

The International Journal on Advances in Systems and Measurements is published by IARIA.

ISSN: 1942-261x

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Systems and Measurements, issn 1942-261x

vol. 6, no. 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Systems and Measurements, issn 1942-261x

vol. 6, no. 3 & 4, year 2013, <start page>:<end page> , http://www.iariajournals.org/systems_and_measurements/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2013 IARIA

International Journal on Advances in Systems and Measurements

Volume 6, Number 3 & 4, 2013

Editor-in-Chief

Constantin Paleologu, University ‘Politehnica’ of Bucharest, Romania

Editorial Advisory Board

Vladimir Privman, Clarkson University - Potsdam, USA
Go Hasegawa, Osaka University, Japan
Winston KG Seah, Institute for Infocomm Research (Member of A*STAR), Singapore
Ken Hawick, Massey University - Albany, New Zealand

Editorial Board

Jemal Abawajy, Deakin University, Australia

Ermeson Andrade, Universidade Federal de Pernambuco (UFPE), Brazil

Al-Khateeb Anwar, Politecnico di Torino, Italy

Francisco Arcega, Universidad Zaragoza, Spain

Tulin Atmaca, Telecom SudParis, France

Rafic Bachnak, Texas A&M International University, USA

Lubomír Bakule, Institute of Information Theory and Automation of the ASCR, Czech Republic

Nicolas Belanger, Eurocopter Group, France

Lotfi Bendaouia, ETIS-ENSEA, France

Partha Bhattacharyya, Bengal Engineering and Science University, India

Karabi Biswas, Indian Institute of Technology - Kharagpur, India

Jonathan Blackledge, Dublin Institute of Technology, UK

Dario Bottazzi, Laboratori Guglielmo Marconi, Italy

Diletta Romana Cacciagrano, University of Camerino, Italy

Javier Calpe, Analog Devices and University of Valencia, Spain

Jaime Calvo-Gallego, University of Salamanca, Spain

Maria-Dolores Cano Baños, Universidad Politécnica de Cartagena,Spain

Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain

Berta Carballido Villaverde, Cork Institute of Technology, Ireland

Vítor Carvalho, Minho University & IPCA, Portugal

Irinela Chilibon, National Institute of Research and Development for Optoelectronics, Romania

Soolyeon Cho, North Carolina State University, USA

Hugo Coll Ferri, Polytechnic University of Valencia, Spain

Denis Collange, Orange Labs, France

Noelia Correia, Universidade do Algarve, Portugal

Pierre-Jean Cottinet, INSA de Lyon - LGEF, France

Marc Daumas, University of Perpignan, France

Jianguo Ding, University of Luxembourg, Luxembourg

António Dourado, University of Coimbra, Portugal

Daniela Dragomirescu, LAAS-CNRS / University of Toulouse, France

Matthew Dunlop, Virginia Tech, USA

Mohamed Eltoweissy, Pacific Northwest National Laboratory / Virginia Tech, USA

Paulo Felisberto, LARSyS, University of Algarve, Portugal

Miguel Franklin de Castro, Federal University of Ceará, Brazil

Mounir Gaidi, Centre de Recherches et des Technologies de l'Energie (CRTEn), Tunisie

Eva Gescheidtova, Brno University of Technology, Czech Republic

Tejas R. Gandhi, Virtua Health-Marlton, USA

Marco Genovese, Italian Metrological Institute (INRIM), Italy

Teodor Ghetiu, University of York, UK

Franca Giannini, IMATI - Consiglio Nazionale delle Ricerche - Genova, Italy

Gonçalo Gomes, Nokia Siemens Networks, Portugal

João V. Gomes, University of Beira Interior, Portugal

Luis Gomes, Universidade Nova Lisboa, Portugal

Antonio Luis Gomes Valente, University of Trás-os-Montes and Alto Douro, Portugal

Diego Gonzalez Aguilera, University of Salamanca - Avila, Spain

Genady Grabarnik,CUNY - New York, USA

Craig Grimes, Nanjing University of Technology, PR China

Stefanos Gritzalis, University of the Aegean, Greece

Richard Gunstone, Bournemouth University, UK

Jianlin Guo, Mitsubishi Electric Research Laboratories, USA

Mohammad Hammoudeh, Manchester Metropolitan University, UK

Petr Hanáček, Brno University of Technology, Czech Republic

Go Hasegawa, Osaka University, Japan

Henning Heuer, Fraunhofer Institut Zerstörungsfreie Prüfverfahren (FhG-IZFP-D), Germany

Paloma R. Horche, Universidad Politécnica de Madrid, Spain

Vincent Huang, Ericsson Research, Sweden

Friedrich Hülsmann, Gottfried Wilhelm Leibniz Bibliothek - Hannover, Germany

Travis Humble, Oak Ridge National Laboratory, USA

Florentin Ipate, University of Pitesti, Romania

Imad Jawhar, United Arab Emirates University, UAE

Terje Jensen, Telenor Group Industrial Development, Norway

Liudi Jiang, University of Southampton, UK

Teemu Kanstrén, VTT Technical Research Centre of Finland, Finland

Kenneth B. Kent, University of New Brunswick, Canada

Fotis Kerasiotis, University of Patras, Greece

Andrei Khrennikov, Linnaeus University, Sweden

Alexander Klaus, Fraunhofer Institute for Experimental Software Engineering (IESE), Germany

Andrew Kusiak, The University of Iowa, USA

Vladimir Laukhin, Institució Catalana de Recerca i Estudis Avançats (ICREA) / Institut de Ciencia de Materials de

Barcelona (ICMAB-CSIC), Spain

Kevin Lee, Murdoch University, Australia

Andreas Löf, University of Waikato, New Zealand

Jerzy P. Lukaszewicz, Nicholas Copernicus University - Torun, Poland

Zoubir Mammeri, IRIT - Paul Sabatier University - Toulouse, France

Sathiamoorthy Manoharan, University of Auckland, New Zealand

Stefano Mariani, Politecnico di Milano, Italy

Paulo Martins Pedro, Chaminade University, USA / Unicamp, Brazil

Daisuke Mashima, Georgia Institute of Technology, USA

Don McNickle, University of Canterbury, New Zealand

Mahmoud Meribout, The Petroleum Institute - Abu Dhabi, UAE

Luca Mesin, Politecnico di Torino, Italy

Marco Mevius, HTWG Konstanz, Germany

Marek Miskowicz, AGH University of Science and Technology, Poland

Jean-Henry Morin, University of Geneva, Switzerland

Fabrice Mourlin, Paris 12th University, France

Adrian Muscat, University of Malta, Malta

Mahmuda Naznin, Bangladesh University of Engineering and Technology, Bangladesh

George Oikonomou, University of Bristol, UK

Arnaldo S. R. Oliveira, Universidade de Aveiro-DETI / Instituto de Telecomunicações, Portugal

Aida Omerovic, SINTEF ICT, Norway

Victor Ovchinnikov, Aalto University, Finland

Telhat Özdoğan, Recep Tayyip Erdogan University, Turkey

Gurkan Ozhan, Middle East Technical University, Turkey

Constantin Paleologu, University Politehnica of Bucharest, Romania

Matteo G A Paris, Universita` degli Studi di Milano,Italy

Vittorio M.N. Passaro, Politecnico di Bari, Italy

Giuseppe Patanè, CNR-IMATI, Italy

Marek Penhaker, VSB- Technical University of Ostrava, Czech Republic

Juho Perälä, VTT Technical Research Centre of Finland, Finland

Florian Pinel, T.J.Watson Research Center, IBM, USA

Ana-Catalina Plesa, German Aerospace Center, Germany

Miodrag Potkonjak, University of California - Los Angeles, USA

Alessandro Pozzebon, University of Siena, Italy

Vladimir Privman, Clarkson University, USA

Konandur Rajanna, Indian Institute of Science, India

Stefan Rass, Universität Klagenfurt, Austria

Candid Reig, University of Valencia, Spain

Teresa Restivo, University of Porto, Portugal

Leon Reznik, Rochester Institute of Technology, USA

Gerasimos Rigatos, Harper-Adams University College, UK

Luis Roa Oppliger, Universidad de Concepción, Chile

Ivan Rodero, Rutgers University - Piscataway, USA

Lorenzo Rubio Arjona, Universitat Politècnica de València, Spain

Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster / North-

German Supercomputing Alliance, Germany

Subhash Saini, NASA, USA

Mikko Sallinen, University of Oulu, Finland

Christian Schanes, Vienna University of Technology, Austria

Rainer Schönbein, Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB), Germany

Guodong Shao, National Institute of Standards and Technology (NIST), USA

Dongwan Shin, New Mexico Tech, USA

Larisa Shwartz, T.J. Watson Research Center, IBM, USA

Simone Silvestri, University of Rome "La Sapienza", Italy

Diglio A. Simoni, RTI International, USA

Radosveta Sokullu, Ege University, Turkey

Junho Song, Sunnybrook Health Science Centre - Toronto, Canada

Leonel Sousa, INESC-ID/IST, TU-Lisbon, Portugal

Arvind K. Srivastav, NanoSonix Inc., USA

Grigore Stamatescu, University Politehnica of Bucharest, Romania

Raluca-Ioana Stefan-van Staden, National Institute of Research for Electrochemistry and Condensed Matter,

Romania

Pavel Šteffan, Brno University of Technology, Czech Republic

Monika Steinberg, University of Applied Sciences and Arts Hanover, Germany

Chelakara S. Subramanian, Florida Institute of Technology, USA

Sofiene Tahar, Concordia University, Canada

Jaw-Luen Tang, National Chung Cheng University, Taiwan

Muhammad Tariq, Waseda University, Japan

Roald Taymanov, D.I.Mendeleyev Institute for Metrology, St.Petersburg, Russia

Francesco Tiezzi, IMT Institute for Advanced Studies Lucca, Italy

Theo Tryfonas, University of Bristol, UK

Wilfried Uhring, University of Strasbourg // CNRS, France

Guillaume Valadon, French Network and Information and Security Agency, France

Eloisa Vargiu, Barcelona Digital - Barcelona, Spain

Miroslav Velev, Aries Design Automation, USA

Dario Vieira, EFREI, France

Stephen White, University of Huddersfield, UK

M. Howard Williams, Heriot-Watt University, UK

Shengnan Wu, American Airlines, USA

Xiaodong Xu, Beijing University of Posts & Telecommunications, China

Ravi M. Yadahalli, PES Institute of Technology and Management, India

Yanyan (Linda) Yang, University of Portsmouth, UK

Shigeru Yamashita, Ritsumeikan University, Japan

Patrick Meumeu Yomsi, INRIA Nancy-Grand Est, France

Alberto Yúfera, Centro Nacional de Microelectronica (CNM-CSIC) - Sevilla, Spain

Sergey Y. Yurish, IFSA, Spain

David Zammit-Mangion, University of Malta, Malta

Guigen Zhang, Clemson University, USA

Weiping Zhang, Shanghai Jiao Tong University, P. R. China

J Zheng-Johansson, Institute of Fundamental Physic Research, Sweden

International Journal on Advances in Systems and Measurements

Volume 6, Numbers 3 & 4, 2013

CONTENTS

pages: 245 - 259
Modeling of Expert Knowledge for Maritime Situation Assessment
Yvonne Fischer, Karlsruhe Institute of Technology (KIT), Germany
Jürgen Beyerer, Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB), Germany

pages: 260 - 271
Urban Area Energy Flow Microsimulation for Planning Support: a Calibration and Verification Study
Diane Perez, Solar Energy and Building Physics Laboratory (LESO-PB), École Polytechnique Fédérale de Lausanne
(EPFL), Switzerland
Jérôme Henri Kämpf, Solar Energy and Building Physics Laboratory (LESO-PB), École Polytechnique Fédérale de
Lausanne (EPFL), Switzerland
Jean-Louis Scartezzini, Solar Energy and Building Physics Laboratory (LESO-PB), École Polytechnique Fédérale de
Lausanne (EPFL), Switzerland

pages: 272 - 286
Design Space Exploration of Many-Core NoCs Based on Queueing-Theoretic Models
Erik Fischer, Technische Universität Dresden, Germany
David Öhmann, Technische Universität Dresden, Germany
Albrecht Fehske, Technische Universität Dresden, Germany
Gerhard P. Fettweis, Technische Universität Dresden, Germany

pages: 287 - 299
Undecidable Case and Decidable Case of Joint Diagnosability in Distributed Discrete Event Systems
Lina Ye, INRIA, Grenoble-Rhône-Alpes, France
Philippe Dague, Univ. Paris-Sud, France

pages: 300 - 309
Monitoring Virtualized Infrastructure in the Context of Grid Job Execution
Jiří Sitera, CESNET, Czech Republic
Zdeněk Šustr, CESNET, Czech Republic
Boris Parák, CESNET, Czech Republic
Daniel Kouřil, CESNET, Czech Republic

pages: 310 - 323
Static Preprocessing for Automated Structural Testing of Simulink Models
Benjamin Wilmes, Berlin Institute of Technology, Daimler Center for Automotive IT Innovations (DCAITI), Germany

pages: 324 - 334
Sick But Not Dead Failures - Adaptive Testing, Evaluation and Design Methodologies
Tara Astigarraga, IBM, USA
Michael Browne, IBM, USA
Lou Dickens, IBM, USA
Ian MacQuarrie, IBM, USA

pages: 335 - 352
Towards Evolvable State Machines and their Applications
Dirk van der Linden, University of Antwerp, Belgium
Wim Ploegaerts, PWCS bvba, Belgium
Georg Neugschwandtner, University of Antwerp, Belgium
Herwig Mannaert, University of Antwerp, Belgium

pages: 353 - 363
Sustainable Multiprocessor Real-Time Scheduling with Exact Preemption Cost
Falou Ndoye, INRIA Paris-Rocquencourt, France
Yves Sorel, INRIA Paris-Rocquencourt, France

pages: 364 - 373
Multilevel Flash Memories: Channel Modeling, Capacities and Optimal Coding Rates
Xiujie Huang, University of Hawaii, USA
Aleksandar Kavcic, University of Hawaii, USA
Xiao Ma, Sun Yat-sen University, China
Guiqiang Dong, Skyera Inc., USA
Tong Zhang, Rensselaer Polytechnic Institute, USA

pages: 374 - 383
Enhanced Design Conditions for Decentralized State-Space Control of Systems with Relevant
Interactions
Dusan Krokavec, Technical University of Kosice, Slovakia
Anna Filasova, Technical University of Kosice, Slovakia

pages: 384 - 393
Rapid Aerial Mapping with Multiple Heterogeneous Unmanned Vehicles
Eduard Santamaria, Fraunhofer IOSB, Germany
Florian Segor, Fraunhofer IOSB, Germany
Igor Tchouchenkov, Fraunhofer IOSB, Germany
Rainer Schoenbein, Fraunhofer IOSB, Germany

pages: 394 - 404
Time Series Prediction with Automated Periodicity Detection
Michael Schaidnagel, Reutlingen University, Germany
Fritz Laux, Reutlingen University, Germany

Modeling of Expert Knowledge for
Maritime Situation Assessment

Yvonne Fischer∗ and Jürgen Beyerer∗†
∗Vision and Fusion Laboratory, Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
†Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB)

Karlsruhe, Germany
Email: yvonne.fischer@kit.edu, juergen.beyerer@iosb.fraunhofer.de

Abstract—In today’s surveillance systems, there is a need for
enhancing the situation awareness of an operator. Supporting
the situation assessment process can be done by extending the
system with a module for automatic interpretation of the observed
environment. In this article, the information flow in intelligent
surveillance systems is described and a detailed modeling of the
situation assessment process is presented. The main contribution
of this article is a probabilistic modeling of situations of interest.
The result of this modeling is a Situational Dependency Network
(SDN), which represents the dependencies between several situa-
tions of different abstraction levels. The focus is on a top-down
approach, i.e., the modeling is done in a human-understandable
way and can be done by maritime experts. As especially critical
situations can change very fast in their characteristics and also
they do not happen very often, the machine learning approach
is not appropriate for detecting such situations, even if they
are very powerful. Therefore, we present an approach, where
expert knowledge can be included into a Dynamic Bayesian
Network (DBN). In this article, we will show how a DBN can
be generated automatically from the SDN. We mainly focus on
the determination of the parameters of the model, as this is the
crucial point. The resulting DBN can then be applied to vessel
tracks and the probability of the modeled situations of interest
can be inferred over time. Finally, we present an example in the
maritime domain and show that the probabilistic model yields
the expected results.

Keywords—surveillance system; situation awareness; situation
assessment; data fusion; dynamic Bayesian networks; probabilistic
reasoning.

I. INTRODUCTION

This article is based on our previous work that was pre-
sented at the ICONS 2012 conference and published in [1]. In
this section, we will describe the motivation of our approach.

During the operation of complex systems that include
human decision making, the processes of acquiring and in-
terpreting information from the environment forms the basis
for the state of knowledge of a decision maker. This mental
state is often referred to as situation awareness [2], whereas
the processes to achieve and maintain that state is referred
to as situation assessment. In today’s maritime surveillance
systems, the situation assessment process is highly supported
through various heterogeneous sensors and appropriate signal
processing methods for extracting as much information as
possible about the surveyed environment and its elements.
They are equipped with powerful sensors like radar systems,
the Automatic Identification System (AIS), see [3], or even

infrared cameras. All of these sensor systems, either active
or passive, are able to detect vessels in the observed area.
The surveillance system fuses the estimated positions into
consistent tracks, which then can be displayed in a dynamic
map. Maritime surveillance systems have been used so far
to monitor traffic, to guide passing vessels, and to ensure
compliance with traffic regulations. Using these sensor systems
is, of course, an essential capability for every surveillance
system in order to be able to observe a designated area and to
detect and track objects inside this area.

But there is an increasing demand for using their power in
security-related applications like the detection of critical situa-
tions. However, current systems do not provide any support
in the detection of spatio-temporal patterns, i.e., situations.
Thus, there is a need for concepts and methods that are
able to infer real situations from observed elements in the
environment and to project their status in the near future. The
challenge of intelligent surveillance systems is therefore not
only to collect as much sensor data as possible, but also to
detect and assess complex situations that evolve over time
as an automatic support to an operator’s situation assessment
process, and therefore enhancing his situation awareness.

In applications like this, the current approach is to learn the
characteristics, i.e., the features of the situation of interest with
some training data, and recognizing the situations based on the
trained model. There is a lot of machine learning methods
that can be used for detecting sequential patterns, see for
example [4] or [5]. All methods have in common that they need
training data. In order to use such machine learning techniques
for estimating maritime situations, there are several challenges
that have to be addressed and we will highlight them in the
following.

• Data Collection: There has to be an access to sensors
that are able to collect vessel data. Data of differ-
ent sensors, e.g., AIS and radar, should be fused
into a consistent representation of vessel tracks. The
representation should not only contain position data
over time, but also additional information like speed,
course, MMSI (maritime mobile service identity),
beam, length, etc. Since surveillance systems are
equipped with these sensors, data collection can be
provided easily.

• Data Labeling: The collected data has to be labeled in
order to perform supervised training. As we want to

245

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

detect specific situations, the vessel tracks have to be
labeled, i.e., it has to be determined for which time in-
terval the situation is either true or false. The labeling
step is done by humans and is therefore extremely
time-consuming. Moreover, labeling of higher-level
situations is not always straightforward, as critical
situations can have very similar patterns than non-
critical situations.

• Data Selection: It has to be decided, which of the
labeled data should be used for training the model.
There has to be enough data to represent several
variations of the situation. Especially when the model
has many parameters, there has to be enough training
data in order to avoid overfitting.

• Model Validation: It has to be guaranteed that the
trained model is able to recognize situations under
various circumstances. So there should be a kind of
testbed for evaluating the model under real circum-
stances to determine the reliability and trustworthiness
of the results when using the trained model.

Thus, the process of generating training data for one
situation of interest is quite complex and time-consuming.
Moreover, this process has to be done for every situation of in-
terest. But especially in security-related applications, situations
of interest can change very rapidly in their characteristics and
they do not happen very often. This means that in most cases,
there is only few or even no training data available. Therefore,
the machine learning approach is not fully satisfactory for
detecting such situations, even if these methods are very
powerful.

For human experts instead, it is quite easy to formulate
and define the characteristics for new situations of interest.
Therefore, our approach is to model this expert knowledge in-
stead of using machine learning approaches. For modeling the
expert knowledge and recognizing the situations of interest, we
use a probabilistic model, i.e., a Dynamic Bayesian Network
(DBN). DBNs, and especially their simplified version, the
Hidden Markov Models (HMM) are widely used in machine
learning approaches for situation recognition. The potential
of these models is for example shown in [6] for maritime
surveillance and in [7] for traffic scenarios. It has been shown
that these models are able to handle noisy input data like wrong
observation values.

However, maritime experts are in general not familiar with
such kind of models. They are not able to determine the
parameters of the model, i.e., the conditional probabilities,
which are the crucial point for the model to yield the expected
results. In order to support maritime experts in modeling their
own situations of interest, we present an approach for setting
the parameters automatically, based on the structure of the
DBN. The structure of the DBN is generated based on a Situ-
ational Dependency Network (SDN), a human-understandable
modeling of the situations of interest. The most challenging
task is to determine the parameters in a way that the resulting
DBN behaves like the human expert would expect it to behave.

The paper is structured as follows. In Section II, an
overview of related work is given. The information flow in
intelligent surveillance systems is highlighted in Section III.

A detailed description of the situation assessment process is
given in Section IV. Section V covers a definition of the term
situation and it is shown how situations of interest can be
characterized and how they can be represented in a SDN.
Section VI starts with a brief review of DBNs and it is shown
how the existences of situations of interest can be inferred. In
Section VII, the approach of generating the DBN, especially
the parameters, is presented. Finally, an application scenario in
the maritime domain is given in Section VIII and it is shown
that the approach yields the expected results.

II. RELATED WORK

Working with heterogeneous sensors, the theories of multi-
sensor data fusion [8] offer a powerful technique for sup-
porting the situation assessment process. A lot of research
has been done in combining object observations coming from
different sensors [9], and also in the development of real-
time methods for tracking moving objects [10]. Regarding data
fusion in surveillance systems, the object-oriented world model
(OOWM) is an approach to represent relevant information ex-
tracted from sensor signals, fused into a single comprehensive,
dynamic model of the monitored area. It was developed in [11]
and is a data fusion architecture based on the JDL (Joint
Directors of Laboratories) data fusion process model [12].
Detailed description of the architecture and an example of
an indoor surveillance application has been published in [13].
The OOWM has also been applied for wide area maritime
surveillance [14].

In [15], an overview of different approaches of modeling
and recognizing situations in the area of pervasive computing
is presented. However, these approaches can also be used in
the area of surveillance systems. In his article, Ye et al. divide
between two main techniques, specification-based techniques
and learning-based techniques. DBNs are not addressed di-
rectly in his article, only HMMs, which are a special case of
DBNs. However, HMMs are usually used for learning-based
approaches. We will not list machine learning approaches here,
as they are out of scope of this paper, but we refer to [15] for
an extensive discussion on them.

Specification-based techniques are used, when humans
model the situations of interest directly. We refer to them
as expert modeling approaches. A very recent work using
specification-based techniques has been published in [16],
in which petri nets are used for modeling and recognizing
situations of interest. In [17], situation modeling is done by
situational graph trees and situation recognition is performed
based on fuzzy-metric temporal logic. However, most of the
specification-based techniques are based on ontological model-
ing, see for example [18], [19]. The reasoning in ontologies is
performed by queries based on description logic and there exist
several publications on the detection of maritime situations
with ontologies, e.g., [20], [21], [22], or [23]. The main
drawback in ontological modeling is that it is not possible to
deal with uncertain information. For this reason, probabilistic
reasoning mechanisms, as provided by Bayesian networks, are
often used for situation assessment, e.g., [24] and [25].

Another development is the extension of the Web Ontology
Language (OWL), see [26], with a probabilistic representation,
which results in the Probabilistic Web Ontology Language

246

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(PR-OWL) presented in [27]. PR-OWL applies the theory
of Multi-Entity Bayesian Networks (MEBN) that have been
developed by Laskey [28]. MEBN are an extension of Bayesian
networks in the form that they allow representation of graphical
models with repeated sub-structures. Applications of PR-OWL
and MEBNs are presented in [29] for the semantic web, and
in [30], [31] for maritime applications. In [28], an algorithm
was presented, which creates situation-specific Bayesian net-
works, based on the modeled MEBN. However, the main
drawbacks in the MEBN-approach are that the parameters
of the network still have to be inserted manually and that
it is not possible to generate DBNs. However, the situation
assessment should be able to deal with noisy observations and
thus, the method of DBNs should be used. The work of this
artice is inspired by the MEBN-approach and addresses the
aforementioned problems.

First ideas of modeling situations in surveillance applica-
tions have been presented in our previous work in [32]. In [33],
a Bayesian network, was applied to observed objects in the
maritime domain and the user acceptance of such an automatic
situation assessment was shown. Further work has been done
in including temporal dependencies into the model, i.e., by
defining a DBN for the detection of vessels that are most
likely to carry refugees on board, and it was shown that the
DBN-approach yields promising results, see [1]. As modeling
a DBN is a difficult task and maritime experts are in general
not familiar with probabilistic methods, as they are not able
to determine the parameters of the model, a method for an
automated generation of a DBN was developed and presented
in [34] for scenarios on a parking space. A similar approach
was then applied to the maritime domain in [35]. This paper
extends the previous developed concepts for characterizing
situations at different abstraction levels and the methods for
generating a DBN.

III. INFORMATION FLOW IN SURVEILLANCE SYSTEMS

In this section, we will describe the information flow in
surveillance systems in a general way. The general information
flow for intelligent surveillance systems is visualized in Figure
1, wherein information aggregates are represented by boxes,
and processes are represented by circles. The information flow
is as follows.

In surveillance applications, the task is to observe a spatio-
temporal section of the real world, a so-called world of interest.
We will term all elements in the world of interest entities. By
the term entity, not only physical objects like vessels are meant,
as entities can also be non-physical elements in the real world
like vessel attributes, relations between vessels or situations.
Furthermore, not all entities can be observed, as there is no
sensor to observe them directly. Thus, entities can represent
observable or non-observable elements. All entities together
represent the complete state of the world of interest.

The next step in the information flow is the observation
of entities by several sensors. Sensor systems for observing
the real world can be of extremely heterogeneous types, e.g.,
video cameras, infrared cameras, radar equipment, or radio-
frequency identification (RFID) chips. Even human beings
can act like a sensor by observing entities of the real world.
Observing the world of interest with sensors results in sensor
data, for example a radar image or a video stream.

Inference

Sensor

Data
Learning

Analyzing

Obser-

vation
Plan

World of Interest

Entities

Knowledge

Concepts

&

Methods

World Model

Representatives

Fig. 1. Information flow in a surveillance system represented by information
aggregates (boxes) and processes (circles).

Analyzing sensor data is done by means of knowledge and
the resulting information is transferred to the world model.
Analyzing sensor data includes for example the detection and
localization of moving vessels at sea from a video stream.
Knowledge contains all information that is necessary for
analyzing sensor data, for example specific signal-processing
methods and algorithms used for the detection, localization and
tracking of vessels in video streams.

The world model is a representation of entities in the world
of interest and consists therefore of representatives. Every
representative has a corresponding entity in the real world.
The mapping between entities in the world of interest and
representatives in the world model is structure-preserving and
can therefore be interpreted as a homomorphism. Specific
mappings are defined by concepts, which are part of the
knowledge. Concepts are for example used in the analyzing
process by defining how an observed vessel is represented in
the world model. As the world of interest is highly dynamic
and changes over time, the history of the representatives is
also stored in the world model.

However, as mentioned before, some entities cannot be
observed directly. Therefore an inference process is reasoning
about non-observable (and also unobserved) entities by means
of knowledge. A simple inference process is for example to
calculate an object’s velocity from the last and current position.
A more complex inference process would be to estimate if
the intention of an observed vessel is benign or adversarial.
Doing this way, the world model is always being updated and
supplemented with new information by predefined inference
processes. Thus, during operation, the world model tries to
estimate a complete representation of the world of interest in
every time step.

247

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Summing up, knowledge contains all information for an-
alyzing sensor data, updating the world model and supple-
menting it with new information. Knowledge consists of
abstract concepts and also of methods. Concepts are used for
the representation of real-world entities in the world model
and methods are used for analyzing data or inferring further
information. Characteristics of the knowledge are of course
extremely dependent on the application domain. Additionally,
knowledge is not static. The content of the world model can be
used for acquiring new knowledge by a learning process. This
could be, for example, a method for structure or parameter
learning in probabilistic graphical models.

To close the loop of the information flow, the result of
an inference process could also include a plan of how to act
further in the real world. Thus, the inference process can also
act like a decision support, on which the action plan is based.
The plan itself can be an action plan for an agent, for example,
to call the police, or a sensor management plan, for example,
a request for more detailed information from a special sensor.

Finally, we have to mention that the presented information
flow in surveillance systems is not intended to act fully
automatically. Every process can be designed in a way that
a human operator is involved and that he is able to use the
system interactively.

In the next section, we will have a more detailed look at
a specific inference process, namely the situation assessment
process. The situation assessment process tries to estimate
predefined situations of interest by using the information of
assessed objects over time.

IV. THE SITUATION ASSESSMENT PROCESS

By situation assessment, we mean the process of estimating
the existence of situations of interest, which is conform to [2]
and [12]. We divided the whole process into several sub-
processes, as we state that situation assessment does not only
consist of the process of recognizing situations, but also of the
process of characterizing and modeling situations of interest,
based on the current task. The conceptual framework of the
process is depicted in Figure 2 and will be described in the
following.

During the process of object assessment, estimates of
objects are created, which do not only include kinematic state
estimates like tracking the position and velocity of vessels,
but also descriptive attributes of the object. The result of this
process are object representatives, which are stored in the
world model over time. Thus, we will first describe how the
concept of an object is defined, i.e., how it is stored in the
world model.

The concept of an object is defined as a physical entity
of the real world. An object belongs to exactly one object
class. As an object has several attributes, an object class is
defined as the equivalence class of identical attribute lists. The
attributes of the object can be divided into properties and states.
Properties are time-invariant attributes, e.g., the length or the
name of a vessel. State values can change over time and are
therefore time-variant, e.g., the position or the velocity of a
vessel. Regarding its spatial position, an object can be mobile,
e.g., a vessel, or stationary, e.g., a land border. Thus, for a

Situation

Characterization

Situational Dependency

Network (SDN)

Situation Recognition

Existence of Situations

Statistical FeedbackVisualization

Object Representatives

Situation

Assessment

Process

Object

Assessment

Process

Fig. 2. The process of situation assessment.

vessel the position is a state attribute and for the land border
the position is a property. The concept of an object is visualized
in Figure 3.

As the representation in the world model also has a
memory, which means that the past states of an object are
stored, the complete history of the observed object is always
available. As this operation is very memory-intensive, for
practical reasons the world model should be connected to a
database and only the latest objects should be hold in memory.
Furthermore, the representation of an object in the world model
does not only include observed attributes, but also inferred
ones. For example, based on observed positions of a vessel, the
velocity can be inferred. Furthermore, attribute values can be
quantitative or qualitative. For example, the absolute position
and velocity of a vessel are quantitative attributes, and the
attribute value that a vessel is made of wood is a qualitative
one. The selection of the attributes is still up to the user.
However, the selected attributes should be dependent on the
sensor capabilities and also on the required task of the situation
assessment.

The process of situation assessment is divided into the sub-
processes of situation characterization, situation recognition,
visualization, and statistical feedback, which will be explained
in the following. The first sub-process of situation charac-
terization includes the a-priori modeling of expert knowledge
about situations of interest. Because there are a lot of semantic
dependencies between situations, these have to be modeled
in order to estimate the existence of the situations correctly.
This sub-process results in a Situational Dependency Network
(SDN). We will address the process of characterizing situations
in detail in Section V.

The sub-process of situation recognition analyses the object
representatives over time with respect to the existence of the

248

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Object

Class 1 Class 2 Class m

Property f1

Property 1

Attribute

State g1

State 1

1

1..*

...

Property f2

Property 1

Attribute

State g2

State 1

1

1..*

Property fm

Property 1

Attribute

State gm

State 1

1

1..*

...
...

...
...

...
...

Fig. 3. The concept of an object.

situations of interest. Thus, it applies the SDN to the estimated
object properties and states and infers, if the situations of
interest are existing or not. The result of this process is a set of
existence probabilities, one existence probability for each situ-
ation of interest. As we use DBNs for the process of situation
recognition, the existence probabilities can be calculated by
state-of-the-art inference mechanisms and algorithms that have
been developed for DBN. Inference can be performed either
exact or approximate. We refer the reader to [36] for detailed
information on such algorithms, as this is out of scope of the
article. However, many algorithms are available and ready to
use, e.g., in specific software [37] or Matlab toolboxes [38].
Based on the resulting probabilities, the existence of situations
can be inferred, if the probability value exceeds a certain
threshold value.

This calculation, combined with an appropriate visualiza-
tion, allows for a prompt assessment of the whole situation and
thus for prompt decisions. Inferred situations of interest can
be visualized in a dynamic map, where the involved vessels
are highlighted. Also the calculated existence probability of
the situations of interest can be visualized additionally. Of
course, visualization is a crucial point of supporting situation
awareness. Even if the results are calculated correctly, the
visualization of them to the user during operation can be done
in a wrong way, e.g., by presenting him too much information.
This results in an information overload and thus, reduces his
situation awareness [2]. However, evaluating different visual-
ization methods for situations of interest is out of scope for
this article and is therefore not discussed in detail.

Furthermore, a statistical feedback can be calculated from
the set of existence probabilities over time. This can be
used for refining the process of situation characterization and
thus is a process for integrating the user in the situation
assessment process. The feedback can have several objectives,
for example, it could suggest a refinement of the SDN or could

indicate situations that have not been detected at all, i.e., ask
the user if the situation is still of interest.

V. CHARACTERIZING SITUATIONS OF INTEREST

In this section, we will describe how situations can be
modeled as random variables and how their existence is de-
fined. We will introduce two different situation types and how
the dependencies between several situations can be modeled.
Finally, we will show how a complete SDN can be modeled.

A. Situation Modeling

Before we are able to characterize situations of interest, we
have to define the term situation. In [15], a situation is defined
as follows:

“A situation is defined as an external semantic in-
terpretation of sensor data. Interpretation means that
situations assign meanings to sensor data. External
means that the interpretation is from the perspective
of applications, rather than from sensors. Semantic
means that the interpretation assigns meaning on
sensor data based on structures and relationships
within the same type of sensor data and between
different types of sensor data.”

This definition corresponds to our understanding of the
term situation, but we try to give a more formal definition of a
situation. First of all, we state that a situation at time point t is
always connected with an external semantic statement, which
is either true or false. The semantic statement is always based
on a temporal sequence of a specific constellation of modeled
objects and their attributes.

We define O1, O2, . . . , On as the set of objects that are rel-
evant for the semantic statement. We define Ai

1, A
i
2, . . . , A

i
mi

as the set of the relevant attributes of the object Oi, with
i = 1, . . . , n. If an object or an attribute is relevant or not
is induced by the semantic statement of the situation and has
to be defined by the user. For example, for the situation that
a vessel is fast, only it’s velocity is relevant and it’s heading
can be ignored. We can then define the configuration space O
as

O =
n×

i=1

mi×
k=1

r(Ak), (1)

where r(Ak) denotes the range of the attribute values of Ak.
O has then the dimension dimO =

∑n
i=1mi.

We set Ω = O×T , where T represents the time and define
a situation St at time t as the mapping

St : Ω→ {0, 1}. (2)

We say that the set Ω̃ = Õ × T̃ ⊆ O×T is the support of the
Situation St, if

St(ω) =

{
1, if ω ∈ Ω̃,

0, if ω /∈ Ω̃.
(3)

Example 1: The semantic statement is that two objects are
close to each other, e.g., a yacht is close to a tanker. Relevant
objects are A and B, with a one-dimensional position value

249

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

xa and xb, respectively. We chose a one-dimensional position
for visualization purposes. It is Ω = O × t, where t is a time
point. Then it is

ω ∈ Ω̃⇔ |xa − xb| ≤ r, (4)

where r is the threshold value. The support of this situation is
visualized in Figure 4.

xA

xB

r

~
Ω
~
Ω

Fig. 4. The support of the situation that object A is close to object B.

Example 2: The semantic statement is that two objects are
approaching each other, e.g., a vessel is approaching a specific
harbor. Relevant objects are A and B, with a one-dimensional
position value xa and xb, respectively, where xb is static. It is
Ω = O × T , where T is a discrete time interval. Then it is

ω ∈ Ω̃⇔ |xa − xb|t < |xa − xb|t−1,∀t, t− 1 ∈ T. (5)

The support of this situation is visualized in Figure 5.

xA

xB

~
Ω

tt-1

Fig. 5. The support of the situation that object A is approaching object B,
with a selected value xA for time point t− 1.

B. Existence of Situations

We say that a situation exists, if the semantic statement is
true, and that it does not exist, if the semantic statement is
false. Thus, a situation exists, if the observed objects can be
assigned to the relevant objects of the configuration space and
for their attribute values it holds ω ∈ Ω̃.

For modeling the existence of situations, we interpret the
situation, i.e., the mapping St : Ω → {0, 1} as a binary
random variable. It is P a probability measure on St(Ω), thus a
probability distribution of St. Then the existence of a situation
St at time point t is given by P (St = 1), or shortly P (St).
Thus, when performing situation recognition, we are interested
in the probability P (St).

Due to this modeling, situations are characterized by infor-
mation collected over a time-period, but they only exist at a
special point in time. Their existence in the next time-point has
to be verified again. The time-period itself is induced by the
semantic statement of the situation. In example 2, it is enough
to take [t − 1, t] into account. But for other situations it may
be necessary to expand the time-period, e.g., for the situation
that the vessel was in a suspicious area during the last 2 hours.

C. Different Situation Types

We now face the problem that the semantic statement of
situations can be arbitrary complex and on a high abstraction
level, e.g., a vessel is a suspicious smuggling vessel. Thus, the
recognition of the situation depends on various characteristics
and the direct modeling of the support of the situation is not
always possible. Because of this fact, we can differentiate
between the following two cases:

• The existence of a situation can imply the existence
of other situations.

• The existence of a situation can lead to the existence
of another situation.

These dependencies can be used for the recognition of situ-
ations. To use them, we will define two types of situations,
namely elementary situations and abstract situations:

• Elementary situations: The support of the situation can
be modeled directly. The existence of the elementary
situation St can be modeled as the deterministic
mapping

P (St|ω) =

{
1, if St(ω) = 1,

0, if St(ω) = 0.
(6)

• Abstract situations: It is not possible to model the
support of the situation directly. The existence of
the abstract situation St is dependent of the exis-
tence of n other (elementary or abstract) situations
S1
t , S

2
t , . . . , S

n
t

P (St|S1
t , S

2
t , . . . , S

n
t) =

P (St, S
1
t , S

2
t , . . . , S

n
t)

P (S1
t , S

2
t , . . . , S

n
t)

.

(7)

However, with an increasing number of dependent situ-
ations, it is not possible for an expert to model the joint
probability distribution P (St, S

1
t , S

2
t , . . . , S

n
t). The solution

for this is to use the chain rule of probability by using the
aforementioned dependencies, e.g., for two situations S1, S2

this would be:

P (S1, S2) = P (S1|S2)P (S2) = P (S2|S1)P (S1). (8)

Thus, it is sufficient to model the conditional probabilities
between dependent situations. An attempt to visualize these
dependencies is depicted in Figure 6. Of course, in real
applications, it is often not straightforward to identify the
dependencies between situations. In practice, the identification
of dependencies have to be done by experts together with
system developers.

250

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0

Abstraction

Level

Time

ω1

A

ω2 ω3

1

2

3

t1 t2 t3

B C A B C A B C

D E

F

D E

F

D E

F

Fig. 6. Visualization of dependencies and abstraction levels, visualized
without direction of dependencies.

D. Situational Dependencies

After defining situations formally, we have to consider
their semantic interpretation, especially their relationships
among each other. In [15], Ye et al. distinguish between five
different types of relationships: generalization, composition,
dependence, contradiction and temporal sequence, which we
will repeat shortly in the following:

• Generalization: A situation is more general than an-
other situation, if the occurrence of the latter implies
that of the former.

• Dependence: A situation depends on another situation
if the occurrence of the former situation is determined
by the occurrence of the latter situation.

• Composition: A situation can be decomposed into a set
of smaller situations, which is a typical composition
relation between situations.

• Contradiction: Two situations can be regarded as
mutually exclusive from each other if they cannot co-
occur at the same time in the same place on the same
subject.

• Temporal sequence: A situation may occur before,
or after another situation, or interleave with another
situation.

Our approach is now to model these relationships in a
SDN. For the SDN, we divide the relationships into two main
categories: sufficient and necessary conditions. We will explain
them in the following:

• Necessary condition: A situation A is necessary for
another situation B, if the existence of B implies the
existence of A, i.e.,

B
N−→ A.

If we have more than one necessary situations
A1, . . . , An, we have

B
N−→ A1 ∧A2 ∧ . . . ∧An.

• Sufficient condition: A situation A is sufficient for
another situation B, if the existence of A implies the
existence of B, i.e.,

A
S−→ B.

If we have more than one sufficient situations
A1, . . . , An, we have

A1 ∨A2 ∨ . . . ∨An
S−→ B.

Thus, we can always interpret the arrow from A to B as
follows: If situation A exists, then situation B exists. Or in
logical notation: A⇒ B, namely A implies B. A N−→

Compared to the five different types of relationships de-
fined in [15], we can state the following:

• Generalization: The generalization is in our case mod-
eled as the sufficient condition.

• Dependence: The dependency is in our case modeled
as the necessary condition.

• Composition: The composition is in our case modeled
through the necessary condition with more than one
necessary situation.

• Contradiction: The contradiction is not explicitly
modeled in our case, but should, of course, be repre-
sented by the semantics of the model. This means, the
parameters of the DBN should be determined in a way
that the two situations cannot exist simultaneously.

• Temporal sequence: The temporal sequence is not
yet addressed in our model so far. However, we can
extend the model by defining a specific sequence
of existences of different situations as a situation of
interest. We can recognize this sequential situation, for
example, by comparing it to the results of the Viterbi-
algorithm, which calculates the probability of the most
likely sequential situation.

E. Situational Dependency Network

We further assume that in real world applications, sensor
observations will be noisy. Noisy observation data can appear
as wrong observations or as missing observations. It is also
possible that some modeled elementary situations cannot be
observed because there is no sensor available that would be
able to observe the necessary information. Of course, the fact
of noisy observations has a big influence on the situation
recognition process.

Thus, we want to achieve a kind of inertia in the process
of situation recognition. The inertia of the process supports the
following statements:

• If we observe an area of interest over time, a single
observation should not yield to the recognition of a
situation, as it could be a noisy observation.

• If a situation of interest exists in the time step before,
it is very likely that it exists in the current time step,
also if different observations are made.

For achieving this inertia in the process, we have to extend
our model with recursive, i.e., temporal arrows. We will add

251

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the temporal arrow for abstract situation of interest, whose
elementary situations are assumed to be noisy, i.e., visually
draw an arrow from the situation at time point t to the same
situation at time point t + 1. The temporal arrows can then
be used in the DBN and result in a filtering effect of the
existence probability. As we will show later, the strenght of
the filtering effect can be adjusted by different weights. These
weights will have an influence on how many observations have
to be made to justify the existence of a situation or how many
noisy observations can be made without rejecting the existence.

Example 3: In this example, we have three situations:

• Situation area: The vessel was in a suspicious area,
known for smuggling activities.

• Situation AIS: The vessel is not sending any self-
identification signal like AIS.

• Situation smuggling: The vessel is a suspicious smug-
gling vessel.

The first and the second situations (area and AIS) are elemen-
tary situations and the third one (smuggling) is an abstract
situation, which we are interested in, and it is dependent on
the two others. The dependencies are as follows. If a vessel was
in a suspicious smuggling area, it is very likely that the vessel
is a smuggling vessel. Thus, the area situation is a sufficient
condition for the smuggling situation and we draw an arrow
from area to smuggling. If a vessel is a smuggling vessel,
then it is pretty sure that it does not send any identification
signal. Thus, the AIS situation is a necessary condition for the
smuggling situation and we draw an arrow from smuggling
to AIS. As we assume noisy observations, we add a temporal
arrow to the smuggling situation. The overall SDN is depicted
in Figure 7, where the temporal arrow is indicated with a red
T in the lower right corner of the node. Note that the same
SDN can be used, even if the suspicious area itself can change.

Smuggling

Area AIS

T

S N

Fig. 7. Example of a situational dependency network.

Finally, we can present the general approach for modeling
the SDN in Algorithm 1 and the calculation of the abstraction
level in Algorithm 2.

VI. RECOGNIZING SITUATIONS OF INTEREST

Due to this modeling, the SDN can be interpreted as a prob-
abilistic graphical model, namely a DBN. In a simple Bayesian
network, the basic idea is to decompose the joint probability
of various random variables into a factorized form. We will
now describe how a DBN is defined and how the existence
probabilities of the modeled situations can be inferred.

Algorithm 1 Creating a SDN
Require: set of situations and known pairwise dependencies
Ensure: SDN

model situations as nodes
for all nodes do

if support can be modeled directly then
declare it as elementary situation

else
declare it as abstract situation

end if
end for
for all dependencies do

if situation A is sufficient for situation B then
model the dependency as an arrow from A to B

end if
if situation A is necessary for situation B then

model the dependency as an arrow from B to A
end if

end for
for all abstract situations do

if abstract situation is dependent on an elementary situa-
tion with noisy observations then

add a temporal arrow to the abstract situation
end if

end for

Algorithm 2 Calculating abstraction levels
Require: SDN
Ensure: level of abstraction for each node

for all elementary nodes do
abstraction level =1

end for
i=2
initialize S̃ with a non-empty set
while S̃ 6= ∅ do

set S̃ to the set of abstract situations that are only
dependent on situations with abstraction level i− 1
set all elements of S̃ to abstraction level i
set i = i+ 1

end while

A. Dynamic Bayesian Networks

In a Bayesian network, random variables X1, X2, . . . , Xn

are depicted as nodes and conditional probabilities as directed
edges. The joint probability can then be factorized as

P (X1, . . . , Xn) =

n∏
i=1

P (Xi|Pa(Xi)), (9)

where Pa(Xi) is the set of parents of the node Xi. If Pa(Xi)
is an empty set, then Xi is a root node and P (Xi|Pa(Xi)) =
P (Xi) denotes its prior probability.

A DBN [39] is defined as a pair (B0, 2TBN), where

• B0 defines the prior distribution P (X0) over the set
X0 of random variables, and

• 2TBN defines a Bayesian network over two time

252

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

slices with

P (Xt|Xt−1) =

n∏
i=1

P (Xi
t |Pa(Xi

t)), (10)

where Xi
t is a node at time slice t and Pa(Xi

t) is the
set of parent nodes, which can be in the time slice t
or in the time slice t− 1.

Note that in the definition of a 2TBN , Pa(Xi
t) is never

empty, i.e., every node in time slice t has at least one parent
node and, therefore, the left side of equation (9) differs from
the left side of equation (10). An example of a 2TBN with 3
nodes in each time slice is shown in Figure 8.

x
3

t-1

x
2

t-1

x
1

t-1

xt-1

x
3

t

x
2

t

x
1

t

xt

Fig. 8. An example of a 2TBN defining dependencies between two time
slices and dependencies between nodes in time slice t adopted from [10]. Note
that a 2TBN does not define the dependencies between nodes in time slice
t− 1.

The joint probability distribution of a DBN can then be
formulated as

P (X0:T) = P (X0) ·
T∏

t=1

n∏
i=1

P (Xi
t |Pa(Xi

t)), (11)

with P (X0:T) = P (X0, . . . ,XT).

As we want to model a network of situations by a DBN,
the structure of the network has to fulfill the following as-
sumptions:

• Stationarity: the dependencies within a time slice t and
the dependencies between the time slices t− 1 and t
do not depend on t.

• 1st order Markov assumption: the parents of a node are
in the same time slice or in the previous time slice.

• Temporal evolution: dependencies between two time
slices are only allowed forward in time, i.e., from past
to future.

• Time slice structure: The structure of one time slice
is a simple Bayesian network, i.e., without cycles.

If any of these assumptions are not fulfilled, the network is
not a DBN and inference algorithms could not be applied.

B. Inferring Existence Probabilities

Due to the dependency between elementary and abstract
situations and the fact that we can feed the DBN with evidence,

i.e., observations, only via the elementary situations, we can
calculate the joint probability recursively in time by

P (S∗0:T ,E1:T) = P (S∗0) ·
T∏

t=1

P (S∗t |S
∗
t−1)P (Et|S∗t), (12)

where E denotes the set of elementary situations filled with
evidences, and S∗ denotes all defined situations S in the DBN
without the collected evidence nodes, i.e., S∗ = S\E.

By using this kind of recursive calculation, we can make
different calculations over time, which we list in the following.
Note that S̃ is now an arbitrary set of abstract situations.

• Filtering: P (S̃t|E1:t) gives a solution to the existence
probability of a set of situations S̃ at the current time,

• Prediction: P (S̃t+k|E1:t) (with k > 0) gives a solu-
tion to the existence probability of a set of situations
S̃ in the (near) future,

• Smoothing: P (S̃k|E1:t) (with 0 < k < t) gives
a solution to the existence probability of a set of
situations S̃ in the past,

• Most likely explanation: argmax
S̃1:t

P (S̃1:t|E1:t)
gives a solution to the most likely sequence of sit-
uations S̃1:t.

Due to this modeling, the existence probability of an arbi-
trary set of abstract situations can be calculated in a recursive
way at each point in time. A situation is then represented in
the world model, if the corresponding existence probability is
larger than an instantiation-threshold. If the existence proba-
bility in the next time step is below a deletion-threshold, it is
assumed that the situation does not exist any longer and its
representation is removed from the world model. This way,
the world model tries to keep an up-to-date representation of
the existing situations of the real world. However, determining
a meaningful instantiation- and deletion-threshold is still an
open task.

VII. GENERATING SITUATION-SPECIFIC DBNS

In this section, we will describe how we generate a DBN
from our SDN model in order to be able to apply the afore-
mentioned inference calculations. As we may have modeled
a lot of situations in our SDN, and the operator may be only
interested in a subset of them, we will generate a DBN with
only the necessary nodes. We will term the generated DBN
a situation-specific DBN, which we adopted from the MEBN-
approach presented in [28].

A. SS-DBN Structure

For generating the structure of the SS-DBN, we will make
use of the structure of the pre-modeled SDN. In general, we
will use exactly the same structure, but only use the situations
that are relevant for the selected situations of interest. The
general approach is the described in Algorithm 3. Thus, we
get a reduced version of our SDN by making use of the
predefined abstraction levels. This way, we simply get our SS-
DBN structure by selecting the nodes with a lower abstraction
level.

253

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 3 Generating the SS-DBN structure
Require: SDN
Ensure: DBN-structure

set S as selected situations of interest in the SDN
while S 6= ∅ do

for all incoming and outgoing arrows of every situation
s in S do

if abstraction level of the connected node is lower than
the one of s then

add node to DBN
else

ignore them
end if
set S as the set of all added nodes

end for
end while
for all temporal nodes do

add a reflexive arrow
end for

B. Criteria for good Parameters

The main challenge is now to set the parameters in a way
that the network behaves as we would expect it to behave.
In the following, we will list some criteria, which the DBN
should fulfill:

• Asymptotic behavior: How does the DBN behave if we
observe the same values over time? Especially if we
make no observations at all, we do not know anything
about the existence of the situation and the resulting
existence probability should be converging to 0.5.

• Switching behavior: How does the DBN behave if
observations change their values significantly? If we
first observe values that support the existence of the
situation of interest and then we make the opposite
observations, the resulting probabilities of the situation
should also change, i.e., the situation should switch its
state from true to false.

• Robustness: How does the DBN behave if we have
wrong or missing observations? As said above, the
resulting probability of the situation of interest should
not be very sensitive for noise.

Having determined these criteria, we will evaluate several
parameter settings with respect to them.

C. SS-DBN Parameters

We have to define parameters for every node, i.e., a
priori probabilities for nodes with no incoming arrows, and
conditional probabilities for nodes with incoming arrows. We
will treat the temporal arrows the same as all other incom-
ing arrows. The conditional probabilities then correspond to
P (Xi

t |Pa(Xi
t)) in equation (10). As a first rule for setting the

parameters, we have the following:

• If the situation has no incoming arrows, i.e., is a root
node, the prior probabilities are all set to 0.5.

• If the situation is a temporal situation, we set the
probabilities inside the first time point to 0.5.

In many cases, elementary situations have only one in-
coming arrow. This is due to the fact that at the lowest level,
there are the observation values of the DBN and they can
always be considered as necessary conditions. Thus, we have
to differentiate between two different types: either the parent
node is temporal or not. For non-temporal nodes, the higher
level situation can be interpreted as a semantic annotation to
the observed value and therefore, we can set the conditional
probabilities in a deterministic way:

• If the elementary situation A has one incoming arrow
from a non-temporal situation B, the probabilities are
set deterministic like in Table I.

TABLE I. CONDITIONAL PROBABILITY TABLE (CPT) FOR
ELEMENTARY SITUATION WITH NON-TEMPORAL PARENT.

P (A|B) B ¬B

A 1.0 0.0
¬A 0.0 1.0

If we have a temporal parent, we will apply a non-
deterministic conditional probability table. We will evaluate
some different parameter settings before choosing them. For
this small evaluation, we will only consider two nodes A and
B, where the parent B is a temporal node. We are interested
in good values for the CPT P (A|B). Thus, we fix the CPT
parameters for P (Bt+1|Bt). We set the CPT values in a
mirrored way, i.e.,

P (A|B) = P (¬A|¬B) and P (¬A|B) = P (A|¬B). (13)

This is because we do not want to have different influence
when observing true or false. Note that we only have to
change one value for our evaluation, namely p = P (A|B),
as P (¬A|B) = 1 − P (A|B). For the temporal node, we fix
the value P (Bt+1|Bt) = 0.9, see right side in Table II.

We evaluate five different values for p, and we show
three different results, namely the probability P (B|A) over
ten time steps. Figure 9 shows the resulting probability for
similar observations, switching observations, and for some
false observations. For the first observation sequence (Figure
9a), we would like to result in a high probability, so we discard
p = 0.6. For the second one (Figure 9b), we would like to
have a probability, that switches, but not rapidly, so we discard
p = 0.99. For the third sequence (Figure 9c), we would like to
have a probability that is not too sensitive to false observations,
so we finally choose p = 0.7. We therefore have the following
rule:

• If the elementary situation A has one incoming arrow
from a temporal situation B, the probabilities are set
like the ones on the left side in Table II.

TABLE II. CPT FOR ELEMENTARY SITUATION WITH TEMPORAL
PARENT (LEFT SIDE) AND CPT FOR TEMPORAL PARENT (RIGHT SIDE).

P (A|B) B ¬B

A 0.7 0.3
¬A 0.3 0.7

P (Bt+1|Bt) Bt ¬Bt

Bt+1 0.9 0.1
¬Bt+1 0.1 0.9

For all abstract situations, we apply an approach that
uses a weighted CPT-construction. Let Y be the abstract
situation, and X1, . . . , Xk the situations with an arrow to Y .

254

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) A = 1111111111 (b) A = 0000011111 (c) A = 1111101111

Fig. 9. P (B|A) over ten time steps with different observation sequences.

(a) A = 1111111111, B = 1111111111 (b) A = 0000111111, B = 0000001111 (c) A = 1111101111, B = 1111111111

Fig. 10. P (C|A,B) over ten time steps with different observation sequences.

For this approach, we have to determine two different types
of parameters.

• Relative influence of variables: This is modeled by
different weights λi with

∑k
i=1 λi.

• Absolute influence of variables: This is modeled by a
stretch value r ∈ [0.5, 1].

For the relative influence, we can use a weighting of the
influence, namely

P (Y = 1|X1 = x1, . . . , Xk = xk) =

k∑
i=1

λixi. (14)

Then it is P (Y = 1|X1 = x1, . . . , Xk = xk) ∈ [0, 1] and
P (Y = 1|X1 = x1, . . . , Xk = xk) = 0 for xi = 0 and
P (Y = 1|X1 = x1, . . . , Xk = xk) = 1 for xi = 1.

The aim of the absolute influence is to reduce the interval
[0, 1] to the values of [1 − r, r]. Thus, the overall strength of
the variables should be reduced. We define

f(x) = (2r − 1) · x+ (1− r). (15)

Then it is f(x) ∈ [1− r, r] for x ∈ [0, 1]. Thus, we can apply
f on P (Y = 1|X1 = x1, . . . , Xk = xk) and we have P (Y =
1|X1 = x1, . . . , Xk = xk) ∈ [1 − r, r]. In summary, we have

to determine k + 1 parameters, namely λ1, . . . , λk, r, instead
of 2k−1 for the CPT of P (Y = 1|X1 = x1, . . . , Xk = xk).

We will now show a small evaluation of our example with
different values of r. The values of r are chosen with steps
0.1. As 0.5 and 1.0 would not be reasonable values, we chose
the values 0.6, 0.7, 0.8, 0.9, and 0.99. We will use the same
criteria as above, namely insert observation sequences that
represent similar observations, switching observations, and for
some false observations. The result is shown in Figure 10.
For the first observation sequence (Figure 10a), we would like
to result in a high probability, so we discard r = 0.6 and
r = 0.7. For the second one (Figure 10b), we would like to
have a probability, that switches, but not rapidly, so we discard
p = 0.99. For the third sequence (Figure 10c), we would like to
have a probability that is not too sensitive to false observations,
so we finally choose p = 0.9. We can now state the final rule
for setting the parameters:

• If the situation is on a higher level, the weighted CPT-
construction is applied. The weights of the influences
can be adapted due to the semantics, and it is sug-
gested to set the stretch value to r = 0.9.

255

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. APPLICATION EXAMPLE IN THE MARITIME
DOMAIN

Assume for example a security officer who is using a
maritime surveillance system located in a port on an island
and he is interested in detecting vessels, which are suspicious
smuggling vessels. There is also a suspicious zone next to
the island, in which a lot of smuggling activities recently
happened. The officer is able to formulate several character-
istics that lead to a higher probability of a smuggling vessel,
either if the vessel is incoming or outgoing. Note that these
characteristics are defined as situations itself.

Based on the different situations, the expert is able
to model an SDN, as depicted in Figure 11. A sketch
of such situations is visualized in Figure 12. Let us
give some examples for our modeling approach. In Fig-
ure 11, the situation Has unknown ID has the nec-
essary characteristic situation MMSI-Number is empty.
The situation Sends no AIS signal has the neces-
sary characteristic situations MMSI-Number is empty
and Is inside AIS receiver area. And the situa-
tion Was in suspicious area is a sufficient charac-
teristic situation for the situation Suspicious incoming
smuggling vessel. Thus, the existence of a sufficient
situation should lead to a higher probability of the existence of
the situation of interest, whereas the existence of the necessary
situations has to be fulfilled for inferring the existence of the
situation of interest.

Note that the arrows in the SDN are always pointing from
a situation that describes some characteristics of the situation
that is pointed to, either by a necessary or sufficient condition.
The arrows of a necessary condition are always pointing from
a higher level of abstraction to a lower level of abstraction
and the arrows of a necessary condition vice versa. The level
of abstraction of a single situation of interest is determined
by the structure of the whole SDN. At the lowest level of
abstraction, we only have our elementary situations that can be
inferred as true or false directly from attribute values of objects
or from geometric computations. An example is the situation

Suspicious
smuggling

area

Island

Unsuspicious
vessel

Suspicious outgoing
smuggling vessel

Vessel with
rendezvous

intention

Suspicious incoming
smuggling vessel

Fig. 12. A sketch of the scenario for incoming and outgoing smuggling
vessels.

Past in polygon check that checks, if any point of the
vessel’s path is inside the polygon of the suspicious area. Thus,
at the lowest level, and only there, the observations are fed
into network. Every situation with a direct connection, either
incoming or outgoing arrows, is moved to the next higher level
of abstraction. Based on these connections, we result in the
SDN, as shown in Figure 11.

We will now evaluate the behavior of the whole network.
We construct the DBN with the approach described above and
set the parameters with the rules we established. We evaluate
two different scenarios. In the first scenario the observations
should lead to the decision of a suspicious outgoing smuggling
vessel, the second one should indicate a suspicious incoming
smuggling vessel.

For the first scenario, we will assume some observations
that are not noisy, namely

• past point in polygon check=0 for all time
points, i.e., the vessel was not in a suspicious area,

Is no tanker/
cargo/passenger

Has unknown ID Is moving

Checking object
type

MMSI-number is
empty

Speed larger zero

Is heading towards
island

Heading intersects
island polygon

Is inside AIS
receiver

area

Point in polygon
check

Is approaching
AIS-area

boundary

Minimal distance
to zone is

decreasing

Was in suspicious
area

Past point in
polygon check

Sends no
AIS signal

Will leave
AIS-area

Suspicious in-
coming smuggling

vessel

Suspicious out-
going smuggling

vessel

Is heading towards
suspicious area

Heading intersects
area polygon

A
b

st
ra

ct
io

n
 L

ev
el

T T

T

T

T T

T

T

S

N

S

S

NNNNN

NN

N

N N

N N
N

N N N

N N

Fig. 11. A SDN with two modeled situations of interest: suspicious incoming and suspicious outgoing smuggling vessel.

256

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• checking object type=1 for all time points,
i.e., the vessel is no tanker/cargo/passenger vessel,

• MMSI-Number is empty=1 for all time points,
i.e., vessel has an unknown ID,

• point in polygon check=1 for all time points,
i.e., vessel is inside AIS receiver area.

We will assume the following noisy observations:

• heading intersects area polygon=1 with
a certain probability for all time points, i.e., the vessel
is heading towards suspicious area,

• heading intersects island polygon=0
with a certain probability for all time points, i.e., the
vessel is not heading towards the island,

• speed larger than zero=1 with a certain
probability for all time points, i.e., the vessel is
moving,

• distance to zone is decreasing=1 with a
certain probability for all time points, i.e., the vessel
is approaching AIS area boundary.

We evaluated the DBN with different observation probabilities,
i.e., different amount of noise in the observation data. Figure
13a), b), and c) shows the result where the probability of wrong
observations is 0.1, 0.3, and 0.5, respectively.In the second
scenario, where the vessel is an incoming smuggling vessel,
we assume the following deterministic observations:

• past point in polygon check=1 for all time
points, i.e., the vessel was in a suspicious area,

• checking object type=1 for all time points,
i.e., the vessel is no tanker/cargo/passenger vessel,

• MMSI-Number is empty=1 for all time points,
i.e., vessel has an unknown ID,

• point in polygon check=0 for all time points,
i.e., vessel is not inside AIS receiver area.

We assume the following noisy observations:

• heading intersects area polygon=0 with
a certain probability for all time points, i.e., the vessel
is not heading towards suspicious area,

• heading intersects island polygon=1
with a certain probability for all time points, i.e., the
vessel is heading towards the island,

• speed larger than zero=1 with a certain
probability for all time points, i.e., the vessel is
moving,

• distance to zone is decreasing=1 with a
certain probability for all time points, i.e., the vessel
is approaching the boundary of the AIS-area.

Like in the first scenario, we present the results with
different observation noise in Figure 14. In both scenarios,
we see that the two situations of suspicious incoming
smuggling vessel and suspicious outgoing
smuggling vessel can be clearly distinguished from
each other, even if we add noisy observations with a
probability of 0.5. In both cases, the probability of the
underlying situation is around 0.9 or higher, whereas the
probability of the other situation is much lower. Of course, if
we add more noise, the probability of situation that is not true
is more unstable over time. The values range from around 0.4
to 0.7. The reason that the probability is not close to zero is
that we have observations that support both situations. Thus,
we have contradictory observations for the situation that is
not true, which results in probability values between 0.4 and
0.7.

IX. CONCLUSION AND FUTURE WORK

In this article, the information flow in an intelligent surveil-
lance system was highlighted. We described the process of
situation assessment in detail and showed how it can be
included into the information flow.

The main contribution of this work was the establishment
of systematic approach to characterize and recognize situations
of interest in a probabilistic way. The focus hereby was on a
top-down approach, i.e., that a maritime expert is able to model
the situations of interest by necessary and sufficient conditions
regarding other situations. The result of the characterization

(a) Probability of wrong observation: 0.1 (b) Probability of wrong observation: 0.3 (c) Probability of wrong observation: 0.5

Fig. 13. Outgoing smuggling vessel scenario: probabilities of incoming and outgoing smuggling vessel over 100 time steps with different observation noise.

257

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) Probability of wrong observation: 0.1 (b) Probability of wrong observation: 0.3 (c) Probability of wrong observation: 0.5

Fig. 14. Incoming smuggling vessel scenario: probabilities of incoming and outgoing smuggling vessel over 100 time steps with different observation noise.

process is a Situational Dependency Network (SDN), of which
a Dynamic Bayesian Network (DBN) can be generated auto-
matically. For the generation of the DBN, we presented several
rules for determining the parameters. During the process of
recognizing situations, the DBN uses observation values of
so-called elementary situations and is able to determine the
probability of more abstract situations over time by using well-
known efficient inference methods.

Finally, an application example of a SDN in the mar-
itime domain was given. We generated a DBN by using
the established rules and evaluated the DBN by using noisy
observations. Especially, we showed that the network behaves
as a user would expect. By using this approach, the operator
would be able to define situations of interest by himself and
to perform a probabilistic situation assessment without the use
of training data. Future work includes a refinement of the
parameter settings and an evaluation with real data.

ACKNOWLEDGMENT

The work was conducted during a research visit at Ningbo
University (China), which was supported by Karlsruhe House
of Young Scientists (KHYS).

REFERENCES

[1] Y. Fischer and J. Beyerer, “A top-down-view on intelligent surveillance
systems,” in Proc. of the 7th International Conference on Systems
(ICONS). IARIA, 2012, pp. 43–48.

[2] M. R. Endsley, “Towards a theory of situation awareness in dynamic
systems,” Human Factors, vol. 37, no. 11, pp. 32–64, 1995.

[3] Automatic Identification System (AIS) provided by the International
Maritime Organization (IMO), last access: 08.12.2013. [Online]. Avail-
able: http://www.imo.org/OurWork/Safety/Navigation/Pages/AIS.aspx

[4] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., 2006.

[5] K. P. Murphy, Machine Learning: A Probabilistic Perspective (Adaptive
Computation and Machine Learning series). The MIT Press, 2012.

[6] M. Andersson and R. Johansson, “Multiple sensor fusion for effective
abnormal behaviour detection in counter-piracy operations,” in Proc. of
the 2nd International Conference on Waterside Security, 2010, pp. 1–7.

[7] D. Meyer-Delius, C. Plageman, and W. Burgard, “Probabilistic situation
recognition for vehicular traffic scenarios,” in Proc. of the IEEE Int.
Conference on Robotics and Automation, 2009, pp. 459–464.

[8] D. L. Hall and S. A. H. McMullen, Mathematical Techniques in
Multisensor Data Fusion. Artech House, Inc., 2004.

[9] M. Baum, I. Gheta, A. Belkin, J. Beyerer, and U. D. Hanebeck, “Data
association in a world model for autonomous systems,” in Proc. of
the 2010 IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems (MFI), 2010, pp. 187–192.

[10] A. Dore, M. Soto, and C. S. Regazzoni, “Bayesian tracking for video
analytics: An overview,” IEEE Signal Processing Magazine, vol. 27,
no. 5, pp. 46–55, 2010.

[11] A. Bauer, T. Emter, H. Vagts, and J. Beyerer, “Object oriented world
model for surveillance systems,” in Future Security: 4th Security
Research Conference. Fraunhofer Press, 2009, pp. 339–345.

[12] A. N. Steinberg, C. L. Bowman, and F. E. White, “Revisions to the JDL
data fusion model,” in Sensor Fusion: Architectures, Algorithms, and
Applications, Proceedings of the SPIE Vol. 3719, 1999, pp. 430–441.

[13] J. Moßgraber, F. Reinert, and H. Vagts, “An architecture for a task-
oriented surveillance system: A service- and event-based approach,” in
Fifth International Conference on Systems (ICONS), 2010, pp. 146–151.

[14] Y. Fischer and A. Bauer, “Object-oriented sensor data fusion for wide
maritime surveillance,” in Proc. of the 2nd International Conference on
Waterside Security (WSS), 2010, pp. 1–6.

[15] J. Ye, S. Dobson, and S. McKeever, “Situation identification techniques
in pervasive computing: A review,” Pervasive and Mobile Computing,
vol. 8, no. 1, pp. 36 – 66, 2012.

[16] A. Dahlbom, “Petri nets for situation recognition,” Ph.D. dissertation,
Örebro University, Sweden, 2011, last access: 08.12.2013. [Online].
Available: http://oru.diva-portal.org/smash/record.jsf?pid=diva2:384609

[17] J. IJsselmuiden, A.-K. Grosselfinger, D. Münch, M. Arens, and
R. Stiefelhagen, “Automatic behavior understanding in crisis response
control rooms,” in Proc. of International Joint Conference on Ambient
Intelligence, 2012, pp. 97–112.

[18] M. Kokar and M. Endsley, “Situation awareness and cognitive model-
ing,” Intelligent Systems, IEEE, vol. 27, no. 3, pp. 91 –96, 2012.

[19] M. Kokar, C. Matheus, and K. Baclawski, “Ontology-based situation
awareness,” Information Fusion, vol. 10, no. 1, pp. 83–98, 2009.

[20] J. Garcia, J. Gomez-Romero, M. Patricio, J. Molina, and G. Rogova,
“On the representation and exploitation of context knowledge in a
harbor surveillance scenario,” in Proceedings of the 14th International
Conference on Information Fusion (FUSION), 2011, pp. 1–8.

[21] A. C. Van den Broek, R. M. Neef, P. Hanckmann, S. P. Van Gosliga,
and D. Van Halsema, “Improving maritime situational awareness by
fusing sensor information and intelligence,” in Proceedings of the 14th
International Conference on Information Fusion (FUSION), 2011, pp.
1–8.

[22] A. Vandecasteele and A. Napoli, “An enhanced spatial reasoning ontol-
ogy for maritime anomaly detection,” in 7th International Conference
on System of Systems Engineering (SoSE), 2012, pp. 1–6.

[23] J. Roy and M. Davenport, “Exploitation of maritime domain ontologies
for anomaly detection and threat analysis,” in International Waterside
Security Conference (WSS), 2010, pp. 1–8.

[24] G. Pilato, A. Augello, M. Missikoff, and F. Taglino, “Integration of

258

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ontologies and bayesian networks for maritime situation awareness,” in
IEEE Sixth International Conference on Semantic Computing (ICSC),
2012, pp. 170–177.

[25] M. Kruger, L. Ziegler, and K. Heller, “A generic bayesian network for
identification and assessment of objects in maritime surveillance,” in
15th International Conference on Information Fusion (FUSION), 2012,
pp. 2309–2316.

[26] W3C Web Ontology Language, last access: 08.12.2013. [Online].
Available: http://www.w3.org/2004/OWL

[27] P. C. G. Costa, “Bayesian semantics for the semantic
web,” Ph.D. dissertation, School of Information Technology
and Engineering, George Mason University. Fairfax, VA,
USA, 2005, last access: 08.12.2013. [Online]. Available:
http://digilib.gmu.edu/dspace/handle/1920/455

[28] K. B. Laskey, “MEBN: A language for first-order bayesian knowledge
bases,” Artificial Intelligence, vol. 172, no. 2-3, pp. 140–178, 2008.

[29] S. C. Dinkel, W. Hafner, P. C. G. Costa, and S. Mukherjee, “Service-
based situational awareness on the semantic web,” in Proc. of the IEEE
3rd Int. Multi-Disciplinary Conf. on Cognitive Methods in Situation
Awareness and Decision Support (CogSIMA), 2013, pp. 249–256.

[30] R. Carvalho, R. Haberlin, P. Costa, K. Laskey, and K. Chang, “Modeling
a probabilistic ontology for maritime domain awareness,” in Proc. of
the 14th Int. Conference on Information Fusion, 2011, pp. 1 –8.

[31] K. B. Laskey, R. Haberlin, R. N. Carvalho, and P. C. G. Costa, “PR-
OWL 2 case study: A maritime domain probabilistic ontology,” in Pro-
ceedings of the 6th International Conference on Semantic Technologies
for Intelligence, Defense, and Security (STIDS 2011)., 2011, pp. 76–83.

[32] Y. Fischer, A. Bauer, and J. Beyerer, “A conceptual framework for
automatic situation assessment,” in Proc. of the IEEE 1st Interna-
tional Multi-Disciplinary Conference on Cognitive Methods in Situation
Awareness and Decision Support (CogSIMA), 2011, pp. 234–239.

[33] Y. Fischer and J. Beyerer, “Acceptance of automatic situation assess-
ment in surveillance systems,” in Proc. of the IEEE 2nd Interna-
tional Multi-Disciplinary Conference on Cognitive Methods in Situation
Awareness and Decision Support (CogSIMA), 2012, pp. 324–331.

[34] Y. Fischer and J. Beyerer, “Defining dynamic bayesian networks for
probabilistic situation assessment,” in Proc. of the 15th International
Conference on Information Fusion, 2012, pp. 888–895.

[35] Y. Fischer and J. Beyerer, “Ontologies for probabilistic situation as-
sessment in the maritime domain,” in Proc. of the IEEE 3rd Interna-
tional Multi-Disciplinary Conference on Cognitive Methods in Situation
Awareness and Decision Support (CogSIMA), San Diego, USA, feb
2013, pp. 105–108.

[36] K. P. Murphy, “Dynamic bayesian networks: Representation,
inference and learning,” Ph.D. dissertation, University of California,
Berkeley, 2002, last access: 08.12.2013. [Online]. Available:
http://www.cs.ubc.ca/˜murphyk/Thesis/thesis.html

[37] GeNIe & SMILE, last access: 08.12.2013. [Online]. Available:
http://genie.sis.pitt.edu/

[38] Bayes Net Toolbox by Kevin Murphy, last access: 08.12.2013.
[Online]. Available: https://code.google.com/p/bnt/

[39] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009.

259

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Urban Area Energy Flow Microsimulation for
Planning Support: a Calibration and Verification

Study
Diane Perez, Jérôme Henri Kämpf, and Jean-Louis Scartezzini

Solar Energy and Building Physics Laboratory (LESO-PB)
École Polytechnique Fédérale de Lausanne (EPFL)

1015 Lausanne, Switzerland
{diane.perez; jerome.kaempf; jean-louis.scartezzini}@epfl.ch

Abstract—A recently developed energy management platform
named MEU (an acronym for Management of Energy in Urban
areas) has been tested on three case study urban areas of a
few hundred buildings in the Swiss cities of la Chaux-de-Fonds,
Neuchâtel and Martigny. The MEU simulation framework for
energy-efficient systems simulates the buildings’ energy demand,
infers the production of the connected energy conversion systems,
and simulates the complete demand and supply energy flow
picture. The platform is designed to use monitored consumption
data if available, and, where it is not, intends to produce
correct estimates of the average energy demands of housing
and administrative buildings. This article explores in detail the
capacity of the platform to correctly represent existing urban
areas’ energy flow based on the limited data available by com-
paring the simulated values with monitored data. Default values
are carefully chosen to obtain a statistically adequate match,
thus strengthening the confidence in simulation results when no
monitored data is available. The study also leads to interesting
observations and hypotheses regarding the energy efficiency of
existing buildings, and provides useful conclusions about the
possibilities and limitations of the simulation of disaggregated
urban energy flow.

Keywords—urban energy flow simulation, heating demand si-
mulation, calibration, verification, monitored energy consumption,
energy demand and supply.

I. INTRODUCTION

DESPITE raising awareness of the problems associated
with the widely unsustainable modern energy use, much

improvement is still needed to reduce resource consumption.
A large part of energy use can be attributed to buildings in
urban zones, and urban populations are increasing. It is thus
of interest for research to propose innovative energy efficiency
measures and energy management tools for the urban context.
Such a tool, the MEU platform, is described and tested in
detail in this paper, after the first results were presented in [1].

The MEU platform was developed through a collaboration
between several Swiss research labs (CREM in Martigny,
Hes-so Valais, CEN, LENI and LESO-PB at EPFL), cities
(Lausanne, La Chaux-de-Fonds, Martigny and Neuchâtel) and
energy utilities (Synergy, Viteos, SSIGE). Its objective is to
offer a platform for the management of energy in urban areas,

considering neighbourhoods of a few hundred buildings and
based on the limited available data. Among the functionalities
required, specific features of this platform include:
• consideration of individual buildings,
• modelling of supply as well as demand,
• combined use of available monitored data and spe-

cialised simulation tools to produce a coherent picture
of the urban energy flow,

• parallel modelling of the existing situation and of energy
efficiency scenarios.

The third point in particular is, to our knowledge, an un-
common feature. A specific approach is required to deal with
conflicting simulation results and monitored values. On the
other hand, the procedure offers a valuable opportunity to study
how micro-simulation tools for energy demand and supply
can be used to estimate real urban energy consumptions. The
study presented here exploits this opportunity as part of the
verification and calibration process of the MEU platform.

The next section of this article reviews related research in
the domain of urban energy modelling. Section III gives an
overview of the methodology of the MEU platform, covering
its modelling approach, simulation method and implementation
structure. Section IV describes the models of the case study
neighbourhoods, the data sources used to create the models and
the choice of default values. Section V presents the results
of the calibration and comparisons between simulated and
monitored values. The results obtained through simulations are
discussed in Section VI, and Section VII provides a concise
conclusion of this paper.

II. STATE OF THE ART

Among the large number of research domains concerned by
urban energy simulation [2] [3], there is now a growing interest
in the evaluation of the energy need of larger and/or pre-
existing urban areas [4], to evaluate the energy performance
associated with alternative development or improvement sce-
narios. However, it remains a challenge today to simulate the
detailed energy flow at the scale of a few hundred buildings,
including the demand and the supply sides [5]. The advantage
of this simulation approach is that it allows for the test of

260

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

scenarios of various levels of detail, covering in a large part the
options available to local politicians and energy departments.
The simulation of existing buildings’ disaggregated energy
flow at a large scale is however complicated by a lack of
information regarding the buildings’ characteristics and energy
supply situation, and a limited number of verification studies
comparing simulation tools’ results and monitored data.

Even when simulating individual new buildings, where con-
struction characteristics are well known, the simulated energy
demands and real consumption can differ significantly [6].
Regarding existing buildings, a successful method is to use
well-calibrated statistical models, for which aggregated results
match monitored data quite well [7]. Nevertheless, more
detailed data sources exist: cadaster and building geometry
data, building registers, monitored consumption data, other
geographical information system (GIS) data, etc. Together with
the development of decentralised energy production systems
and the need for more localised information, this supports
the development of disaggregated urban energy simulation
models [8]. An interesting verification study at this level was
performed on a 700-building area in Germany [9], evidencing
an average dispersion between simulated and monitored con-
sumption of individual buildings above 30%, while the overall
annual consumption was reasonably well estimated.

Two factors explain the difficulty to simulate individual
buildings at a large scale: the limited level of detail of data
available for such simulation, and the stochastic behaviour of
occupants. Nevertheless, acknowledging our inability to model
all parameters does not decrease the benefits of using all
available data: a disaggregated model making an intelligent
use of default or standard data to mitigate unavailable data has
the potential to provide better results than statistical models,
without limiting possible improvements of the model. The
calibration of the model and verification of default values,
which is the primary focus of this article, is however of
uttermost importance.

As discussed in [10], the amount of data (whether real or
default) involved in this kind of study, as well as its quality and
longevity are important concerns. However, few publications in
the domain tackle this problem. The MEU platform presented
in this study was developed with this concern in mind. It was
designed to provide the simulation functionalities necessary for
the energy management of urban zones, accounting for both
demand and supply sides, whilst addressing some of the data
concerns related to this domain.

III. METHODOLOGY

The simulations presented here were performed with the
MEU platform, an urban energy management tool developed
these last four years through a collaboration between research
units, energy utilities and municipalities. Not just an energy
demand simulation tool, the MEU platform intends to manage
energy-related data in an adapted data model, represent the
demand and supply energy picture, offer a structure for a
combined use of monitored data and simulation tools, and
integrate standard analysis functionalities.

Node levels schema

Domestic
hot water

 Space
heating

Heat!pump

Solar thermal
panels

Solar PV

level 0level 1level 2level 3

Electricity
services

Electric
boiler

Hydroelectric
power

Nuclear
power

Electricity
meter

Local!grid

Figure 1. Example graph representation of the energy flow providing a
building’s energy services.

A. Energy system model
The MEU platform models the urban energy flow as an

oriented graph, with the following rules: source nodes (in a
broad sense) are linked to (i.e., provide energy to) energy
conversion system (ECS) nodes or network nodes. The network
nodes themselves are linked to other network or ECS nodes,
and the ECS nodes in turn are linked to other ECS nodes or
building nodes, seen as energy sink nodes (Figure 1).

This graph approach was chosen for two main reasons:
without it, even simple situations where a building’s domes-
tic hot water (DHW) is provided by solar thermal panels
completed with an electrical boiler while space heating is
supplied by an oil boiler soon become very complicated to
model. Furthermore, the intent to consider monitored data
highlights its natural attribution to ECS instead of buildings: a
gas consumption usually corresponds to a gas boiler, whether
this boiler provides only one energy service in one building
or several services in a group of buildings. In the MEU graph
model, monitored energy consumptions can be attributed to
any ECS node as its input flow.

Energy demands for space heating, DHW, electricity and
cooling services are associated to each building node. An
arbitrary number of connections link each of these demands
with the ECS nodes supplying them. Each connection records
information about which fraction of the demand is supplied
through this connection.

The source nodes actually represent energy in any form that
does not need to be investigated further: it can be natural
gas as delivered in the country, or a pre-defined standard
electricity mix. These nodes are defined along with their name
by environmental factors, such as a kWh primary energy per
kWh coefficient and a kg CO2,eq per kWh coefficient, based
on the EcoInvent database [11], which intend to unite such
sustainability data in one coherent data bank.

Network nodes are mainly characterised by a loss factor,
whereas ECS nodes refer to a dedicated black-box simula-
tion model including any number of modifiable parameters.
Building nodes include data about address, location (footprint),
allocation and a physical model used for the estimation of
heating and cooling demand with the simulation program
CitySim presented below. Electricity and DHW needs are
estimated using Swiss norms [12], based on main allocation
and treated floor area.

B. Energy flow simulation
The simulation process consists of three main steps:

261

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• The whole annual energy flows are first estimated,
creating a complete but fully-simulated energy flow
picture. The energy service demands of each building
are simulated by a dedicated module: the CitySim web
service. The graph model structure then ensures suffi-
cient information is available to resolve the energy flow
providing those demands. The ECS nodes losses are
simulated using the corresponding black-box models,
offering flexibility regarding the available ECS models.

• The simulated energy flow picture is then adapted
(scaled) to match the monitored consumption values
available. The intent is to create an energy flow picture
as close to reality as possible, by combining the incom-
plete information of monitored data with the structuring
simulation results. Both original simulated values and
subsequently adapted values are saved for later analyses.

• The last step consists in retrieving usually required
results from the fully-informed energy flow picture,
including building-based values of primary, final (de-
livered) and useful energy use per service (as defined
in [13]). The results produced also include map repre-
sentations of the relative energy efficiency of buildings,
as well as overall results, such as the relative shares
of energy carrier used or the renewable fraction of the
primary energy consumed.

The first results presented in [1] confirmed that the approach
described above could correctly represent urban energy flow.
The test scene included several cases of centralised ECS
providing space heating and / or DHW in different buildings,
buildings where space heating is produced by both the district
heating network and a gas boiler (in order to free power on
the district heating network during heavy load periods), and
electricity meters providing both the electricity demand and an
electrical boiler, which were correctly simulated by the MEU
platform.

On top of the pre-computed results, the energy flow picture
obtained contains a large amount of information that can be
accessed to perform more detailed analyses. In particular, the
co-existence of the simulated and adapted values provides a
valuable tool for the analysis of the validity of the model. We
will consider the discrepancy of those two values at the level
of the buildings’ energy demands, using a discrepancy factor
f2 defined as the logarithm in base 2 of their ratio:

f2 = log2

(
simulated value
adapted value

)
(1)

The choice of this indicator comes from two observations:
firstly, when dealing with a large number of buildings, the
meaning of a particular monitored consumption value is often
uncertain, i.e., it is not always well defined which services
and buildings are concerned. As such, using the monitored
values as reference was not deemed a reliable method, no
more than using the simulated values as reference. Secondly,
using the percentage of deviation from a reference value has
the drawback of not being a symmetrical indicator: a 50%
result can be considered as an equivalent error to a 200%
result. The use of the f2 factor avoids such problems with

MEU spatio-
temporal
database

MEU platform graphical
user interface (website)

Cartography
module

GIS server

MEU web
service

CitySim
web service

Technology
models

Figure 2. Web-based structure of the MEU platform.

symmetric values around zero (which corresponds to a perfect
match). An f2 value of -1 corresponds to a simulated value
twice smaller than the adapted value, and an f2 value of 1
corresponds to a simulated value two times higher than the
adapted value, without any hypothesis regarding which is more
reliable. A map representation of this indicator is also very
useful to quickly spot locations where simulated values and
monitored data do not match, in order to verify and correct
the underlying model.

C. The MEU platform
The MEU simulation framework was implemented as a web-

based platform with decentralised web services (Figure 2). A
GIS-based web interface provides access and editing function-
alities to the model through a map representation (Figure 3).
It also grants access to the simulation results, in the form of
map representations as well as numerical results, for individual
buildings or aggregated for the whole scene.

The data is stored in a spatio-temporal PostgreSQL (open-
source) database and can also be accessed directly. The si-
mulation of the energy flow is implemented in the dedicated
MEU web service. During the simulation process the MEU
web service connects to the database to retrieve the necessary
input data and later to save results, calls the CitySim web
service for the estimation of energy demands, and uses the
“technology models” module to simulates the production of
an ECS based on its consumption or vice-versa.

D. CitySim
The urban energy use simulator CitySim [14] was developed

at EPFL based on multiple physical models coupled together.
Its simulation results have been compared against ESP-r,
EnergyPlus and the European norm CEN 13790, demonstrating
similar results [14]–[16]. The verification study presented here
concerns to a large extent the simulation of heating needs by
the CitySim web service, which is described in some detail.

CitySim can compute an estimation of the on-site energy
use for heating, cooling and lighting with an hourly time step.
A radiation model first computes the irradiation incident on

262

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. The web interface of the MEU platform, here showing the main energy carrier used for heating in each building and the possibility to define any
number of energy conversion systems to provide the energy services.

each surface of the scene, direct from the sun, diffuse from the
sky and reflected by other surfaces. The results of this model,
together with predictions of long-wave radiation exchange, are
input to a thermal model. This model determines the thermal
exchange through building envelopes and computes the heating
and cooling energy needs to maintain predefined temperature
conditions inside. Finally, ECS providing heating, cooling and
electricity can also be defined.

As input, a complete physical description of the scene
as well as climatic data are needed for the simulation. The
climatic data includes hourly temperature, wind and irradi-
ance values, together with the geographic coordinates and
the definition of far field obstructions (which is used by the
radiation model). The building models describe the envelope
of each building (the thermal properties of each facade, the
layered composition of the walls with thermal inertia and
transmittance properties, the proportions of window openings
and the physical properties of the glazing) as well as the
infiltration rate and the presence of occupants and heat gains.

CitySim is used in the MEU platform to compute heating
and cooling demands only. It was transformed for this purpose
into a web service, also including the estimation of electricity
and DHW annual demands based on the SIA norms [12].
The central MEU web service prepares the input model based
on the data available in the database, calls the CitySim web
service and retrieves the simulated energy demands to save
them in the database.

IV. CASE STUDY MODEL

The verification study considers three case study urban
areas, located in the Swiss cities of Neuchâtel, La Chaux-de-
Fonds and Martigny. Still in its verification phase, the platform

has, to date, not been used in other countries. This section
describes the data sources used to create the models, and gives
some specific insights on each of the urban zones. The default
data chosen to complete these models is discussed in the next
section.

A. Data sources
The models created for this project are based on cadastral

data defining buildings’ footprints, and possibly their type
(allocation). The footprints are combined with data from the
national building register including the address, period of
construction, number of floors and optionally space heating
and DHW supply systems. These were completed with a large
amount of default data to form the physical model of the
building (see Section IV-C).

The monitored consumption of electricity, gas and heat from
the district heating network (DHN) were obtained through
the local energy providers. Part of the fuel oil (supplied by
various companies) consumption values were provided by the
cities, based on contacts with building owners. The model is
completed with locally measured meteorological data for the
year corresponding to monitored consumption data.

The concerned municipalities’ help permitted to slightly
simplify the collection of data. Nevertheless, the combination
of the various sources into a coherent model remained a time-
consuming task, accounting for several weeks of work for each
case-study model.

B. Case study urban zones
The three cities are located in the western part of Switzer-

land, but cover quite different climatic conditions. Figure 4
shows the buildings’ footprints and their construction period.

263

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Maps of the three case study areas, showing the buildings’ construction period (colours available online).

1) La Chaux-de-Fonds (CdF): Located in the Jura sub-
alpine mountain range, La Chaux-de-Fonds (alt. 1000m) is a
UNESCO World Heritage Site for its watchmaking industry-
driven urbanism mixing housing and workshop at the heart of
the city. The case study area covers the main part of the city
center and is composed of 600 buildings. It includes mostly
multi-family houses and industrial or workshop buildings,
heated through a district heating network (DHN), gas or oil.

The model was up to some extent verified with the help of
the energy office and energy supplier of La Chaux-de-Fonds,
producing the highest confidence level case study model.
Energy consumption data for the year 2011 (3853 degree-
days1) was provided for electricity, gas and the DHN as well
as for oil, although part of this data was extrapolated from
other years.

2) Neuchâtel (Nch): Neuchâtel is located in the Swiss
plateau, between the Alp and the Jura mountains. The case
study area is a part of the city center, covering a slope between
a lake and the first shoulders of Jura (alt. 430m-500m), and
composed of approx. 400 single-family houses, multi-family
houses, commercial buildings and other types of buildings.
This most heterogeneous case study area is also heated with
gas, oil and DHN.

Digital surface and terrain models (DSM and DTM) were

1Using T̄d the average temperature of day d, the degree-days (DD) were
computed as DD =

∑365

d=1

{
0 if T̄d > 12; 20 − T̄d if T̄d ≤ 12

}

available for the creation of the model, providing individual
building’s average altitude and height. The model was less
intensively checked than that of CdF, but can rely on monitored
gas and DHN consumption data for the year 2008 (3166 DD).

3) Martigny (Mrt): Martigny (470m) is located in the Rhone
valley in the western part of the Alps range; the case study area
is a very compact housing neighbourhood of approximately
200 buildings west of the city center. Unlike the two other
case study areas, a large share of the buildings are heated
with electricity, the others using mostly oil or gas. Monitored
consumption values are available for 2010 (3116 DD). The
model is however the least verified, and an unknown part of
the buildings might use a wood stove for complementary space
heating. The case study was still included in our analysis for
representativeness, although the results obtained with it were
considered with a lower weight.

C. Default data
As mentioned above, in order to obtain a microsimulation

model at this scale of a few hundred buildings, numerous
default values and rules were used. Only a very limited amount
of data was considered as compulsory to create the case study
models: the buildings’ footprint, period of construction, main
allocation (type) and number of floors (although the use of
more available data was always possible).

For this verification study, default values were first chosen
based on the information available to us, through published

264

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I. DEFAULT PHYSICAL PROPERTIES OF THE BUILDINGS: VENTILATION RATE nVENT [H−1], WALL U-VALUE Uw [W/M2K], ROOF U-VALUE Ur

[W/M2K] AND GROUND K-VALUE Kg [W/M2K]. DEFAULT WALL TYPES ARE DESCRIBED OUTSIDE TO INSIDE, THE VARIOUS VERSION BEING SLIGHTLY
BETTER OR LESS INSULATED.

Period Wall description Version 1 Version 2 Version 3
Uw Ur Kg nvent Uw Ur Kg nvent Uw Ur Kg nvent

Before 1918 Rough-stone wall 1.41 1.9 2.8 0.70 0.90 0.70 1.4 0.60 0.94 0.50 1.0 0.60
1919 - 1945 Rough-stone wall 1.41 1.9 2.8 0.70 0.90 0.70 1.4 0.60 0.94 0.40 0.9 0.60
1946 - 1960 Rough-stone, air gap, brick 1.35 1.4 2.3 0.60 0.98 0.70 1.5 0.60 1.35 0.85 1.5 0.75
1961 - 1970 Brick, air gap, brick 1.14 1.3 2.0 0.55 0.91 0.65 1.3 0.55 1.03 0.70 1.3 0.70
1971 - 1980 Brick, insulation, brick 0.58 0.70 1.3 0.50 0.67 0.60 1.1 0.50 0.86 0.70 1.2 0.65
1981 - 1990 Ins., armed concrete 0.42 0.40 0.63 0.40 0.62 0.43 0.68 0.45 0.90 0.65 1.0 0.60
1991 - 2000 Ins., armed concrete 0.29 0.28 0.42 0.35 0.44 0.31 0.49 0.40 0.69 0.55 0.85 0.55
2001 - 2010 Ins., armed concrete 0.21 0.20 0.28 0.30 0.36 0.25 0.35 0.40 0.51 0.45 0.70 0.55

work as well as surveys or informal knowledge transmission.
Given the limited available knowledge regarding the existing
building stock’s physical properties and energy supply situa-
tion, the first version (Version 1) of the model was not expected
to provide a good match with monitored data, but rather a basis
for the definition of more adapted but still realistic default
values. The objective of such a crude model is not to obtain
precise individual building energy demands, but representative
average results.

Regarding the simulation of energy demand, energy con-
sumption studies show that the most influent parameters are
the dimensions of the building, its age and its type (alloca-
tion) [17], [18]. The dimensions of the buildings are obtained
through their footprints and number of floors. The default
values are thus attributed based on the buildings’ period of
construction and type. Sensitivity analyses performed with
CitySim, in accordance with [19], show that after dimension-
related parameters, the most influent parameters for the si-
mulation of heating loads are the set point temperature, the
ventilation rate and the insulation thickness (or more generally
the outer surfaces’ properties), followed by internal heat gains
and climatic conditions.

The closest measured climatic data was obtained through
a national database. Swiss norms recommend the use of
a heating set point temperature of 21 ˚C for housing and
administrative buildings’ thermal simulations. This important
parameter can vary considerably depending on the occupants
preferences, but cannot be refined based on the data available
to us. Together with electricity and DHW needs, internal heat
gains are estimated based on norms.

As for dimension-related parameters, the simulation uses
a 3D flat-roof model based on the cadastral footprint of the
buildings and their number of floors. The fractions of façades
that are shared between heated buildings are considered to
be adiabatic. The DSM and DTM data of Neuchâtel’s case
study corresponds to an average height of 2.73 m per floor
as recorded in the register of building. This value is used to
estimate the unknown heights of buildings, while a treated floor
area to footprint ratio of 0.8 per floor is assumed. The heated
volume is further estimated considering 20 cm thick slabs and
10% of the volume occupied by furnitures.

The ventilation rate and construction properties are more
uncertain and will thus be the focus of our analysis. The
ventilation rate parameter represents the building’s air volume
change per hour in usual conditions. It strongly depends on
the air-tightness of the envelope, the existence of an HVAC

Table II. DEFAULT WINDOW TO WALL RATIO αwin [-], WINDOW AREA
U-VALUE [W/M2K] AND WINDOW AREA G-VALUE [-], BASED ON THE

AVERAGE OBSERVED WINDOWS PROPERTIES. THE VALUES CONCERN THE
FULL WINDOW AREA, INCLUDING AN AVERAGE OF 25% OF FRAME.

Period αwin
Version 1 Version 2 & 3

Uwin gwin Uwin gwin

Before 2000 0.25 2.3 0.47 2.0 0.5
2000 - 2010 0.35 1.3 0.49 1.7 0.5

(heating, ventilation and air conditioning) system and the
occupants’ stochastic behaviour regarding ventilation (win-
dow opening to avoid overheating is considered separately in
CitySim simulations). Although one of the most influential
parameters for the simulation, it is thus one of the least
accessible. Studies on the air tightness of buildings present
a large range of results, corresponding to infiltration rates
ranging from 0.1 to 1 h−1 [20]–[22]. We thus chose default
values for the ventilation rates based on two considerations:
most studies show that the infiltration rate of older buildings
is 2 to 4 times higher than that of more recent buildings, and
Swiss norms recommend a minimum total ventilation rate of
0.3 h−1 for comfort and health purposes. The original default
values are shown in the “Version 1” part of Table I (the
versions 2 and 3 are discussed further on).

Regarding the physical properties of the envelope, the con-
struction default parameters must represent the average state of
all buildings of each construction period, as the available data
does not include information about past thermal retrofitting
of buildings. Further, the unknown existence of non-heated
attics or cellars complicates the estimation of their thermal
resistance (ground K-value and roof U-value). Nevertheless,
a first version of default values was based on typical period-
specific construction characteristics determined with the help
of experimented local architects, and are also shown in Table I.

Windows ratio, U-value and g-value, estimated based on a
visual survey of approximately 500 buildings in Zürich, are
shown shown in Table II. The calculated U-value and g-value
also depend on the hypotheses made regarding the typical
glazing properties.

Considering the supply side, wherever monitored consump-
tions of gas, fuel oil or district heating are available, gas
boilers, fuel oil boilers and heat exchangers respectively are
defined in the corresponding buildings. It is assumed that these
produce space heating, as well as DHW if the building register
announced the same energy carrier for both services. The
consumption values are then affected to these systems. This

265

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table III. DEFAULT ENERGY CONVERSION SYSTEMS EFFICIENCY η.

Technology Version 1 & 2 Version 3
η [-] η [-]

Heat exchanger 0.93 0.97
Gas boiler 0.85 0.79
Oil boiler 0.85 0.77
Electric boiler 0.93 0.93
Wood boiler 0.65 0.65
Heat pump (COP) 3.4 3.1
Electricity meter 1.0 1.0

method showed its limits as numerous buildings of Neuchâtel
appear to use gas only for cooking, their consumption being
clearly incompatible with either space heating or DHW de-
mands.

The lower confidence data of the building register was
used to complete the supply picture with other ECS for both
space heating and DHW when information was available for
buildings without consumption data. At this point, using maps
of the f2 factor, buildings without monitored data for heating
that are semi-detached from buildings with a high consumption
value were considered to be heated by the same centralised
ECS and thus connected to that ECS. Fuel oil boilers were
eventually defined in buildings without any other ECS.

An electricity meter providing electrical services was also
defined in each building, and associated with the electricity
consumption obtained through the energy provider. The elec-
tricity consumption of electrical boilers was assumed to be
included in the total monitored electricity consumption.

The technology models used to simulate the ECS are quite
simple and use the default efficiencies shown in Table III,
based on the Swiss norm SIA 2031 [23]. When two or more
ECS are defined to provide the same service, it is supposed
that each meets the same share of the demand, except for solar
thermal panels that are often sized to provide approximately
65% of the annual DHW demand. These default shares can be
adapted during the simulation based on the monitored data.

V. DEFAULT DATA CALIBRATION AND MODEL
VERIFICATION

The calibration and verification of the model focused on
the housing and administrative buildings, which seem the
most predictable building types. Other types of buildings are
expected to have more varying energy demands, which are
barely correlated to the rough data at our disposal. The limited
number of such buildings in our case studies also limits the
possibilities to perform statistically relevant analyses.

Each case study model was simulated with the MEU plat-
form, first using the Version 1 default values. This section
analyses the results using the f2 factor. Representing the
discrepancy between simulated values and monitored data,
it provides insights regarding the default values’ adequacy
as well as indications on other possible model errors. Two
improved default values versions were then defined, simulated
and analysed.

A. Version 1 simulations
Most of the least reliable default values concern the space

heating demand simulation and are attributed based on the

●

●

●

●

●

●●

●
●

●

●●●●

●
●●

●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4

−2

0

2

4

0−
19

18

19
19

−1
94

5

19
46

−1
96

0

19
61

−1
97

0

19
71

−1
98

0

19
81

−1
99

0

19
91

−2
00

0

20
01

−2
01

0

Construction period

f 2
 (

 s
pa

ce
 h

ea
tin

g
)

City (left to right)
La Chaux−de−Fonds
Martigny
Neuchâtel

Figure 5. Discrepancy factor of the heating demand as a function of the
construction period for the Version 1 simulations. The width of the boxplots
is proportional to the square root of the number of observations. Positive f2
values corresponds to simulated values greater than monitored values, and
vice-versa. A zero f2 value represents a perfect match between simulated and
monitored values. Four points outside the range of the graph were ignored.
(Colours available online.)

construction period. The logarithmic discrepancy factor f2 for
the heating demand is plotted against those periods in Figure 5
for all housing or administrative buildings of each case study.

First of all, it must be noted that the largest proportion of
buildings in our case studies were built before 1960 (Table IV);
the results concerning more recent buildings are less reliable
as a result of their limited number. The dispersion of the
discrepancy factor is quite high, with a few buildings for which
the simulated value was more than 4 times smaller or 16 times
greater than the monitored value. However, the interquartile
range is between 1 and 2 units of the f2 factor’s scale, which
corresponds to ratios of 1:2 to 1:4.

More interesting at this stage is the average value of the
f2 factor, showing that our model globally overestimated the
space heating demand of older buildings and underestimated
that of more recent constructions. In other words, the thermal
efficiency of old buildings was underestimated, while that of
recent buildings was overestimated. Surprisingly, the energy
use per square meter for heating, represented in Figure 12 and
discussed later in Section VI, does not evidence a decrease
of the energy consumption with time, except for buildings
built after 2000. This goes against our first choice of default
values, which supposed a decreasing thermal efficiency for old
buildings.

In the case of Mrt, either the heating demand was even more
generally overestimated, or the monitored consumption values
used for the comparison are too low, which would be coherent
with the existence of a non-negligible number of unmodeled
wood stoves, the consumption of which could not be taken
into account.

B. Version 2 simulations
Based on the previous observations, a second set of default

values (Version 2) was defined. The life-time of windows being
considerably lower than that of buildings, it was estimated that

266

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table IV. NUMBER OF BUILDINGS OF HOUSING OR ADMINISTRATIVE
TYPE WITH MONITORED HEATING CONSUMPTION. “ALL” GIVES THE

TOTAL NUMBER OF BUILDINGS OF HOUSING OR ADMINISTRATIVE TYPE.

Period CdF Nch Mrt
Before 1918 102 47 72
1919 - 1945 44 24 13
1946 - 1960 92 22 8
1961 - 1970 23 12 4
1971 - 1980 13 3 12
1981 - 1990 6 4 9
1991 - 2000 11 8 6
2001 - 2010 29 11 3
Total 320 131 127
All 411 338 155

●

●

●

●

●

●●

●
●

●

●
●●

●●●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

−4

−2

0

2

4

0−
19

18

19
19

−1
94

5

19
46

−1
96

0

19
61

−1
97

0

19
71

−1
98

0

19
81

−1
99

0

19
91

−2
00

0

20
01

−2
01

0

Construction period

f 2
 (

 s
pa

ce
 h

ea
tin

g
)

City (left to right)
La Chaux−de−Fonds
Martigny
Neuchâtel

Figure 6. Discrepancy factor of the heating demand as a function of the
construction period for the Version 2 simulations. Four points outside the
range of the graph were ignored.

the quality of glazing and frame materials was more uniform
than previously estimated (Table II). The overall quality of the
envelope was revised, based on the hypothesis that the simplest
insulation measures for old buildings, and thus the most likely
to be widespread, concern primarily the roof and ground. The
ventilation rate of old buildings was also reduced, keeping in
mind the following remarks:
• To our knowledge, no study regarding air-tightness or

ventilation rates of Swiss buildings is available.
• Measurements usually concern the air-tightness of the

envelope; the estimation of an average ventilation rate
based on those measurements still involves numerous
hypotheses (among other regarding wind conditions) that
were not taken into account in this work.

• For very leaky buildings, improving the air tightness
is possibly easier to accomplish than other energy-
efficiency measures.

Conversely, the overall quality of more recent buildings was
slightly reduced, among other by diminishing the estimated
insulation thickness.

The results of the second simulation, shown in Figure 6,
slightly improved the match between simulated and monitored
values, but the trends observed in the first simulation remain.

At this point, the correlation between the discrepancy factor
and the technology used for heating was also investigated, but
no significant trend could be observed (Figure 7). Nevertheless,

●
●

●

●

●

●●

●
●●

●●

●

●

●
●

●

●

●

●

●●

●

●

−4

−2

0

2

4

6

ele
c_

bo
ile

r

ga
s_

bo
ile

r

he
at

_e
xc

ha
ng

er

oil
_b

oil
er

Main technology for heating

f 2
 (

 s
pa

ce
 h

ea
tin

g
)

City (left to right)
La Chaux−de−Fonds
Martigny
Neuchâtel

Figure 7. Discrepancy factor of the heating demand for the Version 2
simulations, per technology used for space heating. Four points outside the
range of the graph were ignored.

Table V. AVERAGE ANNUAL EFFICIENCIES OF HEAT PRODUCTION FOR
EXISTING PLANTS IN 2005 ACCORDING TO TWO STUDIES REGARDING THE

SWISS BUILDING STOCK.

Technology [27] [28]
Gas 0.79 0.79
Fuel oil 0.77 0.77
Wood 0.64 0.64
Heat pump (COP) 3.3 2.7

and although information regarding the average efficiency
of existing energy conversion systems is very scarce, the
default efficiencies of the heat exchangers, oil boilers and
gas boilers were modified the Version 3 to better represent
the average quality of installed ECS. Regarding the DHN,
according to a local specialist heat exchanger efficiencies are
currently of the order of 99%. This value was only slightly
decreased to 97% to account for heat losses after the heat
exchanger. Losses occurring during heat production and in
the distribution network are considered elsewhere, i.e., at the
corresponding nodes in the graph model, and were also set
according to the local energy provider’s data. By contrast, the
original hypotheses regarding gas and oil boilers efficiencies
were probably too optimistic, as they correspond to values
given by the norm [23] for correctly sized condensing boilers.
Regarding conventional boilers, the norm proposes an annual
efficiency of 80%, and less in case of bad sizing. An official
document regarding the sizing of boilers also mentions typical
annual efficiencies of 70 to 85% [24]. Globally, the overall
space heat production efficiency in Switzerland is estimated
at 78% by [25]. Moreover, the efficiencies are traditionally
computed based on the lower calorific value of the substance
in Europe [26] (the convention used by the documents cited
above is unspecified), while the efficiencies considered in
our simulation refer to the higher calorific value. Finally, the
efficiencies used in two large scale studies of Swiss energy
consumption [27] [28], once converted to refer to the higher
calorific value based on [29], are reproduced in Table V. Based
on these observations, the default efficiencies of the main
technologies were adapted in the third version to the values
presented in Table III.

267

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

●

●

●

●

●

●●

●

●
●

●

●●●●●
●

●
●●

●●●●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

−4

−2

0

2

4

0−
19

18

19
19

−1
94

5

19
46

−1
96

0

19
61

−1
97

0

19
71

−1
98

0

19
81

−1
99

0

19
91

−2
00

0

20
01

−2
01

0

Construction period

f 2
 (

 s
pa

ce
 h

ea
tin

g
)

City (left to right)
La Chaux−de−Fonds
Martigny
Neuchâtel

Figure 8. Discrepancy factor of the heating demand as a function of the
construction period for the version 3 simulations. Four points outside the range
of the graph were ignored.

C. Version 3 simulations

In addition to the ECS efficiencies modifications, the de-
fault properties of buildings were also adapted again, with
the overall same hypotheses as before regarding pre-1960
constructions. For more recent constructions, the envelope’s
quality was lowered again, but most importantly the ventilation
rate was substantially increased. We thus make the hypothesis
that the usual ventilation habits clearly exceed the minimal
recommended ventilation rate of 0.3 h−1.

The simulation of all case studies with the third version of
default values leads to the discrepancy factor for space heating
showed in Figure 8. This third version intends to represent the
most equilibrate hypotheses that can be made regarding the
unknown parameters of our simulation, based on the available
information and monitored data. A more refined calibration of
the model for buildings built after 1960 would require a larger
number of buildings to be relevant.

With this better calibrated space heating energy demand
simulation, the f2 factors for the DHW and electricity demands
were also investigated. Both energy demands are estimated
based on the building type; Figure 9 shows the f2 factor
per type for all services. The average electricity and DHW
consumption of housing and administrative buildings was quite
well estimated by the simulation based on norms, while other
building types show, as expected, much less predictable trends.

VI. DISCUSSION

Considering the case studies of CdF and Nch only, half of
the housing and administrative buildings’ f2 value for space
heating is comprised in the interval (-0.40, 0.43), meaning
that the simulated heating demand of half the buildings was
comprised between 76% and 132% of the monitored values.
This can be considered as a good result for such a crude
model, although the results for individual buildings cannot
be trusted. The quality of the results for DHW is similar,
while the interquartile range for electricity is (-0.30, 0.45).

●
●

●

●

●

●

●●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4

−2

0

2

4

1 2 3 4 5 7 8 9 10 11 12

Construction type

f 2
 (

 s
pa

ce
 h

ea
tin

g
)

City (left to right)
La Chaux−de−Fonds
Martigny
Neuchâtel

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4

−2

0

2

4

1 2 3 4 5 7 8 9 10 11 12

Construction type

f 2
 (

 D
H

W
)

City (left to right)
La Chaux−de−Fonds
Martigny
Neuchâtel

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

−4

−2

0

2

4

1 2 3 4 5 7 8 9 10 11

Building type

f 2
 (

 e
le

ct
ric

ity
)

City (left to right)
La Chaux−de−Fonds
Martigny

Figure 9. Discrepancy factor for the space heating, DHW and electricity
services demands as a function of the building type in the version 3 simula-
tions. Space heating and DHW show similar f2 trends, as both are provided
by the same ECS in most buildings. Allocation types: 1 apartment building,
2 individual home, 3 administrative, 4 schools, 5 sales, 6 catering, 7 meeting
venues, 8 hospital, 9 industries, 10 warehouses, 11 sports installations, 12
indoor swimming pool.

The simulation of other building types is much less reliable,
and the results of the case study of Martigny remain uncertain.

The origin of the remaining discrepancies are numerous,
but difficult to take into account. The space heating demand
of individual homes is slightly overestimated when compared
to apartment buildings, although the available data is not con-
clusive. Otherwise, the f2 factor did not exhibit any significant
correlation with the other available parameters that were tested

268

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(treated floor area, form factor, number of floors).
Among the inaccessible factors, the stochastic influence

of occupants behaviour is known to be of high importance,
practically limiting the precision of the results even with a
very well calibrated physical model. However, numerous other
sources of imprecision are known, in particular regarding space
heating demand simulation:
• Many uncertainties regarding the correct attribution of

monitored data remain. Visual representations of the f2
factor help to spot likely errors, but more information
is often needed to resolve them. For instance, adjacent
buildings with high and opposed f2 factor hints for a
shared use of the energy consumption, but this often
cannot be confirmed without on-site surveys.

• The existence of other ECS such as solar thermal panels
and wood stoves is usually not documented and could
not be assessed for this study. Aerial photography might
prove to be a valuable source for the localisation of solar
technologies, whereas the location of other technologies
might remain very hard to assess without extensive
surveys.

• The cadastral footprint of buildings used for the cre-
ation of the 3D model does not always represent the
simulation relevant part of the building: some have been
found to include adjacent garages, while buildings with
a complex shape are simplified to the point where the 3D
model and treated floor area estimation might not have
any relevance at all. The use of the correct roof shape
(instead of the simplified flat-roof model currently used)
could also improve the simulation results’ quality.

• The unknown refurbishment status of buildings is likely
to account for an important part of the dispersion of the
f2 factor for all but the most recent buildings.

• Construction techniques are quite variable even for the
same period, and further might depend on the region,
although the difference between the three case studies
simulated here with the same default values are not
conclusive in this regard. The case study of Mrt, where
a better thermal efficiency of buildings could be hypoth-
esised based on the f2 factor, is actually supposed to be
a quite low energy efficiency neighbourhood.

Any attempt to further improve the calibration of the model
without first addressing these uncertainties would not be perti-
nent. However, as the creation of models at this urban scale is
likely to often suffer of the same limitations, it is interesting to
document the precision of such models. The results obtained
for buildings with monitored energy consumption also help to
evaluate the reliability of the simulation on other buildings.

The simulated and adapted total space heating demands
are shown in Figure 10, confirming for the case study of
Mrt that either the space heating demand is overestimated,
or the related consumption is underestimated. CdF and Nch
total space heating demands are underestimated by 15.5% and
10.4%, although their average f2 factors correspond respec-
tively to a 5% underestimation and a 13% overestimation.
Figure 11 shows that the highest space heating demands are
indeed most frequently underestimated, and have an order of
magnitude close to the difference between the total simulated

0

10000

20000

30000

40000

CdF M
rt

Nch

City

A
nn

ua
l h

ea
tin

g
en

er
gy

 d
em

an
d

[M
W

h] Adapted values
(using monitored data)

Simulated values

Figure 10. Annual space heating demand for housing and administrative
buildings with monitored consumption.

●●●

●●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●
●

●
●
●
●
●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

● ●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●

●

● ●

●

● ●●

●●

●●●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●●●

●

●●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●●● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2

0

2

0 500 1000 1500
Annual heating demand [MWh]

f 2
 (

sp
ac

e
he

at
in

g)

City
●

●

●

La Chaux−de−Fonds
Martigny
Neuchâtel

Figure 11. Correlation of the f2 factor with the heating demand, as adapted
based on monitored values. Four points with annual heating demand lower
than 100 MWh and f2 > 3 are outside the range of the graph.

and monitored values. Unlike regular statistical variations, the
unpredictable demands of a few big energy consumers can thus
have a strong impact on the overall results.

Plotting the final energy use for heating versus the construc-
tion period of the buildings (Figure 12) does not reveals a clear
decrease with time, except for the most recent buildings (built
after 2000). All case studies present more or less the same
trend, with only a marginal number of old buildings showing
a clearly higher energy consumption for heating. The three
partner cities have been promoting energy efficiency for some
time and have all obtained labels in this domain [30]; never-
theless, Martigny’s case study zone in particular is considered
to have quite a low energy efficiency. On the other hand, the
small number of recent buildings and possible errors in their
modelling might have created a bias, which would require a
broader study to be correctly explored.

VII. CONCLUSION AND FUTURE WORK

The calibration and verification work presented in this paper
improved and assessed the quality of the urban energy flow

269

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

0

100

200

300

400

500

600

0−
19

18

19
19

−1
94

5

19
46

−1
96

0

19
61

−1
97

0

19
71

−1
98

0

19
81

−1
99

0

19
91

−2
00

0

20
01

−2
01

0

Construction period

F
in

al
 e

ne
rg

y
[k

W
h/

(m
2 ·y

ea
r)

]

City (left to right)
La Chaux−de−Fonds
Martigny
Neuchâtel

Figure 12. Final energy consumption for heating, per year and per square
meter, for housing and administrative buildings with monitored consumption,
as a function of the construction period.

simulation performed by the MEU platform. The platform
intends to provide a flexible tool for the energy management
at the scale of a neighbourhood, based on the limited available
data sources and providing default values to supplement their
low level of detail. The platform’s combined management of
simulation results and monitored data proved to be a powerful
tool both to improve the model’s quality and to perform
verification studies.

The validity of the results at the scale of individual buildings
was explored in detail, focusing on the housing and administra-
tive buildings. The correct simulation of average buildings was
demonstrated, while individual results remain, as expected,
less reliable. The remaining discrepancies between simulated
and monitored values can be attributed to the influence of the
stochastic behaviour of occupants, but also to the limitations
of the model regarding, among others, the attribution of mon-
itored values, the unknown refurbishment status, the possible
existence of other ECS, and the crude 3D model used for the
simulation. Nevertheless, this study’s results will already help
improve the platform’s reliability.

The aggregated results at the scale of a few hundred
buildings shows that the total space heating demand is un-
derestimated by 10% to 16% by the simulation for the two
reliable case studies. This result highlights that a better match
at the level of individual buildings does not necessarily yield
a correct aggregated value, as some unpredictable high energy
consumers can have an important impact. The possibility to
simulate other buildings types with a satisfactory accuracy
based on similarly low level-of-detail data remains to explore.

The research of realistic default values leads to new hypothe-
ses regarding what can be considered as standard ventilation
rates or as typical construction properties, but the lack of
knowledge in this area makes the verification of those hypothe-
ses difficult. A large scale but detailed assessment of existing
buildings’ physical properties would thus be a contribution of
great value for the simulation of buildings’ energy demand
and for studies regarding the potential of energy-efficiency
measures.

Finally, this study also evidenced interesting results regard-

ing the energy use of our three case study areas. The most
surprising observation is the low difference in energy con-
sumption for space heating among buildings built before 2000.
Note however that the individual renovation status of buildings
is not known, and thus the role of recent refurbishments cannot
be assessed. An analysis on a larger number of buildings
built after 1960 would also be necessary to confirm the trends
observed here.

ACKNOWLEDGMENT

The authors would like to thank the Swiss Federal Office of
Energy (project number 102775) and all funders and partners
of the MEU project, for providing most of the data used in
this project, and for their help and availability to control the
models and discuss the simulation results.

REFERENCES

[1] D. Perez, C. Vautey, and J. Kämpf, “Urban energy flow microsimulation
in a heating dominated continental climate,” in Proceedings of SIMUL
2012, The Fourth International Conference on Advances in System
Simulation, 2012, pp. 18–23.

[2] L. Swan and V. Ugursal, “Modeling of end-use energy consumption
in the residential sector: A review of modeling techniques,” Renewable
and Sustainable Energy Reviews, vol. 13, no. 8, pp. 1819–1835, 2009.

[3] J. Keirstead, M. Jennings, and A. Sivakumar, “A review of urban energy
system models: Approaches, challenges and opportunities,” Renewable
and Sustainable Energy Reviews, vol. 16, no. 6, pp. 3847–3866, 2012.

[4] L. Shorrock and J. Dunster, “The physically-based model BREHOMES
and its use in deriving scenarios for the energy use and carbon dioxide
emissions of the UK housing stock,” Energy Policy, vol. 25, no. 12, pp.
1027–1037, 1997.

[5] J. Snäkin, “An engineering model for heating energy and emission
assessment – The case of North Karelia, Finland,” Applied Energy,
vol. 67, no. 4, pp. 353–381, 2000.

[6] A. Egan, “Three case studies using building simulation to predict
energy performance of australian office buildings,” in Proceedings of the
eleventh international IBPSA conference, Glasgowleventh International
IBPSA Conference, 2009, pp. 896–903.

[7] Y. Shimoda, T. Fujii, T. Morikawa, and M. Mizuno, “Residential end-
use energy simulation at city scale,” Building and environment, vol. 39,
no. 8, pp. 959–967, 2004.

[8] D. Robinson, F. Haldi, J. Kämpf, P. Leroux, D. Perez, A. Rasheed, and
U. Wilke, “CitySim: Comprehensive micro-simulation of resource flows
for sustainable urban planning,” in Proceedings of Building Simulation,
2009.

[9] A. Strzalka, J. Bogdahn, V. Coors, and U. Eicker, “3D City modeling for
urban scale heating energy demand forecasting,” HVAC&R Research,
vol. 17, no. 4, pp. 526–539, 2011.

[10] D. Perez and D. Robinson, “Urban energy flow modelling: A data-aware
approach,” Digital Urban Modeling and Simulation, pp. 200–220, 2012.

[11] EcoInvent, “EcoInvent Center, Swiss Center for Life Cycle Inventories,”
http://www.ecoinvent.ch, last checked : 03.12.2013, 2013.

[12] Société suisse des ingénieurs et des architectes, “Swiss norm 380/1 :
L’énergie thermique dans le bâtiment,” SIA Zurich, 2009.

[13] P.-A. Haldi and D. Favrat, “Methodological aspects of the definition of
a 2kW society,” Energy, vol. 31, no. 15, pp. 3159–3170, 2006.

[14] D. Robinson, A. Rasheed, J. H. Kämpf, M. Bruse, K. Axhausen,
F. Flourentzou, M. Batty, F. Haldi, and D. Perez, Computer Modelling
for Sustainable Urban Design: Physical Principles, Methods and Ap-
plications, D. Robinson, Ed. Routledge, 2011.

270

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[15] S. Coccolo, J. H. Kaempf, and J.-L. Scartezzini, “Design in the desert.
A Bioclimatic project with urban energy modelling,” in Proceedings
of Building Simulation 2013: 13th Conference of the International
Building Performance Simulation Association, France, 25-30 August
2013.

[16] A. Cifuentes Cuéllar, “Simulation urbaine d’un quartier de logement
social à Bogotá, Colombie (Master thesis),” EPFL, Solar Energy and
Building Physics Laboratory, 2012.

[17] T. Olofsson, S. Andersson, and J.-U. Sjögren, “Building energy parame-
ter investigations based on multivariate analysis,” Energy and Buildings,
vol. 41, no. 1, pp. 71–80, 2009.

[18] L. Perez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy
consumption information,” Energy and Buildings, vol. 40, no. 3, pp.
394–398, 2008.

[19] D. G. Sanchez, B. Lacarrière, M. Musy, and B. Bourges, “Application
of sensitivity analysis in building energy simulations: Combining first-
and second-order elementary effects methods,” Energy and Buildings,
2012.

[20] F. d’Ambrosio Alfano, M. Dell’Isola, G. Ficco, and F. Tassini, “Exper-
imental analysis of air tightness in mediterranean buildings using the
fan pressurization method,” Building and Environment, vol. 53, pp. 16
– 25, 2012.

[21] W. R. Chan, W. W. Nazaroff, P. N. Price, M. D. Sohn, and A. J. Gadgil,
“Analyzing a database of residential air leakage in the united states,”
Atmospheric Environment, vol. 39, no. 19, pp. 3445–3455, 2005.

[22] A. Parekh and P. Eng, “Development of archetypes of building char-
acteristics libraries for simplified energy use evaluation of houses,” in
Proceedings of the 9th International IBPSA conference, 2005, pp. 921–
928.

[23] Société suisse des ingénieurs et des architectes, “Swiss norm 2031 :
Certificat énergétique des bâtiments,” SIA Zurich, 2009.

[24] SuisseEnergie, “Dimensionnement des chaudières à mazout et à gaz,”
Swiss Federal Office of Energy, 2000.

[25] E. Jochem, G. Andersson, D. Favrat, H. Gutscher, K. Hungerbühler,
R. von Rohr, D. Spreng, A. Wokaun, and M. Zimmermann, Steps
Towards a Sustainable Development: A White Book for R & D of Energy
Efficient Technologies. Novatlantis, 2004.

[26] Université catholique de Louvain (Belgique), Département de l’Énergie
et du Bâtiment Durable., “Energie+ version 7,” http://www.energieplus-
lesite.be/index.php?id=10396, last checked 27.03.2013, 2013.

[27] P. Hofer, “Der energieverbrauch der privaten haushalte, 1990-2035:
Ergebnisse der szenarien i bis iv und der zugehörigen sensitivitäten bip
hoch, preise hoch und klima wärmer,” Swiss Federal Office of Energy
SFOE, Tech. Rep., 2006.

[28] H. Wallbaum, N. Heeren, M. Jakob, M. Gabathuler, N. Gross,
and G. Martius, “Gebäudeparkmodell sia effizienzpfad energie
dienstleistungs-und wohngebäude-vorstudie zum gebäudeparkmodell
schweiz–grundlagen zur überarbeitung des sia effizienzpfades energie,”
Swiss Federal Office of Energy SFOE, Tech. Rep., 2009.

[29] R. Frischknecht, M. Stucki, K. Flury, R. Itten, and M. Tuchschmid,
“Primärenergiefaktoren von energiesystemen,” ESU-Services GmbH,
fair consulting in sustainability, Uster, 2008.

[30] G. Cherix, M. Finger, M. Capezzali, H. B. Püttgen, A. Chapuis, and
A. Nour, “Action and influence of the multiple decision levels over the
whole energy chain,” in Proceedings of the 5th Dubrovnik Conference
on sustainable development of energy, water and environment systems,
Dubrovnik, 2009.

271

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Design Space Exploration of Many-Core NoCs Based on Queueing-Theoretic Models

Erik Fischer, David Öhmann, Albrecht Fehske, and Gerhard P. Fettweis

Vodafone Chair Mobile Communications Systems
Technische Universität Dresden

Dresden, Germany
Email: {erik.fischer, david.oehmann, albrecht.fehske, fettweis}@ifn.et.tu-dresden.de

Abstract—The design of many-core system-on-chips confronts
the developer with a more and more challenging task. Modern
embedded applications have a continuously increasing require-
ment for highly parallelized and flexible heterogeneous processor
structures. The interconnection problem becomes a crucial design
decision with a growing number of parallel cores. Today, these
decisions are usually solely based on the designer’s experience.
However, this will not be feasible anymore for future many-core
systems with thousands of cores on a single chip. Automated
guidance and tool support is essential to assist the design of
network-on-chips, a common solution for the interconnection
of modern system-on-chips. In this paper, we introduce a fast,
flexible and accurate analytic model based on queueing theory to
analyze the traffic in network-on-chips. The model requires only
limited knowledge of the system and is therefore well-suited for
the early phase of the design space exploration. It provides a high
flexibility in terms of supported topology, routing scheme and
traffic pattern, and enables to derive various performance metrics
based on the steady-state distribution of the network routers.
We evaluate the analytic model against cycle-accurate simulation
and demonstrate its application based on some simple design
examples, e.g., for buffer dimensioning, localizing bottlenecks, and
benchmarking topologies. Several extension of the basic model
are proposed to consider finite buffers, dynamic traffic, and to
generalize the service time assumptions made for the network
routers. This further increases the accuracy of the basic analytic
model and expands its application area.

Keywords-network-on chip; queueing theory; design space explo-
ration; router model; transient behavior

I. Introduction

IN recent years, analytic models gain in importance to
handle the growing complexity for designing and inter-

connecting multi-processor system-on-chips (MPSoC). In this
paper, we present an extended work of the queueing model for
network-on-chip (NoC) based MPSoC introduced in [1].

In embedded computing, todays applications show a com-
mon trend towards a continuously increasing computational
effort and reliability. This is especially true in the area of
multi-media and mobile communication. These requirements
can only be fulfilled by massively exploiting parallelism.
Emerging technologies like 3D chip stacking [2] promise a
significant boost of the number of processor cores per mm2.
The technology allows the vertical stacking of multiple chips,
e.g., by using through silicon vias, inductive or capacitive
coupling or optical interfaces. It is expected that it will be

(a) Bus (b) Crossbar Switch

(c) NoC: chain (left), 2D-mesh (middle), fully connected (right)

Figure 1. Different alternatives for the interconnection of an MPSoC
with 4 modules (M). (R=router)

possible soon to build stacks of hundreds of active layers, i.e.,
layers with processor elements or memories. By exploiting the
third dimension and taking the ongoing technology scaling
into account, it is expected that todays MPSoCs soon scale
to many-core SoCs with thousands of processors on a single
chip [3]. Already in 2015, we may have 1000 or more cores
on a chip [4]. This trend becomes already obvious today in the
GPU area where existing solutions provide up to 512 parallel
cores [5].

Besides the increasing number of cores, we also recog-
nize a trend towards more heterogeneity on-chip. Though
heterogeneous multi-processor architectures require a more
sophisticated controlling, they enable a better target-oriented
computation. I.e., for every computational task a core can be
selected which fits best the requirements of the task. Com-
bined with a smart power management concept, this enables
building high efficient MPSoCs that offer a high computational
performance and low power consumption at the same time.
A prototype of a heterogeneous MPSoC has been published
in 2008 [6]. The Tomahawk chip consists of six fixed-point
vector DSPs and two scalar floating-point DSPs. In addition,
an LDPC decoder ASIP, a deblocking filter ASIP and an
entropy decoder ASIC is provided. A central control unit
(CoreManager) is responsible for the task scheduling and for
transferring the data and program code between global and
local memories.

If we consider such heterogeneous many-core architectures,
the interconnection problem becomes a serious challenge.

272

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) Application characterization
graph with four modules.

(b) Solution with two modules per router that
take module affinity into account.

(c) Solution with one modules per router to
increase bisection width.

Figure 2. DSE example with two alternative topologies.

Classical interconnection architectures, such as busses or cross-
bar switches, cannot offer the necessary flexibility to support
the different requirements of the heterogeneous processor
cores. Additionally, conventional interconnects offer no good
scaling with respect to throughput or area overhead. NoC
evolved as a flexible and high-performance solution for the
interconnection problem during the last decade [7][8]. NoC is a
packet-switched on-chip network where packets are forwarded
from a source to a destination via several intermediate router
nodes. Each router consists of:

• a small buffer for the intermediate storage of the incom-
ing packets at every input (and/or output),

• a crossbar switch for connecting an input with an output
depending on the target address of a packet,

• and a control logic that realizes the routing and arbitra-
tion protocol of the NoC.

The routing protocol controls the route that a packet takes from
a certain source node to a destination node. The arbitration
controls the contention resolution. I.e., it decides which packet
is forwarded at first, if two packets arrive simultaneously on
different inputs and need to be forwarded to the same output.
Routers can be connected in an arbitrary network topology.
In addition, one or more processing nodes can be connected
to a router. They are called modules. Their functionality is
thereby transparent to the NoC, i.e., this could be a processor,
memory or an external interface. The smallest transfer unit,
to be transmitted over a NoC, is called the flit (flow control
digit).

Figure 1 demonstrates the advantage of NoC over con-
ventional solutions for the interconnection. In Figure 1(a),
the interconnection of four modules by a bus is depicted.
Therein, the red number represents the bisection width of this
infrastructure. The bisection width is defined as the minimal
number of wires that have to be cut to disassemble the
network into two disjoint, equal-sized parts. The minimal
cut represents the bottleneck of the network. Therefore, the
bisection width can be used as a rough performance indicator
for the network throughput. As it can be seen in Figure 1(a),
the bus infrastructure is quite limited with respect to achievable
throughput, since its bisection width is only 1. This is an

issue, if we consider a large number of processors, since the
bisection width does not scale with the number of connected
modules. In contrast, it can be seen in Figure 1(b) that the
crossbar switch offers a very high throughput. The bisection
width scales with the number of modules (4 in this case).
The drawback of the crossbar switch is that its required
chip area grows quadratically with the number of connected
modules. In addition, the delay of the switching logic grows
linearly with the number of connected modules. Therefore,
this interconnection type is not feasible for a large number
of modules. NoC is a very flexible solution as depicted in
Figure 1(c). Depending on the selected topology (chain, 2D-
mesh, or fully connected), the throughput can be adapted
according to the application requirements. In this example, the
bisection width can be varied between 1 and 4. Moreover,
the scalability of the network also depends on the selected
topology and is thus adjustable. While the throughput of the
chain topology does not scale with the number of connected
modules, the fully connected NoC offers a scalability that is
equivalent to that of the crossbar switch. The 2D-mesh is an
intermediate solution. Finally, NoC allows us to make very
flexible design decisions to tradeoff network throughput and
latency against chip area, number of wires and achievable clock
frequency of the resulting circuit.

However, finding an optimal NoC interconnect for many-
core SoCs is a very challenging task, since many different
design objectives and constraints have to be considered, like
choosing routing and switching methods, selecting topology,
application mapping, etc. [9]. This leads to a huge design
space. In the following, we discuss a small example to motivate
the challenge and the complexity of this process, the so called
design space exploration (DSE). Again, we assume that the
designed MPSoC shall consist of four modules. The MPSoC
is intended for a specific application. The communication
requirements between the modules are known in advance, as
shown in Figure 2(a). The figure shows the application charac-
terization graph (APCG) [9] for the small example. An edge in
the APCG indicates that there is a communication requirement
between the two modules. The annotated numbers represent
the necessary communication amount. Therein, bidirectional

273

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

traffic is assumed with the same communication amount in
both direction. From the DSE point of view, the numbers
could just be thought of some abstract values that represent
the affinity between the modules. More concrete, the numbers
could represent the average traffic amount (e.g., flits/cycle).
The objective of this DSE example is to find a NoC topology
that minimizes the average latency. Additionally, the maximum
number of modules per router is constrained to two.

For the given problem, it might be a good heuristic to
select two modules with a high affinity, i.e., with a high
communication requirement, and assign them to the same
router to minimize the path latency. According to Figure 2(a),
the highest affinity is between modules 1 and 4, as well as,
3 and 4. Unfortunately, we are only allowed to assign two
modules to one router according to our previously defined
constraints. Thus, we just select modules 1 and 4. This results
in the topology that is depicted in Figure 2(b). As it can be
seen, the link between the two routers is quite congested (0.8
flits/cycle). Therefore, it might be a good idea to spend one
router per module, instead, to increase the bisection width
of the network and relax the congestion on the inter-router
links. The resulting topology is shown in Figure 2(c). Though
the congestion is reduced on the inter-router link, there is an
additional router in the path from module 1 to module 4, which
increases the latency of this path. The question is: Which of the
two solutions is better and yields the lower average latency?
This is hard to answer without making a deeper analysis of the
proposed solutions. Thus, the designer might make the wrong
decision here so that the resulting MPSoC will not offer the
expected performance due to a communication bottleneck.

This small example should motivate why fast and accurate
NoC models will be required that give an insight into the sys-
tem and enable us to reduce the design space already in early
design stages. Cycle-accurate simulation based approaches are
too slow for this purpose. For the case of many-core SoCs
there will be a large number of design alternatives. Moreover,
the big number of routers increases the simulation time per
run significantly. Simple high-level system models (e.g., only
considering the propagation latency and ignoring queueing
delays), on the other hand, are able to provide results in very
short time. Due to the high abstraction, however, these models
loose quite some accuracy. More detailed analytic models
provide a good tradeoff between both approaches and are thus
well suited for the NoC exploration of a many-core SoC.

Basically, there are two different approaches for analytic
NoC models. Models based on the Network Calculus [10] are
intended to analyze latency and throughput bounds. Therefore,
worst-case assumptions are made for the traffic that the mod-
ules inject into the NoC as well as for the service times of
the routers to handle a packet. This type of models is well
suited to analyze NoCs with respect to quality of service.
However, for the purpose of DSE it is necessary to have
a more comprehensive view of the system. In general, it is
not a good idea to make design decisions only based on the
worst-case behavior of the system. A second approach utilizes
probabilistic traffic models based on queueing theory [11].
This type of models is much better suited for the purpose
of DSE, since it provides more insight into the system, allows

to derive distributions (e.g., for the router latency), as well
as mean values, and is also suited to yield some information
about service guarantees.

A. Overview
In this paper, we propose an analytic NoC model based

on queueing theory that provides a high degree of flexibility
regarding topology, routing and traffic scheme. In contrast to
existing models, it is not restricted to mean value analysis
but provides information about the state distribution functions
of the routers. It enables us to derive a variety of perfor-
mance metrics, such as mean latency, buffer usage or overflow
probability, and makes the model a very flexible tool for
NoC performance analysis. Furthermore, we discuss several
extensions of the basic NoC model. They give an even deeper
insight into the system and provide more valuable information
to the designer or DSE tool to make their design decisions.

• The basic NoC model is limited to the analysis of the
system behavior in steady-state. Especially for highly
dynamic applications or reconfigurable NoCs, knowl-
edge about the transient behavior of the network is of
great interest, cf. [12], [13]. Such an analysis improves
the understanding of complex processes and can help
to design parameters accurately. Therefore, we present
an extension of the basic NoC model that enables us to
analyze the system behavior in the time domain and in
combination with time-varying rates.

• Making an infinite buffer assumption is a good approach
for the basic NoC model. It keeps the computational
complexity low and allows to do some analysis on
networks in an early DSE design stage where the con-
crete knowledge of the buffer sizes is still not available.
However, the consideration of finite buffers is a valuable
extension which makes the model more accurate and
allows to model congestion in the network. Moreover,
the extension allows to extract new performance metrics,
such as blocking probabilities or traffic acceptance rates.

• The assumption of exponentially distributed service
times is a good starting point for the development of the
basic NoC model. Again, this condition decreases the
computational complexity and is a feasible assumption,
if the concrete service time distributions are still un-
known in an early DSE design stage. Nevertheless, quite
accurate approximate solutions are available in literature
for estimating the behavior of M/G/1 queueing systems
(QS). This allows us to make this generalization without
increasing computational complexity.

The remainder of this paper is structured as follows. In
Section II, we discuss related work. The necessary mathe-
matical fundamentals of queueing theory are provided in Sec-
tion III. Section IV introduces the basic analytic NoC model.
Starting with the system model and its assumptions (IV-A),
the analytic model is discussed on network level (IV-B) and
router level (IV-C). We evaluate the accuracy of the proposed
approach against cycle-accurate simulation in Section V and
provide some DSE application examples. Model extensions are
proposed in Section VI for analyzing the transient network

274

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. General idea of a queueing system.

behavior (VI-A), considering finite buffers at the router inputs
and dealing with arbitrarily distributed service time processes
(VI-B). Finally, Section VII concludes the work.

II. State of the art

Much effort has been spent for more than two decades for
finding adequate traffic models for the analysis of off-chip and
(later) on-chip networks. In 1990, Dally [14] developed ana-
lytic tools for investigating latency and throughput in networks,
but restricting to k-ary n-cube topologies. Recent approaches
focus on the mean value analysis of latency, throughput and
energy consumption. Kiasari et al. presented an M/G/1 queue-
ing model for wormhole switched two-dimensional (2D) torus
NoC topologies, assuming deterministic routing [15]. This
work was extended to G/G/1 queues in [16], which enables
the analysis of bursty traffic. Another queueing-theoretic model
focusing on buffer allocation was proposed by Hu et al. in
[17]. A different approach was published in 2009 in [18],
which introduces an empirical model to estimate contention
delays for constant service time routers. Thereby, the hybrid
router model takes into account Poisson input flows as well
as output flows from preceding constant service time routers.
Ogras et al. presented a fast and flexible analytic approach
in 2010 [19] for the mean value performance analysis of
virtual channel first-come first-serve (FCFS) input buffered
routers for arbitrary topology and service time distribution.
Other recent approaches for modeling on-chip networks [20]
focus on the theory of the Network Calculus [10]. This theory
provides a powerful tool for an estimation of performance
bounds in NoCs, which is essential for giving statements about
the realtime capabilities of a network in early design stages.
However, for the exploration of the average network behavior,
other methods, like stochastic models, are more expedient.

III. Fundamentals of Queueing Theory

For detailed studies of queueing theory in combination with
network modeling we refer to [21], [22] and [11]. Subse-
quently, we give a short overview of the fundamentals. The
basic understanding of queueing systems and Markov models
is required in Section IV-C to follow the derivation of the
router model.

A basic multi-server queueing system (QS) is depicted in
Figure 3. A QS models the incoming stream of customers
(here: flits) as a stochastic arrival process with a known

distribution and mean arrival rate λ. The arrival stream is
passed to a queue with a fixed number of K waiting slots.
Note that K can also be zero or infinite. If no waiting slot
is free upon arrival of the customer, the customer is rejected.
Therefore, the accepted traffic that arrives at the queue is in
general not equal to the offered traffic at the input of the QS.
This is only the case, if an infinite queue is assumed. The
customers in the queue are forwarded to m (parallel) servers in
a certain order, which is defined by the service discipline of the
QS (e.g., FIFO, LIFO). The service (i.e., service time) is again
modeled by a stochastic process with a known distribution and
mean arrival rate μ. The served customers of the m servers
leave the QS as a combined departure process. Its mean rate
is equal to that of the accepted traffic. A queueing system can
mainly be characterized by four parameters:

• the type of arrival process (A),
• the type of service process (B),
• the number of servers (m),
• and the number of waiting slots (K).

An easy way to describe a QS is provided by the Kendall
notation [23]: A/B/m/K. Examples for the arrival and ser-
vice time process are: exponential/memoryless (M), con-
stant/deterministic (D), Erlang-k-distributed (Ek), general (G).
If the number of waiting slots is infinite, K is often omitted.
Some examples are: M/M/1, M/D/1, G/G/1/K, M/G/m, etc.

The models presented in this work (Section IV-C) are based
on the classical M/M/1 QS, which can be characterized by
closed-form expressions. The simplicity of this queueing sys-
tem arises from the Markov property (also called memoryless
property) which is an inherent property of the exponentially
distributed arrival and service process. It makes the system
independent of past events, i.e., the next arrival/departure
time is independent of the last arrival/departure time. As a
consequence, the state of an M/M/1 system can fully be
characterized by the probability distribution of finding a certain
number of customers k in the system which is described by

πk = (1 − ρ)ρk.

Therein, ρ describes the average utilization of the queue, which
depends on the relation between arrival rate and service rate
and is defined as ρ = λ/μ. An extended version of this
probability distribution is applied in Section IV-C to derive the
steady-state of NoC routers. Based on the distribution various
performance indicators can be derived, like the average number
of customers:

N = E[πk] =

inf∑
k=0

kπk =
ρ

1 − ρ .

A fundamental result of the queueing theory, known as Little’s
law, describes the relation between the average number of
customers and the average time spent in the system (T):

N = λT.

This is a general result which is independent of the distribu-
tion of the arrival or service process. It enables the analytic

275

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Modeling routers by multiple queueing systems.

computation of mean waiting times (i.e., latencies), which is
an important performance measure for NoC, i.e.,

T =
1/μ

1 − ρ .

Furthermore, it is possible to derive the tail probability based
on the distribution of the number of customers. It represents
the probability that the number of customers in the system
exceeds a given capacity K:

P[k > K] =

inf∑
k=K+1

πk = ρ
K+1.

This is an interesting performance measure which can be
employed for the task of buffer dimensioning (see Section V)
and to provide certain service guarantees (e.g., maximum
latencies).

The preceding expressions refer to a steady-state where
transients have faded away and the system has reached
stationarity. Our basic NoC model (Section IV) assumes
steady-state which is sufficient for most analyses. However,
for some purposes, e.g., analysis of startup behavior or time-
varying traffic rates, it might be attractive to analyze transient
characteristics as well. Therefore, we extend our basic model
in Section VI-A. Unfortunately, analytical expressions for the
transient behavior are often cumbersome or even hard to find
[11]. In this case, numerical techniques can be applied (see
Section VI-A).

Figure 4 depicts how the QS approach can be employed to
model a single NoC router. Therein, every input is modeled
by a separate QS. This is a natural mapping, since we assume
indeed that every input has a separate buffer. The customer
arrival stream is mapped to the stream of incoming flits with
known mean arrival rates λ1, ..., λi. Every input queue is served
by a single server: the switch. Actually, all inputs are served
by the same server. As mentioned before, an arbiter resolves
contention cases. However, the contention resolution has a
significant influence on the mean service rate for every input.
For this purpose, a service time model has to be employed
that decouples the input queues first under consideration of
contention and arbitration policy. In [24], a service time
estimation for round-robin arbitration has been proposed.

�������	�
���

�
���
�������������	�
���

��������	�
��

�������	

���
	�

���
	

����

�������	

��
��
����	

�
�����
�����

���
�������	��	

�����
�	
���
	

�����	����	��
����
������� �� ����

Figure 5. The Hierarchical structure of the proposed analytic model.

IV. Basic NoC Model

Before we can start to introduce the analytic model, we
need to define the system model and model assumptions
first (Section IV-A). Some common restrictions are made to
reduce the model complexity and keep it practicable. Still, we
focus on preserve a high flexibility to serve a broad spectrum
of applications. The basic NoC model is introduced in two
steps, on network level (Section IV-B) and on router level
(Section IV-C).

A. System Model
We assume the routers to be arranged in an arbitrary topol-

ogy. An arbitrary number of cores is allowed to be connected to
a single router. Due to the low buffer requirements, wormhole
switching is the most favored switching technique for realizing
best-effort services in on-chip networks today [9]. Therefore,
we restrict our model to this technique. The routing protocol,
on the other hand, shall not be restricted. Concerning the
arbitration scheme, we restrict to the first-come first-serve
method. Extensions to other arbitration schemes, like the
popular round-robin, are feasible, as shown in [24]. Routers
consist of an arbitrary number of buffered input ports and an
arbitrary number of (unbuffered) output ports. In this section,
we assume infinite buffer size.

Furthermore, we assume external packet arrivals from mod-
ules to possess Poisson characteristic [11], i.e., they have
exponentially distributed inter-arrival times with known mean
values. This assumption is often made to approximate real
network traffic while reducing the model complexity at the
same time. The router service times include processing delay
for arbitration as well as forwarding delay for the packet
and are assumed to be exponentially distributed. Furthermore,
knowledge of the mean router service rate and router service
latency is required. We assume it w.l.o.g. to be equal for all
routers in the network. Finally, we imply a common clock for
all routers.

To provide a flexible as well as a fast analytic model
we propose to follow a hierarchical approach as depicted in
Figure 5. We split the NoC model into an analysis on network
level and on router level. By performing the analysis on router
level and combining the results on network level, we thus
reduce the complexity.

The network model receives multiple inputs that have to
be specified by the user. The traffic scenario is described by
the traffic characterization matrix T and the external arrival
rate vector l. The topology and interconnection are specified
via the connectivity matrix Γ. Finally, information about the

276

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I: Model parameters and notation.

NM Number of modules

NR Number of router nodes

NE Number of edges

T =
[
ts,d
]

Traffic characterization matrix (of size NM ×NM) with elements
ts,d that specify the send probability from module s to module
d

l = [ls] External arrival rate vector (of size NM × 1) with elements ls
representing the arrival rate (packets/cycle) from source module
s

Γ =
[
γs,d
]

Connectivity matrix (of size (NM + NR) × (NM + NR)) with
elements γs,d ; γs,d > 0, if there is a directed connection from
s to d; the value γs,d represents the link ID for this connection
(sgn(Γ) ≡topology matrix)

R =
[
rs,d,i
]

Routing matrix (of size NM × NM × NE) with elements rs,d,i
defines the probability that link i is occupied for routing a packet
from source module s to target module t (

∑
∀i rs,d,i = 1)

x Average router service time

applied routing scheme is provided via the routing matrix R.
An overview of the notation and a more detailed explanation
is given in Table I.

Based on this information, the network model is able to
compute local parameters for each router node individually,
i.e., the inputs for the router model. The local parameters
comprise the local arrival rates λi that is the accumulated
arrival rate over all traffic flows that cross router input i.
Furthermore, the forwarding probabilities fi, j are computed.
fi, j defines the probability that a packet arriving at a router
input i is forwarded to a router output j (please note that the
indices i and j correspond to the unique identifier of the link
that is connected to router input or output). The computation of
the local arrival rates and forwarding probabilities is discussed
in more detail in Section IV-B.

The local parameters can now be applied to a queueing
model on router level. It is responsible for deriving the
compound distribution for the number of packets in the input
queues, which represent the router state. Consequently, the
knowledge of the compound distribution enables a computation
of key performance indicators, such as average buffer usage,
overflow probabilities or mean queueing delays. The queueing
model on router level is introduced in Section IV-C.

Finally, the performance metrics, computed on router level,
have to be combined on network level, e.g., to derive path
delays by summing up the queueing delays and the fix router
propagation latencies.

B. Network Model

We can derive the vector of local arrival rates λ, with
elements λi (1 ≤ i ≤ NE), by summing up all traffic flows that
cross a specific link (and router input queue, respectively).
Therein, NE is the number of links in the network. The
traffic characterization matrix T provides information about
a pairwise traffic flow probability between each module s and
d. By weighting T with the external arrival rates l, we get the
traffic intensities (in packets/cycle) for each pair of modules.
Finally, we multiply the traffic intensities with the probability
that the flow will pass link i (given by routing matrix R) and
sum up the fractions of the contributing traffic flows:

λi =

NM∑
s=1

NM∑
d=1

ls · ts,d · rs,d,i, 1 ≤ i ≤ NE . (1)

The notation is given in Table I. By applying the definition
of the Frobenius inner product [25], we can rewrite (1) as
matrix equation as follows:

λi = tr
(
(L · T)T Ri

)
. (2)

In (2), tr(•) represents the trace of the matrix, L is the NM×
NM diagonal matrix representation of vector l:

L := diag(l),

and Ri the corresponding submatrix of R that consists of all
elements rs,d,i with 1 ≤ s, d ≤ NM . We can select the set of
local arrival rates Λr for a single router node r by exploiting the
knowledge of the topology that is contained in the connectivity
matrix Γ. I.e., we collect all λi where i is the ID of an input
edge of router r:

Λr :=
{
λγs,r | γs,r � 0; s ∈ {1, . . . ,NM + NR}

}
. (3)

We continue to compute the forwarding probability matrix
F. The matrix element fi, j (1 ≤ i, j ≤ NE) can be defined
as traffic intensity between router input i and router output j
normalized to the total arrival rate at input i, i.e., λi:

fi, j :=

∑NM
s=1

∑NM
d=1

ls · ts,d · rs,d,i · rs,d, j · δi, j
λi

, 1 ≤ i, j ≤ NE . (4)

We call the term δi, j the link selector matrix. It ensures
that there is only a forwarding probability fi, j > 0, if (i, j)
represents an input/output link pair of the same router:

δi, j :=

{
1, i f ∃s, r, d with γs,r = i ∧ γr,d = j
0, otherwise .

Therein, γs,r and γr,d are corresponding elements of the con-
nectivity matrix Γ. Equation (4) can be rewritten in matrix
form:

fi, j :=
δi, j

λi
· tr
(
(L · T)T

(
Ri ◦ Rj

))
, (5)

where ◦ represents the entry-wise multiplication (i.e., the
Hadamard product) of two matrices. Finally, we also restrict
the set of forwarding probabilities Fr to a single router node
r, similar to the approach in (3), and come to (6):

Fr :=
{
fγs,r ,γr,d | γs,r, γr,d � 0; s, r ∈ {1, . . . ,NM + NR}

}
. (6)

C. Router Model
Based on the assumptions that we made in Section IV-A, an

M/M/1 queueing system [11] with exponential interarrival and
service times will be appropriate to model the router behavior.
However, in reality, the traffic situation within a router looks
more complicated, as the example in Figure 6a) shows.

Therein, we find splitting and merging of traffic flows that
contend with other input queues for multiple output ports.
Furthermore, each input has different probabilities of being

277

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. The original router model is transformed to an equivalent queueing model where the service rates of the input queues are mutually
coupled. As a second step, an approximation by state aggregation is applied to decouple the queues.

forwarded to a specific output. To be able to represent the
router system by a queueing model, we propose using a
simplified equivalent system, as depicted in Figure 6b). The
idea is to include the contention delays into the service times
and thereby receiving port specific service times (or service
rates, respectively). In fact, if a packet in front of a (FIFO)
queue is blocked due to a contending queue, this is nothing
else than a delayed service. Therefore, it is reasonable to
consider the contention delay as a service time increase (or
service rate decrease). Consequently, we come to a reduced
equivalent system that consists of one queue per input, each
with an individual server with a service rate μi(y), as shown in
Figure 6b). Therein, the service rates depend on the current
router state y, i.e., contention situation. The service rates
decrease according to the degree of contention in the current
router state. We recognize that the service of contending
queues is still coupled.

Due to the memoryless property of the exponentially dis-
tributed arrival and service processes, the state of the equivalent

����� ����� �����

�
�

�
�

��

�
�

�
�

��

����� ����� �����

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

����� ����� �����

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

��� ��� ���

���

���

���

�

�
�
�
�
��
	
�
	

���

�
�

�������	�	
���
��

�
�
�
�
�
��
	
�
	

�
�
�

�
�

�

�
�
�
�
��
	
�
	

���

�
�

Figure 7. Example of a two-dimensional Markov model for a router
with two inputs and the decomposition into reversible sub-chains.

router system can now solely be defined by the number of
flits contained in the input queues. If we represent the state
by a vector where each element represents the fill level of a
single input queue, we can model the system by means of a
multidimensional Markov chain. This is illustrated in Figure 7
for the case of a router with two inputs (please ignore the
depicted macro states for now). Therein, the transition rates
are defined by the arrival rate λi and service rate μi for each
input independently. Let x be the current state vector of the
router. Then, a transition from state x → x + ei (where ei is
the i’th unit vector, i.e., a vector of all zeros except element i,
which is equal to one) has an intensity of λi. On the other
hand, a transition x → x − ei has an intensity of μi. The
boundaries of the Markov chain are an exception to that rule
(first column/row in Figure 7). There, we find a different
contention situation. In the case of two inputs, we have no
contention caused by the second input anymore. Therefore,
the transition rates for x → x − ei change to μ, i.e., the basic
router service rate without contention delay.

For solving the Markov chain, we still need to know the
service rates μi that include the contention delay to be able to
define the transition rates. For this purpose, we apply an idea
that was proposed in [19] to determine the mean waiting time
for a similar input buffered router model assuming an FCFS
arbiter. We modify this approach to find an estimation for the
mean service time, i.e., the waiting time of the flit in front
of the queue. Similar to [19], we first compute the pairwise
contention probability ci, j for all inputs pairs (i, j) of a router
with P inputs based on the forwarding probabilities F that can
be derived according to (5):

ci, j =

P∑
k=1

fi,k f j,k, i � j, 1 ≤ i, j ≤ P. (7)

From (7), an equivalent matrix equation can be derived

C = F · FT. (8)

Note that the main diagonal of the contention probability
matrix C in (8) is set to ”1” which makes the following compu-
tation more convenient. Based on the contention probabilities,
we can derive an expression to estimate the mean service times

278

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

xi(y) under contention:

xi(y) := x + x
P∑

j=1, j�i

ci, jy j, 1 ≤ i ≤ P. (9)

The first summand x of (9) represents the mean router service
time for the packet in front of queue i. The second summand
considers the contention delay. Therein, the vector y represents
the instantaneous fill state of each input queue, i.e., yi = 0, if
input queue i is empty and does not contribute to the contention
delay and yi = 1 otherwise. We call y the router macro state
in the following and can directly derive it from the router state
x:

yi =

{
0, i f xi = 0
1, i f xi > 0

,

or rather informally: y = sgn(x).
We can still condense (9) somewhat by exploiting the

convenient definition of contention probability matrix C and
provide a short form matrix equation for the mean service rates
μi(y) (i.e., the inverse of the mean service times):

μi(y) :=

[
1

μ
Ci

Ty
]−1

, 1 ≤ i ≤ P. (10)

With the definition for the mean service rates μi(y) in (10)
we have now all necessary inputs to solve the Markov chain
in order to obtain the steady-state probability distribution.
However, in trying to do so, we are confronted with another
challenge. If we apply the Kolmogorov criterion for reversibil-
ity of Markov chains, we soon realize that it does not hold
for some cases in the peripheral region of our Markov chain.
Accordingly, the chain is not time reversible; see Figure 7
and examine the following state transitions: (0, 0) → (1, 0) →
(1, 1)→ (0, 1)→ (0, 0), and the corresponding return path. We
notice that the product of the transition rates is not equal for
both directions, and thus, it does not fulfill the Kolmogorov
criterion [26]:

λ1 · λ2 · μ1 · μ � λ2 · λ1 · μ2 · μ.
Consequently, we are not allowed to apply local balance
equations to solve the chain. Unfortunately, we are not able to
find a closed-form solution for the infinite Markov chain solely
based on the global balance equations. Fehske and Fettweis
[27] recently encountered exactly the same problem when
trying to solve an equivalent Markov chain. They proposed an
approximation to find a solution for the stationary distribution.
The approach is based on the concept of aggregation of
variables that is well known by economics for quite some
years [28]. The proposed algorithm consists of the following
steps.

We start decomposing our Markov chain into reversible sub-
chains. This is done by collecting all states x that belong to the
same macro state (or aggregate state) y = sgn(x) in a common
set S(y):

S(y) �
{
x ∈ NP

0 | sgn(x) = y
}
.

The idea behind the definition is that all states are collected in
the macro state where we find a similar contention situation. If

����� �����

�
�

�
�

�
�
�����	�

�

����� �����

�
�

�
�

�
�
�����	�

�

�
�
�
�
�
�
�
�
	
�

�
�
�
�
�
�
�
�
	
�

Figure 8. Example: Markov chain on macro state level assuming a
router with two inputs.

we consider a contending queue, it does not matter how many
packets it contains, only if it contains at least one packet or
not. Consequently, the mean service rates are homogeneous
within each macro state. Thus, service rates are decoupled by
this aggregation approach, as Figure 6 c) shows. An example
for the Markov chain decomposition for the case of two input
ports is provided in Figure 7. Therein, we decompose the two-
dimensional Markov chain into four macro states. Macro state
(0, 0) contains all states where both input queues are empty
(which is only a single router state (0, 0)). Macro states (1, 0)
and (0, 1) collect the states where only one of the two queues is
empty. Hence, we have no contention within these two macro
states. Macro state (1, 1) represents all router states where both
queues are not empty. In this two-dimensional example, this
is the only macro state where contention occurs.

Since the transition rates are homogeneous within each
macro state, the sub-chains are reversible and can be solved.
This leads to a product form solution for the stationary proba-
bility distribution of the number of customers (i.e., packets) π̃
in an M/M/1 queueing system that is well known from classical
queueing theory [11][27]:

π̃(x) =

{ ∏
i∈N1(y) (1 − ρi(y)) ρxi−1

i (y)σ(y), for y � 0
σ(0), for y = 0 (11)

with utilization ρi(y) of input queue i defined as

ρi(y) :=
λi

μi(y)
.

The terms σ(y) denote the probabilities of finding the system
in macro state y (i.e., one of the states in S(y)). Note that
(11) only yields an estimate for the solution of the stationary
probability distribution. This is because we omit the transitions
between the macro states at this consideration. Also, note that
(11) is conditioned on the probabilities of the corresponding
macro state σ(y) to ensure that

∑
x π̃(x) = 1.

So far, we have no knowledge about the macro state proba-
bilities σ(y). We can compute σ(y) by solving the (now finite)
Markov chain on macro state level. Figure 8 shows a solution
for the transition rate p(y, y′) from macro state y to macro

279

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Topology and traffic pattern of first simple test scenario
(M=module, R=router).

state y′, as provided by [27]:

p(y, y′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λi, for y′ = y + ei
μi(y) − λi, for y′ = y − ei
0, else

, (12)

where ei again represents the unit vector for dimension i. Based
on (12), we can now define the transition probability matrix

P =
[
pi j

]
with pi j := p

(
yi, y j

)
. With the definition of

pii := −
2P∑
j=1

pi j

we normalize the row sum to 0.
Finally, we can follow the usual approach and solve the

equation system for the vector of macro state probabilities σ
based on the transition probability matrix P:

σP = 0,

under the side condition
∑

y σ(y) = 1.
Based on (11), we can now compute the approximates

for the state probabilities π̃(x). We can derive several key
performance indicators, such as the mean number of packets
in the queue E[xi]:

E[xi] ≈
∑

x
π̃(x)xi =

∑
y

ρi(y)

1 − ρi(y)
σ(y), (13)

or the mean queueing delay Wi for input queue i by applying
Little’s law [11]:

Wi =
E[xi]

λi
.

V. Numerical evaluation

We show the accuracy of the proposed NoC model by
comparing it against cycle-accurate NoC simulation. Due to
the similar system model assumptions we decided to compare
our approach against the model proposed in [19] as well as
the NoC simulation tool that has been used therein [29].

We assumed following common simulation parameters:

• deterministic, dimension-ordered XY-routing,
• flit traffic, i.e., packet size = 1,
• input buffered routers with FCFS arbiter and service

rates of μ = 0.5,
• large buffer size (256 flits) to approximate the infinite

buffer model, and
• simulation run time of 105 cycles with a warm-up period

of 104 cycles.

We investigate the following two topology/traffic scenarios
under different load conditions (defined by number of injected
packets/cycle) and compare the average packet transmission
latency in the network.

A. Introductory Example
First, we choose a very simple scenario to investigate the

model behavior under a clear contention situation. Therefore,
we consider a simple chain of four routers, as depicted in
Figure 9, where a single module is connected to each router.
The modules 1 and 4 are sending their packets to modules 2
and 3 with equal probability. Modules 2 and 3 do not send
any packets. Hence, we find at router 2 and 3 a contention
situation with the following forwarding probability matrix F:

F =

⎛⎜⎜⎜⎜⎜⎜⎝ 0 0 0
0.5 0 0.5
1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .
The result under different load conditions is shown in

Figure 10. We find that the latency estimation for our pro-
posed approach (red curve with + marker) follows very well
the cycle-accurate simulation results (black curve with point
marker) under a low and medium load condition. However,
it significantly underestimates the network saturation limit
where latency tends to infinity (0.66 packets/cycle in our
model compared to 0.8 packets/cycle in the cycle-accurate
simulation). The reference mean value model from [19] (blue
curve with circle marker) shows a slight overestimation of the
latencies under mid load conditions but estimates the network
saturation point quite well.

The reason for the poor estimation of the network saturation
point of our model is the applied aggregation approach for
approximating the solution of a Markov chain. Therein, the
stability of the overall solution is determined by the stability of
the ”worst-case” aggregate, i.e., the aggregate with the highest
contention. If the solution for the ”worst-case” aggregate tends
to infinity the overall solution tends to infinity as well. To avoid
this behavior, we propose to determine an average service time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

35

40

45

50

Packet injection rate (packet/cycle)

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 [c

lo
ck

 c
yc

le
s]

Mean Value Model
N-dim. Markov + Average
N-dim. Markov
Cycle-accurate Simulation

Figure 10. Performance results for 4x1 chain analyzing the average
packet latency in comparison to cycle-accurate simulation.

280

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Traffic pattern of 4x4 2D-mesh test scenario with
application-specific traffic [30] [19].

xi over all macro states for every router input. This is done by
computing the expectation of the mean service times xi(y) over
all macro states based on the known macro state probabilities
σ(y):

xi =
∑

y∈{0,1}P
xi(y)σ(y)yi. (14)

Therein, yi constrains the expectation to those macro states
where queue i is not empty. We compute the average waiting
time Wi for input queue i based on (14):

Wi =
xi

1 − λi xi
.

The result of the refined approach is also depicted in
Figure 10 (green curve with square marker). It shows a
very good match compared to the cycle-accurate simulation.
The latencies under low/mid load conditions, as well as the
network saturation point, are estimated very accurately by this
approach. The average estimation error is less than 3%.

B. Multimedia application scenario
In addition, we choose a 4x4 2D-mesh topology using a

more diverse traffic pattern of the generic multimedia applica-
tion from [30]. The traffic scenario is depicted in Figure 11
while the topology and the core mapping is shown in Fig-
ure 12. We target to compare the estimation quality of the
average latencies under more complex contention situations.
The results are plotted in Figure 13 and confirm the accurate
results of the first scenario. Again, the average estimation error
is around 3% (9% for the reference model). However, we still
notice a slight underestimation of the network saturation limit
of about 2.5% for that case. The reference mean value model
shows a better accuracy in this region.

Note that the presented results only serve as proof of
concept. However, they easily scale to larger networks. The
relative accuracy of the latency estimation is expected to
stay in the same range under similar contention situations,
independent of the NoC size because the analysis of the
queueing delay is done on router level and only accumulated
on network level.

Figure 12. Core mapping based on 4x4 2D-mesh topology (R=router)
[19]. The annotated numbers represent the index of the associated
input buffer. The color denotes the tail probabilities (P[x ≥ 1]) at the
corresponding input buffers (red=high, yellow=medium, blue=low)
which reveals the bottlenecks in the 4x4 2D-mesh.

C. Buffer dimensioning based on tail probability estimation

One advantage of the presented NoC traffic model is its
flexibility to derive arbitrary performance metrics based on
the distribution of the number of customers from (11). This is
demonstrated in the following. An important step of the design
space exploration for NoC based MPSoC is the so called
buffer dimensioning. Therein, the necessary buffer capacity
K is estimated for every router input for a given, topology,
application (i.e., traffic pattern) and routing scheme. Memory
consumes a lot of chip area and is therefore a crucial factor
to reduce chip production cost. Hence, a careful investigation
and optimization of the router memories is recommended. We
employ the tail probability Ptail to invest the necessary buffer
amount. This measure indicates the probability that a certain

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

5

10

15

20

25

30

35

40

45

50

Packet injection rate (packet/cycle)

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 [c

lo
ck

 c
yc

le
s]

Mean Value Model
N-dim. Markov + Average
Cycle-accurate Simulation

Figure 13. Performance results for 4x4 2D-mesh with generic mul-
timedia application traffic analyzing the average packet latency in
comparison to cycle-accurate simulation.

281

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet injection rate (pkt/cycle)

Ta
il

pr
ob

ab
ili

ty
 P

[x
>=

k]

Analytic (K=1)
Simulation (K=1)
Analytic (K=2)
Simulation (K=2)
Analytic (K=4)
Simulation (K=4)
Analytic (K=16)
Simulation (K=16)

��������	

�����
�����������

Figure 14. Analysis of the tail probability for a single router input
buffer in a 4x4 2D-mesh with generic multimedia application traffic
in comparison to cycle-accurate simulation.

buffer fill level is exceeded and is thus well suited for this
purpose. It can easily be derived from the distribution of the
number of customers π̃ of the presented infinite buffer model.

Ptail = P[xi ≥ K] = 1 −
∑

x,xi<K

π̃(x) (15)

Equation (15) computes the tail probability for router input
queue i. On this basis, we can now examine the buffer
requirements focusing on a single router input of the presented
4x4 2D-mesh scenario. The location of the selected buffer
(index 28) is illustrated in Figure 12. We investigate the tail
probability for different injection rates (in range 0.8 to 2.4
packets/cycle) and different K (1, 2, 4, and 16). The results
are again validated by comparison with cycle-accurate NoC
simulations, as shown in Figure 14.

The figure yields much information that can help a designer
to optimize the buffer according to the expected traffic volume.
First, we define a threshold that is used to decide whether
it is worth to investigate additional memory or not. We first
consider the curves obtained from the analytical model. We
take a tail probability of 0.2 as our threshold. This means that
for a given K and traffic load, it is recommended to increase
K, if the buffer is completely filled in at least 20% of the
time. In Figure 14, we can see that under low and medium
traffic load the threshold is not exceeded; even for a very small
buffer size (K=1). At an injection rate of 1.2 packets/cycle,
the curve ”Analytic (K=1)” reaches the threshold and thus it
is recommended to use a buffer size of 2 for this traffic load.
This is sufficient up to an injection rate of 1.7 packets/cycle,
where the green curve (Analytic K=2) exceeds the defined
threshold. For higher injection rates it is recommended to use
a buffer size of K=4. Only within the small region of 2 to
2.2 packets/cycle, it would make sense to use an even bigger
buffer (K=16). For higher injection rates, the incoming traffic
cannot be served anymore and the buffer is completely filled,
independent of the buffer size. From our previous analysis

of Figure 13, we know that the overall network saturation is
already reached at an injection rate of about 1.6 packets/cycle.
Taking this additional information into account, there is no
need for over-provisioning the buffer by considering injection
rates beyond network saturation. Finally, we can conclude from
Figure 14 that a buffer size of only 2 is already sufficient to
deal with all sensible traffic loads (up to 1.6 packets/cycle) for
the given application scenario. Furthermore, Figure 14 depicts
the results from the cycle-accurate simulation as reference. We
find that the analytic model is able to represent the general
behavior of the simulation quite well. However, we also see
that it generally underestimates the tail probability due to the
simplified assumptions of the arrival and service time distribu-
tions (M/M/1), as well as, the additional inaccuracy caused by
the aggregation approach. Nevertheless, the influence on the
design decisions is insignificant so that the proposed approach
is well suited for the early DSE phases.

Up to now, we focused on the investigation of a single
input buffer under different injections rates. If we fix the
injection rate to a value close to the network saturation (1.6
packets/cycles), we are able to analyze the buffer requirements
under worst-case conditions for the whole NoC at once.
The results are presented in Figure 15 and provide the NoC
designer an easily comprehensible and intuitive tool for the
buffer dimensioning.

The figure illustrates the tail probability as color-coded
blocks for all buffers of the network (x-axis) and different
buffer sizes K (y-axis). Thereby, a blue block corresponds to
a low Ptail, i.e., a quite relaxed traffic situation. A red block
represents a high Ptail, and reveals potential bottlenecks. For
these cases, it is suggested to increase the buffer size until
reaching the green or blue region to optimize the traffic flow
and avoid network congestion. We observe in Figure 15 that
a quite low buffer size (K=1 or K=2) is sufficient for most
buffers. Only a few buffers require some additional memory.
E.g., a buffer size of 4 would be reasonable for input buffers
28 and 29. The bottleneck in this network scenario is clearly
buffer 46 which is connected to the output of ”MEM1”. This
is accordant to the traffic scenario in Figure 11, where MEM1
has a very high traffic load at its output. The diversity of
the traffic load is caused by the application specific traffic
pattern, which is clearly represented in Figure 15. The scenario
demonstrates the advantage of a careful network analysis and
buffer dimensioning quite well. Individual buffer sizing can
save a lot of memory while ensuring a high performance at
the same time.

Annotating the network topology with the corresponding
color-coded tail probabilities (for K=1) at the input identifiers
yields a clear picture concerning the localization of the bot-
tlenecks. This is illustrated in Figure 12. We find the highest
congestion around the modules ”MEM1”, ”CPU1”, ”DSP1”,
and ”DSP2”. Relating to the traffic pattern in Figure 11, we can
verify that these components are indeed highly interconnected,
communication intensive, centric nodes.

As mentioned before, we observe a big diversity of the buffer
loads due to the application scenario. Assuming a uniform
traffic scenario (i.e., each module communicating with every
other module with the same probability), we expect a more

282

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 10 20 30 40 50 60 70 80
1

2

3

4

5

6

7

8

9

10

Ta
il

pr
ob

ab
ili

ty

Router Channel Index

B
uf

fe
r s

iz
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 15. Buffer dimensioning for 4x4 2D-mesh with generic mul-
timedia application traffic at fix injection rate (1.6 packets/cycle).

uniform utilization of the buffers in the network. For this
purpose, we repeat the buffer dimensioning analysis for the
4x4 2D-mesh applying uniform traffic. Again the injection rate
was chosen close to the network saturation (0.31 packets/cycle
at a basic flit service rate of μ = 0.5). The results are depicted
in Figure 16. We can see that the buffer utilization is now much
more uniform than in the case of the application specific traffic.
Nevertheless, we still find some bottlenecks in the region of
buffer 26 to 35 and 46 to 55. Referring to Figure 12, we find
that all these buffers are inputs of center routers. The center
bottleneck is a commonly known characteristic of 2D-mesh
topologies under uniform traffic.

The result confirms the validity and suitability of the pro-
posed analytic model. It shows that we can already gain much
insight into the system behavior in an early design stage
with only a limited amount of information concerning system
parameters.

D. DSE Scenario
Now, we have all necessary analytic tools at hand to clarify

the question put at the end of the small DSE example in
Section I. Therein, we proposed two alternative topologies
(Figure 2(b) and Figure 2(c)) for a given application specific
traffic scenario (Figure 2(a)). The first topology (solution a)
employs two modules per router, while the second topology
(solution b) spends a single router for every module. Finding
a trade-off between latency, throughput and area consumption,
we were not able to find a clear answer in Section I concerning
which of the two alternatives is better suited. We investigated
the small DSE example more closely performing a tail proba-
bility analysis using the proposed analytic model. Annotating
the color-coded tail probabilities P[x ≥ 1] (according to
Figure 12), we can visualize the performance bottlenecks for
the two topologies, as depicted in Figure 17. It can be seen
that the left router in solution a) is a serious bottleneck in the
network. Indeed, the arriving traffic even exceeds the service
capabilities of the router. Therefore, the average packet latency

0 10 20 30 40 50 60 70 80
1

2

3

4

5

6

7

8

9

10

Ta
il

pr
ob

ab
ili

ty

Router Channel Index

B
uf

fe
r s

iz
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 16. Buffer dimensioning analysis for 4x4 2D-mesh with
uniform traffic at 0.31 packets/cycle.

in the NoC tends to infinity, if we employ the infinite buffer
queueing model. We can conclude that solution a) is not suited
to fulfill the performance requirement of the given application
scenario. Solution b) offers an increased bisection width. This
results in a better spatial distribution of the traffic load in the
network. Though the link between the routers at module 4
and 3 has still a high load, all routers are able to handle the
incoming traffic. The average latency in the network is 8.4
cycles, according to the analytic results. Now, we are able
to make a clear decision. Topology a) is not able to achieve
the required throughput. Therefore, solution b) would be the
better alternative in this case, even though the additional two
routers cause increased chip area. The results of this small
DSE demonstrate that a little change can sometimes make
a big difference. Hence, it is worth to spend some effort to
investigate the interconnection more closely.

� �

������

� ����

��

������

� �
���

���

� �

��

���

��� ���

���

� �

���

���

���

���

���

���

��������	�
���
����� ��������	�
���
�������
�	��

���

���

���

���

������ ���

���

���

��	
��
����	����	�	����
	���	��
��� ��	
��
����	����	 �	����	���	��
���

Figure 17. Results for small DSE example from Section I employing
analytic model; comparison of solution with one (a) and two (b)
modules per router. The color denotes the tail probabilities (P[x ≥
1]) at the corresponding input buffers (red=high, yellow=medium,
blue=low).

283

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. Extensions

The previous section demonstrated the feasibility and ac-
curacy of the basic NoC model. However, several extensions
are possible to further increase the accuracy and expand the
application area of the proposed model.

A. Transient Behavior of NoC Router
The router and NoC models presented in Section IV describe

the steady-state behavior of NoCs with adequate accuracy,
but real systems do not necessarily work in steady-state. For
instance, after starting a system, it needs time to converge to
steady-state. Furthermore, application and communication pat-
terns can change over time causing time-varying traffic rates in
NoCs. An example of adaptive application and communication
patterns can be found in [12], where a runtime adaptive NoC
with dynamic routes and buffer allocations is proposed. This
example illustrates that stationarity is not assured and it is of
principal interest to consider transient characteristics as well.
In the following, we outline model extensions that capture the
transient behavior of a router.

In order to enable a transient analysis, we apply a gener-
alization of the aggregation technique published in [31]. The
technique in [31] is designed for continuous-time queueing
systems, but we adapt it to discrete-time processes. Most
variables used so far become time-dependent, e.g., arrival rates
are described by λ(t) instead of λ.

1) Transient behavior of uncoupled queues: The first step of
the modified aggregation approach is to determine the transient
behavior of uncoupled, independent queues described by the
state probabilities πk(y, t), which has to be done for all macro
states y separately. We utilize standard tools for discrete-time
markov chains for constructing a transition matrix Q [11].
The transient behavior of the state probabilities is computed
iteratively by multiplying the state probabilities of the previous
time step by the transition matrix, i.e., π(y, t + 1) = π(y, t)Q.
In order to enable this computation, we restrict the state space
of a single queue to be finite.

2) Transient behavior of coupled queues: In the second
part of the aggregation approach, the state probabilities of
independent queues are utilized for approximating the transient
behavior of coupled queues. Referring to [31], the transient
rates among macro states (see (12)) can be generalized to

p(y, y′, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λi(t) for y′ = y + ei,

(1 − λi(t))μi(y, t) π1(y,t)
(1−π0(y,t)) for y′ = y − ei,

0 else.

Next, we summarize the transition rates to a transition matrix
Q̃(t). By iterative multiplication of the previous system state
by the transition matrix, we derive the transient behavior of
the coupled system, i.e., σ(y, t + 1) = σ(y, t)Q̃(t). Finally, in
analogy to Section IV-C, the resulting macro state probabilities
σ(y, t) can be used to determine various key performance
indicators.

3) Numerical evaluation: For illustration, we consider a
single router with three input/output pairs. Flits enter the router
at one input and leave it at an output of a different input/output
pair. Therefore, flits cannot be routed from the input to the
output of the same input/output pair. We assume a maximum

0 100 200 300 400 500
0

2

4

6

8

time [#cycles]

m
ea

n
qu

eu
e

si
ze

 [
#f

lit
s]

DES Aggregation

λ = 0.60

λ = 0.70

λ = 0.73

λ = 0.76

λ = 0.80

Figure 18. Mean queue length of one input of the router over time and
after system startup. The proposed aggregation technique is compared
to a discrete event simulation for different arrival rates λ.

finite buffer length of 10 flits per queue. At each input, an
arrival process with a fixed mean intensity λ is assumed, and
the traffic destinations are uniformly distributed. In different
simulation runs, we use diverse mean intensities between 0.6
and 0.8 flits per cycle. If needed, time-varying traffic intensities
can also be applied within one simulation run. We utilize
the transient model and determine the average buffer load
according to (13) over the first 500 cycles after system startup.
The results in Figure 18 show that the time the system needs to
converge to stationarity clearly depends on the arrival rate. For
high traffic scenarios the system needs about 300 cycles, while
the same system approaches stationarity for λ = 0.6 within 50
cycles.

Furthermore, we compare the aggregation technique to a
cycle-accurate discrete event simulation (DES), where we
simulate the system event by event. We perform a Monte Carlo
simulation and average over 30000 realizations in order to
obtain the average behavior of the system. The comparison
of the aggregation technique to the DES reveals that the
approximation works quite accurately, especially for low and
high traffic scenarios the error is negligibly small. The largest
error can be found for λ = 0.7, where the relative error of the
mean queue size is 11%.

There are several applications for the transient model. It can,
for instance, be used to predict dynamic behavior of NoC in
algorithms that adapt application mappings or traffic patterns
dynamically.

B. Blocking in NoC with finite buffers and generalized service
The model approach, proposed in Section IV-C, is based on

an infinite buffer queueing model, which offers the advantage
of low computational complexity. However, this assumption
also entails some drawbacks. First, the spatial distribution of
the traffic congestion in the network cannot be considered.
Therefore, the prediction of performance measures becomes
inaccurate, since every router is analyzed independently of the

284

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 19. Mutual dependency of accepted traffic (A) and congestion
feedback parameter Pf ull in finite buffer queueing networks.

subsequent (i.e., downstream) routers. This does not reflect the
real on-chip situation accurately. Finally, buffer dimensioning
based on tail probabilities, as demonstrated in Section V, is
feasible but with limited accuracy. This is because blocking of
injected traffic is not considered by the infinite buffer model.

Therefore, it is reasonable to consider an extension of the
basic NoC model for finite buffer constraints. In the scope of
the section, we sketch first ideas and challenges, which come
with this extension. The integration and numerical evaluation
is up for future work. Finite buffer models are well-known
in queueing theory. Closed-form solutions are available for
the most simple form, the M/M/1/K system [11]. However,
first investigations show that the assumption of exponentially
distributed service times limits the accuracy gain of the finite
buffer model. Hence, it seems reasonable to consider a more
general M/G/1/K system for this purpose. Unfortunately, there
is no closed-form solution available for the distribution of
the number of customers in an M/G/1 queueing system.
A quite accurate and computationally efficient two-moment
approximation is proposed in [32]. It can easily be extended
to M/G/1/K systems following the approach of [33]. A good
estimation of the blocking probability in an M/G/1/K system
is also proposed by [34].

The biggest challenge in modeling finite buffer queueing
networks is the spatial distribution of the traffic congestion. In
case that an input buffer is filled, the service at the preceding
(i.e., upstream) router stops for the corresponding output
port. This means that the traffic congestion is propagated in
upstream direction, the opposite direction of the data flow. It
is necessary to derive an analytic expression for the probability
that the buffer is filled, which is propagated as parameter in
upstream direction to model traffic congestion. Note that this
probability does not correspond to the blocking probability,
since packets are never blocked (i.e., rejected) once they are
injected in the NoC.

We realize that the accepted traffic (A) is propagated down-
stream while the congestion parameter Pf ull is propagated
upstream, as depicted in Figure 19. Unfortunately, we find
mutual dependencies between these two parameters in the
network, if we consider general topologies. We propose an
iterative fixed-point algorithm on network level to approximate
the steady-state solution of a finite buffer queueing network.

We conclude that though this approach will become more
computationally complex, it promises for an increased accu-
racy and enables analyzing network congestion and blocking
of the injected traffic.

VII. Conclusion & FutureWork

In this paper, we presented an analytic approach for mod-
eling on-chip networks for many-core SoC based on queueing
theory. In contrast to many existing models, the approach is
very flexible in terms of supported topology, routing scheme
and traffic pattern. The approach overcomes the limitations
of the mean value analysis introduced in the existing work.
Instead, it provides information about a steady-state distri-
bution of the network routers. This allows to derive various
key performance indicators, such as overflow probabilities or
average queueing delays, which is very important information
for dimensioning network resources, such as buffers, links,
etc. We demonstrated the very high accuracy of the approach
by comparison to a cycle-accurate simulation. The average
estimation error for the mean latencies in a 4x4 2D-mesh is
only 3%. The application of the proposed model was shown
based on some simple design examples for buffer dimen-
sioning, localizing bottlenecks, and benchmarking topologies.
Extensiona of the basic model were proposed to consider
finite buffers, dynamic traffic, and to generalize the service
time assumptions made for the network routers. This further
increases the accuracy of the basic analytic model and expands
its application area.

The application and detailed evaluation of the suggested
model extensions are left for future work. Furthermore, the
consideration of link failures and error-prone routers em-
ploying a stochastic error model allows to investigate re-
siliency mechanisms for NoC. Finally, supporting multiple
clock domains (i.e., globally asynchronous locally synchronous
systems) and frequency scaling is another open topic in order
to explore a many-core NoC more accurately.

Acknowledgment

This work was partly sponsored by the European Social
Fund and the Free State of Saxony within the project Secure
Remote Execution (SREX, nr 100111037).

References

[1] E. Fischer, A. Fehske, and G. Fettweis, “A Flexible Analytic Model
for the Design Space Exploration of Many-Core Network-on-Chips
Based on Queueing Theory,” in Proceedings of the Fourth International
Conference on Advances in System Simulation, ser. SIMUL ’12, 2012,
pp. 119–124.

[2] TU Dresden, “ESF Young Investigators Group; 3D Chip Stack
Intraconnects - 3DCSI,” last visited on 12/12/2013. [Online].
Available: http://tu-dresden.de/die tu dresden/fakultaeten/fakultaet
elektrotechnik und informationstechnik/3dcsi

[3] J. Manferdelli, N. Govindaraju, and C. Crall, “Challenges and Oppor-
tunities in Many-Core Computing,” Proc. of IEEE, vol. 96, no. 5, May
2008, pp. 808 –815.

[4] S. Borkar, “Thousand Core Chips: A Technology Perspective,” in
Proceedings of the 44th Annual Design Automation Conference, ser.
DAC ’07, 2007, pp. 746–749.

[5] J. Nickolls and W. Dally, “The GPU Computing Era,” Micro, IEEE,
vol. 30, no. 2, March-April 2010, pp. 56 –69.

[6] T. Limberg, M. Winter, M. Bimberg, R. Klemm, E. Matus, M. Tavares,
G. Fettweis, H. Ahlendorf, and P. Robelly, “A fully programmable 40
GOPS SDR single chip baseband for LTE/WiMAX terminals,” in Solid-
State Circuits Conference, 2008. ESSCIRC 2008. 34th European, 2008,
pp. 466–469.

285

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] W. Dally and B. Towles, “Route packets, not wires: on-chip interconnec-
tion networks,” in Design Automation Conference, 2001. Proceedings,
2001, pp. 684–689.

[8] L. Benini and G. De Micheli, “Networks on chips: a new SoC
paradigm,” Computer, vol. 35, no. 1, Jan 2002, pp. 70 –78.

[9] R. Marculescu, U. Ogras, L.-S. Peh, N. Jerger, and Y. Hoskote,
“Outstanding Research Problems in NoC Design: System, Microar-
chitecture, and Circuit Perspectives,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 28, no. 1, Jan.
2009, pp. 3 –21.

[10] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of determin-
istic queueing systems for the internet. Berlin, Heidelberg: Springer-
Verlag, 2001.

[11] L. Kleinrock, Queueing systems - 1 : Theory. New York: Wiley, 1975.

[12] M. Al Faruque, T. Ebi, and J. Henkel, “AdNoC: Runtime Adaptive
Network-on-Chip Architecture,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 20, no. 2, 2012, pp. 257–269.

[13] P. Bogdan and R. Marculescu, “Non-Stationary Traffic Analysis and
Its Implications on Multicore Platform Design,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 30,
no. 4, 2011, pp. 508–519.

[14] W. Dally, “Performance analysis of k-ary n-cube interconnection net-
works,” IEEE Transactions on Computers, vol. 39, no. 6, Jun 1990, pp.
775 –785.

[15] A. E. Kiasari, D. Rahmati, H. Sarbazi-Azad, and S. Hessabi, “A Marko-
vian Performance Model for Networks-on-Chip,” in 16th Euromicro
Conference on Parallel, Distributed and Network-Based Processing,
2008. PDP 2008., 2008, pp. 157–164.

[16] A. Kiasari, Z. Lu, and A. Jantsch, “An Analytical Latency Model for
Networks-on-Chip,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 21, no. 1, 2013, pp. 113–123.

[17] J. Hu, U. Ogras, and R. Marculescu, “System-Level Buffer Alloca-
tion for Application-Specific Networks-on-Chip Router Design,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 25, no. 12, 2006, pp. 2919–2933.

[18] N. Nikitin and J. Cortadella, “A Performance Analytical Model for
Network-on-Chip with Constant Service Time Routers,” in Proceedings
of the 2009 International Conference on Computer-Aided Design, ser.
ICCAD ’09, 2009, pp. 571–578.

[19] U. Ogras, P. Bogdan, and R. Marculescu, “An Analytical Approach
for Network-on-Chip Performance Analysis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 29,
no. 12, Dec. 2010, pp. 2001 –2013.

[20] M. Bakhouya, S. Suboh, J. Gaber, and T. El-Ghazawi, “Analytical
modeling and evaluation of On-Chip Interconnects using Network
Calculus,” in 3rd ACM/IEEE International Symposium on Networks-
on-Chip, ser. NoCS 2009, 2009, pp. 74–79.

[21] A. E. Kiasari, A. Jantsch, and Z. Lu, “Mathematical formalisms for
performance evaluation of networks-on-chip,” ACM Computing Sur-
veys (CSUR), vol. 45, no. 3, 2013, p. 38.

[22] U. Ogras and R. Marculescu, “Target noc platform,” in Modeling,
Analysis and Optimization of Network-on-Chip Communication Ar-
chitectures, ser. Lecture Notes in Electrical Engineering. Springer
Netherlands, 2013, vol. 184, pp. 39–47.

[23] M. Bossert and M. Breitbach, Digitale Netze / Funktionsgruppen
digitaler Netze und Systembeispiele. Stuttgart ; Leipzig: Teubner, 1999.

[24] E. Fischer and G. P. Fettweis, “An accurate and scalable analytic model
for round-robin arbitration in network-on-chip,” in Seventh IEEE/ACM
International Symposium on Networks on Chip, ser. NoCS ’13, 2013,
pp. 1–8.

[25] Seber and A. F. George, A Matrix Handbook for Statisticians. John
Wiley & Sons, Inc., 2008.

[26] R. Nelson, Probability, stochastic processes, and queueing theory /
the mathematics of computer performance modeling. New York ;
Heidelberg [u.a.]: Springer, 1995.

[27] A. Fehske and G. Fettweis, “Aggregation of variables in load models
for interference-coupled cellular data networks,” in IEEE International
Conference on Communications (ICC), 2012, 2012, pp. 5102–5107.

[28] H. A. Simon and A. Ando, “Aggregation of Variables in Dynamic
Systems,” Econometrica, vol. 29, no. 2, Apr 1961, pp. 111–138.

[29] worm sim, “Cycle-accurate noc simulator,” last visited on 12/12/2013.
[Online]. Available: https://www.ece.cmu.edu/∼sld/software.html

[30] J. Hu and R. Marculescu, “Energy- and performance-aware mapping
for regular NoC architectures,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 24, no. 4, 2005, pp.
551–562.

[31] D. Öhmann, A. Fehske, and G. P. Fettweis, “Transient Flow Level
Models for Interference-Coupled Cellular Networks,” in 51st Annual
Allerton Conference on Communication, Control, and Computing,
Monticello, 2013.

[32] D. S. Myers and M. K. Vernon, “Estimating queue length distributions
for queues with random arrivals,” SIGMETRICS Perform. Eval. Rev.,
vol. 40, no. 3, Jan. 2012, pp. 77–79.

[33] J. Virtamo, “Queueing Theory; M/G/1-queue,” 2013, lecture notes
of Queuing theory, 38.3143, last visited on 12/12/2013. [Online].
Available: http://www.netlab.tkk.fi/opetus/s383143/kalvot/english.shtml

[34] J. M. Smith, “Properties and performance modelling of finite buffer
M/G/1/K networks,” Computers & Operations Research, vol. 38, no. 4,
2011, pp. 740 – 754.

286

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Undecidable Case and Decidable Case of Joint
Diagnosability in Distributed Discrete Event Systems

Lina Ye and Philippe Dague
INRIA, Grenoble-Rhône-Alpes, lina.ye@inria.fr

LRI, Univ. Paris-Sud, philippe.dague@lri.fr

Abstract—Diagnosability is an important property that deter-
mines at design stage how accurate any diagnosis algorithm can
be on a partially observable system. Most existing approaches
assumed that each observable event in the system is globally
observed. Considering the cases where there is no global in-
formation, one of our recent work proposed a new framework
to check diagnosability in a system where each component can
only observe its own observable events to keep the internal
structure private in terms of observations. However, we assumed
that the local paths in each component can be exhaustively
enumerated, which is not suitable in a general case where there
are embedded cycles. In this paper, we get some new results
about diagnosability in such a system in a general case, i.e.,
what we call joint diagnosability in a self-observed distributed
system. First, we prove the undecidability of joint diagnosability
with unobservable communication events by reducing the Post’s
Correspondence Problem to joint diagnosability problem. We also
propose an algorithm to check a sufficient but not necessary
condition of joint diagnosability, which is then adapted when the
assumption of all communication events being unobservable is
relaxed, i.e., communication events could be either observable or
unobservable. Then, we discuss about the decidable case where
communication events are all observable and develop a new
efficient algorithm to test it. Finally, we also provide an important
property of joint diagnosability after analyzing its relationship
with classical diagnosability.

Keywords—joint diagnosability, self-observed systems, finite state
machine, Post’s Correspondence Problem, undecidability.

I. INTRODUCTION

OVER the latest decades, with the advancement of tech-
nologies, systems are becoming more and more complex

since more performance requirements are imposed on them,
which causes more errors that they are subject to. However, it
is not realistic to manually detect faults for complex systems.
Automated diagnosis mechanisms are therefore required to
monitor large distributed applications such as transportation
systems, communication networks, manufacturing systems,
web services, spatial systems and power systems. Thus, it is
crucial for a complex system to perceive that it is not operating
correctly and then without human intervention, to detect and
isolate original faults, which will be restored by repair plans
to normality.

Generally speaking, diagnosis reasoning is to detect possible
faults that can explain the observations. The possibility to
achieve such a diagnosis reasoning depends on the diagnos-
ability of the system. Diagnosability is an important property
that determines at design stage how accurate any diagnosis

algorithm can be on a partially observable system, which has
significant economic impact on the improvement of perfor-
mance and reliability of complex systems. The diagnosability
analysis problem has received considerable attention in the
literature, both in centralized and distributed ways.

In this paper, we study diagnosability problem for dis-
tributed systems where a component cannot observe the ob-
servable events in other components, which are called self-
observed systems. We make several contributions by extend-
ing the conference article [1]. The first one is to extend
diagnosability of globally observed systems to what we call
joint diagnosability of self-observed systems before proving
its undecidability in the case where communication events
are unobservable. This is done by reducing the Post’s Cor-
respondence Problem to joint diagnosability problem, which
is inspired from the undecidability result of joint observability
[2]. The second one is to propose an algorithm for testing a
sufficient condition of joint diagnosability with unobservable
communication events. To do so, we first obtain pairs of local
trajectories in the faulty component, such that for each pair,
only one trajectory contains the fault but both trajectories have
the same enough local observations. Their global consistency
is then checked through two phases. We prove that it is a
sufficient condition and point out why it is not necessary.
Afterwards, we adapt this algorithm when the assumption
of communication events being unobservable is relaxed, i.e.,
communication events could be observable or unobservable.
The third one is to discuss about the decidable case where
communication events are observable and to develop an ef-
ficient algorithm to test it. Finally, we provide an important
property of joint diagnosability after analyzing its relationship
with classical diagnosability.

This article extends our recent works [1] and [3] in the
following aspects.
• We add detailed proofs for Theorem 1 and Lemma 2,

which make our approach more convincing in terms of
correctness.

• We define a new structure called local twin checker
for a normal component to make the presentation more
clear and the algorithm more efficient. The reason is
that a local twin checker contains no fault information
since it is constructed for a normal component without
fault. Then we provide new complexity analysis for the
proposed sufficient algorithm to test joint diagnosability
when communication events are unobservable.

• We generalize the sufficient algorithm to test joint di-

287

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

agnosability when the assumption is relaxed such that
communication events could be either observable or
unobservable, which is presented in Section V-D.

• In Section VI, we provide more details about why joint
diagnosability is decidable when communication events
are all observable and then develop a new algorithm to
test it.

• We provide a new important property of joint diag-
nosability after analyzing its relationship with classical
diagnosability in Section VII.

The paper is organized as follows. In the next section,
we talk about related works in the literature. In Section
III, we model self-observed distributed systems and recall
classical diagnosability and joint diagnosability. Section IV
presents undecidability analysis for joint diagnosability when
communication events are unobservable. An algorithm to test a
sufficient condition is proposed in Section V with complexity
analysis, which is then adapted when communication events
could be either unobservable or observable. In Section VI,
we discuss about decidable case for joint diagnosability, i.e.,
when communication events are observable, before giving an
algorithm to test it. Finally, we compare joint diagnosability
and classical diagnosability to find out their relationship in
Section VII before giving the conclusion in Section VIII.

II. RELATED WORK

In the literature, three types of systems are under investiga-
tion for diagnosis problem: continuous systems, discrete event
systems and hybrid systems ([4], [5], [6], [7], [8], [9], [10],
[11], [12]). In this paper, the dynamic systems studied are
discrete event systems (abbreviated DES hereafter). Given a
system, if its state space is naturally described by a discrete set
and if state transitions only occur at discrete points in time, we
associate these transitions with events and this system is called
a DES. The reason why we choose DES for investigation is that
most of the man-made systems are DES and that continuous
systems can be abstracted to be DES. Nowadays, lots of works
have been studied on control of DES, including diagnosis
algorithm, diagnosability analysis, predictability analysis, etc.
([13], [14], [15], [16], [17], [18], [19]).

Some existing works analyzed diagnosability problem in a
centralized way ([20], [21] and [22]), i.e., the knowledge of the
monolithic model of a given system is hypothesized, which is
the very powerful information for diagnosability analysis and
leads to an unrealistic combinatorial explosion of the search
space. This is why very recently distributed approaches for
diagnosability began to be investigated ([23], [24] and [25]),
relying on local objects. More precisely, in these distributed ap-
proaches, original diagnosability information can be obtained
from the components where faults may occur and then the
global decision is calculated by checking its global consistency.
However, all these approaches assumed that each observable
event in the system can be observed by all components, i.e.,
globally observed. However, in reality, there are some cases
where it is not possible to obtain global information. For
example, networked control systems are characterized by the
fact that multiple distributed components possess their own

X0 X1 X2 X3

X4

X5

O1

C1 O1 F

U1

O2

O1 C2
O2

Y0 Y2

Y3

Y4

O3

O3C1

O4
O5

C2

X6

C2

Y1
U2

Fig. 1: A system with two components G1 (left) and G2 (right).

part of available information instead of a global knowledge.
Then one of our recent work [26] proposed a new framework
to check diagnosability in a system where each component
can only observe its own observable events to keep the
internal structure private in terms of observations. However,
we assumed that the local paths in each component can be ex-
haustively enumerated, which is not suitable in a general case
where there are embedded cycles. In this paper, we generalize
this work to get some new results about the diagnosability of
what we call self-observed distributed systems, i.e., systems
where locally observable events can only be observed by their
own component.

III. PRELIMINARIES

In this section, we show how to model self-observed dis-
tributed DESs and then recall classical diagnosability and joint
diagnosability.

A. System Model
We consider a self-observed distributed DES composed of

a set of components {G1, G2,..., Gn} that communicate with
each other by communication events. Each component can
only observe its own observable events and thus keeps its
internal structure private in terms of observations. Such a
system is modeled by a set of finite state machines (FSM),
each one representing the local model of one component.

Definition 1: (Local Model). The local model of a compo-
nent Gi is a FSM, denoted by Gi = (Qi,Σi, δi, q

0
i), where

• Qi is the set of states;
• Σi is the set of events;
• δi ⊆ Qi × Σi ×Qi is the set of transitions;
• q0i is the initial state.

The set of events Σi is partitioned into four disjoint subsets:
Σio , the set of locally observable events that can be observed
only by their own component Gi; Σiu , the set of unobservable
normal events; Σif , the set of unobservable fault events; and
Σic , the set of communication events shared by at least one
other component, which are the only shared events between
components. Figure 1 depicts a self-observed distributed sys-
tem with two components: G1 (left) and G2 (right), where Oi
denotes a locally observable event, F denotes an unobservable
fault event, Ui denotes an unobservable normal event and Ci
denotes a communication event.

We denote the synchronized FSM of components G1, ..., Gn

by ∥(G1, ..., Gn), where the synchronized events are the shared
events between components and each one of them always
occurs simultaneously in all components that define it. The

288

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

state space of the synchronized FSM is the Cartesian product
of the state spaces of components. The monolithic model
(also called global model in the following) of the entire
system is implicitly defined as the synchronized FSM of all
components based on their shared events, i.e., communication
events. However, the global model will not be calculated in
this paper since in a self-observed distributed system, the
global occurrence order of observable events is not accessible.
In the following, we call the synchronization of a subset of
components of G, i.e., ∥(Gs1 , ..., Gsm), as subsystem of G,
where {s1, ...sm} ⊆ {1, ...n}. Note that one component or the
entire system can also be considered as a subsystem.

Given a system model G = (Q,Σ, δ, q0), the set of words
produced by the FSM G is a prefix-closed language L(G)
that describes the normal and faulty behaviors of the system.
Formally, L(G) = {s ∈ Σ∗|∃q ∈ Q, (q0, s, q) ∈ δ}, where the
transition δ has been extended from events to words. In the
following, we call a word of L(G) a trajectory in the system
G and a sequence q0σ0q1σ1... a path in G, where σ0σ1... is
a trajectory and for all i, we have (qi, σi, qi+1) ∈ δ. Given
s ∈ L(G), we denote the post-language of L(G) after s by
L(G)/s and denote the projection of s to observable events
of G (resp. Gi) by P (s) (resp. Pi(s)). For example, if s =
O1.U2.O3∗, then we have P (s) = O1.O3∗, where Oi denotes
an observable event. These notations are also appropriate for
local components. We adopt the assumption described in [23],
i.e., the projection of the global language on each local model
is observable live, in particular there is no unobservable cycle
in any component. For the sake of simplicity, our approach
is illustrated by dealing with only one fault, which can be
extended to the case with multiple faults.

B. Diagnosability and Joint Diagnosability

We now recall classical diagnosability for centralized DESs.
Informally speaking, the existence of two indistinguishable
behaviors, i.e., holding the same enough observations with
exactly one of them containing the given fault F , violates
diagnosability property. The diagnosability approaches consist
in checking the existence of such indistinguishable behaviors.
In other words, a fault F is diagnosable in a system G iff its
occurrence is determinable when enough events are observed
from G after the occurrence of F , which is formally defined
as follows [20], where sF denotes a trajectory ending with F .

Definition 2: (Diagnosability). A fault F is diagnosable in
a system G iff

∀sF ∈ L(G), ∃k ∈ N, ∀t ∈ L(G)/sF , |t| ≥ k ⇒
(∀p ∈ L(G), P (p) = P (sF .t)⇒ F ∈ p).

The above definition states that if F is diagnosable, then
for each trajectory sF in G, for each t that is an extension
of sF with sufficient events, every trajectory p in G that is
observation equivalent to sF .t should contain F . We call a pair
of trajectories p and p′ satisfying the following conditions as
a critical pair:
• p contains F and p′ does not;
• p has arbitrarily long events after the occurrence of F ;
• P (p) = P (p′).

It has been proved that the existence of critical pairs violates
Definition 2 and thus witnesses non-diagnosability [21]. For
distributed systems, the analysis of the above classical diag-
nosability requires global observations, which is not suitable
for self-observed distributed systems where observable events
can only be observed by their own component. Now we give
the definition of joint diagnosability that only requires local
observations without considering their global occurrence order
[26].

Definition 3: (Joint diagnosability). A fault F is jointly
diagnosable in a self-observed distributed system G composed
of components {G1, ...Gn}, iff

∀sF ∈ L(G), ∃k ∈ N,∀t ∈ L(G)/sF , (∀i ∈
{1, ..., n}, |Pi(t)| ≥ k)⇒ (∀p ∈ L(G)

(∀i ∈ {1, ..., n}, Pi(p) = Pi(s
F .t))⇒ F ∈ p).

Joint diagnosability of a fault F means that for each trajectory
sF in G, for each t that is an extension of sF with enough
locally observable events in all components, every trajectory p
in G that is equivalent to sF .t for local observations in each
component should contain in it F . In a self-observed system,
we call a pair of trajectories p and p′ satisfying the following
conditions an (global) indeterminate pair:
• p contains F and p′ does not;
• p has arbitrarily long local observations in all compo-

nents after the occurrence of F ;
• ∀i ∈ {1, ..., n}, Pi(p) = Pi(p′).

Here arbitrarily long local observations can be considered as
infinite local observations. Now we have the following theorem
[26].

Theorem 1: Given a self-observed distributed system G, a
fault F is jointly diagnosable in G iff there is no (global)
indeterminate pair in G.

Proof:
(⇒) Suppose that F is jointly diagnosable in a system G and
that there exists an indeterminate pair p and p′ with only p
containing the fault F . Now let sF denote the subpart of p
that is ending with F and let t denote the rest part of p, i.e.,
p = sF .t. Since p and p′ are an indeterminate pair, from its
definition, we have that p has arbitrarily long local observations
for each component Gi after the occurrence of F , and that for
each component Gi, p and p′ have the same local observations,
i.e., Pi(p) = Pi(p′). However, p′ does not contain F . This
contradicts the definition of joint diagnosability, where any
trajectory with the same enough local observations in each
component as sF .t should also contain F . So F is not jointly
diagnosable in G, which contradicts the assumption.
(⇐) Now suppose that there is no indeterminate pair in
G and F is not jointly diagnosable in G. From the non
joint diagnosability of F and Definition 3, we deduce that
∃sF ∈ L(G), such that there exists at least one extension t with
enough local observations (represented by infinite paths with
cycles) in all components, for which there must exist at least
one other trajectory p containing the same local observations
as sF .t for each component but without fault. Since the enough
local observations of sF .t and p come from infinite paths with
cycles, sF .t and p can be prolonged arbitrarily long. It follows
that sF .t and p are an indeterminate pair since they satisfy
three conditions of the definition of an indeterminate pair,

289

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

S0

O1

C2
SFK+1

C1

SFK

CK

F

C1

Z1

C2

Z2

CK

ZK

S1

S2

SK

SK+1

O1

O1

C1

C2

CK

C1

V1

C2

V2

CK
VK

T0

T1

O2

T2
A2

TK+1

A1

TK

AK

TK+2
O2

A1

C1

A2

C2

AK

CK

S 1F

SF2 SFK+2SK+2

Fig. 2: A system with two components G1 (top) and G2 (bottom) for
proving undecidability of joint diagnosability.

which contradicts the assumption that there is no indeterminate
pair.

Another important notation that will be used in joint diag-
nosability analysis is reconstructibility [27], which is rephrased
as follows.

Definition 4: (Reconstructibility). Given a system G that is
composed of several subsystems, i.e., G = ∥(Gs1 , ..., Gsm),
let ρ be a trajectory in G, the set of trajectories obtained
by projecting ρ on these subsystems, i.e., denoted by ρ1 =
P ′
Gs1

(ρ), ..., ρm = P ′
Gsm

(ρ), where P ′
Gsi

(ρ) is the projection
of ρ on the subsystem Gsi , is said to be reconstructible with
respect to G.

Lemma 1: In a system G, given two subsystems GS and
G′

S , if ΣSc ∩ ΣS′
c
= ∅, then ∀(s, s′), s ∈ L(GS), s′ ∈ L(G′

S),
s and s′ are reconstructible.

Lemma 1 means that if there is no common communication
event between two subsystems, then any trajectory in one
subsystem and any one in the other one are reconstructible.

IV. UNDECIDABLE CASE

To discuss about joint diagnosability, we consider two cases:
communication events being unobservable and observable. In
this section, we first consider the case where all communica-
tion events are unobservable.

Theorem 1 implies that checking joint diagnosability boils
down to check the existence of indeterminate pairs that wit-
nesses non joint diagnosability. Before discussing about how
to test this, it is very important to check whether the problem
is decidable or not. Inspired from [2], where undecidability of
joint observability is proved by reducing the Post’s Correspon-
dence Problem (PCP) to an observation problem, we now prove
that joint diagnosability is not decidable with communication
events being unobservable.

Theorem 2: Given a self-observed distributed system where
communication events are unobservable, checking joint diag-
nosability of a given fault is undecidable.

Proof:
1) PCP: given a finite alphabet Σ, two sets of words

v1, v2, ..., vk and z1, z2, ..., zk over Σ, then a solution to PCP is
a sequence of indices (im)1≤m≤n with n ≥ 1 and 1 ≤ im ≤ k
for all m such that vi1vi2 ...vin = zi1zi2 ...zin .
2) Now consider the example depicted in Figure 2, where the
system is composed of two components G1 and G2. In G1,
each one of V i, i ∈ {1, ..., k}, or each one of Zi, i ∈ {1, ..., k},
denotes a sequence of observable events all different from
the observable event O1, and C1, ..., Ck are unobservable
communication events, then F denotes a fault event. In G2,
each one of Ai, i ∈ {1, ..., k}, denotes an observable event
different from the observable event O2, and C1, ..., Ck are
unobservable communication events. Then the observations in
G1 can be described as V i1V i2...V inO1∗ without fault or
Zi1Zi2...ZinO1∗ with fault, where ∀ij , j ∈ {1, ..., n}, ij ∈
{1, ..., k}. In G2, the observations are Ai1Ai2...AinO2∗.
3) With the observation of O1, the local observations are
wO1+ for G1 and Ai1Ai2...AinO2∗ for G2, where w =
V i1V i2...V in when there is no fault or w = Zi1Zi2...Zin
when there is a fault. Clearly, if PCP has a solution, i.e.,
∃(im)1≤m≤n such that V i1V i2...V in = Zi1Zi2...Zin, we
have two trajectories p and p′ such that the observations of
p in G1 are V i1V i2...V inO1+, which is a trajectory without
fault, while the observations of p′ in G1 are Zi1Zi2...ZinO1+,
which is a trajectory with a fault. And both p and p′ have
the same observations for G2, i.e., Ai1Ai2...AinO2∗. Thus
we get that p and p′ have the same observations for both
G1 and G2, i.e., V i1V i2...V inO1+=Zi1Zi2...ZinO1+ for G1

and Ai1Ai2...AinO2∗ for G2, then the fault is not jointly
diagnosable.
4) On the other hand, if the fault is not jointly
diagnosable, then we obtain at least one indetermi-
nate pair, denoted by p and p′ such that the pro-
jection of p on G1 is Ci1V i1Ci2V i2...CinV inO1∗,
on G2 is Ai1Ci1Ai2Ci2...AinCinO2∗ and that of p′
on G1 is Cj1Zj1Cj2Zj2...CjmZjmFO1∗ and on G2

is Aj1Cj1Aj2Cj2...AjmCjmO2∗. From the fact that p
and p′ have the same observations for G2, we get
Ai1Ai2...AinO2∗ = Aj1Aj2...AjmO2∗ and thus we have
m = n and i1 = j1, ..., in = jn. And then from the same
observations of p and p′ on G1, we get V i1V i2...V inO1∗ =
Zi1Zi2...ZinO1∗, i.e., V i1V i2...V in = Zi1Zi2...Zin, which
means that there is a solution for PCP.
5) From above, we get that checking the existence of a
solution for PCP is equivalent to checking the existence of
an indeterminate pair. Since PCP is an undecidable problem,
checking joint diagnosability is also undecidable.

There are two major differences between joint diagnosability
in our framework and joint observability in [2]. One is that
the former assumes that local observers are attached to local
components that are synchronized by common communication
events to get a global model while the latter separates arbi-
trarily the observable events in the global model into several
sets. The other one is that joint diagnosability consists in
separating infinite trajectories while joint observability consists
in separating finite ones. Thus, if any communication event
is assumed to be unobservable, joint diagnosability checking
boils down to infinite PCP. But this one has been proved to be
undecidable [28].

290

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. ALGORITHM TO TEST A SUFFICIENT CONDITION

We have proved that joint diagnosability in self-observed
distributed systems with unobservable communication events
is undecidable. We can nevertheless propose an algorithm
to test a sufficient condition, which is still quite useful in
some circumstances. The first step is to construct the local
diagnoser for the faulty component, which allows one to get
fault information after any local trajectory. Then we show
how to build the corresponding local twin plant based on
the local diagnoser to obtain the original information about
indeterminate pairs (also called local indeterminate pairs in the
following). The next step is to check the global consistency,
i.e., whether the local indeterminate pairs can be extended into
(global) indeterminate pairs, whose existence verifies non joint
diagnosability. We give an algorithm to test a sufficient but not
necessary condition for global consistency.

A. Original Diagnosability Information
From Theorem 1, we know that joint diagnosability ver-

ification consists in checking the existence of indeterminate
pairs in the system. In the distributed framework, we use the
structure called local twin plant, initially defined in [21], to
analyze joint diagnosability. In particular, the considered fault
is assumed to only occur in one component, denoted by GF .
Then the local twin plant for GF contains original information
for indeterminate pairs: this twin plant is a FSM that compares
every pair of local trajectories to search for the pairs with the
same arbitrarily long local observations, but exactly one of the
two containing a fault, which are called local indeterminate
pairs. First, we define an operation called delay closure with
respect to a subset Σd of Σ to preserve all information about
the events in Σd by abstracting away other parts.

Definition 5: (Delay Closure). Given a FSM G =
(Q,Σ, δ, q0), its delay closure with respect to Σd ⊆ Σ
is {Σd

(G) = (Q,Σd, δd, q
0) where (q, σ, q′) ∈ δd, σ ∈ Σd iff

∃s ∈ (Σ\Σd)
∗, (q, sσ, q′) ∈ δ.

We now describe how to construct the local diagnoser for a
given component, based on which we build the local twin plant.

Definition 6: (Local Diagnoser). Given a component model
Gi, its local diagnoser is the nondeterministic FSM Di =
(QDi ,ΣDi , δDi , q

0
Di

), where QDi ⊆ Qi × 2Σif is the set
of states, ΣDi = Σic ∪ Σio is the set of events, δDi ⊆
QDi ×ΣDi ×QDi is the set of transitions, and q0Di

= (q0i , N)
is the initial state of the diagnoser. The transitions of δDi are
those ((q, l), e, (q′, l′)) with (q, l) reachable from the initial
state q0Di

, and satisfying the following condition: there is a
transition path p = (q

u1−→ q1...
um−−→ qm

e−→ q′) in G,
with uk ∈ Σiu ∪ Σif , ∀k ∈ {1, ...,m}, e ∈ Σio ∪ Σic and
ℓ′ = ℓ ∪ ({u1, ...um} ∩ Σif).
Without loss of generality, we give the definition of local
diagnoser for the set of faults in the component Gi, which
is perfectly suitable to deal with single fault when we run
our algorithm each time for one fault since twin plant method
has exponential complexity with the number of faults. A
diagnoser constructed as above shows fault information after
any sequence of communication events and observable events
in the faulty component. Figure 3 shows the local diagnoser

X0 N

X4 N X2 N X3 F

O1

 C2

O2

O1

X1 N

 C1
O1

X5 N

 O1

X3 N

O1

C2
O2

Fig. 3: Local diagnoser for G1 of the system in Figure 1.

for the component G1 of the system depicted in Figure 1.
Given a diagnoser, its corresponding twin plant is obtained by
synchronizing this diagnoser with itself, called left and right
instances (denoted by Dl

i and Dr
i , respectively), based on the

set of observable events. From Definition 6, we know that a
diagnoser keeps observable events as well as communication
events. However, since the local twin plant is to obtain all
pairs with the same observations to search for local indeter-
minate pairs, only observable events should be synchronized.
Since shared events are the only synchronized events, the
non-synchronized events are distinguished between the two
instances by the prefix L (R): in Dl

i (Dr
i), each communication

event c ∈ Σic from Di is renamed by L : c (R : c). The names
of all locally observable events remain the same. The definition
of local twin plant is shown as follows.

Definition 7: (Local Twin Plant). Given a diagnoser Di, the
corresponding local twin plant is obtained by synchronizing its
left instance with its right instance based on the set of observ-
able events, denoted by Ti = (QTi ,ΣTi , δTi , q

0
Ti
) = Dl

i∥Dr
i .

Each state of a local twin plant is a pair of local diagnoser
states providing two possible diagnoses with the same local
observations. Given a local twin plant state ((ql, ll)(qr, lr)),
where (ql, ll) and (qr, lr) are two diagnoser states and each one
contains both a system state and a fault label. If the considered
fault F ∈ ll ∪ lr but F /∈ ll ∩ lr, which means that the
occurrence of F is not certain up to this state, then this state
is called an ambiguous state with respect to the fault F . An
ambiguous state cycle is a cycle containing only ambiguous
states. In a local twin plant, if a path contains an ambiguous
state cycle with at least one locally observable event, then it
is called a local indeterminate path, which corresponds to
a local indeterminate pair. Note that local indeterminate paths
contain original diagnosability information and can be obtained
only in the local twin plant of the component GF . If a local
indeterminate pair can be extended into a global indeterminate
pair, then we say that its corresponding local indeterminate
path is globally consistent. Figure 4 presents the left and right
instances of the local diagnoser for the component G1 (top left
and top right) as well as part of the corresponding local twin
plant (bottom). The gray node represents an ambiguous state
since the fault label is only contained in one of two diagnoser
states. Thus, we can see that the corresponding path in this
local twin plant is a local indeterminate path since it contains
an ambiguous state cycle with a locally observable event.

We know that the function of the local twin plant is to
obtain the original diagnosability information, i.e., all local
indeterminate paths. From Figure 4, we can see that a local
twin plant constructed as described above normally has a large

291

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

X0 N

X4 N X2 N X3 F

O1

 L:C2

O2

O1

X1 N

 L:C1
O1

X5 N

 O1

X3 N

O1

L:C2

O2

X0 N

X4 N X2 N X3 F

O1

 R:C2

O2

O1

X1 N

 R:C1
O1

X5 N

 O1

X3 N

O1

R:C2
O2

X0 N

X0 N

X0 N

X1 N

X4 N

X5 N
X2 N

X5 N

X2 N

X3 N

X3 F

X3 N

X1 N

X0 N

O1

R:C1
L:C2

R:C2

L:C1

O2

O1

O1

X2 N

X4 N

X2 N

X2 N

X3 F

X3 F

O1

R:C2 O1
X4 N

X4 N

X5 N

X5 N

X3 N

X5 N

X3 N

X3 N

O1

X1 N

X1 N

X1 N

X0 N

O2

O2

L:C2

L:C1

R:C1 L:C2 R:C2

Fig. 4: Two instances of the diagnoser for G1 (top) and part of the
corresponding local twin plant (bottom).

X0 N

X4 N

X2 NX1 N X3 F

O1

L:C1 O1 O1

O2 L:C2

X0 N

X1 N

X5 N X3 N

O1

O1 R:C2

R:C1 O2

X0 N

X0 N

X0 N

X1 N

X4 N

X5 N
X2 N

X5 N

X2 N

X3 N

X3 F

X3 N

X1 N

X0 N

O1

R:C1
L:C2

R:C2

L:C1

O2

O1

O1

Fig. 5: Two reduced instances of the diagnoser for G1 (top) and part
of the corresponding reduced local twin plant (bottom).

redundant part, which is useless for a global decision, e.g.,
all paths without ambiguous state cycles. Furthermore, there
could be several local indeterminate paths that correspond to
the same pair of local trajectories in the local diagnoser. To
simplify the local twin plant, we propose one way to reduce
the two instances of the local diagnoser: Dl

i is obtained by
retaining only paths with at least one fault cycle and Dr

i
is reduced by retaining only paths with at least one cycle
without fault state. This reduction keeps all necessary original
diagnosability information since what we are interested in here
are only local indeterminate pairs. Figure 5 shows the left and
right reduced instances of the local diagnoser for the faulty
component G1 of Figure 1 (top) as well as part of the reduced
local twin plant (bottom) that corresponds to the part of non-
reduced local twin plant shown in the bottom part of Figure 4.
In this way, the state space of the local twin plant constructed
from reduced instances can be considerably reduced, which is
called reduced local twin plant.

Lemma 2: The local twin plant corresponds to the same set
of local indeterminate pairs as the reduced local twin plant.

Proof:
As described before, the local twin plant is constructed by
synchronizing the non-reduced left and non-reduced right
instances of the local diagnoser while the reduced one is
constructed by synchronizing the reduced left and reduced
right instances. For the sake of clarity, in the non-reduced

left instance, we denote the set of paths with only fault state
cycles by Λl

f , the set of paths without fault state cycle by
Λl
¬f , and then the set of paths with both fault state cycles

and cycles without fault state by Λl
both. Similarly, in the non-

reduced right instance, we denote the set of paths with only
fault state cycles by Λr

f , the set of paths without fault state
cycle by Λr

¬f , and the set of paths with both fault state cycles
and cycles without fault state by Λr

both. Then the local twin
plant is constructed by (Λl

¬f∪Λl
f∪Λl

both) ∥ (Λr
¬f∪Λr

f∪Λr
both).

On the other hand, the reduced left instance retains the paths
with at least one fault state cycle and the reduced right
instance retains the paths with at least one cycle without fault
state. Then the reduced local twin plant is constructed by
(Λl

f∪Λl
both) ∥ (Λr

¬f∪Λr
both). The local twin plant construction

can be expressed by the addition of the synchronized results
of nine cases: 1) (Λl

¬f) ∥Σio
(Λr

¬f); 2)(Λl
¬f) ∥Σio

(Λr
f);

3)(Λl
¬f) ∥Σio

(Λr
both) 4)(Λl

f) ∥Σio
(Λr

¬f); 5) (Λl
f) ∥Σio

(Λr
f);

6) (Λl
f) ∥Σio

(Λr
both); 7)(Λl

both) ∥Σio
(Λr

¬f); 8) (Λl
both) ∥Σio

(Λr
f) and 9) (Λl

both) ∥Σio
(Λr

both). In the same way, the
reduced local twin plant construction can be expressed by the
addition of the synchronized results of four cases in the above,
which are (case 4 + case 6 + case 7+ case 9). So compared
to the reduced local twin plant, the local twin plant has five
more synchronized results (case 1 + case 2 + case 3 + case 5
+ case 8). Now consider case 4 and case 2, which are actually
symmetrical. We can see that the part in left instance of case
2 is the same as the part in right instance of case 4 and the
part in right instance of case 2 is the same as the part in left
instance of case 4. It is easy to prove that the synchronized
result of case 2 corresponds to the same set of local trajectory
pairs in the local diagnoser as the synchronized result of case
4 does. In the same way, case 6 has the same result as case
8 and case 7 has the same result as case 3. Now the local
twin plant has two more synchronized results (case 1 + case
5) than the reduced local twin plant. However, case 1 and
case 5 can never get any local indeterminate pair. The reason
is that in case 1, any path in Λl

¬f and in Λr
¬f has no fault

state cycle, then the synchronized result has no ambiguous
state cycle, which means that there is no corresponding local
indeterminate pair. And in case 5, any path in Λl

f and in Λr
f has

only fault state cycles. So their synchronization cannot obtain
local indeterminate pair. Now we can say that the local twin
plant corresponds to the same set of local indeterminate pairs
as the reduced local twin plant does, which proves Lemma 2.

In our approach, we only construct the reduced local twin
plant in the following, which is, from now on, called local
twin plant for the sake of simplicity.

B. Global Consistency Checking

We obtain the set of local indeterminate paths in the local
twin plant for the faulty component. However, up to now, its
communication with the neighborhood in the whole system is
not yet taken into account. Recall that if a local indeterminate
pair can be extended into a global indeterminate pair, its
corresponding local indeterminate path is said to be globally

292

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

L:C1 O5

O3

L:C2

O5

Y0

Y0

Y3

Y0

Y2

Y1

Y2

Y2

Y4

Y4

Y2

Y4

O4
R:C2

Fig. 6: Part of local twin checker for G2 of the system in Figure 1.

consistent. In other words, joint diagnosability verification
consists in checking the existence of globally consistent local
indeterminate paths, whose existence proves non joint diag-
nosability. To check the global consistency, we consider now
two important issues:
• the global consistency of the corresponding left trajec-

tories of the local indeterminate paths in the local twin
plant, shortly called left consistency checking in the
following;

• the global consistency of the corresponding right trajec-
tories of the local indeterminate paths in the local twin
plant, shortly called right consistency checking.

Now we define another structure called local twin checker
for a normal component, which is used to be synchronized
with local twin plant for checking the global consistency.
With similar idea as local twin plant, local twin checker is to
obtain all pairs of local trajectories with the same observations,
which has no fault information since it is defined for a normal
component. Given a normal component, we first perform delay
closure to keep only observable events and communication
events. Then the left instance of the component is obtained
by adding the prefix of L to non-synchronized events, i.e.,
communication events, and the right instance is acquired by
adding the prefix of R to communication events, denoted by
Gl

i and Gr
i , respectively.

Definition 8: (Local twin checker). Given a normal compo-
nent Gi, its local twin checker is the FSM Ci = Gl

i∥Gr
i .

Figure 6 shows a part of the local twin checker for the
component G2 of the system depicted in Figure 1, where
there is no fault information. To check left consistency and
right consistency of local indeterminate paths, we define two
consistent structures as follows.

Definition 9: (Left (Right) consistent plant). Given a sub-
system GS composed of Gi1 , ..., Gim , including the faulty
component, and their corresponding local twin plant and local
twin checkers, to obtain a left (right) consistent plant with
respect to the subsystem GS , denoted by T l

f (T r
f), we perform

the following two steps:
• Distinguish right (left) communication events between

local twin plant and local twin checkers by renaming
them with the prefix of component ID. For example,
R:C2 (L:C2) in the local twin checker of G2 is renamed
as G2:R:C2 (G2:L:C2).

• Note that observable events do not intersect between
components and non-synchronized right (left) commu-
nication events are distinguished by the prefix of com-
ponent ID. Now the renamed local twin plant and local
twin checkers are synchronized, where the synchro-

X0 N

X0 N

X0

O1

G1:R:C1
L:C2

G1:R:C2

L:C1

O2

O1

O1

L:C1

O5

G2:R:C2O4

O3

L:C2

O5

X0 Y0

L:C1
O1 O3 G1:R:C2

L:C2O4O2
G1:R:C1

G1:R:C2

G2:R:C2
O5

O1, O5

X0 N

X1 N

X1

X4 N

X5 N

X2

X2 N

X5 N

X4

X2 N

X3 N

X5

X3 F

X3 N

X6

X1 N

X0 N

X3

Y0

Y0

Y0

Y3

Y0

Y1

Y2

Y1

Y2

Y2

Y2

Y5

Y4

Y4

Y3

Y2

Y4

Y4

X3 Y1 X4 Y1 X4 Y2 X5 Y2 X5 Y5 X6 Y5

X1 Y0 X2 Y0 X2 Y3 X4 Y4 X5 Y4

O5 O1

Fig. 7: Part of the renamed local twin plant for G1 (top), part of
renamed local twin checker for G2 (middle) and part of the left
consistent plant T l

f (bottom).

nized events are the common left (right) communication
events.

In the left (right) consistent plant with respect to a subsystem
GS , each path p corresponds to a set of paths pi1 , ..., pim in
the local twin plant and local twin checkers of all components
in GS such that the set of left (right) trajectories of pi1 , ..., pim
are reconstructible with respect to GS . Given a state in a left
or right consistent plant, if it contains an ambiguous state in
the local twin plant for the faulty component, then this plant
state is also called an ambiguous state. For our example, the
bottom part of Figure 7 shows a part of the left consistent
plant T l

f , which is obtained by synchronizing the renamed local
twin plant of G1 and the renamed local twin checker of G2

(top and middle parts of Figure 7) based on the common left
communication events. In the bottom part of this figure, the
gray node (X6Y 5) is an ambiguous state of the plant since
it contains the local twin plant state X6 that is an ambiguous
one.

C. Algorithm
Algorithm 1 presents the procedure to verify a sufficient

condition of joint diagnosability. As shown in the pseudo-
code, algorithm 1 performs as follows. Given the set of
component models as well as the fault F that may occur
in the component GF as input, we initialize the parameters
as empty, i.e., Gl

S , the subsystem for the left consistency
checking and Gr

S , the subsystem for the right consistency
checking. The procedure of the algorithm can be separated
into two parts: left consistency checking and right consistency
checking.

293

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 1 Algorithm to check a sufficient condition of joint
diagnosability

1: INPUT: the system model G = (G1, ..., Gn); the fault F
and the faulty component GF

2: Initializations: Gl
S ← ∅ (subsystem for left consistency

checking); Gr
S ← ∅ (subsystem for right consistency

checking)
3: T l

f ← ConstructLTP (GF)

4: Gl
S ← GF

5: while T l
f ̸= ∅ and DirectCC(G,Gl

S) ̸= ∅ do
6: Gi ← SelectDirectCC(G,Gl

S)
7: Ci ← ConstructLTC(Gi)
8: T l

f ← T l
f∥Ci

9: Gl
S ← Add(Gl

S , Gi)
10: T l

f ← RetainConsisPaths(T l
f)

11: end while
12: if T l

f = ∅ then
13: return ”F is jointly diagnosable in G”
14: else
15: T r

f ← AbstractRight(GF , T
l
f)

16: Gr
S ← GF

17: while T r
f ̸= ∅ and Gl

S ̸= Gr
S do

18: Gi ← SelectDirectCC(Gl
S , G

r
S)

19: T r
f ← T r

f ∥AbstractRight(Gi, T
l
f)

20: Gr
S ← Add(Gr

S , Gi)
21: T r

f ← RetainConsisPaths(T r
f)

22: end while
23: if T r

f = ∅ then
24: return ”F is jointly diagnosable in G”
25: else
26: return ”Joint diagnosability cannot be determined”
27: end if
28: end if

• Left consistency checking begins with the local twin
plant construction of GF , the subsystem Gl

S being now
GF (line 3-4). As long as both the left consistent
plant T l

f with respect to the current left subsystem
Gl

S and DirectCC(G, Gl
S) are not empty (line 5),

where DirectCC(G,Gl
S) is the set of directly con-

nected components to the subsystem Gl
S (a directly

connected component being one sharing at least one
common communication event with the subsystem) the
algorithm repeatedly performs the following steps to
further check left consistency in an extended subsystem:

1) Select one directly connected component Gi to the
subsystem Gl

S and construct its local twin checker
Ci (line 6-7).

2) Synchronize T l
f with Ci to obtain left consistent

plant for this extended subsystem based on the
set of common left communication events (line
8). To do so, the set of non-synchronized right
communication events are distinguished by the
prefix of component ID.

3) Update the subsystem Gl
S by adding Gi and

reduce the newly obtained T l
f by retaining only

paths with ambiguous state cycles containing ob-
servable events for all components in Gl

S , which
are called consistent paths with respect to Gl

S (line
9-10).

If the left consistent plant T l
f is empty, then there

is no local indeterminate path that corresponds to a
set of paths in the local twin plant and local twin
checkers of all components in the subsystem such that
their corresponding left trajectories are reconstructible.
This follows that there is no globally consistent local
indeterminate path. In this case, joint diagnosability
information is returned (line 12-13). Otherwise, if T l

f
is not empty (line 14), then we proceed to check right
consistency of the corresponding paths in T l

f that have
already been verified to be left consistent in the whole
system.

• Right consistency checking begins with the function
AbstractRight(GF , T l

f) (line 15), which performs de-
lay closure with respect to the set of right communica-
tion events and observable events of GF . In this way,
what we obtain does not contain left communication
events, which are useless for right consistency checking.
Then the subsystem Gr

S is assigned as GF (line 16). As
long as the right consistent plant T r

f for the current right
subsystem Gr

S is not empty and Gl
S ̸= Gr

S (line 17), we
repeatedly perform the following steps to check right
consistency in an extended subsystem (note that since
left consistency checking does explore all connected
components, during right consistency checking, we only
need to consider the subsystem Gl

S instead of the whole
system):

1) Select a directly connected component Gi to Gr
S

from Gl
S (line 18).

2) Perform the function AbstractRight(Gi, T l
f),

which has already been described above, and
then synchronize with T r

f based on the set of
common right communication events (line 19).
To do this, we rename the right communication
events by removing the prefix of component ID,
e.g., Gi:R:C2 renamed as R:C2.

3) Update the subsystem Gr
S by adding Gi and

reduce the newly obtained T r
f by retaining only

paths with ambiguous state cycles containing ob-
servable events for all components in Gr

S , i.e.,
consistent paths (line 20-21).

If the right consistent plant T r
f is empty, then there is

no local indeterminate path that corresponds to a set of
paths in the local twin plant and local twin checkers
such that their left trajectories and right trajectories
are reconstructible respectively, i.e., there is no glob-
ally consistent local indeterminate path. In this case,
the algorithm returns joint diagnosability information
(line 23-24). Otherwise, if T r

f is not empty, we cannot
determine whether the fault is jointly diagnosable or
not. Then the algorithm returns the information about

294

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

X0 Y0

X0 Y0

R:C2 O1O1

X0 Y0

O1

G1:R:C2

O2
G1:R:C1

G1:R:C2

O1

X4 Y1 X5 Y2 X6 Y5

X1 Y0 X2 Y0 X5 Y4

X0 Y0

O3

O5

O4
G2:R:C2

O5

X4 Y2 X5 Y5

X2 Y3

X4 Y1

X0 Y0

X4 Y1

X2 Y3

O4

X5 Y2

X5 Y5

O5

X6 Y5

X5 Y5

O1

O1, O5

O1

Fig. 8: FSM after delay closure on the left consistent plant (Figure 7)
for G1 (top left) and for G2 (top right) and part of the right consistent
plant (bottom).

the indetermination of joint diagnosability (line 25-
26). In other words, empty left consistent plant T l

f or
empty right consistent plant T r

f is a sufficient but not a
necessary condition of joint diagnosability.

Theorem 3: In algorithm 1, if the left consistent plant T l
f or

the right consistent plant T r
f is empty, then the fault is jointly

diagnosable, but the reverse is not true.
Proof:

(⇒) Suppose that T l
f or T r

f is empty and that the fault is not
jointly diagnosable. From non joint diagnosability, it follows
that there exists at least one globally consistent local indeter-
minate path. Since global consistency of a local indeterminate
path implies both left consistency and right consistency, from
algorithm 1, we know that, after left and right consistency
checking, this local indeterminate path must correspond to a
path both in T l

f and in T r
f . Thus, neither T l

f nor T r
f is empty,

which contradicts the assumption.
(:) Now we explain why if both T l

f and T r
f are not empty,

it does not necessarily imply that the fault is not jointly
diagnosable. Suppose that the left consistent plant T l

f is not
empty and that it contains two paths, denoted by ρ1 and ρ2,
corresponding to two local indeterminate paths. ρ1 corresponds
to a set of paths ρ1i , 1 ≤ i ≤ n in the local twin plant and
local twin checkers of all components and ρ2 corresponds
to a set of paths ρ2i , 1 ≤ i ≤ n. Note that since the two
sets of paths come from left consistent plant, then it is only
guaranteed that the corresponding left trajectories of each set
are reconstructible. Now suppose that the right trajectories of
the set of paths ρ1i , 1 ≤ i ≤ n are not reconstructible and the
same for that of the set of paths ρ2i , 1 ≤ i ≤ n. It follows
that the two local indeterminate paths cannot be extended into
global indeterminate pairs and thus are not globally consistent.
Then we further suppose that the right trajectories of the set
of paths ρ11, ..., ρ

1
n−1, ρ

2
n are reconstructible and the same for

the set of paths ρ21, ..., ρ
2
n−1, ρ

1
n. From algorithm 1, it follows

that finally the right consistent plant T r
f is not empty. In this

case, both T l
f and T r

f are not empty but there is no globally
consistent local indeterminate paths, i.e., the fault is jointly
diagnosable.

Now illustrate on our example that this condition is not
necessary. The top parts of Figure 8 show the results of
performing delay closure with respect to the set of right
communication events and locally observable events both
for G1 and G2 on the left consistent plant depicted in the

bottom part of Figure 7. Then, to check right consistency, we
rename again the right communication events by removing the
component ID such that they can be synchronized. Finally, the
bottom part of Figure 8 shows a part of the right consistent
plant, which is not empty. Now both left and right consistent
plants are not empty, but this does not imply the existence of
global indeterminate pairs that witness non joint diagnosability.
Actually, the part of the left consistent plant depicted here
corresponds to two local indeterminate pairs in G1 with
their corresponding left consistent pairs in G2, i.e., one local
indeterminate pair is ((C1.O1.F.O1∗), (O1.C2.O1∗)) in G1

with its left consistent pair ((C1.O3.O5∗), (O3.U2.O5∗))
in G2 and the other local indeterminate pair is
((O2.U1.C2.F.O1∗), (C1.O2.C2.O1∗)) in G1 with
its left consistent pair ((O4.C2.O5∗), (O4.C2.O5∗))
in G2. While the right consistent plant shown here
corresponds to one local indeterminate pair in G1, which is
((C1.O1.F.O1∗), (O1.C2.O1∗)), with its corresponding right
consistent pair in G2, i.e., ((O4.C2.O5∗), (O4.C2.O5∗)).
Thus we can see that the same local indeterminate pair,
i.e., ((C1.O1.F.O1∗), (O1.C2.O1∗)) does not correspond to
the same consistent pair in G2 in the left consistent plant
and in the right consistent plant, which means that this
local indeterminate pair cannot be extended into a global
indeterminate pair. In fact, our algorithm gives indeterminate
information for joint diagnosable systems that satisfy the
following condition: for any set of paths, i.e., one path
in the local twin checker of each component and one
in the local twin plant for faulty component being a local
indeterminate path, that are left consistent and right consistent,
respectively, and their corresponding local trajectories in the
components cannot constitute an indeterminate pair through
synchronization.

Theorem 4: Algorithm 1 has polynomial complexity with
the number of system states, exponential complexity with the
number of faults and exponential complexity with the number
of components.

Proof: From their construction, for a component Gi, the
maximum number of states and transitions of the local diag-
noser are (|Qi|×2|Σif

|) and (|Qi|2×22|Σif
|×(|Σio |+ |Σic |)),

respectively, where |Qi| is the number of the component states,
|Σif | is the number of faults in Gi and |Σio | (|Σic |) is
the number of observable events (communication events) in
Gi. The maximum number of states and transitions of its
local twin plant (local twin checker) are (|Qi|2 × 22|Σif

|)

and (|Qi|4 × 24|Σif
| × (|Σio | + |Σic |)), respectively. In the

worst case, the global consistency checking (both left and
right ones) consists in synchronizing local twin plant and
local twin checkers of all components. Thus, we can conclude
that Algorithm 1 has polynomial complexity with the number
of system states, exponential complexity with the number
of faults and exponential complexity with the number of
components.
Note that the exponential complexity with the number of faults
is for the case where we handle all faults in one component
simultaneously. To reduce the complexity, our algorithm is
illustrated by dealing with one fault each time.

295

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Relaxation of Assumption
In our approach, we have the assumption that all communi-

cation events are unobservable, which is a more difficult case
than that where communication events are observable. Now we
relax this assumption by dividing the set of communication
events into two disjoint parts: Σioc

, the set of observable
communication events and Σiuc

, the set of unobservable com-
munication events. In other words, communication events may
be observable or unobservable. Algorithm 1 can be reused for
this relaxed case after the following modifications.
• For the local component GF , we construct its local diag-

noser by preserving the information about all observable
events as well as all communication events, including
observable and unobservable ones, and then append to
each retained state with fault information, which is the
same as that described in Section V-A.

• In this local diagnoser, for each unobservable commu-
nication event, we distinguish it between two instances
by adding the prefix of L (for left instance, σ being
L : σ) and R (for right instance, σ being R : σ).
Then we reduce the instances as described before and
construct local twin plant by synchronizing the two
reduced instances based on the set of observable events
and the set of observable communication events.

• For other connected normal components, we construct
their local twin checker in the same way except that the
prefixes should be added only to unobservable commu-
nication events in the left and right instances such that
the two instances are synchronized based on the set of
observable events and observable communication events.

• During left (right) consistent plant construction, unob-
servable right (left) communication events are distin-
guished between the local twin plant and local twin
checkers by the prefix of component ID. Then the
renamed local twin plant and local twin checkers are
synchronized based on unobservable left (right) commu-
nication events and observable communication events.

VI. DECIDABLE CASE

We have proved the undecidability of joint diagnosability
when communication events are unobservable. If we assume
their observability, then this problem becomes decidable. The
reason is that, when all communication events are observable,
in the local twin plant and local twin checkers of all compo-
nents, we obtain all pairs of local trajectories with the same
observations, including the same observable communication
events. In other words, each path in the local twin plant
or local twin checkers corresponds to a pair of local trajec-
tories with the same sequence of communication events. It
follows that to check global consistency of local indeterminate
paths, the two separate phases for left and right consistency
checking becomes only one phase. While in Algorithm 1, the
consistency checking separated into two different phases is
the reason why it gives only a sufficient but not necessary
condition for joint diagnosability. Actually, the observability
of communication events makes joint diagnosability equivalent
to classical diagnosability since only one phase of global

consistency checking implies the same global occurrence order
of observations for global indeterminate pairs.

Algorithm 2 presents the procedure to check joint diag-
nosability when communication events are assumed to be
observable. Taking the system model and the fault occurring in
the faulty component as input, the parameter, i.e., the current
subsystem GS , is initialized as empty. Then the algorithm
begins with the construction of the local twin plant of the
faulty component GF , the current subsystem becoming GF

(line 3-4). Here we emphasize that, due to the observability
of communication events, the local twin plant should be
constructed by synchronizing two reduced instances based on
the set of observable events and the set of communication
events, i.e., here communication events do not need to be
distinguished by adding prefixes. As long as both current local
twin plant Tf and DirectCC(G,GS) are not empty (line 5),
the following steps are repeatedly performed:
• Select one component Gi directly connected to the

current subsystem GS and then construct its local twin
checker Ci, which is obtained by first operating delay
closure with respect to the set of communication events
and observable events and then by synchronizing the two
instances based on all events, i.e., the set of communi-
cation events and observable events. (line 6-7)

• Synchronize the current local twin plant Tf and Ci based
on the common communication events of GS and Gi,
where the newly synchronized FSM is also called the
local twin plant for the extended subsystem. (line 8)

• Update the current subsystem by adding this selected
component and keep only the paths in the newly ob-
tained FSM that contain ambiguous state cycles with
observations for all involved components. (line 9-10)

During this procedure, if the local twin plant Tf for the
current subsystem happens to be empty, which means that
there is no path that contains ambiguous state cycle with
observations for all concerned components. In this case, there
is no local indeterminate path that is globally consistent and
the algorithm returns joint diagnosability information (line 12-
13). Otherwise, if at the end the final FSM is not empty,
it is returned by the algorithm as non joint diagnosability
information (line 14-15), where any path in it corresponds to a
globally consistent local indeterminate path. The reason is that
if the communication events are observable, then any path in
the local twin plant or a local twin checker corresponds to a
pair of local trajectories with the same observations, including
the same communication events. So with the assumption of
observability of communication events, joint diagnosability
checking becomes decidable.

VII. COMPARISON AND DISCUSSION

In this section, we compare joint diagnosability for self-
observed distributed systems with classical diagnosability for
distributed systems where observable events can be globally
observed. In other words, in the latter one, diagnosability
analysis requires the global occurrence order of observable
events, which is not the case for the former one. Before this

296

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 2 Algorithm for checking joint diagnosability with
observable communication events

1: INPUT:
the system model G = (G1, ..., Gn);
the fault F and the faulty component GF

2: Initializations:
GS ← ∅ (subsystem considered for current checking)

3: Tf ← ConstructLTP (GF)
4: GS ← GF

5: while Tf ̸= ∅ and DirectCC(G,GS) ̸= ∅ do
6: Gi ← SelectDirectCC(G,GS)
7: Ci ← ConstructLTC(Gi)
8: Tf ← Tf∥Ci

9: GS ← Add(GS , Gi)
10: Tf ← RetainConsisPaths(Tf)
11: end while
12: if Tf = ∅ then
13: return ”F is jointly diagnosable in G”
14: else
15: return Tf

16: end if

comparison, we briefly recall classical diagnosability definition
as follows [20].

Definition 10: (Diagnosability). A fault F is diagnosable in
a system G iff

∀sF ∈ L(G), ∃k ∈ N, ∀t ∈ L(G)/sF , |t| ≥ k ⇒
(∀p ∈ L(G), P (p) = P (sF .t)⇒ F ∈ p).

The above definition states that if F is diagnosable, then for
each trajectory ending with the fault sF in G, for each t that is
an extension of sF in G with sufficient events, every trajectory
p in G that is observation equivalent to sF .t should contain in it
F . Informally speaking, the existence of two indistinguishable
behaviors, i.e., holding the same enough observations with
exactly one of them containing the given fault F , violates di-
agnosability property. The diagnosability analysis approaches
check the existence of such indistinguishable behaviors. With
similar idea to indeterminate pairs for joint diagnosability, we
call a pair of trajectories p and p′ satisfying the following
conditions as a critical pair:
• p contains F and p′ does not;
• p has arbitrarily long observations after the occurrence

of F ;
• P (p) = P (p′).

The existence of critical pairs violates Definition 10 and thus
witnesses non-diagnosability.

We can prove that joint diagnosability is stronger than
diagnosability for systems with global observations.

Lemma 3: Given two systems G composed of G1, ...Gn and
G′ composed of G′

1, ...G
′
n such that for each i ∈ {1, ..., n},

components Gi and G′
i have the same structure except that all

observable events in the component Gi can only be observed
by Gi while each observable event in the component G′

i can
be observed by all components of G′. In other words, G is a
self-observed distributed system and G′ is the one with global
observations. Then we have the following result: if the fault

O3

Y1

Y0

Y2
C2

Y4Y3

O3

C1 O4

U1

C1

X1

X0

X2O1

X3

O2

O1

X4
F

C2

Fig. 9: A simple system model with two components: G1(left) and
G2(right).

F is jointly diagnosable in G, then it is diagnosable in G′.
Proof:

Suppose that the fault F is jointly diagnosable in G and that F
is not diagnosable in G′. From the non diagnosability of F in
G′ and G′ is a system with global observations, we know that
there exists at least one global critical pair of trajectories p1′
and p2′ in G′, i.e., p1′ and p2′ satisfying three conditions: 1)
only one of them contains F , suppose p1′; 2) p1′ has enough
observations after the occurrence of F in all components; 3)
P (p1′) = P (p2′), the projection of p1′ to observable events of
G′ is the same as that of p2′, which means that they have the
same observations from a global point of view. Now in the self-
observed system G, let p1 and p2 denote the corresponding
trajectories of p1′ and p2′. If we do not consider the difference
that each observable event in p1 and p2 can only be observed
by its own component while each observable event in p1′ and
p2′ can be observed by all components, then we have p1 = p1′
and p2 = p2′. It follows that the fault F is contained in p1 but
not in p2 and after the occurrence of F , p1 has enough local
observations in each component. Furthermore, note that p1 and
p2 have the same observations, then from the fact that there is
no intersection of observable events between components, we
can deduce that ∀k ∈ {1, ..., n}, Pk(p1) = Pk(p2). Clearly,
p1 and p2 are an indeterminate pair and thus F is not jointly
diagnosable in G, which contradicts the assumption that F is
jointly diagnosable in G.

If the fault F is diagnosable in G′, it is not necessarily
jointly diagnosable in G. Actually, if F is diagnosable in G′,
this means that there is no critical pair in G′. However, this
does not imply that there is no indeterminate pair in G. Sup-
pose that there is an indeterminate pair p1 and p2 in G with p1
containing the fault. Then we have ∀k ∈ {1, ..., n}, Pk(p1) =
Pk(p2). Now in the system with global observations G′, let
p1′ and p2′ denote the corresponding trajectories of p1 and
p2. Then we have ∀k ∈ {1, ..., n}, Pk(p1′) = Pk(p2′). This
does not mean that we can get P (p1′) = P (p2′), which is
however one condition of a critical pair. So there does not
necessarily exist a critical pair in G′. In other words, if two
trajectories in G have the same enough local observations in
all components, their corresponding trajectories in G′ may
have different observations from global point of view. Thus
the existence of indeterminate pairs in G does not imply the
existence of critical pairs in G′.

Figure 9 shows a very simple system with two components,
G1 (left) and G2 (right). Suppose that it is a distributed
system with global observations. Intuitively, we can see that
for any faulty trajectory, the occurrence of observable event
O1 is before the occurrence of observable event O3. While

297

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for any normal trajectory, the occurrence of O3 is before
that of O1. In other words, there is no critical pair and
thus the fault is diagnosable in this system. Now suppose
that this system is a self-observed distributed system, i.e.,
the observable events can only be observed by their own
component. It is easy to find an indeterminate pair. Consider
the pair of trajectories ρ = (O3, C1, O1, (O2, O4, U1)∗) and
ρ′ = (O1, F, C2, O3, (O2, O4, U1)∗). Only ρ′ is a faulty
trajectory and both of them have the same sufficient obser-
vations for each component. Thus the fault is not jointly
diagnosable. Here we can see that the global occurrence order
of observable events makes the fault F diagnosable. While
since joint diagnosability does not require global occurrence
order of observations, so the fault is not jointly diagnosable.

VIII. CONCLUSION

In this paper, we consider self-observed distributed systems
where observable events can only be observed by their own
components. Clearly, the monolithic model of the system is
not required, thus the distributed and private (w.r.t. observa-
tion) nature of real systems is taken into account. Then we
prove the undecidability of checking joint diagnosability when
communication events are unobservable, before proposing an
algorithm to test a sufficient condition. To check whether there
exist indeterminate pairs in the system, we start from local
indeterminate paths in the local twin plant and then we check
both in sequence left consistency and right consistency. Note
that, due to the observation-privacy, the global occurrence
order of observable events between different components is
not known, which is taken into account through constructing
left and right consistent plants separately. At the opposite,
in the approaches for DES with globally observable events,
twin plant is constructed by incrementally synchronizing local
twin plants via both left and right communication events at
the same time, which means that in their case, knowledge
of the global occurrence order is required. Similar to the
distributed algorithms for classical diagnosability ([23], [25],
[29], etc.), our algorithm has to construct some part of a global
structure, but much less than that in the centralized approach
(in particular the components not involved in the algorithm
have their model completely not disclosed) and this is normally
unavoidable for off-line diagnosability analysis. Afterwards,
we adapt this sufficient algorithm for a more relaxed case, i.e.,
communication events could be unobservable and observable.
Then we discuss the decidable case where communication
events are observable by giving a formal algorithm to check
joint diagnosability. However, the decidable case in [26] is
not the same as that in this paper. The former also deals with
unobservable communication events, which becomes decidable
because of the assumption of exhaustive enumeration about
local paths. While here the decidable case is thanks for the
observability of communication events. Finally, we prove that
joint diagnosability of self-observed systems is stronger than
classical diagnosability of globally observed systems with
an illustrated example. We see that there is a gap between
the decidable and undecidable cases. Next interesting work
is to investigate where is the frontier between these two

cases, i.e., to study the decidability of joint diagnosability
for partial observability of communication events. Another
future work is to study the extension of our approach to deal
with predictability [30], i.e., the property of the system to be
able to predict the fault with certainty before its occurrence
considering that in some critical cases, it is very expensive to
recover the system after fault occurrence.

ACKNOWLEDGMENT

This work has been supported by the STIC-AmSud DATE
project, which is funded by the regional program STIC-AmSud
(No.13STIC-04).

REFERENCES

[1] L. Ye and P. Dague, Diagnosability analysis for self-observed distributed
discrete event systems, Proceedings of the 4th International Conference
on Advances in System Testing and Validation Lifecycle (VALID-12),
2012, pp. 93-98.

[2] S. Tripakis, Undecidable problems of decentralized observation and
control on regular languages, Information Processing Letters, vol. 9,
no. 1, 2004, pp. 21-28.

[3] L. Ye and P. Dague, New results for joint diagnosability of self-observed
distributed discrete event systems, Proceedings of the 23rd International
Workshop on Principles of Diagnosis (DX-12), 2012.

[4] M. Bayoudh, L. Travé-Massuyès, and X. Olive, Hybrid systems diag-
nosability by abstracting faulty continuous dynamics, Proceedings of the
17th International Workshop on Principles of Diagnosis (DX-06), Burgos,
Spain, 2006.

[5] M. Bayoudh, L. Travé-Massuyès, and X. Olive, Coupling continuous
and discrete event system techniques for hybrid system diagnosability
analysis, Proceedings of the 18th European Conference on Artificial
Intelligence (ECAI-08), Patras, Greece, 2008, pp. 219-223.

[6] M.-O. Cordier, L. Travé-Massuyès, and X. Pucel, Comparing diagnos-
ability in continuous and discrete-event systems, Proceedings of the
17th International Workshop on Principles of Diagnosis (DX-06), 2006,
pp. 55-60.

[7] M. Daigle, X. Koutsoukos, and G. Biswas, An event-based approach
to hybrid systems diagnosability, Proceedings of the 19th International
Workshop on Principles of Diagnosis (DX-08), Blue Mountains, Aus-
tralia, 2008.

[8] E. Fabre, A. Benveniste, C. Jard, L. Ricker, and M. Smith, Distributed
state reconstruction for discrete event systems, proceedings of the
38th IEEE Control and Decision Conference (CDC-00), Sydney, 2000,
pp. 2252-2257.

[9] R. Debouk, S. Lafortune, and D. Teneketzis, Coordinated decentralized
protocols for failure diagnosis of discrete event systems, Journal of
Discrete Event Dynamical Systems: Theory and Application 10 (1-2),
2000, pp. 33-86.

[10] R. Debouk, R. Malik, and B. Brandin, A modular architecture for
diagnosis of discrete event systems, Proceedings of the 41st IEEE
Conference on Decision and Control (CDC-02), Las Vegas, NV, USA,
2002, pp. 417-422.

[11] A. Grastien, J. R. Anbulagan, and E. Kelareva, Diagnosis of discrete-
event systems using satisfiability algorithms, Proceedings of the 22th
American National Conference on Artificial Intelligence (AAAI-07),
2007, pp. 305-310.

[12] S. Haar, A. Benveniste, E. Fabre, and C. Jard, Partial order diagnosabil-
ity of discrete event systems using petri nets unfoldings, Proceedings of
the 42nd IEEE Conference on Decision and Control (CDC-03), Hawaii,
USA, 2003, pp. 3748-3753.

[13] S. Bavishi and E. Chong, Automated fault diagnosis using a discrete
event systems framework, Proceedings of the 9th IEEE International
Symposium on Intelligent Control, 1994 pp. 213-218.

298

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] A. Benveniste, E. Fabre, S. Haar, and C. Jard, Diagnosis of asyn-
chronous discrete event systems, a net unfolding approach, IEEE Trans-
actions on Automatic Control, 48(5), 2003 pp. 714-727.

[15] C. G. Cassandras and S. Lafortune, Introduction To Discrete Event
Systems, Second Edition. Springer, New York, 2008.

[16] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya, Supervisory control
of discrete-event processes with partial observations, IEEE Transactions
on Automatic Control, 33(3), 1988, pp. 249-260.

[17] O. Contant, S. Lafortune, and D. Teneketzis, Diagnosis of modular
discrete event systems, Proceedings of the 7th International Workshop
on Discrete Event Systems (WODES-04), Reims, France, 2004.

[18] O. Contant, S. Lafortune, and D. Teneketzis, Failure diagnosis of
discrete event systems: The case of intermittent faults, Proceedings of
the 41st IEEE Conference on Decision and Control (CDC-02), 2002,
pp. 4006-4011.

[19] E. Fabre, A. Benveniste, and C. Jard, Distributed diagnosis for large
discrete event dynamic systems, Proceedings of the IFAC world congress,
2002, pp. 237-256.

[20] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.
Teneketzis, Diagnosability of discrete event system, IEEE Transactions
on Automatic Control, 40(9), 1995, pp. 1555-1575.

[21] S. Jiang, Z. Huang, V. Chandra, and R. Kumar, A polynomial time
algorithm for testing diagnosability of discrete event systems, IEEE
Transactions on Automatic Control 46(8), 2001, pp. 1318-1321.

[22] A. Cimatti, C. Pecheur, and R. Cavada, Formal verification of diagnos-
ability via symbolic model checking, Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI-03), 2003, pp. 363-
369.

[23] Y. Pencolé, Diagnosability analysis of distributed discrete event systems,
Proceedings of the 16th European Conference on Articifial Intelligent
(ECAI04), 2004, pp. 43-47.

[24] Y. Pencolé, Assistance for the design of a diagnosable component-based
system, Proceedings of the 17th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI05), 2005, pp. 549-556.

[25] A. Schumann and Y. Pencolé, Scalable diagnosability checking of
event-driven systems, 20th International Joint Conference on Artificial
Intelligence (IJCAI-07), 2007, pp. 575-580.

[26] L. Ye and P. Dague, Diagnosability analysis of discrete event systems
with autonomous components, Proceedings of the 19th European Con-
ference on Artificial Intelligence (ECAI-10), 2010, pp. 105-110.

[27] R. Cori and Y. Métivier, Recognizable subsets of some partially abelian
monoids, Theoretical Computer Science, vol. 35, 1985, pp. 179-189.

[28] V. Halava and T. Harju, Undecidability of infinite post correspondence
problem for instances of Size 9, Theoretical Informatics and Applications
- ITA, vol. 40, no. 4, 2006, pp. 551-557.

[29] A. Schumann and J. Huang, A scalable jointree algorithm for di-
agnosability, Proceedings of the 23rd AAAI Conference on Artificial
Intelligence (AAAI-08), 2008, pp. 535-540

[30] L. Ye, P. Dague, and F. Nouioua, Predictability analysis of distributed
discrete event systems, Proceedings of the 52nd IEEE Conference on
Decision and Control (CDC-13), 2013, pp. 5009-5015.

299

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Monitoring Virtualized Infrastructure in the Context of Grid Job Execution

Jiřı́ Sitera, Zdeněk Šustr, Boris Parák, and Daniel Kouřil
Grid Department – MetaCentrum

CESNET z. s. p. o.
Zikova 4, Prague, 160 00, Czech Republic

Email: emi-lb@metacentrum.cz

Abstract—This paper describes a new direction in the develop-
ment of the Logging and Bookkeeping service, a gLite component
tracking job life cycles in high performance computing grids.
From its early days, Logging and Bookkeeping is used to track
not only jobs themselves, but also the wider details of the
job execution environment. Since a large portion of the grid
infrastructure is now virtualized, the work at hand concerns
tracking the virtualized nature of that runtime environment.
With virtualization and cloud technologies being highly flexible
and dynamic, the authors believe that it is very important to
gather and keep status information for virtual machines used
to run the workload. A newly defined monitoring entity – a
virtual machine – is integrated with job state information and
provides an enhanced view of the current state and history of
both the computing job and the underlying infrastructure, as well
as their mutual relationship. This paper explains the motivation
and discusses the architecture of the newly emerged solution for
monitoring virtualized resources – uniquely – in the same context
as the workload they are processing.

Keywords-grid; cloud; virtualization; monitoring; relationship

I. INTRODUCTION

This article is an updated and extended version of a
work-in-progress report published in September 2012 at the
INFOCOMP Conference [1].

Logging and Bookkeeping (LB), part of the gLite grid
middleware stack, is a monitoring tool equipped for monitoring
the states of all kinds of processes related to grid computing
[2]. Besides traditional gLite Workload Management System
(WMS) [3] jobs (often refered to simply as “gLite jobs”)
and logical groupings thereof such as direct oriented graphs
(DAGs) or collections, it also monitors input/output data
transfers or the states of computing tasks submitted directly to
a local resource manager – the CREAM Computing Element
(also part of the gLite middleware stack) [4] or TORQUE
(Terascale Open-source Resource and QUEue manager) [5].

It collects event information from various grid elements and
sums it up to determine the current status of any such process
at the given moment. It is designed to accept additional state
diagram implementations to support other types of processes
as required, relying on essential common features such as
reliable event delivery (based either on LB’s own legacy
messaging layer or standard STOMP/OpenWire messaging),
or LB’s querying interface. LB is highly security-oriented and
has proved itself in WLCG (Worldwide LHC Computing Grid)

operations. It is widely deployed across the European Grid
Infrastructure.

This article explains how the grid monitoring tool is applied
to monitoring the grid’s underlying virtualized infrastructure.
Section II clarifies what the requirements are and why LB
is deemed suitable for monitoring virtualized resources as
provided by PaaS (Platform as a Service) clouds. Section III
outlines the solution designed and implemented to deliver not
only the essential functionality but also to support complex
real-world use cases, while Section IV discusses additional
issues to consider and focus on in the future. Finally, Section V
gives evaluation and results of the work, and Section VI sums
up the outcome.

II. MOTIVATION TO INCLUDE VIRTUAL MACHINES IN
THE LB MODEL

Using LB in monitoring virtualized resources is inspired
by obvious similarities with the existing processes, backed by
explicit requirements from infrastructure operators.

A. Virtual Machine as a Job

LB’s main objective is to know everything about the
scheduling and execution of computing jobs, not only to
respond to “current status” queries, but also to make it
possible to analyze the behavior of the infrastructure (fail-
ing components, misconfiguration) and possibly even provide
certain job provenance capability (ensuring repeatability of
jobs/experiments, storing computing environment character-
istics and configuration, the description of the compute job
provided on submission, etc. – in short, serving as lab notes
for “in silico” experiments).

In contemporary grids and other computing infrastructures,
machines running computing jobs are themselves dynamic
entities following a life cycle similar to that of the grid job
itself. It is not unreasonable to expect further blending of cloud
and grid models where grid components run either in a cloud
(StratusLab [6]), or in a mix with cloud services (MetaCentrum
[7], WNoDeS [8]).

All things considered, tracking virtual machines (VMs)
throughout their life cycle in contemporary grids is as im-
portant as tracking jobs. Moreover, there is an added value
to tracking those two kinds of entities in a common manner!
Not only does it provide for a better understanding of mutual

300

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Viewing compute jobs as workload executing over a VM.

relationships and dependencies, but also for a unified view for
users and administrators.

Figure 1 shows a simplified and illustrative example of the
desired higher-level view of the infrastructure state. It maps
compute jobs to the underlying VM life cycle and provides
the user with a comprehensive overview of its current state and
possible problems. In the case of highly dynamic virtualized
infrastructure it can be used to assess efficiency and induced
tradeoffs. Data collected in this manner can also be used to
produce higher-level statistics and monitoring (mapping actual
hardware resources to computing jobs), while the low-level
information is still available for detailed inspection if required
for debugging or any other kind of ex-post analysis. There are,
for instance, scientific projects such as the Grid Observatory,
which rely on data provided by LB for behavioral analysis of
processes within the grid.

The following LB features are considered most useful in
terms of (re)usability for virtual machines:

• Recording primary events and using a state machine
specific to the given type of process (job, VM, file
transfer, etc.) to combine all information contained
therein and determine the current state of that process.

• Providing the ability to get processes grouped or
annotated/tagged by the infrastructure, administrators,
or users.

• Architecture and implementation based on standards
(messaging, authentication and authorization infra-
structure, web services), allowing simple event gath-
ering in a reliable and secure way.

• Essential functions (logging events, querying for basic
information) provided not only by library functions
with bindings for multiple programming languages,
but also by command line tools allowing for simple
scripting.

There is another key factor – a non-technical one. LB
is currently widely deployed across the European Grid In-
frastructure. It is not an emerging solution that has yet to
be put to production. The support for monitoring underlying
infrastructure layers is an evolution of an established and
broken in service, making it also a relatively costless solution
to the presented problem.

B. Features Requested by the Czech NGI

MetaCentrum, the Czech National Grid Initiative (NGI), is
designed as a mixed cloud/grid service, where resources from

a single, consistently managed pool can be provided either
as traditional batch system-managed resources or as VMs,
depending on current user needs [9]. The scheduler (TORQUE)
can handle three types of requests:

1) Run a job
2) Run a job in a selected VM image
3) Run a VM

What follows is a summary of feature requests made by
the NGI before work presented in this article started. How
they were addressed is explained in Section III “Designs and
Implementation”.

• The desired functionality should provide a uniform,
consistent view of the infrastructure, mapping all user
requests to actual hardware.

• It should replace currently used data mining tools
providing status feeds to the MetaCentrum portal and
to the long-term usage statistics processor.

• Since MetaCentrum is also involved in research of
batch system scheduling strategies, gathering data
relevant to this kind of assessment is another require-
ment.

• Yet another requirement, albeit one that is already
fulfilled by LB’s design, calls for an ability to ag-
gregate information from diverse sources (scheduler,
virtualization hypervisor, accounting) and even man-
ually triggered state transitions (for instance putting
resources in, and taking them out of maintenance).

C. Related Work

1) Regular Infrastructure Monitoring Tools: Tools such as
Nagios/Icinga or Ganglia focus primarily on the “running”
state of the given process. Unlike them, this work is not
intended to monitor infrastructure health and react to problems,
but focuses primarily on understanding the current state of the
workload and reporting to users.

Admittedly there is a minor overlap because even LB can
be used to provide certain details of infrastructure health. It
is namely the LB statistics feature (job/VM status statistics),
which, the authors believe, will be further improved by un-
derstanding the relationship between the workload and VM
layers.

It is, however, important to note that using the above-
mentioned monitoring tools to monitor highly volatile short-
lived VM instances set up on demand is on the edge of
practicality since – looking for instance at Nagios, albeit
equipped with a selection of plugins – it involves non-trivial,
almost continuous reconfiguration of the service not only with
machine details but also with access control data. Integrating
machine status info with up-to-date references to workload, or
vice-versa, would be another challenge, requiring solutions to
be designed and implemented on both ends.

2) FSM Implementations: The idea to use a Finite State
Machine (FSM) [10], [11] for monitoring purposes is not
new. Its typical usage is to monitor software or behavior
of network protocols via FSM designed to detect incorrect
states or excessive/wrong timing of states. The LB concept

301

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is close to existing works describing the application of FSM
to monitoring networks of connected components [12], but
it is not the same, mostly because LB focuses primarily
on workload status, and the behavior of components is a
secondary objective.

3) Public Cloud Infrastructures: A typical example of a
public cloud infrastructure, the Amazon Web Services (AWS),
deploys a complex monitoring tool called Amazon Cloud-
Watch. It is an important brick in the AWS service portfolio
[13], allowing not only for monitoring, but also for performing
actions (the auto scaling feature). The CloudWatch architecture
is based on a central metrics repository fed by resource
monitoring tools and providing a common standard API to
clients. It also supports user-defined metrics with custom data
feeds. The client API has an ability to send notifications
and trigger actions when certain thresholds are reached. This
service is in many points similar to our proposed solution, but
does not employ an FSM.

4) Status Reporting Tools in Scientific Cloud Infrastruc-
tures: Each grid infrastructure or cloud management tool has
its own way (command line interface, portal) of providing
users with the current job or VM status. It is typically
implemented as a function of a computing element in a grid or
cloud manager (like the Virtual Machine Manager in the case
of OpenNebula). Indeed, the LB service is originally one of
those tools, monitoring and reporting the status of computing
jobs in gLite-based grids.

There is also standardization work in the area of cloud
computing, such as the OCCI standard [14] and its imple-
mentations, aimed at enabling standard interfaces for reading
information off different cloud managers (and even controlling
them). However, they do not deal in any way with information
from within the virtual appliances, losing a potentially valuable
source of information; what is more, they are in no way
applicable at the level of workload (grid job) monitoring,
and neither is there a separate activity addressing the area of
workload status monitoring in a similar way.

To sum up, the authors are not aware of any other work
addressing the crucial point – combining available information
from different infrastructure layers into a uniform, higher-level,
workload-centric view.

III. DESIGNS AND IMPLEMENTATION

The proposed solution has been implemented in progressive
steps, starting with a pilot implementation on MetaCentrum’s
OpenNebula instance, running and keeping track of VMs
and scheduled TORQUE jobs at the same time. OpenNebula
was chosen for the pilot implementation only because it was
the cloud manager of choice for the Czech NGI, and the
implementation team already possessed adequate expertise for
its instrumentation. Apart from that, the solution was in no
way tailored specifically to OpenNebula.

This work – i.e., the pilot implementation – was presented
and demonstrated at the EGI Technical Forum 2012 [15] and
forms the basis of the solution described below.

Next, the work focused on implementing a production-
grade solution for MetaCentrum operations (among others

Figure 2. Architecture and components.

instrumenting MetaCentrum’s in-house VM manager – Ma-
grathea) and support for federated cloud environments, bring-
ing in additional sources of information external to the batch
system and the virtualization stack (administrative operations,
information system).

A. Architecture

In the basic architecture used for the pilot, VM life cycle
was controlled by the OpenNebula cloud computing toolkit,
managed manually by administrators, while jobs were assigned
to VMs by a standard grid computing element through an
instance of TORQUE. All job-related functionality was already
in place (LB-aware TORQUE, [16]). The following sources of
events were used to govern the VM life cycle:

• OpenNebula – providing hooks for call-out scripts
activated on any relevant state change (described in
more detail in Subsection III-E)

• Hypervisor, (specifically Xen) – generating events
showing the current VM state and parameters at hy-
pervisor level

• Hosted worker nodes – Operating System running
the Worker Node was instrumented (init scripts) to
provide independent information from the running
VM

LB plays the key role in this concept by combining
events from all the above components into one higher-level
view. It makes the system more precise and robust, which
has been well tested in the context of gLite job monitoring.
Obviously on certain occasions, all three sources generate
almost identical, i.e., seemingly redundant events. But there
is undisputed value even in receiving almost identical events
multiple times. It improves reliability, and the comparison
between the three events provides for fine-grained job status
tracking and simplifies troubleshooting. Besides that, different
sources often provide values for different attributes, which are
unknown to the others.

Basic system architecture is shown in Figure 2. In that
design, the only new feature that had to be implemented was
VM instance support in LB, comprising of the VM job type
definition, introduction of VM-specific events, and a VM state
machine.

302

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Only basic attributes are defined in the VM type to cover
the expected virtual machine properties, such as owner iden-
tification, memory sizes, or the network status of the VM,
detailing the host/domain name, and the type of network
connectivity (VLAN, private vs. public). Aside of attributes
carried by the VM instance, there is also a solution to keep
record of its relationship to other entities actively tracked by
LB. That could not be implemented as a simple data structure
attribute, and the solution devised for that purpose is discussed
in greater depth in Subsection III-C.

The existing set of VM attributes, however, is not neces-
sarily final. LB allows any kind of additional attribute to be
simply stored with the instance’s status (functionality referred
to as “User Tags”) with only slight limitations. One cannot, for
instance, use relations such as “greater than” or “lower than”
when querying for instances by User Tag, since LB does not
know the type of that attribute and cannot decide. The only
comparison supported is string (in)equivalence.

Each VM instance is identified by a string constructed in
the same manner as Job IDs currently used in LB, consisting
of the LB server’s identification, a short literal denoting the
process type, and a random unique string. The randomized
unique part of the identifier can be supplied by the registering
component if required. In that case, it will only be checked by
LB for uniqueness, then accepted. While domain names are not
suitable for use as identifiers since they are often recycled (re-
used by another instance) or even used in alteration by multiple
interchangeable VM instances, internal VM identifiers used for
instance by OpenNebula (or any other virtualization stack for
that matter) are unique to their given OpenNebula server, and
can be easily used in the compound ID with the added benefit
that one can tell the responsible LB server, the virtualization
server and the internal identifier, all at a single glance. Thus,
instead of using an LB-generated random ID such as

https://lb.example.com:9000/
VM:1ch5-QIGMd_xW3oGM-HScg

one may choose to supply their own ID with, for instance, the
following format, which is much more informative:

https://lb.example.com:9000/
VM:nebula1.example.com_12345

B. VM State Machine

The VM state machine is shown in Figure 3. It is based on
OpenNebula’s internal states but modified to be general enough
to provide a single, common view for all VM management
systems that will be supported in the future. The states describe
major changes in the VM life cycle whereas attributes are used
to describe the instance’s properties in the current state, or even
to distinguish “substates.”

It is worth stressing at this point that although the proposed
state diagram is considered adequate and detailed enough
for the intended purpose, it is relatively easy to implement
changes, should it prove necessary. These may range from
simple changes in state transitions to extending the state
diagram with a completely new state or splitting a single state
into two or more. Even with real-world operating experience,

Figure 3. VM state machine.

however, just a single minor change in the mapping of VM
states to the generic state diagram was required so far.

Any event received by LB may or may not trigger a change
in the state and/or attribute values of an instance. Indeed, some
types of events never even attempt to trigger a state change and
are only used to bring in new or updated attribute values. (As
such, they are not even shown in the state diagram in Figure 3).

As soon as all events received by the current point in time
are correctly interpreted, which is an action performed auto-
matically on the arrival of each event, the instance’s current
state and attributes constitute the most up-to-date set of in-
formation as collected from all the various sources mentioned
above. LB is designed to overcome obstacles such as events
delivered out of sequence, intermediate events not delivered
at all, or events received from different sources with clocks
skewed in different directions. This is achieved by making the
event sorting algorithm rely on arbitrary hierarchical message
sequence codes rather than time stamps.

Table I shows how messages from each component/layer
(Hypervisor, Cloud Manager, VM Image) contribute to the
overall picture of the instance’s current state. Since they are
all instrumented to produce genuine LB events, the format of

TABLE I. DIVERSE SOURCES OF VM-RELATED EVENTS &
ATTRIBUTES

Component Events Attributes

CloudManager Register, Create, Running,
Host detail, Shutdown, Done

Hostname, Physical host
name, Owner, Requirements,
etc.

VM Image Really Running, Shutdown Runtime info, user tags

Hypervisor Running, Shutdown Actually assigned resources
(CPU, RAM, network)

303

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

incoming data is unified right from the start of the delivery
chain and the LB server can process incoming data uniformly
regardless of the source component.

To allow universal queries to the LB server, VM states
(as well as states defined in other state diagrams implemented
in LB) are also mapped to states in the default LB state
machine used primarily for gLite WMS jobs. Thanks to
that mapping, users can easily query LB for, e.g., all their
running tasks regardless of whether they are computing jobs,
virtual machines, or any other kind of supported process. The
complete mapping between VM and gLite job states is shown
in Table II.

TABLE II. MAPPING OF VM STATES TO GENERIC GLITE STATES FOR
UNIVERSAL QUERIES

VM State Generic State

Pending
Submitted for freshly registered VMs

Waiting for VMs resumed from Stopped state

Running Running

Shutdown
Waiting

Stopped

Done
Done, distinguished by the done code attribute

Failure

C. Relationship of Entities

Limited support for specific inter-job relationships was
inherited from previous LB versions. Relationships between
different types of jobs were implemented differently, de-
pending on then-existing requirements. Experience with that
implementation was taken into account when designing the
new solution.

1) Pre-existing Implementations: Only the following job
type pairings were supported before the generic solution was
designed:

• Parents/children in DAGs (Direct Acyclic Graphs) and
job collections, where one single parent job is linked
to its children and vice versa. This is implemented
by an extra database attribute in all children, which
explicitly states the ID of the parent. This attribute
can be used directly in the LB server’s database
queries and, being also implicitly indexed, allows for
a quick reconstruction of the whole set of children in
a collection.
The relationship is established on registration, wherein
status records are created for the parent job as well as
all the children in a single server-side step, filling in
the parent reference. There is no support for removing
jobs from collections, hence the relationship can be
never canceled. Neither is there currently support for
growing collections already registered.

• Compute jobs/Sandbox transfers, where each gLite
compute job can maintain a reference to its input and
output sandbox transfers. There are specific single-
purpose attributes included in the job’s internal status
structure, one for the input, another one for the output
data. They will contain job IDs of single sandbox
transfers, or collections thereof. Since the sandbox

transfer IDs are encoded in the internal status of
the job, they are slow to access unless the LB ad-
ministrator has set up specific database indices for
that purpose. This makes searching for compute jobs
by input or output sandbox transfer ID possible but
impractical.
The relationship is established by a special-purpose
sandbox event that will set or modify the reference,
but obviously the job status structure can never refer to
multiple input or output sandbox transfer IDs at once.
Collections must be used if multiple input or output
sandbox transfers are to be covered.

Both features remain, for now, available alongside the
generic solution outlined below. While the latter could be
adequately replaced with the new approach in the future, the
former presents a very specific case with built-in server-side
logic (registration, state and histogram algorithms, etc.), and
the functionality must remain unchanged.

2) Designing a Generic Bilateral Relationship Record:
Facing the task to implement yet another type of relationship
– that between a virtual machine and its workload – it was
decided to take a generic and more widely applicable approach
that could support any kind of bilateral inter-job relationship
in a common manner once and for all. The requirements were
as follows:

• Support m : n relationships as a VM will definitely
relate to multiple compute jobs as well as a compute
job can relate to multiple machines (typically in cases
where it did not succeed in one and had to be
resubmitted to a different resource).

• Allow distinguishing between active and past relation-
ships.

• Avoid adding complexity in server-side processing,
i.e., avoid, wherever possible, dependence on addi-
tional database queries when registering relationships.

• Support establishing or canceling the relationship at
any time during the participating entities’ lifetimes.

• Since it was decided to make this a generic functional-
ity, allow for specifying the nature of the relationship,
i.e., what does the relationship record mean.

To that end, a new type of event (relationship) has been
introduced to control the relationship records, and the present
SQL schema was extended with an additional table comprising
of the following attributes:

• Source job: the job the relationship originates from.

• Target job: the other job in the relationship. Note that
the source/target approach obviously makes the record
asymmetric. To achieve symmetry, every relationship
event actually results in two separate records being
created, one of them having the originating job as the
source in one instance, and as a target in the other
instance.

• Target job type. It is assumed that relationship infor-
mation is never retrieved from the LB server sep-
arately, but always together with the status of the

304

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

“source” job, which also indicates its type. Therefore,
the type of the “source” job does not have to be stored
with the relationship record and still the types of both
jobs in the relationship are known and can be used
to interpret the relationship’s meaning. For instance,
the existence of a relationship between a compute job
and a virtual machine can be easily interpreted in the
sense that the job is running on that virtual machine. A
relationship between a virtual machine and a sandbox
transfer, e.g., will be interpreted in the sense that LB
was monitoring the transfer of the virtual machine’s
image during the prolog stage.
Technically, a relationship can be registered for any
exotic combination of two job types. Sometimes the
meaning may be obvious, as in the two cases above,
and sometimes not. At any rate, interpretation is left
to the party who has logged the relationship in the
first place.
To minimize server-side overhead, the client is re-
quired to specify the target job type along with its ID
when logging a relationship. This allows the server to
register the relationship without having to unparse the
other job’s status – a relatively costly operation. There
is a minor danger that the client will log a wrong
job type, but it is felt that keeping the data correct
and reliable is always the client’s responsibility. Still,
implementing an option to read the target job’s type
from the database regardless of the extra cost is an
opportunity for future development.

• Relationship status. The status is given as an enumer-
ated type, allowing for future extensions. The initial
implementation recognizes the following states:

◦ Active: in the context of virtual machine/work-
load monitoring, an Active relationship will re-
fer to the job currently running on the machine.

◦ Inactive: primarily for relationships that are not
active anymore. Possibly also for relationships
that will become active in the future (for in-
stance a job has been scheduled to a particular
resource but has not arrived there yet). Once
again, the precise interpretation of the meaning
may be up to the party who has logged the
relationship.

◦ Canceled: used instead of removing the re-
lationship record. The physical relationship
record is only removed when one of the rele-
vant jobs is being purged from the LB server
for good.

Note that a relationship record carries only information
valid at present and does not maintain any record of the rela-
tionship’s history. However, since relationships are established
and controlled through events, their history can always be
reconstructed by querying for the logging history (i.e., raw
events) of jobs participating in the relationship.

D. Security Considerations

The security of data gathered by LB is an important part
of the solution. LB implements a messaging infrastructure to
deliver events from the place where they are created to the
LB server. The infrastructure is built upon a set of mediators

(inter-loggers) that provide a secure and fault-tolerant transport
of messages between LB clients and servers. This also means
that the actual worker nodes do not necessarily require direct
Internet access since they are sending their events through
the interloggers, typically installed only on head nodes with
different network accessibility settings.

All connections within the infrastructure are authenticated,
including the delivery of a new event. Upon receiving a
connection carrying an event, the LB server makes an autho-
rization decision to see if the originating component is entitled
to log that kind of event for the given job.

Reading access is likewise subject to similar security pre-
cautions. Every client querying the LB server must be properly
authenticated and authorized to obtain the data requested.
There are actually two ways of setting up access: both are
applicable to all processes monitored by LB, including virtual
machines:

• Server-wide authorization policy: there are several
authorization categories to grant rights across all jobs-
processes known to the server. The categories cover
both the logging and querying parts of data processing.
There is a specific category, for instance, to allow
logging events specific to workload managers. Only
grid components listed in that category can log those
specific kinds of events. Similar categories are there
for different levels of reading access.

• Per-job ACLs: an Access Control List can be main-
tained for any individual entity (job, VM, etc.), grant-
ing additional permissions to read or log events for
that entity alone. The ACL is stored as a part of the
entity’s internal state, maintaining a list of allowed or
banned users. Users are identified by DN or Kerberos
principal, which can be used interchangeably, and
mapped one to another by means of a server-side
Globus-compliant gridmap file [17].
Unlike the server-wide policies, ACLs on a job are
entirely under the control of the owner of that job.
Users can therefore specify fine-grained access control
for their jobs.

Per-job ACLs are used in virtual machine monitoring to
overcome the fact that OpenNebula currently cannot commu-
nicate the assigned ID to the virtual machine it has instantiated.
When creating a new virtual machine, the ACL of the corre-
sponding instance in LB is populated with its identity. Using
appropriate credentials later on, the virtual machine can look
up its appropriate job ID when needed.

In order to simplify the deployment of LB in diverse
environments, LB supports multiple security mechanisms. In
particular, the de-facto grid standard using X.509 and TLS/SSL
has been supported from the very beginning. Support for
Kerberos has been added recently. It is, however, implemented
in a generic way, so that adding additional security mechanisms
is quite feasible.

The LB server also supports mapping of client identities
by means of a gridmap file so that a single person relying on
different clients using different types of credentials obtained
through different authentication mechanisms can always be
identified as the same user. This “mixed” setup where users

305

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

use their Kerberos tickets for regular work in the command
line, and their X.509 certificates to access LB over the HTTPs
interface, is actually used in MetaCentrum where LB was first
deployed to monitor the virtualized infrastructure along with
the computing jobs.

E. OpenNebula Instrumentation

OpenNebula implements a system of so-called Virtual Ma-
chine Hooks. Hooks are programs automatically executed, or
triggered, when a virtual machine changes its state. This allows
us to provide simple and standard modular implementation
of OpenNebula instrumentation for LB. An LB hook for
OpenNebula has been implemented as a stand-alone script
invoked by hooks using supplied configuration files [18].

OpenNebula supports hooks for all the relevant states,
shown in Table III. Other hooks are available, ensuring future
extensibility of this solution.

Information about the virtual machine is passed to the script
in the form of an XML template. Each state change triggers a
hook, passing unique virtual machine identifier and its template
as arguments to the registered executable.

The instrumentation script is written in the Ruby pro-
gramming language, which is the language of choice for
OpenNebula’s modules and extensions. It should be registered
for all the relevant virtual machine states mentioned above.
The script requires a Base64-encoded virtual machine template
and the name of the hook as arguments. Other optional argu-
ments include logging method, log file location for debugging
purposes or map file location for dynamic mapping of user
identities.

Authentication of the instrumentation script as a trusted LB
events source can be performed using both X.509 or Kerberos-
based host credentials.

The script itself performs four basic actions:

1) Decodes and parses the virtual machine template.
2) Maps user identities (e.g., user names to their X.509

certificate DN).
3) Performs data transformation: currently computes the

overall VM runtime from runtime values on individ-
ual hosts.

4) Constructs and sends an event to LB using its native
API and local binaries

Events are constructed using ERB, Ruby’s templating sys-
tem. The templates are easily modifiable without an extensive
knowledge of the programming language itself.

TABLE III. OPENNEBULA STATES WITH HOOKS

State Trigger Event

Create Virtual machine has been submitted by the user

Prolog OpenNebula’s scheduler found an appropriate host and started deploy-
ment

Running Virtual machine is running and ready to accept jobs

Shutdown Virtual machine is shutting down

Stop Virtual machine has been stopped (temporarily)

Done Final state, end of the virtual machine life cycle

Failed Previously issued action has failed, virtual machine is not available

F. Support for Complex Use Cases

The newly developed solution is not limited to basic
interaction with a single instance of OpenNebula, but rather
implements all features required for other, more complex
scenarios.

1) MetaCentrum: Providing a unified view of resources
and job execution for users and administrators, this use case
follows requirements described in Section II-B with the addi-
tion of LB being used as a part of a distributed implementation
of TORQUE, recently deployed in MetaCentrum [16]. Here,
LB acts as a service providing users with job status information
via a modified qstat utility.

MetaCentrum operates its own cloud manager called Ma-
grathea [19]. Its role is to cooperate with the TORQUE batch
manager to provide integrated grid and cloud environment
running within a single resource pool. To use LB to combine
status information from both kinds of workload – virtual
machines and batch jobs alike – into one overall picture,
support for LB had to be implemented in Magrateha. The
instrumentation of Magrathea to send LB events in a manner
similar to the OpenNebula case was straightforward. The
common VM state diagram was tuned to work correctly with
both event sources (OpenNebula and Magrathea) at the same
time. Now each MetaCentrum user can use all three worlds
(OpenNebula, Magrathea, batch jobs) and see all the respective
status information in one common LB service.

2) FedCloud: The FedCloud Task in EGI (European Grid
Infrastructure) deals with federation of resources in a cloud
environment. Here, the aim is to achieve interoperability of
different cloud solutions, running in different administrative
domains and on different cloud manager implementations. The
role of LB in providing global status info for the whole
federated infrastructure is similar to that, which LB plays
in gLite-based grids such as WLCG – i.e., monitoring all
processes across the infrastructure, regardless of geographical
site, ownership or flavor of the underlying technology, as long
as it is instrumented to deliver events to LB.

This particular use case requires LB to support multiple
hypervisors and cloud managers (equivalent to supporting
different job managers – computing element implementations
– in grid job monitoring). There is currently support for
OpenNebula with XEN, and the work on supporting Open-
Stack and KVM is underway. It is important to stress that
the implementation of such additional support consists solely
in client-side work, i.e., in instrumenting the new sources
to generate LB events, or possibly finding ways to translate
existing streams of outgoing information into LB events. The
LB service as such is already prepared for the task.

This use case is also going to rely on the multitude of
ways one can access LB from the user perspective. LB can be
queried through different interfaces, or configured to become a
producer of messages delivered over different channels. Some
of the interfaces can be accessed with generic, widely available
clients such as Web browsers or RSS readers. Figure 4 shows
LB as a message processor capable of receiving a flow
of messages, potentially over diverse channels, and making
the processed information available either on query, or over
another streaming channel.

306

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. LB as a message processor publishing information over different
output channels.

LB has the potential to provide complete infrastructure for
common cloud status monitoring, taking care of all the stages
from data sources, through data transfer, interpretation and
storage, to client access.

3) Support of User Group Workflows: Compared to tradi-
tional computing jobs, VMs are a little specific in that they
always need to be assigned workload when running (i.e.,
having started for the first time, recovered from a downtime or
finished migration), which makes them actually very similar
to pilot jobs! Pilot jobs are simple computing jobs carrying no
workload on submission, but rather waiting until they acquire
the necessary resources and only then receiving the actual
workload, i.e., computing work to be done.

Thus a pilot job framework is a good example of a
user-specific workload management system. It is designed to
distribute workload to job slots at the moment when pilot
jobs (or – analogically – VMs) actually start. It may be very
convenient for such a framework to receive notifications of
relevant VM status changes, rather than heving to repeatedly
poll all relevant resources. That is easily achieved with LB
notifications generated on pre-determined conditions and sent
out over LB’s own legacy messaging chain or through a
STOMP or OpenWire-enabled messaging broker.

Users may choose, for instance, to be notified any time
any of their machines reaches state running. More elaborate
sets of conditions are also supported. The resulting notification
contains the full VM status information and, if requested on
registration, also the full history of events for that machine so
far.

Another option to receive updates on VM state changes
would be RSS. The RSS interface in LB is as elaborate as
the job querying interface, allowing for the creation of highly
customized feeds, which can be then received with any RSS
reader, provided it can handle X.509 authentication.

G. State Machine for Physical Machines

This is, at the same time, a usage scenario possible with the
current implementation, and a consideration for future work.

As per the original design, VM instances use their attributes
to refer to their respective physical hosts only by name (the
FQDN – Fully qualified domain name, actually) and no track
is kept of the actual status of those resources. But there is

an obvious similarity between physical and virtual machines.
If anything, physical resources are even simpler to describe
than virtual ones, and a VM state diagram is easily applicable
to physical machines. So the option is to register physical re-
sources as “VM” instances as well, and reference the identifier
instead, either by using the ID assigned by LB rather than the
FQDN, or by registering a bilateral relationship between the
virtual machine and its physical host as described in Subsection
III-C.

With that done, the same level of detail can be provided for
virtual and physical machines alike, although some supported
states can pick up different meanings in the physical world
(for instance state pending would not mean that the machine
is being set up by the virtualization stack, but rather that
it is being installed by its administrator) or remain unused
altogether. Maintaining detailed status information for physical
machines is important because sites need to keep operational
logs of physical resources management (maintenance, testing,
repair) and understand it correctly in the mixed grid/cloud
model (providing proper hardware usage statistics).

Events governing the status of a physical machine record
– be it an instance of the VM type used in an “overloaded”
mode, or a newly designed Physical Machine type – can be
generated:

1) automatically by the machine itself or, more specif-
ically, by its operating system’s image, properly in-
strumented and contextualized:

• machine start
• regular machine shutdown

2) automatically by infrastructure monitoring tools:
• machine down (when unreachable or other-

wise recognized as being down)
3) manually by resource administrators

• machine being installed
• machine being moved or maintained
• machine failed (due to a HW issue, for in-

stance)
• any additional operational records can be

logged as UserTags

Basically, then, the main distinction lies in the fact that
events logged for virtual machines by the Cloud Manager are
generated by a human administrator for the physical ones.

There are other benefits stemming from the fact that virtual
and physical resources are treated similarly. Figure 1 was
showing workload executing over a VM. By including physical
resources into the picture, one can also view workload running
directly on the physical machine (where allowed by the actual
solution – for instance Magrathea or WNoDeS), or watch jobs
executing in virtual machines over their physical hosts – see
Figure 5.

IV. FUTURE WORK

There are several topics identified as a potential im-
provement or extension of the existing solution. Potentially
important as they are, they were already envisioned and
accommodated for at design time but the decision on their
actual implementation was left for the future.

307

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Virtual machines and native jobs executing on a physical machine.

A. Virtual Cluster Implementation

The Virtual Cluster service provided by MetaCentrum can
create multiple VM instances per request [7]. All the resulting
VMs have common attributes (type of network connection) and
are closely related. Similar functionality is provided by other
node-on-demand services such as WNoDeS [8].

In most cases, all nodes in a virtual cluster set up in this
manner are intended to be used together in close conjunction,
usually to run parallel computing jobs, which is why a user
can benefit from easily obtaining an overall view of the state
of the cluster.

It may be a good idea to reuse the “collections” func-
tionality in LB, typically applied to grid jobs or sandbox
transfers. From the user’s point of view the state of the
collection combines the states of all its members. Individual
VM details are still accessible under the VM instance’s own
ID – the collection functionality simply adds another identifier
(collection ID) to access aggregate information for the whole
collection, such as child (member) status histograms. The fact
that LB’s VM type can also be used to monitor physical ma-
chines as discussed in section III-G also makes such collections
applicable to hybrid clusters where a fixed physical cluster is
extended (perhaps temporarily) with additional virtual nodes
to improve peak computing power.

There are only minor differences between (already sup-
ported) job collections and (proposed) VM collections to
address, chief among them the understanding of the overall
status of such collections. While a computing job collection
can be considered running, for instance, as long as at least
one of its children is running, a VM collection should not
be considered running unless all the VMs in that collection –
or at least a certain majority – are up. Other collection-wide
states require similar redefinition. But apart from that, all the
essential functionality exists and can be applied to the new
collection type.

B. VLAN Status

Virtual Cluster services offered by MetaCentrum provide
not only sets of machines but also networking connections
in the form of virtual Ethernet (VLAN) [20], thus offering a
comprehensive IaaS (Infrastructure as a Service) solution. The
VLANs have their own life cycle managed by a purpose-built
VLAN manager (SBF) [21], which could become a source of
events for LB. After all, a network is recognized as an entity
in its own right by many cloud-related standards such as OCCI
(Open Cloud Computing Interface).

An ability to track the state of the network together with its
attributes (private vs. public network, additional services such

as tunnels, NAT (Network Address Translation) or firewalls)
could be valuable in many scenarios. True, it would require
another state machine to be implementeda, but that has become
a relatively routine task recently, and would be well justified
by an interesting use case.

C. State Diagram Evolution

Although the state diagram explained in Subsection III-B
currently seems to meet the intended need, there were sug-
gestions that it should cover additional states used in more
elaborate scenarios possible with advanced cloud managers,
such as the VM migrating, resizing, etc. As it is, these
states, for instance, are inherently the substates of the Pending
state, and even with the current implementation they can be
distinguished from other such substates by means of user tags,
or – with a simple extension of the code – by means of an
additional state attribute.

On the other hand, as long as there is a use case to
sufficiently justify the need for making these into separate
states, implementing an extension to the state diagram is
sufficiently straightforward.

V. RESULTS AND EVALUATION

The new experimental version of LB implementing the
features described in this paper was evaluated in MetaCentrum
pre-production environment for a few months and currently
runs in production. All the code is considered well tested, and it
is included in the official LB release, starting with version 4.0.
On top of that, TORQUE instrumentation code is available
with MetaCentrum’s TORQUE patches, and OpenNebula in-
strumentation can be obtained as a set of documented hook
scripts [18]. Thus, all tangible results of the work are publically
available.

Based on previous work and the new experience with a
production LB instance gathering all information about jobs
and virtual machines running in MetaCentrum, the following
results can be summed up and evaluated:

1) Performance: Since the whole event delivery chain is
ansynchronous, the overhead on infrastructure components is
negligible. The authors have previously performed extensive
measurements, showing that the processing capacity for a real-
world spread of jobs amounted to several hundred thousand
jobs per day [22], and the declared target of a throughput of
1 million jobs per day was achieved at least for simple jobs.

Table IV compares known performance limits to measured
production load extrapolated from eight months of production
use in MetaCentrum, a mid-sized grid infrastructure. It shows
that a typical combined grid/cloud operation uses up only a
small portion of the possible throughput, making the actual
overhead negligible.

TABLE IV. COMPARING REAL-WORLD LOAD IN THE CZECH
NATIONAL GRID WITH THE MAXIMUM CAPACITY

Item Prod. per Year Maximum Capacity

Computing jobs, mixed complexity 1,550,000 ∼ 90,000,000

Virtual machines 25,000 > 90,000,000

Individual Events 500,000,000 >1,550,000,000

308

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Applicability of Results: The common monitoring so-
lution succesfully collects and, most importantly, correlates
workload and infrastructure status data. Evaluation of the
amount and structure of data collected and inferred by LB
shows that it indeed provides a detailed, unified view of the
multi-layered virtualized environment, and that its output can
be used not only to check current status, but also to feed higher-
level statistics and reporting systems.

An internal feasibility pre-study performed at the Czech
NGI, for instance, shows that its current statistics gathering
mechanisms could be replaced with an LB-based solution,
as long as LB provides a mechanism to monitor physical
machines as discussed in Section III-G, with the added benefit
that it wolud completely cover also the emerging PaaS and
IaaS cloud services – a task that the existing statistics gathering
solution cannot perform.

VI. CONCLUSION

This paper shows how the potential of an existing job-
monitoring infrastructure can be reused in the virtualized
world. The design and implementation of LB was extended to
support virtual machines as a new kind of monitored entity, and
the new functionality was demonstrated in real-word usage. LB
can now handle mutual relationships between various entities
involved in a modern computing environment (dynamic sets
of virtual machines available directly to users, and potentially
hosting jobs managed by a grid service). Although this work
was, at its beginning, primarily driven by the Czech NGI’s
requirements, it was found useful at a much wider scope.
Typical motivations involve resource federation in the cloud-
oriented world. The authors are proposing this solution to
FedCloud, the cloud interoperability task force acting within
the European Grid Infrastructure. LB, with its established
presence in gLite-enabled grid sites across the European Grid
Infrastructure, resulting in easy adoption, can be a reasonable
candidate for a monitoring and notification service in emerging
international “cloud-like” scientific environments.

ACKNOWLEDGEMENT

This work is part of the National Grid Infrastructure Meta-
Centrum, provided under the programme “Projects of Large
Infrastructure for Research, Development, and Innovations”
(LM2010005).

Fundamental development and maintenance of the Logging
and Bookkeeping service was co-funded by the European
Commission as part of the EMI project under Grant Agreement
INFSO-RI-261611.

REFERENCES

[1] Z. Šustr and J. Sitera, “Understanding virtualized infrastructure in
grid job monitoring” in INFOCOMP 2012, The Second International
Conference on Advanced Communications and Computation, Venice,
Italy, pp. 167 – 170, 2012.

[2] “Logging and bookkeeping,” 2008. [Online] Available:
http://egee.cesnet.cz/en/JRA1/LB/. [Accessed December 20, 2013].

[3] M. Cecchi et al., “The gLite workload management system,” J. Phys.:
Conf. Ser., vol. 219, 2010.

[4] P. Andreetto et al., “Status and developments of the CREAM computing
element service,” J. Phys.: Conf. Ser., vol. 331, 2011.

[5] G. Staples, “TORQUE resource manager,” in Proceedings of the 2006
ACM/IEEE conference on Supercomputing (SC), 2006.

[6] “StratusLab,” 2012. [Online] Available: http://stratuslab.eu/. [Accessed:
December 20, 2013].

[7] M. Ruda et al., “Virtual clusters as a new service of
MetaCentrum, the Czech NGI,” CESNET, 2009. [Online]
Available: http://www.cesnet.cz/doc/techzpravy/2009/virtual-clusters-
metacentrum/. [Accessed: December 20, 2013].

[8] D. Salomoni et al., “WNoDeS, a tool for integrated grid and cloud
access and computing farm virtualization,” J. Phys.: Conf. Ser. 331
052017, 2011.

[9] J. Sitera, M. Ruda, P. Holub, D. Antoš, and L. Matyska, “MetaCentrum
virtualization – use cases,” CESNET, 2010. [Online] Available:
http://www.cesnet.cz/doc/techzpravy/2010/metacentrum-virtualization-
use-cases/. [Accessed: December 20, 2013].

[10] J. E. Savage, “Models of computation: exploring the power of comput-
ing,” Addison-Wesley Pub, 1998.

[11] F. Wagner, R. Schmuki, T. Wagner, and P. Wolstenholme, “Modeling
software with finite state machines: a practical approach,” Auerbach
Publications, 2006.

[12] B. Birregah, K. H. Adjallah, K. S. Assiamoua, and P. K. Doh, “Grid
systems monitoring and assessment using finite state machines with
median symmetry operators,” in IEEE International Conference on
Systems, Man and Cybernetics, Montreal, pp. 741 – 746, 2007.

[13] J. Varia, “Architecting for the cloud: best practices,” 2011. [Online]
Available:
http://media.amazonwebservices.com/AWS Cloud Best Practices.pdf.
[Accessed: December 20, 2013].

[14] R. Nyrén, A. Edmonds, A. Papaspyrou, and T. Metsch, “OCCI
specification,” OCCI-WG OGF, 2011. [Online] Available: http://occi-
wg.org/about/specification. [Accessed: December 20, 2013].

[15] Z. Šustr et al., “Monitoring national infrastructure with
L&B,” in EGI Technical Forum, 2012. [Online] Available:
http://youtu.be/tI5m45jbxmU. [Accessed: December 20, 2013].

[16] M. Voců et al, “Using L&B to monitor TORQUE jobs across a national
grid,” in EGI Community Forum 2012 Book of Abstracts, Garching,
Germany, 2012.

[17] “Gridmap,” 2007. [Online] Available:
http://dev.globus.org/wiki/Gridmap. [Accessed: December 20, 2013].

[18] “gLite LB instrumentation Scripts for OpeNebula,” 2012, [On-
line] Available: https://github.com/CESNET/metacloud-lb-scripts. [Ac-
cessed: December 20, 2013].

[19] M. Ruda, J. Denemark, and L. Matyska, “Scheduling virtual grids: the
Magrathea system,” in VTDC ’07 Proceedings of the 2nd international
workshop on Virtualization technology in distributed computing, Article
No. 7, ACM, 2007.

[20] D. Antoš, L. Matyska, P. Holub, and J. Sitera, “VirtCloud: virtualising
network for grid environments – first experiences,” in The 23rd IEEE
International Conference on Advanced Information Networking and
Applications (AINA). Bradford, UK, 2009.

[21] Z. Šustr et al., “MetaCentrum, the Czech virtualized NGI,” in EGEE
Technical Forum 2009, Barcelona, Spain, 2009. [Online] Available:
https://egee.cesnet.cz/cs/info/virtualizace.pdf. [Accessed: December 20,
2013].

[22] Z. Šustr et al., “Mass testing of EMI products in Czech NGI’s
virtualized environment,” in EGI Community Forum 2012, Garching,
Germany. [Online] Available: http://egee.cesnet.cz/cvsweb/LB/CF12-
mass-test.pdf. [Accessed: December 20, 2013].

309

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Static Preprocessing for Automated Structural Testing of Simulink Models

Benjamin Wilmes
Berlin Institute of Technology

Daimler Center for Automotive IT Innovations (DCAITI)
Berlin, Germany

E-Mail: benjamin.wilmes@dcaiti.com

Abstract—A feasible automation of testing software models
would be of great benefit to industry, given the advantages
of early testing as part of an efficient quality assurance
process. Despite search-based testing having been applied with
promising results to automate structural test data generation
for Simulink models, the approach lacks efficiency. This paper
features three static-analysis-based preprocessing techniques
which are carried out prior to an automated test data search, to
mitigate this efficiency problem. The first technique identifies
unsatisfiable coverage goals by analyzing the ranges of model
internal signals and excludes them from the search. The second
preprocessing technique aims at reducing the search space
by analyzing which model inputs actually require stimulation
in order to reach a certain model state. A third technique
sequences the coverage-goal-related search processes in order
to maximize collateral coverage and reduce the size of the
generated test suite. These additional techniques are able to
make the search-based approach considerably more efficient,
as results of a case study with our search-based testing tool
TASMO, applied to industrial Simulink models, reveal.

Keywords-Search-Based Testing, Static Preprocessing, Auto-
motive Industry, Simulink.

I. INTRODUCTION

First of all, note that this paper is an extended version of
a previous publication [1]. It contains further details on the
topic, additional illustrations and an extended case study.

In many of today’s application areas, the creation of
embedded controller software relies on model-based design
paradigms. Various industries, such as the automotive in-
dustry, use Matlab Simulink (SL) [2] as the standard tool
to create and simulate dynamic models along with a code
generator, for instance TargetLink (TL) [3], in order to
automatically derive software code from such models.

As they are normally the first executable artifacts within
software development processes, SL models play an im-
portant role in testing theory. Industrial testing practice,
however, usually focuses on higher-level development arti-
facts, like testing integrated software or systems as a whole.
This discrepancy has both traditional and practical reasons.
On one hand, current testing processes still require further
adaptation to the model-based paradigm. On the other hand,
companies are pressed for time in product development and
must deal with an increasing demand for innovation. This
can lead to a disregard for low-level tests and model tests in
particular. Yet focusing too one-sided on tests of higher-level

software or system artifacts poses the risk that faults may be
found late in the process, which can lead to increased costs,
that some faults can hardly be discovered on higher levels,
or that certain functionality is not tested at all.

Thus, automating the testing of software models is highly
desirable in industrial practice, particularly with regard to
what is normally the most time-consuming testing activity:
the selection of adequate test cases in the form of model
input values (test data). Search-based testing is a dynamic
approach to automating this task. It transforms the test
data finding problem into an optimization problem and
utilizes meta-heuristic search techniques like evolutionary
algorithms to solve it. Search-based testing [4] has been
studied widely in the past and has also been applied success-
fully for testing industrial-sized software systems [5]. Both
structural (white-box) and functional (black-box) testing can
be automated with the search-based approach.

Zhan and Clark [6], as well as Windisch [7], applied
search-based testing to structural test data generation for
SL models. The work of Windisch not only supports
Stateflow (SF) diagrams (which are used fairly often in
SL models), but also makes use of an advanced signal
generation approach in order to generate realistic test data.
While his approach has led to promising results in general,
outperforming commercial tools in terms of effectiveness, it
lacks efficiency when applied to larger models. Furthermore,
it shows difficulties targeting Boolean states and tackling
complex dependencies within models [8].

The work presented in this paper is a first step toward
overcoming some of these shortcomings by exploiting static
model analysis techniques before the search process actually
starts. These techniques will therefore be referred to as static
preprocessing techniques. Our scope is test data generation
for TL-compliant Simulink models. Our primary aim is
to improve the efficiency of the approach by Windisch.
While our work is targeted at SL models, we believe that
the presented concepts are generally portable to similar
data-flow diagram types and, at least conceptually, even to
structural testing of code.

This paper is structured as follows: Section II introduces
search-based testing and its application to structural test-
ing of SL models. Section III presents our approach to
supporting the search-based technique by integrating three

310

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

preprocessing techniques. In detail, we present a signal range
analysis (Section III-A) which captures range information
of internal model signals and, in this way, allows partial
detection of unreachable model states. We then propose
a signal dependency analysis for the purpose of search
space reduction (Section III-B). Our third contribution is
a sequencing approach which derives an order in which
coverage goals of a structural test are processed by the search
(Section III-C). Insight into our tool prototype and a case
study are provided in Section IV and V. An overview of
related work in the field of structural test data generation
for SL models is provided in Section VI, followed by our
conclusions in Section VII.

II. BACKGROUND

A. Search-Based Structural Testing

Initiated in the 1970s by Miller and Spooner [9] and
revived by Korel in the 1990s [10], search-based testing [4]
and its application to industrial cases has been extensively
studied in the last decade.

The general idea of the search-based approach is pretty
simple: a test data finding problem (which surely differs in
its nature depending on the kind of testing) is transformed
into an optimization problem by defining a cost function,
called fitness function. This function rates any test data
generated by the deployed search algorithm - usually based
on information gained from executing the test object with
it. The rating must express, in as much detail as possible,
how far the test data is from being the desired test data.
An iteratively working search algorithm uses these fitness
ratings to distinguish good test data from bad, and based
on this, generates new test data in each iterative cycle. This
fully automated procedure continues until test data satisfying
the search goal(s) has been found, that is, if a fitness rating
has reached a certain threshold or until a predefined number
of algorithm iterations have been performed. Various search
algorithms have been used in the past. Due to their strength
in handling diverse search spaces, evolutionary algorithms,
like genetic algorithms, were often preferred [11].

Applied to functional testing, the search-based approach
is generally utilized to search for violations of a requirement.
In this case, a sophisticated fitness function needs to be
designed manually when following the standard approach.
However, when applied to structural test data generation,
fitness functions can be derived completely automatically
from the inner structure of the program to be tested.

Structural testing is commonly aimed at deriving test data
based on the internal structural elements of the test object,
e.g., creating a set of test data which executes all statements
of a code function, or all paths in the corresponding control
flow graph. Industrial standards like ISO 26262 even demand
the consideration of coverage metrics when performing low-
level tests. Search-based testing can automate this task for
various coverage criteria (like branch or condition coverage)

by treating each structural element requiring coverage as
a separate search goal, called a coverage goal (CG/CGs
in plural). Each CG is accompanied by a specific fitness
function. Wegener et al. [12] recommend composing the
fitness function of the following two metrics: approach level
(positive integer value) and branch distance (real value from
0 to 1). Given a test data’s execution path in the control
flow graph of the test object’s code, the approach level
describes the smallest number of branch nodes between
the structural element to be covered and any covered path
element. To create a more detailed and differing rating of
generated test cases, the branch distance reflects how far the
test object’s execution has been from taking the opposite
decision at the covered branch node, which is the closest
to the structural element to be covered. This approach is
suitable for structural testing of program code, like C or
Java code.

B. Application to Dynamic Systems

As model-based development is now established in the au-
tomotive industry and practitioners have noticed opportuni-
ties to test earlier, Windisch [7] as well as Zhan and Clark [6]
have transferred the idea of search-based structural testing
from code to model level. For SL models, structural coverage
criteria similar to the ones known from code testing exist
and are commonly accepted in practice. Before addressing
the challenges of applying search-based test data generation
to SL models, we give a brief introduction to SL. SL is
a graphical data-flow language for specifying the behavior
of dynamic systems. Syntactically, a SL model consists of
functional blocks and lines connecting them, while most of
the blocks are equipped with one or more input ports as well
as output ports. The semantics of such a model results from
the composed functionalities of the involved block types,
e.g., sum blocks, relational blocks or delay functions. In
addition, event-driven or state-based functionalities can be
realized within SL models using SF blocks. A SF block
contains an editable Statechart-like automaton.

When applying search-based structural testing to SL mod-
els, two fundamental differences compared to its application
on code level arise. First, SL models describe time and
state dependent processes. Inputs and outputs of SL models,
as well as block-connecting lines, are in fact signals. In
order to enable reaching all system states, an execution with
input sequences (signals) instead of single input values is
required. Such complex test data can only be generated
with common search algorithms by compressing the data
structure, as done by Windisch [13]. His segment-based
signal generation approach also considers the necessity for
being able to specify the test data signals to be generated
(e.g., amplitude bounds and signal characteristic, like wave
or impulse form). Second, the aforementioned fitness func-
tion approach cannot be fully adopted since SL models are
data flow-oriented. There are no execution paths because

311

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CG 2 . . .

Real Test Data
(Input Signals)

Abstract Test Data
(Signal Segments)

A: 5.0
W: *
T: *

A: 4.0
W: 0.5
T: st

A: 3.2
W: 1.2
T: sin

Signal
Generation

Evaluation of Generated Test Data

Model Execution
& Signal Logging

Fitness
Calculation

Distance to CG
Condition/Formula

Coverage Goal 1

Search
Algorithm

0.56875

CG 3

Figure 1. Automated search for test sequences, which fulfill coverage
goals derived from the model under test.

the execution of a SL model involves the execution of
every included block. Hence, a CG-related fitness function
addresses only distances to the desired values of one or more
model internal signals. For CGs in SF diagrams however, a
bipartite fitness approach is possible [8]. Regardless of this,
a fitness function has to operate on a sequence (signal) of
distance values since distance calculations are done for every
time step of the model’s execution. Thus, the minimum value
of a fitness signal is usually taken as final fitness value.

Figure 1 visualizes the overall work flow of applying
search-based test data generation to structural testing of SL
models as described.

C. Deficiencies and Potential

Search-based structural testing has been applied success-
fully to real (proprietary) SL models originating from devel-
opment projects at Daimler, e.g., a model of a windscreen
wiper controller [8]. Compared to purely randomized test
data generation of similar complexity, the search-based ap-
proach results in significantly higher model coverage. Even

in comparison with a commercial tool, the search-based
approach performs more effectively.

Despite promising results, the approach lacks efficiency.
In general, the overall runtime of the search processes for
achieving maximal model coverage increases with the size
of the model under test. Similar experiences have been made
with code-level search-based structural testing [14]. Since a
single automotive SL model is often hundreds of blocks in
size, and because a test data generation process of more than
a couple of hours is undesirable, improving efficiency of the
search-based approach is vital. The following shortcomings
of the search-based testing approach for SL, as proposed by
Windisch [8], were identified as contributors to efficiency
problems. They will be addressed by the work presented in
this paper.

1) Even if a model is implementing its desired functional-
ity entirely correctly, there are often model states that
are simply unreachable. A search for test data that
results in such model states cannot possibly succeed.
However, the search technique is not aware of this
and carries out a pointless and time-consuming search
process.

2) Narrowing the size of the search space, i.e., the space
of all possible input data, is crucial for how easy
or difficult it is for a search to succeed. Industrial-
sized SL models usually have many inputs for which
suitable signals need to be found. The size of the
overall search space varies with the number of model
inputs. Reaching certain model states, however, is
often independent of the stimulation of some of the
model’s inputs.

3) Targeting coverage criteria implies having to reach
various CGs, between which, in fact, logical depen-
dancies exist. The coverage of a CG often implies the
coverage of other CGs (collateral coverage). In princi-
ple, each CG requires a separate search. Those search
processes, however, are carried out in an uncontrolled
order, regardless of how much collateral coverage they
might cause.

There are two further technical problems leading to a
lack of efficiency which are only partially addressed by the
work presented in this paper. First, the structural test data
generation is performed black-box-like, which means that
the model is fed with input values on one end while some
distances for calculating fitness are measured at some other
point in the model. Any structural information between is not
considered, thus the search might be blind to complicated
dependencies in the model (cf. [15]). Second, when targeting
a Boolean state in a model, a suitable fitness function is hard
to find since a simple true or false rating inadequately leads a
search [8]. Zhan and Clark suggest a technique called tracing
and deducing [16], which mitigates this problem in certain
cases, but fails in instances where the Boolean problem

312

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 [0,1] : 1

 [0,4] : 0.5

 [5,20] : 0.2

1

2

3

1
z

[0,300]:1

[0,300]:1

Signal Length: 30 sec Signal Resolution / Simulation Sample Time: 0.1

User-
Specification

of Model
Inputs

+
>

CG:
==1

[0]

*
[0,80]

Loop Range Analysis

Semantic-Driven Range Propagation from Model Inputs to Outputs

400

Figure 2. Example of how determining the ranges of a model’s internal signals based on input specification and block semantics works.

cannot be traced back in the model to a non-Boolean one.
As a whole, we aim to improve the search-based approach

for structural testing of SL models so that it performs accept-
ably and reliably in industrial development environments. To
this end, we turn our attention to testing of TL-compliant
SL models since the code generator TL is widely used in
industrial practice. TL extends SL by offering additional
block types, but also makes restrictions on the usage of
certain SL constructs like block types. Nevertheless, it is
possible to adapt our ideas to pure SL usage.

III. STATIC PREPROCESSING

We distinguish between techniques which support search-
based structural testing (a) before the CG-related search pro-
cesses, (b) between the different search processes, (c) during
each search process, and (d) after the search processes are
done. In the following sections, three techniques belonging
to category (a) are presented. Apart from making use of an
input specification and choice of coverage criteria provided
by the user, all three techniques are fully automatic.

A. Signal Interval Analysis

In structural testing practice, achieving 100% coverage is
often not possible. One reason lies in the semantic construc-
tions precluding certain states or signal values. It might also
be that a tester specifies the test data to be generated in such
a way that it prevents certain CGs from being satisfiable.
Also, SL models might be designed variably, e.g., contain a
constant block with a variable value. When such variability
is bound during execution, e.g., via configuration file, certain
model states may be unreachable.

CGs referring to unreachable states worsen the over-
all runtime and undermine the efficiency of search-based
structural test data generation since time-consuming search

processes are carried out without any hope of finding desired
test data. Therefore, we propose two techniques contributing
to automatic identification of unreachable CGs. The first one
is an interval analysis, which determines the range within
which the values of every internal model signal are. If a
signal range is in conflict with the range or value required by
a CG, this CG is unsatisfiable. We use interval analysis since
other approaches to detect infeasibility, such as constraint
solving or theorem proving [17], are currently not scalable
enough for the complex equations constituted by industrial-
sized SL models. The second technique is an analysis of
dependencies between CGs. Since this technique is mainly
used for another purpose, it is presented in Section III-C.

The code generator TL, as well as the latest version
of SL, are capable of analyzing signal ranges in order to
perform code optimizations and improve scaling or data type
selection, respectively. While those range analysis features
are limited (e.g., determining ranges of signals that are
involved in loops is not possible without user interaction)
our signal interval analysis (SIA) makes use of an input
signal specification in order to overcome such limitations
and derive more precise ranges.

As mentioned in Section II-B, a tester who uses the
search-based approach for testing SL models, as outlined by
Windisch, is asked to specify the test data to be generated
first. This involves establishing (a) the range boundaries
and step size of each model input, as well as defining
(b) a common length (in seconds) and sample rate for all
input signals - sigLength, sigRes∈R+, with sigLength being
a multiple of sigRes. SIA starts with information (a) for
the model’s input signals and propagates the corresponding
signal ranges of the form [x, y]:q, where q (optional) is
the step size, through the whole model. For every model

313

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

internal signal si, we keep a list of consecutive time in-
tervals (time phases) of the form [ta, tb], where ta, tb∈N0

and 0≤ta≤tb≤(sigLength/sigRes). Every time interval goes
along with an interval set I(si)[ta,tb] that contains the actual
ranges. We use interval sets instead of a single interval per
signal, or per time phase, in order to derive more accurate
range information - as suggested by Wang et al. [18].

The propagation technique processes all model blocks
in a predetermined order, which is equivalent to the block
execution order that SL calculates for running a simulation.
Each propagation step is based on the semantics of a block
and the ranges of its incoming signals. The result of such a
step are ranges (intervals) for the outgoing signals of the
block. In this context, we derived interval semantics for
each block type of TL-compliant SL models using basic
concepts of interval arithmetic [19]. This approach can also
be described as a form of abstract interpretation.

Example: The original semantics of a Sum block
with two incoming signals s1 and s2 and the outgo-
ing signal s3 is s3,t = s1,t+s2,t, where t is a time
step. Given I(s1)[t1,t2] = {[a1,1, b1,1], ..., [a1,n, b1,n]} and
I(s2)[t3,t4] = {[a2,1, b2,1], ..., [a2,m, b2,m]} with equal
or overlapping time intervals, basic interval arithmetic
is used to obtain the corresponding interval set for
s3: I(s3)[max(t1,t3),min(t2,t4)] = {[a1,1+a2,1, b1,1+b2,1],
..., [a1,1+a2,m, b1,1+b2,m], ..., [a1,n+a2,1, b1,n+b2,1], ...,
[a1,n+a2,m, b1,n+b2,m]}. One could, however, calculate
only one resulting interval with the overall minimum and
maximum boundary values of the intervals listed above in
I(s3). Since this would lead to a loss of precision, we avoid
this approach. In order to still keep interval sets small, we
developed an algorithm that merges intervals of the very
same set in a suitable way, where possible.

Figure 2 graphically depicts the overall procedure with
the aid of a simple example. Note that the model contains
a loop, initiated by a delay block with an initial value of
0. The standard propagation procedure would be unable to
continue here since ranges are not available for all incoming
signals of the sum block. A simple, yet imprecise solution
is to set the range of the sum block’s outgoing signal to the
minimum and maximum values of the signal’s data type. A
more precise solution, however, is to use the information (b)
of the signal specification in order to run a loop analysis.
From length and sample rate, the number of loop iterations
is derivable. Starting with the initial value of the delay block
a static analysis of the loop iterations is performed, resulting
in time-related range information. In order to keep the final
results clean and minimal, as mentioned before, each signal’s
ranges as well as the time phases of ranges are combined, if
possible, in each iteration of the loop analysis. Note that the
ranges in Figure 2 are displayed simplified and summarized,
omitting time intervals and the details of their interval sets.

Using range propagation and loop analysis in combina-
tion, SIA is capable of determining the ranges of all signals

contained in the model under test. In cases of blocks with
unknown semantics or unsupported blocks, the minimum
and maximum values of the outgoing signal’s data type are
used. In the end, the results of SIA are used to assess whether
each CG’s associated formula is unsatisfiable - such as the
CG in Figure 2. In addition to unsatisfiable CGs, SIA can
also help in identifying Boolean signals or discrete signals
with only a few possible different values. As described in
Section II-C, CGs related to such signals can be problematic
for the search-based approach.

B. Signal Dependency Analysis

By default, the search algorithm generates test data for all
of the model’s inputs when targeting a CG. However, there
are usually CGs whose satisfaction is, in fact, independent
of the stimulation of certain model inputs. By not taking this
into account, the search space is unnecessarily large, which
makes it more difficult for the search to find desired test
data. To raise efficiency, we include a signal dependency
analysis (SDA) to identify which model inputs each CG
actually depends on. McMinn et al. [20] investigated a
related approach, however, on code level. SDA is closely
related to a slicing approach for SL models developed
parallel to our work [21].

At code level, such analysis is usually done by capturing
the control dependence in a graph. SL models though, as
pointed out previously, are dominated by data dependencies.
We therefore analyze the dependency of CGs on input
signals by creating a signal dependency graph (a) based
on the syntax of the model and (b) refined according to
the semantics of blocks. Focusing purely on syntax, the
following principle leads to a graph describing which signal
b the value of a model internal signal a depends on: Signal
a is dominated by a signal b if signal a is the outcome
of a model block which has signal b incoming - written
a→b. Some blocks with multiple outgoing signals however,
do not use every incoming signal in order to calculate the
value of a certain outgoing signal. In such cases, the signal
dependency graph is refined by removing over-approximated
dependencies. Similar to SIA, SDA processes all model
blocks in a predetermined order for collecting dependency
relations.

In addition to the basic procedure of SDA as outlined
above, some modeling constructs available in SL require
special handling. The concept of vector signals, for example,
which makes a signal being a container for a number of
subordinate signals, requires tracing the dependency between
subordinate signals of different containing signals. At this
point, the semantics of blocks that process vector signals
is relevant. A Sum block which has two vector signals
as inputs, for example, performs a pair-wise addition of
vector elements at the same vector index. Consequently, the
resulting signal is also a vector. Each of its subordinate
signals, however, is dominated by only two subordinate

314

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Switch

CG: s4==1

1

2

3

4

5

0

<= NOT

1.2

==
AND

s1

s2

s3

s4

1

b1 b2

Figure 3. Illustration of how determining which model inputs a CG
depends on might narrow the search space.

signals of the block’s input signals. SDA’s block-specific
collecting of dependency relations considers such cases. A
further exception that requires special handling by SDA is
the concept of conditional subsystems in SL. Such subsys-
tems are only executed if their control signals activate them
or keep them active. Every signal inside of such a subsystem
thus also depends on the control signal. SDA recognizes
these situations when processing the Inport blocks within a
conditional subsystem and adds dependency relations to the
graph accordingly.

In order to finally determine which model inputs a cer-
tain CG depends on, the signal or signals which the CG
expression refers to are selected in the dependency graph.
By traversing the graph up to the input signals, the set of
relevant model inputs is built up. Within the subsequent
search process for this CG, signals are generated only for the
relevant inputs. In addition, operators of the applied search
algorithm which merge and modify generated solutions, such
as crossover and mutation operators in a genetic algorithm,
target only relevant input signals. In this way, depending
on the specific application case, the search space might be
reduced by several dimensions. For model execution, all
other (irrelevant) model inputs receive a random signal that
is consistent with the input’s specification.

Figure 3 shows an example illustrating the beneficial
potential of such an approach in the context of search-based
test data generation. SDA’s block analysis would build up a
dependency graph expressing that s3→s1, s3→s2 (gathered
by analyzing b1), and s4→s3 (gathered by analyzing b2).
These relations alone are sufficient to discover that CG
s4==1 depends solely on input 5. Hence, varying signals
for input 1 to 4 during a search has no effect on satisfying
the targeted CG. If the search would focus on exploring the
search space of input 5, however, it would likely find the
desired input data sooner.

C. Coverage Goal Sequencing

No matter if structural testing is performed in addition to
functional (black-box) testing or purely as white-box testing,
it is usually a set of CGs that constitutes the test objective.
Remember, that for each CG a separate search needs to
be run. In Windisch’s approach, those search processes are
executed in random order. Hence, correlations between CGs
are ignored. Given CGs with the expressions s<90, s<80
and s<70, for example, it is most likely more efficient to
aim for reaching the goal s<70 first because it satisfies all
other CGs at the same time. As this example indicates, the
execution order of the CG-related search processes affects
the efficiency of the whole structural test.

Other researchers in the search-based testing community
have noticed this shortcoming as well. Fraser and Arcuri [22]
advise focusing on the generation of whole test suites rather
than targeting single CGs. They recommend optimizing
multiple test suites instead of multiple test data and also
suggest rewarding smaller test suites with a better fitness,
in case two or more test suites achieve the same coverage.
Harman et al. [23], in contrast, suggest a multi-objective
search in which each CG is still targeted individually but the
number of collateral (accidentally covered) goals is included
as a secondary objective. Though facing a similar problem,
our approach differs. We keep the focus on CGs themselves
since, considering the complexity of the optimization prob-
lems constituted by industrial SL models, they are often
difficult to reach and we do not want to impede the search by
burdening it with additional goals or mixed fitness values.
Instead, we propose a coverage goal sequencing (CGSeq)
approach that creates a reasonable order in which the various
CGs are pursued. Li et al. worked out a related approach
[24], however, it is outside of the search-based and SL
context. Ultimately, by maximizing collateral coverage, our
approach attempts to minimize the number of CGs that need
to be pursued. Not only is this expected to improve overall
efficiency, but the resulting test suite should also be smaller.

The procedure of CGSeq is summarized in Figure 4.
First of all, the model under test is analyzed and CGs
are derived for all SL/SF-relevant coverage criteria (see
overview by Windisch [8]). In preparation to analyzing
dependencies between CGs, we apply several harmonization
and simplification steps to the CG expressions. Note that
results of SIA (Section III-A) are used for this task as well,
e.g., an expression s≥1 would be transformed to s=1 if s
is a Boolean signal.

Next, possible dependencies between CG expressions are
analyzed, resulting in a dependency graph. In this graph,
we treat the nodes as CG sets, in which equivalent CGs are
grouped - noted as CGN = {CGa, ..., CGn}. Note that
we omit the set braces in some of the following notations
if the set contains only one element. In order to limit
graph complexity, the dependency analysis considers only

315

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Coverage Goal Analysis

1. Collect all CGs of all available coverage criteria

CG 1

CG 2

. . .

2. Harmonize and simplify CG expressions, e.g.

s1>10 AND s1>4 s1>10

s2≥1 + s2 in [0,1]:1 s2==1

Dependency Analysis

1. Logical dependance between CGs

2. Semantical dependance due to connecting blocks

s3==1 s3≠4

 incl. creation of virtual CGs for bridging between CGs

s4==1
OR

s4 s5
s5==1

Optimization Goal Sequencing

1. Reduction of dependancy graph according to user
 selection of coverage criteria / single CGs

2. Derivation of optimization goals from graph

CG 1 CG 4CG 3+

certain CG
combinations single CGs

3. Sequencing of optimization goals based on:
 a) min. number of boolean signals in expression(s)
 b) min. depth in model
 c) max. number of implied CGs (collateral coverage)
 d) min. number of relevant inputs

 (as determined by SDA)

Switch

>

-5
OR

[0;5]

s6==0 s7>=0 AND s7<=5 s8==1 s9==1

(as determined
by SIA)

Figure 4. Main process steps to create an efficient order for a set of
coverage goals which are processed separately by a search.

relations that are useful for assessing CG satisfiability and
for the final goal of sequencing the CGs. The following
relations are captured: implication (CGN1→CGN2),
equivalence (CGN1∪CGN2), NAND (CGN1↑CGN2),
and XOR (CGN1⊕CGN2). For a more compact notation
of implications we also use, in certain cases, conjunctions
((CGN1∧...∧CGNn)→(CGNm∧...∧CGNz)) and dis-
junctions ((CGN1∨...∨CGNn)→(CGNm∧...∧CGNz)).
Dependencies between CG expressions are analyzed both
from a logical and a semantical point of view.

Logical dependency addresses relations between CGs
due to the operators involved in their formulas, as well
as due to contained constants and the ranges of related
signals, if SIA has been carried out prior to CGSeq.
For example, the relation (s1>0)CG→(s1≥0)CG is rec-
ognized solely based on the involved operators. The rela-
tion (s1==5)CG→(s1≥0)CG, however, requires taking the
involved constants into account. Going one step further,
the relation (s1==3)CG→(s1>s2)CG would be detected if
max(I(s2))<3, i.e., the maximum upper boundary of any
interval in s2’s range set is less than the constant 3. An
extensive distinction of such cases has been worked out.

Semantical dependency means that for each two CGs
relating to incoming or outgoing signals of the same model
block, a block-specific analysis checks if a relation be-
tween the CGs exists. Just as within SIA and SDA, all
model blocks are processed in a predetermined order for
this analysis. Given an OR block with the incoming sig-
nals s1 and s2, and the outgoing signal s3, the analysis
for this block would detect, for example, the relations
(s1 6=0)CG → (s3==1)CG, (s2 6=0)CG → (s3==1)CG, and
((s1==0)CG ∧ (s2==0)CG) → (s3==0)CG. In certain
cases the block-specific analysis adds virtual CGs as a bridge
to other CGs in order to detect further dependencies. For this
purpose, as illustrated in Figure 4, signal range information
from SIA is also used in case of certain block types.

As a side effect, based on the captured dependencies,
further CGs might be detected as unsatisfiable in the course
of CGSeq (cf. Section III-A). For example, if the graph
contains the relation CG1↔CG2 and SIA has discovered
that CG2 is unsatisfiable, then CG1 must also be unsatis-
fiable. CGSeq performs an extended satisfiability check by
propagating unsatisfiability conclusions through the graph.

Now, back to the goal of sequencing the CGs. In the next
step, the user’s selection of coverage criteria or single CGs is
considered by minimizing the graph accordingly. Amongst
others, non-selected CGs implying selected CGs are kept.
Afterwards, the final optimization goals are derived from
the graph in a two-fold way:

1) For each selected CG, called CGOriginal, an optimiza-
tion goal consisting of a single CG, called CGTarget,
is derived. Starting in the dependency graph at the
node of CGOriginal, the implication relations are
analyzed backwards to determine CGTarget, which

316

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Simulink TASMO

File Edit … TASMO

Input Ranges,
Coverage Criteria,
etc.

Search

Configuration

Static Preprocessing
Model Analysis and

Transformations

Signal Interval Analysis

Signal Dependency Analysis

Model Instrumentation

Report and Test Data Export

Simulink Hidden Instance
for Test Data

Evaluation

User Instance

1

2

3

1

2

3

Coverage Goal Sequencing

Update

E
xe

cu
tio

n

Figure 5. Overall workflow of the tool prototype for search-based test data generation for Simulink, including the static preprocessing workflow.

ultimately is representing CGOriginal. If multiple CGs
are suitable candidates for CGTarget, criteria such as
a lower model depth (minimum path length from any
model input to any signal involved in the CG) or
a lower rate of Boolean signals involved in the CG
expression are taken into account.

2) Certain combinations of CGs are derived to form
optimization goals as well. Remember that the de-
pendency graph can contain conjunctions. Each con-
junction serves as a start point for building up a
conjunction tree which contains implication relations
from the graph that are leading (directly or indirectly)
to the conjunction. Out of every branch or sub-branch
within this tree one suitable CG is selected. These
CGs constitute one or multiple new optimization goals,
depending on the depth of the tree. In this way, a
few suitable optimization goals with potentially high
collateral coverage are added.

Finally, the optimization goals are sequenced according
to several metrics, primarily by the number of (so far
unsatisfied) implied CGs, but also by their depth in the
model and the amount of Boolean signals involved in the
expressions - since such goals should be avoided given
the fitness function construction problem (see Section II-C).
Note that the pursuing order of optimization goals is updated
after each search process ends, since an optimization goal’s
number of unsatisfied implied CGs might have changed.

IV. IMPLEMENTATION

The presented preprocessing techniques have been imple-
mented in the course of developing our prototypical tool

TASMO (Testing via Automated Search for Models) [25].

TASMO is mainly written in Java and closely integrated
with Matlab. As shown in Figure 5, the user can trigger the
automated test data generation process directly from within
Matlab when having a SL model opened. TASMO then
extracts model related information using Matlab’s API and
programming language m. After the Java-based component
of TASMO has been triggered, it builds up an internal
representation of the model under test and derives all CGs
for every supported coverage criteria from this representation
in advance. It then applies transformation and reduction
steps to the internal model representation in order to focus
on the relevant parts for structural test data generation. In
particular, all blocks and signals from the model’s Outports
to the rightmost CGs are removed since they are irrelevant
for the following analysis and preprocessing steps. Model
constructs like virtual subsystems or bus systems, which are
both semantically irrelevant, are flattened.

The user is then asked to select one or more coverage
criteria, like decision coverage or condition coverage, or
certain CGs directly. Regarding this step, an insight into the
user interface of the tool is given in Figure 6. As indicated
earlier, the user is also asked to specify the test data to
be generated, e.g., the range of each model input. After all
required presettings have been made, the three presented
preprocessing techniques are run in the following order:
First, SIA determines the ranges of all model internal signals
in order to assess the satisfiability of each CG. During
SIA, TASMO might also transform the internal model rep-
resentation. Both general and block-specific transformation

317

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Automated testing of Simulink models with TASMO: Selection
of coverage criteria and coverage goals for the model under test.

criteria are checked. For example, if a signal’s ranges all
contain only a single constant value and this signal does not
originate from a Constant block, the source block of this
signal is replaced with a Constant block. At the same time,
a backwards directed removal process is initiated starting
with the block that has been replaced. All signals and blocks
preceding this block (directly or indirectly) are removed
if no CGs are referenced to it. In this way, the internal
model is kept as compact as possible for subsequent analysis
steps without altering its semantics. Another example: If
the incoming signal of an Abs block (absolute value) has
solely non-negative ranges, the block can be removed and
its former incoming signal can be directly connected to its
former outgoing signal.

After SIA, TASMO runs SDA in order to determine for
each CG which model inputs it depends on. Finally, CGSeq
is carried out to build up and sequence a list of optimization
goals. Before the search algorithm processes optimization
goal after optimization goal, a hidden Matlab instance for
simulating the model with generated test data is started.
A copy of the real model under test is loaded, initialized,
and instrumented. Afterwards, an automated search for each
optimization goal is performed, which generates test data
solely compliant with the signal specification for all inputs
that are relevant for the CGs of the current optimization
goal. If an optimization goal, or rather its contained CGs, are
covered by accident during a search for another optimization
goal (collateral coverage), the goal is considered done.
When finished, TASMO generates a report and provides the
generated test data in a reusable format.

V. CASE STUDY

We investigated the effect of the three preprocessing
techniques SIA, SDA and CGSeq on structural test data
generation for industrial SL/TL models. Two SL/TL models
served as case examples, model A and B.

Model A originates from the development of an electric
vehicle’s propulsion strategy, contains 730 blocks, and has

Table I
CASE STUDY CONFIGURATIONS

Configuration SIA SDA CGSeq
C1 - - -
C2 x - -
C3 x x -
C4 x - x
C5 x x x

12 inputs. A total of 600 CGs were derived for the chosen
coverage criteria decision coverage and condition coverage.
Model B implements the functionality of a rear window
defroster. It contains 1861 blocks, has 16 inputs, and 1113
CGs were derived in total.

In order to analyze the effect of the presented techniques,
five different configurations were compared. Table I outlines
the characteristics of each configuration. The configurations
differ in the use or non-use of the static preprocessing
techniques within the test data generation process. C2 is
compared with C1 to evaluate the effect of SIA, C3 is
compared with C2 to evaluate the effect of SDA, and C4 is
compared with C2 to evaluate the effect of CGSeq. C5 brings
all three static preprocessing techniques together to evaluate
the entire static preprocessing as a whole. In particular, only
C5 allows CGSeq to use the results of both SIA and SDA in
order to analyze dependencies between the coverage goals
and to derive an execution order for the search goals. Note
that SIA is also activated in C3 and C4, since processing
unsatisfiable CGs would otherwise extend the runtime of
the case study unnecessarily.

For the search, we applied a special genetic algorithm
for generating signals, as presented by Windisch and Al
Moubayed [13] (see Section II-B). The algorithm settings
were chosen as listed in detail in their paper, except for the
following differences. In each search iteration, 20 individuals
(test data) were generated. A search was stopped when the
targeted optimization goal was reached, when 40 iterations
had been carried out, or if the search stagnated. Search
stagnation was indicated by 8 successive iterations in which
no better individual was found. Since the search algorithm
is subjected to a certain randomness, we carried out a total
of 30 test data generation runs for each configuration (C1-
C5). The input signals to be generated for model A were
specified to have a length of 30 seconds and a sample
rate of 0.1 seconds. For model B, the signal length was
set to 20 seconds and the sample rate to 0.25 seconds.
While the signal lengths were chosen with respect to the
dynamic functional behavior of the models, the sample rates
are specified in each model’s properties. Range boundaries
for each model’s inputs (see Section II-B and III-A) were
taken directly from development documents.

The study was run on a PC with an Intel Core 2 Duo
processor (P8600, 2.4 GHz), 4 GB RAM, and Windows 7

318

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

107 107 107 107

556

449 450 449 450

33 33 33 3344
11 10 11 10

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Configuration

C1

Configuration

C2

Configuration

C3

Configuration

C4

Configuration

C5

Identified

Always-

Satisified CGs

CGs

Covered By

Search

Identified

Unsatisfiable

CGs

Uncovered

CGs

(a) Achieved coverage

C1: 09:25:15
C2: 02:08:19

C3: 01:59:51
C4: 00:52:44
C5: 00:48:25

00:00:00 02:00:00 04:00:00 06:00:00 08:00:00 10:00:00

C1: 6094
C2: 1622
C3: 1568

C4: 565
C5: 546

0 1000 2000 3000 4000 5000 6000 7000

C1: 0,00016%
C2: 0,00061%
C3: 0,00063%

C4: 0,00176%
C5: 0,00182%

0,0000% 0,0005% 0,0010% 0,0015% 0,0020%

C1: 6,63
C2: 6,77

C3: 6,93
C4: 5,87

C5: 5,93

5 5,5 6 6,5 7

C1: 45,13
C2: 13,83

C3: 13,1
C4: 10,63
C5: 10,2

0 10 20 30 40 50

C1: 3,91%
C2: 16,79%

C3: 20,48%
C4: 70,26%
C5: 70,53%

0% 20% 40% 60% 80% 100%

(b) Total runtime of required searches (hours:minutes:seconds)

C1: 09:25:15
C2: 02:08:19

C3: 01:59:51
C4: 00:52:44
C5: 00:48:25

00:00:00 02:00:00 04:00:00 06:00:00 08:00:00 10:00:00

C1: 6094
C2: 1622
C3: 1568

C4: 565
C5: 546

0 1000 2000 3000 4000 5000 6000 7000

C1: 0,00016%
C2: 0,00061%
C3: 0,00063%

C4: 0,00176%
C5: 0,00182%

0,0000% 0,0005% 0,0010% 0,0015% 0,0020%

C1: 6,63
C2: 6,77

C3: 6,93
C4: 5,87

C5: 5,93

5 5,5 6 6,5 7

C1: 45,13
C2: 13,83

C3: 13,1
C4: 10,63
C5: 10,2

0 10 20 30 40 50

C1: 3,91%
C2: 16,79%

C3: 20,48%
C4: 70,26%
C5: 70,53%

0% 20% 40% 60% 80% 100%

(c) Number of generated test data

C1: 09:25:15
C2: 02:08:19

C3: 01:59:51
C4: 00:52:44
C5: 00:48:25

00:00:00 02:00:00 04:00:00 06:00:00 08:00:00 10:00:00

C1: 6094
C2: 1622
C3: 1568

C4: 565
C5: 546

0 1000 2000 3000 4000 5000 6000 7000

C1: 6.63
C2: 6.77

C3: 6.93
C4: 5.87

C5: 5.93

5 5.5 6 6.5 7

C1: 45.13
C2: 13.83

C3: 13.1
C4: 10.63
C5: 10.2

0 10 20 30 40 50

C1: 3.91%
C2: 16.79%

C3: 20.48%
C4: 70.26%
C5: 70.53%

0% 20% 40% 60% 80% 100%

(d) Size of final test suite

C1: 09:25:15
C2: 02:08:19

C3: 01:59:51
C4: 00:52:44
C5: 00:48:25

00:00:00 02:00:00 04:00:00 06:00:00 08:00:00 10:00:00

C1: 6094
C2: 1622
C3: 1568

C4: 565
C5: 546

0 1000 2000 3000 4000 5000 6000 7000

C1: 6.63
C2: 6.77

C3: 6.93
C4: 5.87

C5: 5.93

5 5.5 6 6.5 7

C1: 45.13
C2: 13.83

C3: 13.1
C4: 10.63
C5: 10.2

0 10 20 30 40 50

C1: 3.91%
C2: 16.79%

C3: 20.48%
C4: 70.26%
C5: 70.53%

0% 20% 40% 60% 80% 100%(e) Number of searches (targeted optimization goals)

C1: 09:25:15
C2: 02:08:19

C3: 01:59:51
C4: 00:52:44
C5: 00:48:25

00:00:00 02:00:00 04:00:00 06:00:00 08:00:00 10:00:00

C1: 6094
C2: 1622
C3: 1568

C4: 565
C5: 546

0 1000 2000 3000 4000 5000 6000 7000

C1: 6.63
C2: 6.77

C3: 6.93
C4: 5.87

C5: 5.93

5 5.5 6 6.5 7

C1: 45.13
C2: 13.83

C3: 13.1
C4: 10.63
C5: 10.2

0 10 20 30 40 50

C1: 3.91%
C2: 16.79%

C3: 20.48%
C4: 70.26%
C5: 70.53%

0% 20% 40% 60% 80% 100%

(f) Success rate for performed searches

Figure 7. Measured variables of test data generation for model A, averaged
over 30 test data generation runs.

1055
959 959 955 955

52 52 58 5858

6 6 0 0

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Configuration

C1

Configuration

C2

Configuration

C3

Configuration

C4

Configuration

C5

Identified

Always-

Satisified CGs

CGs

Covered By

Search

Identified

Unsatisfiable

CGs

Uncovered

CGs

(a) Achieved coverage

C1: 14:23:57
C2: 01:17:22
C3: 01:08:07

C4: 00:16:23
C5: 00:11:37

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00

C1: 8126
C2: 891
C3: 864

C4: 110
C5: 98

0 2000 4000 6000 8000

C1: 0,00016%
C2: 0,00061%
C3: 0,00063%

C4: 0,00176%
C5: 0,00182%

0,0000% 0,0005% 0,0010% 0,0015% 0,0020%

C1: 9
C2: 8,3

C3: 7,6
C4: 7,3

C5: 7,5

6 7 8 9 10

C1: 59,87
C2: 9,13

C3: 8,03
C4: 13,57
C5: 13,9

0 10 20 30 40 50 60 70

C1: 3,12%
C2: 24,90%

C3: 32,12%
C4: 98,08%
C5: 98,53%

0% 20% 40% 60% 80% 100%

(b) Total runtime of required searches (hours:minutes:seconds)

C1: 14:23:57
C2: 01:17:22
C3: 01:08:07

C4: 00:16:23
C5: 00:11:37

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00

C1: 8126
C2: 891
C3: 864

C4: 110
C5: 98

0 2000 4000 6000 8000

C1: 0,00016%
C2: 0,00061%
C3: 0,00063%

C4: 0,00176%
C5: 0,00182%

0,0000% 0,0005% 0,0010% 0,0015% 0,0020%

C1: 9
C2: 8,3

C3: 7,6
C4: 7,3

C5: 7,5

6 7 8 9 10

C1: 59,87
C2: 9,13

C3: 8,03
C4: 13,57
C5: 13,9

0 10 20 30 40 50 60 70

C1: 3,12%
C2: 24,90%

C3: 32,12%
C4: 98,08%
C5: 98,53%

0% 20% 40% 60% 80% 100%

(c) Number of generated test data

C1: 14:23:57
C2: 01:17:22
C3: 01:08:07

C4: 00:16:23
C5: 00:11:37

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00

C1: 8126
C2: 891
C3: 864

C4: 110
C5: 98

0 2000 4000 6000 8000

C1: 9
C2: 8.3

C3: 7.6
C4: 7.3

C5: 7.5

6 7 8 9 10

C1: 59.87
C2: 9.13

C3: 8.03
C4: 13.57
C5: 13.9

0 10 20 30 40 50 60 70

C1: 3.12%
C2: 24.90%

C3: 32.12%
C4: 98.08%
C5: 98.53%

0% 20% 40% 60% 80% 100%

(d) Size of final test suite

C1: 14:23:57
C2: 01:17:22
C3: 01:08:07

C4: 00:16:23
C5: 00:11:37

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00

C1: 8126
C2: 891
C3: 864

C4: 110
C5: 98

0 2000 4000 6000 8000

C1: 9
C2: 8.3

C3: 7.6
C4: 7.3

C5: 7.5

6 7 8 9 10

C1: 59.87
C2: 9.13

C3: 8.03
C4: 13.57
C5: 13.9

0 10 20 30 40 50 60 70

C1: 3.12%
C2: 24.90%

C3: 32.12%
C4: 98.08%
C5: 98.53%

0% 20% 40% 60% 80% 100%(e) Number of searches (targeted optimization goals)

C1: 14:23:57
C2: 01:17:22
C3: 01:08:07

C4: 00:16:23
C5: 00:11:37

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00

C1: 8126
C2: 891
C3: 864

C4: 110
C5: 98

0 2000 4000 6000 8000

C1: 9
C2: 8.3

C3: 7.6
C4: 7.3

C5: 7.5

6 7 8 9 10

C1: 59.87
C2: 9.13

C3: 8.03
C4: 13.57
C5: 13.9

0 10 20 30 40 50 60 70

C1: 3.12%
C2: 24.90%

C3: 32.12%
C4: 98.08%
C5: 98.53%

0% 20% 40% 60% 80% 100%

(f) Success rate for performed searches

Figure 8. Measured variables of test data generation for model B, averaged
over 30 test data generation runs.

319

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

64-bit. Our Java-based tool TASMO was run using version
7 of the Java Runtime Environment in connection with
Matlab/Simulink 2009b and TargetLink 3.1.

In the following sections, the results of the case study are
presented. First, we analyze the results with regard to each
preprocessing technique separately. Then, we assess the use
of our preprocessing techniques as a whole.

A. Analysis of SIA

As visible in Figure 7a for C2, SIA identified 33 unsatis-
fiable CGs for model A, of which 8 were identified by SIA’s
loop analysis. In addition, 69 CGs from a total of 107 CGs,
which are always satisfied independent of the chosen input
data, were identified by SIA. All those CGs were excluded
from subsequent search processes. As for model B, 58 CGs
are unsatisfiable, of which 52 were identified by SIA (6 by
its loop analysis), as can be seen for C2 in Figure 8a. For
model B, SIA also identified 96 CGs from a total of 100 CGs
that are always satisfied. Note that the other always-satisfied
or unsatisfied CGs were identified by CGSeq.

In order to evaluate the effect of preprocessing the test
data search with SIA, C1 and C2 are analyzed. The model
coverage achieved by a configuration is used to measure for
effectiveness of a configuration. C1 was able to generate
test data for model A with a coverage of almost 93% (95%
for model B). While introducing SIA in C2 did not lead
to higher coverage, as can be seen in Figures 7a and 8a, it
certainly improved the efficiency of the automated test data
generation process. As the statistics for model A in Figure
7b show, the runtime of all performed searches together was
reduced by 77% (from 9:25 hours for C1 to 2:08 hours for
C2). For model B, the runtime was even reduced by 91%
(from 14:24 hours for C1 to 1:17 hours for C2, see Figure
8b). The runtime of SIA itself, which is not included in the
values displayed in Figures 7b and 8b, was about 5 minutes
for model A and 15 seconds for model B. In large part,
SIA’s runtime was caused by its loop analysis feature.

In C2, test data was only generated for CGs that were
not identified as unsatisfiable. While the test data generation
process of C1 for model A was targeting about 45 CGs
directly by search (about 60 for model B), only 14 (9 for
model B) were targeted by C2 (see Figures 7e and 8e). The
number of searches that were carried out additionally by
C1 is approximately as high as the number of unsatisfiable
CGs that SIA was able to identify. As a consequence of
C2 targeting less CGs, less test data was generated overall,
as displayed in Figures 7c and 8c. Since C1 performed
searches for unsatisfiable CGs without any hope for success,
the portion of successfully tackled CGs is naturally higher
for C2 in comparison to C1 (see Figures 7f and 8f).

B. Analysis of SDA

Using SDA, the search processes of C3 and C5 were
ignoring irrelevant inputs during input data optimization.

According to the preprocessing analysis carried out by SDA,
on average, 4.18 of model A’s 12 inputs turned out to be
relevant for reaching one of the CGs (6.58 of 16 inputs
for model B). Considering only the CGs that were targeted
in C3, 6.48 of the 12 inputs of model A, on average, are
relevant (12.06 of 16 for model B). For C5, the average
value is 4.71 (model A) and 7.85 (model B), respectively.
These values reflect the effective search space reduction due
to the use of SDA.

Comparing the coverage results of C3 with those of C2,
as well as C5 with C4, the introduction of SDA to the
automated test data generation process for model A led to
slightly higher coverage (see Figure 7a). One coverage goal
that was only covered seldomly by the other configurations
was always covered with SDA being activated. This obser-
vation is backed up by the increased rate of successfully
finished searches for C3, as visible in Figure 7f. In case of
model B, C1 managed to cover as many CGs as C2.

The use of SDA reduced the overall runtime of the
searches by 7% for model A (from 2:08 hours for C2 to
1:59 hours for C3) and 12% for model B (from 1:17 hours
for C2 to 1:08 hours for C3), as visible in Figures 7b and
8b. For both models, the runtime of SDA itself was only
about one second. Due to focusing solely on relevant model
inputs, the searches for a few targeted CGs finished slightly
quicker. Accordingly, less test data was generated, as can be
seen when comparing C3 with C2 in Figures 7c and 8c.

C. Analysis of CGSeq

Note that during CGSeq, another 38 always-satisfied CGs
were identified for model A in addition to 69 such CGs
that were already identified by SIA (107 in total as shown
in Figure 7a). Likewise, 4 additional always-satisfied CGs
were identified by CGSeq for model B, resulting overall
in 100 such CGs (see Figure 8a). All these CGs were
considered as covered and were excluded from the test data
generation process since any test data in the generated test
suite would satisfy them. For model B, CGSeq even found
another 6 unsatisfiable CGs, in addition to 52 unsatisfiable
CGs identified by SIA (see Figure 8a).

Using CGSeq prior to the test data search (as done in C4)
did not increase the total model coverage (compared to C2),
as apparent in Figures 7a and 8a. However, the runtime of the
search was reduced by 59% for model A (from 2:08 hours
for C2 to 52 minutes for C4) and 79% for model B (from
1:17 hours for C2 to 16 minutes for C4) due to introducing
CGSeq in the test data generation process, as visible in
Figures 7b and 8b. Similar to SIA and SDA, CGSeq itself
did turn out to be reasonable in terms of computation time.
Running CGSeq took only about 16 seconds for model A
and 20 seconds for model B on average.

Due to targeting more promising (e.g., non-boolean) goals
first, the portion of successfully tackled searches was higher
(see Figures 7f and 8f) and less test data had to be generated

320

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(see Figures 7c and 8c). For model A, less searches were
performed (compare C4 and C2 in Figure 7e) and the
automated test data generation process resulted in smaller
test suites (see Figure 7d) since CGSeq prioritizes goals
with potentially high collateral coverage. While the size of
the resulting test suite was also reduced when activating
CGSeq for model B (compare C4 and C2 in Figure 8d),
more searches were performed (see Figure 8e). This might
be surprising at first sight. However, it demonstrates how the
test data generation process becomes more target-oriented
when using CGSeq. In C2, a lot of CGs that are difficult to
approach for the search algorithm were targeted. Plenty of
test data was generated in the course of this and as a side
effect, many CGs were covered rather coincidentally.

D. Combined Analysis

In summary, all three preprocessing techniques have
demonstrated their usefulness to automated test data gen-
eration for SL/TL models. The case studies have shown
that SIA is able to raise the test data generation’s efficiency
significantly, due to exclusion of unsatisfiable CGs. SDA
pointed out its capability to raise both effectiveness and
efficiency by turning the focus of the search for input data
on relevant model inputs. CGSeq improved the efficiency
considerably by advising the test data search to preferably
target CGs for which a suitable fitness function is derivable,
and which entail high collateral coverage. In addition, the
runtime of all three preprocessing techniques was vanish-
ingly low compared to the runtime of a subsequent test data
search. Thus, we conclude that their use comes without any
significant negative side effects.

Running all three prepocessing techniques in combina-
tion, as done in C5, indicates that the advantages of each
technique also complement each other suitably. While in
C3, only SIA and SDA, and in C4, only SIA and CGSeq
were combined, the combination of all of them led to a
further reduction of the search runtime of 8% for model
A and 29% for model B (see Figures 7b and 8b). Even
though the improvement in terms of runtime, as well as
number of generated test data, performed searches, and ratio
of successful searches, is only small (see Figure 7), C5 came
out on top of all configurations for both effectiveness and
efficiency of the automated test data generation, in case of
model A as well as in the case of model B.

The case study also demonstrates the practicability and
feasibility of search-based test data generation for SL/TL
models, if extended by static preprocessing such as the
presented ones. In particular, even if no automated test
oracle is available to evaluate the generated test suite’s
conformance to the specification, and the test suite thus
needs to be analyzed manually under a functional aspect, the
case study has shown that the applied test data generation
approach can lead to relatively small test suites, making
a manual analysis feasible. Note that applying test suite

minimization techniques might further reduce the size of
the obtained test suites.

Further improvements and extensions of the applied test
data generation technique might increase its performance to
industrial SL/TL models even more. We investigated, for
instance, why certain CGs of model A were not covered at
all during the case study. It turned out that 8 CGs (of 10
uncovered ones, see Figure 7a) are unsatisfiable and neither
SIA nor CGSeq were able to identify this circumstance;
mainly due to block types in the chosen model for which the
preprocessing techniques did not offer a specific handling.
The two satisfiable, yet uncovered CGs left, were found to
be difficult to solve by the search-based algorithm. Further
guidance, for instance, by advanced fitness functions, is
required to facilitate the search to reach such CGs. Nev-
ertheless, the work presented in this paper turned out to be
a big step forward towards industrial applicability of search-
based automation of structural testing for SL/TL models.

VI. RELATED WORK

Besides search-based testing, as introduced in Section II,
a few other approaches have been applied or proposed for
automating structural test data generation for SL models. In
general, the approaches can be classified as dynamic, static
or hybrid techniques. Dynamic techniques, such as search-
based test data generation, execute the test object during test
data generation. Static techniques however, analyze the test
object without executing it in order to generate test data.
Hybrid techniques usually contain characteristics of both
dynamic and static techniques. Our approach mainly utilizes
a dynamic technique, but could also be classfied as a hybrid
approach since it is combined with static techniques.

In the field of structural test data generation for SL, the
following dynamic techniques have been applied: search-
based testing and random testing. Case studies of Windisch
have shown that search-based testing outperforms random
testing for structural testing of SL models [8]. As for static
techniques, the use of symbolic execution/constraint solving
and model checking has been reported in the SL context.
Gadkari et al. developed an approach called AutoMOTGen
[26], which involves the transformation of SL/SF models
into a representation of the high-level language SAL and
the use of a model checker for generating test data [27].
While the authors encountered promising results, they were
also faced with technical limitations of their approach,
particularly scalability issues. Păsăreanu et al. use symbolic
execution and constraint solving in order to generate test
data for SL models [28]. They also transform the model
first - in their case, into Java code. The tool Symbolic
PathFinder is then used to generate test data. However, their
reports indicate that this approach suffers from scalability
issues. Satpathy et al. developed REDIRECT, which applies
concolic testing to the test data generation problem for SL
[29]. Similar to the work of Gadkari et al., they transform

321

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SL/SF models to SAL first. Concolic testing extends test data
generation via symbolic execution and constraint solving by
random testing. REDIRECT could also be classified as a
hybrid approach. The authors document satisfying results,
however, the SL models used in their case studies focus
on SF diagrams and are much smaller than the ones used
in this work. Peranandam et al. went along a similar path
and combined random testing, constraint solving, model
checking, and heuristics in their test data generation tool
SmartTestGen for SL/SF models [30]. SmartTestGen uses
a classification algorithm that statically estimates which of
the listed techniques is likely to cover the coverage goal
in question and therefore applies it for test data generation.
The authors conclude that a case-specific use of different
test data generation techniques is advantageous to master-
ing the complexity of industrial-sized SL models and the
heterogeneity of their test data generation problems.

Commercial tools for structural test data generation for
SL models are available as well. Reactis [31] from Reac-
tive Systems, T-VEC [32] from T-VEC Technologies, and
Simulink Design Verifier [33] from The MathWorks are
common tools for this job. Only little is published about how
these tools generate test data. Windisch [8] asserted that all
these tools use randomized test data generation in some way.
While Reactis combines this basic technique with guided
simulations, T-VEC with symbolic execution and constraint
solving, and Simulink Design Verifier with static analysis, the
details of their implemented techniques remain unknown.

While dynamic approaches might face efficiency issues at
times, as described for search-based testing in Section II-C,
or have difficulties covering certain structural goals, as in
the case of randomized test data generation, purely static
approaches seem to lack scalability. As demonstrated in this
paper, we believe in the potential of hybridization, i.e., the
extension of dynamic test data generation techniques with
static techniques. Since search-based test data generation is
basically advanced randomized test data generation, which is
used as a basic technique in various approaches and tools, we
continue following the search-based testing path. Note that
our prototypical tool TASMO is also applying different test
data generation strategies, such as constraint solving, when
a CG is suitable. This option was deactivated during the
case studies presented in this paper though. More generally,
the presented static preprocessing techniques are even usable
independent of the choice of test data generation technique.
Identifying unsatisfiable CGs, focusing on relevant model
inputs, and generating an order of satisfiable CGs for ef-
ficient processing, is also advantageous when the test data
is generated by randomization, constraint solving, or hybrid
techniques.

VII. CONCLUSION AND FUTURE WORK

This paper introduces an approach to improving the per-
formance of search-based testing when applied to structural

testing of SL models. Three static techniques extend the
standard search-based approach by analyzing the model
under test before the search processes for each CG are run.
Unsatisfiable CGs are partially identified and excluded from
the search. The search space is reduced in such a way that the
search focuses solely on relevant model inputs. The separate
search processes for each CG are sequenced in order to
maximize collateral coverage, minimize test suite size, and
shorten the overall search runtime.

A tool prototype that demonstrates the applicability of
the extended search-based approach in industry has been
developed. A case study with two industrial SL/TL models
from the automotive domain has been performed, demon-
strating how the presented preprocessing techniques improve
the search-based test data generation approach. In partic-
ular, efficiency was raised distinctly. The use of all three
techniques in combination led to a reduction of over 90%
in the runtime otherwise required for search-based test data
generation without the use of any of these techniques.

Despite satisfactory results, further adaption of the tool to
industrial requirements is required, e.g., improved support of
SL/TL blocks and SF diagrams by the presented static pre-
processing techniques. Our next main step is to work on an
expanded hybridization of the test data generation process.
Besides integrating constraint solving techniques, we plan on
using different types of search algorithms in combination,
while factoring more information collected during model
execution into the (hybridized) search algorithm. Finally, a
broader comparison of the approach and tool, in particular
with established commercial tools, is required.

REFERENCES

[1] B. Wilmes, “Automated structural testing of Simulink / Tar-
getLink models via search-based testing assisted by prior-
search static analysis,” in VALID 2012, The Fourth Inter-
national Conference on Advances in System Testing and
Validation Lifecycle, 2012, pp. 51–56.

[2] The Mathworks, “Matlab Simulink,” Last access: 2013-08-16.
[Online]. Available: http://www.mathworks.com

[3] dSpace, “Targetlink,” Last access: 2013-08-16. [Online].
Available: http://www.dspace.com

[4] P. McMinn, “Search-based software testing: Past, present and
future,” in IEEE 4th International Conference on Software
Testing, Verification and Validation Workshops, ser. ICSTW
’11, 2011, pp. 153–163.

[5] B. Wilmes, A. Windisch, and F. Lindlar, “Suchbasierter Test
für den industriellen Einsatz,” in 4. Symposium Testen im
System- und Software Life-Cycle, 2011.

[6] Y. Zhan and J. A. Clark, “A search-based framework for
automatic testing of MATLAB/Simulink models,” Journal of
Systems and Software, vol. 81, no. 2, pp. 262–285, Feb. 2008.

322

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] A. Windisch, “Search-based testing of complex Simulink
models containing Stateflow diagrams,” in 31st International
Conference on Software Engineering, 2009, pp. 395–398.

[8] A. Windisch, “Suchbasierter Strukturtest für Simulink Mod-
elle,” Ph.D. dissertation, Berlin Institute of Technology, 2011.

[9] W. Miller and D. L. Spooner, “Automatic generation of
floating-point test data,” IEEE Transactions on Software En-
gineering, vol. 2, no. 3, pp. 223–226, May 1976.

[10] B. Korel, “Automated software test data generation,” IEEE
Transactions on Software Engineering, vol. 16, no. 8, pp.
870–879, Aug. 1990.

[11] M. Harman and P. McMinn, “A theoretical and empirical
study of search-based testing: Local, global, and hybrid
search,” IEEE Transactions on Software Engineering, vol. 36,
pp. 226–247, 2010.

[12] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test
environment for automatic structural testing,” Information and
Software Technology, vol. 43, no. 14, pp. 841–854, 2001.

[13] A. Windisch and N. Al Moubayed, “Signal generation for
search-based testing of continuous systems,” in International
Conference on Software Testing, Verification and Validation
Workshops, ser. ICSTW ’09, 2009, pp. 121–130.

[14] T. E. Vos, A. I. Baars, F. F. Lindlar, P. M. Kruse, A. Windisch,
and J. Wegener, “Industrial scaled automated structural testing
with the evolutionary testing tool,” in Proceedings of the
3rd International Conference on Software Testing, Verification
and Validation, ser. ICST ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 175–184.

[15] P. McMinn, M. Harman, D. Binkley, and P. Tonella, “The
species per path approach to search based test data genera-
tion,” in Proceedings of the 2006 International Symposium on
Software Testing and Analysis (ISSTA), ser. ISSTA ’06. New
York, NY, USA: ACM, 2006, pp. 13–24.

[16] Y. Zhan and J. A. Clark, “The state problem for test
generation in Simulink,” in Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation. New
York, NY, USA: ACM, 2006, pp. 1941–1948.

[17] A. Goldberg, T. C. Wang, and D. Zimmerman, “Applications
of feasible path analysis to program testing,” in Proceedings
of the International Symposium on Software Testing and
Analysis, ser. ISSTA ’94. New York, NY, USA: ACM, 1994,
pp. 80–94.

[18] Y. Wang, Y. Gong, J. Chen, Q. Xiao, and Z. Yang, “An
application of interval analysis in software static analysis,” in
Proceedings of the 2008 IEEE/IFIP International Conference
on Embedded and Ubiquitous Computing, ser. EUC ’08,
vol. 2. Washington, DC, USA: IEEE Computer Society,
2008, pp. 367–372.

[19] R. E. Moore, Interval Analysis. Prentice-Hall, 1966.

[20] P. McMinn, M. Harman, K. Lakhotia, Y. Hassoun, and J. We-
gener, “Input domain reduction through irrelevant variable
removal and its effect on local, global, and hybrid search-
based structural test data generation,” IEEE Transactions on
Software Engineering, vol. 38, pp. 453–477, 2012.

[21] R. Reicherdt and S. Glesner, “Slicing Matlab Simulink mod-
els,” in 34th International Conference on Software Engineer-
ing, 2012, pp. 551–561.

[22] G. Fraser and A. Arcuri, “Evolutionary generation of whole
test suites,” in 11th International Conference on Quality
Software, 2011, pp. 31–40.

[23] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo,
“Optimizing for the number of tests generated in search
based test data generation with an application to the oracle
cost problem,” in 3rd International Conference on Software
Testing, Verification, and Validation Workshops, ser. ICSTW
’10, 2010, pp. 182–191.

[24] J. J. Li, D. Weiss, and H. Yee, “Code-coverage guided prior-
itized test generation,” Information and Software Technology,
vol. 48, no. 12, pp. 1187–1198, 2006.

[25] B. Wilmes, “Toward a tool for search-based testing of
Simulink/TargetLink models,” in 4th Symposium on Search
Based Software Engineering (Fast Abstracts). Fondazione
Bruno Kessler, 2012, pp. 49–54.

[26] A. A. Gadkari, A. Yeolekar, J. Suresh, S. Ramesh, S. Mohalik,
and K. C. Shashidhar, “AutoMOTGen: Automatic model
oriented test generator for embedded control systems,” in Pro-
ceedings of the 20th International Conference on Computer
Aided Verification, 2008, pp. 204–208.

[27] A. A. Gadkari, S. Mohalik, K. Shashidhar, A. Yeolekar,
J. Suresh, and S. Ramesh, “Automatic generation of test-cases
using model checking for SL/SF models,” in Proceedings of
the 4th Model-Driven Engineering, Verification and Valida-
tion Workshop, 2007, pp. 33–46.

[28] C. S. Păsăreanu et al., “Model based analysis and test
generation for flight software,” in Proceedings of the 3rd IEEE
International Conference on Space Mission Challenges for
Information Technology, 2009, pp. 83–90.

[29] M. Satpathy, A. Yeolekar, and S. Ramesh, “Randomized di-
rected testing (REDIRECT) for Simulink/Stateflow models,”
in Proceedings of the 8th ACM International Conference on
Embedded Software, 2008, pp. 217–226.

[30] P. Peranandam, S. Raviram, M. Satpathy, A. Yeolekar,
A. Gadkari, and S. Ramesh, “An integrated test generation
tool for enhanced coverage of Simulink/Stateflow models,”
in Proceedings of the Conference on Design, Automation and
Test in Europe, 2012, pp. 308–311.

[31] Reactive Systems, “Reactis,” Last access: 2013-08-16.
[Online]. Available: http://www.reactive-systems.com

[32] T-VEC Technologies, “T-VEC Tester for Simulink and
Stateflow,” Last access: 2013-08-16. [Online]. Available:
http://www.t-vec.com/solutions/simulink.php

[33] The Mathworks, “Simulink Design Verifier,”
Last access: 2013-08-16. [Online]. Available:
http://www.mathworks.de/products/sldesignverifier

323

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Sick But Not Dead Failures -
Adaptive Testing, Evaluation and Design Methodologies

Tara Astigarraga
1
, Michael Browne

2
,

Lou Dickens

3
, and Ian MacQuarrie

4

Systems and Technology Group

IBM
1
 Rochester, NY 14626

2
 Poughkeepsie, NY 12601

3
 Tucson, AZ 85744

4
 San Jose, CA 95134

{asti, browne, dickens, imacq}@us.ibm.com

Abstract- Enterprise data center implementations make

significant investments in high availability configurations,

redundant hardware, software and Input / Output (I/O) paths

that are in many failure scenarios quite successful. However, in

spite of all that investment clients are still facing unexpected

outages and performance impacts related to a phenomenon

referred to as Sick but not Dead (SBND) errors. SBND errors

are sometimes lumped together in a category with other related

errors including transient errors, partial failure scenarios and

soft errors. While SBND errors do have many common

characteristics with the errors described above, there are key

differences and environment impacts which we will explore

further in this paper. We will also present new proactive

techniques, inject scenarios and methods to identify, characterize

and address SBND failures including cross-component impacts

and failures.

Keywords- Software Testing, Sick but not Dead, Software

Engineering, Partial Failure, Transient Error, Soft Failure, SAN

Test, Storage Area Network Test, System Test.

I. INTRODUCTION AND MOTIVATION

Despite high availability (HA) configurations, failures are

still occurring that are impacting customer environments.

Impacts range from varying degrees of performance

degradation to complete multi-system outages that often cause

enterprise level business outages for extended periods of time.

When these types of failures escalate to enterprise level loss of

data access events the data verification time for these events

can be lengthy and involve numerous business and

information technology staff long after the error condition is

resolved [1].

 The type of failure leading to these impacts is one that

exhibits a temporary and reoccurring behavior. Meaning errors

are being recovered at various points within the system,

however, the errors continue to occur at varying rates. We

classify these errors as Sick but not Dead (SBND) failures.

These errors are often the hardest failures to identify and can

have sporadic but lasting impacts on the environment as a

whole. SBND failures currently represent 80% of business

impact, but only about 20% of the problems [2].

SBND errors are sometimes lumped together in a category

with other related errors including transient errors, partial

failure scenarios and soft errors. While SBND errors do have

many common characteristics with the errors described above,

there are key differences as well. SBND errors by definition

derive from a component within the I/O path that is ‘sick’

meaning behaving in an unorthodox or partially failed fashion

but not completely ‘dead’ or hard failed. Depending on the

component exhibiting the SBND characteristics, the symptoms

can vary, come and go at different intervals and persist for an

extended period before the component eventually reaches a

hard fail state or would otherwise persist indefinitely if not for

manual intervention. It is this in-between time when the

component is defined as SBND.

While there have been examples of the industry trying to

address this problem proactively with technologies like IBM’s

Predictive Failure Analysis and S.M.A.R.T monitoring which

has been incorporated in ANSI INCITS T13 Technical

Committee, the problems still persist at both the device and

system level [3]. Many of the predictive technologies in place

today have some obvious constraints. Inherent in a new

technology is the lack of experience in being able to correlate

performance and calibration data with a reasonable

expectation of a failure. It takes technology providers a fair

amount of time and maturing of a technology to be able to

make reasonable correlations. This increases the opportunity

for SBND failures during this maturing time frame. The

S.M.A.R.T monitoring standard has a requirement to reset all

counters to zero after a firmware modification which may or

may not address a component that has or is about to exhibit

SBND behavior. The prediction of a failure is in opposition to

the economic needs of vendors to not replace components too

early under vendor warranty periods. Vendor warranty costs

can be increased if the prediction is too opportunistic. These

and similar factors and constraints at the component level

make it very difficult to design away the SBND failures. At a

system level, the holistic environment needs to be able to

encounter these conditions with reasonable robustness such

that the environment does not degrade to an outage situation.

To adequately system test a complex environment SBND

errors and scenarios need to be designed and injected into

complex environment testing and holistic test observations and

evaluations need to be made to determine if the complex

environment is robust enough for its intended use.

324

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Complex customer solutions and environments utilizing

mixed vendor products and technologies create textbook

scenarios for SBND failures to occur. Many products are

intolerant of errors from other devices, and although most

products respond promptly to hard failure conditions they are

much slower to respond to SBND conditions and often do not

deploy logic necessary to even detect SBND conditions. With

current field solutions, problem determination related to

SBND failure scenarios is complex, time consuming and often

requires special problem determination lab trace tools and a

team of cross-vendor product and solution experts. Current

resolutions to SBND failure scenarios are almost always

reactive vs. proactive.

One of the common areas for this reactive approach to

SBND errors in the I/O path are in the area of multi-pathing

function inside or in the I/O code stack for devices. It is

typical for a situation to arise in the field that was ultimately

caused by a particular SBND failure resulting in an

undesirable system level behavior. Almost all multipath

software providers have provided documented fixes for these

types of failures. An example of a very common multipath

driver scenario involving a SBND scenario is having multiple

paths across two Storage Area Network (SAN) fabrics where a

SBND failure is occurring in one fabric and the multipath

software detects a timeout in that fabric. The driver then

resends the transaction on another path. The driver then tests

the first path finds it available and sends the next transaction

down that path which then results in a delayed I/O response

which then times out and the multipath software resends the

transaction down the good path. When this happens repeatedly

the upper level applications like a database start showing

severe performance degradations. Fixes were made to the

specific Novell SUSE-2011:7794 recommended update with a

fix description of 679309: repeated use of flaky paths in

multipath module causing performance issue. While this

specific example is on a particular product it is the experience

of the authors that most multipath software products or

functions have had similar fixes generated due to problems

encountered in the field. Vendors are working at design time

to try an address these situations. For example some vendors

have added policy parameters to their multipath software that

use a MRU (most recently used) policy to prevent port

flapping but eventually have to put the offending path back

online if the most recently used path hard fails and then the

bad path becomes the most recently used path and the situation

can accelerate to a data loss of access event. If the real

problem is downstream in an inter-switch link (ISL) the

problem will appear to move around making it more difficult

to detect correctly and for a multipath software function to

behave as needed.

In our system test and SAN labs we have been developing

new proactive techniques, protocol inject scenarios and

methods to identify, characterize and address SBND failures

including cross-component impacts and failures across the I/O

path.

A thoughtful and holistic approach is needed in designing

these tests. A test engineer can easily create failure scenarios

that will never happen or that nothing will be reasonably able

to recover from. If the test design does not take these factors

into account the test engineer will create scenarios that no

development group would agree to develop fixes for. It is

therefore critical that test engineers have a very good

understanding of multiple components and when things like

speed changes occur in the hardware or firmware that may

alter the amount of time in either direction for a SBND

scenario to occur. Most of the time, these changes and their

potential impacts are not explicitly called out in a typical

design document. An innocent statement like changed

scanning frequency in the firmware to reduce latency could

significantly change an error detection rate or behavior

somewhere else in the stack of software and firmware.

Our current research related to SBND defects reported

shows that the highest number of SBND problems exists along

the I/O path. While related problems do occasionally exist

within specific internal sever paths they are significantly less

frequent, easier to debug and typically contained to a single

server and handled via embedded HA mechanism.

Systems generally behave properly when failures are solid

or hard failures. It is when components act SBND that system

availability is often at risk. In these scenarios failover or

recovery mechanisms often do not behave as we should expect

them to. Often times the problems are corner cases where they

are not easily reproducible and hard to trouble shoot, but

continue to plague customer environments. It should also be

noted that SBND problems are not something that occur in a

particular vendor or product set, but rather a system level

event that occurs when one (or more) component(s) in the

environment does not always behave consistently. Since the

problem does not relate to a particular vendor or component

issue it is not a simple fix but rather a system level event that

must be fully understood, tested and addressed by all vendors

in a distributed systems SAN environment.

The focus of this paper will be on SBND failures related to

the I/O path in distributed systems Fibre Channel (FC) SAN

and Fibre Channel over Ethernet (FCoE) environments. In

this paper we will better define and characterize SBND

failures, explain the impacts they can have on complex

customer environments and introduce new testing techniques

and injections we have deployed in our system test labs. We

will also explain the methods used to evaluate the

effectiveness of error recovery related to SBND conditions.

II. FAILURE TYPES AND CLASSIFICATIONS [4]

Traditionally, network path failures are viewed as falling

into one of two categories, “permanent” and “temporary”.

Perhaps the most well understood and easiest to manage are

the permanent failures which result from a catastrophic failure

of a network component. These failures are typically persistent

failures where all commands routed to the failing path(s) will

fail. Commands are recovered through retry down alternate

paths and the failing paths are permanently removed from

service.

325

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The second category of failure is temporary and transient in

nature. These failures can arise from numerous sources

including bit flips in electronics due to alpha particle or

cosmic rays, as well as electrical noise from intermittent

contacts and code defects to name a few. These can produce

temporary command failures which are recovered through a

single retry operation. These tend to be isolated events,

handles via low level recovery and thus most often go

completely undetected.

Both of these traditional failure categories are handled well

by existing multipath drivers available in the industry today

and in fact rarely result in any adverse effects on the operation

of the system.

Unfortunately, as the speed and complexity of high speed

networks has and continues to increase over time a third

category of SBND failures has emerged. These failures are

also temporary like the second category; however, in addition

to being temporary they are also recurring at varying rates.

These SBND failures can arise from marginal components or

components and network routes that are insufficiently sized or

over subscribed for the volume of network traffic present.

Often times these failures are provoked by secondary

conditions such as an instantaneous increase in network traffic

or a convergence of network traffic. These types of conditions

can reduce the quality of a network path(s) resulting in a

propensity for them to produce temporary failures. SBND

failures are very difficult for the server’s multipath driver to

detect and typically require an independent monitoring system,

therefore, for the driver is impeded from taking action to

eradicate the fault and, therefore, the condition to persist for an

extended period of time. In many cases the fault persists

indefinitely or until manual intervention is performed. SBND

failure conditions often drive recursive error recovery by the

attached servers which leads to symptoms ranging anywhere

from moderate performance degradation to complete system

outage.

A further complication of this third category of failure is its

difficulty to isolate and resolve. Since commands from servers

to storage traverse a large number of switches and links the

precise component or conditions responsible for the failures

are difficult to identify. Additionally, the underlying problem

cannot be contained within the network itself and in most

cases the network is not capable producing actionable fault

indications that would enable prompt response and resolution

from the network administrator.

The existing multipath drivers in use today are not capable

of adequately handling this intermittent/recurring failure

condition. For the most part all multipath drivers behave in a

similar fashion in that they detect and take action on what is

seen as individual and disparate events. Path management

functions to remove and return paths to service are determined

based on the outcome of these individual events.

For example, when a command failure is encountered the

recovery action involves a retry operation on the same or

alternate path. If one or more subsequent command operations

fail on the same path, depending on the thresholds in place, the

path will be determined to have failed and the path will be

removed from service (first failure category described above is

assumed). If subsequent commands are successful the error

will often be considered temporary (second failure category

described above is assumed) and the path will remain in

service. Most multipath software also includes a path

reclamation function that periodically tests the availability of

each path through the network. If the path test is successful on

a path that had previously been removed from service that path

will be placed back in service. In response to the

intermittent/recurring failure the multipath driver will either

leave the failing path in service or remove the failing path

from service only to return it to service a short time later

following a successful completion of the path test performed

by the path reclamation function. A behavior often observed as

a result is continuous cycling of paths between offline and

online states. It can be seen that based on the application of

such logic for both removing and returning paths to service

that the implementation of the current multipath drivers are

not capable of responding appropriately to SBND failure

conditions and, therefore, will not be effective at isolating

servers from the negative effects of this condition.

Because specific components and/or conditions associated

with these types of SBND failures in the network are often

difficult to isolate, the ability to automatically detect and

respond to these failures from within the multipath driver is

critically important and in fact essential to maintaining a high

quality of service.

III. COMMON CHARACTERISTICS OF SBND FAILURES

Most SBND failures are not obvious product failures.

Often when problem determination begins all individual

products in the environment appear ‘healthy’ and existing

internal diagnostics are not reporting any serviceable events.

Even error log reviews often come up clean, making problem

determination very difficult. SBND problems by definition

are transient errors, meaning network component or a product

is temporarily misbehaving, making the side-effects or

symptoms in an environment often appear and disappear.

SBND failures are frequently first noticed at the application

and/or database layer and are most often initially reported by

the customer. The tables below lists the most common impact

symptoms and characteristics displayed when SBND failures

are encountered.

 TABLE I. COMMON SBND IMPACT SYMPTOMS

Moderate to severe performance degradation

occurring at sporadic intervals or sustained

Transaction queuing and timeouts

Application abends

HA node failovers

Jobs running longer than usual

Mirror or replication times exceeding Service Level

Agreements

326

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. COMMON SBND CHARACTERISTICS

Not an obvious product failure, individual products in

the environment appear ‘healthy’ even after detailed

internal dump analysis at highest levels of product

support

Fault tolerance mechanisms not seeing errors and

don’t react.

Hard for software and monitoring products to detect,

internal diagnostics often do not find anything

Symptoms often appear and disappear

Symptoms often amplify over time

Note: the two tables above were compiled using defect data

from problems that were encountered in the IBM system test

labs and the IBM field support group from 2010 through

2013.

One might fail to realize the size and/or scope of a SBND

failure, by examining the symptoms alone. This is because

SBND failures commonly create a sympathy sickness

throughout the entire network. Sympathy sickness is when a

single device or condition in one part of a network impairs the

performance of other devices or other parts of the network.

The list below details the most common contributors to SBND

failures:

A. Flaky adapter cards and interface modules

Adapter cards and interface modules often do not hard

fail. Instead they degrade over an extended period of time

producing 1000’s of bit errors in the process.

Thus a single bad SFP or adapter card in an E-port, can

affect the performance of 100’s or 1000’s of initiators that

have their frames transported over the inter-switch link (ISL).

A recent study by researchers at the University of Illinois at

Urbana Champaign and NetApp Inc. suggests that the majority

of failures in data storage system/sub-system are not caused by

disk failures, but are being caused by link errors

[5]. The study

asserts that up to 80% of the storage system failures are not in

the disks at all. The authors surveyed approximately 39,000

storage systems with 155,000 enclosures containing roughly

1.8 million disks over a period of 44 months. During that

period only between 20% and 50% of the disk system failures

were due to the disk drives. The rest came from other causes,

most notably SAN component interconnection problems [5].

B. Dirty connections and cables

Contaminated connectors and/or interface modules

introduce bit errors as traffic rates increase. A link may

operate with an acceptable bit error rate until such time as it is

loaded down. This anomaly makes dirty connections/cables

especially difficult to isolate and identify. In an article written

by Steve Lytle from JDSU entitled “Fiber Connector

Cleanliness Overcoming a 'Dirty Little Secret',” Steve says,

“More than 75 percent of troubleshooting in optical networks

results from dirty fiber connectors, a stunning fact first learned

by high data rate equipment manufacturers, and later by

transport installation teams in the telecom sector. Many in the

cable industry may find this surprising, but the problem exists

and is quickly becoming intolerable as fiber networks expand”

[6].

In 1990 equipment manufacturers were experiencing a

plague of dirty fiber connectors, which lead to the

establishment of a team of industry experts who performed

practical research within a group called iNEMI. This research

is now one pillar of a pending international standard that

prescribes inspection procedures and pass/fail criteria for

manufacturers and operators of fiber-optic networks (IEC-

61300-3-35) [7].

Figures 1 and 2 show the light loss and back reflections

that occur when there is contamination in a connector. These

two figures were created by iNEMI as part of their

investigation.

Figure 1. How contamination affect light loss [7]

When contamination is present light levels can be

dramatically reduced, as seen in Figure 1. Contamination

produces two undesirable side effects, 1) loss of light, 2)

reflections. The loss of light reduces the distance that two

ports can reliable communicate. Back reflections cause optical

resonance in the laser, which creates optical noise further

reducing the distance for reliable communication.

Figure 2. How contamination affects light signals [7]

Cisco, a leading network equipment manufacture, also

recognizes that contamination is a problem; they created an

Inspection and Cleaning Procedures for Fiber-Optic

Connections document in which they state “Any

contamination in the fiber connection can cause failure of the

component or failure of the whole system. Even microscopic

327

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

dust particles can cause a variety of problems for optical

connections. A particle that partially or completely blocks the

core generates strong back reflections, which can cause

instability in the laser system. Dust particles trapped between

two fiber faces can scratch the glass surfaces. Even if a

particle is only situated on the cladding or the edge of the

endface, it can cause an air gap or misalignment between the

fiber cores which significantly degrades the optical signal.

 A 1-micrometer dust particle on a single-mode core

can block up to 1% of the light (a 0.05dB loss).

 A 9-micrometer speck is still too small to see without

a microscope, but it can completely block the fiber

core. These contaminants can be more difficult to

remove than dust particles” [8].

Figure 3 shows JDSU’s recommendation for acceptable levels

of contamination, which is based on iNMEMI investigation

and years of experience in the test and measurement world.

Figure 3. JDSU’s Recommendation for Contamination [6]

C. Temporally exceeding the capacity limits of a port/device

Part of a SAN administrator’s job is to insure that network

capacity is never exceeded. Normally this is not a problem;

ports and/or devices that are communally operating at or near

their capacity are easily identified. Transient loads however

are different, they can only be detected while they are

occurring, which makes them very elusive.

When a port/device reaches its capacity one of two things

occur, 1) frames are dropped or, 2) frames are buffered until

such time as they can be delivered, which can produce

undesirable side effects including latency and bottlenecks.

When frames are dropped or discarded in the network it

often results in damaged SCSI exchanges which need to be

timed out, and subsequently aborted and re-driven by the host

device driver. This type of error recovery is very costly given

the read/write timeout interval for SCSI retry is in the 20 to 60

second range depending on operating system. Error recovery

for command timeouts is generally tolerated at the application

and database layers as long as they are transient events;

however, recursive recovery for command time-outs is rarely

sustainable even when occurring at what seem to be relatively

low rates.

Latency and bottlenecks both create back pressure on

other devices throughout the SAN. These devices are forced to

wait until the condition is resolved before they can resume

sending and/or receiving frames. If the wait is long enough

(typically 500ms) the switch will begin discarding frames in

an attempt to limit the scope of the impact and command time-

out recovery will be required on all damaged SCSI exchanges.

D. Buffer to buffer credit problems

A port must have buffer-to-buffer credit in order to

originate a frame. Ports without buffer-to-buffer credit are

forced to wait until such time as they receive a credit, which

creates latency, bottlenecks, and/or opportunity for time-out

conditions. There are a number of different circumstances that

can lead to buffer-to-buffer credit shortages, these

circumstances are listed below:

1) Long Links or High Latency Links:

All ports start out with an initial buffer-to-buffer credit

that is established during the login process. The default initial

buffer-to-buffer credit value is a median value that is adequate

under normal conditions. However, if the links are long or the

link has a high latency then the default initial buffer-to-buffer

credit values will not be adequate for this environment.

2) Lossy Links:

When a link is experiencing errors it corrupts the traffic

flowing over it (frames and primitives). When a Receiver

Ready (R_Rdy) or a Virtual Circuit Ready (VC_Rdy) is

corrupted in flight they are discarded by the recipient, which

result in a loss of credit. Over time these credit losses can slow

a link to a crawl and severely impact its performance.

3) Low Speed Device in a Critical position:

When higher speed devices are communicating with lower

speed devices buffer-to-buffer credit is used to throttle the

frame origination of the high speed device. Normally,

networks are configured such that low speed devices are not in

critical paths. However, in the event of a link failure a device

could be placed in a critical path by a routing protocol such as

Fabric Shortest Path First (FPFS).

E. Compatibility issues

All Fibre Channel equipment vendors have a support

matrix where they document tested and supported

configurations. Most vendors do a good job of keeping this

information current within the first several years of a products

life cycle, however, in time the information becomes

incomplete and even misleading, which can result in

interoperability issues that can negatively impact performance

and/or availability. Additionally, vendor provided migration

paths from aging legacy hardware to newer offerings can also

introduce some risk. Many of the methods and functions used

to provide a migration path such as "switch interoperability

mode" do not receive the same level of testing across the full

range of configurations and conditions as best of bread

environments and therefore are at higher risk of encountering

defects. Moreover, configurations intended primarily to be

328

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

used to facilitate migrations often end up being a permanent

part of the environment which can further compromise

availability.

IV. EMERGING FACTORS

The incident rate for the SBND category of conditions has

been on the rise since SANs were initially introduced in the

early 1990s. This has occurred as a result of a multitude of

influencing factors: (1) Incremental increases in the speed of

network ports and devices have placed a higher demand on the

quality of the transport layer. Higher speed networks have a

higher sensitivity to degradations in link and device quality

which can result in transmission failures. (2) Incremental

increases in server capacity to drive IOPs made possible by

advancements in processor and bus speeds increases the

potential to drive port and device utilization beyond their

reliable limits. (3) Increases in port and device utilization have

also occurred due to increases in I/O density brought about by

the increasing use of virtualization of both servers and storage.

(4) Added complexity of SAN topologies associated to speed

matching required for maintaining legacy hardware, multi-site

replication architectures, as well as the sheer scale of networks

resulting from growth.

Additionally, the impact rate associated with SBND

conditions has also been on the rise due in large part to the

increased demand on transaction based workloads. In the past,

degradation in performance caused by SBND could often be

tolerated to some extent while the problem was being

diagnosed and resolved. This is rarely the case any longer

where any degradation in performance impeding the system’s

ability to sustain transaction volume and quality of service are

likely have negative consequences for the business and will

therefore be considered an outage.

As we move to new computing models such as integrated

infrastructure, software defined, and cloud it will become even

more imperative that these SBND conditions are dealt with

quickly and autonomously. Enabling system design and

development to meet these objectives requires a testing

approach and methodology that allows these systems to be

measured and evaluated on how they perform when subjected

to SBND conditions.

V. TEST APPROACH

In a proactive attempt to better address and improve test

and design around SBND customer failures, IBM introduced

an internal quality improvement effort to better define,

categorize and test SBND failures. As part of this ongoing

effort, the IBM Systems and Technology Group labs have

started introducing a variety of SBND symptoms into complex

system test environments using a four-pronged approach. 1.

Build a center of competency around identifying,

characterizing and debugging SBND failures in the I/O path.

2. Target modified reliability, availability and serviceability

(RAS) microcode to better identify and flag SBND failures for

troubled areas. 3. Targeted test case coverage related to SBND

failures, symptoms and characteristics. 4. Redefine the criteria

for success and failure of the new test cases to better reflect

the symptoms impacting data centers today. It is no longer

sufficient to measure success of error recovery based solely on

permanent vs. recoverable error conditions. It is common with

SBND conditions for service interruptions to occur yet all I/O

be recovered at various layers of the I/O stack, therefore, it is

clear that additional criteria that incorporates performance

attributes is required to effectively test for this condition.

Recursive error recovery while it may be successful has a

significant impact on throughput. Although error recovery will

always have a measurable impact on performance, error

recovery needs to be able to not only recover I/O but also

determine and execute actions necessary to remove failing

resources/paths from the I/O path. The speed and accuracy at

which error recovery is able to accomplish this is the critical

measurement of success in handing SBND conditions.

This paper will focus on the 3
rd

and 4
th

 prongs described

above as they relate to increased SBND testing and early

results.

A. Targeted test case coverage related to SBND failures,

symptoms and characteristics

In late 2010 the SAN test labs within IBM began technical

analysis on SBND errors and targeted ways to not only inject

SBND failures, but to proactively monitor the environment as

a whole for related defects and outages. This was a detailed

and controlled approach consisting of injects in three primary

locations within the I/O path, as outlined in Figure 4 below.

Figure 4. SAN Inject Points

Once the inject areas were established and test tools in

place we began targeted testing covering the most frequent

SBND symptoms and characteristics described in Tables I and

II. Table III below outlines some of the test injects symptoms

and test case examples that were created to inject SBND

symptoms into our SAN environments to monitor for proper

handling and unintended side effects across the environment.

TABLE III. SBND TEST SCENARIO INJECTS

Symptom: Types of Injects

Used:

Test Case

Examples:

329

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Severe

Performance

Degradation

1. Credit starvation

2. Inject Delay

1. Replace R_Rdy

primitives with

IDLE/ARB (FC), inject

PFCs for Class 3 traffic

(FCoE).
2. Hold all frames for x

microseconds

Mirror or

Replication times

exceed Service

Level Agreement

1. port flaps

2. drop frames
3. jitter

1. Port shut/no shut

activity (FC,VFC,Eth)
2. Drop every xth frame

in each direction

3. Corrupt sof, eof, crc
and other header data

I/O redrives or

near redrives

1. drop, corrupt or

re-order data frames
2. short holds of

frames

1. Target data frames

and drop or re-order
2. Hold all data frames

and/or transfer ready

frames for x seconds.

Application

sensitivity to

Recoverable I/O

Events

1. virtual link jams
2. link resets

3. corrupt frames

1. FDISC drops, VFC
jitter, VSAN jams

2. Inject NOS, OLS, LR

and/or LRR onto link
3. Corrupt bits in the FC

or FCoE header and

recalculate CRC

Product behaviors

related to

unforeseen

external trigger

events

1. protocol

violations

2. unexpected data
returns

3. partial recovery

scenarios

1. Inject protocol

deviations from

standard and monitor
destination handling

2. Return Check Cond

to write exchange
3. Drop data frame, then

drop subsequent ABTS,

allow re-driven ABTS

to flow through un-

jammed.

B. Redefine the criteria for success and failure of SBND test

cases to better reflect the symptoms impacting data centers

today

For years the industry has measured the success/failure of

error recovery test cases using permanent I/O error as the

measurement. In today’s client environments the majority of

SAN impacts events are occurring as a result of the

performance degradation associated with the error recovery,

they are not typically caused by permanent I/O errors.

Accordingly, verifying that SCSI and related error inject

scenarios recovered and did not result in a permanent I/O error

is no longer sufficient.

In today's high speed environments the time it took to fully

recover and the impact on other I/O (often times non-related

I/O) is essential. As Server consolidation and virtualization

trends continue, the impacts of non-permanent I/O errors will

continue to plague environments and cause severe

performance impacts until we change the way we test, develop

and measure recovery.

In order to evaluate the effectiveness of error recovery for

SBND conditions we had to redefine the test criteria around

performance attributes. The critical attributes measured and

quantified are 1) the amount of degradation that occurs during

the recovery and 2) the length of the recovery defined by the

time it takes for performance to return to nominal.

VI. RESULTS

Overall, we established a test suite consisting of over 100

unique SBND test cases, which are run in a controlled SAN

environment allowing us the capabilities to inject a single

error (or bucket combinations of errors) and monitor the

environment as a whole. The majority of the problems we

have identified are defects that would have been near

impossible to detect and correlate in a customer environment.

The ability to understand which variables are being injected at

which time and location in the SAN and watching all

associated host, switch and storage logs provides the ability to

correlate and connect events that otherwise would have

appeared to be non-related. Further, having packet level traces

at each point in the SAN allows the ability to deep-dive into

the traces. Figure 5 below illustrates one SBND inject example

where every 5 minutes the Not Operational primitive sequence

(NOS) was injected to simulate a bouncing or partially failed

port in the SAN. Figure 5 below shows the subsequent

behaviors following one of the NOS injects which resulted in

failed link initialization. For link initialization to complete

successfully following our NOS injects the primitive

sequences OLS/LR/LRR/IDLE/IDLE have to be traded

sequentially. In Figure 5, we can see one SAN vendor sent

extra R_RDY primitives and LRRs prior to sending the final

IDLE packets required to complete link initialization. These

extra packets prevented proper link initialization and resulted

in a substantial delay, impacting link recovery by 20 seconds.

Delays of this magnitude produce excessive service times as

seen by the application and may result in transaction timeouts,

as well as potentially expose application layer sensitivities

which could lead to an outage. After the SBND defect was

fixed and verified the recovery time dropped from 20 seconds

to just milliseconds.

Figure 5. Protocol Trace Review

The protocol trace analysis and frame level debug

functionality provides enhanced problem determination

capabilities, that when combined with associated host, switch

and storage logs present a clear picture of the problem and

greatly assists with cross-vendor problem determination.

Typical product system test environments and test plans are

designed to analyze and validate recovery capabilities in a

product or system offering along with potential

implementation architectures and then inject hard errors to

determine if products under test were behaving according to

specification and customer requirements. A high level

example would be a system test environment that had been

330

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

designed and implemented with full redundancy of all

components in order to minimize Service Level Agreement

(SLA) violations [10]. The test engineer would then introduce

failures of the components at injectable points in the

configuration to validate and verify the system offering would

meet SLA requirements. What this technique misses is the

“almost errors” that are not specified or articulated as

customer requirements. Additionally, there is some level of

subjectivity to a SBND event actually occurring and

convincing the designers that such a situation would or could

exist in the real world. A test engineer also has to use

reasonable judgment in designing the injection as any SBND

injection can be pushed to unrealistic limits and then the test

can be declared invalid. For example, when testing credit

starvation one must be cautious in the rate of R_Rdy (frame

buffer credit) drops that are injected as too many will cause

link resets, replenishing credits back to the agreed upon limit

during login. For SBND scenarios, the tester would want to

identify the buffer credits allotted during login and drop

R_Rdys at a rate which slowly impacts the environment

without causing an immediate link reset. It is this careful

balance that must be pursued in the test design and execution.

Having a test engineering center of competency for SBND

problems that can provide real world patterns of these

injections is critical to wining the subjective discussions

between test engineers and designers.

Since starting this work in 2010 we have seen a dramatic

spike in internally found SBND related defects being

identified and fixed in system test. In 2010 when we started

this testing only 5% of the defects found in SAN system test

were related to SBND error handling. In 2012-2013 SBND

related defects represent 52% of the overall defects opened by

the SAN system test teams. The defects opened are spread

across multiple vendors and I/O path components including

operating systems, host HBA/CNA firmware and drivers,

multipath drivers, SAN and FCoE switch code and storage

firmware and drivers. Although defect signatures are often

unique, there are common trends that emerge; we will examine

those trends in more detail below.

A. Common SBND defect trends

1) Bit errors from a simulated SBND device often lead to

error recovery escalation

Bit errors from a simulated SBND device often lead to

device driver error recovery escalation and have unintended

impacts on non-related I/O streams. Fibre Channel standards

allow for a single bit error to occur only once in a million bits

(1 in 10
12

) [10]. In a real world example at 16Gbs that would

allow for 56 bit errors per hour. On healthy links bit error

occurrences are typically much less frequent, but in any

environment occasional bit errors will occur and SBND testing

helps to confirm proper handling and recovery. SBND testing

related to bit errors typically consists of corrupting or flipping

bits at a given location in the environment at a predetermined

rate. Inject rates range from multiple errors per second to one

error per hour. The frequencies at which the errors are

injected greatly vary the results and handling practices. When

SBND errors are hit by the same host within a given period of

time (varies by host adapter vendor and multipathing option)

the host device often reacts by escalating recovery methods

and selecting more aggressive task management and error

recovery options. The SCSI protocol has a number of task

management function defined, some of which impact single

initiators tasks and others that affect all commands in the task

set or even all commands running within a SCSI target [11]

For example, in one scenario two errors encountered on the

same path within 10 seconds led the host device to issue a

SCSI Logical Unit (LUN) Reset to the associated storage

target LUN. A LUN reset will abort all in-flight commands

for the associated LUN and take the LUN back to power on

state.

SCSI Target Reset is another task management option which

is even more severe than the LUN Reset given its broader

scope. A Target Reset will abort all in-flight commands for all

LUNs within a given storage target and then take them all

back to power on state. It is typically used after other forms of

error recovery failed or during frequent SBND events. Target

reset was obsoleted by the standard in 2002 due to the harsh

impacts it has on environments and non-related I/O streams,

however, it is still in active use by multiple adapter vendors

today [11].

In our SBND test environments we give special attention to

target resets and review each scenario in which they were

issued. The goal is to reduce the use of target reset when a

different form of task management could be used. In a SBND

environment if one host side link is plagued with errors and

that host aggressively uses task management commands

including Target Reset all other host devices zoned and setup

on the shared storage target will be continually impacted. This

will result in a large scale performance impact and a difficult

to isolate SBND environment impact condition. In the field

these problems are challenging to debug as often symptoms

first show up on non-related hosts and it takes technical

experts and combing through host, switch and storage logs to

ultimately identify a single rogue host device impacting the

overall environment.

Ideally, in the case of a host device that has a link plagued

with SBND errors the multipath driver would identify the

problem and remove the paths from their active selection lists,

thereby preventing further errors and potential impact to non-

related hosts and devices.

In the past year advancements have been made in multipath

handling of SBND errors as a result of SBND testing, design

reviews and client impact events related to SBND errors.

Several multipath drivers are becoming more aggressive at

failing paths and more cautious to continually return those

same paths to service.

2) Error injects on ISLs are harder to detect by multipath

drivers, typically paths are quickly taken offline then put back

online within a few seconds

Many of the classic SBND symptoms are caused by a

partially failed or flaky ISL. Intermittent problems are difficult

to assess, ultimately the fabric must determine if a problem is

critical enough to disable the ISL port [12]. Buffer credit

331

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

depletion, link flapping or marginal cable or SFP components

are most often the cause of SBND symptoms on ISLs. These

symptoms are often detected by frame discards, offline/online

events or cyclic redundancy check (CRC) errors on ISL switch

ports. SBND ISLs can cause intermittent I/O failures,

application layer timeouts and severe performance

degradation.

To understand the impacts on the environment lets first

explore how multipath health checkers typically work. Host

multipath software characteristically uses Test Unit Ready

commands to check health status of a path. After one or two

successful Test Unit Ready commands with good status the

path is assumed to be healthy and brought back online if

previously in an offline state. In the case of SBND ISLs the

errors are intermittent and multipath has no means of

correlating the errors across time and detecting the path as

SBND.

The end result of SBND ISLs combined with a multipath

driver not equipped to handle SBND failures is we see I/O

exchanges fail and the associated paths are marked as failed,

however, shortly after (typically around 2 seconds) the paths

are brought back online. The disproportionately high number

of SCSI I/O commands versus Test Unit Ready commands

makes it likely that an I/O command will fail and a link

maintenance command will succeed. This leads to the

offline/online cycling of paths which could continue until

manual intervention or the path degrades to a hard fail.

3) Virtualization Components have higher defect rates

related to SBND.

Virtualization technologies provide many efficiencies and

capabilities and continue to advance and mature. However,

virtualization also creates new challenges and debug scenarios

for network administrators and technology vendors. The

consolidation of virtual servers and virtual links adds

complexity and can create bottlenecks, sporadic load patterns

and makes it harder to troubleshoot and identify SBND

components in a complex virtualized environment.

 Links shared across multiple initiators are harder to debug

and the sporadic nature of SBND events coupled with

virtualized environments makes these errors difficult for

multipath drivers to detect and respond appropriately to.

Additionally, some server virtualization technologies separate

link layer and SCSI layer management responsibilities into

entities that reside on different virtual images. This separation

adds additional complexity and makes it more difficult for the

firmware, driver stack(s) and multipathing software to stay in-

sync and respond properly to SBND events.

Host side virtualization related SBND defects often come

down to the host adapter firmware detecting SBND events but

not passing detailed information up the stack to the SCSI

emulation layer so that the device drivers and multipath

drivers can make informed pathing decisions. The same

concept also holds true for the storage virtualization layer,

SBND defects often result from communication breakdowns

and faulty state management synchronization between the

virtualization layer and backend storage controller(s).

4) Buffer to Buffer Credit Recovery

Buffer to buffer credit recovery is basic and key

functionality in a SAN environment. SBND Credit related

defects typically fell into two categories; devices who did not

handle loss of credit(s) properly and devices that could not

perform credit recovery properly. For devices that did not

handle the loss of credit(s) properly typical symptoms

included large performance impacts or flat lines following the

loss of a single or a few credits. For devices that could not

perform credit recovery properly the typical behavior was

often a credit reset attempt that did not complete properly and

would lead to a link reset. Fig. 6 provides one example of a

target device that could not properly perform credit recovery.

Essentially, anytime the target device port or the connected

switch port ran out of credit it ultimately resulted in a

temporary loss of access event simultaneously for every host

in the fabric zoned to that target port. Due to the devices

inability to properly handle credit resets the port would fail,

loose-sync, then re-initialize and log back in with the fabric.

From the initiator side, paths to that storage port would fail,

multipathing would fail over and all open exchanges would

have to be recovered and redriven. Once the target device was

back online and logged in with the switch the hosts would re-

login with the target device and lost paths would recover. Had

the initial credit recovery attempt worked the credit reset

would have been seamless and unnoticeable to the related

hosts.

Figure 6: Credit Reset Causes Link Reset Trace

B. Closed Loop Process for Field Problems

IBM Systems test engineers are often brought in to help

debug, recreate, analyze or test fixes for client field problems.

Many test engineers are also assigned as customer advocates

to client accounts that match their industry and technical areas

of expertise. These client interactions help the test

organizations form tighter client relationships and provide key

field data to be shared with IBM test and development labs via

closed-loop processes designed to improve test coverage and

client experiences. These models help us to improve test

coverage, analyze test escapes and perform coverage analysis

across the numerous IBM System Test labs worldwide.

As SBND errors are gaining recognition and focus our

client relations help us to better understand the impacts these

events have on various network design layouts.

332

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Understanding the implications of these errors on client

environments help us to test and architect future solutions that

will better handle and coordinate SBND events, ultimately

reducing the impacts they will have on future environments.

Outlined below is one example of SBND handling

enhancements that were submitted as a result of the closed

loop process analysis after client impact events.

1) Multipath Maintenance Improvements

A large client experienced a storm of command

timeouts which escalated to LUN and Target Resets

failure conditions resulting in serious performance

degradation and application failures. The symptoms

stemmed from a SBND ISL that was toggling up/down.

The AIX MPIO and SDDPCM multipath software would

fail when the ISL path went down and recover after health

check commands succeeded on these paths, thus

continually failing and recovering the problematic paths.

After debug involvement and technical review AIX MPIO

and SDDPCM multipath enhancements were made to

coordinate failures across time to better detect and handle

SBND errors and prevent the perpetual failure and rapid

recovery storms of SBND related paths. Starting with

SDDPCM v2.6.3.0 a new feature and timeout_policy

device attribute of disable_path was introduced. The

disable_path attribute will permanently disable a path (not

the last path) if it experiences timeouts above the set

threshold within a given period of time. The path will stay

in the disabled state, until the user manually recovers it

[13].

C. SBND Implications on Design Review Process

Traditional design reviews focused on network path failures

and error recovery based on two traditional category of events;

permanent and temporary. Permanent failures are typically

the easiest failures to design for and have solid coverage in

design reviews. Temporary or transient errors historically

have good design review coverage as well but the number of

possible transient errors is much greater than permanent

failures, making full coverage more challenging to review than

permanent failures.

SBND errors have only recently been added to design

reviews. The nature and unpredictability of SBND failures

makes design reviews for SBND a constant challenge. As we

continue to further understand SBND errors and their

implications on complex environments we often find that a fix

for one situation sometimes further aggravates another. There

is a definite balance to be considered when determining how

aggressive we can be when addressing SBND conditions and

still ensure implemented solutions benefit all environments.

Recent SBND errors have also uncovered additional

temporary or transient error coverage review requirements.

Design and code review processes have been updated to

review for any single try events that may exist in a code path.

A single try event mixed with SBND errors or even a single

transient error impacting the frame could result in an

unexpected failure.

For example, in our SBND testing we have corrupted fabric

login (FLOGI) and fabric discovery (FDISC) extended link

services frames, many devices were able to handle these

corruptions and re-drive login processes, however, we also

discovered initiator and storage targets that were unable to

recover from these injects. The implications of this testing

was if SBND errors impacted extended link service login

frames the devices would not be able to recover and would not

complete fabric login. These SBND defects were opened with

the product vendors and SBND impacts on extended link

services were also added to the closed loop design review

process.

VII. CONCLUSION AND FUTURE WORK

As complexity, virtualization, business criticality and mixed

vendor solutions continue to grow in the IT industry and

customer solutions, the need for highly-skilled SBND low-

level testing will also continue to increase. In an industry

where quality is expected and customer defects can cause

costly outages it is no longer sufficient to test products for

correct recovery only in hard failure scenarios. We need to

continue to put increased focus on solution testing, and further

on solution injects and handling of hard failures and SBND

failures on any component within the environment. We also

need to reevaluate our test pass criteria and design points for

complex SAN environments and update them to not only

evaluate and design for recovery, but to also evaluate the

impact SBND error(s) have on the environment and

performance. We need to continue to focus on solutions that

can rapidly detect, isolate and address SBND components in

an environment. Good progress has been made since we first

started this focus in 2010; however, there is still considerable

work to be done.

 As we continue to expand SBND testing scope described

in this paper, we are concurrently pursuing plans to continue

this effort with a second phase targeting new inject methods

and focus on spreading SBND test capabilities and awareness

across IBM test and partner test labs worldwide. Given the

economic costs of the tools to inject SBND scenarios and the

skill required we are also innovating in economically scalable

methods to do this type of testing in more diverse testing and

test skill environments. We also continue to drive a close-loop

feedback process between IBM test, development and support

teams and across OEM partners, ensuring that the SBND

defects that have been found are fixed and lessons learned are

applied to future product development and monitoring

capabilities.

 It is our hope and vision that impacts of SBND failures be

understood across the industry and that more SBND testing

and proactive measures are taken to help minimize the impacts

these failures have on the environments of the future.

VIII. ACKNOWLEDGMENTS

The authors would like to thank their employer,

International Business Machines (IBM) for supporting their

333

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

efforts to produce educational content. We would also like to

thank those parties who provided quotations and background

art for use in this paper.

REFERENCES

[1] Tara Astigarraga, Michael Browne, and Lou Dickens “Sick But

Not Dead Testing – A New Approach to System Test”, VALID

2012, ISBN: 978-1-61208-233-2

http://www.thinkmind.org/index.php?view=article&articleid=vali

d_2012_1_30_40098 (last accessed 12/09/2013)

[2] A. Hanemann, D. Schmitz, and M. Sailer "A framework for

failure impact analysis and recovery with respect to service level

agreements", Services Computing, 2005 IEEE International

Conference, Content resides on, vol. 2, no., pp. 49- 56 vol. 2, 11-

15 July 2005 doi: 10.1109/SCC.2005.10

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=15244

23&isnumber=32587 (last accessed 12/09/2013)
[3] ATA8-ACS, ANSI Draft Standard T13 Project 1699D, 2004.

http://www.t13.org/documents/UploadedDocuments/docs2007/D
1699r4a-ATA8-ACS.pdf (last accessed 12/09/2013)

[4] Ian MacQuarrie, William Carlson, Jim O’Connor, Limei Shaw

and Shawn Wright, “Configuring SDDPCM for High
Availability”, IBM Redpaper, October 2012.
http://www.redbooks.ibm.com/redpapers/pdfs/redp4928.pdf

(last accessed 12/09/2013)

[5] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady

Kanevsky “Are Disks the Dominant Contributor for Storage

Failures – A Comprehensive Study of Storage Subsystem Failure

Characteristics”, USENIX Conference, Storage Technologies

2008 (FAST’08),

https://www.usenix.org/legacy/event/fast08/tech/full_papers/jiang

/jiang_html/paper.html (last accessed 12/09/2013)
[6] Steve Lytle, “Fiber Connector Cleanliness – Overcoming a Dirty

Little Secret”, October 2008.

http://www.cablefax.com/tech/operations/bestpractices/31826.ht

ml (last accessed 12/09/2013).

[7] IEC-61300-3-35, IEC Standard, 2009, avalable for purchase at

http://kandk-fi-

bin.directo.fi/@Bin/f1c7665a67b79ef92a25406cc614ff18/138667

3907/application/pdf/101256/IEC_61300-3-35_Standard.pdf (last

accessed 12/09/2013)

[8] Cisco Corporation, “Inspection and Cleaning Procedures for

Fiber-Optic Connections”, September, 2006.

http://www.cisco.com/en/US/tech/tk482/tk876/technologies_whit

e_paper09186a0080254eba.shtml (last accessed 12/09/2013),
[9] B. Rogers, “z/OS 1.11 Sysprog Goody Bag”, SHARE Session

2228, March 2010.

http://mobile.share.org/client_files/SHARE_in
Seattle/S2228RR092920.pdf (last accessed 12/09/2013).

[10] Jon Tate, Pall Beck, Hector Hugo Ibarra, Shanmuganathan

Kumaravel and Libor Miklas “Introduction to Storage Area
Networks and System Networking”, November 2012, ISBN
0738437131.
http://www.redbooks.ibm.com/redbooks/pdfs/sg245470.pdf (last
accessed 12/09/2013).

[11] Lou Dickens, “Fibre Channel for the 21st Century” February,

2013, ISBN 978-1-939883-00-1 pp. 219-223

www.yahweheducation.com] (last accessed 12/09/2013).

[12] Brocade Corporation, “SAN Fabric Resiliency Best Practice

v2.0”, July 2013.

http://www.brocade.com/downloads/documents/best_practice_gui

des/san-fabric-resiliency-bp.pdf (last accessed 12/09/2013).

[13] IBM Multipath Subsystem Device Driver Path Control
Module,(PCM) Version 2.6.3.0 Readme for AIX, April 2013.
ftp://ftp.software.ibm.com/storage/subsystem/aix/2.6.3.0/sddpc
m.readme.2.6.3.0.txt (last accessed 12/09/2013).

[14] FC-FS-3, ANSI Standard 5.2.4-5.2.5, 2008.
http://www.t11.org/t11/stat.nsf/1158203694fa939f852566dc004
9e810/a7bf7ee8c25bd7b9852572e50079eed4?OpenDocument
(last accessed 12/09/2013).

[15] FC-MI, ANSI Standard 3.2.14-3.2.34, 2001.
http://www.t11.org/t11/stat.nsf/1158203694fa939f852566dc004
9e810/86a95105bd279d148525772000567d1d?OpenDocument
(last accessed 12/09/2013).

334

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Towards Evolvable State Machines and their Applications

Dirk van der Linden1, Wim Ploegaerts2, Georg Neugschwandtner1, and Herwig Mannaert1
1University of Antwerp, Belgium

{dirk.vanderlinden, georg.neugschwandtner, herwig.mannaert}@uantwerpen.be
2PWCS bvba, Belgium,
wim.ploegaerts@pwcs.eu

Abstract—Since several decades, the pressure on organiza-
tions to swiftly adapt to their environment has been increasing.
At the same time, the complexity of products and services
has been growing. One of the consequences is the increas-
ing importance of the evolvability of software, whether this
software supports production control systems in industry or
business information systems. Over the past decades, finite
state machines have become an increasingly popular tool
for modelling behavioural aspects of software. This paper
presents an explorative attempt to define design rules and
constraints that should be applied to state machines to enable
evolvability. Our design of an evolvable state machine is based
on Normalized Systems Theory. This design is discussed in
the context of automation systems as well as more general
information processing applications.

Keywords-Normalized Systems; Evolvability; Finite State Ma-
chines; Automation Systems; Information Technology.

I. INTRODUCTION

Current organizations need to be able to cope with
increasing change and increasing complexity in most of
their aspects and dimensions [1]. We shall call a system
evolving when changes in terms of the system’s capabilities
occur. The effort or cost required for adding or changing a
specific capability is a property of a system – the property
of evolvability. Evolvability is increasingly important for
organizations to allow them to swiftly adapt to an agile and
complex environment. The evolvability of production control
and information systems is the primary focus of this paper.
We will present a design for evolvable state machines, based
on Normalized Systems Theory (NST). Its concepts can be
applied to all state machines; examples will be discussed
for control systems, kiosk software and business process
automation.

Evolvability is a critical non-functional requirement on
software. Better evolvability favourably impacts the chal-
lenging task of software maintenance, where adding a six-
lane automobile expressway to a railroad bridge is con-
sidered maintenance [2]. In their review of evolvability as
a characteristic of software architectures, Ciraci and van
den Broek [3] define it as “a system’s ability to survive
changes in its environment, requirements and implementa-
tion technologies.” However, evolvability is hard to measure,

and existing software development methodologies focus on
functional requirements almost exclusively.

Maintenance activities often disrupt normal (produc-
tive) system operation. If dynamic reconfiguration can be
achieved, downtimes of systems can be reduced: a change
which can be performed without a complete shutdown is
called a ‘dynamic reconfiguration’ – in contrast to a ‘static
reconfiguration’, which requires the complete shutdown of
a system [4]. The ability of an evolving system to introduce
a change by dynamic reconfiguration is a special property
of the system and the type of change.

Having to stop production for maintenance can be es-
pecially costly for continuous production systems or 24/7
production operations. Consequently, production loss or de-
lay of production due to an update of the system must be
considered an indirect maintenance cost. In fact, there is a
similar cost in information systems, but this cost is often
neglected because it is less visible – for example, because it
only indirectly affects customer satisfaction. System restarts
and maintenance windows have become a generally accepted
practice, even for business critical applications. For example,
Microsoft Servers require restarting after certain updates
of the operating system. But even payment systems are
shut down several times per year ‘for maintenance’, which
typically takes place between 00:15 and 02:15 at night in
Belgium. On the site of Atos Worldline this is called a
‘system stop’, and during these interventions, the payment
network is not available and it is not possible to carry out
electronic payments [5]. This can be very inconvenient for
the user if the restaurant bill has to be payed while the
cards do not work, and neither does the ATM (automatic
teller machine). Customer service could be improved if
dynamic reconfiguration was made a design requirement for
the payment system.

A. Maintainability improvements

Efforts to improve the flexibility and maintainability of
automation systems go back decades. The first approach
to implement automation control logic was based on hard-
wired relay systems. In the late 1960s, GM Hydramatic
issued a request for proposal for an electronic replacement.
The result was a Programmable Logic Controller (PLC),

335

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

built by Bedford Associates. One of the main advantages was
that changes in control logic could now be made by changing
the program rather than changing wiring and bypassing or
adding relays. In addition, programs could be reused for
another application [6]. The technology shift from hardware
to software provided more flexibility and an improvement
of maintainability.

Around the same time, dynamic reconfiguration was intro-
duced as a feature of the Multics operating system. Multics
is an acronym for Multiplexed Information and Computing
Service. It was a mainframe operating system for which the
design and planning started in 1964 [7]. It was commer-
cialized by Honeywell and used till 2000. The goal was
to ensure continuous availability of the mainframe running
the Multics computing service, even when maintenance of
physical components was required [8]. It was possible to
switch between different hardware configurations, allowing
for the replacement of CPUs (central processing units)
and memory modules without switching off the system –
resulting in dynamic reconfiguration.

While these certainly were improvements, the characteris-
tic of true evolvability was (and is still) not totally reached.
For example, many serious maintenance operations in the
Multics operation system did still require a complete restart
of the machine [9], and while changing or debugging a few
lines of software code is easier than rewiring relay circuits,
the number of software problems and bugs does not grow
proportionally with the software size. Instead, they grow
out of proportion. After reaching a certain size, software
becomes a problem in its own right [10].

B. Standardized programming languages

For the reusability and portability of features from one
(sub)system to another, a common programming language
which is shared between these systems is an improve-
ment over proprietary approaches. If possible, the use of
standardized programming languages is most appropriate.
The IEC 61131-3 standard [11] introduced standardized
programming languages for PLCs. However, development
environments which include compilers for these program-
ming languages are typically proprietary systems and contain
vendor-dependent differences.

In the world of information systems development, the
impact of standardization is limited. There are thousands
of programming languages. According to [12] more than
115 languages were implemented by 1968, while there
were already over 1000 that had been used somewhere
by 1999. Only a limited number of these have become
relevant, but none can be considered as a global de-facto
standard. This is confirmed by the different indices that
measure programming language popularity, such as Tiobe
[13]. According to Tiobe, the most used languages in August
2013 are Java and C, each having a market share of close to
16%, followed by C++ with a 9.4% market share. Several of

these programming languages are defined in an associated
(international) standard. As an example, there is ISO/IEC
14882:2011 on the programming language C++ [14]. For the
Java language, no international standard is available, even if
it is currently the most popular programming language. It
also should be noted that only few compilers implement an
entire language standard and nothing but this standard. An
overview of the support for the C++ standard in different
popular compilers is given in [15]. A similar situation exists
in the world of relational databases. While an SQL standard
is defined in ISO/IEC 9075-1:2008, multiple incompatible
SQL dialects exist.

These implementation differences are a first obstacle to
evolvability. In most cases it is not possible to simply replace
a compiler with a new version from another vendor. Unless
special middleware or libraries are used for decoupling (for
example, Hibernate), database management systems cannot
easily be replaced. Sometimes even the upgrade from an old
version to the new version from the same vendor may cause
run time errors. Similar issues arise when, for example, a
web application framework like Apache Struts needs to be
replaced by another framework.

C. Standardized approaches to organizing programs and
data

The way how data and functionality are organized within
the constructs provided by the chosen development environ-
ment is a design decision which is often left to the individual
developer. However, in order to be able to share these
constructs with other developers, common models can be
useful: Not only programming languages, but also the way
how data and programs are structured can be standardized.

At the design level, a number of standards are available.
Their acceptance amongst practitioners is rather low, how-
ever. One of the few standards that stand out in terms of
use is the Object Management Group’s Unified Modeling
Language (UML, ISO/IEC 19505). UML is a graphical
modeling language for software engineering. The UML
specification contains 14 types of diagrams, seven of which
are (static) structure diagrams and seven are used to describe
dynamic behavior.

One of the common modelling techniques for function-
ality is the finite state machine (FSM). FSM follow a
straightforward syntax of states and transitions. Their formal
semantics is well defined and based on a simple though
rigorous mathematical model [16]. Generic in nature, FSM
can also be combined with application domain knowledge
for the purpose of standardisation. For example, the ISA-88
standard [17] recommends specifying elementary operations
in batch manufacturing processes (e.g., filling a tank) by way
of state machines. In the simplest case, the state machine
for a so-called “equipment phase” contains the states “Idle”,
“Running” and “Complete”. An equipment phase specifica-
tion will, among other things, describe additional states, the

336

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

conditions for transitions between these states (e.g., after a
specified amount of time has elapsed) and the actions to take
upon such a transition (e.g., close a valve).

While state machines are a valuable tool to increase
system maintainability, they do not automatically guarantee
evolvability. The research presented in this paper focuses
on the design of an evolvable state machine. Such a state
machine could be implemented in one or more of the IEC
61131-3 languages, independent of vendor or CPU type.
It should be possible to base applications in information
systems on this design as well. The design supports dynamic
reconfiguration wherever possible.

The remainder of the paper is structured as follows:
Section II gives an introduction on finite state machines, the
underlying mathematical model and UML state diagrams.
Section III explains the basics of Normalized Systems The-
ory (NST), which offers a formal guideline to system evolv-
ability. This section also introduces an application concept,
derived from Normalized Systems theorems, to support the
co-existence of different versions of a program element in
an evolvable system. Section IV presents three examples of
state machines going through subsequent evolution steps.
Section V develops an inventory of anticipated changes to
state machines, illustrated by these examples. Section VI
proposes a set of design rules for evolvable state machines
in the context of the concept presented. Section VII discusses
implementation considerations, giving special attention to
hierarchical state machines, and Section VIII concludes the
paper.

II. STATE MACHINES

The concept of finite state machines (FSM) has its origins
in work by McCulloch and Pitts in 1943, as part of their
research on human cognition [18]. It was mainly through the
work of George H. Mealy and Edward F. Moore, published
respectively in 1955 and 1956, that FSM became popular as
a design tool for digital systems.

An FSM is an abstract machine that can be used to model
and/or specify sequential logic. A FSM can be in one of a
finite number of states. The machine is in only one state
at a time; the state it is in at any given time is called its
current state. The current state can change upon a triggering
event or condition. This is called a transition. A particular
state machine is defined by the list of its states, the possible
transitions between them, and the triggering condition for
each transition.

This definition can be cleanly expressed by means of a
simple mathematical model. Following [16], a deterministic
finite automaton is represented by the 5-tuple

(Q,Σ, δ, q0, F)

with
• Q = {q0, q1, ...qn}, a finite non-empty set denoting the

states the system can be in;

• Σ, the input alphabet, a set of symbols denoting the
possible inputs;

• δ ∈ Q× Σ→ Q, the state transition function;
• q0, the initial state;
• F , a set of final states.
The input alphabet Σ is the finite set of symbols that

are accepted and can cause a transition. An input symbol
represents an external condition. The state transition function
δ determines the next state, based on the current state and
input symbol. This is a partial function: The function is not
defined for all possible combinations of states and input
symbols. It is assumed that the next state will always be
reached.

As far as system output is concerned, this model is quite
limited: It can only describe an “accept/reject” result. If,
for a particular sequence of input symbols, the automaton
reaches a final state, the sequence is accepted; otherwise, it
is rejected. This is not very useful for modelling the output
of PLCs or most other software systems. For these purposes,
it is helpful to extend the model so that it can describe the
output that the system generates as it transitions between the
states. The term ‘finite state machine’ is typically used to
refer to an automaton with such output capability.

Traditionally, two different designs of state machines are
distinguished: Moore machines and Mealy machines. In a
Moore machine, the output is a function of the current state
only, while in a Mealy machine, the output is a function of
both the current state and current input. Moore and Mealy
machines are special cases of the general model shown
above. A Moore machine is represented by a 7-tuple

(Q,Σ, δ, q0, F,Γ, ω)

with, just as before,
• Q, a finite non-empty set denoting the states;
• Σ, the set of possible inputs;
• δ ∈ Q× Σ→ Q, the state transition function;
• q0, the initial state;
• F , a set of final states;

and, in addition,
• Γ, a finite non-empty set of output symbols;
• ω ∈ Q→ Γ, the output, depending on the current state.
The representation of a Mealy machine is the same 7-tuple

(Q,Σ, δ, q0, F,Γ, ω)

as for the Moore machine, but with
• ω ∈ Q × Σ → Γ, as the output depends on both the

current state and the input.
In practice, FSM are defined either in diagram notation

(typically circles and arrows), or by a state transition table.
In Figure 1, a simple Moore and a simple Mealy machine
are shown as a UML (Unified Modelling Language) state

337

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Moore and Mealy machine example

diagram. In UML, states are denoted by round-cornered rect-
angles, contrary to the classical graphical notations where
circles are used. The black circle is the initial state, where
‘the machine starts’. The circle with the dot is the final state.
Transitions are denoted by arrows between two states.

For the Moore machine, outputs occur when the machine
enters the new state. The transitions fire when the proper
input is present. Therefore, the output action is shown on
the state itself, and the transition is labelled with the input
only. For a Mealy machine, every transition generates an
output. Hence, every arc is labelled with both the input and
the resulting output.

In a Moore machine, if different transitions take the finite-
state machine to the same state, the same action is performed
for all these transitions (since output is associated with the
state). In a Mealy machine, if multiple transitions that have
the same destination state should cause the same action, this
action must be triggered by every transition on its own.
Still, every Mealy machine can be converted to a Moore
machine and vice versa, i.e., their mathematical models are
functionally equivalent.

A. Implementation

Finite state machines grew popular in the world of digital
circuit design. Both the next state and the outputs are calcu-
lated by means of a collection of logical gates (combinatorial
logic). Figure 2 shows the respective designs for a Moore
and a Mealy machine.

In a Moore machine implementation, the output must be
calculated when entering the state. In a Mealy machine, the
states are just ‘resting points’. No more calculations are
needed when the new state is entered. All actions occur
during the state transition. In the mathematical models, it is
not relevant when the output is calculated, since it is assumed
that this calculation is instantaneous. However, the resulting
hardware design will be different for a Moore machine and
its Mealy equivalent. Typically Mealy machines have fewer
states and are faster than Moore machines. Moore machines
on the other hand are easier to program and require less
output logic. Moore machines are often used for the design
of controllers in digital circuits, while most software imple-

Figure 2. Moore and Mealy machines

mentations use the Mealy model or a combined/extended
model.

State machine implementations must consider how the
‘real world’ compares to the idealized model. For digital cir-
cuits, this is relatively straightforward: It is only required that
a stable electrical output is obtained within a single clock
cycle. If this is the case, in normal operating conditions, the
implementation matches its underlying mathematical model.
The properties derived from the model also apply to the dig-
ital circuit. Drawing the same conclusion for state machines
in a software system in general will likely be more difficult.
For example, the model assumes that no error occurs when
calculating the next state in response to a trigger. To make
the software system reflect the model accurately, either the
state machine has to be made more complex to reflect
these exceptional conditions, or a number of restrictions
need to be imposed on the software system (for example,
that calculations should not fail; or, in a Moore machine
implementation, a new output should not be produced if the
next state is not reached). Either way, a consistent software
implementation of the simple mathematical models may turn
out to be quite complex.

338

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Motor control state machine, version 1

B. State space size and complexity

In automated production installations, the behaviour of a
large portion of the control equipment (such as valves, light
curtains, pumps, mixers or conveyers) can be – and is –
modelled using state machines. Figure 3 shows a very simple
model of motor control system, which could be implemented
on a PLC. The motor has two states, ‘On’ and ‘Off’ and an
initial state. Two conditions affect the state of the motor: the
‘Start’ and the ‘Stop’ command. The output (whether the
motor runs or not) is fully determined by the state, hence
this is a Moore machine.

Typically, a factory contains more than one motor. In case
this state machine is extended to control multiple motors
with a single controller, its ‘state space’ increases. The ‘state
space’ is defined as the collection of all possible states the
controller or system can be in. The state space of Figure 3
contains two states. In case this state machine is extended to
control two motors, there are four states (On—On, On—Off,
Off—On, Off—Off); a third motor would yield a state
space of eight states. An installation with 100 items to
be controlled, each for example having 10 states, yields
10x10x. . . x10=10100 different states, an installation with
1000 items 101000 states. The fact that the number of states
grows exponentially with the size of the installation is called
state space explosion. It clearly is not practical to model a
large system this way.

State space explosion is often used as an argument against
the use of state machines by software designers who are
not familiar with the concept. However, nobody would ever
design a ‘flat’ controller with 101000 states. The solution to
this problem is twofold. First, the overall design can be split
into a collection of communicating state machines; in our
example, a separate instance of the original state machine
for each motor. Second, states can be grouped hierarchically.

However, careful design of the communication between
the state machines is required: Wagner and Wolstenholme
[19] point out that sending unconstrained messages to an-
other state machine is like a jump to another program part
using a ‘goto’. As state machines run concurrently, issues
such as deadlocks may arise. In order to create maintainable
state machines, the messaging between the state machines
needs to be restricted.

C. UML statecharts

In 1987, Harel [20] introduced ‘statecharts’ as an ex-
tension to classical state machines, supporting hierarchy

and concurrency in a single graphical formalism. Harel’s
statecharts form the basis for state machine diagrams in
the UML standard, which includes them as a means to
specify the behaviour of a software based system. Statecharts
introduced hierarchical or composite states to enhance the
readability of complex state diagrams. A system is regarded
as an abstract state machine with a limited number of states.
Every state can be further refined by defining another state
machine within that state, supporting a top-down design
approach. The UML standard does not specify up to which
level the states must be refined. Thus, in a UML statechart,
‘not all states are equal’. Some states can be modelled down
to the level of boolean logic, other states may be a black box
implemented by an entire business application.

In UML statecharts, transitions are caused by ‘triggers’.
The trigger corresponds to the input symbol in the FSM
model, but can be any signal, event or change in a condition.
The transition can be conditional to a ‘guard’. The result
of the transition can be twofold. First, the transition can
have an ‘effect’, an action that is executed conditional to
the firing of the transition. Second, the transition results
in a state transition which can also cause a number of
actions to be performed. An exit action can occur when
the current state is left; an entry action may be executed
when entering the new state. In UML, the order in which
these actions are performed is well defined (exit action first,
then transition effect, then entry action). Likewise, when
hierarchical states are used, the order in which all actions
need to be performed is well defined. A basic assumption is
that a state machine can only start processing an event if it
has finished processing the previous event.

Apart from the hierarchical definition of states, UML
statecharts have a much richer syntax than classical state
machines have, such as constructs to model concurrency
through forks, joins and regions. Through the use of ‘pseudo
states’ such as a junction, an entry and exit state and even
a ‘history state’, the communication between the different
state machines in a design can be specified.

Because of this added complexity, a formal definition of
the semantics of UML state diagrams is much less straight-
forward than the simple mathematical model defining the
semantics of finite state machines. This almost necessarily
results in a number of ambiguities in the specification. Re-
garding the latter, [21] reports that 29 new unclarities were
introduced in the UML 2.0 state machine specifications.
In [22], an axiomatic semantics of these UML 2.0 state
machines is provided by giving solutions outside the UML
standard. According to [23], the current UML standard 2.4
introduced 6 aditional ambiguities.

In this paper, we study design rules for evolvable state
machines. Even though we make use of UML, it is not our
intention to analyse and discuss all the syntactical features
available in UML statecharts. Our use of UML is limited
to the capabilities of a classic FSM extended with simple

339

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

composite states. UML statechart constructs dealing with
concurrency and complex communication will be the subject
of future research.

III. NORMALIZED SYSTEMS THEORY

Software undergoes an ageing process, as recognized by
Parnas [24]. Since there are indications that this ageing
process is also happening with business processes [25], we
must consider the possibility that this phenomenon may
actually apply to all non-physical systems in general, which
undergo an evolution in our society and economy.

Earlier work pertaining this subject matter was done by
M. Lehman, resulting in his ‘Laws of software evolution’.
He formulated the law of increasing complexity, expressing
the degradation of a system’s structure over time [26]:

“As an evolving program is continually changed,
its complexity, reflecting deteriorating structure,
increases unless work is done to maintain or
reduce it.”

Based on his work for IBM on the design and imple-
mentation of the OS of IBM mainframes in the late 1960s,
Frederic Brooks [27] made the observation that

“Program maintenance is an entropy-increasing
process, and even its most skilful execution only
delays the subsidence of the system into unfixable
obsolescence.”

Ever since, a myriad of software engineering method-
ologies were invented, new programming languages were
created, paradigms developed from ‘structured’ over ‘object
oriented’ to ‘aspect oriented’ programming. This did not,
however, fundamentally change the issues related to software
evolvability. Brooks stated that because of the very nature
of software no inventions will do for software productivity,
reliability, and simplicity what electronics, transistors and
large-scale integration did for computer hardware [28]. Part
of the complexity is caused by constant pressure for change,
imposed by continuous change of the environment in which
the software system is embedded.

In software development, every change causes a further
deterioration that progresses with each update or hotfix.
Over time, the deficiency of the structure renders the system
unworkable. To mitigate this problem, a re-write of the
whole system can help (Figure 4 [29]).

The theory of Normalized Systems was introduced to
challenge Lehman’s law [30]. Other than most previous ef-
forts to achieve maintainability of software, the contribution
of the Normalized Systems Theory goes beyond heuristics;
instead of only advocating guidelines such as “low coupling
and high cohesion” (these are are widely accepted heuristics,
e.g., [31]), it provides theorems to derive yes/no answers to
questions about evolvability.

In the context of Normalized Systems, an action entity
shall be defined as a module which contains functionality,

Time (amount of added requirements)

Cumulative change impact

Normalized System

"Lehman" systems

Max 1

Max 2

Re-write 1 Re-write 2

Max 3

Re-write 3 ...

... Version 1.x
Version 2.x

Version 3.x

Version 4.x

Figure 4. Improving software structure with a re-write [29]

and a data entity shall be defined as a set of tags (fields).
Action entities and data entities are the two main elements
from which a system can be constructed. Action entities
use data entities as input and output parameters. States,
conditions, commands or events can be stored in a data
entity. The four core theorems of Normalized Systems are:

1) Separation of concerns: An action entity can only
contain a single task.
A task is functionality which can evolve indepen-
dently. If the system’s developer anticipates that two or
more parts of the core functionality can change inde-
pendently, these parts must be separated. Therefore,
Normalized Systems shall be constructed of action
entities dedicated to one core activity.

2) Data version transparency: Data entities that are re-
ceived as input or produced as output by action
entities must exhibit version transparency.

It must be possible to update one or more data
entities which are passed between action entities and
let multiple versions co-exist without affecting other
versions of action entities.

3) Action version transparency: Action entities that are
called by other action entities must exhibit version
transparency.

It must be possible to update an action entity, which
is coupled with another action entity, while multiple
versions of both modules can co-exist. In other words,
introducing a new version of an action entity shall not
require changes to any other action entity.

4) Separation of states: The calling of an action entity by
another action entity must exhibit state keeping.

Every action entity must keep track of its requests to
other action entities. If the response to a request is not
as expected, the calling action entity must not block
indefinitely; rather, it shall handle the exceptional

340

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

situation as appropriate for its own state.

Two additional theorems have recently been introduced
as extensions of the theorems on data and action version
transparency [32]. They address the challenge of managing
the diversity of run-time instances of data and action entities
in an evolving system.

5) Data instance transparency: A data instance has to
keep its own instance ID and the version ID on which
it is based or constructed.

If the type definition (source code) of a data entity
is updated to a new version, instances based on the
previous version continue to exist in the system. If an
action entity receives a data instance for processing,
the action entity must have a way of knowing the ver-
sion of this data instance to be able to handle the data
instance in a version-compliant way. Therefore, every
data instance must contain a version ID reflecting the
version of the data entity it is an instance of. The
instance ID serves to tell apart multiple instances of
the same version.

6) Action instance transparency: An action instance has
to keep its own instance ID and the version ID on
which it is based or constructed.

When run-time instances of action entities interact,
they must consider the fact that the other action entity
can be based on one of various versions of its type
definition. A version ID is necessary to give the calling
action instance information about which interactions
are possible. Again, the instance ID serves to tell apart
multiple instances of the same version.

A. Applying instance version diversity

In order to create an evolvable software system, the above-
mentioned rules must be respected throughout the entire
design and implementation. In the following, we introduce
an architecture supporting version diversity in PLC systems
as an application case study. It is designed to support
the implementation of cross-vendor PLC systems, allowing
for the co-existence of multiple versions of all hardware
and software components, and to support true dynamic
reconfiguration. Version diversity is supported with respect
to:

• Application functionality
• Vendor dependencies in PLC programming
• Vendor dependencies regarding the control of field

devices (e.g., a motor).
When an update of a PLC project includes the intro-

duction of a new CPU type, or even a conversion of the
software to another brand, software developers often re-
engineer the whole project. Also, when a motor is replaced
with a different one – or the update includes the introduction
of a frequency drive, which requires a vendor dependent

Generic code
(all versions)

V Vendor mapping

PLC
(brand 1)

Motor 1

Instance v. 1
Instance ID: 1

PLC
(brand 2)

PLC
(brand 3)

Motor 2

Instance v. 2
Instance ID: 2

Motor 3

Instance v. 3
Instance ID: 3

Motor 5

Instance v. 2
Instance ID: 5

Motor 4

Instance v. 3
Instance ID: 4

CE 1 CE 5 CE 2 CE 4 CE 3

Class v. 1, v. 2 Class v. 2, v. 3 Class v. 3

Figure 5. A generic software module with heterogeneous instances

system function block –, engineers tend to re-write the
module which is controlling the motor.

The architecture presented intends to reduce the amount
of these re-writes. A new motor should no longer require
a new software module; neither should the entire project
require re-engineering because of changing to a new brand or
PLC family. To achieve this, we propose that programming
is based on generic modules. There shall only be one
module for every core function (e.g., motor control), with the
variations between physical motors and their control being
addressed by multiple, co-existing, versions of this module.

In this concept, the vendor independence brought about
by the IEC 61131-3 standard is an important element.
Nowadays, most common brands support at least some of
the IEC 61131-3 languages. However, the standard does
not include hardware configuration. Consequently, the con-
nection to process hardware (process I/O) remains vendor-
dependent. In addition, the standard allows some liberties
(e.g., implementation-dependent parameters in Annex D
[11]). Commercial IEC 61131-3 programming environments
show some differences. Therefore, developers still often re-
write a whole software project in case another brand of PLC
is required.

Our approach to truly generic, vendor-independent PLC
programming is shown by way of an example in Figure 5.
A generic module, which strictly sticks to IEC 61131-
3 code, contains the core functionality of a device, for
example controlling a motor. Instances of this module rep-
resent individual motors. Before the generic module can be
downloaded to a specific brand of PLC in order to control

341

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Motor control state machine, version 2

a specific motor, it undergoes an automatic vendor-mapping
procedure, which converts part of the module code according
to what is required by the vendor’s specific environment.
In addition, the vendor-mapping procedure adds an extra
module to the (mapped) core module: a connection entity
(CE). This connection entity is dedicated for a specific motor
(instance), and includes all the details needed to connect the
(mapped) core functionality with the process hardware (I/O).
If necessary, this connection entity can also include vendor-
specific function blocks (e.g., a scaling block for analog
values, or a system block dedicated to control a specific
frequency drive).

Each new version of the functionality is referred to as
a class version, and each individual physical motor as
an instance. Class versions correspond to the functionality
available in the PLC (potentially in several co-existing
versions), while instance versions correspond to the instan-
tiated functionality for controlling a specific type of motor.
Instance IDs refer to one single, specific physical motor;
they tell the connection entity which hardware addresses
an individual motor control module instance has to be
connected to.

IV. STATE MACHINES AND EVOLUTION

In this section, we discuss examples for how state ma-
chines could evolve in response to new requirements and
hardware capabilities, leading to new versions of the state
machine.

A. Motor control

The state machine in Figure 3 is a very idealized and sim-
plistic view. In an actual industrial environment, additional
conditions such as failure conditions or interlocks must be
taken into account. As an example for such an additional
condition, the second version of the state machine considers
the condition of a fuse.

In version 2, the start condition becomes ‘Start and
FuseOK’ (Figure 6). In UML syntax, we model this by
extending the ‘Start’ trigger with the ‘FuseOK’ guard,
making the transition conditional on the state of the fuse.

Figure 7. Motor control state machine, version 3

The additional state ‘Failure’ is introduced. The condition
for transitioning from the ‘Off’ state to the ‘Failure’ state
is ‘Start and not FuseOK’, i.e., the transition is triggered
by the ‘Start’ event, also conditional to the state of the
fuse. If the fuse blows during the ‘On’ state, a transition
to the ‘Failure’ state results. To detect the state of the
fuse, a ‘CheckFuse’ function is needed, being the trigger
for the transition from the ‘On’ state to the ‘Failure’ state.
In addition, when entering the failure state, a notification is
made to trigger an operator to solve the issue, represented
by the action ‘Alert Operator’. The condition to go from the
‘Failure’ state to the ‘Off’ state is ‘FuseOK’, the trigger
is ‘CheckFuse’. This implies that the engine will restart
automatically when the fuse is repaired.

The third version considers the situation that the motor can
stop due to a thermal cut out in the ‘On’ state (Figure 7).
This is modelled with a new version of the transition to the
‘Failure’ state. In addition, the operator must push a reset
button before the ‘Off’ state can be entered again after a
failure. Hence, an additional ‘Reset’ trigger is introduced
resulting in a new version of this transition.

In version 2, only the state of the fuse needed to be
checked, by means of a function ‘CheckFuse’ triggering the
transitions from the ‘On’ state to the ‘Failure’ state and from
the ‘Failure’ state to the ‘Off’ state. In the third version,
two conditions need to be checked: the state of the fuse
and a heat sensor connected to the motor. Depending on
the implementation, this may require the creation of a new
version of the trigger that can deal with multiple sensors.

B. ATM example

This example introduces the use of hierarchical states
in UML state machine diagrams. It shows a high level
specification of an ATM from a user perspective, limited to
the withdrawal of money (Figure 8). As in the motor control
example, two alternative versions of the initial design will
be discussed, each resulting from changing requirements.

The process modelled in this example starts when a user
inserts a bank card. This user must first authenticate. If
the correct PIN (personal identification number) code is
supplied, money is dispensed (Figure 8). The state machine

342

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. ATM specification using composite states

has two states: ‘Authenticate’ and ‘Dispense Money’. The
transition between the states is triggered by ‘CheckPIN’, a
function which is started for example after having pressed
the ‘OK’ button on the ATM. In this very simple example,
the user is not given the option to select the amount of money
withdrawn.

There is a major difference with the previous state
machine examples. Both states in these examples are not
simple, fully defined states as in the motor control example.
They are in fact state machines themselves. Both states are
therefore modelled as composite states, indicated by the
‘infinity symbol’ in the example. In Figure 9, detail for the
‘Authenticate’ state is provided.

The authentication starts with the processing of the card.
When the machine is in the ‘Read Card’ state, the card is
processed by reading and decoding the chip or magnetic strip
on the card. Once the card is processed, the Authenticate
state machine will automatically transition to the ‘Enter
PIN’ state. Note that no trigger or guard is specified on
this transaction.

When the machine arrives in the ‘Enter PIN’ state, the
entry action of the state is executed. As a result, the machine
will ask the user to enter a PIN code. When the user presses
an ‘OK’ button on the ATM, ‘PIN Entered’ is triggered
and the PIN code will be validated using the ‘check PIN’
action. If the PIN code is not correct, the user must try again,
else the final state of the ‘Authenticate’ super state will be
reached. When this final state is reached, the ‘Authenticate’
state itself is considered as complete and the system can
transition to the ‘Dispense Money’ state. Once the money is
dispensed, the card will be ejected and the final state of the
overall process is reached.

The diamond within the ‘Authenticate’ state machine is a
‘choice pseudostate’. This state machine could also be drawn
with two seperate transitions with the same trigger as in the
motor control examples above.

In this version, the ATM has serious drawbacks. First,

Figure 9. ATM version 1

the user can supply an unlimited number of PIN codes.
Second, the card will only be returned after having supplied
the correct code. To amend the first problem, the concept
of an ‘error counter’ is added. Two actions to increase and
reset this counter are added. If the card is unreadable or
if the maximum number or retries is reached, the card is
ejected. The user is also given the opportunity to cancel
the session and eject the card (Figure 10). In these three
cases, the ‘Authenticate’ state machine transitions to the state
‘Transaction cancelled’, modelled as an exit state. At the
higher level in the state machine hierarchy, this exit state
unconditionally transitions to the final state ‘Ejected’.

In both versions the internals of the states ‘Read Card’
and ‘Enter PIN’ are not specified. To implement the ATM
system, more detailed specifications are required, possibly
resulting in additional levels of state machines and sub-
states. Changing requirements may cause an evolution of
the internals of these states, resulting in a third version of
the ATM example.

As mentioned above, in version 2, ‘PIN Entered’ was
triggered by pressing an ‘OK’ button on the ATM. Assume
that in a third version of the ATM, the use of this button
should be eliminated if the number of digits of the PIN
codes can be derived from the card type, e.g., 4 digits for a
Belgian bank card. The ‘Read Card’ implementation should

343

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. ATM versions 2 and 3

be enhanced to determine the type of card. The ‘Enter PIN’
implementation should be changed such that

• the entry action becomes conditional on the card type
(‘Enter PIN’ or ‘Enter PIN and press OK’);

• for a Belgian card the ‘PIN Entered’ trigger fires once
the fourth character is entered, and

• for any other card, pressing the ‘OK’ button causes this
trigger to fire.

In this new version, the ‘Authenticate’ state machine itself
does not evolve to a new version, only the two sub-states
‘Read Card’ and ‘Enter PIN’ are changed. Also, a new
parameter needs to be passed, since the card type is detected
by ‘Read Card’ and must be used by ‘Enter PIN’. However,
these differences do not lead to a change in the diagram.
Therefore, Figure 10 does not change for version 3 of the
ATM.

As in the motor control example, it is possible that both
versions of the sub states need to co-exist for a certain time.
Assume that the ‘Enter PIN’ process requires a software
update, while the adaptation to ‘Read Card’ requires the
physical installation of new hardware. Ideally, the software
is upgraded on all ATMs, irrespective of the version of the

Figure 11. Telecom process, version 1

card reader.

C. Integration of COTS applications

In a third example, additional requirements on the evolv-
ability of state machines will be illustrated. This example
is based on the experience of one of the authors with
a greenfield software implementation and integration for
a Dutch telecom operator. Some of the outcomes of this
project for the academic community are documented in [33]
and [34].

Running a telecom operation requires the automation of
numerous very complex business processes. Most opera-
tors resort to the installation of Commercial Off-The-Shelf
(COTS) applications instead of implementing everything in-
house ‘from scratch’. Often multiple COTS applications
are installed, such as a Customer Relation Management
(CRM) system, a telecom billing system, fraud detection, a
network inventory system, an ERP system, etc. These COTS
applications are large software systems, the installation of
which requires extensive parametrization and configuration
to implement the desired business processes. Typically, a
multi-million dollar budget is required for the installation
and implementation of a single COTS application.

To create end-to-end workflows supporting the different
business processes, the different COTS applications must
be integrated, this being a bespoke development for the
operator. The integrated workflows can be modelled using
hierarchical state machines. The highest levels of the hier-
archy are part of the bespoke development by the operator.
At a certain level in the hierarchy, a substate will be fully
contained in one of the COTS applications.

Figure 11 shows a simplified order-to-bill process for a
new DSL line, stripped from all triggers, guards and actions.
In this example, an order for a new DSL line is treated first
in the CRM system. Once the order is completed, it needs
to become available in a ‘service provisioning system’. The

344

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Telecom process, version 2

latter is used to manage the installation of the new line and
ensure that the appropriate services are provisioned. The
provisioning system needs to communicate with a system
of another operator to order raw copper. After delivery
of this line, the DSL line is physically installed at the
customer premises, a process that is managed by means of
a ‘workforce management system’. Next, the IP service is
provisioned using the service provisioning system. Finally,
once, the system must ensure that the appropriate billing
information is created in the telecom billing system.

In Figure 12, a second version of this process is shown. In
this adapted process, the customer must pay the installation
fee before the provisioning starts. Once the service is pro-
visioned, the recurring part of the billing must be activated.
When the state machine arrives in the ‘Install Fee collection’
state, it will hand over the control to the billing system where
an invoice will be created and sent to the customer. Next,
the entire process will halt, waiting for the customer to pay.
Only when the appropriate amount is collected, control will
be handed over again to the higher level state machine.

The evolution of version 1 to version 2 is a complex
process:

• The entire software installation runs on a large number
of servers; the implementation of updates to any of the
COTS systems is complex and time consuming. It is
nearly impossible to shut down and restart everything
at the same time without affecting user experience
and/or operations. Attaining the ability of ‘dynamic
reconfiguration’ would be a significant advantage.

• Every substate in the process requires a considerable
period of time to complete. During the execution of the
overall process for any given order, one or more updates
and new versions may be introduced. Depending on a
number of criteria, existing orders may still need to be
handled according to the the old version. For example,

the installation fee can only be collected before the
installation if this was required during the ordering
phase; if not, the order will need to be processed using
version 1 of the state machine.

V. CHANGES TO STATE MACHINES

Industry usually prefers the Mealy state machine model
over the Moore model, possibly because a Mealy machine
often ends up with a lower amount of states, and is thus more
compact. In contrast, Normalized Systems Theory advocates
a higher granularity of modules. If ’more compact’ results in
a lower amount of (larger) modules in case a Mealy machine
is implemented, this would favour the Moore type.

Also, a Mealy machine combines transitions with actions,
which can result in violations of the separation of concerns
theorem: When a new version of a transition is implemented
in the same module as the corresponding, resulting action,
both original and new version need to co-exist. When a
new version of the action is introduced afterwards, this
update has an impact on both versions of the co-existing
modules containing both actions and transitions. Moore
machines explicitly separate states and transitions. For the
implementer, it is easier to comply with the separation of
concerns theorem if states and transitions are separated in
the model the software is based on.

The preference of industry for Mealy machines is under-
standable: a lower amount of modules probably results in
a lower implementation effort due to the lower amount of
module definitions and module interfaces. However, changes
to a single transition or to a single action might result
in combinatorial effects when transitions and actions are
implemented in the same module.

In order to expand on these general observations regarding
the evolvability of state machines, this section is dedicated to
a detailed examination of anticipated changes, illustrated by
the examples in the previous section. As already indicated
at the end of Section II, only a subset of the constructs
available in a UML statechart is studied.

A. Identifying singular change drivers

The following changes can be observed for ‘flat’, single
level state machines:

• adding a state (e.g., ‘Failure’ in Figure 6)
• adding a transition (e.g., ‘Card not readable’ in Fig-

ure 9)
• changing a state (e.g., change of ‘Enter PIN’ entry

action from ATM version 2 to 3)
• changing a transition (e.g., the ‘On’ → ‘Failure’ tran-

sitions in Figures 6 and 7).
Neither adding/changing a state nor adding/changing a

transition are singular actions, since they may involve a num-
ber of independent actions. Adding a transition may require
the addition of a trigger, a guard and an action. Adding a
state may require the addition of two transitions, an entry

345

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and an exit action. Changing a state may require additional
data to be passed between states. According to NST, change
drivers need to be singled out to study evolvability. Hence,
the above-mentioned anticipated changes need to be further
refined.

Likewise, neither changing the direction of a transition
nor changing the target of a transition are independent
actions. Both consist of adding a new transition together
with simultaneously deleting the original transition. As will
be discussed below, deletions are not desirable from an
evolvability viewpoint, which is why they are not included
in the list above.

For reasons of simplicity we will not further take the
‘guard’ of a transition into account. It is assumed that the
trigger event will occur conditional to the value of the guard.
We consider this as a further restriction on the subset of
UML state machine constructs that are within the scope
of our current analysis. A detailed analysis of this subject
matter shall be part of future research.

While triggers and actions can be easily distinguished
as singular change drivers, it is more difficult to define a
‘singular addition of a transition’. In its most basic form,
a transition A → B unconditionally fires when the state A
becomes current, and causes no effect other than putting the
state machine in this next state B. On arrival in state B,
actions related to this state will of course be executed.

The addition of an unconditional transition to an ex-
isting state machine may cause inconsistencies, however.
Assume, for example, that the transition from ‘Read Card’ to
‘Transaction cancelled’ in Figure 10 were unconditional. The
resulting machine would always transition to the final state
‘Ejected’, which is of course, undesirable. There are many
solutions to this problem. A possible solution, requiring the
introduction of concurrency in the design, is the following:
Immediately after reading the card, execution should split in
two parallel, concurrent paths. A first path goes to an end
state by ejecting the card. In parallel, the process continues
as if the card was read. While this change to the design of
the state machine yields the desired result, it clearly is not
a singular change.

To find a definition for the singular addition of a transition,
we shall resort to the mathematical model underlying the
state machines. In this model, the state transition function

δ ∈ Q× Σ→ Q

maps the combination of a current state and an input to
a next state. Not every combination (current state, input) is
defined. Only a limited number of inputs are accepted in any
given state. Every combination (current state, input) can only
occur once, i.e., the next state is defined unambiguously.

In this model, adding a transition cannot introduce an
inconsistency in the state machine as long as the restriction
is met that the next state is defined unambiguously. We
therefore impose additional restrictions on the UML state

machines we consider in order to replicate this characteristic,
and limit ourselves to state machines without concurrency
that only have conditional transitions. Hence, a singular
change driver can be obtained when the transition has a
trigger and under no circumstances a condition could arise
where two transitions need to fire concurrently. Note that
the same restriction holds for every addition and change of
a trigger.

These are significant constraints on the usual semantics
of UML statecharts. Nonetheless, in the remainder it is
implicitly assumed that these consistency requirements are
respected through every step in the evolution. Hence, they
will not be part of the design rules we will propose.

This results in the following anticipated changes to a flat
state machine:

1) adding a transition (maintaining the consistency re-
quirements) between two states, without effect

2) adding a trigger to a transition (changing/deleting)
3) adding an action to a transition (changing/deleting)
4) adding an empty state, without internal actions
5) adding an entry action (changing/deleting)
6) adding an exit action (changing/deleting)
7) passing additional data between states.
In case of non-flat, hierarchical state machines, the inter-

nal behaviour of the states will become more complex. In
the telecom example, the ‘Billing’ state, comprising a very
complex state machine in a COTS application, was split in
two parts. Part of the actions executed in the state ‘Billing’
will be separated amongst the new states. Part of the action,
such as the creation of the invoice and the collection of the
payment, will need to be supported in both states. A number
of anticipated changes can be derived:

1) adding a state machine to a flat state
2) changing an existing state machine
3) deleting a state machine to return back to a flat state.

For the purpose of our discussion, we only consider a
restricted set of hierarchical state machines which can be
flattened. Therefore, composite states only have a notational
purpose. Since changes to them can be expanded to changes
on the equivalent flattened state machine, they are not further
considered as anticipated changes. If certain restrictions are
lifted, and e.g. concurrency is allowed, however, this will
need to be reconsidered.

Apart from the entry and exit actions of a state, the
UML standard also specifies ‘internal transitions’. These
are transitions that cause an output action but do not cause
a state transition. These transitions fire as a response to
a specific event if the machine is in a given state. This
type of transitions has deliberately been excluded from the
discussions above. We consider them as special cases of
hierarchical state machines. From a semantical point of view,
this is a further restriction we impose. It will, however, not
impact the conclusions listed below.

346

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Changes and version transparency

Deleting a state, transition or any other element usually
is intuitively considered an anticipated change to a design.
However, according to NST, a deletion violates the action
version and data transparency theorems and should therefore
never be allowed. Assume that in the ATM example, the
bank card technology evolves in such a way that the number
of digits to be entered can be read from the card using
a new card reader. This of course requires an update of
the card reader which is used in the ‘Read Card’ state. In
a fourth version of the state machine, ‘Enter PIN’ would
then make use of this number rather than the card type. If,
however, the card type parameter is deleted, versions 3 and
4 cannot coexist any more. Similar reasoning holds for the
deletion of transitions and states. Changing the direction of
a transition is in essence (a) the addition of a new transition
in the opposite direction and (b) the deletion of the original
transition, and should therefore not be allowed either.

To keep systems compact nonetheless, NST proposes
an extended ‘garbage collection’ approach on the design.
The removal of states, transactions, or other constructs can
make it impossible for older versions to exist. Consequently,
deleting a construct should only be allowed if one can
guarantee that no existing module makes use of it. In the
ATM example, this means that the card readers have been
physically upgraded for all ATM machines in the field. Note
that the knowledge whether this has been done or not cannot
be derived from the design itself.

Just like a ‘delete’, a ‘change’ can cause a violation
of the version transparency theorems. Note that confusion
can arise with restricting ‘change’, because the area of
concern of NST is ‘change’ of an evolving system without
causing combinatorial effects. In this paper the theory is
applied to state machines. The goal of NST is to determine
how a design and/or implementation can be changed in a
way that a continuous and potentially infinite evolution of
the system can be achieved. To avoid this confusion, we
prefer to use the term ‘modification’ when we refer to an
update of the functionality or data structure of a construct.
To prevent violations of the version transparency theorems,
modifications should be based on the concepts of transparent
coding or version wrapping [35]:

1) Transparent coding: Transparent coding is defined as
inserting internal code in a module which does not affect
the functionality of previous versions. Since Normalized
Systems require high granularity, it is not unexpected that
the individual (small and straightforward) modules or sub-
routines end up to be a simple piece of code, on which
the programmer has a clear overview. In such cases, the
programmer can preview the effect of a functional change
on previous versions, and maintain downward compatibility.
If the change is not contradictory with one of the previous
versions, it might be possible to apply transparent coding.

Calling
entity

Wrapping
module

Version ID

Entity
version 1

Entity
version 2

Entity
version 3

Figure 13. The concept of version wrapping

This means that the new functionality can just remain in the
module without affecting the original code, even if a calling
entity is not aware of the new functionality.

2) Version wrapping: There will be lots of cases where
transparent coding is not possible, because the code is too
complex for the programmer to have a reliable overview, or
if the new functionality is contradictory with one or more of
the previous versions. To exhibit action version transparency,
the different versions can be wrapped. The calling action has
to inform the called action which version should be used by
way of a version tag. In addition, following the separation
of states theorem, the called action has to inform the calling
action whether the instance of the called action is recent
enough to perform the requested action version.

An action entity which is designed according to the
concept of version wrapping aggregates functionality for all
the versions as separate action entities. Each of the nested
action entities contains a version of the core functionality.
Following the separation of concerns theorem, the wrapping
action entity should not contain any core functionality, but
limit itself to wrapping the versions as a kind of supporting
task. Following this principle, different versions of a module
co-exist in parallel. Figure 13 illustrates how a wrapping
module selects the desired version based on the version ID.

C. Anticipated changes

In summary, in order to attain the property of evolvability
for a state machine, updates must be confined to the follow-
ing set of anticipated changes:

• An additional state
• An additional transition
• A new version of a state following the principle of

transparent coding
• A new version of a transition following the principle

of transparent coding
• A new version of a state following the principle of

version wrapping
• A new version of a transition following the principle

of version wrapping
• An additional entry/exit action of a state
• A new version of an entry/exit action of state
• A new effect (action) of a transition
• A new version of an effect (action) of a transition.

347

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As mentioned above, adding a transition or adding a state
may result in state machines behaving inconsistently. The
introduction of a new transition or a new version from a
state ‘A’ may impact all transitions having ‘A’ as current
state, as the conditions on these transitions may need to be
changed for consistency reasons. Hence, new versions of all
these transitions will need to be created. Similarly, adding a
new state ‘N’ requires the addition of a new transition from
a state ‘A’ to ‘N’ and from ‘N’ to some other state, unless if
‘N’ is a final state. This implies that new versions may have
to be created for all transitions that leave from state ‘A’. In
order to arrive at a new, consistent state machine, multiple
of the abovementioned anticipated changes may be required.
If however, the implementation of every single anticipated
change respects the rules of NST, the overall change will as
well.

VI. DERIVED RULES FOR EVOLVABLE STATE MACHINES

The previous sections discussed the benefits of version
transparency and co-existence. In the following, we propose
rules – based on Normalized Systems Theory – that shall
be followed by state machines and the program code imple-
menting them in order to achieve these properties, and, thus,
evolvability.
S1. The functionality of a state machine shall be imple-

mented in an action entity, while the state and transition
trigger information should be stored in a separate entity
– a data entity.

When the functionality of a state machine is updated,
a new class version is introduced. We want to be able to
deploy instances of this new version to the system without
disrupting the operation of instances of previous versions,
which may still be adequate for part of the equipment.
Thus, several instances of devices controlled by different
versions of the state machine should be able to co-exist,
and we require the logic of the state machine to change
independently of these instances. Remember that if two
parts of a module can change independently, they shall
be separated following the separation of concerns principle
(Theorem 1); from this follows the separation called for in
this rule.

Every version of the data entity contains state and condi-
tion fields. In each state, a particular state of the associated
process hardware is effected (e.g., letting the motor run in
the ‘On’ state). This is done by way of a connection entity.
Values for the condition fields are provided by other action
entities (in particular, connection entities); when the condi-
tions for a particular transition are fulfilled, the state machine
action entity changes the current state of the instance.

In UML, a trigger is an action responding to an event
that occurs outside of the state machine. According to rule
S1, the state machine only contains a generic mechanism to
determine what transition to execute based on the contents
of a data element.

S2. The state machine data entity shall include an instance
ID.

The instance ID allows the connection entities to map this
instance to the underlying system. In a PLC, this mapping
would contain the hardware addresses; in a business process
implementation, the mapping could involve the details of
interfacing with a COTS system. The mapping is necessary
so that changes in the underlying system (e.g., on hardware
inputs) are reflected as changes in the transition fields,
which in turn will cause the state machine action entity
to perform the appropriate state transition. Likewise, the
mapping is necessary in order to command the underlying
system to perform the action associated with a state of the
state machine (e.g., setting the required hardware outputs).

S3. The state machine action entity shall include a class
version ID, and the state machine data entity shall
include an instance (data type) version ID.

To comply with the version transparency theorems, the
data entity must contain its own version (the version of
the state machine it is an instance of). This version ID lets
action entities recognize the class version corresponding to
the instance and act accordingly. The action entity should
store its class version on the moment of compilation as a
hard-coded constant.

Following our first rule (S1), the data and the functionality
within the system should be separated. Therefore, we have
a data entity to store the system’s data in one or more
data fields, and an action entity to perform actions based
on the data in this data entity. Several versions of both
data entities and action entities have to be able to co-exist.
When a recent action entity instance encounters an older data
entity instance, it must interpret its data fields in the way the
older action entity instance would have. If necessary, default
values need to be defined for fields not present in the older
data entity instance. When a more recent data entity instance
is processed by an older action entity instance, only old
data fields are used, because the older action entity instance
is not aware of the recently added data field(s). To enable
proper interaction with instances of older versions, or at least
prevent version conflicts, instance version IDs are required
(Theorems 5 and 6).

For example, suppose that in the motor control state
machine example in Figures 3 and 6, we have an action
entity version 2 (class version), which should process a
data entity instance version 1 (data type). After reading the
data entity instance’s version ID, the action entity decides
to never manipulate the ‘FuseOK’ data field, nor allows
any transition to the state ‘Failure’. These actions must be
prevented because these fields do not exist in version 1 of the
data entity; undefined behaviour would result. Instead, any
information on the fuse or thermal cut out (if available) is
ignored, corresponding to the (older) functionality of action
entity version 1. Conversely, consider an instance of action

348

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

entity version 1, which should process a younger instance
of data entity version 2. This action entity instance is not
even aware of the existence of fuse information nor the state
failure, so it will never read nor manipulate these fields.

The potential ‘ThermalCutout’ transition of version 3
(Figure 7) from the ‘On’ state to the ‘Failure’ state will
simply never happen if not both the data entity instance and
action entity are of version 3. In addition, the action entity
must include a selection to decide whether or not a reset
command from the operator is needed for the transition from
the ‘Failure’ state to the ‘Off’ state.

S4. States or transitions shall not be deleted between ver-
sions.

As explained in the previous section, it is a general rule
in NST that deletions should not be allowed. Due to its
importance, this is reiterated as a separate rule for state
machines.

S5. State modifications shall apply transparent coding or
version wrapping.

Deletions of states can cause violations of the version
transparency theorems, so only additions and modifications
are allowed. Modifications shall adhere to the principles
of transparent coding or version wrapping as discussed in
Section V-B.

S6.a Entry actions of states will be implemented in a
separate action entity.

S6.b Exit actions of states will be implemented in a separate
action entity.

S6.c Transition effects will be implemented in a separate
action entity.

Entry actions, exit actions and transition effects determine
the output of a state transition. The desired output of a
transition can evolve separately from the design of the
state machine itself. The three different types of actions
resulting from a transition can also evolve independently,
even when resulting from the same transition. According to
the separation of concerns principle, they should therefore
be separated.

VII. IMPLEMENTATION CONSIDERATIONS

The architecture introduced in Section III-A is excel-
lently suited to supporting co-existing, diverse versions of
an evolvable state machine. For example, considering the
scenario shown in Figure 5, motor 1 could be controlled
by an instance of version 1 of the state machine presented
in Section II, since status feedback is not required for it.
Motor 2 is controlled by an instance of version 2 of this
state machine, since for it the fuse condition must be taken
into account. Motor 5 is also controlled by an instance of
version 2 of the state machine; while motor 2 and motor
5 thus share the same instance version, they have different
instance IDs.

ATM User Perspective

Dispense Money

Authenticate v1

Read Card v1 Enter Pin v1

Authenticate v2

Read Card v2 Enter Pin v2

Authenticate

Card Type v1 Card Type v2

Use Type v1 Use Type v2

Figure 14. Non-evolvable implementation of the ATM

ATM User Perspective

Dispense Money

Read Card Enter Pin

Authenticate

Card Type

Card Type v2

Use Type

Use Type v2

Card Type v1

Use Type v1

Figure 15. Evolvable implementation of the ATM

A similar approach can be used for the creation of
evolvable information systems, which typically have a hi-
erarchical nature. The use of hierarchical state machines
makes the situation more complex, especially with respect
to the implementation of version transparency. According
to NST, changes must remain local. If a single change
requires making changes in multiple places, the system is
not evolvable.

Figure 14 shows the ATM example, with the different
state machines represented in a hierarchy. The top level
state machine contains two state machines ‘Authenticate’
and ‘Dispense Money’, the first of which contains the state
machines ‘Read Card’ and ‘Enter PIN’. To evolve from ver-
sion 1 to version 2, both state machines need to be adapted.
Hence, because of a single change in the requirements, two
state machines need to be adapted. Version 1 of ‘Enter
PIN’ can only be used with version 1 of ‘Read Card’, and
version 2 of ‘Enter PIN’ only with version 2 of ‘Read Card’.
One could therefore decide to create two versions of the
‘Authenticate’ machine, each grouping a consistent pair of
state machines.

This implementation would not yield the desired results.

349

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The generic implementation of ‘Authenticate’ cannot decide
which version needs to be used. Hence, it cannot be im-
plemented using version wrapping or transparent coding.
Moreover, this implementation is not evolvable according
to NST. Both ‘Read Card’ and ‘Enter PIN’ are hierarchical
state machines themselves, each comprising multiple levels
of state machines. The change in ‘Read Card’ would be
implemented by changing a state machine somewhere deep
in the hierarchy, e.g., the ‘Card Type’ machine. The card
type is consumed by the ‘Use Type’ machine somewhere in
the hierarchy of the ‘Enter PIN’ machine. A single change
would therefore imply the creation of new versions of all
the state machines in the hierarchy, creating a non evolvable
implementation.

Figure 15 shows an evolvable design where the changes
remain local. New versions of the two machines that were
changed are created. All other state machines are not im-
pacted by the change. Assume that in the software imple-
mented on an ATM, both version 1 and version 2 remain
available. In that case ‘Use Type’ must be able to determine
which version of ‘Card Type’ was used, as required by
the version instance transparency law. This version cannot
simply be passed through the hierarchy as this would again
require the creation of new versions of all states machines
in this hierarchy.

This can be solved by adapting the generic design of a
state machine such that every state machine hierarchically
enclosed in a state of a given state machine has access to the
data element that contains the state and trigger information.
The evolution from version 1 to version 2 would thus
involve, apart from the evolution of the state machines
themselves, a change to the data element containing the state
of ‘Authenticate’ by adding a version number or the card
type (or both).

VIII. CONCLUSION

The state machine is a valuable artefact for modelling
systems. In a rapidly changing environment, there is a
need for evolvable state machines. When production sys-
tems evolve, corresponding changes have to be made in
the automation software; similarly, changes in a business
environment may require the introduction of new states,
new transitions or changes to existing transitions in one
or more state machines used in an information system.
However, when systems evolve, it follows from Lehman’s
law of increasing complexity that their further evolution is
restrained when the systems’ size increases over time.

State machines benefit from the introduction of modular-
ity, as can be seen in the popularity of (hierarchical) UML
statecharts. Normalized Systems Theory offers a theoretical
foundation to achieve evolvability in modular structures by
imposing restrictions on the definition of the modules and
their interfaces.

This paper presented a design for evolvable state machines
that can be used in both automation systems software and
in information systems. The design is based on Normalized
Systems Theory. Rules were derived to constrain changes
to state machines in order to achieve the property of evolv-
ability. In addition, case scenarios were discussed showing
how instances of different versions of such an evolvable state
machine can coexist.

The design supports dynamic reconfiguration, as called
for by Kuhl and Fay, to update a system without the need
for a complete system shutdown. In an automation system,
compiling an IEC 61131-3 project includes allocating mem-
ory to variables. A shutdown is only necessary when this
memory must be remapped. Changing the value of a data
field in a data instance can be done without recompilation,
so no shutdown is required. When, for example, a motor
is replaced by a new one, this change is reflected by a
change to the instance version ID of the data entity in our
design. Therefore, dynamic reconfiguration is supported for
such a situation. A similar conclusion holds for information
systems in general if the restrictions imposed in this paper
are adhered to.

Still, creating software that strictly adheres to the design
rules proposed in this paper is a tedious, time consuming
and error prone activity. This is, in fact, a major criticism
often made in relation to Normalized Systems Theory.
Many practitioners claim that it is not possible at all to
create such software, except for small applications used for
demonstration purposes only, i.e., that Lehman’s law applies
to all real world software systems.

From the beginning, this problem has been recognized
as a major research question related to Normalized Sys-
tems Theory. Apart from the development of the theory, it
has extensively been investigated how Normalized Systems
compliant software can be built. For this purpose, a number
of software patterns have been defined [36] [37], together
with a set of pattern expanders that allow expanding a
higher level description into NST compliant software. After
an initial, academic, proof of concept, the development of
the expanders became the core activity of the Normalized
Systems Institute. The latter is a cooperation of the Univer-
sity of Antwerp with a number of industrial partners and
government institutes. By now, the partners in the institute
have developed a number of small and mid-sized information
systems that are being used in a production environment,
proving that it is possible to defeat Lehman’s law in a real
world software system.

Regarding future work, state machine libraries and toolkits
should be improved by adding constraints to follow the
rules presented in this paper, resulting in increased system
evolvability by ensuring compliance with the theorems on
Normalized Systems. The analysis still needs to be expanded
to aspects of concurrency and the related UML constructs.
Either would the rule set need to be revisited, or it needs to

350

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be demonstrated that real world information systems can be
built based on state machines without these constructs.

REFERENCES

[1] D. van der Linden, G. Neugschwandtner, and H. Mannaert,
“Towards evolvable state machines for automation systems,”
in Proc. 8th Intl. Conf. on Systems (ICONS), 2013, pp. 148–
153.

[2] P. Stachour and D. Collier-Brown, “You don’t know Jack
about software maintenance,” Communications of the ACM,
vol. 52, no. 11, pp. 54–58, Nov. 2009.

[3] S. Ciraci and P. van den Broek, “Evolvability as a quality
attribute of software architectures,” in Proc. 2nd Intl. ERCIM
Workshop on Software Evolution, 2006, pp. 29–31.

[4] I. Kuhl and A. Fay, “A middleware for software evolution
of automation software,” in Proc. 16th IEEE Intl. Conf.
on Emerging Technologies and Factory Automation (ETFA),
2011.

[5] (Retrieved in 2013) Atos Worldline, System stop.
[Online]. Available: http://be.worldline.com/index/en US/
5253162/0000/System-stop.htm

[6] W. Stoecker, “Programmable controllers for industrial refrig-
erant plants,” International Journal of Refrigeration, vol. 4,
no. 6, pp. 329 – 334, 1981.

[7] E. I. Organick, The Multics System: An Examination of Its
Structure. Cambridge, MA, USA: MIT Press, 1972.

[8] F. J. Corbató, J. H. Saltzer, and C. T. Clingen, “Multics: the
first seven years,” in Proceedings of the May 16-18, 1972,
Spring Joint Computer Conference, 1972, pp. 571–583.

[9] (Retrieved in 2013) Multics: Myths. [Online]. Available:
http://www.multicians.org/myths.html

[10] O. Niggemann, “System-level design and simulation of au-
tomation systems,” in Proc. 8th IEEE Intl. Workshop on
Factory Communication Systems (WFCS), 2010, pp. 173–176.

[11] IEC 61131-3, Programmable controllers – Part 3: Program-
ming languages. International Electrotechnical Commission,
2003.

[12] R. H. Follett and J. E. Sammet, “Programming language
standards,” in Encyclopedia of Computer Science. John
Wiley and Sons Ltd., 2003, pp. 1466–1470.

[13] (Retrieved in 2013) TIOBE Software, TIOBE Programming
Community Index for September 2013. [Online].
Available: http://www.tiobe.com/index.php/content/paperinfo/
tpci/index.html

[14] (Retrieved in 2013) ISO/IEC JTC1/SC22/WG21, C++-
Standards. [Online]. Available: www.open-std.org/jtc1/sc22/
wg21/docs/standards

[15] (Retrieved in 2013) The Apache Software Foundation, Status
Of C++ 0x Language Features in Compilers. [Online]. Avail-
able: http://wiki.apache.org/stdcxx/C++0xCompilerSupport

[16] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction
to Automata Theory, Languages, and Computation, 3rd ed.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., 2006.

[17] ISA, Batch Control – Part 1: Models and Terminology.
ANSI/ISA-88.01, 1995.

[18] W. S. McCulloch and W. Pitts, “A logical calculus of the
ideas immanent in nervous activity,” in Neurocomputing:
foundations of research, J. A. Anderson and E. Rosenfeld,
Eds. Cambridge, MA, USA: MIT Press, 1988, pp. 15–27.

[19] F. Wagner and P. Wolstenholme, “Misunderstandings about
state machines,” IET Computing & Control Engineering Jour-
nal, no. 4, Aug.–Sep. 2004.

[20] D. Harel, “Statecharts: A visual formalism for complex sys-
tems,” Science of Computer Programming, vol. 8, no. 3, pp.
231–274, Jun. 1987.

[21] H. Fecher, J. Schönborn, M. Kyas, and W.-P. de Roever, “29
new unclarities in the semantics of UML 2.0 state machines,”
in Proc. 7th Intl. Conf. on Formal Methods and Software
Engineering. Springer-Verlag, 2005, pp. 52–65.

[22] K. Lano, UML 2 Semantics and Applications. New York,
NY, USA: John Wiley & Sons, 2009.

[23] S. Liu, Y. Liu, É. André, C. Choppy, J. Sun, B. Wadhwa,
and J. S. Dong, “A formal semantics for the complete syntax
of UML state machines with communications,” in Proc. 10th

Intl. Conf. on Integrated Formal Methods (iFM’13), vol. 7940.
Springer, 2013, pp. 331–346.

[24] D. L. Parnas, “Software aging,” in Proc. 16th Intl. Conf. on
Software Engineering (ICSE), 1994, pp. 279–287.

[25] D. Van Nuffel, “Towards Designing Modular and Evolv-
able Business Processes,” Ph.D. dissertation, University of
Antwerp, 2011.

[26] M. Lehman, “Programs, life cycles, and laws of software
evolution,” Proceedings of the IEEE, vol. 68, pp. 1060–1076,
1980.

[27] F. P. Brooks, Jr., The Mythical Man-Month: Essays on
Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., 1978.

[28] F. P. Brooks, Jr., “No silver bullet: Essence and accidents of
software engineering,” Computer, vol. 20, no. 4, pp. 10–19,
Apr. 1987.

[29] D. van der Linden, G. Neugschwandtner, and H. Mannaert,
“Industrial automation software: Using the Web as a design
guide,” in Proc. 7th Intl. Conf. on Internet and Web Applica-
tions and Services (ICIW), 2012.

[30] H. Mannaert, J. Verelst, and K. Ven, “The transformation of
requirements into software primitives: Studying evolvability
based on systems theoretic stability,” Science of Computer
Programming, vol. 76, no. 12, pp. 1210–1222, 2011.

351

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[31] I. Vanderfeesten, H. A. Reijers, and W. M. van der Aalst,
“Evaluating workflow process designs using cohesion and
coupling metrics,” Computers in Industry, vol. 59, no. 5, pp.
420–437, 2008.

[32] D. van der Linden and H. Mannaert, “In search of rules for
evolvable and stateful run-time deployment of controllers in
industrial automation systems,” in Proc. 7th Intl. Conf. on
Systems (ICONS), 2012, pp. 67–72.

[33] M. Snoeck and C. Michiels, “Domain modelling and the co-
design of business rules in the telecommunication business
area,” Information Systems Frontiers, vol. 4, no. 3, pp. 331–
342, 2002.

[34] W. Lemahieu, M. Snoeck, F. Goethals, M. D. Backer, R. Hae-
sen, J. Vandenbulcke, and G. Dedene, “Coordinating COTS
applications via a business event layer,” IEEE Software,
vol. 22, no. 4, pp. 28–35, 2005.

[35] D. van der Linden, H. Mannaert, W. Kastner, and H. Pere-
mans, “Towards normalized connection elements in industrial
automation,” International Journal on Advances in Internet
Technology, vol. 4, no. 3&4, pp. 133–146, 2011.

[36] H. Mannaert, J. Verelst, and K. Ven, “Exploring concepts
for deterministic software engineering: Service interfaces,
pattern expansion, and stability,” in Proc. IEEE Intl. Conf.
on Software Engineering Advances (ICSEA), 2007.

[37] H. Mannaert and J. Verelst, Normalized Systems: Re-creating
Information Technology Based on Laws for Software Evolv-
ability. Koppa, 2009.

352

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Sustainable Multiprocessor Real-Time Scheduling with Exact Preemption Cost

Falou Ndoye
INRIA Paris-Rocquencourt

Domaine de Voluceau BP 105
78153 Le Chesnay Cedex - France

falou.ndoye@inria.fr

Yves Sorel
INRIA Paris-Rocquencourt

Domaine de Voluceau BP 105
78153 Le Chesnay Cedex - France

yves.sorel@inria.fr

Abstract—In this paper, we address for safety critical ap-
plications the problem of multiprocessor real-time scheduling
while taking into account the exact preemption cost. In the
framework of multiprocessor real-time partitioned scheduling,
we propose a greedy heuristic, which balances the load of
the tasks on all the processors and minimizes the response
time of the applications. That heuristic uses a schedulability
condition, which is based on the ⊕ operation. That operation
performs a schedulability analysis while taking into account
the exact preemption cost. In this paper, the WCETs (Worst
Case Execution Time) of tasks are considered rather than its
EETs (Exact Execution Time). In this case, we prove that the
schedulability analysis is sustainable. We also highlight the
impact of the preemption cost in the schedulability analysis. A
performance analysis is achieved, which compares the proposed
heuristic to a branch and bound exact algorithm and to worst-
fit and best-fit heuristics.

Keywords-multiprocessor real-time scheduling; partitioned
scheduling; exact preemption cost; sustainable; load balancing.

I. INTRODUCTION

For computation power and modularity issues, multipro-
cessor architectures are necessary to tackle complex appli-
cations found in domains such as avionics, automotive, rail,
mobile robotics, etc. Some of these applications are safety
critical [1], leading to hard real-time task systems whose
number of resources are fixed and constraints must be nec-
essarily satisfied in order to avoid catastrophic consequences.
Although fixed priority preemptive real-time scheduling al-
lows a better success ratio than non-preemptive real-time
scheduling, preemption has a cost. That cost is usually
approximated in the WCET (Worst Case Execution Time) as
assumed, explicitly, by Liu and Layland in their pioneering
article [2]. However, such approximation is dangerous in a
safety critical context since an application could miss some
deadlines during its real-time execution even though schedu-
lability conditions have been satisfied. This is the reason
why it is necessary to be aware of the exact preemption
cost. In this paper, we address the problem of multiprocessor
real-time scheduling while taking into account the exact
preemption cost in the case of safety critical applications.
In the framework of multiprocessor real-time partitioned
scheduling, we propose a greedy heuristic [3], which bal-
ances the load of the tasks on all the processors and tends

to minimize the response time of the tasks. That heuristic
uses a schedulability condition based on the algebraic ⊕
operation, which performs a schedulability analysis taking
into account the exact preemption cost.

The remainder of the paper is organized as follows:
Section II presents related work about preemption cost and
multiprocessor real-time scheduling. Section III describes
the model and the schedulability analysis we use. Section
IV presents the sustainability of this schedulability analysis.
Section V presents the impact of the preemption cost in
the schedulability analysis. Section VI presents the proposed
multiprocessor scheduling heuristic as well as its complexity.
Section VII presents a performance analysis that compares
the heuristic with the Branch and Bound (B&B) exact algo-
rithm and the Worst-Fit (WF) and Best-Fit (BF) heuristics.
Finally, Section VIII concludes and gives some directions
for future work.

II. RELATED WORK

A. Exact preemption cost in real-time scheduling

There have been very few studies addressing the exact
number of preemptions. Among them, the most relevant are
the following. A. Burns, K. Tindell and A. Wellings in [4]
presented an analysis that enables the global cost due to
preemptions to be factored into the standard equations for
calculating the worst case response time of any task, but
they achieved that by considering the maximum number of
preemptions rather than the exact number. Juan Echagüe,
I. Ripoll and A. Crespo also tried to solve the problem
of the exact number of preemptions in [5] by computing
the schedule using idle times and counting the number of
preemptions. They did not take into account the cost of
each preemption during the analysis. Hence, this amounts
to considering only the minimum number of preemptions
because some preemptions are not considered: those due to
the increase in the execution time of the task because of the
cost of preemptions themselves.

In order to reduce the preemption cost and improve the
schedulability of tasks, a lot of work has focused on limited-
preemption policies; among these we can cite fixed priority
scheduling with deferred preemption (FPSDP) also called
cooperative scheduling [6] and fixed priority scheduling

353

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with a preemption threshold (FPSPT) [7], [8]. According to
FPSDP, each job of a task is a sequence of sub-jobs, where
sub-jobs are not preemptive. When a job is being executed,
it can only be preempted between two consecutive sub-jobs.
For FPSPT, each task is assigned a nominal and a threshold
priority. A preemption will take place only if the preempting
task has a nominal priority greater than the preemption
threshold of the executing task. None of the previous works
considers the exact number of preemptions. Nonetheless,
that can affect the correct behavior of the system at run-time,
or in any case leads to resources being wasted in terms of
time and memory. It is not difficult to determine the constant
cost of every preemption, which includes the context switch
necessary to make the preemption possible together with the
choice of the task with the highest priority. However, the
exact number of preemptions is difficult to determine since
it may vary according to every instance of a task. To our best
knowledge there are only few studies that take into account
the exact preemption cost in the schedulability conditions,
except those presented in [9], [10]. The authors proposed a
scheduling operation named ⊕ that performs a schedulability
analysis while computing the exact number of preemptions.
Since the principle of this operation is not usual we give a
detailed presentation in Section III-B.

B. Multiprocessor real-time scheduling

The scheduling of real-time tasks on multiprocessor ar-
chitectures can be achieved according to three main ap-
proaches: partitioned scheduling, global scheduling, and
semi-partitioned scheduling.

In the partitioned scheduling approach [11], [12] the
system of tasks is divided into a number of disjoint subsys-
tems less than or equal to the number of processors in the
multiprocessor architecture, and each of these subsystems is
allocated to one processor. All the instances, or jobs, of a
task are executed on the same processor and no migration
is permitted. In this approach, it is necessary to choose a
scheduling algorithm for every processor, possibly the same
algorithm, and also an allocation algorithm. On the other
hand, the allocation problem has been demonstrated to be
NP-Hard [13]. This complexity is the main drawback of the
partitioned scheduling approach.

Heuristics are considered to be the best suited solutions
when the execution time is crucial as in the rapid prototyping
phase of the design process. In the case of fixed priority
scheduling and independent tasks, Davari and Dhall were
the first to propose in [14] two preemptive scheduling
algorithms RM-FF (Rate Monotonic First Fit) and RM-NF
(Rate Monotonic Next Fit) to solve the multiprocessor real-
time scheduling problem. In the proposed algorithms, the
uniprocessor RM algorithm [2] is used to verify if a task is
schedulable on a processor with respectively First-Fit (FF)
and Next-Fit (NF) to solve the allocation problem. Another
heuristic, RM-BF (Rate Monotonic Best Fit) was proposed

in [15]. It makes it possible to minimize the remaining
processor load (1−Upj), called the unutilized capacity of the
processor pj [16], where Upj is the load of the tasks on pj .
In contrast to RM-BF, RM-WF [15] (Rate Monotonic Worst
Fit) maximizes the remaining processor load. All these
approaches uses the classical Liu and Layland [2] model
of tasks that assumes the preemption cost is approximated
in the WCET. In order to tackle this problem [17] presents a
first solution to take into account the exact preemption cost
in multiprocessor real-time scheduling.

In the global scheduling approach [11], [12], a unique
scheduling algorithm is applied globally for every processor
of the multiprocessor architecture. All the ready tasks are
in a unique queue shared by all the processors. In this
queue, the m tasks with the highest priorities are selected
to be executed on the m available processors. Besides
preemptions, task migrations are permitted. The advantage
of the global scheduling approach, is that it allows a better
use of the processors. The main drawback of the global
scheduling approach, is that each migration nowadays has a
prohibitive cost.

In the semi-partitioned scheduling approach [18], [19],
derived from the partitioned scheduling approach, each task
is allocated to a specific processor as long as the total
utilization of the processor does not exceed its schedulable
bound. In this approach, some tasks can be portioned for
their executions among multiple processors. During run-
time scheduling, a portioned task is permitted to migrate
among the allocated processors, while the partitioned tasks
are executed on specific processors without any migration.
The semi-partitioned scheduling approach allows a reduction
of the number in migrations. But again, it is necessary to be
aware that every migration has a cost.

C. Our choices

The cost of migrations in the global and semi-partitioned
scheduling approaches leads us to choose the partitioned
scheduling approach. In addition, since the partitioned
scheduling approach amounts to transform the multiproces-
sor scheduling problem into several uniprocessor scheduling
problems, we can take advantage of the numerous research
results obtained for the uniprocessor scheduling problem. In
order to achieve rapid prototyping, we propose an alloca-
tion heuristic rather than a metaheuristic [20] or an exact
algorithm [21], and a schedulability condition to verify if
a task is schedulable on a specific processor. Next-fit (NF)
and first-fit (FF) heuristics cannot optimize the load of the
tasks on the processors, their choice is only based on the
first processor, which satisfies the schedulability condition.
The BF heuristic using the load as a cost function, tries
to fill a processor as much as possible before using another
one. This technique does not allow load balancing. The only
heuristic among the bin-packing heuristics which permits
load balancing is WF. But, as with all the other bin-packing

354

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

heuristics, WF tries to reduce the number of processors and
that limits the balancing while multiprocessor architectures
used in industrial applications, which we are interested in,
have a fixed number of processors. That is the reason why
we propose a greedy heuristic similar to the WF heuristic,
but which uses all the available processors. This heuristic
aims at minimizing the load on each processor. That allows
in turn the balance of the load on all the processors.

Preemptive scheduling algorithms are able to successfully
schedule some task systems that cannot be scheduled by
non-preemptive scheduling algorithms, but the preemption
has a cost. Indeed, Liu and Layland [2] assume that the
preemption cost is approximated in the WCET. Thus, there
are two possible cases: the approximation in time and
memory space is high enough and thus will probably lead
to wasting resources, or the approximation is low and thus a
task system declared schedulable may miss some deadlines
during its execution at runtime. In order to take into account
the exact preemption cost, we propose to use the ⊕ operation
[9], [10]. This is an algebraic operation verifies if two tasks
are schedulable, or not, while taking into account the exact
preemption cost.

III. MODEL AND SCHEDULABILITY ANALYSIS

A. Model

Let Γn = {τ1, τ2, · · · , τn} be a system of n preemptive,
independent and periodic real-time tasks. Every task is
denoted by τi = (r1i , Ci, Di, Ti) where r1i , Ci, Di and Ti
are the characteristics of the task. r1i is the first activation
date, Ci is the WCET without any approximation of the
preemption cost, Di is the relative deadline, and Ti the
period of the task τi. We assume that Ci ≤ Di ≤ Ti. Here
we use the WCET rather than the EET (Exact Execution
Time) used in [1] and we will prove that the schedulabity
analysis is sustainable. We assume that Γn is scheduled off-
line on m identical processors (all the processors have the
same computation power). We assume the tasks have fixe
priorities. Eventually, we assume that the processors have
neither cache nor pipeline, or complex internal architecture.
The latter assumption is usually made in safety critical
applications where determinism is a key issue.

B. Schedulability analysis based on the ⊕ operation

Our schedulability analysis uses the ⊕ scheduling opera-
tion [10] . This operation is applied to a pair of tasks (τi, τj),
such that τi has the highest priority. It gives as a result a
task R, that is R = τi ⊕ τj . The ⊕ takes into account
the exact preemption cost incurred by the task τj . The
schedulability interval, i.e., the interval in which we study
the schedulability of the tasks, comes from the Theorem 1
below, which was given by J. Gossens [22].

Theorem 1: For a system Γn = {τ1, τ2, · · · , τn} of n
periodic tasks arranged by decreasing priorities with respect

to a fixed-priority scheduling policy, let (s
′

i)i∈N∗ be the
sequence defined by:

s
′

1 = r11

s
′

i = r1i +

⌈
(si−1 − r1i)+

Ti

⌉
· Ti, 2 ≤ i ≤ n

(1)

If there exists a valid schedule of Γn until the time s
′

n+Hn

where Hn = lcm{Ti | i = 1, · · · , n}, and x+ = max(x, 0),
then this schedule is valid and periodic of period Hn from
s
′

n.
A direct consequence of the previous theorem is that in the

case of a valid schedule, the result of the schedule of the i
first tasks is periodic of period Hi = lcm{Tj | j = 1, · · · , i}
from s

′

i. Thus, the interval which precedes s
′

i necessarily
contains the transient phase, corresponding to the initial part
of the schedule and the interval starting at time s

′

i with length
Hi is isomorphic to the permanent phase of the schedule of
the i first tasks, which repeats identically from the instant
s
′

i.
In order to compute R = τi ⊕ τj with j = i + 1,

we set ε = min(r1i , r
1
j). Since ε always exists, the

interval [ε, s
′

j] defines the transient phase and the interval
[s
′

j , s
′

j + Hj] defines the permanent phase, sj and Hj

are given by the theorem 1. The schedulability study of
the tasks is performed in the interval [ε, s

′

j + Hj]. In this
interval, the number of instances of a task τj is given by

nj =
(s
′
j+Hj)−r1j

Tj
.

1) Principle of the ⊕ operation: The principle of ⊕
applied to a pair of tasks (τi, τj) consists in replacing the
available time units of the highest priority task τi with the
time units of the lowest priority task τj . In order to do that,
both tasks are initially referenced to the same time origin
ε. Then, task τi is rewritten according to the number of
instances of task τj in the interval [r1j , s

′

j +Hj] of both task
periods. This operation allows not only the identification of
the available time units in task τi, but also the verification
that task τj does not miss any deadlines.

When the task τj is preempted by the task τi the exact
number of preemptions must be computed for each instance
of τj by considering all its time units. When τj is preempted,
we increment its number of preemptions and we add the cost
associated with one preemption in the remaining execution
of τj , i.e., the number of time units that τj must execute
in order to complete its execution. That scheme is repeated
to take into account a preemption generated by a previous
preemption, and so on. In contrast to other works presented
in the literature, this principle makes it possible to compute
the exact number of preemptions. The cost associated to
that exact number of preemptions is added to the WCET
of τj to obtain its PET (Preemption Execution Time), i.e.,

355

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the execution time taking into account the exact preemption
cost.

Figure 1 illustrates the PET. In this figure, the PET of task
τi in the instance k+ 1 is given by Ck+1

i = Ci + 2α due to
two preemptions, with α being the cost of one preemption.
If the amount of PET unit of times fits in the available time
units of task τi, the task τj is schedulable, giving as a result
task R, otherwise it is not schedulable. ⊕ is an internal
operation, i.e., the result given by ⊕ is also a task, that
result may be in turn used as the highest priority task in
another ⊕ operation. Thanks to this property it is possible
to consider more than two tasks.

In order to perform the schedulability analysis of the task
system Γn = {τ1, τ2, · · · , τn}, ordered according to the
decreasing priorities of the tasks, the ⊕ operation is applied
from the task with the highest priority to the task with the
lowest priority. Consequently, if Rn is the scheduling task
result of Γn, then Rn is obtained by successive iterations:{

R1 = τ1
Ri+1 = Ri ⊕ τi+1, 1 ≤ i < n

As such we have Rn = ((τ1 ⊕ τ2)⊕ · · · ⊕ τn−1)⊕ τn. The
system Γn will be said schedulable if and only if all the
tasks are schedulable. If this is not the case, then the system
Γn is said to be not schedulable.

The complexity of ⊕ applied to a pair of tasks τi and τj
is O(l) with l is the LCM between the period of τi and the
period of τj .

We denote by Hj = lcm{Tl : τl ∈ hp(τj)} where
Tl represents the period of task τl and hp(τj) denotes the
subsystem of tasks with a priority higher than the priority
of τj . The number of instances of task τi in the permanent
phase is given by:

σpermj
=
Hj

Tj
=
lcm{Tl : τl ∈ hp(τj)}

Tj
(2)

The exact permanent load of a task τj , i.e., the load of the
task τj , while taking into account the exact preemption cost,
is given by:

U∗j =
C∗j
Tj

with C∗j =
1

σpermj

σpermj∑
l=1

Clj (3)

Figure 1. PET of a task

In (3), Clj corresponds to the PET of the lth instance in
the permanent phase. As such, the exact permanent load of
the system Γn composed of n periodic tasks scheduled on
a processor pi is given by:

U∗pi =

n∑
j=1

U∗j (4)

2) Example: We apply the ⊕ operation to a system of
periodic preemptive real-time tasks while taking into account
the exact preemption cost. Let us consider such a system
Γ3 = {τ1, τ2, τ3} of 3 tasks where τ1 is the task with the
highest priority, and τ3 is the task with the lowest priority.
We consider the cost of one preemption to be one time unit
for all tasks. The characteristics of the tasks are summarized
in Table I.

The ⊕ operation is applied to a pair of operands. The left
operand called the “executed task” corresponds to the result
of the tasks previously scheduled, and the right operand
called the “executable task” corresponds to the task to be
scheduled. We represent an instance of the executable task
by a unique sequence of symbols ”e”, in bold, followed by
a sequence of symbols ”a”. Each symbol ”e”, in bold, in
the executable task represents an executable time unit, i.e.,
the time unit that the task to be scheduled, must execute.
Each symbol ”a” represents an available time unit. Actually,
such representation is repeated indefinitely since the task is
periodic. We represent an instance of an executed task by a
sequence of symbols ”e” followed by a sequence of symbols
”a”, possibly repeated several times. Each symbol ”e” in
the executed task represents one executed time unit, i.e., the
time unit executed by all the tasks previously scheduled.
From the end of the transient phase, given by theorem 1,
such representation is repeated according to the LCM of the
tasks already scheduled.

The ⊕ operation aims at replacing all the available time
units of the executed task (left operand) by the executable
time units of the executable task (right operand). In order
to make both tasks comparable, first the executable task is
repeated according to the number of its instances in the
schedulabity interval. Second, the executed task is rewritten
according to the number of instances of the executable task
in the schedulability interval. Therefore, the task resulting
of the ⊕ operation applied to a pair of tasks, is an executed
task represented by a sequence of symbols ”e” followed by
a sequence of symbols ”a”, possibly repeated several times.

Table I
TASKS’ CHARACTERISTICS

Tasks r1i Ci Di Ti

τ1 0 3 7 15
τ2 5 2 6 6
τ3 3 4 10 10

356

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

According to these definitions, each task instance of the
system Γ3 is represented as: τ1 = {e, e, e, a, a, a, a, a, a, a, a, a, a, a, a}

τ2 = {e, e, a, a, a, a}
τ3 = {e, e, e, e, a, a, a, a, a, a}

The scheduling task result R3 that describes the schedule
of the task system is obtained by the following successive
iterations: {

R1 = Λ⊕ τ1
Ri = Ri−1 ⊕ τi, i = 2, 3

Λ represents a task only composed with symbols ”a” since
there are no executed time units.R1 = Λ⊕τ1 is computed as
follows: according to equation (1) we have s

′

1 = 0 and H1 =
T1 = 15. Thus, the result of ⊕ applied to the pair (Λ, τ1)
is periodic of period H1 = T1 and is repeated indefinitely
from s

′

1. We obtain R1 by replacing the 3 first available
time units of Λ by the 3 executable time units of τ1. Then,
we have:
R1 = {e, e, e, a, a, a, a, a, a, a, a, a, a, a, a}[0,15]

First iteration: Computation of R2 = R1 ⊕ τ2.
Thanks to equation (1), we have:

s
′

1 = 0

s
′

2 = 5 +

⌈
(0− 5)+

6

⌉
· 6 = 5

We have H2 = lcm(15, 6) = 30, thus the transient phase
belongs to the interval [0, 5] and the permanent phase
belongs to the interval [5, 35]. In the schedulability interval
[0, 35], R1 is rewritten as follows:

R1 = {e, e, e, a, a}[0,5]{a, a, a, a, a, a, a, a, a, a,
e, e, e, a, a, a, a, a, a, a, a, a, a, a, a, e, e, e, a, a}[5,35]

Task τ2 begins its execution at t = 5 corresponding
to the beginning of the permanent phase. Its
number of instances in the schedulability interval is

n2 =
(s
′
2+H2)−r12

T2
= (5+30)−5

6 = 30
6 = 5. According to the

number of instances of τ2 in the schedulability interval, R1

is rewritten as follows:

R1 = {e, e, e, a, a}[0,5]{a, a, a, a, a, a}
{a, a, a, a, e, e, }{e, a, a, a, a, a}
{a, a, a, a, a, a}{a, e, e, e, a, a}

(5)

R2 = R1 ⊕ τ2 is obtained by replacing in the equation (5)
for each corresponding instance of τ2 in R1, the available
time units ”a” of R1 with the executable time units ”e”,
in bold, of τ2. During this replacement a preemption of
τ2 by τ1 corresponds to the transition (”a” → ”e”). The
preemption of τ2 by τ1 is denoted by the time unit ”p”
called preemption time unit. When τ2 is preempted, the

next available time unit of R1 after this preemption is
replaced by a preemption time unit ”p”. After replacing all
the available time units of τ1 with the executable time units
of τ2 and after adding the preemption time unit ”p” in R1,
we obtain:

R2 = {e, e, e, a, a}(0,5){e, e, a, a, a, a}
{e, e, a, a, e, e}{e, e, e, a, a, a}
{e, e, a, a, a, a}{e, e, e, e,p, e}

For each corresponding instance of τ2 in R2, its PET is
given by the sum of the number of its executable time units
e, in bold, and the number of its preemptions time unit ”p”.
In the 4 first corresponding instances of τ2 in R2, the PETs
are the same and equal to 2 (PET=WCET) because τ2 is
not preempted in these instances, but in its 5th instance, it
is preempted once. That is the reason why its PET is equal
to 3. In any corresponding instance of τ2 in R2, the PET
fits in the available time units left by R1 in this instance.
Thus, the task τ2 is schedulable while taking into account
the exact preemption cost. Actually, we have:

R2 = {e, e, e, a, a}[0,5]{e, e, a, a, a, a, e, e, a, a, e, e,
e, e, e, a, a, a, e, e, a, a, a, a, e, e, e, e, p, e}[5,35]

The differences with the previous expression of R2 is
that the executable time units ”e”, in bold, become executed
time units ”e”, and R2 does not exhibit the corresponding
instances of τ2.

Second iteration: Computation of R3 = R2 ⊕ τ3.
Thanks to equation (1), we have:

s
′

2 = 5

s
′

3 = 3 +

⌈
(5− 3)+

10

⌉
· 10 = 13

We have H3 = lcm(lcm(15, 6), 10) = lcm(30, 10) = 30,
thus the transient phase belongs to the interval [0, 13] and
the permanent phase belongs to the interval [13, 43]. In
the schedulability interval [0, 43], R2 is rewritten as follows:

R2 = {e, e, e, a, a, e, e, a, a, a, a, e, e}[0,13]{a, a, e,
e, e, e, e, a, a, a, e, e, a, a, a, a, e, e, e, e, p, e, e, e, a,
a, a, a, e, e}[13,43]

Task τ3 begins its execution during the transient phase at
t = 3 . Its number of instances in the schedulability interval

is n3 =
(s
′
3+H3)−r13

T3
= (13+30)−3

10 = 40
10 = 4. According to

the number of instances of τ3 in the schedulability interval,
R2 is rewritten as follows:

R2 = {e, e, e}{a, a, e, e, a, a, a, a, e, e}[3,13]
{a, a, e, e, e, e, e, a, a, a} {e, e, a, a, a, a, e, e,
e, e}{p, e, e, e, a, a, a, a, e, e}

(6)

R3 = R2 ⊕ τ3 is obtained by replacing in the equation (6)
for each corresponding instance of τ3 in R2, the available

357

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

time units ”a” of R2 with the executable time units ”e”, in
bold, of τ3. During this replacement, a preemption of the
task τ3 by τ1 or by τ2 corresponds to a transition (”a” →
”e”). When τ3 is preempted, the next available time unit
of R2 is replaced by a preemption time unit ”p”. After
replacing the available time units of R2 with the executable
time units of τ3 and after adding the preemption time units
”p” in R2, we obtain:

R3 = {e, e, e}{e, e, e, e,p, e, e, a, e, e}[3,13]
{e, e, e, e, e, e, e,p, e, e}{e, e, e, e, e, e, e, e, e, e}
{p, e, e, e, e, e, e, e, e, e}

For each corresponding instance of τ3 in R3, its PET
is given by the sum of the number of its executable time
units ”e”, in bold, and the number of its preemptions time
units ”p”. In the 2 first corresponding instances of τ3 in
R3, the task τ3 suffers one preemption. Its PETs in every
instance are the same and equal to 5. In its other instances
there is no preemption of τ3 and the PETs of τ3 in these
instances are the same and equal to 4 (PET=WCET). In
any corresponding instance of τ3 in R3, the PET fits in
the available time units of R2 in this instance. Thus, the
task τ3 is schedulable while taking into account the exact
preemption cost. Finally, we have:

R3 = {e, e, e, e, e, e, e, p, e, e, a, e, e}[0,13]{, e, e, e,
e, e, e, e, p, e, e, e, e, e, e, e, e, e, e, e, e, p, e, e, e, e, e,
e, e, e, e}[13,43]

The differences with the previous expression of R3 is
that the executable time units ”e”, in bold, become executed
time units ”e”, and R3 does not exhibit the corresponding
instances of τ3.

Since all the tasks are schedulable then the system Γ3 =
{τ1, τ2, τ3} is schedulable.

Figure 2 presents the result of the schedule of Γ3. In this
figure, the permanent phase corresponds to the highlighted
zone of the schedule and the transient phase corresponds to
the interval preceding that zone. The disk represents only
the permanent phase in a more compact form. This double
representation of the schedule is obtained from the SAS
software [23].

IV. SUSTAINABILITY

We consider the WCETs of the tasks instead of its EETs
used in [1]. Thus, we have to show that if the execution
time of a task at runtime is smaller than its WCET, the
tasks system remains schedulable.

Definition 1: A schedulability analysis is sustainable [24]
if any system considered to be schedulable according to
this schedulability analysis remains schedulable when the
parameters of one or more tasks change in any, some, or all
the following way: 1) decreased execution time, 2) increased
period, 3) increased deadline.

In this paper, we consider for the sustainability only the
first property since we assume that the periods and the
deadlines of the tasks are fixed.

Theorem 2: Γn = {τ1, · · · , τi, · · · , τn}, a system of
independent periodic tasks arranged by decreasing priorities
with respect to the RM fixed-priority scheduling policy, with
τi = (r1i , Ci, Di, Ti).

If Γn is schedulable according to ⊕ operation, then
Γ
′

n = {τ1, · · · , τ
′

i , · · · , τn}, with τ
′

i = (r1i , C
′

i , Di, Ti) and
C
′

i < Ci, is also schedulable according to ⊕.

Proof: Assume that Γn = {τ1, · · · , τi, · · · , τn} is
schedulable while taking into account the exact preemp-
tion cost. We will show by contradiction that Γ

′

n =
{τ1, · · · , τ

′

i , · · · , τn} is also schedulable. For that, we as-
sume that Γ

′

n is not schedulable while taking into account
the exact preemption preemption. That means that ∃τl ∈ Γ

′

n

such that τl is not schedulable. Since the i− 1 first tasks in
Γ
′

n are the highest priority tasks and are the same as in Γn

Figure 2. Result of the scheduling of Γ3, taking into account the exact
preemption cost

358

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

then their schedule does not change then i ≤ l ≤ n.
Assume that i = l, then task τ

′

i is not schedulable.
That means that there is an instance k of τ

′

i in which task
τ
′

i cannot replace all its C
′k
i executable time units by the

available time units after the execution of the i−1 first tasks.
Since we have independent tasks with static priorities and
the tasks τ

′

i and τi have the same priority so if C
′

i ≤ Ci then
the C

′k
i ≤ Cki ∀k ≥ 1. Thus, there exists also an instance

k of τi in which τi is not schedulable, meaning that Γn is
not schedulable. That is in contradiction according to our
assumption that Γn is schedulable. Similarly if l > i then
Γn is not schedulable. Thus, if Γ

′

n is not schedulable then Γn
is not schedulable. That is equivalent to if Γn is schedulable
then Γ

′

n is schedulable.

V. IMPACT OF THE PREEMPTION COST IN THE
SCHEDULABILITY ANALYSIS

In this section, we present the impact of the preemption
cost in the schedulability analysis presented in the Section
III-B. For that we consider two cases. In the first case,
we assume that the preemption cost is approximated in
the WCET of the tasks (α = 0). In the second case, we
assume that the preemption cost is not approximated into
the WCET with a cost α = 1 for one preemption. In
order to show the impact of the preemption cost in the
schedulability analysis, we compare the success ratio for
these two cases. The success ratio is defined for a set of
task systems, by:

number of task systems schedulable with ⊕
number of task systems in a set of task systems

For that, we generate randomly 15 sets of task systems.
Every set of task systems is composed of 10 task systems.
Every of the latter task systems contains 10 tasks. We
compute the success ratio and the average load of every
set of task systems.

Figure 3 shows that when the average load of the set of
task systems is less than 0.8 then the scheduling, without and
with preemption cost, has the same success ratio. But when
this average load increases to 1 then the success ratio with
preemption cost decreases until to be equal to 0, while the
success ratio without preemption cost is decreases until to
be equal to 0.8. When the average load is greater than 0.93,
the success ratio with preemption cost is equal to 0, that is,
no task system is schedulable whereas in the case without
preemption cost some task sets are schedulable. This is the
reason why preemption cost must be taken into account in
safety critical systems.

VI. MULTIPROCESSOR SCHEDULING HEURISTIC

The heuristic presented in Algorithm1 is a greedy heuris-
tic. The solution is built step by step. In each step a decision
is taken and this decision is never questioned during the
following steps (no backtracking). The effectiveness of such

a greedy heuristic is based on the decision taken to build
a new element of the solution. In our case, the decision is
taken according to a cost function, which aims at minimizing
the load.

A. Cost function

The cost function allows the selection of the best proces-
sor pj to schedule a task τi. In our case, this cost function
is the load U∗pj (equation (4)) of the task τi and all the tasks
already allocated on the processor pj . The processor which
minimizes this cost function for τi among all the processors,
is considered to be the best processor to schedule the task
τi.

In the case of the previous example, according to (4),
the exact permanent load of the system Γ3 scheduled on a
processor p is given by:

U∗p =
3

15
+

1

6
· (2 + 2 + 2 + 2 + 3)

5
+

1

10
· (5 + 4 + 4)

3
= 1

B. Principle of our allocation heuristic

We use a ”list heuristic” [25]. In our case, we initialize
this list, called the “candidate task system”, with the task
system given as input. We use for that candidate task system
the decreasing order of the task priorities (according to RM
fixed-priority scheduling policy [2]). At each step of the
heuristic, the task with the highest priority is selected among
the candidate task system, and we attempt to allocate it to
its best processor according to the cost function presented
previously. The heuristic minimizes the load U∗pj of the
task system on the different processors. It is similar to the
WF bin-packing heuristic except that in the current iteration
all the processors are used rather than only the processors
visited during the previous iteration.

If Γn is the task system with n tasks and m is the number
of processors, the complexity in the worst case of our
heuristic is equal to O(n.m.l), with l = lcm{Ti : τi ∈ Γn}.

Figure 3. Impact of the preemption cost

359

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 1 Greedy heuristic
1: Initialize the candidate task system W with the task

system given as input and in the decreasing or-
der of their priorities, initialize the boolean variable
TasksSchedulable to true

2: while W is not empty and TasksSchedulable = true
do

3: Select in W the highest priority task τi
4: % Verify on each processor pj if task τi is schedula-

ble.%
5: for j = 1 to m do
6: if task τi is schedulable on pj with the exact pre-

emption cost (scheduling operation ⊕ [10]) then
7: Compute the cost function of task τi on the

processor pj , i.e., the load of pj using (4) given
in Section III-B

8: end if
9: end for

10: % Using the cost function again, choose the best
processor for τi among all the processors on which
τi is schedulable.%

11: if τi is schedulable on one or several processors then
12: Schedule the task τi on the processor which mini-

mizes the cost function
13: Remove the task τi from W .
14: TasksSchedulable = true
15: else
16: TasksSchedulable = false
17: end if
18: end while

The partitionned scheduling algorithm 1 is sustainable
since we use on each processor a sustainable schedulibity
analysis. That is means that, if the execution time of a
task is smaller than its WCET, the tasks system remains
schedulable.

VII. PERFORMANCE ANALYSIS

Our heuristic is compared with the B&B exact algorithm
and the WF and BF heuristics. The B&B enumerates all
the possible solutions in order to find the best solution,
which minimizes the load of the tasks on the processors.
In the B&B, WF and BF heuristics, we use the ⊕ operation
presented in Section III-B as the schedulability condition.
We compare the algorithms according to their execution
time, their success ratio, the response time of the task
systems, i.e., the total execution time of the tasks, and
the unutilized capacity of the processors used during the
allocation.

A. Execution time of the heuristics

We perform two kinds of tests to compare the execution
time of the four algorithms. First, we fix the number of

processors to 10 and we vary the number of tasks between
100 to 1000 tasks. Every task system is scheduled with the
four algorithms and the corresponding execution times are
computed. We obtained the results shown in Figure 4. In
the second test, we use a single task system composed of
1000 tasks randomly generated and we vary the number of
processors. We obtained the results shown in Figure 5.

In both tests, we notice that the exact algorithm explodes
very quickly whereas the heuristics keep a reasonable exe-
cution time. Our heuristic up to 1000 tasks is close to the
WF and BF heuristics in terms of execution time. However,
for higher numbers of tasks less good results are obtained
with our heuristic. In Figure 5 we also notice that when the
number of processors varies, the execution times of WF and
BF are constant, because these heuristics use the minimum
number of processors. Another remark about Figure 5 is
that the execution time of our heuristic does not increase
monotonically with the number of processors, in contrast to
Figure 4. Indeed, in our heuristic, increasing the number of
processors leads to better balance the load of the tasks on
all the processors. That increase in terms of processors, can
decrease locally the LCM of the tasks on some processors,
and consequently can reduce the execution time of the ⊕
operation.

B. Success ratio

In these tests, we compare the success ratio of our
heuristic with the B&B exact algorithm and the WF and
BF heuristics. The success ratio of an algorithm is defined
as follows:

number of task systems schedulable with algorithm 1
number of task systems in a set of task systems

Due to the complexity of the B&B and in order to com-
pare it with the heuristics, we executed each algorithm on 6

Figure 4. Execution time of the algorithms according the number of tasks

360

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Execution time of the algorithms according to the number of
processors

Figure 6. Sucess ratio

task systems. Each task system is composed at most of 10
randomly generated tasks and is executed on 2 processors.
At each execution we determine for each algorithm the
number of schedulable task systems.

As shown in Figure 6, we notice that WF and BF give
better results than our heuristic in terms of success ratio.
This loss in terms of success ratio is largely compensated
by the gain in terms of response time of the task systems and
by the unutilized capacity of the processors, as described in
the Sections VII-C and VII-D.

C. Response time of the task systems

In these tests, we consider 10 task systems. The number of
tasks in the task systems varies between 100 and 1000 ran-
domly generated tasks and each task system is executed on
10 processors. We limit the tests to the WF and BF heuristics

and our proposed heuristic because of the complexity of the
B&B exact algorithm and we know that the B&B already
gives better results than the heuristics. For each task system,
we determine the allocation found by each heuristic and for
this allocation the response time of the task system, i.e.,
the total execution time of all the tasks, is computed. We
compare the response time of the task systems between the
heuristics, as shown in Figure 7.

In this figure, we notice that the allocation found by our
heuristic gives a better response time than those found by
WF and BF. This is due to the fact that the execution of the
tasks is parallelized on all the available processors whereas
WF and BF attempts to reduce the number of processors
rather than parallelize the execution of the tasks.

D. Average of the unutilized capacity of the processors

In these tests, we consider 10 task systems. The number
of tasks in the task systems varies between 100 and 1000
randomly generated tasks and each task system is executed
on 10 processors. We limit the tests to the WF and BF heuris-
tics and our proposed heuristic because of the complexity
of the B&B exact algorithm. In addition, we know that the
B&B already gives better results than the heuristics. For
each task system we determine the allocation found by each
heuristic and for this allocation we compute the average of
the remaining processor load (1 − Upj), called unutilized
capacity, on the processors pj used in this allocation. We
compare the unutilized capacity of the processors used with
the heuristics as shown in Figure 8.

In this figure, we observe that the allocation found by our
heursitic gives for each processor more flexibility, i.e., more
unutilized capacity, than those found by WF and BF. This
is due to the fact that our heuristic balances the load of the
tasks on all the processors, which ensures an execution time
slack on each processor, whereas the BF heuristic fills the

Figure 7. Execution time of the task systems

361

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Average of (1-load) on the processors used

processors as much as possible. On the other hand, the WF
heuristic, balances the load only on the processors already
used and does not consider all the available processors.

VIII. CONCLUSION AND FUTURE WORK

We have presented a greedy heuristic, which allocates
and schedules, on a multiprocessor architecture, a system
of real-time tasks while balancing the load on the pro-
cessors. In addition, this heuristic takes into account the
exact preemption cost that must be carefully considered in
safety critical applications, which is the focus of our work.
For that, we have used ⊕ operation as scheduling analysis
and we have proved that ⊕ is sustainable, i.e., the task
system remains schedulable at runtime when a task has an
execution time smaller than its worst case execution time.
We have also shown the impact of the preemption cost in
the schedulability analysis of the safety critical systems.

We have carried out a performance analysis showing that,
up to 1000 tasks, the proposed greedy heuristic, has results
close to those of the WF and BF heuristics in terms of
execution time. For higher number of tasks less good results
can be obtained with our heuristic. On the other, hand the
proposed heuristic is better than the WF and BF heuristic in
terms of load balancing and flexibility, i.e., more unutilized
capacity, of tasks at run-time. Also the allocation found with
our heuristic has better response time than those with WF
and BF heuristics.

In future works, we plan to study the multiprocessor real-
time scheduling of dependent tasks, which leads to deal with
data transfers and shared data management.

We have proved that the scheduling analysis using the ⊕
operation is sustainable, i.e., the task system remains schedu-
lable at runtime when a task has an execution time smaller
than its worst case execution time. We have also shown the

impact of the preemption cost in the schedulability analysis
of the safety critical systems.

REFERENCES

[1] F. Ndoye and Y. Sorel. Safety critical multiprocessor real-
time scheduling with exact preemption cost. In the 8th
International Conference on Systems, ICONS’13, Seville,
Espain, January 2013.

[2] C. L. Liu and J W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environnment. Journal
of the ACM, vol. 20(1), January 1973.

[3] E.G. Coffman, G. Galambos, S. Martello, and Daniele Vigo.
Bin packing approximation algorithms: Combinatorial analy-
sis. Handbook of combinatorial optimization, 1998.

[4] A. Burns, K. Tindell, and A. Wellings. Effective analysis for
engineering real-time fixed priority schedulers. IEEE Trans.
Softw. Eng., vol. 21, pp. 475-480, May 1995.

[5] J. Echague, I. Ripoll, and A. Crespo. Hard real-time preemp-
tively scheduling with high context switch cost. In Proceed-
ings of 7th Euromicro workshop on Real-Time Systems, Los
Alamitos, CA, USA, 1995. IEEE Computer Society.

[6] Alan Burns. Preemptive priority-based scheduling: An appro-
priate engineering approach. Advances in Real-Time Systems,
chapter 10, pp. 225–248, 1994.

[7] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with
preemption threshold. In Proceedings of the 6 International
Conference on Real-Time Computing Systems and Applica-
tions, RTCSA’99, Washington, DC, USA, 1999.

[8] M. Saksena and Y. Wang. Scalable real-time system design
using preemption thresholds, November 2000.

[9] P. Meumeu Yomsi and Y. Sorel. Extending rate monotonic
analysis with exact cost of preemptions for hard real-time
systems. In Proceedings of 19th Euromicro Conference on
Real-Time Systems, ECRTS’07, Pisa, Italy, July 2007.

[10] P. Meumeu Yomsi and Y. Sorel. An algebraic approach for
fixed-priority scheduling of hard real-time systems with exact
preemption cost. Research Report RR-7702, INRIA, August
2011.

[11] R.I. Davis and A. Burns. A survey of hard real-time
scheduling algorithms and schedulability analysis techniques
for multiprocessor systems. Technical report, University of
York, Department of Computer Science, 2009.

[12] O.U.P. Zapata and P.M. Alvarez. Edf and rm multipro-
cessor scheduling algorithms: Survey and performance eval-
uation. Technical Report No. CINVESTAV-CS-RTG-02,
CINVESTAV-IPN, Seccin de Computacin, Oct 2005.

[13] Garey and Johnson. Computers and intractability: a guide to
the theory of NP-completeness. W.H. Freeman and Company,
New York, NY, USA, 1979.

[14] S.K. Dhall and C.L. Liu. On a real-time scheduling problem.
Operation Research, vol. 26(1), 1978.

362

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[15] Y. Oh and S.H. Son. Tight performance bounds of heuristics
for a real-time scheduling problem. Technical Report CS-
93-24, Univ. of Virginia. Dep. of Computer Science, Char-
lottesville, VA 22903, May 1993.

[16] I. Lupu, P. Courbin, L. George, and J. Goossens. Multi-criteria
evaluation of partitioning schemes for real-time systems. In
The 15th IEEE International Conference on Emerging Tech-
nologies and Factory Automation, ETFA’10, Bilbao, Spain,
September 2010.

[17] F. Ndoye and Y. Sorel. Preemptive multiprocessor real-time
scheduling with exact preemption cost. In Proceedings of
5th Junior Researcher Workshop on Real-Time Computing,
JRWRTC’11, in conjunction with the 18th International con-
ference on Real-Time and Network Systems, RTNS’11, Nantes,
France, September 2011.

[18] S. Katoa and N. Yammasaki. Semi-partitioning technique for
multiprocessor real-time scheduling. In Proceedings of WIP
Session of the 29th Real-Time Systems Symposium (RTSS),
IEEE Computer Society, 2008.

[19] J. H. Anderson, V. Bud, and C. U. Devi. An edf-based
scheduling algorithm for multiprocessor soft real-time sys-
tems. In Proceedings of the 17th Euromicro Conference
on Real-Time Systems, pp. 199–208, Washington, DC, USA,
2005.

[20] E. G Talabi. Metaheuristics. Wiley, 2009.

[21] J. E. Mitchell. Branch-and-cut algorithms for combinatorial
optimization problems. In Handbook of Applied Optimization,
pp. 65-67, Oxford University Press, 2002.

[22] J. Goossens. Scheduling of Hard Real-Time Periodic Systems
with Various Kinds of Deadline and Offset Constraints. PhD
thesis, Universit Libre de Bruxelles, 1999.

[23] P. Meumeu Yomsi, L. George, Y. Sorel, and D. de Rauglaudre.
Improving the quality of control of periodic tasks scheduled
by fp with an asynchronous approach. International Journal
on Advances in Systems and Measurements, 2(2), 2009.

[24] S. Baruah and A. Burns. Sustainable scheduling analysis.
In Proceedings of the 27th IEEE International Real-Time
Systems Symposium, pp. 159-168, Washington, DC, USA,
2006.

[25] L.T. Adams, K. M. Chandy, and J. R. Dickson. A comparison
of list schedules for parallel processing systems. Commun.
ACM, vol. 17, 685–690, December 1974.

363

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Multilevel Flash Memories: Channel Modeling,
Capacities and Optimal Coding Rates

Xiujie Huang∗, Aleksandar Kavcic∗, Xiao Ma†, Guiqiang Dong‡, and Tong Zhang§
∗Dept. of Elect. Eng., University of Hawaii, Honolulu, HI 96822 USA

†Dept. of Elect. and Commun. Eng., Sun Yat-sen University, Guangzhou, GD 510006 China
‡Skyera Inc., San Jose, CA 95131 USA

§Dept. of Elect., Comp. and Syst. Eng., Rensselaer Polytechnic Institute, Troy, NY 12180-3590 USA
Email: {xiujie,kavcic}@hawaii.edu, maxiao@mail.sysu.edu.cn, dongguiqiang@gmail.com, tong.zhang@ieee.org

Abstract—This paper is concerned with channel modeling
and capacity evaluation of the multilevel flash memory with m
levels. The m-level flash memory is modeled as an m-amplitude-
modulation channel with input-dependent additive Gaussian noise
whose standard deviation depends on the channel input. The
capacity as well as the optimal coding rate of an m-level flash
memory channel (m-LFMC) is given. If the channel output is
observed after a (finite) quantizer, then the channel is further
transformed into a discrete memoryless channel, which yields
an approximation of the capacity for the m-LFMC. Actually,
the determination of the capacity for the m-LFMC can be
transformed into a two-step optimization problem, which can
be numerically solved by an alternating iterative algorithm. This
algorithm delivers not only the optimal input/level distribution
but also the optimal values of levels. This algorithm also delivers
the optimized number of levels at any given voltage-to-deviation
ratio. Numerical results are presented to show the consistency
with well-known Smith’s results for the amplitude-limited AWGN
channel and the applicability of the modeling method, and to
reveal that a finite level quantization of the channel output for
the m-LFMC suffers from a negligible loss of information rate
compared to the capacity.

Keywords—Amplitude-modulation channel; channel capacity;
input-dependent additive Gaussian noise; multilevel flash memory;
optimal coding rate.

I. INTRODUCTION

As the demand for non-volatile data storage increases, flash
memories are gaining attention. The original flash memory
used only two levels to store one bit in one memory cell.
However, a modern mainstream flash memory is a multilevel
flash memory (MLFM), which stores more than one bit in
one memory cell to improve the storage density and reduce
the bit cost of flash memories. In our previous work [1],
we investigated the general MLFM with m-levels, where the
number m of levels can be any integer not less than two. In
practice, designers have presented some MLFMs, where the
number m of levels are powers of two, such as the first MLFM
product presented by Bauer et al. in [2], the 4-level MLFM
in [3] and the Intel StrataFlashTM memory in [4], all three
of which had four levels and stored two bits in one cell, the
8-level MLFMs in [5], [6] storing three bits in one cell, and
the 16-level MLFMs in [7], [8] storing four bits in one cell.

It is obvious that, as the number of levels increases,
the capability of the MLFM could be enhanced. However,
due to the complexity of the configuration (including the

programming/reading techniques and inter-cell interferences),
it is complicated to model precisely the MLFM channel.
Hence, research on the information-theoretic channel capacity
is sporadic, such as [9], [10]. In particular, in [9], the simple
upper and lower bounds in single letter formulas on the
capacity were presented and computed numerically when the
probability distribution of the channel inputs are assumed to be
known. In [10], the MLFM was quantized to different discrete
memoryless channels (DMCs) by introducing different reading
numbers of reference voltages. By optimizing the reference
voltages, the mutual information of DMC could be maximized,
and then the achievable rate of the MLFM could be obtained.

Although the capability is enhanced, the reliability of
the MLFM could be decreased because the margins between
adjacent levels (voltages) in a cell are reduced as the number of
levels increases and various interferences (for example, inter-
cell interference) could arise. To guarantee the reliability, two
approaches are usually investigated and applied in MLFMs.
One approach is the on-chip error correcting technique [11].
Up to date, various error correcting codes (ECCs) used in the
MLMC have been presented, such as the BCH codes [12],
Reed-Solomon codes [13], [14], LDPC codes [10], [15], trellis
coded modulation [12], [16], [17] and rank modulation [18],
[19]. Other approaches are signal processing methods, for
example, the data postcompensation method [9], the data pre-
distortion method [9], and the coupling canceller method [20],
which could tolerate the inter-cell interference in MLFMs.

To address the information-theoretic issues of the MLFM,
we first need to solve a key problem, i.e., channel modeling.
The simplest model is a constrained communication system,
namely, an amplitude-limited input-independent additive white
Gaussian noise (AWGN) channel, whose channel capacity and
properties were investigated in [21], [22]. In [21], [22], Smith
proved that the capacity of the amplitude-limited AWGN chan-
nel is achieved by a unique discrete random variable taking
values on a finite alphabet. Based on the current techniques
and configuration, there exist two universal phenomena for
the MLFM. One is that the device degrades with age and the
degradation varies from cell to cell as mentioned in [4], [23].
The other is the inter-cell interference as mentioned in [24].
In this paper, building upon our previous work [1], we are
interested in only the former, while the latter was discussed
in [9], [25]. The contribution of this work is two-fold. First,
in Section II, we model the MLFM with m levels, also called
m-level flash memory channel (m-LFMC) as an m-amplitude-

364

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

modulation (m-AM) channel with input-dependent additive
Gaussian noise (ID-AGN) whose standard deviation depends
on the channel input (i.e., the voltage value of the level).
The m-AM with ID-AGN channel can also be regarded as
a constrained communication system [26], [27]. Second, we
give the channel capacity and present a numerical method to
evaluate it. Consequently, the optimal coding rate is obtained
to guide the ECC code design.

Structure: The remainder of this paper is organized as
follows. First, the m-LFMC is modeled as an m-AM channel
with ID-AGN, as shown in Section II-A. Using channel output
quantization, the channel can be considered as a discrete
memoryless channel, as shown in Section II-B. Second, the
channel capacities of the m-LFMC and the quantized channel
are introduced in Sections III-A and III-B, respectively. The
quantized capacity is an approximation of the capacity for
the m-LFMC. Furthermore, the coding rate is defined in
Section III-C. To evaluate the capacity, an alternating iterative
algorithm is presented in Section IV, which delivers not only
the optimal distribution of the channel input but also the
optimal values of the channel input levels. Section V provides
numerical results and discussions on the (quantized) capacities
and optimal coding rates. We conclude this work in Section VI.

II. CHANNEL MODEL

For an MLFM with m levels, each level has an intended
threshold voltage [2]. By applying this voltage to the floating
gate of a memory cell (transistor), the charge is maintained
and then the data is stored in the cell. Affected by the
configuration (including the programming/reading techniques)
of the flash memory and device aging, the threshold voltage
shift may vary from cell to cell. Hence, each level corresponds
to a threshold voltage range [2]. In this paper, we focus on
only the variation caused by device aging. For mathematical
modeling, the variation of the threshold voltage is usually
approximated by a Gaussian distribution and characterized by
its probability density function (pdf). The following example
illustrates the models of threshold voltage distributions for a
4-LFMC.

Example 1 (Threshold Voltage Distributions of a 4-LFMC):
Consider a 4-LFMC. Let the intended voltages of the four
levels be x0 = 0, x1 = 3.25, x2 = 4.55 and x3 = 6.5.
Note that, throughout this paper, the voltage is measured
in the unit of volt, which is omitted if no confusion arises.
By default, the threshold voltage distribution model of the
manufactured 4-LFMC is shown in Figure 1, where the noise
at each level has the same variance and the pdf of the output
for each level is depicted. As documented in [4], [23], the
number of electrons of a cell decreases with time and some
cells become defective as time elapses, which means that the
cell has a long but finite lifetime and the degradation varies
from cell to cell. Consequentially, the performance of the
4-LFMC gets gradually worse as the device ages. Suppose
that, after three years, the threshold voltage distribution model
of the 4-LFMC is shown in Figure 2, where every level
experiences more noise than in Figure 1 and the first level
x0 is the most noisy level while the other three levels have
almost the same noise. Again, suppose that, after five years,
the threshold voltage distribution model of the 4-LFMC is
shown in Figure 3, where every level has even more noise

2 0
  2)(2 1


x

1.8

2.0

1.4

1.6

ns
ity

1 0

1.2

ity
 d

en

0.8

1.0

ob
ab

ili

0.4

0.6pr
o

0 0

0.2 x0 x1 x2 x3

-2 -1 0 1 2 3 4 5 6 7 8
0.0

threshold voltage

Figure 1. A threshold voltage distribution model for a 4-LFMC, in which
the noise at each level has the same variance σ(x) = 1

2
√
2π

.

2.0
)(1

1.6

1.8)(1 x

1 2

1.4

en
si

ty
1.0

1.2
ili

ty
 d

e

0.6

0.8

ro
ba

bi

0 2

0.4

0.6p

2 1 0 1 2 3 4 5 6 7 8
0.0
0.2 x0 x1 x2 x3

-2 -1 0 1 2 3 4 5 6 7 8
threshold voltage

Figure 2. A threshold voltage distribution model for a 4-LFMC, in which the
first level x0 is the most noisy level while the other three levels have roughly
the same noise.

than in Figure 2, while the first level x0 and the last level x3

are respectively the most noisy levels. This behavior can be
easily modeled by a function σ(x), which depends on the age
of the device. As shown in Figures 2 and 3, the dash-dot-dot
curve

[√
2πσ(x)

]−1
is (approximately) the envelope of the

peaks of the level-output-pdfs. In Figure 1, the curve σ(x) is
assumed to be a constant, i.e., σ(x) = 1

2
√

2π
.

Models similar to Figures 2 and 3 for the 4-LFMC were
introduced in [4], [12], [15]. In particular, in [4], [12], the
model of the 2 bits/cell (i.e., 4-level) NOR flash memory
showed that the first level x0 had the highest noise variance and
the last level x3 had the second highest noise variance while
the two middle levels had almost the same noise variances.
In [15], the model of a 4-level NAND flash memory showed
that, when no inter-cell interference occurred, the first level
x0 had the highest Gaussian noise and the other three levels
had almost the same noises characterized by bounded Gaussian
variables.

365

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2.0

1 6

1.8)(1 x

1.4

1.6
ns

tiy

1.0

1.2

ity
 d

en

0 6

0.8

1.0

ob
ab

ili

0.4

0.6pr
o

0.0

0.2 x0 x1 x2 x3

-2 -1 0 1 2 3 4 5 6 7 8
0.0

threshold voltage

Figure 3. A threshold voltage distribution model for a 4-LFMC, in which
the first level x0 and the last level x3 are respectively the most noisy levels
while the two middle levels x1 and x2 have roughly the same noise.

A. The ID-AGN m-AM Channel Model

In this paper, an m-LFMC is modeled as an m-AM channel
with ID-AGN. Specifically, it is characterized as follows.

1) Let X , Y and W denote the channel input, the chan-
nel output and the channel noise random variables,
respectively. They have the relation:

Y = X +W. (1)

2) The channel input X takes values from a finite alpha-
bet X (m) ∆

= {x0, x1, · · · , xm−1} under the constraint

a ≤ x0 < x1 < x2 < · · · < xm−2 < xm−1 ≤ b, (2)

where a and b are the respective lowest and highest
possible threshold voltages, and their difference is
denoted by Vm

∆
= b − a. The finite alphabet X (m)

is called an m-AM signal set. Denote the collec-
tion of all such m-AM signal sets as X (m), i.e.,
X (m) ∈ X (m). In the following context, we also
use the vector notation x to denote the m levels, i.e.,
x = (x1, x2, · · · , xm−1).

3) The probability mass function (pmf) of X over
X (m) is denoted by p = (p0, p1, · · ·, pm−1) with
pi=Pr(X=xi).

4) The noise W is an ID-AGN whose standard deviation
depends on the realization of the channel input.
That is, the noise W has mean zero and variance
depending on the channel input x ∈ X (m), i.e.,
W ∼ N

(
0, σ2(x)

)
. In this paper, the function σ(x)

is assumed to be continuous and differentiable.

Therefore, the channel transition pdf, i.e., the channel law, is

fY |X,σ(·)(y|x) =
1√

2πσ(x)
exp

{
− (y−x)2

2σ2(x)

}
. (3)

And the pdf of the channel output Y can be obtained as

fY,σ(·) (y) =

m−1∑
i=0

pi fY |X,σ(·) (y|xi) . (4)

Recall Example 1 of 4-AM channels with ID-AGN. At the
time of manufacturing, the noise standard deviations for all
levels are considered to be constant; see Figure 1. As the device
ages, the noise standard deviations for different levels increase
in different extents; see Figures 2 and 3. That is, the noise
standard deviations for an aged device are level-dependent.

B. Quantized Channel Model

In practice, the channel output is often obtained by quan-
tizing the real-valued channel output voltage Y . In this way,
a discrete memoryless channel (DMC) of the m-LFMC is
obtained when the channel inputs are known and fixed. Let
Q(·) be a quantizer of real values and Ŷ be the quantized
channel output, i.e., Ŷ = Q(Y). We assume that, using the
quantizer Q(·), the set R is partitioned into a sequence of n
intervals as

(r0, r1], (r1, r2], · · · , (rn−2, rn−1], (rn−1, rn), (5)

where r0 and rn may be finite or infinite. Each interval
(rj , rj+1) is represented by a representation point yj . Then
the finite alphabet of quantized channel outputs is Y =
{y0, y1, · · · , yn−1}. The quantized DMC is characterized by
the channel law (the channel transition probability) as

pσ(·)(yj |xi) =
∫ rj+1

rj

fY |X,σ(·)(y|xi) dy. (6)

Consequently, the pmf of the quantized channel output Ŷ can
be obtained as

pσ(·)(yj) =

m−1∑
i=0

pi pσ(·)(yj |xi) . (7)

III. CHANNEL CAPACITIES AND OPTIMUM CODING
RATES

From the previous section, i.e., Section II-A, we know that
the m-LFMC is modeled as an m-AM channel with ID-AGN,
parameterized by the m-AM signal set X (m), the pmf p =
(p0, p1, · · · , pm−1) and the standard deviation function σ(x).
Therefore, to express the information-theoretic essentials of the
m-LFMC, we introduce a new notation different slightly from
the conventional one by inserting the subscript

(
X (m), σ(·)

)
into the mutual information expression, i.e.,

IX (m),σ(·)(X;Y)

∆
=

m−1∑
i=0

∫ ∞
−∞
pi fY |X,σ(·)(y|xi) log

(
fY |X,σ(·)(y|xi)
fY,σ(·)(y)

)
dy. (8)

Similarly, the mutual information of the DMC is given as

IX (m),σ(·)(X; Ŷ)
∆
=

m−1∑
i=0

n−1∑
j=0

pi pσ(·)(yj |xi) log
(
pσ(·)(yj |xi)
pσ(·)(yj)

)
.

(9)

A. The Channel Capacity of the m-LFMC

Definition 1: The capacity of the m-LFMC with standard
deviation function σ(·) is defined as

Cm,σ(·)
∆
= max

X (m),{p}
IX (m),σ(·)(X;Y), (10)

366

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where the maximum is taken over all possible m-AM signal
sets X (m) = {x0, x1, · · · , xm−1} ∈X (m) satisfying

a ≤ x0 < x1 < · · · < xm−2 < xm−1 ≤ b (11)

and all possible pmfs p = (p0, p1, · · · , pm−1) satisfying

pi ≥ 0, and

m−1∑
i=0

pi = 1. (12)

Remark 1. Recall Smith’s result that the capacity of the
amplitude-limited AWGN channel is achieved by a unique
discrete random variable taking values on a finite alphabet [21],
[22]. The main two differences between the m-AM channel
with ID-AGN and the amplitude-limited AWGN channel are:
the noise in the former is input-dependent, while in the latter it
is independent of inputs; and the number of inputs is fixed to
be m in the former, while in the latter the optimal (capacity-
achieving) number of inputs is obtained by optimization.

Remark 2. Comparing with Ungerboeck’s results of av-
erage energy limited AWGN channel with amplitude modula-
tion [28], there are three main differences. First, the m-AM
channel with ID-AGN for an m-LFMC is not average energy
limited but amplitude limited (in the interval [a, b]). Second,
the m-AM signal set is not fixed but can be optimized in the
evaluation of its capacity. Third, the input distribution is not
uniform but can be optimized too.

One of the main objectives in capacity research is numeri-
cal evaluation. To this end, a comprehensive understanding is
necessary and can provide a methodology of evaluation. The
following proposition gives an insight into the capacity Cm,σ(·)
of the m-LFMC.

Proposition 1: When x is given, the mutual information
IX (m),σ(·)(X;Y) is concave with respect to (w.r.t.) p; when p is
given, the mutual information IX (m),σ(·)(X;Y) is continuous
and differentiable w.r.t. x.

Proof sketch: The mutual information is expressed as

IX (m),σ(·)(X;Y)

= hX (m),σ(·)(Y)−
m−1∑
i=0

pi log σ(xi)−
1

2
log(2πe) (13)

since the noise is input-dependent. When x is given, due to
the linearity of

∑
pi log σ(xi), we can prove that the mutual

information is concave w.r.t. p by using the same method
as in [29]. When p is given, the composition of elementary
functions in (8) is continuous and differentiable w.r.t. x because
σ(x) is assumed to be continuous and differentiable.

B. Quantized Capacity

Denote by Q the collection of all possible quantizers,
i.e., Q ∆

= {Q(·)}. Then an approximation of the channel
capacity (10) is obtained as follows.

Definition 2: The quantized capacity of the m-LFMC with
standard deviation function σ(·) is defined as

Ĉm,σ(·)
∆
= max

X (m),{p},Q
IX (m),σ(·)(X; Ŷ), (14)

where IX (m),σ(·)(X; Ŷ) is defined in (9), which is the mutual
information between the channel input and the quantized
channel output Ŷ using the quantizer Q(·). The maximum
in (14) is taken over all possible m-AM signal sets X (m) =
{x0, x1, · · · , xm−1} ∈ X (m) satisfying (11), all possible
pmfs p = (p0, p1, · · · , pm−1) satisfying (12) and all possible
quantizers Q(·) ∈ Q.

If the channel input values x0, x1, . . . , xm−1 are known and
the quantizer Q(·) is determined, then the quantized capacity
in (14) is the capacity of a DMC (see the channel law in (6))

Ĉm,σ(·)
∆
= max
{p}

IX (m),σ(·)(X; Ŷ). (15)

This capacity can be computed by the well-known Blahut-
Arimoto algorithm [30], [31]. Through such capacities, the
determination of quantization will be further discussed in
Section V-C.

C. Equivalent Binary Code Rate of a Capacity-Achieving
Code

As mentioned in the Introduction, ECCs are widely em-
ployed in MLFM products. So it is necessary to know the
desired coding rate before we design a proper code. The
capacity (10) provides an insight into how to pick the code
rate of an equivalent binary code that achieves the capacity.
Any binary code of a rate greater than the capacity achieving
rate can not be used to guarantee the reliability of the MLFM
channel; whereas, a binary code of the capacity-achieving rate
can be constructed to achieve the capacity of the MLFM
channel.

Definition 3: The code rate of an equivalent binary
capacity-achieving code for the m-LFMC with standard de-
viation function σ(·) is defined as

Rm
∆
=
Cm,σ(·)

log2m
. (16)

When the number of levels m is known (and fixed), then
the code rate Rm serves as the upper limit of possible binary
code rates that can guarantee reliable reception. If the number
of levels m is undetermined, we have a chance to vary m,
and thereby find a more appropriate code rate Rm that serves
our design purposes. For instance, if R3 > R4 and C3,σ(·) ≈
C4,σ(·), we may want to use a binary code of the higher coding
rate R3, and thereby save on hardware complexity by using
only m = 3 channel input levels as well as save on code
complexity because binary codes of higher rates require fewer
redundant bits. More discussion on this topic is provided in
Section V-B.

IV. EVALUATION OF A LOWER BOUND ON CAPACITY

To evaluate the capacity (10) of the m-LFMC, we turn to
a two-step optimization problem

Cm,σ(·) = sup
x∈[a,b]m

sup
p∈[0,1]m

IX (m),σ(·)(X;Y)

subject to


a ≤ x0 < x1 < · · · < xm−1 ≤ b
pi ≥ 0, i ∈ {0, 1, · · · ,m− 1}
m−1∑
i=0

pi = 1

. (17)

367

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To solve the two-step optimization problem (17), we turn to
two sub-problems.

Sub-problem I.

C(x) = max
p∈[0,1]m

IX (m),σ(·)(X;Y)

subject to


pi ≥ 0, i ∈ {0, 1, · · · ,m− 1}
m−1∑
i=0

pi = 1

. (18)

When x is given, Sub-problem I is a conventional capacity
problem for memoryless channel with finite inputs. Due to
the concavity of the mutual information w.r.t. p shown in
Proposition 1, the well-known algorithm, Blahut-Arimoto al-
gorithm (BAA) [30]–[32] can be used to solve Sub-problem I.

Sub-problem II.

C(p) = max
x∈[a,b]m

IX (m),σ(·)(X;Y)

subject to a ≤ x0 < x1 < · · · < xm−1 ≤ b
. (19)

The Karush-Kuhn-Tucker (KKT) conditions [33] of the sub-
problem are that there exists v∗ = (x∗, λ∗, µ∗) such that

∂I
∂x0

∣∣∣
v∗

= −λ∗,
∂I

∂xm−1

∣∣∣
v∗

= µ∗,

∂I
∂xi

∣∣∣
v∗

= 0, i ∈ {1, 2, · · · ,m− 2}
x∗0 ≥ a,

x∗m−1 ≤ b,
x∗i−1 < x∗i , i ∈ {1, 2, · · · ,m− 1}
λ∗ ≥ 0,
µ∗ ≥ 0,

λ∗(x∗0 − a) = 0,
µ∗(x∗m−1 − b) = 0.

(20)

Note that the solution of (20) may be sub-optimal (a local
solution) since the concavity of the mutual information w.r.t.
x is unknown. However, a better x with a greater mutual
information can be obtained by solving (20). The method to
find such a better x is shown as below.

For convenience, we denote the pdfs fY |X,σ(·)(y|xi)
in (3) and fY,σ(·) (y) in (4) and the mutual information
IX (m),σ(·)(X;Y) in (8) as f (y|xi), f (y) and I(X;Y), re-
spectively.

We compute partial derivatives of the mutual information
I(X;Y). To this end, we first compute the partial derivatives of
the transition pdf f (y|xi) w.r.t xi for all i ∈ {0, 1, · · · ,m−1}
as

∂f(y|xi)
∂xi

=

{
f(y|xi)

[
−σ

′(xi)
σ(xi)

+ y−xi

σ2(xi)
+ (y−xi)

2σ′(xi)
σ3(xi)

]
, if i=j

0, if i 6=j
,

(21)
where σ′(xi)

∆
= dσ(x)

d xi
denotes the derivative of σ(xi) w.r.t. xi.

Then, using (8) and (13), the partial derivatives of the mutual

information w.r.t. xi for all i ∈ {0, 1, · · · ,m−1} are obtained

∂

∂xi
I(X;Y) = −

∫ ∞
−∞

∂

∂xi
(f(y) ln f(y)) dy − piσ

′(xi)

σ(xi)

=

[
−piσ

′(xi)

σ3(xi)

∫ ∞
−∞

f(y|xi) ln f(y)dy
]
· x2

i

+

[
2piσ

′(xi)

σ3(xi)

∫ ∞
−∞

yf(y|xi) ln f(y)dy

+
pi

σ2(xi)

∫ ∞
−∞

f(y|xi) ln f(y)dy
]
· xi

+

[
−piσ

′(xi)

σ3(xi)

∫ ∞
−∞

y2f(y|xi) ln f(y)dy

− pi
σ2(xi)

∫ ∞
−∞

yf(y|xi) ln f(y)dy

+
piσ
′(xi)

σ(xi)

∫ ∞
−∞
f(y|xi) ln f(y)dy−

piσ
′(xi)

σ(xi)

]
∆
= Aix

2
i +Bixi + Ci. (22)

Solving the KKT conditions (20) is equivalent to finding
quantities (x, λ, µ) that satisfy the equalities{

A0x
2
0 +B0x0 + (C0 + λ) = 0

λ(x0 − a) = 0
, (23a){

Am−1x
2
m−1 +Bm−1xm−1 + (Cm−1 − µ) = 0

µ(xm−1 − b) = 0
, (23b)

Aix
2
i +Bixi + Ci = 0, i ∈ {1, 2, · · · ,m− 2}, (23c)

and the inequalities{
λ ≥ 0
µ ≥ 0

a ≤ x0 < x1 < · · · < xm−2 < xm−1 ≤ b
. (24)

Note that all quantities Ai, Bi and Ci depend on the input
vector x and the standard deviation function σ(·) when the
pmf p is given. To find the solution to the KKT conditions (23)
by an iterative method, we assume that quantities Ai, Bi
and Ci are independent of xi. Then Eqns. (23) have at most
9 × 2m−2 solutions. Moreover, under the full constraints
in (24), the number of solutions may be much less than
9×2m−2 (This happens in our numerical computations). Based
on (23) and (24), we employ an iterative method to find a
solution. Suppose that the input vector x(k) is known at the
beginning of the k-th iteration. Then solve Eqns. (23). Pick
those solutions that satisfy all constraints in (24), and from
them choose the one with the highest information rate as the
improved input vector x(k+1).

Based on the two sub-problems, an alternating iterative
scheme is presented to solve problem (17). At each iteration,
the two-stage alternating strategy shown below is employed.

Stage 1. Fix x. Use the BAA to obtain the optimal p∗

p∗ = argmax
p

IX (m),σ(·)(X;Y). (25)

Stage 2. Fix p. Solve (20) to obtain a better x∗ such that

IX (m),σ(·)(X;Y)
∣∣
x∗
≥ IX (m),σ(·)(X;Y)

∣∣
x
. (26)

368

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4.0

3.5)()(11 xxq 
)()(22 xxq 

3.0

n
)()(22 xxq 
)()(33 xxq 

2.5

vi
at

io
n

1 5

2.0de
v

1 0

1.5

0 1 2 3 4 5 6 7
0.5

1.0

0 1 2 3 4 5 6 7
threshold voltage

Figure 4. The standard deviation functions σi(x) of the input-dependent
Gaussian noise W : σi(x) ∝ qi(x), where i ∈ {1, 2, 3}.

From the discussion of Sub-problem II, x∗ may be a local
solution. This sub-optimality also implies that a lower bound
on the capacity Cm,σ(·) of the m-LFMC is evaluated.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we first numerically evaluate the capacities
of different m-LFMCs using the alternating iterative scheme
given in Section IV. We also interpret the results and put them
in context with respect to prior works [21], [22]. Second, we
estimate the optimal coding rate for the MLFM, which reveals
a relationship between the capacity and the optimal number of
levels. Third, the quantized capacities of the obtained DMCs
using finite-level quantizations of the channel output are also
numerically computed.

A. Lower Bounds on the Capacity

Let the lowest and highest threshold voltages be a = 0 and
b = 6.5, respectively. Then the difference is Vm = b−a = 6.5.
We introduce a new parameter σ > 0 that severs as the varying
noise parameter in our computations. Let qi(x) where i ∈
{1, 2, 3} be continuous and differentiable functions as shown
in Figure 4. We consider three different standard deviation
functions σ(x), denoted as

σi(x) = qi(x) · σ, where i ∈ {1, 2, 3}. (27)

We allow the parameter σ to vary such that the voltage-to-
deviation ratio (VDR) Vm/σ acts as an effective signal-to-
noise ratio. We assume that the intended threshold voltage level
x0 (usually corresponding to the erased state) is 0.

We present results for m ≤ 5, i.e., we consider multilevel
flash memory channels with at most 5 levels. We consider
three different m-LFMCs whose standard deviation functions
are σ1(x), σ2(x) and σ3(x). The lower bounds on capacities
of m-LFMCs with deviation functions σ1(x), σ2(x) and σ3(x)
are shown in Figures 5, 6 and 7, respectively.

From Figure 5, we make the following observations.

1) When the VDR is less than 10.5 dB, i.e.,
20 log10(Vm/σ) ≤ 10.5 dB, 2-LFMC, 3-LFMC, 4-
LFMC and 5-LFMC have the same rates.

2) When the VDR is less than 15 dB, 3-LFMC, 4-LFMC
and 5-LFMC have the same rates.

3) When the VDR is less than 18 dB, 4-LFMC and 5-
LFMC have the same rates.

Furthermore, we observe (not explicitly shown in the figure)
that in the VDR regime between 10.5 dB and 15 dB, the
optimized lower bound is achieved with m∗ = 3 levels, even
if, say, the constraint allows up to m = 5 levels. This implies
that, for a fixed VDR, there is an optimal (minimal) number of
levels m∗ for a given MLFM channel. Increasing the number of
levels m beyond m∗ does not further increase the capacity (nor
the computed lower bound).

Suppose that the number of levels is unknown. Then the
MLFM channel is an amplitude-limited channel with ID-AGN,
whose capacity is defined as

Cσ(·)
∆
= max

m
Cm,σ(·), (28)

where σ(x) is the standard deviation function of the ID-AGN.
The previous observations from Figure 5 imply that 2-LFMC,
3-LFMC and 4-LFMC can achieve the capacity Cσ1(·) as
defined in (28) in the cases of VDR ≤ 10.5 dB, 10.5 dB
< VDR ≤ 15 dB and 15 dB < VDR ≤ 18 dB, respectively.
In other words, at a given VDR less than 10.5 dB, a 2-LFMC
is “optimal”; at a given VDR less than 15 dB, a 3-LFMC
is “optimal”; at a given VDR less than 18 dB, a 4-LFMC
is “optimal”. Naturally, as the VDR increases, the optimal
number of levels does not decrease. This is consistent with
prior work [21], [22], which showed that for the amplitude-
limited AWGN channel, the capacity is achieved by a discrete
channel input distribution over a finite alphabet.

Similar conclusions hold for the other two channels with
noise standard deviation functions σ2(x) and σ3(x). Namely,
even if the constraint is set to be, say, m = 5, at low VDRs
the optimal number of threshold levels m∗ is less than 5. For
example, as shown in Figure 7, the optimal number of levels is
m∗ = 4 in the VDR regime between 12 dB and 14.5 dB even
when a 5-LFMC with noise standard deviation function σ3(x)
is considered. In the case that VDR is equal to 14 dB, using
the lower bound optimizing algorithm presented in Section IV,
we obtain that the optimal number of levels is m∗ = 4 with
assignment x∗0 = 0, x∗1 ≈ 2.718, x∗2 ≈ 4.212 and x∗3 = 6.5
and pdf p∗0 ≈ 0.274, p∗1 ≈ 0.171, p∗2 ≈ 0.271 and p∗3 ≈
0.284, shown in Figure 8. Again, this is consistent with the
literature [21], [22] for the amplitude-limited AWGN channel,
even though in m-LFMC the noise standard deviation σ(x) is
input-dependent.

B. Optimal Binary Code Rate R∗

From the previous subsection, we know that for a given
VDR, there is an optimal number of levels m∗ that achieves
that capacity Cσ(·) in (28). In other words, m∗ is the minimal
number of channel input levels required to achieve the capacity.
Hence, the corresponding optimal binary code rate R∗ is given
by

R∗
∆
=

Cσ(·)

log2m
∗ . (29)

R∗ is the rate of the equivalent binary capacity-achieving code
that achieves the capacity using the smallest possible number

369

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2 4
m*=2 m*=3 m*=4 m*≥5

2 0
2.2

l)
2.4

5-LFMC
4-LFMC

1 6
1.8
2.0

bi
t/c

el

2-LFMC
3-LFMC

1.4
1.6

ra
te

 (b

1.0
1.2

m
at

io
n

0.6
0.8

In
fo

rm

0.2
0.4

0 5 10 15 20 25 30 35
20log10(Vm /) (dB)

Figure 5. The information rates of m-LFMCs with m ∈ {2, 3, 4, 5} when the
standard deviation function is σ1(x). The numbers m∗ on the top of the figure
indicate that 2-LFMC, 3-LFMC and 4-LFMC can achieve the (computed)
maximum rates in the cases of VDR ≤ 10.5 dB, 10.5 dB < VDR ≤ 15 dB
and 15 dB < VDR ≤ 18 dB, respectively.

2 4
m*=2 m*=3 m*=4 m*≥5

2 0
2.2
2.4

ll)

5-LFMC
4-LFMC

1.8
2.0

(b
it/

ce
l

2-LFMC
3-LFMC

1.4
1.6

n
ra

te
 (

1 0
1.2

m
at

io
n

0 6
0.8
1.0

In
fo

rm

0 5 10 15 20 25 30 35
0.4
0.6

0 5 10 15 20 25 30 35
20log10(Vm /) (dB)

Figure 6. The information rates of m-LFMCs with m ∈ {2, 3, 4, 5} when the
standard deviation function is σ2(x). The numbers m∗ on the top of the figure
indicate that 2-LFMC, 3-LFMC and 4-LFMC can achieve the (computed)
maximum rates in the cases of VDR ≤ 8 dB, 8 dB < VDR ≤ 16.5 dB and
16.5 dB < VDR ≤ 20 dB, respectively.

of levels m∗. Consequently, since m∗ is the smallest number
of levels that still guarantees the achievability of capacity, it
follows that R∗ is the highest possible rate of an equivalent
binary code that can achieve the capacity Cσ(·). Hence, we
refer to R∗ as the optimal rate.

Figure 9 shows the optimal coding rate R∗ for different
optimized number of levels m∗, where m∗ ≤ 8, when the
standard deviation function of the channel noise is σ1(x).
Figure 10 shows the optimal coding rate R∗ for different
optimized number of levels m∗, where m∗ ≤ 15, when the
standard deviation function of the channel noise is σ2(x).
Figure 11 shows the optimal coding rate R∗ for different
optimized number of levels m∗, where m∗ ≤ 15, when the
standard deviation function of the channel noise is σ3(x).

2.4
m*=2 m*=3 m*=4 m*≥5

2 0

2.2

ll)

5-LFMC
4-LFMC

1.8
2.0

(b
it/

ce
l

2-LFMC
3-LFMC

1.4
1.6

n
ra

te
 (

1 0

1.2

m
at

io
n

0 6

0.8
1.0

In
fo

rm

0.4
0.6

0 5 10 15 20 25 30 35
20log10(Vm /) (dB)

Figure 7. The achievable rates of m-LFMCs with m ∈ {2, 3, 4, 5} when the
standard deviation function is σ3(x). The numbers m∗ on the top of the figure
indicate that 2-LFMC, 3-LFMC and 4-LFMC can achieve the (computed)
maximum rates in the cases of VDR ≤ 6.5 dB, 6.5 dB < VDR ≤ 11.5 dB
and 11.5 dB < VDR ≤ 14.5 dB, respectively.

0.35
5-LFMC with m*=4 when VDR = 14 dB

0.3
)(1

3 x

0.25

en
si

ty

0.2

ili
ty

 d
e

0 1

0.15

pr
ob

ab
i

0.05

0.1p

-6 -4 -2 0 2 4 6 8 100
   

threshold voltage


0x 

1x 
2x 

3x

Figure 8. The pdfs of channel output distributions around the optimal
threshold voltage levels when the m-LFMC with the standard deviation
function σ3(x) and m = 5 is used at VDR = 14 dB. The optimal number
of levels m∗ is 4 with assignment x∗0 = 0, x∗1 ≈ 2.718, x∗2 ≈ 4.212 and
x∗3 = 6.5 and pdf p∗0 ≈ 0.274, p∗1 ≈ 0.171, p∗2 ≈ 0.271 and p∗3 ≈ 0.284.

C. Quantized Capacities

In this subsection, we present the capacities of the quan-
tized m-LFMC, where the values of the channel inputs are
known and fixed and the standard deviation function of the
noise is σ1(x). We explore an (m ∗ 2k)-level quantizer, in
which the output is quantized into (m ∗ 2k) intervals in a
(non-uniform) way such that, around each level, there are
2k equi-spaced intervals (which are indexed by k bits). An
example of the quantization for the 4-LFMC with x0 = 0,
x1 = 3.25, x2 = 4.55 and x3 = 6.5 is shown in Figure 12.
Around each level, it is uniformly quantized into four intervals.
Actually, it is a non-uniform quantization over R. Then the
channel becomes an DMC with four inputs and sixteen outputs.
As mentioned in Section III-B, the quantized channel is a

370

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0.9

0.8
m*=3

m*=4 m*=7

0 6

0.7

g
ra

te

m*=2

0.5

0.6

co
di

ng

0.4

O
pt

im
al

0.3

O

0 1

0.2

0 5 10 15 20
0.1

20log10(Vm/) (dB)

Figure 9. The optimal coding rates form-LFMCs when the standard deviation
function is σ1(x).

0 8

0 7

0.8

m*=150.7

g
ra

te

m*=4

m =15

m*=10

0.6

co
di

ng m =4

m*=8

0.5

O
pt

im
al

m*=2
m*=3

0.4

O m 3

0.3
0 5 10 15 20 25 30 35

20log10(Vm/) (dB)

Figure 10. The optimal coding rates for m-LFMCs when the standard
deviation function is σ2(x).

0.8

0.7 m*=15

0 6

0.7

g
ra

te

m =15

0 5

0.6

co
di

ng

m*=10m*=6

0 4

0.5

O
pt

im
al

m*=2
m*=4

m*=8

0 3

0.4O

m*=3

0.3

0 5 10 15 20 25 30
20log10(Vm/) (dB)

Figure 11. The optimal coding rates for m-LFMCs when the standard
deviation function is σ3(x).

DMC whose capacity can be computed by the Blahut-Arimoto
algorithm.

Suppose that six different (m ∗ 2k)-level quantizers, where
k = 0, k = 1, k = 2, k = 3, k = 4 and k = 5 are used.

2 0

r0 r4 r16r8 r12

1.8

2.0

1.4

1.6

ns
ity

1 0

1.2

ity
 d

en

0.8

1.0

ob
ab

ili

0.4

0.6pr
o

0 0

0.2 x0 x1 x2 x3

-2 -1 0 1 2 3 4 5 6 7 8
0.0

threshold voltage

Figure 12. A (non-unform) 16-level quantization of the channel output for
the 4-LFMC, where x0 = 0, x1 = 3.25, x2 = 4.55 and x3 = 6.5.

These quantizers are denoted by Q0, Q1, Q2, Q3, Q4 and
Q5, respectively. Figures 13 and 14 show the capacities of
different quantized DMCs for the 2-LFMC, where the channel
inputs are fixed X (2) = {0, 6.5}. Figures 15 and 16 show
the capacities of different quantized DMCs for the 4-LFMC,
where the channel inputs are fixed X (4) = {0, 3.25, 4.55, 6.5}.
Figures 17 and 18 show the capacities of different quantized
DMCs for the 8-LFMC, where the channel inputs are fixed
X (4) = {0, 1, 2, 3, 4, 5, 6, 6.5}. Also shown in these figures are
the exact capacities without quantization. From these figures,
we can see that,

1) as the number of quantization bits around each level
(i.e., k) increases, the quantized capacity does not
decrease;

2) in lower VDR regimes, a finite quantization in-
duces some loss of capacity, as shown in Fig-
ures 13, 15, and 17;

3) in high VDR regimes, the quantized capacity of the
3-bit quantization around each level almost matches
the exact capacity without quantization, as shown in
Figures 14, 16 and 18.

Hence, for an m-LFMC with given channel inputs, the m∗2k-
level quantization (where k could be very small - at most 3)
is good enough to practically approach the channel capacity.

VI. CONCLUSION

In this paper, the m-level flash memory was modeled
as an m-AM channel with ID-AGN, in which the standard
deviation of noise depends on the channel input. The capacity
and the optimal coding rate of the m-LFMC were given. A
simpler DMC was also derived by channel output quantization,
which drove an approximation of the capacity for the m-
LFMC. The determination of the capacity of the m-LFMC is
an optimization problem, which can be transformed into two
optimization sub-problems. One can be solved by the Blahut-
Arimoto algorithm. The other can be solved by finding the
solution to KKT conditions. Based on these, an alternating
iterative algorithm was presented to evaluate a lower bound

371

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2-LFMC

0.6
2 LFMC
2-LFMC-Q5
2-LFMC-Q4

0.5

ce
ll)

2-LFMC-Q3
2-LFMC-Q2
2 LFMC Q1

0.4

y
 (b

it/
c 2-LFMC-Q1

2-LFMC-Q0

0.3

C
ap

ac
ity

0.2

C

0 1
0 1 2 3 4 5 6 7 8

0.1

20log10(Vm/) (dB)

Figure 13. The capacities of different quantized DMCs for the 2-LFMC,
where the channel inputs are fixed X (2) = {0, 6.5}.

1

0.95

0.9

ce
ll)

0.85

y
 (b

it/
c

2 LFMC0.8

C
ap

ac
ity 2-LFMC

2-LFMC-Q5
2-LFMC-Q4

0 7

0.75C 2 LFMC Q4
2-LFMC-Q3
2-LFMC-Q2

0 65

0.7 2-LFMC-Q1
2-LFMC-Q0

8 9 10 11 12 13 14 15
0.65

20log10(Vm/) (dB)

Figure 14. The capacities of different quantized DMCs for the 2-LFMC,
where the channel inputs are fixed X (2) = {0, 6.5}.

0 4

4LFMC

0 3

0.4 4LFMC
4-LFMC-Q5
4-LFMC-Q4

0.35

el
l)

Q
4-LFMC-Q3
4-LFMC-Q2

0.3

ty
 (b

it/
c 4-LFMC-Q1

4-LFMC-Q0

0.25

C
ap

ac
it

0.2

C

0.15

0 1 2 3 4 5
20log10(Vm/) (dB)

Figure 15. The capacities of different quantized DMCs for the 4-LFMC,
where the channel inputs are fixed X (4) = {0, 3.25, 4.55, 6.5}.

on the capacity of the m-LFMC. This algorithm delivered not
only the optimal distribution of channel inputs but also the
optimal values of channel inputs. Numerical results showed
that at any given VDR there exists an optimal (i.e., minimal)

2

1.95

1.9el
l)

1.85ty
 (b

it/
c

4LFMC

1.8C
ap

ac
it 4LFMC

4-LFMC-Q5
4-LFMC-Q4

1 75

C

4-LFMC-Q3
4-LFMC-Q2
4 LFMC Q1

1 7

1.75 4-LFMC-Q1
4-LFMC-Q0

21 22 23 24 25 26 27 28 29
1.7

20log10(Vm/) (dB)

Figure 16. The capacities of different quantized DMCs for the 4-LFMC,
where the channel inputs are fixed X (4) = {0, 3.25, 4.55, 6.5}.

0.5

8LFMC
0.45

8LFMC
8-LFMC-Q5
8-LFMC-Q4

0 35

0.4

el
l)

8 LFMC Q4
8-LFMC-Q3
8-LFMC-Q2

0.3

0.35

ty
 (b

it/
c 8-LFMC-Q1

8-LFMC-Q0

0.25

C
ap

ac
it

0.2

C

0 1

0.15

0 1 2 3 4 5 6
0.1

20log10(Vm/) (dB)

Figure 17. The capacities of different quantized DMCs for the 8-LFMC,
where the channel inputs are fixed X (8) = {0, 1, 2, 3, 4, 5, 6, 6.5}.

3

2.95

2.9el
l)

2.85ty
 (b

it/
c

8LFMC
8 LFMC Q5

2.8C
ap

ac
it 8-LFMC-Q5

8-LFMC-Q4
8-LFMC-Q3

2 75

C 8-LFMC-Q3
8-LFMC-Q2
8-LFMC-Q1

2 7

2.75 Q
8-LFMC-Q0

28 29 30 31 32 33 34 35 36
2.7

20log10(Vm/) (dB)

Figure 18. The capacities of different quantized DMCs for the 8-LFMC,
where the channel inputs are fixed X (8) = {0, 1, 2, 3, 4, 5, 6, 6.5}.

value m∗ such that the capacity (or its lower bound) is achieved
by an m∗-LFMC, and that increasing the number of levels m
above m∗ does not further increase the information rate for a
fixed VDR. Numerical results also showed that if (m ∗ 2k)-

372

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

level quantizers with k = 3 are used at the channel output,
the quantized capacity almost matches the capacity of the m-
LFMC. Moreover, using the optimal coding rates as shown
in the numerical results, we will design proper codes for the
MLFM, which is one of our future works.

ACKNOWLEDGMENT

This work was supported by the collaborative NSF grants
ECCS-1128705 and ECCS-1128148, and by the NSFC (No.
61172082).

REFERENCES

[1] X. Huang, A. Kavcic, X. Ma, G. Dong, and T. Zhang, “Optimization
of achievable information rates and number of levels in multilevel
flash memories,” in ICN 2013: The Twelfth International Conference
on Networks, Seville, Spain, Jan. 27-Feb. 1 2013, pp. 125–131.

[2] M. Bauer, R. Alexis, and et al., “A multilevel-cell 32Mb flash memory,”
in IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, Feb. 1995, pp.
132–133, 351.

[3] T.-S. Jung, Y.-J. Choi, and et al., “A 117-mm2 3.3-V only 128-Mb
multilevel NAND flash memory for mass storage applications,” IEEE
Journal of Solid-State Circuits, vol. 31, no. 11, pp. 1575–1583, Nov.
1996.

[4] G. Atwood, A. Fazio, D. Mills, and B. Reaves, “Intel StrataFlashTM

memory technology overview,” Intel Technology Journal, pp. 1–8, 4th
Quarter 1997.

[5] Y. Li, S. Lee, and et al., “A 16Gb 3b/cell NAND flash memory in
56nm with 8MB/s write rate,” in IEEE ISSCC Dig. Tech. Papers, San
Francisco, CA, Feb. 2008, pp. 506–507.

[6] T. Futatsuyama, N. Fujita, and et al., “A 113mm2 32Gb 3b/cell NAND
flash memory,” in IEEE ISSCC Dig. Tech. Papers, San Francisco, CA,
Feb. 2009, pp. 242–243.

[7] N. Shibata, H. Maejima, and et al., “A 70nm 16Gb 16-level-cell NAND
flash memory,” in IEEE VLSI Circuits, 2007, pp. 190–191.

[8] C. Trinh, N. Shibata, and et al., “A 5.6MB/s 64Gb 4b/cell NAND
flash memory in 43nm CMOS,” in IEEE ISSCC Dig. Tech. Papers,
San Francisco, CA, Feb. 2009, pp. 246–247, 247a.

[9] G. Dong, S. Li, and T. Zhang, “Using data postcompensation and
predistortion to tolerate cell-to-cell interference in MLC NAND flash
memory,” IEEE Trans. Circuits Syst.–I: Reg. Papers, vol. 57, no. 10,
pp. 2718–2728, Oct. 2010.

[10] J. Wang, T. Courtade, H. Shankar, and R. D. Wesel, “Soft information
for LDPC decoding in flash: mutual-information optimized quantiza-
tion,” in Proc. IEEE GLOBECOM 2011, Houston, Texas, USA, Dec.
2011.

[11] S. Gregori, A. Cabrini, O. Khouri, and G. Torelli, “On-chip error
correcting techniques for new-generation flash memories,” Proceedings
of the IEEE, vol. 91, no. 4, pp. 602–616, Apr. 2003.

[12] F. Sun, S. Devarajan, K. Rose, and T. Zhang, “Design of on-chip error
correction systems for multilevel NOR and NAND flash memories,”
IET Circuits Devices Syst., vol. 1, no. 3, pp. 241–249, 2007.

[13] J. Chen and P. H. Siegel, “Markov processes asymptotically achieve the
capacity of finite-state intersymbol interference channels,” IEEE Trans.
Inform. Theory, vol. 54, no. 3, pp. 1295–1303, Mar. 2008.

[14] B. M. Kurkoshi, “The E8 lattice and error correction in multi-level flash
memory,” in Proc. IEEE International Conference on Communications,
Kyoto, Japan, June 5-9 2011, pp. 1–5.

[15] G. Dong, N. Xie, and T. Zhang, “On the use of soft-decision error-
correction codes in NAND flash memory,” IEEE Trans. Circuits Syst.–I:
Reg. Papers, vol. 58, no. 2, pp. 429–439, Feb. 2011.

[16] H. Lou and C. Sundberg, “Increasing storage capacity in multilevel
memory cells by means of communications and signal processing
techniques,” IEE Proc.-Circuits Devices Syst., vol. 147, no. 4, pp. 229–
236, Aug. 2000.

[17] S. Soldà, D. Vogrig, A. Bevilacqua, A. Gerosa, and A. Neviani, “Analog
decoding of trellis coded modulation for multi-level flash memories,” in
Proc. the 2008 IEEE International Symposium on Circuits and Systems
(ISCAS 2008), Seattle, U.S.A., May 18-21 2008, pp. 744–747.

[18] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation
for flash memories,” IEEE Trans. Inform. Theory, vol. 55, no. 6, pp.
2659–2673, Jun. 2009.

[19] Z. Wang and J. Bruck, “Partial rank modulation for flash memories,”
in Proc. IEEE Intern. Symp. on Inform. Theory, Austin, Texas, U.S.A.,
June 13-18 2010, pp. 864–868.

[20] D. Park and J. Lee, “Floating-gate coupling canceller for multi-level
cell NAND flash,” IEEE Trans. Magn., vol. 47, no. 3, pp. 624–628,
Mar. 2011.

[21] J. G. Smith, “On the information capacity of peak and average power
constrained gaussian channels,” Ph.D. dissertation, University of Cali-
fornia, Berkeley, California, Dec. 1969.

[22] ——, “The information capacity of amplitude-and variance-constrained
scalar Gaussian channels,” Information and Control, vol. 18, pp. 203–
219, 1971.

[23] Kingston, “Flash memory guide,” Kingston, Tech. Rep., 2011.
[24] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interfer-

ence on NAND flash memory cell operation,” IEEE Electron Device
Letters, vol. 23, no. 5, pp. 264–266, May 2002.

[25] M. Asadi, X. Huang, A. Kavcic, and N. P. Santhanam, “Optimal
detector for multilevel NAND flash memory channels with intercell
interference,” Nov. 2013, accepted by IEEE Journal on Seleted Areas
in Communcation (J-SAC).

[26] S. Shamai, “Information theoretic aspects of constrained systems,” in
MSRI Workshop on Information Theory, Berkeley, California, U.S.A.,
Feb. 25 - Mar. 1 2002.

[27] ——, “Information theoretic aspects of constrained cell-sites coopera-
tion,” in IEEE 26-th Convention of Electrical and Electronics Engineers
in Israel, Eilat, Israel, Nov. 17-20 2010, p. 000086.

[28] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE
Trans. Inform. Theory, vol. 28, no. 1, pp. 55–67, Jan. 1982.

[29] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: John Wiley & Sons, Inc, 1991.

[30] R. E. Blahut, “Computation of channel capacity and rate distortion
functions,” IEEE Trans. Inform. Theory, vol. IT-18, no. 4, pp. 460–473,
Jul. 1972.

[31] S. Arimoto, “An algorithm for computing the capacity of arbitrary
discrete memoryless channels,” IEEE Trans. Inform. Theory, vol. IT-
18, no. 1, pp. 14–20, Jan. 1972.

[32] A. Kavčić, “On the capacity of Markov sources over noisy channels,”
in Proc. IEEE GLOBECOM 2001, vol. 5, San Antonio, TX, USA, Nov.
25-29 2001, pp. 2997–3001.

[33] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge:
Cambridge University Press, 2004.

373

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Enhanced Design Conditions for Decentralized State-Space Control of Systems
with Relevant Interactions

Dušan Krokavec and Anna Filasová
Department of Cybernetics and Artificial Intelligence

Technical University of Košice, Faculty of Electrical Engineering and Informatics
Košice, Slovakia

dusan.krokavec@tuke.sk, anna.filasova@tuke.sk

Abstract—New points of view to the problems concerning the de-
centralized control of a class of large-scale systems with relevant
subsystems interactions are presented in the paper. The problems
are transformed into enhanced design conditions through slack
matrices until global asymptotic stability of the complete system
is pursued using Lyapunov approach. As results, a sufficient
condition for the existence is formulated in terms of linear matrix
inequalities while the impact of interconnection uncertainties is
minimized using H∞ approach. The decentralized controllers
proved to globally stabilize the system, both in noiseless and
noisy conditions.

Keywords-Large-scale systems; decentralized control; stabilizing
conditions; linear matrix inequalities; H∞ robust control; control
of multi-area power systems.

I. INTRODUCTION

Complex large-scale dynamic systems appear in many en-
gineering fields and so, naturally, the control of large-scale
systems has been studied by many researchers to provide
comprehensive contributions on analytical and computational
methods for feedback control design of such systems [2], [17].
Different decentralized control structures were proposed and
different algorithms were derived depending on the local state
control laws.

If the linear model of a large dynamic system is partitioned
into interconnected subsystems, the interactions of the subsys-
tem play significant role in global system stability and, if inter-
actions contain uncertainties, expected performances cannot be
attained if the control is designed only for the nominal models.
The success of these methods can be improved if the system
state are grouped so that subsystem interaction is minimized
and the decentralized controllers are optimized with respect
to interaction uncertainties. The first usable results for the
existence of robust decentralized controllers mostly involve the
conditions under which the matrix of interconnections in the
considered large-scale system satisfies the prescribed matching
condition [20], [23].

Recently, a number of efforts have been made to extend
the application of robust control techniques using convex
optimization, involving linear matrix inequalities (LMI). It is
well known that LMI-based approaches [5] are powerful for
a centralized control design, but, in the decentralized case,
the control design task may not be oftentimes reducible to

a feasibility problem because of existence of control law
structural constraints.

To meet modern system requirements, controllers have to
quarantine robustness over a wide range of system operating
conditions and this further highlights the fact that robust-
ness to interconnections and interaction uncertainties among
subsystems is one of the major issues. Applying for power
systems control, the most important terms are robustness and a
decentralized control structure [15], [24]. The robustness issue
arises to deal with uncertainties which mainly come from the
varying network topology and the dynamic variation of the
load. On the other hand, since a real-time information transfer
among subsystems is unfeasible, decentralized controllers have
to be exploited. To achieve less-conservative control gains
design conditions, norm-bounded unknown uncertainties in
subsystem interactions, or nonlinear bounds of interconnec-
tions, are included in LMI terms in the design condition
formulation [9].

Focusing on the above problems, the paper is sequenced in
eight sections and one appendix. Following the introduction
in Section I, the second section places the results obtained
within the context of existing requests. Section III briefly
describes the problems concerning with control of the large-
scale dynamical systems with relevant subsystem interactions.
The preliminaries, mainly focused on the H∞ based design
approach as well as on the bounded real lemma forms, are
presented in Section IV. Section V points out the stability
analysis of the controlled system by use of a set of LMIs
and Section VI states the newly proposed conditions for the
state controller design. Section V illustrates the design task by
numerical solutions and system stability analysis and Section
VI draws some concluding remarks. Appendix is devoted to a
model of the multi-area power systems, used in the illustrative
example.

Throughout the paper, the notations is narrowly standard in
such way that xT , XT denotes the transpose of the vector
x and matrix X , respectively, X = XT > 0, (≥ 0), means
that X is a symmetric positive definite (semi-definite) matrix,
rank(·) remits the rank of a matrix, the symbol In indicates the
n-th order identity matrix, IR denotes the set of real numbers,
IRn×r refers to the set of all n×r real matrices, || . || entails the
standard l2-norm and l2⟨0,+∞) connotes the space of random
signal over ⟨0,+∞).

374

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. THE STATE OF THE ART

During the past decades, there has been significant but
scattered activity in control of the systems with interactions. A
necessary and sufficient condition for solvability, in the case of
fixed interconnections, has been found, e.g., in [7], [8], [25],
where a homotopic method was used to reduce the control
design to a feasibility problem of a bilinear matrix inequality
(BMI). Moreover, if the LMI method is adopted by using a
single Lyapunov function [3], [19], it leads to very conservative
results.

The paper reflects the problems concerning with the system
robust stability for one class of disturbed large-scale systems,
in the presence of interconnection uncertainties among sub-
systems. The used approach is concentrated on performance
improvement of control systems and is a continuation of the
earlier work started in [13], [18], especially motivated by the
techniques presented in [4], and improved in [1] with respect
to disturbance transfer function norm minimization, the system
dynamics improvement and the decentralized control design
simplification.

Comparing with the above mentioned articles, the merit of
the results proposed in this paper relies on the conservatism
reducing through slack matrices incorporation into enhanced
design conditions. This represents issues which lead to a
newly formulated set of LMIs, giving the sufficient conditions
for design of the decentralized controllers, with closed-loop
system matrix satisfying the Gershgorin circle theorem [11].
Results are illustrated using the load frequency control model
of the multi-area power systems.

III. PROBLEM FORMULATION

To formulate the control design task, it is assumed that the
subsystems are given adequately to (A.10), (A.11), i.e., it is
considered for i = 1, 2, ..., p that

q̇i(t)=Aiqi(t)+biui(t)+

p∑
l=1

Gilql(t)+f idi(t) (1)

yi(t) = cTi qi(t) (2)

where qi(t) ∈ IRni is the vector of the state variables of the i-
th subsystem, ui(t), yi(t) ∈ IR are input and output variables
of the i-th subsystem, respectively, Ai,Gil ∈ IRni×ni are
real matrices, bi, ci,f i ∈ IRni are real column vectors. The
disturbance di(t) is a non-anticipative precess, where {d(t) ∈
l2(⟨0,∞); IR).

It is supposed that all states variables of a subsystem are
measured or observed, all subsystems matrix of dynamics
Ai, i = 1, 2, ..., p are of full rank, all pairs (Ai, bi) are
controllable, and the i-th subsystem is controlled by the local
state feedback control law

ui(t) = kT
i qi(t) (3)

where ki ∈ IRni is a constant gain vector.

It is supposed that the interconnections with the uncertainty
terms in (1) can be, in general, written as

Gihi(q(t)) =

p∑
l=1

Gilql(t) (4)

where hi(q(t)) ∈ IRni is a vector function, satisfying the
inequality

hT
i (q(t))hi(q(t)) ≤ ε−1

i qT(t)wT
iwiq(t) (5)

where ε−1
i > 0, εi ∈ IR is a scalar parameter, related to

interconnection uncertainties, and wi are constant vectors of
appropriate dimensions.

Using the overall system state variable vector q(t), defined
as follows

qT(t) =
[
qT
1(t) qT

2(t) · · · qT
p (t)

]
(6)

then (5) can be rewritten as
p∑

l=1

hT
l (q(t))hl(q(t)) = hT(q(t))h(q(t)) ≤

≤ qT (t)

[
p∑

l=1

ε−1
l wT

lwl

]
q(t)

(7)

The global system model with the subsystem interactions
takes now the form

q̇(t) = Aq(t) +Bu(t) +Gh(q(t)) + Fd(t) (8)

y(t) = Cq(t) (9)

where
yT(t) = [y1(t) y2(t) · · · yp(t)] (10)

uT(t) = [u1(t) u2(t) · · · up(t)] (11)

dT(t) = [d1(t) d2(t) · · · dp(t)] (12)

A = diag [A1 A2 · · · Ap] (13)

B = diag [b1 b2 · · · bp] (14)

G = diag [G1 G2 · · · Gp] (15)

F = diag
[
f1 f1 · · · fp

]
(16)

C = diag
[
cT1 cT1 · · · cTp

]
(17)

where q(t) ∈ IRn, u(t),y(t) ∈ IR r, A,G ∈ IRn×n, B,F ∈
IRn×r, C ∈ IR r×n and

∑p
i=1 ni = n.

The goal is the parameter design of the control law for
overall system

u(t) = Kq(t) (18)

where K ∈ IRr×n,

K = diag
[
kT
1 kT

2 · · · kT
p

]
(19)

in such way that the controlled global large-scale system is
stable.

375

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. PRELIMINARY RESULTS

The main purpose of this section is to present the concept
of system quadratic performance, based on the H∞ norm of e
system transfer matrix. In that sense are proven and exploited
the following results.

Proposition 1: If M , N are matrices of appropriate dimen-
sions, and X is a symmetric positive definite matrix of proper
dimension, then

MTN +NTM ≤ NTXN +MTX−1M (20)

Proof: [12] Since X = XT > 0, then(
X− 1

2M −X
1
2N

)T(
X− 1

2M −X
1
2N

)
≥ 0 (21)

MTX−1M +NTXN −MTN −NTM ≥ 0 (22)

It is evident that (22) implies (20). This concludes the proof.

Definition 1: Let a linear multi input and multi output
(MIMO) system is described in the the state-space form by
the equation

q̇(t) = Aq(t) +Bu(t) (23)

and the output relation

y(t) = Cq(t) +Du(t) (24)

where q(t) ∈ IRn, u(t) ∈ IR r, and y(t) ∈ IRm are vectors
of the state, input and output variables, respectively, and A ∈
IRn×n, B ∈ IRn×r, C ∈ IRm×n and D ∈ IRm×r are real
matrices. Then the transfer function matrix G(s) of the system
(23), (24) is

G(s) = C(sI −A)−1B +D (25)

Note, this definition is used only in this section.
The proof of announced lemmas in this section is based on

the following result (see, e.g., the proof of Theorem 1 in [12]).
Proposition 2: (quadratic performance) If a stable system is

described by the transfer function matrix (25) of the dimension
m× r, there exists such positive γ ∈ IR that∫ ∞

0

(yT(v)y(v)− γuT(v)u(v))dv > 0 (26)

where y(t) ∈ IRm is the vector of the system output variables,
u(t) ∈ IRr is the vector of the system input variables and γ
is an upper bound of square of the H∞ norm of (25).

Proof: It is evident, from (25), that

ỹ(s) = G(s)ũ(s) (27)

where ỹ(s), ũ(s) stands for the Laplace transform of m
dimensional output vector and r dimensional input vector,
respectively. Then (27) implies

∥ỹ(s)∥ ≤ ∥G(s)∥∥ũ(s)∥ (28)

with ∥G(s)∥ standing for the H2 norm of the system transfer
function matrix G(s). Since H∞ norm property states

1√
m
∥G(s)∥∞ ≤ ∥G(s)∥ ≤

√
r∥G(s)∥∞ (29)

where ∥G(s)∥∞ is the H∞ norm of the system transfer
function matrix G(s), using the notation ∥G(s)∥∞ =

√
γ,

the inequality (29) can be rewritten as

0 <
1√
m

≤ ∥ỹ(s)∥
√
γ∥ũ(s)∥

≤ ∥G(s)∥
√
γ

≤
√
r (30)

Thus, based on Parceval’s theorem, (30) gives for m ≥ 1

1 ≤ ∥ỹ(s)∥
√
γ∥ũ(s)∥

=

(∞∫
0

yT (v)y(v)dv
) 1

2

√
γ
(∞∫

0

uT (v)u(v)dv
) 1

2

(31)

and, subsequently, it yields∫ ∞

0

yT (v)y(v)dv − γ

∫ ∞

0

uT (v)u(v)dv ≥ 0 (32)

that is the mapping from u(t) to y(t) is said to have the H∞
norm less than

√
γ.

It is evident that (32) implies (26). This concludes the proof.

Before exploiting the principle of quadratic performance in
the design of control (18), the following bounded real lemmas
for the system (23), (24) are recalled.

Lemma 1: (bounded real lemma) System described by (23),
(24) is asymptotically stable with the quadratic performance√
γ if there exist a symmetric positive definite matrix P ∈

IRn×n and a positive scalar γ ∈ IR such that

P = P T > 0, γ > 0 (33) PA+ATP PB CT

∗ −γIr DT

∗ ∗ −Im

 < 0 (34)

where Ir ∈ IR r×r, Im ∈ IRm×m are identity matrices of
given dimensions, respectively.

Here, and hereafter, ∗ denotes the symmetric item in a
symmetric matrix.

Proof: (compare [5], [18]) Since overall system (23), (24)
is linear in q(t), using the Krasovskii theorem (see, e.g., [16])
and considering (32), the Lyapunov function v(q(t)) can be
considered as

v(q(t)) = qT(t)Pq(t)+

+
t∫
0

(yT (v)y(v)− γrT (v)u(v))dv > 0
(35)

where P = P T > 0, γ > 0.
Thus, evaluating the derivative of v(q(t)) with respect to t

along a system trajectory, it yields

v̇(q(t)) = q̇T (t)Pq(t) + qT (t)P q̇(t)+

+yT (t)y(t)− γuT (t)u(t) < 0
(36)

Therefore, the substitution of (23), (24) into (36) gives

v̇(q(t)) = (Aq(t) +Bu(t))TPq(t)+

+qT (t)P (Aq(t)+Bu(t))− γuT(t)u(t)+

+(Cq(t) +Du(t))T (Cq(t) +Du(t)) < 0

(37)

376

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and with the notation

qT
c (t) =

[
qT (t) uT (t)

]
(38)

it is obtained

v̇(q(t)) = qT
c(t)Pc qc(t) < 0 (39)

where

Pc=

[
ATP + PA PB

∗ −γIr

]
+

[
CTC CTD

∗ DTD

]
< 0 (40)

Since[
CTC CTD

∗ DTD

]
=

[
CT

DT

]
[C D] ≥ 0 (41)

applying Schur complement property to (41), then (40) implies
(34). This concludes the proof.

From this results, the stability problem is reduced to find a
Lyapunov matrix P and a parameter γ to stabilize the system
and to guarantee the H∞ norm attenuation between u(t) and
y(t).

Lemma 2: (enhanced bounded real lemma) System de-
scribed by (23), (24) is asymptotically stable with the quadratic
performance

√
γ if for given positive δ ∈ IR there exist

symmetric positive definite matrices P ,S ∈ IRn×n, and a
positive scalar γ ∈ IR such that

P = P T > 0, S = ST > 0, γ > 0 (42)
S1A+ATS SB P − S + δATS CT

∗ −γIr δBTS DT

∗ ∗ −2δS 0

∗ ∗ ∗ −Im

 < 0 (43)

Proof: (compare, e.g., [13]) Since (23) implies

Aq(t) +Bu(t)− q̇(t) = 0 (44)

then with positive definite symmetric matrices S1, S2 ∈
IRn×n it yields(

qT(t)S1 + q̇T(t)S2

)
(Aq(t) +Bu(t)− q̇(t)) = 0 (45)

Thus, adding (45) as well as the transpose of (45) to (36)
and substituting (24) in (36) results in

v̇(q(t))= q̇T(t)Pq(t)+ qT(t)P q̇(t)− γuT(t)u(t)+

+(Cq(t) +Du(t))T (Cq(t) +Du(t))+

+(Aq(t) +Bu(t)− q̇(t))T (S1q(t) + S2q̇(t))+

+(qT(t)S1 + q̇T(t)S2)(Aq(t)−Bu(t)− q̇(t)) < 0

(46)

Using the notation

q ◦T
c (t) =

[
qT (t) uT (t) q̇T (t)

]
(47)

the inequality (46) can be written as

v̇(q(t)) = q◦T
c (t)P ◦

c q◦
c(t) < 0 (48)

where
P ◦

c = P ◦
c1 + P ◦

c2 < 0 (49)

P ◦
c1 =

 S1A+ATST
1 S1B P − S1 +ATS2

∗ −γIr BTS2

∗ ∗ −2S2

 < 0

(50)

P ◦
c2 =

 CTC CTD 0

∗ DTD 0

∗ ∗ 0

 (51)

Thus, setting
S1 = S, S2 = δS (52)

and applying analogously Schur complement property to (51),
then (49) implies (43). This concludes the proof.

The consequence of this Lemma is that of separating the
Lyapunov matrix P from the system matric parameters, i.e.,
there is no product PA, PB in the LMIs, which substantially
reduces conservatism of solutions, especially if the system is
linear with polytopic uncertainties.

Conversely, in the Lemma, a positive real scalar δ is involved
in the LMIs as a prescribed constant design parameter. The
procedure of adding scalar in LMIs has been widely explored
in literature (see, e.g., [22]). Moreover, such a parameterization
is often needed when converting BMI into linear ones.

V. STATE CONTROL DESIGN

Algorithms for solutions to (18), which includes the design
in the sense of this paper, are the subject of this section.

Proposition 3: [1] The autonomous system from (8) is
asymptotically stable with bounded quadratic performance if
there exist symmetric positive definite matrices P i ∈ IRni×ni

and positive scalars γi, λi, εi ∈ IR such that for i = 1, 2, . . . , p

P i = P i > 0, γi > 0, λi > 0, εi > 0 (53)

Φ PB PF CT PG w1 · · · wp

∗ −Γu 0 0 0 0 · · · 0

∗ ∗ −Γd 0 0 0 · · · 0

∗ ∗ ∗ −Ir 0 0 · · · 0

∗ ∗ ∗ ∗ −Ir 0 · · · 0

∗ ∗ ∗ ∗ ∗ −ε1 0

...
...

...
...

...
. . .

∗ ∗ ∗ ∗ ∗ ∗ −εp


< 0

(54)
where

Φ = PA+ATP (55)

the matrices

P = diag [P 1 P 2 · · · P p] (56)

Γu = diag [γ1 γ2 · · · γp] (57)

Γd = diag [λ1 λ2 · · · λp] (58)

are structured matrix variables, and all system matrix param-
eter structures are given in (13)–(17).

377

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Proof: Defining Lyapunov function as follows

v(q(t)) = qT(t)Pq(t)+

+
t∫
0

(
yT(v)y(v)−

p∑
h=1

(
γhu

2
h + λhd

2
h

))
dv

(59)

where v(q(t)) > 0, P = P T > 0 is given in (56), and γh > 0,
λh > 0, h = 1, 2, . . . p, are introduced in (57).

Evaluating the derivative of v(q(t)) with respect to t along
the autonomous system trajectories, then with the notation
(11), (12) it yields

v̇(q(t)) = q̇T(t)Pq(t) + qT (t)P q̇(t)+

+yT(t)y(t)−
[
uT(t) dT(t)

]
Γ

[
u(t)
d(t)

]
< 0

(60)

where, with (57), (58)

Γ = diag [Γu Γd] (61)

Therefore, the substitution of whole system model equations
(8), (9) into (60) gives

v̇(q(t)) = qT(t)CTCq(t)+

+ (Aq(t) +Bu(t) +Gh(q(t)) + Fd(t))
T
Pq(t)+

+qT(t)P (Aq(t) +Bu(t) +Gh(q(t)) + Fd(t))−

−
[
uT(t) dT(t)

] [Γu

Γd

] [
u(t)
d(t)

]
< 0

(62)

Subsequently, using the inequality (20) with X = I , it can
be written

hT(q(t))GTPq(t) + qT(t)PGh(q(t)) ≤
≤ qT(t)PGGTPq(t) + hT(q(t))h(q(t))

(63)

and exploiting the inequality (5) then (63) gives

hT(q(t))GTPq(t) + qT(t)PGh(q(t)) ≤

≤ qT(t)PGGTPq(t) + qT(t)
p∑

l=1

ε−1
l wT

l whq(t)
(64)

It is simple to see that introducing the notation

q•T
c (t) =

[
qT(t) uT(t) dT(t)

]
(65)

negative (62) imply that

v̇(q(t)) ≤ q•T
c (t)P •

cq
•
c(t) < 0 (66)

where
P •

c = P •
c1 + P •

c2 + P •
c3 < 0 (67)

P •
c1 =

 ATP + PA PB PF

∗ −Γu 0

∗ ∗ −Γd

 (68)

P •
c2 =

 CTC + PGGTP 0 0

∗ 0 0

∗ ∗ 0

 (69)

P •
c3 =

p∑
l=1

P •
c3l =

p∑
l=1

 wT
l ε

−1
l wl 0 0

∗ 0 0

∗ ∗ 0

 (70)

Since it yields

P •
c1 =

 CT

0
0

 [C 0 0] ≥ 0 (71)

P •
c2 =

[
PG
0
0

] [
GTP 0 0

]
≥ 0 (72)

P •
c3l =

[
wl

0
0

]
ε−1
l

[
wT

l 0 0
]
≥ 0 (73)

applying Schur complement property to (71)–(73) then (67)
implies (54). This concludes the proof.

Inserting the closed-loop system matrix Ac ∈ IRn×n instead
the system matrix A in (54), where

Ac = A−BK (74)

the bilinear matrix inequality is obtained. To transform this
BMI into LMI, the next new theorem is proposed.

Theorem 1: The system (8), with output given by the re-
lation (9), is stabilized with quadratic performance via the
controller (18) if there exist symmetric positive definite matri-
ces Xi ∈ IRni×ni , the matrices Y i ∈ IRmi×ni and positive
scalars γi, λi, εi ∈ IR such that for all i = 1, 2, . . . , p

Xi = Xi > 0, γi > 0, λi > 0, εi > 0 (75)

Φ̃ B F XCT G Xw1 · · · Xwp

∗ −Γu 0 0 0 0 · · · 0

∗ ∗ −Γd 0 0 0 · · · 0

∗ ∗ ∗ −Ir 0 0 · · · 0

∗ ∗ ∗ ∗ −Ir 0 · · · 0

∗ ∗ ∗ ∗ ∗ −ε1 0

...
...

...
...

...
. . .

∗ ∗ ∗ ∗ ∗ ∗ −εp


< 0

(76)
where

Φ̃ = XAT +AX − Y TBT −BY (77)

the matrices

X = diag [X1 X2 · · · Xp] (78)

Y = diag [Y 1 Y 2 · · · Y p] (79)

and the matrices Γu, Γd given in (57), (58), respectively, are
structured matrix variables, and the system matrix parameter
structures are specified in (13)–(17).

If the above conditions hold, the set of control gain matrices
is given by

K = Y X−1 =
[
kT
1 kT

2 · · · kT
p

]
(80)

378

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Proof: Inserting the closed-loop system matrix (74) into
(55) gives

Φ = PA− PBK +ATP −KTBTP (81)

Then, defining the transform matrix

T = diag
[
P−1 Ir Ir Ir Ir 1 · · · 1

]
(82)

and pre-multiplying the left hand as well as the right hand side
of (54) by (82), the next LMI is obtained

Φ̃ B F P−1CT G P−1w1 · · · P−1wp

∗ −Γu 0 0 0 0 · · · 0

∗ ∗ −Γd 0 0 0 · · · 0

∗ ∗ ∗ −Ir 0 0 · · · 0

∗ ∗ ∗ ∗ −Ir 0 · · · 0

∗ ∗ ∗ ∗ ∗ −ε1 0

...
...

...
...

...
. . .

∗ ∗ ∗ ∗ ∗ ∗ −εp


< 0

(83)
where

Φ̃ = P−1AT − P−1KTBT +AP−1 −BKP−1 (84)

Introducing the LMI variables

P−1 = X, KP−1 = Y (85)

then (85) implies (79), and (83), (84) implies (76), (77),
respectively. This concludes the proof.

Note, now the optimization problem in Theorem 1 can be
solved using the standard LMI solvers.

VI. ENHANCED DESIGN CONDITIONS

The idea of separating the Lyapunov matrix P from the
system matric parameters is based on the method of Krasovskii
and the theory of slack matrices [13]. In short, for the linear
large-scale systems this method lies the next new stability con-
ditions, formulated with respect to the subsystem interactions
quadratic performances.

Theorem 2: The autonomous system from (8) is asymptot-
ically stable with bounded quadratic performance if for given
positive δ ∈ IR there exist symmetric positive definite matrices
P i,V i ∈ IRni×ni and positive scalars γi, λi, ϵi ∈ IR such that
for i = 1, 2, . . . , p

P i = P i > 0, V i = V i > 0, γi > 0, λi > 0, ϵi > 0 (86)

Λ VB VF Ψ CT V G w1 · · · wp

∗ −Γu 0 δBTV 0 0 0 · · · 0

∗ ∗ −Γd δF TV 0 0 0 · · · 0

∗ ∗ ∗ −Π 0 0 0 · · · 0

∗ ∗ ∗ ∗ −Ir 0 0 · · · 0

∗ ∗ ∗ ∗ ∗ −Ir 0 · · · 0

∗ ∗ ∗ ∗ ∗ ∗ −ϵ1 0

...
...

...
...

...
...

. . .
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ϵp


< 0

(87)

where
Λ = V A+ATV (88)

Ψ = P − V + δATV (89)

Π = 2δV − δ2V GGTV (90)

the matrix

V = diag [V 1 V 2 · · · V p] (91)

and the matrices P , Γu, Γd given in (56), (57), (58), respec-
tively, are structured matrix variables, and the system matrix
parameter structures are specified in (13)–(17).

Proof: Since (8) implies

Aq(t) +Bu(t) +Gh(q(t)) + Fd(t)− q̇(t) = 0 (92)

then with positive definite symmetric block diagonal matrices
V ⋄

1 , V
⋄
2 ∈ IRn×n it yields(

qT(t)V ⋄
1 + q̇T(t)V ⋄

2

)(Aq(t) +Bu(t)+

+Gh(q(t)) + Fd(t)− q̇(t)

)
= 0

(93)
Then, adding (93) and the transpose of (93) to (60) and
subsequently substituting (9) in (60) results in

v̇(q(t))= q̇T(t)Pq(t)+ qT(t)P q̇(t) + qT(t)CTCq(t)+

+

(
Aq(t) +Bu(t)+

+Gh(q(t)) + Fd(t)− q̇(t)

)T

(V ⋄
1 q(t) + V ⋄

2 q̇(t))+

+
(
qT(t)V ⋄

1 + q̇T(t)V ⋄
2

)(Aq(t) +Bu(t)+

+Gh(q(t)) + Fd(t)− q̇(t)

)
−

−
[
uT(t) dT(t)

] [Γu

Γd

] [
u(t)
d(t)

]
< 0

(94)
Subsequently, using the inequality (20) with X = I , it can be
written

hT(q(t))GTV ⋄
1 q(t) + qT(t)V ⋄

1Gh(q(t)) ≤
≤ hT(q(t))h(q(t)) + qT(t)V ⋄

1GGTV ⋄
1 q(t)

(95)

hT(q(t))GTV ⋄
2 q̇(t) + q̇T(t)V ⋄

2Gh(q(t)) ≤
≤ hT(q(t))h(q(t)) + q̇T(t)V ⋄

2GGTV ⋄
2q̇(t)

(96)

and, exploiting (5), then (95), (96) give

hT(q(t))GTV ⋄
1 q(t) + qT(t)V ⋄

1Gh(q(t)) ≤

≤ qT(t)
p∑

l=1

ε−1
l wT

l wlq(t) + qT(t)V ⋄
1GGTV ⋄

1 q(t)
(97)

hT(q(t))GTV ⋄
2 q̇(t) + q̇T(t)V ⋄

2Gh(q(t)) ≤

≤ qT(t)
p∑

l=1

ε−1
l wT

l wlq(t) + q̇T(t)V ⋄
2GGTV ⋄

2q̇(t)
(98)

respectively. Thus, introducing the notation

q⋄T
c (t) =

[
qT(t) uT(t) dT(t) q̇T(t)

]
(99)

(94) can be rewritten as

v̇(q(t)) ≤ q⋄T
c (t)P ⋄

cq
⋄
c(t) < 0 (100)

379

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where
P ⋄

c = P ⋄
c1 + P ⋄

c2 + P ⋄
c3 < 0 (101)

P ⋄
c1 =

=


V ⋄

1A+ATV ⋄
1 V ⋄

1B V ⋄
1F P − V ⋄

1 +ATV ⋄
2

∗ −Γu 0 BTV ⋄
2

∗ ∗ −Γd F TV ⋄
2

∗ ∗ ∗ −2V ⋄
2 + V ⋄

2GGTV ⋄
2


(102)

P ⋄
c2 =


CTC + V ⋄

1GGTV ⋄
1 0 0 0

∗ 0 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0

 (103)

P ⋄
c3 =

p∑
l=1

P ⋄
c3l =

p∑
l=1


wT

l ϵ
−1
l wl 0 0 0

∗ 0 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0

 (104)

ϵ−1
l = 2ε−1

l (105)

Analogously, setting

V ⋄
1 = V , V ⋄

2 = δV (106)

and applying the Schur complement property to (103), (104),
then (101) implies (87). This concludes the proof.

The following theorem presents the design of a continuous
state feedback controller to decentralized stabilization of the
system (9).

Theorem 3: The system (8), with output given by the rela-
tion (9), is stabilized with quadratic performance via the con-
troller (18) if there exist symmetric positive definite matrices
T i,Zi ∈ IRni×ni , the matrices W i ∈ IRmi×ni and positive
scalars γi, λi, ϵi ∈ IR such that for all i = 1, 2, . . . , p

T i = T i > 0, Zi = Zi > 0, γi > 0, λi > 0, ϵi > 0 (107)

Λ̃ B F Ψ̃ ZCT G Zw1 · · · Zwp

∗ −Γu 0 δBT 0 0 0 · · · 0

∗ ∗ −Γd δF T 0 0 0 · · · 0

∗ ∗ ∗ −Π̃ 0 0 0 · · · 0

∗ ∗ ∗ ∗ −Ir 0 0 · · · 0

∗ ∗ ∗ ∗ ∗ −Ir 0 · · · 0

∗ ∗ ∗ ∗ ∗ ∗ −ϵ1 0

...
...

...
...

...
...

. . .
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ϵp


< 0

(108)
where

Λ̃ = AZ −BW +ZAT −W TBT (109)

Ψ̃ = T −Z + δ(ZAT −W TBT) (110)

Π̃ = 2δZ − δ2GGT (111)

the matrices

T = diag [T 1 T 2 · · · T p] (112)

Z = diag [Z1 Z2 · · · Zp] (113)

W = diag [W 1 W 2 · · · W p] (114)

and the matrices Γu, Γd given in (57), (58), respectively, are
structured matrix variables, and the system matrix parameter
structures are specified in (13)–(17).

If the above conditions hold, the set of control gain matrices
is given by

K = WZ−1 =
[
kT
1 kT

2 · · · kT
p

]
(115)

Proof: Inserting the closed-loop system matrix (74) into
(88), (89) gives

Λ = V A− V BK +ATV −KTBTV (116)

Ψ = P − V + δ(ATV −KTBTV) (117)

Π = 2δV − δ2V GGTV (118)

Since the matrix V is supposed to be positive definite, it
can be set up the next transform matrix

T = diag
[
V −1 Ir Ir V −1 Ir Ir 1 · · · 1

]
(119)

Pre-multiplying the left hand and the right hand side of (87)
by (119), then it yields

Λ̃ B F Ψ̃ V −1CT G w⋄
1 · · · w⋄

p

∗ −Γu 0 δBT 0 0 0 · · · 0

∗ ∗ −Γd δF T 0 0 0 · · · 0

∗ ∗ ∗ −Π̃ 0 0 0 · · · 0

∗ ∗ ∗ ∗ −Ir 0 0 · · · 0

∗ ∗ ∗ ∗ ∗ −Ir 0 · · · 0

∗ ∗ ∗ ∗ ∗ ∗ −ϵ1 0

...
...

...
...

...
...

. . .
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ϵp


< 0

(120)
where

Λ̃ = AV −1 −BKV −1 + V −1AT − V −1KTBT (121)

Ψ̃ = V −1PV −1 −V −1 + δ(V −1AT −V −1KTBT) (122)

Π̃ = 2δV −1 − δ2GGT (123)

w⋄
l = V −1wl, l = 1, 2, . . . p (124)

Introducing the LMI variables

V −1 = Z, KV −1 = W , V −1PV −1 = T (125)

then (120)-(123) implies (108)–(111), respectively. This con-
cludes the proof.

In order to make this result applicable and operational, it is
necessary to give the parameter δ and verify the obtained H∞
quadratic constraints. In addition, the size of this parameter can
be used for tuning of the dynamics of the closed-loop system
responses.

380

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. ILLUSTRATIVE EXAMPLE

To demonstrate the algorithm properties, the next subsystem
parameters for i = 1, 2, 3 are used [18]

Ai =

−12.50 0.00 −5.21 0.00
3.33 −3.33 0.00 0.00
0.00 6.00 −0.05 −6.00
0.00 0.00 1.10 0.00

 , bi =

 12.5
0.0
0.0
0.0


cTi = [0 0 1 0] , fT

i = [0 0 −6 0]

and

Gih =

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 −0.55 0

 , gx =

 0
0
0

−0.55


G = diag [gx gx gx]

wT
1 = [0 0 0 0 0 0 1 0 0 0 1 0]

wT
2 = [0 0 1 0 0 0 0 0 0 0 1 0]

wT
3 = [0 0 1 0 0 0 1 0 0 0 0 0]

Thus, solving (75), (76) with respect to the LMI matrix
variables Xi, Y i, γi, λi, εi, i = 1, 2, 3 using SeDuMi package
for Matlab [21], the feedback gain matrix design problem was
feasible with the results

Xi =

 14.7389 2.7960 −1.9062 3.6230
∗ 5.0205 −1.7327 3.4803
∗ ∗ 2.2244 −0.6127
∗ ∗ ∗ 3.6596


Y T

i = [−12.9516 1.4183 0.1961 −3.4268]

γi = 16.9863, λi = 15.5306, εi = 11.5833

According to these matrix parameters, the local control laws
are constructed with the gain vectors

kT
i = [−0.4870 3.5065 1.4243 −3.5505]

resulting in the stable decentralized state control, characteristic
by the subsystem closed-loop matrix eigenvalues spectrum

ρ(Ach) = {−0.2646 − 3.2126 − 3.1578± 11.9004i}

Solving (107), (108) for δ = 0.2 with respect to the LMI
matrix variables Ti, Zi, Y i, γi, λi, ϵi, i = 1, 2, 3, the
feasible solution gives out the common positive-definite matrix
variables

T i =

 48.1661 −4.5647 −2.5138 4.2776
∗ 5.3518 −3.2610 1.7874
∗ ∗ 4.0874 −1.1766
∗ ∗ ∗ 1.8135



Zi =

 9.5165 0.7452 −1.5398 1.1538
∗ 3.4365 −2.4504 1.5058
∗ ∗ 3.1948 −1.0502
∗ ∗ ∗ 1.4237



and the LMI parameters

W T
i = [−6.7570 2.1314 0.2832 −0.5702]

γi = 22.1502, λi = 37.2683, ϵi = 10.4566

Note that by increasing the value of the tuning parameter δ
the LMI solution may become infeasible.

The local state control with the obtained gain matrix

kT
i = [−0.5540 1.9349 0.8510 −1.3508]

insures the global system stability with decentralized closed-
loop system matrix eigenvalues spectrum

ρ(Ach) = {−1.0044 − 3.4075 − 2.2717± 8.8048i}

That, in the both cases, the resulting system time responses
have small relative damping is not given by the attribute of
the presented algorithms but implies from the characteristic
properties of multiarea power systems.

VIII. CONCLUDING REMARKS

Decentralized robust control design for large scale systems
with relevant subsystem interactions is formulated in the paper
as an optimization problem and solved by LMIs. A conveyed
characterization for the interaction bounds is presented and the
sufficient condition for stabilizing decentralized robust control
design are newly originated in the bounded real lemma as well
as in the enhanced bounded real lemma structure, respectively.
Since the theorems are newly derived, the proofs was necessary
to include due to their original contributions.

The optimization principe, involving structured matrix vari-
ables in the linear matrix inequalities, takes into account
the interaction bounds and the resulted decomposition gives
enough flexibility to allow the inclusion of more general
subsystem interaction structures and different output channels
measurement gains.

The feasibility and effectiveness of enhanced bounded real
lemma based control design are demonstrated using a multi-
area model of the power system. It was shown that the
global system can be locally asymptotically stabilizable by
the decentralized state feedback laws, where application of the
tuning parameter can improve dynamic system responses.

ACKNOWLEDGEMENT

The work presented in this paper was supported by VEGA,
the Grant Agency of the Ministry of Education and the
Academy of Science of Slovak Republic under Grant No.
1/0256/11. This support is very gratefully acknowledged.

REFERENCES

[1] D. Krokavec and A. Filasová, "Decentralized state-space control involv-
ing subsystem interactions," in Proc. 8th Int. Conf. on Systems ICONS
2013, Sevilla, Spain, pp. 13-18, 2013.

[2] A.C. Antoulas, Approximation of Large-Scale Dynamical Systems,
Philadelphia: SIAM, PE, USA, 2005.

[3] L. Bakule, "Decentralized control. An overview," Annual Reviews in
Control, vol. 32, no. 1, pp. 87-98, 2008.

381

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[4] G.K. Bekefadu and I. Erlich, "Robust decentralized controller design
for power systems using convex optimization involving LMIs," in Prepr.
16th IFAC Word Congress, Prag, Czech Republic, pp. 1743-1743, 2005.

[5] B. Boyd, L. El Ghaoui, E. Peron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory, Philadelphia: SIAM, PE,
USA, 1994.

[6] W.C. Chan and Y.Y. Hsu, "Automatic generation control of intercon-
nected power systems using variable-structure controllers," IEE Proc.
C, vol. 128, no. 5, pp. 269-279, 1981.

[7] N. Chen, M. Ikeda, and W. Gu, "Design of robust H∞ control for inter-
connected systems: A homotopy method," Int. J. Control, Automation,
and Systems, vol. 3, no. 2, pp. 143-151, 2005.

[8] C. Cheng, B. Tang, Y. Cao, and Y. Sun, "Decentralized robust H∞
control of uncertain large-scale systems with state-delays. LMIs ap-
proach," Proc. American Control Conference, Philadelphia, PE, USA,
pp. 3111-3115, 1998.

[9] C. Dou, J. Yang, X. Li, T. Gui, and Y. Bi, "Decentralized coordinated
control for large power system based on transient stability assessment,"
Int. J. Electrical Power & Energy Systems, vol. 46, no. 1, pp. 153-162,
2013.

[10] O.I. Elgert and C.E. Fosha, "Optimum megawatt-frequency control of
multiarea electric energy system," IEEE Trans. Power Apparatus and
Systems, vol. 89, no. 4, pp. 556-563, 1970.

[11] D.G. Feingold and R.S. Varga, "Block diagonally dominant matrices and
generalizations of the Gerschgorin circle theorem," Pacific J. Math., vol.
12, no. 4, 1241-1250, 1962.

[12] A, Filasová and D. Krokavec, "Pairwise control principle in large-scale
systems," Arch. Control Sciences, vol. 21, no. 3, pp. 227-242, 2011.

[13] A, Filasová and D. Krokavec, "Partially decentralized design principle
in large-scale system control," in Recent Advances in Robust Control.
Novel Approaches and Design Methods, A. Mueller Ed., Rijeca: InTech,
Croatia, pp. 361-388, 2011.

[14] C.E. Fosha and O.I. Elgert, "The megawatt-frequency control problem.
A new approach via optimal control theory," IEEE Trans. Power
Apparatus and Systems, vol. 89, no. 4, pp. 563-577, 1970.

[15] Y. Guo, D.J. Hill and Y. Wang, "Nonlinear decentralized control of
large-scale power systems," Automatica, vol. 36, no. 9, pp. 1275-1289,
2000.

[16] W.M. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and
Control. A Lyapunov-Based Approach, Princeton: Princeton University
Press, NJ, USA, 2008.

[17] M. Jamshidi Large-Scale Systems: Modeling, Control and Fuzzy Logic,
Upper Saddle River: Prentice Hall, NJ, USA, 1997.

[18] D. Krokavec and A. Filasová, "Load frequency control involving
subsystem interaction," in Proc. 9th Int. Conf. Control of Power Systems
CPS 2010, Tatranske Matliare, Slovakia, pp. 1-8, 2010.

[19] J. Lunze, Feedback Control of Large-Scale Systems, Englewood Cliffs:
Prentice Hall, NJ, USA, 1992.

[20] J. Mohammadpour and K.M. Grigoriadis, Efficient Modeling and Con-
trol of Large-Scale Systems, New York: Springer, NY, USA, 2010.

[21] D. Peaucelle, D. Henrion, Y. Labit, and K. Taitz, User’s Guide for
SeDuMi Interface 1.04, Toulouse: LAAS-CNRS, France, 2002.

[22] G. Pipeleers, B. Demeulenaerea, J. Sweversa, and L. Vandenbergheb,
"Extended LMI characterizations for stability and performance of linear
systems," Systems & Control Letters, vol.58, no. 7, pp. 510-518, 2009.

[23] D.D. Siljak, D.M. Stipanovic, and A.I. Zecevic, "Robust decentralized
turbine/governor control using linear matrix inequalities," IEEE Trans.
Power Systems, vol. 19, no. 3, pp, 1096-1103, 2004.

[24] Y. Wang, R. Zhou, and C. Wen, "Robust load-frequency controller
design for power systems," IEE Proc. C, vol. 140, no. 1, pp. 11-16,
1993.

[25] G. Zhai, M. Ikeda and Y. Fujisaki, "Decentralized H∞ controller design.
A matrix inequality approach using a homotopy method," Automatica,
vol. 37, no. 4, pp. 565-572, 2001.

APPENDIX

Considering a multi-area power system, the next analysis
is based on the assumption that the electrical interconnections
within each area of multi-area power system are so strong,
at least in relation to ties with the neighboring areas that the
whole area can be characterized only by a single frequency
(see, e.g., [18] and the references therein). Therefore, it is
supposed that the power equilibrium applied to the area i can
be written as

TPi
d∆fi(t)

dt +∆fi(t) +KPk∆PTk(t) =

= KPi∆PGi(t)−KPi∆PDi(t)
(A.1)

where TPi is the area model time constant (s), ∆fi(t) is the
area incremental frequency deviation (Hz), KPi is the area gain
(Hz/pu MW), ∆PTi(t) is the incremental change of the total
real power exported from the area (Hz/pu MW), ∆PGi(t) is
the incremental change in generator output (Hz/pu MW), and
∆PDi(t) is the unknown load disturbance (Hz/pu MW).

If the line losses are neglected, the individual line powers
can be written in the form

PTi(t) =
|Vi||Vυ|
XυiPυi

sin(δi(t)− δυ(t)) =

= PTiυmax sin(δi(t)− δυ(t))
(A.2)

Vi(t)= |Vi| exp(jδi(t)), Vυ(t)= |Vυ| exp(jδυ(t)) (A.3)

is the terminal bus voltage of the line, and Xνi is its reactance.
When the phase angles deviate from their nominal values by

the amounts ∆δi, ∆δν , respectively, the next approximation
can be obtained [14]

∆PTi(t) =

= Vi||Vυ|
XυiPυi

cos(δin(t)−δυn(t))(∆δi(t)−∆δυ(t))
(A.4)

∆PTi(t) =

=2π|Vi||Vυ|
XυiPυi

cos(δin(t)−δυn(t))

{∫ t

0
∆fi(r)dr−

−
∫ t

0
∆fυ(r)dr

}
(A.5)

respectively. Related to the area frequency changes, the time
derivative of the individual line powers is

d∆PTiυ(t)

dt
= Siυ(∆fi(t)−∆fυ(t)) (A.6)

d∆PTi(t)

dt
=

∑
i ̸=l

Sil(∆fi(t)−∆fl(t)) (A.7)

respectively, where Sil is the synchronizing coefficient (elec-
trical stiffness of the tie line).

The incremental generated power of the area i for small
system variable changes around the nominal settings can be
represented by the equations

TTi
d∆PGi(t)

dt
+∆PGi(t) = ∆xHi(t) (A.8)

THi
d∆xHi(t)

dt
+∆xHi(t) = ∆PCi(t)−

1

Ri
∆fi(t) (A.9)

382

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where TTi is the turbine time constant (s), THi is the governor
time constant (s) (generator response is instantaneous), Ri is
a measure of static speed droop (Hz/pu MW), ∆PCi(t) is
the incremental change of the command signal to the speed
changer (control input), and ∆xHi(t) is the incremental change
in the governor value position (pu MW), all with respect to
the area i.

From the analysis made above the given formulation shows
that the functioning of the multiarea power system is roughly
a process with relevant interactions. The compact notation of
(A.1), (A.7), (A.8), and (A.9) in the state-space form so leads
to the equations [18]

q̇i(t)=Aiqi(t)+biui(t)+

p∑
l=1

Gliqi(t)+f idi(t) (A.10)

yi(t) = cTi qi(t) (A.11)

where

qi(t)=[∆xHi(t) ∆PGi(t) ∆fi(t) ∆PTi(t)]
T (A.12)

ui(t) = ∆PCi(t) (A.13)

di(t) = ∆PDi(t) (A.14)

Ai =


− 1

THi
0 − 1

RiTHi
0

1
TTi

− 1
TTi

0 0

0 KPi

TPi
− 1

TPi
−KPi

TPi

0 0
∑
l ̸=i

Sil 0

 (A.15)

Gli =

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 −Sli 0

 , bi =

 0
0
0
1

THi

 (A.16)

f i =


0
0

−KPi

TPi

0

 , ci =

 0
0
1
0

 (A.17)

More details, or multiarea model structure modifications, can
be found, e.g., in [6], [10].

Under above given model parameters, the stability of the
overall system can be studied by the stability properties of
all subsystems, and by global features of all subsystems
interactions.

383

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Rapid Aerial Mapping with Multiple Heterogeneous Unmanned Vehicles

Eduard Santamaria, Florian Segor, Igor Tchouchenkov, and Rainer Schönbein

IAS – Interoperabilität und Assistenzsysteme

Fraunhofer IOSB

Karlsruhe, Germany

{eduard.santamaria, florian.segor, igor.tchouchenkov, rainer.schoenbein}@iosb.fraunhofer.de

Abstract—One focus of research at Frauhofer IOSB is the

utilization of unmanned aerial vehicles for data acquisition.

Past efforts have lead to the development of a hardware and

software system able to rapidly generate a complete and up-to-

date aerial image by combining several single high resolution

pictures taken by multiple unmanned aerial vehicles. However,

the path planning component of the system was not designed to

support no-fly zones inside the area of interest. Besides, the

system assumed that all vehicles would have equal flight range

and the same sensor footprint. In this paper, we address these

limitations and present a new complete coverage path planning

algorithm with support for no-fly zones inside the area of

interest. The proposed method is suitable for non-convex areas,

possibly with holes, to be covered by one or more

maneuverable systems such as multi-rotor aircraft. Range and

sensor footprint of the aircraft may differ.

Keywords - aerial situation image; unmanned aerial vehicles;

complete coverage path planning

I. INTRODUCTION

The technical advance in the development of miniature
unmanned aerial vehicles (UAVs) in the last decade has
made unmanned aerial systems more capable and affordable.
Hence, nowadays, civil applications are not only conceivable
but already reality. Due to the current rate of development
and the varied application possibilities of miniaturized
unmanned aircraft, an exponential increase in the usage of
these systems can be expected.

In this article, our efforts towards the development of a
system for rapidly generating high-resolution aerial imagery
using UAVs are described. The first contribution of the
article is a new algorithm that efficiently generates a flight
plan to completely cover a given area of interest. The area of
interest may have complex contours and may contain zones
that must not be over-flown by the vehicle. The ability to
avoid certain parts will be necessary if obstacles are present
or access is forbidden. It will also be useful to prevent
irrelevant zones from being inspected. The path planning
algorithm and initial results were presented in [1].

The second contribution is a methodology for
partitioning the area of interest and distribute the workload
of the mission among several aircraft with different ranges
and sensor footprints (some initial steps were reported in [2]
as a work in progress).

The research presented in this paper builds upon
Fraunhofer IOSB’s continued efforts to enable rescue and

emergency forces to take advantage of UAVs’ capabilities in
an easy and intuitive way. Previous results include the
development of an inspection system for generating high
resolution up-to-date aerial images [3]. The system uses the
payload capacity of one or several UAVs to scan a defined
area with high-resolution image sensors and generates an
image mosaic from the accumulated single frames.

Such image acquisition capabilities are integrated into
AMFIS, a generic mobile ground control station for
monitoring and controlling operation of multiple sensors and
sensor carriers [4]. AMFIS features different working
positions that enable the users to directly steer the vehicles,
and to view their location and other information on a moving
map. The unmanned vehicles can also be semi-autonomously
controlled through point and click commands. The ground
control station receives and displays the video streams and
other data coming from the deployed sensors.

With the algorithms presented in this paper the system is
now able to deal with no-fly zones and can handle different
sensor footprints in a multi-vehicle scenario. Additionally,
when compared to the algorithm originally in place, the new
planning method yields more efficient paths. Three metrics
are used to do this comparison: total flown distance, number
of turns and number of “jumps” between non-adjacent cells.
While the total distance travelled by the UAV is similar in
both cases, with the new method, the number of necessary
turns is significantly reduced. The number of jumps is
slightly incremented, but with no impact on the total
travelled distance.

The paper is organized as follows: related work is
discussed in Section II. Section III briefly presents potential
application scenarios. Section IV details the proposed path
planning algorithm and its results are compared with those
obtained with the algorithm previously in use. In Section V
the proposed approach for the deployment of multiple
heterogeneous vehicles is described. In Section VI, the
results obtained with real flight tests after integrating the new
algorithms into AMFIS are reported. Section VII provides a
conclusion and lines of future work.

II. RELATED WORK

A taxonomy proposed by Choset divides coverage path
planning algorithms into heuristic based algorithms and
algorithms based on a cellular decomposition. The latter can
rely on an exact, a semi-approximate or an approximate
decomposition [5]. Heuristic based algorithms combine

384

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

heuristics and randomness to drive the exploration process.
These methods, that do not require expensive sensors and do
not consume much computational resources, can provide a
good ratio between cost and performance; however, parts of
the area of interest may remain unvisited. Therefore,
complete coverage is not guaranteed. Most of complete
coverage path planning algorithms implicitly or explicitly
adopt cellular decomposition to achieve completeness.

An exact cellular decomposition is a set of non-
intersecting regions, each termed a cell, whose union fills the
target environment. Typically, the robot can cover each cell
using some kind of motion pattern, e.g., back-and-forth
movements, and the path planning algorithm decides the
order to visit the cells [6][7][8][9].

Semi-approximate algorithms rely on a partial
discretization of space where cells are fixed in width but
their top and bottom can have any shape [10][11]. The robot
moves along these columns and different parts of a complex
area are recursively explored in order to achieve
completeness.

An approximate cellular decomposition generates a grid
based representation of the area of interest. All cells have the
same size and shape and their union approximates the target
region. Coverage is complete when the robot visits each cell
in the grid. The cell size typically depends on the footprint of
the robot. This approach fits very well to our application,
where the goal is to generate a complete aerial image of an
area by combining aerial photos taken at different points.
Many algorithms have been developed that fall into this
category. Some of them are referenced in the next
paragraphs.

Different authors have developed coverage path planning
methods based on spanning trees [12][13][14]. These
methods generate a continuous path around the spanning
tree. This is a very good property for continuous surveillance
operations. The nature of the algorithm requires that, if the
cell size derived from the camera footprint is D, the area
shall be decomposed into cells of size 4D. Different
implementations to generate the spanning trees differ
regarding computational complexity and quality of the
generated results.

Zelinsky et al. proposed a complete coverage path
generation method based on distance transforms [15]. With
distance transforms each cell is assigned a value that
represents the distance to the goal. These values can be used
to find the shortest path from a starting point to the goal.
Extensions to the distance transform path planning
methodology can be used to generate a complete coverage
path. One of the extensions proposed by Zelinsky et al.
generates many unnecessary turns. An improved version
creates a path that tends to follow the contour of the area.
Recently, a distance transform based method has been used
by Barrientos et al. to obtain optimal paths in the context of
agricultural applications [16]. Their algorithm uses a costly
backtracking algorithm to compute all coverage path
candidates.

The method proposed by Carvalho et al. makes use of
several interesting patterns to generate the path [17].
However, the scanning always takes place in the same

direction, which would be a disadvantage in some
circumstances, for instance, when a L-shaped area needs to
be covered.

An approach developed by Choi et al. creates a path that
follows a spiral pattern [18]. Because the algorithm has a
tendency to propagate the contour corners towards the inner
part of the area of interest, such kind of pattern will not be
very efficient in terms of the number of turns when the cell
grid has contours with many corners.

The grid that represents the area is used in the method
proposed by Kang et al. to create a number of rectangular
subareas by grouping cells [19]. Then, one of several
patterns is applied to each subarea. We believe that this
method can work well when the alignment of boundary cells
tends to form rectilinear sides. A number of cells may be
revisited when moving from the end of one pattern to the
start of the next one.

Segor et al. describe a system that is able to use several
small UAVs to efficiently obtain a complete aerial image [3].
Each UAV is allocated one subarea to scan. To cover each
subarea two candidate paths are generated: one that makes
progress by scanning the area column by column, and
another one that does the same row by row. The one that
yields better results is chosen. A drawback of such approach
is that it does not adapt well to situations where a
combination of different scan directions would be more
beneficial. Besides, the original implementation was not
designed to support no-fly zones inside the area of interest.
This work, developed at Fraunhofer IOSB, was the starting
point of the research presented in this article.

As shown in Section IV, the new path planning algorithm
that we are proposing, significantly improves the results of
the previous method used in the AMFIS system. The
generation of more efficient flight paths does not come at the
expense of a significant increase in computation time.

Regarding the use of multiple aircraft for aerial sensing
applications, several projects exist that propose solutions for
such scenario. In the SkyObserver project a geometric
optimal placement algorithm is used to distribute the
unmanned aircraft inside a given area [20]. In the AirShield
and AVIGLE projects similar techniques are used
[20][21][22]. However, in this case a more holistic approach
that simultaneously considers spatial coverage optimization,
the mobility strategy to explore the area, and communication
awareness is followed.

In the COMETS project, the area of interest is first
decomposed into non-intersecting regions taking into
account UAV’s relative capabilities and initial locations [6].
Afterwards, the resulting areas are assigned among the
UAVs that will cover them using a zigzag pattern.

Finally, the problem of creating an aerial image of a
given area is also addressed in the cDrones project [24][25].
Like in our case, the proposed solution is based on a grid
approximation of the area of interest. A genetic algorithm is
used to compute the flight path. While the system is able to
use multiple aircraft, the method for distributing the
workload is not described.

Decentralized planning methods as in SkyObserver,
AirShield and AVIGLE try to maintain connectivity between

385

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

nodes. As a result, constraints imposed on the trajectories
make complete coverage harder to achieve. We propose a
practical approach where each aircraft executes a pre-
assigned path. With the exception of cDrones, the referenced
projects do not provide support for no-fly zones. Finally,
most approaches do not consider the possibility to perform
the mission with heterogeneous platforms.

III. APPLICATION SCENARIOS

The security feeling of our society has significantly
changed during the past years. Besides the risks arising from
natural disasters, there are dangers in connection with
criminal or terroristic activities, traffic accidents or accidents
in industrial environments. Especially in the civil domain in
case of big incidents there is a need for a better data basis to
support the rescue forces in decision making.

 The search for buried people after building collapses or
the clarification of fires at big factories or chemical plants
are possible scenarios addressed by our system.

Many of these events have very similar characteristics.
They cannot be foreseen in their temporal and local
occurrence so that situational in situ security or supervision
systems are not present. The data basis for decision making
is rather thin and therefore the present situation is very
unclear to the rescue forces at the beginning of a mission.
Exactly in such situations it is extremely important to
understand the context as fast as possible to initiate the
suitable measures specifically and efficiently.

An up-to-date aerial image can be a valuable additional
piece of information to support the briefing and decision
making process of the first responders.

Helicopters or supervision airplanes that can supply this
information are very expensive or may be unavailable. High-
resolution pictures from an earth observation satellite could
also be a good solution in many cases. But, under normal
circumstances, these systems will not be available in time or
they may not be able to deliver good pictures because of
clouds or smoke. A small, transportable, fast and easily
deployable system that is able to produce results with higher
spatial and temporal resolution is proposed to close this gap.

The aerial inspection tool described in this paper can
provide the lacking information by creating an overview of
the site of the incident in a very short time. The application
can be used by first responders directly on site with relative
ease. The results provide a huge enhancement to the
available information.

Many other applications are also possible: support to fire-
fighting work, clarification of debris and the surroundings
after building collapses, search for buried or injured people,
inspection of large objects, or for documentation and
perpetuation purposes, as for example, of protected areas and
biotopes (see Fig. 1).

IV. PATH PLANNING

Once the area of interest has been identified and its grid
approximation has been computed, a flight path will be
generated for each unmanned vehicle participating in the
mission. Two steps are required during this process: first, the
area is partitioned according to the capabilities of each
aircraft. Next, a flight path to cover each of the subareas is
computed. These flight paths contain sequences of waypoints
where pictures need to be taken in order to completely cover
the area.

In this section, the path planning algorithm is described
in detail. The algorithm will be applied to the whole grid if
there is a single UAV, or to each one of the subareas in a
multi-UAV scenario. Also in this section, the results of its
application to several different areas are presented. These
results are compared to the ones obtained with the previous
algorithm used in AMFIS.

A. Path Planning Algorithm

The path planning algorithm tries to generate the longest
possible straight flight segments. We call each one of these
segments a stride. A stride is defined as a sequence of
consecutive adjacent cells without turns. To compute a stride
of max length the following rules are used:

 The stride starts at the current cell.

 The direction of the stride is determined by its
starting point and the neighbor under consideration.

 A stride contains no turns.

 A number of conditions, explained below, determine
where the stride ends.

We define L(c) as the number of visited neighbor cells
and area limits located orthogonally to the stride direction at
cell c. Therefore, assuming a stride direction from left to
right, the value of L(c) will be 2 if the cells located
immediately on top and below c are marked as visited or fall
outside the area of interest. Conversely, L(c) will be 0 if both

Figure 1. Photomosaic of Biotope at the Rhein River.

Figure 2. Stride formation starting at cell c0.

386

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cells are inside the area of interest and still need to be
covered.

Being c0 the first cell of the stride, cl the current last cell
of the stride, and cn a potential next cell in the stride
direction, addition of cn to the stride is subject to the
following conditions:

 Cn is not added to the generated path if it is already
marked as visited or if it falls outside the boundaries
of the area.

 If the previous condition does not hold, and L(cl) =
2, cn is always added to the stride, because it is the
only unvisited cell that can be reached from cl.

 If L(cl) ≠ 2, any of the following conditions will
prevent addition of cn to the stride: (1) L(cn) = 0; (2)
L(cn) ≠ L(c0); or (3) L(cn) = 1 but the limit at cn is
positioned opposite to the limit found at c0. The
purpose of condition (1) is to stop when the path is
not following an area limit or a “wall” formed by
cells already in the path. Conditions (2) and (3)
dictate that stride formation will also stop when the
limits of cn differ from the limits of c0.

To clarify the previous points, stride formation is
illustrated in Fig. 2. Starting at c0, there are three alternative
strides that can be selected. Stride A (left of c0) ends when an
area limit is reached. Stride B (up) ends because L(cn

B
) = 0.

Note that it would be possible to extend the stride because
there are unvisited cells in that direction, but this would
eventually lead to the partition of the area into two
disconnected regions. Finally, in stride C (right of c0), both c0
and cn

C
 have an area limit located orthogonally to the stride

direction. Therefore L(c0) = L(cn
C
) = 1, however, since the

area limits of these cells are located at opposite sides (below
in the case of c0 and above for cn

C
), cn

C
 is not added to the

stride.
The algorithm for generating the complete coverage path

works as follows:
1. Set the current cell to the initial cell.
2. Find all unvisited neighbor cells of the current cell

(between 0 and 4 cells are returned).
3. Generate the longest possible stride in the direction

of each unvisited neighbor cell.
4. Select the longest stride.

5. Add all cells of the stride to the path and mark them
as visited.

6. Set the current cell to the last cell of the stride.
7. Repeat starting at point 2 until all cells have been

visited.
In the example presented in Fig. 2, stride A, with four

cells, would be selected over the B and C alternatives, which
respectively have two and three cells.

When all alternative strides have length two (c0 plus a
neighbor cell), some heuristics are used to perform the stride
selection. These heuristics prioritize the selection of (1) the
neighbor cells with a higher value for L(cn

C
), (2) the ones

located in the contour of the area, and (3) the ones that lead
to a longer stride in the next step. These heuristics have been
chosen after extensive testing with different area shapes.
Heuristics (1) and (2) promote the selection of a path that
moves alongside other visited cells or the contour of the area.

Sometimes it is inevitable to partition the area, creating
two, or more, subareas of disconnected unvisited cells. When

Figure 3. Contours, with their number of cells, used in the tests.

Figure 4. Number of turns starting at each contour cell of a, b and c.

387

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

such situation occurs, the algorithm chooses to visit the cells
of the smallest subarea first.

Another situation that needs to be addressed occurs when
a dead end is reached, i.e., when there are no unvisited valid
cells next to the current cell. In this case, our solution
computes paths between the current cell and each one of the
unvisited cells adjacent to cells already in the flight path.
These paths are computed using distance transform path
planning as described by Zelinsky et al. in [15]. After all the
alternatives have been computed, the shortest path is selected
and its cells are added to the complete coverage path. This
same method can be used to compute a path to the landing
point.

The distance wave propagation used to compute the
shortest path (see [15]), is also used to determine if the area
has been partitioned. The main idea behind this procedure is
that, after performing the propagation of the distance wave,
if any cells remain that have not been assigned a value they
must be located in a different partition.

One final step performs some clean-up on the generated
path. Those sequences of revisited cells that connect two
adjacent cells are removed from the path. In this way, the
UAV transitions directly from a given cell to one of its
neighbors and unnecessary repeats are prevented. Since the
number of times each cell is visited is known, the
implementation of the clean-up step is straightforward. For
each cell Ci of the flight plan, the algorithm checks if the rest
of the path contains a cell Cj that is adjacent to Ci. If all cells
in between are visited more than once, they can safely be
removed.

B. Results

The proposed algorithm has been tested with areas of
different shape. In this section, the results obtained with the
areas showed in Fig. 3 are presented. The new algorithm has
been compared with the original algorithm of the photo flight
tool. The metrics used are the number of turns, the travelled
distance, and the number of jumps, which are the transitions
between non-adjacent cells. Some considerations need to be
taken into account to analyze the results:

1. In a situation where all neighbor cells next to the
current position have been visited, but coverage is
not complete, the original algorithm didn’t provide a
safe path to fly from the current position to the next
free cell. For this reason the number of jumps
between non-adjacent cells is compared instead of
the number of revisited cells.

2. The original algorithm was not designed to handle
no-fly zones inside the area of interest. Nevertheless,
if such an area is provided as input, it is able to
generate a complete coverage path.

Figure 5. Number of turns starting at each contour cell of d, e, and f.

Figure 6. Average travelled distance (top) and average number

of jumps (bottom).

388

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3. The computed distance corresponds to the path
length plus the distance between the last and the first
cell of the path.

In Figs. 4 and 5, the number of turns obtained running
both the original and the new strides based algorithms are
displayed. The algorithms have been run starting at each
contour cell of the example areas in Fig. 3. As it can be
observed, the new algorithm provides better results with all
tested areas.

Fig. 6 displays the average travelled distance (top) and
average number of jumps (bottom) obtained, with both
algorithms, for each area. It can be seen that, although the
number of jumps is slightly increased in some cases, this
increase has almost no impact on the average travelled
distance.

To understand the reasons that lead to an improvement in
the number of turns, we now compare the complete paths of
the areas b and e of Fig. 3. In Fig. 7a, it can be seen that one
source of improvement is the ability of the new algorithm to
use different scan directions in different parts of the area of
interest. Another source of improvement (see Fig. 7b), comes
from the fact that the new algorithm is better at getting rid of
contour corners, avoiding its propagation into the inner parts
of the area (see Fig. 7b).

Finally, in Fig. 7c (bottom), the complete path generated
for a complex area with no-fly zones is shown. When there
are no unvisited neighbors, a safe path to reach the next free
cell is computed. Thus, the complete coverage path does not

contain jumps between non-adjacent cells. The generated
path can be contrasted with a path generated by the original
algorithm (top), which was not really designed to cope with
holes in the area, and does not provide a mechanism to
generate a safe path between non-adjacent cells.

It should be noted that the path planning algorithm
always operates on a grid where each cell is a square.
However, the actual footprint could also be a rectangle
whose sides differ in length. In that case, the size of the
square cells will be determined by the longest side of the
rectangle. Once the path along the grid has been computed,
an additional step is needed to compute the list of waypoints
required to take all the pictures according to the actual
footprint. The orientation of the sensor carrier will be
determined in accordance to the flying direction.

V. PLANNING FOR MULTIPLE HETEROGENEOUS VEHICLES

In a multi-UAV scenario, the application of the path
planning algorithm is preceded by a partitioning of the area
of interest to distribute the workload of the mission among
the available vehicles. In this section, the method used to
perform such partitioning is described.

A. Workload Distribution

The partitioning algorithm needs to fulfill a number of
requirements. It needs to provide support for using platforms
with different capabilities regarding range of the vehicles,
speed, sensor size, and sensor resolution. It must be able to

Figure 7. Complete coverage path generated for some example contours with both original (top) and strides based algorithm (bottom). In figure
c the transitions between non-adjacent cells are also included.

389

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cope with areas with concave contours, possibly containing
holes. Pieces that facilitate the path planning should be
generated, i.e., the generation of subareas with unnecessary
corners should be avoided. Finally, in order to provide a
rapid response in emergency situations, the method for
partitioning the area needs to be fast.

To partition the area of interest, an initial method already
implemented in the AMFIS ground control station has been
extended. As the path planning algorithm, the partitioning
method relies on a grid approximation of the area of interest.

The first step consists in computing the percentage of the
area of interest that should be covered by each vehicle.
However, the actual length of a computed flight path does
not only depend on the number of cells that need to be
covered. Aspects such as shape of the area, sensor footprint
and actual decisions made during the planning process also
have an impact on the traveled distance. Since it is not
possible to determine the flight length before actually
computing the flight plan, the percentage of the area that will
be allocated to each aircraft is based on a rough estimation
that takes into account the sensor footprint of each aircraft.

The percentage values are used to determine the number
of cells of the grid required for each subarea. To perform the
partitioning an initial cell is selected and a flood-fill like
algorithm is applied to extend the subarea until the desired
number of cells is reached. The process, depicted in Fig. 8,
prioritizes the selection of adjacent cells with a higher
number of neighbor cells in the same subarea. Cells outside
the area of interest or in holes are ignored.

Once an initial solution has been computed, remaining
cells that have not been allocated (see Fig.9) are assigned to
an adjacent area. This step is followed by a redistribution of
cells to obtain the desired number of cells in each subarea.

B. Dealing with Multiple Sensor Footprints

If all aircraft involved in the mission have a sensor
footprint of the same size, a single grid can be used to
partition the area and to plan complete coverage flight paths.
In Fig. 10, the results of partitioning a given area to divide
the work between three aircraft are displayed (10.a), together
with the flight paths generated by the path planning
algorithm (10.b).

If the sizes of the sensor footprints differ, using a single
grid is no longer possible. In the following paragraphs the
method used to deal with multiple footprints is described.

The first step consists in creating a base grid of square
cells to partition the area and distribute the work between the
different vehicles. Assuming that there are vehicles
available to perform the mission, with and respectively

representing the width and the height of the vehicle’s
footprint, the side length of the grid cells is computed as:

 .

It should be noted that, for convenience, we use the word

footprint to refer to an area that is actually smaller than the
area on the ground surface captured by the sensor. The use of
an area smaller than the real footprint is done in purpose to
introduce an overlap between the images that will facilitate
the stitching process. This overlap will also be helpful to
mitigate inaccuracies of the positioning system.

Once the base grid has been created, the partitioning is
performed as previously described. The resulting subareas
may not be directly used by the path planning algorithm due
to the mismatch between the cell size of the grid and the
footprint of the different aircraft. A new grid with a cell size
proportional to the sensor footprint will be created for each
aircraft. The cells that will be covered in each new grid are
those that overlap with the subarea assigned to the aircraft in
the base grid (see Fig. 11.b).

For efficiency and safety reasons overlaps between areas
allocated to different aircrafts should be minimized. The next
step of the process, the generation of waypoints, tries to
minimize these redundancies.

The main goals of the waypoint generation step are:
1. Convert the paths computed as cells on a grid to

actual flight plan waypoints: To minimize the
distance between consecutive waypoints, the on-
board sensors will be oriented with their longest side
orthogonal to the direction of movement. The length
of the shortest side is used as the distance between
consecutive waypoints.

2. Prevent overlapped zones between subareas from
being visited multiple times: If a location has been

Figure 8. A flood-fill like algorithm is applied to assign cells to a partition. Figure 9. Initial partition may be rearranged to properly allocate all cells.

390

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

photographed by one of the aircraft, waypoints for
taking additional pictures of the same place with
another aircraft are not generated.

Having multiple aircraft visiting nearby locations has
safety implications. To avoid collisions between the
unmanned vehicles several approaches are possible. One
way to solve this problem would consist in improving the
planning phase so that the probability of multiple vehicles
being at the same place at the same time is minimized.
Another possibility would be to add the necessary sensory
and computing capabilities to the vehicles to autonomously
detect and deal with possible conflicts. Finally, an effective
and practical approach consists in ensuring that the vehicles
fly at different heights with enough separation. Since the
presented planning method is able to deal with different
footprints, this approach can be easily implemented in our
system.

VI. EXPERIMENTAL RESULTS

The platform chosen to perform the experiment is the
Falcon 8 octocopter from Ascending Technologies. The
Falcon 8 comes equipped with an autopilot and a GPS sensor
that enable autonomous flight. A camera installed on a
stabilized mount can be automatically triggered every time a
waypoint is reached. While the high resolution pictures need
to be recovered after landing, the system is able to provide a
continuous video stream that can be displayed on the ground
control station. The Falcon 8 is a lightweight system of 2.2
kg maximum take-off weight that provides up to 20 minutes
flight time.

The partitioning and planning algorithms presented in
this article have been integrated into the AMFIS system. The
mobile ground control station provides tools for designing
the mission, supervising its execution and analyzing the
obtained results.

With the flight planning tool (partially shown in Fig. 12)
the user will perform the following steps:

1. Mark the region of interest on a map.
2. Select the unmanned aircraft that will be used in the

mission.
3. Set the flight altitude for each aircraft, or define the

desired resolution.
4. Compute a flight path for each aircraft.

5. Send the obtained paths to the different vehicles.
Once the previous steps are completed, the vehicles can

be commanded to autonomously perform the mission. After
the recovery of the pictures, the same photo flight tool can be
used to stitch them together and provide a complete high
resolution image of the area.

Our image acquisition system was tested in the Karlsruhe
facilities of Fraunhofer IOSB. For safety reasons, the flight
altitude was set to 100 meters. At such altitude the footprint
of the camera has an approximate size of 120 x 90 square
meters. Therefore, with only a few pictures the available area
for performing the tests, which approximately measures
17.000 square meters, would have been covered. To force a
smaller footprint, the flights were planned at a height below
the safe altitude. Once the flight paths had been computed,
we took advantage of the editing functions of the ground
control station to set the altitude of all waypoints to a safe
value. Such scenario results in a big overlap between pictures
that facilitates the stitching process, but does not affect the
path planning aspect, which was the focus of our interest.

Our tests consisted in three flights. The first flight
covered the whole area with a single vehicle. The second and
third flights were planned assuming that two vehicles would
be flying simultaneously. The flights were planned using
different altitudes to prevent collision between the vehicles.
The use of different flight altitudes results in different
footprint sizes, which our flight planning tool proved to be
able to handle. To prevent any risks, the second and third
flights were actually performed sequentially using the same
vehicle. This also meant that a single emergency pilot would
suffice. The number of taken pictures, the horizontal flown
distance and the duration of each flight can be found in Table
I. Distance and flight duration were measured between the
first and the last waypoint.

Table I. Number of pictures, horizontally travelled distance and flight time.

Flight Pictures
Distance
(meters)

Time
(mm:ss)

1
st
 18 420 03:26

2
nd

 16 320 02:15

3
rd

 13 240 01:57

Figure 10. Area partitioning (a) and path planning (b) with same cell size. Figure 11. Area partitioning (a+b) and path planning (c) with different cell

size.

391

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The results of the experiments were highly satisfactory.
We were able to successfully plan the mission with the path
planning tool, send the flight plans to the vehicle, share them
with other components of the ground control station, and
finally execute the mission without incidents. Human
intervention was only required to perform the take-off and
landing operations because the Falcon 8 platform does not
provide support to perform these operations automatically.
The aerial image obtained after combining all individual
pictures is shown in Fig. 13.

The main issues encountered during the tests relate to the
use of a grid approximation to represent the area of interest.
Sometimes most of the area covered by boundary cells falls
outside the area of interest. While these cells are necessary to
guarantee complete coverage, this situation can lead to
inefficiencies that are more evident when the number of
boundary cells is high in relation to the total number of cells.

Moreover, the presence of cells with large parts of their
area lying outside of the region of interest can result in the
aerial vehicle flying outside the region’s boundaries. This
can be a problem if such boundaries have been defined to
avoid obstacles. In our tests we wanted to keep a safe
distance from the buildings and also avoid crossing the limits
of the institute’s facilities.

Since the AMFIS ground control station provides support
for editing the flight plans, such functions can be used to
make manual adjustments and prevent the vehicle from
flying over undesired zones. While this could be acceptable
in some cases, it is necessary to improve the planning tool to
provide a more general solution. We believe that this
problem can be tackled with the addition of a new processing
step that would take the flight plan as input and generate a
modified version were all waypoints would lie inside the
area of interest, possibly incrementing the overlap between
the pictures.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced our most recent work
targeted at the development of a system to enable fast

generation of aerial image mosaics. We believe that such
system can provide highly valuable information in
emergency situations. The proposed partitioning and path
planning algorithms, which are able to generate efficient
solutions in a short time, are core elements of the system.
The method for solving the area partitioning problem in the
presence of multiple vehicles is able to cope with different
sensor footprints. During the path planning a criterion that
prioritizes the selection of long straight segments is applied.
Such approach results in the generation of flight paths with a
reduced number of turns. Fast moving aircraft will
particularly benefit from having to perform less turns. Its
ability to scan the area in different directions and the fact that
it does not rely on pre-defined patterns make the proposed
planning algorithm suitable to generate complete coverage
paths for complex contours, which may contain holes.

The partitioning and planning methods have been
integrated into the AMFIS ground control station and the
results of experimental flights are reported. The system is
appropriate for maneuverable vehicles, such as multi-rotor
aircraft.

There are several aspects that require further work. More
extensive and realistic tests, with bigger and more complex
areas should be performed. For efficiency and safety reasons,
the planning tool should be improved so that the aircraft do
not cross the boundaries of the region of interest. The system
should also automatically detect and provide solutions to
situations where multiple flights are necessary due to range
limitations of the vehicles. Another interesting extension
would be to adapt the system to accommodate fixed-wing
aircrafts, which are not able to perform sharp turns. Finally,
it would be very interesting to explore the operational
aspects and study how the aerial image acquisition system
should be integrated into the decision making processes
during emergency situations.

Figure 12. Path planning tool detail.

Figure 13. Mosaic obtained after stitching individual pictures.

392

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENT

This work was carried out during the tenure of an
ERCIM "Alain Bensoussan" Fellowship Programme. This
Programme is supported by the Marie Curie Co-funding of
Regional, National and International Programmes
(COFUND) of the European Commission.

REFERENCES

[1] E. Santamaria, F. Segor, I. Tchouchenkov, and R. Schönbein,
“Path Planning for Rapid Aerial Mapping with Unmanned
Aircraft Systems”, Proceedings of the Eighth International
Conference on Systems ICONS, 2013.

[2] E. Santamaria, F. Segor, and I. Tchouchenkov, “Rapid Aerial
Mapping with Multiple Heterogeneous Unmanned Vehicles”,
Proc. of the 10th International Conference on Information
Systems for Crisis Response and Management ISCRAM,
2013.

[3] F. Segor, A. Bürkle, M. Kollmann, and R. Schönbein,
“Instantaneous Autonomous Aerial Reconnaissance for Civil
Applications - A UAV based approach to support security and
rescue forces”, 6th International Conference on Systems
ICONS, 2011, pp. 72-76.

[4] F. Segor, A. Bürkle, T. Partmann, and R. Schönbein, “Mobile
Ground Control Station for Local Surveillance”, Proc.of the
Fitth International Conference on Systems ICONS, 2010.

[5] H. Choset, “Coverage for robotics - A survey of recent
results”, Annals of Mathematics and Artificial Intelligence
vol.31, 2001, pp.113-126.

[6] I. Maza and A. Ollero, “Multiple UAV cooperative searching
operation using polygon area decomposition and efficient
coverage algorithms”, in Distributed Autonomous Robotic
Systems vol. 6, R. Alami and R. Chatila and H. Asama, Eds.
Springer Japan, 2007, pp. 221-230.

[7] H. Choset, “Coverage of Known Spaces: The Boustrophedon
Cellular Decomposition”, Autonomous Robots vol. 9, 2000,
pp.247-253.

[8] R. Mannadiar and I. Rekleitis, “Optimal coverage of a known
arbitrary environment”, IEEE International Conference on
Robotics and Automation (ICRA), 2010, pp. 5525 -5530.

[9] W. Huang, “Optimal line-sweep-based decompositions for
coverage algorithms”, IEEE International Conference on
Robotics and Automation (ICRA) vol.1, 2001, pp. 27 - 32.

[10] S. Hert, S. Tiwari, and V. Lumelsky, “A terrain-covering
algorithm for an AUV”, Autonomous Robots vol.3, 1996,
pp.91-119.

[11] V. Lumelsky, S. Mukhopadhyay, and K. Sun, “Dynamic path
planning in sensor-based terrain acquisition”, IEEE
Transactions on Robotics and Automation 6(4), 1990, pp.462
-472.

[12] Y. Gabriely and E. Rimon, “Spanning-tree based coverage of
continuous areas by a mobile robot”, Annals of Mathematics
and Artificial Intelligence vol. 31, 2001, pp.77-98.

[13] P. J. Jones, “Cooperative area surveillance strategies using
multiple unmanned systems”, PhD thesis, Georgia Institute of
Technology, 2009.

[14] M. Weiss-Cohen, I. Sirotin, and E. Rave, “Lawn Mowing
System for Known Areas”, International Conference on
Computational Intelligence for Modelling Control
Automation, 2008, pp. 539 -544.

[15] A. Zelinsky, R. Jarvis, J. C. Byrne, and S. Yuta, “Planning
Paths of Complete Coverage of an Unstructured Environment
by a Mobile Robot”, International Conference on Advanced
Robotics, 1993, pp. 533—538

[16] A. Barrientos, J. Colorado, J. del Cerro, A. Martinez, C.
Rossi, D. Sanz, and J. Valente, “Aerial remote sensing in

agriculture: A practical approach to area coverage and path
planning for fleets of mini aerial robots”, J. Field Robot.
28(5), 2011, pp. 667--689.

[17] R. De Carvalho, H. Vidal, P. Vieira, and M. Ribeiro,
“Complete coverage path planning and guidance for cleaning
robots”, ' IEEE International Symposium on Industrial
Electronics, 1997. ISIE 97, vol. 2, pp. 677 -682.

[18] Y.-H. Choi, T.-K. Lee, S.-H. Baek, and S.-Y. Oh, “Online
complete coverage path planning for mobile robots based on
linked spiral paths using constrained inverse distance
transform”, IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2009. IROS 2009, pp. 5788 -5793.

[19] J. W. Kang, S. J. Kim, M. J. Chung, H. Myung, J.H. Park, and
S. W. Bang, “Path Planning for Complete and Efficient
Coverage Operation of Mobile Robots”, International
Conference on Mechatronics and Automation, 2007. ICMA
2007', pp. 2126 -2131.

[20] T. Passenbrunner and L. del Re, “SkyObserver:
Decentralized, real-time algorithm for deployment of a swarm
of Unmanned Aircraft Systems”, Proceedings of the 9th IEEE
International Conference on Control and Automation, 2011.

[21] H. Daniel, S. Rohde, N. Goddemeier, and C. Wietfeld,
“Cognitive Agent Mobility for Aerial Sensor Networks”,
IEEE Sensors Journal, 2011, 11, 2671 -2682.

[22] S. Rohde, N. Goddemeier, C. Wietfeld, F. Steinicke, K.
Hinrichs, T. Ostermann, J. Holsten, and D. Moormann,
“AVIGLE: A system of systems concept for an avionic digital
service platform based on Micro Unmanned Aerial Vehicles
Systems”, IEEE International Conference on Man and
Cybernetics, 2010.

[23] K. Daniel, B. Dusza, A. Lewandowski and C. Wietfeld,
“AirShield: A system-of-systems MUAV remote sensing
architecture for disaster response”, 3rd Annual IEEE Systems
Conference, 2009.

[24] M. Quaritsch, K. Kruggl, D. Wischounig-Strucl, S.
Bhattacharya, M. Shah, and B. Rinner, “Networked UAVs as
aerial sensor network for disaster management applications” ,
e & i Elektrotechnik und Informationstechnik, Springer, 2010,
127, 56-63.

[25] M. Quaritsch, R. Kuschnig, H. Hellwagner, B. Rinner, “Fast
Aerial Image Acquisition and Mosaicking for Emergency
Response Operations by Collaborative UAVs”, Proceedings
of the 8th International ISCRAM Conference, 2011.

393

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Time Series Prediction with Automated Periodicity
Detection

Michael Schaidnagel
School of Computing

University of the West of Scotland
Paisley PA1 2BE, UK

Email: Michael.Schaidnagel@web.de

Fritz Laux
Faculty of Computer Science

Reutlingen University
D-72762 Reutlingen, Germany

Email: fritz.laux@reutlingen-university.de

Abstract—When forecasting sales figures, not only the sales
history but also the future price of a product will influence the
sales quantity. At first sight, multivariate time series seem to
be the appropriate model for this task. Nonetheless, in real life
history is not always repeatable, i.e., in the case of sales history
there is only one price for a product at a given time. This
complicates the design of a multivariate time series. However,
for some seasonal or perishable products the price is rather
a function of the expiration date than of the sales history.
This additional information can help to design a more accurate
and causal time series model. The proposed solution uses an
univariate time series model but takes the price of a product as
a parameter that influences systematically the prediction based
on a calculated periodicity. The price influence is computed based
on historical sales data using correlation analysis and adjustable
price ranges to identify products with comparable history. The
periodicity is calculated based on a novel approach that is based
on data folding and Pearson Correlation. Compared to other
techniques this approach is easy to compute and allows to preset
the price parameter for predictions and simulations. Tests with
data from the Data Mining Cup 2012 as well as artificial data
demonstrate better results than established sophisticated time
series methods.

Index Terms—sales prediction, multivariate time series, peri-
odicity mining

I. INTRODUCTION

Time series capture the development of given values over
a uniform time interval. There are many areas in which this
kind of data can appear: power consumption data of different
housing areas per month, heartbeat rate of a patient per minute,
hourly weather data or also product sales per day. In this article
we will focus mainly on prediction of sales time series in order
to keep the main thread examples consistent. However, this is
not a limitation since the underlying patterns, which are used
in our algorithms, can occur in all of above’s application areas.

This work is based on our findings from [1], in which
we firstly applied an proposed algorithm named Fr on sales
data. The algorithm is characterized by its ability to use the
price as a input variable as well as the adaption of a hidden
periodicity. Sales prediction is an important goal for any time
series based analysis [2], [3]. The task consists of forecasting
sales quantities given the sales history. This can be achieved
by extending the time series into the future.

The extrapolation of the time series into the future is
determined by the underpinning time series model [4]. If this

model is not well supported by the empirical data it is likely
that the accuracy of the forecast is low. So the challenge is to
find data from ”similar” situations (e.g., in terms of time and
price). If a major sales factor like the product price changes,
a model solely based on previous sales will lead to wrong
forecasts. Therefore, it is important to include the price as
parameter into the model in addition to the sales history.

Standard solutions for this problem need to be provided
with a long history of sales with sufficient data to validate
the model and to correlate the sales data with the variable
product price. The mathematical tools of choice for analyzing
multiple time series simultaneously are multivariate statistical
techniques like Vector AutoRegressive (VAR) models [5], [6]
or such as the Vector ARIMA (AutoRegressive Integrated
Moving Average) [7]. The model parameters are estimated
with least square or Yule-Walker functions [5]. The accuracy
of the estimator depends on the number of observations and
its degree of correlation.

To illustrate the process consider an excerpt from the Data
Mining Cup 2012 dataset (Table I, http://www.data-mining-
cup.de/en/review/dmc-2012):

TABLE I
SAMPLE DATA, DATA MINING CUP 2012

day Prod# price quantity
1 1 4.73 6
1 2 7.23 0
1 3 10.23 1
1 4 17.90 0

.
1 570 7.91 0
2 1 4.73 12
2 2 7.23 1

.
42 569 9.83 2
42 570 7.84 0
43 1 5.35 ?
43 2 7.47 ?
.
43 570 7.84 ?
.
56 570 8.12 ?

The information provided comprises a collection of 570
products whose history of sales and prices are given over

394

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a period of 42 days. The task was to predict the sales
quantities for the next 14 days where the daily sales price was
preset. The majority of products produced only low quantity
sales. Comparisons with other sales data showed a similar
distribution [8], [9] which indicates that the sample is typical
for larger collections. When we tried to predict the future
sales with commercial ARIMA products we experienced a low
prediction quality with a relative accuracy of only 47%.

The disappointing results from professional tools imple-
menting ARIMA encouraged us to look for a simpler and
better prediction model. Thereby we assumed that the future
price is causally influenced and should not be treated as
stochastic variable. Second, we assumed that it is helpful to
filter out cyclic behavior from the ”white noise”.

In the next section follows a discussion of related work
and we contrast it with our contribution. The rest of the
paper is structured as follows: The research problem will be
described formally in Section III, which is followed by a
description of data profiles under investigation (Section IV). In
Section V, we present our parametrized time series algorithm
that predicts sales volumes with variable product prices and
low data support. This algorithm can benefit from a inherent
(i.e., hidden) periodicity within the given data. The periodicity
calculation method we used is further described in Section VI.
The following Section VII gives a description of the technical
framework for the implementation of the prototype. The results
are discussed in Section VIII and compared with standard
methods found in commercial products like ARIMA. Based
on these experiences we draw conclusion in the last section.

II. RELATED WORK

Adaptive correlation methods for prognostic purposes have
been proposed early in the 1970th by Griese [10] and more
specifically as AutoRegressive Moving Average (ARMA)
method by Box and Jenkins [11]. As ARMA is constrained to a
stationary stochastic process the ARIMA is of more practical
use as it can handle time series with a linear trend and is
therefore widely implemented.

The idea behind ARMA and ARIMA is that the model
adapts automatically to a given history of data. A natural
extension is to include other influential factors beside the prog-
nostic value itself. This leads to multivariate models, namely
Vector Autoregressive (VAR) models [7]. The development
of the model was influenced and motivated by critiques of
Sims [12] and Lucas [13]. In essence, their statement is: every
available data is potentially correlated.

If the model is extended to cover the influence from
correlated data this leads to a vectorial stochastic model
(Xt(π, πr))1 that allows not only the serial time dependence
t of each component but also the interdependence of products
π and product prices πr. To estimate the parameters of such
a multivariate ARMA process the following Equation has to

1We use parentheses () for a stochastic process instead of braces {} because
it is rather a sequence of stochastic variables than a set

be solved [14], [5]:

Φ(L)Xt(π, πr) = Θ(L)Zt (1)

where L denotes the backshift (lag) operator and

Φ(x) := I − Φ1x− Φ2x
2 − . . .− Φpx

p (2)
Θ(x) := I + Θ1x+ Θ2x

2 + . . .+ Θqx
q (3)

are matrix-valued polynomials with dimensions of p (order
of regression) and q (order of moving average). Zt denotes a
multivariate ”white noise” process.

There is one major drawback to this approach in our
problem setting. The model treats all historical input values
as stochastic variables. However, the product price does not
vary stochastically, its value is preset by the vendor. Economic
models assume a causal dependency between the price of a
product and its sales quantities (see Arnold [15], chap. 17).
Variations in consumer demand are caused by various factors
like price, promotions, etc, Vorst [16] . This causal dependency
is not modeled by VAR methods. This is an issue for the
multivariate model.

Another complication that can arise in time series prediction
is a noisy periodicity resulting, e.g., from low volume sales.
The low sales quantity introduces a kind of random pattern
that makes it hard to find even a known periodicity. In the
sample data we used for our work, the overall sales history
shows a clear 7-day periodicity (see Fig. 1) but not for most
of the individual products. Therefore, we were looking for
a method to calculate the eventually existing periodicity on
product level. This kind of calculation is called periodicity
mining and has received some attention from the research
community lately.

Elfeky, Aref and Elmagarmid [17] introduce a periodicity
mining algorithm that is based on symbols and a Fourier
transformation inspired convolution. They defined two types of
periodicity (segment and symbol periodicity) and described an
convolution based algorithm for both of them. Our suggested
algorithm uses the ’shifting’ mechanic similar to Elfekys idea,
but it differentiates on how similarity of a sequence of symbols
is defined. The same authors also describe a method called
”WARP” (WArping foR Periodicity) [18] in order to deal with
noisy data. Thereby, their algorithm extends or shrinks the
time axis at several locations of the time series to remove
noise. Rasheed and Alhajj [19] recently used suffix trees (build
by Ukonen’s linear algorithm) as an underlying data structure
in order to detect periodicity in time series. Their iterative
approach decorates their suffix tree in a way that highlights
repeated occurrences of a sequence of symbols.

Another approach for periodicity mining worth-mentioning
was brought up by Berberidis, Aref, Atallah, Vlahavas and
Elmagarmid [20]. They create a set of candidate periods out
of a given time series and then use the autocorrelation function
as well as Fast Fourier Transformation (FFT) for calculating
a confidence value for each candidate period. We are also
using candidate periods in our approach, but then we use the
well known Pearson Correlation Coefficient in order to assess,
which of our candidate periods is most suitable.

395

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 1. Seven day periodicity for the overall sales data (DMC2012) and a
typical low selling product (item # 153).

In the field of time series analysis, it is quite common
to incorporate natural seasons or cycles into the prediction.
Cyclic sales quantities are a typical behavior for short shelf-
life products and are important for building a causal sales
model. Doganis, Alexandridis, Patrinos and Sarimveis [21]
investigated the sales quantity of fresh milk (a short shelf-life
product) in Greece. They used a genetic algorithm applied to
the sales quantities of the same weekday of last year. Our ap-
proach is only similar in that we take corresponding weekdays
but it differs in how we analyze the weekly periodicity and
correlate it with the sales prices.

To recapitulate, there are two general arguments against
the multivariate VAR approach sketched above: Granger and
Newbold [22] showed that simpler models often outperform
forecasts based on complex multivariate models. And Lucas
[13] criticized that the economic models are too static and that
”any change in policy will systematically alter the structure of
the econometric model”. Applied to the sales forecast situation
the variation of the price does not play a stochastic, but a
systematic, i.e., a functional role.

Our idea is to filter the seasonality by a period-based
”folding” of the sales quantity, i.e., the aggregation of sales
quantities for the same weekdays. This cancels the stochastic
variation and accumulates the seasonal effect. Applying such
a model improves the prediction coverage and accuracy for
low volume data with a cyclic behavior.

III. PROBLEM DESCRIPTION AND CONTRIBUTION

In Section I, we pointed out that the nature of the data
and its sales profile play an important role for the time series
analysis. In particular, the influence of price and periodicity
are dominant factors as we will see in the following.

A. Formal Problem Description

The problem in terms of predicting time series consists of
developing a parametrized time series model that is able to
forecast future sales quantities depending on the given sales

history and a price parameter. The solution of the stochastic
Equation (1) is a multidimensional mapping

F : (Π,T) −→ (R+,N0) (4)
(π, t) 7−→ (π̂r, x̂t)

where Π is the set of products and T are consecutive time
intervals. A product π ∈ Π is described by its identification
number πi and its price πr. The mapping F computes sales
quantity x̂t and price π̂r for every product π and time interval
t.

The bi-variate time series (π̂r, x̂t) is a concrete realization
of the stochastic process (Xt) of Equation (1). The mapping
F has to be adjusted so that the process (Xt) explains best a
given realization. This can be done by various estimator func-
tions: least square error, Yule-Walker, maximum-likelihood, or
Durbin-Levison algorithms. This is where our approach differs
from the traditional because in real-life business the price is
not a stochastic variable but is preset by the vendor. Instead
of predicting the future price π̂r we use the price as input
parameter.

Having fixed the model in this way it is possible to
transform the mapping F to the following form:

Fr : (N,R+,T) −→ N0 (5)
(πi, πr, t) 7−→ x̂t

With this predictor Fr(πi, πr, t) it is possible to forecast the
sales quantities for future time periods t > T (T is the present
time) of a product π ∈ Π using the future price πr as input.

B. Contribution

By restricting our approach to model a linear trend, season-
ality, and using historic and future prices as causal parameter
leads to a predictor function that is easy to compute and ex-
plain. It yields higher accuracy for data with hidden periodicity
and variable prices than the ARIMA model. The novelty of
our contribution comprises:

• a model that has a causal explanation
• where the future price is a major input factor
• the overall periodicity is respected by individual items
• an algorithm for fast and automated periodicity mining

The prediction function can also be used for simulation to
see how the price will influence the sales quantity. In addition
to that, we introduce a new approach for periodicity mining,
which is able to identify complex seasonal components within
a time series. It is based on a simple form of data folding and
comparisons of Pearson correlation coefficients.

IV. DATA PROFILE

We used two types of data sets in this article. The first one
was obtained from the DataMiningCup (DMC) in 2012. This
real life data set was used to assess the prediction performance
of our time series algorithm. It will be more closely described
in the following subsection. During the development of our
periodicity mining method, we also created an artificial data
set in order to vary different aspects of a time series, such as

396

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 2. Sales quantity ranking of sample data (DMC2012).

noise, time series length or season length (length of period).
The method to create these data is detailed in subsection IV-2.

1) DMC data: The 570 products of the sample data realized
a total of 86641 units sold. The average price for all products
of a day ranged between 14.46 and 15.92 over the given time
series, which included a total of 42 days. The maximum price
variability of a single product is ±48%, but on average the
price varies only by ±9%. However, for high selling products
(> 500 units) the variability stands at ±15%.

The total sales quantity per product ranged from 17 to 2083
over the 6 weeks. Broken down to the day level the product
price ranged from 0.24 (cheapest product) to 152.92 (most
expensive product) and the sales quantities between 0 and
193. The sample had average sales per product of 152 units
with a standard deviation of 257, which indicates a high sales
variability of the items.

This conjecture is confirmed by the product sales ranking
that roughly follows a shifted hyperbolic distribution (see
Fig. 2), which supports the assumption that low volume sales
contribute significantly to the overall sales and may not be
neglected. From the total of 570 products, the majority (506
products) sell less than 250 units in total, but contribute with
approximately the same quantity sold (43991 units) as the 64
high selling products.

The low volume sales (sum of sales < 250) showed a strong
positive trend (≈ 40% increase over 42 days) whereas the
high volume sales (sum of sales ≥ 250) had a more stationary
behavior. In the sample data are more than 100 products that
sell less than six units a day. Nearly all of them sell none at
half of the time.

The above properties require an adequate forecasting algo-
rithm, which is able to handle low volume sales with high
variability and which is also able to adapt to some price
variability.

2) Artificial data set: The creation of artificial time series
enabled us to accurately modify different aspects of a time
series. This allowed us to investigate on how our periodicity
mining algorithm reacts on changes of different parameters.
Our goal was to create time series that show rather complex,
periodic behavior with some added noise of various intensity.

The time series xt of length n consist of a constant value

Fig. 3. Sales quantity and average price time series of sample data
(DMC2012).

c, which is modified by a repeating seasonal components S,
which are (again) modified by a randomized noise parameter r
as well as an noise intensifying factor f . Seasonal components
consist of values s ∈ S and have the length of m. The length
n of a time series is the length m of one season multiplied
by the number of seasons. The seasonal component repeats l
times [see Equation (8)] along the time series to be created.

T = {ti|∀i = 1, . . . , n} (6)
S = {sj |∀j = 1, . . . ,m} (7)
n = l ∗m (8)

i mod m = j (9)

A value of the constructed time series is calculated as the
sum of constant c and the value of the current season value
multiplied by the noise factor r and intensifying factor f :

xti = c+ (sj ∗ r ∗ f) (10)

The subsequent value in that time series xti+1 is calculated
by shifting the seasonal component one position:

xti+1 = c+ (sj+1 ∗ r ∗ f) (11)

This allowed us to create constant time series with an additive
period that is disguised by a strong multiplicative interference
factor. We created a total of 12 time series for this work with
the following specifications:

• season length m: varied between 7 and 33 days
• time series length: 384 days
• basic constant c: was set to 100
• randomized noise parameter r: ranged between 0< r <1
• noise intensifying factor f : varied between 1, 5, and 10
An excerpt of one of the created time series can be seen in

Fig. 4. The name of the shown time series is 29 days 1 n,
this indicates that a 29 days long periodic component was used
and also a noise intensifying factor of 1. The corresponding
periodic component, which was used in this example, can be
seen in Fig. 5.

Our intention was to create rather difficult seasonal compo-
nents. We used several ’hand made’ components. In addition

397

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 4. This example time series was created by using a noise factor of 1 and
the seasonal component from Fig. 5 with a length of 29. The vertical blue
lines indicate the end of one seasonal component.

Fig. 5. This example seasonal profile has a length of 29 and was created
using a noise factor of 1.

to that we used the following sinus Formula for creating some
of the seasonal profiles:

sin(
2π

m
∗ t) +

1

3
∗ sin(

2π ∗ 3

m
∗ t) (12)

The parameter in above Equation is the base frequency,
which determines the period length after the pattern is re-
peated. Variable t represents the time. This Formula creates
time series with a base frequency as well as its third harmonic.
An example of a sinus based time series is shown in Fig 6.

V. THE PARAMETRIZED TIME SERIES MODEL

This section describes the process from our initial analysis
of the data for the DMC 2012, to the justification of our
suggested time series model. For the causal predictor function
Fr we needed to identify and quantify all influencing factors.
Therefore, we firstly analyzed correlations of the attributes
quantity, price and time of all products given in the DMC
2012 task. We used the standard Pearson Correlation [23] as a
measure to determine the linear dependence between two time
series. It is widely used and can range between −1 and +1.
The following subsections will present the relations that have
been analyzed.

Fig. 6. Upper part: Example of a Sinus based time series with a period length
of 17 days and no noise added. Lower part: shows the same time series, which
was altered by a noise intensifying factor of 10.

A. Price-Sales Correlation

The main conjecture was that the price has a causal influ-
ence on the quantity. This is justified by the price elasticity of
demand theory by Alfred Marshall [24]. As the correlation
coefficients of all 570 products ranged from −0.6515 to
+0.3471, we expected that the products with strong correlation
exhibit a better prediction accuracy. Surprisingly, this seemed
not to be the case.

A systematic analysis with three synthetic time series lead
to an explanation. The first series had a growing price trend,
the second and third had a cyclic price development where one
product responded immediately and the other responded with
a delay. ARIMA did recognize the price trend but forecasted
a constant quantity instead of a decreasing one. This was
the result of the low integer sales numbers that produced a
monotone decreasing step function. Our approach managed to
forecast the right quantities as long as a matching price was
found in the history.

Surprisingly ARIMA could not deal well with the system-
atic cyclic price development and a detailed analysis showed
that the step function of the price (which was kept constant
for two days) was the reason. Fig. 7 shows the result of the
ARIMA compared to our Fr algorithm (see Equation (5)).
The reduced extrema produced by our algorithm results from
the delay in the response to the price change. Without lag, no
damping of extrema occurs in Fr.

B. Price Similarity

We also analyzed correlations between the price develop-
ment of different products. The assumption was to find product
bundles that are linked together via their price development.
For the analysis the prices were normalized first in order to
be able to easily compare the different price levels. Several
bunches of products were linked together via their prices.
But the corresponding sales figures of these products were
not related. This is why we ignored the possible cross price
influence from other products for the forecast.

398

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 7. Forecast of synthetic time series with delayed price-sales dependency.

C. Sales Periodicity

One of the most interesting properties of the DMC 2012 data
was the periodicity of the total sales curve. It showed a clear 7
day period (Fig. 1). This period was not directly observable in
most sales time series of individual products. Also the Pearson
Correlation between the sum curve and the single products was
too low to draw any conclusions. Nevertheless, since the total
sales curve consists of all products, there must be a hidden
periodicity within the individual products.

A systematic spectral analysis discovered not only the dom-
inant weekly patterns but weaker 4, 5 and 14 days patterns.
Since these periods differ on item level, there is the need for
an automated periodicity mining method. For our work we
developed JaPerCalc (Java Periodicity Calculator), which is
detailed in Section VI.

D. The Parametrized Predictor Function

Putting all correlation observations together the result is a
function Fr whose pseudo code is shown in Fig. 9. As input,
it takes the price πr of a product π at the prediction day t,
the periodicity m and a price range δ. The upper and lower
price limits are set to ±δ percent. Using the periodicity from
the previous analysis the algorithm looks for prices πr(w)
that occur on days w = t modulo period. For example, if
the prediction day is 43 and JaPerCalc returns a suggested
periodicity of 7 days, only the information from the days 36,
29, 22, 15, 8 and 1 will be considered (see Fig. 8). If the price
on such a day is outside of the upper or the lower limit (day
1 in our example), the sales quantity is ignored. If the price
is within the bounds, the corresponding quantity is selected.
After all matching quantities have been selected, the forecast
quantity is computed as linear trend of these quantities.

If all prices are outside of the upper and lower limit, no
forecast is produced. The procedure may be repeated with
enlarged upper and lower limits if needed. The Fr algorithm
defines a simple forecasting model that takes into account the

sales trend, the periodicity, and the price influence to predict
sales quantities.

VI. PERIODICITY CALCULATION

In the normal case, the periodicity of a time series is
unknown. However, it is beneficial for most time series
algorithms to use this kind of information. The normally
suggested standard algorithms [17] - [20] used to calculate this
information are based on Fourier Transformation (FT), which
is dependent on long time series histories. In order to automate
and reduce complexity of the periodicity mining process, we
developed our own approach, which will be detailed in the
following subsections.

A. General Idea

JaPerCalc is an iterative approach in which a range of
candidate periods (e.g., from 5 days period as minimum to
40 days period maximum) are tested. These upper and lower
boundaries are the only input that needs to be defined prior
by the user. For our hypothetical example, lets assume that
we start with candidate period of 5 days. The first step is to
fold the data accordingly to the given candidate period (in our
case 5 days). This means that we sum up the sold quantity on
every 5th day (e.g., day 1, 6, 11, 16 etc.). This is repeated for
each consecutive day until our candidate array is of length 5.

The next step is to take this folded candidate array and
evaluate it against the given time series using the Pearson
Correlation. In terms of our hypothetical example, we compare
the folded 5 day candidate array with the days 1-5, 6-11, 11-16
etc. Each comparison results in a Pearson Correlation value r.
Thereby, r is given as the mean of the products of the standard
scores as it can be seen in Equation (13).

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(13)

The average from all of these Person Correlation values is
then associated with the candidate period of 5 days.

The process is repeated for all periods within the given
boundaries. The finally suggested period is the one with the
highest average Pearson Correlation Coefficient.

B. Formula Description

As mentioned before JaPerCalc takes a lower and upper
period boundary (l, u) as well as a time series under examina-
tion as user input. All possible periods between the mentioned
boundaries are referred as candidate periods. The algorithm
starts by selecting the first suggested l period and use it to
fold (i.e., sum up) every modulo cj days of the given time
series xt (j is the length of candidate period cj , see also Fig.
11). The resulting candidate period is held against all parts b
of time series xt of corresponding length. This process is also
visualized in Fig. 10.

The algorithm calculates the Pearson correlation coefficient
r for each pair of cj and b. The average of these correlations
is associated with the length j of the current candidate period

399

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 8. Illustration of prediction concept using trend, a 7 days periodicity, and a parametrized price.

Input: t > n // prediction day
πr (input) // price at day t
δ (input) // price range (e.g. ± 10%)
period (input) // period suggested by JaPerCalc

Def: u, l // upper & lower price limit
QtyList // list of sales quantities
w // = t - n * period (n ≥ 0)
x̂t // predicted quantity at day t

for each π ∈ Π {
u := πr(1 + δ/100); l := πr(1− δ/100)
w := t− period
while (w ≥ 1) {

if (πr(w) < u) & (πr(w) > l)
QtyList.add(xw)

w := w − period
}
if (QtyList 6= ∅)
x̂t := trend(QtyList)
return x̂t

else
return nil

}
Fig. 9. Parametrized Sales Prediction Algorithm Fr in conjunction with
JaPerCalc.

Fig. 10. Illustrative example of JaPerCalc comparing a candidate period cj
with all b parts of a time series xt of length n.

and put into PearsonResult array for later use. This process
is repeated for each candidate period between the lower
boundary l and the upper boundary u. The length of cj is
thereby incremented by one for each round. After retrieving
the average Pearson correlation coefficient for each candidate
period, the algorithm simply returns the j for the candidate
component with the highest Pearson correlation coefficient.
The complete pseudo code can also be seen in Fig. 11.

VII. TECHNICAL FRAMEWORK AND INFRASTRUCTURE

This section covers some technical details about execution
and implementation of the algorithms mentioned in this article.

400

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Input: (xti), i = 1, 2, ..., n // time series length n
u (input) // upper bound candidate period
l (input) // lower bound candidate period

Def: PearsonList // Set of Pearson corr coefficients
PearsonResult // stores average Pearson results
r // Pearson correlation coefficient
cj // candidate period array of length j
b // part of time series xt, from day e to day r
y // integer to iterate through cj
x // integer to shift b through xt
iter := 0

while l + iter ≤ u{
j := l + iter
y = 0
for (y < j) {

//create candidate period cj of length j
cy = sumi+(y≡mod(j))(xti)
y++
}

repeat (bn/jc) times {
//compare component cj with all parts b
//of time series (xt)
x = 0
b = (ti|∀i : x ∗ j ≤ i < x ∗ j + j)
r := PearsonCorr(cj , b)
PearsonList.add(r, j)
x++
}

PearsonResult.add(PearsonList.getAvg(r), j))
iter++
}

if (PearsonList 6= ∅)
return j from PearsonResult

where r = PearsonResult.getMax(r)
else
return nil

Fig. 11. Pseudo-code for JaPerCalc. Returns a suggested period for a given
timeline.

A. ARIMA Model Execution

The Microsoft Visual Studio 2008 and Microsoft SQL
Server 2008 were used to apply the ARIMA model on the
two given data sets (DMC and artificial data). In order to run
the ARIMA mining models for both data sets, a OLAP cube
was build. It consists of the dimensions price, product and
time. In the corresponding time series mining model we used
itemId and day as key attributes and the price attribute as
input. The quantity was set as predictable attribute. For the
DMC data we used mostly the default parameters, apart from
the the minimum series value and the periodicity hint. The
following table shows all model parameters used:

AUTO DETECT PERIODICITY 0.6
FORECAST METHOD ARIMA
HISTORIC MODEL COUNT 1
HISTORIC MODEL GAP 10
INSTABILITY SENSITIVITY 1.0
MAXIMUM SERIES VALUE +1E308
MINIMUM SERIES VALUE 0
MISSING VALUE SUBSTITUTION None
PERIODICITY HINT 7
PREDICTION SMOOTHING 0.5

The specification for the artificial data is equal to the one
shown above, except for the PERIODICTIY HINT that was
left blank.

B. Implementation of Time Series Model Fr

Our suggested approach was implemented in Java. We used
Eclipse (Version: Indigo Service Release 1) with Java Platform
Standard Edition 6.0 (JRE6). The data was stored in a MySQL
database on an Apache web server (2.2.21). During execution
time the data is queried from the database, the model param-
eters computed and the forecast results are instantly stored
in the corresponding result table in the database. The model
was developed using the standard java.sql.* package, which
was used to interface with the database and for SQLException
handling.

C. Implementation of Periodicity Calculation JaPerCalc

As the name indicates, JaPerCalc was also implemented
in Java. We used the two freeware libraries java.util.* and
org.apache.commons.math3.stat.* in order to compute the
Pearson correlation. We implemented two version of it. The
first one outputs the suggested period as well as statistics
about the average Pearson correlations of the compared com-
ponents. It was used for pitching JaPerCalc against Fourier
Transformation, see also Section VIII-B. The second version
simply returns the suggested period and was used within the
Fr algorithm for periodicity detection.

VIII. EXPERIMENTS AND RESULTS

There have been three different sets of experiments, that we
carried out. The first set used data from the DataMiningCup
2012. We applied our suggested Fr algorithm in order to
predict sales quantities for a given price. We compared its
results with the predictions from an ARIMA implementation
described in Section VII-A. A discussion about the results can
be found in the following Section VIII-A. During the time of
the DataMiningCup 2012 we assumed a hidden periodicity
within the data on a item level [1]. However, there were some
exceptions from our assumption, which raised the need for an
automated periodicity detection.

In order to meet this need, we were looking for periodicity
detection methods. Our experiments with Fourier transforma-
tion led to rather unsatisfactory results and this was the starting
point for the development of JaPerCalc. We compare both
approaches in Section VIII-B.

The third set of experiments includes both, the time series
prediction as well as the periodicity detection problem. We

401

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II
COMPARISON OF ARIMA PREDICTION ERROR WITH Fr ALGORITHM ON

DMC DATA

Class ARIMA Fr improvement
All products 30512 22093 26.7%
quantity < 500 24338 17248 29.1%
quantity ≥ 500 6174 4845 21.5%
(quantity = 0) 19178 15942 16.9%
in < 1/3 time
(quantity = 0) 11334 6151 45.7%
in ≥ 1/3 time
avg(πr) < 20 26756 18711 30.1%
avg(πr) ≥ 20 3756 3382 10.0%
top 100 items 15805 6131 61.2%
least 470 items 16167 15962 1.2%

used artificial data for these experiments and compared to
the results of ARIMA. We will discuss the results in Section
VIII-C.

A. Comparison of Results with ARIMA

The absolute prediction error was measured as |realQty −
predictQty|. The Fr algorithms benefited from two input
parameters: the hidden periodicity that was calculated in a
previous step and the predefined future price (see also [1]
for more details). The hidden sales periodicity contributed
for an improvement of about 20%. The overall forecast was
improved by 26.7%. The price influence was less dominant
than expected, but was determinant for a cluster of 26 products.
Cluster characteristics:

• correlation < −0.25
• relative standard error < 0.25
• sales quantity > 160
• price variation (max(πr)−min(πr)) > 4

In total, Fr could forecast this cluster 36.4% better than
ARIMA. Table II shows the prediction error points of both
ARIMA and Fr on certain product clusters. These were
grouped based on attributes which we guessed to have an
impact on the prediction performance (e.g., the top 100 vs the
least 470 items). The total error of all 570 products was 30152
for the ARIMA and 22093 for Fr. This is an improvement of
26.7% compared to ARIMA. For further analysis we clustered
the products into disjoint sets according to different criteria.
This allowed us to find the strengths and weaknesses of Fr in
terms of total sales quantity, sales sparsity, and price.

B. Periodicity Calculation

This subsection will show some results from our experi-
ments in which we compare Fourier Transformation with our
suggested methods for periodicity mining on our artificial data
set. Table III shows all results.

The FFT detected 8 out of 12 periods correctly. It seems like
FFT performs better on high frequency periods with a shorter
period length (e.g., 7, 16, 17). However, for longer periods
(e.g., 33, 29), FFT slightly underestimated the periodicity
length.
Fr was able to detect 9 out of 12 periods correctly. Please

note that in all of the three wrong suggested cases, a multiple

TABLE III
COMPARISON OF PERIODICITY SUGGESTED BY FOURIER

TRANSFORMATION AND Fr ON ARTIFICIAL DATA

time series name FFT Fr real
16 days 1 16 16 16
17 days 10 n sin 28 17 17
17 days 1 n sin 17 17 17
17 days 5 n sin 17 17 17
20 days 1 n 20 20 20
29 days 1 n 28 29 29
33 days 10 n 32 33 33
33 days 1 n 32 33 33
33 days 5 n 32 33 33
7 days 10 n 7 35 7
7 days 1 n 7 35 7
7 days 5 n 7 42 7

Fig. 12. Average Pearson Correlations for several candidate periods in time
series 20 days 1 n. Please note that also multiple and partial candidate
components are highlighted (i.e., the correct periodicity of 20 is highlighted,
but also partial components such as 10, 30 or multiple components such as
40 or 60.)

of the correct period length (harmonic) was suggested. Reason
for this lies within the intrinsic mechanic of JaPerCalc. If a
periodicity of a certain length n is repeating within a time
series, there is also a multiple of the inherent periodicity
with length 2n (4n, 6n and so forth) visible. Same goes for
partial periodicity of length 1.5n or 2.5n. JaPerCalc is able to
highlight all of these periodicity lengths. Fig. 12 shows this for
the example of time series 20 days 1 n. In case of the wrong
suggested periodicity from time series 7 days * n it is very
likely that noise caused a multiple component of the inherent
periodicity length to have a slightly higher average Pearson
correlation coefficient than the inherent (given) periodicity.
This can occur in following scenario: if a inherent period has
a significant peak on, lets say the 7th day, this periodicity is
disguised if noise randomly causes every second of these peaks
to diminish. Result is a higher average Pearson correlation
coefficient for a period of length 14 (rather than the correct 7
days). How this affected the predictions made by Fr can be
seen in the following section.

402

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV
COMPARISON OF ARIMA PREDICTION ERROR WITH Fr ALGORITHM ON

ARTIFICIAL DATA

time series name ARIMA Fr + JaPerCalc improvement
16 days 1 797 240 69.89 %
17 days 10 n sin 10443 3400 67.44 %
17 days 1 n sin 1048 304 70.99 %
17 days 5 n sin 5165 1627 68.50 %
20 days 1 n 3002 1422 52.63 %
29 days 1 n 5006 2139 57.27 %
33 days 10 n 7883 3234 58.98 %
33 days 1 n 862 330 61.72 %
33 days 5 n 3776 1471 61.04 %
7 days 10 n 11307 9610 15.01 %
7 days 1 n 1154 937 18.80 %
7 days 5 n 5942 4576 22.99 %

Fig. 13. prediction results for ARIMA (upper part) and prediction results for
Fr (lower part).

C. Time Series Prediction with automated Periodicity Detec-
tion

As mentioned before we used artificial data described in
IV-2. We once again calculated the absolute prediction error
as |realQty− predictQty|. Table IV shows the results for all
generated time series.

JaPerCalc was able to find the correct period for 9 out of the
given 12 time series. The predictions for both compared meth-
ods for 33 days 10 n are visualized in Fig. 13. The period
length prediction for 7 days * n was incorrectly predicted by
JaPerCalc (as described in previous section). However, since
a multiple of correct period was suggested, Fr is still able to
outperform ARIMA by 15.01% to 22.99%. If the suggestions
from JaPerCalc is correct, the prediction improvement from
Fr compared to ARIMA rises to averaged 63.13%.

As it can be seen ARIMA is not able to compensate
the noise within the time series and gets biased. Fr on the

Fig. 14. prediction results for ARIMA (upper part) and prediction results for
Fr (lower part). We used a sinus function to create this time series.

other, hand is able to average the given noise by following
the candidate period, which was detected by JaPerCalc. The
interaction of two rather simple algorithms is able to deliver
impressive predictions results. Similar behavior can be seen
for the time series created by the sinus function described in
Equation (12). An example can be seen in Fig. 14.

As the name of the time series 17 days 1 noise indicates,
there was only a noise factor of 1 used. Although a rather
simple period component and low noise was used, ARIMA
gets distracted and produced poor prediction results.

IX. CONCLUSION AND FUTURE WORK

This article covered a long development. We started with the
DMC 2012 and its challenging data set. The broad range of
products with its hidden periodicity made the analysis difficult.
The low volume sales further complicated the analysis of the
influence of the price on the sales quantities. The conclusions
drawn from the above results can be summarized in the
following three statements:

1) Data profiling and periodicity mining is crucial for
choosing the best time series model

2) Low sales volume can hide a cyclic sales behavior and
the price should be treated as input parameter

3) Simple models for sales forecasting based on causal
parameters can outperform some sophisticated stochastic
models.

This lead to the development of the rather simple Fr algorithm.
If it is applied on other data, in which the periodicity is not
known, it is likely to produce disappointing results. Reason
for this is its dependency on the input period (which was set
to 7 in case of the DMC 2012 data).

JaPerCalc was created in order to overcome that weakness.
It is also a rather simple and fast algorithm that is able to detect

403

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

periodicity in a given time series. The Pearson correlation
coefficient allows to detect periodicity of any form or shape.

The combination of both simple algorithms is able to sig-
nificantly outperform standard methods such as the ARIMA,
which was shown in Section VIII. JaPerCalc as well as Fr

algorithm can be used with incomplete time series. This is
particularly useful for real-time analysis used in recommen-
dation systems. The simplicity and low computational effort
for both algorithms makes them ideal for people who want to
delve into the field of time series prediction.

In terms of future work for Fr, a spectral analysis on
an individual product level could further improve the pre-
diction accuracy. For products with a strong monotone price
development, our approach to look for similar prices is not
well suited. The price trend should be computed instead.
There is also the option to adjust the price ranges by the
variance of the so far known time series. Products with a
high variance could be allowed to have a broader prince
range then product with a lower variance. JaPerCalc could
also be adapted in a way to automatically recognize and
adjust eventually existing trends. This would help to improve
periodicity recognition for monotonous increasing time series.
Another direction of development could be to use confidence
values to help JaPerCalc to find the base frequency of a time
series (i.e., shortest suitable period length). This could help to
prevent incorrect suggestion of multiples of the correct period
length as described in Section VIII-B.

REFERENCES

[1] M. Schaidnagel, ”Sales Prediction with Parametrized Time Series Anal-
ysis”, DBKDA 2013, The Fifth International Conference on Advances in
Databases, Knowledge, and Data Applications, Seville, Spain - January
27th - February 1st, 2013

[2] A.-W. Scheer, Sales Forecast, Springer Verlag, Berlin, 1983
[3] M. Hüttner, Market and Sales Forecast, Kohlhammer, Stuttgart, 1982
[4] Y. Lan and D. Deagu, A New Approach and Its Applications for Time

Series Analysis and Prediction Based on Moving Average of nth-Order
Difference, in: D. E. Holmes and L. C. Jain (Eds.), Data Mining:
Foundations and Intelligent Paradigms, Vol 2: Statistical, Bayesian, Time
Series and other Theoretical Aspects, pp. 157 - 182, Springer Berlin
Heidelberg, 2012

[5] K. Neusser, Time Series Analysis for Economic Science, B. G. Teubner
Verlag, Wiesbaden, 2006

[6] A. J. Izenman, Modern Multivariate Statistical Techniques - Regression,
Classification, and Manifold Learning, Springer Science + Business
Media, New York, 2008

[7] H. Lütkepohl, New Introduction to Multiple Time Series Analysis, corr.
repr., Springer Verlag, Berlin Heidelberg, 2007

[8] S. Oches, ”Top 50 Sorted by Total Units”, Special Report
of QSR Magazine, Journalistic Inc., August 2011, [Online]
http://www.qsrmagazine.com/reports/top-50-sorted-total-units, last
access: 14.12.2013

[9] Economist Intelligence Unit, ”Denmark: Market Indicators and Fore-
casts”, [Online] http://datamarket.com/data/set/1wmo/ (indicators: Private
consumption, Consumer goods), last access: 30.08.2012

[10] J. Griese, Adaptive Verfahren im betrieblichen Entscheidungsprozess,
Physica Verlag, Würzburg - Wien, 1972

[11] G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and
Control, 1st rev. ed., Holden Day,Oakland, San Francisco, 1976

[12] C. A. Sims, ”Macroeconomics and Reality”, in: Econometrica, Vol. 48,
No. 1, pp. 1 - 48, 1980

[13] R. E. Lucas, ”Econometric policy evaluation: A critique”, In: K. Brunner
and A. H. Meltzer (Eds), The Phillips Curve and Labor Markets, Vol.
1, Carnegie-Rochester Conference Series on Public Policy, pp. 19 - 46,
Amsterdam, North-Holland, 1976

[14] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, 2nd

Edition, Springer Science + Business Media, New York, 2006
[15] R. A. Arnold, Economics, 9th ed., South-Western College Publ., 2008
[16] J. G. A. J. van der Vorst, A. J. M. Beulens, W. de Wit, P. van

Beek, Supply chain management in food chains: Improving performance
by reducing uncertainty, in: International Transactions in Operational
Research, Vol. 5(6), pp 487 - 499, 1998

[17] M. G. Elfeky, W. G. Aref, A. K. Elmagarmid Periodicity Detection in
Time Series Databases, in: IEEE Transactions on Knowledge and Data
Engineering, pp. 875 - 887 Vol. 17, No. 7, July 2005

[18] M. G. Elfeky, W. G. Aref, A. K. Elmagarmid WARP: Time Warping
for Periodicity Detection, in: Proceedings of the Fifth IEEE International
Conference on Data Mining (ICDM05)

[19] F. Rasheed, R. Alhajj Using Suffix Trees for Periodicity Detection in
Time Series Databases, in 4th International IEEE Conference ”Intelligent
Systems”, 2008

[20] C. Berberidis, W. G. Aref, M. Atallah, I. Vlahavas, A. K. Elmagarmid
Multiple and Partial Periodicity Mining in Time Series Databases, in
F. van Harmelen (ed.): ECAI2002, Proceedings of the 15th European
Conference on Artificial Intelligence, IOS Press, Amsterdam, 2002,
pp.30-37

[21] P. Doganis, A. Alexandridis, R. Patrinos, and H. Sarimveis, Time
series sales forecasting for short shelf-life food products based on
artificial neural networks and evolutionary computing, Journal of
Food Engineering 75, pp. 196 - 204, Elsevier Ltd., 2006, [Online]
http://www.elsevier.com/locate/jfoodeng, last access: 30.08.2012

[22] C. W. J. Granger and P. Newbold, Economic Forecasting: The Atheist’s
Viewpoint, in: G.A. Renton (ed.), Modelling the Economy, pp. 131 - 148,
Heinemann, London, 1975

[23] H. Rinne and K. Specht, Time Series - statistical modelling, Estimation
and Prediction, Verlag Vahlen, Munich, 2002

[24] A. Marshall, Principles of Economics, 8th ed., Cosimo Classics, 2009,
first publ. 1890

404

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO, BIOSYSCOM,
BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE,
CONTENT, PATTERNS, CLOUD COMPUTING, COMPUTATION TOOLS, ENERGY, COLLA, IMMM, INTELLI,
SMART, DATA ANALYTICS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING, MOBILITY, WEB

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM, BIOINFO,
BIOTECHNO, SOTICS, GLOBAL HEALTH

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE COMPUTATION,
VEHICULAR, INNOV

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, CLOUD
COMPUTING, COMPUTATION TOOLS, IMMM, MOBILITY, VEHICULAR, DATA ANALYTICS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL, INFOCOMP

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA, COCORA, PESARO, INNOV

issn: 1942-2601

