design of trust
ontologies can improve the structure of trust networks created
and implemented within semantic web-based social systems.
To address the efficient design of trust networks on semantic
web-driven social systems, we have engineered and analyzed a
trust ontology [2]. Our trust ontology is based on the main
concept of Relationship, that models the main element of trust
networks, and two concepts of Main Properties and
AuxiliaryProperties, which model properties of relationships.

In order to effectively design an ontology for trust, we have
introduced a framework for comparing and evaluating trust
ontologies. As an experiment, several ontologies of trust have
been evaluated according to our framework. To understand the
process of engineering the ontology itself, all phases and steps
taken during the process of building our proposed trust
ontology have been mentioned in details. As an experiment,
we have studied the structure of the trust network to describe
how a trust ontology can serve as the framework for
engineering efficient and scalable trust networks. Same
experiment data have been used to create network of other
similar works structure-wise to get a deeper knowledge of the

Effective Design of Trust Ontologies for
Improvement in the Structure of
Socio-Semantic Trust Networks

Nima Dokoohaki1, Mihhail Matskin2

S

24

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

network structure with respect to ontology design disciplines.
The contents of this paper are organized as follows: following
the background study and discussion on related research in
section 2, state of art in trust ontologies is presented in section
3, our trust ontology is introduced in the section 4, in section 5
trust networks analysis is presented and discussed. Finally we
conclude in section 6 and we discuss the future research in
section 7.

II. BACKGROUND

Within the context of social semantic systems, there has been
an extensive amount of efforts based on both academic and
practical approaches in order to design and engineer trust
networks, but none of the existing works in the field were
designed bearing structural and design issues in mind. In this
section we introduce the technologies that we have
incorporated and considered in our approach.

We divide the foundation of our work into two main topics,
namely: semantic social networks and trust. In this section we
also give a detailed and thorough overview into each field.
Each overview is divided into subsections where each of the
substantial topics is further studied and discussed.

A. Socio-Semantic Ecosystems Overview

In 1967, Stanley Milgram introduced "Small World
Hypothesis" [3], which was published by American
Sociologist. Social networks became popular in 1990s. A
social network is generically defined as a set of people
gathered together through connections or links, according to
[5].

Web has become a ground for bringing the notion of society of
people into life. A web-driven social network needs to be
accessible using a web browser and within this network people
should be able to explicitly (or implicitly) state their
connections and their links to individuals or group of
individuals, according to [21].

Web-based social networks continue to evolve, while what is
most important today is that connections on these networks,
are not single dimensional anymore and today you can model
and state different aspects of relationships, such as trust.

In 2005, according to [21], there were 115,000,000 accounts
within social networks scattered across about 18 online
networking communities. It’s important to consider that not all
these accounts correspond to a single individual. Many people
have multiple memberships across multiple networks, at the
same time.

Size of the social networks will continue to grow everyday as
people realize the “hidden” values of social networking day by
day [8]. This growth will continue in size aspect of web
grounded social networks and will not stop and as many have

predicted [7] [8], the so called “email scenario” will take
place, where the number of advertisements and SPAM
messages will increase so drastically that by some point of
time these networks will literally collapse.

There is a strong and growing demand for fusion of the data
from different social networks on web. Many are interested in
sharing their profiles, while others are interested in merging
their data from multiple networks.

Two main reasons can be stated and discussed here:

First and foremost, great amount of this data which is scattered
throughout all these sites are not shareable and are
inaccessible from other networks. Second, as stated many
users have different accounts across different networks and if
their data merge, then many of these accounts might become a
single account.

In addition to individuals and users on the web, social
networks have become the target of the businesses and
industries. There are many businesses and enterprises which
sell packages of social networking capable software to their
users. So the value of social networking exceeds beyond the
borders of individuals and businesses now.

1) Vision of semantic web-driven social institutions

Social metadata fusion, in the form of sharing or integration
brings business value to entities living within such
ecosystems. The vision of “Semantic Social Network (SSN)”
[4], describes the fusion and integration of social data across
social networks, located on a web of semantics.

This vision is based upon two important dimensions:

First, semantic descriptions of social data about people
available on the web in public, expressed in a formal metadata
language such as XML or RDF, with explicitly described links
to other people on same or different networks.

Second, semantic references to those descriptions described
and stored in a formal metadata language such as RDF or
XML [4] [5].

There were several attempts to bring this vision into life. One
of the most important and influential ones is FOAF (friend-of-
a-friend) project [6].

2) FOAF and SIOC: bringing the vision into life

FOAF project creates an RDF vocabulary for describing
people and the relationship between them. In this way it can
be used as the "glue" in between semantic web and social
ecosystems, according to [10].

As described, current Web communities are distributed all
around the web, with no links in between them, according to
[11].

25

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

In order to bring semantics to online communities, SIOC [12]
(Semantically-Interlinked Online Communities) tries to create
the so called “glue” through SIOC ontology [13] [14].

SIOC aims to enable the integration of Web community
information and creates the possibility of describing and
presenting the social web of data using RDF. We can think of
FOAF as an enabler for describing semantic web of
individuals, while SIOC enables describing semantic web of
communities of individuals.

SIOC utilizes the FOAF vocabulary for expressing personal
profile and social networking information [11].

3) Modeling social networks on semantic web

Social Network Analysis (SNA) [15] [16], is the science of
studying and analyzing a networked setting and it has been
applied to settings of networks of health, innovation, etc.
Network analysis provides the theoretical as well as practical
background for studying how to analyze the network
participation effect on certain grounds such as an individuals
or groups behavior.

Ontologies can be used to model and capture the structure of
formal semantics of social networks.

Wennerberg [15] describes how the structure of a network can
be modeled using a semantic web ontology. Ontologies model,
present and document the concepts and properties of a certain
domain. Having the social nature of the networks as the
domain of the study, ontologies can capture the concepts of
relationships, individuals and their respective properties.
Inference mechanism gives ontologies the ability of inferring
new information using rules which could be of great
importance in social context.

A set of existing efforts on modeling social network on the
semantic web could be mentioned here.

Cantador et al. [17], model a social semantic network by
utilizing ontology as a basis for clustering the user profiles in a
social networking community. The ontology represents the
domain of user’s cognitive patterns, such as interests and
preferences. Resulting ontological instances, take the shape of
a semantic network of interrelated domain concepts and user
profiles.

A similar effort [18] uses ontology at the core of a semantic
web-enabled application. This ontology generates a social
network of users and their interests. Generated ontological
networks are used in order to detect and filter the Conflict of
Interest (COI) relationships in an academic context,
comprising authors and reviewers of papers.

In a similar effort with the same context, Mika [19] uses
ontologies, in the context of a semantic web-driven application
system and Flink [19], for modeling, capturing and visualizing
the social network of researchers.

B. Trust overview

Being the key to any interaction procedure in human societies,
trust has been the subject of studies to many fields of research
and science such as sociology and psychology, as well as of
course computer science.

Because of its importance and significance, trust has been
harvested as a field of research in for example decentralized
access control, public key certification, reputation systems for
peer to peer networks, and mobile ad-hoc networks.

Despite the fact that there has been a variety of definitions for
trust, there has not been an agreement on a generic definition
of trust. Researchers mostly have defined trust, depending on
the context and the orientation of the paper they have written
or the experiments they have been conducting. As a matter of
fact most of these definitions are specific to the context of the
work being done.

Lack of consensus on generic trust definition makes us realize
the importance of having a definition which is context-neutral
and general enough to be applied to different fields of research
and different contexts.

Trust is a complex issue, relating to fairness and
straightforwardness, honesty and sincerity of a person or the
service this person might offer.

Grandison [20] defines the trust in the following manner;
“Trust is the firm belief in the competence of an entity to act
dependably, securely, and reliably within a specified context”.
“Distrust may be a useful concept to specify as a means of
revoking previously agreed trust or for environments when
entities are trusted, by default, and it is necessary to identify
some entities which are not trusted”, according to [20].

Distrust is defined as “the lack of firm belief in the
competence of an entity to act dependably, securely and
reliably within a specified context” [20] [21].

1) Trust components, properties and sources

Trust is presented in the form a relationship between two
parties. These two parties, often individuals or agents
representing those individuals, are represented as trustor or
source, which is defined to be the entity which seeks trust or
trust related operations such as evaluation in other entity,
trustee or sink, which is the entity that is trusted or it has been
requested for trustworthiness-related evaluation. Trust is seen
as having a purpose or a context. For instance, Alice trusts
Bob as a doctor, but she might not trust Bob as a car
mechanic, adopted from [20] [24]. In addition, a trust relation
might also have a trust metric, which can be quantitative or
qualitative, characterizing the degree to which the trustor
trusts the trustee. This quality or quantity represents the
intensity and level of trust. This quality and quantity can be
evaluated by using an algorithm or mechanism which derives
trust, according to the metric. For instance, Alice might trust

26

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

Bob as a doctor very much, while she only moderately trusts
Martin as a doctor, adopted from [20] [24].

So far we have realized trust as a computational value
depicted by a relationship, described inside a specific context
and measured by a metric and is evaluated by a mechanism.

Some important properties of trust are stated and discussed
[20] [24].

For instance, subjectivity (difference in judgments of two
people on the same entity’s trustworthiness) or transitivity (If
transitive, when Alice trusts Bob and Bob trusts Cherry, Alice
will trust Cherry, adopted from [20] [24]). One of the most
important subjects of discussion on properties and components
of trust is the difference being made between trust in
performance and trust in recommendation [20] [24].

First, there is a difference between trust in an entity to perform
an action (trust in performance), and trust in an entity to
recommend other entities to perform that action (trust in
recommendation). This is the distinction between Cherry
trusting Bob as a dentist, and Cherry trusting Bob to
recommend a good dentist, according to [20] [24].

Another difference is based on existence of recommenders.
There is a difference between the trust that is directly observed
by trustor from trustee and the trust that is conveyed and
inferred from the recommenders’ trust.

As a result, this difference can be sampled between Cherry
trusting Bob as dentist, resulting from Cherry’s own direct
observation and evaluation from Bob, and Cherry trusting Bob
as a dentist, based on the fact that she trusts Shawn as a
recommender for a good doctor and on the fact that Shawn
trusts (and perhaps recommends) Bob to be a good dentist,
adopted from [20] [24].

During the observations made by [25], a set of sources of trust
are identified, in both atomic (direct trust) and compound
(social trust) forms.

Trust is the experience gained from an interaction between
two individuals. So the actual experience is the source of trust.
Considering the experience, or source of trust between two
certain persons and individuals, this type of trust can be
referred to as inter-individual trust or what is commonly
referred to as direct trust, according to [25].

We can consider a setting of individuals across a web or
network. If we consider this society of nodes and present the
trust in this society and in this setting, then we are dealing
with a new type of trust originating from the experiences
gathered by a group of nodes or individuals. This new type of
trust has its own source, from trust propagation in social
settings or networks.

This type is called relational trust, social networks driven
trust or in simple form, social trust, according to [25].

2) Trust computation in Web of Trust

Most of the models proposed for modeling trust on semantic
web are more focused on probabilistic views of trust. They
model trust using probabilities assigned as labels to the edges
of the networks according to specified trust metric.

In order to derive and infer trust, edges are traversed and
probabilistic trust values are gathered along the edges and
using mechanism adopted, the trust value along the trust path
will be computed and inferred. This setting is referred to as a
Web of Trust. There are two reasons for making web of trust a
candidate for adoption to trust in semantic web computation
scenarios. First, both systems are open. Second, trust is
considered as being transitive in both settings.

Web of Trust was a system that was introduced under the
context of security and privacy systems, for instance PGP
[55]. In this setting everyone can sign each other’s key and act
as certificate holder or certificate authority. Openness states
the demand and need for metrics. Need for metrics, establishes
and proves the relativity and computability of trust. The need
for scalable trust metrics has been discussed and studied
extensively [51] [52]. When metrics are applied all the links
can carry them and trust can be inferred [27].

Under the assumption of trust transitivity and by enforcing
metrics, pathways of trust can be formed and web of trust can
be crawled and walked [53].

As stated, semantic web is a similar scenario in which each
agent that forms a node on a network is connected to other
nodes, agents, and these links and connections form a web of
trust. In order to allow everyone, represented by an agent, to
evaluate the statements of others in this open and
heterogeneous environments, mechanisms and algorithms are
developed or adopted to allow everyone to infer and evaluate
trust in others using the trust metric-labeled links on the
networks of trust.

3) Trust networks

The work in this field is mostly focused on the mathematical
notion and presentation of networks but the amount of the
practical work is limited.

Most of the works in this field do not consider design of larger
infrastructures and ecosystems. Trust networks are described
as weighted graph structures with directed edges. The edges in
the generated graphs represent connections and relationships
between individuals. Watts introduces the properties of a small
world network [37]. He describes a model called ß-model [37]
in order to model, construct and generate the structure of
social systems. Many social systems have used this model
within their infrastructure [34] [35] [36] [37] [38] [27].

Golbeck has done an extensive research effort on trust
networks on semantic web, [27] [28] [29] [31]. She has
constructed an ontology of trust, combining RDF and FOAF
vocabulary to describe relationships comprising trust

27

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

networks. She has created applications on resulting networks
of trust based on her ontology. These applications range from
email filtering, TrustMail [27] [28], to web-based
recommendation systems, FilmTrust [31].

Brondsema and Schamp [10] have created a system called
Konfidi [33] that combines a trust network with the PGP Web-
of-Trust (WOT). The system implements a metric and
mechanism for inferring the trust on the networks formed. The
generated network creates trust pathways in between email
sender and receiver that can be crawled and using trust
mechanism and metric, trust values are inferred [10].

III. EVALUATING TRUST ONTOLOGIES

This section gives an overview in some of the most important
and influential works in modeling and designing trust
ontologies. After giving a state-of-art overview in the
observed ontologies, a framework for comparing and
evaluating trust ontologies is introduced and the studied
approaches are compared accordingly.

A. State-of-art in trust ontologies

As introduced earlier, Friend-Of-A-Friend (FOAF) [6]
represents a vocabulary and introduces an ontology for
describing a web of connected individuals.

This ontology can serve as a tool to model and eventually
create a network of society of users by describing personal
information about each person (realizing the node itself) and
by describing personal information regarding a set of users
whom the user knows about (realizing the neighbors on the
network). Nodes on such a network are identified by their
email address and email serves as their unique identification.

1) Golbeck’s trust ontology

Jennifer Golbeck [27], introduces an ontology, that creates an
important schema which extends FOAF by using foaf:Person,
giving the users this possibility to state and represent their
trust in individuals they know.

Metric used to express trust is a value on the scalar range of 0-
9, in which each scale represents a trust level. These levels are
set as properties under the domain of foaf:Person.

These levels correspond to: Distrusts absolutely, Distrusts
highly, Distrusts moderately, Distrusts slightly, Trusts
neutrally, Trusts slightly, Trusts Moderately, Trusts highly,
Trusts absolutely, according to [27].

Context was introduced as a property of trust. Trust is context-
sensitive, as a result meaning and semantics of trust can
change depending on the context. This notion is represented in
this ontology under general trust or specific trust or topical
trust, according to [27].

For instance, Alice might trust Bob greatly on driving cars but
might distrust Bob totally on repairing cars, adopted from
[27]. In order to depict general trust within Golbeck’s trust
ontology, trust ratings (in the form of trustsHighly or
trustsModerately) are described as properties in range of a
person class under the range of another person.

To describe specific trust and topical trust, other sets of
properties are introduced. These properties correspond to the
nine values above, but are used to represent trust regarding a
specific topic (for instance "distrustsAbsolutelyRe,"
"trustsModeratelyRe," etc), expressing the level of trust
regarding a certain topic such as driving or dishwashing. The
range of these properties is the "trustsRegarding", which has
been defined to combine a person and a topic of trust. The
"trustsRegarding" class has two properties: "trustsPerson"
presenting the person being trusted (trustor), and
"trustsOnSubject" presenting the subject that trust is stated
towards, according to [27].

By having this ability we can query for trust about a person on
a specific subject and it is possible also to infer trust on result
trust network along the edges where given topic creates the
connection and we can crawl along these paths to infer the
trust value eventually.

2) Toivonen and Denker’s Message and Context Ontology

Toivonen and Denker [41], study the trust in the context of
communication and messaging. They state that there are many
factors which can have immense impact on the honesty and
trustworthiness of the messages we send and receive. The
context-sensitivity of trust has been realized and taken into
account in their work.

The work focuses on drastic changes that many issues, namely
reputation, credibility, reliability, trustworthiness and honesty
could have, and how they affect the progress of establishing
and grounding trust, according to [41].

As a result of the work being done, a set of ontologies have
been defined to capture context-sensitive messaging and trust.
An ontology is developed to capture and denote the role of
context-related properties and information. This ontology
captures the domain of message communication and exchange
and describes how the context information is actually attached
to the messages. This ontology is constructed mainly to
visualize how trust is related to message and communication.

It is important to note that this ontology extends the topical
trust ontology of Golbeck [27], introduced earlier, and it
relates the notion of trust to communication and messaging
context. Basic idea behind this extension is that:” The topic of
a message can have impact on its trust level” [27].

As a result, this trust ontology could be seen as an extension to
topical trust ontology realizing the fact how trust can be fused
within messages exchanged in the context of a communication
environment. This concept is modeled and presented using
trustsRegarding property. Links and connections between

28

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

persons are modeled by the Trusts property. Sub-properties of
these two relationships conform to trust levels of Golbeck’s
ontology [27].

In order to model the relation of trust to the context, the
ctxTRUSTS property is used. If we consider the environment
of a simple communication setting, we see the sender, receiver
and the communication network mediating them. The
messages exchanged in between parties always have contexts,
attached to them which in turn allow the computation of
ctxTRUSTS properties through Trusts and trustsRegarding
properties, according to [41].

3) Proof Markup Language’s trust Ontology

Inference web [42] at Stanford University, has built a semantic
web-enabled knowledge platform and infrastructure. This
platform is designated to help users on the network to exploit
the value of semantic web technologies in order to give and
get trust ratings to and from resources on the web. This
process is referred to as justification of resources. To this end,
a language called PML is used.

PML [26] (Proof Markup Language) contains a term set for
encoding the justifications and is designated to work in a
question answering fashion [44]. PML is designated to help
software agents to filter the resources on the web of semantics
by proof checking them and justifying the credibility of these
resources, on behalf of the users.

PML ontology contains three sub-ontologies including:
provenance ontology, justification ontology and most
importantly trust ontology which captures honesty and
trustworthiness statements pertaining to resources.

The trust ontology [26] is one of the most important
components in PML ontology and we briefly describe the
structure of this ontology.

The approach presented here is modeling close notions of trust
and belief and how it affects the credibility of resources on the
web.

Notions of belief and trust, with respect to their close
semantics, have been presented closely in this ontology.
Ontology structure presents the trust and belief relations
between a source and a sink (which are both realized and
presented using agents) with respect to information from
document source under investigation by respective agents.

The belief relation shows the belief of an agent about the
source. The specific belief has a status (e.g. believes,
disbelieves, ignorant). The trust relation shows an agent's
overall beliefs about information from the specified source.
The metric defined for trust and belief is probabilistic and for
both elements a value between range of 0 and 1 has been
designated.

4) Konfidi’s trust ontology

With respect to metrics used for presenting the trust
computational values and modeling the mathematical notion
of trust, there exist two approaches: presenting a trust metric
with discrete values and metrics with continuous values.
Brondsema and Schamp [10] model and represent trust and
distrust in a similar fashion using continuous values. Having
continuous range of values allows easier propagation of trust
values, along the edges on the networks, using inference
mechanisms.

They represent the relationship as the class and main concept
of the ontology. Each relation is directed from source (truster)
to sink (trustee). Properties of relations are wrapped under the
concept of trust item. The most important feature of this work
is, like Jennifer Golbeck’s ontology [27], they have
incorporated the notion of “Topical trust” in their ontology. It
is used as an attribute and property, which allows to state
different features and properties of a relationship. Trust topics
and trust values are stated as properties of the trust
relationship.

In order to describe trust relationships, an ontology is
presented using RDF, which in turn eases extending the FOAF
vocabulary and profiles. Using the RDF properties, and taking
into account that relationship can be described using FOAF
vocabulary and ontology, then trust relationships can be
described using trust ontology. Other technology that has been
integrated is WOT [45] [46] (web-of-trust), that is used to
describe web-of-trust resources such as key fingerprints,
signature and signing capabilities and identity assurance [10]
[46]. Ontology’s RDF schema is made of 2 classes or
concepts and 5 attributes or properties. As mentioned, the
primary concept is Relationship between two people. Like
most trust ontologies, there are two properties that are required
for every Relationship, and they form the endpoints of every
relationship; truster and trusted using FOAF vocabulary, both
truster and trusted have foaf:Person objects as their targets.

Using WOT vocabulary, FOAF-defined Persons should also
contain at least one wot:fingerprint property specifying the
PGP, web-of-trust fingerprint of a public key held by the
individual the Person refers to. Most importantly, this property
serves for two reasons; first assures the identity of these
people described on the both ends of relationship, and it also
says if one of the people does not hold any keys then system
can ignore instantiating a relationship between them.

B. Comparison and analysis

In this section we will compare some of the most important
afore mentioned ontologies. We will try to point out common
and shared points between mentioned ontologies, and we will
also try to address strong and weak points among them.
Table1 compares the ontologies reviewed so far based on the
components of the ontologies.

29

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

TABLE I
COMPARISON AMONG TRUST ONTOLOGIES BASED ON ONTOLOGY COMPONENT STRUCTURE

Trust Ontologies Concept(s) Relationship(s) Instance(s) Axiom(s)

Jennifer Golbeck Topical trust,

Agent,

Person

trustRegarding

(between agent and Topical
trust)

trust0...trust10

(range of trust metric),

trustSubject,

trustValue,

trustedAgent,

trustedPerson

(subproperty of
trustedAgent),

trustRegarding

“A Person or Agent

(e.g. Alice)
trustsHighlyRe (trust10)

trustRegarding a
trustedPerson or

trustedAgent
(e.g. Bob)

On
trustSubject

(e.g. Driving)”

Toivonen,

Denker

Person,

Topic,

Receiver,

Message

Trusts

(between Persons),

ctxTRUSTS

(between receiver and
message),

trustsRegarding

(between Person and Topic)

trustRegarding,
reTopic,

[trustsAboslutelyRe
…

distrustsAbsolutelyRe],

ctxTRUSTS,
[ctxtrustsAbosolutely

…
ctxdistrustsAboslutely],

trustsRegarding,

Trusts,
rePerson,

[trustsAboslutely
…

distrustsAboslutely]

Multiple axioms are
inferable, for instance;

1) Stating topical trust;

“A Person (Alice)
trustsAboslutelyRe

trustsRegarding

(relationship) the Topic
(Driving)”,

2) Stating trust between two
persons;

“a Person (Alice) trusts
another Person (Bob)

trustsAboslutely”

PML Belief

Element,

Trust

Element,

FloatMetric

Belief Relation

(using hasBelievedInformation
and hasBelievingAgent

between Agent, information
and source),

Trust Relation

(using hasTrustee and

hasTrustor between Agent,
information and source)

Agent,

Source,

Information,

hasBelievedInformation,

hasBelievingAgent,

hasTrustee,

hasTrustor,

hasFloatValue,

Two kinds of Axioms
regarding the trust and belief

of agent in an information
from a source can be
inferred, for instance;

2) Stating trust;

“FloatTrust, hasTrustee and
hasTrustor

(agent: user’s browser)

And

 hasFloatValue

with

FloatMetric (0.55). “

Konfidi Relationship

Item

About

(Between Item and

Relationship)

About,

Truster,

Trusted,

Rating,

Topic,

Trust Relationships can be
stated like the following

axiom;

“A

(trust) Relationship

between truster (Alice)

and trusted (Bob)

exists,

 which is about

 trust topic

(Cooking)

with trust rating

 (.95).”

30

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

To further analyze the study we have done so far let’s consider
a set of analysis subjects that affect the discussion on the
comparison between ontologies.

Depending on the context and the subject of the study certain
approaches are used and implemented. If the subject of study
is considering ontologies for knowledge management then, it
is preferred to use an algorithm to compare ontologies, since
such ontologies may be heavy and may contain a large number
of concepts and properties. As a matter of fact we can use
weight of ontology as the basis of comparison.

As all trust ontologies convey the same meaning and that is
representation and modeling trust relationship, Context seems
to be an important issue. So, we can compare trust ontologies
depending on the context they have been modeled and
considered in.

Since a model should also ease and facilitate the inference and
computation of trust, then inference should be also an
important topic to consider while analyzing trust ontologies.

Trust ontologies are used to generate trust networks and they
serve as the gear to rotate the automation of trust network
generation, inference and maintenance, therefore we can
consider comparing ontologies based on the ease of
implementation as well.

Ontologies should allow expressivity of trust statements. As
axioms represent the trust expressions and statements on the
social community of trust, then we can also consider the
semantic expressivity of the axioms inferred based on the
respective trust ontologies. Semantics of trust should be easy
to understand and should allow inference and justifications.

The more trust ontologies incorporate and integrate
technologies and vocabularies that create expressive and
referenced, the more they will be easy to implement.
Importing technologies and vocabularies make ontologies rich.
As a matter of fact we can also consider basing our
justification based on the number or technologies used in an
ontology.

1) Weight

Considering the size of ontologies, Konfidi is the lightest
ontology by having only two main concepts and 5 properties
and only one single relationship.

PML has 5 main concepts, but there are 2 types of relationship
existing with 8 instances, making PML trust ontology the
second in the place.

While Golbeck’s ontology has one single main concept
(topical trust) and two other derived concepts (person and
agent), 16 properties and one relationship, making it the third
place holder. Trust ontology of Denker/Toivonen has 4 main
concepts and 3 types of relationships, making it the heaviest
ontological representation of all.

The reason for the excessive size of the number of properties
of Golbeck and Denker ontologies, is the trust metric used; if
the discrete scale between 0 to 10 was not chosen, and a
probabilistic approach was used then the mentioned ontologies
would be way lighter, bringing the total number of elements to
11 in Golbeck and to 14 in Denker/Toivonen, make them the
top place holders at first and second place.

As a matter of fact we can conclude here that the choice of
trust metric and the approach toward computational aspect of
trust measurement could affect the size of ontology drastically.

2) Context / domain dependence

As described context is one of the most important subjects to
consider while building a trust model for a domain of study.
We also have to consider that there are main elements that
affect the construction of trust ontologies that could alter their
structure.

We want to consider construction of an ontology that could be
based on the main axes of trust, semantic web and social
network. Considering the main axes and elements that affect
the structure of ontology, could create a drastically different
ontology with a set of different components.

For instance if we consider the trust in service-oriented
environments, we have to consider trust as a notion close to
security, rather than belief and judgment. In that context trust
is more close to reputation, while trust in the context of
semantic web and semantic web driven social communities is
more close to belief and justification.

As a result, context has a considerable impact of the
constructing elements of trust ontologies.

Among the ontologies considered, Denker/Toivonen is the
most context-dependant ontology, as the context of the trust
study is communication and message-exchange. Taking a look
into trust concepts incorporated into this ontology, we realize
that the notion of trust relationship is tangled up in
communicational concepts (Communication network,
Message) make it completely dependent to communication
context although the rest of the trust components are very
well-engineered.

Since the trust ontology of PML is an axis of a triangle of
provenance, justification and trust ontology, all of the
mentioned ontologies are incorporated and imported into each
other to take advantage of the technical facilities of ontologies
description and consumption. This feature makes trust axis of
PML ontology, dependent to other three ontologies and
incorporating such ontology demands incorporation of the
other two ontologies. At the same time this ontology is
dedicated to evaluate and express the trust and belief of an
agent into a piece of information taken from a source of
information on the web. This feature makes it hard to express
and conclude the trust between a set of persons, since the other
pair should be described by agent as well, but it makes it easy
to derive and justify the statements of a person and state the

31

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

belief and trust in the statement made by a person (for
example on a social network). In general, the approach that
PML follows is “Trust for Question Answering” [47]. As a
result, PML trust ontology seems less context dependant in
comparison to Denker/Toivonen and more customizable to the
need for modeling trust, in general.

While Konfidi makes representation of trust in the context of
social semantic networks fairly easy and straightforward, at
the same time it is extensible and useful to different contexts
and the future needs. Using the Konfidi’s ontology, you can
state a statement of topical trust between any set of resources
or nodes (described by URI) on a semantic social network.

Golbeck’s ontology seems the most essential and fundamental
work on describing and stating trust using ontological
modeling and representation for the consumption on semantic
web. Both Konfidi and Golbeck’s ontologies are among the
most context and domain independent ontologies and that
makes them easy to be customized and implemented in other
domains of interests, demanding for modeling of trust.

We can state that the more ontology has components that
directly expresses the trust relationships and has less
components and properties related to other domains, the more
context-independent it will be.

3) Inference capability

One of the most important issues while considering capturing
of a domain inside the structure of ontology, is the reasoning
based on that ontology.

Considering the subject of discussion, it should be possible to
infer trust values easily using the corresponding trust
ontology. As described, choice of trust metric plays a crucial
role in the design and composition of ontology. Given a set of
entities (for instance two persons located on a network),
ontology should facilitate the inference of computational trust
value for the given entities. There are certain factors that affect
the efficient inference based on ontology such as the
complexity and size of trust network generated. The lesser
trust network generated is complex the lesser the inference
mechanism implemented needs to be complex.

Golbeck’s ontology was used for generating a network of
semantic data, and was also used within a semantic web social
network. Research has shown great inference capability for
this ontology [27][28][29][31].Golbeck has studied the
inference mechanisms and has created and implemented
inference algorithm to study the trust inference based upon her
trust ontology on two sets of trust networks, one a website for
movie ratings and recommendations [30] and the other for
spam filtering [28]. This makes Golbeck’s trust ontology the
only ontology widely used, implemented and inferred upon.

Konfidi is also tested against network of semantic data, and
has shown good performance. Konfidi uses trust strategies to
implement different sorts of inference mechanisms and

algorithms, in order to test the inference capability of trust
ontology, according to [10].

The inference capability of PML is implemented and has
proven to be very effective as it is designated toward
automatic resource evaluation.

It is important to consider that trust inference capability is an
important factor that affects the implementation aspects of
trust representation.

4) Semantic expressivity

Axioms that are inferred from trust ontologies express the
semantics of trust. The more clear and expressive these
axioms become the easier they will describe the semantics of
trust within the implemented and stated context.

Golbeck’s and Konfidi’s respective ontologies state the
semantic trust relationships very easy to understand and very
expressive; for example using Konfidi; “Relationship between
truster (Alice) and trusted (Bob) exists, which is about trust
topic (Cooking) with trust rating (.95).” and using the
Golbeck’s ontology;” “A Person (Alice) trustsHighlyRe
trustRegarding a trustedPerson (Bob) on trustSubject
(Driving)”, adopted respectively from [27] [10].

As Denker/Toivonen use Golbeck’s approach, but the axioms
generated are less expressive as multiple contexts are taken
under consideration and final driven axioms should have the
notions of context, trust, communication. Considering all
intermediary relationships for example, a trust relationship
between person and topic could be described as; “a Person
(Alice) rePerson trustsAboslutelyRe (trust metric)
trustsRegarding (relationship) reTopic Topic (Driving)”,
adopted from [27], which shows less expressivity than
previous axioms.

As described in the table, PML has the less expressivity
among all, but this is traded off with the inference capability
of the ontology, as the inference should be consumed by
software agents.

There seems to be a tradeoff between the expressivity of
inference capabilities of ontologies; as the ontology becomes
consumable by software agents, the less expressive the
inference products become.

5) Size of trust networks

We discussed that the trust network should be automatically
generated during runtime so we can analyze and evaluate and
finally infer and compute the trust values based on the
generated network.

As the size of the corresponding networks grows, the harder
the crawling and walking the trust paths becomes. So, it is
important to consider that the network generated could be
analyzable and inferable. This has to do directly with the

32

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

structure based on which trust concepts and properties are
presented and described.

For example Konfidi describes the topic and rating, as the
extra edges on the network tree. The more topics we
incorporate the larger the depth of the network generated
becomes, so in order to increase the efficiency, authors of
Konfidi’s trust ontology state that the extra information
attached to edges could be saved separately, according to [10].

As the semantic concept of trust relationship has been
described very efficiently (using a small set of necessary
elements, e.g. only one main concept), the networks generated
are very well-formed. It is logical to state that the efficient
design of ontology directly results on the efficient design of
the networks generated and used.

As our ontology is introduced in next section, we use network
size prospect to analyze the networks generated using our own
ontology.

6) Vocabularies incorporated

As mentioned before, Golbeck’s trust ontology was indeed a
milestone in the field of the work being done for representing
trust and belief in statements done on a semantic web-driven
community and society.

She not only introduced a method of representing trust on
semantic web and semantic web-powered societies, but she
also introduced the notion of topical trust and subjective trust.
By enabling the subjective trust we can state and represent
how a sink and a source trust each other based on a specific
subject and then measure this trust in subject and topic
according to a specific trust metric.

Most of other works within trust representation on semantic
web and semantic web-driven social networks either base their
trust model completely or partially on Golbeck’s trust
ontology.

Denker and Toivonen incorporate the subjective and topical
trust as well into their ontology. They also use the trust range
of Golbeck for contextual trust and personal trust
representation.

Konfidi also incorporates the topical trust. Although not
standardized, topical or subjective trust is a requirement for
any kind of model capturing the trust relationships. All of the
studied ontologies take advantage of friend-of-a-friend (foaf)
vocabulary. Golbeck and Konfidi use the foaf vocabulary to
describe the two sides of trust relationship.

PML uses it to describe the agent that assesses and evaluates
the information. Among studied ontologies, Konfidi
incorporates and integrates the most number of vocabularies
and technologies. In addition to foaf and topical trust
vocabularies, Konfidi also incorporates relationship
vocabulary [48] and it also uses WOT [45] (web of trust)
vocabulary. Using the relationship vocabulary leaves space for

adding other new features of trust relationships when needed;
such as the date of initiation of trust relationship, terms of
relationship, etc. Integrating different vocabularies, enriches
the structure of the ontology, reduces the number of ontology
components and eases the inference based upon the respective
ontology.

Considering standardized vocabularies and ontologies, not
only reduces the number of elements, but also eases future
adoption of new properties of implemented vocabulary-driven
features.

IV. ENGINEERING AND CONSTRUCTION OF TRUST ONTOLOGY

The same as all engineering sciences, in order to engineer an
artifact, an iterative process should be considered where each
step proliferates and extends the previous step in the loop to
construct the artifact under focus.

Ontology engineering and learning is a semi-automatic
process, consisting of six main interrelated phases, according
to [50] [49].

These phases include: domain understanding, data
understanding, task definition, ontology learning, ontology
evaluation and refinement with human in the loop,
respectively taken from [50] [49].

We use this approach in order to construct and build our trust
ontology. We can state that our experience not only can serve
as a methodology and mechanism for ontology construction
but also, considering the domain of our problem, it can serve
as a guide to engineering and construction of trust
representations and protocols using ontologies.

1) Determining the domain and scope

Considering the domain of problem, we are engineering an
ontology, which serves as the representational structure of the
relationship visualizing trust and trustworthiness of a set of
individuals based on a social network.

We can state that this ontology rotates on four main axes;
Trust, Relation, Social network, Semantic Web. So, we can
state that the domain of our ontology is representation of trust
within a social network based on semantic web.

2) Understanding and learning the data

Domain and scope of ontology create boundary that captures
the data relevant to the ontology under consideration.

Since our ontology serves as a representational model, then we
understand that the focus will be put on the data that are
represented, and that is trust relationships.

As relationships are compound data made of couple of atomic
subcomponents, then atoms of relationships will form the data
of our ontological domain. Relationships are described

33

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

between entities and these entities are individuals on the social
network, connected with trust relationship together.

We consider persons on the social network, so data about
people will serve as our data. Data about people on the social
semantic network are described within FOAF files, which are
described using RDF. At the same time Web-of-trust also
provides data about the identity of people on our network as
well as availability of links between these people on the
network of relationships. As such relationships should
describe trust as well, properties of trust are also among the
pieces of information that are also useful to create data for
ontology, such as the measurement and metric value used to
describe the value of trustworthiness. In order to be able to
describe the subject of the trustworthiness evaluation, we need
also a subject list, so, available subjects and topics can be
mentioned as available data on the domain.

The data needed within this ontology is information that
composes trust relationships and properties that relationships
have. The main data would be people’s relationships and
properties describing them and their relationships; here as
mentioned metadata FOAF profiles of people can compose
such relationships.

3) Defining tasks

Available data describe not only information about people that
make the atoms of relationship molecules but also the
properties of relationships. When domain is specified and the
data available are recognized and learned, usages and
functionalities of ontology being constructed is specified.
Taking into consideration the domain and scope of ontology,
which is representation of trust relationships and the data
available that are information about people creating the
relationships, we can state that the task of such ontology
would be clearly, describing and representing trust
relationships.

4) Ontology learning

Using the knowledge acquisition and learning capabilities with
the help of our construction and development environment, we
are able to learn the ontology.

As the main component of the ontology is relationship, that
represents the connection between entities on the network then
relationship itself serves as the main component and concept
of this ontology.

We can think of relationship as a composite object made of
subcomponents that reside within the relationship and describe
the properties of relationship. Each relationship describes an
edge on the network, this edge exists between a set of nodes.
These nodes represent starts and ends of directed edges (of
relationship). hasTruster and hasTrustee respectively
represent the two important properties of relationship on a
network. So far we have learned the elements of relationship
on a social network.

Every relationship has a set of main properties, which describe
the nature and purpose of relationship. These properties
specify the details of trust relation. Each trust relationship has
a topic or subject (topical or subjective trust). In order to make
trust computable, on any existing edge on the network there
should be a value. This value represents the trust metric used
for the representation of trust relationship. So, we can consider
Value also as a main property of relationship.

Now that we have learned the main elements of ontology, it
appears most of the trust ontologies share the same
components described so far. Relationship described using
ontologies have a set of auxiliary properties, as well. Using
this component we can put more details on the relationship
and we can give it more weight and mass. It is important to
realize that only properties that have less importance than
main properties, are described using these properties. These
properties are used to give more weight to Relationship. Using
a separate element for auxiliary properties leaves space for
future extensions that are needed to add to the network

Trust relationships are context-sensitive. Context describes
whether this relationship is described inside a personal
network or a business network. By using context, we can
make networks of different types. Using this element we can
create simple networks and hybrid networks.

For instance, simple networks are either a personal network
(such as Orkut [56]) or a business network (such as LinkedIn
[57]). We can have a relationship in the context of a personal
network. We can also have a simple trust relationship in the
context of a business network or perhaps a business
environment. When the source is from a personal network and
is connected to a sink from a business network we have
connected two networks of simple type, creating a hybrid
network. As a matter of fact context type can give more details
about the type of network where this relationship is described
in. This auxiliary element gives more details about the type of
network the relationship is based upon.

Considering the reason that a relationship can be established
based upon, we have also incorporated a Goal property
describing the reason that a relationship was based upon. A
relationship can have a goal that describes why respective
relationship is formed. For instance on a social network,
usually the goal for establishing a relationship is friendship, or
on a business network, it is seeking business partnership.

The most important subsidiary and optional property that we
have considered in our ontology is having a recommender as
the initiator of the trust relationship establishment.
hasRecommender is an auxiliary property describing a person
on the network that has recommended trustee, or the sink of
relationship, to the truster. In other words, we have described
notion of “trust in recommendation” in order to shape and
form a relationship, initiated from truster, ended up in trustee,
based on guarantee of trust recommender. Using such property
we can create networks of different strengths; we can have
networks of weak links and strong links.

34

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

A strong link is a relationship based upon the recommendation
of an entity. The more recommenders a relationship has, the
stronger this relationship become. A weak link is a relationship
that has no recommenders.

When speaking in terms of trust, in context of information
systems, a way of achieving trust is using a recommender.
Considering the transitivity property of trust, the trust in
recommender is used in certificate authorities to achieve trust
in a third-party. We can take advantage of this property in
semantic-web driven social networks to create strong paths in
order to use them as the path for aggregating and computing
trust values along the network.

By specifying auxiliary properties we follow two important
goals; Adding more details about relations to ontology and
giving more meaning and details to specification of
relationships, as well as leaving space for adding more
elements describing the other aspects of relationships that may
be needed in future.

5) Ontology evaluation

As ontology development is a semi-automatic approach and
demands involvement of both human and machines, in this
phase as well as previous phase we take advantage of using an
automated tool in order to build and evaluate our ontology. In
this phase we build and evaluate the ontology learned in
previous phase. By evaluating the ontology, we estimate the
quality of the modeled solution to the addressed tasks defined
in previous sections.

It is worth mentioning that in most of the phases of ontology
engineering the role of human wouldn’t be completely fade
and human will participate in almost all of the phases of
ontology development. In order to model and describe the
elements and components of the ontology we use Protégé3
ontology editor and knowledge acquisition system.

Figure 1 visualizes the structure of our trust ontology.

As shown our ontology has 3 main concepts or classes that
capture the structure of the trust relationships on the networks.

Relationship is the main element and concept of our ontology.
MainProperties and AuxiliaryProperties are the other main
components of our ontology. We have two associations that
connect both MainProperties and AuxiliaryProperties to
Relationship. These associations are hasMainProperties and
hasAuxiliaryProperties.

Relationship always has a sink and a source, which we have
described here as truster and trustee. Both hasTruster and
hasTrustee are defined on the range of foaf:Agent which
enables us to describe relationships in the context of semantic
social ecosystems. This agent can be a person, an organization
or just a software agent. Each Relationship has to have a
truster and a trustee and at least one main property. Without
these mentioned elements, a relationship is partial and partial
relations are undefined using our ontology. In order to ensure
having at least these mentioned elements, we have put
restrictions on ontology subcomponents. Restriction defines a
blank node with restrictions. It refers to the property that is
constrained and defines the restriction itself. Cardinality

3 Protégé, http://protege.stanford.edu/

Fig. 1. Structure of our trust ontology, 3 main concepts of trust ontology as well as two edges connecting them together. [2]

35

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

constraints define how many times the property can be used
on an instance of a class. We have minimum, maximum, exact
cardinalities.

We have used two exact cardinalities on hasTrustee and
hasTruster, in order to state having exactly one truster and one
trustee for a relationship. We have also used minimum
cardinality for hasMainProperties to make sure having at least
a topic and a value for each relationship, and since we can
have more than one topic to base the relation upon, we have
used minimum cardinality (at least).

MainProperties element has two main properties; Subject and
Value. We have described these two properties using data type
properties, in OWL (Web Ontology Language). Subject takes
string value. It is recommended that subject taxonomies or
topic ontologies be defined, so we can use a common
namespace for describing topics and subjects. Each
relationship can have multiple main properties, which means it
can be about different topics and subjects, but each main
property has to have one and only one topic and only one
value.

For instance in the relationship between Alice and Bob, Alice
can completely trust Bob on Driving (Subject=”Driving”,
Value=”0.95”), and also can distrust Bob on Cooking
completely (Subject=”Cooking”, Value=”0.10”). This
constitutes two distinct main properties in relationship
between Alice and Bob. But we cannot have multiple subjects
and values in the MainProperties of Alice and Bob on
Cooking, for example. In order to enforce this property we
have put restriction on both properties of value and subject. By
using exact cardinality restriction we have enforced having
exactly one subject and exactly one value for each item of
trust within a relationship.

Finally, AuxiliaryProperties concept of domain has 5
properties and also leaves space for more properties whenever
needed. AuxiliaryProperties has an object property and 4 data
type properties. It has hasRecommender, which is the element
describing the strength of relationship and is defined on the
range of foaf:agent that lets us to state which node on the
network is the recommender for the establishment of this
relationship. ContextType is defined as a string data type
property that states the context of the trust network, the
relationship is based on. Goal of the relationship is also
defined using a string data type property. DateBegin and
DateEnd are described using Date data-type property. Clearly
we don’t need to have restrictions on any single property of
AuxiliaryProperties concept.

6) Discussion

As modeling trust is the main target of our work, a brief
discussion on the notion of trust and how we have modeled the
trust in our approach seems necessary.

As discussed, trust is a context-sensitive issue. While
considering the context of the trust ontology and trust analysis,
we realize that this context is a multi-dimensional entity

composed of two substantial and main dimensions; semantic
web and social networks. Trust in the domain of social
semantic networks, has three relatively close notions such as
belief, provenance and justification.

Some of these notions have very close and sometimes
overlapping meaning to trust. Among mentioned notions,
belief seems to be a very close notion to trust. It seems that
belief and trust go hand in hand.

Discussion on modeling belief has a long background. The
work on belief goes back to Willard Van Orman Quine’s “web
of belief” [22]. A reminiscent of web of trust is created by [23]
and is weaved into semantic web. They define web of belief as
following “by cognitively viewing knowledge as individuals’
rational beliefs about the world, individuals share knowledge
and form a distributed knowledge network, which is called the
web of belief, where rational belief links individuals with
world facts and trust interlinks individuals as external
information sources.” [23].

In our work, we have only considered modeling trust and
distrust. Considering modeling other notions described takes a
great effort and deal of modeling, as each one of these
mentioned notions demand their own properties and
eventually their own ontologies.

As a matter of fact, as we have generalized the notion of trust
relationship in our approach to Relationship, then we have
provided enough space for future extension. We can build
belief ontology that can be imported within our trust ontology
and certain elements of these ontologies can be shared and
consumed whenever needed. Aside from such possibility then
there is a need for future research for defining the nature,
usage and representation of belief and judgment in semantic
social networks.

Using our ontology, we can describe trust in other people on
the network regarding a certain topic. Taking into account the
discussions we had in previous section, what we are
describing here is trust in performance.

When we state that “Alice trusts Bob regarding Driving”, this
means that, “Alice trusts in eventuality of performance of Bob
to some extent, when the act of driving is performed”. Trust in
performance describes that truster states the trust in the
performance of act of trustee, when this act is performed. This
trust uses a probabilistic approach to describe trust
relationships, so we can say how much someone trusts the
other on a range between 0 and 1.

For example, as shown previously we can state, Alice trusts
Bob completely regarding a topic. This amount of trust is
mapped to a floating point value between 0 and 1, so we can
state range of 0.9 to 0.99, is a range showing that you
completely trust the person you are expressing trustworthiness
about. Considering the discrete range of Golbeck’s ontology,
which is between trust0 to trust10, then we realize that we are
having an implicit mapping from a range of discrete values to

36

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

a range of concrete values. Choice of trust topic is also
considerable for improvement in future works.

As we stated, we have modeled Specific Trust and we have
clearly eliminated the notion of general trust. It is important to
point out that a relationship should have at least a topic. One
of the important notions that we can consider discussing here,
is distrust.

For instance, “Alice distrusts Bob regarding babysitting to
some extent (0.65)”, using our ontology it can be also stated
like “Alice trusts Bob regarding babysitting to some
(complementary) extent (0.35)”, adopted from [27] [10]. As it
is clear we have modeled distrust, implicitly. We have
assumed that there is a tradeoff between trust and distrust on
the same topic.

We can also model feelings using our trust model. If we take
all of the evaluation values for a relation, and average it, we
can derive the amount of feelings between the trustee and
truster. We can derive negative or positive feelings. If there
are certain number of trust items (or MainProperties; subjects
and values) for a relationship, for instance at least 3, we can
consider taking average of the values and deriving a general
feeling of truster for trustee.

For instance, if Alice has low trust values for Bob in all of the
subjects in their relationships, then we can state that she has
negative feelings for him, or vice versa. Although, there are
many certain properties that should be considered that affect
feelings of people for each other and trust is only one of them.
Therefore, we can state here that more elements are needed to
give us this ability to create feelings statements in our
ontology.

We want to be able to choose two nodes, a source or truster
and a sink or a trustee (trusted), and gather trust values on a
path between them on the network and eventually compute a
value representing the trust of truster in trustee. In order to
address this problem; we have made sure that each
relationships on the network has a value, and we have
introduced recommenders.

Our ontology ensures that if there is a relationship (a link on
the network) between two nodes, then this link has a value,
although this value doesn’t reflect the general trust value of
trust between truster and trustee. In addition to using
recommenders, we can use our ontology to create a network of
recommendation on the network of trust.

We can use recommended links for our trust inference. As we
described, recommendation can state the strength of an
existing link, so we can use such “recommended link” for our
inference along the paths. Theoretically, such paths are
stronger and can give better values than other paths that do not
have recommenders.

One of the main challenges in this context is dealing with
distrust values, when encountered on the network. Values of
distrust drop the aggregated values along the paths on the

network, and there is no certain procedure or methodology to
address dealing with this problem.

V. TRUST NETWORK ANALYSIS

We begin by analyzing a network of small size. This gives us
the ability to easily, visualize and realize the structure of
modeled relationships. Then we move to networks of larger
size where we introduce two types of trust network structures;
hybrid and meshed networks.

A. A small size network

Let us begin with the smallest network size, possible; a
network of two people, with a single relationship, containing a
main property and an auxiliary property. Let us consider
modeling following relational semantics for this atomic
network:

”Alice trusts bob in driving a lot.”

Using our OWL trust schema and ontology, this network will
be presented in RDF format as following;

<foaf:Person rdf: ID="Alice"/>
<foaf:Person rdf:ID="Bob"/>
<Relationship rdf:ID="Relationship_Alice_Bob">

<hasTrustee rdf:resource="#Bob"/>
<hasTruster rdf:resource="#Alice"/>

<hasMainProperties>
<MainProperties rdf:ID="MainProperties_Alice_Bob">

<Subject rdf:datatype="&xsd;string">Driving</Subject>
<Value rdf:datatype="&xsd;float">0.95</Value>

</MainProperties>
</hasMainProperties>

</Relationship>

B. Hybrid trust networks

Here, we will consider 2 groups of people, representing two
networks of different contexts. Each group of four people is
interrelated and interlinked, forming a simple network. At the
same time a set of these people are connected outside of their
own local networks, to other foreign network.

These relations work as glue connecting networks of different
context, creating Hybrid networks.

In hybrid network depicted in Figure 3, people located on one
network, are shaping a personal context and their goals are
more or less establishing friendship relations, while people on
the other network are members of a business network, and
their goals are establishing business partnerships and
relationships and they could be colleagues in an office
environment. It is also considerable to think of the business
network as a business-value adding network, or a service
oriented environment. In that case, then four latter members

37

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

can be software agents, which can also be described using our
ontology.

In order to consider the structure and size of the
generated, a circular represe
Figure

Figure 4 visualizes the
3. Figure 4 is visualized using Welkin

C.

The motivation for studying larger networks of trus
considering real

4 Welkin,

Fig.4. a circular representation of h
nodes and 92 edges)

Fig.3. A hybrid network. Two connected networks of
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are
interconnections (local), and 4 links are acting as glue
(foreign).

can be software agents, which can also be described using our
ontology.

In order to consider the structure and size of the
generated, a circular represe

igure

Figure 4 visualizes the
3. Figure 4 is visualized using Welkin

 Meshed trust networks

The motivation for studying larger networks of trus
considering real

Welkin,

Fig.4. a circular representation of h
nodes and 92 edges)

Fig.3. A hybrid network. Two connected networks of
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are
interconnections (local), and 4 links are acting as glue
(foreign).

can be software agents, which can also be described using our
ontology.

In order to consider the structure and size of the
generated, a circular represe

igure 4.

Figure 4 visualizes the
3. Figure 4 is visualized using Welkin

Meshed trust networks

The motivation for studying larger networks of trus
considering real

Welkin, http://simile.mit.edu/welkin/

Fig.4. a circular representation of h
nodes and 92 edges)

Fig.3. A hybrid network. Two connected networks of
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are
interconnections (local), and 4 links are acting as glue
(foreign).

can be software agents, which can also be described using our

In order to consider the structure and size of the
generated, a circular represe

Figure 4 visualizes the
3. Figure 4 is visualized using Welkin

Meshed trust networks

The motivation for studying larger networks of trus
considering real

http://simile.mit.edu/welkin/

Fig.4. a circular representation of h
nodes and 92 edges)

Fig.3. A hybrid network. Two connected networks of
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are
interconnections (local), and 4 links are acting as glue

can be software agents, which can also be described using our

In order to consider the structure and size of the
generated, a circular represe

Figure 4 visualizes the
3. Figure 4 is visualized using Welkin

Meshed trust networks

The motivation for studying larger networks of trus
considering real-

http://simile.mit.edu/welkin/

Fig.4. a circular representation of h
nodes and 92 edges)

Fig.3. A hybrid network. Two connected networks of
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are
interconnections (local), and 4 links are acting as glue

can be software agents, which can also be described using our

In order to consider the structure and size of the
generated, a circular represe

Figure 4 visualizes the
3. Figure 4 is visualized using Welkin

Meshed trust networks

The motivation for studying larger networks of trus
-world scenarios of network formations. Such

http://simile.mit.edu/welkin/

Fig.4. a circular representation of h

Fig.3. A hybrid network. Two connected networks of
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are
interconnections (local), and 4 links are acting as glue

can be software agents, which can also be described using our

In order to consider the structure and size of the
generated, a circular represe

Figure 4 visualizes the
3. Figure 4 is visualized using Welkin

Meshed trust networks

The motivation for studying larger networks of trus
world scenarios of network formations. Such

http://simile.mit.edu/welkin/

Fig.4. a circular representation of h

Fig.3. A hybrid network. Two connected networks of
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are
interconnections (local), and 4 links are acting as glue

can be software agents, which can also be described using our

In order to consider the structure and size of the
generated, a circular represe

 RDF trust network depicted in F
3. Figure 4 is visualized using Welkin

Meshed trust networks

The motivation for studying larger networks of trus
world scenarios of network formations. Such

http://simile.mit.edu/welkin/

Fig.4. a circular representation of hybri

Fig.3. A hybrid network. Two connected networks of
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are
interconnections (local), and 4 links are acting as glue

can be software agents, which can also be described using our

In order to consider the structure and size of the
generated, a circular representation of network is given in

RDF trust network depicted in F
3. Figure 4 is visualized using Welkin

The motivation for studying larger networks of trus
world scenarios of network formations. Such

ybrid network subject to study. (Network contains 48

Fig.3. A hybrid network. Two connected networks of
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are
interconnections (local), and 4 links are acting as glue

can be software agents, which can also be described using our

In order to consider the structure and size of the
ntation of network is given in

RDF trust network depicted in F
3. Figure 4 is visualized using Welkin

The motivation for studying larger networks of trus
world scenarios of network formations. Such

d network subject to study. (Network contains 48

Fig.3. A hybrid network. Two connected networks of
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are
interconnections (local), and 4 links are acting as glue

can be software agents, which can also be described using our

In order to consider the structure and size of the
ntation of network is given in

RDF trust network depicted in F
3. Figure 4 is visualized using Welkin4

The motivation for studying larger networks of trus
world scenarios of network formations. Such

d network subject to study. (Network contains 48

Fig.3. A hybrid network. Two connected networks of
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are
interconnections (local), and 4 links are acting as glue

can be software agents, which can also be described using our

In order to consider the structure and size of the
ntation of network is given in

RDF trust network depicted in F
4.

The motivation for studying larger networks of trus
world scenarios of network formations. Such

d network subject to study. (Network contains 48

Fig.3. A hybrid network. Two connected networks of different contexts; a personal and
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are
interconnections (local), and 4 links are acting as glue

can be software agents, which can also be described using our

In order to consider the structure and size of the
ntation of network is given in

RDF trust network depicted in F

The motivation for studying larger networks of trus
world scenarios of network formations. Such

d network subject to study. (Network contains 48

different contexts; a personal and
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are
interconnections (local), and 4 links are acting as glue connecting two networks

can be software agents, which can also be described using our

In order to consider the structure and size of the
ntation of network is given in

RDF trust network depicted in F

The motivation for studying larger networks of trus
world scenarios of network formations. Such

d network subject to study. (Network contains 48

different contexts; a personal and
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are

connecting two networks

can be software agents, which can also be described using our

In order to consider the structure and size of the
ntation of network is given in

RDF trust network depicted in F

The motivation for studying larger networks of trus
world scenarios of network formations. Such

d network subject to study. (Network contains 48

different contexts; a personal and
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are

connecting two networks

can be software agents, which can also be described using our

In order to consider the structure and size of the network
ntation of network is given in

RDF trust network depicted in F

The motivation for studying larger networks of trus
world scenarios of network formations. Such

d network subject to study. (Network contains 48

different contexts; a personal and
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are

connecting two networks

can be software agents, which can also be described using our

network
ntation of network is given in

RDF trust network depicted in Figure

The motivation for studying larger networks of trust, was
world scenarios of network formations. Such

d network subject to study. (Network contains 48

different contexts; a personal and
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are

connecting two networks

can be software agents, which can also be described using our

network
ntation of network is given in

igure

t, was
world scenarios of network formations. Such

d network subject to study. (Network contains 48

different contexts; a personal and
a business network. Hybrid networks, contains 8 people and 12 relations. 8 links are

connecting two networks

can be software agents, which can also be described using our

network
ntation of network is given in

igure

t, was
world scenarios of network formations. Such

networks are complex, combined networks of different sizes
and different contexts. We call these networks,
networks

Meshed networks are considered networks, where every node
is

As such, assumption is unrealistic, and there is only a subset
of nodes available that are full
we consider
Taking idea from networ
networks are trust networks where each node is at least
connected to a
the other hand, a fully connected meshed network is a trust
network where each node is connected to everyon

Fig.
network contains 16 people and 26 relations.

Fig.
and 198 edges)

networks are complex, combined networks of different sizes
and different contexts. We call these networks,
networks

Meshed networks are considered networks, where every node
is connected to all other nodes on the network.

As such, assumption is unrealistic, and there is only a subset
of nodes available that are full
we consider
Taking idea from networ
networks are trust networks where each node is at least
connected to a
the other hand, a fully connected meshed network is a trust
network where each node is connected to everyon

Fig. 5
network contains 16 people and 26 relations.

Fig. 6
and 198 edges)

networks are complex, combined networks of different sizes
and different contexts. We call these networks,
networks

Meshed networks are considered networks, where every node
connected to all other nodes on the network.

As such, assumption is unrealistic, and there is only a subset
of nodes available that are full
we consider
Taking idea from networ
networks are trust networks where each node is at least
connected to a
the other hand, a fully connected meshed network is a trust
network where each node is connected to everyon

5. A partial meshed network made
network contains 16 people and 26 relations.

6. A circular representation of meshed partial network. (Network contains 98 nodes
and 198 edges)

networks are complex, combined networks of different sizes
and different contexts. We call these networks,
networks.

Meshed networks are considered networks, where every node
connected to all other nodes on the network.

As such, assumption is unrealistic, and there is only a subset
of nodes available that are full
we consider
Taking idea from networ
networks are trust networks where each node is at least
connected to a
the other hand, a fully connected meshed network is a trust
network where each node is connected to everyon

A partial meshed network made
network contains 16 people and 26 relations.

A circular representation of meshed partial network. (Network contains 98 nodes
and 198 edges)

networks are complex, combined networks of different sizes
and different contexts. We call these networks,

Meshed networks are considered networks, where every node
connected to all other nodes on the network.

As such, assumption is unrealistic, and there is only a subset
of nodes available that are full
we consider partial
Taking idea from networ
networks are trust networks where each node is at least
connected to a
the other hand, a fully connected meshed network is a trust
network where each node is connected to everyon

A partial meshed network made
network contains 16 people and 26 relations.

A circular representation of meshed partial network. (Network contains 98 nodes

networks are complex, combined networks of different sizes
and different contexts. We call these networks,

Meshed networks are considered networks, where every node
connected to all other nodes on the network.

As such, assumption is unrealistic, and there is only a subset
of nodes available that are full

partial
Taking idea from networ
networks are trust networks where each node is at least
connected to a subset of nodes it has data exchange with. On
the other hand, a fully connected meshed network is a trust
network where each node is connected to everyon

A partial meshed network made
network contains 16 people and 26 relations.

A circular representation of meshed partial network. (Network contains 98 nodes

networks are complex, combined networks of different sizes
and different contexts. We call these networks,

Meshed networks are considered networks, where every node
connected to all other nodes on the network.

As such, assumption is unrealistic, and there is only a subset
of nodes available that are full

partial
Taking idea from networ
networks are trust networks where each node is at least

subset of nodes it has data exchange with. On
the other hand, a fully connected meshed network is a trust
network where each node is connected to everyon

A partial meshed network made
network contains 16 people and 26 relations.

A circular representation of meshed partial network. (Network contains 98 nodes

networks are complex, combined networks of different sizes
and different contexts. We call these networks,

Meshed networks are considered networks, where every node
connected to all other nodes on the network.

As such, assumption is unrealistic, and there is only a subset
of nodes available that are full

partial and
Taking idea from networ
networks are trust networks where each node is at least

subset of nodes it has data exchange with. On
the other hand, a fully connected meshed network is a trust
network where each node is connected to everyon

A partial meshed network made
network contains 16 people and 26 relations.

A circular representation of meshed partial network. (Network contains 98 nodes

networks are complex, combined networks of different sizes
and different contexts. We call these networks,

Meshed networks are considered networks, where every node
connected to all other nodes on the network.

As such, assumption is unrealistic, and there is only a subset
of nodes available that are full

and fully connected meshed networks
Taking idea from networking topologies, partial meshed
networks are trust networks where each node is at least

subset of nodes it has data exchange with. On
the other hand, a fully connected meshed network is a trust
network where each node is connected to everyon

A partial meshed network made-up of two connected hybrid networks. Thi
network contains 16 people and 26 relations.

A circular representation of meshed partial network. (Network contains 98 nodes

networks are complex, combined networks of different sizes
and different contexts. We call these networks,

Meshed networks are considered networks, where every node
connected to all other nodes on the network.

As such, assumption is unrealistic, and there is only a subset
of nodes available that are fully connected to all other nodes,

fully connected meshed networks
king topologies, partial meshed

networks are trust networks where each node is at least
subset of nodes it has data exchange with. On

the other hand, a fully connected meshed network is a trust
network where each node is connected to everyon

up of two connected hybrid networks. Thi
network contains 16 people and 26 relations.

A circular representation of meshed partial network. (Network contains 98 nodes

networks are complex, combined networks of different sizes
and different contexts. We call these networks,

Meshed networks are considered networks, where every node
connected to all other nodes on the network.

As such, assumption is unrealistic, and there is only a subset
y connected to all other nodes,

fully connected meshed networks
king topologies, partial meshed

networks are trust networks where each node is at least
subset of nodes it has data exchange with. On

the other hand, a fully connected meshed network is a trust
network where each node is connected to everyon

up of two connected hybrid networks. Thi

A circular representation of meshed partial network. (Network contains 98 nodes

networks are complex, combined networks of different sizes
and different contexts. We call these networks,

Meshed networks are considered networks, where every node
connected to all other nodes on the network.

As such, assumption is unrealistic, and there is only a subset
y connected to all other nodes,

fully connected meshed networks
king topologies, partial meshed

networks are trust networks where each node is at least
subset of nodes it has data exchange with. On

the other hand, a fully connected meshed network is a trust
network where each node is connected to everyon

up of two connected hybrid networks. Thi

A circular representation of meshed partial network. (Network contains 98 nodes

networks are complex, combined networks of different sizes
and different contexts. We call these networks,

Meshed networks are considered networks, where every node
connected to all other nodes on the network.

As such, assumption is unrealistic, and there is only a subset
y connected to all other nodes,

fully connected meshed networks
king topologies, partial meshed

networks are trust networks where each node is at least
subset of nodes it has data exchange with. On

the other hand, a fully connected meshed network is a trust
network where each node is connected to everyon

up of two connected hybrid networks. Thi

A circular representation of meshed partial network. (Network contains 98 nodes

networks are complex, combined networks of different sizes
and different contexts. We call these networks,

Meshed networks are considered networks, where every node
connected to all other nodes on the network.

As such, assumption is unrealistic, and there is only a subset
y connected to all other nodes,

fully connected meshed networks
king topologies, partial meshed

networks are trust networks where each node is at least
subset of nodes it has data exchange with. On

the other hand, a fully connected meshed network is a trust
network where each node is connected to everyon

up of two connected hybrid networks. Thi

A circular representation of meshed partial network. (Network contains 98 nodes

networks are complex, combined networks of different sizes
and different contexts. We call these networks,

Meshed networks are considered networks, where every node
connected to all other nodes on the network.

As such, assumption is unrealistic, and there is only a subset
y connected to all other nodes,

fully connected meshed networks
king topologies, partial meshed

networks are trust networks where each node is at least
subset of nodes it has data exchange with. On

the other hand, a fully connected meshed network is a trust
network where each node is connected to everyone.

up of two connected hybrid networks. Thi

A circular representation of meshed partial network. (Network contains 98 nodes

networks are complex, combined networks of different sizes
and different contexts. We call these networks,

Meshed networks are considered networks, where every node

As such, assumption is unrealistic, and there is only a subset
y connected to all other nodes,

fully connected meshed networks
king topologies, partial meshed

networks are trust networks where each node is at least
subset of nodes it has data exchange with. On

the other hand, a fully connected meshed network is a trust
e.

up of two connected hybrid networks. Thi

A circular representation of meshed partial network. (Network contains 98 nodes

networks are complex, combined networks of different sizes
and different contexts. We call these networks, Meshed

Meshed networks are considered networks, where every node

As such, assumption is unrealistic, and there is only a subset
y connected to all other nodes,

fully connected meshed networks
king topologies, partial meshed

networks are trust networks where each node is at least
subset of nodes it has data exchange with. On

the other hand, a fully connected meshed network is a trust

up of two connected hybrid networks. Thi

A circular representation of meshed partial network. (Network contains 98 nodes

networks are complex, combined networks of different sizes
Meshed

Meshed networks are considered networks, where every node

As such, assumption is unrealistic, and there is only a subset
y connected to all other nodes,

fully connected meshed networks
king topologies, partial meshed

networks are trust networks where each node is at least
subset of nodes it has data exchange with. On

the other hand, a fully connected meshed network is a trust

up of two connected hybrid networks. This

A circular representation of meshed partial network. (Network contains 98 nodes

networks are complex, combined networks of different sizes
Meshed

Meshed networks are considered networks, where every node

As such, assumption is unrealistic, and there is only a subset
y connected to all other nodes,

fully connected meshed networks.
king topologies, partial meshed

networks are trust networks where each node is at least
subset of nodes it has data exchange with. On

the other hand, a fully connected meshed network is a trust

A circular representation of meshed partial network. (Network contains 98 nodes

38

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

In the former, inferring trust values between a pair of nodes on
the network seems difficult but, finding a path between a set
of nodes on the network is guaranteed. Using our ontology,
recommendations can find efficient paths on the network.
 Figure 5 depicts a partial meshed network of people from
different contexts and with different goals perhaps, and can be
thought of two hybrid networks integrated and merged
together. Figure 6 is a visualization of the RDF network for
trust network depicted in Figure 5.

VI. STRUCTURAL COMPARISON

In order to emphasize the importance structural determination
of trust networks, in this section we consider comparing the
structure of the trust networks generated based on three
different ontologies; our ontology, Golbeck’s and Konfidi’s.
In the last subsection we discuss in details the results of
comparison.

For the sake of comparison, we have divided the experiment
datasets into two sizes; small sized networks and large sized
networks.

A. Trust networks of small size

Based on our structural point of view, Table 2 lists the number
of nodes and edges on the compared networks.

As it is clear, in general the nodes and edges on the networks
generated using Golbeck’s ontology is quite smaller than
networks generated using our ontology and Konfidi’s.

At the same time in both cases our network has a smaller
number of nodes and edges than Konfidi’s networks, although
the difference is not that much.

B. Trust networks of large size

We described and defined hybrid and meshed networks. At the
same time, we modeled these networks using datasets that to
some extent reflect the structure of such networks. The same
datasets were also injected into the structure of two other
tested ontologies to consider the structure of the resulting trust
networks.

Based on our structural point of view, Table 3 lists the number
of nodes and edges on the networks.

Table 3a shows the number of nodes and edges on the
networks representing the hybrid network.

Network generated using Golbeck’s ontology has less nodes
and edges than both of ours and Konfidi’s. Although, network
generated using our ontology has less number of edges and
nodes in comparison to Konfidi’s.

Table 3b shows the number of nodes and edges on the
networks representing meshed networks.

Again, Golbeck’s network has less number of nodes and edges
than our network and Konfidi’s network. Our network has
greater number of nodes than both, Golbeck’s and Konfidi’s
networks, but lesser number of edges than Konfidi’s.

C. Trust networks of larger size

We continued our study by modeling and presenting the trust
networks of larger sizes.

We also expanded our sample partial meshed network and
increased the number of people in the networks and their
corresponding relationships randomly.

The structure of the resulting networks was studied from the
perspective of number of edges and nodes, the same structural
perspective used for comparison between networks of small
and large size.

In our experiment we expanded the sample partial meshed
network of 16 people and 26 relationships. The number of
people and their corresponding relationships were sampled
and plotted at each sample increase to reflect the progress of
expansion across the network structure.

These data were generated using all three ontologies being
evaluated.

Figure 7, depicts the effect of seamless increase in the size of
trust networks of larger size from structural point of view.

TABLE II
COMPARISON BETWEEN THE SIZES OF SMALL NETWORKS

Trust
Networks

Golbeck Ours Konfidi

Nodes 15 20 22
Edges 28 34 37
c) Networks of 4 people and 4 relationships. (Increase in size)

Trust

Networks
Golbeck Ours Konfidi

Nodes 19 28 29
Edges 46 54 58
d) Networks of 4 people and 6 relationships. (Increase in depth)

TABLE III
COMPARISON BETWEEN THE SIZES OF LARGE NETWORKS

Trust
Networks

Golbeck Ours Konfidi

Nodes 27 48 50
Edges 73 92 105

a) Hybrid Network (network of 8 people and 12 relationships).

Trust
Networks

Golbeck Ours Konfidi

Nodes 49 98 86
Edges 132 198 211

b) Meshed network (Networks of 16 people and 26 relationships).

39

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

a) Increasing the size of Golbeck’s trust networks. The diagram depicts the increase in range of nodes and edges, starting from network of 20 people and 18 relations,
ending at a network of 108 people and 104 relations.

b) Increasing the size of Konfidi’s trust networks. The diagram depicts the increase in range of nodes and edges, starting from network of 28 people and 32 relations,
ending at a network of 96 people and 66 relations.

c) Increasing the size of our trust networks. The diagram depicts the increase in range of nodes and edges, starting from network of 24 people and 20 relations, ending at
a network of 112 people and 64 relations.

Fig. 7. Networks of larger sizes: Effect of increasing the number of people on the networks described using different ontological structures.

40

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

D. Detailed analysis of structural comparisons

In this section we further analyze and study the results of our
experiment and comparisons.

As shown in Tables 1 and 2, trust networks modeled,
described and presented using our ontology and others are
compared based on the number of nodes and edges (structural
perspective). Comparison shows that in networks of small
size, our ontology shows average performance in comparison
to other ontologies, meaning that trust networks generated
have average sizes, in comparison. But as the size of the
networks increases, certain aspect of trust network size
increases more than other compared network, showing less
efficient performance. This decrease in efficient performance
is also well-depicted in networks of larger size in Figure 7.

There are a set of reasons, which can be stated here.
Clearly, the main reason, for size increase in networks, is the
number of elements incorporated within the structure of
ontology. Golbeck’s ontology uses only one main element,
Konfidi uses two main elements, while our ontology uses
three main concepts.

The second reason would be efficient design of the ontology.
Golbeck’s ontology is indeed, a mile stone in the work on trust
in semantic web, from different perspectives.

Her trust schema has a very efficient design. Such design has
certain aspects that reduce the size of the networks described
using that ontology; first, defining levels of trust
(trust0...trust10) and trustRegarding on the range of foaf:agent
lets you describe the trust directly as the properties of agents
and on the trust network. Such efficiency in design lets you
describe relations very easily with lesser elements, as seen in
results. Konfidi’s trust ontology has more or less the same
structure like our ontology. Our ontology has one more
element than Konfidi’s, however we have seen networks of
smaller size generated by using our ontology have less
complex structures than the ones generated by using Konfidi’s
ontology.

Figures 9 visualizes the structure of the networks generated
using our ontology. The emphasis on the visualizing was put
on the gravity of the instances on the network toward their
originated main elements. An efficient structure will depict the
overall organization of the ecosystem and its sub-ecosystems.
Our network shows better clustering of elements among the
two other samples.

The third reason is the AuxiliaryProperties element of our
ontology. As we incorporated an extensibility element for
describing secondary and optional properties, we will
incorporate extra nodes and more importantly extra edges into
the network. In most of the test data for the comparison
section, we have auxiliary property elements with at least one
sub-element filled. For instance, when describing hybrid
networks, all relationships have AuxiliaryProperties with
ContextType property of either simple social network, or
simple business network, or hybrid network. It should be
mentioned here that none of the other compared ontologies,
have any element for describing extra properties; extending
Golbeck’s trust ontology seems to be very hard and needs
drastic changes because of its architecture, and Konfidi
doesn’t have any elements for describing extra properties.
Taking into account this information, if we eliminate the
AuxiliaryProperties element, then the size of our network
becomes even more efficient than both other ontologies, in
certain situations.

Fig. 7. A clustered visualization of the structure of a meshed trust network based on
Jennifer Golbeck’s ontology. This network contains 49 nodes and 132 edges.

Fig. 8. A clustered visualization of the structure of a meshed trust network based on
Konfidi’s trust ontology. This network contains 86 nodes and 211 edges.

Fig. 9. A clustered visualization of the structure of a meshed trust network based on our
trust ontology. This network contains 98 nodes and 198 edges.

41

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

VII. CONCLUSION

We analyzed the modeling and representation of trust
relationships across the networks within semantic web-driven
ecosystems. In order to capture, model and represent the
semantics of trust relationships within semantic web, main
components of relationships are represented and described
using ontologies. To analyze the methodologies and
mechanisms used to described trust relations, we studied and
analyzed a set of trust ontologies, specially Jennifer Golbeck’s
and Konfidi’s trust ontologies, which share the same context
with our research context. At the end, we engineered and
analyzed a trust ontology based on the context of our research,
social networks and semantic web.

We constructed a trust ontology in which relationship is the
focus of ontology, as ontology captures the semantic of trust
relationships, and two other elements state the properties of
trust relationships. In comparison to previous works, there are
certain new features that our work introduces to trust
ontologies in this context; using our AuxiliaryProperties, we
give relationships more weight and meaning. We have
introduced the hasRecommender property that can determine
the strength of the links on social network and can be used for
finding the suitable inference path on the network.

We claimed that determining the structure of trust networks
could be possible by efficiently designing and engineering
trust ontologies that such networks are based upon. We also
demonstrated this fact by using the same datasets on both our
ontology and two other ontologies. Results of our experiment
fairly prove our claim. Having more elements than other
ontologies, networks generated based on our ontology show
average size and structure. Also our trust networks shows far
more manageable structure and architecture as the size
increases, in comparison with two other compared ontologies.

As a conclusion, we can state that ontologies are very
promising technologies. Utilizing ontologies in modeling and
representing trust in semantic web-enabled social systems
seems to be a highly efficient methodology and mechanism.

VIII. FUTURE WORK

Studying the social phenomena within computer science and
especially semantic web, demands more attention. I believe by
having a liaison between social sciences and computer
sciences, more fruitful results can be achieved, that can help
bringing social ecosystems into life on the web.

Number of vocabularies, used to describe the elements of
ontologies should increase. There is a vocabulary to express
relationships [48], but there is no standard vocabulary to
express for instance, common subjects and topics of a
relationship, while we can describe vocabularies using we can
easily describe a vocabulary for this matter.

The application domain is very limited and one of the most
important future works on this field is spotting certain fields
that demands further attention. Current applications are just
limited to Spam filtering and user rating systems across web
sites on internet.

One of the most important future works is spotting further
applications for social trust, where trust relationships can be
modeled and expressed using ontologies.

REFERENCES

[1] H. Mariotti, “Autopoiesis, Culture, and Society”, (Accessed June 26,

2005). Available at: http://www.oikos.org/mariotti.htm
[2] N. Dokoohaki, M. Matskin, "Structural Determination of Ontology-

Driven Trust Networks in Semantic Social Institutions and Ecosystems",
Proceedings of the International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies (UBICOMM'07) and
the International Conference on Advances in Semantic Processing
(SEMAPRO 2007), November 4-9, 2007 - Papeete, French Polynesia.
2007, ISBN 0-7695-2993-3, IEEE Computer Society, Los Alamitos, CA,
USA, pp. 263-268.

[3] S. Milgram, “The Small World Problem”, Journal of Psychology Today,
Vol. 1 (1), pp. 60-67, (1967).

[4] S. Downes, “The Semantic Social Network”, published February 14,
2004, (2004). Retrieved from: http://www.downes.ca/post/46

[5] S. Downes, ”Semantic Networks and Social Networks”. The Learning
Organization Journal, Emerald Group Publishing Limited, ISSN 0969-
6474, Vol. 12, No. 5, pp. 411-417, (2005).

[6] D. Brickley, L. Miller, “FOAF Vocabulary Specification, Namespace
Document”, September 2, 2004, Available at: http://xmlns.com/foaf/0.1/

[7] A. L. Cervini, "Network Connections: An Analysis of Social Software
That Turns Online Introductions into Offline Interactions", Master's
thesis, Interactive Telecommunications Program, New York University.
(2003).

[8] Ch. Li, “Profiles: The Real Value of Social Networks”, Forrester. July
15, (2004). Available at:
http://www.forrester.com/Research/Document/Excerpt/0,7211,34432,00.
html

[9] M. Gladwell, “The Tipping Point: How Little Things Can Make a Big
Difference”, Little, Brown & Company, Boston, MA. ISBN 0-349-
11346-7. (2000).

[10] D. Brondsema, A. Schamp, “Konfidi: Trust Networks Using PGP and
RDF”. Proceedings of the WWW'06 Workshop on Models of Trust for
the Web (MTW'06), Edinburgh, Scotland, UK, May 22, 2006 (2006).

[11] J. G. Breslin, A. Harth, U. Bojars, S. Decker, “Towards Semantically-
Interlinked Online Communities”, Proceedings of the 2nd European
Semantic Web Conference (ESWC’05), Springer, (2005).

[12] SIOC (Semantically-Interlinked Online Communities). Available at:
http://rdfs.org/sioc/

[13] D. Brickley, S. Stefan, A. Miles, L. Miller, D. O. Caoimh, C. M. Neville,
“SIOC Ontology Specification”, (2007). Available at:
http://rdfs.org/sioc/spec

[14] U. Bojars, J. G. Breslin, A. Passant, “SIOC Ontology: Applications and
Implementation Status”. W3C Member Submission, (2007). Available
at: http://www.w3.org/Submission/sioc-applications/

[15] S. Wasserman, K. Faust, D. Iacobucci, M. Granovetter, “Social Network
Analysis: Methods and Applications”. Cambridge University Press,
ISBN 0-521-38707-8 (1994).

[16] J. P. Scott, “Social Network Analysis: A Handbook”. Sage Publications,
London. ISBN 0-7619-6338-3 (2000).

[17] I. Cantador, P. Castells, “Multilayered Semantic Social Network
Modeling by Ontology-Based User Profiles Clustering: Application to
Collaborative Filtering”, No. 4248, pp. 334-349, Lecture Notes in
Computer Science – Springer, ISSN 0302-9743 (2006).

[18] B. Aleman-Meza, M. Nagarajan, C. Ramakrishnan, L. Ding, P. Kolari,
A. P. Sheth, I. Budak Arpinar, A. Joshi, T. Finin, “Semantic Analytics
on Social Networks: Experiences in Addressing the Problem of Conflict
of Interest Detection”. Proceedings of the 15th international conference
on World Wide Web, (2006).

42

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

[19] P. Mika, “Flink: Semantic Web Technology for the Extraction and
Analysis of Social Networks”, Journal of Web Semantics: Science,
Services and Agents on the World Wide Web, Vol. 3, No. 2-3, pp. 211-
223, (October 2005).

[20] T.W.A. Grandison, “Trust Management for Internet Applications”. PhD
thesis, Imperial College of Science, Technology and Medicine,
University of London, Department of Computing, (2001).

[21] T.W.A. Grandison, M. Sloman, “A Survey of Trust in Internet
Applications”, IEEE Communications Surveys and Tutorials, 1553-
877X, Vol.3, No. 4, Page 2, (2000).

[22] W.V.O. Quine, J. S. Ullian, ”The Web of Belief”, Random House, New
York, ISBN 0-394-32179-0, (1978).

[23] L. Ding, T. Finin, “Weaving the Web of Belief into the Semantic Web”,
Proceedings of the 13th International World Wide Web Conference,
(2004).

[24] A. Abdul-Rahman, S. Hailes, “A Distributed Trust Model”. Proceedings
of Workshop on New Security Paradigms. (1998).

[25] J. Huang, M.S. Fox, “An Ontology of Trust – Formal Semantics and
Transitivity”, Proceedings of the 8th ACM International Conference on
Electronic Commerce. Fredericton, New Brunswick, Canada, pp.: 259 –
270, ISBN 1-59593-392-1, (2006).

[26] PML 2 Trust Ontology. Available at:
http://iw.stanford.edu/2006/06/pml-trust.owl

[27] J. Golbeck, B. Parsia, J. Hendler, ”Trust Networks on the Semantic
Web”, ISSU 2782, pp. 238-249, Lecture Notes in Computer Science –
Springer, (2003).

[28] J. Golbeck, J. Hendler, “Accuracy of Metrics for Inferring Trust and
Reputation in Semantic Web-based Social Network”, ISSU 3257, pp.
116-131, Lecture Notes in Computer Science – Springer (2004).

[29] J. Golbeck, “Computing and Applying Trust in Web-based Social
Networks”, University of Maryland, (2005). Available at:
https://drum.umd.edu/dspace/bitstream/1903/2384/1/umi-umd-2244.pdf

[30] J. Golbeck, “Inferring Trust Relationships in Web-based Social
Networks”, ACM Transactions on Internet Technology, Vol. 7, No. 1,
(2006).

[31] J. Golbeck, “FilmTrust: Movie Recommendations from Semantic Web-
based Social Networks”, IEEE Consumer Communications and
Networking Conference, (2006).

[32] D.L. McGuiness, P.P. Da Silva, L. Ding, “Proof Markup Language
(PML) Primer”, (2005). Available at: http://iw.stanford.edu/2005/wd-
pml-primer/

[33] Konfidi, Available at: http://konfidi.org/
[34] G. F. Davis, M. Yoo, W.E. Baker, "The Small World of the American

Corporate Elite", Journal of Strategic Organization, Vol. 1, No. 3,
pp.301-326, Springer, August 2003, (2003).

[35] C. C. Foster, A. Rapoport, C. J. Orwant, “A Study of a Large
Cociogram: Elimination of Free Parameters”. Behavioral Science,
Number 8, pp.56-65. (1963).

[36] M. E. J. Newman, "The Structure of Scientific Collaboration Networks,"
Proceedings of the National Academy of Sciences; 98: 404 - 409.
(2001).

[37] D. Watts, “Small Worlds: The Dynamics of Networks between Order
and Randomness”. Princeton, NJ: Princeton University Press, ISBN 0-
691-00541-9, (1999).

[38] D. Watts, S. H. Strogatz, "Collective Dynamics of Small-World
Networks", Journal of Nature, MacMillan Magazines, London, ISSUE
6684, pp. 440-442, (1998).

[39] M. S. Fox, J. Huang, “Knowledge Provenance: An Approach to
Modeling and Maintaining the Evolution and Validity of Knowledge”.
22 May 2003, (2003). Retrieved from:
http://www.eil.toronto.edu/km/papers/fox-kp1.pdf

[40] J. Huang, M. S. Fox, "Trust Judgment in Knowledge Provenance,"
DEXA, pp.524-528, 16th International Workshop on Database and
Expert Systems Applications (DEXA'05), (2005).

[41] S. Toivonen, G. Denker, ”The Impact of Context on the Trustworthiness
of Communication: An Ontological Approach.”, Workshop on Trust,
Security, and Reputation on the Semantic Web, (2004).

[42] J. Hradesky, B. Acrement, ”Elements for Building Trust”. Proceedings
of iTrust; A Conference on Trust Management. (1994).

[43] Inference Web, Knowledge Systems AI laboratory, Stanford University.
Available at: http://iw.stanford.edu/

[44] D.L. McGuiness, P. P. Da Silva, L. Ding, “Proof Markup Language
(PML) Primer”, (2007). Available at: http://inference-
web.org/2007/primer/

[45] Web of Trust Vocabulary, Version 0.1. Available at:
http://xmlns.com/wot/0.1/

[46] D. Brickley, “WOT RDF Vocabulary”. (2002)
[47] I. Zaihrayeu, P. P. Da Silva, D. L. McGuinness, “IWTrust: Improving

User Trust in Answers from the Web”. Proceedings of the 3rd
International Conference on Trust Management (iTrust). Lecture Notes
in Computer Science - Springer. (2005).

[48] I. Davis, Jr. E. Vitiello, “Relationship: A Vocabulary for Describing
Relationships Between People”, RDF Vocabulary Specification. (2005).
Retrieved from: http://vocab.org/relationship/rel-vocab-20040308.html

[49] J. Davies, R. Studer, P. Warren, “Semantic Web Technologies: Trends
and Research in Ontology-based Systems”. John Wiley & Sons, ISBN 0-
470-02596-4. (2006).

[50] J. Brank, M. Grobelnik, D. Mladenic, ”A Survey of Ontology Evaluation
Techniques”. Proceedings of the Conference on Data Mining and Data
Warehouses (SiKDD 2005), Ljubljana, Slovenia. (2005).

[51] A. Jøsang, S. J. Knapskog, “A Metric for Trusted Systems.” Proceedings
of the 21st National Security Conference, NSA, October (1998).

[52] J. Avnet, J. Saia, “Towards Robust and Scalable Trust Metrics”. IEEE
International Conference, (2003).

[53] G. Caronni, “Walking the Web of Trust”. Proceedings of IEEE 9th
International Workshops on Enabling Technologies Infrastructure for
Collaborative Enterprises, (WET ICE), ENABL-00, page 153, ISBN 0-
7695-0798-0. (2000)

[54] T. Beth, M. Borcherding, B. Klein, “Valuation of Trust in Open
Networks”. In Proceedings of the Third European Symposium on
Research in Computer Security, ISSU 875, pp. 3–18. Lecture Notes in
Computer Science – Springer, (1994)

[55] PR. Zimmermann, “The Official PGP User's Guide”. MIT Press, ISBN
0-262-74017-6, Cambridge, MA, USA. (1995)

[56] Orkut, http://www.orkut.com/.
[57] LinkedIn, http://www.linkedin.com/.

43

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

On Choosing a Load-Balancing Algorithm for Parallel Systems

with Temporal Constraints

Luís Fernando Orleans1, Geraldo Zimbrão1, Pedro Furtado2

1COPPE, Department of Computer and Systems Engineering � Federal University of Rio of Janeiro,
Brazil

2CISUC, Department of Informatics Engineering, University of Coimbra, Portugal
{lforleans, zimbrao}@cos.ufrj.br, pnf@dei.uc.pt

Abstract
A key point in parallel systems design is the way clients
requests are forwarded and distributed among the
servers, trying to obtain the maximum throughput from
them or, in other words, the load-balancing policy.
Although it is a largely studied theme, with well
accepted solutions, the inclusion of temporal constraints,
also denoted as deadlines in this work, to the requests
brings new complexities to the load-balancing problem:
how to distribute the tasks and minimize the miss rate.
The experiments describe along this paper attests that
the workload variability plays a crucial role in this
problem, pointing the big requests as the most critical
elements. Our results also shows that even dynamic
load-balancing algorithms are not able to reach an
acceptable miss rate, since they handle both short tasks
and big tasks the same way. Hence, we propose a new
load-balancing algorithm, called ORBITA, which has a
request identification and classification mechanism and
an admission control module as well, restricting the
number of big tasks within the system. This algorithm
outperforms its competitors, which means that it has a
bigger rate of tasks that end within the deadline,
specially when the system is under high load. A
prototype was also built in order to check the
correctness of the simulation phase. The experiments
were run against a benchmark tool, TPC-C, and all the
results confirmed the previous assumptions, leading to
the conclusion that it is a good practice to understand
the system's workload in order to minimize the miss rate.

Keywords: load-balancing, parallel processing,
deadline, ORBITA

1. Introduction

In parallel request processing systems, several parallel
servers compute the incoming requests (or tasks) that are
dispatched to them according to a load-balancing
algorithm. Typically, these servers provide no guarantees
about the response times for the request executions, in a
so-called a best-effort approach. In peak situations, with
requests arriving at high rates, this policy can lead to a

scenario where a request takes tens of times longer to
execute than it would take in a less stressed server. This
way, if the system provides some kind of quality of
service, such as trying to guarantee that response times
would not be higher than an acceptable threshold,
denoted as deadlines in this paper, the best-effort policy
cannot be applied. Guaranteeing acceptable response
times in parallel processing systems through load-
balancing is the main objective of this paper. Our
approach is meant to be applicable in different
environments, including Transaction Processing
Systems, Web Services, Virtualization Platforms.

This work proposes a new load-balance algorithm,
based on the tasks durations (which are supposed to be
known a priori), and our experiments prove that this is a
better approach than blindly dispatching the tasks taking
no further considerations � as most load-balance
algorithms do. Although there already exists size-aware
load-balancing algorithms, such as SITA-E [20], they do
not comprise response times concerns, which is
responsible for their poor performance on stressed
systems with deadlined-tasks.

In order to find the best alternative, we have to
analyze the impact of deadlined-tasks and their
variability in the known load-balancing techniques. Our
approach is valid and performs better than traditional
load-balancing ones for both hard or soft deadlines.

The simulated architecture comprises only two
servers, because it is the simplest possible parallel
architecture. This can be easily expanded to n servers as
well and this generalization will be discussed throughout
the paper.

Figure 1: Simulated architecture

44

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

2. Related Work

There are plenty of works about load-balancing and
QoS, most of them leading to already accepted and
consolidated conclusions. Although these are almost
exhausted themes, their combination seems to be an area
where there are very few research results.

2.1. Load-balancing

Many load-balancing algorithms have been studied,
most of them trying to maximize throughput or minimize
the mean response time of requests. Reference [19]
proposes an algorithm called TAGS, which is supposed
to be the best choice when task sizes are unknown and
they all follow a heavy-tailed distribution. This is not the
case for the scenario analyzed in this paper, in which
task sizes must be below a deadline threshold. It is also
shown in [19] that, when task sizes are not heavy-tailed,
Least Work Remaining has a higher throughput then
TAGS. In fact, [24] and [23] claim that Least-Work
Remaining is optimal when task sizes are exponential
and unknown.

The algorithm SITA-E [20] has the best performance
when task sizes are known and heavy-tailed but,
otherwise, Least-Work-Remaining presents a better
throughput.

Our previous work in [25] presented a technique to
determine the best multiprogramming level (MPL)
offline. Such concept had been expanded and we propose
an algorithm that computes the maximum MPL in
runtime.

2.2. Quality-of-Service (QoS)

In real distributed systems, task sizes are heavy-tailed.
This means that a very small portion of all tasks are
responsible for half of the load [21]. Most tasks are very
small and there is a small number of big tasks as well. In
models with deadlines, like the one analyzed in this
paper, a similar distribution occurs.

Reference [30] presents a model where the number of
concurrent requests within the system is restricted. When
this number is reached, the subsequent requests are
enqueued. But this model has no concern for deadlines or
rejection of requests. It also does not show a way to load-
balance the arriving tasks, since it is a single-server
architecture.

Quality-of-Service was also studied for Web Servers.
In [9] the authors propose session-based Admission
Control (SBAC), noting that longer sessions may result
in purchases and therefore should not be discriminated in
overloaded conditions. They propose self-tunable
admission control based on hybrid or predictive
strategies. Reference [8] uses a rather complex analytical
model to perform admission control. There are also
approaches proposing some kind of service
differentiation: [5] proposes architecture for Web servers

with differentiated services; [6] defines two priority
classes for requests, with corresponding queues and
admission control over those queues. In [30], the authors
propose an approach for Web Servers to adapt
automatically to changing workload characteristics and
[14] proposes a strategy that improves the service to
requests using statistical characterization of those
requests and services.

Comparing to our own work, the load-balancing
alternatives referred above do not consider QoS
parameters, such as deadlines, and the QoS studies
concern single server systems, only. Our approach uses
multiple servers and a careful request allocation to those
servers in order to comply with the deadline constraints.

3. Modelling typical real distributions

In order to analyze and propose time-considering
load-balance approaches, it is important to understand
first the kinds of workloads distributions that happen
typically and how to model them. The typical request
workload, such as Transaction Processing Systems, is
quite heterogeneous in what concerns servicing
requirements.

Besides the algorithm SITA-E, reference [20] presents
a study that claims that the distribution of task sizes (or
durations) in computer applications are not exponential,
but heavy-tailed. In short, a heavy-tailed distribution
follows three properties:

1. Decreasing failure rate: the longer a task runs, the
longer it is expected to continue running.

2. Infinite variance
3. A very small fraction (< 1%) of the very largest

tasks makes up a large fraction (50%) of the load. This
property is often called as the heavy-tailed property.

The simplest heavy-tailed distribution is the Pareto
distribution, with probability mass function:

f �x�=ak
a
x
�a�1

,a , k�0, x�k ,

and cumulative distribution function

F �x�=1��k÷ x�a .

In these functions, k is the smallest possible
observation, whereas a is the exponent of the power law,
and will be called hereafter as the variance factor of the
function. It varies from 0 to 2 and the more it is close to
0, the greater is the variability.

4. Traditional load-balancing algorithms and

their weakness

Load balancing is a fundamental basic building block

45

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

for construction of scalable systems with multiple
processing elements. There are several proposed load-
balancing algorithms, but one of the most common in
practice is also one of the simplest ones - Round-Robin
(RR). This algorithm produces a static load-balancing
functionality, as the tasks are distributed round-the-table
with no further considerations. At the other hand, the
algorithm Least-Work-Remaining (LWR) produces a
dynamic load-balancing, as the arriving tasks are
dispatched to the server with the least utilization (jobs on
queue or concurrent executing tasks). This algorithm is
considered in this study, as it is supposed to be the best
choice when tasks durations are not heavy-tailed.
According to [19] and [20], the main issue involving
these algorithms is the absence of a control over big
tasks, mixing inside the same server short (small) and
long (big) tasks. It becomes more evident when tasks
durations are heavy-tailed, with a minuscule fraction of
the incoming tasks being responsible for half of the load.
In fact, both [19] and [20] propose size-aware
algorithms, trying to minimize the effects caused by the
big tasks on the small ones.

We are concerned with guaranteeing specified
acceptable response time limits. The number of
concurrent executions (CE) is a crucial variable when
deadlines are involved, because as we increase the
number of CE we have a larger probability of missing the
deadlines. As we are going to see, this is an issue that
affects mostly systems where tasks durations have a high
variability, which means that the occurrence of big tasks
is more usual. When the variability is low, i.e., the
number of big tasks is near to zero, all algorithms have
similar performance curves and practically all tasks are
completed. As performance starts to degrade as the
variability begins to increase, the number of canceled
tasks also gets higher, which gives space for a new size-
aware load-balance algorithm, On-demand Restriction
for Big Tasks, or ORBITA in short. The main idea is to
separate the short tasks, which will always be submitted
to execution, from the big tasks, which will have their
admission by a server (or node) dynamically controlled.
This way, a node will only admit big tasks that will not
make the other already running big tasks miss their
deadlines. Otherwise, the big task will be rejected by the
node, as its admittance would lead to further performance
degradation. In an n servers scenario, a task is only
rejected if none of the n servers is able to handle it.

In the following we describe each load balancing
algorithm we compare considering deadlines and
rejection:

4.1. Least-Work-Remaining (LWR)

for each task that arrives:
 next_server := server_list ->least_utilized
 send (task, next_server)

4.2. Task Assignment by Guessing Size (TAGS)

In this algorithm, all incoming tasks are dispatched to
the first server. If a task is running for too long, i.e., is a
big task, it is killed and restarted from scratch on the
second server.

for each task that arrives:
 send (task, first_server)
 schedule_dispatch_to_second_server(task)

4.3. Size Interval Task Assignment with Equal
Load (SITA-E)

for each task that arrives:
 if task is a big task
 server := server_list ->second_server
 else
 server := server_list ->first_server
 send (task, server)

4.4. On-demand Restrictions for Big Tasks
(ORBITA)

for each task that arrives:
 if task is a small task
 server := server_list ->first_server
 send(task, server)
 else
 server := server_list ->second_server
 bigger_task := bigger_running_task(server)
 max_ce := LOWER_BOUND(deadline/bigger_task)
 if number_of_running_tasks(server) >= max_ce
 NOT_ADMITT(task)
 else
 send (task, server)

Figure 2 depicts how LWR and SITA-E behave. In the
figure, a new job with estimated duration of 3 units of
time (UT) is received (2a) and there are 2servers: one is
executing 3 short tasks and the other one is executing 2
long tasks. If the load-balancer module, the light-gray
rectangle in figures, is using a LWR strategy, then the
new task is dispatched to the second server (2b). On the
other hand, if a size-aware algorithm (like SITA-E) is
used, the job is forwarded to the first server, the one
containing short tasks (2c).

5. Simulation setup

Due to the large number of parameters involved, it
becomes necessary to formally describe the simulation
model used in this work. The simulator has the following
parameters :

� Number of servers.
� Tasks arrival rate (follows an exponential

distribution).

46

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

� Task size distribution (follows a Pareto
distribution).

� Maximum amount of time a task can execute
(deadline).

� Load-balancing algorithm.
� Minimum size of �big tasks�.

In this paper, a system with 2 identical servers was
simulated. The deadline time was set to 20 seconds and
the duration of each request follows a Pareto distribution,
where the value of the parameter a varies from 0.1
through 0.3, step 0.1, the smallest possible duration is
0.001 second (1 millisecond) and the highest duration is
10 seconds. In addition, all tasks have the same priority.
The concurrency model is linear, which means that a
task will take twice longer if it shares the server with
another task, it will take three times longer in case of two
other tasks and so forth.

The simulator implements all the described
algorithms: TAGS, SITA-E, LWR and ORBITA and task
arrivals follow an exponential distribution, with �

varying from 1 to 10, step 1. Finally, the tasks which
have their durations below 1 second are considered small
tasks. The big tasks are constituted by all the other
durations. To eliminate the transient phase, the data
obtained in the first hour of the simulation was
discarded. Only the results obtained in the next 5 hours
were considered.

5.1. Task duration generation

Since we are simulating a scenario where tasks have
deadlines, the variance is not infinite. But as we are
interested in studying how the system behaves when the
number of small tasks is much greater than the number
of big tasks, the Pareto distribution is used to generate
the duration of the tasks. The MOD function will be
applied to all durations that exceed the deadline time
(generated_duration MOD deadline), in order to equally

distribute them among the allowed durations. Table 1
shows the percentage of the generated durations for
values of a versus the intervals (that must be read as
[min, max[). It is to notice that when a assumes lower
values, the variability is higher. Even in these cases, the
number of durations within the interval [0,1[is much
greater than the others.

5.2. Simulation Results

In these experimental results, we analyze first results
for all tasks, showing that ORBITA has better or at least
as good performance as other approaches in that case,
and almost zero miss rates unlike the other strategies.
The big tasks are a small fraction of the workload, but
they are the ones with the largest miss rates for most
strategies, and that is where ORBITA obtains much
better results than the other ones because it considers
time constraints. For this reason we then analyze results
concerning the big tasks.

Figure 4a shows the performance of the algorithms
when tasks durations highly vary. It can be noticed that,
as the arrival rate raises, both LWR and TAGS performs
worse in comparison with the other two algorithms,
SITA-E and ORBITA. This low performance occurs due
to the fact that those algorithms mix small and big tasks
inside the same server, while SITA-E and ORBITA
reserve a server to execute small, fast requests. A quick
look to figure 5a attests this explanation: LWR and
TAGS have small tasks getting canceled, an event that
does not occur nor in SITA-E neither in ORBITA. Even
a high arrival rate such as 10 tasks per second does not
make the small tasks miss their deadlines when those
algorithms are used.

If the variance factor was set to 0.3, the throughput of
the four strategies would be very similar, as shown in
figure 4b. As this variance factor generates a smaller
number of big tasks, the assumption that mixing all kind

(a) (b) (c)

Figure 2: A new transaction arrives (a). LWR approach (b). Size-aware approach(c).

3

1
1

3

98
3

1
1

3

98

3
1

1
3

98

Table 1: Percentage of generated durations, according to the variance factor (a) of the Pareto
distribution and the duration inteval.

a [0, 1[[1, 2[[2, 3[[3, 4[[4, 5[[5, 6[[6, 7[[7, 8[[8, 9[[9, 10[10

0,1 53,88% 6,97% 5,17% 4,90% 4,42% 4,64% 3,93% 4,24% 4,25% 3,74% 3,85%

0,2 76,02% 4,75% 3,18% 2,94% 2,30% 1,90% 1,87% 1,95% 1,79% 1,56% 1,75%

0,3 87,90% 2,91% 1,76% 1,38% 1,12% 0,98% 0,89% 0,80% 0,78% 0,75% 0,73%

47

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

14

16

LWR

TAGS
SITA-E

ORBITA

Arrival Rate

T
h
ro

u
h
p
u
t
(T

a
s
ks

 p
e
r

m
in

u
te

)

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

14

16

18

20

LWR
TAGS

SITA-E
ORBITA

Arrival Rate

T
h
ro

u
g
h
p
u
t
(T

a
s
ks

 p
e
r

m
in

u
te

)

(a) (b)
Figure 3: Throughput of big tasks with variance factor 0.1 (a) and 0.3 (b).

1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

300

350

400

LWR
TAGS

SITA-E
ORBITA

Arrival Rate

T
h
ro

u
g
h
p
u
t
(T

a
s
ks

 p
e
r

m
in

u
te

)

1 2 3 4 5 6 7 8 9 10

0

100

200

300

400

500

600

LWR

TAGS

SITA-E

ORBITA

Arrival Rate

T
h

ro
u

g
h

p
u

t
(T

a
s

k
s
 p

e
r

m
in

u
te

)

(a) (b)
Figure 4: Total throughput with variance factor 0.1 (a) and 0.3 (b).

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

LWR

TAGS
SITA-E

ORBITA

Arrival Rate

M
is

s
 R

a
te

 (
T
a
s
ks

 p
e
r

m
in

u
te

)

1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

300

LWR

TAGS
SITA-E

ORBITA

Arrival Rate

M
is

s
 R

a
te

 (
T
a
s
ks

 p
e
r

m
in

u
te

)

(a) (b)
Figure 5: Throughput of small tasks with variance factor 0.1 (a) and 0.3 (b).

48

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

of tasks inside the same server for highly heterogeneous
workloads is a bad idea, as shown in figure 4a, is
reinforced.

It is worth noticing that in both cases in figure 4, the
ORBITA algorithm has a better performance than its
competitors. It becomes more evident if we analyze the
throughput of small tasks and big tasks in separated
graphics (figures 3 and 5).

As discussed above, both ORBITA and SITA-E
policies prevent small tasks from being killed. This
statement can be observed in figure 5a. A consequence of
this event is that if we expand the simulated architecture
from 2 to n parallel servers, only 1 server should be
sufficient to handle all small tasks, with the other (n-1)
servers being used to handle the big tasks. If the arrival
rate keeps growing, there will be a moment when the
number of servers destinated to handle small tasks should
also increase. But the point is that the number of nodes
that should be used to handle big tasks is much more
critical than those that should be dedicated to small tasks.

The graphics shown in figures 3a and 3b shows the
throughput of the big tasks. These pictures confirm the
robustness of ORBITA, which maintains the throughput
of big tasks almost unaltered, even when the variance
factor is 0.1 and the arrival rate is 10 tasks per second.

Figure 3a shows that, for highly heterogeneous
workloads, ORBITA is the only strategy with satisfactory
results.

In figure 3b, the algorithm LWR presents a better
throughput than ORBITA for arrival rates below 7 tasks
per second. A closer look at the ended tasks of each
strategy, displayed in tables 2 and 3, shows that LWR
strategy has a better throughput for task arrival rates
comprehended between 1 and 6, and ORBITA presents a
better throughput for arrival rates higher than 7 tasks per

second. Considering results of figures 3a and 3b together,
we conclude that ORBITA is better with highly
heterogeneous workloads or high arrival rates due to its
tight control on time constraints. LWR is also an
interesting algorithm as it tries to optimize resource
usage, but does not have enough control over time
constraints. Our current and future work on this issue,
involves considering adaptable ORBITA/LWR
alternatives and LWR with time constraints.

6. Prototype experiments

The Midas middleware [29] is a tool that intercepts
the requests sent by an application to a database server. It
uses the Proxy Design Pattern, thus providing a
transparent admission control layer, without requiring
deep source code modifications. A simplified class-
diagram is shown in figure 6.

The utilization of more than one database server
opens the necessity to keep data synchronized on all
nodes, an issue that is known as data replication.
According to [35], there are two replication models:
eager replication, where the updated data is synchronized
at the other nodes before transaction completion, and
lazy replication, where the updated data is sent to other
servers after transaction completion. For simplicity, we
used a primary copy replication strategy, since reference
[35] attests it is the best choice for eager replication.

7. Experiment Setup

To better understand the implications of ACID
properties on load-balancing algorithms, we performed
various rounds of experiments using the TPC-C

Table 3: Throughput histogram of ORBITA algorithm with variance factor 0.3.

[0, 1 [[1, 2 [[2, 3 [[3, 4 [[4, 5 [[5, 6 [[6, 7 [[7, 8 [[8, 9 [[9, 10 [10

1 53,06 1,43 0,91 0,69 0,53 0,5 0,44 0,41 0,41 0,37 0,37

2 106,07 2,31 1,29 1,11 0,87 0,81 0,64 0,65 0,57 0,55 0,45

3 159,01 2,6 1,38 1,23 1,03 0,97 0,82 0,71 0,68 0,68 0,59

4 211,17 2,92 1,73 1,2 1,05 0,95 0,85 0,8 0,68 0,64 0,65

5 263,86 2,9 1,85 1,24 1,02 1,08 0,86 0,72 0,79 0,65 0,73

6 316,49 3,02 1,75 1,3 1,12 0,94 0,94 0,9 0,71 0,67 0,72

7 370,23 3,21 1,98 1,35 1,11 0,97 0,88 0,75 0,76 0,73 0,71

8 422,01 3,08 1,75 1,47 1,07 1,05 0,9 0,87 0,81 0,7 0,68

9 474,35 3,27 1,98 1,28 1,24 1,08 0,9 0,83 0,74 0,7 0,68

10 529,24 3,13 1,8 1,29 1,11 1,02 0,93 0,91 0,82 0,72 0,68

Arrival Rate

Table 2: Throughput histogram of LWR algorithm with variance factor 0.3.

[0, 1 [[1, 2 [[2, 3 [[3, 4 [[4, 5 [[5, 6 [[6, 7 [[7, 8 [[8, 9 [[9, 10 [10

1 52,85 1,77 1,09 0,78 0,65 0,5 0,57 0,45 0,41 0,43 0,36

2 106,56 3,62 2,16 1,66 1,39 1,2 0,98 0,97 0,82 0,63 0,58

3 157,52 5,16 3,08 2,54 1,91 1,34 1,15 0,78 0,69 0,46 0,33

4 210,77 7,31 4,4 2,86 1,58 0,96 0,57 0,36 0,25 0,16 0,13

5 264,27 9,19 4,51 1,74 0,7 0,27 0,17 0,09 0,05 0,02 0,02

6 317,21 10,58 3,47 0,79 0,19 0,06 0,02 0,02 0 0 0

7 369,7 11,01 1,63 0,16 0,02 0,01 0 0 0 0 0

8 423,7 9,71 0,56 0,03 0 0 0 0 0 0 0

9 476,46 7,76 0,16 0 0 0 0 0 0 0 0

10 529,75 4,88 0,02 0 0 0 0 0 0 0 0

Arrival Rate

49

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

benchmark (http://www.tpc.org/tpcc/) in a 2-servers full-
replicated database.

Also, to create a more realistic scenario, we modified
the workload generation. According to related work [19],
typical transactional workloads present high-tailed
properties, which is not the case of TPC-C's default
workload. We also made an extra modification on the
TPC-C's code, simulating an open model, i.e.,
transactions are sent to the system according to a
statistical distribution (e.g. an Exponential Distribution).
For more informations about open and closed simulation
models, please refer to [32].

The use of an open model was a bit imprecise due to
the high cost to create and destroy threads (for emulating
clients). For arrival rates greater than 14 transactions per
second, the mean value of the exponential distribution
was not able to be reached. Nevertheless, the obtained
results clearly simulated high-utilization scenarios, the
aim of the experiments.

7.1. Workload Generation

As mentioned before, we used 2 types of transaction
mixes: the one described in the TPC-C specification
(which we call default transaction mix in this paper) and
another one that aims to reflect a more realistic one, as
stated in [19].(denoted here as heavy-tailed transaction
mix).

Briefly explaining, the TPC-C specification proposes
5 different transactions (in parenthesis are their
frequency of occurrence): new order (45%), payment
(43%), delivery (4%), order status (4%) and stock level
(4%). When executing in standalone mode, we found that

new order transaction was the longest one and, in
contrast, the stock level was the fastest transaction. So,
we create the heavy-tailed transaction mix comprising
only stock level (95%) and new order (5%) transactions,
thus attending the requirements of a heavy-tailed
distribution.

To classify transactions in short or long we used a
map. As TPC-C has only five different transactions, we
could store pounded mean response times (PMRT) for
each one of them. Hence, each map entry was a pair
{transaction name, PMRT}. If the PMRT value was
greater (lower) than a threshold (1 second, arbitrarily
chosen) then its corresponding transaction would be
classified as long (short).

A last remark on the workloads: order status and stock
level transactions are read-only, which means that they
should not acquire any locks. On the other hand, the
others are update transactions and their isolation levels
were set to Read-Committed.

7.2. Experiments Details

All experiments were executed using a Pentium 4
3.2GHz, with 2GB RAM DDR2 and a 200 GB SATA
HD which was responsible for creating the threads that
simulate the clients. The servers were 2 Pentium II MMX
350MHz, with 256MB RAM and a 60GB IDE HD. Both
servers were running a Debian Linux, with Kernel
version 2.6 and were connected by a full-duplex
100Mbps Ethernet link. A PostgreSQL 8.1 database
server was running on each server machine and the
database size was 1.11GB. The client machine used a

Figure 6: Simplified class-diagram of the Midas middleware.

50

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

Sun Microsystems' Java Virtual Machine, version 1.5.
The database was created with 10 warehouses.

The reason for using the slower computers as the
database servers relies on our need to stress the system.
Our intention is not to maximize the throughput within
deadline (TWD) � the most important metric for this
work, but to analyze the impact of ACID properties on
load-balancing algorithms and their implications on QoS
constraints.

Table 4: Simulation parameters and their values

Parameter Value

Arrival rate Exponential distribution

Simulation time 20 minutes

Warm-up time 5 minutes

Deadline 5 seconds

Finally, each round of experiments was executed for a
period of 20 minutes. During the first 5 minutes no data
was collected. Before each round, the database was
dropped and then recreated, guaranteeing that all rounds
of experiments used the same database state.

7.3. Results

Figures 7 and 8 show the throughput of transactions
that ended within the deadline versus the arrival rate. For
best visualization, the results are displayed in terms of
long transactions (a) and short transactions (b).

It can be seen that when the default workload is used
(figures 7a and 7b), LWR performs badly. As a result for
mixing inside the same server both short and long
transactions, only those which are the fastest ones are
able to end within the deadline. This can be explained by
the high number of locks obtained by update transactions
(the majority on this workload), interfering on the
execution of read-only transactions.

On the other hand, SITA-E and ORBITA performs
better due to their size-aware nature. Such algorithms
estimate the duration of incoming transactions and, if
classified as long (short), the transaction is forwarded to
the appropriate server. The thing to be noticed here is
that short transactions are the read-only ones, thus they
do no acquire locks. This explains the high number of
short transactions that were executed within the deadline
with these algorithms. On the other hand, the TWD of
update transactions is smaller, and for SITA-E it even
presents a decreasing form on figure 7a. Why does
ORBITA perform better than SITA-E? The reason is the
admission control that ORBITA provides for long (big)
transactions � which are responsible for acquiring locks
and, in these cases, for a long period of time. Controlling
the admission of long transactions directly implies in
controlling the number of locks, thus keeping the

accepted transactions ending their executions within
their deadlines. It can be seen from figure 7a that an
arrival rate of 10 transactions per second reaches the
optimal TWD.

A last analysis of figure 7 that is worth mentioning is
about replication. Once all update transactions are
replicated to others servers, why the performance of
small transactions was not affected by the replication in
SITA-E and ORBITA? The most reasonable answer for
this question relies on the assumption that only the write-
set (WS) of update transactions were forwarded to the
other server. These WS's do not contain any 'select'
statements, thus their execution is also very fast � which
means that their executions do slow down the read-only
transaction, but are not capable for making them to miss

their deadlines.
Figures 8a and 8b present the performance of the

same algorithms when a heavy-tailed workload is used.
One of the properties of such a distribution is massive
presence of short transactions and only a few of very,
very big transactions. The results in these figures are
interesting, because the presence of only 5% of new order
transactions is sufficient to reduce a lot the TWD of short
transactions when the LWR algorithm was chosen. In
fact, when the arrival rate is 6 (which means 360
transactions per minute, 95% of them are short), TWD
reached its maximum value, about 100. As both servers
have to execute new order transactions, locks used by this
transaction (which includes a 'select for update' clause)
also occur everywhere. Again, the TWD of long
transactions is zero � even for small arrival rates. This
can be ironically explained by the massive presence of
fast transactions, which severely interferes on the
executions of long transactions. So, long transactions do
not permit that the short ones execute within deadline. In
turn, the presence of lots of short transactions are
responsible for the zero-TWD of long jobs.

The other algorithms, SITA-E and ORBITA, have
better performances. As in the default workload setup,
none of the small transactions missed their deadlines,
even when data modifications provided by the
replications occur. On the other hand, the execution of
long transactions for SITA-E becomes critical. As the
arrival rate increases, the TWD fastly decreases until it
reaches zero. Again, the high number of locks are
responsible for the poor performance. In contrast to
SITA-E, ORBITA is capable to maintain the TWD of
long transactions in its maximum, due to its admission
control mechanism. A remark about this admission
control relies on the reduced number of long transactions
admitted. When TWD reached its maximum value, the
arrival rate is about 10, what means that 600 transactions
arrives per minute � 5% of them (about 30) are of new
order type � but only 7 of them were admitted.
Otherwise, there might be conflicts on lock acquisitions
and, probably, some transactions (maybe even all of
them) would miss their deadlines.

51

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

8. Conclusion and future work

In a parallel system, the incoming tasks must be
dispatched to a server according to a load-balancing
algorithm. Most of these algorithms are not aware about
the response times of the tasks, since they all follow a
best-effort policy. Thus, if tasks arrive at a very high rate,
not only fast requests will have to wait for a long period
to be executed, as slower requests will take too long. In
this paper we propose ORBITA, a load-balance
algorithm that takes time into consideration.

The ORBITA algorithm, which is based on the
assumption that tasks durations follow a highly
heterogeneous distribution, differentiates service between
small and large requests in order to provide time
guarantees. It was experimentally proved that the big
tasks were the ones responsible for deadline misses, so
ORBITA works by separating the fast, small tasks from
the big tasks, which have their admission controlled by
each server. A big task will only be admitted into a server

if it does not make the other running big tasks miss their
deadlines.

The experiments have shown that when the variability
of the task durations is high, ORBITA's throughput is not
only greater than the other algorithms, but fairer, since
tasks of all size intervals have low miss rates.

We also implemented a prototype containing three
different of the presented load-balancing techniques,
each one with different characteristics: Least-Work-
Remaining (LWR), Size Interval for Task Assignment
with Equal Load (SITA-E) and On-Demand Restrictions
for Big Tasks (ORBITA), our proposal.

Those rounds of experiments were executed in a 2-
servers fully replicated database. The dynamic algorithm
(LWR) presented the worst performance, since it does not
make differentiations on transactions. Thus, by mixing
inside the same server update and read-only transactions,
the isolation needed for the first group was responsible
for making lots of transactions (of both groups) to miss
their deadlines.

2 4 6 8 10 12 14 16 18 20

0
10

20
30
40
50

60
70
80
90

100

Arriv al Rate (Transactions per Second)

T
ra

n
s

a
c
ti

o
n
s

 p
e
r

M
in

u
te

2 4 6 8 10 12 14 16 18 20

0

10

20

30

40

50

60

70

80

90

LWR

SITA-E

ORBITA

Arrival Rate (Transactions per Second)

T
ra

n
sa

ct
io

n
s

p
er

 M
in

ut
e

(a) (b)

Figure 7: Throughputs of long transactions (a) and small transactions (b) when default workload is used.

2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

8

Arrival Rate (Transactions per Second)

T
ra

n
s
a
c
ti
o
n
s
 p

e
r

M
in

u
te

2 4 6 8 10 12 14 16 18 20

0

100

200

300

400

500

600

700

800

900

LWR

SITA-E

ORBITA

Arrival Rate (Transactions per Second)

T
ra

n
s
a
c
ti
o
n
s
 p

e
r

M
in

u
te

 (a) (b)

Figure. 8: Throughputs of long transactions (a) and small transactions (b) when heavy-tailed workload is used.

52

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

On the other hand, the size-aware algorithms (SITA-E
and ORBITA) dynamically recognized read-only
(update) transactions and classified them in short (long).
This way, each group was assigned to a dedicated server,
hence reducing the overall miss rate. Even the replication
cost was not sufficient for deteriorate the performance of
read-only transactions, since only the write-set of the
whole update transaction was forwarded to the other
server. The main problem for SITA-E relies on the
execution of long transactions, which are responsible for
acquiring the locks. The uncontrolled admission of
update transactions present in the SITA-E can reduce the
number of transactions ended within the deadline per
minute to zero. In contrast, ORBITA has an admission
control of big transactions. An update transaction is only
admitted by the system if it will not cause deadline
misses � from itself or from the other already-running
transactions.

As future works, we intend to investigate how to
effectively identify and estimate the duration of
transactions. The solution adopted in this paper (using a
map with pounded mean response times) was sufficient
for what this work was intended, but we are concerned on
if and how to generalize such a concept for a system with
ad-hoc transactions. We also intend to work on database
internals level and study the viability of adding time-
constraints mechanisms to queries and/or transactions.

As future work we intend to investigate how ORBITA
can be made to adapt automatically to actual workloads
and arrival rates. This includes how to determine the
number of servers needed to handle each type of tasks
(big and small) and, instead of dividing tasks into two
classes statically, how to determine and manage task
classes automatically. We also intend to work on a time-
constrained version of LWR and compare the
approaches.

References

[1] Akal, F. et al (2005), Fine-Grained Replication and
Scheduling with Freshness and Correctness Guarantees.
31st Very Large Databases Conference, p. 565 � 576,
Trondheim, Norway, 2005.

[2] Amza, C., Cox, A.L., Zwaenepoel, W. (2005), A
Comparative Evalution of Transparent Scaling
Techniques for Dynamic Content Servers. 21st
International Conference On Data Engineering, 2005.

[3] Barker, K. et al (2004), A Load-Balancing
Framework for Adaptative and Asynchronous
Applications, IEEE Journal Transactions on Parallel And
Distributed Systems, v.15, n.2.

[4] Barker, K.; Chernikov, A.; Crhisochoides, N.;
Pingali, K. (2004), A Load Balancing Framework for
Adaptive and Asynchronous Applications. IEEE

Transactions on Parallel and Distributed Systems, v. 15,
n. 2

[5] Bhatti, N.; Friedrich, R. (1999) Web server support
for tiered services. IEEE Network, v.13, n.5, p. 64�71.

[6] Bhoj; Rmanathan; Singhal. (2000) Web2K: Bringing
QoS to Web servers. Tech. Rep. HPL-2000-61, HP Labs.

[7] Cardellini, V.; Colajanni, M.; Yu, P.S. (2002), The
State of the Art in Locally Distributed Web-Server
Systems. ACM Computing Surveys, v. 34, p.263 � 311

[8] Chen, X; Mohaptra, P; Chen, H.(2001), An
admission control scheme for predictable server response
time forWeb accesses. In Proceedings of the 10th World
Wide Web Conference, Hong Kong.

[9] Cherkasova; Phall (2002), Session-based admission
control: A mechanism for peak load management of
commercial Web sites. IEEE Req. on Computers, v.51,
n.6.

[10] Crovella, M.; Bestravos, A. (1997), A.Self-similarity
in World Wide Web traffic: Evidence and possible
causes. IEEE/ACM Transactions on Networking,
p.835-836.

[11] Daudjee, K.; Salem, K. (2006), Lazy Database
Replication with Snapshot Isolation, 30th Very Large
Databases Conference, p. 715 � 726, Seoul, Korea.

[12] Devine, D.K. et al (2005), New challenges in
dynamic load balancing,ADAPT '03: Conference on
Adaptive Methods for Partial Differential Equations and
Large-Scale Computation, v. 52, n. 2-3, p. 133 � 152

[13] Dyachuk, D.; Deters, R. (2007), Optimizing
Performance of Web Service Providers, IEEE 21st
International Conference on Advanced Information
Networking and Applications, p. 46 � 53, Niagara Falls,
Ontario, Canada.

[14] Elnikety, S.; Nahum, E.; Tracey, J; Zwaenepoel, W.
(2004) A Method for Transparent Admission Control
and Request Scheduling in E-Commerce Web Sites,
WWW2004: The Thirteenth International World Wide
Web Conference, New York City, NY, USA.

[15] Furtado, P.; Santos, C. (2007), Extensible Contract
Broker for Performance Differentiation, International
Workshop on Software Engineering for Adaptive and
Self-Managing Systems, Minneapolis, USA.

[16] Gamma, E. et al (1994), Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley.

53

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

[17] Ghazalie, T. M.; Baker (1995), T. P. Aperiodic
Servers In A Deadline Scheduling Environment. Real
Time Systems Journal. v 9, n. 1, p. 31 � 67

[18] Gokhale, S. S.; Lu, J. (2006), Performance and
Availability Analysis of E-Commerce Site, 30th Annual
International Computer Software and Applications
Conference, Chicago.

[19] Harchol-Balter, M. (2002), Task assignment with
unknown duration.. Journal of the ACM

[20] Harchol-Balter, M.; Crovella, M.: Murta, C. (1999),
On choosing a task assignment policy for a distributed
server system. Journal of Parallel and Distributed
Computing, v.59 n.2, 204-228.

[21] Harchol-Balter, M.; Downey, A. (1997), Exploiting
process lifetime distributions for dynamic load-balancing.
ACM Transactions on Computer Systems.

[22] Knightly, E.; Shroff, N. (1999), Admission Control
for Statistical QoS: Theory and Practice. IEEE Network,
v. 13, n. 2, pp. 20-29.

[23] Nelson, R.; Philips, T. (1993), An approximation for
the mean response time for shortest queue routing with
general interarrival and service times. Performance
Evaluation, p.123-139.

[24] Nelson, R.; Philips, T. (1989), An approximation to
the response time for shortest queue routing.
Performance Evaluation Review, p.181-189.

[25] Orleans, L.F., Furtado, P.N. (2007), Optimization
for QoS on Web-Service-Based Systems with Tasks
Deadlines, ICAS'07 Third International Conference on
Autonomic and Autonomous Systems, 2007.

[26] Orleans, L.F., Furtado (2007), P.N., Fair Load-
Balancing on Parallel Systems for QoS, ICPP
International Conference on Parallel Processing, p. 22

[27] Orleans, L.F., Zimbrão, G., Furtado, P.N. (2008),
Controlling the Behaviour of Database Servers with
2PAC and DiffServ, DEXA'08 - 19th International
Conference, DEXA 2008, Turin, Italy

[28] Orleans, L.F., Zimbrão, G., Oliveira, C.E.T. (2008),
On Choosing a Load-Balancing Algorithm for Parallel
Databases with Time-Constraints, SBBD'08, XXIII
Brazilian Symposium on Databases, São Paulo, Brazil.

[29]. Orleans, L.F. (2007), �ORBITA: Uma Estratégia de
Balanceamento de Carga para Tarefas com Restrições
Temporais�, M.Sc. Dissertation, NCE/UFRJ.

[30] Pradhan, P.; Tewary, R; Sahu, S; Chandra, A.
(2002), An observation-based approach towards self
managing Web servers. In International Workshop on
Quality of Service, Miami Beach, FL.

[31] Schroeder, B.; Harchol-Balter, M. (2006),
Achieving class-based QoS for transactional workloads.
IEEE International Conference on Data Engineering.

[32] Schroeder, B.; Wierman, A.; Harchol-Balter, M.
(2006), Open Versus Closed: A Cautionary Tale.
Network System Design and Implementation, San Jose,
CA. Pp 239-252.

[33] Serra, A.; Gaïti, D.; Barroso, G.; Boudy, J. (2005),
Assuring QoS Differentiation and Load-Balancing on
Web Servers Clusters. IEEE Conference on Control
Applications, p. 8.85-890.

[34] Wiesmann, M. et al (2000), Understanding
Replication in Databases and Distributed Systems, 20th
IEEE International Conference on Distributed
Computing Systems , p. 464.

[35] Wiesmann, M., Schiper, A. (2005), Comparison of
Database Replication Techniques Based on Total Order
Broadcast. IEEE Journal Transactions On Knowledge
And Data Engineering, v. 17, n. 4, p. 551 � 566.

[36] Wydrowski, B.;Zukerman, M. (2002), QoS in Best-
Effort Networks, IEEE Communications Magazine.

[37]. Xiong, M. et al (2002), Scheduling Transactions
with Temporal Constraints: Exploiting Data Semantics,
IEEE Journal Transactions On Knowledge And Data
Engineering, v.14, n.5, p.1155 � 1166

54

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

Modelling Reinforcement Learning in Policy-driven Autonomic Management

Raphael M. Bahati and Michael A. Bauer
Department of Computer Science

The University of Western Ontario, London, ON N6A 5B7, CANADA
Email: {rbahati;bauer}@csd.uwo.ca

Abstract

Management of today’s systems is becoming increas-
ingly complex due to the heterogeneous nature of the in-
frastructure under which they operate and what the users
of these systems expect. Our interest is in the development
of mechanisms for automating the management of such sys-
tems to enable efficient operation of systems and the utiliza-
tion of services. Central to autonomic management is the
need for systems to monitor, evaluate, and adapt their own
behavior to meet the different, and at times seemingly com-
peting, objectives. Policy-driven management offers sig-
nificant benefit to this effect since the use of policies can
make it more straightforward to define and modify systems
behavior at run-time, through policy manipulation, rather
than through re-engineering. This work examines the effec-
tiveness of Reinforcement Learning methodologies in deter-
mining how to best use a set of active (enabled) policies
to meet different performance objectives. We believe that
Reinforcement Learning offers significant potential benefits,
particularly in the ability to modify existing policies, learn
new policies, or even ignore some policies when past expe-
rience shows it is prudent to do so. Our work is presented
in the context of an adaptive policy-driven autonomic man-
agement system. The learning approach is based on the
analysis of past experience of the system in the use of poli-
cies to dynamically adapt the choice of policy actions for
adjusting applications and system tuning parameters in re-
sponse to policy violations. We illustrate the impact of the
adaptation strategies on the behavior of a multi-tiered Web
server consisting of Linux, Apache, PHP, and MySQL.

Index Terms—Autonomic Management, Reinforcement
Learning, Policy-driven Management, QoS Provisioning.

1 Introduction

Today’s Information Technology (IT) infrastructure is
becoming heterogeneous and complex to the point that it is
extremely difficult, if not impossible, for human operators

to effectively manage. Increasingly, the combination of ap-
plications integrated within a single or multi-computer envi-
ronment has become a key component in the way many or-
ganizations deliver their services and provide support. En-
suring that such systems meet the expected performance
and behavioral needs is among the key challenges facing
today’s IT community. To this end, there has been a lot
of interest in the use of explicit system performance mod-
els to capture systems behavior as well as provide guid-
ance in managing applications and systems. While these
approaches have achieved some success in specific areas,
we note that developing models that accurately capture sys-
tems dynamics, particularly for the state of the enterprise
systems, is highly nontrivial.

Our interest is in the development of policy-driven au-
tonomic techniques for managing these types of systems.
Required or desired behavior of systems and applications
can be expressed in terms of policies. Policies can also
be used to express possible management actions. As such,
policies can be input to or embedded within the autonomic
management elements of the system to provide the kinds
of directives which an autonomic manager could make use
of in order to meet operational requirements. The effective
use of policies in autonomic management requires that the
policies be captured and translated into actions within the
autonomic system. As such, policies can provide the kinds
of directives best suited for flexible, adaptive, and portable
autonomic management solutions.

Previous work on the use of policies has mainly focused
on the specification and use “as is” within systems and
where changes to policies are only possible through manual
intervention. In an environment where multiple sets of poli-
cies may exist, and where at run-time multiple policies may
be violated, policy selection is often based on statically con-
figured policy priorities which an administrative user may
have to explicitly specify. As systems become more com-
plex, however, relying on humans to encode rational behav-
ior onto policies is definitely not the best way forward. It is
imperative, therefore, that autonomic systems have mecha-
nisms for adapting the use of policies in order to deal with

55

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

not only the inherent human error, but also the changes in
the configuration of the managed environment and the com-
plexities due to unpredictability in workload characteristics.

Self-optimization describes the ability of autonomic sys-
tems to evaluate their own behavior and adapt it accordingly
to improve performance [1]. In the context where policies
are used to drive autonomic management, this may often
require having a system monitor its own use of policies to
learn which policy actions are most effective in encountered
situations. The system might try to correlate management
events, actions and outcomes based, for example, on the
long-term experience with a set of active policies. This in-
formation could then be used to enable the system to learn
from past experience, predict future actions and make ap-
propriate trade-offs when selecting policy actions. The use
of policies in this context offers significant benefits to auto-
nomic systems in that it allows systems administrators to
focus on the specification of the objectives, leaving it to
systems to plan how to achieve them. This paper looks at
how Reinforcement Learning methodologies could be used
to guide this process. In particular, we demonstrate how
a model derived from the enabled policies and the con-
sequences of the actions taken by the autonomic system
(which we first proposed in [2]) could be “learned” on-line
and used to guide the choice of policy actions for adjusting
system’s tuning parameters in response to policy violations.

The rest of this paper is organized as follows. We be-
gin with a background on Reinforcement Learning in Sec-
tion 2. In Section 3, we describe the structure of the poli-
cies we assume in our work and provide examples illustrat-
ing how these policies are used to drive autonomic man-
agement. Section 4 presents an adaptive policy-driven au-
tonomic management architecture illustrating key control
feedback interactions involved in guiding the selection of
policy actions for resolving Quality of Service (QoS) re-
quirements violations. Section 5 and 6 describe how Rein-
forcement Learning methodologies could be used to model
an autonomic computing problem involving QoS provi-
sioning. Section 7 describes the prototype implementation
of the learning mechanisms, illustrating the impact of the
adaptation strategies on the behavior of a multi-tiered Web
server. We review some related work in Section 8, and con-
clude with a discussion on key challenges and possible di-
rection for future work in Section 9.

2 Reinforcement Learning Background

Reinforcement Learning describes a learning paradigm
whereby, through trial-and-error interaction with its envi-
ronment (see Figure 1), an agent learns how to best map sit-
uations to actions so as to maximize long-term benefit [3].
As such, Reinforcement Learning is often associated with
training by reward and punishment whereby, for each ac-

tion the agent chooses, a numeric reward is generated which
indicates the desirability of the agent being in a particular
state. A key distinction between Reinforcement Learning
and other forms of learning is on what information is com-
municated to the learner after an action has been selected.
In supervised learning, for example, the learner only has
to visit a state once to know how to act optimally if it en-
counters the same state again. This is because, for each ac-
tion taken, the learner is told what the correct action should
have been. In Reinforcement Learning, on the other hand,
the learner only receives a numeric reward which indicates
how good the action was (as opposed to whether the ac-
tion was the best in that situation). The only way for the
learner to maximize this reward, therefore, is to discover
which actions generate the most reward in a given state by
trying them. Consequently, the learner is often faced with
a dilemma: whether to use its current knowledge to select
the best action to take, (exploit) or try actions it has not yet
tried (explore) in order to improve its guesses in the future.

Figure 1. The agent-environment interaction
in Reinforcement Learning [3].

As with many learning problems, it is often impractical
to obtain an environment model that is both accurate and
representative of all possible situations the learning agent
may encounter while interacting with the environment [3].
While model-free Reinforcement Learning methods exist
which are guaranteed to find optimal policies (i.e., choices
of actions per situation), they make extremely inefficient use
of data they gather [4]. One approach for overcoming this
shortfall is for the agent to learn the model of the environ-
ment’s dynamics, on-line, as it interacts with the environ-
ment. This has been demonstrated to significantly accel-
erate the learning process (see, for example, [5, 6, 7]). In
this approach, a model is updated continually throughout
the agent’s lifetime: at each time step, the currently learned
model is used for planning; i.e., using the learned model to
improve the policy guiding the agent’s interaction with the
environment.

Several model-based learning algorithms exist in the lit-
erature and differ mainly on how the model updates are per-

56

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

Algorithm 1 Dyna-Q
Input: Initialize Model(s, a) for all s ∈ S and a ∈ A(s)

1: for i = 1 to∞ do
2: s← current (non terminal) state
3: a← ε-greedy(s,Q)
4: Execute a; observe resultant state, s′, and reward r
5: Q(s, a) ← Q(s, a) + α[r + γ maxa′ Q(s′, a′) −

Q(s, a)]
6: Model(s, a)← s′, r
7: for j = 1 to k do
8: s← random previously observed state
9: a← random action previously taken in s

10: s′, r ←Model(s, a)
11: Q(s, a) ← Q(s, a) + α[r + γ maxa′ Q(s′, a′) −

Q(s, a)]
12: end for
13: end for

formed. In this paper, we make use of an algorithm called
Dyna-Q [8] (see Algorithm 1) which estimates action-
values; i.e., a measure of how good it is for an agent to
perform a particular action in a given situation. Briefly,
the algorithm works as follows: Beginning with state s, the
agent selects action a ∈ A(s) and observes the resultant
state s′ and reward r. Using this information, the agent up-
dates the action-value associated with action a (line 5) and
adds this information to the current system model (line 6).
It also performs k additional updates of the model by ran-
domly selecting and updating the action-value estimates of
k state-action pairs (lines 7 - 12). In the sections that fol-
low, we describe how model-learning mechanisms could be
applied to an autonomic computing problem involving QoS
provisioning. But first, we begin with a look at how policies
could be used to drive autonomic management.

3 Autonomic Management Policies

We have been exploring the use of policies as the ba-
sis for autonomic management, with a particular focus on
e-commerce systems. We feel that policies can provide the
kinds of directives which autonomic systems can and should
rely on when making management decisions. As with much
of the previous work on policy-driven management (see,
for example, [9, 10]), our interest is on action policies (ex-
pressed as obligation policies in Ponder [9]) since they can
be defined and modified on a per component basis and can
provide useful information for autonomic managers. The
use of action policies within autonomic computing is likely
to continue partly due to their simplicity and, unlike goal
policies [11, 12] and utility policies [11, 13, 14, 15], do not
require a system model in order to be used [11]. In this
work it is assumed that action policies are event-triggered,

action-condition rules [9]. An event triggers the evaluation
of a rule of the form “if [conditions] then [actions]”. An
event is generated as a result of some condition of the state
of the system being true. This section looks at what these
policies are and how they could be used within autonomic
computing.

3.1 Policy Structure

We assume a policy to consist of several attributes in-
cluding one or more conditions and an ordered list of ac-
tions that make adjustments to some tuning parameters:

3.1.1 Policy Rule

A policy rule basically consists of a policy type (discussed
in Section 3.2), policy name, a conditions set which is de-
pendent on one or more conditions, and an actions set (see,
for example, Figure 3). Because a policy may apply to
many different components, the assumption is that the pol-
icy would be instantiated at run-time, say when the man-
agement system starts its components or a particular appli-
cation is started. For example, the policy target might be in-
stantiated to a particular host within a network of hosts, that
is, the same policy could apply to each of the hosts though
each would be monitored separately. In the policy example
of Figure 3, the policy target is the process corresponding
to the Policy Enforcement Point (PEP). The policy subject
is the management component that should receive the event
when there is a violation. Hence, the subject would also be
instantiated. In our prototype, the subject of an expectation
policy (see Section 3.2.2) would likely be the process corre-
sponding to the Policy Decision Point (PDP) as illustrated
by the policy of Figure 3; in larger systems, there could be
other management components to receive events or multi-
ple PDPs. A policy has at least one other attribute which
can change dynamically, which specifies whether a policy
is enabled (set to true) or not.

3.1.2 Policy Condition

A policy condition captures the state of an application, a
system, device, etc. It is assumed that events are generated
from monitoring components and that the Event Handler
(see Section 4.1) filters received events for those of “in-
terest”. An event specified by name only is essentially a
Boolean value; i.e., the occurrence of the event itself is suf-
ficient to take an action. An event with an attribute indicates
that the value of the attribute is to be used in evaluating an
expression, such as comparing the value to a threshold. It
is also possible to have a policy which becomes violated
only when multiple events or conditions occur. These are
specified via the standard logical operators.

57

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

� �
c o n f i g u r a t i o n p o l i c y { I n s t a l l C P U M o n i t o r (MonitorManager , l o c a l h o s t)}

i f (INSTALL:CPUMonitor = t r u e)
t h e n { . / CPUMonitor t e s t { I s C o n d i t i o n E n a b l e d (C P U : u t i l i z a t i o n) = t r u e }}
� �

Figure 2. A configuration policy for installing a CPU Monitor.

3.1.3 Policy Action

A policy action defines what has to be executed should the
condition(s) specified in the policy hold true. Each action
is, essentially, the name of a function that should be ex-
ecuted. The function may have parameters that would be
determined from the information associated with the pol-
icy, e.g., domain, events, event attributes, etc. One or more
actions may also be specified. Each action may have an
optional test associated with it, with or without param-
eters. The test can be used to determine if the component
state or context invalidates the particular action. Such a test
is a Boolean function or could return a value which is then
compared to some threshold value. If the result of the test
expression is “true” then that indicates that the action is en-
forceable; note that the negation of a test is permitted in
which case the expression is “true” if the test evaluates to
“false”. As such, policy tests provide ways in which the
degree of self-management could be controlled. Action se-
quences may be conjoined (i.e., “AND-ed” together) indi-
cating that all the actions in the sequence should be exe-
cuted. Alternative action sequences may also be specified
in which case only one of the elements of the sequences
would be selected.

In our current approach, we permit only a single action
within a single expectation policy to be executed. This is
done for two reasons. First, this is a strategy of “doing
something simple” and seeing if there is a positive effect.
If the change is not sufficient, then a violation is likely to
occur again and a further action (which could be the same,
e.g., increasing or decreasing the value of a parameter) can
be taken. The management cycle in the implementation is
short enough that this can happen quickly. Second, taking
multiple actions makes it difficult to understand the impact
of the actions; e.g., were they all necessary, were some more
effective than others, etc. By having the autonomic man-
ager take a single action and log that action and other in-
formation, an analysis component can examine that infor-
mation and possibly determine which action(s), or the order
thereof, is better, etc. We outline one such an approach in
Section 6.

3.2 Policy Types

We are currently exploring the use of several types of
policies for driving autonomic management.

3.2.1 Configuration Policies

Configuration policies describe those policies that are used
to specify how to configure and install applications and ser-
vices. This may include, for example, setting static config-
uration parameters based on the Service Level Agreement
(SLA) requirements (e.g., performance, availability, quality
of service), the given or expected environmental parame-
ters (e.g., required services, number of active users), and
the available resources (e.g., number of processors, proces-
sor speed, memory size, disk space).

A sample configuration policy for installing a CPU Mon-
itor for the system of Figure 4 is shown in Figure 2. In this
example, the MonitorManager (i.e., the poliy subject) is
the component responsible for installing the CPU monitor
on a localhost (i.e., the policy target). The policy test
determines the conditions under which the CPU Monitor
is to be installed. In this example, the monitor is installed
only if the condition “CPU:utilization” is enabled -
as determined by a set of enabled expectation policies (see
Section 3.2.2). As such, changes to the policies driving au-
tonomic management could also trigger dynamic reconfig-
uration of systems and applications. For example, by dis-
abling the policy of Figure 9 (assuming, of course, that it
is currently the only policy with a “CPU:utilization”
condition), the CPU Monitor would be disabled as a result.
A key advantage here is the reduction in the management
overhead since events specific to CPU utilization would no
longer be relevant when the policy is no longer active.

3.2.2 Expectation Policies

Expectation policies define information used to ensure that
operational requirements are met and expected conditions
not violated. We have also been using expectation poli-
cies to indicate how the system could optimize its use of
resources. For example, a policy could indicate that, when
the response time of requests to the server falls below a cer-
tain level, then Apache processes handling requests could
be reduced. This would then free up system resources.

A sample expectation policy for resolving violations in
Apache’s response time is shown in Figure 3. It consists
of two conjunctive conditions and three disjunctive actions.
Note that the actions, which specify adjustments to the ap-
plication’s tuning parameters, are quite simple since each
specifies a small - and in some cases the smallest pos-

58

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

� �
e x p e c t a t i o n p o l i c y {RESPONSETIMEViolation (PDP , PEP)}

i f (APACHE:responseTime > 2 0 0 0 . 0) & (APACHE:responseTimeTREND > 0 . 0)
t h e n {A d j u s t M a x C l i e n t s (+ 2 5) t e s t {newMaxClients < 151} |

Adjus tMaxKeepAl iveReques t s (−30) t e s t {newMaxKeepAliveRequests > 1} |
AdjustMaxBandwidth (−128) t e s t {newMaxBandwidth > 255}}
� �

Figure 3. A sample expectation policy for resolving Apache’s response time violation.

sible - increment/decrement in the value of the parame-
ter. For example, the Apache’s MaxClients parame-
ter could only be adjusted in increments/decrements of the
number of threads per child process, as specified in the
server’s configuration. Thus, a general knowledge of how
an increase/decrease in the value of a particular parame-
ter impacts a system’s performance metrics may be suffi-
cient to define reasonable policies. For instance, a viola-
tion in Apache’s response time could be due to the fact that
there aren’t enough server processes to handle clients re-
quests, in which case increasing MaxClients could re-
solve the problem. If this is no longer possible (as de-
termined by the action test), one might try to reduce the
amount of time (i.e., MaxKeepAliveRequests) exist-
ing clients hold onto the server processes. And, if this is no
longer possible, it could be that the server is overwhelmed
by the number of requests in which throttling some may
alleviate the problem. This is illustrated by the expecta-
tion policy in Figure 3. Since, only a single action could
be executed, the order in which the actions are specified
within the policy is also important. In this case, more dras-
tic actions could be taken once it is no longer possible,
for example, to meet the objectives through tuning appli-
cation’s parameters. This is precisely the purpose of the
action “AdjustMaxBandwidth(-128)” which throt-
tles requests to the server by reducing the rate at which the
server processes clients requests based on a client’s service
class (see Section 7.3 for details).

3.2.3 Management Policies

Management policies deal with information and actions for
managing the management system itself or for the overall
administration of the system or applications. Such policies
may include those for the prioritization of expectation poli-
cies, for diagnosis in determining an action, or involving
some analysis (say of previous behavior) in determining an
action. We are currently exploring the use of management
policies to guide the on-line learning process. Our partic-
ular focus is on how the learning algorithms could be op-
timized to be less computational intensive in order to meet
the resource constraints imposed by the environment. We
comment further on this in Section 9.

4 System Architecture

A detailed view of the architecture for the adaptive
policy-driven autonomic management system is depicted
in Figure 4. Our approach to autonomic management in-
volves providing quality of service support local to each
host. Each local host, therefore, has a single Policy De-
cision Point (PDP) whose responsibility is to oversee the
management of a single host according to the policies spec-
ified. In a multi-tiered Web-server environment, for exam-
ple, several components (i.e., a Web server, an application
server, and a database server) may cooperate to deliver a set
of services. In the case that all these components are run
on a single host, a local PDP will be responsible for ensur-
ing that the managed application, as a whole, behaves as
expected. Since each component would have it’s own set
of policies, more complex decisions regarding the choices
of actions when multiple policies, possibly from multiple
components, are violated will be confined to a single Event
Analyzer. In the case where each component of the multi-
tiered Web server is run on a different host, several PDPs
could be configured to oversee the management of each lo-
cal host where the individual component is run. However,
a single Event Analyzer is used to co-ordinate the activities
of the individual PDPs on each local host in order to pro-
vide quality of service support spanning multiple hosts. A
key advantage of a de-centralized approach to QoS support
is that the autonomic system is likely to be more scalable
and responsive since QoS decisions specific to local behav-
ior will be confined locally [16]. By reducing the distance
between the autonomous management system and the man-
aged system (see Figure 5), less overhead is incurred, in
part, as a result of using more efficient local communica-
tion mechanisms between components [16]. In this section,
we highlight key functionality of the different components.

4.1 Architectural Components

The following are the key components of the architecture
for the adaptive policy-driven autonomic management:

59

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

Figure 4. The adaptive policy-driven autonomic management architecture.

4.1.1 Knowledge Base

The Knowledge Base is a shared repository for system poli-
cies and other relevant information. This may include in-
formation for determining corrective actions for resolving
QoS requirements violations as well as configuring systems
and applications. The information about policies is eventu-
ally distributed to other management components, and then
realized as actions driving the autonomic management.

4.1.2 Monitor (M)

Monitors gather performance metric information of interest
for the management system such as resource utilization, re-
sponse time, throughput and other relevant information. It
is this information that is then used to determine whether
the QoS requirements are either being met or violated.

4.1.3 Monitor Manager

Monitor Manager deals with the management of Monitors,
including instantiating (i.e., loading and starting) a Monitor
for a certain resource type to be monitored as well as pro-
viding the context of monitoring (i.e., monitoring frequency
or time interval for periodic monitoring or monitoring times
for scheduled monitoring). In addition, it allows Monitors
to be re-configured (i.e., adding a new Monitor, adjusting
the context of monitoring, or disabling a Monitor) dynam-
ically in response to run-time changes to policies. At the
core of its responsibility is the collection and processing of
Monitor events whose details are then reported to the Event

Handler. In essence, the Monitor Manager acts as an event
producer by gathering information from multiple Monitors
as illustrated in Figure 4. It provides customized services
to event consumers (such as the Event Handler) in terms of
how often they should receive events notifications.

4.1.4 Event Handler

The Event Handler deals with the processing of events from
the Monitor Manager to determine whether there are any
QoS requirements violations (based on the enabled policy
conditions) and forwarding appropriate notifications to the
interested components. This includes notifying the PDP of
conditions violations as well as forwarding information to
the Event Log for archiving. A key feature of this compo-
nent is its ability to provide customized services to event
consumers (i.e., PDP, Event Log, etc.) through subscrip-
tions by allowing components to specify, for example, how
often and/or when they should receive notifications.

4.1.5 Policy Decision Point (PDP)

This component is responsible for deciding on what actions
to take given one or more violation messages from the Event
Handler. The PDP must decide which policy, if any expec-
tation policy has been violated, was the “most important”
and then what action(s) to take. It uses information not only
about the violations, but also the expectation policies and
management policies, both expressed within the expecta-
tion policies and via management policy rules.

60

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

4.1.6 Policy Enforcement Point (PEP)

This component defines an Application Programming Inter-
face (API) which maps the actions subscribed by the PDP
to the executable elements; i.e., the various Effectors.

4.1.7 Effector (E)

Effectors translate the policy decisions, i.e., corrective ac-
tions, into adjustment of configuration parameters to imple-
ment the corrective actions. Note that there will be multiple
instances of the Effectors for different types of resources
(e.g., logical partitioning of CPUs, allocation of streaming
buffers) or tuning parameters to be adjusted.

4.1.8 Event Log

This component archives traces of the management sys-
tem’s events onto (1) an event log in the memory for captur-
ing recent short term events, and (2) a persistent event log on
disk for capturing long term history events for later exam-
ination. Such events may include QoS requirements viola-
tions from the Event Handler, records of decisions made by
the PDP in response to the violations, the actions enforced
by the PEP, as well as other relevant management events.

4.1.9 Event Analyzer

This component correlates the events with respect to the
contexts, performs trend analysis based on the statistical
information, and models complex situations for causality
analysis and predictive outcomes of corrective actions, to
enable the PDP to learn from past, predict future and make
appropriate trade-offs and optimal corrective actions.

4.2 Component Interaction

Figure 5 illustrates key interactions driving autonomic
management. In this approach, we make use of policies to
specify both the expected performance behavior of the man-
aged systems as well as decisions driving autonomic man-
agement. Such policies are specified via the Policy Tool
(see Figure 11). The management system can also adapt,
dynamically, to handle changes to policies made via the in-
terface. This approach is illustrated in the diagram and is
characterized by the interaction between the Managed Sys-
tem and the Autonomous Management System. In essence,
the management system determines what to monitor based
on the policies that are active and determines if changes
should be made. Any changes are done through effectors
which can change the values of various parameters of the
applications (e.g. Apache or other components) or change
the operation of the system itself, such as blocking requests
or adding/removing processes. This section looks at how

the different components interact to achieve the different
performance objectives in the context of self-configuration
and self-optimization.

4.2.1 Self Configuration

Briefly, the management system in Figure 4 is instantiated
by first invoking the Management Agent (not shown in the
diagram). The initial task of this agent is to query all the
enabled configuration policies (see Section 3.2.1) from the
policy repository. It is these policies that are used to install
the management components, with the exception of Moni-
tors, the responsibility of which falls to the Monitor Man-
ager; i.e., the policy subject (see Figure 2). The PDP, in
turn, queries the policy repository for all the enabled expec-
tation policies (see Section 3.2.2) and uses this information
to make decisions on how to respond to violations. Once
the different management components have been installed,
the manager’s responsibility becomes ensuring that appro-
priate components are notified if there are any changes to
the policies governing the behavior of the system.

To illustrate the impact of disabling a policy, let’s as-
sume that the policies of Figures 3 and 9 are the only en-
abled expectation policies and a user disables the latter
policy. This would trigger four specific notifications: (i)
The first notification would be forwarded to the PDP since
this component is the subject of the policy. The PDP in
turn would update its policies accordingly, i.e., by remov-
ing the CPU violation expectation policy. (ii) The second
notification would be forwarded to the Event Handler, the
component responsible for determining whether the QoS
requirements are being met. Disabling the policy of Fig-
ure 9 means that the conditions “CPU:utilization”
and “CPU:utilizationTREND” must also be disabled.
This would prevent any notifications from being forwarded
to the PDP should a violation of any of the conditions occur.
(iii) The third notification would be forwarded to the Moni-
tor Manager to determine whether any of its Monitors are to
be disabled as a result. In this particular case, the CPU Mon-
itor would be disabled since events specific to CPU utiliza-
tion are no longer relevant. This directive is captured by the
test “IsConditionEnabled(CPU:utilization)”
as part of the action to install the CPU Monitor (see the pol-
icy of Figure 2). (iv) The fourth and final notification would
be forwarded to the Event Analyzer, which may need to up-
date policy state information since the change may affect
the learning process. This type of adaptation is the focus of
our current research and will not be addressed here.

4.2.2 Self Optimization

Self-optimization deals with adapting the behavior of appli-
cations as well as systems in order to meet specific perfor-
mance objectives. In the context of where policies are used

61

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

to drive autonomic management, adaptation may be specific
to the choice of policy actions. Figure 5, in particular, illus-
trates two main feedback control loops that drive how the
autonomic system adapts the way it responds to the viola-
tions in the QoS requirements of the managed system.

Figure 5. Two feedback loops driving the au-
tonomic management of a managed system.

The first control loop, which constitutes a single manage-
ment cycle, consists of monitoring the behavior of the man-
aged system and, using the information collected within the
interval, selecting policy actions to resolve violations.

1. The Monitors collect and forward performance met-
ric information to the Monitor Manager (not shown in
the diagram) which is then processed (i.e., for averages
and trends) and forwarded to the Event Handler.

2. The Event Handler’s responsibility is to determine
whether the QoS requirements of the managed system
have been violated. For each violation, a notification
is forwarded to the PDP.

3. For each management interval, the PDP collects all the
violation messages and processes them to determine
whether any of the enabled expectation policies has
been violated. The PDP then determines the order in
which the actions advocated by the violated policies
are to be “tried” (based on the violation information

collected during the interval). The ordered actions are
then forwarded to the PEP.

4. On receiving the policy actions, the PEP performs tests
associated with each action, and if successful, invokes
the appropriate Effector(s) to perform the actual ad-
justment to the managed system’s parameter(s). Note
that, in our current implementation, we only permit a
single action to be executed - for the reasons discussed
in Section 3.1.3.

The above control mechanisms were the focus of our initial
investigation on the performance behavior of the Apache
Web Server (see, for example, [17]). This work was later
extended to incorporate adaptation strategies on how the
PDP selects policy actions from those advocated by the vi-
olated policies in the context of a multi-component Web
server (see [18]).

The second feedback loop deals with self-optimization;
i.e., the ability of systems to evaluate their own behavior and
adapt it accordingly to improve performance. In the con-
text of where policies are used to drive autonomic manage-
ment, this often requires monitoring the behavior in the use
of policies and using the experience to learn optimal poli-
cies; i.e., the selection of optimal policy actions for each
encountered situation. The use of policies in this context
offers significant benefits to autonomic systems in that it al-
lows systems administrators to focus on the specification of
the objectives leaving it to systems to plan how to achieve
them. The key steps of the feedback loop include the fol-
lowing:

1. Process the Event Log information (which includes
Monitor events, QoS requirements violation events,
decisions made by the PDP in response to the viola-
tions, and the actions enforced by the PEP), on-line, to
model the performance of the managed system based
on the observed experience in the use of policies.

2. Use the model, when possible, to advise the PDP on
how to adapt its action selection mechanisms based on
the current state of the system.

Figure 6 summarizes the key interactions between the
different components involved in coordinating the steps of
the two feedback control loops during a single management
cycle. The Policy Tool (see Figure 11), in this case, provides
an interface to the autonomous management system through
which users can manage (i.e., add, modify, delete) policies
governing the behavior of the system.

1. Monitors: Collect performance metric information of
interest from the managed environment (E) and for-
ward it to the Monitor Manager.

62

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

Figure 6. Feedback control interactions.

2. Monitor Manager: Process the Monitor events for av-
erages and trends and forward the processed informa-
tion to the Event Handler.

3. Event Handler: Determine whether any QoS require-
ments have been violated. For each violation, forward
a notification, ei, to the PDP.

4. PDP: During each management interval, form a set,
Pv , of violated policies (from the enabled policies set
P) based on the violation notification events, ei ∈ Ev ,
received during the interval. A policy is said to be vio-
lated if all its conditions evaluate to true when matched
against violation events in Ev .

5. PDP: Decide whether to use the knowledge learned
from past experience with a set of active policies, P , to
select the best action to take (i.e., by requesting advise
from the learning component with probability 1 − ε),
or to try actions not yet tried (with probability ε).

6. PDP: Form set Av corresponding to the actions asso-
ciated with the current state, A(s), if the state has pre-
viously been encountered, then continue with 10 (ex-
ploit); Otherwise, continue with 7 (explore).

7. PDP: Compute the severity of each condition in Pv

using the values of the violation events in Ev .

8. PDP: Form a set, Av , of unique policy actions based
on the actions advocated by the violated policies in Pv .

9. PDP: Compute Q0(s, a) for each policy action in Av .
Q0(s, a) estimates the initial action-value of the policy
actions based on the characteristics of both violation
events and the enabled policies (see Equation 6).

10. PDP: Sort the actions in Av by the action-value esti-
mate, Q(s, a), and forward them to the PEP. The aim

here is to ensure that actions with the highest value are
tried first. Since only a single action is executed, the
order in which the actions are arranged is of great im-
portance.

11. PEP: Validate the policy actions in Av by performing
the tests associated with each action (see, for example,
Figure 3) and then invoke the appropriate Effector (E)
to perform the actual action, ai, for the first action to
pass the tests.

12. Learning Component: Observes the resultant state s′

and reward r′. Using the Dyna-Q algorithm (see Algo-
rithm 2), update the current system model.

In the next Section, we elaborate on how the above feed-
back control interactions are modelled onto a Reinforce-
ment Learning problem.

5 Modelling Reinforcement Learning

A model, in Reinforcement Learning, describes any
feedback that guides the interaction between the learning
agent and its environment. This interaction is driven by
the choices of actions and the behavior of the system as
a consequence of taking those actions. In the context of
a policy-driven autonomic management agent, the choices
of actions are determined by the expectation policies that
are violated. This section looks at what constitutes a state-
transition model and how this structure is derived. We first
begin by formally defining expectation policies.

Definition 1 An expectation policy is defined by the tuple
pi = 〈C,A〉 where:

• C is conjunctive conditions associated with policy pi

with each condition, cj ∈ C, defined by the tu-
ple cj = 〈ID, metricName, operator, Γ〉,
where; ID is a unique identification for the condition;
metricName is the name of the metric associated
with the condition; operator is the relational opera-
tor associated with the condition; and Γ is the threshold
of the condition.

• A is a set of actions associated with policy pi with
each action, aj ∈ A, defined by the tuple aj = 〈ID,
function, parameters, τ〉, where; ID is a
unique identification for the action; function is the
name of the function (within the PEP) that should be
executed; parameters is a set of function parame-
ters; and τ is a set of tests associated with the action.

An expectation policy condition essentially identifies the re-
gion (or interval) on the side of the condition’s threshold
(based on the condition’s operator) where a condition is said

63

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

to be violated. Thus, our expectation policy conditions only
consider “>, ≥, <, and ≤” operators. For a policy con-
dition “APACHE:responseTime > 2000.0”, for ex-
ample, any response time measurement beyond 2000.0 ms
would be considered as a violation, the severity of which
increases the further the measurement is from the thresh-
old. In our implementation of expectation policies, it is as-
sumed that the quality of service specific to a metric’s mea-
surement deteriorates, i.e., monotonically decreases, as the
measured value increases. In essence, the main objective
for the autonomic manager is to steer the system towards
metrics’ regions where the quality of service is the highest;
i.e., towards the most desirable regions.

A policy-driven autonomic management system is likely
to consist of multiple expectation policies, a subset of which
may be active (or enabled) at any given time; which brings
us to our next definition.

Definition 2 Suppose that PA denotes a set of all expecta-
tion policies such that pi ∈ PA where pi = 〈C,A〉. Let
P be a subset of expectation policies an autonomic man-
ager uses to make management decisions; i.e., P ⊆ PA.
A policy system corresponding to P is defined by the tuple
PS = 〈P,WC〉 where:

• WC = 〈ci, ωi〉 associates each policy condition, ci,
with a weight, ωi, such that, for all ci ∈ pm and cj ∈
pn, ωi = ωj if ci = cj .

The conditions’ weights, which are specified manually in
our current implementation, provide a way of distinguish-
ing policy conditions based on the significance of violating
a particular metric. In essence, WC provides a way of bi-
asing how the autonomic system responds to violations; we
elaborate further on this in Section 6.1.

To model system’s dynamics from the use of an active
set of policies, we make use of a mapping between the en-
abled expectation policies and the managed system’s states
whose structure is derived from the metrics associated with
the enabled policy conditions.

Definition 3 A policy system PS = 〈P,WC〉 derives a set
of system metrics, mi ∈ M , such that, for each C ∈ pj

where pj ∈ P , M =
⋃

ci∈C

{ci.metricName}.

In this approach, a state-transition model (see Definition 4)
is defined which uses a set of active expectation policies
(see, for example, Figure 3) to create a set of policy-states
and the actions of the management system to determine
transitions between those states. This mapping is moti-
vated by two key observations about the expectation poli-
cies. First, they define what the expected performance and
behavioral objectives are (as captured by the conditions of
the enabled expectation polices). Second, they define the

choices of actions whenever the specified objectives are vio-
lated. In essence, the interaction between the learning agent
and its environment is driven, partly, by the enabled expec-
tation policies. Thus, we assume a standard Markov Deci-
sion Process (MDP) [3, 4].

Figure 7. A sample state transition graph.

Definition 4 A state-transition model derived from the pol-
icy system PS = 〈P,WC〉 is defined by the graph
GP = 〈S, T 〉 where:

• S is a set of system states (see Section 5.1.) derived
from the metrics of the conditions of the enabled ex-
pectation policies.

• T is a set of transitions (see Section 5.2) where each
transition, ti ∈ T , corresponds to a directed edge on
the graph. A transition is determined when the auto-
nomic manager takes an action as a result of being in
one state, which may, or may not, result in a transition
to another state.

As such, we capture the management system’s behavior in
the use of an active set of policies using a state-transition
graph. This is illustrated in Figure 7 which shows the dif-
ferent types of states (see Definition 7) as well as transitions
between states as a result of either the actions of the auto-
nomic manager (i.e., ai) or other dynamic characteristics
outside the control of the autonomic manager (i.e., a0); we
elaborate further on this in Section 5.2. The result can then
be used by the autonomic manager to consider choices of
policy actions that it might take when it determines that the
system is in a particular state. That is, the autonomic man-
ager could take an action as defined below:

ai ∈ A(si) (1)

64

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

where A(si) is a set of actions advocated by the expecta-
tion policies that are violated when the system is in state si.
The information about the system that is used to determine
the state-transition graph is extracted from the Event Log
as illustrated in Figure 5. For a given set of active policies,
this structure is built dynamically as the events from the dif-
ferent management components are recorded in the logfile.
Note that, since the autonomic manager records only those
states that are experienced, “states explosion” is likely to be
restricted. We comment further on this in Section 9.

5.1 System States

As indicated, states are based upon the metrics in the
conditions of the policy system. We define states through
the following definitions.

Definition 5 A policy system PS = 〈P,WC〉 with metrics
set M derives a set of metric-regions, MR, for each metric
mi ∈ M , rmi ∈ MR, whose structure is defined by the
tuple rmi = 〈αmi , σmi〉, where:

• αmi = 〈ID, metricName, ω〉 corresponds to a unique
metric from among the metrics of the conditions of the
policies in P ; such that, metricName is the name of
the metric and ω is the weight of the condition (see
Definition 2) associated with metric mi. In the case
that a single metric is associated with more than one
policy condition and where each condition might have
different weights, the value mi.ω is computed as fol-
lows:

mi.ω = max
c.mi∈C

c.ω (2)

which essentially corresponds to the weight of the con-
dition with the largest weight value from among the
conditions associated with metric mi.

• σmi = {Γ1,Γ2, . . . ,Γk} is a set of thresholds from
the conditions associated with metric mi such that,
Γi < Γj if i < j. As such, σmi derives a set of metric
regions which map the observed metric measurement
onto appropriate localities (i.e., intervals) as defined by
the thresholds of the policy conditions associated with
metric mi, such that Rmi = {R1

mi
, R2

mi
, . . . , Rk+1

mi
},

where R1
mi

= (−∞,Γ1); R2
mi

= (Γ1,Γ2); and,
Rk+1

mi
= (Γk,∞).

Thus, if σmi = 〈Γ1,Γ2〉, for example, it would yield
three regions in our approach: R1

mi
= (−∞,Γ1), R2

mi
=

(Γ1,Γ2), and R3
mi

= (Γ2,∞); which brings us to our next
definition.

Definition 6 Given a set of metric-regions for each met-
ric mi ∈ M , rmi ∈ MR, such that rmi = 〈αmi , σmi〉,
where σmi derives a set of metric regions Rj

mi
∈ Rmi;

we define a mapping function, f(Rj
mi

) → R, which as-
signs a numeric value to the j-th region in Rmi such that,
f(Rk

mi
) > f(Rl

mi
) if k < l.

An example of such a mapping, which we make use of
in our current implementation, is defined by Equation 3:

f(Rj
mi

) = 100− (
100

n− 1
)(j − 1) (3)

where n is the total number of regions in Rmi
. This func-

tion assigns a numeric value between 100 and 0 for each
metric’s region in Rmi , starting from 100 for the most de-
sirable region and decrementing at equal intervals towards
the opposite end of the spectrum, whose region is assigned a
value of 0. This approach guarantees that the highest value
is assigned to the most desirable region (i.e., the region cor-
responding to the highest quality of service), assuming, of
course, that the assumptions about the conditions of the ex-
pectation policies hold (see Definition 1).

Definition 7 A policy system PS = 〈P,WC〉 with metrics
M and metrics-regions MR derives a set of system states
S such that, each state si ∈ S is defined by the tuple
si = 〈µ,M(si), A(si)〉, and where:

• µ is a type which classifies a state as either “vi-
olation” or “acceptable” depending, respectively, on
whether or not there are any policy violations as a re-
sult of visiting a particular state. As noted previously,
a policy is said to be violated if all its conditions evalu-
ate to true when matched against violation notifications
received during a single management cycle.

• A(si) is a set of actions advocated by the expectation
policies in P that are violated when the system is in
state si.

• M(si) is a set of state metrics for each metric mj ∈
M , rmj ∈ MR, rmj = 〈αmj , σmj 〉, such that each
state metric si.mj ∈M(si) is defined as follows:

Definition 8 A state metric si.mj ∈ M(si)
given αmj = 〈ID, metricName, ω〉 and
σmj = 〈Γ1,Γ2, . . . ,Γk〉 is defined by the tuple
si.mj = 〈ID, ω, value, Rl

mj
〉 where:

• ID is an integer value that uniquely identify each met-
ric mi ∈M .

• ω is the weight associated with metric mi.

• value is the observed metric measurement, or aver-
age value when state s is visited multiple times.

65

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

mi ck Policy Condition Rmi Rj
mi

f(Rj
mi

)

m1
m1.value ≤ 2000.0 R1

m1 100
c1 APACHE:responseTime > 2000.0 m1.value > 2000.0 R2

m1 0

m2
m2.value ≤ 0.0 R1

m2 100
c2 APACHE:responseTimeTREND > 0.0 m2.value > 0.0 R2

m2 0

Table 1. A metrics structure derived from the policy system of Example 1.

State Rk
mj

f(Rk
mj

) A(si)

si Rk
m1 Rk

m2 f(Rk
m1) f(Rk

m2) al State action

s1 R2
m1 R2

m2 0 0

a0 γ-action
a1 AdjustMaxClients(+25)
a2 AdjustMaxKeepAliveRequests(-30)
a3 AdjustMaxBandwidth(-128)

s2 R2
m1 R1

m2 0 100 a0 γ-action
s3 R1

m1 R2
m2 100 0 a0 γ-action

s4 R1
m1 R1

m2 100 100 a0 γ-action

Table 2. Sample policy states based on the metrics structure of Table 1.

• Rl
mj

is the region corresponding to a region in σmj in
which the average metric measurement (i.e., value)
falls; i.e., if Rl

mj
= (Γ1,Γ2), then Γ1 < value < Γ2.

For each such region, f(Rl
mj

) then associates a value
as described by Equation 3.

Using this approach, each state can be uniquely identi-
fied by the region occupied by each state metric based on
the conditions of the expectation policies and the value
associated with each metric. That is, for a set of poli-
cies involving n metrics, each state would have n metrics
{m1,m2, ...,mn} and, for each metric a specific region
whose intervals are derived from the thresholds of the con-
ditions associated with the metric. To elaborate this further,
consider the following examples:

Example 1 Suppose that, policy system PS = 〈P,WC〉
currently consists of a single active (enabled) expectation
policy shown in Figure 3 (i.e., p1) such that P = {p1}.

From the conditions of the policy, states derived
from the policy system of Example 1 would con-
sist of two metrics; i.e., M = {m1,m2} where
m1 =“APACHE:responseTime” and m2 =“APACHE:
responseTimeTREND”. It follows from Definition 5 that
σm1 = {2000.0} and σm2 = {0.0}. As such, metric m1

would map onto two regions; the response time is either
greater than 2000.0 or not. Similarly, metric m2 would
map onto two regions; the response time trend is either
greater than 0.0 or not. This is illustrated by the regions
shown in Table 1. In the case of the two regions of the
metric “APACHE:responseTime”, for example, the re-
gion where the response time is “> 2000.0” would be

assigned a value of 0, whereas the region where the re-
sponse time is “≤ 2000.0” would be assigned a value of
100 (see Equation 3). This is because it is more desirable
for the system to be in the region where the response time
is not violated; i.e., “m1.value ≤ 2000.0”. Thus, given
a measurement about a particular metric (i.e., mi.value),
Equation 3 assigns a numeric value corresponding to the
appropriate metric’s region where the measurement falls. It
is the combination of these values over all the metrics that
uniquely identify individual states.

Thus, if the policy of Figure 3 was the only policy in P ,
it would yield four states in our approach as illustrated in
Table 2. In this case, state s1 would be considered a “vio-
lation” state since it is the only situation which causes the
policy to be violated, i.e., as a result of the violation of both
policy conditions. Hence, actions set A(s1), in addition to
action a0 (i.e., do-nothing), would consist of the actions of
the violated policy. The remaining three states are consid-
ered as “acceptable” states.

Example 2 Suppose that, we extend Example 1 by adding
the policy of Figure 8 (i.e., p2) onto the policies set P such
that P = {p1, p2}.

It follows from Example 2 that the state met-
ric m1 =“APACHE:responseTime” would now
be associated with two unique policy conditions;
“APACHE:responseTime > 2000.0” from pol-
icy p1 and “APACHE:responseTime < 250.0”
from policy p2. Consequently, the state metric
“APACHE:responseTime” would now consist of
three regions; i.e., “m1.value < 250.0”, “250.0 ≤
m1.value ≤ 2000.0”, and “m1.value > 2000.0”. In

66

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

mi ck Policy Condition Rmi Rj
mi

f(Rj
mi

)

m1

c3 APACHE:responseTime < 250.0 m1.value < 250.0 R1
m1 100

250.0 ≤ m1.value ≤ 2000.0 R2
m1 50

c1 APACHE:responseTime > 2000.0 m1.value > 2000.0 R3
m1 0

m2
m2.value ≤ 0.0 R1

m2 100
c2 APACHE:responseTimeTREND > 0.0 m2.value > 0.0 R2

m2 0

Table 3. A metrics structure derived from the policy system of Example 2.

State Rk
mj

f(Rk
mj

) A(si)

si Rk
m1 Rk

m2 f(Rk
m1) f(Rk

m2) al State action

s1 R3
m1 R2

m2 0 0

a0 γ-action
a1 AdjustMaxClients(+25)
a2 AdjustMaxKeepAliveRequests(-30)
a3 AdjustMaxBandwidth(-128)

s2 R3
m1 R1

m2 0 100 a0 γ-action
s3 R2

m1 R2
m2 50 0 a0 γ-action

s4 R2
m1 R1

m2 50 100 a0 γ-action

s5 R1
m1 R2

m2 100 0

a0 γ-action
a4 AdjustMaxClients(-25)
a5 AdjustMaxKeepAliveRequests(+30)
a6 AdjustMaxBandwidth(+64)

s6 R1
m1 R1

m2 100 100

a0 γ-action
a4 AdjustMaxClients(-25)
a5 AdjustMaxKeepAliveRequests(+30)
a6 AdjustMaxBandwidth(+64)

Table 4. Sample policy states based on the metrics structure of Table 3.

this case, the values assigned by Equation 3 to the above
three regions would be 100, 50, and 0, respectively, as
shown in Table 3. As a result, the policy system of Exam-
ple 2 would yield six states in our approach as illustrated
in Table 4 where states s1, s5, and s6 would be considered
as “violation” states whereas the remaining states would
be considered as “acceptable” states. Thus, depending
on the number of active policies in a set as well as the
number of different metrics and different conditions on
those metrics, the number of potential policy-states could
be quite large; we comment further on this in Section 9. A
key distinction between this and other related work (see,
for example, [19, 20, 21, 22, 23]) is that the state structure
is dependent only on the enabled expectation policies and
can thus be automatically determined once a set of policies
is specified.

5.2 System Transitions

Transitions are essentially determined by the actions
taken by the management system and labelled by a value de-
termined by our Reinforcement Learning algorithm. Which
brings us to the next definition:

Definition 9 Let GP = 〈S, T 〉 be a state transition
graph for the policy system PS = 〈P,WC〉 such that
ti(sp, ap, sc) ∈ T . A state transition ti(sp, ap, sc) is a di-
rected edge corresponding to a transition originating from
state sp and ending on state sc as a result of taking action ap

while in state sp, and is labelled by 〈λ, Qti(sp, ap)〉, where:

• λ is the frequency (i.e., the number of times) through
which the transition occurs.

• Qti(sp, ap) is the action-value estimate associated
with taking action ap in state sp. In our current imple-
mentation, Qti(sp, ap) is computed using a one-step
Q-Learning [3] algorithm (see Equation 4).

A change in the system’s state may also be due to ex-
ternal factors other than the impact of the actions taken by
the autonomic manager. In a dynamic Web server environ-
ment, for example, a transition may be a result of a request
to a page with a database-intensive query, which could po-
tentially cause a state transition. These are modeled in the
state-transition graphs as γ-transitions; the actions responsi-
ble for such transitions are denoted by a0 (i.e., γ-action)
as illustrated in Table 4.

Q(s, a)← Q(s, a) + α[r + γ max
a′

Q(s′, a′)−Q(s, a)] (4)

67

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

� �
e x p e c t a t i o n p o l i c y {RESPONSETIMENormal (PDP , PEP)}

i f (APACHE:responseTime < 2 5 0 . 0)
t h e n {A d j u s t M a x C l i e n t s (−25) t e s t {newMaxClients > 49} |

Adjus tMaxKeepAl iveReques t s (+ 3 0) t e s t {newMaxKeepAliveRequests < 91} |
AdjustMaxBandwidth (+ 6 4) t e s t {newMaxBandwidth < 1281}}
� �

Figure 8. An expectation policy for dealing with an improvement in the server’s response.

5.3 Reward Function

The main objective (or goal) of the autonomic manager,
in essence, is to learn an optimal policy for “steering” the
system towards “acceptable” states and away from “viola-
tion” states. In order to achieve this, a numeric reward, r,
must be defined after each time step during which the agent
acts (see, for example, Figure 1) to indicate the desirability
of taking a particular action in a given situation (i.e., state
st). What, then, should the reward be in order to encourage
the learning of optimal behavior?

We are currently exploring one approach for deriving the
reward signal, such that the learning agent is encouraged
to take actions which may eventually lead to “acceptable”
states. Rather than taking the simplest approach whereby
an agent is only rewarded if an action results in a transition
to such a state, we associate each state (both “violation” and
“acceptable”) with a reward value (derived from the state’s
metrics), which measures the desirability of the agent being
in a particular state. We take this approach for three main
reasons:

1. We do not make any assumptions about the accuracy
of the enabled expectation policies since our main ob-
jective is to evaluate the effectiveness of these policies
and, if necessary, adapt their use accordingly in order
to meet specific objectives. We cannot assume, for ex-
ample, that the use of an active set of expectation poli-
cies as is would be sufficient to effectively resolve the
violations in QoS requirements; i.e., completely steer
the system from “violation” to “acceptable” behavior.

2. The main objective of the learning agent is to figure out
how to effectively use existing policies. Thus, while
it may not always be possible to achieve the final ob-
jective based on the current set of active policies, the
agent could still learn how at least to steer the system
“towards” acceptable behavior. For example, if the
objective (as defined by the enabled expectation poli-
cies) is to ensure that violations in the server’s CPU
and memory utilization are resolved, then we would
consider a state where only a single metric is violated
as better, i.e., closer to the acceptable behavior than,

say, a state where both metrics are violated1. We could
even go a step further by also considering the signif-
icance of state metrics. It could be that a violation
in CPU utilization carries more weight than, say, that
of memory utilization. Thus, the agent could be re-
warded more generously for taking actions which re-
sult in no violation in CPU utilization, but less gener-
ously if those actions lead to no violations in memory
utilization. We elaborate further on this in the next sec-
tion.

3. The dynamicity of the system in terms of the changes
in the state structure as a result of run-time policy mod-
ifications necessitates more flexibility in terms of how
the reward function is derived. This is the focus of our
current research on adaptation strategies and is beyond
the scope of this paper.

Thus, we associate each state with a reward whose value
increases towards acceptable behavior. From the exam-
ple above, a reward is zero if the action leads to a state
where both CPU and memory utilization are violated (since
f(Rj

mi
) is 0 for both metrics), and is the highest for a state

with no violation (since f(Rj
mi

) is 100 for both metrics).
And this brings us to our next definition.

Definition 10 Given the current system state
st = 〈µ,M(st), A(st)〉, such that mi ∈ M(st); an
agent visiting state st after taking action a in the previous
state is rewarded as follows:

r(st) =

√√√√ n∑
i=1

mi.ω × [f(Rj
mi)]2 (5)

where, n is the number of metrics, and mi.ω and Rj
mi

cor-
respond, respectively, to the weight associated with metric
mi and the region where metric mi measurement falls (see
Definition 8). In essence, Equation 5 assigns each state a re-
ward whose value increases as one moves towards the most
desirable states.

1In this example, there would be four states since each state metric
could have two possible regions; either it is violated or not. Thus, the fol-
lowing states are possible; (i) a state where both metrics are violated, (ii) a
state where only CPU utilization is violated, (iii) a state where only mem-
ory utilization is violated, and (iv) a state where neither metric is violated.

68

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

6 Learning by Reinforcement

Central to the functionality of the PDP is the need to de-
termine what actions to take given certain violations in QoS
requirements. Note that the choice of actions, a ∈ A(s), is
dependent on the expectation policies that are violated when
the system is in state s. Since policy violations are triggered
by Monitor events collected during the current management
interval, the PDP must decide whether to base its action se-
lection decisions on this information alone or whether to re-
quest advice based on past experience when making those
decisions. This decision-making dilemma lends itself well
to the explore-exploit dilemma in Reinforcement Learning
and is explored in detail next. But first, we comment briefly
on key characteristics that could influence the choice of the
algorithm for balancing exploration and exploitation.

• Each action a ∈ A(s) cannot be treated equally, par-
ticularly because of the importance of the order in
which the actions are specified within each expecta-
tion policy. As illustrated by the the expectation policy
of Figure 3, it is often the case that more drastic ac-
tions (i.e., AdjustMaxBandwidth(-128) which
throttles clients requests by reducing server’s network
bandwidth) are taken once it is no longer possible,
for example, to meet the specified objectives through
the adjustment of applications tuning parameters. It is
therefore important that, to some extent, this order is
preserved, at least during the initial phase of the learn-
ing process.

• It is often the case that characteristics specific to the
violations (and not just the type of violation) provide
useful information about the state of the system as well
as how to best respond to the situation. For example,
if the aim is to ensure that the server’s response does
not exceed 2000.0 ms, then it might be desirable to
treat a violation in the server’s response time of 5000
ms differently than, say, a violation of 2001 ms. Such
kind of information could also be useful in guiding the
exploration process to ensure that more urgent needs
are addressed first.

• We note also that exploration could be quite costly es-
pecially in situations where excessive penalties are in-
curred. It is, therefore, important that the exploration
process takes advantage of existing knowledge about
the policies and violation events as opposed to select-
ing policy actions based exclusively on the type of vi-
olations.

To this end, we propose the use of a near greedy ap-
proach to balancing exploration and exploitation whereby
the learning agent behaves greedily - by executing the action
with the highest Q(s, a) - most of the time (with probability

1 − ε) and, once in a while (with probability ε) the agent
selects an action independent of the current action-value es-
timate Q(s, a). Unlike the ε-greedy method [3] which treats
all actions equally during exploration, action selection is
based on the action-value estimate that is derived from the
characteristics of both policies and violations. This is par-
ticularly useful when it is necessary to differentiate one ac-
tion from another given that multiple, and at times conflict-
ing, actions may be “advocated” by the violated policies and
where the order in which the actions are specified might be
of importance.

6.1 Exploration Strategy

In certain situations, the learning agent may need to
make management decisions without depending, exclu-
sively, on past experience. This could be part of the agent’s
strategy of exploring its environment to discover what ac-
tions bring the most reward. It could also be because the
agent may have no other choice if past experience does not
include knowledge about the current situation if, in fact, it
is the first time the situation is encountered. Consequently,
the agent may have to base its decisions on information
other than past experience. In our approach, these decisions
are guided by the following strategies that are based on the
characteristics of the enabled expectation policies and those
of the violation events:

1. The severity of the violation: Rather than treating
each violation equally, we assign more weight to
those violations that are more severe. The severity
of the violation is based on the value of the met-
ric relative to the condition’s threshold. For exam-
ple, for a CPU utilization of 100% given the condition
“CPU:utilization > 85.0” (i.e., as a result of
violating the policy of Figure 9), this value is computed
from the difference between the measured value and its
threshold value (i.e., 15%) as defined by Equation 8.

2. The significance of the violation: In the case that mul-
tiple policies are violated, it may be desirable to as-
sign a higher priority (or weight) to a particular event
so that the management system can respond to such
a violation (i.e., by selecting appropriate policy ac-
tions) first before dealing with other less-important vi-
olations. For instance, it is quite reasonable to respond
to CPU utilization violations before addressing viola-
tions related to, say, response time since failure to ad-
dress the former may result in more severe violations
of the latter as a result of over-utilization of CPU re-
sources. This is done by allowing a weight to be asso-
ciated with events which then become weights on the
conditions that become true in violated policies (see
Definition 2). The weight associated with policy con-

69

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

� �
e x p e c t a t i o n p o l i c y {CPUViola t ion (PDP , PEP)}

i f (C P U : u t i l i z a t i o n > 8 5 . 0) & (CPU:u t i l i za t ionTREND > 0 . 0)
t h e n {A d j u s t M a x C l i e n t s (−25) t e s t {newMaxClients > 49} |

Adjus tMaxKeepAl iveReques t s (−30) t e s t {newMaxKeepAliveRequests > 1} |
AdjustMaxBandwidth (−128) t e s t {newMaxBandwidth > 255}}
� �

Figure 9. An expectation policy for resolving Apache’s CPU utilization violation.

� �
e x p e c t a t i o n p o l i c y {CPUandRESPONSETIMEViolation (PDP , PEP)}

i f (C P U : u t i l i z a t i o n > 8 5 . 0) & (CPU:u t i l i za t ionTREND > 0 . 0) &
(APACHE:responseTime > 2 0 0 0 . 0) & (APACHE:responseTimeTREND > 0 . 0)

t h e n {Adjus tMaxKeepAl iveReques t s (−30) t e s t {newMaxKeepAliveRequests > 1} |
AdjustMaxBandwidth (−128) t e s t {newMaxBandwidth > 255}}
� �

Figure 10. An expectation policy for resolving Apache’s CPU utilization and response time violations.

dition ci which then becomes the strength of policy pj

is denoted by the parameter ci.ω (see Equation 7).

3. The advocacy of the action: In the case that multiple
policies are violated, it might be possible that more
than one policy advocates the same action. For ex-
ample, in our current test environment involving the
Apache server and other components, different poli-
cies with different conditions (see, for example, Fig-
ures 3 and 9) may indicate that the same action be
taken, i.e., AdjustMaxBandwidth which controls
the maximum number of requests a server can process.
The number of policies advocating the action as well
as the position of the action within each policy (whose
weight is denoted by the parameter Wa(pj) in Equa-
tion 6) are also considered when estimating Q0(s, a).
The position is of particular interest since, in our expe-
rience, it is often the case that more drastic actions are
not taken until other actions to adjust tuning parame-
ters have first been “tried”.

4. The specificity of the policy: In a situation where sev-
eral policies are violated, the number of conditions
within each policy (as well as conditions weights)
could also be taken into consideration when determin-
ing which policy has more weight. For example, in
the event that both CPU utilization and response time
are violated, the policy in Figure 10 would be given
more weight than the policy of Figure 9. This infor-
mation could be taken into account when evaluating
the strength of policy pj , which we refer to as S(pj)
(see Equation 7).

Thus, given the policy system PS = 〈P,WC〉 (see Def-
inition 2) and supposing that Pv is a set of expectation poli-

cies that are violated in the current management interval
such that Pv ⊆ P , we can estimate the initial value of an
action, a, as follows:

Q0(s, a) =

∑
pj∈[Pv]a

tanh[S(pj)] × Wa(pj)

‖ [Pv]a ‖
(6)

where [Pv]a is the subset of violated policies advocating
action a; Wa(pj) is the weight of action a based on its po-
sition within policy pj . In our current implementation, ac-
tions weights take values between 100 and 0 such that the
first policy action gets the highest value (i.e., 100) while the
last policy action gets the lowest value (i.e., 0), with weights
assigned to the actions at equal intervals according to Equa-
tion 3. Thus, in the case of a policy with three actions such
as the policy of Figure 9, the values would be 100, 50, and 0,
in that order; S(pj) is the strength of policy pj as specified
by Equation 7:

S(pj) =
∑

ci∈pj

ci.ω × V (ci) (7)

where ci.ω is the weight associated with policy condition ci

based on the significance of the condition’s violation (see
Definition 2), and V (ci) is the severity of the violation of
condition ci. This value is computed as follows:

V (ci) =
∣∣∣∣ei.value− ci.Γ

Ω

∣∣∣∣ (8)

where ei.value is the current value of the event responsi-
ble for violating condition ci, ci.Γ is the threshold value of
condition ci, and

Ω =
{

1, |ci.Γ| ≤ 1
ci.Γ, otherwise

(9)

70

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

Briefly, Equation 7 estimates Q0(s, a) based on the
severity of the violations of the conditions associated with,
as well as the significance of, individual policies. We mea-
sure the severity based on the difference between the condi-
tion’s threshold, ci.Γ, and the observed value of the metrics,
ei.value, responsible for its violation (see Equation 8). In
certain situations, it may be desirable to designate a higher
priority to a particular event so that the management system
can respond to such a violation first (i.e., by selecting appro-
priate policy actions) before dealing with other less impor-
tant violations. This is the purpose of the parameter ci.ω in
Equation 7. This information could then be used to estimate
the action value (see Equation 6), which takes into account
the number of policies advocating the action, the position of
the action, and the severity associated with the violation of
the conditions within each violated policy. Thus, the same
set of violations, for example, may result in different actions
being taken depending on the initial action-value estimates.
This is in contrast to static approaches where the order of the
actions is always the same for the same set of violations.

6.2 Exploitation Strategy

As noted previously, it is often very difficult to obtain,
in advance, models that accurately capture systems dynam-
ics particularly for the state of the enterprise systems. Our
approach to learning, for reasons mentioned in Section 2,
is based upon the Dyna-Q framework [8] where the model
of the system is continuously learned, on-line, and used for
planning. We are currently exploring several strategies on
how such a model, represented by the state-transition graph
(as discussed in Section 5), might be used to help the system
adapt the way it uses policies when making decisions on
how to resolve QoS requirements violations. These strate-
gies fall into two broad categories:

1. Reactive Enforcement: In this approach, the auto-
nomic manager could adapt the way it reacts to vio-
lations in QoS requirements (i.e., respond after a vi-
olation has occurred) based on the currently learned
model. One such approach involves having the PDP
request advice from the learning component during
each management cycle where the system is in “vio-
lation” state. This may include, for example, an advice
on what policy action to take in the current state (i.e., s)
based on the currently learned Q(s, a) estimates asso-
ciated with each action a ∈ A(s). It may also be pos-
sible to recommend multiple actions if their impact is
deemed positive. This may involve, for example, com-
puting the shortest path from the current “violation”
state to an “acceptable” state based on the Q(s, a) es-
timates associated with the actions within the current
state-transition graph. A path, in this case, constitutes
an ordered list of actions. For instance, if the system

is in state s1 of Figure 7, the learning agent may rec-
ommend the enforcement of a set of actions consisting
of {a3, a2, a2} essentially steering the system to an
“acceptable” state s8.

2. Proactive Enforcement: In this approach, the auto-
nomic manager, in anticipating possible violations in
QoS requirements, may recommend a set of actions
aimed at steering the system away from “violation”
states before the system gets there. For instance, if it
has been observed that the system makes a γ-transition
from an “acceptable” state (i.e., s2 in Figure 7) to a
“violation” state (i.e., s1) with a very high probability,
then appropriate actions could be taken before the sys-
tem gets to state s1. Thus, actions {a3, a2, a2} could
be enforced while the system is still in state s2 which
may, as a result, move the system to a more stable “ac-
ceptable” state (i.e., s8) consequently minimizing pos-
sible future violations.

The above two approaches to QoS provisioning highlight
several key advantages on how the autonomic management
system can respond to violations: First, rather than restrict-
ing the selection of policy actions to only those advocated
by the violated policies (i.e., a ∈ A(s)), the autonomic
manager is able to look beyond the actions within a sin-
gle state for actions, some of which might not even be part
of those in the violated policies, whose impact may be pos-
itive but not immediate. Second, the autonomic manager
could take multiple actions. Assume, for example, that the
system is in state s1 and that a2 corresponds to the action
“AdjustMaxClients(+25)” as specified by the policy
of Figure 3. Thus, instead of increasing MaxClients by
25, the same action could be performed twice. A key ad-
vantage here is that multiple adjustments to the tuning pa-
rameters could be made when past behavior suggests that
it is likely prudent to do so. Third, the autonomic manager
has the ability to be proactive, that is, use past experience to
take actions in anticipation of policy violations. This would
be done by looking ahead in the state graph. The agent may
determine whether some action could lead to either a very
bad situation or a very good one. For instance, the agent us-
ing the state-transition information in Figure 7 could avoid
actions such as a2 while in state s1 if past experience show
that, once that action is taken, it is less likely for the system
to make a transition back to an acceptable state.

6.3 The Learning Algorithm

To compute the action-value estimates, we use a mod-
ified version of the Dyna-Q algorithm (see Algorithm 1)
that enables the agent to learn in non-deterministic environ-
ments. The algorithm (see Algorithm 2), which we refer to

71

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

herein as Dyna-Q*, takes into account transition probabili-
ties when computing action-value estimates.

Algorithm 2 Dyna-Q* Algorithm
Input: Initialize GP = 〈S, T 〉 for policy system PS =
〈P,WC〉

1: for i = 1 to∞ do
2: s← current (non terminal) state
3: a← ε-greedy(s,Q0) (see Equation 6)
4: Execute a; observe resultant state, s′

5: Q(s, a) ← Q(s, a) + α{E[r(s, a)] +
γE[maxa′ Q(s′, a′)]−Q(s, a)}

6: GP ← 〈s′, t(s, a, s′)〉
7: for j = 1 to k do
8: s← random previously observed state
9: a← random action previously taken in s

10: Q(s, a) ← Q(s, a) + α{E[r(s, a)] +
γE[maxa′ Q(s′, a′)]−Q(s, a)}

11: end for
12: end for

To compute the expected values, we define a transition
probability as follows:

Pr[t(s, a, s′)] =
ti(s, a, s′).λ∑

ti(s,a,s′
j)∈T (s)

ti(s, a, s′j).λ
(10)

where ti(s, a, s′).λ is the frequency associated with a tran-
sition originating from state s and terminating at state s′

as a result of taking action a in state s (see Definition 9).
Thus, ti(s, a, s′j) ∈ T (s) is a subset of transitions originat-
ing from s (i.e., T (s)) as a result of taking action a. From
Equation 10, the expected reward can be computed as fol-
lows:

E[r(s, a)] =
X

ti(s,a,s′
j)∈T (s)

Pr[ti(s, a, s′j)]× r(s′j) (11)

where r(s′j) is the reward associated with state s′j computed
using Equation 5. Similarly, the expected action-value esti-
mate can be computed as follows:

E[max
a′

Q(s′, a′)] =
X

ti(s,a,s′
j)∈T (s)

Pr[ti(s, a, s′j)]×max
a′

Q(s′j , a
′)

(12)
Note that, in the case of deterministic transitions,

Pr[ti(s, a, s′)] = 1. Thus, E[r(s, a)] is essentially equal
to r(s′j); i.e., the reward the agent receives after making a
transition to state s′j (see Definition 10). Similarly, Q(s, a)
is essentially the same as the action-value estimate asso-
ciated with the transition (i.e., Qti

(s, a)) as computed by
Equation 4. And this is consistent with the implementation
of the Dyna-Q Algorithm in deterministic environments as
described in Section 2 (see Algorithm 1).

7 Results and Experience

This section presents the prototype implementation of
the adaptive policy-driven autonomic system as well as re-
port on our experience.

7.1 Managed System

We evaluated the effectiveness of the learning mecha-
nisms on the behavior of a multi-component Web server
consisting of an Apache (v2.2.0) [24] which was config-
ured with a PHP (v5.1.4) module [25], and a MySQL (v5.0)
database server [26]. We used the PHP Bulletin Board (ph-
pBB) application [27] to generate dynamic Web pages. This
application utilizes queries to display information stored in-
side a database, in our case, the MySQL database. The
main database tables include forums, topics, posts, users,
and groups. These tables are used to store information spe-
cific to discussions. In addition to viewing forum-related
information, users may post messages using forms, which
can be viewed through a Web browser. A single worksta-
tion was used to host the components as illustrated in Fig-
ure 12. Service differentiation mechanisms for classifying
gold, silver, and bronze clients were also implemented (see
Section 7.3). Several effectors were implemented and in-
cluded those for adjusting the following parameters: (For
a detailed description of the tuning parameters excluding
MaxBandwidth, the reader is referred to [24, 26].)

• MaxClients (Apache): controls the maximum num-
ber of server processes that may exist at any one time
(i.e., the size of the worker pool) and corresponds to
the number of simultaneous connections that can be
serviced. Setting this value too low may result in new
connections being denied. Setting it too high, on the
other hand, allows multiple clients’ requests to be pro-
cessed, but may lead to performance degradation as a
result of excessive resource utilization.

• MaxKeepAliveRequests (Apache): corresponds
to the maximum number of requests that a keep-
alive connection [28] can transmit before it is
closed. Its value is often set relative to the
KeepAliveTimeout, which corresponds to the
client’s think time - the amount of time, in seconds,
the server will wait on a persistent connection before
closing it. Setting this value too high may result in
having connections linger for too long after a client
has disconnected thus wasting server’s resources. On
the other hand, setting this value too low may lead to
having clients rebuild their connections often, possibly
impacting the response time and CPU utilization.

• EaccMemSize (PHP): The PHP performance was
further enhanced with the eAccelerator [29] encoder.

72

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

Figure 11. A Graphical User Interface (GUI) to the autonomous management system.

This module provides mechanisms for caching com-
piled scripts so that later requests invoking similar
scripts do not incur compilation penalty. The parame-
ter EaccMemSize controls the size of memory cache.

• KeyBufferSize (MySQL): corresponds to the to-
tal amount of physical memory used to index database
tables.

• ThreadCacheSize (MySQL): corresponds to the
number of threads the database server may cache for
reuse. Thus, instead of creating a new thread for each
request to the database, the server uses the available
threads in the cache to satisfy the request. This has the
advantage of improving the response time as well as
the CPU utilization.

• QueryCacheSize (MySQL): corresponds to the

maximum amount of physical memory used to cache
query results. Thus, a similar query to previously
cached results will be serviced from memory and not
from disk.

• MaxConnections (MySQL): corresponds to the
maximum number of simultaneous connections to the
database.

• MaxBandwidth (System): corresponds to the physi-
cal capacity (in kbps) of the network connection to the
workstation hosting the servers.

The servers provide support for dynamic adjustment of the
parameters. For the Apache-PHP server, for example, the
actual adjustment to the parameters was done by editing
the appropriate configuration file and performing a grace-
ful restart [24] of the server.

73

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

7.2 Using Policies

We used the Policy Tool of Figure 11 to specify poli-
cies which expressed the desired behavior of the managed
system (in terms of CPU, memory utilization, and response
time thresholds) as well as possible management actions to
be taken whenever those objectives were violated (see, for
example, the policy of Figure 3). We also defined several
policies that dealt specifically with the optimization of re-
source usage whenever an opportunity arose. This is illus-
trated by the policy of Figure 8 where, given that there are
no violations in QoS requirements, one might reduce the
number of MaxClients to a smaller value, thus reducing
memory utilization. During this time, existing clients might
also be allowed to hold onto server processes for much
longer (i.e., by increasing MaxKeepAliveRequests) to
improve their response time (rather than requiring them to
re-negotiate their connections every so often). One might
also increase the server’s bandwidth. In our implementa-
tion, we classify states associated with the violations of such
policies as “acceptable” (see Definition 7). Each state con-
sisted of ten metrics corresponding to equally weighted (see
Definition 2) conditions from the enabled policies.

7.3 Testbed Environment

A testbed environment consisted of a collection of net-
worked workstations, each connected via 10/100 megabit-
per-second (Mbps) Ethernet switch (see Figure 12). They
include an administrative console used to run the Policy
Tool; a Linux workstation with a 2.0 GHz processor and 2.0
Gigabytes of memory which hosted the Apache Web Server
along with the Knowledge Base and the MySQL database
server; and three workstations used to run the traffic load
tool for generating server requests for the gold, silver and
bronze service classes.

Figure 12. Testbed Environment.

In order to support service differentiation, a Linux Traf-
fic Controller (TC) Tool [30] was used to configure the
bandwidth associated with the gold, silver, and bronze ser-
vice classes. Thus, given the maximum possible bandwidth
the service classes throughput were assigned proportion-
ately according to the ratio 85:10:5; bandwidth sharing was
also permitted. The actual classification was based on the
remote IP address of the clients’ request and occurred at
the point where requests reached the workstation hosting
the Apache server. The tuning parameter MaxBandwidth
is what determines how much bandwidth is assigned to
each service class. Thus, given that the policy of Fig-
ure 3 has been violated and that it is no longer possible,
for example, to adjust the parameters MaxClients and
MaxKeepAliveRequests, then the last policy action
(i.e., AdjustMaxBandwidth(-128)) would be exe-
cuted, which essentially reduces the total bandwidth by 128
kbps. The percentage of the new bandwidth is what is even-
tually assigned to the different service classes.

7.4 Workload Generator

To simulate the stochastic behavior of users, the Apache
load generator tool (ab) [24] was modified to support con-
current and independent keep-alive requests to the server.
The tool was also modified to emulate the actual behav-
ior of users by traversing the Web graph of an actual Web
site. Thus, for each response from the server, the tool ran-
domly selects which subsequent link (among the links in
the received Web page) to follow. In the experiments re-
ported in this paper, we only considered requests involving
dynamic Web content through the use of the phpBB applica-
tion. Also, we only considered database read-only requests.
For all the experiments, the load generator in each client’s
workstation was configured such that the number of con-
current connections to the server and the think-time for the
gold, silver, and bronze clients were identical. These values
were set to ensure that the server was under overload condi-
tions (i.e., saturated) for the duration of the experiment.

7.5 Experiments and Results

To evaluate the impact of the learning mechanisms on
the behavior of the server - which was measured in terms of
Apache’s responsiveness (i.e., response time), throughput
(i.e., number of requests processed), and resources utiliza-
tion (i.e., CPU and memory) - we conducted three exper-
iments: The first (base) experiment (Exp-1) looked at the
behavior when all the expectation policies were disabled.
The server’s bandwidth was also set arbitrarily large and
service differentiation mechanisms were disabled. The sec-
ond experiment (Exp-2) looked at the impact of the action
selection mechanisms (see Equation 6) which depended ex-

74

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

Figure 13. Server’s CPU utilization measurements.

clusively on the characteristics of both the violation events
and the violated policies within a single management inter-
val; i.e., without the learning mechanisms. The third experi-
ment (Exp-3) looked at the impact of action selection mech-
anisms based on learning from past experience in the use of
policies. We used the areas occupied by the curves beyond
the thresholds (85% for CPU utilization, 50% for memory
utilization, and 2000 ms for response time) to compare the
performance of the server relative to the base experiment
(i.e., Exp-1). This provided a measure of the amount of
time the system spent in “violation” states, essentially al-
lowing us to compare performance improvement relative to
the base experiment.

7.5.1 CPU Utilization

Figure 13 compares the behavior of the server in terms of
CPU utilization. The number listed in square brackets be-
side each experiment is the average utilization for the dura-
tion of the experiment. From these results, we can see that
the average CPU utilization for the base experiment (i.e.,
Exp-1) fell above the threshold value (i.e., 85%) whereas
that of Exp-2 and Exp-3 fell below the threshold. While the
main objective was to ensure that CPU utilization did not
exceed 85% (which was accomplished in both Exp-2 and
Exp-3), it is worth noting that action-selection mechanisms
based on learning from past experience in the use of policies
(i.e., Exp-3) performed slightly worse than when no learn-
ing mechanisms were enabled (i.e., Exp-2). This became
more obvious when we considered the area occupied by the
graphs above the thresholds relative to the base experiment
as illustrated in Figure 14.

There are several reasons for this: The most obvious is
probably the impact of γ-action (see, for example, Ta-

Figure 14. Area beyond the thresholds.

ble 2) particularly during the initial stages of the learn-
ing process whereby the agent may be forced to spend
more time exploring its environment (while building up
the model). This may include trying actions such as γ-
action; i.e., doing-nothing instead of performing actual
adjustments to the tuning parameters to resolve QoS vio-
lations. This stage can clearly be seen from the graph of
Exp-3 in Figure 13; i.e., between time-steps 26 and 70. The
less obvious reason relates to the fact that the agent may
have to consider multiple, and at times competing, objec-
tives and this might be the best way of optimally meeting
all the objectives. Thus, while the server may have per-
formed slightly worse in Exp-3 than in Exp-2, the reverse
was also true when considering the server’s response time
(see Figure 14) and throughput (see Figure 18). This is an
illustration of one of the key challenges facing autonomic
systems; i.e., how to negotiate between seemingly conflict-
ing objectives: On the one hand, striving to meet customer

75

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

Figure 15. Server’s response time measurements.

needs, in this case improving server’s response time; on the
other hand, trying to ensure efficient operation of systems
and utilization of services.

7.5.2 Response Time

Response time measurements on the server side corre-
sponded to the amount of time requests from non keep-alive
connections spent on the waiting queue before they were
served. The results are depicted in Figure 15 which also
shows the average response for each experiment listed in-
side square brackets. From these measurements, one can
see a significant improvement in the server’s response time.
This became more obvious when we computed the area
above the thresholds relative to the base experiment as illus-
trated in Figure 14 where Exp-2 recorded at least a 65% im-
provement while Exp-3 recorded at least an 85% improve-
ment in response time.

Figure 16. Client’s response time.

We also compared client-side response time measure-
ments which calculated the average time it took for a client
to receive a response from the server (see Figure 16). Since
no service differentiation mechanisms were enabled for the
base experiment (i.e., Exp-1), the measured response was
somewhat similar for gold, silver, and bronze clients. How-
ever, this changed significantly in Exp-2 and Exp-3 where
gold clients response time was significantly better than that
of silver and bronze clients. We also observed significant
improvement in the response time of gold clients in Exp-2
and Exp-3 compared to the average of Exp-1. However, be-
tween the two experiments, there was very little difference
when similar service classes were compared.

7.5.3 Throughput

Throughput measurements looked at the average number of
requests serviced by the server for the duration of the ex-
periment. The results specific to Exp-3 are shown in Fig-
ure 17: results for all the three experiments are summarized
in Figure 18. Again, since no service differentiation mech-
anisms were enabled in Exp-1, the measurements were es-
sentially similar for the three service classes. Furthermore,
comparing the average across service classes (see the values
listed inside square brackets in Figure 18), one can see that
slightly more requests were serviced in Exp-1 than in Exp-2
and Exp-3. This was expected since there weren’t any re-
strictions, for example, in terms of the server’s resource uti-
lization. In terms of the performance of individual service
classes for both Exp-2 and Exp-3, the throughput measure-
ments were consistently higher for the gold than for the sil-
ver and bronze service classes. The server also performed
consistently better in Exp-3 than in Exp-2 across service
classes.

76

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

Figure 17. Server’s throughput measurements.

Figure 18. Server’s throughput.

8 Related Work

Recently, several approaches based on Reinforcement
Learning have been proposed for managing systems per-
formance in dynamic environments. This section reviews
some of the research work in this area and contrast them to
our approach.

The work in [21] proposes the use of Reinforcement
Learning for guiding server allocation decisions in a multi-
application Data Center environment. By observing the ap-
plication’s state, number of servers allocated to the applica-
tion, and the reward specified by the SLA, a learning agent
is then used to approximate Qπ(s, a). To address poor scal-
ability in large state spaces, the authors initially proposed
an approximation of the application’s state by discretizing
the mean arrival rate of page requests [20]. In their most
recent work [21], they address this shortfall by proposing
an off-line training, to learn function approximators using

SARSA(0) [3], based on the data collected as a consequence
of using a queuing-model policy, π, on-line. A key assump-
tion is that the model-based policy is good enough to give
an acceptable level of performance.

The authors in [22] propose a framework which make
use of Reinforcement Learning methodologies to perform
adaptive reconfiguration of a distributed system based on
tuning the coefficients of fuzzy rules. The focus is on the
problem of dynamic resource allocation among multiple en-
tities sharing a common set of resources. The paper demon-
strates how utility functions for making dynamic resource
allocation decisions, in stochastic dynamic environments
with large state spaces, could be learned. The aim is to
maximize the average utility per time step of the computing
facility through the reassignment of resources (i.e., CPUs,
memory, bandwidth, etc.) shared among several projects.

The work in [23] proposes the use of Reinforcement
Learning techniques in Middlewares to improve and adapt
the QoS management policy. In particular, a Dynamic Con-
trol of Behavior based on Learning (DCBL) Middleware is
used to learn a policy that best fits the execution context.
This is based on the estimation of the benefit of taking an
action given a particular state, where the action, in this case,
is a selection of a QoS level. It is assumed that, each man-
aged application offer several operating modes from which
to select, depending on the availability of resources.

Our approach differs in several ways; First, the model
of the environment is “learned” on-line and used, at each
time-step, to improve the policy guiding the agent’s interac-
tion with the environment. Second, our strategy for adapt-
ing the use of policies makes use of a learning signal that is
based only on the structure of the policies and should, thus,
be applicable in other domains. Similarly, changing poli-
cies dynamically means that the heuristics will still work

77

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

for a new set of policies. Since the state signal is depen-
dent only on the enabled expectation policies, its structure
and size can also be automatically determined once a set of
policies is specified. Third, we do not make use of poli-
cies which are by themselves “models” of the system being
managed. While steady-state queuing models have received
significant interest in on-line performance management and
resource allocation in dynamic environments, we note that
most of these approaches model the behavior of the applica-
tion using the mean requests arrival rate, ignoring other im-
portant characteristics. In dynamic Web environments, for
example, requests to dynamic pages with database intensive
queries could stress the application significantly different
(in terms of server’s response, resources utilization, etc.)
compared to, say, requests to static pages under the same
rate. Our policies, on the other hand, are simpler and do
not make any assumptions about workload characteristics.
Fourth, our approach does not make any assumption about
the accuracy of the policies used to drive autonomic man-
agement. We view learning as an incremental process in
which current decisions have delayed consequences on how
the learning agent behaves in future time-steps. It is sig-
nificantly important, therefore, for training to be performed
on-line in order for the agent to learn from the consequences
of its own decisions and, if necessary, dynamically adapt the
policy guiding its interaction with the environment.

9 Conclusion

In this paper, we have proposed a strategy for determin-
ing how to best use a set of active policies to meet the dif-
ferent performance objectives. Our focus has particularly
been on the use of Reinforcement Learning methodologies
to determine how to best use a set of policies to guide auto-
nomic management decisions. Such use of learning has sig-
nificant ramifications for policy-driven autonomic systems.
In particular, it means that system administrators no longer
need to manually embed system’s dynamics into policies
that drive autonomic management. Unlike previous work
on the use of action policies, for example, which required
system administrators to manually specify policy priorities
for resolving run-time policy conflicts, desirable behavior
could be learned. It should be noted, however, that, while
Reinforcement Learning offers significant potential bene-
fits from an autonomic computing perspective, several chal-
lenges remain when these approaches are employing in real-
world autonomic systems. This section looks at how we
intend to address some of these challenges.

9.1 Challenges

The choice of how to model system states has signifi-
cant impact on the learning process. As with many real-

world systems, the state space can become prohibitively
large since its size increases exponentially with the num-
ber of state metrics and their discretization. As such, stor-
ing and analyzing statistics associated with each state may
require significant computation resources, which could be
exceedingly costly to implement in a live system. In our
current approach, we make an approximation in the repre-
sentation of the system’s state by mapping the conditions
of the enabled expectation policies onto the state metrics.
A system where each state has ten metrics, each with two
possible regions (i.e., “violation” and “acceptable”), for ex-
ample, would have 210 (1024) possible states. We note that,
in such a system, a majority of the states are likely to corre-
spond to “acceptable” system’s behavior. This is illustrated
in Table 2 where out of the four states, only one state (s1)
is considered a “violation” state since it is the only state
that results in the violation of the policy in Figure 3. Thus,
while the size of the state space could be large, many of
these states may be considered as “goal” states and, as such,
would have no actions associated with them. Furthermore,
it is not guaranteed that the agent would visit all the possi-
ble states during the learning process. An immediate con-
sequence of this is a reduction in the amount of information
associated with states and their transitions.

As was noted previously, the change in the system’s state
might be a result of external factors other than the conse-
quences of the actions of the agent. In a Web-server envi-
ronment, such transitions are often triggered by changes in
workload characteristics. For example, a sudden increase in
the number of clients could trigger a transition to a viola-
tion state. The fact that the state signal is not derived from
such characteristics means that the learning agent can not be
certain about whether or not the system’s behavior at time
t+1 is the consequence of its action at time t. We have taken
the approach of excluding requests characteristics from the
state signal mainly due to the stochastic nature of the in-
teractions between these characteristics and the behavior of
the system. For instance, the number of concurrent con-
nections, the type of request (i.e., static vs dynamic), the
requests rate, etc., all these could have significant ramifica-
tions on the behavior of the server. Including these charac-
teristics as part of the state signal is likely to add significant
overhead in the learning process. Excluding such character-
istics, on the other hand, will not hinder the learning process
since in the long run, the agent would learn about the impact
of the action at st as the number of times the action is taken
becomes large.

The decision to exclude requests characteristics from the
state signal means that transitions between states could be
a result of other factors. We refer to such transitions as γ-
transitions (see, for example, Figure 7). We note that such
transitions are more likely to originate from “acceptable”
states since most of these states would have no actions as-

78

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

sociated with them. For example, a sudden increase in the
number of clients requests may cause a violation in CPU
utilization; i.e., a γ-transition from an “acceptable” state
with no CPU utilization violation to a “violation” state. It
may also be possible for such transitions to originate from
“violation” states. Revisiting our example in Table 2, it
might be that all three actions of the policy of Figure 3 are
invalid, in which case no action could be taken while the
system is in state s1. The only possible transition, in this
case, would be a γ-transition. We note, however, that such
transitions are rare in comparison to those originating from
“acceptable” states since it is unlikely that all state actions
would fail within a single management interval. The ex-
istence of γ-transitions in the state-transition graph intro-
duces some interesting challenges for the learning agent.
First, the agent may have to decide whether doing noth-
ing (i.e., taking a γ-action) while in state s might be better
than, say, taking an action advocated by the violated poli-
cies. This may require having to learn the action-values as-
sociated with the γ-transitions (i.e., Qt(s, γ)). Second, the
learning agent may need to distinguish between two “ac-
ceptable” states if past experience shows that one state is
more unstable than another. The measure of stability could
be based on the characteristics of γ-transitions.

9.2 Future Work

Policy conflicts remain one of, if not, the most chal-
lenging area in policy-driven autonomic management. On
the one hand, conflicts due to policy overlaps can, in most
cases, be detected and corrected by analyzing static policy
characteristics. On the other hand, policy conflicts which
arise from dynamic characteristics specific to policy inter-
actions can only be detected at run-time. For autonomic
systems to function correctly, these kinds of conflicts need
to be addressed. To what extent Reinforcement Learning
could help address some of these challenges is something
we hope to address in our future work.

Model-based Reinforcement Learning methods tend to
be computationally demanding, even for fairly small state
spaces, and could be costly when implemented in a live sys-
tem. As pointed out previously, this is often due to the size
of the state space as well as the computations required to
process information associated with the states and actions.
The key challenge then is ensuring that computational costs
specific to on-line learning tasks do not hinder the learn-
ing process. In order to address this challenge, we have be-
gun looking at how management policies (see Section 3.2.3)
could be used to optimize resources usage during the learn-
ing process. This may include, for example, deciding on
the circumstances under which computation-intensive algo-
rithms (i.e., action-value estimations) could be executed or
paused depending on the current behavior of the system.

We are also interested in the use of management policies
for “tuning” the behavior of algorithms to meet the resource
constraints imposed by the environment. This may, for ex-
ample, involve dynamically selecting the types of updates
to be performed in order to minimize the algorithms’ use of
computational resources. For instance, management poli-
cies could be used to determine a reasonable value for k
(which determines how many updates can be performed) in
the Dyna-Q algorithm (see Algorithm 1 in Section 2).

The use of policies in autonomic computing means that
the system must be able to adapt not only to how it uses the
policies, but also to run-time policy modifications. In the
context of where policies are used to drive autonomic man-
agement, this often means dynamically changing the param-
eters of the policies, enabling/disabling policies or actions
within policies, or adding new policies onto an active set of
policies. A key question then is whether a model “learned”
from the use of one set of policies could be applied to an-
other set of “similar” policies, or whether a new model must
be learned from scratch as a result of run-time changes to
the policies driving autonomic management. Our most re-
cent work [31] has began addressing some of the questions.

References

[1] R. Murch, Autonomic Computing. IBM Press., 2004.

[2] R. M. Bahati, M. A. Bauer, and E. M. Vieira, “Adapta-
tion Stratergies in Policy-Driven Autonomic Manage-
ment,” in International Conference on Autonomic and
Autonomous Systems (ICAS’07), Athens, Greece, July
2007, p. 16.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning:
an Introduction. MIT Press, 1998.

[4] L. P. Kaelbing, M. L. Littman, and A. W. Moore, “Re-
inforcement Learning: A Survey,” in Journal of Artifi-
cial Intelligence Research, April 1996, pp. 237–285.

[5] R. S. Sutton, “Integrated Architecture for Learning,
Planning, and Reacting based on Approximating Dy-
namic Programming,” in International Conference on
Machine Learning, Austin, TX, USA, 1990, pp. 216–
224.

[6] A. W. Moore and C. G. Atkeson, “Prioritized Sweep-
ing: Reinforcement Learning with Less Data and Less
Real Time,” in Machine Learning, vol. 13, no. 1, Oc-
tober 1993, pp. 103–130.

[7] J. Ping and R. J. Williams, “Efficient Learning and
Planning Within the Dyna Framework,” in Interna-
tional Conference on Simulation of Adaptive Behav-
ior: From Animals to Animats, 1993, pp. 281–290.

79

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

[8] R. S. Sutton, “Dyna, an Integrated Architecture for
Learning, Planning, and Reacting,” in SIGART Bul-
letin, vol. 2, no. 4, 1991.

[9] N. Damianou, N. Dulay, E. C. Lupu, and M. S. Slo-
man, “Ponder: A Language for Specifying Security
and Management Policies for Distributed Systems:
The Language Specification,” Technical Report, Im-
perial College, London, UK, Version 2.1, April 2000.

[10] H. L. Lutfiyya, G. Molenkamp, M. J. Katchabaw, and
M. A. Bauer, “Issues in Managing Soft QoS Require-
ments in Distributed Systems Using a Policy-based
Framework,” in International Workshop on Policies
for Distributed Systems and Networks (POLICY’01),
Bristol, UK, January 2001, pp. 185–201.

[11] J. O. Kephart and W. E. Walsh, “An Artificial Intel-
ligence Perspective on Autonomic Computing Poli-
cies,” in IEEE International Workshop on Policies
for Distributed Systems and Networks (POLICY’04),
2004, pp. 3–12.

[12] S. Wang, D. Xuan, R. Bettati, and W. Zhao, “Pro-
viding Absolute Differentiated Services for Real-Time
Applications in Static-Priority Scheduling Networks,”
in IEEE/ACM Transactions on Networking (TON’04),
vol. 2, December 2004, pp. 326–339.

[13] T. Kelly, “Utility-directed Allocation,” in Workhop on
Algorithms and Architectures for Self-Managing Sys-
tems, San Diego, CA, USA, June 2003.

[14] P. Thomas, D. Teneketzis, and J. K. MacKie-Mason,
“A Market-based Approach to Optimal Resource Al-
location in Integrated-Services Connection-Oriented
Networks,” in INFORMS Telecommunications Con-
ference, Boca Raton, FL, USA, 2000.

[15] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das,
“Utility Functions in Autonomic Systems,” in In-
ternational Conference on Autonomic Computing
(ICAC’04), New York, NY, USA, May 2004, pp. 70–
77.

[16] M. J. Katchabaw, “Quality of Service Resource Man-
agement,” Ph.D. dissertation, The University of West-
ern Ontario, London, ON, Canada, June 2002.

[17] R. M. Bahati, M. A. Bauer, C. Ahn, O. K. Baek, and
E. M. Vieira, “Policy-based Autonomic Management
of an Apache Web Server,” in International Confer-
ence on Self-Organization and Autonomous Systems
in Computing and Communications (SOAS’06), vol. 2,
no. 1, Erfurt, Germany, September 2006, pp. 21–30.

[18] R. M. Bahati, M. A. Bauer, and E. M. Vieira,
“Policy-driven Autonomic Management of Multi-
component Systems,” in IBM International Confer-
ence on Computer Science and Software Engineering
(CASCON’07), Richmod Hill, ON, Canada, October
2007, pp. 137–151.

[19] R. Das, G. Tesauro, and W. E. Walsh, “Model-
Based and Model-Free Approaches to Autonomic Re-
source Allocation,” Technical Report, IBM Research,”
RC23802, 2005.

[20] G. Tesauro, “Online Resource Allocation Using De-
compositional Reinforcement Learning,” in Associ-
ation for the Advancement of Artificial Intelligence
(AAAI’05), 2005.

[21] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani,
“A Hybrid Reinforcement Learning Approach to Au-
tonomic Resource Allocation,” in International Con-
ference on Autonomic Computing (ICAC’06), Dublin,
Ireland, June 2006, pp. 65–73.

[22] D. Vengerov and N. Iakovlev, “A Reinforcement
Learning Framework for Dynamic Resource Alloca-
tion: First Results,” in International Conference on
Autonomic Computing (ICAC’05), Seattle, WA, USA,
January 2005, pp. 339–340.

[23] P. Vienne and J. Sourrouille, “A Middleware for Au-
tonomic QoS Management based on Learning,” in In-
ternational Conference on Sofware Engineering and
Middleware, Lisbon, Portugal, September 2005, pp.
1–8.

[24] Apache Http Server Project. [Online]. Available:
http://www.apache.org/

[25] PHP. [Online]. Available: http://www.php.net/

[26] MySQL Database. [Online]. Available:
http://www.mysql.com/

[27] PHP Bulletin Board. [Online]. Available:
http://www.phpbb.com/

[28] RFC2616: Hypertext Transfer Protocol – HTTP/1.1.
http://www.w3.org/Protocols/rfc2616/rfc2616.txt.

[29] eAccelerator. [Online]. Available:
http://eaccelerator.net/

[30] Linux. [Online]. Available: http://www.linux.org/

[31] R. M. Bahati and M. A. Bauer, “Adapting to Run-
time Changes in Policies Driving Autonomic Manage-
ment,” in International Conference on Autonomic and
Autonomous Systems (ICAS’08), Gosier, Guadeloupe,
March 2008, pp. 88–93.

80

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

Preliminary 2009
Conference Schedule

http://www.iaria.org/conferences.html

NetWare 2009: June 14-19, 2009 - Athens, Greece

 SENSORCOMM 2009, The Third International Conference on Sensor Technologies and Applications

 SECURWARE 2009, The Third International Conference on Emerging Security Information, Systems and

Technologies

 MESH 2009, The Second International Conference on Advances in Mesh Networks

 AFIN 2009, The First International Conference on Advances in Future Internet

 DEPEND 2009, The Second International Conference on Dependability

NexComm 2009: July 19-24, 2009 - Colmar, France

 CTRQ 2009, The Second International Conference on Communication Theory, Reliability, and Quality of Service

 ICDT 2009, The Fourth International Conference on Digital Telecommunications

 SPACOMM 2009, The First International Conference on Advances in Satellite and Space Communications

 MMEDIA 2009, The First International Conferences on Advances in Multimedia

InfoWare 2009: August 25-31, 2009 – Cannes, French Riviera, France

 ICCGI 2009, The Fourth International Multi-Conference on Computing in the Global Information Technology

 ICWMC 2009, The Fifth International Conference on Wireless and Mobile Communications

 INTERNET 2009, The First International Conference on Evolving Internet

SoftNet 2009: September 20-25, 2009 - Porto, Portugal

 ICSEA 2009, The Fourth International Conference on Software Engineering Advances

o SEDES 2009: Simpósio para Estudantes de Doutoramento em Engenharia de Software

 ICSNC 2009, The Fourth International Conference on Systems and Networks Communications

 CENTRIC 2009, The Second International Conference on Advances in Human-oriented and Personalized

Mechanisms, Technologies, and Services

 VALID 2009, The First International Conference on Advances in System Testing and Validation Lifecycle

 SIMUL 2009, The First International Conference on Advances in System Simulation

NexTech 2009: October 11-16, 2009 - Sliema, Malta

 UBICOMM 2009, The Third International Conference on Mobile Ubiquitous Computing, Systems, Services and

Technologies

 ADVCOMP 2009, The Third International Conference on Advanced Engineering Computing and Applications in

Sciences

 CENICS 2009, The Second International Conference on Advances in Circuits, Electronics and Micro-electronics

 AP2PS 2009, The First International Conference on Advances in P2P Systems

 EMERGING 2009, The First International Conference on Emerging Network Intelligence

 SEMAPRO 2009, The Third International Conference on Advances in Semantic Processing

