


The International Journal on Advances in Software is published by IARIA.

ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Software, issn 1942-2628

vol. 9, no. 1 & 2, year 2016, http://www.iariajournals.org/software/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Software, issn 1942-2628

vol. 9, no. 1 & 2, year 2016,<start page>:<end page> , http://www.iariajournals.org/software/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2016 IARIA



International Journal on Advances in Software

Volume 9, Number 1 & 2, 2016

Editor-in-Chief

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Editorial Advisory Board

Hermann Kaindl, TU-Wien, Austria
Herwig Mannaert, University of Antwerp, Belgium

Editorial Board

Witold Abramowicz, The Poznan University of Economics, Poland
Abdelkader Adla, University of Oran, Algeria
Syed Nadeem Ahsan, Technical University Graz, Austria / Iqra University, Pakistan
Marc Aiguier, École Centrale Paris, France
Rajendra Akerkar, Western Norway Research Institute, Norway
Zaher Al Aghbari, University of Sharjah, UAE
Riccardo Albertoni, Istituto per la Matematica Applicata e Tecnologie Informatiche “Enrico Magenes” Consiglio
Nazionale delle Ricerche, (IMATI-CNR), Italy / Universidad Politécnica de Madrid, Spain
Ahmed Al-Moayed, Hochschule Furtwangen University, Germany
Giner Alor Hernández, Instituto Tecnológico de Orizaba, México
Zakarya Alzamil, King Saud University, Saudi Arabia
Frederic Amblard, IRIT - Université Toulouse 1, France
Vincenzo Ambriola , Università di Pisa, Italy
Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus
Annalisa Appice, Università degli Studi di Bari Aldo Moro, Italy
Philip Azariadis, University of the Aegean, Greece
Thierry Badard, Université Laval, Canada
Muneera Bano, International Islamic University - Islamabad, Pakistan
Fabian Barbato, Technology University ORT, Montevideo, Uruguay
Peter Baumann, Jacobs University Bremen / Rasdaman GmbH Bremen, Germany
Gabriele Bavota, University of Salerno, Italy
Grigorios N. Beligiannis, University of Western Greece, Greece
Noureddine Belkhatir, University of Grenoble, France
Jorge Bernardino, ISEC - Institute Polytechnic of Coimbra, Portugal
Rudolf Berrendorf, Bonn-Rhein-Sieg University of Applied Sciences - Sankt Augustin, Germany
Ateet Bhalla, Independent Consultant, India
Fernando Boronat Seguí, Universidad Politecnica de Valencia, Spain
Pierre Borne, Ecole Centrale de Lille, France
Farid Bourennani, University of Ontario Institute of Technology (UOIT), Canada
Narhimene Boustia, Saad Dahlab University - Blida, Algeria
Hongyu Pei Breivold, ABB Corporate Research, Sweden
Carsten Brockmann, Universität Potsdam, Germany
Antonio Bucchiarone, Fondazione Bruno Kessler, Italy
Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria
Dumitru Burdescu, University of Craiova, Romania
Martine Cadot, University of Nancy / LORIA, France



Isabel Candal-Vicente, Universidad del Este, Puerto Rico
Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain
Jose Carlos Metrolho, Polytechnic Institute of Castelo Branco, Portugal
Alain Casali, Aix-Marseille University, France
Yaser Chaaban, Leibniz University of Hanover, Germany
Patryk Chamuczyński, Radytek, Poland
Savvas A. Chatzichristofis, Democritus University of Thrace, Greece
Antonin Chazalet, Orange, France
Jiann-Liang Chen, National Dong Hwa University, China
Shiping Chen, CSIRO ICT Centre, Australia
Wen-Shiung Chen, National Chi Nan University, Taiwan
Zhe Chen, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China
PR
Po-Hsun Cheng, National Kaohsiung Normal University, Taiwan
Yoonsik Cheon, The University of Texas at El Paso, USA
Lau Cheuk Lung, INE/UFSC, Brazil
Robert Chew, Lien Centre for Social Innovation, Singapore
Andrew Connor, Auckland University of Technology, New Zealand
Rebeca Cortázar, University of Deusto, Spain
Noël Crespi, Institut Telecom, Telecom SudParis, France
Carlos E. Cuesta, Rey Juan Carlos University, Spain
Duilio Curcio, University of Calabria, Italy
Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania
Paulo Asterio de Castro Guerra, Tapijara Programação de Sistemas Ltda. - Lambari, Brazil
Cláudio de Souza Baptista, University of Campina Grande, Brazil
Maria del Pilar Angeles, Universidad Nacional Autonónoma de México, México
Rafael del Vado Vírseda, Universidad Complutense de Madrid, Spain
Giovanni Denaro, University of Milano-Bicocca, Italy
Nirmit Desai, IBM Research, India
Vincenzo Deufemia, Università di Salerno, Italy
Leandro Dias da Silva, Universidade Federal de Alagoas, Brazil
Javier Diaz, Rutgers University, USA
Nicholas John Dingle, University of Manchester, UK
Roland Dodd, CQUniversity, Australia
Aijuan Dong, Hood College, USA
Suzana Dragicevic, Simon Fraser University- Burnaby, Canada
Cédric du Mouza, CNAM, France
Ann Dunkin, Palo Alto Unified School District, USA
Jana Dvorakova, Comenius University, Slovakia
Lars Ebrecht, German Aerospace Center (DLR), Germany
Hans-Dieter Ehrich, Technische Universität Braunschweig, Germany
Jorge Ejarque, Barcelona Supercomputing Center, Spain
Atilla Elçi, Aksaray University, Turkey
Khaled El-Fakih, American University of Sharjah, UAE
Gledson Elias, Federal University of Paraíba, Brazil
Sameh Elnikety, Microsoft Research, USA
Fausto Fasano, University of Molise, Italy
Michael Felderer, University of Innsbruck, Austria
João M. Fernandes, Universidade de Minho, Portugal
Luis Fernandez-Sanz, University of de Alcala, Spain
Felipe Ferraz, C.E.S.A.R, Brazil
Adina Magda Florea, University "Politehnica" of Bucharest, Romania
Wolfgang Fohl, Hamburg Universiy, Germany



Simon Fong, University of Macau, Macau SAR
Gianluca Franchino, Scuola Superiore Sant'Anna, Pisa, Italy
Naoki Fukuta, Shizuoka University, Japan
Martin Gaedke, Chemnitz University of Technology, Germany
Félix J. García Clemente, University of Murcia, Spain
José García-Fanjul, University of Oviedo, Spain
Felipe Garcia-Sanchez, Universidad Politecnica de Cartagena (UPCT), Spain
Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany
Tejas R. Gandhi, Virtua Health-Marlton, USA
Andrea Giachetti, Università degli Studi di Verona, Italy
Afzal Godil, National Institute of Standards and Technology, USA
Luis Gomes, Universidade Nova Lisboa, Portugal
Diego Gonzalez Aguilera, University of Salamanca - Avila, Spain
Pascual Gonzalez, University of Castilla-La Mancha, Spain
Björn Gottfried, University of Bremen, Germany
Victor Govindaswamy, Texas A&M University, USA
Gregor Grambow, University of Ulm, Germany
Carlos Granell, European Commission / Joint Research Centre, Italy
Christoph Grimm, University of Kaiserslautern, Austria
Michael Grottke, University of Erlangen-Nuernberg, Germany
Vic Grout, Glyndwr University, UK
Ensar Gul, Marmara University, Turkey
Richard Gunstone, Bournemouth University, UK
Zhensheng Guo, Siemens AG, Germany
Ismail Hababeh, German Jordanian University, Jordan
Shahliza Abd Halim, Lecturer in Universiti Teknologi Malaysia, Malaysia
Herman Hartmann, University of Groningen, The Netherlands
Jameleddine Hassine, King Fahd University of Petroleum & Mineral (KFUPM), Saudi Arabia
Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Peizhao Hu, NICTA, Australia
Chih-Cheng Hung, Southern Polytechnic State University, USA
Edward Hung, Hong Kong Polytechnic University, Hong Kong
Noraini Ibrahim, Universiti Teknologi Malaysia, Malaysia
Anca Daniela Ionita, University "POLITEHNICA" of Bucharest, Romania
Chris Ireland, Open University, UK
Kyoko Iwasawa, Takushoku University - Tokyo, Japan
Mehrshid Javanbakht, Azad University - Tehran, Iran
Wassim Jaziri, ISIM Sfax, Tunisia
Dayang Norhayati Abang Jawawi, Universiti Teknologi Malaysia (UTM), Malaysia
Jinyuan Jia, Tongji University. Shanghai, China
Maria Joao Ferreira, Universidade Portucalense, Portugal
Ahmed Kamel, Concordia College, Moorhead, Minnesota, USA
Teemu Kanstrén, VTT Technical Research Centre of Finland, Finland
Nittaya Kerdprasop, Suranaree University of Technology, Thailand
Ayad ali Keshlaf, Newcastle University, UK
Nhien An Le Khac, University College Dublin, Ireland
Sadegh Kharazmi, RMIT University - Melbourne, Australia
Kyoung-Sook Kim, National Institute of Information and Communications Technology, Japan
Youngjae Kim, Oak Ridge National Laboratory, USA
Roger "Buzz" King, University of Colorado at Boulder, USA
Cornel Klein, Siemens AG, Germany
Alexander Knapp, University of Augsburg, Germany
Radek Koci, Brno University of Technology, Czech Republic



Christian Kop, University of Klagenfurt, Austria
Michal Krátký, VŠB - Technical University of Ostrava, Czech Republic
Narayanan Kulathuramaiyer, Universiti Malaysia Sarawak, Malaysia
Satoshi Kurihara, Osaka University, Japan
Eugenijus Kurilovas, Vilnius University, Lithuania
Philippe Lahire, Université de Nice Sophia-Antipolis, France
Alla Lake, Linfo Systems, LLC, USA
Fritz Laux, Reutlingen University, Germany
Luigi Lavazza, Università dell'Insubria, Italy
Fábio Luiz Leite Júnior, Universidade Estadual da Paraiba,Brazil
Alain Lelu, University of Franche-Comté / LORIA, France
Cynthia Y. Lester, Georgia Perimeter College, USA
Clement Leung, Hong Kong Baptist University, Hong Kong
Weidong Li, University of Connecticut, USA
Corrado Loglisci, University of Bari, Italy
Francesco Longo, University of Calabria, Italy
Sérgio F. Lopes, University of Minho, Portugal
Pericles Loucopoulos, Loughborough University, UK
Alen Lovrencic, University of Zagreb, Croatia
Qifeng Lu, MacroSys, LLC, USA
Xun Luo, Qualcomm Inc., USA
Shuai Ma, Beihang University, China
Stephane Maag, Telecom SudParis, France
Ricardo J. Machado, University of Minho, Portugal
Maryam Tayefeh Mahmoudi, Research Institute for ICT, Iran
Nicos Malevris, Athens University of Economics and Business, Greece
Herwig Mannaert, University of Antwerp, Belgium
José Manuel Molina López, Universidad Carlos III de Madrid, Spain
Francesco Marcelloni, University of Pisa, Italy
Eda Marchetti, Consiglio Nazionale delle Ricerche (CNR), Italy
Gerasimos Marketos, University of Piraeus, Greece
Abel Marrero, Bombardier Transportation, Germany
Adriana Martin, Universidad Nacional de la Patagonia Austral / Universidad Nacional del Comahue, Argentina
Goran Martinovic, J.J. Strossmayer University of Osijek, Croatia
Paulo Martins, University of Trás-os-Montes e Alto Douro (UTAD), Portugal
Stephan Mäs, Technical University of Dresden, Germany
Constandinos Mavromoustakis, University of Nicosia, Cyprus
Jose Merseguer, Universidad de Zaragoza, Spain
Seyedeh Leili Mirtaheri, Iran University of Science & Technology, Iran
Lars Moench, University of Hagen, Germany
Yasuhiko Morimoto, Hiroshima University, Japan
Antonio Navarro Martín, Universidad Complutense de Madrid, Spain
Filippo Neri, University of Naples, Italy
Muaz A. Niazi, Bahria University, Islamabad, Pakistan
Natalja Nikitina, KTH Royal Institute of Technology, Sweden
Roy Oberhauser, Aalen University, Germany
Pablo Oliveira Antonino, Fraunhofer IESE, Germany
Rocco Oliveto, University of Molise, Italy
Sascha Opletal, Universität Stuttgart, Germany
Flavio Oquendo, European University of Brittany/IRISA-UBS, France
Claus Pahl, Dublin City University, Ireland
Marcos Palacios, University of Oviedo, Spain
Constantin Paleologu, University Politehnica of Bucharest, Romania



Kai Pan, UNC Charlotte, USA
Yiannis Papadopoulos, University of Hull, UK
Andreas Papasalouros, University of the Aegean, Greece
Rodrigo Paredes, Universidad de Talca, Chile
Päivi Parviainen, VTT Technical Research Centre, Finland
João Pascoal Faria, Faculty of Engineering of University of Porto / INESC TEC, Portugal
Fabrizio Pastore, University of Milano - Bicocca, Italy
Kunal Patel, Ingenuity Systems, USA
Óscar Pereira, Instituto de Telecomunicacoes - University of Aveiro, Portugal
Willy Picard, Poznań University of Economics, Poland
Jose R. Pires Manso, University of Beira Interior, Portugal
Sören Pirk, Universität Konstanz, Germany
Meikel Poess, Oracle Corporation, USA
Thomas E. Potok, Oak Ridge National Laboratory, USA
Christian Prehofer, Fraunhofer-Einrichtung für Systeme der Kommunikationstechnik ESK, Germany
Ela Pustułka-Hunt, Bundesamt für Statistik, Neuchâtel, Switzerland
Mengyu Qiao, South Dakota School of Mines and Technology, USA
Kornelije Rabuzin, University of Zagreb, Croatia
J. Javier Rainer Granados, Universidad Politécnica de Madrid, Spain
Muthu Ramachandran, Leeds Metropolitan University, UK
Thurasamy Ramayah, Universiti Sains Malaysia, Malaysia
Prakash Ranganathan, University of North Dakota, USA
José Raúl Romero, University of Córdoba, Spain
Henrique Rebêlo, Federal University of Pernambuco, Brazil
Hassan Reza, UND Aerospace, USA
Elvinia Riccobene, Università degli Studi di Milano, Italy
Daniel Riesco, Universidad Nacional de San Luis, Argentina
Mathieu Roche, LIRMM / CNRS / Univ. Montpellier 2, France
José Rouillard, University of Lille, France
Siegfried Rouvrais, TELECOM Bretagne, France
Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster / North-
German Supercomputing Alliance, Germany
Djamel Sadok, Universidade Federal de Pernambuco, Brazil
Ismael Sanz, Universitat Jaume I, Spain
M. Saravanan, Ericsson India Pvt. Ltd -Tamil Nadu, India
Idrissa Sarr, University of Cheikh Anta Diop, Dakar, Senegal / University of Quebec, Canada
Patrizia Scandurra, University of Bergamo, Italy
Giuseppe Scanniello, Università degli Studi della Basilicata, Italy
Daniel Schall, Vienna University of Technology, Austria
Rainer Schmidt, Munich University of Applied Sciences, Germany
Cristina Seceleanu, Mälardalen University, Sweden
Sebastian Senge, TU Dortmund, Germany
Isabel Seruca, Universidade Portucalense - Porto, Portugal
Kewei Sha, Oklahoma City University, USA
Simeon Simoff, University of Western Sydney, Australia
Jacques Simonin, Institut Telecom / Telecom Bretagne, France
Cosmin Stoica Spahiu, University of Craiova, Romania
George Spanoudakis, City University London, UK
Lena Strömbäck, SMHI, Sweden
Osamu Takaki, Japan Advanced Institute of Science and Technology, Japan
Antonio J. Tallón-Ballesteros, University of Seville, Spain
Wasif Tanveer, University of Engineering & Technology - Lahore, Pakistan
Ergin Tari, Istanbul Technical University, Turkey



Steffen Thiel, Furtwangen University of Applied Sciences, Germany
Jean-Claude Thill, Univ. of North Carolina at Charlotte, USA
Pierre Tiako, Langston University, USA
Božo Tomas, HT Mostar, Bosnia and Herzegovina
Davide Tosi, Università degli Studi dell'Insubria, Italy
Guglielmo Trentin, National Research Council, Italy
Dragos Truscan, Åbo Akademi University, Finland
Chrisa Tsinaraki, Technical University of Crete, Greece
Roland Ukor, FirstLinq Limited, UK
Torsten Ullrich, Fraunhofer Austria Research GmbH, Austria
José Valente de Oliveira, Universidade do Algarve, Portugal
Dieter Van Nuffel, University of Antwerp, Belgium
Shirshu Varma, Indian Institute of Information Technology, Allahabad, India
Konstantina Vassilopoulou, Harokopio University of Athens, Greece
Miroslav Velev, Aries Design Automation, USA
Tanja E. J. Vos, Universidad Politécnica de Valencia, Spain
Krzysztof Walczak, Poznan University of Economics, Poland
Yandong Wang, Wuhan University, China
Rainer Weinreich, Johannes Kepler University Linz, Austria
Stefan Wesarg, Fraunhofer IGD, Germany
Wojciech Wiza, Poznan University of Economics, Poland
Martin Wojtczyk, Technische Universität München, Germany
Hao Wu, School of Information Science and Engineering, Yunnan University, China
Mudasser F. Wyne, National University, USA
Zhengchuan Xu, Fudan University, P.R.China
Yiping Yao, National University of Defense Technology, Changsha, Hunan, China
Stoyan Yordanov Garbatov, Instituto de Engenharia de Sistemas e Computadores - Investigação e
Desenvolvimento, INESC-ID, Portugal
Weihai Yu, University of Tromsø, Norway
Wenbing Zhao, Cleveland State University, USA
Hong Zhu, Oxford Brookes University, UK
Qiang Zhu, The University of Michigan - Dearborn, USA



International Journal on Advances in Software

Volume 9, Numbers 1 & 2, 2016

CONTENTS

pages: 1 - 23
CommJ: An Extension to AspectJ for Improving the Reuse and Maintability of Communication-related
Crosscutting Concerns
Ali Raza, ItsOn Inc., USA
Stephen Clyde, Utah State University, USA

pages: 24 - 36
Triangulation and Segmentation-based Approach for Improving the Accuracy of Polygon Data
Alexey Noskov, Technion – Israel Institute of Technology, Israel
Yerach Doytsher, Technion – Israel Institute of Technology, Israel

pages: 37 - 49
Extending Interface Roles to Account for Quality of Service Aspects in the DAiSI
Dirk Herrling, Technical University Clausthal, Germany
Andreas Rausch, Technical University Clausthal, Germany
Karina Rehfeldt, Technical University Clausthal, Germany

pages: 50 - 61
A Framework for Big Metabolomic Data Management and Analysis
Xiangyu Li, Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
Leiming Yu, Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
David Kaeli, Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
Yuanyuan Yao, Department of Pharmaceutical Sciences and Barnett Institute, Bouve College, Northeastern
University, Boston, MA, USA
Poguang Wang, Department of Pharmaceutical Sciences and Barnett Institute, Bouve College, Northeastern
University, Boston, MA, USA
Roger Giese, Department of Pharmaceutical Sciences and Barnett Institute, Bouve College, Northeastern
University, Boston, MA, USA
Vicent Yusa, Department of Analytical Chemistry, University of Valencia, Burjassot, Spain
Akram Alshawabkeh, Department of Civil and Environmental Engineering, Northeastern University, Boston, MA,
USA

pages: 62 - 79
O|R|P|E - A Data Semantics Driven Concurrency Control Mechanism with Run-time Adaptation
Tim Lessner, freiheit.com technologies gmbh, Germany
Fritz Laux, Reutlingen University, Germany
Thomas M Connolly, University of the West of Scotland, UK

pages: 80 - 94
Context-aware Mobile Security - Experimental Validation of Reliable and Secure Context Detection
Christian Jung, Fraunhofer IESE, Germany
Denis Feth, Fraunhofer IESE, Germany

pages: 95 - 106
A Software Application to Streamline and Enhance the Detection of Fraud in Published Financial Statements of



Companies
Duarte Trigueiros, University Institute of Lisbon, Portugal
Carolina Sam, Master of European Studies Alumni Association, Macau

pages: 107 - 115
Coordinated Task Scheduling in Virtualized Systems: Evaluation and Implementation Details
Jérémy Fanguède, Virtual Open Systems, France
Alexander Spyridakis, Virtual Open Systems, France
Daniel Raho, Virtual Open Systems, France

pages: 116 - 127
Enterprise Integration Modeling
Mihaela Iridon, Cândea LLC, USA

pages: 128 - 140
Facial Part Effects Analysis using Emotion-evoking Videos focused on Smile Expression Process
Kazuhito Sato, Akita Prefectural University, Japan
Momoyo Ito, Tokushima University, Japan
Hirokazu Madokoro, Akita Prefectural University, Japan
Sakura Kadowaki, Smart Design Corp., Japan

pages: 141 - 153
Infinite Horizon Decision Support For Rule-based Process Models
Michaela Baumann, Institute for Computer Science, University of Bayreuth, Germany
Michael Heinrich Baumann, Institute for Mathematics, University of Bayreuth, Germany
Dominik Franz-Xaver Gruber, Faculty of Computer Science, Hochschule Kempten - University of Applied Sciences,
Germany
Stefan Jablonski, Institute for Computer Science, University of Bayreuth, Germany



CommJ: An Extension to AspectJ for Improving the Reuse and Maintainability of 

Communication-related Crosscutting Concerns 

Ali Raza 

SaaS Cloud Engineer 

ItsOn Inc.  

Silicon Valley, California, USA 

ali.raza@itsoninc.com 

Stephen Clyde  

Computer Science Department 

Utah State University 

North Logan, Utah, USA 

Stephen.Clyde@usu.edu

 

 
Abstract—This paper presents advances of research on 

CommJ, a framework for weaving communication-aware 

aspects into application code. Specifically, it presents a 

simplified Universe Model for Communication (UMC) and an 

enhanced implementation of CommJ. It also summarizes a 

preliminary experience that tests seven hypotheses about how 

CommJ might improve reusability and maintainability of 

software applications that rely on network communications. 

The summary includes a description of a quality model 

consisting of factors that impact reusability and 

maintainability, attributes that the factors depend on, and 

metrics for assessing those attributes. The experiment was a 

two-group study involving seven aspect-oriented programmers. 

Despite the small number of study participants, the experiment 

yielded encouraging results about CommJ’s potential. 

Specifically, CommJ can improve reusability and 

maintainability of application code when there are 

communications-related crossing-cutting concerns.  

Keywords – aspect orientation; aspect-oriented programming 

languages; AspectJ; communications; cross-cutting concerns; 

software reuse; software maintainability. 

I.  INTRODUCTION 

Inter-process communications are ubiquitous in today’s 
software systems, yet they are rarely treated as first-class 
programming concepts. Consequently, developers have to 
implement communication protocols manually using 
primitive operations, such as connect, send, receive, and 
close. For many communication protocols, the sequencing 
and timing of these primitive operations can be relatively 
complex. For example, consider a distributed system that 
uses the Passive File Transfer Protocol (Passive FTP) to 

move large datasets between clients and servers. With 
Passive FTP, a server would enable communications by 
listening for connections requests on a published port, 
usually port 21. A client would then initiate a conversation, 
i.e., start an instance of the Passive FTP protocol, by sending 
a connect request to the server on that port. The server sets 
up a dedicated port, 2024 in this example, and sends its 
number back to the client. The client connects to that port 
and the server sends back an acknowledgment. At this point, 
two processes can start exchanging data on this dedicated 
communication channel. The arrows in Figure 1 illustrate 
this initial sequence of messages.  

Neither the client’s nor the server’s side of the 
conversation is trivial. In fact, both usually execute different 
parts of the conversation on different threads. For example, 
Figure 1 shows two threads for a FTP server and two threads 
for a FTP client. Although multi-threading has many 
advantages, it can create complexities while trying to follow 
a conversion’s execution in the code because different parts 
of the conversation end up being handled by different 
components in the code. 

A distributed system with concurrent conversations based 
on one or more non-trivial communication protocols may be 
further complicated by other communication-related 
requirements, such as logging, detecting network or system 
failures, monitoring congestion, balancing load across 
redundant servers, and supporting multiple versions of one or 
more of the protocols [1][2]. 

From a communication perspective, these concerns are 
examples of what Aspect Orientation (AO) refers to as 
crosscutting concerns, because they pertain to or cut through 
multiple parts of a core or base system. Implementing one or 
more of these concerns without careful attention to 
encapsulation, modularization, cohesion, and coupling can 
cause undesirable scattering and tangling of code. 

AO, which first appears in the literature in 1997 [3][4], 
reduces scattering and tangling of code by encapsulating 
crosscutting concerns in first-class programming 
constructions, called aspects [5]. An aspect is an Abstract 
Data Type (ADT), just like classes in strongly-typed, class-
based, object-oriented programming languages. However, an 
aspect can also contain advice methods that encapsulate logic 
for addressing crosscutting concerns and pointcuts for 
describing where and when the advice needs to be executed. 
A pointcut identifies a set of joinpoints, which are temporal 
points during the execution of the system when weaving of 

 
 

Figure 1. The Starting of a Passive FTP Conversation 

: FTP Client

: Controller
: Data 

Manager

: FTP Server

: Command 
Manager

: Data 
Manager

1

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



advice may take place. Each joinpoint corresponds to static 
place in the source code, called a shadow [5]. 

AspectJ is an extension to Java for aspects and, like many 
other AOPLs and Aspect-oriented Frameworks (AOFs) 
[5][6][7][8], it allows programmers to weave advice for 
crosscutting concerns into joinpoints that correspond to 
various programming construct, such as constructor 
calls/executions, methods calls/executions, class attribute 
references, and exceptions. For documentation on AspectJ, 
see The AspectJ Project website [5]. 

Since aspects are just special ADTs, it is possible for 
skilled software developers using traditional object 
orientation (OO) to implement classes that do basically the 
same thing. However, these classes would have to manage 
all the joinpoint contexts and weaving of crosscutting 
behaviors explicitly. Furthermore, hooks into crosscutting 
behaviors would most likely have to be introduced into the 
core application code. In other words, the real difference 
between AO and OO is that AO offers a convenient 
mechanism for separating crosscutting concerns from core 
functionality. It encourages obliviousness, which is the idea 
that core functionality should not have to know about 
crosscutting concerns [9][10]. With obliviousness, 
programmers should be able to add or remove the 
crosscutting concerns at build time without changing any 
source code. 

The problem is that AspectJ and other AOPLs do not 
support the weaving of advice into core high-level 
application abstractions, such as conversations among 
processes in a distributed system, since those abstractions are 
based on run-time context information beyond code 
constructs, a single thread flow of execution, or its call stack. 
This paper introduces an extension to AspectJ, called 
CommJ [1][2] that allows developers to weave crosscutting 
concern into conversations in a modular and reusable way, 
while keeping the core functionality oblivious to those 
concerns. 

We elaborate on the problem and review related literature 
in Section II. Then, in Section III, we formalize the notion of 
communication joinpoints and introduce CommJ. Next, 
Section IV demonstrates the feasibility and utility of CommJ 
by describing a library of reusable communication aspects 
and providing examples from a non-trivial sample 
application. 

To explore CommJ’s utility as a valuable extension to 
AspectJ, we conducted a preliminary experience that 
measured the quality of applications and extensions to 
applications built with CommJ compared to the same built 
with only AspectJ. Section V describes the quality model 
that we used for the comparison and evaluation of the 
application software. It is an adaption of the Comparison 
Quality Model by C. Sant’Anna et al. [11]. Sections VI & 
VII explain the hypotheses and experimental method, while 
Section VIII presents the results of the experiment along 
with our interpretations and conclusions for each hypothesis.  

Overall, the experiment provides preliminary evidence 
that the applications written with CommJ are more cohesive 
and oblivious and that they have less scattering and tangling 
of cross-cutting concerns then their AspectJ-only comparison 

applications. Furthermore, those using CommJ were more 
loosely coupled, less complex, and smaller in size. The 
results are encouraging and provide ample motivation to 
continue work on CommJ and to pursue other opportunities 
for weaving aspects into application-level abstractions. 
Section IX summarizes the contributions of this paper and 
discusses future work. 

II. BACKGROUND AND RELATED WORK 

To explain CommJ and its contributions, it is first 
necessary to establish a foundation of background concepts 
and related work in four areas: The AOP paradigm, AOP 
development tools (i.e, languages and frameworks), 
communications, and cross-cutting concerts with respect to 
communications. 

A. The AOP Paradigm 

In general, a skilled programmer can do anything in an 
OO programming language (OOPL) that could be done in an 
AOPL by making careful design decisions that encapsulate 
crosscutting concerns in well-modularized classes and 
hooking those features into the base application. To do this, a 
programmer could use software constructs, such as 
delegates, callbacks, and events, or apply various design 
patterns, like the Strategy, the Decorator, and the Template 
Method patterns [13]. However, the developer may still end 
up with code tangling and scattering, unnecessary coupling, 
lack of obliviousness, and compromised flexibility. AO 
provides an elegant way of weaving new behaviors into 
existing code, such that their functionality is less scattered, 
tangled, and decoupled from the base application, without 
compromising that functionality.  

With AO, programmers should only need modular 
reasoning to discover the code and structure of the 
crosscutting concerns; whereas they would most likely need 
global reasoning when using traditional OO techniques [13]. 
Additionally, when using only OO techniques, separating out 
tangled code from core functionality can cause inheritance 
anomalies [14]. AO programmers, on the other hand, can 
refactor tangled code by moving it into loosely coupled 
aspects. So, the attraction of AO is not that a developer can 
do more, but that a developer can do certain things better, 
particularly in terms of modularizations or crosscutting 
concerns with less scattering and less tangling. 

B. AOP Languages and Framework 

Other techniques that address the same problems solved 
by OO, including Monads [15], Subject-oriented 
Programming [16][17], Reflection [18][19], Mixins [20], and 
Composition Filters [18]. The AO approach seems to have 
risen to the top as the most influential because it allows for 
better modularity of crosscutting concerns and it does not 
alter or violate principles of the OO paradigm. 

There are many AOPLs and AOFs available today, such 
as AspectJ [5], AspectWorkz [6], Spring AOP [8] and JBoss 
AOP [7]. Though they are semantically similar in terms of 
their aspect invocation, initialization, access and exception 
handling routines, they differ in programming constructs, 
syntax, binding, expressiveness, approaches to advise 

2

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



weaving, static or dynamic analysis, and their overall 
acceptance in academia and industry. Currently, AspectJ 
(powered by IBM) is the de facto standard and the most 
widely used AOPL. Perhaps, this is because it is an 
extension to Java and takes advantage of Java class libraries 
and development environments. 

None of the these AOPLs and AOFs allow developers to 
consider a conversation as a context into which cross-cutting 
concerns may be woven. They all focus on either compile-
time contexts, like methods and classes) or primitive run-
time contexts, like the objects and call stacks. To allow 
conversations to be contexts, without forcing programmers 
to create the necessary infrastructure manually as part of the 
application code, an AOF for communications would have to 
define model of communications and then automatically 
track individual conversations. 

C. Communications, Conversations, and Protocols 

In general, inter-process communications are either 
connection-oriented or connectionless. Connection-oriented 
communications require two concurrent processes to 
establish a communication link before exchanging data. This 
style of communication is very much like a person-to-person 
telephone call. In contrast, with connectionless 
communications, one process can send a message to another 
process without knowing whether that process is ready to 
receive the message or if it even exists yet. This style of 
communication is like traditional postal mail. 
Communication subsystems or libraries, like the JDK’s 
Channels and Sockets, typically support both styles of 
communication. 

A conversation is a series of interactions between two or 
more processes for some purpose. It may include the 
formation of a connection (only for connection-oriented 
communications), exchange of messages among the 
processes, and the termination of the connection (again, only 
for connection-oriented communications). A conversation is 
like a phone call with a doctor’s office to setup an 
appointment or a series for postal mailings that were 
necessary for the signing of a contract. Conversations can 
last for just a millisecond or go on for days. 

Like a formal interaction between two parties signing a 
contract, an electronic conversation between processes 
follows a protocol that governs the expected behavior of the 
participating processes. Some protocols are symmetrical, 
meaning that all participants follow the same rules. However, 
it is more common for protocols to be asymmetrical, 
meaning that each participant acts according to the role it is 
playing. Many protocols, like the Passive FTP example 
mentioned earlier, involve two roles: a conversation initiator 
and responder. Sometimes, these roles are simply referred to 
as client and server. However, these terms have broader 
meanings that imply other software architectural issues 
beyond communications, so we avoid them here. 

Implementations of communication details can vary 
depending on the underlying communication libraries, e.g., 
Channels and Sockets. These differences are, however, only 
of secondary importance and can be easily supported by 
different adapters in CommJ implementation. So, further 

explanation of diversity and subtleties of the various 
communication implementation techniques are beyond the 
scope of this paper. 

D. Crosscutting Concerns in Communications 

Despite AspectJ’s rich set of pointcut designators, there 
is still a weakness relative to weaving crosscutting concerns 
into communications. Specifically, AspectJ and any other 
similar AOPLs or AOFs do not work with conversations 
directly. Specifically, they do not track individual 
conversation contexts or link together messages of the same 
conversation. Consequently, programmers cannot weave 
behaviors directly into individual conversations. 
Furthermore, since the execution of conversation may be 
spread across multiple software components and multiple 
threads, tracking individual conversations is beyond what 
language-construct-based aspect weaving can accomplish. 

Consider a communication-related crosscutting concern 
that involves tracking the total time for all connectionless 
conversations in a distributed application. If a programmer 
wants to implement crosscutting concern in AspectJ, he or 
she would have to implement some advice for the 
conversation’s initiation that would capture the time when 
the first message was sent, as well as other advice that would 
capture the time when the last message was received and 
then compare the two times. However, send and receive 
logic for the conversation may be in separate code modules, 
may be separated in the execution flow by an unpredictable 
amount of time, and may even be handled on separate 
execution threads. Furthermore, a process may start or 
participate in many conversations at the same time, and the 
advice would have to manually correlate the first message of 
particular conversation with the last message of that 
conversation. In a nutshell, the programmer would have to 
build all of the message tracking and correlation objects into 
the aspect and its advice. 

III. COMMJ 

To enable the weaving of advice into individual 
conversations, we first define a general model, i.e., the 
Universe Model of Communication (UMC), for connection-
oriented and connectionless communications and use it as a 
basis for formalizing the notation of communication 
joinpoints. We then implement CommJ according to the 

 
 

Figure 2. CommJ and its associated components 

 

Application Aspects

Reusable Aspect Library

CommJ

UMC AspectJ

d
ep

en
d

en
ci

es

3

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



UMC and on top of the aspect capabilities provided by 
AspectJ (see Figure 2). The CommJ implementation 
provides a) base aspects with abstract pointcuts for 
communications, independent of the underlying 
communications subsystem and b) behind-the-sense 
components to track individual conversation contexts at 
runtime. Application programmers simply include the 
CommJ library into their build and create their own 
communication aspects that inherit from the base CommJ 
aspects. To help them integrate common communication-
related cross-cutting concerns into their application, we also 
provide a Reusable Aspect Library (RAL). The rest of this 
section describes the communications model, 
communication joinpoints, and the CommJ library in more 
detail. Then Section IV highlights some of the aspects in the 
RAL and shows how that can be used in a sample 
application. 

A. A Universe Model of Communications 

The UMC describes a minimal set of general concepts 
that cover both connection-oriented and connectionless 
communications provided by most communication systems. 
In doing so, it models events, threads, messages, 
conversations, and protocols, as well as the relationships 
among these concepts.  

1) Events 
An event can be described as the happening of 

something. The UMC contains three event types: 
Communication Event, Connection Event, and Exception 
Event (not shown in Figure 3). A Communication Event is 
the happening of something (related to send or receive) in 
message-based communications, at a particular point in time. 
It is further divided in two types: Communication Send 
Event and Communication Receive Event, respectively. The 
UMC states that every receive event must have a 
corresponding send event. In other words, a send event can 
exist without a receive event but not conversely. 
Communication Events also exhibit one more special 
characteristic, namely they can relate to each other; an event 
can contain or be associated with many other events. For 
example, in a distributed application, a thread T1 can send a 

message which corresponds to a send event. Eventually, that 
can lead to a receive-message event on some other thread T2. 
The relation between these two events is modeled by the 
“happened before” relationship on Event in Figure 3.  

Connection Events are happenings related to the setting 
up of communication channels, and are specialized into four 
types:  

 A Connect Event occurs when an initiator sends the 
connect request to a responder 

 An Accept Event occurs when a responder accepts a 
connect request from an initiator 

 A Listen Event occurs when a responder listens for 
incoming data 

 A Close Event occurs when a responder or an 
initiator closes the connection 

UMC does not need to include exception events 
explicitly because AspectJ already defines a rich set of 
pointcuts for defining crosscutting concerns that involve 
exceptions.  

A Thread can instantiate and encapsulate multiple send 
or receives events. A Communication Event can be 
associated with at most one thread. One process can have 
multiple threads, and a node can host multiple processes. In 
communication systems, an application may be using 
multiple nodes, each with several processes, which in turn 
may have multiple threads.  

2) Conversations 
In general, a conversation from single process’s 

perspective is a sequence of messages that follow 
communication rules that either comprise all or part of 
exchange with other process: 

A. an entire conversion from a process’s perspective 
(see the bracket sequence, A, in Figure 4) 

B. any sequence of send or receive events in the 
conversation as seen by a process (see B in Figure 
4)  

C. a single send or receive event in a conversation (C 
in Figure 4)  

In Figure 5, we see that each conversation in UMC can 
use a set of Communication Events. A Communication 
Event occurs on a Communication Channel and is indirectly 

 

Figure 3. UMC for Events 

4

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 
Figure 4. Conversations in UMC 

associated with a protocol through it conversation to which 
the event belongs. A conversation is also capable of keeping 
track of Communication Events that occur in a multithreaded 
application with multiple channels.  

With CommJ, a distributed application can consider a 
conversation all or just subset of the messages exchanged 
between specific processes, previously illustrated in Figure 
4. This gives developer a freedom to organize the 
conversations in a manner that seems appropriate for the 
application and the freedom to use virtual any kind of 
communication protocol or pattern. 

3) Channel 
Every Conversation happens on a Channel (Figure 5). A 

Channel also acts as a way of connecting the Communication 
Events with the Connection Events. In addition, a Channel 
also abstracts the underlying network-specific components, 
e.g., JDK’s Sockets and Channels, into higher level concepts 
that are consistent across platforms. In design pattern terms, 
the UMC’s Communication Channel is like an Adapter [12] 
to underlying communication mechanisms, but for 
crosscutting concern.  

4) Messages 
A message is a class that encapsulates data exchanged 

during IPC. Processes or threads in communication systems 
exchange data through events invocations in UMC. 
Communication Events are strongly associated with Message 
instances in the model. Each Message can be associated with 
at most one send and one receive event. Further, Messages 
and Communication Events follow similar specialization 

hierarchies; from a process’s perspective both are specialized 
into send and receive types. An instance of Message received 
keeps track of its Received Event, and a Message sent knows 
about its Sent Event.  

All CommJ applications derive their specific message 
classes from the base Message class (see Figure 6), which is 
in the CommJ Infrastructure. The Message class contains 
getter and setter methods for the properties shown in Figure 
6. Collectively, the first five properties are referred to 
Message Identifying Information (MIF). These five elements 
provide the necessary information to identify the context of 
any message, thus enabling CommJ to create and manage 
conversation metadata, represented by the Conversation class 
in Figure 5. 

The CommJ Infrastructure implements abstract Message 
with an interface, call IMessage. CommJ then dynamically 
introduces it into the core software during aspect initialize 
(see Section IV.A). The interface IMessage is the only direct 
dependency between the core application and CommJ.  

5) Connections 
A process may be acting in the role of a sender or receiver 

while handling communication events and as an initiator or a 
responder while handling connection events. An initiator can 
handle only connect and close events, whereas a responder 
can handle listen, accept and close events, respectively. 
Figure 7 illustrates the connection-related concepts in UMC.  

IV. COMMJ ASPECT LIBRARY AND SAMPLE APPLICATION 

This section describes the general architecture of CommJ 
along with some fundamental concepts, mostly about low-
level design and implementations. Finally, it discusses some 
sample applications, developed using CommJ. 

A. Joinpoints 

The UMC serves as a foundation for formalizing 
communication joinpoints, which fall into two general 
categories: communication joint points and connection-
related join points, respectively.  

1) Communication Joinpoints 
Joinpoints represent places and times where/when advice 

can be executed. In AspectJ, they correspond to constructors, 
methods, attributes, and exceptions. Advice can be executed 
before, after, or around these various contexts. CommJ adds 

 
Figure 5. UMC for Conversations 

5

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



conversations to AspectJ as possible contexts. Unlike 
AspectJ contexts, however, a conversation is not tied to a 
single programming construct but to the runtime abstraction 
of an inter-process conversation. 

Figure 8 represents different kinds of message related 
joinpoints in CommJ. A Send Event JP, is the region of code, 
where advice can be woven into, when a communication 
event related to sending of data, occurs in a process or 
thread, where as a Receive Event JP is related to receiving of 
data respectively. Request Reply Conversation JP, represents 
a joinpoint for complete conversations, but they follow basic 
request-reply protocols. It contains a Send Event JP and a 

Receive Event JP. A Send Event JP keeps track of message 
Id whereas a receive Event JP records a response Id for a 
request-reply type of conversation. An initialization aspect 
dynamically introduces MIF information for all CommJ 
joinpoints. While sending a message, CommJ creates an 
instance of a Send Event JP and adds it to the 
communication registry, which contains communication 
joint points. Similarly on receiving a message, it creates an 
instance of a Receive Event JP and finds a Send Event JP 
from the registry where the message Id of the former equals 
the response Id of the later. Finally, Multi-step Conversion 
JP, represents joinpoints for across multiple events or for 
entire conversations. Multiple send and receive events are 
modeled using a state machine in a Multi-step Conversation 
JP.  

2) Connection Joinpoints 
The other types of joinpoints are connection-related 

sequence of events such as connect, accept, listen, and close 
events. Connection joinpoints in CommJ are either owned by 
an initiator or a responder (see Figure 9 for more details 
about the following types of connection-related joinpoints in 
CommJ). 

An initiator creates a Connect Event JP. It encapsulates 
the connection information related to underlying sockets and 

 
Figure 6. UMC for Messages 

 
Figure 8. Communication Joinpoint and Registry 

 
Figure 7. UMC for Connections 

6

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 
Figure 10. CommJ Message Event Join Points and Reusable Aspects 

 

channels along with their local and remote addresses. 
Responder creates an Accept JP on receiving a connection 
request from the initiator. Both the initiator and responder 
instantiate a Close Event JP when a connection closes. 

Channel JP acts like a bridge between communication 
joinpoints and connection joinpoints. It also maintains links 
between a responder Accept JP and an initiator Connect 
Event JP. Additionally, a Channel JP Registry is used to 
correlate different connection-related events that belong to 
the same conversation.  

B. Joinpoint Trackers 

Behind the scenes, CommJ relies on JoinpointTrackers, 
which are monitors [13] that perform pattern matching on 
communication events and connection events to track 
individual events and to organize them into high-level 
conversation contexts. Since the monitoring of 
communications is itself a crosscutting concern, Joinpoint 
Trackers are implemented as aspects that weave the 

necessary monitoring logic into places where a 
communication event may take place. In CommJ, there can 
be two types of event trackers: message-joinpoint trackers 
and connection-joinpoint tracker.  

1) Message Joinpoint Trackers 
The Message Joinpoint Tracker (see Figure 10) crosscuts 

the send and receive events for both reliable and unreliable 
communications in the core application and defines a set of 
pointcuts in the simple send and receive abstractions. 
Message Joinpoint Tracker is an aspect that hides 
communication related abstractions in the core application.  

The Message Joinpoint Tracker aspect defines pointcuts 
in the send and receive abstractions (Figure 11) by 
overcoming the syntactic and semantic variations, defined in 
JDK Sockets and Channels libraries. It provides simple and 
elegant communication pointcuts, which are rich enough to 
encapsulate abstractions for both connection-oriented and 
connectionless protocols. Hence, Message Joinpoint Tracker 
creates two clean, well-encapsulated communications related 

 
Figure 9. Connection Joinpoint and Registry 

7

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



abstractions for all types of read and write 
operations.  

2) Connection Joinpoint Trackers 
The Message Joinpoint trackers are categorized into 
Initiator Joinpoint Tracker and Responder Joinpoint 
Tracker, which crosscut the syntactic and semantic 
variations, exist in both reliable and unreliable 
communications, and unify them into a set of 
pointcuts in the abstractions of channel, connect, 
accept and close.  

The Responder Joinpoint Tracker, defines two 
simple pointcuts, i.e., Accept and Close, where 
Initiator Joinpoint Tracker, defines three pointcuts, 
i.e., Channel Connect, Channel Connect Finish and 
Channel Close pointcuts. These two trackers 
manage all connection-related abstractions and 
styles related to both the responder and initiator for 
connectionless and connection-oriented communications. 
Figures 12 & 14 describe the general architecture of 
responder and initiator, and Figures 13 & 15 present their 
code snippets.  

C. Base Aspects 

The CommJ Infrastructure implements high-level IPC 
abstractions as base aspects, which fall into two categories, 
i.e., Communication aspects and Connection aspects. They 

 
Figure 12. Responder Joinpoint and Base Aspects 

 

 

public aspect ResponderJoinPointTracker { 

   private pointcut SocketAccept(Socket _socket, InetSocketAddress _remoteEP): 

     call(* Socket+.accept(..)) && target(_socket) && args(_remoteEP); 

      

  pointcut ChannelAccept(ServerSocketChannel _serverSocketChannel) :  

     call(* ServerSocketChannel+.accept()) && target(_serverSocketChannel) ;  

         

 
  pointcut ChannelClose(ServerSocketChannel _serverSocketChannel) : 

     call(* ServerSocketChannel.close()) && target(_serverSocketChannel); 

    

     

  public pointcut ChannelOpen(DatagramChannel _channel, SocketAddress _addr) :  

     call(* DatagramChannel.bind(..)) && target(_channel) && args(_addr); 

   … 

} 
 

Figure 13. A Code Snippet of ResponderJoinPointTracker 

public aspect MessageJoinPointTracker { 

 

  private pointcut SocketRead(Socket _socket, byte[] _buffer, int _len) : 

    call(* Socket+.read(byte[], ..)) && target(_socket) && args(_buffer, _len);   
  

  private pointcut ChannelRead(SocketChannel _channel, ByteBuffer _buffer) : 

    call(* SocketChannel+.read(ByteBuffer)) && target(_channel) && args(_buffer) || 

    call(* DatagramChannel+.receive(ByteBuffer)) && target(_channel) && args(_buffer) ; 

  

  public pointcut SocketWrite(Socket _socket, byte[] _data, int _length) : 

    call(void Socket+.write(byte[], int)) && target(_socket) && args(_data, _length); 

  

  public pointcut ChannelWrite(SocketChannel _channel, ByteBuffer _data) : 

    call(* SocketChannel+.write(ByteBuffer)) && target(_channel) && args(_data); 
        

  public pointcut DatagramChannelWrite(DatagramChannel _channel, ByteBuffer _data, SocketAddress _addr) : 

    call(* DatagramChannel+.send(ByteBuffer, SocketAddress)) && target(_channel) && args(_data, _addr) ; 

  

  private pointcut DatagramChannelRead(DatagramChannel _channel, ByteBuffer _buffer) :  

    call(* DatagramChannel+.receive(ByteBuffer)) && target(_channel) && args(_buffer) || 

    call(* DatagramChannel+.read(ByteBuffer)) && target(_channel) && args(_buffer); 

   …. 

} 
Figure 11. CommJ Message Event Join Points and Aspects 

8

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



public abstract aspect MessageAspect {      

    public pointcut MessageSend(SendEventJP jp) ... 

    public pointcut MessageRecieve(ReceiveEventJP jp) ... 
} 

Figure 16. Pointcuts in MessageAspect 

cut through their respective joinpoint trackers and provide 
communication-related crosscutting concerns. 

1) Message Aspects 
All communication aspects are ultimately derived from 

the abstract Message Aspect class, which provides concrete 
pointcuts that dynamically track send and receive events (see 
Figure 16). 

It is important to note that these pointcuts take CommJ 
joinpoint objects as parameters, because this is how advice is 
woven into these pointcuts, and can access conversation 
contexts. 

The four specializations of Message 
Aspect correspond to four different kinds 
of conversation contexts. Developers can 
create their own application-level 
communication aspects that inherit from 
these aspects and include their own 
advice based on these pointcuts.  

One-way send (OWS). An OWS 
conversation involves only one send 
event on the initiator’s side. For the 
initiator, the conversation automatically 
ends after send event is finished (see 
Figure 17).  

One way receive (OWR). An OWR 
conversation for a responder involves 
only one receive event. The conversation 
automatically ends for the responder after 
a receive event (see Figure 18). 

Bi-directional (Request/Reply style of 
Conversation). Bi-directional 
conversations require a successful round-
trip of a send and receive events. An RR 
Conversation Aspect, which applies to bi-

directional conversations, defines pointcuts Start 
Conversation and End Conversation. The Start Conversation 
creates a Request Reply Conversation JP and starts a 
conversation when a sender invokes a sent event, the End 
Conversation retrieves the matching Request Reply 
Conversation JP from the Message JP Registry and ends a 
conversation when a Receiver invokes a receive event (see 
Figure 19 for more details).  

Multi-step Conversation. It involves any combination of 
send and receive events without any specific order. For 
example, few variations in multi-step conversations are as 
follows: one send event and multiple receive events; multiple 
send events and one receive event; multiple send events and 
multiple receive events or any complex model of send and 
receive events.  

We implemented the multi-step conversation aspect (see 
Figure 20) by deriving from Message Aspect class and 
thereby inheriting the Message Send and Message Receive 

public aspect InitiatorJoinPointTracker { 
 

  private pointcut SocketConnectStyle1(): 

    call(Socket.new()); 

 

  private pointcut SocketConnectStyle2(InetAddress _address, int _port):  

    call(Socket+.new(InetAddress, int)) && args(_address, _port); 

   

  private pointcut SocketConnectStyle4(String _host, int _port):  

    call(Socket.new(String, int))  && args(_host, _port); 

         
  private pointcut SocketConnectStyle5(Socket _socket, InetSocketAddress _endPoint):  

    call(void Socket+.connect(SocketAddress)) && target(_socket) && args(_endPoint); 

     

  pointcut ChannelConnect(SocketChannel _socketChannel, InetSocketAddress _remoteEP) :  

    call(* SocketChannel.connect(..)) && target(_socketChannel) && args(_remoteEP);  

        

  pointcut ChannelConnectFinish(SocketChannel _socketChannel) :  

    call(* SocketChannel+.finishConnect(..)) && target(_socketChannel); 

    
  private pointcut SocketClose(Socket _socket):  

    call(* Socket+.close(..)) && target(_socket);  

   

  pointcut ClientChannelClose(SocketChannel _channel) : 

    call(* SocketChannel.close()) && target(_channel);  

   … 
}   

  Figure 15. A Code Snippet of InitiatorJoinPointTracker 

 
Figure 14. Connection Joinpoint and Base Aspects 

 

9

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



pointcuts. A multistep conversation retrieves message, role, 
protocol and conversation information from Message class 
and creates a state machine instance if it does not already 
exist. During one application session, an aspect may apply 
several concurrent conversations for one type of state 
machine (i.e., a protocol as it applies to one role). The 
context for each conversation is maintained in terms of its 
own current state and associated state machine instance. In 
general, there are two types of state machines. Mealy and 
Moor state machines [19]. Mealy state machine is a finite 
state machine whose output values are determined both by its 
current state and the current inputs whereas in the Moore 
state machine, the output values are determined solely by its 
current state. Mealy state machines are better suited for 
CommJ because they can be defined in terms of transitions 

triggers, which correspond to message events and message 
types. 

The design of the state machine for multistep 
conversation is shown in Figure 21 and code snippet is in 
Figure 22. A CommJ state machine has two components: 
State and Transition. A State encapsulates the state name, 
whether it is in initial or final state, and its list of transitions. 
Transition is defined using four basic elements: Action Type, 
Message Type, From State, and To State. The Action Type is 
transition trigger and can be either a send or receive action. 
The Message Type is a filter or guard that specifies what 
types of messages may trigger the transition. From State 
defines the state before transition and To State defines the 
target state after transition. 

When an application is loaded into memory, all 
application-level state machine classes are initialized and 
stored in State Machine Types - a hash map between 
application classes and state machine types. The Register 
methods, declared in abstract state machine and implemented 
by each application-level state machine, are called when 
applications are loaded through a static initialization block. 

2) Connection Aspects 
A Connection Aspect derives from a CommJ base aspect, 

which crosscuts Responder Joinpoint Tracker and Initiator 
Joinpoint Tracker pointcuts. The base connection aspect 
defines the following four pointcuts (see Figure 22): 

Connect pointcut. It crosscuts Initiator Joinpoint Tracker 
connection related pointcut and provides Connect pointcut. 

Accept pointcut. It crosscuts Responder Joinpoint Tracker 
accept related pointcuts and provides an Accept pointcut. 

Close Server pointcut. It crosscuts Responder Joinpoint 
Tracker and provides a Close Server pointcut. 

Close Client pointcut. It crosscuts Initiator Joinpoint 
Tracker “close connection” pointcuts and provides Close 
Client pointcut.  

Complete Connection Conversation. It inherits from 
Connection Aspect (Figure 23) and defines following 

public abstract aspect OneWaySendAspect 

                         extends MessageAspect { 

    public pointcut ConversationBegin(SendEventJP jp).... 

} 

Figure 17. OneWaySend aspect in RAL 

 

public abstract aspect OneWayReceiveAspect 

                         extends MessageAspect { 

    public pointcut ConversationEnd(ReceiveEventJP jp).... 

} 

Figure 18. OneWayReceive aspect in RAL 

public abstract aspect RRConversationAspect 

                         extends MessageAspect { 

    public pointcut ConversationBegin(RRConversationJP jp) .... 

    public pointcut ConversationEnd(RRConversationJP jp) .... 

 .... 

} 

Figure 19. RRConversation aspect in RAL 

public  abstract aspect MultistepConversationAspect 

                          extends MessageAspect { 

  public pointcut ConversationBegin(MultistepConversationJP jp)....  

  public pointcut ConversationEnd(MultistepConversationJP jp).... 
   …. 

} 

Figure 20. MultistepConversation aspect in RAL 

  
Figure 21. Design of Multi-step State Machine 

 

10

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



pointcuts that help programmers to define conversations for 
total connection time on both responder and initiator sides. 

The Conversation Begin On Initiator and 
Conversation End On Initiator pointcuts crosscut 
the state of request to establish and end a 
connection on the initiator. 

The Conversation Begin On Responder and 
Conversation End On Responder pointcuts mark 
the start and end of connection related 
conversation on the responder. 

We also define a helping initialization aspect, 
which loads application specific state machines 
and introduces conversation, role, protocol and 
message identity information before the 
application sends or receives any messages. 

D. Re-usable Aspect Library (RAL) 

Aspects in the RAL are also derived from the 
base aspects in CommJ. They represent general 
crosscutting concerns commonly found in 
applications with significant communication 

requirements. Figure 24 shows part of the 
implementation of first one, i.e., Total Turn Around 
Time Monitor. Note how the advice in this aspect 
follows the Template Method pattern [12]. This 
allows developers to quickly adapt it to the specific 
needs of their application by overriding the Begin 
and End methods. Other aspects in the RAL make 
use of this and other reuse techniques so developer 
can easily integrate them into existing or new 
applications. We expect that RAL will continue to 
grow as new generally applicable communication 
aspects are discovered, implemented, and 
documented.  

E. Application-level Aspects 

This section provides four examples of 
communication and connection related crosscutting 
concerns implemented with CommJ. 

1) Measure Performance in Multi-step 

Conversation Process 
This example discusses the design and 
implementation of measuring the total turnaround 
time for a multistep conversation. Consider a 
communication protocol involving three processes, 
A, B, and C, wherein A starts a conversation by 
sending a message to B and waits for a response. 
When A receives a response from B, it sends a 
message to C and waits for a response. When A 
receives a response from C, it sends a final message 
to both B and C. Figure 25 shows a finite state 
machine for the A Process Role of this protocol. The 
behaviors for B and C Process Roles are 
considerably simpler and are shown in Figures 26 
and 27, respectively.  

The CommJ State Machine class includes a 
Build Transitions method that allows developers to 
define state machines in terms of states and 

message-event transitions. Figure 28 shows the 
implementation of this method to define a State Machine for 
the A Process Role 

public abstract aspect CompleteConnectionAspect extends ConnectionAspect { 

 

  public pointcut ConversationBeginOnInitiator(ChannelJP _channelJp) :  

    execution(* CompleteConnectionAspect.BeginOnInitiator(ChannelJP)) && 
args(_channelJp);  

  public pointcut ConversationBeginOnResponder(ChannelJP _channelJp) :  

    execution(* CompleteConnectionAspect.BeginOnListner(ChannelJP)) && 

             args(_channelJp); 

 

  public pointcut ConversationEndOnResponder(ChannelJP _channelJp) :  

    execution(* CompleteConnectionAspect.EndResponder(ChannelJP)) && 

            args(_channelJp); 

 

  public pointcut ConversationEndOnInitiator(ChannelJP _channelJp) :  
    execution(* CompleteConnectionAspect.EndInitiator(ChannelJP)) && 

           args(_channelJp); 

 

  … 

}   

Figure 23. A Code Snippet of Complete Connection Aspect 

public aspect TotalTurnAroundTimeMonitor  

           extends MultistepConversationAspect{ 

    private long startTime = 0; 
    private long turnAroundTime = 0; 

    before(MultistepConversationJP jp): ConversationBegin(jp){ 

          startTime = System.currentTimeMillis(); 

          Begin(jp); 

    }  

    after(MultistepConversationJP jp): ConversationEnd(jp){ 

          long turnaroundTime = (System.currentTimeMillis() – 

                       startTime)/1000;  

          End(multiStepJP); 
    } 

    public getTurnAroundTime { return turnAroundTime; } 

   protected void Begin(MultistepConversationJP jp){ 

        // Specialization of this aspect should override the method 

   } 

   protected void End(MultistepConversationJP jp){ 

        // Specialization of this aspect should override the method 

   } 

   … 

} 

Figure 24. A code snippet of Total Turn Around Time Monitor 

public abstract aspect ConnectionAspect { 

 

  public pointcut Connect(ConnectEventJP _connectJp) : 

    within(InitiatorJoinPointTracker) &&  
    execution(* InitiatorJoinPointTracker.ChannelConnect(..)) 

             && args(_connectJp); 

 

  public pointcut Accept(ConnectEventJP _connectJp) : 

    within(ListenerJoinPointTracker) &&  

    execution(void ResponderJoinPointTracker.ChannelAccept(..)) 

              && args(_connectJp); 

  

  public pointcut CloseServer(CloseEventJP _closeJp) : 

    within(ResponderJoinPointTracker) &&  
    execution(void ResponderJoinPointTracker.CloseServerEventJointPoint(..)) 

              && args(_closeJp); 

   

  public pointcut CloseClient(CloseEventJP _closeJp) : 

    within(InitiatorJoinPointTracker) &&  

    execution(void InitiatorJoinPointTracker.CloseClientEventJointPoint(..)) 

              && args(_closeJp);  

}   

Figure 22. A Code Snippet of Connection Aspect 

11

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 For discussion purposes, assume that the performance 
measurements are a rolling window of throughput and 
average-conversation turn-around time statistics. Also, 
assume that the core application considers a unit of work to 
be the completion of a conversation that follows this 
protocol. So, throughput can be measured for a unit of time, 
say 1 minute, by simply counting the number of these 
conversations completed in 1 minute. The average turn-
around time is the average of timespans from conversations 
start times to conversations end times. The rolling window 
keeps track of these statistics for the current minute and the 
10 previous minutes. Figure 29 shows the key pieces of code 
for an aspect that implement this performance measure 
crosscutting concern.  

First notice how the aspect is derived from Total Turn 
Around Time Aspect and in doing so, it can reuse its 
implementation of the conversation turnaround time concept 
directly. Then, it adds the Stats array for holding the rolling 
window of statistics and some additional behavior to the 
ending of a conversation to compute the statistics.  

2) Version Control Aspect 
This example discusses the design and implementation of 

an aspect that can coordinate communications when different 
processes are following different versions of a protocol. 
Imagine that the protocol discussed in the previous example 
has evolved over time, resulting in multiple versions of the 
messages’ syntax. If process A is following the updated 

syntax rules and trying to communicate with B or C 
processes that are following rules from prior versions, there 
will be communication errors. Ideally, it would be nice to 
allow seamless independent upgrading to any of the 
processes without effecting the communications.  

public aspect ProcessRoleA extends StateMachine{ 

.... 

  @Override 

  public void buildTransitions(){ 

    addTransition("Initial", "S", "M1", "WaitingRspFromB"); 

    addTransition("WaitingRspFromB", "R", "M2", "ReceivedRspFromB"); 

    addTransition("ReceivedRspFromB", "S", "M3", "WaitingRspFromC"); 

    addTransition("WaitingRspFromC", "R", "M4", "ReceivedRspFromC"); 
    addTransition("ReceivedRspFromC", "S", "M5", "Final"); 

  } 

  .... 

}   

Figure 28. State Machine Configuration for ProcessRoleA 

public aspect MyAppPerformanceMonitor  

extends TotalTurnAroundTimeMonitor { 

 

  private ArrayList<Stats> statsList = new ArrayList(11); 

  private int currentStatsIndex = 0; 
     

  @Override 

  public void End(MultistepConversationJP jp) { 

    //Get number of elapsed minutes since begining of current Stats 

    long elapsedMinutes = Min(Stats[currentStatsIndex] 

.getMinutesSinceStartTime(), 

    10); 

    //Roll Stats window forward, if necessary          

    for (int i=0; i<elapsedMinutes; i++) { 

      currentStatsIndex++; 
      if (currentStatsIndex>10){ 

        currentStatsIndex=0; 

        Stats[currentStatsIndex].Reset(); 

      } 

      currentStats.addCompleteConversation(getTurnaroundTime); 

    } 

  } 

 

  class Stats { 
    private long startTime; 

    private int completeConvCount; 

    private double avgTurnaround; 

    public Stats() {Reset(); } 

    public void Reset() { 

      startTime = currentTime; 

      completeConvCount = 0; 

      avgTurnaround = 0; 

    } 

    public long getMinutesSinceStartTime() { 
    //using current time, compute and return the number of minutes  

    //since the start time of this Stats object. A zero means we still  

    // in the  same minute. 

    } 

    public void addCompleteConversation(double turnaroundTime) { 

      avgTurnaround = ((completeConvCount*avgTurnaround) +  

        turnaroundTime)/(++completeConvCount); 

    } 

  } 
}   

Figure 29. Performance Measure Crosscutting Concern 

public aspect SendVersionControlAspect 

extends OneWaySendAspect { 

  .... 

  void around(SendEventJP _sendEventJp): 

ConversationBegin(_sendEventJp){ 

    //code that check and update the most recent version 
    //of messages being sent    

  } 

}   

Figure 30. Version Control Aspect for Messages Sent 

public aspect ReceivedVersionControlAspect 

extends  OneWayReceiveAspect { 

  .... 

  void around(ReceiveEventJP _receiveEventJp): 

ConversationBegin(_receiveEventJp) { 

    //code that check and update the most recent version of 
    // received message    

  } 

} 

Figure 31. Version Control Aspect for Messages Received 

 
Figure 25. State Machine for the A ProcessRole  

 

 
Figure 26. State Machine for the B ProcessRole 

 
Figure 27. State Machine for the C ProcessRole  

 

12

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The application-level version control aspects in Figures 
30 and 31 extend RAL communication aspects discussed in 
Section IV.C. On sending the messages, One Way Send 
Aspect ensures that it is sending the most recent version of 
messages. Similarly, on receiving the messages, 
OneWayReceiveAspect verifies that received message is 
also in the most recent version. 

3) Logging Responder and Initiator Connection Times 

for FTP 
This section describes aspects for logging responder and 

initiator connection times for the processes using FTP for file 
transfer. Assume that an FTP client establishes a TCP 
connection to an FTP server. Then it requests the server for 
transferring a file. The server receives the request. If the file 
is too big to transfer in one send, it divides the file into 
smaller chunks of fixed block sizes and sends each chunk 
with its completion status. After sending the final chunk, 
both the server and client close the connections. 

As mentioned above, with FTP, there are two processes: 
an FTP client and FTP server. The server and client 
communicate using two messages, i.e., File Transfer Request 
and File Transfer Response. FTP client sends a File Transfer 
Request message to FTP server, after a connection has been 
established between the two processes. The File Transfer 
Request message contains the requested file name. When 
FTP server receives the request, it starts sending the response 
message (File Transfer Response) to the client, which 
includes the file information, data chunk number and its 
completion status. Following paragraphs describe related 
application-level aspects for initiator and responder. 

Aspect - Logging Initiator Connection Time. This is an 
application-level connection aspect, developed using the 
RAL connection aspect, i.e., Complete Connection Aspect in 
Section IV.C. It logs the time between initiating connection 
request to the responder (FTP server) and ending of 
connection on the initiator (FTP client) using Conversation 
Begin On Initiator and Conversation End On Initiator 
pointcuts (see Figure 32). 

Aspect - Logging Responder Connection Time. This is an 
application-level connection aspect, developed using RAL 
connection aspect, i.e., Complete Connection Aspect in 
Section IV.C. It logs the time period between acceptance of 
connection request from initiator and ending of connection 
on the responder using Conversation Begin On Responder 
and Conversation End On Responder pointcuts (see Figure 
33).  

V. EXTENDED QUALITY MODEL 

To measure the maintainability and reuse, we use 
Sant’Anna’s Comparison Quality Model (CQM) [21] and 
extends it with new factors and internal attributes, forming 
the Extended Quality Model (EQM); see Figure 34. We use 
Sant’Anna’s model because it is more generalized to 
measure different concerns of reuse and maintenance as 
compared to Lopes’ work [22]. Additionally, this model is 
strong enough to be applied to different types of 
implementations, discussed in this paper.  

Sant’Anna builds the CQM using Basili’s General 
Quality Methodology (GQM) [23], which provides a three-
step framework: (1) list the major goals of the empirical 

public aspect ResponderTimeAspect extends CompleteConnectionAspect{ 

  private long startTime = 0; 

  static String timingInfo = ""; 
   

  Object around(ChannelJoinPoint _channelJp) : ConversationBeginOnResponder(_channelJp){ 

    startTime = Systems.currentTimeMillis(); 

    return proceed(_channelJp); 

  } 

    

  Object around(ChannelJoinPoint _channelJp) : ConversationEndOnResponder(_channelJp){ 

    String Time = String.format("%.3g%n", bew Double(System.currentTimeMillis() - startTime)/1000); 

    timingInfo = "Total Time of responder " + thisJoinPointStaticPart.getSignature().getName() 
+ " localEP turn-around time (nano seconds) : " + Time + "\n"; 

    return proceed(_channelJp); 

  } 

} 

Figure 33. Fourth Code Snippet of TurnAroundTimeAspect 

public aspect InitiatorTimeAspect extends CompleteConnectionAspect { 

  private long startTime = 0; 

  static String timingInfo = ""; 
   

  before(ChannelJoinPoint _channelJp) : ConversationBeginOnInitiator(_channelJp) { 

    startTime = Systems.currentTimeMillis();    

  } 

   

  after(ChannelJoinPoint _channelJp) : ConversationEndOnInitiator(_channelJp) { 

    String Time = String.format("%.3g%n", bew Double(System.currentTimeMillis() - startTime)/1000); 

    timingInfo = "Total Time of Initiator " + thisJoinPointStaticPart.getSignature().getName() + " localEP " 

+  channelJp.getConnectJp().getLocalEP() 
       + " turn-around time (nano seconds) : " + Time + "\n"; 

  } 

}   

Figure 32. Third Code Snippet of TurnAroundTimeAspect 

13

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



study, (2) derive from each goal the questions that must be 
answered to determine if the goals have been met, and (3) 
decide what must be measured to be able to answer the 
questions adequately.  

Santa’Anna organized the CQM into four components: 
qualities, factors, attributes, and metrics. The qualities are the 
high level characteristics that we want to primarily observe 
in our software. Factors are the secondary quality attributes 
(more granular than qualities) that influence the defined 
primary attributes, i.e., qualities. Internal attributes are 
properties of software systems related to well-established 
software-engineering principles, which in turn are essential 
to the achievement of the qualities and their respective 
internal factors. Finally, the metrics are ways to measure the 
attribute. 

We also made a few enhancements in EQM and believe 
that doing so will further strengthen the model. First, our 
model creates a dependency of maintainability and 
reusability upon flexibility and understandability factors. 
Secondly, because our experiment involves crosscutting 
concerns, so we introduced two important missing factors, 
i.e., code obliviousness [24] and localization of design 
decisions [25]. Research and practice also validate that 
modular code is more maintainable [26] when obliviousness 
and localization of design decisions are present.  

A. Qualities 

Qualities are the highest level of abstractions in EQM. 
For our experiment with CommJ, we considered 
maintainability and reusability would be the two most 
important qualities to focus on. 

 Reusability: Reusability exists for a given software 
element, when developers can use it for the 
construction of other elements or systems [27]. 

 Maintainability: Maintainability is the activity of 
modifying a software system after initial delivery 
[28]. It is the ease with which software components 
can be modified. 

B. Factors 

Following are the list of factors in our EQM. 

 Understandability: indicates the level of difficulty 
for studying and understanding a system design and 
code. 

 Flexibility: indicates the level of difficulty for 
making drastic changes to one component in a 
system without any need to change others. 

 Localization of Design Decisions: indicates the level 
of information hiding for a component’s internal 
design decisions. Hence, it is possible to make 
material changes to the implementation of a 
component without violating the interface [29]. 

 Obliviousness: is a special form of low coupling 
wherein base application functionality has no 
dependencies on crosscutting concerns [21]. 

 
Localization of design decisions, and code obliviousness 

were not part of CQM. However, we introduced them into 
our EQM for two reasons. First, in his landmark paper [25], 
Parnas proposes three important characteristics of modular 
code: understandability, flexibility and localization of design 
decisions (information hiding). Hence, reasoning 
maintainability and reusability only in terms of 
understandability and flexibility is not complete. 
Introduction of localization of design decisions is also 
equally important. Second, by the time Parnas proposed the 
definition of modular code, obliviousness had not been 
invented as a fundamental design principle. However, in the 
context of our research experiment, which depends heavily 
on measuring crosscutting concerns, code obliviousness 
becomes critical. 

C. Attributes 

Following are the internal attributes in our EQM. 

 Separation of Concerns (SoC): defines ability to 
identify, encapsulate and manipulate those parts of 
software that are relevant to a particular concern. 

 Coupling: is an indication of the strength of 
interconnections between the components in a 
system. In other words, it measures number of 
collaborations between components or number of 
messages passed between components. 

 Cohesion: is a measure of the closeness of 
relationship among the internal components of a 
method, class, subsystem, etc.  

 Size: represents the length of a software system’s 
design and code. 

 Complexity: characterizes how and how much 
components are structurally interrelated to one 
another. 

 Tangling: exists when a single component includes 
functionality for two or more concerns, and those 
concerns could be reasonably separated into their 
own components. 

 Scattering: exists when two or more components 
include similar logic to accomplish the same or 
similar activities. The most serious causes of 
scattering occur when design decisions have not 
been properly localized. 

 
Figure 34. Extended Quality Model (EQM) 

 

14

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



D. Measurement Metrics 

Figure 35 presents the metrics the EQM uses to measure 
each of the internal attributes. Detail descriptions of these 
metrics follow below.  

1) SoC Metrics 
EQM includes the following metrics for SoC and code 

scattering: Concern Diffusion of Application (CDA) and 
Concern Diffusion over Operations (CDO). CDA counts the 
number of primary components (a class or aspect) whose 
main purpose is to contribute to the implementation of a 
concern. It counts the number of components that access the 
primary components by using them in attribute declarations, 
formal parameters, return types or method calls. CDO counts 
the number of primary operations whose main purpose is to 
contribute to the implementation of a concern. It also counts 
the number of methods and advices that access any primary 
component by calling their methods or using them in formal 
parameters, return types, and it throws declarations and local 
variables. Constructors also are counted as operations. 

2) Coupling Metrics 
The EQM uses the following metrics for measuring 

coupling: Coupling between Components (CBC), Depth 
Inheritance Tree (DIT) and Number of Children (NOC). 
CBC counts the number of other classes and aspects to 
which a class or an aspect is coupled. On the other hand, 
excessive coupling of AspectJ concerns increases to CBC, 
which can be detrimental to the modular design and prevent 
reuse and maintenance. DIT counts how far down in the 
inheritance hierarchy a class or aspect is declared. As DIT 
grows, the lower-level components inherit or override many 
methods. This leads to difficulties in understanding the code 
and design complexity when attempting to predict the 
behavior of a component. NOC counts the number of 
children for each class or aspect. The subcomponents that are 
immediately subordinate to a component in the component 
hierarchy are termed as its children. However, as NOC 
increases, the abstraction represented by the parent 
component can be diluted if some of the children are not 
appropriate members of the parent component. 

3) Cohesion Metrics 
The EQM uses the Lack of Cohesion in Operations 

(LCO) for measuring cohesion and tangling among 
components. 

Specifically, LCO measures the lack of cohesion of a 
class or aspect by looking at lines of code within method and 

advice pairs, which do not access the same instance 
variables. If the related methods do not access the same 
instance variable, they logically represent unrelated 
components and hence should be separated. 

4) Complexity Metrics 
McCabe’s Cyclomatic Complexity (CC) [30] is the 

EQM’s chosen metric for measuring complexity. 
Mathematically, the cyclomatic complexity of a structured 
program is defined with reference to the control flow graph 
of the program, a directed graph containing the basic blocks 
of the program, with an edge between two basic blocks if 
control may pass from the first to the second. The 
complexity M is then defined as: 

 
M = E − N + 2P 
Where: 
E = the number of edges of the graph 
N = the number of nodes of the graph 
P = the number of connected components (exit nodes). 
 
CC measures the logical complexity of the program. The 

metric defines the number of independent paths and provides 
you with an upper bound for the number of test cases that 
must be conducted to ensure that all statements have been 
executed at least once. High value of CC affects program 
maintenance and reuse. 

5) Obliviousness Metrics 
The EQM introduces the following new metrics for 

obliviousness metrics: Number of Inter-type Declarations 
(NITD), Aspect Scattering over Components (ASC), and 
Aspect Scattering over Component Operations (ASCO). 
NITD counts the number of inter-type declarations. A higher 
value of NITD indicates a tighter coupling between the 
aspect and application components. ASC counts the number 
of aspect components scattered over application components. 
It measures the tangling of aspects in the application 
components. More tangling of aspects in the program makes 
the original application less reusable and maintainable. 
ASCO counts the number of aspect components scattered 
over application component operations. ASC (discussed 
above) gives a high-level overview of the application 
tangling in the aspect components but ASCO provides more 
insight on operations-level tangling of applications inside 
aspect components. 

6) Size Metrics 
The EQM uses the following size metrics: Lines of Code 

(LOC), Method Lines of Code (MLOC), Number of 
Operations (NO), Number of Parameters (NP), Vocabulary 
Size (VA) and Weighted Operations per Component (WOC). 

LOC counts the lines of code. The greater the LOC, the 
more difficult it is to understand the system and harder to 
manage the software reuse and maintenance. MLOC counts 
the method lines of code. Kremer [31] states that the greater 
the average of MLOC for a component, the more complex 
the component would be. NO counts the number of 
operations in a component. Objects with large number of 
operations are less likely to be reused. Sometimes LOC is 
less but NO is more, which indicates that the component is 
more complex. NP counts the number of parameters for 

 

Figure 35. Measurement Metrics in EQM. 

 

15

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



methods in each class or aspect. NP is an Operation-Oriented 
Metric. A method with more parameters is assumed to have 
more complex collaborations and may call many other 
method(s). VA counts the number of system components, 
i.e., the number of classes and aspects into the system. Sant’ 
Anna [21] points out that if number of components increase, 
it is an indication of more cohesive and less tangled set of 
ADT. 

Finally, WOC metric measures the complexity of a 
component in terms of its operations. WOC does not specify 
the operation complexity measure, which should be tailored 
to the specific contexts. The operation complexity measure is 
obtained by counting the number of parameters of the 
operation, assuming that an operation with more parameters 
than another is likely to be more complex. It is an object-
oriented design metric, proposed by Kemerer [31] and sums 
up the complexity of each method. The number of methods 
and complexity is an indication of how much time and effort 
is required to develop and maintain the object. The larger the 
value of weighted operations, the more complex the program 
would be. 

VI. HYPOTHESES 

 CommJ’s theoretical foundation and design lead to the 
following seven hypotheses, with respect to comparing the 
reusability and maintainability of IPC software built with 
CommJ instead of just AspectJ. 

 Hypothesis 1: If crosscutting IPC concerns are 
effectively encapsulated in CommJ aspects, then the 
software has better separation of concerns and less 
scattering (as described by CDA, CDO in Section 
V.D.1.) than equivalent systems developed with AOP 
design techniques. 

 Hypothesis 2: If crosscutting IPC concerns are 
encapsulated in CommJ aspects, then the software has 
lower coupling (as described by CBC, DIT, NOC in 
Section V.D.2) than equivalent systems developed with 
AOP design techniques. 

 Hypothesis 3: If crosscutting IPC concerns are 
encapsulated in CommJ aspects, then the software has 
higher cohesion and less tangling (as described by LCO 
in Section V.D.3. than equivalent systems developed 
with AOP design techniques. 

 Hypothesis 4: If crosscutting IPC concerns are 
encapsulated in CommJ aspects, then the software is not 
significantly complex (as described by CC in Section 
V.D.4) than equivalent systems developed with AOP 
design techniques. 

 Hypothesis 5: If crosscutting IPC concerns are 
encapsulated in CommJ aspects, then the software is 
significantly more oblivious (as described by NITD, 
ASC, ASCO in Section V.D.5) than equivalent systems 
developed with AOP design techniques. 

 Hypothesis 6: If crosscutting IPC concerns are 
encapsulated in CommJ aspects, then the software is not 
significantly larger (as described by LOC, MLOC, NO, 
NP, VA, WOC in Section V.D.6) than equivalent 
systems developed with AOP design techniques. 

 Hypothesis 7: If crosscutting communication concerns 
are encapsulated in CommJ aspects, then extension for 
new requirements touches fewer components or lines of 
code (as measured by Eclipse IDE diff function) than 
equivalent systems developed with AOP design 
techniques. 

VII. EXPERIMENT METHOD 

The following sections briefly describe the steps of a 
preliminary experiment that authors used to test the 
hypotheses. 

A. Experimental Planning and Approval 

In the first step, we developed a plan and submitted an 
application for conducting this Human Research Experiment 
to the IRB [32], and received approval. Each of us also had 
to pass an online human research experiment-training course 
offered through Collaborative Institutional Training Initiative 
(CITI) [33]. 

B. Selection of Applications and Crosscutting Concerns 

We selected sample software applications (see Table I) 
that were multithreaded, distributed, and used either JDK 
sockets or channels for communications. The applications 
were diverse in the way they implemented IPC and therefore 
provide good coverage of different types of communication 
heterogeneities. Finally, each application supported more 
than one communication protocol.  

Since the experiment would eventually require 
developers to modify or extend applications for requirements 
that represented communication-related crosscutting 
concerns, our methodology included a step, which 
systematically selected our representative crosscutting 
concerns. Developers would have to apply each of these to 
the applications, individually. Additionally, to minimize 
noise in our data, we wanted to make sure that these 
crosscutting concerns were sufficiently simple that novice 
programmers could understand them and come up with a 

TABLE I. SELECTED SAMPLE APPLICATIONS 

Application Name Description 

Levenshtein Edit-Distance 
Calculator (LD) 

A server will calculate the LD between two input strings, provided by the client, 
over a connection-oriented communication. 

File Transfer Program (FTP) A file transfer protocol over connection-oriented communication. 

Weather Station Simulator (WS) A simple weather station simulator, supported by a Transmitter and a Receiver. 

 

16

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



solutions in less than 10 hours. We also come up with a list 
of possible crossing concerns that the subject programmers 
would have to implement in the applications (See Table II). 
Those marked with “**” represent the ones selected for the 
experiment. 

C. Recruitment and Training of Participants 

To transparently recruit the candidates, we sent invitation 
letters and recruited seven volunteer developers who met the 
participation criteria, specifically they were experienced in 
object-oriented software development, Java, and with 
software-engineering design principles, such as modularity 
and reusability. We then randomly organized them into two 
study groups: A and B. Group A would use AspectJ only and 
Group B would use CommJ on top of AspectJ. Next, the 
participants completed a survey that assessed their 
background and skill levels. We also provided AOP training 
to developers in Group A, and worked through some practice 
applications with them. Similarly, we trained Group B 
developers in CommJ, and worked through some practice 
applications with them. 

D. Experiment Phases 

In the first phase, participants filled a pre-implementation 
questionnaire, developed the application using initial 
requirements, recorded hourly journals and completed a post 
implementation questionnaire. In the second phase, we 
requested enhancements (sample applications and 
crosscutting concerns), had them revised their 
implementation accordingly, and then collected those 
software systems. Participants again completed the pre and 
post questionnaire and wrote their experiences in the hourly 
journals.  

Finally, after the second phase, we analyzed and 
evaluated the reusability and maintainability using various 
software artifacts, which included surveys, questionnaires, 
hourly journals, and actual code.  

We used both manual computation and automated tools 
to compute measurements for all 16 metrics. Experiment 
generated a total of 28 software systems. With 16 code 
metrics in the EQM, we had a total of 448 measurements, 
280 computed automatically with a tool [34] and 168 
calculated manually. 

VIII. EXPERIMENT RESULTS AND CONCLUSIONS 

This section presents the data collected from the 
experiment and our results in context of the seven 
hypotheses. In the following graphs, the vertical axes 
represent the measurements, and the horizontal axes 
represent the activities of the experiment. For each activity 
there are two bars: a blue bar is for the results of AspectJ-
only group and a green bar for CommJ group. 

A. Separation of Concerns 

Hypothesis #1 theorized that if crosscutting 
communication concerns are effectively encapsulated in 
CommJ aspects, the software has better separation of 
concerns and less scattering as measured by CDA and CDO 
than equivalent systems developed with AOP design 
techniques. In other words, the CDA and CDO metric values 
for CommJ should be less than AspectJ (See Section V.D.1. 
for details on metrics). We found CDA and CDO did 
decrease for the CommJ group. In Figure 36, the vertical 
axes represent the CDA and CDO measurements, and the 
horizontal axes represent the four activities of the 
experiment.  

Not only were CDA and CDO values reduced using 
CommJ, but they were zero in all four activities of the 
experiment. The reason for phenomena is that CommJ 
pointcuts provide total obliviousness between the application 
and communication-related crosscutting concern. In AspectJ, 
components and their operations for crosscutting concern 
were significantly more diffused in the application because 
the pointcuts had to be tied to programming constructs 
instead of communication abstractions.  

TABLE II. SELECTED SAMPLE CROSSCUTTING CONCERNS 

Aspect Name Description 

Version Compatibility**  

This concern adapted one version of the message to another, so processes running 

different versions could still communicate with each other. The crosscutting 

concern included knowledge of converting one version to another and conversely  

Measuring Performance** 
It measured some performance related statistics for message-based 

communications between a sender and receiver  

Symmetric-Key Encryption** 
It encrypted the communication between a sender and receiver using symmetric-

key encryption  

NetworkNoiseSimulator Allows developers to add noise, message log, and message duplication to network 

communications, which is useful for system testing 

NetworkLoadBalancer Helps programmers balance message loads across two more communication 

channels 

MessageLoggingByConversation Log messages by conversations in a developer-defined format and repository 

** Selected cross-cutting concerns for the experiment 

17

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



From these results, we can conclude that Hypothesis#1 
holds true for better separation of concerns in CommJ 
implementations than in AspectJ. 

B. Coupling 

Hypothesis #2 theorized that if crosscutting 
communication concerns are effectively encapsulated in 
CommJ aspects, the software has lower coupling as 
measured by CBC, DIT and NOC than equivalent systems 
developed with AOP design techniques. In other words, 
CBC, DIT and NOC metric values for CommJ should be less 
than AspectJ (see Section V.D.2. for details on metrics). 
Figure 37 indicates that CommJ implementations 
significantly reduced the values of CBC, DIT and NOC, 
respectively, as compared to AspectJ implementations in all 
the four phases of the experiment. CommJ crosscutting 
concerns did not maintain any direct relationship with the 
application components and thus had a lower CBC value. 
However, in AspectJ, excessive coupling of concern with the 
application increased CBC, which hindered reuse and 
maintenance.  

The reason for higher DIT and NOC values in AspectJ 
was that the participants preferred to override parent methods 
in crosscutting concerns to share data structures across aspect 
and application components during message passing. 
However, CommJ provides a comprehensive set of pointcuts, 
which fully encapsulates the IPC abstractions, and thus 
participants did not need to override or inherit the aspect 
components. From these results, we can conclude that 

Hypothesis#2 holds true for reduced coupling in CommJ 
than in AspectJ. 

C. Cohesion 

Hypothesis #3 theorized that if crosscutting concerns are 
effectively encapsulated in CommJ aspects, the software has 
higher cohesion (as described by LCO in Section V.D.3.) 
than equivalent systems developed with AOP design 
techniques. In other words, the LCO metric value for CommJ 
should be less than AspectJ. The results shown in Figure 38 
demonstrates that CommJ maintains a lower value for LCO 
than AspectJ in all four phases of the experiment. Sant’Anna 
[21] says that LCO measures the degree to which a 
component implements a single logical function. These 
results indicate that CommJ implementations were more 
cohesive and logical than AspectJ, hence have a lower LCO 
value. Therefore, we conclude that Hypothesis #3 holds true 
for increased cohesion in CommJ than in AspectJ. 

D.  Complexity 

Hypothesis #4 theorized that if crosscutting 
communication concerns are effectively encapsulated in 
CommJ aspects, the software is significantly less complex 
(as described by CC in Section V.D.4.) than equivalent 
systems developed with AOP design techniques. In other 
words, the CC value for CommJ should be less than AspectJ. 
Figure 39 shows that the value of CC is smaller for CommJ 
than AspectJ, because CommJ hides complex IPC 
abstractions, which result in simple conditional statements 
and less tangled code.  

 From these results, we conclude that Hypothesis #4 
holds true for less complex software in CommJ than AspectJ. 

 
Figure 36. CDA, CDO coverage over phases. 

 

 
Figure 37. CBC, DIT, NC coverage over phases. 

 

   
Figure 38. LCO coverage over phases. 

 
Figure 39. CC coverage over phases. 

 

18

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



E. Obliviousness 

Hypothesis #5 theorized that if crosscutting 
communication concerns are effectively encapsulated in 
CommJ aspects, the software will be more oblivious (as 
described by NITD, ASC, ASCO in Section V.D.5.) than 
equivalent systems developed with AOP design techniques. 
In other words, NITD, ASC, ASCO for CommJ should be 
less than AspectJ. Figure 40 shows that CommJ 
implementations significantly reduced the values of NITD, 
ASC and ASCO metrics. 

In comparison with AspectJ, the reason for having a zero 
value for NITD in CommJ was that the participants used IPC 
constructs and did not need to use inter-type declarations 
(ITD) for sharing of data structures between application and 
aspect component. Significant reduction in ASC and ASCO 
was due to the layers of indirection between the application 
and aspect components, which CommJ provides but are 
missing in AspectJ. Therefore, we conclude that Hypothesis 
#5 holds true for less oblivious software concerns in CommJ 
than AspectJ.  

F. Reduced Size 

Hypothesis #6 theorized that if crosscutting 
communication concerns are effectively encapsulated in 
CommJ aspects, the software is not significantly larger (as 

described by LOC, MLOC, NO, NP, WOC, VA in Section 
V.D.6.) than equivalent systems developed with AOP design 
techniques. In other words, LOC, MLOC, NO, NP, WOC 
metrics values for CommJ should be less and VA be more 
than AspectJ. Figure 41 shows that CommJ implementations 
significantly reduced the metrics values for LOC, MLOC, 
NP, NO and WOC in all phases of the experiment. 

In comparison with AspectJ, CommJ participants found a 
more neat and clean set of pointcuts in IPC abstractions, 
which helped them to code the crosscutting concerns in less 
LOC. CommJ conceptually models various general network 
and distributed abstractions using UMC (Section III.A.) into 
rich set of communication and connection join points along 
with general purpose family of conversations, which helped 
the participants to implement the application crosscutting 
concerns in simpler and more logical method bodies, with no 
extra lines of code and less number of operations. Hence it 
reduced MLOC, NO, NP and WOC.  

As predicted by the above hypothesis, results shown in 
Figure 41 gives sufficient evidence that average VA for all 
programs was more for CommJ than AspectJ. Although the 
number of components were more in CommJ 
implementations, they were more cohesive. Thus, from these 
results, we can conclude that Hypothesis#6 holds true for 
improved code size in CommJ than in AspectJ. 

G. Reuse and Maintenance of Concern 

Hypothesis #7 theorized that if crosscutting 
communication concerns are effectively encapsulated in 
CommJ, the crosscutting concern will require a smaller 
number of changes (as measured by CR, CM as follow) than 
equivalent systems developed with AOP design techniques, 
where CR and CM are as follows: 

 

 CR. Number of changes required to reuse the 
concern for another application. The eclipse IDE 
calculates this metric. 

 CM. Number of changes required to maintain the 
concern. The eclipse IDE calculates this metric. 

 

  

Figure 41. LoC, MLoC, NP, NO, WoC coverage over phases. 

 

Figure 40. ASC, ASCO, NITD coverage over phases. 

19

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



In other words, CR, CM values for CommJ should be 
less than AspectJ. From the results shown in Figure 42, we 
can see that CommJ implementation significantly reduced 
the changes required to reuse the previous implementations 
in the second phase of the experiment than AspectJ. CommJ 
aspects were overall more oblivious, logical and independent 
from the base application than AspectJ concerns and so they 

reduced the CR value in all four phases of the experiment.  
Figure 43 provides another graphical representation to 

analyze reuse for AspectJ and CommJ. The light green 
colored-graphs represent scattering in CommJ (aspects only) 
and light blue colored-graphs represent AspectJ 
implementations. The scattered points in graph indicate the 
number of changes for reusing a concern with CommJ and 
AspectJ in different activities of Phases 1 and 2, respectively. 
The scattered points in blue represent ASC and in red 
represent ASCO metrics results. Overall, the results of the 
graph indicate that ASC and ASCO remained zero for all the 
activities of CommJ (highly reusable), but it was highly 
scattered in AspectJ. The reason for less scattering is 
discussed in Section VIII.A above.  

 Figure 44 shows the number of changes required to 
maintain the program in its initial activity (Activity 1 of 
Phase 1) to its maintenance activity (Activity 2 of Phase 2), 
reduced significantly for CommJ than AspectJ. The 
difference between CR and CM is that in CR we are only 
considering changes in the concern; however, in CM we are 
interested in number of changes both in the concern and 
application. We found that CommJ concerns were overall 
more oblivious, logical and independent from the base 
application than AspectJ concerns, and so they have reduced 
CM values in all four phases of the experiment.  

 
Figure 42. CR over Extensions 

 

 

Figure 43. ASC and ASCO over Phases in AspectJ and CommJ 

20

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 Figure 45 presents another representation for 
maintenance. The light green colored-graphs represent 
scattering in CommJ and light blue colored-graphs represent 
AspectJ respectively. The scattered points in blue, red and 
green represents CDA, CDO and NITD metrics results 
respectively. The points in the above graph indicate the 
number of changes for maintaining a program with CommJ 

and AspectJ in different activities of Phases 1 and 2, 
respectively. The results of the graph indicate that CDA, 
CDO and NITD were zero for all the activities of CommJ 
(highly maintainable) but were highly scattered in AspectJ. 
The reason for reduced values for CDA, CDO and NITD is 
already discussed in Section VIII.A and Section VIII.E, 
respectively.  

From these results, we conclude that Hypothesis#7 holds 
true for more reusable and maintainable software in CommJ 
than AspectJ.  

H. Other Useful Observations 

Besides analysis of the hypotheses, we also collected a 
handful observations from participants’ questionnaires and 
daily journals during each phase of the experiment. 

In regards to understandable code, we found that 100% 
of AspectJ participants in the Phase 1 were confused in 
identifying pointcuts for implementing the given extension 
part, and 33% of the same participants were still confused 
during Phase 2. On the other hand, none of the CommJ 
participants struggled with identifying pointcuts during either 
phase. This tells us that CommJ implementation provides 
simple pointcuts with understandable IPC abstractions.  

For reusability, we observed that 67% of the AspectJ 
participants in Phase 1 agreed that their applications might 

 
Figure 44. CM over phases 

 

 

Figure 45. CDA, CDO and NITD in AspectJ and CommJ 

21

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



not run after removing the extension part from the original 
application. This percentage further increased to 100% in 
Phase 2. On the other hand, none of the CommJ participants 
made this observation for either phase. This indirectly 
reconfirms Hypothesis #7, which states that CommJ 
implementations help in developing more reusable 
crosscutting concerns.  

Similarly, for maintainability, 100% of the AspectJ 
participants said that their changes introduced new 
dependencies in the original sample application after both 
phases. However, none of the CommJ participants felt that 
they introduced any dependencies during either phase. So, 
this reconfirms our Hypothesis #7, which asserts that CommJ 
implementation helps in developing more maintainable 
programs.  

The survey also provides information on frequency of 
bugs. Specifically, 67% of the participants in AspectJ group 
said that their extensions introduced new failures, i.e., bugs, 
into the application code during Phase 1. This percentage 
further increased to 100% for Phase 2. However, only 25% 
of the CommJ participants in Phase 1 and Phase 2 made this 
statement. This tells us that CommJ’s modularization and 
obliviousness decreased the failures and debugging time. 

IX. SUMMARY AND FUTURE WORK 

Our research introduces the notation of communication 
and connection aspects and discusses an AspectJ framework, 
namely CommJ, for weaving aspects into IPC. It then 
describes the design and implementation of some of CommJ 
components, such as the base aspects. It also provides an 
overview of a toolkit, i.e., the RAL that consists of reusable 
communication aspects and doubles as a proof of concept, 
since these aspects can be directly applied to a wide range of 
existing applications. We believe that CommJ is capable of 
encapsulating a wide range of communication-related and 
connection-related crosscutting concerns in aspects. We hope 
to gather more empirical evidence of the CommJ’s value by 
increasing the number of aspects in the RAL and by 
continuing to expand the number and types of applications 
that use CommJ. We also conducted a research experiment 
to compare AspectJ with CommJ for various software design 
attributes related to reuse and maintenance through an 
extended quality model. Findings from this initial 
experiment revealed that crosscutting concerns programmed 
in CommJ delivered more modular, reusable and 
maintainable programs. We hope to pursue larger and varied 
software-engineering productivity experiments to verify this 
belief.  

We envision a number of extensions or spins off to 
CommJ. First, distributed transaction processing systems is 
another high-level programming concept that can be 
unnecessarily complex when crosscutting concerns, e.g., 
logging, concurrency controls, transaction management, and 
access controls, are scattered throughout the transaction 
processing logic or tangled into otherwise cohesive modules. 
We can use the same approach that we used for CommJ to 
extend AspectJ for the weaving of crosscutting concerns in 
transactions. Second, CommJ can also be extended for 
distributed pointcuts that would simplify the implementation 

of even more complex crosscutting concerns, such as object-
replication, migration, or fragmentation in a distributed 
system.  

Finally, CommJ has the potential to be very useful for 
testing various kinds of time-sensitive communication 
related errors in IPC. We plan to explore this potential and 
additional experiments focus on quality of service and timing 
issues related to IPC. 

REFERENCES 

[1] A. Raza, S. Clyde, and J. Edison, “Communication Aspects 
with CommJ: Initial Experiment Show Promising 
Improvements in Reusability and Maintainability,” In ICSEA 
2014, Nice, France.  

[2] A. Raza and S. Clyde, “Weaving Crosscutting Concerns into 
Inter-Process Communication (IPC) in AspectJ,” In ICSEA 
2013, Venice, Italy, pp. 234-240. 

[3] L.D. Benavides Navarro et al., “Invasive patterns for 
distributed programs,” In OTM Confederated Int. Conf., 
Vilamoura, Portugal, 2007, pp. 772-789. 

[4] G. Kiczales et al., “Aspect-oriented programming,” 
(ECOOP), 1997, pp. 220-242. 

[5] ApectJ, http://www.eclipse.org/aspectj/, last updated on May 
13, 2016.  

[6] AspectWorkz2, http://aspectwerkz.codehaus.org/ss, last 
updated on May 13, 2016. 

[7] JBoss AOP, http://www.jboss.org/jbossaop, last updated on 
May 13, 2016. 

[8] Spring AOP, org.springframework, last updated on May 13, 
2016. 

[9] Y. Coady et al., “Can AOP support extensibility in client-
server architectures?” in Proc. ECOOP Aspect-Oriented 
Programming Workshop, Budapest, Hungary, 2001. 

[10] C. Clifton and G T. Leavens, “Obliviousness, modular 
reasoning, and the behavior subtyping analogy,” In Proc. 2nd 
Int. Conf. AOSD SPLAT Workshop, Boston, MA, 2003, pp. 
1-6. 

[11] C. Sant'Anna, A. Garcia, C. Chavez, C. Lucena, and A. Von 
Staa, “On the Reuse and Maintenance of Aspect-Oriented 
Software: An Assessment Framework,” in 17th Brazilian 
Symposium on Software Engineering (SEES 2003), Manaus, 
Brazil (2003), PUC-RioInf.MCC26/03. 

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design 
Patterns: Elements of Reusable Object-Oriented Software,” 
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 
USA. 1995. 

[13] G. Kiczales and M. Mezini, “Aspect-oriented programming 
and modular reasoning,” In Proc. 27th Int. Conf. Software 
Engineering, St. Louis, MO, 2005, pp. 49-58. 

[14] R. Douence, D.L. Botlan, J. Noye, and M. Sudholt, 
“Concurrent aspects,” In. Proc. 5th Int. Conf. GPCE, 
Portland, OR, 2006, pp. 79-88. 

[15] W. De Meuter, “Monads as a theoretical foundation for 
AOP”, In Int. Workshop on AOP at 11th ECOOP, 1997, 
Springer-Verlag. doi: 10.1.1.2.4757. 

[16] P. Tarr, H. Ossher, W. Harrison, and S.m. Sutton, “N degrees 
of separation: Multi-dimensional separation of concerns,” In 
Proc.21st Int. Conf. Software Engineering, Los Angeles, CA, 
1999, pp. 107-119. 

[17] H. Ossher and P.Tarr, “Multi-dimensional separation of 
concerns and the hyperspace approach,” IBM, Yorktown 
Heights, NY, IBM Res. Rep. 21452, April,1999. 

[18] W. Harrison and H. Ossher, “Subject-oriented programming - 
A critique of pure objects,” In Proc. 8th Conf. on Object-

22

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Oriented Programming Systems, Languages, and 
Applications, Oakland, CA,1993, pp. 411-428. 

[19] S. Chiba, “Load-time structural reflection in Java,” In 
Proc.14th ECOOP, Cannes, France, 2000, pp. 313-336. 

[20] T.J. Brown, I. Spence, and P. Kilpatrick, “Mixin 
programming in Java with reflection and dynamic 
invocation,” In Proc. 2nd Workshop on Intermediate 
Representation Engineering for Virtual Machines, Dublin, 
Ireland, 2002, pp. 25-34. 

[21] C. Sant’Anna, A. Garcia, C. Chavez, C. Lucena, and A. Staa, 
“On the reuse and maintenance of Aspect-Oriented Software: 
An assessment framework,” In Proc. 17th Brazilian Symp. 
Software Engineering, Manaus, Brazil, 2003, doi: PUC-
RioInf, MCC26/03.  

[22] C. Lopes, “D: A language framework for distributed 
programming,” PhD. dissertation, Coll. Comp. Sci., 
Northeastern University, Boston, MA, 1997. 

[23] R. Basili, G. Caldiera, and H. Rombach, “The goal question 
metric approach,” In Encyclopedia of Software Engineering, 
vol. 2, J.J. Marciniak, Ed. Hoboken, NJ: Wiley, 1994, pp. 
528-532. 

[24] C. Kaewkasi and J. R. Gurd, “A distributed dynamic aspect 
machine for scientific software development,” In Proc.1st 
Workshop on VMIL, 2007, ACM. doi: 
10.1145/1230136.1230139. 

[25] D. L. Parnas, “On the criteria to be used in decomposing 

systems into modules,” Commun. ACM, vol. 15, no.12, pp. 
1053-1058, Dec. 1972.  

[26] G. Kiczales and M. Mezini, “Aspect-oriented programming 
and modular reasoning,” In Proc. 27th Int. Conf. Software 
Engineering, St. Louis, MO, 2005, pp. 49-58. 

[27] J. McCall, P.K. Richards, and G.F. Walters, “Factors in 
software quality,” NTIS, Alexandria, VA, Tech. Rep. AD-
A049-014, 015, 055, 1977. 

[28] IEEE Standard for Software Maintenance, IEEE Standard 
1219-1998, 1998. 

[29] R.E. Filman and D. P. Friedman, “Aspect-oriented 
programming is quantification and obliviousness,” IEEE 
RIACS Tech. Rep. 01.12, May 2001. 

[30] T.J. McCabe, “A complexity measure,” IEEE Trans. Softw. 
Eng., vol. 2, no. 4, pp. 308-320, Dec. 1976. 

[31] S.R. Chidamber and C. F. Kemerer, “A metrics suite for 
object-oriented design,” IEEE Trans. Softw. Eng., vol. SE-20, 
no. 6, pp. 476–493, June 1994.  

[32] Institutional Review Board (IRB), http://rgs.usu.edu/irb, 
retrieved: Mayss 13, 2016. 

[33] Collaborative Institutional Trainig (CIIT), 
https://www.citiprogram.org, retrieved: May 13, 2016. 

[34] Metrics plugin, http://metrics2.sourceforge.net, retrieved: 
May 13, 2016. 

 

23

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Triangulation and Segmentation-based Approach for Improving the Accuracy of 

Polygon Data 

 

Alexey Noskov and Yerach Doytsher 
Mapping and Geo-Information Engineering  

Technion – Israel Institute of Technology  

Haifa, Israel  

Emails: {noskov, doytsher}@technion.ac.il
 

 
Abstract — Often, same polygon objects are presented in 

Geoinformational Systems by distinct geometries with random 

positional discrepancies. It makes difficult to detect 

correspondences between data layers containing same object 

or parts of objects.  The suggested method allows the user to 

improve the accuracy of one polygon layer by another more 

accurate polygon dataset by defining correspondences between 

polygons and parts of polygon boundaries. Two main 

techniques are applied: triangulation and segmentation. The 

triangulation is used to define correspondences between whole 

polygons by comparing triples of polygons.  The segmentation 

approach is applied for the remaining polygons. Existing 

approaches do not work well in the case of partial equality of 

polygon boundaries. The main idea of the segmentation 

algorithm in this paper is based on defining correspondent 

segments of polygon boundaries and further replacing polygon 

boundary segments of the non-accurate layer with segments of 

the accurate data set; segments without pairs are rectified 

using ground control points. The resulting data contain parts 

of the accurate data set polygon boundaries, whereas the 

remaining elements are rectified according to the replaced 

boundary segments. From a review implemented by specialists 

it might be concluded that the results are satisfactory. The 

developed method could be applied to various types of 
polygonal datasets with similar scale. 

Keywords – Polyline and polygon similarity; geometry 

matching; shape descriptor; triangulation; topology. 

I.  INTRODUCTION 

The same objects on different maps, which are on an 
equal scale, might be shown with small differences. In an 
ideal situation, accurate geometries of exiting maps should 
be used for preparing new data sets or for updating. Usually, 
in the real world, new maps are digitized without respect to 
existing data sets.  Using geometries (e.g., river line) from an 
accurate topographic map for creating a thematic map (e.g., 
soil map), in many cases, is better than digitizing a new 
element. Often, data are unavailable, or available with 
significant restrictions, because of legal, technical, or other 
reasons. Additionally, even if an accurate data set is freely 
available, people usually do not want to spend time using an 
existing data set; in most cases they prefer to digitize new 
geometries on a satellite image or scanned map.  These data 
should be aligned using accurate data sets [1]. This problem 
is especially sensitive for large-scale maps and plans [2]. 

The problem which is described in the paper refers to 
cadastral and city planning maps. A cadastral map is a 

comprehensive register of the real estate boundaries of a 
country. Cadastral data are produced using quality large-
scale surveying with Total Stations, Differential Global 
Positioning System devices or other surveying systems with 
centimeter precision. Normally, the precision of maps based 
on non-survey large-scale data (e.g., satellite images) is 
lower. City planning data contain proposals for developing 
urban areas. Most city planning maps are developed by 
digitizing handmade maps, using space images. Almost all 
boundaries have small discrepancies in comparison to 
cadastral maps. It is very important to use exact boundaries, 
or their segments, on city planning data from a cadastral 
map, especially in central parts of cities. The approach 
described in the paper enables us to resolve this problem of 
matching two data types. Rectifying data using a set of 
ground control points is a popular way of improving the 
accuracy of a map [3]. The results of this approach are not 
satisfactory in many cases, because rectified objects cannot 
be identical to directly measured accurate objects. Another 
possibility is based on defining correspondent objects on an 
accurate data set by geometry or attributes and replacing 
objects from the non-accurate set with the accurate 
correspondent objects [4].  

We present a triangulation approach. It enables us to 
define correspondent polygons of two datasets. It is achieved 
by dividing polygons into triples and comparing the triples of 
two datasets. A serious problem with this approach follows 
from the fact that objects could be partially similar (e.g., 
some segments of a polygon boundary are same, other parts 
are different). In contrast to existing approaches, the main 
idea of a segmentation approach is based on defining 
correspondent segments of polygon boundaries and further 
replacing polygon boundary segments of the non-accurate 
layer with segments of an accurate data set; segments 
without pairs are rectified by ground control points. The 
segmentation complements the triangulation algorithm. 
Triangulation is a fast process for defining correspondences 
between whole polygons. Segmentation is much slower. It 
enables us to define correspondences between boundary 
segments of polygons (excluding polygon pairs defined by 
triangulation). The triangulation is also used for evaluating 
results. The proposed algorithm could be applied to different 
sorts of polygon datasets with small boundary differences. 
The approach has not only been designed for city planning 
and cadastre datasets. 

This paper is structured as follows: the related work is 
considered in Section II. Source datasets and the process of 

24

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



defining initial variables are described in Section III. The 
triangulation approach is proposed in Section IV. The 
algorithm of defining correspondent polylines is presented in 
Section V. The process of compiling the final map is 
described in Section VI. The results are discussed in Section 
VII. The conclusion is presented in Section VIII. 

II. RELATED WORK 

In order to develop the proposed algorithm, various 
approaches were considered. The review of these approaches 
is presented in this section. Many of them were evaluated. 
We found several useful concepts for our task described in 
the considered papers.  The papers are grouped. The groups 
appear in the order in which they influenced our research. 
Most of our ideas were taken from the feature-based 
matching group of approaches. The relational matching ideas 
also affected our approach, mainly in the sense of topological 
orientation of the developed approach. We have not found 
useful concepts for the context of the discovered datasets in 
the last category (attributes-based matching), but it discloses 
and raises many useful problems of attribute processing for 
data matching researchers. Additionally, several 
programming techniques are described at the end of the 
section, in order to improve the quality of the developed 
approach. Most of the techniques are applied. 

Discrepancy problems on digital maps can be resolved in 
different ways. Common shape matching techniques are 
currently used in the raster and vector fields, and sometimes 
in combination with each other. Several common techniques 
in the field of Shape Similarity or Pattern Recognition could 
be applied to the various needs of the matched objects and 
relevant research questions. 

Vector matching techniques can be divided into three 
main categories. 

A. Feature-based matching 

This group of methods is based on an object's geometry 
and shape. The degree of compatibility of objects is 
determined by their geometry, size, or area. The process is 
carried out by structural analysis of a set of objects and 
comparing whether similar structural analysis of the 
candidates fits the objects of the other data set [5][6]. In [4], 
comparison of objects is based on analysis of a contour 
distribution histogram. A polar coordinates approach for 
calculating the histogram is used. A method based on the 
Wasserstein distance was published by Schmitzer et al. [7]. 
A special shape descriptor for defined correspondent objects 
on raster images was developed by Ma and Longin [8]. 
Feature-based matching approaches do not allow for 
resolving our problem, because they have been developed 
mainly for single shapes; however, we can use them as part 
of our approach. 

B. Relational matching 

This group of methods takes objects' relationships into 
account. In [9], topological and spatial neighborly relations 
between two data sets, preserved even after running 
operations such as rotation or scale, were discovered. In 
relational matching, the comparison of the object is 

implemented with respect to a neighboring object. We can 
verify the similarity of two objects by considering 
neighboring objects. The problem of non-rigid shape 
recognition is studied by Bronstein et al. [10]; the 
applicability of diffusion distances within the Gromov-
Hausdorff framework [10] and the presence of topological 
changes have been explored in this paper. A multiple-point 
geostatistical modeling based on cross-correlation functions 
is proposed by Tahmasebi et al. in [11]. 

C. Attributes-based matching 

Matching two data sets' objects by attributes could be 
very effective if a similar data model is used. Two types of 
attribute matching could be mentioned: Schema-based [12] 
and Ontology-based. The concept of semantic proximity, 
which is essentially an abstraction/mapping between the 
domains of the two objects associated with the context of 
comparison, is proposed by Kashyap and Sheth in [13]. In 
[14], an approach based on both types is presented. An 
ontology-based integration of XML Web Resources focusing 
on the significance of offering appropriate high-level 
primitives and mechanisms for representing data semantics is 
described by Amann et al. in [15]. A technique for building 
approximate string join capabilities on top of commercial 
databases by exploiting facilities already available in them is 
described by Gravano in [16] and [17]. Attributes-based 
matching is a specific group of approaches; it can only be 
applied efficiently in special cases with special data. In most 
situations it is ineffective.  

The merging and fusion of heterogeneous databases has 
been extensively studied, both spatially [18] and non-
spatially [19].  The Map conflation method is based on data 
fusion algorithms; the aim of the process is to prepare a map 
which is a combination of two or more maps (often for 
updating an old map).  Map conflation approaches are 
presented in [2] [20] [3]. In [21], three approaches for the 
linking of objects in different spatial data sets are described. 
The first defines the linking as a matching problem and aims 
at finding a correspondence between two data sets of similar 
scale. The two other approaches focus on the derivation of 
one representation from the other one, leading to an 
automatic generation of new digital data sets of lower 
resolution. 

In order to resolve the described problem, the mentioned 
approaches have been considered. It has been concluded, that 
a new solution need to be developed. 

Computer Vision algorithms are popular in the field of 
data matching [22]. The Open Computer Vision (OpenCV) 
framework [23] is widely used today; it provides a number 
of "out-of-the-box" functions enabling us to detect and 
compare objects and bindings for popular programming 
languages (e.g., Python [24]). This makes the OpenCV 
framework very useful for data-matching tasks.  Delaunay 
Triangulation [25] and Voronoi Polygons [26] are very 
useful techniques for working with discrete vector data and 
neighbor analysis. We should also note that in practice, data 
is distributed in non-topological formats (e.g., Shape File 
format). That leads to complication of the analysis, because 
of a surplus number of objects and duplication of primitives, 

25

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



e.g., polygon boundaries, unexpected gaps between objects 
etc. We need to use one of the topological data formats 
presented by Landa [27] to avoid these obstacles. The 
topology in GIS context is described in detail by Blazek et al. 
in [28]. The main topological data types are presented: point, 
line (comprising nodes, vertices and segments), and 
polygons (consisting of boundaries and centroid).  Many 
useful GIS definitions and techniques, including geometry 
relations, topology and operations (e.g., overlay), are 
described by Herring in [29]. 

  Additionally, two perspective methods could be used in 
GIS data matching to reduce the time and computer 
resources required: Genetic Algorithms [30] help to avoid 
Brute-force operations in some cases; OpenCL technology 
[31] makes it possible to split a process into a huge number 
of parallel threads on a video card. 

 

 
 

 
 

Figure 1.  Source data: land-use city planning (color background) and 

cadastre (black polylines) of Nesher (upper) and Yokne'am (lower) 
datasets.  

III. DEFINING INITIAL VARIABLES  

For implementing and testing our approach, GIS data 
provided by Survey of Israel have been used. They contain 

cadastre and land-use city planning polygon shape files 
covering a part of Nesher and Yokne'am (towns in the Haifa 
District of Israel). Figure 1 depicts source data; red numbers 
in circles correspond to numbers of extents in Figure 21. 
Overlaid polygon boundaries of two data sets are presented 
in Figure 2. From the figure, one can conclude that 
transformation of lines would not yield positive results, 
because the gaps are extremely variable - the curved parts of 
lines consist of different numbers of vertices; thus, even with 
correct parameters of transformation, the result would not be 
satisfactory. 

 

 
 
 

 
 

Figure 2.  Positional discrepancies of city planning (red lines) and cadastre 

(black lines) datasets: Nesher (upper) and Yokne'am (lower). 

 
Source shape files have been converted to GRASS GIS 7 

topological data format [27]. Data preparation can be divided 
into 3 steps: 

 Extracting polygon boundaries. 

 Splitting polylines into a set of equidistant points. 
For depicting this parameter we will use the symbol 
d in the paper.  

 Calculating an array of distances between the nearest 
points of two datasets. Setting of initial measures. 

We have decided to use 2 meters between equidistant 
points. Using a greater distance makes impossible to detect 
small curves, whereas a smaller distance significantly 
increases the calculation time.  

Several initial measures need to be calculated. Maximal 
distance (Dmax) between the nearest points of two datasets 

26

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



and maximal standard deviation (σmax) have been calculated. 
To calculate these parameters we need to create a list of 100 
percentiles. Then we implement a loop from the first to the 
last percentile on the list. Dmax equals percentile i and  σmax  
equals  the double standard deviation of distance in the 
interval between percentiles number i and 100  if the 
standard deviation of distances between percentiles i-1 and i 
is more than 1. We calculate tail parameter (t) as follows: t= 
Dmax/d, minimal tail parameter equals 4. Tail defines a 
starting or ending segment of polyline that can be ignored. 

We have developed a special shape descriptor (S), based 
on the descriptor presented in [8]. The descriptor measures 
the similarity of polylines. Polylines are more similar if S is 
larger. 

 

)1(log)1(log 1010 distBdistAd   

(1) 

 
2

22

)(

))(exp(exp

kk

angBangAd
S







 

 
In the equation, 1 means matrix of ones, distA – matrix 

of distances between all pairs of points laid on polyline a. 
distB – matrix of distances between all pairs of points laid on 
polyline b. If the number of points of a line is k, then matrix 
size is k×k. angA and angB are matrices of angles in radians 
between all pairs of points of lines a and b, correspondingly. 
The shape descriptor is calculated for the segments with 
equal length (k). 

A list containing pairs of point sets has been prepared, 
where all points laid on line A are closest to points laid on 
line B of another dataset. For each element of the list, two 
shape descriptors of tails with t number of points have been 
calculated and collected into a list of shape descriptors of 
tails. St_min, St_max – minimal and maximal elements of 
the list. Also, we use maximal tail standard deviation of point 
distances (σt), and its (maximal tail) maximal value – 
σt_max. 

The list of initial variables has been calculated:  
Nesher datasets: Dmax=2.1, σmax=1.0, 

St_min=0,St_max=0.23; Yokne'am datasets: Dmax=7.9,  
σmax=1.5, St_min=0,St_max=0.25. 

IV. DEFINING CORRESPONDING POLYGONS OF DATASETS 

BY TRIANGULATION 

As we can see in Figure 1, many polygons of city 
planning datasets have corresponding polygons in cadastre 
datasets. Thus, we can simply take attributes of these city 
planning polygons and link them to the geometry of 
correspondent cadastre polygons. To implement this idea we 
have developed a triangulation algorithm. 

The triangulation consists of several stages: calculating 
of Delaunay triangulation based on polygon centroids; 
comparing all possible pairs of polygon triples and defining 
correspondent candidate pairs of polygon triples of two 
datasets by area and perimeter comparison; defining correct 
triple correspondence by considering distances between 

polygon centroids. Further in this section, the algorithm will 
be described in detail. 

 
 

 

 
Figure 3.  Delaunay triangulation (red lines) of cadastre (upper) and city 

planning (lower) datasets. Black lines are polygon boundaries, blue points 
are polygon centroids. Yokne'am. 

Delaunay triangulation maps are presented in Figure 3. 
These maps enable us to select triples of polygons, where 
each triple belongs to one of the triangles (centroids of 
polygons are vertices of Delaunay triangles).  Then, for each 
triple we try to find a candidate counterpart triple on a 
second dataset. A candidate counterpart is detected by 
comparing perimeters and areas of polygons as follows. A 
triple of first dataset polygons is the candidate counterpart of 
a triple of a second dataset, if for each polygon in the first 
triple we can find a polygon in the second triple (each 
polygon can only participate in one correspondence). The 
area and perimeter of the first polygon are more than the area 
and perimeter of the second polygon minus 20% and less 

27

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



than the area and perimeter of the second polygon plus 20%. 
The value 20% is empiric. It has been defined as optimal for 
the considered datasets, but it may be used with other 
datasets. It could be feasible to let the user modify the value.  

At this time a list of candidate counterpart triples is 
prepared. The candidates are evaluated by distances between 
centroids of counterpart polygons to define the most likely 
correspondence of polygons in the triple pair 
(TripleB.GetTheMostSimilar() function in Figure 4). For 
each candidate triple of polygons, all possible combinations 
of polygon correspondences implemented by permutation are 
considered. For each combination, a sum of distances 
between correspondent polygons is calculated. A 
combination with the lowest sum describes the most likely 
correspondence of polygons in the current triple pair. The 
correspondence of polygons in the triple pair is correct if one 
of the two follows conditions is true. The first condition is 
valid if the sum of distances between centroids of 
correspondent polygons is less than Dmax defined in the 
previous section. This condition does not work for incompact 
long curve polygons (e.g., road polygons), because even 
small changes in polygon boundary significantly changes 
centroid position. That is why another condition has been 
developed. This condition is valid if the mean distance 
between boundaries of all correspondent polygons in the 
triple pair is less than Dmax. To calculate the mean distance 
between polygon boundaries, the boundaries have been split 
by equidistance points with intervals equaling d (2 meters) as 
defined in the previous section. For each point of the first 
polygon boundary, a distance to the closest point of the 
second polygon boundary is calculated. The mean distance 
between the polygon boundaries equals the mean value of 
the calculated point distance.  

The described algorithm is presented as a pseudo code 
listing in Figure 4 and Figure 5. Figure 4 explains the process 
of preparing a candidate counterpart triples list. It mainly 
comprises standard geoprocessing operations like buffering, 
triangulating and overlaying. In order to improve the 
performance of the algorithms, we used a number of tricks 
for calculating a list of candidate counterpart triples, 
presented in Figure 4. In Figure 5, we consider a process of 
evaluating the candidate list by a number of conditions and 
loops. Each element of a result list contains polygon pairs of 
two datasets. The following text contains more detailed 
explanation of the listings.  

Figure 4 starts from the definition of source polygon 
maps. PolsA and PolsB compare polygon maps. For each 
map several preparatory procedures are applied. Area, 
perimeter and centroid coordinates have been added to the 
attribute table for each polygon. Then, a map of centroids is 
created. An attribute table of source polygon is inherited.  
GetBuffer function returns the 0.1 m buffers around 
centroids. In our case, 0.1 m means the small value that we 
can ignore, i.e., we consider it as “almost 0”. Another small 
value could be used; it depends on specific datasets and 
software. The attribute table is also inherited. GetDelaunay 
pseudo function generates a triangulation map based on 
centroids. OverayMap is the result of overlaying the buffer 
and triangulation map with an “and” operator. The three last 

described operations are illustrated in Figure 4. This 
approach of grouping polygons into triples works very fast. 
Many GIS applications have the described functions in the 
standard edition. 

 
PolsA=first_polygon_map 
PolsB=second_polygon_map 
InitTriples=GetEmptyList() 
 
Foreach map in [PolsA, PolsB] { 
 
    CalculateAreaOfPolygons(map) 
    CalculatePerimeterOfPolygons(map) 
    CalculateXYOfPolygonsCentroids(map) 
    CentroidMap=GetCentroidsAsPoints(map) 
    BufferMap=GetBuffer(CentroidMap, buffer_size=0.1) 
    TriangMap=GetDelaunay(CentroidMap) 
    OverlayMap=GetOverlay(BufferMap, TriangMap) 
    TempList=GetEmptyList() 
 
    Foreach TriangleId in GetIds(TriangMap) { 
 
       Attributes=GetAttribs(OverlayMap,get=map_perimeter, 
map_area,map_centroidXY, where=TriangMap_id= TriangleId) 
       TempList.append(Attributes)     
 
   } 
 
    InitTriples.append(TempList) 
 
} 
 
CandidateTriples= GetEmptyList() 
Foreach TripleA in InitTriples[0] { 
   Foreach TripleB in InitTriples[1] { 
      Appropriate=True 
      Foreach PolA in TripleA { 
         PolB=TripleB.GetTheMostSimilar(PolA) 
         TripleB.remove(PolB) 
 
         If not (0.8*PolB.area < PolA.area < 1.2*PolB.area) and not 
(0.8*PolB.perimeter < PolA. perimeter < 1.2*PolB. perimeter) { 
              Appropriate=False          
          } 
 
       } 
 
       If  Appropriate==True { 
           CandidateTriples.append([TripleA,TripleB]) } 
       } 
 

Figure 4.  The first part of the triangulation algorithm: preparing of a list 

of candidate counterpart triples. 

  
Now we can easily get a polygon triple belonging to any 

triangle. The first element of InitTriple contains all triples of 
polygons of the first polygon map; the second element 
contains all triples of polygons of the second polygon map. 
Then the triples of the two polygon maps are compared by 
area and perimeter and appropriate triples are added to the 
CandidateTriples list. 

28

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 In Figure 5, an algorithm for evaluating candidate 
counterpart triples and defining correspondences between 
polygons is described. The combinations list comprises all 
possible correspondences of polygons in a triple pair. For 
each combination, a sum of distances between the centroids 
of correspondent polygons is calculated. A combination with 
a minimal sum of distances is kept in optimal variable for 
further processing.  

 
Result= GetEmptyList() 
 
 Foreach TripleA, TripleB in CandidateTriples { 
 
   Combinations=getAllPossibleCombinations(TripleA, TripleB) 
    DistList= GetEmptyList() 
 
    For {i=0; i<length(Combinations);i++} { 
 
            PolA1,PolB1,PolA2,PolB2,PolA3,PolB3= 
Combinations.GetPolygonsAsList() 
 
            DistList.append( CentoidDistance(PolA1,PolB1)+ 
CentoidDistance(PolA2,PolB2)+ CentoidDistance(PolA3,PolB3)+) 
 
    } 
 
    MinDist= Minimal(DistList) 
    Index=DistList.GetIndex(MinDist) 
 
    Optimal= Combinations[Index] 
    Foreach PolA, PolB in Optimal { 
 
       If not (0.8*PolB.area < PolA.area < 1.2*PolB.area) and not 
(0.8*PolB.perimeter < PolA. perimeter < 1.2*PolB. perimeter) { 
             Continue 
} 
 
   Appropriate=True 
   
    If MinDist < max_dist { 
       Appropriate=True     
    } 
 
    Else { 
      Foreach PolA, PolB in Optimal { 
         Xa,Ya=PolA.CentroidCoords 
         Xb,Yb=PolB.CentroidCoords 
         AreaA=PolA.area 
         Delta=Sqrt(AreaA)+max_dist 
 
         If (Xa-Delta < Xb <Xa+Delta) and (Ya-Delta < Yb 
<Ya+Delta)  {    
   
           EqdBoundsMapA= GetEquidistancePoints(PolA)  
           EqdBoundsMapB= GetEquidistancePoints(PolB) 
           DistArray=PointDistance(EqdBoundsMapA, 
EqdBoundsMapB) 
 
           If Mean(DistArray)>max_dist { 
               Appropriate=False      
           } 
 
          } 
          Else { 

               Appropriate=False 
          } 
      } #end of Foreach PolA, PolB in Optimal 
 
      If Appropriate == True { 
 
        PolA1,PolB1,PolA2,PolB2,PolA3,PolB3= 
Combinations.GetPolygonsAsList() 
 
         Result.append([PolA1,PolB1])  
         Result.append([PolA2,PolB2])  
         Result.append([PolA3,PolB3]) 
 
     }     

Figure 5.  The second part of the triangulation algorithm: preparing a list 

of polygon correspondences. 

All polygon correspondences are evaluated using areas 
and perimeters; if the condition is false, the triple pair is not 
considered and the next candidate is processed. If the sum of 
distances is less than Dmax (max_dist in the listing; the 
parameter has been defined in the previous section), the 
polygon correspondences are correct and are added to the 
Result list. If the previous condition is false, then we 
calculate mean distance between polygon boundaries. It is 
implemented by calculating distances between equidistant 
points splitting boundaries. If the mean distance is less than 
Dmax, a polygon pair passes the check. This condition has to 
be true for all polygon pairs in the combination. The 
performance of the described condition is quite low, which is 
why we use the Delta variable for filtering distant polygons. 
Delta equals to the square root of PolA’s area plus Dmax. 
Only if centroid PolB is placed inside a rectangle Xa-Delta, 
Ya-Delta, Xa+Delta and Ya+Delta (where Xa and Ya are 
PolA’s centroid coordinates), we can calculate mean distance 
between polygon boundaries. 

 
   

   
  

Figure 6.  Grouping polygons into triples by triangulation (color 

background and red boundaries), buffering (circles) and overlaying (color 
sectors of the circles).Yokne'am. 

      The cadastre and city planning polygon datasets have 
been compared by the triangulation algorithm, and 
counterpart polygons have been detected. The result is 
presented in Figure 7 and in Figure 8: counterpart polygons 
are depicted by gray background and black boundaries, 
polygons without pairs are light gray areas with gray 
boundaries. 

29

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Almost all polygons of the Nesher datasets (see Figure 8) 
have correspondences; only several northern polygons do not 
have pairs. Many polygon correspondences have been 
defined on the Yokne'am datasets (see Figure 7). Several 
polygons look similar in the figure and have no defined 
correspondences. That means that either we do not see the 
differences because of the scale, or that polygons participate 
only in incorrect triples (triples with at least one polygon 
without correspondences).  
 
 

 

 

 
 

Figure 7.  The result of  triangulation. Upper – cadaster, lower – city 

planning. Yokne'am. 

 
The counterpart polygons are excluded from further 

processing and will be involved in the processing only at the 
last stage of the approach. The polygons without pairs are 
extracted from the datasets for defining correspondences 
between boundaries and boundaries’ segments.   

V. DEFINING CORRESPONDING LINES OF DATASETS 

To define corresponding lines, we have developed a 
special descriptor based on several measures: distances 
between points, standard deviation of distances, shape 
descriptor.  Figure 9 depicts the main idea – using 
equidistant points on a polyline to detect corresponding 
polylines, or segments of polylines. In the figure, a polyline 
of cadastral data set with the nearest polylines of a city 
planning map are presented.  

 

 

 
 

Figure 8.  The result of triangulation. Upper – cadaster, lower – city 

planning. Nesher. 

 

 
 

Figure 9.  Equidistant points used to calculate similarity of polylines and 

polylines’ segments. Red line – city planning dataset, black – cadastre. 

 
The algorithm for line pairs searching is presented in 

pseudo code in Figure 10.  
The pseudo-function gets the ‘id’s_of_closest_lines () 

and returns a pair of neighboring lines’ ids points which are 
closest. Usually, for one line A, several pairs of ids can be 

30

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



defined (idA1-idB1, idA1-idB2, …). All id pairs are 
processed. Pts_A – points of a city planning dataset are 
situated on a line with id idA; Pts_B – points of line idB 
(cadastral map). The pseudo function gets_segments (Pts_A, 
Pts_B) and splits lines into segments at intervals where the 
distance between the nearest points is more than Dmax.  In the 
first line of the pseudo function - finding_pairs (PtsA,PtsB) - 
we test distances from start point of line A to start and end 
points of line B. If start-start distance is more than start-end, 
we invert the order of points in line A. Then we set l,i,j 
variables: l – length of line, i - number of starting points on 
line A, j  - number of starting point on line B. 

 
Foreach idA,idB in get_ids_of_closest_lines(){  
    Pts_A     = get_points(‘city planning’,idA)  
    Pts_B =     get_points(‘cadastre’,idB) 
    If min(len(Pts_A),len(Pts_B)) > tail { 
       Foreach segm in get_segments(Pts_A,Pts_B){ 
           Pts_A_segm=segm[‘Pts_A’]  
           Pts_B_segm=segm[‘ Pts_B’]  
           Result_line_pair=find_pair(Pts_A_segm,Pts_B_segm)}}} 
 
Function find_pair(PtsA,PtsB) {  
   If (distance(PtsA[0],PtsB[0]) >  
     distance(PtsA[0], PtsB[-1])){ PtsA=reverse(PtsA)   } 
   Length=min(len(PtsA), len(PtsB))  
   Global_measures=[ ] 
   Foreach l in reverse([tail,…,length]){ 
     Local_measures=[ ] 
     Foreach i in [0,…,len(PtsA)-tail]{  
       Foreach j in [0,…,len(PtsB)-tail]{  
          cur_measure=Calc_measures(PtsA,PtsB,i,j,l) 
          if (cur_measure[0]<max_stand_dev and  
               cur_measure[1]<max_distance){ 
             Local_measures.append(cur_measure)} } } 
     Global_measures 
.append(Find_local_indicator(Local_measures)) 
     If Global_measures and (l==length or 
len(Global_measures)>tail){ 
        Gen_desc_list=[calculate_global_indicator(cur) for cur in                     
                                   Global_measures]   
        If max(Gen_desc_list[:-tail])> max(Gen_desc_list[-tail:]){ 
            Return 
Global_measures[index_of_maximal(Gen_desc_list)]}}} 
 
Function Calc_measures(PtsA,PtsB,i,j,l){ 
 
   cur_PtsA= PtsA[i:i+l] 
   cur_PtsB= PtsB[j:j+l] 
   dists=Distances(cur_PtsA,cur_PtsB) 
 
   Return [stand_dev(dists),max(dists), 
     min(dists),delta_x,delta_y, 
    get_max_stddev_of_tailes(cur_PtsA,cur_PtsB), 
    get_min_shape_descr_of_tails(cur_PtsA,cur_PtsB), 
    get_shape_descriptor(cur_PtsA,cur_PtsB),    i, j, l]}  

 

Figure 10.  Searching for equal polylines or polylines’ segments.      

 
The function Calc_measures (PtsA, PtsB, i, j, l) and 

calculates a set of parameters (standard deviation of 

distances, shape descriptor, minimal shape descriptor of line 
tails, minimal and maximal distance between points). This 
enables us to define similarity of line A segment from i to i+l 
and for line B - from j to j+l. Variables i and j, which define 
the optimal segment (pseudo function Find_local_optimal 
(Local_measures)), have been found for each possible length 
l using (2). 

 

min_max_

max_

max

max)(
_

tt

t

SS

Ss

D

Dd
IndLoc









         (2) 

 
 
 










max

max

max

max_
D

Dd
IndG t




 

(3) 

L/)1(
min_max_

max_
l

SS

Ss

tt

t





  

 

 
 

Figure 11.  Segment of line A (city planning) – green; segment of line B 

(cadastre) – blue. Start and end point of the most similar line segments are 
red points (i=6,j=6, Loc_ind=0.86); blue points – i=2, j=1, Loc_Ind=0.026.  

 

 
 

Figure 12.  Plot of indicator Loc_Ind: X axis – i, Y axis - j. The segment 

with i=6 and j=6 is the most optimal. 

 
The meaning of parameters in (2): d – maximal distance 

between points of lines A and B for (l,i,j), s - minimal tail 
shape descriptor. In this step, we have a Global_measures list 
containing elements that correspond to some l and contain 

31

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



measures of line segments with maximal indicator Loc_Ind 
derived from the list (Local_measures) with variable (i,j). 

This process is illustrated in Figures 11 and 12 (segment 
length is 20 meters). Figure 11 depicts different segments 
with the same length; Figure 12 is a plot of indicator 
Loc_Ind depicted by color. The next stage is defining 
optimal segment length. In the previous stage, we defined 
optimal segments i,j for some length l by calculating local 
indicator Loc_Ind. To define optimal segment length we use 
global indicator G_Ind; its formula is presented as (3). 

In the equation, σt means maximal standard deviation of 
point distances of line segments’ tails; for more details see 
Section III and (2). The resulting optimal line length is 
defined by maximal global indicator G_Ind. The process is 
illustrated in Figures 13 and 14. Figure 13 depicts examples 
of optimal segments with different lengths. Figure 14 is a 
plot of indicator G_Ind. It is obvious that the optimal 
segment length is 41 meters (element with maximal G_Ind, 
according to the plot presented in Figure 14). 

 

 
 

Figure 13.  Segment of line A (city planning) – green; segment of line B 

(cadastre) – blue. Nodes of the most similar line segments with different 

lengths of segment: red points – l=41,i=5,j=5,G_Ind=2.35; green points – 
l=10,i=5,j=5 G_Ind=1.69; blue points – l=43,i=3,j=3 G_Ind=1.64. 

 

 
 

Figure 14.  Plot of indicator G_ind: X axis – segment length (in meters), Y 

axis – G_Ind. 

VI. COMPILING A FINAL MAP 

At this point, we have the pairs of corresponding 
polygons and polygon boundary segments. Some segments 
are overlapped; to resolve conflicts, a special parameter was 
developed: 

 

max

_

min_











lenrange

lenl
P                       (4) 

 
where: l is length of line of one of the lines in a line pair, 
min_len – minimal length of line of all line pairs, range_len 
– range of length of  all line pairs. A line pair with maximal 
P will be saved; others will be removed. The process is 
shown in Figure 15.  
 

 
 

Figure 15.  Overlaped line pairs: red line pair – P=1.23, green line pair – 

P=1.09 . Green line pair will be removed. 

 

 
 

Figure 16.  Moving segments without pairs and closing boundaries: green – 

lines that do not have pairs in cadastral dataset, blue – moved green lines, 

red – closing boundary by moving nodes, black – cadastral pair of city-
planning line segments. 

 
After removing overlapping line pairs, we can use a 

correspondent line segment of the cadastral dataset instead of 
the city-planning dataset. The boundaries of counterpart 
polygons are extracted from polygon maps calculated by 
triangulation. The pair segments are composed with the 
extracted boundaries. We will use nodes of pair segments 
and centroids of pair polygons as control ground points for 
transformation. 

The lines and line segments of the city-planning dataset 
without corresponding lines of the cadastral dataset have 
been moved. Delta X and delta Y have been calculated as 
average delta X and delta Y of neighboring nodes of line 
pairs and centroids of pair polygons. Unclosed boundaries of 
polygons have been closed by moving the nodes of an 
unclosed line to the nearest node of a neighboring line (see 
Figure 16). 

We now have a map containing closed boundaries. All 
legacy centroids have been removed. To create polygons we 
add a new centroid to each set of closed boundaries (see 
Figure 17). As mentioned above, we have prepared a list of 
control ground points. The list contains coordinates of 
correspondent polygons’ centroids and line pairs’ nodes. We 
use these control ground points to transform the original city 
planning dataset to its accurate position. The transformed 
city panning dataset could be used as a product by itself, 
because it is a more accurate dataset in comparison to the 
original map. But we will use it mainly for detecting 
attributes of the resulting dataset. 

32

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 
As mentioned earlier, the legacy centroids have been 

removed from the resulting map and new centroids have 
been added. In other words, we have removed all 
connections between result and original datasets. To define 
the final correspondences we need to apply the triangulation 
process one more time, but now we will compare the results 
(Figure 17) with the transformed city planning dataset. For 
each polygon a correspondence must be found, otherwise the 
polygon will be marked as an error polygon. We have 
applied the triangulation to both datasets. For each polygon a 
correspondence has been established; no error polygons have 
been detected. 

 

 
 

Figure 17.  Adding centroids to closed boundaries. Yokne'am. 

 

Figure 18.  Calculation of minimal distances from segmented boundaries of 

the result dataset (color segments) to cadastre dataset (black lines). 

VII. RESULTS 

In order to evaluate the results, we use distances between 
the boundaries of the result and cadastre datasets as a main 
measure. As mentioned in the previous section, no error 
polygons have been defined by the triangulation, i.e., no 
semantic errors have been detected.   

In order to evaluate the geometrical accuracy of the 
resulting map, the result boundaries have been split to 0.5 m 
segments and a minimal distance to the boundaries of the 
cadastre dataset is calculated. In Figure 18 the prepared color 
segments and black lines are presented. The minimal 
distance from each segment to the closest point on the 
nearest line is calculated. 

TABLE I.  GEOMETRIC ACCURACY OF THE RESULT DATASETS 

Measures 

in meter 

 

Nesher datasets compared with cadastre boundaries 

Original Transformed Result 

Mean 

distance 
 

0.59 0.55 0.01 

Standard 

deviation 
0.55 0.54 0.05 

 Yokne'am datasets compared with cadastre boundaries 

Mean 

distance 

 

0.82 0.63 0.13 

Standard 

deviation 
0.81 0.84 0.77 

 
Table I presents the geometric accuracy of the result 

datasets estimated by the distances between result boundary 
segments and cadastre (accurate) dataset. We can conclude 
that positional accuracy has been significantly improved for 
the result datasets. The accuracy of transformed maps has 
only slightly improved.   

In addition to the table, the histograms of distances are 
presented in Figures 19 and 20. The vertical axis of the 
histogram is the number of segments, the horizontal axis 
depicts distance in meters. The histograms also prove the 
significant improvement in positional accuracy. 

In contrast to the mean and the standard deviation values 
presented in the table, we cannot unambiguously conclude 
from the histograms in Figure 19 (Nesher dataset), that the 
transformed map is more accurate. The main reason for this 
is the fact that most polygons of the map have 
correspondences, and only several northern polygons do not. 
That leads to a situation of the presence of one type of 
control ground points (line pair nodes) in the northern part of 
the dataset only, with another type in the remaining area. For 
larger and more differentiate datasets this would not work. 
The histogram of result datasets depicts significant 
improvement of positional accuracy in comparison to 
original and transformed maps.   

33

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



As mentioned earlier, in the case of a larger and more 
differentiate dataset, the contrast between the histograms of 
original and transformed datasets will be clearer. We can see 
this in Figure 19. 
 

 
 

 
 

 
 

 

Figure 19.  Histogram of distances. From top to bottom: original, 

transformed, and result datasets. Nesher. X axis – distance in meter, Y axis 
– number of segments. 

Results are presented in Figure 21 for six extents. The 
extents correspond to the red numbers in circles in Figure 1. 
Color background is the result dataset. It is overlaid by red 
and black lines. Red lines are the original city planning 
dataset. Black lines are the cadastre dataset. We can 
conclude that most line segments have been taken from the 
cadastral dataset; others have been transformed to 
correspond with cadastral polyline segments. The result 
looks satisfactory; the final map is holistic and does not 
contain significant deficiencies. A review implemented by 
specialists enables us to state that the results are satisfactory 
and the approach could be used in real applications after 
fixing some lacks. 

VIII. CONCLUSION 

An approach for improving the accuracy of polygons’ 
data is presented. Land-use city planning dataset locations 
have been corrected according to the cadastral dataset. The 
polylines’ segments along the polygons have been split by 
equidistant points. Analysis has been performed using 
statistics based on the points of the neighboring polylines of 
the two datasets. A set of parameters has been used: shape 
descriptor of polyline segments, standard deviation of point 
distances, minimal and maximal point distances, standard 
deviation of segment tails, etc. A set of correspondent 
polyline segments using special indicators has been found. It 
enables us to find optimal segments from the list of polyline 
segments with different lengths and starting points.  

 

 

 

Figure 20.  Histogram of distances. From top to bottom: original, 

transformed, and result datasets. Yokne'am. X axis – distance in meter, Y 

axis – number of segments. 

The polyline segments of the city planning data with 
parameters similar/identical to the segments of the cadastral 
data were linked to these segments (defining counterpart 
segments). Segments without a counterpart were 
transformed. The triangulation process has been used to 
define correspondences between polygons. It enables us to 
find optimal segments from the list of polyline segments 
with different lengths and starting points. 

34

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



1 2 

3 4 

5 6 

Figure 21.    Results. Color background is result polygons. Red lines are original city planning polygons’ boundaries. Black lines are 

cadastre polygons’ boundaries. 1 and 2 - Nesher; 3-6 – Yokne'am. Figure 1 depicts the positions of the extents. 

 

35

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



       The polyline segments of the city planning data with 
parameters similar/identical to the segments of the cadastral 
data were linked to these segments (defining counterpart 
segments). Segments without a counterpart were 
transformed. The triangulation process has been used to 
define correspondences between polygons.  

In the future, we need to test the approach with additional 
datasets and different parameters, to compare it with other 
approaches, and to improve calculation speed.  

To implement the approach, we used Python 2.7 
programming language (with numpy, scipy and matplotlib 
additional libraries), GRASS GIS 7.1, and Debian 
GNU/Linux 7 operating system. 

 
ACKNOWLEDGEMENT 

This research was supported by the Survey of Israel as a 

part of Project 2019317. The authors would like to thank the 

Survey of Israel for providing financial support and data for 

the purpose of this research. 

REFERENCES 

[1] A. Noskov and Y. Doytsher, “A Segmentation-based 
Approach for Improving the Accuracy of Polygon Data,” 
GEOProcessing 2015, 2009, Portugal, pp. 69-74. 

[2] S. Filin and Y. Doytsher, “The detection of corresponding 
objects in a linear-based map conflation,” Surveying and land 
information systems, vol. 60(2), 2000, pp. 117-127. 

[3] V. Walter and D. Fritsch, “Matching spatial data sets: a 
statistical approach,” International Journal of Geographical 
Information Science (IJGIS), vol. 13 (5), 1999, pp. 445–473. 

[4] X. Shu and X. Wu. “A novel contour descriptor for 2D shape 
matching and its application to image retrieval”, Image and 
vision Computing, vol.  29.4, 2011, pp. 286-294. 

[5] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and 
object recognition using shape contexts,” IEEE Trans. on 
Pattern Analysis and Machine Intelligence, 24(4), 2002, pp. 
509-522. 

[6] E. Safra, Y. Kanza, Y. Sagiv, C. Beeri, and Y. Doytsher, “Ad-
hoc matching of vectorial road networks,” International 
Journal of Geographical Information Science, iFirst, 2012, pp. 
1–40, ISSN: 1365-8816, ISSN: 1362-3087. 

[7] B. Schmitzer and S. Christoph, "Object segmentation by 
shape matching with Wasserstein modes," Energy 
Minimization Methods in Computer Vision and Pattern 
Recognition, Springer Berlin Heidelberg, 2013. 

[8] T. Ma and J. Longin, "From partial shape matching through 
local deformation to robust global shape similarity for object 
detection," Computer Vision and Pattern Recognition 
(CVPR), IEEE Conference on. IEEE, 2011, pp. 1441-1448.  

[9] X. Chen, “Spatial relation between uncertain sets,” 
International archives of Photogrammetry and remote sensing, 
vol. 31(B3), Vienna, 1996, pp. 105-110. 

[10] A. Bronstein, R. Kimmel, M. Mahmoudi, and G. Sapiro, “A 
Gromov-Hausdorff framework with diffusion geometry for 
topologically-robust non-rigid shape matching,” International 
Journal of Computer Vision, vol. 89(2-3), 2010, pp. 266-286. 

[11] P. Tahmasebi, A. Hezarkhani, and M. Sahimi, “Linking 
Objects of Different Spatial Data Sets by Integration and 
Aggregation,” vol. 2(4), 1998, pp. 335-358. 

[12] E. Rahm and P. Bernstein, “A survey of approaches to 
automatic schema matching,” The International Journal on 
Very Large Data Bases (VLDB), vol. 10(4), 2001, pp. 334–
350. 

[13] V. Kashyap and A. Sheth, “Semantic and schematic 
similarities between database objects: a context-based 
approach,” The International Journal on Very Large Data 
Bases (VLDB), vol. 5(4), 1996, pp. 276–304. 

[14] P. Shvaiko and J. Euzenat, “A survey of schema-based 
matching approaches,” Journal on Data Semantics IV, 
Springer Berlin Heidelberg, 2005, pp. 146-171. 

[15] B. Amann, C. Beeri., I. Fundulaki, and M. Scholl., 
“Ontology-based integration of XML Web resources,” 1st 
International Semantic Web Conference (ISWC), Sardinia, 
Italy, June 9-12 2002, pp.  117–131. 

[16] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. 
Muthukrishnan, and D. Srivastava, “Approximate String Joins 
in a Database (Almost) for Free,” Proceedings of the 27th 
International Conference on Very Large Data Bases, Italy, 
2001. 

[17] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava,  
"Text joins in an RDBMS for web data integration,"  
Proceedings of the 12th international conference on World 
Wide Web. ACM, 2003. 

[18] C. Parent and S. Spaccapietra, “Database integration: the key 
to data interoperability,” Advances in Object-Oriented Data 
Modeling, M. P. Papazoglou, S. Spaccapietra, Z. Tari (Eds.), 
The MIT Press, 2000. 

[19] G. Wiederhold, “Mediation to deal with heterogeneous data 
sources,” Interoperating Geographic Information System, 
1999, pp. 1–16. 

[20] A. Saalfeld, “Conflation-automated map compilation,” 
International Journal of Geographical Information Science 
(IJGIS), vol. 2 (3), 1988, pp. 217–228. 

[21] M. Sester, K. Anders, and V. Walter, “Linking Objects of 
Different Spatial Data Sets by Integration and Aggregation,” 
GeoInformatica, vol. 2(4), 1998, pp. 335-358. 

[22] C. Steger, M. Ulrich, and C. Wiedemann, “Machine vision 
algorithms and applications”, Weinheim: wiley-VCH, 2008, 
pp. 1-2. 

[23] G. Bradski and A. Kaehler, “Learning OpenCV: Computer 
vision with the OpenCV library,” O'Reilly Media, Inc, 2008. 

[24] J. Howse, “OpenCV Computer Vision with Python,” Packt 
Publishing Ltd, 2013, ISBN: 978-1-78216-392-3. 

[25] J. Shewchuk, “Triangle: Engineering a 2D quality mesh 
generator and Delaunay triangulator,” Applied computational 
geometry towards geometric engineering, Springer Berlin 
Heidelberg, 1996, pp. 203-222. 

[26] F. Aurenhammer, “Voronoi diagrams - a survey of a 
fundamental geometric data structure,” ACM Computing 
Surveys (CSUR), vol. 23(3), 1991, pp. 345-405. 

[27] M. Landa, “GRASS GIS 7.0: Interoperability improvements,” 
GIS Ostrava, Jan. 2013, pp. 21-23. 

[28] R. Blazek, M. Neteler, and R. Micarelli, "The new GRASS 
5.1 vector architecture," Open source GIS-GRASS users 
conference, University of Trento, Italy, 2002. 

[29] J. Herring, "OpenGIS Implementation Standard for 
Geographic information-Simple feature access-Part 1: 
Common architecture," OGC Document 4, no. 21, 2011. 

[30] I. Wilson, J.M. Ware, and J.A. Ware, “A genetic algorithm 
approach to cartographic map generalisation” Computers in 
Industry, vol. 52(3), 2003, pp. 291-304. 

[31] B. Gaster, L. Howes, D. Kaeli, P. Mistry, and D. Schaa, 
“Heterogeneous Computing with OpenCL: Revised 
OpenCL1,” Newnes, 2012. 

36

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Extending Interface Roles to Account for Quality of Service Aspects in the DAiSI

Dirk Herrling, Andreas Rausch and Karina Rehfeldt

Technical University Clausthal
Julius-Albert-Straße 4,

38678 Clausthal-Zellerfeld, Germany
email: dirk.herrling@tu-clausthal.de

andreas.rausch@tu-clausthal.de
karina.rehfeldt@tu-clausthal.de

Abstract—Dynamic adaptive systems are systems that change
their behavior according to the needs of the user at run time.
Since it is not feasible to develop these systems from scratch every
time, a component model enabling dynamic adaptive systems
is called for. Moreover, an infrastructure is required that is
capable of wiring dynamic adaptive systems from a set of
components in order to provide a dynamic and adaptive behavior
to the user. To ensure a wanted, emergent behavior of the
overall system, the components need to be wired according to
the rules an application architecture defines. In this paper, we
present the Dynamic Adaptive System Infrastructure (DAiSI). It
provides a component model and configuration mechanism for
dynamic adaptive systems. To address the issue of application
architecture conform system configuration, we introduce interface
roles that allow the consideration of component behavior during
the composition of an application. Moreover, we extend the
interface roles and application specifications by a quality of
service concept. This enables a component to not only require
a syntactical and semantical correct wiring, but also to demand
the – from its viewpoint – best service.

Keywords–dynamic adaptive systems; component model; adap-
tation; interface roles; application architecture awareness.

I. INTRODUCTION

This paper is an extended version of a paper presented at
the Seventh International Conference on Adaptive and Self-
Adaptive Systems and Applications (ADAPTIVE) [1].

Software-based systems are present at all times in our daily
life. This ranges from our private life where nearly everyone
owns and uses a smart mobile phone to large scale business
applications and the public administration that are managed
entirely by software systems. In every household, dozens of
devices run software and a modern car will not even start its
engine without the proper software. Some software systems
have grown to be among the most complex systems ever made
by mankind [2], due to their increase in size and functionality.

Through smaller mobile devices with accurate sensors and
actuators and the ubiquitous availability of the Internet, the
number of integrated devices in large scale applications has
increased drastically within the last twenty years. These de-
vices and the software running on them are used in organically
grown, heterogeneous, and dynamic information technology
(IT) environments. Users expect them to not only provide
their primary services, but also to collaborate with each other
to provide some kind of emergent behavior. The challenge is
therefore to be able to build systems that are robust enough to
withstand changes in their environment, deal with a steadily

increasing complexity, and match requirements that might be
defined in the future [3].

Due to the increasing complexity of large systems, be it in
size or in functionality, those systems are no longer developed
from scratch by one vendor. While the development usually
takes place in a component-based way [4], it is usually split
among a number of companies. Additional components for
mobile devices are often developed against documented or
reverse-engineered interfaces by independent developers.

To ease the development of dynamically integratable com-
ponents, a common component model is called for. The
development of DAiSI started in 2004 to address this issue [5].
Over the years, a component model was defined that allows
developers to implement a component for dynamic adaptive
systems easily. In contrast to adaptive systems, which adapt to
changes in their environment only, dynamic adaptive systems
can also integrate components into themselves, which were
not known at design-time. DAiSI provides a component model
and run-time infrastructure for such dynamic adaptive systems.
The latter can run and integrate DAiSI components by linking
required services with compatible provided services and thus
forming one ore more DAiSI applications. Compatibility has
been only syntactical at first, requiring that for every method in
the required service, a method with the same signature (name,
parameters, return types, etc.) is defined in the corresponding
provided service [6]. The aspect was later extended to support
semantic compatibility by additionally requiring equivalent
behavior of each method [7].

Obviously, an application is more than just the sum of
its components. This already becomes evident in very small
examples. Consider cross country skiers and their trainer. A
dynamic adaptive application connects vital data monitoring
devices of the athletes to the management system of their
trainer. In a competition with a competing team on the same
track, athletes and trainers should only be connected to each
other if they belong to the same team. While it is possible to
work around this issue by, e.g., ensuring in the implementation
of components that they only exchange data if they belong to
the same team, this is just that – a work around.

An application architecture that is enforced by the infras-
tructure can define rules that can address the challenge our
athlete– and trainer-components face. It can specify that only
components of members of the same team are allowed to be
connected to each other. More generically, the consideration of
an application architecture during system configuration helps

37

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



to ensure wanted, emergent behavior of dynamic adaptive
systems. It does that by enabling application architects to limit
the configuration space and thus prevent the connection of
components that should not be connected. This paper will show
the introduction of an application architecture into the field of
dynamic adaptive system configuration and how we integrate
it with the DAiSI infrastructure.

The rest of this paper is structured as follows: In Section
II, we present an overview of other works in the field of
dynamic adaptive systems. This is followed by an introduction
to the DAiSI component model and the notation of DAiSI
components in Section III. As a first step towards architecture
conform configuration, we introduce interface roles and the
consideration of local quality of service (QoS) aspects in
Section IV. Afterwards, we briefly discuss the DAiSI config-
uration mechanism in Section V. In Sections VI and VII, an
introduction of applications and application templates together
with application-wide quality of service optimization follows.
The paper ends with a conclusion in Section VIII.

II. RELATED WORK

Component-based development is one of the state-of-the-
art techniques in modern software engineering. Components as
units of deployment and their component frameworks provide
a well-understood, solid approach for the development of
large-scale systems. This is not surprising, considering that
components can be added to, or removed from the system
at design-time easily. This allows high flexibility and easy
maintenance [4].

If components should be added to, or removed from a
system at run-time things get a little bit more difficult, as
techniques for this were not implemented in early component
models. However, service oriented approaches allowed the
dynamic integration of components at run-time. Those systems
usually maintain a service directory. Components entering the
system register their provided– and query for candidates of
their required services. Once a suitable service provider is
identified for a required service, it can be easily connected
to the component [8].

Service-oriented approaches are capable of handling dy-
namic behavior. Components that have not necessarily been
previously known to the system can be integrated into it.
However, they have the uncomfortable characteristic that the
system itself does not care for the dynamic adaptive behavior.
The component needs to register and integrate itself. Also,
it has to monitor itself whether the used services are still
available and adapt its behavior accordingly, if that is no longer
the case. To address these issues a couple of frameworks have
been developed to support dynamic adaptive reconfiguration.

CONIC was one of the first frameworks for dynamic
adaptive, distributed applications. It provided a description
technique that could be used to change the structure (and thus
the architecture) of the integrated modules of an application.
A CONIC application was maintained by a centralized con-
figuration manager [9]. It allowed to spawn new component
instances and to link them to each other.

Another framework, building on the knowledge gained
through the research in CONIC, was a framework for Re-
configurable and Extensible Parallel and Distributed Systems
(REX). It provided support for dynamic reconfiguration in

distributed, parallel systems. It visioned those systems as com-
ponent instances, connected through interfaces for which an
own interface description language was defined. Components
were considered as types, allowing multiple instances of any
component to be present at run-time. The framework allowed
the dynamic change of the number of running instances and
their wiring [10], [11]. Both, the CONIC– and REX framework
allowed the dynamic adaptation of distributed applications,
but only through explicit reconfiguration programs for every
possible reconfiguration.

This issue was addressed in [12]. They took a more abstract
approach and defined sets of valid application configurations.
Following this approach, a system can then adapt itself from
one valid application configuration to another, whenever the
system changes. The declaration of reconfiguration steps be-
came obsolete.

Another framework to build dynamic adaptive systems
upon is ProAdapt. It is set in the field of service-oriented
architectures and reacts to four classes of situations:

• Problems that stop the execution of the application
• Problems that require the execution of a non-optimal

system configuration
• New requirements
• Presence of services with a better service quality

ProAdapt is capable of replacing certain services and can,
together with its service composition capabilities, replace
composed services [13].

In [14], [15], a framework for the dynamic reconfiguration
of mobile applications on the basis of the .NET framework was
introduced. Applications are composed of components, and
application configurations are specified initially in XML. A
centralized configuration manager interprets this specification
and instantiates and connects the involved components. The
specification can include numerous different configurations
which are distinguished by conditions under which they apply.
The framework monitors its surroundings with the help of a
special Observer component and evaluates which application
configuration is applicable. The framework allows the dynamic
addition and removal of components and connections.

In [16], the authors present a solution to ensure syntactical
and semantical compatibility of web services. They used the
Web Service Definition Language (WSDL) and enriched it
with the Web Service Semantic Profile (WSSP) for seman-
tical information. Additionally they allowed an application
architect to further reduce the configuration space through
the specification of constraints. While their approach is able
to solve the sketched problem of preventing the wiring of
components that should not be connected, they only focus on
the service definition and compatibility. Our DAiSI approach
defines an infrastructure in which components are executed
that implement a specific component model. We do want to
compose an application out of components that can adapt their
behavior at run-time.

We achieve this by mapping sets of required services to
sets of provided services and thus specifying which provided
services depend on which required services. The solution
presented in [16] does not offer a component model. All
rules regarding the relation between required and provided
services would have to be specified as external constraints. The

38

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



authors in [17] provided a different solution to ensure semantic
compatibility of web services. However, the same arguments
as for [16] regarding the absence of a high level component
model hold true.

With regard to the application architecture aware adapta-
tion, Rainbow [18], [19] is one of the most dominant and well-
known frameworks. Rainbow uses invariants for the specifica-
tion of constraints in its architecture description language. For
each invariant an operation for the adaptation of the system
can be specified. The operation is then executed whenever
the invariant is violated. However, this approach requires
the knowledge of all component types at design-time, which
is opposing our goal of an open system. Additionally, the
developer has to implement the adaptation steps individually
for every invariant. This imperative method for adaptation
requires the component requiring the adaptation to have a
view of the complete system and additionally introduces a big
overhead at design-time as well as at run-time.

R-OSGi [20] takes advantage of the features developed for
centralized module management in the OSGi platform, like
dynamic module loading and –unloading. It introduces a way
to transparently use remote OSGi modules in an application
while still preserving good performance. Issues like network
disruptions or unresponsive components are mapped to events
of unloaded modules and thus can be handled gracefully – a
strength compared to many other platforms. However, R-OSGi
does not provide means to specify application architecture
specific requirements. As long as modules are compatible with
each other they will be linked. The module developer has to
ensure the application architecture at the implementation level.
Opposed to that, our approach proposes a high level description
of application architectures through application templates that
can be specified even after the required components have been
developed.

III. THE DAISI COMPONENT MODEL

This section will introduce the foundations of the DAiSI
component model. As already briefly mentioned in the intro-
duction of this paper, DAiSI components communicate with
each other through services. Different component configura-
tions map required– to provided services.

AS an example, we assume that a self-organizing system
is to be developed, which supports the training of biathletes.
A biathlon team consists of several athletes and trainers. Each
trainer requires an overview of his athletes’ performance data,
which includes the current pulse and skiing-technique of the
athlete. Based on this data, the trainer can give guidance to
his athletes. Figure 1 shows a sketch of a DAiSI component
with some explanatory comments for an athlete in the biathlon
sports domain.

A component is depicted as a rectangle, in this example
of a light blue color. Component configurations are bars that
extend over the borders of the component and are depicted in
yellow here. Associated to component configurations are the
provided and required services. The notation is similar to the
Unified Markup Language (UML) lollipop notation [21] with
full circles resembling provided, and semi circles representing
required services. A filled circle indicates that the associated
service is directly requested by the end user and thus should
be provided, even if no other service requires its use.

Figure 1. Example notation of a DAiSI component with explanatory
comments.

Figure 1 shows the CAthlete component, consisting of
two component configurations: conf1 and conf2. The first
component configuration requires exactly one service variable
r1 of the IPulse interface. The second component configuration
does not require any services to be able to provide its service p2

of IPerson. The service could be used by any number of service
users (the cardinality is specified as ∗). The other component
configuration (conf1) could provide the service p1 of the type
IAthlete, which could again be used by any number of users.

Figure 2 shows the DAiSI component model as an UML
class diagram [21]. The component itself, represented as the
light blue box in the notation example, is represented by
the DynamicAdaptiveComponent class. It has three types of
associations to the ComponentConfiguration class, namely
current, activatable, and contains. The contains association
resembles the non-empty set of all component configurations.
It is ordered by quality from best to worst, with the best com-
ponent configuration being the most desirable, e.g., because
of best service qualities of the provided services. The order is
defined by the component developer. A subset of the contained
are the activatable component configurations. These have their
required services resolved and could be activated. An active
component configuration produces its provided services. At
run-time, only one or zero component configurations per com-
ponent can be active. The active component configuration is
represented by the current association in the component model,
with the cardinality allowing one or zero current component
configurations for each component.

The required services (represented by a semi circle in
the component notation in Figure 1) are represented by the
RequiredServiceReferenceSet class. Every component config-
uration can declare any number of required services. Those
that are resolved are represented by the resolved association.
The cardinalities of the required service are stored in the
attributes minNoOfRequiredRefs and maxNoOfRequiredRefs.
Provided services (noted as full circles on the left hand side in
Figure 1) are represented by the ProvidedService class. They
can be associated to more than one component configuration,
if more than one component configuration provides the same
service. The runRequestedBy association is relevant at run-time
and resembles the component configuration that actually wants
the provided service to be produced.

Not all provided services can be used any number of times.
The attribute maxNoUsers indicates the maximum number
of allowed users. The flag requestRun, represented by the

39

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 2. DAiSI component model.

40

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



full circle being filled with black in the component notation,
indicates that the service should be produced, even if no other
service requires its use. This is typically the case for services
that provide graphical user interfaces or that provide some
functionality directly requested by the end user.

The provided and required service, more precisely their
respective classes in the component model, are associated with
each other through three associations. The first association
canUse represents the compatibility between two services. If
a provided service can be bound to the service requirement
of another class, these two are associated through a canUse
association. A subset of the canUse association is wantsUse.
At run-time, it resembles a kind of reservation of a particular
provided service by a required service reference set. It does
not already use the provided service, but would like to use it.
After the connection is established and the provided service
satisfies the requirement, they are part of the uses association
which represents the actual connections. All classes covered
to this point implement a state machine to maintain the state
of the DAiSI component. If you want to know more about the
state machines and the configuration mechanism, please refer
to our last years paper [22].

To this point, we have covered the building blocks of
a DAiSI component. An application in a dynamic adaptive
environment is composed of any number of such components
that are linked with each other through services. Those ser-
vices are defined through DomainInterfaces. Required services
(represented by the RequiredServiceReferenceSet class) refer
to exactly one domain interface, while provided services (rep-
resented by the ProvidedService class) implement a domain
interface. The set of all defined domain interfaces composes
the DomainArchitecture. The interface roles, which will be
presented in the next section, are contained by the domain
architecture. They refine domain interfaces and are required by
any number of required service reference sets. Any provided
service can conform to an interface role. However, this is not
a static information, but changes during run-time.

For our example, it is assumed that the component pre-
sented in Figure 3 is available.

Figure 3. The CAthlete component.

The component defines three ComponentConfigurations
with conf 1 specified as best configuration and conf 3 as worst.
The conf 3 configuration can be activated if r1 can be connected
to a service that implements the interface IPulse. The conf 2
configuration can be activated, if r2 and r3 are each connected
with a ski stick. The conf 1 configuration is activated if the
dependencies of all three RequiredServiceReferenceSets can be
resolved. In all three configurations, the component provides
a service that implements the domain interface IAthlete. It

defines a method getPulse():int to query the current pulse
and also a method getSkiingTechnique():String, which returns
the currently used skiing technique (double poling/diago-
nal technique). Additionally, it provides a method getLoca-
tion():double[2] to query the current location of the athlete. If
the conf 3 configuration is active, the call getSkiingTechnique
returns the value null. If, in contrast, the conf 2 configuration
is active, the call getPulse returns the value -1.

The component presented in Figure 4 represents the trainer.

Figure 4. The trainer component available in the system.

The required functionality is provided by the service pl,
which implements the interface ITrainer. The service defines
a dependency on services that implement the interface IAthlete.
The individual athletes’ performance data within the appli-
cation are provided by components providing this interface.
However, ITrainer can also be run when no athlete is available
in the system.

Figure 5. The CShootingLine component.

Shooting training is another requirement of our example
system. Each shooting line is represented by a component,
providing a service described by the domain interface IShoot-
ingLine. Figure 5 presents the DAiSI component CShooting-
Line.

Figure 6. The CSupervisor component.

The shooting line may be monitored by a supervisor. This
is represented in the system by a service that implements
the domain interface ISupervisor. The component presented
in Figure 6 provides such a service. It can make use of a
shooting line component.

All provided services of these components (trainer, shoot-
ing line, and supervisor) start, even if there is no other
component requiring them. The flag requestRun is set, which
is indicated by the filled circle.

IV. INTERFACE ROLES

With the RequiredServiceReferenceSet class many com-
ponent local requirements can be specified. However, this

41

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



is not sufficient for self-organizing systems.To illustrate the
problem, let us consider Figure 7. It shows a simplified DAiSI
component for an athlete. It specifies only one of the three con-
figurations we defined in the previous section. The component
provides a service of the type IAthlete and requires two IStick
services to be able to do so. The provided service calculates
the current skiing technique and needs measurement data of
the sticks movements, which is provided by the two required
services. However, with the component model as presented
in Section III, a binding between only the left ski stick with
both required service reference sets would be possible and
allow the component to run. Of course the domain interface
IStick provides a method to query at which side a ski stick is
being used. However, this information is not considered in the
configuration process. Obviously, the IAthlete service can not
perform as expected as the measurement data of the right ski
stick is missing.

Figure 7. A DAiSI component for a biathlon athlete.

There are numerous other examples in which return values
of operations of domain services have to be considered in order
to establish the desired system configuration. For that reason,
we extended the component model by the class InterfaceRole.
In our previous understanding, provided and required services
were compatible, if they referred to the same domain interface.
Those interfaces can be seen as a contract between service
provider and service user. We now extended this contract by
interface roles. An interface role references exactly one domain
interface and can define additional requirements regarding
the return values of specific methods defined in that domain
interface. A provided service only fulfills an interface role if
it implements the domain interface and as well complies to
the conditions defined in the interface role. Consequently, a
required service reference set not only requires compatibility
of the domain interface, but also of the interface role to be
able to use a provided service.

Figure 8 shows the same DAiSI component as Figure 7,
but with specified interface roles. With this addition it can be
ensured that the athlete component in fact is connected with
one left and one right stick. The LeftStickRole interface role
refines the IStick domain interface and compares the return
value of the method that returns the side of the ski stick is
used on against a reference value for left ski sticks. This could
be implemented by a method called getSide():String and the
return value would be compared against the string “left”. The
interface role RightStickRole can be implemented accordingly.

This solution introduces new challenges for the configura-
tion process of dynamic adaptive systems. Was it previously
sufficient to connect a pair of required service reference set and
provided service, this decision has to be monitored now. As
the interface roles take return values of services into account,
the fulfillment of an interface role is not static. The provided

Figure 8. A DAiSI component for a biathlon athlete with interface roles.

service supposedly conforming to the interface role has to be
evaluated either cyclically, or event based whenever relevant
return values change. For our implementation, we took a cyclic
approach, however, in [7] we described a way to re-evaluate
the semantic compatibility of services whenever return values
change equivalence classes.

The interface roles provide a possibility to include run-time
information in the configuration process. But the true or false
expressiveness of interface roles is not enough in some cases.
Consider the following example: Every trainer is able to train
three athletes at once. In addition, the energy consumption of
the IAthlete service depends on the distance between trainer
and athlete. To maximize the outcome of the training and
minimize the energy consumption each trainer should see and
analyze performance data of the three nearest athletes instead
of the ones miles away. In Figure 9 the trainer should see the
performance data of athletes A, B and C.

Figure 9. Locale optimization of energy consumption and training outcome.

The DAiSI component model and domain architecture
presented above are not sufficient to express a constraint like
this. There are other examples when the services referenced in
RequiredServiceReferenceSets should be ordered by require-
ments of the component.

To achieve this, we expand the interface role by a com-
parator. The method compare(DomainInterface ps1, Domain-
Interface ps2, DomainInterface req) : int takes three domain
interfaces as parameter. ps1 and ps2 are provided services
which will be compared. The last domain interface req is
an optional parameter, which may be used to take run-time
information of the requiring component into account. It may be
a provided service of the requiring component, which provides
important run-time information for the comparator. In our
example of trainer and athletes, the current position of the
trainer is crucial for the ordering of IAthlete services.

The compare method returns either a negative integer, zero

42

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



or a positive integer. In the manner of known comparators, like
Java’s comparator, a negative value, zero, or a positive value
mean the quality of ps1 is less than, equal or greater than the
quality of ps2. Whether there are finer granularities in return
values in the sense of -1000 is much worse than -1 depends
on the particular implementation of the compare–method. It
is important to notice that only provided services which are
conform to the interface role are comparable. The standard
implementation for the compare method treats every service
as equal and returns always zero.

Now, the RequiredServiceReferenceSet of a component has
the possibility to order the provided services by a chosen
criterion. The available criteria are determined by the domain.
Consequently, the configuration process has to take the order
into account when configuring the system. All possibly usable
services are represented by canUse. These are the services
which implement the domain interface and which are conform
to a required interface role. If there is a request for dependency
resolution, the services in canUse are ordered with the help
of compare. The resulting list of ordered services is then
used to place a usage request for the currently best services.
Their service references are copied to the wantsUse set. The
configuration mechanism will be explained in more detail in
the next section.

Figure 10. CAthletes components sorted by distance to CTrainer component.

Figure 10 shows our example from before with ordered
components. The interface role NearestAthlete is now re-
quired by t, the CTrainer component. The compare method of
NearestAthlete compares two IAthlete services with the help
of one ITrainer service. Both IAthlete and ITrainer provide
a method getLocation():double[2], which returns the current
GPS coordinates of the athlete or trainer. The compare method
of NearestAthlete compares the distance of given athletes to the
trainer. Of course, regarding our example a shorter distance is
considered better, as a longer distance. To fulfill the specified
meaning of the compare method’s return value, ps2’s distance
minus ps1’s distance is returned.

This results in the situation pictured in Figure 10. t can
use all CAthlete components but in the end it uses b, a, and
c, since this is the resulting order from sorting by distance to
t. Concluding, the interface role comparator provides a rather
simple method for the component to state which services it
would like to use ”the most”.

V. CONFIGURATION MECHANISM

Beside the DAiSI component model and the DAiSI domain
architecture model, a decentralized dynamic configuration
mechanism was also already established in the DAiSI platform.
Three types of relations between RequiredServiceReference-
Sets and ProvidedServices exist, represented by the associ-
ations canUse, wantsUse and uses. The set of services that
implement the domain interface referred by the RequiredSer-
viceReferenceSet is represented by canUse. Note, this only
guarantees a syntactically correct binding. Interface roles in
addition provide a compatibility check with respect to a given
common domain architecture.

The wantsUse set holds references to those services for
which a usage request has been placed. Last, the uses set
contains references to those services, which are currently in
use by the component or by RequiredServiceReferenceSet.
Each time a new service becomes available in the system,
it is added to all canUse sets, if the corresponding Re-
quiredServiceReferenceSet refers to the same DomainInterface
as the ProvidedServices. The management of these three
associations – canUse, wantsUse and uses – between Re-
quiredServiceReferenceSets and ProvidedServices is handled
by DAiSI’s decentralized dynamic configuration mechanism.
This configuration mechanism relies on the state machines,
presented more detailed in [23] and sketched in the following
paragraphs.

Figure 11. CTrainer component.

Figure 12. Sequence diagram showing the triggers and states of a standalone
DAiSI component.

Consider again the biathlon example. Assume a given
CTrainer component as shown in Figure 11. It has one single

43

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



configuration and provides a service of type ITrainer to the
environment, which can be used by an arbitrary number of
other components. The component requires zero to any number
of references to services of type IAthlete.

The boolean flag requestRun is true for the service pro-
vided. Hence, DAiSI has to run the component and provide
the service within the dynamic adaptive system to other com-
ponents and users. DAiSI can run the component directly and
thereby provides the component service to other components
and users as shown in the sequence diagram in Figure 12.

Figure 13. CAthlete and CPulse components.

Now assume two components: The CAthlete component,
shown on the left hand side of Figure 13, requires zero or one
reference to a service of type IPulse. The second component,
CPulse, shown on the right hand side of Figure 13, provides
such a service of type IPulse. Figure 14 shows the states and
triggers of the involved state machines in a sequence diagram
for this example.

Once the CPulse component is installed, DAiSI integrates
the new service in the canUse relationship of the RequiredSer-
viceReferenceSet r1 of the component CAthlete. Then DAiSI
informs the CAthlete component that a new usable service is
available. DAiSI indicates that CAthlete wants to use this new
service by adding this service in the set wantsUse of CAthlete.
Once the service runs, it is assigned to the CAthlete component,
which uses the service from now on (added to the set uses of
CAthlete).

Figure 14. Inter-component configuration mechanism.

VI. APPLICATION SPECIFIC SYSTEM CONFIGURATION

Imagine the following situation: the example biathlon ap-
plication already introduced shall now fulfill a number of new
requirements:

• The ITrainer service can only be run when it has
access to at least one athlete service

• Each athlete must have access to a shooting line
• Shooting lines can only be used when they are super-

vised
• The skiing technique is to be analyzed in particular
Currently, the implementation of the components would

have to be adapted in order to meet the requirements. For
example, the attribute minNoOfRequiredRefs of r1 from Figure
11 would have to be set to 1. However, a component’s code
cannot always be adapted in this way, for example because
it is proprietary software and the source code not available.
In addition, adapting it manually for the specific application
purpose contradicts one of the original purposes of component
based software development – reuse of components among
different applications. The solution presented in the remainder
of this section allows the application–specific specification of
the minimum and maximum number of required references
for RequiredServiceReferenceSets without having to adapt the
component’s source code.

Since the skiing technique is to be analyzed in particular,
only the conf 2 ComponentConfiguration of the athlete com-
ponent ’tim’ of Figure 3 is relevant. Even if one pulse service
and two ski stick services are available, the conf 1 configu-
ration should not be activated. In this section, expansions of
the existing framework are described, which enable such an
application–specific influence on the activation of component
configurations.

The system must guarantee that exactly one shooting line
component is available for each athlete connected to the trainer
component. This means that the number of those services used
by the shooting supervisor component must be in accordance
with the athlete components, which the trainer component
accesses. One system configuration that meets all criteria
described above is presented in Figure 15. A trainer component
is connected with an athlete component, which in turn is
connected to a left and a right ski stick. In addition, the
application consists of a shooting supervisor component, which
in turn is connected to a shooting line component.

In the DAiSI as it was presented on the previous pages,
such system configuration requirements cannot be specified
and, therefore, not be guaranteed. Moreover, further require-
ments would be relevant for this application, such as: if a new
athlete component is added to the system in the configuration
described above, it should only be integrated into the appli-
cation when a shooting line component is available for this
athlete. The application also needs to be stopped for example,
when the athlete component from Figure 15 is only connected
with one ski stick component.

To address these issues, we introduce application config-
urations. An application configuration consists of a number
of components, as well as connections between these compo-
nents. The primary task of DAiSI is to select the components
that can be considered for a configuration conforming to the
application architecture out of the number of all available
components. In addition, the components must be connected
in such a way that all specified requirements are met.

The criteria for the selection of suitable components for an
application are defined with the assistance of so–called tem-
plates. An application specification consists of one or more of

44

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 15. A system configuration that meets the requirements.

such templates. In this way, the biathlon application described
above could, for instance, consist of a template for trainer com-
ponents, and one for athlete components, one for shooting line
components, etc. For each of these templates, requirements can
be stored that specify under which circumstances a component
is compatible with a template. The framework ensures that at
runtime, only components matching the outline are allocated
to the template. Graphically, a template is represented by a
rectangle with dashed lines. Requirements related to required
and provided component services are represented visually by
circles and semi-circles with dashed lines (described in detail
below). In Figure 16, two placeholders within an application
template can be seen. One or two components can be allocated
to the application, while one of the given components remains
ignored, as it is not compatible.

Figure 16. Suitable components for an application configuration.

The components selected must be connected with each
other in order to obtain an executable system. For this purpose,
in addition to the templates, the links between templates are
defined, and represented as dashed arrows (see Figure 16).
They provide information on how the allocated components
are to be connected with each other. In this way it is possible to
define that each component allocated to the tTrainer template
in Figure 16 must be connected with at least one component,
which is allocated to the tAthlete template. Later (during run–
time), the framework ensures that the requirements related
to the links between the components are considered. Figure

17 shows one possible resulting system configuration, while
Figure 18 presents a possible application specification for the
complete biathlon application.

Figure 17. Generation of a valid configuration.

Figure 18. Graphical and textual application specification.

An application itself is graphically represented as a rect-
angle with the name of the application noted at the top. As
stated before, each Template is represented as a rectangle
with dashed outer lines and identified by a name. Within a
template, the contents of the attributes minNoOfRequiredCom-
ponents and maxNoOfRequiredComponents are noted at the top

45

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



right. A ProvidedTemplateInterface is represented as a dashed
circle, which is labeled with its name, and the referenced
domain interface. RequiredTemplateInterfaces are represented
correspondingly as dashed semi-circles. They are also labeled
with the referenced domain interface, the referenced interface
role, if applicable, and a name. Links between RequiredTem-
plateInterfaces and ProvidedTemplateInterfaces (connectedTo)
are visualized with a dashed arrow. The predicate specification
(appConstraint)is specified in a separate area beneath the
templates.

The aim of the DAiSI run–time infrastructure is to create
an application configuration, which meets all specified require-
ments. As soon as this is achieved, the applications’ state
machine transitions from NOT RUNNING to RUNNING. In
other words: if an application is in the state RUNNING, the
application configuration created conforms to the application
architecture.

The following paragraphs describe how a valid application
configuration can be generated automatically. The method
suggested here follows a brute-force approach, which iter-
atively generates all possible configurations. It is sketeched
in Listing 1 as pseudo code. While this is not optimal with
regard to resources, it is sufficient to generate a valid system
configuration.

1 boolean c r e a t e V a l i d C o n f i g u r a t i o n ( ) {
2 whi le ( p o s s i b l e C o m p o n e n t A s s i g n m e n t S e t s . hasNext ( ) ) {
3 p o s s i b l e C o m p o n e n t A s s i g n m e n t S e t s . n e x t ( ) .
4 r e a l i z e ( ) ;
5
6 whi le ( p o s s i b l e I n t e r f a c e A s s i g n m e n t S e t s . hasNext ( ) )

{
7 p o s s i b l e I n t e r f a c e A s s i g n m e n t S e t s . n e x t ( ) .
8 r e a l i z e ( ) ;
9

10 whi le ( p o s s i b l e U s a g e S e t s . hasNext ( ) ) {
11 p o s s i b l e U s a g e S e t s . n e x t ( ) . r e a l i z e ( ) ;
12
13 i f ( i s V a l i d C o n f i g u r a t i o n ( ) ) {
14 re turn true ;
15 }
16 }
17 }
18 }
19 re turn f a l s e ;
20 }

Listing 1. createValidConfiguration() method, pseudo code listing.

Since a valid configuration, which meets the requirements
can change at any time in such a way that it no longer conforms
to the application architecture, the application configuration
is checked cyclically for conformance to the application ar-
chitecture. As soon as the configuration no longer meets
the defined application architecture–specific requirements, and
therefore the predicate isValidConfiguration is evaluated as
false, the applications’ state machine changes back to the state
NOT RUNNING.

The algorithm is divided into two parts: the first part creates
an application configuration (lines 2-9 in Listing 1), while the
second checks the generated configuration for conformity with
the requirements (lines 11-12 in Listing 1). Creating a config-
uration requires three steps. Firstly, selecting the components,
then the ProvidedService– and RequiredServiceReferenceSets
must each be allocated to a ProvidedTemplateInterface and
RequiredTemplateInterface, respectively. Therefore, the two

assignedTo quantities must be defined. Finally, the uses set
must be determined for each RequiredServiceReferenceSet.

The initial situation of the configuration process is a set of
available components. A selection must be made to obtain an
application configuration. To accomplish this, an assignment of
the selectedComponents set is created for each template, with
the static properties already being considered. The configura-
tion mechanism then calculates the set of all possible assign-
ment combinations and makes them available via an iterator
(possibleComponentAssignmentSets from Listing 1), based on
the components available and the application specification, the
method realize implements the specific assignment.

Figure 19. Allocation of components to templates.

In the example in Figure 19, the components a and b can
be allocated to the tTrainer template. Only one component
needs to be allocated to the template in order to fulfill the
application requirements. Both components provide a service
that implements the ITrainer domain interface and define a Re-
quiredServiceReferenceSet that references the IAthlete domain
interface. Only component d can be allocated to the tAthlete
template since this component is the only one that meets
the structural requirements of the template. A total of two
components are available for the tLStick and tRStick templates
and exactly one component must be allocated to each of these,
in order to be able to meet the application requirements. This
results in a number of possible allocations of components
to templates. The configuration algorithm makes a selection,
which is then realized by the configuration mechanism.

ProvidedServices of a component can fit to several Pro-
videdTemplateInterfaces. Since ProvidedServices must be al-
located to ProvidedTemplateInterfaces during run–time, the
framework needs to decide which to use. This applies ac-
cordingly to RequiredServiceReferenceSets and RequiredTem-
plateInterfaces. For example, the RequiredTemplateInterface
of the tAthlete template in Figure 19, do not reference any
interface roles but only the IStick domain interface as presented
in Figure 20. In this example, the RequiredServiceReferenceSet
r1 can be allocated to RequiredTemplateInterface rtA1 as well
as rtA2. The same applies to RequiredServiceReferenceSet r2.

Within the algorithm in Listing 1, all possible allocation
configurations, which result from the allocation of components
to templates in the previous step are now iterated. In the

46

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 20. Allocation of component interfaces to template interfaces.

component model, the allocation between RequiredServiceRef-
erenceSet and RequiredTemplateInterface, and between Pro-
videdService and ProvidedTemplateInterface are represented
by the assignedTo association. All possibilities are iterated with
the possibleInterfaceAssignmentSets iterator and a returned
assignment is then realized by calling realize. In the next step,
the uses set is assigned to the RequiredServiceReferenceSets
of the components, which were allocated previously to the se-
lectedComponents. As a last step, the configuration algorithm
creates the use relations between the components.

After creating a component selection, subsequently allo-
cating the services and then assigning the uses set of all
RequiredServiceReferenceSets creates a running application
configuration automatically. Every component that is part of
the application is informed about their role in the application,
i.e., which template they will fill, to which templates their
services are assigned to, and to which provided services they
should connect. The individual iterators of the algorithm are
realized for individual components.

After creating a configuration with the algorithm described
above, the remaining applications of the application specifica-
tion can now also be checked for conformity. The predicate
isValidConfiguration needs to be evaluated at this stage. Only
if this predicate is evaluated to true, the application changes
its state to RUNNING. Otherwise, a new configuration needs
to be created. The algorithm presented here is only a sketch
of the procedure for creating a configuration, which conforms
to the defined application architecture-specific requirements.

VII. APPLICATION SPECIFIC QUALITY CRITERIA

In Section IV, we introduced a possibility for a component
to sort its RequiredServiceReferenceSets by a quality criterion.
This concept strives for local optimization. But consider again
our biathlon training example. Each trainer wants to see the
data of the nearest athletes to maximize the training outcome
and minimize the energy consumption, but can at most train
three athletes. Now, in contrast to our first example (see Figure
9), two trainers are available to the system instead of one.

Figure 21 shows the possible distributions of athletes and
trainers if both CTrainer components require the interface role
NearestAthlete. Situation I in the upper left corner of Figure 21
is optimal from the viewpoint of trainer 1, whereas situation
II in the upper right is optimal from the viewpoint of trainer
2. In contrast to their individual views, the global optimum of
energy consumption and training benefit is reached in situation
III.

In this section, we present an extension to the previously
introduced application configuration, which allows to define
such global optimization criteria. The application from DAiSI’s
component model is extended by a compare method. The

method compareTo(Application a):int compares the current
application with the application given by a. As before, the
return value is either negative, zero or positive meaning the
current application’s quality is less than, equal to, or greater
than a’s quality. The method is implemented by the application
(and therefore the person defining the application template).
The standard implementation treats all applications as equal.

Figure 22. Simple graphical application specification for energy
minimization scenario.

The biathlon application for minimized energy consump-
tion is described by the application specification seen in
Figure 22. Some parts like the pulse or stick services are
missing but it shows the most important components. Listing 2
shows an implementation of compareTo for our desired energy
minimization. Firstly, the overall distance between trainers and
athletes in the current application is calculated. For all chosen
CTrainer components in the template tTrainer the distance
to its used IAthlete services is summed up. Afterwards, the
same is done for the given application. The return value is
the resulting difference between the compared and current
application’s sum of distances.

1 i n t compareTo ( A p p l i c a t i o n a ) {
2
3 d i s t a n c e C u r r e n t = 0 ;
4 whi le ( t T r a i n e r . s e l e c t e d C o m p o n e n t s . hasNext ( ) ) {
5 C T r a i n e r t = t T r a i n e r .
6 s e l e c t e d C o m p o n e n t s . n e x t ( ) ;
7
8 whi le ( t . d e c l a r e s . u s e s . hasNext ( ) ) {
9 d i s t a n c e += t . d e c l a r e s . u s e s . n e x t ( ) .

10 g e t L o c a t i o n ( ) . d i s t a n c e T o ( t . g e t L o c a t i o n ( ) ) ;
11 }
12 }
13
14 d i s t a n c e O t h e r = 0 ;
15 whi le ( a . t T r a i n e r . s e l e c t e d C o m p o n e n t s . hasNext ( ) ) {
16 C T r a i n e r t = a . t T r a i n e r .
17 s e l e c t e d C o m p o n e n t s . n e x t ( ) ;
18
19 whi le ( t . d e c l a r e s . u s e s . hasNext ( ) ) {
20 d i s t a n c e += t . d e c l a r e s . u s e s . n e x t ( ) .
21 g e t L o c a t i o n ( ) . d i s t a n c e T o ( t . g e t L o c a t i o n ( ) ) ;
22 }
23 }
24 re turn d i s t a n c e O t h e r−d i s t a n c e C u r r e n t ;
25 }

Listing 2. compareTo method for biathlon application with minimized
energy consumption, pseudo code listing.

Remember the createValidConfiguration() method from
Listing 1. We will extend this algorithm with the compareTo
method. Instead of realizing and accepting the first valid
configuration, the algorithm will compare all possible valid
configurations and realize the best one. Of course, this brute-
force approach is not practical. The testing of sophisticated

47

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 21. Possible distribution of athletes and trainers.

configuration algorithms and determining suitable heuristics
are future work.

The extended configuration algorithm is sketched in Listing
3. It realizes the behavior described before. It is important to
notice that lines 19 and 27 hide more complicated technical
aspects. In line 19, the currently realized application config-
uration is saved. This could be done by saving all realized
components, interfaces and usages, i.e., connections between
components and services. This saved configuration is realized
again in line 27.

1 boolean c r e a t e V a l i d C o n f i g u r a t i o n ( ) {
2
3 A p p l i c a t i o n b e s t = n u l l ;
4
5 whi le ( p o s s i b l e C o m p o n e n t A s s i g n m e n t S e t s . hasNext ( ) ) {
6 p o s s i b l e C o m p o n e n t A s s i g n m e n t S e t s . n e x t ( ) .
7 r e a l i z e ( ) ;
8
9 whi le ( p o s s i b l e I n t e r f a c e A s s i g n m e n t S e t s . hasNext ( ) )

{
10 p o s s i b l e I n t e r f a c e A s s i g n m e n t S e t s . n e x t ( ) .
11 r e a l i z e ( ) ;
12
13 whi le ( p o s s i b l e U s a g e S e t s . hasNext ( ) ) {
14 p o s s i b l e U s a g e S e t s . n e x t ( ) . r e a l i z e ( ) ;
15
16 i f ( i s V a l i d C o n f i g u r a t i o n ( ) ) {
17
18 i f ( compareTo ( b e s t ) >0) {
19 b e s t = t h i s ;
20 }
21 }
22 }
23 }
24 }
25
26 i f ( b e s t != n u l l ) {
27 b e s t . r e a l i z e ( )
28 re turn true ;

29 }
30
31 re turn f a l s e ;
32 }

Listing 3. createValidConfiguration() method expanded by usage of
compareTo method, pseudo code listing.

This concludes the section about application specific qual-
ity criteria. The compareTo provides a tool to the application
designer, which allows him to specify which (of a set of syn-
tactically and semantically correct) application configuration is
considered “best” and therefore should be realized. Since this
depends on run–time information the configuration has to be
checked whenever run–time information changes. Like before,
a cyclical or more advanced approach could be taken.

VIII. CONCLUSION

This paper presented an extended version of the DAiSI
framework. While the system configuration, more precisely
the component wiring, in older versions of DAiSI and other
dynamic adaptive system infrastructures were only consider-
ing syntactic and semantic compatibility, the newest findings
enable developers to specify interface roles and application
templates. These open the possibility to define local and
application–wide constraints on the configuration.

We introduced a concept, which takes quality and service
aspects into account. A service comparator defined on interface
roles enables components to define not only which semantic
domain interface they require, but also which quality criteria
they prefer. Global quality of service is achieved on the
application level.

Currently, DAiSI only supports service–oriented architec-
tures. Upcoming technologies and paradigms, like the Internet
of Things (IoT) or cyber–physical systems demand for other

48

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



improvements, like pub/sub and message–based communica-
tion. We will extend concept and implementation of the DAiSI
to account for these developments.

However, the extension presented in this paper provides
a sustainable concept for the realization of decentralized,
dynamic adaptive systems, while considering quality of service
aspects.

REFERENCES
[1] H. Klus, D. Herrling, and A. Rausch, “Interface Roles for Dynamic

Adaptive Systems,” in The Seventh International Conference on Adap-
tive and Self-Adaptive Systems and Applications (ADAPTIVE), 2015,
pp. 80–84.

[2] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger,
T. Longstaff, R. Kazman, M. Klein, D. Schmidt, K. Sullivan, K. Wall-
nau, and W. Pollak, “Ultra-Large-Scale Systems - The Software Chal-
lenge of the Future,” Software Engineering Institute, Carnegie Mellon,
Tech. Rep., Jun. 2006.

[3] J. Kramer and J. Magee, “A rigorous architectural approach to adaptive
software engineering,” Journal of Computer Science and Technology,
vol. 24, no. 2, 2009, pp. 183–188.

[4] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. Boston, MA, USA: Addison-Wesley Longman Publish-
ing Co., Inc., 2002.

[5] D. Niebuhr, C. Peper, and A. Rausch, “Towards a development approach
for dynamic-integrative systems,” in Proceedings of the Workshop
for Building Software for Pervasive Computing, 19th Conference on
Object-Oriented Programming Systems, Languages and Applications
(OOPSLA), Nov. 2004.

[6] H. Klus, D. Niebuhr, and A. Rausch, “A Component Model for Dynamic
Adaptive Systems,” in Proceedings of the International Workshop on
Engineering of software services for pervasive environments (ESSPE),
A. L. Wolf, Ed. Dubrovnik, Croatia: ACM, Sep. 2007, pp. 21–28.

[7] D. Niebuhr, Dependable Dynamic Adaptive Systems. Verlag Dr. Hut,
2010.

[8] M. P. Papazoglou, “Service-oriented computing: Concepts, charac-
teristics and directions,” in Proceedings of the Fourth International
Conference on Web Information Systems Engineering (WISE). IEEE,
2003, pp. 3–12.

[9] J. Magee, J. Kramer, and M. Sloman, “Constructing distributed systems
in CONIC,” IEEE Transactions on Software Engineering, vol. 15, no. 6,
1989, pp. 663–675.

[10] J. Kramer, “Configuration programming – a framework for the de-
velopment of distributable systems,” in CompEuro’90, Proceedings of
the 1990 IEEE International Conference on Computer Systems and
Software Engineering. IEEE, 1990, pp. 374–384.

[11] J. Kramer, J. Magee, M. Sloman, and N. Dulay, “Configuring object-
based distributed programs in REX,” Software Engineering Journal,
vol. 7, no. 2, 1992, pp. 139–149.

[12] I. Warren and I. Sommerville, “Dynamic configuration abstraction,” in
Software Engineering – ESEC’95. Springer, 1995, pp. 173–190.

[13] R. R. Aschoff and A. Zisman, “Proactive adaptation of service compo-
sition,” in ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). IEEE, 2012, pp. 1–10.

[14] A. Rasche and A. Polze, “Configurable services for mobile Users,” in
Proceedings of the Seventh International Workshop on Object-Oriented
Real-Time Dependable Systems (WORDS). IEEE, 2002, pp. 163–170.

[15] ——, “Configuration and dynamic reconfiguration of component-based
applications with microsoft.net,” in Sixth IEEE International Sym-
posium on Object-Oriented Real-Time Distributed Computing, 2003.
IEEE, 2003, pp. 164–171.

[16] T. Kawamura, J.-A. De Blasio, T. Hasegawa, M. Paolucci, and
K. Sycara, “Public Deployment of Semantic Service Matchmaker with
UDDI Business Registry,” in The Semantic Web ISWC 2004, ser.
Lecture Notes in Computer Science, S. A. McIlraith, D. Plexousakis,
and F. van Harmelen, Eds. Springer Berlin Heidelberg, 2004, vol.
3298, pp. 752–766.

[17] T. Haselwanter, P. Kotinurmi, M. Moran, T. Vitvar, and M. Zaremba,
“WSMX: A Semantic Service Oriented Middleware for B2B Inte-
gration,” in International Conference on Service-Oriented Computing.
Springer, 2006, pp. 4–7.

[18] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,” Computer, vol. 37, no. 10, 2004, pp. 46–54.

[19] S.-W. Cheng, Rainbow: Cost-Effective Software Architecture-Based
Self-Adaptation. ProQuest, 2008.

[20] J. S. Rellermeyer, G. Alonso, and T. Roscoe, “R-OSGi: distributed
applications through software modularization,” in Proceedings of the
ACM/IFIP/USENIX 2007 International Conference on Middleware.
Springer-Verlag New York, Inc., 2007, pp. 1–20.

[21] OMG, OMG Unified Modeling Language (OMG UML), Superstructure,
Version 2.4.1, Object Management Group Std., Rev. 2.4.1, August
2011. [Online]. Available: http://www.omg.org/spec/UML/2.4.1

[22] H. Klus and A. Rausch, “DAiSI – A Component Model and Decentral-
ized Configuration Mechanism for Dynamic Adaptive Systems,” in The
Sixth International Conference on Adaptive and Self-Adaptive Systems
and Applications (ADAPTIVE), 2014, pp. 27–36.

[23] H. Klus, A. Rausch, and D. Herrling, “DAiSI – Dynamic Adaptive Sys-
tem Infrastructure: Component Model and Decentralized Configuration
Mechanism,” International Journal On Advances in Intelligent Systems,
vol. 7, no. 3 and 4, 2014, pp. 595 – 608.

49

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



A Framework for Big Metabolomic Data Management and Analysis

Xiangyu Li, Leiming Yu
and David Kaeli

Department of Electrical and
Computer Engineering
Northeastern University

Boston, MA, USA
Email:{xili,ylm,kaeli}@ece.neu.edu

Vicent Yusa

Department of Analytical Chemistry
University of Valencia

Burjassot, Spain
Email:yusa.vic@gva.es

Yuanyuan Yao, Poguang Wang
and Roger Giese

Department of Pharmaceutical Sciences and
Barnett Institute, Bouve College

Northeastern University
Boston, MA, USA

Email:yao.yu@husky.neu.edu, {p.wang,r.giese}@neu.edu

Akram Alshawabkeh

Department of Civil and Environmental Engineering
Northeastern University

Boston, MA, USA
Email:aalsha@neu.edu

Abstract—Preterm birth is one of the major contributing factors
to infant death. In the Puerto Rico Testsite for Exploring
Contamination Threats Center we explore a variety of risk factors
for preterm birth in Puerto Rico, including environmental, genetic
and demographic factors. Given the challenge of managing such
a large amount data, we have constructed a customized database
specifically designed for managing our data and for facilitating
efficient analysis. In this paper, we present our database design
and open source Mass Spectrometry Data Analysis Toolbox.
Our design allows for the efficient handling of storage and
computation during metabolomic analysis. The Toolbox enables
supports and end-to-end analysis protocol, from data processing
and feature selection, to machine learning and visualization.

Keywords–preterm birth; database; MSDA Toolbox; machine
learning.

I. INTRODUCTION

Preterm birth [1] has been identified to be a major cause of
birth defects and infant deaths [2]. When an infant is delivered
earlier than 37 weeks of pregnancy, the birth is considered
as preterm. Research has shown that since 1990, the rate of
preterm birth has been increasing worldwide, ranging from 5%
to 18%. In 2010, preterm-related deaths were reported to be
responsible for close to 35% of all infant deaths. A series of
research findings suggests that environmental factors have a
strong influence on preterm birth [3]–[8]. [9].

In our research, we focus on an area in northern Puerto
Rico where the preterm birth rate is 50% higher than that in
the rest of the United States. In the Puerto Rico Testsite for
Exploring Contamination Threats (PROTECT) Center, we col-
laborate with a cohort of over 2000 women in northern Puerto
Rico (presently 800 of the 2000 participant mothers have
been recruited). We are analyzing many potential contributing
factors, including environmental and biological factors, which
could be linked to premature birth.

Our study is highly data driven. We collect and analyze
data across a wide spectrum of sources, including:

• Environmental samples and measurements - soil sam-
ples, well and tap water samples, historical Environ-
mental Protection Agency (EPA) data, Superfund site
data,

• Biological samples - blood, urine, hair and placenta
samples, and

• Human subjects information - medical history, repro-
ductive health records, product use data surveys, and
birth outcomes.

We have developed a carefully designed relational database
system to manage this project. Up until now, we have collected
over 400 million data entries and manage over 2467 data
entities in our database. Since urine data presently dominates
the volume of data collected in our database, we focus on the
urine analysis.

In this paper, we provide an overview on PROTECT
and present the database workflow for big data management.
Particularly, we present our open source Toolbox for Mass
Spectrometry Data Analysis, targeted for efficient machine
learning and visualization on big datasets. We also provide
a detailed description on each step of the metabolomic data
analysis. Given the amount of data we need to work with,
we discuss how we reduce the processing time by leveraging
multi-core packages.

The rest of this paper is organized as follows. Section II
presents background and related work. Section III provides
an overview of PROTECT database, its current status and
detailed workflow. Section IV describes the Mass Spectrometry
Data Analysis Toolbox (MSDA), including discussions on
performance tuning and lessons learned from our analysis.
Section V concludes the paper and discusses areas for future
work.

II. BACKGROUND

Preterm birth is a worldwide issue and its leading causes
are still under investigation. P. Meis et al. identified a set of
risk factors that could contribute to preterm birth [10]. These

50

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



factors are categorized as: i) demographic factors, ii) medical
history, iii) previous obstetric history and iv) current pregnancy.
J. Meeker et al. correlated phthalate exposure with preterm
birth by targeting specific phthalate metabolites, including
MBP, MBzp and di(2-ethyl-hexyl) [11]. The contamination of
groundwater has also been studied by T. Torres et al. [12]. They
suggested a group of Chlorinated Volatile Organic Compounds
(CVOCs), including trichloroethylene (TCE), tetrachloroethy-
lene (PCE) and chloroform (TCM), could have a strong
influence on preterm birth. Roca et al. proposed a strategy
that combines a targeted approach for pesticide metabolites
with a post-targeted screening for contaminant exposure, to
determine the biomarkers in urine [13]. Their approach facili-
tates identifying biomarkers of exposure due to environmental
pollutants.

In order to support a wide range of multidisciplinary
studies, many Electronic Data Capture (EDC) systems have
been developed to provide an automated workflow for data
collection, reporting and exploration. EDCs are mainly de-
signed to reduce the data retrieval cycle and to avoid errors
during the data collection process. The StudyTRAX system
can integrate data management with the process of generating
academic outcomes (e.g., manuscripts, presentations, book
chapters), which dramatically increases user productivity [14].
LimeSurvey is an open source package, providing a free
and secured web-based interface to leverage the capability of
customizable data collection [15]. Tools, such as Electronic
Laboratory Notebooks (ELN), are designed to facilitate the
documentation of experiments and procedures performed in a
laboratory environment [16]. Among various web-based elec-
tronic data capture systems, REDCap is one of the most user-
friendly tools that can stream captured data directly into the
database [17]. The Environmental Quality Information System
(EQuIS) from EarthSoft can integrate data collection with data
management, provide automated web-based dashboards for the
distributed environment, and support real-time data capturing
and reporting schemes [18]–[20].

Based on the high quality data collected with these systems,
previous studies have found that metabolites in urine could
provides some clues, such as the residue of environmental
pollutants in the human body that can trigger different clinical
symptoms. W. Arlt et al. applied Generalized Matrix Rele-
vance Learning Vector Quantization (GMLVQ) to discriminate
adrenocortical adenoma (ACA) and malignant adrenocortical
carcinoma(ACC), using urine steroid metabolomics as the
biomarker [21]. Y. Kim et al. proposed using multivariate
methods, decision trees and random forests, to diagnose breast
cancer using urine metabolome profiles [22]. An efficient
protocol for radiation metabolomics using urine samples was
proposed by C. Lanz et al., which applies random forest
techniques to gas chromatography, combined with mass spec-
trometry [23]. S. Reichenbach et al. proposed a new method
to extract non-targeted chromatographic features from 2D
chromatograms and showed that a Support Vector Machine
(SVM) outperforms a k-Nearest Neighbor (kNN) clustering
in their case studies [24]. In this study, we have developed a
noncommercial Mass Spectrometry Data Analysis Toolbox and
support a variety of machine learning techniques, including
Principle Component Analysis (PCA) and hierarchical cluster-
ing to facilitate large-scale metabolomic analysis.

III. URINE SAMPLE DATABASE

The PROTECT database is built to handle terabytes of
project data for our preterm birth study in Puerto Rico. We
have designed an efficient framework for data import and
cleaning, enabling the generation of detailed reports on specific
queries to facilitate research activities. In terms of urine
analysis, we store decoded raw urine data in the database and
provide users with open source tools to extend their research
ideas. Next, we will describe the goals of the PROTECT
project, present current status of our data repository, demon-
strate the workflow using proprietary software, and discuss
details of our challenges with working with urine sample data
in our study.

A. The PROTECT Center
The NIEHS Puerto Rico Testsite for Exploring Contami-

nation Threats (PROTECT) Center studies the causal effects
between exposure to environmental contamination and the high
preterm birth rates recorded in Puerto Rico. We collect a wide
range of data, including: blood, urine, ground water, tap water,
placenta and medical records. Based on this rich range of
data, we attempt to identify contributing factors associated with
preterm birth. Domain specific analyses are applied, which in-
clude non-targeted chemical analysis, mechanistic toxicology,
and targeted epidemiology. The organization of PROTECT is
shown in Figure 1. An additional goal is to develop green
remediation strategies to alleviate exposure and to reduce
future preterm birth rates. For the PROTECT database, we
support multiple research communities by facilitating data
cleaning, data storage, data security and data reporting. We
utilize software developed and marketed by EarthSoft called
EQuIS. We are presently using EQuIS Professional and EQuIS
Enterprise. Our backend database is Microsoft’s SQLserver.
We have developed a number of tools for data management
and modeling to advance our preterm birth study.

B. Data Storage
In the current database we capture human subject data,

environmental data and biological data. We currently have
more than 400 million data points in our system. The structure
of these data points is provided in Table I. In the near future,
we expect to host more than 100 billion data entries in our
system.

TABLE I. PROTECT database repository.

Data Points (In millions)
Environmental 1.3
Human Subjects 1.5
Biological 0.2
Non-targeted 400

Since each data entry can be an indicator tied to an adverse
reproductive outcome, we need the ability to carefully evaluate
relationships between data entries across the millions of data
points. Due to the sheer data volume, we leverage specialized
software to facilitate the data management process. We also
have the challenge that we are working is a geographically
distributed team of researchers in PROTECT. Our researchers
that need access to PROTECT data will have web-based dash-
boards to help them manage their data and perform customized

51

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 1. PROTECT collects source samples (white arrows, bottom) to analyze factors that contribute to preterm birth. Core C
collects environmental and biological information. Core D handles data management and supports data analytics. Projects 1-5
utilize the collected data for their scientific studies.

queries. Our system helps to identify the linkages between
pollutants and birth outcomes through the use of advanced
machine learning algorithms.

C. Data Cleaning
After capturing the data, the integrity of each entity is

inspected. This process is called data cleaning, and is fairly
standard in any data collection campaign. The goal is to reduce
errors in the data. The checking process needs to verify that
each data field conforms to the data type and is within range for
each field. Data dependencies between fields are also checked.
This process is performed before incorporating any data into
the database. To facilitate this checking, we have a complete
data dictionary available for every entity stored in the database.

The data dictionary is developed by each domain expert.
We abide by the rules present in the data dictionary when
developing our schema, which in turn, helps to maintain a high
level of data quality. Our cleaning tools can quickly highlight
any detected anomalies in the data. Our comprehensive clean-
ing procedure can pinpoint corrupted data, and help to prevent
errors from entering the database.

D. Software Stack
For the front-end of the PROTECT database, we use Mi-

crosoft Visual Basic to configure the schema for data cleaning.
These scripts are used by EarthSoft’s EQuIS Electronic Data
Processor (EDP) to clean the input data according to the
defined constraints. After data screening, EQuIS sends the
cleaned data to Microsoft SQLserver. We leverage EQuIS Pro-
fessional [25] and Enterprise [19] to support both standalone
and distributed development environments, respectively. We
use EQUIS’s Electronic Data Processor (EDP) to import data
into the database.

Users can customize data formats, also known as Elec-
tronic Data Deliverables (EDDs), for their individual study.

EDDs can be stored in a number of popular documentation
formats including Excel spreadsheets and Comma Separated
values (CSVs). Typically, four files are needed to handle
data cleaning: 1) format definition file, 2) a custom handler
file, 3) an enumeration file, and 4) a reference value file.
The format definition file follows the rules defined in the
data dictionary. The custom handler applies the data checking
scheme and generates discrepancy reports if mismatches are
detected. Whenever a set of values need to be indexed based
on their definition in the data dictionary, the enumeration file
is used for this purpose, and so is an optional file. Users would
use the reference value file to allow them check reference
values remotely [18]. Errors are highlighted with detailed
warnings to facilitate the debugging process. Only after all
errors are resolved, then the input data values can be committed
to the database.

This automated data cleaning process is handled through
the EDP module in both EQuIS Professional and Enterprise.
Distinct from the standalone development of EQuIS Profes-
sional, EQuIS Enterprise provides web-based dashboards to
support distributed users [19]. Each dashboard is customized
to include a set of widgets specific to the needs to the data
researcher. For instance, data uploads and checking can be
performed using the EDD Upload widget. The cleaning status
can be configured to automatically inform a group of users
through the Notices widget. The Environmental Information
Agents (EIA) widget pushes reports to users on scheduled
events or dates. Online data access is shared across the PRO-
TECT center, providing access to researchers in Puerto Rico,
Massachusetts, Michigan and West Virginia. The workflow
from data collection to data reporting is shown in Figure 2.

E. Urine Samples
In our previous work, we have reported on a study of non-

targeted analysis on 6 urine samples from Puerto Rico [1].

52

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



REPORTS
&

ANALYSIS

PROTECT
DATABASE

UPR-MEDICAL CAMPUS

HUMAN-SUBJECT 
DATA

UPR-MAYAGUEZ

ENVIRONMENTAL 
DATA

MICHIGAN

BIOLOGICAL
DATA

NORTHEASTERN

NON-TARGETED
DATA (Urine)

USER

USER

USER

USER

USER
Microsoft SQL Server
Microsoft Visual Sutdio
EarthSoft Professional
EarthSoft Enterprise

Figure 2. The PROTECT database collects data from different sources and includes data on: human subjects, environmental
parameters, biological analysis and non-targeted chemical/biological data. Data is cleaned before it is imported into the database.
The system supports both standalone analysis and distributed reporting capabilities through EQuIS Professional and Enterprise.
Equipped with a distributed solution, users can query customized reports through the web server. The PROTECT database also
supports data mining and modeling capabilities.

TABLE II. Urine samples from Developmental Neurotoxicity Assessment of Mixtures in Children (DENAMIC) project.

Country (Region) Type Resolution (FWHM) Raw Data Samples
ESI+ ESI- ESI+/-

Spain (Valencia) Pregnant mothers 50,000 306 306 -
25,000 - - 143

Children (4 years) 50,000 216 216 -
Spain (Sabadell) Pregnant mothers 25,000 - - 160

Slovakia Pregnant mothers 25,000 - - 52
Children (4 years) 25,000 - - 49

We discovered a range of clustering patterns present in these
samples. Due to the limited sample data, the contributing
chemicals remain to be identified.

To be prepared to compare results from our cohort to
other cohorts of expectant mothers throughout the world,
we have acquired an existing set of urine samples from
the Developmental Neurotoxicity Assessment of Mixtures in
Children (DENAMIC) Project [26] being carried out in Spain.
The details for the DENAMIC urine samples are presented in
Table II.

There are 661 mothers and 265 children across three
different regions in the Spain study. The mass spectrum data is
acquired using full scan mode (50-800 m/z), with a resolving
power of 50,000 FWHM (full width at half maximum) (scan
speed, 2 Hz), in both + and - modes of ESI (electrospray
ionization), and with and without HCD (higher-energy c-
trap dissociation fragmentation). Mass spectrum analysis is
performed on the Orbitrap ExactiveTM mass spectrometer
(Thermo Scientific, Bremen, Germany). Data acquisition is
accomplished using Thermo Scientific’s Trace Finder 3.1 soft-

ware. The raw mzXML files for these samples are rather large
(136 GB). Next, we will discuss how we work with this data
in order to identify patterns in this data set. In the following
section, we introduce our machine learning framework to deal
with the data processing challenges with this large data set.

IV. MSDA
Our urine analysis procedure relies heavily on the accuracy

of the mass spectrometer, and the supporting software. We
could choose to use applications such as MarkerView [27],
SIMCA-P+ [28] and SAS [29]. These packages provide black-
box style analysis with limited flexibility and processing
power. For example, MarkerView cannot handle large datasets
efficiently; it takes more than 20 minutes to perform PCA on
6 urine samples, and is unable to process larger datasets due to
memory storage issues. Meanwhile, there is free quantitative
metabolomics software available, such as MetaboAnalyst [30]
and MeltDB [31], which provides a comprehensive suite of
analysis recipes. However, these packages, while free, come
with a number of challenges, including limiting the maximum
file (limited to 6 MB in MetaboAnalyst), and very poor

53

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



MzXML files
Peak lists

Spectral bins

Input Data Processing

Input Data Formatting

Data Normalization

Missing Value 
Imputation

Bucket Approach

Peak Detection

Machine Learning 
Analysis

PCA

K-means

Hierarchical 
Clustering

Visualization

2D/3D Plots

Dendrograms

Heat Maps

Figure 3. The Mass Spectrometry Data Analysis Toolbox.

runtime performance. In order to address these issues, we
have developed our own open-source Mass Spectrometry Data
Analysis Toolbox (MSDA), designed to efficiently carry out
a number of different mass spectrometry (MS) data analyses
tasks. Our MSDA Toolbox is able to analyze large datasets.

As shown in Figure 3, the Toolbox consists of three main
components: 1) data processing, 2) machine learning analysis,
and 3) visualization. The data processing component translates
the input data to the required input format for the data analysis
component. MSDA supports a wide variety of input data types,
including raw mzXML files, peak lists and spectral bins. A set
of data processing methods, such as peak detection/alignment,
bucketing, missing value imputation and data normalization are
supported. The machine learning analysis component provides
a wide range of machine learning techniques, such as feature
selection, clustering and PCA to provide insight into the data.
The visualization component generates 2D/3D plots for PCA
results, as well as heat maps and dendrograms for viewing
hierarchical clustering results. The Toolbox is an open source
software written in Python, which utilizes state of the art
statistical and machine learning libraries written in Python, R
and C. By integrating data analytics capabilities, the Toolbox
can significantly reduce data processing time, providing re-
searchers with a fast research toolset. We have modularized our
design to facilitate future contributions from the open source
community.

A. Data Processing
The data processing component filters the input data for-

mats before passing the data on to other components for the
further analysis. The first step is to check the input data
formatting, which transforms input data files into a data matrix.
Next, the user can choose to normalize the data, insert missing
values, or perform peak detection and bucketing. In this paper

we utilize the urine sample data from the DENAMIC project
to demonstrate how our toolbox facilitates data discovery.

Load mzXML

Combine Scans

R to Python
Export to CSV

CSV to Python

Pros:
  * Fast I/O          

Cons:
  * Repeated process for 
further analyses 

Pros:
  * One time effort
  * Reduce the overhead 
for  further analyses

Cons:
  * Slow I/O

Time (s) : 7*N Time (s) : 32 + 2*N

Figure 4. Compare memory exporting (bottom left) and disk
(bottom right) exporting approach for formatting one mzXML
file. N stands for the number of rounds of analysis. Reading
data directly from R consumes 7 seconds / round, whereas
reading from disk consumes 2 seconds / round, plus one time
overhead of 32 seconds.

1) Input data formatting: This step converts input data into
a data matrix, with samples in rows and features in columns.
Three different data sources are supported: MS spectra raw
files, peak list files and spectra bin files. The MS raw file
should be in the mzXML format, while the rest are stored as
CSVs. A peak list file should have either 2 columns (mass and
intensities) or 3 columns (retention time, mass and intensities),
with the first row reserved for column labels. A spectra bin
file can have any number of columns, with the first row filled
with labels for m/z buckets. The Toolbox also supports batch
processing.

We utilize the MALDIquant [32] package in R and the
Panda [33] library available in Python to transform mzXML
and CSV files into data matrices, respectively. To seamlessly
read the output of the MALDIquant package using Python,
rpy2 [34] is used to convert R objects into an accepted Python
format, which avoids performing slow disk I/O operations.
Since the mzXML files are frequently used, we convert them
to CSV files and they are saved to disk for future analysis.

This data formatting is I/O bound, and so its performance
depends on the size of the input file and output locations. To
translate one urine sample file from the DENAMIC project,
loading the mzXML file (83 MB) using MALDIquant takes 6
seconds and combining all of scans into a data matrix using
data.table consumes 1 second. In MSDA, we provide two lo-
cations for data exporting, namely memory and disk. To export
the data to memory, the rpy2 package is used to facilitate the
process, reducing runtime overhead to approximately 20 µs
when offloading data (350 MB) in R to Python. On the other
hand, we can export the data to disk first, which takes 25
seconds in R, then read it in as a Python object, which takes
2 seconds using Pandas. A comparison of both approaches is
presented in Figure 4. Given the common case that we need
to run many rounds (N being a big number) of analyses, the
disk approach would be preferred by most users.

54

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



2) Data normalization and missing value imputation:
Once a data matrix is generated, users can select whether
to perform data normalization and missing value imputation.
Many statistical and machine learning algorithms, such as
PCA, do not work properly if features have a wide range of
values or missing entries. Data normalization is used to modify
the range of independent features so that they are normally
distributed. Several data normalization methods are provided
in MSDA, such as centering by mean or median values,
scaling by the standard deviation, maximization, root square
or logarithm. A variety of methods to treat missing values
are also implemented in the Toolbox, including replacement
by zero, mean, median and discarding the whole feature in
the sample if the number of missing values is over a user-
defined threshold. The numpy [35] library is used for data
normalization and missing value imputation in our system.
The resulting execution time is less than 50 ms for each urine
sample.

MzXML File MassSpectrum Transform Intensity

Smooth Intensity

Remove Baseline

NormalizationDetect Peaks

Optional Stage

Mandatory Stage

Peak Lists (.csv) / 
Python Objects

Peak Detection

Figure 5. Peak detection pipeline. Dashed boxes represent
optional steps and the solid ones stand for mandatory steps. A
full peak detection pipeline includes all the stages, whereas a
short one only includes the mandatory stages.

3) Peak Detection: Users can choose whether to select
peaks for a given mzXML file or just leave the MS data
unchanged in CSV format. MALDIquant is used to carry out
the peak detection task. It provides a peak detection pipeline,
as shown in Figure 5. The 4 stages of the pipeline include: i.)
removing noise from the spectra, ii.) transforming intensities,
iii.) correcting the baseline, and iv.) aligning the spectra.

At the beginning of the peak detection process, we read the
mzXML data by calling the importMzXml function. Figure 6
(a) shows one scan of an input urine sample. The intensity
values are then centered and scaled, as shown in Figure 6
(b). Several scaling methods are supported, including square
root and logarithm. The smoothing stage can be implemented
using either the SavitzkyGolay or MovingAverage method, and
configurable to a half window size [36]. The SavitzkyGolay
method with a half window size of 10 is applied in Figure 6
(c). Then, the spectra baseline can be estimated and removed
by adopting SNIP [37], TopHat [38], ConvexHull [39] or me-
dian methods. These methods estimate the background signal,
iteratively. Users can adjust the iteration parameter to achieve
the best result. Figure 6 (d) shows the baseline estimation using
the SNIP method with 10 iterations. Figure 6 (e) shows the
spectra with the baseline removed. The resulting spectra can be
normalized using either Total-Ion-Current-Calibration (TIC)

or Probabilistic Quotient Normalization (PQN) [40]. Figure 6
(f) shows the normalized spectra using the TIC method. The
last and most critical stage is the peak detection step. This
step estimates noise using either the media-absolute-deviation
or Friedmans Super Smoother method. Users can adjust the
half window size and signal-to-noise ratio (SNR) to identify
the local maximum intensities. The SNR can also be estimated
automatically using the estimateNoise function. The baselines
for SNR 1 and 2 are presented in Figure 6 (g). The results of
using the full peak detection pipeline are plotted in Figure 6
(h), where an SNR 2 is applied. In addition, the short pipeline’s
results are shown in Figure 6 (i). This approach skips all the
optional stages that were present in Figure 5. The output of
the pipeline can be either directly fed to Python through rpy2,
or saved to disk as a peak list file in CSV format for faster
accesses in the future.

We show that different peak lists are generated by applying
either the full or short peak detection pipeline in Figures 6 (h)
and (i). Users can choose which pipeline to use, depending
on the trade-off between the execution time and the peak
resolution.

importMzXml transformIntensity

smoothIntensity removeBaseline

calibrateIntensity detectPeaks

exportCsv

(a) Full pipeline execution time = 25.5 s. Three dominant
factors: (1) exportCsv-36% (2) importMzXml-19% (3)
smoothIntensity-16%.

importMzXml detectPeaks

exportCsv

(b) Short pipeline execution time = 17.6 s. Three domi-
nant factors: (1) exportCsv-52% (2) importMzXml-28%
(3) detectPeaks-20%.

Figure 7. Performance breakdown for both the full and short
pipelines. The 3 most timing consuming steps are presented in
descending order.

4) Peak Detection Performance: We use an Intel i7-4790K
(4 cores / 8 threads, using hyperthreading) to evaluate peak de-

55

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



(a) Input Spectra (b) Transform Intensity (Full) (c) Smooth Spectra (Full)

(d) Estimate Baseline (Full) (e) Remove Baseline (Full) (f) Normalize Spectra (Full)

(g) Estimate SNR (Full) (h) Detect Peaks (Full) (i) Detect Peaks (Short)

Figure 6. A pipelined Peak Detection example. The spectral results after each stage in a fully pipelined peak detection are shown
in Figure (b) to (h), whereas Figure (i) shows the detected peaks using a short pipeline. The x-axis is mass, the y-axis is intensity.

tection performance. In R, the average processing time for one
urine sample is 17 and 25 seconds for the short and full peak
detection pipelines, respectively. The detailed performance
breakdown for each case is illustrated in Figure 7. Since there
are 1448 urine samples in the DENAMIC datasets, it requires
7 hours for the short pipeline and 10 hours for the full pipeline
to detect intensity peaks. To reduce the processing overhead,
we identify the performance bottlenecks and explore multi-
threading techniques to accelerate the process. We consider the
aforementioned single-threaded performance as our baseline
for comparison.

As shown in Figure 7, the dominant performance bot-
tleneck lies in the exportCsv step, which merges a list of
mass spectrometry data into a single matrix, and then exports
the data to a CSV file. Due to the overhead of combining
rows (rbind) and columns (cbind) in R, the merging step takes
9.1 seconds, as compared to 0.1 seconds to export the CSV
file. In order to accelerate the merge step, we leverage the
optimized rbindlist function in the data.table package [41].
First, for each peak scan, as a data frame object is appended
to the pre-allocated list, the list is reduced into one data frame
using rbindlist. We observed the execution overhead of the
merge step drops from 9.1 seconds to just over 1 second. This
is because rbindlist is highly optimized in C, whereas rbind is
coded in a high level scripting language (R). We can reduce the

execution time of exportCsv from the 9.2 seconds (baseline)
to 1.1 seconds.

The next performance hot-spot is the importMzXml pro-
cess. We leverage the mzR package from Bioconductor (an
open software for bioinformatics) [42][43]. In our baseline
approach, importMzXML in MALDIquantForeign reads the
mzXML file (internally using readMzXmlFile from the read-
MzXmlData package) and creates the MassSpectrum class
accordingly [44][45]. To improve performance, we utilize the
openMSfile function from the mzR package to read the input
file more efficiently, and apply the peaks method inside mzR
to acquire the m/z and intensity values. We achieve a 2.6x
speedup over the baseline, reducing the elapsed time from 4.9
seconds to 1.9 seconds.

Besides single-threaded optimization, we also utilize par-
allel packages (e.g., a multi-threaded implementation in R) to
obtain more speedup [46]. The execution time for the three
steps (import, peak, export) by varying the number of threads
is shown in Figure 8. Here, the peak stage includes the steps
from transformIntensity to detectPeaks in Figure 5.

In our optimization scheme, we use the mclapply function
to parallelize the list operation on the MassSpectrum data. The
peak operation is applied to every MassSpectrum data list using
mclapply. The same operation is applied to the parallel creation
of MassSpectrum objects in the import stage and the export

56

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



1 2 3 4 5 6 7 8

Number of CPU Threads

0

2

4

6

8

10

12

E
la

p
se

d
 T

im
e
 (

se
co

n
d
s)

peak

Import (mzR)

export (data.table)

Figure 8. The performance for parallelizing three performance
hotspots 1) import 2) peak 3) export for the full pipeline peak
detection on an Intel i7-4790K.

stage. However, since the parallel package forks to create a
new process by taking a complete copy of the master process,
the overhead is very high for both import and export stages.
Thus, the performance flattens out after two threads for import
(red line) and export (yellow line), as shown in Figure 8. For
the peak stage, only urine sample IDs are duplicated during
the forking process. We achieved a 3.9x speedup using 4
threads. In summary, Figure 9 shows that by using data.table
(rbindlist), we can achieve a 1.5x speedup on average. Adding
mzR (openMSfile) to data.table, we can obtain on average
1.9x speedup. When using parallel (mclapply), and adding
the benefits of the two previous optimization methods, we
can achieve a 5.3x speedup by using 4 threads. Overall, we
reduced the processing time for the full pipeline peak detection
from 10 hours to 2 hours. Applying the same technique, we
shortened the processing time from 7 hours to 1 hour for the
short pipeline peak detection.

1 2 3 4 5 6 7 8

Number of CPU Threads

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

S
p
e
e
d
u
p data.table

data.table + mzR

data.table + mzR + parallel

Figure 9. The total speedup achieved by parallelizing the full
pipeline peak detection on Intel i7-4790K.

5) Bucketing Approach: The Bucketing approach is also
implemented in MSDA. For each peak list, we group multiple

Peak Lists

Scan Selection

Time Bucket Size

m/z Bucket Size

Any single scan or 
group of scans

Options

1 ~ # Scans

0.001 ~ 1 DA

Intensity Selection Integration, 
maximum

Spectral Bins

All

Defaults

6

0.001 DA

Integration

Normalization Standard Deviation,
max None

m/z Range Any range of m/zs All

Figure 10. Workflow of the Bucketing approach. Users can
specify the parameters.

scans together in a time-bucket, and multiple m/zs in a m/z-
bucket. The time-bucket size and the m/z-bucket size are
chosen based on the HPLC peak width, while considering the
mass accuracy and the resolution of the mass spectrometer. The
Bucketing approach essentially extracts the spectral features
integrated over time in order to reduce the redundancy in
the original MS data, and to improve our computational
capabilities. As shown in Figure 10, the input is a set of peak
lists in CSV format and the output is the spectral bins. The
boxes between the input and the output represent the optional
transformations that can be applied by the users. Users can
choose from the listed options in Figure 10, or specify their
own parameters. Otherwise, the default values are used. The
first parameter allows the user to choose any combination of
scans in a sample. A range of m/z sizes can be specified using
the second parameter. Users can choose how many scans they
want to put into one bucket by specifying the time-bucket
size, and the size for m/z-buckets by the m/z bucket size.
Users can also choose how to combine the bucketed scans,
by either integrating all the intensity values, or by selecting
the maximum intensity for each m/z bucket. In addition, users
can also select the normalization method for the bucketed
intensities.

To process one urine sample from the DENAMIC project,
whose scan speed is 2 Hz with normal MS scans and HCD
fragmentation scans interleaved, we choose the even-numbered
scans in the range of 40 to 1200 and use 6 as the time-bucket
size and 0.001 DA as the m/z-bucket size.

The generated spectral bins for the 306 urine samples
(spanish mothers with ESI+) consist of 97 time-buckets
and 750k m/z-buckets in each sample, corresponding to a
29,682 x 750,204 sparse matrix of 1.5% density. The Scipy [47]
library is used to store the sparse matrix in the compressed
column storage (csc) format to minimize the memory cost. The
spectral bins, represented as in a data matrix, can be directly
fed into the machine learning analysis component or stored on
disk as a CSV file.

Figure 11 plots the execution time of the bucketing ap-
proach for one urine sample consisting 600 scans and 942,397

57

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



3 6 12 18 24 30

Time-bucket Size

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

E
x
e
cu

ti
o
n
 T

im
e

m/z-bucket size

0.001

0.003

0.009

0.03

0.09

0.1

0.3

0.9

Figure 11. Bucketing performance while varying the bucket
size.

(m/z, intensity) pairs. We vary the time and m/z-bucket sizes to
compare their impact on the performance. It turns out that m/z-
bucket size is the dominant factor as we can see two big jumps
in the execution time when decreasing the m/z-bucket size
from 0.009 to 0.003 and from 0.003 to 0.001. The time-bucket
size, on the other hand, contributes little to the execution time,
especially when the m/z-bucket size is large.

B. Machine Learning Analysis
A general set of machine learning techniques for mass

spectrum analysis are implemented in MSDA. In this section,
three different methods are discussed: i) Principal Component
Analysis (PCA), ii) K-means clustering, and iii) Hierarchical
clustering.

1) PCA: Principal Component Analysis (PCA) [48] is a
commonly-used method to reduce a data matrix of n features
to k (k << n) features, with much of the variability in
the data preserved. The transformed k features are called
principal components. The principal components are sorted
by their variance, hence the first principal component has the
largest variance and each subsequent component has the next
largest variance. As noted by Worley and Powers, PCA is
one of the most popular multivariate analysis methods used
in metabolomics [49]. Because PCA can significantly reduce
the dimensionality of a dataset, it is often used in compression
algorithms as it provides an approximation of the original
data using only k principal components. Another common use
of PCA is visualization: datasets in high-dimensional space
can be projected onto a 2D or 3D space, while most of the
patterns in the dataset are preserved. Researchers can gain
insight into complex data by just studying the 2D and 3D
plots. In MS data analysis, the data matrix is usually a huge
sparse matrix, especially when the m/z-bucket size is small.
One of the data matrices from the DENAMIC project used in
this work contains 306 urine samples, where each sample is
represented by 97 time-buckets and 750,204 m/z-buckets. This
results in a 29,682 x 750,204 sparse data matrix with ∼ 350
million non-zero elements. Normal PCA methods that take a
dense matrix as the input cannot be used in this case, hence
MSDA uses a TruncatedSVD [50] from scikit-learn [51] for
this task. The execution time of applying the TruncatedPCA
on the aforementioned matrix is 34 seconds on average.

2) K-means Clustering: K-means [52] is one of the most
popular clustering algorithms, especially given its simplicity
and effectiveness. It is widely used in metabolomic studies due
to its capability to perform rapid subset identification from the
information-rich spectral datasets [53]–[55]. In MS analysis,
K-means (and its variants) are heavily used to cluster urine
samples to detect anomalies. It can either be applied on the
original data matrix to calculate the pairwise distances in n
dimensions, or directly on the dimensionality-reduced matrix
generated by PCA.

3) Hierarchical Clustering: In K-means, the desired num-
ber of clusterers k must be specified by the user, and deter-
mining k is not an easy job. Hierarchical clustering is another
widely used clustering algorithm that builds a hierarchy of
clusters, so that the clustering results for all k (from 1
to n) are automatically generated [56][57]. MSDA uses an
agglomerative clustering algorithm and displays the clustering
results using a dendrogram.

C. Visualization
In this section, we showcase 2D/3D plots for the PCA

results and the heat map / dendrogram for the hierarchical
clustering results.

1) 2D/3D plots: Figures 12 and 13 show the 2D and
3D plots of the PCA results generated by MSDA using
matplotlib [58] in Python. We are able to project 29,682 data
points on a 2D and 3D space in 20 seconds and 25 seconds,
respectively.

2) Heat map and Dendrogram: A heat map is a data
visualization technique to reveal the relationships among data
points, using a color scheme. A heat map applies a color-
shared matrix display, and reorders the data matrix to disclose
the underlying structure of the data [59]. It is widely applied
in data visualization in the natural and biological sciences.
This technique has been extensively used in previous urine
studies [60]–[62].

A dendrogram is a tree-based diagram that illustrates how
k clusters are grown out of n observations for any arbitrary
k (from 1 to n). To view the clustering result for a specific
k, a ”cut” can be taken horizontally on the y-axis where k
intersections are created. Each vertical line at the intersection
then leads to a cluster.

Heat maps and dendrograms are often combined to illus-
trate hierarchical clustering results. MSDA uses matplotlib to
generate the combined plot. An example of 306 urine samples
is shown in Figure 14.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an overview of Puerto Rico
Testsite for Exploring Contamination Threats Center, and high-
lighted many of the challenges faced during data management
and analysis. We have developed a highly efficient solution
based on the EQuIS, providing for efficient data cleaning and
reporting given the diversity of the data sources.

In order to begin to understand how environmental factors
can impact preterm birth, we have developed a number of Tool-
boxes. We discuss the development of a Toolbox to streamline
metabolomic analysis of expectant mother’s urine samples. The
goal is to identify non-targeted compounds in the urine. Due to
the computational challenges of this analysis, we have built an
open source framework called the Mass Spectrometry Data

58

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 12. A 2-D PCA plot. Figure 13. A 3-D PCA plot.

Figure 14. Example of a dendrogram and heatmap available in MSDA.

59

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Analysis Toolbox. The Toolbox can signficantly accelerate
metabolomic analysis. MSDA can handle a complete analysis
pipeline ranging from data processing to machine learning.
The Toolbox also provides visualization capabilities to help
the user understand sample characteristics present in a high-
dimensional feature space.

We have been able to demonstrate the saving provided by
MSDA, enabling much faster processing utilizing paralleliza-
tion, but also integrating a number of tools together into a
single framework. We believe MSDA will have a strong impact
on discovering biological patterns in the future.

To further improve the capability of MSDA, we plan to im-
plement additional machine learning and statistical techniques,
including PLS-DA, t-Tests and SVM capabilities. We also plan
to enhance the performance and scalability of the Toolbox
further, leveraging GPUs and the Spark [63] distributed com-
putation framework.

ACKNOWLEDGMENT

This work is supported in part by Award Number
P42ES017198 from the National Institute of Environmental
Health Sciences. Authors would like to thank Ana Miralles-
Marco for her collaboration. This study had the support of the
FP7-ENV-2011 DENAMIC project (cod 282957). In addition,
we would like to thank EarthSoft for their generous support.

REFERENCES
[1] X. Li, L. Yu, Y. Yao, P. Wang, R. Giese, A. Alshawabkeh, and

D. Kaeli, “Big Data Analysis on Puerto Rico Testsite for Exploring
Contamination Threats,” in ALLDATA’2015: The First International
Conference on Big Data, Small Data, Linked Data and Open Data,
pp. 29–34, 2015.

[2] H. Blencowe et al., “National regional and worldwide estimates of
preterm birth rates in the year 2010 with time trends since 1990 for
selected countries: a systematic analysis and implications,” The Lancet,
vol. 379, pp. 2162–2171, 2012.

[3] J. D. Meeker et al., “Urinary phthalate metabolites in relation to preterm
birth in mexico city,” Environ. Health Perspect., vol. 117, pp. 1587–
1592, 2009.

[4] D. Cantonwine et al., “Bisphenol a exposure in Mexico City and Risk of
prematurity: a pilot nested case control study,” Environ. Health, vol. 9,
pp. 62–68, 2010.

[5] A. P. Mucha et al., “Abstract: Association between pbde exposure
and preterm birth,” in 10 Annual Workshop on Brominated Flame
Retardants, (Victoria, BC Canada), p. 42, 2008.

[6] K. Tsukimori et al., “Long-term effects of polychlorinated biphenyls
and dioxins on pregnancy outcomes in women affected by the yusho
incident,” Eniron. Health. Perspect., vol. 116, pp. 626–630, 2008.

[7] P. Z. Ruckart, F. J. Bove, and M. Maslia, “Evaluation of contaminated
drinking water and preterm birth, small for gestational age, and birth
weight at Marine Corps Base Camp Lejeune, North Carolina: a cross-
sectional study,” Environ. Health, vol. 13, pp. 1–10, 2014.

[8] J. D. Meeker, “Exposure to environmental endocrine disruptors and
child development,” Arch. Pediatr. Adolesc. Med., vol. 166, pp. 952–
958, 2012.

[9] G. Guennebaud, B. Jacob, et al., “Eigen v3.” http://eigen.tuxfamily.org,
2010.

[10] P. J. Meis, R. L. Goldenberg, B. M. Mercer, J. D. Iams, A. H. Moawad,
M. Miodovnik, M. K. Menard, S. N. Caritis, G. R. Thurnau, S. F.
Bottoms, et al., “The preterm prediction study: risk factors for indi-
cated preterm births,” American journal of obstetrics and gynecology,
vol. 178, no. 3, pp. 562–567, 1998.

[11] J. D. Meeker, H. Hu, D. E. Cantonwine, H. Lamadrid-Figueroa,
A. M. Calafat, R. Loch-Caruso, M. M. Téllez-Rojo, A. S. Ettinger,
and M. Hernandez-Avila, “Urinary phthalate metabolites in relation to
preterm birth in mexico city,” 2009.

[12] N. Torres Torres, J. Howard, I. Padilla, P. Torres, I. Cotto, and
C. Irizarry, “Effects of hydrogeologic conditions on groundwater con-
tamination of cvocs in the north coast karst aquifer of puerto rico,” in
AGU Fall Meeting Abstracts, vol. 1, p. 1251, 2012.

[13] M. Roca, N. Leon, A. Pastor, and V. Yusà, “Comprehensive ana-
lytical strategy for biomonitoring of pesticides in urine by liquid
chromatography–orbitrap high resolution mass spectrometry,” Journal
of Chromatography A, vol. 1374, pp. 66–76, 2014.

[14] Y. Chen, P. J. McGrath, and J. W. Stewart, “Web-Based Electronic Data
Capture System in Psychiatry Clinical Trials: A StudyTRAX Review,”

[15] C. Schmitz et al., “Limesurvey: an open source survey tool,” LimeSur-
vey Project Hamburg, Germany. URL http://www. limesurvey. org, 2012.

[16] C. Voegele, B. Bouchereau, N. Robinot, J. McKay, P. Damiecki, and
L. Alteyrac, “A universal open-source Electronic Laboratory Notebook,”
Bioinformatics, vol. 29, no. 13, pp. 1710–1712, 2013.

[17] P. A. Harris, R. Taylor, R. Thielke, J. Payne, N. Gonzalez, and J. G.
Conde, “Research electronic data capture (REDCap)a metadata-driven
methodology and workflow process for providing translational research
informatics support,” Journal of biomedical informatics, vol. 42, no. 2,
pp. 377–381, 2009.

[18] EarthSoft, “EarthSoft: Standalone EQuIS Data Processor (EDP)
User Guide.” http://www.dec.ny.gov/docs/remediation hudson pdf/
edpuserguide.pdf, 2008.

[19] EarthSoft, “EQuIS 6 Enterprise: Workflow Automation & Dashboards.”
http://www.earthsoft.com/products/enterprise/, 2015 (accessed Septem-
ber 1, 2015).

[20] EarthSoft, “EarthSoft Corporate Overview EQuISTM .” http://www.
earthsoft.com/wp-content/uploads/2014/11/2014-Corp-Overview-Nov.
pdf, 2014.

[21] W. Arlt, M. Biehl, A. E. Taylor, S. Hahner, R. Libe, B. A. Hughes,
P. Schneider, D. J. Smith, H. Stiekema, N. Krone, et al., “Urine steroid
metabolomics as a biomarker tool for detecting malignancy in adrenal
tumors,” The Journal of Clinical Endocrinology & Metabolism, vol. 96,
no. 12, pp. 3775–3784, 2011.

[22] Y. Kim, I. Koo, B. H. Jung, B. C. Chung, and D. Lee, “Multivariate
classification of urine metabolome profiles for breast cancer diagnosis,”
BMC bioinformatics, vol. 11, no. Suppl 2, p. S4, 2010.

[23] C. Lanz, A. D. Patterson, J. Slavı́k, K. W. Krausz, M. Ledermann,
F. J. Gonzalez, and J. R. Idle, “Radiation metabolomics. 3. biomarker
discovery in the urine of gamma-irradiated rats using a simplified
metabolomics protocol of gas chromatography-mass spectrometry com-
bined with random forests machine learning algorithm,” Radiation
research, vol. 172, no. 2, pp. 198–212, 2009.

[24] S. E. Reichenbach, X. Tian, Q. Tao, D. R. Stoll, and P. W. Carr, “Com-
prehensive feature analysis for sample classification with comprehensive
two-dimensional lc,” Journal of separation science, vol. 33, no. 10,
pp. 1365–1374, 2010.

[25] EarthSoft, “EQuIS Professional.” http://www.earthsoft.com/products/
professional/, 2015 (accessed September 1, 2015).

[26] DENAMIC, “Developmental Neurotoxicity Assessment of Mixtures in
Children.” http://www.denamic-project.eu/, 2015 (accessed September
1, 2015).

[27] “Marker view software.” http://sciex.com/products/software/
markerview-software.

[28] “Simca-p.” http://umetrics.com/products/simca.
[29] “Sas.” https://www.sas.com/en us/home.html.
[30] J. Xia, N. Psychogios, N. Young, and D. S. Wishart, “Metaboanalyst: a

web server for metabolomic data analysis and interpretation,” Nucleic
acids research, vol. 37, no. suppl 2, pp. W652–W660, 2009.

[31] H. Neuweger, S. P. Albaum, M. Dondrup, M. Persicke, T. Watt,
K. Niehaus, J. Stoye, and A. Goesmann, “Meltdb: a software platform
for the analysis and integration of metabolomics experiment data,”
Bioinformatics, vol. 24, no. 23, pp. 2726–2732, 2008.

[32] S. Gibb and K. Strimmer, “Maldiquant: a versatile r package for the
analysis of mass spectrometry data,” Bioinformatics, vol. 28, no. 17,
pp. 2270–2271, 2012.

[33] W. McKinney, “Data structures for statistical computing in python,” in
Proceedings of the 9th Python in Science Conference (S. van der Walt
and J. Millman, eds.), pp. 51 – 56, 2010.

[34] “rpy2 package.” http://rpy2.bitbucket.org/.

60

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[35] S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: A
structure for efficient numerical computation,” Computing in Science
and Engg., vol. 13, pp. 22–30, Mar. 2011.

[36] A. Savitzky and M. J. Golay, “Smoothing and differentiation of data
by simplified least squares procedures.,” Analytical chemistry, vol. 36,
no. 8, pp. 1627–1639, 1964.

[37] C. Ryan, E. Clayton, W. Griffin, S. Sie, and D. Cousens, “Snip, a
statistics-sensitive background treatment for the quantitative analysis of
pixe spectra in geoscience applications,” Nuclear Instruments and Meth-
ods in Physics Research Section B: Beam Interactions with Materials
and Atoms, vol. 34, no. 3, pp. 396–402, 1988.

[38] J. Gil and M. Werman, “Computing 2-dimensional min, median and
max filters,” 1996.

[39] A. M. Andrew, “Another efficient algorithm for convex hulls in two
dimensions,” Information Processing Letters, vol. 9, no. 5, pp. 216–
219, 1979.

[40] F. Dieterle, A. Ross, G. Schlotterbeck, and H. Senn, “Probabilistic
quotient normalization as robust method to account for dilution of
complex biological mixtures. application in 1h nmr metabonomics,”
Analytical chemistry, vol. 78, no. 13, pp. 4281–4290, 2006.

[41] M. Dowle, T. Short, S. Lianoglou, R. Saporta, A. Srinivasan, and
E. Antonyan, “data. table: Extension of data. frame,” 2015.

[42] M. C. Chambers, B. Maclean, R. Burke, D. Amodei, D. L. Ruderman,
S. Neumann, L. Gatto, B. Fischer, B. Pratt, J. Egertson, et al., “A
cross-platform toolkit for mass spectrometry and proteomics,” Nature
biotechnology, vol. 30, no. 10, pp. 918–920, 2012.

[43] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling,
S. Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, et al., “Bioconductor:
open software development for computational biology and bioinformat-
ics,” Genome biology, vol. 5, no. 10, p. R80, 2004.

[44] S. Gibb, “readMzXmlData: Reads Mass Spectrometry Data in mzXML
Format,” 2014.

[45] S. Gibb, “MALDIquantForeign: Import/export routines for maldiquant,”
2015.

[46] D. Eddelbuettel, “Cran task view: High-performance and parallel com-
puting with r,” 2014.

[47] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scientific
tools for Python,” 2001–. [Online; accessed 2016-02-28].

[48] I. Jolliffe, Principal component analysis. Wiley Online Library, 2005.
[49] B. Worley and R. Powers, “Multivariate analysis in metabolomics,”

Current Metabolomics, vol. 1, no. 1, p. 92, 2013.
[50] P.-G. M. Nathan Halko and J. A. Tropp, “Finding structure with ran-

domness: Probabilistic algorithms for constructing approximate matrix
decompositions,” 2014.

[51] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine

Learning Research, vol. 12, pp. 2825–2830, 2011.
[52] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,

and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis
and implementation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
pp. 881–892, July 2002.

[53] K. H. Liland, “Multivariate methods in metabolomics–from pre-
processing to dimension reduction and statistical analysis,” TrAC Trends
in Analytical Chemistry, vol. 30, no. 6, pp. 827–841, 2011.

[54] D. J. Vis, J. A. Westerhuis, D. M. Jacobs, J. P. van Duynhoven, S. Wop-
ereis, B. van Ommen, M. M. Hendriks, and A. K. Smilde, “Analyzing
metabolomics-based challenge tests,” Metabolomics, vol. 11, no. 1,
pp. 50–63, 2015.

[55] J. Xia, R. Mandal, I. V. Sinelnikov, D. Broadhurst, and D. S. Wishart,
“Metaboanalyst 2.02̆014a comprehensive server for metabolomic data
analysis,” Nucleic acids research, vol. 40, no. W1, pp. W127–W133,
2012.

[56] X. Wang, A. Zhang, Y. Han, P. Wang, H. Sun, G. Song, T. Dong,
Y. Yuan, X. Yuan, M. Zhang, et al., “Urine metabolomics analysis for
biomarker discovery and detection of jaundice syndrome in patients
with liver disease,” Molecular & Cellular Proteomics, vol. 11, no. 8,
pp. 370–380, 2012.

[57] A. Miyagi, H. Takahashi, K. Takahara, T. Hirabayashi, Y. Nishimura,
T. Tezuka, M. Kawai-Yamada, and H. Uchimiya, “Principal component
and hierarchical clustering analysis of metabolites in destructive weeds;
polygonaceous plants,” Metabolomics, vol. 6, no. 1, pp. 146–155, 2010.

[58] J. Hunter, D. Dale, and E. Firing, “matplotlib: Python plotting,” 2012.
[59] L. Wilkinson and M. Friendly, “The history of the cluster heat map,”

The American Statistician, vol. 63, no. 2, 2009.
[60] J.-Y. Moon, H.-J. Jung, M. H. Moon, B. C. Chung, and M. H. Choi,

“Heat-map visualization of gas chromatography-mass spectrometry
based quantitative signatures on steroid metabolism,” Journal of the
American Society for Mass Spectrometry, vol. 20, no. 9, pp. 1626–1637,
2009.

[61] X. Zhao, J. Fritsche, J. Wang, J. Chen, K. Rittig, P. Schmitt-Kopplin,
A. Fritsche, H.-U. Häring, E. D. Schleicher, G. Xu, et al., “Metabo-
nomic fingerprints of fasting plasma and spot urine reveal human pre-
diabetic metabolic traits,” Metabolomics, vol. 6, no. 3, pp. 362–374,
2010.

[62] L. Mengual, M. Burset, M. J. Ribal, E. Ars, M. Marı́n-Aguilera,
M. Fernández, M. Ingelmo-Torres, H. Villavicencio, and A. Alcaraz,
“Gene expression signature in urine for diagnosing and assessing
aggressiveness of bladder urothelial carcinoma,” Clinical Cancer Re-
search, vol. 16, no. 9, pp. 2624–2633, 2010.

[63] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of
the 2Nd USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’10, (Berkeley, CA, USA), pp. 10–10, USENIX Association,
2010.

61

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



O|R|P|E - A Data Semantics Driven Concurrency
Control Mechanism with Run-time Adaptation

Tim Lessner∗, Fritz Laux†, Thomas M Connolly‡
∗freiheit.com technologies gmbh, Hamburg, Germany

Email: tim.lessner@freiheit.com
†Reutlingen University, Reutlingen, Germany

Email: fritz.laux@reutlingen-university.de
‡University of the West of Scotland, Paisley, UK

Email: thomas.connolly@uws.ac.uk

Abstract—This paper presents a concurrency control mechanism
that does not follow a ’one concurrency control mechanism fits
all needs’ strategy. With the presented mechanism a transaction
runs under several concurrency control mechanisms and the
appropriate one is chosen based on the accessed data. For
this purpose, the data is divided into four classes based on its
access type and usage (semantics). Class O (the optimistic class)
implements a first-committer-wins strategy, class R (the reconcil-
iation class) implements a first-n-committers-win strategy, class
P (the pessimistic class) implements a first-reader-wins strategy,
and class E (the escrow class) implements a first-n-readers-win
strategy. Accordingly, the model is called O|R|P|E. The selected
concurrency control mechanism may be automatically adapted at
run-time according to the current load or a known usage profile.
This run-time adaptation allows O|R|P|E to balance the commit
rate and the response time even under changing conditions.
O|R|P|E outperforms the Snapshot Isolation concurrency control
in terms of response time by a factor of approximately 4.5
under heavy transactional load (4000 concurrent transactions).
As consequence, the degree of concurrency is 3.2 times higher.

Keywords–Transaction processing; multimodel concurrency
control; optimistic concurrency control; snapshot isolation; per-
formance analysis; run-time adaptation.

I. INTRODUCTION

The drawbacks of existing concurrency control (CC) mech-
anisms are that pessimistic concurrency control (PCC) is likely
to block transactions and is prone to deadlocks, optimistic con-
currency control (OCC) may experience a sudden decrease in
the commit rate if contention increases. Snapshot Isolation (SI)
better supports query processing since transactions generally
operate on snapshots and also prevents read anomalies, but de-
pending on the implementation of SI, either pessimistic or opti-
mistic, it is also subject to the previously mentioned drawbacks
of PCC or OCC. Semantics based CC (SCC) remedies some
problems of PCC or OCC. It performs well under contention,
reduces the blocking time, and better supports disconnected
operations. However, its applicability is limited since data and
transactions have to comply with specific properties such as
the commutativity of operations. In addition to the previously
mentioned drawbacks, neither PCC nor OCC nor SCC support
long-lived and disconnected data processing. However, these
properties are essential to achieve scalability in Web-based and
loosely coupled applications. Another challenge is that in real-
life scenarios often the data usage profile changes over time
(e.g. stock refill in the morning, selling goods during business

hours, housekeeping during closing hours) which calls for a
dynamic CC-mechanism.

This paper extends a mechanism presented in [1] and
originally introduced in [2] that combines OCC, PCC, and
SCC and steps away from the ‘one concurrency control
mechanism fits all needs’ strategy. Instead, the CC mech-
anism is chosen depending on the data usage. While the
original O|R|P|E model assigns the appropriate CC-mechanism
statically, this paper addresses a dynamic adaptation of the
CC-mechanism due to sudden changes of the system load. To
address scalability, the mechanism was designed with a focus
on long-lived and disconnected data processing.

Consider, for example, the wholesale scenario as presented
in the TPC-C [3]. With PCC using shared and exclusive locks,
the likelihood of deadlocks increases for hot spot fields such
as the stock’s quantity or the account’s debit or credit. If
transactions are long-lived, PCC is even worse since deadlocks
manifest during write time and a significant amount of work
is likely to be lost [4] [2]. With OCC, deadlocks cannot
occur. However, hot-spot fields like an account’s debit or credit
would experience many version validation failures under high
load causing the restart of a transaction. Like PCC, validation
failures manifest during the write-phase of a transaction and
a significant amount of work is likely to be lost. Both PCC
and OCC cannot ensure that modifications attempted during a
transaction’s read-phase will prevail during the write-phase.
Whereas PCC is prone to deadlocks, OCC is prone to its
optimistic nature itself.

O|R|P|E resolves these drawbacks and data can be classi-
fied in CC classes. For example, customer data such as the
address or password can be controlled by a PCC that uses
exclusive locks only [5]. Such a rigorous measure ensures
ownership of data and should be used if data is modified
that belongs to one transaction. For example, account data or
master data should not be modified concurrently and given the
importance of this data a rigorous isolation is justified. The
debit or credit of an account can be classified in CC class R,
which guarantees no lost updates and no constraint violations.
Such a guarantee is often sufficient for hot-spot fields. Class
E can be used to access an item’s stock, for example. Class
E is able to handle use cases such as reservations. It should
be used if during the read-phase a guarantee is required that
the changes will succeed during the write-phase. Class O is
the default class. It avoids blocking and under normal load it

62

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



represents a good trade-off between commit and abort-rate.
Section II defines these four CC classes with different

data access strategies used by our mechanism. In the case of
a conflict, class O implements a first-committer-wins strat-
egy, class R implements a first-n-committers-win strategy,
class P implements a first-reader-wins strategy, and class E
implements a first-n-readers-win strategy. The number n is
determined by the semantics of the accessed data, e.g., by
database constraints. According to the classes, the mechanism
is called O|R|P|E. The “|” indicates the demarcation between
data.

Section III proofs the correctness of the model. Section
IV briefly describes the prototype implementation. Section V
highlights some advantages of O|R|P|E, because it provides
an application flexibility in choosing the best suitable CC
mechanism and thereby significantly increases the commit
rate and outperforms optimistic SI. The run-time adaptation
mechanism and its adaptation rules are presented in Section
VII. In the following Section V a prototype implementation
is tested with various workloads. The results are discussed
and the behavior is illustrated with time diagrams. Section
VIII summarizes related work and compares it to our model.
Finally, the paper draws some conclusions and provides an
outlook (see Section IX) to future work.

II. MODEL

The model relies on disconnected transactions and 4 CC
classes, which are defined in the following.

A. Transaction
To support long-lived and disconnected data processing,

which both supports scalability, O|R|P|E models a transaction
as a disconnected transaction τ , with separate read- and write-
phase, i.e., no further read after the first write operation (see
Definition 1, taken from [2]). To disallow blind writes, O|R|P|E
guarantees that in addition to the value of a field, the version
of a data field has to be read, too.

DEFINITION 1: Disconnected Transaction:

1) Let ta be a flat transaction that is defined as a pair
ta = (OP,<) where OP is a finite set of steps of the
form r(x) or w(x) and <(⊆ OP ×OP ) is a partial
order.

2) A disconnected transaction τ = (TAR, TAW )
consists of two disjoint sets of transactions.
TAR = {taR1 , . . . , taRi } to read and TAW =
{taW1 , . . . , taWj } to write the proposed modifications
back.

3) A transaction has to read any data item x before being
allowed to modify x (no blind writes).

4) If a transaction only reads data it has to be labeled
as read only.

B. CC Classes
Class O is the default class and is implemented by an

optimistic SI mechanism, which is advantageous since reads
do not block writes and non-repeatable or phantom phenomena
do not happen. However, SI is not fully serializable [6] [7].

As stated, the drawback of optimistic mechanisms prevails
if load increases, because many transactions may abort during
their validation at commit time. An abort at commit time is

expensive, because significant amount of work might be lost.
A circumstance particularly crucial for long-lived transactions
(see [2]).

Regarding the strategy, optimistic SI follows a “first-
committer-wins” semantics revealing another drawback of O.
It is the lack of an option allowing a transaction to explicitly
run as an owner of some data. Consider, for example, the pri-
vate data of a user such as its password or address. A validation
failure should be prevented by all means, since it would mean
that at least two transactions try to concurrently update private
data. Although technically this is a reasonable state, for this
kind of data a pessimistic approach that acquires all locks at
read time is more appropriate. Such a mechanism follows a
“first-reader-wins” (ownership) semantics and directly leads
to class P . The acquisition of exclusive locks at read time
prevents deadlocks during write time. To prevent deadlocks
at all, a strict sequential access and preclaiming (all locks
appear before the first read) or sorted read-sets are possible
mechanisms. Which mechanism is chosen to prevent or resolve
deadlocks is unimportant regarding the correctness of O|R|P|E
(see Section III). Preclaiming has its drawbacks concerning
the time a lock has to be acquired. Sorted read-sets may be
unfeasible due to limitations of the storage layer or chosen
index structure. The prototype (see Section IV) uses a Wait-
For-Graph to prevent deadlocks during the read-phase of a
transaction. Also, during our experiments (see Section V) the
number of deadlocks was considerably small, because data
classified in P should have no concurrent modifications by
definition.

The decision if a data item is classified as O or P is based
on the following properties [2]:

1) Mostly read (mr): Is the data item mostly read?
If ’Yes’, there is no need for restrictive measures
and the data item should by classified for optimistic
validation. A low conflict probability is assumed.

2) Frequently written (fw): fw is the opposite of mr.
3) unknown (un): It means neither mr nor fw apply,

i.e., it is unknown whether an item is mostly read or
written or approximately even.

4) Ownership (ow): if accessing a data item should
explicitly cause the transaction to own this item for
its lifetime?

EXAMPLE 1: Classify data items in class O and P (taken
from [2]).

This example is based on the TPC-C [3] benchmark and
its “New-Order” transaction. Note that an additional table
Account has been introduced to keep track about a customer’s
bookings (column debit and credit). It also defines an over-
draft limit (column limit). The following tables are used in
our example: Customer (id, name, surname), Stock (StockId,
ItemId, quantity), Account (AcctNo, debit, credit, limit), and
Item (ItemId, name, unit, price). Table I shows an initial
classification.

Attributes name, surname, and id of a customer are ex-
pected to be mostly read, but if modified by a transaction it
should definitively be the owner. The id of a customer, like all
ids, is expected to become modified rarely. If the id becomes
modified, ownership is required. In principal, all business keys
should be classified in P , because they are owned by the
application provider (see Rule 1, 1)).

63

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Stock.quantity is expected to become modified frequently
(fw) and to prevent the situation where an item was marked
as available during the read phase, but at commit time the item
is no longer available due to concurrent transactions, it is also
marked as ow. For the time being, however, quantity will be
classified as an ambiguity (see also Rule 1, 3)), which will be
discussed below.

The Account.credit and Account.debit of a customer’s ac-
count might be accessed frequently depending on a customer’s
activity and un is a good choice. However, since multiple
transactions might concurrently update the balance, and an
owner is hardly identifiable, ¬ow is chosen. So, it is also an
ambiguity (see Rule 1, 3)).

The Account.limit is the overdraft limit of a customer and
expected to be mostly read, hence, mr is a good choice. Since
it is neither owned by the customer nor by others, ¬ow is a
good choice (see Rule 1, 2)).

Assuming the application is a high frequency trading
application, Item.Price might quickly become a bottleneck.
An exact prediction is not possible though, hence, un is a
good choice. Property ow would not be a good choice, because
transactions of different components (dc) might simultaneously
calculate the price (see Rule 1, 3)).

TABLE I. CLASSIFICATION OF EXAMPLE 1

x mr fw un ow CC class
Customer.name 1 0 0 1 P

Customer.surname 1 0 0 1 P
Customer.id 1 0 0 1 P

Stock.StockId 1 0 0 1 P
Stock.ItemId 1 0 0 1 P

Stock.quantity 0 1 0 1 A
Account.debit 0 0 1 0 A
Account.credit 0 0 1 0 A
Account.limit 0 0 1 0 A

Item.name 1 0 0 1 P
Item.unit 1 0 0 1 P
Item.price 0 0 1 0 A

The ambiguities A of Example 1, see class A in Table I,
highlight that classes O and P and their properties are not
sufficient. Particularly, hot spot items such as Stock.quantity
would benefit from a CC mechanism that allows many winners
and resolves the drawbacks of OCC and PCC.

Laux and Lessner [8] propose the usage of a mecha-
nism that reconciles conflicts –class R–. Their approach is
an optimistic variant of O’Neil’s [9] Transactional Escrow
Method (TEM). Both approaches exploit the commutativity
of write operations. If operations commute, it is irrelevant
which operation is applied first as long as the final state can
be calculated (see [8] [2] for further details) and no constraint
is violated.

Unlike TEM, the reconciliation mechanism requires a
dependency function. Consider, for example, two transactions
that update an account and both read an initial amount of
10e , one credits in 20e and the other debits 10e . Once both
have committed, it is relevant that no constraint was violated
at any time and the final amount has to be 20e . Usually, a
database would write the new state for each transaction causing
a lost update. A dependency function would actually add or
subtract the amount (the delta!) and would always take the
latest state as input. In other words, reconciliation replays the
operation in case of a conflict. However, this is only possible

if no further user input is required. In the example above this
means the user wants to credit 20e (or debit 10 e ) independent
of the account’s amount as long as no constraint is violated!
Another requirement is that each dependency function has to
be compensatable (see also [2]).

The reconciliation mechanism [8] follows a “first-n-
committers-win” semantics and the number of winners n
is solely determined by constraints. The correctness of the
mechanism is proven in [8], which also introduces “Escrow
Serializability”, a notion for semantic correctness.

TEM grants guarantees to transactions during their read-
phase. For example, a reservation system is able to grant
guarantees to a transaction about the desired number of tickets
as long as tickets are available. The consequence is that
transactions need to know their desired update in advance (see
[9] for further details).

Whereas TEM [9] is pessimistic (constraint validation
during the read phase) and works for numerical data only,
Reconciliation [8] is optimistic (constraint validation during
the write phase) and works for any data as long as a depen-
dency function is known. The proof that E, like R, is escrow
serializable can be found in [2].

The decision if an item is member of R or E is based on
the following properties:

1) con: Does a constraint exist for this data item?
2) num: Is the type of the data item numeric?
3) com: Are operations on this data item commutative?
4) dep: Is a dependency function known for an operation

modifying the data item?
5) in: Is user input independence given for an operation

modifying the data item?
6) gua: Is a guarantee needed that a proposed modifi-

cation will succeed?

RULE 1: Derivation of CC classes for data item x

1) ow → classify x in P (identify P ).
2) ¬ow ∧mr → classify x in O (identify O).
3) all other combinations of ow and mr: classify x in

A (ambiguity).
4) com→ classify x in E ∨R

a) (con ∧ num ∧ com ∧ gua) → classify x in
E (identify E).

b) (in∧dep∧ com)→ classify x ∈ R (identify
R).

5) x ∈ A→ item x will be eventually in O.

EXAMPLE 2 (Classification of data items in R and E): The
ambiguities of Table I are the input for this example. Table II
shows the result of the classification of these ambiguities.
Stock.quantity has a constraint value > 0 and is
numeric. The dependency function dep is known too. As
stated above, a dependency function performs a context de-
pendent write. For example, dependency function d would
be d(x, xread, xnew) = x + (xnew − xread). User input
independence in is not given. If placing the order fails at the
end, a replay would also fail. So, class R is not an option.
Since an order requires a guarantee that the requested amount
of items remains available, Rule 1, 4a) applies.

Account.credit and Account.debit are classified
as R. Property dep is known, because operations are either

64

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE II. ILLUSTRATIVE CLASSIFICATION OF AMBIGUITIES OF
EXAMPLE 1.

x con com num dep in gua CC class
Stock.quantity 1 1 1 1 0 1 E
Account.credit 1 1 1 1 1 0 R
Account.debit 1 1 1 1 1 0 R

Item.price 0 0 1 1 0 0 O

additions or subtractions. Property in is given, because the ac-
count has to be updated if the order is placed and no constraint
is violated. As the updates follow a dependency function they
can be reconciled and should not raise an exception. Again,
only a constraint violation such as an overdraft can cause the
abort. Rule 1, 4b) applies.

Item.price depends on a variety of parameters includ-
ing the last price itself. As a result, a price update might not be
commutative. Item.price remains ambiguous and remains
in O, because O is the default class. Rule 1, 5) applies.

III. CORRECTNESS

A transaction potentially runs under four different CC
mechanisms. Due to the CC classes’ individual semantics, each
class has a different notion for a conflict, too. In any case, two
read operations are never in conflict because read operations
do not alter the database state and hence are commutative [10].

Usually, a conflict is given if two operations access the
same data item and the corresponding transaction overlap in
their execution time, and at least one operation writes the data
item [5]. Whereas for O and P this is a correct definition of a
conflict, for R and E it is not, because both can resolve certain
write conflicts. The resolution of conflicts is a key aspect and
advantage of SCC, and SCC questions the seriousness of a
conflict. In other words, the meaning of a read-write or write-
write conflict is interpreted. For R and E only a constraint
violation is a conflict. Moreover, the state read by an operation
is assumed to be irrelevant, otherwise commutativity is not
given. It follows that any final serialization graph SG−R and
SG − E for class R and E is non-cyclic because potential
conflicts are reconciled (see [2] for a thorough discussion).

For P , the common definition of a conflict is correct. If a
transaction wants to modify item p (let p ∈ P ), it has to acquire
a lock on p during its read-phase to become the exclusive
owner. If not, the transaction does a blind write, which is
disallowed according to Definition 1. Hence, every write in
P cannot encounter a concurrent write or read, because if a
transaction writes p it has to be the exclusive owner of P .

Consider the following (incorrect) schedule, for example
(disci and discj denote the disconnect phase of transaction i
(resp. j) and let o ∈ O and p ∈ P ):

ri(o), rj(p), rj(o), discj , wj(o), cj , ri(p), disci,

wi(p), ci (1)

In this schedule transaction i reads o before j modifies o
and transaction j reads p (rj(p)) before i writes p (wi(p)).
Usually, the ordering of transaction operations are visualized
by a precedence graph as in Figure 1.

DEFINITION 2 (Serialization Graph (SG)): Let S be a sched-
ule of transactions. The Serialization Graph (aka Conflict
Graph) is a precedence graph where each node represents a

transaction and each directed edge between two transactions
represents a precedence of conflicting operations [11] [12] on
a data item.

It is well known that a transaction schedule is conflict
serializable if and only if the SG is acyclic [11] [13]. If
the SG of a transaction schedule includes a cycle then no
equivalent serial schedule exists and, therefore, this schedule
is not serializable [11].

The above Schedule 1 leads to the following cyclic SG of
Figure 1.

Figure 1. The cyclic serialization graph from Schedule (1).

Transaction i precedes j in class O and j precedes i in P .
Having opposite orders, i.e., i→ j in one, but j → i in another
class violates serializability, because globally i precedes j,
which in turn precedes i.

A transaction that reads a data item in O has to validate
the value at write-time, even if the write is only for an item
p ∈ P . The operation wi(p) causes a validation failure on item
o because transaction i has read a value of o that transaction j
has meanwhile updated. This is a conflict between transactions
i and j in O and produces a validation failure. Commit ci
is wrong in the schedule above and would never happen
in O|R|P|E. Hence, the above schedule looks as follows in
O|R|P|E:

ri(o), rj(p), rj(o), discj , wj(o), cj , ri(p), disci,

wi(p), ai (2)

Even a deadlock in P cannot create a cyclic graph between O
and P , because at least a write is required to create a conflict
in P . However, since all deadlocks can only happen during
the read phase of a transaction, no conflict cycle involving a
deadlock can happen in P .

Based on these initial findings it is possible to state
Theorem 1. The corresponding proof exploits that for R, P ,
and E the corresponding serialization graphs are non-cyclic.

THEOREM 1: Let SG − G be the global serialization graph,
which is the union of SG−O, SG−R, SG−P , and SG−E.
The global serialization graph SG−G is non-cyclic if SG−O
is non-cyclic.

Proof by contradiction:
Given that tai is serialized before taj (i→ j) in SG−O. In

P , no other transaction can access an item in P if transaction
tai has read this item. This is the consequence of x-locks
during the read-phase used in class P. The same argument
applies to taj as well and it is impossible to have a serialization
order j → i in P . Since i and j can be arbitrarily changed
there is a contradiction if i → j exists in one, and j → i in
another class. SG−R and SG−E are negligible because any
conflict is finally reconciled and both serialization graphs are
non-cyclic.

65

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



COROLLARY 1: SG − O sets the global serialization order
for P .

If a ta does not modify data in O, then P sets the order. If
a ta does not modify data in P , then R sets the order, because
it is prone to validation conflicts as opposed to E that already
has a guarantee to succeed.

IV. PROTOTYPE REFERENCE IMPLEMENTATION OF
O|R|P|E

The prototype of O|R|P|E is not a full database system.
From a fully operational database the backup and recovery
functions are missing. Both functions do not functionally
influence the CC mechanism. There is only a negative effect
on the performance during backup or recovery. This applies
in a similar way for any database management system with a
single CC mechanism.

It was implemented using the JAVA programming language
and Figure 2 illustrates its architecture. A client API provides
access to the data and depending on the operation’s type, read
or write, the operation is executed by a dedicated pool. Pools
“Reads” and “Writes” represent an read- and write-lane. In
addition, a pool to handle the termination (commit and abort)
has been implemented. Pools’ reads and writes handle all
incoming and outgoing operations and the classification has
been placed directly into the index. Depending on an item’s
classification the corresponding CC mechanism is plugged in.
This placement allows to decide about the CC mechanism with
a single read operation, which imposes an negligible overhead.
Once an item has been read or written, the additional pools’
“read-callback” and “write-callback” deliver the results back to
the clients. A Pool WFG (Wait-for-Graph) is used to handle
access to the WFG. Deadlocks may occur during the read-
phase of a transaction if the transaction accesses data items
in class P . Deadlocks can only occur in class P during the
read-phase, because lock acquisition is not globally ordered.

Having separate pools and callbacks to handle incoming
and outgoing operations means that the prototype supports
disconnected transactions, because the entire communication
is asynchronous. Figure 3 illustrates the message flow within
the prototype. A read operation is passed to the “Reads” pool.
Each read is executed asynchronously and the complete read
set is sent back to the client via a dedicated callback pool. To
support asynchronous writes, a write operation is passed to the
“Writes” pool and if all writes have been applied the write set
is sent back to the client. Clients always sent their complete
write-set.

Data is kept solely in memory and no data is written to
disk unless the operating system needs to swap data to disk
due to memory limitations. The only output to disk is to write
logging events that are used for performance evaluation. Other
functionality that has been implemented includes:

• CC mechanisms O, R, P and E,

• The prototype supports constraints,

• The prototype supports item selects, range-selects,
updates, and inserts. The deletion of an item is im-
plemented as update that invalidates a data item.

• A WFG implementation.

Figure 2. Architecture of the prototype.

Figure 3. Message flow of the prototype.

V. PERFORMANCE STUDY WITH STATIC DATA CLASS
ASSIGNMENT

The performance study has been carried out based on the
prototype presented in the previous section (Section IV). As
benchmark, the TPC-C++ benchmark [7] has been chosen,
because we also conducted a study comparing O|R|P|E with
Serializable SI, which is beyond the scope of this paper.

The data used for this study is similar to those of Examples
1 and 2. Each data item was statically assigned to a CC-Class
as shown in Table III. Aspects of a dynamic assignment and
its performance effects will be studied in the next section.

The performance study measures the response-time (resp. -
time), the abort rate (ab-rate), the commits per second, and the
degree of concurrency (deg. conc.). The degree of concurrency
is the quotient of the serial estimated execution time over the
elapsed time of the experiment. In addition, the arrival rate λ
of new transactions has been varied to be set to the optimum
(minimized abort rate and response time, maximized degree
of concurrency). This optimum λ has been taken to conduct
fair and calibrated comparisons. Each experiment has been
repeated three times and the mean value is reported. Values
refer to the execution of a transaction mix –deck– (42 New
Order-, 42 Payment-, 4 Delivery-, 4 Credit check-, 4 Update

66

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE III. TPC-C: CLASSIFICATION OF DATA ITEMS.

Item CC Class operation

Customer P read
CustomerCredit P update

CustomerBalance R read
Customer P read

CustomerBalance R update
Customer P read

CustomerCredit P read
StockQuantity E update

Customer P read
CustomerBalance R update

WarehouseYTD R update
DistrictYTD R update

StockQuantity E read only
StockQuantity E update

Stock Level-, and 4 Read Stock Level - transactions see [7]
[3] [2]).

Figure 4 illustrates the abort rate and degree of concurrency
for SI under full contention and shows the drawbacks of
optimistic SI: the higher the number of concurrent transactions,
the higher the abort rate. Also, the system starts thrashing if
the degree of concurrency drops below one, which is the point
where a serial execution outperforms a concurrent. Table IV
shows that for SI and O|R|P|E with the same λ (tests #1-6
and #10-15) the response-time increases with larger λ, which
is expected and normal behavior. The direct comparison reveals
that O|R|P|E has a 3 − 38 times better response time, which
shows that SI is over-strained for a workload of λ ≥ 200. For
λ = 1000 tas/sec the response time is about 3 times higher
for SI and the degree of concurrency is only half compared to
O|R|P|E. A good degree of concurrency with a low abort rate
is given by λ = 133 (see Table IV #3).

Figure 4. TPC-C++, optimistic SI (class O), abort rate and degree of
concurrency.

Figure 5 shows the response-time and degree of concur-
rency for O|R|P|E for increasing λ. Unlike SI, O|R|P|E has
no aborts caused by serialization or validation conflicts due
to the classification of hot-spot data items in R or E, which
prevents ww-conflicts. As shown by Figure 5, O|R|P|E has its
best degree with λ = 1000 transactions per second achieving
227 commits per second (see Table IV, #15).

The comparison of O|R|P|E and SI uses λ = 133 (Table

Figure 5. Response time and degree of concurrency for increasing λ for
O|R|P|E .

Figure 6. TPC-C++, SI and O|R|P|E : response-time and degree of
concurrency for λ = 133 (SI) and λ = 1000 (O|R|P|E ).

IV #3, and #7-9) for SI and λ = 1000 (Table IV #15-18) for
O|R|P|E . For SI, λ = 133 was considered as being the best
trade-off with respect to the degree of concurrency, λ = 1000
was considered as being the best trade-off for O|R|P|E.

Figure 6 illustrates the degree and the response-time for
data of class O with SI and O|R|P|E if both use the λ
which reflect the best trade-off. As the figure shows, SI has
a better response-time for 1000, 2000, and 3000 concurrent
transactions, but then suddenly undergoes thrashing and the
response-time grows exponentially. However, O|R|P|E shows
a moderate and stable increase of the response-time even for
4000 concurrent transactions.

With a workload of 2000 transactions the degree of con-
currency is 3.41 for O|R|P|E versus 1.87 for SI. The average
response time is only 388 msec for SI and 1551 msec for
O|R|P|E. It would be wrong to conclude that SI has a better
performance than O|R|P|E because for a comparison λ has to
be taken into account. In the test O|R|P|E had a 7.5 times
higher transaction arrival rate than SI (λ = 1000 as opposed
to λ = 133 for SI). At 4000 concurrent transactions O|R|P|E

67

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE IV. MEASURED VALUES OF EXPERIMENTS #1-18.

# tas λ resp.-time ab. rate commits deg.
/second conc.

SI

1 1000 80 43 2% 71 1,39
2 1000 100 84 3% 80 1,57
3 1000 133 309 5% 82 1,63
4 1000 200 1640 20% 62 1,50
5 1000 400 2091 26% 61 1,57
6 1000 1000 2464 27% 62 1,61
7 2000 133 388 9% 90 1,87
8 3000 133 522 8% 91 1,89
9 4000 133 23416 46% 22 0,79

O|R|P|E

10 1000 80 5 4% 69 1,01
11 1000 100 5 4% 85 1,24
12 1000 133 8 4% 108 1,58
13 1000 200 14 4% 150 2,19
14 1000 400 213 4% 217 3,18
15 1000 1000 724 4% 227 3,32
16 2000 1000 1551 4% 234 3,41
17 3000 1000 3704 4% 184 2,69
18 4000 1000 4968 5% 174 2,55

outperforms SI in terms of response time by a factor of 3.7 (see
Figure 6) and the degree of concurrency is 2.6 times better.
Hence, under high contention O|R|P|E has the lowest abort
rate and considering the trade-off between concurrency and
response time, O|R|P|E outperforms SI significantly. Further-
more, its abort rate is nearly independent of the contention.

VI. RUN-TIME ADAPTION

The attempt to manually classify data may finally result
in ambiguous classification where default class O applies
(see Rule 1, 5)). But, high contention can quickly cause
performance issues for data classified in O. Even if class P is
more expensive, because P requires locking during the read-
phase it will lead to a better performance in this situation
as the locking will queue the transactions and process them
successfully.

An automatic and dynamic adaptation of the classification
when transactional load or data usage changes would make the
initial classification less critical and O|R|P|E could choose the
optimal CC-mechanism based on the current situation.

A solution for automatic run-time adaptation is presented
in this section. It re-classifies a data items of default class
O to class P if the commit rate drops below an adjustable
threshold. With this measure the commit rate increases again
for the price of a longer response time. When the transactional
load decreases and after the commit rate exceeds the threshold
again it switches back to its original class O.

Data originally classified in P will not be re-classified
to O when the load is low. This is not feasible, because an
item initially in P has to remain in P due to the item’s
ownership semantics. An adaption at run-time that results in O
would contradict the ownership semantics since a transaction
would no longer request locks during its read-phase. This is,
however, mandatory to comply with the ownership semantics
(see Rule 1, 1)).

At a first glance, an adaption between E → R seems
reasonable if the probability of an invariant violation (PIV)
is low. It would save additional overhead, because invariant
conditions in R have not to be validated at read-time, but in

Figure 7. Arrivals (workload) and time windows.

E. However, this is only a good decision if contention is low.
To take this decision at high workload will result in a much
longer response time because the response time for class R
grows much faster than for class E. With high contention,
the probability of constraint violations increases, but the exact
determination is application dependent. Classifying a data item
in E is only justified if an aborted transaction is more costly
than to retry the transaction, i.e., the transaction needs a
guarantee to succeed which leads to class E from the beginning
(Rule 1, 4a)).

A. Adaptation Criteria

The run-time adaptation is based on the commit rate
cr. To measure and analyze cr a statistical model for the
transactional system is necessary. According to [14] [15]
[16], a transactional system is modeled as an open system
whose transactional arrival rate is a Poisson process. The time
between arrivals of transactions is assumed to be independent
in Poisson, which has the advantage that the conflict rate (the
term conflict is stated more precisely below) can be modeled
around a single variable λ that represents the number of arrivals
in relation to the time window. A Poisson process has a conflict
probability density function PCx(X = k) given by Equation
(3):

PCx(X = k) =
λk

k!
e−λ (3)

For example, if on average 100 transactions arrive within
one Time Window (TW), the probability that k = 50 trans-
actions access item x within a TW is given by Formula (3).
The arrival rate λ is in relation to time, for example, within
one second; i.e., for a transaction that accesses x during that
second, it means that the probability is PCx(X >= 2) =∑∞
k=2 λ

k/k! e−λ to encounter other conflicting concurrent
transactions.

Figure 7 illustrates the usage of TW as well as the arrivals
–workload– in relation to time. The workload is, however, not
constant over the lifetime of a transaction. A constant workload
ignores that the workload, and hence, λ might suddenly change
in particular if transactions are long running. Measuring the
number of transactions terminating or committing during a
time window are means to detect and react to sudden changes
in the workload, which is an idea borrowed from [14]. The
length of the TW defines the sample rate and its sensitivity.

68

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The commit rate cr is used as indicator for the performance
of the optimistic CC-mechanism of class O. If the cr drops
below a threshold, there are more aborts due to validation
failures and that class P would be a better choice to increase
cr.

cr :=
#committed tas/TW

(#terminated tas− #re-class. aborts)/TW
(4)

For each TW the commit rate cr is calculated as fraction of
the committed transaction divided by all terminated transaction
without those that were aborted due to a re-classification. The
commit rate cr is identical to the effective commit rate creff
(see Definition 5) if no adaptation occurs. Formula (4) is
apparently insensitive to the length of the TW. But, a longer
TW tends to compute smoother cr and it saves measuring
overhead. We used a TW of 100 msec which delivered a good
trade off for the prototype implementation.

The adaptation policy is given by Rule 2, which uses a
threshold γ for the target commit rate and an hysteresis δ
to avoid constant switching (thrashing) between both classes.
When a data item is re-assigned during an active transaction,
the transaction is aborted when the change is from O to P .
In the opposite case, the transaction can continue without
conflicts, because the write-phase will succeed since the data
item is already exclusively locked for that transaction.

RULE 2: General Adaptation O → P

Let cr be the commit rate, δ the hysteresis, and γ the target
commit rate. Adaptation is according to the following rules:

1) When cr decreases and O is the current class for an
item x: If cr < γ−δ then P is the new classification
of x

2) When cr increases and P is the current class for an
item x: If cr > γ+δ then O is the new classification
of x.

3) Reclassification during a transaction:
a) If a ta reads at the time when O is the current
class, but will write at a time when P is the current
class, ta is aborted (non-avoidable crash) to maintain
consistency.
b) If a ta reads at a time when the data item is in P
and writes when it is in O, the success of the write
is guaranteed because the data is exclusively locked
since read-time.

Adaptation solely relies on the commit rate cr. The arrival
rate λ and hence the conflict probability are not measured
which would be much more difficult. This leverages the deci-
sion to use a Poisson distribution for the transaction arrivals.

Figure 8 illustrates how the adaptation works if the commit
rate decreases and later increases again. During the first TW
(t2−t1) the commit rate cr drops to 1/8 because only one out
of 8 transactions was successful. Two transactions (ta9, ta10)
have not terminated yet.

At the end of epoch 1 the commit rate is compared to γ−δ
and as cr is below the threshold data x is re-classified to P .
The transaction ta9 will later abort due to a constraint violation
and ta10 has to abort because of the re-classification to P .
Now, for the following transactions the locking mechanism for

P applies. One consequence is that ta11, ta12, and ta13 execute
mostly sequentially. The commit rate grows in the following
TW to 3/4, but, this is not sufficient to switch x back to class
O. During the third TW (t4 − t3) the commit rate rises to
cr = 2/2 > γ + δ and the (initial) optimistic CC (class O) is
re-established.

The following history describes the example of Figure 8
more formally:

H = (r1(x), r2(x), r3(x), . . . , r10(x), w1(x), c1︸ ︷︷ ︸
commit rate decreases

w2(x), a2, w3(x), a3, . . .︸ ︷︷ ︸
commit rate decreases

, adapt to P, a10, a9,

l11(x), r11(x), w11(x), c11, l12(x), r12(x),︸ ︷︷ ︸
commit rate increases

w12(x), c12, l13(x), r13(x), w13(x), c13 . . .︸ ︷︷ ︸
commit rate increases

The history H shows in the first phase 10 trans-
actions ta1, ta2, . . . , ta10 accessing x. They first read x
(r1(x), r2(x), r3(x), . . . , r10(x)) and then try to write x
(w1(x), w2(x), . . .). In the given scenario only ta1 can commit
(c1), all others have to abort (a2, a3, . . .) because too many
transactions try to concurrently update x. This leads to a
sudden decrease in the commit rate cr = 1/8 because only
ta1 was successful and ta9 and ta10 have not yet updated x,
i.e., it is still pending. If we assume a threshold γ of 0.8 and
an hysteresis δ of 0.1, then cr < γ − δ which triggers the
adaption according to Rule 2, 1).

After adaptation has been carried out, ta10 has to abort
(Rule 2, 3a)) if it tries to update x. The abort a10 appears in
the history after the adaptation even though the item x is now
classified in P . Transaction ta10 has to abort, because it has
not locked x before reading x (r10(x)). If ta10 would not abort
it would risk a lost-update, because ta10 would overwrite the
last committed state since P does no version validation. Even
with version validation, ta10 is very likely to abort, because
the probability for a validation failure is high in this situation.

Let assume that transaction ta9 accesses other data beside x
and validation fails due to a constraint violation. This leads to
an abort of ta9. The distinction of the abort reason is important
here as it will be counted for the commit rate.

After the adaptation to P newly arriving transactions
apply a locking scheme for data x which is indicated by
l11, l12, . . .. The commit rate increases again because transac-
tions ta11, ta12, ta13 succeed and commit c11, c12, c13. In fact,
all following transaction succeed except those which violate a
constraint.

If we choose the Time Window TW to start just before
ta11 arrives the commit rate cr rises with each committed
transaction. Class O is not reestablished at the end of this
TW despite that the next 3 transactions succeed because cr =
3/4 ≤ γ + δ = 0.9. The class assignment remains unchanged
and the following TW (t4−t3) will reestablish class O because
cr = 2/2.

The adaptation mechanism proposed in Rule 2 maximizes
the commit rate as seen in the previous example. But due
to the restrictive locking policy the response time increases

69

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 8. Example run-time adaptation scenario with decreasing cr in TW (t1, t2), reclassification at t2 to P and increasing cr in TW (t2, t3) and (t3, t4)
and switch back to class O at t4.

as the execution tends to be serial. In the worst case, endur-
ing contention, the growth is exponential. But, what if the
maximum response-time is limited, for example, by Service
Level Agreements (SLA) and penalties apply for exceeding
the maximum acceptable response-time? The SLA penalties
may outweigh the costs for aborts.

In this case maximizing the commit rate as only criteria is
not a good strategy since it increases costs. To prevent unac-
ceptable response times a barrier (denoted as β) is used that
regulates the adaptation; i.e., once β is reached re-classification
to O takes place despite a low commit rate and the abort
rate starts to increase which in turn leads to shorter response
times for the remaining successful transactions. The concrete
value of β is application dependent. Its general purpose is to
minimize costs, i.e., if the abort costs are lower than the costs
for exceeding the response-time, more aborts are acceptable
until the ratio turns over.

Application specific requirements that set β are out of the
paper’s scope, but to allow applications to limit the adaptation,
β is incorporated in O|R|P|E (see Rule 3). Applications
can now set β to limit the response time and, at run-time,
continuously monitor and adapt the achieved commit rate as
well as the response time as measured by the applications
themselves. Further, applications can increase β at run-time
appropriately. This way, applications can determine their own
equilibrium between commit rate and response-time.

The challenge is the estimation of the expected mean
response-time rtest, which implies to predict the workload.
As stated in the previous section, this is complicated if not
impossible in a general and dynamic way. O|R|P|E circum-
vents this problem and measures the time between a read
and the corresponding write if the current classification is P .
Furthermore, adaptation does no longer calculate cr at the
end of the current TW, instead each termination (commit and
abort) triggers the adaptation. A useful fixed TW is difficult to
choose. If TW is too short, the overhead is considerable and
degrades performance. If the TW is too long the adaptation is
too slow.

To estimate the future workload the terminating transaction

snapshots the lock queue’s size if P is the current class. The
current queue size together with the average time between read
and write give a good indication for the expected workload.
Because the transaction has to notify all waiting transactions
about the ongoing unlock and already is the current owner of
the lock-queue, there is no need for further synchronization
and the overhead is considerably low, but of course exists. It
is a price that has to be paid to get run-time adaptation.

Finally, the number of notified transactions multiplied by
the average time distance between a read and write is used as
an approximation for rtest. The rationale is that if q transactions
are waiting to execute and the mean time between read and
write is ø(mt) then for newly arriving transactions rtest is
expected to be rtest = ø(mt)× (q + 1) because of the mostly
sequential execution. Following this approach O|R|P|E can
balance commit rate and response time.

Transaction termination triggers adaptation, however, it is
important to note that the adaptation is not executed as part
of a transaction. This prevents the situation where a failed
adaptation would cause the transaction to abort, too.

RULE 3: Adaptation O → P with barrier
Let cr be the commit rate, δ the hysteresis, γ the target commit
rate, and β the response time barrier. Adaptation is according
to the following rules:

1) (O → P ): If O is the current class for an item x
and cr < γ − δ and rtest < β then P is the new
classification of x.

2) (P → O): If P is the current class for an item x and
cr is low (cr < γ − δ) and rtest > β
then O is the new classification of x.

3) (P → O): If P is the current class for an item x and
cr is high (cr > γ + δ)
then O is the new classification of x.

4) Reclassification during a transaction:
a) If a ta reads at the time when O is the current
class, but is about to write at a time when P is the
current class, ta is aborted (non-avoidable crash) to
maintain consistency.

70

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



b) If a ta reads at a time when the data item is in P
and writes when it is in O the success of the write
is guaranteed because the data is exclusively locked
since read-time.

Rule 3, 1) takes care that the commit rate is sufficiently
high as long as the response time is low. If the response time
exceeds the limit β and cr is (still) low then Rule 3, 2)
switches back to O. Rule 3, 3) ensures that when the commit
rate is high the default CC-mechanism of class O is chosen.
For all other situations the classification remains unchanged.

Rule 3, 4) is the same as before. It ensures that a reclassi-
fication can take place during ongoing transactions. Reclassi-
fication is now triggered by two parameters, the commit rate
cr and the mean response time mrt.

VII. PERFORMANCE UNDER ADAPTATION

The performance study uses the implementation of O|R|P|E
described in Section IV. Even if it is not a full database
implementation with all features (no backup and no recovery
functionality) it is sufficient for measuring the performance of
O|R|P|E under different situations. Since backup and recovery
are normally inactive there is no impact on the concurrency
mechanism. Therefore, the performance measurements would
also be valid for a fully featured database system. Clearly, if
backup or recovery are active, this would impair performance.
This would also apply to our prototype.

The study analyzes different workload profiles indicated by
a sequence of workloads with a total life-span of one second
each. The workload is held constant for one second (called
epoch). The arrival rate λ for the workload ranges from 6.66
tas/sec up to a heavy overload of over 300 tas/sec. These values
have been chosen, to show the behavior of the overloaded
system with frequent aborts and the behavior under moderate
workload with a stable commit rate.

During one epoch (1 sec) the commit rate is measured 10
times (sample rate sr = 10/sec). For simplicity, all transactions
read and write only one data item, i.e., the worst case is
simulated where an item in O suddenly becomes a bottleneck.
The time unit in all simulations is milliseconds if not stated
otherwise.

To obtain a preliminary understanding the first experiments
study short living transactions with no disconnect time during
three epochs. Afterwards long living transactions with a ran-
dom disconnect time dt between 100 and 1000 milliseconds
are analyzed over seven epochs. A disconnect time dt within
these bounds simulates typical situations.

Finally, barrier β is enabled for the next set of experiments.
The set up of long living transactions and seven epochs is
always the same except for the response time barrier β which
varies between 1000 and 15000 msec. We study the effects on
commit rate cr and response time rt. Each experiment was
executed three times.

A. Short Living Transactions with Three Epochs
Table V lists our test scenarios and summarizes the result.

The right column of the table refers to the corresponding
figures for a detailed analysis. The four tests use a different
arrival rate λ for each epoch (one second interval) as marked
in the Epochs column. The first two test scenarios do not

require a concurrency control adaptation to demonstrate the
base performance without adaptation. In Tests #3 and #4 the
workload is increased to trigger adaptation.

TABLE V. RESULTS FOR THREE EPOCHS WITH DIFFERENT
WORKLOAD, γ = 0.9, δ = 5% AND dt = 0.

Summary

Test# Epochs ø(cr) σ(cr) ø(rt) Figure
1 9,14,19 1,00 0,00 3,6 9 (a)
2 153,176,176 0,89 0,16 2 9 (b)
3 10,19,178 0,96 0,06 3,7 9 (c)
4 168,310,309 0,90 0,05 2824 9 (d)

The average response time ø(rt) is very high for test
scenario #4. This is the result of an increasing overload, which
quickly triggers adaptation at the beginning of the second
epoch (see Figure 9 (d)). This leads to a mostly sequential
execution of the transactions, which explains the very high
ø(rt) and the high ø(cr) at the same time. This increase of cr
is typical for scenarios after adaptation to P has taken place.
It continues until the upper bound γ + δ is reached. Then the
adaptation switches back to class O.

As the tests indicate later, it would be better to add an
additional criteria for the re-adaptation from P → O. If the
workload is still high (wait queue > 1) the data should remain
in P until the workload is low again before going back to O.
This measure could avoid multiple re-adaptations that produce
an unstable system behavior during a sudden transition of the
workload from heavy overload to low workload.

Figure 9 shows the commit rate cr, lower and upper bounds
(set by γ ± δ), and the accumulated number of aborts and
commits of the four test scenarios.

Test #1 has a low workload in all three epochs. The load
starts with 9 tas/sec, continues in epoch #2 with 14 tas/sec
and in the last epoch the workload rises to 19 tas/sec. The
transactions are executed as they arrive and no concurrent
interleaving transactions occur. As expected, no adaptation
takes place. From the corresponding Figure 9 (a) it can be
seen that the commit rate is 1 and no aborts occur. After 3.1
sec (31 time units) all transactions have successfully terminated
and the number of commits remain constant. Test #1 is the only
scenario without contention but surprisingly not the shortest rt.
The reason for this is that a commit is more expensive than an
abort for an optimistic CC. Compared to the other tests, Test
#1 has no aborts and a commit rate of 100%.

For Test #2 the load is high (≈ 160 tas/sec) and nearly
constant for three seconds. The load is heavy and contention
is present as can be seen from the number of aborts and
the decreasing commit rate. Figure 9 (b) shows that the
commit rate does not fall below the re-classification limit,
hence no adaptation occurs. The data remains in class O and
the optimistic CC has low overhead which results in a short
response-time of only 2 msec.

Part (c) of Figure 9 (Test #3) shows the results for an
increasing workload where finally in the third epoch the
adaptation is triggered. The workload starts with 10 − 19
tas/sec for two seconds and continues with 178 tas/sec for
the third epoch. The commit rate drops under the minimum
threshold (γ − δ) at the blue vertical line (2.2 sec after
start). The CC-mechanism immediately switches to locking
and the number of aborts decreases (the accumulated abort

71

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 9. Various short workloads to demonstrate Run-time Adaptation; (a) low 9− 19 tas/sec , (b) high ≈ 160 tas/sec, (c) increasing load 10− 180 tas/sec,
(d) increasing overload 170− 310 tas/sec, γ = 90%, δ = 5%, sr = 10/sec, and dt = 0.

graph makes a sharp bend to a lower gradient). During the
third epoch the workload is slightly higher than the system
can immediately execute. This can be seen from the slowly
growing gap between the accumulated transaction arrival (tas)
and the accumulated committed transactions (co). The average
response time ø(rt) stays low since during the first two seconds
the transactions were executed under O with short rt.

It is interesting to compare Tests #2 and #3. Test #2 has
a constant high workload, but not high enough to trigger the
adaptation, hence, the data remains in O. This is the reason
for the very short response time. Test #3 has initially a low
workload, but in Epoch #3 the workload just exceeds the
threshold and adaptation to P applies. This leads to a higher
rt even if the average workload is below the workload of Test
#2.

Also, a start with low load (Tests #1 and #3) reduces the
response-time because all transactions of the first epoch are
executed under optimistic CC with a short rt.

Test #4 produces a heavy and increasing overload which
triggers adaptation at the end of epoch 1. The gap between
committed and arrived transactions grows until the arrival ends
after 3 seconds. The adaptation to P allows to increase the
commit rate until after 10 sec all queued transactions have
terminated. The system needs 7 sec to process the queued
transactions after the arrival of transactions has stopped before
it becomes resilient. This explains the high mean response time
ø(rt).

It can be noted that run-time adaptation under heavy work-

load achieves an average commit rate ø(cr) of approximately
90%, which was preset by γ. The price for improving cr is
clearly a longer response-time rt which grows to 2.8 seconds
for continuous overload in test-case #4.

The commit rate cr is the basis for adaptation. When cr
drops below the lower bound γ− δ the adaptation is triggered
and cr increases again. The commit rate cr increases until
the upper bound γ + δ is reached which again triggers re-
classification.

Summarizing, for sudden increases and decreases of cr,
adaptation ensures a good response-time and a high commit
rate if transactions are short lived (dt = 0) and the system is
not permanently overloaded. If contention constantly remains
high, adaptation has severe effects on the response-time.

B. Long Living Transactions, Seven Epochs, and β disabled
Long living transactions are characterized by a certain time

interval between the read phase and the write phase where no
data access occurs. Some authors [17] [18] [19] [20] [21] [22]
call this interval ”think time” when a typical transaction reads
and displays data, then the user thinks about it, and finally
modifies or adds some values. We prefer to call this time
”disconnect time”, because Web based transactional systems
tend to logically disconnect from the database during this
period.

For the tests a disconnect time dt from 100 - 1000 msec
was randomly chosen. Each test consisted of seven epochs
with different workloads. Workload W1 starts with λ = 7−14

72

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



tas/sec and rises the workload in epochs 3− 7 from 80 tas/sec
continuously to 106 tas/sec. Workload W2 stresses the system
with an increasing overload from 66− 460 tas/sec.

The detailed workload profiles are as follows:

• W1=(7,14,80,87,93,100,106) and
• W2=(66,132,200,265,332,400,460).

Each number denotes the transactions arriving during the
respective Epoch of one second each. The tests were executed
with two target commit rates γ = 0.9 and 0.7. Table VI shows
a summary of the results.

TABLE VI. RESULTS OF SEVEN EPOCHS WITH WORKLOAD
W1= (7, 14, 80, 87, 93, 100, 106),

W2= (66, 132, 200, 265, 332, 400, 460), γ = (0.9, 0.7), RANDOM
DISCONNECT TIME dt = 100− 1000 MS, AND BARRIER β DISABLED.

Workload γ ø(rt) #Tas ø(creff) Figure

W1 90% 4561 487 82% 10
W2 90% 24104 1845 82% 11
W1 70% 927 483 57%
W2 70% 18957 1845 46% 12

Adaptation from O → P causes a systematic abort of
pending transactions originating in O. To take these aborts
into account the effective commit rate is defined as:

creff :=
# committed tas
# terminated tas

(5)

The effective commit rate creff measures -as the name suggests-
the performance of the system as shown to the user and the
previously defined commit rate cr is used to trigger adaptation,
because this indicator is more sensitive to the workload. The
effective commit rate creff reached our tests 82% for the first
and ≈ 50% for the second value of γ. Note that without
adaptation all experiments would have a commit rate between
1 and 3 percent only due to the long living nature of the
transactions and the higher conflict potential. This is also the
reason why the performance in this test scenario is lower than
in the previous subsection without disconnect time.

W1 has the shortest response-time due to the comparatively
low workload. In Epoch 3 with high workload (80 tas/sec)
quickly lets cr drop under the lower boundary γ − δ = 0.85
(see Figure 10). The adaptation to P is triggered and in the
following epochs cr rises again until the upper boundary is
reached. The data is reclassified in O after 11 epochs and
again the cr drops, but recovers faster as before, because the
arrival of new transactions stopped after 7 epochs and after 12
epochs all pending transaction have terminated.

The adaptation profile for workload W2 (permanent con-
tention) shown in Figure 11 is similar to W1. Due to the
heavy workload starting in Epoch 1, the adaptation is already
triggered at the end of Epoch 1. The permanent overload leads
to a significantly longer mean response-time due to locking and
queuing in P .

For workload W2 (permanent contention, second row), the
mean response-time is significantly longer due to the queuing
effect under P . Taking the same workload with a target commit
rate of γ = 70% the adaptation behavior shows an instability
(Figure 12). After adaptation to P , the upper boundary for
cr is reached very quickly during the third epoch (time =
27 units = 2.7 sec) and the data is reclassified again in O

(Rule 2, 2)) with the result that the commit rate cr drops
to 40%. After this decrease, the system recovers slowly and
reaches the upper boundary in epoch 14 again. At this point
the arrival of transaction has already stopped but the remaining
(queued) transactions cause another jitter for cr.

The reason for this oscillating effect is that Rule 2, 2)
does not look at the number of queued transactions it only
takes criteria cr > γ + δ to re-classify the data in O again.
But in this situation all pending transactions except one will
fail due to concurrency violation. This lets the commit rate cr
drop as low as 40%.

It takes now longer for the adaptation mechanism to reach
the upper boundary because many transactions have already
aborted and accordingly more transaction have to commit to
rise cr. The upper boundary is reached after 14 sec when the
arrival of transaction has already stopped.

Summarizing, despite a sudden increase in contention,
adaptation keeps the commit rate stable even if transactions
are long living. If contention remains high, the response-
time is getting longer since P queues transactions. With
a low γ the mechanism tends to become unstable and an
oscillating behavior can be noticed. Having γ close to 100% is
recommended since adaptation is triggered earlier. To prevent
an excessive increase in response-time, β has to be enabled as
discussed in the next section.

C. Long Living Transactions, Seven Epochs, and β enabled
The following experiments study the effects on the work-

loads of the previous subsection if barrier β is enabled and γ
is high (=90%) as recommended before. Table VII summarizes
the results and shows barrier β, mean creff, and the mean
response-time ø(rt) for workloads W1 and W2. It further links
to Figures 14 and 15 showing sample graphs of one run of an
experiment at a time.

TABLE VII. RESULTS OF SEVEN EPOCHS WITH WORKLOAD
W1= (7, 14, 80, 87, 93, 100, 106),

W2= (66, 132, 200, 265, 332, 400, 460), γ = (0.9), RANDOM
DISCONNECT TIME dt = 100− 1000 MS, AND BARRIER β ENABLED.

Workload β ø(rt) ø(creff) Figure

W1 1000 187 17% Figure 14 (a)
W1 3000 343 18% Figure 14 (b)
W1 5000 355 29% –
W1 8000 1960 36% Figure 14 (c)
W1 15000 3758 39% –
W2 1000 136 3% Figure 15 (a)
W2 3000 248 16% Figure 15 (b)
W2 5000 1219 18% –
W2 8000 1172 25% Figure 15 (c)
W2 15000 2625 31% –

As Table VII shows, each workload was executed with
different values (1000, 3000, 5000, 8000, 15000) for β. All
experiments show that the mean response-time is bounded by
β and the effect of a very long response-time of 19 or 24
seconds (see Table VI of the previous section’s experiments)
with workload W2 no longer occurs. The table also shows
that the value of β does not allow to infer the actual mean
response-time. However, it shows that for an increasing β, the
response-time and the commit rate increase and β correlates
with these values.

Barrier β does not directly match with the maximum
response-time as given, for example, by Service Level Agree-
ments (SLA). The response time depends on the workload

73

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 10. Run-time adaptation for W1 = (7, 14, 80, 87, 93, 100, 106), γ = 0.9, random disconnect time dt = 100− 1000 ms, and barrier β disabled.

Figure 11. Run-time adaptation for W2 = (66, 132, 200, 265, 332, 400, 460), γ = 0.9, random disconnect time dt = 100− 1000 ms, and barrier β disabled.

and is directly influenced by the transactions’ arrival rate. The
distribution of the response time depends additionally on the
concurrency model. For a queuing system like the concurrency
model of class P a Poisson arrival process is assumed. The
response time rt is calculated as wait time wt in the queue plus
transaction processing pt time. Even in the simplest queuing
system, the P/P/1, with Poisson arrival and one service process,
only statements about the mean response time ø(rt) can be
made. To estimate the expected response time rtest, the arrival
and service rate is necessary. But in the present case both rates
are heavily changing. If the arrival rate would only change due
to statistical variation no adaptation would be necessary. But

if a systematic change happens, e.g., because the data access
type changes, the original class assignment is not any more
suitable. Adaptation changes the service time and hence the
service rate as well. The service time st in the case of P is
the time between read and write. The only indicators for the
estimated response time are the wait queue length |Qw| and
the past average ø(st). This leads to Formula (6):

rtest := ø(st)× (|Qw|+ 1) (6)

The calculation takes into account the transactions that are
already queued for execution and the average time to process

74

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 12. Run-time adaptation for W2 = (66, 132, 200, 265, 332, 400, 460), γ = 0.7, random disconnect time dt = 100− 1000 ms, and barrier β disabled.

a transaction. The processing time includes a possible waiting
time due to locking.

The SLA defines a limit for the response time rt and
in the case of an SLA violation, a penalty has to be paid.
There is a trade off between loosing transactions or having
excessive response time. Assuming an average price of r for
each lost transaction and a penalty of p for every transaction
exceeding the response time limit β the trade-off is given at the
intersection of two cost functions that depend on the commit
rate cr and the number of transactions tas:

ca := r × (1− cr)× tas (7)
cp := p× tasrt>β(cr)× tas (8)

If the functions are normalized with the number of trans-
actions tas then Figure 13 shows the principal graph for this
trade off. The break even point for this normalized example
is given at commit rate cr = 0.72. In practice, the database
system will measure the actual and number of aborts and
the application should monitor these values and calculate the
break even based on the costs for SLA violation and failed
transactions.

In the case of a fast changing workload it is difficult to
estimate the workload profile. If the calculation is based on
the past workload, the system may not react fast enough to
sudden changes of the arrival rate.

The situation is more promising if a workload profile is
known in advance. This is often the case if employees have
clear routines during their workday. Assume, for example,
the following tasks: order processing in the morning, stock
administration after lunch, and master data management from
5 pm to 6 pm. In this scenario data access to product data
in the morning and afternoon will be classified O while the
product data will be re-classified to P from 5 - 6 pm.

Figures 14 and 15 illustrate the run-time adaptation profile
if β is set. The time of the estimated response time rtest is

Figure 13. Example trade off between aborts and response time in terms of
costs.

shown on the right vertical axis. The left ordinate shows the
commit rate and the target boundaries. The horizontal axis
shows the transactional time which is given by a sequence of
time ordered events. The time interval from one event to the
next is not constant and hence the time scale is not linear.

In Figure 14 (a) the commit rate cr is 1 during the first two
seconds when the workload is low. When the overload begins
after two seconds the commit rate cr drops quickly below the
lower bound γ − δ = 0.85 and adaptation to P takes place.
The effective commit rate creff (green line in Figures 14 and
15) always stays below cr because cr does not count aborts
due to the adaptation O → P , but creff does. After adaptation
to P the system stabilizes the commit rate cr as shown by the
red graph. This appears in all test runs and can be seen more

75

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 14. Run-time adaptation profile for target commit rate γ = 0.9: (a) workload W1 with β = 1000, (b) Workload W1 with β = 3000, and (c) Workload
W1 with β = 8000.

76

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 15. Run-time adaptation profile for target commit rate γ = 0.9: (a) workload W2 with β = 1000, (b) Workload W2 with β = 3000, and (c) Workload
W2 with β = 8000.

77

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



clearly when we have a higher response time limit β as in part
(b) and (c) of Figure 14.

In the case of β = 8000 (part (c)) the commit rate increases
until the estimated response time exceeds the preset limit β.
If rtest > β the re-adaptation to O is triggered by Rule 3, 2)
because cr is still below the lower bound. The result is that
pending transactions abort and in the following the commit
rate decreases. Run time estimation works for P only because
a wait queue Qw is needed for Formula (6). If there is no wait
queue then the number for rtest is set to 0. Hence, as soon as
rtest exceeds β the systems switches to O and the rtest drops
to 0, which explains the saw tooth figure of rtest.

A low limit for the response time as in Figure 14 (a) causes
a low cr and many transactions run in O, which can only be
observed indirectly by the low rtest. If β increases (Figure 14
(b) and (c)), the number of aborts reduces because the system
remains longer in P , which causes more waiting transactions
which in turn cause more and higher peaks in the rtest.

For workload W2, Figures 15 (a) - (c) illustrate the
workload profiles for β = 1000, β = 3000, and β = 8000.
The graph of rtest for β = 1000 shows regularly appearing
peaks of longer duration caused by the permanent contention.
This effect nearly disappears for larger values of β (≥ 8000)
because after adaptation to P much more transactions are
allowed to queue up and commit later. This is indicated by
higher and shorter rtest peaks, which move to the beginning
of the test run. As a result the creff is slightly higher if β is
high.

When the workload ends after 7 seconds and the rtest drops
below β Rule 3, 1) applies and the concurrency class switches
to P which lets cr and creff rises until all transactions have
terminated.

Part (c) of Figures 14 and 15 show an effect of instabil-
ity. This happens after the arrival of transactions has ended
and before all transactions have terminated. The system has
switched to P because rtest was below the limit β and now
the high number of remaining transactions in the queue leads
to rtest> β = 8000 and the re-adaptation to O lets rtest drop
below β, which again triggers Rule 3, 1) and forces the data to
class P . The oscillation between P and O continues until most
transactions have terminated and the queue is short enough to
keep rtest below the limit β.

In part (a) and (b) this effect shows up in a moderate form
during the workload but not after its termination because the
lower β does not allow many transactions to be queued and
delayed for a longer time.

Summarizing, the usage of β keeps the mean response-time
bounded, but compared to having β =∞, a higher abort rate
is the price that has to be paid. The exact determination of β
demands a continuous adjustment and has to be carried out by
applications. In particular in the case of a mixed workload a
greater β causes short peaks in the rtest since more transactions
are allowed to commit in P . A lower β causes longer peaks
since many transactions wait and their abort is not yet known.
They continue in O and abort at write-time at the earliest.

Generally, it is important to know that O|R|P|E classifies
hot spot items (HSIs) in classes R and E, if possible. This
is the better choice if the semantic of the data allows this
classification. Adaptation is only provided to handle a sudden,
but impermanent increase of the contention for items classified

in default class O. Permanent contention is likely to cause
any system to become overloaded. O|R|P|E is at least able to
protect itself by trading off response-time and commit rate.

VIII. RELATED WORK

This paper extends the findings of [1] and is based on the
Ph.D. thesis [2] of the main author, which introduces O|R|P|E.
A vast amount of work [5] [11] has been carried out in the
field of transaction management and CC, but so far no attempt
was undertaken to use a combination of CC mechanisms
according to the data usage (semantics). Most authors use the
semantics of a transaction to divide it into sub-transactions,
thus achieving a finer granularity that hopefully exhibit less
conflicts. Some authors [23] use the semantics of the data to
build a compatibility set while others try to reduce conflicts
using multiversions [24] [25]. The reconciliation mechanism
was introduced in [8] and is an optimistic variant of “The
escrow transactional method” [9]. Escrow relies on guaranties
given to the transaction before the commit time, which is only
possible for a certain class of transactions, e.g. transactions
with commutative operations. Optimistic concurrency control
was introduced by [26], which did not gain much consideration
in practice until SI, introduced by [27], has been implemented
in an optimistic way. SI in general gained much attention
through [6] [7], and also in practice [28]. Its strength lies in
applications that have to deal with many concurrent queries
but has only a moderate rate of updating transactions. O|R|P|E,
however, is designed for high performance updating transac-
tions processing, especially with data hot spots.

IX. CONCLUSION AND OUTLOOK

The paper presented a multimodel concurrency control
mechanism that breaks with the one concurrency mechanism
fits all needs. The concurrency mechanism is chosen according
to the access semantic of the data. Four concurrency control
classes are defined and rules guide the developer with the
manual classification. When the access semantic is unknown
the default class O with an optimistic snapshot isolation
mechanism is chosen. For those data the model is extended to
dynamically change the class assignment if the performance
suggests a pessimistic mechanism P . The simulations with
the prototype demonstrated that the mechanism is working
and tests with the TPC-C++ benchmark resulted in a 3 to
4 times superior performance. The adaptation mechanism
provides a response time guaranty to comply with Service
Level Agreements for the price of a lower commit rate.

The tests revealed an instability in the form of an oscil-
lating adaptation. This occurs only under an abrupt change
of the workload from overload to inactive system. However,
a refinement of the adaptation rule could possibly avoid the
oscillation when the re-classification from P → O is executed.
This could be achieved if the re-classification is only triggered
when the wait queue is small or empty.

A dynamic algorithm for an automatic classification of
data would be desirable and would relief the developer from
manual classification. The same mechanism could then be used
to dynamically adapt the data according to a changed usage
profile.

Also, comprehensive performance tests that consider repli-
cation, online backup and a study of run-time adaptation under
real-life conditions is still missing.

78

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



REFERENCES
[1] T. Lessner, F. Laux, and T. M. Connolly, “O|R|P|E - a data semantics

driven concurrency control mechanism,” in DBKDA 2015, The Seventh
International Conference on Advances in Databases, Knowledge, and
Data Applications, 2015, pp. 147 – 152.

[2] T. Lessner, “O|R|P|E - a high performance semantic transaction model
for disconnected systems,” Ph.D. dissertation, University of the West of
Scotland, 2014.

[3] TPC BENCHMARK C, Standard Specification, Revision 5.11, Transac-
tion Processing Performance Council Std., February 2010.

[4] A. Thomasian, “Concurrency control: methods, performance, and anal-
ysis,” ACM Comput. Surv., vol. 30, no. 1, pp. 70–119, Mar. 1998.

[5] J. Gray and A. Reuter, Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann, 1993.

[6] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha, “Making
snapshot isolation serializable,” ACM Trans. Database Syst., vol. 30,
no. 2, pp. 492–528, Jun. 2005.

[7] M. J. Cahill, U. Röhm, and A. D. Fekete, “Serializable isolation for
snapshot databases,” ACM Trans. Database Syst., vol. 34, no. 4, pp.
20:1–20:42, Dec. 2009.

[8] F. Laux and T. Lessner, “Transaction processing in mobile computing
using semantic properties,” in Proceedings of the 2009 First Interna-
tional Conference on Advances in Databases, Knowledge, and Data
Applications, ser. DBKDA ’09. IEEE Computer Society, 2009, pp.
87–94.

[9] P. E. O’Neil, “The escrow transactional method,” ACM Transactions
On Database Systems, vol. 11, pp. 405–430, December 1986.

[10] M. Kifer, A. Bernstein, and P. M. Lewis, Database Systems: An Appli-
cation Oriented Approach, Complete Version (2nd Edition). Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2005.

[11] G. Weikum and G. Vossen, Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency Control and Recovery.
Morgan Kaufmann, 2002.

[12] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database systems - the
complete book (2. ed.). Pearson Education, 2009.

[13] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan, Database
System Concepts (sixth edition). McGraw-Hill, 2011.

[14] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann, “Consistency
rationing in the cloud: pay only when it matters,” Proc. VLDB
Endow., vol. 2, pp. 253–264, August 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1687627.1687657

[15] D. Gómez Ferro and M. Yabandeh, “A critique of snapshot isolation,”
in Proceedings of the 7th ACM european conference on Computer
Systems, ser. EuroSys ’12. New York, NY, USA: ACM, 2012, pp. 155–
168. [Online]. Available: http://doi.acm.org/10.1145/2168836.2168853

[16] R. Osman and W. J. Knottenbelt, “Database system performance
evaluation models: A survey,” Performance Evaluation, vol. 69, no. 10,
pp. 471 – 493, 2012. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0166531612000442

[17] F. Laux and M. Laiho, “Sql access patterns for optimistic concurrency
control,” in Proceedings of the 2009 Computation World: Future
Computing, Service Computation, Cognitive, Adaptive, Content,
Patterns, ser. COMPUTATIONWORLD ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 254–258. [Online]. Available:
http://dx.doi.org/10.1109/ComputationWorld.2009.63

[18] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari, “Efficient
optimistic concurrency control using loosely synchronized clocks,” in
Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data, San Jose, California, May 22-25, 1995., M. J.
Carey and D. A. Schneider, Eds. ACM Press, 1995, pp. 23–34.
[Online]. Available: http://doi.acm.org/10.1145/223784.223787

[19] B. Ding, L. Kot, A. J. Demers, and J. Gehrke, “Centiman: elastic,
high performance optimistic concurrency control by watermarking,”
in Proceedings of the Sixth ACM Symposium on Cloud Computing,
SoCC 2015, Kohala Coast, Hawaii, USA, August 27-29, 2015,
S. Ghandeharizadeh, S. Barahmand, M. Balazinska, and M. J.
Freedman, Eds. ACM, 2015, pp. 262–275. [Online]. Available:
http://doi.acm.org/10.1145/2806777.2806837

[20] J. Huang, J. A. Stankovic, K. Ramamritham, and D. F. Towsley,
“Experimental evaluation of real-time optimistic concurrency control
schemes,” in 17th International Conference on Very Large Data Bases,
September 3-6, 1991, Barcelona, Catalonia, Spain, Proceedings.,
G. M. Lohman, A. Sernadas, and R. Camps, Eds. Morgan Kaufmann,
1991, pp. 35–46. [Online]. Available: http://www.vldb.org/conf/1991/
P035.PDF

[21] R. Agrawal, M. J. Carey, and M. Livny, “Concurrency control
performance modeling: Alternatives and implications,” ACM Trans.
Database Syst., vol. 12, no. 4, pp. 609–654, 1987. [Online]. Available:
http://doi.acm.org/10.1145/32204.32220

[22] F. Laux, M. Laiho, and T. Lessner, “Implementing row version
verification for persistence middleware using sql access patterns,”
International Journal on Advances in Software, issn 1942-2628,
vol. 3, no. 3 & 4, pp. 407 – 423, 2010. [Online]. Available:
http://www.iariajournals.org/software/

[23] H. Garcia-Molina, “Using semantic knowledge for transaction process-
ing in a distributed database,” ACM Trans. Database Syst., vol. 8, no. 2,
pp. 186–213, Jun. 1983.

[24] S. H. Phatak and B. Nath, “Transaction-centric reconciliation in dis-
connected client-server databases,” Mob. Netw. Appl., vol. 9, no. 5, pp.
459–471, 2004.

[25] P. Graham and K. Barker, “Effective optimistic concurrency control in
multiversion object bases,” in ISOOMS ’94: Proceedings of the Inter-
national Symposium on Object-Oriented Methodologies and Systems,
ser. Lecture Notes in Computer Science, E. Bertino and S. D. Urban,
Eds., vol. 858. London, UK: Springer-Verlag, 1994, pp. 313–328.

[26] H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” ACM Trans. Database Syst., vol. 6, no. 2, pp. 213–226, Jun.
1981.

[27] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil,
“A critique of ansi sql isolation levels,” SIGMOD Rec., vol. 24, no. 2,
pp. 1–10, May 1995.

[28] D. R. K. Ports and K. Grittner, “Serializable snapshot isolation in
postgresql,” Proc. VLDB Endow., vol. 5, no. 12, pp. 1850–1861, Aug.
2012.

79

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Context-aware Mobile Security
Experimental Validation of Reliable and Secure Context Detection

Christian Jung, Denis Feth
Fraunhofer IESE

Kaiserslautern, Germany
Email: christian.jung@iese.fraunhofer.de, denis.feth@iese.fraunhofer.de

Abstract—The exploitation of context-awareness, especially in
mobile devices bears a huge potential. For example, mobile
workers benefit from systems that adapt security settings or
user interfaces to the current situation. However, the correct
detection of contexts strongly relies on raw data from various
context information sources that might be neither trustworthy
nor authoritative. In this work, we present an extension to a
context model that explicitly copes with trustworthiness of context
information, i.e., its vulnerability to forgery, as well as their
conduciveness denoting the source’s decisive impact on context
detection. Context descriptions based on this model can, for
example, be used in security-critical environments to enforce
security policies. We show the applicability of our approach in
an industrial setting. In addition, we present the results of our
experiments with respect to precision and recall of the context
detection.

Keywords–Context-Awareness; Context-Modeling; Security

I. INTRODUCTION

Context-awareness of software applications is still in its
infancy [1], [2], although it has been researched since the
beginning of the nineties [3]. Recently, the rise of mobile
technologies introduced a new class of devices with vari-
ous sensors providing context information. For such devices,
context-awareness can be particularly useful to adapt user
interfaces or security measures to the current situation, in order
to relieve the user. For example, context-awareness enables
more flexible control by limiting the applicability of security
measures only to situations where they are indispensable (e.g.,
display timeout for mobile devices is set to fifteen minutes
in the office, thirty minutes at home, and to two minutes
elsewhere).

An important building block for enabling context-aware
security is context modeling. The user’s contexts (i.e., her
current activity and device situation) have to be determined by
aggregating low-level contextual information, such as current
location, battery consumption, or connectivity of her mobile
device. However, in order to provide reliable decision support,
context descriptions have to be trustworthy, reliable, and accu-
rate, especially to support security decisions. Thus, the context
evaluation must consider information about how easy it is to
counterfeit contextual information.

To this end, a methodology for eliciting and modeling
contextual information is needed that yields reusable and
comparable context descriptions. In particular, this method
must support the identification of suitable context information
sources and the aggregation of low-level pieces of context
information into an overall context description.

Contribution. In [1], we present our context model and
context descriptions that explicitly include a relevance and a
security rating for each context information source. The two
quality attributes are used to improve the recognition accuracy,
which is an open challenge in activity recognition [4], [5].
These ratings enable us to provide quality statements for the
accuracy of context detections. Security decisions benefit from
the quality statements within a context description, aggregated
during run-time. We extend [1] by showing the applicability of
our approach in an industrial setting. In addition, we present
the results of our experiments with respect to precision and
recall of the context detection.

Paper Structure. The paper is structured as follows: Our
context modeling approach is presented in Section II, followed
by Section III addressing uncertainty of context information
sources. In Section IV, we apply our approach to an industrial
scenario from a large German company. We present our
evaluation with respect to the quality of our context detection
in Section V. Section VI addresses related work in the area of
context definition and context information modeling. Finally,
Section VII provides a summary and an outlook on future
work.

II. CONTEXT MODEL

Our work uses a combination of existing definitions and
descriptions of context, which are further described in our
related work section (Section VI). We partition context sources
into virtual and physical information sources, depending on the
origin of the information, and we logically link them (similar
to Hofer et al. [6]). As this work focuses on mobile devices
and their users, activities of the user are an important aspect,
as well as the operational state of the device. Thus, we define
context as:

Context is the state of all virtual and physical infor-
mation sources that characterize the activity of the
user and the operational state of the mobile device
in a specific situation at a certain time.

Figure 1 presents a macroscopic view of the core parts of
our model and their interrelations. The model mainly describes
relations between the user, the mobile device, and the context.
The context is broken up in a user context (user-centric
context) and a device context (mobile device-centric context).
We assume that a user can have one or more mobile devices
and that a user has always her own mobile device, which she
will not share with other users.

A user can perform several activities in a specific situation
at a certain time. The user context depends on the activity and

80

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 1. Context Model (Macroscopic Viewpoint).

the current situation of the user. In an ideal world, the user con-
text would include all information about the activities and the
situation. Hence, the information in the model world would be
congruent with the information in the real world. However, due
to technical constraints of the context information retrieval, the
detection capabilities (e.g., environment sensors) are limited. In
addition, the boundaries between certain activities are fluid and
often cannot be determined by context information sources.
Accordingly, the differentiation between activity, situation, and
user context will persist. Hence, the relations between activity,
situation, and user context depends on the granularity of the
modeled user contexts. Our context model has to cope with
such uncertainties.

A mobile device has an operational state and acts within a
specific situation. Hence, the situation of the device includes
internal states of the device and attributes of the environment.
The overall device context considers the operational state,
which may be influenced by the current situation. Similar to
the relation between activity, situation, and user context, the
device context would always match the current situation and
operational state in an ideal world. However, due to technical
limitations, several distinct device situations lead to the same
device context. Moreover, the operational state may relate to
the activity of the user. This relation must not necessarily hold,
as the user can also perform device-independent activities.
However, for automatic context detection, we can only use
the operational state. Finally, the device context also depends
on the user context. Again, in an ideal world, the device
context would include all information about the situation and
the operational state.

It is apparent that the environment and internal states of the
device can only be sensed by context information sources that
are technically available. Thus, device context and user context
must be detectable by existing context information sources,
but are only approximations of the real world, neglecting
unmeasurable information. In contrast, activity, situation and
operational state strive to represent the world as it really is.

The core part of the context model is the context itself. The
goal is to model the user and device context as an abstraction
and aggregation of pieces of information obtained from various
context information sources.

A. Context Description Structure
A context description can be a logical or arithmetic ex-

pression. The context description aggregates raw sensor data as
evaluators and combines them to a tree structure. For example,
we can specify the context “LowBattery” as shown in Figure 2.

Figure 2. Example Context Tree “LowBattery”

To model contexts, Expressions can be combined to form
arbitrarily complex descriptions (see Figure 3). Expressions
can be combined and nested in a way that the respective
overall result is a Boolean value with additional ratings for
security and relevance (see Section III). GenericExpression
forms the basis for all other types of Expressions (arithmetic,
comparison, and logic) and a ConstantExpression holding a
constant value. The Expression interface has a method for
evaluating itself and a method for retrieving the return type.
For type safety, it is important to have these type assignments,
as a context description, at least in theory, could combine any
expression type. However, there is a check whether the relation
is allowed. For instance, a comparison between a Boolean type
and a list of values would be rejected.

A specialization of the GenericExpression is the BinaryEx-
pression, which allows exactly two subordinated expressions.
ComparisonExpressions, for instance, take exactly two sub-
expressions for their evaluation.

ArithmeticExpressions are expressions for addition, sub-
traction, multiplication and division. For evaluating the expres-
sion, all assigned sub-expressions are joined by the appropriate
operation. In general, ArithmeticExpressions can contain an
unlimited number of nested expressions.

Similar to ArithmeticExpression, a LogicExpression can
take an unlimited number of nested expressions for evaluation.
For the moment, and, or, and not with their usual semantics

Figure 3. Excerpt of Expression Model.

81

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



have been implemented. Future extensions could include fuzzy
logic or other evaluation capabilities.

The Evaluator can express various behaviors, for exam-
ple, aggregation or temporal changes of information. Every
functionality that cannot be expressed by arithmetic or logic
expressions has to be provided by evaluators. Each evaluator
implementation encapsulates a specific operation of Sensor
data, which means, it is one possible abstraction of the
operative behavior of the information source and performs
a first aggregation of raw values from the measurement (if
needed). Evaluators can be included as sub-expressions at
arbitrary locations within the presented structure.

Sensors provide an abstract representation for context infor-
mation sources, which usually deliver low-level information,
such as the current coordinates of the Global Positioning Sys-
tem (GPS) or acceleration values. In general, we distinguish
between push and pull behavior, based on the characteristics
of the underlying information source. Some sensors can be
configured to provide (i.e., push behavior) new information as
soon as new data is available (e.g., acceleration or location
sensors). Such push sensors usually contain parameters to
configure conditions when data updates will be delivered. For
example, the location sensor will only deliver new information
if the mobile device location changed by at least 50 meters.
Other sensor information has to be queried regularly (i.e., pull
behavior) to obtain current information (e.g., mobile device
settings, calendar). Pull sensors contain a scheduleInterval
parameter specifying the frequency of data updates. For ex-
ample, wireless network information can be requested every
five minutes.

Our preferred format for a context description is XML
(see Figure 4). In general, a configuration can contain several
expressions of types arithmetic, comparison, or logic (future
extensions could extend the list of available expression types).

The specification in Figure 4 includes two different eval-
uators: a GenericLocation evaluator for checking a specific
location and a WiFiIsSSIDInRange-Evaluator to scan for spe-
cific wireless Service Set Identifiers (SSID). The location
evaluator consumes the following parameters: location values
(i.e., latitude and longitude), distance (specifying the data
delivery and distance accuracy), provider (location information
from network and/or GPS) and maxAge (allowed data age
for evaluation). The wireless evaluator uses the parameter
ssid to scan for this specific wireless SSID. In addition, the
parameter keepEnabled prevents the user from disabling the
wireless network sensing. The listing also shows an example
of arithmetic expressions and comparisons. Evaluators may
contain a relevance and a security rating, which are described
next.

III. DEALING WITH UNCERTAINTY

The basic question when building a context-aware system
is: “To which extent is the context detection reliable?” We dis-
tinguish three major uncertainties to deal with: trustworthiness,
relevance, and accuracy.

Accuracy information is typically already provided by
sensors used in mobile systems. Therefore, we focus on
other two uncertainties and introduce two quality metrics: a
security rating, denoting the difficulty for an adversary to
counterfeit the measurement of the context information source

<context id="example-context">
<logic:and>

<logic:or>
<evaluator name="GenericLocation" relevance="5">
<param name="latitude" value="49.431479"/>
<param name="longitude" value="7.7520288"/>
<param name="distance" value="15.0"/>
<param name="provider" value="0"/>
<param name="maxAge" value="3600"/>
<param name="resultType" value="boolean"/>

</evaluator>
<evaluator name="WiFiIsSSIDInRange" relevance="3">

<param name="maxAge" value="60"/>
<param name="keepEnabled" value="true"/>
<param name="scheduleInterval" value="15"/>
<param name="ssid" value="wlan-home"/>
<param name="resultType" value="boolean"/>
</evaluator>

</logic:or>
<!-- Arithmetic demo: 2*2*4 >= 10+(36/6) -->
<comparison:greaterEqual>
<arithmetic:multiply>
<constant type="double" value="2"/>
<constant type="double" value="2"/>
<constant type="double" value="4"/>

</arithmetic:multiply>
<arithmetic:add>
<constant type="double" value="10"/>
<arithmetic:divide>
<constant type="double" value="36"/>
<constant type="double" value="6"/>

</arithmetic:divide>
</arithmetic:add>

</comparison:greaterEqual>
</logic:and>

</context>

Figure 4. Evaluator Example.

and a relevance rating, expressing the value of the context
information source for the identification of the overall context.

For both quality metrics, we have to find suitable thresholds
and combine them to trust the context detection in the given
usage scenario. For example, a context based on low ranked
context information sources only, can easily be counterfeited
and might not be trustworthy. Similar, some context informa-
tion sources are more supportive to detect the current context
than others. For example, the wireless network information is
well suited to detect the context “home”, while it is rather bad
for detecting activities such as “running”.

A. Security Rating
Every evaluator has a security rating assigned to it. The

rating takes the values from one (very low) to five (very high).
Basically, the security rating denotes the trustworthiness of
the context information, i.e., its vulnerability to forgery. The
security rating within our work is defined as follows:

The Security Rating is a global indicator expressing
difficulty and challenge for an adversary to counter-
feit a context information source.

The following aspects have to be considered, when rating
an evaluator. A security expert or group of experts have to
perform this task based on an attacker model when an evaluator
is developed. The experts have to assess the necessary precon-
ditions for successfully counterfeiting an information source:

(i) insider knowledge or configuration details
(ii) special expertise or knowledge to perform the operation

(iii) special software or application

82

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



(iv) special hardware or equipment
(v) influence on information source (backend or environment

change)

Based on these prerequisites, the metric to determine the
rating for every evaluator is defined as follows:

• 1 (very low): 0 out of 5 prerequisites needed
It is easy to counterfeit the measured values (e.g., just
change or enter the value). An example for such a
rating is the time of the mobile device or calendar
entries of the user.

• 2 (low): 1 out of 5, but not prerequisite (iv)
The manipulation of the sensed value can be done
with little effort. An example is to simulate a high
light intensity with a torch or to shake the device to
forge acceleration values.

• 3 (medium): 2 out of 5 OR 1 out of {(iii), (iv), (v)}
Some preparations are required, but they are not really
challenging. An example would be faking the SSID or
BSSID of a WiFi hotspot, which can directly be done
by using a second smart mobile device.

• 4 (high): 3 out of 5 OR 2 out of {(iii), (iv), (v)}
The required measures are challenging for an adver-
sary, and without special knowledge, it would not
be possible to perform the attack. An example is to
simulate that the device is connected to an encrypted
(mobile) network.

• 5 (very high): 4 out of 5 OR 3 out of {(iii), (iv), (v)}
Forging of context information sources requires deep
knowledge about the internal configuration and signif-
icant expertise; moreover special equipment is needed,
such as software and hardware. An example is the GPS
sensor or cell phone tower information, for which an
attacker would need special hardware and knowledge
how to use it.

The security rating has to be defined once, and it has a
global scope for every instantiated context tree. However, it is
possible to manually change the rating by explicitly setting it
in the evaluator tag of the context description. For example,
the security rating of a virtual context information source can
vary according to its trustworthiness. A read-only enterprise
calendar will be much harder to counterfeit than the personal
calendar maintained by the user itself. Hence, we can manually
assign a higher security rating to the evaluator using the read-
only enterprise calendar.

We rated all our evaluators by asking two security experts
from our institute to assess the five preconditions. Figure 5
presents possible answers for their assessment.

Figure 5. Possible Answers for Assessing Security Rating Preconditions

In addition, the experts had to write a brief statement
for every precondition for being able to reconstruct their
assessment and for being used in later discussions with the
other security expert. Figure 6 shows the filled table for
the Bluetooth-Evaluator by one security expert. The security
expert rates the BluetoothEvaluator with a security rating of
4 (high), as 3 out of 5 preconditions are necessary for a
successful manipulation.

Figure 6. Security Rating Assessment for BluetoothEvaluator

Finally, we collected the information from the two security
experts and determined a security rating for every evaluator
based on their assessment. For instance, evaluators using the
accelerometer values have been rated with very low, as a device
user can easily manipulate these values. Contrary, evaluators
using Android’s location services are rated as very high, as
the location services are using a multitude of location sources
(i.e., GPS, Cell-ID, Wi-Fi) [7], which are hard to manipulate.

B. Relevance Rating
For each context, we assign a second rating to every

evaluator, expressing the contribution of the information source
to the overall context identification. Similar to the security
rating, it accepts values from one (very low) to five (very high).
The rating represents whether the provided information tends
to be decisive or has a less authoritative impact on context
detection. The relevance rating is defined as follows:

The Relevance Rating is a local indicator expressing
the correlation of a context information source with
an activity, or situation.

The relevance rating depends on the modeled context, but
also on the quality of a sensor and cannot be specified by
just following generic guidelines. Thus, the retrieval of the
relevance rating is part of an automatic derivation process,
which has been described in [8]. This process yields context
descriptions that can be used in operative environments.

83

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 7. Detailed Process for Determining Context Descriptions

The entire process comprises three phases, depicted in
Figure 7:
• Collection & Preparation,
• Analysis & Representation, and
• Correlation & Creation.
1) Collection & Preparation: In the first phase, we man-

ually collect user activities/device situations and use mobile
devices to automatically collect related contextual information
(sensor data). The two data streams are fed into the process
for further processing. We are using discrete time steps in
the subsequent phase and therefore, we have to discretize the
data collected. We have different strategies to transform the
information, which depend on the nature of the given data.
In addition, we consolidate the reported user activities and
situations regarding their semantics (as users may use different
verbalisms for reporting their activities and situations).

2) Analysis & Representation: The second phase has two
objectives. First, the discretized context data can be analyzed
to derive new information from it. For example, changes in
battery level over time can be derived from absolute battery
levels at specific points in time. Second, we create graphical
representations of the data sets. For example, geolocation
over time can be visualized via heatmaps. The graphical
representations is used to allow human experts to validate
context descriptions in the end.

3) Correlation & Creation: In the third phase, context
descriptions are derived. Towards this end, the normalized
activity journals are first correlated with contextual data. We
use different statistical methods (see [8]) to correlate sensor
data with activities/situations and use the results (e.g., a cor-
relation matrix) to determine the relevance of a sensor for the
characterization of an activity or situation. Derivation rules are
then applied, producing context descriptions that correspond to
user activities.

The evaluation result of a context is obtained by evaluat-
ing the tree structure of the context description. The logical
operators have their standard meaning.

The calculation of the relevance and security rating for a
context is as follows:
• AND/OR-relation: All fulfilled quality attributes of

the elements in an AND/OR group affect the overall

relevance or security rating. They are summed up to
the denominator. The quality attributes of all evalu-
ators that are actually fulfilled in the system under
evaluation are summed up to the numerator.

• NOT-relation: The quality attribute of the element is
propagated to the parent node, if the subordinated
expression is false.

The quality attributes ensure that the fulfillment of those
evaluators with highest relevance or security rating has the
strongest impact on the overall result. For example, let us
assume a context description c with three evaluators e1, e2, e3
linked with a logical or: c = e1 ∨ e2 ∨ e3. Assume further
that evaluator e1(true, sec = 1, rel = 1) is fulfilled
and has a relevance and security rating of one, and that
e2(false, sec = 3, rel = 4) and e3(false, sec = 4, rel =
5) are not fulfilled and have a relevance rating of four and five,
respectively. Then, the overall result of the context is fulfilled,
but the relevance rating is only 1/10 = 0.1 and the security
rating is 1/8 = 0.125. The security policy specification bears
responsibility for defining suitable thresholds for the security
and relevance ratings that are sufficient to trigger a change
of the security settings. Furthermore, the decision strongly
depends on whether to tighten or to ease security restrictions.

IV. APPLICATION SCENARIO

To demonstrate how such an approach can be used in an
industrial setting, we applied it in cooperation with a large
German company that administrates mobile devices via the
mobile device management (MDM) solution MobileIron R©. Via
MobileIron R©, they adjust security settings (e.g., to impose
password restrictions or storage encryption, to install or revoke
certificates for virtual private networks, or to disable camera or
microphone), and perform actions such as sending messages
to the user or wiping the device. However, these settings and
actions are rather static and cannot be adapted according to
the current operational state of the device or the user activity.
In this setting, context-awareness can provide more flexibility.
For example, camera and microphone usage can be prevented
within company premises, but allowed elsewhere. However,
when used for security purposes, context detection has to
be accurate and reliable in order to comply with company
regulations.

84

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



In our application, we analyzed the security demands of
the company and identified the needed flexibility. We created
appropriate context descriptions and connected our context de-
tection with the MDM solution of the company. Unfortunately,
we were not allowed to run the evaluation with productive
users and had to evaluate it with researches from our institute.

A. Setup & Execution
Security policies in MobileIron R© control security behavior

such as password restrictions of the mobile device (cf. Table I).
Lockdown policies limit the use of the mobile device such
as disabling Bluetooth, camera, or microphone (cf. Table II).
We specified two security policies (security1 and security2)
and three lockdown policies (lockdown1, lockdown2, and
lockdown3), which are briefly described in the following.

TABLE I. SECURITY POLICIES

security1 security2
Maximum Inactivity Timeout: 30 min 2 times

Maximum Number of Failed Attempts: 3 min 5 times

TABLE II. LOCKDOWN POLICIES

lockdown1 lockdown2 lockdown3
Bluetooth: Disable Enable (Audio only) Enable

Camera: Disable Enable Enable
Microphone: Disable Enable Enable

NFC: Disable Enable Enable
Screen Capture: Disable Enable Enable

Lockscreen Widgets: Disable Enable Enable
USB Debug: Enable Disable Enable

In Table I, security policy security1 has a higher priority
than security policy security2. Hence, if both policies are
activated, security1 would be used and the maximum inactivity
time would be 30 minutes. In Table II, the lockdown policy
lockdown1 has a higher priority than lockdown2, which in
turn has a higher priority than lockdown3.

MobileIron R© allows the definition of labels and the as-
signment to security and lockdown polices. In our case,
we defined four labels, namely default label, work1 label
where security is tightened, work2 label where security is
eased and home label. These labels have been assigned to
our policies as depicted in Figure 8.

Figure 8. Mapping between Labels and Policies.

In the described setting, two contexts are of relevance:
“Home” and “Work”. Both contexts are modeled by using
wireless, location, calendar, and time evaluators. Figure 9

illustrates the context tree for the “Work” context c1, including
all assignments for the security and relevance ratings. As the
security rating has a global scope for each evaluator type, the
value does not change within the same type of evaluator. In
contrast, the relevance rating changes, depending on the results
from the statistical calculation.

Figure 9. Context Tree Example for Context “Work”.

For example, the wireless network wlan-staff has the
highest statistical significance (correlation result), followed
by wlan-guest and wlan-extern. This is reflected in the final
relevance ratings of the wireless evaluators. wlan-staff is the
employer’s wireless network and has the highest relevance.
The calendar seems to be a relevant context factor, but as
users usually do not schedule their entire working day in
the calendar, the calendar evaluator has the lowest relevance.
Similar behavior holds for the time evaluator. The company has
flexible working hours, but the core working hours are between
09:00am to 4:00pm. Hence, users arrive earlier or stay longer
at work, to reach their daily working time. Nevertheless, the
time evaluator is more relevant than the calendar evaluator.

The company has defined several policies assigned to the
“Work” context, on which we focus in the following. On the
one hand, there are policies easing security restrictions of the
mobile device at work (in favor of usability). For example,
the company increases the display timeout at work to thirty
minutes for usability reasons (work1 label → security1).
On the other hand, there are policies tightening the security
at work. For example, the company prohibits the usage of
camera, microphone, etc. at work to meet organizational poli-
cies (work2 label → lockdown1). The idea is now to define
appropriate thresholds to reflect company needs.

To tackle this, we calculated the following cases:

• Context c1 is true with highest relevance → 1.00

• Context c1 is true with lowest relevance
e1, e4, e5, e6 are true → 0.46

• Context c1 is false with highest relevance
e1, e2, e3, e5, e6, e7 are true → 0.96

• Context c1 is false with lowest relevance → 0.00

Hence, the relevance range for c1 is true is between 0.46
and 1.00, and for c1 is false is between 0.00 and 0.96.
Analogously, we calculated the security rating for c1. Figure 10

85

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



shows our policy state chart and the state change criteria to
activate and deactivate the policies. To change the states by
using the relevance and security rating, as well as the fulfill-
ment of the context, allows us to model hysteresis behavior.
For example, changing from the state work1 label (inactive)
to work1 label (active) is harder than changing from the state
work1 label (active) to work1 label (inactive).

Figure 10. Policy Statechart.

For instance, assume that work1 label is inactive, the
evaluators e1, e4, e5, e6 are true, and the evaluators e2, e3, e7
are false. This results in context c1 to be true. However, the
relevance is only 0.46 and the security is only 0.50, which
would prevent the change from inactive to active. Hence, we
need at least one more evaluator changing its state to true
for reaching the relevance threshold and even one more for
reaching the security threshold. Vice versa, let us suppose that
work1 label is active and the evaluators have the same state
as before. Although c1 is still fulfilled, we would make the
change as the ratings are below the defined thresholds of 0.60
(relevance) and 0.80 (security).

B. Lessons Learned
The practical application was performed by two of our

internal researchers, as they had to manually observe the
mobile devices. For our case study, we used a Samsung Google
Nexus 10 running Android 5.1 and a Samsung Galaxy Tab
(SM-P600) running Android 4.4.2. Both devices were added to
the MDM solution and had to adhere to the company-specific
security policies. We made several observations in our practical
application, which we describe next.

Some sensors have uncertainties and inaccuracies in their
measurements. In our scenario these are the location and
the wireless sensors. We configured the wireless sensor to
scan for specific wireless networks every five minutes and
prevented the user from disabling by setting the keepEnabled
flag. However, the sensor occasionally misses some wireless
networks although the networks are available. If we measure
for a specific wireless network ten times, the sensor will miss
this specific network one to two times. Hence, we have a
failure rate of 10 to 20 percent in our measurements. Let us
assume our context “work” c1 is fulfilled and work1 label is
active as well as work2 label is active. The affected wireless
evaluators are e1, e2, e3. All other evaluators are assumed to
be fulfilled, i.e., working correctly. As they are in OR-relation
(cf. Figure 9), all three have to provide a wrong measurement
to yield an overall evaluation result of c1 that is wrong, which
did not happen during our evaluation period. Evaluator e2
has the highest impact on the relevance and security ratings.
If the evaluation of e2 fails, the relevance rating is at 0.81
and the security rating is at 0.86. Both ratings are above the
specified thresholds to trigger a state change for the labels
work1 label and work2 label. The failure of an additional

wireless evaluator, for instance e1 or e3, puts the ratings to 0.65
(relevance) and 0.73 (security), which are below the thresholds.
Such ratings result in a change of work1 label from active to
inactive, which is uncritical as it tightens our security settings.
Regarding work2 label, we will stay in the active state, as
the overall context c1 is still true, which is also uncritical. To
trigger a state change, we would need all three evaluators to
fail, which did not happen during our evaluation period, as
already mentioned.

Regarding the location evaluation, we observed that we
have some uncertainties in the location evaluation of e6 and
e7 when people are entering the specified locations. Such
location changes usually happened in the morning, when
people arrived at work, and after noon, when people came
back from lunch outside the company. The reason for detection
failures is the inaccurate location fix after a location change.
The Android location services return a coarse grained location,
which is outside our specified locations for the evaluators.
Let us assume our context “work” c1 is not fulfilled and
work1 label is inactive as well as work2 label is inactive.
The affected wireless evaluators are e6, e7. All other evaluators
are assumed to be fulfilled, i.e., to work correctly. To trigger
a state change, both evaluators have to be evaluated to true.
Regarding work1 label, it is uncritical as we are remaining
in the high security settings; however, work2 label is critical.
As we configured to receive a location fix latest every five
minutes and after location changes greater than fifteen meters,
we may stay five to ten minutes in a wrong state. However,
as the Android location services pushes new information after
the location fix, we observed to stay less than five minutes in
the wrong state.

We modeled all evaluator groups in AND-relation, which
was a bad decision regarding the time and calendar evalua-
tors. As the working hours was given between 09:00am and
04:00pm, e5 was also configured to be true in the specified
interval. However, people usually do not completely stick to
these working hours. We observed that work1 label stayed
too long in state inactive (starting working before 09:00am) or
changed from active to inactive too early (working longer than
04:00pm). Similar observations were made for the calendar
evaluator e4. We learned to model evaluators with lower
relevance in an OR-relation rather than in an AND-relation.
However, we have to gain more experience to make a final
decision.

Overall, we conclude that our approach is feasible to adapt
security settings provided by the MDM solution in our given
scenario. Future work has to analyze the performance, focusing
on the latency between the context detection and the effective
enforcement of the security settings on the mobile device.

V. EXPERIMENTAL EVALUATION

In our practical application, we evaluated our approach in
a company setting. However, we run tests with two researchers
in our premises and were not allowed to monitor the behavior
in the company. In addition, our researchers did not use the
mobile devices for their daily work. Hence, we did not evaluate
the correctness of the context detection.

We started another experiment to evaluate precision and
recall of our context detection in a real world setting. The
following steps have been performed:

86

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



• Preparation 1 - Data Collection: Automated collec-
tion of contextual data and manual reporting of user
activities and situations. This data is required for the
context description generation.

• Preparation 2 - Context Description Generation:
Derivation of context descriptions by using the process
depicted in Figure 7. The derived context descriptions
are used for the real world context detection.

• Execution - Real World Context Detection: Detec-
tion of context by using the generated context descrip-
tions to adapt mobile device behavior (for convenient
and security reasons) in a real world application.

• Analysis & Discussion: Analysis of the reported
context detections with respect to precision and recall.

A. Preparation 1 - Data Collection

We first performed some data collection experiment before
our actual evaluation experiment. In our first experiment, seven
voluntary participants collected their contextual real-life data
over a period of four weeks. The collection has two main
parts: Subjects manually report their activities and situations
in a context journal. Concurrently, mobile devices automat-
ically collect contextual information from different sources;
for example, physical sources such as built-in sensors (e.g.,
accelerometer, wireless networks) and virtual sources such as
calendar entries.

For data collection, we use a mobile application, the funf
framework [9]. The funf team implemented the application
for sensing and processing contextual information on smart
mobile devices. We use the “funf Journal” app from Google’s
PlayStore [10]. It allows a flexible sensing, processing, and
storing of contextual information. We can configure the mobile
application to collect data from different context information
sources. The mobile app allows flexible scheduling based on
time constraints and configurable triggers. Funf supports 38
different context information sources for data collection, so-
called probes. Funf divides them into the following categories:
device, device interaction, environment, motion, positioning,
and social. After configuring and starting the funf application,
it autonomously collects data as background process and stores
the results in a SQLite database on the mobile device. The
user can export the database to the local file system or upload
the data to a server. Overall, we configured fourteen different
sensors that collected about 110 million data entries in four
weeks.

Besides raw context data, we also need information about
the current activity/situation, in which the subject acts during
the measurements for determining the relation between raw
sensor data and user activities/device situations. Hence, our
participants manually report their perceived context during the
data collection phase in a context journal. The participants
reported their activities paper-based or using the mobile appli-
cation “Gleeo Time Tracker” [11].

During the automated context data collection, the partici-
pants are also reporting their activities. We tell the participants
to check whether there are still active activities when they
report a new activity. This is only important for the reporting
on paper as the Gleeo Time Tracker app automatically stops
running tasks when the user starts another task. Overall, the

participants manually reported 65 different activities and situa-
tions during the measurement. Most of the activities occurred
only a few times and could not be used in our process, as
we are using statistical methods to calculate the correlation
between contextual information and activities/situations. The
three most relevant contexts for our experiment and further
evaluation are “home”, “work” and “sleeping”.

B. Preparation 2 - Context Description Generation
In this step, the contextual and the journal data are fed

to the derivation process to produce context descriptions. To
determine the correlation, we choose binary correlation as
statistical method. The method produces a correlation matrix
considering all variables. Figure 11 shows binary correlations
of reported activities followed by wireless networks. The
values range from -1, denoting maximal anti-correlation, to
+1, denoting maximal correlation. For instance, we take the
first line with the activity “Office (Work)”, which has a
high correlation with “X” (0.87) and “WLAN mab” (0.94).
Contrary, “Office (Work)” has a high anti-correlation with
“Home (Private)” (-0.76) and “Cherrynetz” (-0.69). The anti-
correlation between the two activities “Home (Private)” and
“Office (Work)” is an obvious result.

Figure 11. Correlation Matrix (Binary Correlation)

The correlation matrix is used to generate operative context
descriptions for the three relevant contexts: “home”, “work”
and “sleeping”. In general, the generation process can optimize
the produced context descriptions in terms of precision and
recall. Precision is the relation of true positives to true positives
and false positives. It denotes that if our context test detects a
specific context, it will be correct or not. Contrary, recall is the
relation of true positives to true positives and false negatives. It
denotes that if a context is happening in the real world, our test
will detect it. For our evaluation, we decided to choose context
descriptions optimized in terms of precision for the transition
0 → 1. Hence, the precision should be high for detecting the
entering into a specific context.

C. Execution - Real World Context Detection
In the actual experiment four voluntaries participated (out

of the seven voluntaries for the first experiment). For these four
participants, we take precision-optimized context descriptions
to detect “home”, “work”, and “sleeping” (based on the data
from the collection experiment). The voluntaries used the fol-
lowing private mobile devices to participate in the evaluation:

87

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



• Participant P1, Nexus 5 running Cyanogenmod 12.1
• Participant P2, Nexus 5 running stock ROM 4.4.4
• Participant P3, Nexus 4 running Cyanogenmod 12.1
• Participant P4, HTC One (M7) running Cyanogenmod

11

We equipped their private mobile devices with the
Integrated Distributed Data Usage Control Enforcement
(IND2UCE) framework for Android [12] where the following
features were used in our evaluation:

• Device Administration: The framework acts as
device administrator for Android [13]. Hence, it sup-
ports device administration features such as changing
security related settings, wiping, or locking the device,
and disabling the camera.

• Volume Control: The framework supports control-
ling settings related to the volume control of the
mobile device (i.e., setting the ringtone volume).

• Captive Portal Login: One extension addresses the
automated login to a captive portal for granting access
to the internet (without having to manually login via
a webpage)

• Network Settings: We are able to control network
settings with the framework. A simple example is the
activation or deactivation of Bluetooth or Wifi.

We created policies for the IND2UCE framework to react on
context changes. Hence, we created a security policy for every
possible context transition:

• Context was not fulfilled and is now fulfilled:
0→ 1-Transition

• Context was fulfilled and is now not fulfilled:
1→ 0-Transition

Such a context transition is modeled as depicted in Figure 12.
The condition is checked every five minutes, as configured
in the timestep-tag. In the condition, we resolve the actual
context by using a so-called Policy Information Point (PIP)
with the name “context”. As parameter, we add the context
id, which is “P1 home” in our case for participant P1. We
link this request with a before-operator by using a logical and.
Within the before-operator, we have a negated PIP request with
the same parameters as our first one. To sum it up, if the first
PIP request is now true and the second PIP request has been
false in the timestep before, the condition will be true. Hence,
we can phrase it as follows: We had a context change for the
context “P1 home” from being not fulfilled to being fulfilled
within the last five minutes.

We had two meetings with the participants to elicit conve-
nient and security functions, they wanted to have depending on
their current context. The focus was set to the three contexts:
“home”, “work”, and “sleeping”. Hence, every participant
stated wanted behavior when, for instance, she is coming home
or leaving home. Here are some examples we elicited:

• “When I am leaving Fraunhofer IESE [work], I would
like to set my ringtone volume to 100%.”

• “When I am at Fraunhofer IESE [work], I would like
to set my ringtone volume to 20%.”

• “When I am at home, I would like to activate the Wifi.”

<timestep amount="5" unit="MINUTES" />
<condition>
<and>
<pip:boolean name="context" default="true">
<param:string name="value" value="P1_home" />

</pip:boolean>
<before amount="1" unit="TIMESTEPS">
<not>
<pip:boolean name="context" default="true">
<param:string name="value" value="P1_home" />
</pip:boolean>
</not>

</before>
</and>
</condition>

Figure 12. Transition Example for 0 → 1-Transition for Context “P1 home”

• “When I am not at home and not at work, I would
like to deactivate the Wifi.”

• “When I am at home, in my bedroom, and the time
is between 10pm - 7am, then activate FlightMode.”

• “When I am leaving my home, I would like to set my
ringtone volume to 100%.”

We elicited 29 rules to be applied based on the context
detection. However, we are only able to fulfill the requirements
of 20 rules with the IND2UCE framework.

<detectiveMechanism name="home_0->1">
<description>
Context change from false to true
</description>
<timestep amount="5" unit="MINUTES" />
<condition>
<and>
<pip:boolean name="context" default="true">
<param:string name="value" value="P1_home" />
</pip:boolean>
<before amount="1" unit="TIMESTEPS">
<not>
<pip:boolean name="context" default="true">
<param:string name="value" value="P1_home" />
</pip:boolean>
</not>

</before>
</and>

</condition>
<!-- setRingToneVolume to 50% -->
<executeAction name="urn:action:local:volume">
<param:int name="level" value="3"/>

</executeAction>
<!-- setDisplayTimeout to 30min -->
<executeAction name="urn:action:local:SecuritySettings">
<param:int name="display" value="30"/>

</executeAction>
<!-- feedback for context change -->
<executeAction name="urn:action:local:feedback">
<param:string name="mode" value="context" />
<param:string name="value" value="P1_home" />
<param:string name="flag" value="1" />

</executeAction>
</detectiveMechanism>

Figure 13. Policy Mechanism Example for 0 → 1-Transition for Context
“P1 home”

We created for every participant appropriate rules, which
we call policies in the IND2UCE framework. Figure 13 illus-
trates a policy for the handling of the 0→ 1-Transition for con-
text “P1 home”. In other words, it handles what will happen
when the participant is coming home. There are four execute
actions to be performed by the IND2UCE framework: First, the

88

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



framework will set the ringtone volume to about 50%, which is
done by the execute action “volume”. Second, IND2UCE sets
the display timeout to 30 minutes by performing the execute
action “SecuritySettings”. Third, we will trigger our feedback
app. When the feedback app is triggered in mode “context”, it
displays a sticky notification to the user and possibilities for
the user to confirm or reject (cf. Figure 14):

Verify context detection 15:25
“atWork” is now active

Yes / No
A “yes”-button means, the context detection was right and

the user confirms the correctness. By clicking on the “yes”-
button, we count the context detection as correct. A “no”-
button means, the context detection was wrong and the user is
forwarded to a list of already recorded other contexts. If the
context is not in the list, the user can add a new context. We
count the context detection as wrong and add a new entry to
the table with the context entered by the user. Doing so, we
are capable to count all true positive and false positive context
detections and can easily calculate the precision of the context
detection.

Figure 14. Context Check PXP: Notification

If the user misses to process the notification, we store all
information in a list of unanswered context detection entries
(see Figure 15). The user has the possibility to answer the
questions later. By clicking on the “yes”-button or “no”-button,
the app behaves as in the notification interaction.

We conducted the experiment over a period of two weeks,
in which the participants had their usual working times (no va-
cation, no business trips, etc.). Unfortunately, we experienced
technical difficulties for one participant and had to continue
the experiment without him. For the three other participants,
everything worked as expected.

D. Analysis & Discussion
The participants reported 243 context detections in two

weeks, which results in about six context detections per day
(in average). This is a plausible value, as it can be seen in the
following reported feedback schedule of one of the participants
(counting eight context detections):

However, the feedback occurrence distribution is 96 for
P1, 44 for P2, and 103 for P3. P1 and P3 are nearly equal,
P2 has much less context changes detections. There are two
explanations for this behavior: First, P2 usually stays at work
for having lunch and is not leaving the institute. Second, there
are less changes for the context “home” in contrast to the other
two participants.

Figure 15. Context Check PXP: Unprocessed Entries

TABLE III. Excerpt of Feedback Result

No. Time Context Transition Description
1 15.10.2015 07:08 sleeping 1→ 0 waking up
2 15.10.2015 08:06 home 1→ 0 leaving home
3 15.10.2015 08:38 work 0→ 1 entering work
4 15.10.2015 11:58 work 1→ 0 leaving work (e.g., lunch)
5 15.10.2015 12:36 work 0→ 1 entering work
6 15.10.2015 16:41 work 1→ 0 leaving work
7 15.10.2015 17:47 home 0→ 1 entering home
8 15.10.2015 22:57 sleeping 0→ 1 sleeping

Table IV illustrates the overall result of the context detec-
tion for every participant. The first identifies the participant.
The second and third column represents whether the context
detection was reported as correct or wrong. The fourth and last
column indicates the user input, if the context detection was
wrong. As shown in the table, participant P1 and P2 always
corrected the context detection, participant P3 missed it two
times.

TABLE IV. Context Detection Results

Participant
Context Change Detected

Correct Wrong User Input
P1 53 (55.21%) 43 (44.79%) 43
P2 32 (72.73%) 12 (27.27%) 12
P3 76 (72.38%) 29 (27.62%) 29

89

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The correctness of the context detection is between 55.21%
and 72.73%. The result is not very convincing for being
used in security related settings. However, the figures rep-
resent the overall correctness of the context detection. As
we created precision-optimized context descriptions for the
0→ 1-transitions, we have to split up the data. The result is
presented in Table V.

TABLE V. Context Detection Result (split)

Part.
Context Change Detected (0→ 1) Context Change Detected (1→ 0)

Correct Wrong Sum Correct Wrong Sum
P1 44 (95.65%) 2 (4.35%) 46 9 (18.00%) 41 (82.00%) 50
P2 18 (100.0%) 0 (0.0%) 18 14 (53.85%) 12 (46.15%) 26
P3 51 (98.15%) 1 (1.85%) 54 23 (45.10%) 28 (54.90%) 51

Now, we get a much better result regarding context de-
tection precision for the 0 → 1-transitions. All values are
above 95%, which fulfills our expectations. Moreover, we
made no error for participant P2 and reached 100%. From our
expectations, this is a good result and such context descriptions
could be used to ease security mechanisms.

However, the precision for the context detection for the
1 → 0-transitions ranges from 18% to nearly 55%. In other
words, the context detection would be wrong for every second
detection in best case. This result cannot be used to adapt se-
curity mechanisms with high precision. We could improve the
precision by either adapting the parameters for the hysteresis
behavior (cf. Section IV) or using precision-optimized context
descriptions also for the 1→ 0-transitions.

Obviously, there is a trade-off between these two kinds
of context changes and we managed to optimize our context
detection only in one direction (i.e., 0→ 1-transitions). Hence,
we achieved a high precision for easing security mechanisms,
but allow lower precision for tightening security mechanisms.
In addition, we have to achieve a higher recall rather than
having a high precision for tightening security mechanisms.
Regarding the recall of our approach, we cannot provide
reliable figures for this calculation as we have not monitored
the real world behavior. Hence, we do not know how often
or long the user was already in the specific context, but the
context detection did not recognize.

VI. RELATED WORK

This section provides an overview of the state of the art in
context-awareness and context-aware computing. More specif-
ically, the term context and its early definitions are introduced
and different context modeling approaches are described.

A. Definitions of the term “Context”
The notion of context emerged over time, the earliest

definitions in our sense originate in the early nineties. All of
them share similarities, but they also show differences. We will
present the most prevalent and influential definitions.

In 1994, an early definition was provided by Schilit et al.
[3], stating that a context is characterized by three aspects:
where you are, whom you are with, and what resources
are nearby. Therefore, Schilit et al. infer that context-aware
systems have to depend on the location of use, nearby people,
hosts, and accessible devices, as well as on changes over time.
Although they state that context is more than just location,

location is apparently a very important information source for
context-aware systems. Interestingly, although smart mobile
devices did not nearly have the same capabilities in 1994 as
today’s devices have (especially the plethora of sensors), the
authors already named today’s sensors (e.g., light intensity,
network connectivity) as additional context sources.

In 1997, Brown and Bovey [14] describe context similar to
Schilit et al. but include temporal attributes, such as time of
day, season, and temperature, as additional contextual informa-
tion sources. In addition, the authors propose to enrich context
by using additional (user-provided) information to obtain more
valuable information for their application.

Hull et al. [15] describe context as “many aspects of a
user’s situation”, such as “user identity, location, companions,
vital signs, air quality, and network availability”. Franklin and
Flachsbart [16] focus on intelligent environments observing
their users. They state that context-aware computing should
consider the observed situation of the user. A similar descrip-
tion can be found in [17]. Ryan et al. [18] state that context
should include location as well as states of external and internal
sensors of the computer itself. Hence, they also consider virtual
context sources such as the state of the software running on
the device. Pascoe [19] also considers virtual context sources,
but describes them as the states of the application and its
environment rather than states of the computer itself. Pascoe
et al. [20] reveal the more rich and complex nature of context
and that context can be complex. Furthermore, in accordance
with other publications, they state that context is more than
just location.

In 1999, Abowd et al. [21] define context as any informa-
tion that is used to characterize the situation of an entity. As
mentioned in other publications, context is seen as additional
information or as an attribute of an entity. They also state that
context information has to be categorized in different context
types, which makes it easier for context-aware computing.
They introduce four primary context types for characterizing
an entity’s situation: location, identity, time, and activity.

Hofer et al. [6] partition context information regarding its
origin and differentiate between physical, virtual, and logical
context information. Physical context information, such as lo-
cation, acceleration or light intensity, can directly be measured
by sensors. Such physical measures are described as low-
level context sources that are continuously updated. Virtual
information stems from user data or internal system data. The
latter context category, logical context information, is obtained
by combining physical and virtual context sources according
to some abstract logical rules.

B. Modeling Context Information
Context-aware systems strongly rely on the quality of the

context information, which is usually represented in a context
model. The modeling and provision of context information is
very important to fulfill the desired task. In this work, context
awareness aims at the enforcement and adaptation of flexible
security policies on the mobile device and its applications.
Different approaches for modeling context information have
been suggested. In [22] and [23], the authors survey the most
relevant approaches and classify them into five categories:

Key-Value Models are the simplest model for structuring
context information. As such models provide no structuring

90

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



of information, they are easy to manage. They are often
used, although they provide only limited support for more
sophisticated modeling [22][23]. Key-Value models allow easy
querying by simple algorithms matching the key value pairs.
The querying can be enriched by Boolean operators or wild-
cards for the matching algorithm.

Markup Scheme Models use a hierarchical structure of
markup tags containing attributes and their values. A well-
known example is the eXtensible Markup Language (XML).
A markup scheme has been proposed, for instance, in [24]. In
contrast to key-value models, markup scheme models provide
a mechanism for structuring context information. However,
querying such models becomes more complex than in the
simple key-value model, but is essentially done similarly by
matching the values of the markup tags or their attributes.
In [25], Samulowitz et al. define “Context-Aware Packets
(CAPs)” for storing context information. CAPs are organized
in “context constraints, scripting, and data”, where the context
constraints part contains the modeled context information. This
sub part is in turn subdivided into “abstract entities, relations,
and events”. Figure 16 illustrates a CAP example taken from
[25]. The given CAP describes two entities (i.e., Printer and
Florian) and a relation “inRoom” between the two entities. The
relation describes the context “ContextC”.

Figure 16. Context-Aware Packets Example from [25]

Graphical Models can strongly vary in their representa-
tion. The best-known representative is probably the Unified
Modeling Language (UML), which is also suitable for mod-
eling context, as shown in [26] or [27]. Such models are easy
to understand for human beings, but often lack formality.

Henricksen et al. [28] present a context extension for
the Object-Role Modeling (ORM) approach, which describes
context as collection of facts (as shown in Figure 17).

The model can directly be used to derive an entity rela-
tionship model as a basic structure for relational databases. An
interesting aspect of their model is the differentiation between
static context information (i.e., facts that remain unchanged as
long as the entities they describe persist) and dynamic context
information. They distinguish between contextual information
that can be treated as property or constant attribute and
changing contextual information such as location.

Object Oriented Models provide their information as a
collection of objects that contain context information. Such
models can employ all object-oriented modeling techniques

Figure 17. Excerpt from Context Extension for the Object-Role Modeling
approach [28]

such as encapsulation, reuse, or inheritance. The objects can
represent different context types and provide interfaces for the
retrieval and processing of their context information. Hofer et
al. used such object oriented models for the Hydrogen context
framework [6].

In 2002, Henricksen et al. [29] presented an object-oriented
approach which is the predecessor to their extension for the
ORM approach. They already have a graphical representation,
as depicted in Figure 18. Henricksen et al. use classifications
for context modeling, such as “static” (i.e., “remain fixed over
the lifetime of the entity”) or “dynamic” associations. They
split the dynamic associations into “sensed”, “derived”, and
“profiled”.

Figure 18. Example for an Object Oriented Context Model taken from [29]

Logic Based Models use formal methods to specify con-
text information and rules that can be applied to them. Hence,
they usually provide a high degree of formality. Typically, in
the reasoning process new facts can be derived based on known
facts and a given set of deduction rules. Albeit being very
formal and precise, profound logic-based modeling is quite
hard and modeling given facts can become very complex. One
such approach has been published in 1994 by McCarthy and
Buvac [30].

91

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Ontology Based Models are used to represent concepts
and interrelations. They are a very promising instrument for
context modeling, especially with the option to apply ontology
reasoning techniques and automatic derivation of new relation-
ships. A representative of this class of models is the Aspect-
Scale-Context (ASC) model (shown in Figure 19), which is
based on the Context Ontology Language proposed by Strang
et al. [31]. According to this model, an Aspect has one or
more Scales, and a Scale has one or more ContextInformation
items. These model elements are “interrelated via hasAspect,
hasScale and constructuredBy relations” [31].

Figure 19. Example for an Ontology Based Context Model taken from [31]

For further details, the reader is referred to two surveys:
Baldauf et al. [23] survey existing context systems and frame-
works, including their respective context models. Another
survey by Bettini et al. [32] describes the state of the art
in context modeling and reasoning. In summary, the decision
which kind of modeling approach to choose can only be made
by investigating the underlying application scenario and the
context to be modeled. Regardless of the presented approaches,
none of them consider the uncertainty in context detection and
are thus unsuited for security purposes.

In our work, we use a combination of the presented
context modeling approaches (hybrid approaches) and extend
them with two quality attributes to deal with uncertainty. The
introduced quality attributes improves the context detection to
be reliable and secure. Hence, our approach is also suited for
security purposes and can improve security decisions.

C. Context-awareness Enhancing Mobile Device Security
There exist several frameworks for enhancing systems and

especially Android with context awareness. We will provide
an overview by presenting solutions especially for enhancing
mobile device security.

Context-Related Policy Enforcement (CRePE), devel-
oped by Conti et al. [33], is a context-aware framework
that enhances mobile device security. The approach is to
hook into Android’s permission checking mechanism and to
take dynamic security decisions based on context informa-
tion. Moreover, CRePE may perform different actions (e.g.,
system shutdown) specified in the user-definable policies. To
enable dynamic permission checks, CRePE makes modifica-
tions to the Android system. The context check is done in
the PolicyManager component that interacts with the CRePE
PermissionChecker and the ActionPerformer component (see
Figure 20).

CRePE offers no context model. However, Conti et al.
define policies that include rules and context information (only
location). In addition, priorities for rules and the handling of
conflicts are described in [33].

CRePE improves security of the Android system by mak-
ing permission checks context-aware, and it adds additional
context-aware features, such as actions controlled by policies.

Figure 20. CRePE Architecture [33]

Context-Aware Usage Control for Android (ConUCON)
by Bai et al. [34] is an extension of the UCON model [35]
for Android. The framework consists of different components
such as Policy Enforcement Point (PEP), Policy Decision
Point (PDP), Policy Information Point (PIP) and a Policy
Administration Point (PAP), as depicted in Figure 21. The
components and their behavior relates to XACML [36], which
is a standard describing declarative access control policies and
a processing model for it.

Figure 21. ConUCON Framework [34]

Contexts are part of these policies and are specified by
using the tags Context, ContextComposition, and Factor. A
context constraint is broken down into different ContextCom-
positions, which are always connected with a Boolean ∧. The
composition defines a logical operator (i.e., ∧, ∨, ¬), which
is used to aggregate the subordinated factor-tags. Finally, a
factor specifies the context information such as time, battery,
or Wifi state. A factor can have complex expressions such
as “batteryPower ≥ 30%” or periodic expressions (cf. [34]).
The model used can be described as Boolean logic with
expressions. ConUCON also improves security of the Android
system by using context-aware usage control policies.

92

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Similar to our work, CRePE [33] and the ConUCON
system [34] provide a technical solution to use context in-
formation to enhance security of mobile devices. However,
CRePE uses only location as context information. Contrary
to our approach, they do not address reliability and security
of the context detection. In addition, they cannot deal with
uncertainty of context information.

VII. CONCLUSION AND FUTURE WORK

We presented a model for representing security-relevant
contexts as context descriptions. The model contains a security
rating for each evaluator to quantify the overall trustworthiness
of the context description during runtime. In addition, the
model provides a relevance rating expressing the conducive-
ness of a context information source to the overall context. The
context descriptions enable context-aware security decisions by
referencing them as a decision criterion in security policies.

We applied the context detection mechanism in an in-
dustrial scenario and showed its general applicability. The
Mobile Device Management (MDM) solution can be enriched
with contextual information to improve its decision making.
We have taken some lessons learned from this industrial
application, which we used to improve the generation of our
context description.

In a second evaluation, we used the context-aware
IND2UCE framework for Android to analyze the improvement
in context detection. The overall correctness of our context
detection ranges from 55% to nearly 73%. But, the precision
optimized context descriptions for the 0 → 1-transitions
reached a correctness of 100% for one participant (best case)
and nearly 96% for the participant with worst results. These
values fulfilled our expectations and they are promising for
being used in security related settings. However, the general-
izability has to be shown in future work.

Future work will investigate potentials to return additional
data types as an overall context result. Enriched context types
facilitate the use of contextual information in the decision
making process and improve expressiveness for security policy
specifications. Presently, context descriptions are specified
manually before being activated and are therefore rather static.
Future work will investigate how context descriptions can be
parametrized at runtime. This may include the use of context
results as parameters for other context descriptions.

Regarding the security and relevance rating, we will further
extend our evaluation criteria. We realized that faking the
presence of contextual information can be easier in some cases
then faking its absence (e.g., it is easier to simulate the SSID
of a wireless access point than jamming the beacons from an
existing one). Finally, we will explore the inclusion of accuracy
information into our model as an additional quality attribute
for judging the reliability of context information.

ACKNOWLEDGMENT

This paper is a result of the Software Campus project
KoSiUX (Kontextsensitivität zur Steigerung der Sicherheit und
User-Experience mobiler Anwendungen), which is funded by
the German Ministry of Education and Research, grant number
01IS12053, and the European project SECCRIT, funded by
the European Commission in the context of the Research
Framework Program Seven (FP7), grant agreement number
312758. The authors are responsible for their content.

REFERENCES

[1] C. Jung, A. Eitel, D. Feth, and M. Rudolph, “Dealing with uncertainty
in context-aware mobile applications,” in MOBILITY 2015: The Fifth
International Conference on Mobile Services, Resources, and Users,
June 2015, pp. 1–7.

[2] S. I. A. Shah, M. Ilyas, and H. T. Mouftah, Pervasive Communications
Handbook, 1st ed. Boca Raton, FL, USA: CRC Press, Inc., 2011.

[3] B. Schilit, N. Adams, and R. Want, “Context-aware computing applica-
tions,” in Proceedings of the Workshop on Mobile Computing Systems
and Applications. IEEE Computer Society, 1994, pp. 85–90.

[4] Óscar D. Lara and M. A. Labrador, “A survey on human activity
recognition using wearable sensors,” Communications Surveys Tuto-
rials, IEEE, vol. 15, no. 3, Third 2013, pp. 1192–1209.

[5] S. Wang and G. Zhou, “A review on radio based activity recognition,”
Digital Communications and Networks, vol. 1, no. 1, 2015, pp. 20
– 29. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S2352864815000115

[6] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, J. Altmann, and
W. Retschitzegger, “Context-awareness on mobile devices - the hydro-
gen approach,” in Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS’03) - Track 9 - Volume 9, ser.
HICSS ’03. Washington, DC, USA: IEEE Computer Society, 2003,
p. 292.1.

[7] Android Developers. Location Strategies. http://developer.android.
com/. [Online]. Available: https://developer.android.com/guide/topics/
location/strategies.html [retrieved: May, 2016]

[8] C. Jung, D. Feth, and Y. Elrakaiby, “Automatic derivation of context
descriptions,” in 2015 IEEE International Inter-Disciplinary Conference
on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA), March 2015, pp. 70–76.

[9] MIT Media Labs. funf Open Sensing Framework. http://funf.org/.
[Online]. Available: http://funf.org/developers.html [retrieved: January,
2016]

[10] funf.org. Funf journal. https://play.google.com/store/apps/. [Online].
Available: https://play.google.com/store/apps/details?id=edu.mit.media.
funf.journal [retrieved: January, 2016]

[11] Gridvision Engineering GmbH. Gleeo time tracker. https:
//play.google.com/store/apps/. [Online]. Available: https://play.google.
com/store/apps/details?id=ch.gridvision.pbtm.androidtimerecorder [re-
trieved: January, 2016]

[12] C. Jung, D. Feth, and C. Seise, “Context-aware policy enforcement for
android,” in Software Security and Reliability (SERE), 2013 IEEE 7th
International Conference on, June 2013, pp. 40–49.

[13] Android Developers. Device Administration. http://developer.android.
com/. [Online]. Available: http://developer.android.com/guide/topics/
admin/device-admin.html [retrieved: January, 2016]

[14] P. Brown and J. Bovey, “Context-aware applications: from the labora-
tory to the marketplace,” IEEE Personal Communications, vol. 4, no. 5,
1997, pp. 58–64.

[15] R. Hull, P. Neaves, and J. Bedford-Roberts, “Towards situated com-
puting,” in Proceedings of the 1st IEEE International Symposium on
Wearable Computers, ser. ISWC ’97. Washington, DC, USA: IEEE
Computer Society, 1997, pp. 146–153.

[16] D. Franklin and J. Flachsbart, “All gadget and no representation
makes jack a dull environment,” In Proceedings of AAAI 1998 Spring
Symposium on Intelligent Environments. AAAI TR SS-98-02, 1998,
pp. 1–6.

[17] A. Ward, A. Jones, and A. Hopper, “A new location technique for the
active office,” Personal Communications, IEEE, vol. 4, no. 5, 1997, pp.
42–47.

[18] N. S. Ryan, J. Pascoe, and D. R. Morse, “Enhanced reality fieldwork:
the context-aware archaeological assistant,” in Computer Applications
in Archaeology 1997, ser. British Archaeological Reports, V. Gaffney,
M. van Leusen, and S. Exxon, Eds. Oxford: Tempus Reparatum, Oct.
1998, pp. 269–274.

[19] J. Pascoe, “Adding generic contextual capabilities to wearable com-
puters,” in Proceedings of the 2nd IEEE International Symposium on
Wearable Computers, ser. ISWC ’98. Washington, DC, USA: IEEE
Computer Society, 1998, pp. 92–99.

93

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[20] J. Pascoe, N. Ryan, and D. Morse, “Issues in developing context-aware
computing,” Handheld and ubiquitous computing, 1999, pp. 208–221.

[21] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a Better Understanding of Context and Context-
Awareness,” in HUC ’99: Proceedings of the 1st international sympo-
sium on Handheld and Ubiquitous Computing. London, UK: Springer-
Verlag, 1999, pp. 304–307.

[22] T. Strang and C. Linnhoff-Popien, “A Context Modeling Survey,”
in Workshop on Advanced Context Modelling, Reasoning and Man-
agement, UbiComp 2004 - The Sixth International Conference on
Ubiquitous Computing, Nottingham/England, 2004, pp. 1–8.

[23] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware
systems,” International Journal of Ad Hoc and Ubiquitous Computing,
vol. 2, no. 4, June 2007, pp. 263–277.

[24] N. Ryan, “ConteXtML: Exchanging Contextual Information between
a Mobile Client and the FieldNote Server,” in Computing Laboratory,
University of Kent at Canterbury, CT2 7NF, UK, August 1999, pp. 1–8.

[25] M. Samulowitz, F. Michahelles, and C. Linnhoff-Popien, “Capeus: An
architecture for context-aware selection and execution of services,”
in New Developments in Distributed Applications and Interoperable
Systems, ser. IFIP International Federation for Information Processing,
K. Zieliński, K. Geihs, and A. Laurentowski, Eds. Springer US, 2002,
vol. 70, pp. 23–39.

[26] Q. Z. Sheng and B. Benatallah, “Contextuml: A uml-based modeling
language for model-driven development of context-aware web services
development,” in Proceedings of the International Conference on Mobile
Business, ser. ICMB ’05. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 206–212.

[27] J. Bauer, “Identification and modeling of contexts for different infor-
mation scenarios in air traffic,” 2003.

[28] K. Henricksen, J. Indulska, and A. Rakotonirainy, “Generating context
management infrastructure from high-level context models,” in In
4th International Conference on Mobile Data Management (MDM) -
Industrial Track, 2003, pp. 1–6.

[29] K. Henricksen, J. Indulska, and A. Rakotonirainy, “Modeling context
information in pervasive computing systems,” in Proceedings of the
First International Conference on Pervasive Computing, ser. Pervasive
’02. London, UK, UK: Springer-Verlag, 2002, pp. 167–180.

[30] J. McCarthy and S. Buvac, “Formalizing context (expanded notes),”
Computer Science Stanford University, Stanford, CA, USA, Tech. Rep.,
1994.

[31] T. Strang, C. Linnhoff-Popien, and K. Frank, “Cool: A context ontology
language to enable contextual interoperability,” in LNCS 2893: Pro-
ceedings of 4th IFIP WG 6.1 International Conference on Distributed
Applications and Interoperable Systems (DAIS2003). Volume 2893 of
Lecture Notes in Computer Science (LNCS)., Paris/France. Springer
Verlag, 2003, pp. 236–247.

[32] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ran-
ganathan, and D. Riboni, “A survey of context modelling and reasoning
techniques,” Pervasive and Mobile Computing, vol. 6, no. 2, 2010, pp.
161–180.

[33] M. Conti, V. T. N. Nguyen, and B. Crispo, “Crepe: context-
related policy enforcement for android,” in Proceedings of the 13th
international conference on Information security, ser. ISC’10. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 331–345. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1949317.1949355

[34] G. Bai, L. Gu, T. Feng, Y. Guo, and X. Chen, “Context-aware usage
control for android,” in SecureComm, 2010, pp. 326–343.

[35] J. Park and R. Sandhu, “The UCON ABC usage control model,” ACM
Trans. Inf. Syst. Secur., vol. 7, no. 1, February 2004, pp. 128–174.

[36] OASIS, “extensible access control markup language (xacml) version
3.0 - committee specification 01,” http://docs.oasis-open.org/xacml/3.0/
xacml-3.0-core-spec-cs-01-en.pdf, August 2010.

94

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



A Software Application to Streamline and Enhance the Detection of Fraud in
Published Financial Statements of Companies

Duarte Trigueiros
University of Macau, University Institute of Lisbon

Lisbon, Portugal
Email: dmt@iscte.pt

Carolina Sam
Master of European Studies Alumni Association

Macau, China
Email: kasm@customs.gov.mo

Abstract—Considerable effort has been devoted to the de-
velopment of software to support the detection of fraud in
published financial statements of companies. Until the present
date, however, the applied use of such research has been
extremely limited due to the “black box” character of the
existing solutions and the cumbersome input task they require.
The application described in this paper solves both problems
while significantly improving performance. It is based on Web-
mining and on the use of three Multilayer Perceptron where a
modified learning method leads to the formation of meaningful
internal representations. Such representations are then input
to a features’ map where trajectories towards or away from
fraud and other financial attributes are identified. The result
is a Web-based, self-explanatory, financial statements’ fraud
detection solution.

Keywords–Fraud Detection; Financial Knowledge Discovery;
Predictive Modelling of Financial Statements; Type of Informa-
tion Mining.

I. INTRODUCTION
This paper describes a software solution to help detecting

fraud in published financial statements. The objective is to
streamline a widely researched but scarcely used application
area. Parts of the paper were presented at the Fifth Interna-
tional Conference on Advances in Information Mining and
Management (IMMM 2015) [1] as work-in-progress.

Fraud may cost US companies over USD 400 billion
annually. Amongst different types of fraud, manipulation
of published financial statements is paramount. In spite of
measures put in place to detect fraudulent book-keeping,
manipulation is still ongoing, probably on a huge scale [2].

Auditors are required to assess the plausibility of finan-
cial statements before they are made public. Auditors apply
analytical procedures to inspect sets of transactions, which
are the building blocks of financial statements. But detecting
fraud internally is a difficult task as managers deliberately
try to deceive auditors. Most frauds stem from the top levels
of the organization where controls are least effective. The
general belief is that internal procedures alone are rarely
effective in detecting fraud [3].

In response to concerns about audit effectiveness in
detecting fraud internally, quantitative techniques are being
applied to the modelling of relationships underlying pub-
lished statements’ data with a view to discriminate between
fraudulent and non-fraudulent cases [5]. Such external, ex-
post approach would be valuable as a tool in the hands of

users of published reports, such as investors, analysts and
banks. Artificial Intelligence (AI) techniques are likewise
being developed to the same end. Detailed review articles
covering this research are available [6][7].

A discouraging fact is that analysts do not use tools
designed to help detecting fraud in published reports. This
is largely due to the fact that such tools are “black boxes”
where results cannot be explained using their expertise [3].
Since analysts are responsible for their decisions, tools
they may use to support decisions must be self-explanatory.
Moreover, the required Extract, Transform and Load (ETL)
tasks are time-consuming.

The paper aims at overcoming the above limitations.
Web-mining is first employed to find, download and store
data from published financial statements. Then fraud and two
other attributes known to widen fraud propensity space are
predicted by three Multilayer Perceptron (MLP) classifiers
where a modified learning method leads to internal repre-
sentations similar to financial ratios, readily interpretable
by analysts. Such ratios then input a features’ map where
trajectories towards or away from fraud and other financial
attributes are visualized. Diagnostic interpretation is further
enhanced with the display of past cases where financial
attributes are similar to those being analysed.

The most valuable contribution of the application de-
scribed here is its strict adherence to users’ requirements.
The paper also offers a theoretical foundation for the predic-
tion of financial attributes. Using such foundation, the paper
then shows that it is possible to improve significantly the ac-
curacy, robustness and balance of financial statements’ fraud
detection. Finally, the paper unveils an MLP training method
leading to meaningful internal representations, which are
capable of supporting analysts’ financial diagnostic.

Section II characterizes the issue at hand, mentions previ-
ous research and lays down the foundations upon which the
application is based; Section III describes the methodologies
used; Section IV reports results and data used to obtain
such results; Section V briefly describes the output and
architecture of the application; finally, Section VI discusses
limitations and benefits.

II. THEORETICAL FOUNDATIONS
Fraud detection covers many types of deception: pla-

giarism, credit card fraud, identity theft, medical prescrip-

95

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



tion fraud, false insurance claim, insider trading, financial
statements’ manipulation and other types of fraud [8][9].
Conceptual frameworks used in the detection of, say, credit
card fraud (such as Game Theory), are not necessarily
efficient in detecting other types of fraud. Neural Networks
are widely used in research devoted to the detection of
published financial statements’ fraud [10][11][12][13][14].
The latter citation contains an extensive and updated list of
papers applying analytical AI algorithms, such as the nearest
neighbour classifier, Back-propagation, the Support Vector
machine and others, to the detection of financial statements’
fraud and to other Financial Technology (Fin-Tech) tasks
namely bankruptcy prediction.

It is pointless to compare accuracy results reported in
the above-mentioned literature because samples used by
authors to test such accuracy are extremely dissimilar, some
being small and homogeneous while others are large and
varied. Class frequencies are also imbalanced in one di-
rection or in the other. Broadly, an out-of-sample overall
classification accuracy of 65% to 75% is reported for large,
non-homogeneous samples whereas for small, same-industry
same-size samples, accuracy may be as high as 86% [14]. In
all reported cases, accuracy is imbalanced: Type I and Type
II errors differ by no less than 10% often being as high as
30% in both directions.

The increasing demand for Fin-Tech tools [15][16][17]
has fostered the development of software to help detecting
several types of fraud [18]. Tools which probe transactions
for suspect patterns, as well as other internal auditing support
software, are widely available but, as far as an exhaustive
search may tell, the detection of fraud in published sta-
tements is not on offer, probably for the reasons already
stated: “black boxes” fail to meet analysts’ professional
needs while the input task required by such tools would
be cumbersome. Thus, evidence on published statements’
fraud detection performance is the one summarized above.
In any case, claims made by vendors, even when they exist,
should not be taken as evidence, especially in areas, such as
the wide and fast-growing Fin-Tech market, where products
seldom are the object of scientific scrutiny.

Using large, non-homogeneous data and strictly balanced
random sampling, the classification precision of the appli-
cation described here is 87%–88% with an imbalance of
5%. Such result is indifferently attained when using Neural
Networks, Logistic regressions, C5.0, or algorithms rely-
ing on Ordinary Least Squares (OLS) assumptions. While
most authors emphasise comparisons between performances
attained by different algorithms, in the present case the
algorithm is important solely as a knowledge-discovery tool.
The reported increase in performance should be credited
to the use of input variables reflecting the cross-sectional
characteristics of data found in financial statements. In the
following, the nature of such variables is discussed.

A. Financial Analysis
Business companies, namely those listed in stock mar-

kets, are required, at the end of each period, to account for
their financial activity and position. To this end, companies
prepare and report to the public, a collection of monetary

Figure 1. Hierarchical dependence of the topmost financial attributes.

amounts with an attached meaning: revenues of the period,
different types of expenses, asset values at the end of the
period, liabilities and others. Such reports are obtained via
a book-keeping process involving recognition, adjustments
and aggregation into a standardised set of “accounts”, of
all meaningful transactions occurring during the period. The
resulting “set of accounts” is made available to the public
together with notes and auxiliary information, being known
as the “financial statement” of the company for that period.

After being published, financial statements are routinely
scrutinised by investors, banks, regulators and other entities,
with the object of taking decisions regarding individual
companies or industrial sectors. Such scrutiny, and the
corresponding diagnostic, is known as “Financial Analysis”.

Financial Analysis aims to diagnose the financial outlook
of a company. The major source of data for such diagnostic
is the set of accounts regularly made public by the company
and by other companies in the same industrial sector. The
diagnostic itself consists of identifying and in some cases
measuring the state of financial attributes, such as Trustwor-
thiness, Going Concern, Solvency, Profitability and others.
After being identified and measured, financial attributes con-
vey a clear picture of a company’s future economic prospects
and may support the taking of momentous decisions, such
as to buy or not to buy shares or to lend money. Financial
attributes, therefore, are the knowledge set where investing,
lending and other financial decisions are based.

In the hands of an experienced analyst, sets of accounts
are extremely efficient in revealing financial attributes. It
is possible, for instance, to accurately predict bankruptcy
more than one year before the event [19]. The direction of
future earnings (up or down) is also predictable [20]. Such
efficiency in conveying useful information is the ultimate
reason why accounts are so often manipulated by managers.
Fortunately, manipulation may also be detected [4][5].

Financial analysis of a company is typically based on
the comparison of monetary amounts taken from sets of
accounts. The tool used by analysts to perform such compar-
ison is the “ratio”, a quotient of appropriately chosen mone-
tary amounts. For instance, when a company’s income at the
end of a given period is compared with assets required to
generate such income, an indication of Profitability emerges.

96

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Since the effect of company size is similar in all accounts
taken from the same company and period, size cancels out
when a ratio is formed. Thus, by using ratios, analysts
are able to compare attributes, such as Profitability, of
companies of different sizes [21]. Besides their size-removal
ability, ratios directly measure attributes, which are implicit
in reported numbers: Liquidity, Solvency, Profitability and
other attributes are associated with specific ratios. Thus, the
use of ratios has extended to cases where size-removal is not
the major goal. Indeed, ratios are used because they embody,
to some extent, analysts’ knowledge [23]. Most analytical
tasks involving accounting information require the use of
appropriately chosen ratios so that companies of different
sizes can be compared while their financial attributes are
highlighted.

Attributes examined by financial analysts are hierarchi-
cally linked: the significance and meaning of one depends on
the state of others higher up in the hierarchy (Figure 1). The
top attribute, which allows all the others to be meaningful,
is Trustworthiness: whether a set of accounts is reliable or
not. If accounts are free from manipulation, then it may
be asked whether the company is a Going Concern (it
is likely that the company will continue to exist) or not.
Only in going concerns it makes sense to assess ratio-
defined, numerical attributes, such as Solvency, Profitability
and Liquidity, which also are at the root of hierarchies.

B. Ratios as model predictors
Knowledge-discovery in financial statements is the pro-

cess of assigning each company in the database a set of logi-
cal classes/numerical values pertaining to attributes forming
taxonomies similar to those of Figure 1. The assignment
process is carried out using a corresponding set of models
that, in turn, are built using “supervised learning” where
algorithms learn to recognize classes from instances where
diagnostics are already made; but unsupervised learning is
also possible [14]. When completed, such process greatly
facilitates the task of analysts, allowing them to concentrate
on companies and conditions where algorithms may not be
able to produce accurate diagnostics. If, however, for most
of the attributes, modelling is unreliable, then knowledge-
discovery is of little use. Such is the present situation,
where only one of the many attributes analysts work with is
accurately predictable.

As mentioned, in the hands of an experienced ana-
lyst, statements published by companies reveal their fi-
nancial condition. If most attempts to extract knowledge
from such rich content did not succeed, it is probably
due to the very success of analysts. When trying to build
knowledge-discovery algorithms, authors tend to imitate
analysts, namely in the use of ratios. But, in spite of
being the chief tool of analysts, ratios are inadequate for
knowledge-discovery: first, because their random character-
istics, together with constraints they are subject to, are both
unfavourable for modelling purposes; and second, because
ratios are themselves knowledge, not just data.

First, ratios are inadequate because monetary amounts
taken from sets of accounts, as well as their ratios, obey
a multiplicative law of probabilities, not an additive law.

Figure 2. Influential cases in a scatter-plot of two typical ratio components.

Figures reported in a given set of accounts are accumula-
tions. As such, they obey a specific generative mechanism
where distributions are better described by the Lognormal
and other similar functions with long tails (influential cases)
and inherent heteroscedasticity [21], not by the Normal,
symmetrical, well-behaved distribution. Where the multi-
plicative character of financial statements’ data is ignored,
any subsequent effort to model such data is fruitless, not
so much because OLS or other modelling and estimation
assumptions are violated but due to the distorting effect
of influential cases (Figure 2). And when predictive per-
formance is the issue, the use of robust algorithms is not
recommended because the cost of such robustness is less-
ened performance. Amongst the three types of measurement,
Nominal, Ordinal and Scalar, the latter is the richest in
content. When scales are treated as ordered categories, as
in most robust algorithms, such content is lost. Ratios are
also affected by the interaction between their components,
which are bounded together by book-keeping rules [22].
The numerator of several widely used ratios, for instance,
is constrained to be smaller than the denominator. Such
constraints, in turn, curb the variability made available to
the predicting algorithm.

Second, the use of pre-defined ratios as input to most AI
algorithms, namely those performing knowledge-discovery,
entails a contradiction. When a ratio is chosen instead of
other ratios, knowledge is required to make such choice.
Each ratio embodies the analyst’s knowledge that, when two
monetary amounts are set against each other, a financial
attribute is evidenced. Ratios, therefore, convey previous
knowledge thus limiting knowledge that may be extracted
from them. Analysts use ratios because they assess one piece
of information at a time. They are unable to jointly assess
collections of distributions, their moments and variance-
covariance matrices, as algorithms do. Analysts need focus,
machines do not. Predictive models can only lose by mim-
icking analysts’ separation of knowledge in small bits in
order to rearrange it in a recognisable way.

In the following, adequate knowledge-discovery algori-
thms are shown to be able to choose, amongst a set of
monetary amounts, pairs that perform the same task as ratios.
Algorithms build their own representations in a way that is
similar to analysts’ task of selecting, amongst innumerable
combinations of monetary amounts, the ratio that highlights

97

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



a desired attribute.

C. Cross-section characterisation of reported numbers
Studies on the statistical characteristics of reported mon-

etary amounts brought to light two facts. First, in cross-
section, the probability density function governing such
amounts is nearly lognormal. Second, amounts taken from
the same set of accounts share most of their variability as the
size effect is prevalent [21]. Thus, variability of logarithm
of account i from set of accounts j, log xij , is explained as
the size effect sj , which is present in all accounts from j,
plus some residual variability εi:

log xij = µi + sj + εi (1)

µi is an account-specific expectation. Formulations, such
as (1), as well as the underlying random mechanism, apply to
accumulations only. Accounts, such as Net Income, Retained
Earnings and others, that can take on both positive- and
negative-signed values, are a subtraction of two accumula-
tions. Net Income, for instance, is the subtraction of Total
Costs from Revenue, two accumulations, not the direct result
of a random mechanism.

Given two accounts i = 1 and i = 2 (Revenue
and Expenses for instance) and the corresponding reported
amounts x1 and x2 from the same set, the logarithm of the
ratio of x2 to x1 is

log
x2

x1
= (µ2 − µ1) + (ε2 − ε1) (2)

It is clear why ratios formed with two accounts from the
same set are effective in conveying information to analysts:
the size effect, sj , cancels out when a ratio is formed. In
(2), the log-ratio has an expected value (µ2 − µ1). The
median ratio exp(µ2−µ1) is a suitable norm against which
comparisons may be made while exp(ε2 − ε1) indicates the
deviation from such norm observed in j. Ratios thus reveal
how well j is doing no matter its size. For instance, if the
median of Net Income to Assets ratio is 0.15, any company
with one such ratio above 0.15, no matter small or large, is
doing better than the industry.

In (2), upward or downward deviations from the log-
arithm of the industry norm are the result of subtracting
two residuals, each of them account- and size-independent.
The deviation ε2− ε1 from industry norms plays the crucial
role of conveying to analysts the size-independent, company-
specific data they seek. It is clear, however, that ε2 − ε1 is
only part of the size-independent, company-specific infor-
mation available in x1 and x2. When the ratio is formed, all
variability common to x1 and x2 is removed. Residuals ε1
and ε2 are uncorrelated and the size-independent, company-
specific information contained in x1 and x2 but not conveyed
by ε2 − ε1 is the variable orthogonal to ε2 − ε1, which is
ε2+ε1 [24]. Therefore, ε2+ε1 is size-independent informa-
tion not conveyed by the ratio. It is thus demonstrated that
the use of ratios as model predictors curbs the information
made available to the model. Only one dimension of the size-
independent information, ε2 − ε1, is made available while
the other dimension, ε2 + ε1, is ignored. This is yet another
disadvantage associated with the use of ratios in predictive
modelling.

D. An alternative to ratios
Given this fundamental limitation of pre-selected ratios,

it is worth asking whether amounts directly taken from
sets of accounts would not do a better job than ratios
as predictors in statistical models. Such possibility is at-
tractive because predictors obeying (1) behave exceedingly
well: distributions are nearly Normal, relationships are ho-
moscedastic and influential cases, when present, are true
outliers. Log-transformed numbers allow the use of powerful
algorithms, which make the most of existing content. In the
downside, one obvious concern is how to deal with accounts
that can take on both positive- and negative-signed values:
logarithms apply only to positive values. Another, equally
pressing concern is how to keep the influence of company
size out of such models: ratios are size-independent variables
but log-transformed account numbers are size-dependent,
indeed, most of their variability reflects just the effect of
size. Finally, the interpretation of coefficients of such models
would not be straightforward.

Consider the usual linear relationship where y is ex-
plained by a set of predictors x1, x2, . . .

y = a+ b1x1 + b2x2 + · · · (3)

In the case of a Logistic regression, y may be seen as
the linear score leading to the binary prediction. If, instead
of x1, x2, . . . log-transformed predictors obeying (1) are
included in (3), such relationship becomes

y = A+ b1ε1 + b2ε2 + · · ·+ (b1 + b2 + · · · )sj (4)

where A = a + b1µ1 + b2µ2 + . . . is a constant value and
residuals ε1, ε2, . . . now play the role of linear predictors.
The term (b1 + b2 + . . .)sj apportions the proportion of sj
(size) variability required by y. Coefficients b1, b2, . . . are
under a constraint: their summation b1+b2+. . . must reflect
the extent and sign of size-dependence in y; and where y
is size-independent, b1 + b2 + . . . must assume the value of
zero so as to bar information conveyed by sj from entering
the relationship.

Suppose, for instance, that y is indeed size-independent.
Moreover, y is being predicted by two accounts only, x1

and x2. In this case b2 = −b1 = b and (4) becomes y =
a+ b(µ2 − µ1) + (ε2 − ε1) or

y = a+ b log
x2

x1
(5)

In other words, a ratio is automatically formed so that size is
removed from the relationship modelling y. Given the vari-
ety of companies’ sizes found in cross-section relationships,
the predictive power of sj on y is, in most practical cases,
small or non-existent. In such type of models b1 + b2 + . . .
in (4) add to nearly zero. Size-related variability is allocated
to a given predictor in order to counterbalance size-related
variability from other predictors, so that y is modelled
by size-independent or nearly size-independent variability.
When building an optimal model, the algorithm assigns
the role of denominator to some predictors (negative-signed
b coefficients) and that of numerator to others (positive-
signed b coefficients). Logarithmic representations similar

98

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 3. Graphical form where the Y-axis represents log-modulus of x.

to financial ratios are thus formed. In this way, financial
attributes possessing optimal predicting characteristics, are
unveiled without the intervention of the analyst. This is a
notable trait of the methodology.

The above reasoning presupposes that y is size-
independent. By forcing the modelling algorithm to obey
b1+ b2+ . . . = 0 in (4), it is possible to build models where
y is explained solely by size-independent variability, even
in cases where the relationship is size-related. Thus, ratios
are not needed to build size-independent models. Ratios are
needed solely because financial analysts, and other users,
demand that predictors be interpretable.

The other concern, how to deal with accounts that can
take on both positive- and negative-signed values, may be
solved by using the “log-modulus” [25] or other similar
transformation. The log-modulus expands the logarithmic
transformation so as to encompass zero and negative values.
Given variable x, the log-modulus consists of using

sgnx log(|x|+ 1) (6)

instead of x (Figure 3). In this way, accumulations or
subtractions of accumulations, no matter their sign, become
statistically well-behaved.

The log-modulus transformation considerably reduces
the frequency of missing values in random samples. Missing
values are a source of bias because the probability that a
reported number is missing often is correlated to the attribute
being predicted. For instance, it is frequent to find values
of zero in Dividends and other accounts. When ratios are
formed with such values in the denominator, as is the case
of the ratio “Changes in Dividends in relation to the Previous
Year”, a missing value is created; and such missing value is
correlated with the paying or not of dividends, a predictor
of future Earnings’ changes. Other changes in relation to
the previous period will suffer from the same difficulty. But
after the log-modulus transformation, such ratios become
subtractions:

δ log x = log xt−1 − log xt (7)

where t and t− 1 express subsequent time periods and the
operator log may refer to (6) in the case of positive- and
negative-signed x. Changes expressed as in (7) no longer
increase the number of missing values. Incidentally, unlike
ratios, transformed values cannot have two meanings. In
ratios, negative-valued numerators and denominators lead

to the same ratio sign as positive-valued numerators and
denominators.

The coming sections show that models using log-
modulus transformed accounts as predictors perform better
than those using ratios; but where ratios cannot be avoided,
then the modelling algorithm is capable of extracting ratios
with optimal predicting characteristics from logarithmic and
log-modulus transformed accounts.

III. METHODOLOGY
The application described here makes use of the follow-

ing methodologies: Web-mining of financial statements; the
use, as input, of logarithmic-transformed monetary amounts
directly taken from such statements; pre-selection of model
input variables amongst a wider set of monetary amounts;
the specific architecture and training of three MLPs so
that internal representations similar to financial ratios are
formed; and finally, the interpretation of such MLP’s internal
representations via a features’ map. This section briefly
discusses such methodologies.

A. Web-mining of financial statements
Until recently, financial statements were published in a

variety of formats including PDF, MS Word and MS Excel.
Such variety, forced users and their supporting tools into
a significant amount of interpretation and manual manip-
ulation of meta-data and led to inefficiencies and costs.
From 2010 on, the Securities and Exchange Commission
(SEC) of the US, as well as the United Kingdom’s Revenue
& Customs (HMRC) and other regulatory bodies, require
companies to make their financial statements public using
the XML-based eXtensible Business Reporting Language
(XBRL). Users of XBRL now include securities’ regulators,
banking regulators, business registrars, tax-filing agencies,
national statistical agencies plus, of course, investors and
financial analysts worldwide [26]. XML syntax and related
standards, such as XML Schema, XLink, XPath and Names-
paces are all incorporated into XBRL, which can thus extract
financial data unambiguously. Communications are defined
by metadata set out in taxonomies describing definitions of
reported monetary values as well as relationships between
them. XBRL thus brings semantic meaning into financial
reporting, promoting harmonization, interoperability and
greatly facilitating ETL tasks. Web-mining of financial data
is now at hand.

The initial module of the application carries out Web-
mining of XBRL content. The user first introduces a se-
lection criteria, namely a company name or code, such as
the “Central Index Key” (CIK) and the period. Then, the
search of pre-existing indexes will identify Web locations
containing the required statement. In the US, for instance,
such location is the Securities and Exchange Commission
repository (known as “EDGAR”) containing “fillings” of
companies’ statements and other data.

The Electronic Data Gathering, Analysis, and Retrieval
(EDGAR) repository performs automated collection, valida-
tion, indexing, acceptance, and forwarding of submissions
by companies and others who are required by law to file
forms with the SEC. Its primary purpose is to increase the

99

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



efficiency and fairness of the securities market for the benefit
of investors, corporations, and the economy by accelerating
the receipt, acceptance, dissemination, and analysis of time-
sensitive corporate information filed with the agency. The
SEC’s File Transfer Protocol (FTP) server for EDGAR
filings allows comprehensive access by corporations, funds
and individuals.

The actual annual statement of companies need not be
submitted on EDGAR, although some companies do so
voluntarily. However, a report on a standardised format,
known as “Form 10-K”, which contains much of the same
information, is required to be filed on EDGAR; and since
recently filers are also required to submit documents in
XBRL format. Besides the 10-K form, other widely used
form is the 10-Q, which refers to quarterly statements. Rules
established by the SEC offer guidelines for the content and
format, including which data may be provided as part of an
Interactive Data document, and the relationship to the related
official filing.

An extremely helpful resource for FTP retrieval is the
set of EDGAR indices listing the following information for
each filing: company name, form type, CIK of the company,
date filed, and file name (including folder path). Four types
of indexes are available:

1) company, sorted by company name
2) form, sorted by form type, 10-K or 10-Q
3) master, sorted by CIK code
4) XBRL, list of submissions containing XBRL finan-

cial files, sorted by CIK code.
The application described here uses the package “XBRL”
from the R language [27] to access and retrieve SEC
filings. The XBRL package offers access to functions to
extract business financial information from a XBRL instance
file and the associated collection of files that defines its
Discoverable Taxonomy Set (DTS).

When the report from a given company and period is re-
quested by a user, an index is searched and the corresponding
document is retrieved from its Web location on EDGAR.
Next, the relevant information is put in place. Functions
provided by the XBRL package return readily available data,
complete with standard descriptions, including taxonomies.
As published taxonomy files are immutable and are used by
most filers, the package offers the option of downloading
them only the first time they are referred, keeping a local
cache copy that can be used from then on.

B. Data description and variable selection
Financial analysts base their diagnostic on several con-

curring pieces of evidence, in favour or against a priori hy-
potheses. On the other hand, the extant research on financial
statements’ manipulation suggests that fraudulent numbers
lead to detectable imbalances in financial features. For
instance, income may increase without the corresponding
increase in free cash. In order to respond to the need, in the
part of analysts, to examine concurring facts, the application,
besides predicting fraud, also predicts the state of two other
attributes mentioned in published research [4][5] as capable
of detecting such imbalances.

Therefore, after Web-mining and the log-transformation
of monetary amounts as described in Subsection II-D, three
MLP are set to separately predict three financial attributes
known to widen fraud propensity space, namely:

• Trustworthiness, comprising two classes (states):
fraudulent (manipulated, misstated) vs non-fraud-
ulent statement [4][5][7];

• Going Concern, comprising two classes: bankrupt
vs solvent [19][28][29];

• Unexpected Increase in Earnings One Year Ahead,
comprising two classes: Earnings’ increase vs Earn-
ings’ decrease one year ahead [20][30].

Trustworthiness and Going Concern are the two basic at-
tributes of financial analysis, directly influencing the way all
other attributes are interpreted. As for Earnings’ direction
one year ahead, it is, amongst the attributes occupying a
place further down in the hierarchy, one often scrutinized
by investors.

So far, Going Concern is the only predictable attribute.
In spite of the large research effort devoted to improving
Trustworthiness prediction, until now, as mentioned, results
are below the feasibility level, at 75% out-of-sample correct
classification at best, for large, non-homogeneous samples.
Besides being meagre, such results are unbalanced: one of
the states is significantly better predicted than the other. All
the previously cited authors use ratios as predictors.

Instances employed in the training and testing of the
three MLP and the corresponding input and target attributes
are extracted from the following sources:

• UCLA-LoPucki Bankruptcy Research Data [31] as
well as a list of bankrupt companies kindly provided
by Professor Edward Altman (New York Univer-
sity), covering the period 1978-2005.

• The collection of Accounting and Auditing Enforce-
ment Releases (AAER) resulting from investigations
made by the SEC against a company, an auditor,
or an officer for alleged accounting and/or auditing
misconduct, identifying a given set of accounts as
fraudulent [5], covering the period 1983-2013. This
data is made available by the Centre for Financial
Reporting and Management of the Haas School of
Business (University of California at Berkeley) [32].

• The “Compustat” repository of financial data by
Standard & Poor’s, where monetary amounts are
collected, and from which unexpected Earnings in-
creases and decreases are estimated [20][30].

Input to each of the three MLP are logarithms or log-
modulus, (6), of accounts pre-selected amongst all the aggre-
gated accounts in published statements. Accounts are taken
from two consecutive statements of a company, forming
instance j of actual period, t, and of previous period, t− 1.
Log-differences in relation to such previous period, (7), are
computed and included in the pre-selection process.

Pre-selection of input variables is carried out using the
“Forward Selection” algorithm attached to most Logistic
regressions [33]. Accounts and log-differences selected in
this way are then used as input to the corresponding MLP.

100

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I. BK = BANKRUPTCY, FR = FRAUD, EA = EARNINGS.

Log Cash and Short Term Investments Bk Fr
Log Receivables (total) Fr
Log Assets (total) Fr Ea
Log Long-Term Debt Fr
Log Liabilities (total) Bk Fr Ea
Log Liabilities (total) change Fr
Lmd Retained Earnings Bk Ea
Lmd Retained Earnings change Ea
Log Common Stock (equity) Fr
Log Revenue (total) Fr
Lmd Gross Profit Ea
Lmd Gross Profit change Ea
Lmd Tax Expense Bk Ea
Lmd Cash-Flow from Operations Bk Ea
Lmd Dividends per Share Ea
Lmd Dividends per Share change Ea

Table I lists the 16 variables that were pre-selected using
such method, together with the attribute they predict and
the type of transformation applied in each case: “log” for
the logarithmic transformation (positive-only accounts) and
“lmd” for the log-modulus transformation (accounts which
may take both positive and negative values).

C. MLP architecture and training
When analysing attributes, such as Trustworthiness, fi-

nancial analysts need to know which ratios are at work,
their position in relation to industry standards and in which
direction they are moving. In order to respond to the first of
such demands, MLP architecture and training are designed
so that internal representations similar to financial ratios are
formed in hidden nodes. Before training, MLP architecture
consists of:

1) A total of 41 input nodes corresponding to the 16
variables listed on Table I plus 24 dummies, one for
each of the “Global Industry Classification Stan-
dard” (GICS) groups [34] (each instance belongs to
one such industrial group), plus a constant-valued
dummy.

2) one hidden layer with 10 nodes in each of which
an internal representation similar to a ratio may be
formed;

3) two output nodes where outcomes are symmetrical
about zero, plus the corresponding “biases” as-
signed to the constant value of 1 and -1. Symmetry
and output node duplication is not required, in
theory, but it may facilitate training.

Hyperbolic tangents (threshold functions symmetrical about
zero) are used as transfer functions in all nodes.

Given the inclusion of 24 dummies, hidden nodes’ biases
assigned to the constant value of 1 should be redundant.
But since, during training, MLP connections (weights) are
subject to a stringent pruning whereby most connections
disappear, the constant bias often is the sole remaining
dummy.

MLP training is carried out in the usual way until a
minimum is found. Then a popular weight pruning technique
known as “Optimal Brain Surgeon” [35] is applied. The
result is a significant reduction in the number of connections.
Typically, all of the industry dummies, plus a significant
number of input variables and, often, entire hidden-layer
nodes are discarded at this stage.

Figure 4. Given values xk and xi, the ratio xkj/xij from statement j,
is formed in an MLP hidden node as log xkj − log xij when wk = −wi.

The next training step consists of an extremely crude
penalisation of synaptic weights linking inputs, the log xi in
(1), to hidden nodes: each epoch reduces the absolute value
of weights by a small margin, typically 0.001. This leads
to a kind of competition for survival amongst weights; and
it is verified that some weights are resilient in the sense
that they regain their values while others are non-resilient,
quickly decaying to zero, and are pruned.

Then, beginning with the most significant node, all but
the two largest-valued input weights are pruned. The pruning
is repeated in the other nodes, one at a time, while synaptic
weights linking input variables to all hidden nodes keep
on being subject to the described penalisation. When the
relationship being modelled is strong, as is the case of
bankruptcy prediction, this procedure is sufficient to bring
about internal representations similar to ratios; in the case
of weak relationships, the procedure requires trial and error
in the choice of the first hidden nodes to be subject to the
forced pruning of all but two weights.

Instances used in MLP training greatly differ in size
while the predicted variable is indeed predictable. Hidden
nodes, therefore, have a tendency towards self-organizing
themselves into size-independent variables, which are, at
the same time, efficient in explaining the attribute being
modelled. This is basically the definition of a financial ratio;
and the described procedure simply avoids ratios with more
than one numerator and denominator.

According to (5), in a nearly size-independent predicting
context, synaptic weights tend to survive in each node so
that their summation is nearly zero. And if nodes are further
forced into having two weights only, then such two weights
will be symmetrical (opposite signs and approximately sim-
ilar absolute values). Internal representations thus mimic the
logarithm of ratios and can be interpreted similarly to ratios
(Figure 4). Note that the term “internal representation” refers
to values assumed by each hidden node after summation
(SUM in Figure 4) but before transfer function.

In some hidden nodes, only one weight survives, not
two. This may happen where input variables are themselves
ratios, such as Dividends per Share or changes from the
previous- to the current-year account (7). This may also
happen when the relationship to be modelled requires the
presence of size as a predictor.

Although absolute values of the two surviving weights in
each hidden node are not much different from one another,
they differ across nodes. Such difference, together with
the magnitudes of synaptic weights linking them to output
nodes, crudely reflects the importance of each node for the
final classification performance. In the final step of training,

101

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 5. Position of financial attributes’ classes in 4 by 3 features’ map.

the less important hidden node is also tested for pruning us-
ing trial and error, the pruning criterion being non-significant
reduction in performance. The final result is a parsimonious
model with meaningful internal representations.

After appropriate ratios are selected, analysts interpret
their observed, company-specific deviations from expecta-
tion. In this way, expected µi from (1) are also modelled
and accounted for inside such node. Since node outputs and
attributes’ classes are both balanced, the effect of industry
dummies is to subtract industry-specific log-ratio standards
from internal representations thus making them similar to
a difference of two εi in (1). Such difference is, in log
space, what analysts seek when they compare a ratio with its
expectation. As mentioned, for the modelling tasks at hand,
industry dummies are not significantly distinctive.

D. Graphical interpretation of results
Internal representations from the three MLP are input

to a 2-dimensional features’ map [36] with 4 by 3 nodes.
When self-organisation has taken place, specific nodes or
groups of nodes in the map become associated with classes
of attributes, such as fraud and bankruptcy (Figure 5). Visual
examination of the features’ map facilitates interpretation,
both proximity to a given node and trajectories towards or
away from nodes, being informative. In this way, analysts
observe in which direction attributes move and whether a
company is approaching nodes where fraud, bankruptcy and
unexpected changes in Earnings are likely.

The self-organised map aims at facilitating the graphical
interpretation of representations created by the three MLP;
no inferential role is attributed to it.

IV. RESULTS
For the three MLP, this section lists the input weights

which survive pruning, the ratios formed from them in
hidden layers and their relative importance for explaining
the outcome. Test-set classification accuracy is also reported.
MLP performance is compared with that of Logistic regres-
sion classifiers using similar data-sets and MLP’s surviving
inputs as predictors. In this way, the performance of models
using the newly discovered ratios as predictors is compared
with that of models using ratio components as predictors.
The section concludes by showing the self-organised fea-
tures’ map at work.

A. Bankruptcy prediction
From a total of 2,997 cases of US bankruptcy filings, and

after discarding bankruptcies but the first in each company
as well as cases about which detailed financial figures are
not available, two random samples of nearly 900 different
cases each are drawn. The two samples contain companies
listed in US exchanges and present in the Standard & Poor’s
“Compustat” database. They span the period 1979-2008.
The deciles of the logarithm of Assets (total) are used
as a discrete size measure, all sizes being represented in
samples. Similarly, all the 24 GICS groups are significantly
represented in samples. Cases in the two samples are then
matched with an equal number of records from non-bankrupt
companies. Pairing is based on the GICS group, on size
decile and on year. Among financial statements fulfilling the
pairing criteria, one case is randomly selected for matching
and then such case is made unavailable for future matching.
Although the same case is not used to match more than
one bankruptcy case, other cases from the same company
in different years remain available for matching. The two
matched samples have nearly 1,800 cases each. One of the
two samples, always the same, is used as the learning-set
and the other as the test-set. Due to missing observations,
samples contain less than 1,800 cases:

Learning-set: non-bankrupt 845 (50.1%)
Learning-set: bankrupt 841 (49.9%)
Test-set: non-bankrupt (N) 837 (49.8%)
Test-set: bankrupt (P) 845 (50.2%)

When the MLP learning process is concluded, only 4 hidden
nodes persist. In each of these, the two input weights which
survive pruning are of a crudely similar magnitude and
opposite sign. Therefore, the MLP has formed 4 internal
representations, B1 to B4, which are similar to financial
ratios in log space. When ordered by magnitude of the
weight leading to output nodes, a rough measure of pre-
dictive importance, such ratios are:

B1 ratio of Cash and Short Term Investments to
Liabilities (total)

B2 ratio of Retained Earnings to Liabilities (total)
B3 ratio of Cash-Flow from Operations to Cash and

Short Term Investments
B4 ratio of Tax Expenses to Liabilities (total)

All industry-specific weights are also pruned away during
training, denoting no significant influence of the industrial
group on bankruptcy prediction. Therefore, the final MLP
model has 5 inputs (detailed in Table I), 4 hidden nodes and
2 symmetrical but otherwise identical outputs.

Test-set performance of the MLP using the above 4
log ratios (internal representations) formed from 5 inputs,
is reported in Table II together with the performance of a
Logistic regression using the same 5 inputs as predictors.

As mentioned, bankruptcy prediction is the sole case of
successful modelling of financial attributes. This is probably
due to the fact that statements were perfected so as to warn
against solvency problems. Therefore, the relationship is
strong. Performance reported here is not inferior to that
found in the literature while balance increases markedly.

102

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE II. BANKRUPTCY PREDICTION CLASSIFICATION RESULTS.

Bankruptcy MLP Logistic
predicting models (4 ratios) (5 variables)
Non-bankrupt correct (TN) 822 (98.2%) 822 (98.2%)
Non-bankrupt incorrect (FP) 15 (1.8%) 15 (1.8%)
Bankrupt correct (TP) 811 (96.0%) 814 (96.3%)
Bankrupt incorrect (FN) 34 (4.0%) 31 (3.7%)
Precision: TP / (TP + FP) 98.18% 98.19%

The number of variables and synaptic weights engaged
in modelling is less than that reported in the literature.
Robustness is therefore higher. When predictors are ratio
components rather than ratios (Logistic regression), perfor-
mance increases slightly.

B. Fraud detection
The methodology used in the building of fraud-detecting

samples is similar to the bankruptcy-prediction case. Data
used for learning and testing consists of a collection of
3,403 AAERs. It contains enforcement releases issued be-
tween 1976 and 2012 against 1,297 companies, which had
manipulated financial statements. After removing cases for
which no detailed financial data is available, the database
contains 1,152 releases. Manipulated statements from the
same company in different years are not removed from the
sample. Enron, for instance, was the object of 6 releases and
all of them are included. Two random samples of nearly 550
different cases each are then drawn. They span the period
1976-2008. All sizes and all GICS groups are significantly
represented. The two samples are matched with an equal
number of statements from companies that are neither the
object of releases throughout the period nor bankrupt in the
year of the release. Matched samples have nearly 1,100 cases
each. One of the two samples, always the same, is used to
build models and the other to test performance of models.
Due to missing observations, the size of samples available
for model-building and model-testing ends up being less than
800 cases each:

Learning set: non-fraud cases 335 (45.7%)
Learning set: fraud cases 398 (54.2%)
Test set: non-fraud cases (N) 353 (46.2%)
Test set: fraud cases (P) 411 (53.8%)

When the MLP learning process is concluded, 6 hidden
nodes persist. Five of these 6 nodes have two surviving input
weights with a relatively similar magnitude and opposite
sign. The remaining node, F5, has only one surviving weight.
The MLP has formed 5 internal representations, F1 to F4
plus F6, which are similar to financial ratios in log space.
The following list displays the representations in the 6
hidden nodes ordered by magnitude of weight leading to
the output node, a rough measure of predictive importance:

F1 ratio of Liabilities (total) to Assets (total)
F2 ratio of Cash and Short Term Investments to

Revenue (total)
F3 ratio of Long Term Debt to Common Stock

(equity)
F4 ratio of Receivables (total) to Common Stock

(equity)
F5 Change in Liabilities (total)
F6 ratio of Revenue (total) to Common Stock (eq-

TABLE III. FRAUD DETECTION CLASSIFICATION RESULTS.

Fraud MLP Logistic
predicting models (6 ratios) (8 variables)
Non-fraud correct (TN) 299 (84.7%) 303 (85.8%)
Non-fraud incorrect (FP) 54 (15.3%) 50 (14.2%)
Fraud correct (TP) 369 (90.0%) 371 (90.5%)
Fraud incorrect (FN) 41 (10.0%) 39 (9.5%)
Precision: TP / (TP + FP) 87.2% 88.1%

uity)
All industry-specific weights are pruned away during train-
ing. Therefore, the final MLP model has 8 inputs (detailed
in Table I), 6 hidden nodes and 2 symmetrical but otherwise
identical outputs.

Test-set performance of fraud-detecting MLP using 8
inputs and 6 hidden nodes is reported in Table III together
with the performance of the Logistic regression using the
same 8 inputs. The model shows a substantial increase in
out-of-sample performance, of more than 10% in relation
to previous studies using large, diversified samples, while
imbalance in the recognition of classes is reduced. Type II
error (the most expensive in this case) is clearly subdued.
When predictors are ratio components rather than ratios
(Logistic regression), performance increases.

C. Earnings prediction
The task of predicting Earnings’ changes one year ahead

is generally considered as having theoretical rather than
practical interest: it is indeed possible to predict Earnings
but, so far, the attained increase in accuracy over the tossing
of a coin is barely 10% [20].

Samples used in the prediction of the sign of unexpected
changes in Earnings (in fact Earnings per Share, EPS) one
year ahead, are not matched: classes to be predicted are
estimated from data available in each set of accounts [20]. In
the present case, after withdrawing cases with missing values
in the predicted dichotomous variable (Earnings increase vs
Earnings non-increases) or in predictors, a total of nearly
140,000 cases remain, where some 90,000 are non-increases
and 50,000 are increases. The size of the sample is higher
than in previous cases and classes are unbalanced: after
adjusting for expectation, non-increases are more frequent
than increases. Other methodological details are the same as
in previous cases. The final number of cases in the learning-
and test-set is:

Learning set: EPS non-increases 41,851 (64.3%)
Learning set: EPS increases 23,275 (35.7%)
Test set: EPS non-increases (N) 41,750 (64.4%)
Test set: EPS increases (P) 22,811 (35.6%)

Class proportions are significantly dissimilar in this case.
When the MLP learning process is concluded, 10 hidden

nodes persist, 5 of which have only 1 synaptic weight. In
the remaining 5 nodes the two surviving input weights are
of a relatively similar magnitude and opposite sign. The
MLP has formed 5 internal representations, E2, E3, E5, E6
and E7, which are similar to financial ratios in log space.
The following list displays the 10 representations formed in
hidden nodes ordered by the magnitude of weight leading to
the output node, a rough measure of predictive importance:

103

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE IV. EARNINGS PREDICTION CLASSIFICATION RESULTS.

Earnings MLP Logistic
predicting models (10 ratios) (10 variables)
EPS non-increases correct (TN) 35,783 (85.7%) 35,783 (85.7%)
EPS non-increases incorrect (FP) 5,967 (14.3%) 5,967 (14.3%)
EPS increases correct (TP) 16,153 (70.8%) 16,153 (70.8%)
EPS increases incorrect (FN) 6,658 (29.2%) 6,658 (29.2%)
Precision: TP / (TP + FP) 73.02% 73.02%

E1 Dividends per Share
E2 ratio of Cash-Flow from Operations to Tax

Expenses
E3 ratio of Retained Earnings to Liabilities (total)
E4 Change in Gross Profit
E5 ratio of Retained Earnings to Tax Expenses
E6 ratio of Gross Profit to Cash Flow from Oper-

ations
E7 Assets (total)
E8 ratio of Tax Expenses to Assets (total)
E9 Change in Retained Earnings
E10 Change in Dividends per Share

All industry-specific weights are pruned away. The final
MLP model has 10 inputs (detailed in Table I), 10 hidden
nodes and 2 symmetrical but otherwise identical outputs.

Test-set performance of the MLP Earnings-predicting
model using the 10 input just mentioned, is reported in
Table IV together with the performance of the Logistic
regression model using the same 10 inputs differently organ-
ised: instead of ratios, ratio components are used as input.
Performance is, in this case, similar for ratios (MLP) and
their components (Logistic regression).

One of the internal representations is not a ratio but the
logarithm of Assets (total). This introduces in the modelling
of Earnings’ changes the effect of size, required by this
particular relationship.

Classification results should be interpreted in the light
of the strong class imbalance observed in the training-
set [37], which is nearly 14% in this case. Namely, a
classification accuracy of 73%, obtained from an initial class
imbalance of 14% means a gain, in relation to a classifi-
cation made at random (without any previous information)
of 9% = 73% − (50% + 14%). Contrary to published
results [20][30], the final classification imbalance is not
worsened by the modelling process. In the present case,
imbalance is similar to that of the sample used to build
models while performance is significantly increased by 4%
in relation to such previously reported performance.

D. The features’ map
Data employed to self-organise the features map con-

tains instances used in the learning and testing of two of
the MLP, namely bankruptcy-prediction and fraud-detection
data. Classes, such as fraud, bankruptcy and their opposites
may occur together in some instances; and all instances
include the two classes of unexpected Earnings’ increases
and decreases. The total number of instances is 5,369.

When self-organised, the 4 by 3 nodes in the features’
map are sensitive to distinct financial attributes. Considering
the lattice of 12 nodes defined as x, y where x = 1, . . . 4
and y = 1, . . . 3, the strongest sensitivities observed are as
follows:

• Fraud in node x = 1, y = 4
• Bankruptcy in node x = 4, y = 1 and its opposite,

Solvency, in node x = 1, y = 1
• Earnings’ decrease in nodes x = 1, y = 1 and x =

1, y = 3

Figure 6 compares the frequencies associated with, respec-
tively, fraud, bankruptcy and unexpected Earnings’ decreases
in the self-organised map.

Besides graphically locating the financial position of
companies with reference to fraud and bankruptcy, the self-
organised features’ map shows the trajectory drawn by
companies, from the previous into the current year. Figure 7
illustrates the yearly evolution of the accounts of some, well-
known, financial scandals and failures, as mapped into the
self-organised lattice.

V. ARCHITECTURE, OUTPUT AND DEPLOYMENT
The most informative result provided by the application

is the set of three probabilities obtained from MLP outputs.
After being adjusted so as to become 0-1 variables, such
outputs may be interpreted as conditional probabilities of ob-
serving the associated input values when the predicted class
is fraud, bankruptcy and Earnings decrease respectively. And
when combined with Prevalence numbers (prior probabilities
of fraud, bankruptcy and Earnings decrease), MLP outputs
become posterior probabilities of fraud, bankruptcy or Earn-
ings decrease given the values observed in input variables.
Posterior probabilities are then made available to users as
outputs. Output node representations (after summation but
before the transfer function) can also be used as scores.

Each analysed company generates two sets of results
corresponding to time periods t−1 and t. Output to analysts
consists of the following:

1) Three posterior probabilities: fraud, bankruptcy and
Earnings’ decrease, with a sign indicating the di-
rection of their change from t− 1 to t.

2) The respective scores.
3) The 9 most significant values internal representati-

ons assume at period t, three from each MLP, with
a sign indicating the direction of change from t−1
to t. Values are labelled as the respective ratio.

4) Graphical description of financial position in the
self-organised features’ map and trajectories from
t− 1 to t, allowing the detection of trends towards
a given class.

5) Names, year and attributes of three instances from
the learning- and test-set, which are closest to the
instance being investigated respectively regarding
fraud, bankruptcy and unexpected Earnings’ de-
crease. The proximity criterion used in the three
cases is the value of the internal representation
formed in one of the output nodes.

The application uses a variety of packages and languages,
namely the R-language; it has been set-up, tested and
deployed in two versions, stand-alone and Web-based, the
latter having no training capability. The stand-alone version
is a Java-based set of modules, as depicted in Figure 8.

104

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 6. Class frequencies in features’ map. Node x = 4, y = 1, bankruptcy; node x = 1, y = 3, fraud; nodes x = 1, y = 1 to 3, Earnings’ decreases.

Figure 7. Trajectories drawn by well-known cases in the features’ map.

VI. CONCLUSION
Notwithstanding the abundance of research devoted to

the subject, until now, the surge in marketed Financial Tech-
nology applications did not contemplate software to support
the detection of fraud in published financial statements. This
is due to difficulties in extracting and put in place of the
required input data and also due to the “black box” nature
of researched solutions. The application presented here aims
at solving both problems, producing automated Web-mined
input and interpretable diagnostics. In the hands of analysts,
the application’s output is self-explanatory, not just pointing
out companies likely to have committed fraud but showing,
rather than hiding, financial attributes that are capable of
supporting such diagnostic.

Limitations of ratios highlighted in the paper, some of
which persist after appropriate logarithmic or log-modulus
transformations, are not sufficient to erode performance sig-
nificantly. Experiments reported in the paper show that log-
ratio use, as an alternative to log-transformed accounts, is
acceptable for predictive modelling purposes. This probably
stems from the fact that such log-ratios are discovered by
the optimisation algorithm, rather than being pre-selected by
analysts. In this way, the most performance-damaging ratios
will not be selected, meaningful as they may seem to be. Ra-
tios, in turn, bring with them some noteworthy advantages,
namely diagnostic interpretability and size-independence,
including much needed currency-independence.

The application illustrates a case of close alignment

Figure 8. Modular architecture of the stand-alone application deployed.

between users’ needs and algorithmic characteristics. The
application is also an example of knowledge-discovery,
whereby explanatory variables are discovered amongst many
candidates so that a predicting task is carried out with
optimal performance. The choice of the algorithm, the MLP,
was dictated solely by its ability to form meaningful internal
representations. Neither algorithmic performance nor the
testing of novel algorithmic capabilities was the goal here.
Out-of-sample classification results obtained are more than
10% above those reported by other authors for large-non-
homogeneous samples; but such increase in performance is
obtained simply by using, as input variables, log-transformed
accounts rather than previously-defined ratios. Appropriately
transformed variables, not algorithms, led to the discovery
of log-ratios and then to parsimonious, precise, balanced and
robust prediction.

The final goal is to build a usable tool, an apparently
simple task but which, in this particular subject area, has
eluded research effort during the last 20 years. Thus, the
ultimate test is yet to be carried out, namely whether analysts
will use the application or not.

ACKNOWLEDGMENTS

This research is sponsored by the Foundation for the
Development of Science and Technology (FDCT) of Macau,
China.

REFERENCES
[1] D. Trigueiros and C. Sam, “Streamlining the Detection of Accounting

Fraud through Web Mining, and Interpretable Internal Representati-
ons,” in Proc. IMMM 2015: The Fifth International Conference on
Advances in Information Mining and Management, Brussels, June
2015, pp. 23–26, ISBN: 978-1-61208-415-2.

105

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[2] M. Nigrini, Forensic Analytics: Methods, and Techniques for Foren-
sic Accounting. John Wiley, and Sons, 2011.

[3] W. Albrecht and M. Zimbelman, Fraud Examination. Mason, South-
Western Cengage Learning, 2009.

[4] M. Beneish, “The Detection of Earnings Manipulation,” Financial
Analysts Journal, vol. 55, no. 5, pp. 24–36, 1999.

[5] C. Dechow, G. Weill, and R. Sloan, “Predicting Material Accounting
Misstatements,” Contemporary Accounting Research, vol. 28, no. 1,
pp. 17–82, 2011.

[6] E. Ngai, Y. Hu, Y. Wong, Y. Chen, and X. Sun, “The Application of
Data Mining Techniques in Financial Fraud Detection: a Classifica-
tion Framework, and an Academic Review of Literature,” Decision
Support Systems, vol. 50, no. 3, pp. 559–569, 2011.

[7] A. Sharma and P. Panigrahi, “A Review of Financial Accounting
Fraud Detection Based on Data Mining Techniques,” International
Journal of Computer Applications, vol. 39, no. 1, 2012.

[8] K. Phua, V. Lee, and R. Gayler, “A Comprehensive Survey of
Data Mining-Based Fraud Detection Research,” Clayton School of
Information Technology, Monash University, 2005.

[9] U. Flegel, J. Vayssire, and G. Bitz, “A State of the Art Survey of
Fraud Detection Technology,” in Insider Threats in Cyber Security,
ser. Advances in Information Security, C. W. Probst, J. Hunker,, and
M. Bishop, Eds. Springer US, vol. 49, pp. 73–84, 2010.

[10] E. Kirkos, S. Charalambos, and Y. Manolopoulos, “Data Mining
Techniques for the Detection of Fraudulent Financial Statements,”
Expert Systems with Applications, vol. 32, p. 995–1003, 2007.

[11] W. Zhou and G. Kapoor, “Detecting Evolutionary Financial State-
ment Fraud,” Decision Support Systems, vol. 50, pp. 570–575, 2011.

[12] P. Ravisankar, V. Ravi, G. Rao, and I. Bose, “Detection of Financial
Statement Fraud, and Feature Selection Using Data Mining Tech-
niques,” Decision Support Systems, vol. 50, no. 2, pp. 491–500,
2011.

[13] F. Glancy and S. Yadav, “A Computational Model for Financial
Reporting Fraud Detection,” Decision Support Systems, vol. 50,
no. 3, pp. 595–601, 2011.

[14] S. Huang, R. Tsaih, and F. Yu, “Topological Pattern Discovery
and Feature Extraction for Fraudulent Financial Reporting,” Expert
Systems with Applications, vol. 41, no. 9, pp. 4360–4372, 2014.

[15] https://www.quora.com/What-are-the-biggest-FinTech-trends-in-
2015 Retrieved: May 2016.

[16] http://blog.dwolla.com/12-companies-pushing-fintech/ Retrieved:
May 2016.

[17] https://letstalkpayments.com/applications-of-machine-learning-in-
fintech/ Retrieved: May 2016.

[18] http://www.capterra.com/financial-fraud-detection-software/ Re-
trieved: May 2016.

[19] E. Altman, “Financial Ratios, Discriminant Analysis, and the Pre-
diction of Corporate Bankruptcy,” The Journal of Finance, vol. 23,
no. 4, pp. 589–609, 1968.

[20] J. Ou and S. Penman, “Financial Statement Analysis, and the
Prediction of Stock Returns,” Journal of Accounting, and Economics,
vol. 11, no. 4, pp. 295–329, 1989.

[21] S. McLeay and D. Trigueiros, “Proportionate Growth, and the
Theoretical Foundations of Financial Ratios,” Abacus, vol. XXXVIII,
no. 3, pp. 297–316, 2002.

[22] D. Christodoulou and S. McLeay, “The Double Entry Constraint,
Structural Modeling and Econometric Estimation,” Contemporary
Accounting Research, vol. 31, no. 2, pp. 609–628, 2014.

[23] W. Beaver, “Financial Ratios as Predictors of Failure,” Journal of
Accounting Research, Suplement. Empirical Research in Accounting:
Select Studies, vol. 4, pp. 71–127, 1966.

[24] D. Trigueiros, “Incorporating Complementary Ratios in the Analysis
of Financial Statements,” Accounting, Management, and Information
Technologies, vol. 4, no. 3, pp. 149–162, 1994.

[25] J. John and N. Draper, “An Alternative Family of Transformations,”
Journal of the Royal Statistical Society, Series C (Applied Statistics),
vol. 29, no. 2, pp. 190–197, 1980.

[26] T. Dunne, C. Helliar, and R. Mousa, “Stakeholder Engagement in
Internet Financial Reporting: The diffusion of XBRL in the UK,”
The British Accounting Review, vol. 45, no. 3, pp. 167–182, 2013.

[27] R. Bertolusso and M. Kimmel, “XBRL: Extraction of Business
Financial Information from XBRL documents,” 2015, CRAN repos-
itory, https://cran.r-project.org/web/packages/XBRL/index.html Re-
trieved: May 2016.

[28] E. Altman, Corporate Financial Distress. Wiley (New York), 1983.
[29] M. Bellovary and D. Giacomino, “A Review of Bankruptcy Predic-

tion Studies: 1930-present,” Journal of Financial Education, vol. 33,
pp. 1–42, 2007.

[30] J. Ou, “The Information Content of Non-Earnings Accounting
Numbers as Earnings Predictors,” Journal of Accounting Research,
vol. 28, no. 1, pp. 144–163, 1990.

[31] http://lopucki.law.ucla.edu/ Retrieved: May 2016.
[32] http://groups.haas.berkeley.edu/accounting/faculty/aaerdataset/ Re-

trieved: May 2016.
[33] D. Trigueiros and C. Sam, “Log-modulus for Knowledge Discovery

in Databases of Financial Reports.” in Proc. IMMM 2016: The Sixth
International Conference on Advances in Information Mining and
Management, Valencia, May 2016, pp. 26–31, ISBN: 978-1-61208-
477-0.

[34] https://www.msci.com/gics Retrieved: May 2016.
[35] G. Hassibi and D. Stork, “Optimal Brain Surgeon, and General

Network Pruning,” in Proc. IEEE International Conference on Neural
Networks, San Francisco, CA, 1993, vol. 1, pp. 293–299.

[36] T. Kohonen, Self-Organization, and Associative Memory. Springer
Verlag (Berlin), 1984.

[37] N. Chawla, “Data Mining for Imbalanced Datasets: an Overview,”
in Data Mining, and Knowledge Discovery Handbook, O. Maimon,
and L. Rokach, Eds. Springer US, pp. 853–867, 2005.

106

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Coordinated Task Scheduling in Virtualized Systems:
Evaluation and Implementation Details

Jérémy Fanguède, Alexander Spyridakis and Daniel Raho
Virtual Open Systems

Grenoble - France
Email: {j.fanguede, a.spyridakis, s.raho}@virtualopensystems.com

Abstract—Task scheduling is one of the key subsystems of
an operating system. Generally, by providing fairness in terms
of processor time allocated to tasks, the task scheduler can
guarantee low latency and high responsiveness to applications.
In this paper, we demonstrate that specific problems can occur
in virtualized environments, where virtual core scheduling on the
host can negatively affect process scheduling in the guest. More
precisely, there is a need to implement a communication channel
between the host and guest task scheduler, particularly when full-
virtualization techniques are used, in order to avoid latency issues
and loss of responsiveness in virtual machines, especially when
processors execute excessive workloads. After having analyzed
the potential problems in virtual machines, experiments were
performed with real world and benchmarking applications. In
this work we detail possible solutions to solve the issue previously
highlighted, and describe the proposed implementation, which is
based on a coordinated scheduling mechanism between the host
and guest systems. For testing, an embedded ARMv7 Linux-
based platform and two different task schedulers were used,
with a benchmark suite specifically designed for virtualized
environments, with which application responsiveness and latency
are measured and compared.

Keywords—KVM/ARM; embedded virtualization; coordinated
scheduling; embedded systems; task scheduling; CFS; BFS; para-
virtualization

I. INTRODUCTION

Virtualization technology offers a way to increase effi-
ciency and adaptability both in general purpose and embedded
systems, but to get an efficient virtualization solution, latency
of virtual machines and responsiveness of applications should
be guaranteed at a reasonable level. For instance, an interactive
application launched in a virtual machine should not have
much worse performance in terms of responsiveness and
latency than one executed in a host machine in the same
conditions.

In previous work, we showed that latency issues can occur
with task schedulers under some conditions [1]. We have
already experimented with this objective in mind, for storage-
I/O, which led us to the implementation of Virtual-BFQ [2][3],
a Linux I/O scheduler based on the Budget Fair Queuing
(BFQ) scheduler [4]. The work described in this paper, instead
targets process scheduling, so that it could be used as a
complementary approach. The solution described in this paper
is based on a coordinated scheduling mechanism. This type of
solution has already been implemented specifically to make
real-time hypervisors [5][6], while in this work we extend
coordinated scheduling also to non real-time tasks.

In this paper, we provide the following contributions:

A. Contributions of this paper

We highlight that in virtualized environments there are
latency problems with task scheduling, where a missing link
between the guest and the host scheduler can affect perfor-
mance negatively. In fact, there is a need to implement a
coordinated communication channel between schedulers in vir-
tual machines and the host task scheduler. As a consequence,
latency of a guest operating system can be higher, especially in
a system with many CPU-bound tasks. This results in degraded
responsiveness of applications in virtual machines, compared
to similar conditions for non-virtualized systems. To show this
problem, through experimentation, we use two different Linux
task schedulers.

Then, experimental results are reported; these results con-
firm that, in virtualized environments, when a process requires
a high portion of the processor’s time in both the guest and
host system, the latency and the responsiveness of the guest
application is not guaranteed.

A solution, described in this paper, based on a coordinated
mechanism, solves the problem highlighted previously, it is
based on the default Linux scheduler, CFS, which stands for
Completely Fair Scheduler, the implementation is described
in detail. Experimental results are reported for this extended
version of CFS, which includes the coordinated scheduling
mechanism.

An ARM-based embedded system was used to run the
experiments, it aims to be representative of modern embedded
systems and consumer devices, which have relatively small
amount of CPU resources. Finally, the virtualization plat-
form selected for this implementation is Kernel-based Virtual
Machine (KVM) of Linux together with Quick EMUlator
(QEMU), which are among the most popular solutions in
embedded virtualization.

B. Organization of this paper

The paper is organized as follows. In Section II, a de-
scription of the two task schedulers used is provided. Then,
in Section III latency problems and the lack of responsiveness
is highlighted. After describing the benchmark suite and the
experimentation methods in Section IV, the results are reported
in Section V. In Section VI, possible solutions are detailed in
order to solve the issue highlighted. Then, in Section VII the
description of a solution based on a coordinated scheduling
mechanism for the CFS scheduler is provided. Finally, in
Section VIII we report our results for the same experiments,

107

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



but with the coordinated scheduling mechanism developed for
CFS.

II. LINUX TASK SCHEDULERS

The task scheduler, also named process or CPU scheduler,
is the part of an operating system that decides which task runs
when, and on which core. The job of a scheduler is to share
the CPU time between processes that require CPU resources,
to pick a suitable task to run next if required, and to balance
processes between the different CPUs in a multi-core system.

Two Linux task schedulers were used, CFS [7], which
stands for Completely Fair Scheduler and is the default sched-
uler of the Linux kernel, and BFS [8] (see the acronym in [8]),
which is a popular alternative.

By default, Linux can handle real-time and non real-time
policies, which are implemented by the selected scheduler.
Both CFS and BFS schedulers implement their own non real-
time and share the same real-time policies. By extension, with
the term CFS or BFS we refer to both the included scheduling
policies of these schedulers, as well as the entirety of their
implementation.

BFS, which is not part of the Linux mainline kernel [9],
could be considered as an alternative, it is designed for desktop
interactivity on machines with few cores [8], and its source
code has a smaller footprint and is by design simpler. For these
reasons, BFS was also selected in the experimental results
as a comparison to CFS, in case where different behavior is
observed.

A. The Completely Fair Scheduler

The default Linux kernel scheduler, named Completely Fair
Scheduler [7], is modular and permits to use different policies
for different tasks. Linux has two main types of scheduling
policies: a real-time one for real-time task and a normal one
named fair policy for all other tasks.

Among the real time scheduling, Linux distinguishes
three policies: SCHED FIFO, a first-in, first-out policy;
SCHED RR, a round robin policy; and SCHED DEADLINE,
a policy implementing the earliest deadline first algorithm
(since kernel v3.14). Additionally within the fair scheduling
policies: SCHED NORMAL, the default Linux time-sharing
policy, and SCHED BATCH, a policy for “batch” processes.

Linux defines the static priority of a task by a value, which
ranges from 0 to 99, while the real-time scheduling class
uses values from 1 (lowest priority) to 99 (highest priority).
Processes using the fair scheduling class have necessarily a
static priority of 0. In order to determine which thread (or
process) should be run next, the Linux scheduler maintains
a list of runnable processes for each possible static priority,
and it selects the head of the list with the highest static
priority. In other words, a thread, with a higher static priority
than the current running thread which becomes runnable, will
necessarily preempt the current process. For the fair scheduling
class, the kernel uses a priority called dynamic priority, which
from a user’s point of view is also better known as the nice
value, and it ranges from -20 (highest priority) to +19.

CFS is used as the default Linux scheduler since kernel
version v2.6.23, it replaced the old scheduler: O(1). And

implements a completely fair algorithm (hence the name). The
algorithm is based on the concept of an ideal multi-tasking
processor. With such a processor, each runnable task would
run at the same time, sharing the processor power. Of course,
this behavior is not possible, but an equivalent behavior, would
be to run each runnable task for an infinitesimal amount of time
with full processing power. Due to task switching cost, CFS
only approximates this behavior.

For that purpose, CFS stores the runtime value of each task
in a variable called vruntime (stands for virtual runtime) and
tries to keep all vruntime values the closer to each other. So
the runnable task that has the lower vruntime value is chosen
to be the next task to run. The priority of a task (the dynamic
priority, i.e., the nice value) influences the way vruntime is
increased.

To handle interactive tasks, CFS does not use complex
heuristics. In fact, the concept of fair scheduling is enough
to maximize interface performance. For example, consider a
processor-bound task (e.g., an encryption calculation, a video
encoder, etc.) and a I/O-bound task (e.g., a terminal, a text
editor, etc.), which will be the interactive task. In that situation,
the scheduler should give to the interactive task a larger share
of the processor time to enhance the user experience. In fact,
this is what CFS will do: CFS wants to be fair, so each time
the interactive task become runnable, CFS will see that this
task consumed significantly less processor time than the CPU-
bound task. So, the interactive task will preempt the other,
and will be executed until its runtime reaches the value of the
processor-bound task or be blocked from an I/O request.

B. BFS - The Alternative

BFS is an alternative to CFS, it was written by Con Kolivas.
It is not in the mainline kernel and is available as source code
patches [9].

BFS focuses on a simplistic design (about 2.5 times fewer
lines of code than CFS) and aims for excellent desktop
interactivity and responsiveness on personal computers with
a reasonable amount of cores [8]. It uses a single work-queue,
O(n) look-up for all cores unlike CFS, and implements the
earliest eligible virtual deadline first algorithm for non real-
time policies.

BFS, like CFS, provides real-time task policies:
SCHED FIFO and SCHED RR, and also two others policies
for normal tasks: SCHED ISO and SCHED IDLEPRIO. The
first, SCHED ISO (for isochronous) is designed to provide
”near real-time” performance to unprivileged users. And
SCHED IDLEPRIO scheduling policy can be used to run
tasks only when the CPU would be idle otherwise.

The design of BFS makes it efficient when the number of
running processes is small (inferior than the number of CPUs),
which is normally, according to its author [8], a common use
case for a desktop computer.

III. POTENTIAL PROBLEMS IN VIRTUALIZED
ENVIRONMENTS

In a virtualized environment a guest system is seen, from
the host scheduler, as just one, or more additional jobs to

108

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



10

100

1000

10000

100000

0 1 2 3 4 5 6 7 8

La
te

nc
y 

(µ
s)

Total Number of Workloads

no guest
0 guest wl
1 guest wl
2 guest wl

(a) CFS

10

100

1000

10000

100000

0 1 2 3 4 5 6 7 8

La
te

nc
y 

(µ
s)

Total Number of Workloads

no guest
0 guest wl
1 guest wl
2 guest wl

(b) BFS

Figure 1. Latency results

schedule, without any awareness from the host of the fine-
grained requirements of the corresponding guest scheduler.
For example, a new spawned task in the guest system could
be scheduled in a different way by the guest scheduler, but
this information is not visible on the host side. Under certain
conditions, this could lead to undesired behavior.

To highlight the problem we can consider a system, with
two physical CPUs and a guest with one virtual CPU. Two
CPU-bound workloads are launched in the host (one per CPU)
and one in the guest (one per virtual-CPU). In this situation, the
task scheduler will share fairly the processor time between the
vCPU thread (which runs a workload) and the two workloads
in the host, since these three tasks are quite similar in terms
of CPU time demand.

When an interactive task is started in the guest system,
the guest scheduler will detect this new task and assign a
substantial amount of the vCPU time compared to the work-
load running in the same guest. On the host side though, the
scheduler sees only three processes that request a large amount
of CPU time for only two CPUs. So, the host scheduler has
absolutely no reasons to privilege the vCPU thread compared
to other processes (workloads). Additionally, the latency of this
interactive task will probably be higher than in a host system
with the same number of workloads (aside from the constant
overhead of KVM/QEMU). This problem persists for whatever
value the priority of the interactive task in the guest is set to
(could be a real-time one), since the priorities and policies are
not made aware to the host system.

IV. EXPERIMENT METHOD AND BENCHMARK SUITE

To highlight the problem described above, we set up
a benchmark suite in order to measure, in particular, the
latency of the system. We used the tool, cyclictest, which is
usually used to measure latency on a Real Time Linux (i.e,
patched with rt patches) [10]. Generally, cyclictest is used

to measure the latency of real-time thread/process (schedule
with SCHED FIFO or SCHED RR), but it can also be used
with normal (SCHED NORMAL) threads. For each latency
measurement cyclictest is run twice, each one with a 100000
loop, which means that the latency provided by the benchmark
is the average of 200 thousands measurements. The following
command line is used “cyclictest -q -n -l 100000 -h 5000” to
generate the results, and the latency histogram is also retrieved
(-h option) in order to analyze in more detail.

The second kind of benchmark measures the start-up time
of an application. We simply measured how long it takes from
when an application is launched to when an application is
ready. This benchmark gives an idea of the responsiveness of
an application. The start-up time is measured with hot caches,
to avoid any I/O perturbations. For each configuration (i.e.,
number of workload in the host and guest), 100 measurement
iterations are performed, and the average, as well as the
standard deviation are retrieved.

As workload, we used a simple program that does an
infinite loop and, therefore has a very low memory footprint.

V. EXPERIMENTAL RESULTS

We executed our experiments on a Samsung Chromebook
equipped with an ARMv7-A Cortex-A15 processor (dual-core,
1.7 GHz) and 2 GB of RAM. Both the host and the guest
run upstream Linux v3.17 with the PREEMPT configuration
option enabled.

A. Latency

In order to measure latency, we used the cyclictest tool and
the number of workloads is kept the same as in the start-up
time test. The result of this experiment is shown in Figure 1,
where latency is measured in microseconds and represented in
a logarithmic scale on axis Y.

109

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



For the host and guest system we employed up to 8 and
2 workloads, respectively. Axis X corresponds to the total
number of workloads, i.e., host plus guest workloads. The
output of the results are four different curves:

no guest: No virtual machine, serves as reference, the appli-
cation is launched in the host

N guest wl: With N workloads in the guest, the application
is launched in the guest. With N ranging from 0 to 2.

We can notice that, with the CFS scheduler (Figure 1a),
as soon as there are more workloads than physical cores (total
of two cores in the system, latency increases significantly for
the critical curves, which are 1 guest wl and 2 guest wl)
and with at least one workload in the guest. By adding more
workloads, this behavior persists until values are not suitable
for interactive usage. This kind of result confirms the issue
highlighted in Section III, where an interactive application in
a virtualized system can have an extremely high latency.

Also, it worth noting that the latency is better with 2 guest
workloads than with 1 guest workload when the total number
of workloads is high. This behavior is perfectly explainable
due to the difference in the number of workloads in the host.
For instance, in the specific case of 4 total workloads, when
we have 1 guest workload the host system sees four main
processes requesting a high amount of CPU time for only two
CPUs, but when we have 2 guest workloads, there are only
three processes that still share two CPUs. In the latter case, the
process corresponding to the vCPU has more CPU time: this
could lead, depending on the efficiency of the guest scheduler,
to a better latency compared to the former case.

With BFS (Figure 1b), the results are less obvious, but
we can still notice the difference between virtualized and
normal environments, and between the curves of 1 or 2 guest
workloads and the curve of 0 guest workloads.

Although our objective is not to purely compare the two
schedulers, which has already been done [11], we can remark
that even with no virtual machines (curve no guest), latency
with BFS increases steadily, contrary to CFS. This is probably
due to the fact that BFS is not designed to be efficient when the
number of running tasks is higher than the number of physical
cores [8].

We can also analyze the histogram provided by the
cyclictest results to compare the distribution of latency. Fig-
ure 2 shows the two latency histograms on a virtual machine
without any workload. We can notice that even if the average
value is slightly lower with CFS, the BFS case exposes more
converged values with a lower maximum.

In Figure 3, two cases are compared for CFS latency
measured in a virtual machine. Both test cases have the same
amount of CPU-bound workloads, but distributed in a different
manner. In the first case all workloads reside in the host, while
in the second, one of the workloads is reserved for the guest.
Although the distribution of samples for low latency is quite
similar for both cases, in the case where one of the workloads
is in the guest, we still observe a significant amount of samples
in the range of 200 to 5000 µs. This is different from the first
case, where almost all samples are around the 100 µs mark.

1

10

100

1000

10000

100000

1e+06

1 10 100 1000

N
um

be
r 

of
 S

am
p

le
s

Latency (µs)

Latency in a virtual machine
CFS average: 90 µs
BFS average: 118 µs

BFS
CFS

Figure 2. Guest Latency compared between BFS and CFS

1

10

100

1000

10000

100000

1e+06

1 10 100 1000

N
um

be
r 

of
 S

am
p

le
s

Latency (µs)

Latency of CFS in a virtual machine

3 host wl, 0 guest wl
2 host wl, 1 guest wl

Figure 3. CFS latency in a virtual machine, compared between 3 host
workloads and 2 host and 1 guest workloads

B. Start-up Time

Next, we measure the start-up time of an application. We
choose the xterm application because its start-up time can be
easily measured. In addition, this application was also selected
to measure performance of the BFQ and Virtual-BFQ I/O
scheduler [2] [3] [4].

As we can see in this Figure 4a, which represents the
startup time measured with the CFS scheduler, the curve
corresponding to a measurement in the host (no guest) has a
slightly positive constant slope. This increase is not unexpected
because CFS tries to guarantee only fairness: an increase in
the number of CPU-bound can negatively affect the start-up
time of a new application. Curve 0 guest wl corresponds to
the case in which there is no workload in the guest, but only
in the host. We can see that this curve almost follows curve
no guest, where a constant overhead is observed.

110

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

S
ta

rt
-u

p 
T

im
e

 (
s)

Total Number of Workloads

no guest
0 guest wl
1 guest wl
2 guest wl

(a) CFS

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

S
ta

rt
-u

p 
T

im
e

 (
s)

Total Number of Workloads

no guest
0 guest wl
1 guest wl
2 guest wl

(b) BFS

Figure 4. Start-up time results

In view of the problem highlighted above, the critical
scenarios are the ones corresponding to the curves 1 guest
wl and 2 guest wl, more particularly when the number of
workloads in the host is equal or greater than number of
physical cores (in our case 2). In fact, when vCPU threads are
allowed to use all available cores, the results are acceptable
as the start-up time remains quite low (case 1 guest wl with
a total workload of 1 and 2, and with 2 guest wl with 2 and
3 total workloads). To summarize our test case results, when
the number of workloads in the host is higher than two, the
start-up time increases significantly.

With the BFS scheduler (Figure 4b), although the ap-
pearance of the curves seems quite different, we have the
same behavior: higher start-up times when there are too many
workloads.

To sum up, our results are coherent both for start-up
times as well as latency. Moreover, they clearly prove that,
in scenarios where a workload is present in both the guest and
host, the responsiveness of an application in the guest can not
be guaranteed.

VI. SOLUTIONS

For the scheduling problem described in the previous
chapters, there are two possible solutions that are proposed
below. First, scheduling via a simple static prioritization policy
and second, a coordinated solution that enables communication
between the schedulers of the host and guest systems.

A. Static prioritizing

A straightforward solution could be a static prioritization
scheme, by simply increasing the priority of the QEMU vCPU
threads, or by changing the scheduling policy to a real-
time one. This solution will allow QEMU/KVM to avoid
interference from other tasks in the host system (if there are
no other real-time threads). This method will result in a better

latency, in particular a reduction of the maximum latency [6].
With this solution though, the guest is always privileged
even when it does not execute an interactive program. This
solution can be useful for simple use cases, i.e., when a guest
system which executes soft real-time applications needs to
be prioritized compared to other guests or applications. But
in more demanding use cases, where efficiency is required,
statically raising the priority of a vCPU is not an option.

B. Coordinated scheduling

Instead of prioritizing QEMU threads statically, another
solution could be to boost these threads only when it is
necessary, i.e., temporary increasing the priority or changing
the scheduler policy, when the guest system requests it. It is
a sort of dynamic prioritizing with a coordinated scheduling
mechanism: the guest kernel detects when it needs higher pri-
ority, and informs the host system about it. This co-scheduling
mechanism was already implemented successfully for Virtual-
BFQ [3], therefore, the communication mechanism could be
equivalent to the one developed for that storage I/O scheduler.

This type of solution has already been implemented and
evaluated, especially to make KVM a real-time hypervi-
sor [5] [12] on the x86 architecture. Such attempts mainly
focused to run a real-time Linux OS as a guest, thus, when
a guest executes a real-time thread it informs the host of its
current scheduling policy and priority, the host system then
has to pass on this policy and priority to the affected QEMU
thread.

In order to extend this coordinated scheduling mechanism
also to non real-time applications, a mechanism to detect
interactive applications in the guest system is needed. Heuristic
algorithms have to be added for this purpose.

The communication mechanism between the host and guest
scheduler, is a crucial part, it needs to be fast or at least not
too frequent. The solution chosen in the Virtual-BFQ [3] I/O

111

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



scheduler is to use, a special ARM instruction, HVC, that
results in a hypervisor trap. Moreover, the cost of calling this
instruction, around 2000 CPU cycles (for an ARM Samsung
Chromebook), is not very expensive and can fit the requirement
of a task scheduling coordinated mechanism.

VII. COORDINATED SCHEDULING PROOF OF CONCEPT
FOR CFS

We choose to implement a coordinated mechanism for the
CFS scheduler as a proof of concept for ARM processors.
A similar mechanism has been also developed for the BFS
scheduler, but for the sake of clarity and simplicity only the
CFS implementation and its results are detailed, since they are
very similar to BFS. This implementation is based on the HVC
instruction as a communication mechanism between the guest
and the host. The virtual machine is able to inform the host
when it wants to be prioritized, depending on the real-time
or interactive tasks that are executed, as well as when it does
not need any prioritization anymore, i.e., a “deboost”. This
communication mechanism, using HVC, is wrapped around
the “paravirt”[13] and “hypercall” infrastructure of Linux.
Since this “paravirt” and “hypercall” infrastructure does not
exist, yet, for KVM on ARM, we had to implement it. This
implementation is described in the following sections.

A. Paravirt ops interface for ARM

Linux already provides a way to perform some paravirtual
actions through an infrastructure named paravirt-ops
(pv-ops for short)[13]. This API is used to run para-
virtualized virtual machines on multiple hypervisors with
the same kernel binary. This means that the same kernel
binary can run on bare hardware, or on hypervisors such as
VMWARE VNI or Xen, and it can be para-virtualized or fully
virtualized[14].

This infrastructure exists for multiple architectures and hy-
pervisors, but not for KVM on ARM, the virtualization solution
we use. Therefore, a basic paravirt-ops implementation
was developed. It is based on a patch series that enables
paravirt-ops for Xen on ARM/ARM64[15], thus, only
the KVM related part was developed.

The paravirtual functions require a hypercall implemen-
tation, to be able to send information to the host system.
Therefore, hypercall functions specific to KVM have been im-
plemented into the KVM code base of the Linux kernel. These
functions use the HVC instruction of the ARM architecture,
with the immediate argument of the HVC instruction being a
constant integer used to recognize a paravirt call (from a PSCI
call, for instance, which can also use an HVC instruction[17]).
The parameters of the hypercall are passed through the scratch
registers, r0 contains the identification number of the hypercall
and registers r1 to r3 represent the potential arguments for
this hypercall. Figure 5 details the implementation of the
kvm_hypercall1, which is the hypercall implementation
for hypercalls with one parameter.

Those hypercalls are called from the paravirt-ops
implementation of each paravirtualized subsystem. In our case,
it simply consist of pointers to functions, stored in a structure
that represent the paravirt subsystem. Those functions are

static inline int kvm_hypercall1(u32 num, u32 arg1)
{

register u32 n asm("r0"); /* Hypercall ID */
register u32 r asm("r0"); /* Returned value */
register u32 a1 asm("r1"); /* First argument */

n = num; /* Hypercall ID is stored in r0 */
a1 = arg1; /* The first argument is stored

in r1 */
__asm__ __volatile__(

__HVC(KVM_IMM)
: "=r" (r) : "r" (n), "r" (a1) : "memory"
); /* Inline assembly to call HVC

instruction */

return r;
}

Figure 5. Source code for the hypercall “1” of KVM on ARM

called if the paravirt-ops infrastructure is enabled for the
hypervisor on which the virtual machine is running.

For our needs a paravirt-ops interface named
pv_cosched_ops was added. Along with a new hypercall
named KVM_HC_COSCHED. The pv_cosched_ops
paravirt interface contains three functions:

• New task, new_task()
Called each time a new process is created. We use this
function to implement a heuristic mechanism to detect
which are the tasks that need to be prioritized. This
function is called from wake_up_new_task() in
the Linux kernel code (kernel/sched/core.c)[16].

• Activate task, activate_task()
Called each time a task becomes runnable. That is
to say, each time a task that was waiting voluntary
or due to an I/O wait becomes runnable again. We
also use this function for the detection mechanism
of the task to prioritize. This function is called from
the function activate_task() in the Linux kernel
(kernel/sched/core.c).

• Schedule, schedule()
Called each time a new task is scheduled. It
is in this paravirt function that the hypercall
KVM_HC_COSCHED is performed; to request a
boost or a deboost. This function is called from
__schedule() in the Linux kernel code (ker-
nel/sched/core.c).

On the host side, HVC instructions executed by the guest
are trapped by KVM (in function handle_hvc() in arch/ar-
m/kvm/handle exit.c), and thus, can be handled correctly, the
immediate argument of the HVC instruction is also checked
to be sure that it is a hypercall and not something else. Then,
KVM can perform the corresponding action to this hypercall
according to the value retrieved from r0.

For the hypercall we added, KVM_HC_COSCHED. It takes
only one argument, which is an integer set to 1 if the guest
needs to be prioritized and 0 if it does not need this anymore.

112

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



B. Host side

The modifications done in the host side are located in
the KVM and scheduler code base of Linux. We had to
implement the “backend” of the KVM_HC_COSCHED hy-
percall, which retrieves the argument of the hypercall and
performs the corresponding actions. Thus, according to the
argument, which could be 0 or 1 the hypercall handler will
finally invoke the functions coshed_boost_task() or
coshed_deboost_task() on task current. The task
current is always a vCPU thread in that case.

The added function cosched_boost_task() lives in
the scheduler code base of Linux (kernel/sched/core.c), it
takes a struct task_struct as an argument, which
is the task to prioritize (although in our case this func-
tion is always called with current as an argument). It
boosts the priority of all threads associated to this task,
i.e., the potential other vCPU threads and the I/O threads.
We choose to prioritize those processes with a SHED_RR
policy of priority 1. For this purpose, it invokes the func-
tion sched_setscheduler_nocheck() to change the
scheduling policy of these tasks.

The function cosched_deboost_task() does the re-
verse operation, that is to say it deboosts all the threads related
the virtual machine, so that the policy of the processes is re-set
to SCHED_NORMAL.

C. Guest side

On the guest side the modifications consist of call-
ing the hypercall to request a boost or a deboost at the
right time. Therefore, the schedule() paravirt function of
pv_coshed_ops is called from the core __schedule()
function (in kernel/sched/core.c)[16] equipped with the next
task to schedule as a parameter. A test on this future process
to run is performed to determine if this process needs to be
prioritized or not, according to this information the hypercall
is executed with the correct argument (boost or deboost).

Importantly enough, the time needed to perform a hypercall
is not negligible, especially because of the HVC instruction,
trapped by KVM. We estimate that the guest to host plus
host to guest context switch, is around 2.1K cycles for the
Samsung ARM Chromebook with Linux kernel v3.17. Thus, if
the number of hypercalls is too frequent the performance will
be worse than without the co-scheduling mechanism due to
this overhead. So, in order to solve this problem, the guest
will request a boost for a process, for at least a minimal
period of time, i.e., the guest guarantees that it will not require
a prioritization period inferior of the minimal boost time.
The pseudo-code of this paravirtual schedule() function
is detailed in Figure 6.

Function need_to_be_boosted() determines whether
a task deserves to be prioritized or not. All tasks managed
by a real time policy (i.e., SCHED_FIFO, SCHED_RR and
SCHED_DEADLINE) are qualified for being “boosted”, it
corresponds to all the tasks that have the prio field of
the struct task_struct strictly inferior to 100. For
tasks managed by the fair policies (i.e., SCHED_NORMAL
and SCHED_BATCH), a linked list of all tasks to prioritize
is maintained, this is where the two other paravirt functions
are useful: New task and Activate task.

function pv_cosched_ops.schedule(next_task):
static start_time /* Time on which a task

needed a boost */
static boosted = false /* Static variable that

stored the state of the guest */
if need_to_be_boosted(next_task):

start_time = current_time() /* Time is
updated */

if not boosted:
/* Ask for a boost */
kvm_hypercall1(KVM_HC_COSCHED, 1)
boosted = true

else if boosted:
now = current_time()
/* Check if enough time has been spent

on boost */
if (start_time + MIN_BOOST_TIME) <= now:

/* Ask for a deboost */
kvm_hypercall1(KVM_HC_COSCHED, 0)
boosted = false

Figure 6. Pseudo-code of the paravirtual “schedule” function

Each time a new task is created the paravirt func-
tion new_task() adds this task to the prioritized list of
tasks and each task has a counter associated and initial-
ized to a positive value. This paravirt function is called
form wake_up_new_task() in Linux (kernel/sched/-
core.c). Each time a task of this list is scheduled, its counter
is decremented (in the schedule() paravirt function), and
when it reaches 0 the task is removed from the list. The
counter is incremented each time a task is woke-up from
a voluntary sleep, that is to say, a sleep caused by the
task itself, e.g., a wait for a I/O job or a timer, this is
done in paravirt activate_task(), which is called from
activate_task() in Linux (kernel/sched/core.c).

VIII. EXPERIMENTAL RESULTS WITH COORDINATED
SCHEDULING

We repeated the same experiments as in Section V, but with
the co-scheduling mechanism previously described. We report
the results for the CFS scheduler, including latency and start-
up time tests. The testing platform is once again Samsung’s
ARM Chromebook with version 3.17 of the Linux kernel.

A. Latency

The selected application to measure latency while testing
is cyclictest. The minimal prioritization time (minimal boost
time) selected is 500 µs, which according to our tests cor-
responds to the best compromise between performance and
granularity in the coordination mechanism.

The results are compared to the ones reported in Section V,
Figure 1a. The first four curves are kept the same for reference,
and the results corresponding to co-scheduling are curves: 0
guest wl with co-sched, 1 guest wl with co-sched and 2 guest
wl with co-sched. The same cyclictest command line is used
(two times, 100000 measurements, with a default interval of 1
ms).

113

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



10

100

1000

10000

100000

0 1 2 3 4 5 6 7 8

La
te

nc
y 

(µ
s)

Total Number of Workloads

no guest
0 guest wl
1 guest wl
2 guest wl

0 guest wl with co-sched
1 guest wl with co-sched
2 guest wl with co-sched

Figure 7. CFS latency results with and without coordinated scheduling
mechanism

1

10

100

1000

10000

100000

1e+06

1 10 100 1000

N
um

be
r 

of
 S

am
p

le
s

Latency (µs)

Latency with 2 host workloads and 1 guest workload
CFS average: 1921 µs

CFS with co-sched average: 87.5 µs

CFS
CFS co-sched

Figure 8. Latency in a virtual machine compared between CFS and CFS
with a co-scheduling mechanism

The plot in Figure 7 represents the results in CFS, with
and without co-scheduling. As we can see, the curves with
the co-scheduling mechanism (the last three) are now almost
completely horizontal, and the latency increase of the curves
with one and two guest workloads is significantly improved.

Figure 8 represents the histogram of the distribution of the
latency measured by cyclictest for the case where the system
is loaded with two host workloads and one guest workload.
First, we notice than the average latency with coordinated
scheduling is now close to the average latency of a system
without workloads, given the high value for CFS without
coordinated scheduling (1921 µs). The distribution of latency
is also better since there are less overall values in the high
range.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

S
ta

rt
-u

p 
T

im
e

 (
s)

Total Number of Workloads

no guest
0 guest wl
1 guest wl
2 guest wl

0 guest wl with co-sched
1 guest wl with co-sched
2 guest wl with co-sched

Figure 9. CFS start-up time results with and without coordinated scheduling
mechanism

B. Startup Time

The start-up time measurements were also tested with the
coordinated scheduling mechanism, where latency measure-
ments are compared to the initial tests found in Figure 4a.

The plot in Figure 9 shows the start-up time results of
xterm, with and without the coordinated scheduling mechanism
in CFS. The minimal prioritization time used is also kept at
500 µs. We can observe a significant improvement since the
curves with the coordinated scheduling mechanism have, a
lower slope, and the difference with the no guest curve is
almost constant.

IX. CONCLUSION AND FUTURE WORKS

In virtualized environments, we highlighted that the task
scheduler in the host, can fail to preserve low latency for the
guest environment, and thus to maintain responsiveness when
the system is loaded with CPU-bound programs in certain
conditions. The behavior of an interactive application inside
a guest will be masked by other processes requiring a lot of
CPU time in the host, and the attempts of the guest scheduler
to enhance the responsiveness of this application may be
ineffective. This issue mostly occurs when the number of CPU-
bound processes is higher than the number of physical cores
in the system.

Furthermore, from this work, it is shown that a coordinated
scheduling mechanism can be used for process scheduling, as
a way to achieve lower latency and high responsiveness in
an over-committed virtual environment. The target platform
used for the implementation and testing of this mechanism
was based on an ARMv7 embedded system with the KVM
hypervisor. Additionally, a new paravirtual interface for the
scheduler was introduced, which makes easier the implemen-
tation and deployment of a coordinated scheduler.

The presented implementation of coordinated scheduling
is still a proof of concept, and further optimization and
regression testing is needed, especially in the area of task

114

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



detection heuristics. Finally, an extension for tests with more
complex scenarios, including more than one virtual machines
and multiple vCPUs, is under way.

ACKNOWLEDGMENT

This research work has been supported by the Seventh
Framework Programme (FP7/2007-2013) of the European
Community under the grant agreement no. 610640 for the
DREAMS project.

REFERENCES

[1] J. Fanguède, A. Spyridakis, and D. Raho, “Towards Coordinated Task
Scheduling in Virtualized Systems,” ADVCOMP 2015, The Ninth
International Conference on Advanced Engineering Computing and
Applications in Sciences, 2015, pp. 106-111.

[2] A. Spyridakis and D. Raho. “On Application Responsiveness and
Storage Latency in Virtualized Environments,” CLOUD COMPUTING
2014, The Fifth International Conference on Cloud Computing, GRIDs,
and Virtualization, 2014, pp. 26-30.

[3] A. Spyridakis, D. Raho, and J. Fanguède, “Virtual-BFQ: A Coordinated
Scheduler to Minimize Storage Latency and Improve Application Re-
sponsiveness in Virtualized Systems,” International Journal on Advances
in Software, vol 7 no 3 & 4, 2014, pp. 642-652.

[4] P. Valente and M. Andreolini, “Improving application responsiveness
with the BFQ disk I/O scheduler,” Proceedings of the 5th Annual
International Systems and Storage Conference (SYSTOR’12), June
2012, p. 6.

[5] J. Kiszka, “Towards linux as a real-time hypervisor,” In Proceedings of
the 11th Real-Time Linux Workshop, 2009, pp. 215-224.

[6] R. Ma, F. Zhou, E. Zhu, and H. Guan, “Performance Tuning Towards
a KVM-based Embedded Real-Time Virtualization System,” Journal of
Information Science and Engineering 29.5, 2013, pp. 1021-1035.

[7] “CFS scheduler,” [retrieved: February 2016]. Available: http://lwn.net/
Articles/230501/

[8] C. Kolivas, “BFS FAQ,” [retrieved: February 2016]. Available: http:
//ck.kolivas.org/patches/bfs/bfs-faq.txt.

[9] C. Kolivas, “BFS Patches,” [retrieved: February 2016]. Available: http:
//ck.kolivas.org/patches/bfs/3.0/.

[10] “Cyclictest,” [retrieved: February 2016]. Available: https://rt.wiki.
kernel.org/index.php/Cyclictest

[11] T. Groves, J. Knockel, and E. Schulte. “Bfs vs. cfs scheduler compari-
son,” 2009.

[12] M. Aichouch, J-C. Prevotet, and F. Nouvel, “Evaluation of an RTOS on
top of a hosted virtual machine system,” In Design and Architectures
for Signal and Image Processing (DASIP), 2013 Conference on. IEEE,
2013, pp. 290-297.

[13] “Linux kernel paravirt ops documentation,” [retrieved: February
2016]. Available: http://lxr.free-electrons.com/source/Documentation/
virtual/paravirt ops.txt

[14] “Xen Paravirt ops,” [retrieved: February 2016]. Available: http://wiki.
xen.org/wiki/XenParavirtOps

[15] S. Stabellini, “Xen ARM/ARM64 CONFIG PARAVIRT patch series”
[retrieved: February 2016]. Available: http://lists.xen.org/archives/html/
xen-devel/2014-01/msg00851.html

[16] “Linux process scheduler core code file,” [retrieved: February 2016].
Available: http://lxr.free-electrons.com/source/kernel/sched/core.c

[17] “PSCI Linux documentation,” [retrieved: February 2016]. Available:
http://lxr.free-electrons.com/source/Documentation/devicetree/bindings/
arm/psci.txt

115

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Enterprise Integration Modeling 

A Practical Enterprise Integration Solution Featuring an Incremental Approach via Prototyping 

 

Mihaela Iridon 
Cândea LLC 

Dallas, TX, USA 
e-mail: iridon.mihaela@gmail.com 

 
 

Abstract— As larger and more complex line-of-business (LoB) 
software systems emerge and grow within an organization so 
does the need for such systems to interact with each other and 
exchange data, making it imperative to design flexible, scalable 
integration architectures and frameworks to support a robust 
and well-performing enterprise system. System integration is a 
multi-faceted undertaking, ranging from low-level data sharing 
(Shared Repository or File Sharing), to point-to-point 
communications (Remote Procedure Invocation via Service 
Orientation), to decoupled data exchange architectures 
(Messaging). It is not uncommon to build entire integration sub-
systems responsible not only for exchanging information 
between systems (commands and notifications) but also for 
potentially more complex business logic orchestration across the 
entire enterprise (Message Broker). Moreover, implementing 
large integration solutions carries a considerable amount of risk 
so it is imperative that such solutions be validated by releasing 
functional prototypes to a smaller client bases in order to 
ascertain the benefits of - and perhaps the clients’ interest in - 
delivering new features. This paper is contemplating a practical 
data notification and synchronization integration solution that 
allows multiple enterprise domains to share data that is critical 
for business operations. The solution features an incremental 
delivery approach based on initial prototyping that allowed for 
additional market analysis and a gradual integration. The 
article presents the architecture achieving this business 
objective, together with the corresponding system models and 
design artifacts. It described the data integration solution 
realized using a broker-based messaging approach employing 
various enterprise integration patterns, as well as the initial 
synchronous functional prototype and the many benefits of 
software system prototyping in general. 

Keywords-enterprise integration; system modeling; data 
integration; canonical model; integration patterns; prototyping; 
simulation; testing. 

I.  INTRODUCTION 

Within an enterprise, system integration solutions are 
usually designed and implemented as an afterthought, as an 
attempt to build or to expand a new or existing enterprise 
architecture comprised of heterogeneous legacy system. It 
may be safe to say that most companies do not start with an 
integrated enterprise architecture but rather a core domain 
(also referred to as a vertical), which will eventually grow and 
become part of a larger enterprise system as the industry case 
described in [1]. In many cases, such integration is achieved 
by employing various off-the-shelf integration products, such 

as Microsoft’s BizTalk [2] or TIBCO’s Integration Platform 
[3]. 

Software system integration comes in different flavors, 
depending on the business objectives, the overall enterprise 
architecture, and ultimately the realization approach chosen. 
In Section II, we will investigate these driving factors and then 
present a concrete implementation approach and its models in 
Section III, as it has been proposed and adopted by a provider 
of the nation’s largest portfolio of benefit and payroll products 
and services designed to help more than 200,000 small and 
medium-sized businesses [1]. 

The beginning of Section III also examines the motivation 
behind this paper by attempting to set the right expectations 
with the reader and to rationalize the purpose of the technical 
artifacts gathered here. It strives to provide relevant context 
and comprehension that underscores the focal point of this 
document: a practical application of integration patterns and 
system integration modeling towards building a concrete 
industry solution, with the intention of sharing experience, 
approaches, challenges, and design artifacts that are neither 
trivial nor stereotypical. 

The present article is an elaboration of the “Enterprise 
Integration Modeling: A Practical Enterprise Data Integration 
and Synchronization Solution” paper presented at IARIA’s 
First International Conference on Fundamentals and 
Advances in Software Systems Integration (FASSI 2015) [1]. 
This paper focuses on architectural modeling applied in a real-
case enterprise implementation, but also captures relevant 
aspects regarding prototyping as a tool for analysis and risk 
mitigation that enabled a phased market release.  

The central topic described in this paper represents a data 
integration and synchronization blueprint aimed at 
implementing the “Maintain Data Copies” data integration 
pattern [4] by means of a decoupled integration mechanism 
realized on a custom broker-based messaging architecture [1] 
[5] [6]. The data payloads exchanged between the loosely 
coupled sub-systems abide to a ubiquitous integration 
language, referred to as the canonical model [7] and is 
described in Section IV. This model is the unified abstraction 
of the data structures that must be shared and synchronized 
between these systems.  

Section V describes the functional prototype that was 
initially implemented and released to a reduced client base. It 
features a synchronous messaging approach as a 
generalization of the larger integration vision. The purpose of 
the prototype was to provide the necessary tools for a deeper 

116

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



analysis, both of the market reception and feature usability, as 
well as of the overall integration challenges and effort.  

Section V concludes by presenting various aspects and 
benefits of software system prototyping – as identified in this 
particular implementation – with emphasis on prototyping for 
system integration. It also discusses how prototyping and 
building synthetic components helped alleviate some of the 
challenges encountered, including distributed teams’ 
collaboration, component development, and unit and system 
integration testing.  

Concluding remarks and highlights of the information 
shared in this paper are summarized in the final section. 

II. SYSTEM INTEGRATION PERSPECTIVES: COMPARING 

AND CONTRASTING FUNCTIONAL AND DATA INTEGRATION 

When building a large enterprise software system by 
bringing together multiple domain applications, it is important 
to first identify the level of abstraction at which the integration 
specifications are being defined: Do the integrating sub-
systems only need the data that allows them to carry out their 
own functions, or do they also require access to cross-domain 
exposed functional features? In other words, should a system 
expose data only or features as well?  

The answers to these questions will determine the type of 
integration that must be realized: data or functional 
integration, and, perhaps even further, it will help discern 
between the need of a flexible, lightweight, loosely-coupled 
integration architecture and one that adds enterprise features 
and interactions, transcending domain system boundaries.  

It is also possible that, in some cases, a hybrid approach 
will be pertinent, either to realize a quick and simple 
integration with a narrower scope (e.g., a pilot or test product 
implementation), or to overcome deep architectural and data 
model discrepancies between the existing systems. In this 
case, the solution must fulfill some imperative enterprise 
needs - whether they are related to exposing new system 
features in a short amount of time or at a lower cost until 
further market research proves the worthiness of additional 
funding for a comprehensive, scalable, extensible, and 
suitable solution. These considerations are primarily relevant 
when contemplating a phased delivery to the customer base in 
order to reduce the amount of risk that larger, more complex 
integration solutions usually incur. 

A. Functional Integration  

This type of integration involves exposing data and 
behavior [8] to systems that participate in the integration in 
order to trigger or invoke business features exposed by these 
systems. Usually, a pure Service Oriented Architecture (SOA) 
[9] [10] would be the simplest architectural approach that 
could realize this requirement, but it would introduce system 
coupling and would also lead to serious scalability concerns 
[11]. However, a synchronous point-to-point integration 
solution is perfectly suitable in many cases, and – as it will be 
presented here – would make perfect candidate for an initial 
system prototype. Web Services implement in effect the 
Remote Procedure Invocation integration pattern paradigm 
[7] and this implies mutual awareness of the presence of – and 
the functionality provided by - each of the integrating systems. 

Complexity becomes apparent when more than two 
systems must interact at a logical and/or functional level of 
abstraction by invoking these exposed features and generating 
chattiness across the network, or when systems evolve, 
possibly threatening the stability of the integration contracts 
and hence of the solution. Several options are available to 
alleviate these problems, from architectural ones to following 
best practices, proper functional decomposition, and service 
encapsulation, and eventually to making the proper 
technology choices [10]. 

B. Data Integration 

This type of integration assumes that the various 
integrating systems were not designed to work together [12], 
and that they do not have direct access to the entire enterprise 
data but only to that which they provision directly. These 
systems were built in order to fulfill certain functional and 
business requirements, rather than architectural ones. It is also 
possible that some systems were acquired later (e.g., corporate 
mergers, third-party software acquisitions, etc.) 

Given that the systems evolved independently, enabling 
them to interoperate using multiple copies of the enterprise 
data (i.e., multiple data sources) while providing enterprise-
level business features in a unified fashion is problematic, 
since there is no single source of truth and, potentially, no 
single source of data entry. Multiple applications may allow 
users to enter the same type of data from different user 
interfaces that sit atop of different business/logic layers and, 
consequently, different data sources. 

Achieving this type of data integration can rely on either 
the delivery of custom solutions (for example, involving an 
enterprise service bus), or commercial tools (such as 
implementations of a Master Data Management system), 
which may expedite the time-to-market of such an integration, 
in some cases at lower costs than custom solutions [7] [13]. 

III. A PRACTICAL DATA INTEGRATION AND 

SYNCHRONZATION SOLUTION 

A. Setting the Expectations 

1) This Paper Is Not a Comparative Study Including 
Integration Solutions and Approaches 

The solution described in this paper is an actual integration 
design created for a client that had very specific requirements 
for bringing together a couple of business verticals and lay the 
foundation for adding a new vertical to the mix. The 
integration involved both legacy systems as well as a newly 
released one, and presented unique challenges that required 
extensive analysis and prototyping before the final custom 
solution was considered as a viable candidate. Enterprise 
integration always caters to very specific needs, as unique as 
the systems that they attempt to bring together. 

This paper does not compare the solution designed for this 
particular client with other enterprise integration solutions but 
rather focuses on a particular implementation for an actual 
client who elicited this solution and who delivered the initial 
prototype to their client base. Some of the reasons for not 
pursuing a comparative study against the solution presented 
here are described next. 

117

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Although at a high level architectural styles may be 
compared and contrasted, including the technologies 
employed, it is rather uncommon to come across detailed 
technical specifications of actual integration solutions from 
various industries to conduct such a comparative study. In 
some cases, enterprise system architecture is shown as very 
high-level, in the form of block diagrams, to the extent that 
they are relevant from a Business and/or Sales view. 
Component diagrams, architectural layers, interfaces and 
frameworks are usually handled as proprietary technical 
documentation and artifacts rather than being exposed for 
public evaluation.  

It is also understandable why such artifacts are not 
publicized. Unless the company’s software is going to be 
acquired by some other entity, the internal architecture of that 
software system is not necessarily relevant to potential 
consumers. Instead, its exposed features –functional and 
perhaps non-functional – are shared – up to a certain degree 
of detail. From a client’s perspective, a software system – 
especially one that sits behind a service interface, will be 
treated as a black box whose features are exposed via rich user 
interfaces - web applications in most cases – whether the 
software system is self-hosted (by the client’s infrastructure) 
or vendor-hosted, cloud-based or on premise. An adequate 
level of technical detail for other industry implementations is 
rather scarce and difficult to come by in order to assemble a 
meaningful comparison of behavior and/or performance. 

One last important fact that prohibits the development of 
a proper and relevant comparison analysis of integration 
solutions is that various companies, even if they cater to 
similar domains (e.g., payroll service providers), they may 
adopt highly specialized system models and architectural 
approaches to building their enterprise integration, as dictated 
by the features they provide to their clients. Not uncommon, 
dealing with legacy systems is also a relevant aspect of 
modeling new features and/or adding integration capabilities 
to existing domains, since the complexity of such tasks 
increases significantly. This is primarily due to the difficulty 
of bringing together old and new technologies and practices. 
In any case, specific domain models are not usually shared 
openly; and they may vary greatly from one enterprise to 
another, despite the realization of similar functionality.  

For this reason, any meaningful comparison with such 
enterprise systems would not carry a significant value, 
assuming that the specific solution’s topology details and/or 
performance specs are disclosed and available for evaluation. 

2) This Paper Does Not Introduce Groundbreaking Ideas 
for Solving Integration Problems 

Many books and online resources on software system 
design and software system integration are very useful tools 
for understanding the many ways in which one can build 
robust, extensible, maintainable, scalable software [5] [7] [9] 
[11]. Patterns, principles, and best practices are always 
emphasized and more or less extensive examples are 
provided. However, usually such books have a very precise 
and well-organized agenda that they follow, introducing 
and/or elaborating on various technologies, architectural 
and/or integration styles, leaving it up to the reader to absorb 
all that knowledge and apply it in ways that are best suitable 

for the system that they are building. Rarely, if ever, is there a 
“one size fits all” approach to software design. Nevertheless, 
it takes skill, experience, and a good understanding of the 
problem and the domain to devise the appropriate architecture, 
layers, components, and how they interact with each other to 
build the system that is required. Moreover, in many if not 
most cases, architects and technical leads deal with various 
departmental, organizational, and technological constraints 
that may render the best solution unfeasible. 

What this paper shows, however, is how various 
approaches, practices and industry recommendations were 
selected and chosen to build a practical solution for a client 
with clear requirements and constraints, that would enable 
their isolated business domains to share data. 

B. The Businss Domains 

Consider three major business domains, Human 
Resources (HR), Payroll, and Benefits. The common ground 
for all three is the demographic data that defines the 
companies (or clients) that these systems are servicing and 
their employees. As is quite often the case, neither domain was 
built with a true enterprise vision in mind, neither 
architecturally, nor functionally. Yet the main enterprise data 
on employees and clients served must be shared across all 
domains when multiple data copies exist, one per domain. 
These data sources were designed for a very specific purpose, 
making it prohibitively expensive to refactor the systems’ 
layers and the business applications so that they rely on a 
single source of truth – a unified data source across the 
enterprise. A solution employing Master Data Management 
(MDM) tools has been evaluated but the business 
requirements did not warrant such elaborate implementations 
for this particular case. The proposed and agreed upon 
solution was to implement the “Maintain data copies” data 
integration pattern [4] by means of a custom scalable and 
extensible middleware architecture (or integrating layer [5]), 
reusable frameworks and models, and carefully-chosen 
technologies, to fulfill the business need of providing multiple 
services (HR, payroll, and benefits) to an array of small to 
large size clients. 

The following sub-section presents the main models of the 
proposed integration solution, where data notifications are 
being exchanged between the various domains via a broker-
based messaging architecture, using various enterprise 
integration patterns, also depicted later in the EAI pattern-
mapping diagram in Figure 4. The data payload for these 
messages is wrapped inside a context-based notification 
model, allowing participating systems to take the appropriate 
action – based on their own domain rules – using the data 
received from the message broker. The individual domain 
systems are not aware of each other, only of the message 
broker through which they communicate. 

C. The Structural and Behavioral Integration Models 

All models, structural and behavioral, included in this 
paper are excerpts from the technical design specifications 
document created on behalf of the client’s Enterprise 
Integration Solution [6] and they are being used hereby with 
permission from this client. 

118

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



1) Structural Models: High-Level Enterprise Integration 
Architecture and Components 

The integration middleware was designed as an extensible, 
highly responsive, and scalable broker-based topology 
through which the formerly isolated domain systems will 
exchange data notifications in near real-time and in a loosely 
coupled fashion. The middleware is built on durable 
messaging frameworks, such as an enterprise service bus 
(ESB), queues, an entity mapping/correlation infrastructure, 
and various service endpoints (SOA).  

The high-level component diagram (Figure 1) shows the 
three business verticals as clients to the enterprise services that 
provide access to features that implement cross-cutting 
concerns (logging, SSO, audit) while indirectly exchanging 
data notification messages among each other.  

This message exchange is intended to take place without 
reciprocal system awareness or knowledge of the features they 
provide, using the integration middleware exposed via a 
service endpoint (i.e., the Data Notification Receiver Service).  

This design ensures system scalability and plasticity of the 
integration scope (data or functional), while hiding the actual 
technology specifics from the participating systems. 

2) Object/Data Models: The Canonical Model 
The data notifications exchanged between the systems via 

the service-broker integration middleware are structured as a 
two-layered object model. One is the actual data payload 
represented by the integration ubiquitous model, also referred 
to as the Canonical Model [7], and the second is the 
notification model which is wrapping (or encapsulating) the 
canonical model payload, adding context, source, and target 
details to the communication messages. 

This allows for a reusable notification model, where - by 
employing generic data types for the payload wrapped within 
the notification together with the appropriate inheritance 
(generic type inheriting from the non-generic type) – we can 
design any number of notification schemata that could 
encapsulate any business entity models inside a generic 
payload. The payload is domain-specific (or enterprise 
integration-specific in this case), whereas the notification 
model is domain-agnostic. This is depicted in the object model 
in Figure 2. The generic type T of the payload can be 
represented by any domain entity. Section IV describes the 
standalone object model used for the enterprise integration 
solution presented here. 

Figure 1. Overall enterprise integration topology: business verticals and integration middleware  
 

119

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



This allows for a reusable notification model, where - by 
employing generic data types for the payload wrapped within 
the notification together with the appropriate inheritance 
(generic type inheriting from the non-generic type) – we can 
design any number of notification schemata that could 
encapsulate any business entity models inside a generic 
payload. The payload is domain-specific (or enterprise 
integration-specific in this case), whereas the notification 
model is domain-agnostic. This is depicted in the object model 
in Figure 2. The generic type T of the payload can be anything 
that one would define for a given domain: employee, client, 
address, benefit, participant, dependent, etc. In fact, a separate 
object model for the enterprise integration has been defined 
and is used in the implementation of this solution (see Section 
IV for further details). 

3) Behavioral Models: The Communication Model 
Describing the Enterprise Data Synchronization Process 

For the implemented solution, the data notification 
exchange follows a very simple path through the hub-and-
spoke (or star) integration middleware topology (Figure 3). 
However, the main challenge that had to be overcome is 
associating the business entities from one system to business 
entities in other systems, without introducing direct 
dependencies between these systems or awareness of other 
domains or domain-specific identifiers that – semantically – 
tie these enterprise entities together. For this purpose, an entity 
correlation service was introduced, using a separate repository 
of entity IDs that represent logically - or semantically - 
identical entities across the enterprise. Such correlations will 
be specified during an initial data setup process by 
administrative users or via custom automation tools and 
import/export facilities.

  

DataNotification

- KnownTypes  :Type ([]) {readOnly}

- DataNoti fication()

+ DataNoti fication()

+ ToString()  :string

- LoadKnownTypes()  :Type[]

«property»

+ PayloadType()  :Type

+ Id()  :Guid

+ Source()  :string

+ Serial izedPayload()  :string

+ Context()  :NotificationContext

+ Target()  :string

+ CreatedDate()  :DateTime

+ CreatedBy()  :string

Notification

«property»

+ Domain()  :string

T > class, new()

Notification

- _payload  :T

- LoadKnownTypes()  :Type[]

«property»

+ PayloadTypeName()  :string

+ Payload()  :T

NotificationContext

+ ToString()  :string

«property»

+ Operation()  :Operation

«enumeration»

Operation

 Insert

 Update

 Delete

 Unknown

Agnostic of the payload type. 

There is no explicit dependency 

between the Notification Model 

and the Canonical Model.

«System»

Components::Benefits
«System»

Components::

Payroll

«Router/Dispatcher»

Broker

SB Queue
Mapping/

Correlation

Repository

«System»

Components::HR

Source of data noti fication

1: ProcessBenefi tsEvent()

1.1: Translate()

1.2: HandleNoti fication()

1.3: PutMessage()

1.4: OK()

2: GetNextMessage()

2.1: LookupIDs()

2.2: HandleEvent()

2.2.1: Translate()

2.2.2: InvokePayrol lFeature()

2.2.3: Response(IDs)

2.3: HandleEvent()

2.3.1: Translate()

2.3.2: InvokeHRFeature()

2.3.3: Response(IDs)

2.4: DeleteMessage()

2.5: Update(IDs)

Figure 2. Data notification object model 

Figure 3. High-level integration communication model mapped to the service broker (star) topology 

120

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



D. Integration Architecture Feature Highlights 

Noteworthy features of this integration solution are 
compiled below. They are grouped into functional and non-
functional characteristics. Several design details are included 
to impart to the reader additional context and comprehension 
of the architectural and technical approaches chosen. 

1) Key Functional Attributes 

a) Enterprise Data Coherence 

Maintaining multiple data copies synchronized, all 
integrators become symmetrical systems of record for the 
core/common enterprise data.  

All systems participating in the integration are able to 
notify the enterprise about relevant data updates in a particular 
line of business system without being aware of the other 
systems that might need this information or of the way in 
which this data will be consumed. They will do so by raising 
notifications with the integration middleware alone. 

Consequently, the systems will be notified of relevant data 
updates occurring across the enterprise by receiving such 
notifications that encapsulate data payloads following a 
normalized model. These notifications are dispatched by the 
integration middleware, potentially based on specific 
integration rules and constraints. 

This notification mechanism will in turn allows the 
integrating systems to keep their own data copy synchronized 
with the data across the enterprise, while continuing to 
provision it independently, according to the domain’s 
business rules. 

b) Enterprise Functional Coherence 

Specialized domain services offered to clients will 
continue to be managed and augmented within each individual 
vertical, without the need to cross domain boundaries, since 
all necessary data is available at the domain level, nearly real-
time consistent with the enterprise data. 

Decoupled and asynchronous notifications exchanged via 
the messaging broker keep systems unaware and independent 
of each other, while allowing the enterprise to grow as needed. 
Additional applications may be added; if these applications 
require their own data copy, they will start listening to 
notifications from the middleware services. If they also 
support or require data updates that must be synced with other 
applications’ data sources, then the new participants will also 
start sending notifications to the broker to be dispatched and 
consumed throughout the enterprise, as needed. 

2) Key Quality Attributes 
Large integration undertakings - as the one described here 

– can carry significant risks, require substantial effort to 
realize, and are built with a very long-term plan in mind. For 
this purpose, multiple non-functional features of the proposed 
solution have been identified and analyzed. A subset of all 
those considered with the client, mainly the critical ones, are 
presented next. 

a) Scalability  

Without any architectural changes to the integration 
framework or the domain systems, new systems can be added 
to this topology and can be enabled to participate in the 
integration (assuming they also use their own data source(s) 

that require continuous or occasional synchronization with the 
enterprise data).  

The two main requirements for these systems are (a) to 
expose a data notification service endpoint that will handle 
enterprise notifications from the middleware (i.e., to react to 
notifications from the broker) and (b) to have the ability to 
raise such data notifications appropriately, while being aware 
of the canonical model as the lingua franca of the enterprise 
integration. 

b) Testability 

Although additional testing frameworks for the integration 
components must be designed and built, individual systems 
will continue to be tested independently of each other or the 
integration middleware. 

Components that simulate/generate notification traffic 
through the integration framework can be built to allow for 
independent testing of the service broker and the integration 
infrastructure.  

c) Maintainability 

The basic SOLID design principles employed, and most 
importantly the “separation of concerns” (or SoC) principle, 
ensure a highly maintainable architecture and codebase due to 
overall high cohesion and low coupling [5] [11]. 

Domain rules do not escape the boundaries of the system 
to which they belong, and similarly integration logic is 
isolated to the broker components and services.  

d) High Availability 

By employing load balancing and clustering around the 
integration services and the choice of technology (e.g., 
Service Bus Farm), the deployment topology was designed to 
ensure high availability as far as the integration components 
are concerned. 

e) Performance 

Assuming appropriate technology choices, the integration 
framework ensures a high throughput of notifications with 
minimal integration logic (i.e., entity correlation map lookup) 
required between the moment of receiving a notification and 
that of dispatching one.  

For example, Microsoft’s Windows Server Service Bus 
1.1 (on premise) can process 20k messages/second (based on 
1K message size) with an average latency of 20-25ms [14]. 

f) Stability 

The integration middleware and the canonical model had 
to be built in such a way that the overall system would not 
require changes over time. Moreover, the middleware had to 
be impervious to individual client failures. For this reason, a 
lot of thought and design hours were spent on the various 
models presented here, so that they can withstand various 
changes (and potential failures) of the integrating systems.  

E. Enterprise Integration Patterns Mapping 

Hohpe and Woolf compiled an excellent collection of 
asynchronous messaging integration patterns in their book [7]. 
Furthermore, their practical advice on designing such 
integration systems and the various examples provided helped 
with the design of this messaging architecture, while it also 
facilitated the selection of the appropriate topology and 

121

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



patterns that were fundamental to the delivery of an effective 
system integration solution.   

It is interesting to see how the key integration patterns 
employed in the design and realization of the integration 
architecture directly map to the business verticals and 
integration middleware components. This mapping is shown 
as an overlay atop the simplified enterprise system block 
diagram in Figure 4. 

IV. SUPPLEMENTAL INTEGRATION MODELS 

A. The Canonical Model’s Base Class Details 

The Canonical Model integration pattern [7] has been the 
central theme of the solution implemented and is the only 
integration element that was allowed to permeate the 
enterprise (at each system’s integration endpoints). This 
model can be envisioned as the ubiquitous integration 
language, which describes entities that are shared across the 
various domains of the enterprise. However, these entities in 
turn share data elements that are best modeled separately, as 
properties on base classes, using elemental inheritance, 
aggregation, and composition modeling concepts. For the 
domains in the presented case study, the need to support entity 
identifiers of different types, active timeframes, and 
traceability/audit features, led to the design of the model in 
Figure 5 where all domain entities inherit from the abstract 
class EntityBase shown in the center of the class diagram. 

B. The Canonical Model and the Main Integration Entities 

The main (aggregate root) entities in the integration’s 
lingua franca are Group and Employee. They reflect the 
primary integration objective: keep Employee and Group 
demographics data in sync among all enterprise systems, by 
allowing each system to maintain and operate on their 
individual copy of the data. The model shown in Figure 6 is 
specific to the integration solution proposed for the client, 
aiming at integrating Benefits, Payroll, and Human Resources 

domains, more specifically for achieving the business goal of 
cross-selling services to various clients. 

Noteworthy here is the fact that if we consider the 
canonical model as the domain of the integration, then it is 
following the anemic domain model design anti-pattern [15]. 
This is because these are simple data containers and do not 
encapsulate functionality as the integration framework’s 
domain itself is behavior-less. The model’s only purpose is to 
capture and transport data notifications across systems –so, 
from this (proper) perspective the model is abiding to the Data 
Transport Object (DTO) pattern of enterprise application 
architecture [11]. 

Generic functionality is exposed in the form of service 
operation contracts for handling notifications (whether a 
domain system raises a notification or must handle one), but 
no enterprise features are being implemented here, hence data 
representation and modeling is of essence and imperatively 
affects the success of the proposed system integration 
solution.  

C. The Integration Activity Model 

The overall system integration flow is modeled in the 
activity diagram in Figure 7, where the various integrating 
systems and the broker components are bounded by the 
vertical swim lanes, to indicate where activities and actions 
cross system boundaries. The diagram also shows how the 
correlation service is being employed to allow the integration 
framework to associate the same (logical) clients across 
domains by looking up and populating the appropriate domain 
identifiers, as part of the context that wraps the notification 
data payload passing through the broker. 

Behind the broker services, multiple queues were utilized 
as a durable and priority-based messaging mechanism, in 
order to decouple the various processes that take place at the 
integration framework level: receiving messages, processing 
notifications, and dispatching them to targets.

Figure 4. Mapping of enterprise integration patterns to domain systems and to integration middleware components 

122

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

EntityBase

- LoadKnownTypes()  :Type[]

«property»

+ Id()  :Identifier

+ CreateUpdateDetail()  :CreateUpdateDetail

+ Lifespan()  :EffectivePeriod

Identifier

«Property»

+ Id  :Guid

+ LogicalKey  :string

+ AlternativeId  :string

T

Identifier

+ Identi fier()

+ ToString()  :string

«property»

+ Id()  :T

«interface»

IEntityBase Marker I/F (used for 

Reflection)

CreateUpdateDetail

«property»

+ CreatedBy()  :string

+ CreatedDate()  :DateTime?

+ UpdatedBy()  :string

+ UpdatedDate()  :DateTime?

Effectiv ePeriod

«property»

+ EffectiveEndpoint()  :PeriodEndpoint

+ TerminateEndpoint()  :PeriodEndpoint

PeriodEndpoint

«property»

+ Date()  :DateTime

+ Reason()  :string

Base class for all  the main entities 

in the enterprise-integration-

specific canonical model

Generic identi fier - to support entity

IDs of any (primitive) type

2

Enti tyBase

Models::Address

EntityBase

Models::Benefit

Enti tyBase

Models::Contact

Enti tyBase

Models::Employee

Enti tyBase

Models::Group

Enti tyBase

Models::Participant

Enti tyBase

Models::Person

Models::PersonInfo

ParentEnti tyDetail

Models::AddressCollection

ParentEnti tyDetail

Models::Div isionCollection

Models::GroupInfo

Models::ContactDetail

ParentEnti tyDetail

Models::EmployeeCollection

ParentEnti tyDetail

Models::ContactCollection

ParentEnti tyDetail

Models::

RelatedPersonCollection

ParentEnti tyDetail

Models::BenefitCollection

Models::EmployeeInfo

«required»

Benefi ts

1..*

Benefi ts

RelatedPersons

RelatedPersons

1..*

Divisions
1..*

«required»

Phones

0..*

Addresses

«required»

Employees

1..*

Contacts

Emails

0..*

Contacts

1..*

Addresses

1..*

Figure 5. Base class and common elements for the canonical model types 

Figure 6. Canonical model’s main entities: the payload of the data notifications 

123

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

V. A PHASED DELIVERY VIA PROTOTYPING 

A. The Enterprise Integration Pilot Release 

All of the artifacts presented so far are describing the 
asynchronous enterprise integration solution proposed and 
adopted by the client. It is important to note however, that this 
design was preceded by the implementation of a synchronous 
services middleware prototype, smaller in footprint and scope 
than the original design. This prototype was exposed only to 
a small set of customers, mainly in order to gain a deeper 
understanding of the data integration needs, the customer 
traction and adoption that such integration would yield, and 
the overall value it would bring to the Business.  

Although early on it became evident that without such 
domain integration, independent systems would be forced to 
duplicate data and functionality, leading to potentially 
hazardous and undesired side effects as well as duplication of 
effort, a pilot version of the data integration was requested by 
the client, was implemented, and successfully released to the 
market. 

Aside from the business value mentioned above, the 
prototype also allowed the teams to work out the means to a 
successful collaboration, to get familiar with each other’s 
development processes and expectations, and to support each 
other during the system integration testing phase. 

B. A Synchronous SOA-Based Prototype 

For a faster turnaround, a combination of functional 
integration and data integration using synchronous services 
built around Microsoft’s Windows Communication 
Framework (WCF) was designed and implemented as the 
pilot release. This prototype enabled two distinct business 
domains (benefits and payroll) and three isolated enterprise 
applications (one very large benefits application, a legacy 
payroll application, and a newly released, smaller payroll 
system) to share data common across multiple customers that 
these systems were actively servicing. 

These customers for which common data required sharing 
and synchronization across systems, are provisioned via a 
lightweight web interface through which administrators have 
the ability to enable or disable the main integration facilities 
provided by the prototype – features that are specific to one or 
the other of the two domains. Since the initial set of customers 
to which this integration product was released was rather 
small (up to 50), a semi-manual provisioning activity was 
deemed acceptable. The web tool – developed as a Single 
Page Application (SPA) using Angular, Bootstrap, and 
JavaScript – just to mention a few of the technologies 
employed - also allowed power users to settle any customer 
identity (or reference) clashes that could not be automatically 
resolved via logical key matching. 

 
Figure 7. Enterprise integration activity model 

124

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Following a pure SOA approach and employing the 
industry-recommended SOA design patterns [9] [13], an 
integration middleware layer was implemented as part of this 
prototype solution, which included the correlation service and 
integration feature activation service along with a small 
database used to persist the data required by these services.  

The middleware’s purpose is to enable access to 
integration correlation data and resolve access queries against 
the unifying customer reference tables. It is responsible for 
activating or deactivating integration features for the targeted 
customers, and it also serves as an operational service layer to 
the provisioning web application. 

At a high level, the architecture of the prototype and the 
communication paths between the integrating systems and the 
integration middleware are shown in Figure 8. 

 
Figure 8. SOA-Based Synchronous Integration Prototype 

The three integrating domains communicate directly with 
each other via service calls that encapsulate along with the 
payload, the correlation ID in order to reference a given 
customer. The ID is obtained from the Correlation Service 
(part of the integration services layer).  

The service contracts designed for the domain-exposed 
endpoints (shown as horizontal lollipops in Figure 8) are 
simple yet symmetric (identical), allowing for a unified and 
consistent mechanism for requesting and exchanging data.  

To overcome some of the architectural shortcomings of 
one of the legacy systems, changes to certain data required for 
synchronization had to be captured at the data layer (i.e., the 
database). For this purpose, a custom service component was 
designed using Microsoft’s Change Tracking solution, which 
constitutes a lightweight implementation of the Data Change 
Tracking (DCT) solution.  

This enabled monitoring and capturing the data updates 
from a standalone service component, without having to make 
changes to the domain services of the integrating system. 
Given the ease of implementation and ability to build it in 
isolation of other components, if was suggested as an alternate 
solution to the other integrating systems to compensate for the 
absence of reusable domain services, where and if applicable. 

C. Key Benefits of Prototyping 

Identifying specific areas of integration challenge and 
collecting valuable market insight from building and 
deploying a low-risk integration pilot (prototype) - even after 
high-level design effort and some middleware prototyping for 
the larger integration solution had already been wrapped by 
up the architecture team – were compelling enough arguments 
for the Product Management team.  

Hence, the decision to spend the additional effort towards 
building a simplified synchronous functional integration pilot 
was made. As teams mobilized in the design elaboration and 
realization of this interim solution, several immediate benefits 
emerged, both for the development groups as well as for the 
decision-making entities.  

Some of these benefits – relevant for this particular 
implementation – are captured below. 

1) Refinement of the Integration Models and Contracts 
Once concrete implementation artifacts started to take 

shape around the proposed models and interfaces, various 
gaps were identified and flagged with the design team. Such 
gaps included missing data fields for certain key domain 
entities – required for one system but not the others, ancillary 
lookup data mismatch across systems, and the stringent need 
for refining the composite logical (natural) keys used for 
uniquely identifying critical data entities (specifically, the 
aggregate roots) targeted for synchronization. 

2) Identification of Edge-case synchronization issues 
Certain customer data in one of the systems were found to 

have multiple representations in that system and such 
representations had to be handled accordingly by that system 
during the synchronous data exchange. This raised questions 
about handling data synchronization failures, both for the 
synchronous as well as the asynchronous implementation, 
which eventually lead to customizations to the durable 
message design realized by the service bus implementation, 
and the provisioning of nightly scheduled jobs that would 
retry sending or queuing failed notifications.  

3) Defining Cross-Team Collaboration Processes 
Multiple geographically dispersed teams were involved in 

the realization of the integration solution. Each system that 
would participate in the integration already had its own 
development team structure in place, its technical Subject 
Matter Experts (SMEs) and leads, its own practices and 
approaches to developing software.  

Although all three teams involved in the original pilot 
implementation and delivery were following agile 
methodologies, the iteration schedules, task sizes and 
assignments, and even the way scrum meetings were run, 
differed quite a bit among them. Some effort was involved to 
iron out these differences and bring the teams to work 
together, to “speak the same language”, to set the right 
expectations, and to meet the deliverables.  

Moreover, issue escalation channels were established and 
the need to allow teams to independently test the integration 
points and, evidently, their own systems as they react to 
integration notifications became a critical item on everyone’s 
list. This fact points us to the next benefit of prototyping – 
especially relevant in the case of systems’ integration.

125

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



4) Building Synthetics 
In general, when one thinks of software prototyping, 

perhaps throwaway and/or wireframe prototypes come to 
mind. Although some of the modules of the prototype 
presented here had to be modified or replaced in order to 
accommodate the larger integration solution, a big part of the 
middleware and components that encapsulated the production 
and consumption of notifications were fully reusable for the 
larger integration. However, in order to test those components 
while other teams were implementing their own handlers and 
dispatchers –without having to wait on everyone else to 
complete their implementation – specialized components that 
targeted the production of synthetic data and behavior – had 
to be built: both notification generators as well as mock 
notification handlers. 

The idea behind the need for these synthetics is the 
distinction between unit testing and system integration testing; 
whereas the latter should not be allowed to proceed before 
independently validating first the integrating systems, the new 
components and frameworks, in isolation from each other. 

Not only did these additional components provide a 
consistent testing framework for all teams, but also these 
synthetics would continue to be used and enhanced as needed, 
to support all ongoing unit and integration testing needs, 
including regression testing. These components greatly helped 
developers in catching integration point failures early on, 
before system integration testing (SIT) would commence. It 
identified the type of information that had to be monitored and 
captured to facilitate troubleshooting integration bugs, and 
made the overall integration testing much less painful than it 
would have been otherwise. 

Although such simulators and data generators do not have 
a place in the final product, they are an absolute necessity in 
developing systems that must interact with each other – 
whether these systems are developed by the same company or 
are involving third party components. It is imperative to 
relieve individual component and/or system testing from any 
external dependencies in order to ensure proper validation of 
the system being built. Arriving at situations where it is 
unclear what the origin of the failure is or, worst, slowing 
down the development of your own system because of a faulty 
or unavailable external system, should always be avoided. 

5) Aiding the Quality Assurance (QA) Teams with the 
Gradual Development of Integration Test Cases 

Familiarizing themselves with a simpler system, the 
synchronous service-based prototype, gave the QA team 
ample time to prepare for the larger integration solution, 
identifying gradually the appropriate tests to be developed. 
This lead to a better comprehension of the key features of the 
integration that were mission-critical from an overall system 
perspective. 

Finally, just as was the case for the development teams, 
multiple testing teams were assembled, facing similar 
challenges. Although with some additional effort and time, the 
QA teams successfully identified and implemented the 
necessary processes towards coordinating their testing efforts, 
preparing the test data, and collaborating effectively in order 
to validate the entire enterprise integration solution. 

VI. CONCLUSION 

Depending on the scope of system integration as well as 
the functional and non-functional requirements, creating the 
right frameworks and sub-systems that allow isolated domain 
systems to seamlessly share key enterprise data between them 
is a challenging undertaking. A variety of technology choices, 
architectural and modeling approaches and patterns exist, but 
features and limitations of the integrating systems, along with 
organizational, budgetary, technical, and technological 
constraints can make the integration task even more difficult. 
Generally speaking, in multi-domain enterprise systems, data 
integration and synchronization can be achieved in various 
ways. One of them – as the one presented here and in [1] – 
involves custom integration frameworks and components, 
using various enterprise integration patterns.  

This paper presented an actual industry integration 
solution, explained via several structural and behavioral 
system models, and provided details on how the “maintain 
data copies” data integration pattern would be realized via a 
broker-based messaging middleware. The data exchanged 
between the various domains is encapsulated by the canonical 
model, which is the common data abstraction across the 
enterprise. This in turn is wrapped inside a context-based, 
generic, and reusable notification model, allowing systems to 
react to these notifications based on their own business rules.  

This paper also captured essential enterprise integration 
patterns chosen for this solution and how they were employed, 
as well as the architectural topology designed to address 
specific functional and non-functional requirements. Central 
to the solution proposes here, the paper presented the common 
integration model and described how this model played the 
role of the semantic glue that unified the data exchange 
mechanism between the various integrating systems and 
components. 

Following industry-recommended patterns and practices – 
yet custom-tailored to meet the specific client integration 
needs, the resulting architecture features scalability, 
extensibility, and high-availability – to mention just a few 
quality attributes. Concerning performance, it supports near-
real-time data synchronization between systems and allowing 
them to operate without awareness of each other, while using 
their individual data formats, features, and domain rules. 

Finally, the paper introduced a generalized integration 
prototype that was released to a reduced customer base as a 
pilot implementation, in order to test the market response to 
the new features enabled via integration. The prototype 
development proved valuable in several ways, as discussed in 
this article. The development of synthetics, in order to 
facilitate the imperative unit testing of all systems and 
components as a prerequisite to system integration testing, 
proved to be an invaluable byproduct of prototyping system 
integration. 

A. Future Work 

One of the benefits of being in the consulting business is 
the exposure to a diverse array of problems and challenges, 
leading the way by designing custom solutions, releasing the 
product to the market, and then moving on to new problems 
waiting to be solved. For the author of this paper, the solution 

126

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



presented here has been a goal in itself, and it has been 
accompanied by a successful release to the market of the 
initial prototype, as well as the client’s adoption of the 
extended asynchronous integration solution shown here. The 
responsibility of maintaining the integration middleware, as 
well as enhancing existing systems while adding new domains 
(such as Human Resource (HR) vertical(s) and Time and 
Attendance applications) into the integration mix stayed with 
the client for which the solution presented here was 
prototyped and delivered. 

REFERENCES 

[1] M. Iridon, “Enterprise Integration Modeling - A Practical 
Enterprise Data Integration and Synchronization Solution,” 
FASSI 2015 : The First International Conference on 
Fundamentals and Advances in Software Systems Integration, 
pp. 23-30, August, 2015. 

[2] Microsoft BizTalk Integration Platform. [Online]. Available 
from: https://www.microsoft.com/en-us/server-cloud/ 
products/biztalk/ [retrieved: June, 2016] 

[3] TIBCO Integration Platform. [Online]. Available from: 
http://www.tibco.com/products/integration [retrieved: May 
2016] 

[4] Microsoft, Data Integration. [Online]. Available from: 
https://msdn.microsoft.com/en-us/library/ff647273.aspx 
[retrieved: June, 2016] 

[5] Microsoft, Integration Patterns. [Online]. Available from: 
https://msdn.microsoft.com/en-us/library/ff647309.aspx 
[retrieved: June, 2016] 

[6] M. Iridon, “Technical Design Specifications for Enterprise 
Integration Solution,” 2015, unpublished/internal document. 

[7] G. Hohpe and B. Woolf, “Enterprise Integration Patterns; 
Designing, Building, and Deploying Messaging Solutions,” 
Addison-Wesley, 2012.  

[8] Microsoft, Functional Integration. [Online]. Available from: 
https://msdn.microsoft.com/en-us/library/ff649730.aspx 
[retrieved: June, 2016] 

[9] T. Erl, “SOA Design Patterns,” Prentice Hall, 2009. 

[10] T. Erl et al., “Next Generation SOA: A Concise Introduction to 
Service Technology & Service-Orientation,” Prentice Hall, 
2014. 

[11] M. Fowler, “Patterns of Enterprise Application Architecture,” 
Addison-Wesley Professional, 2002. 

[12] T. Erl, “Service-Oriented Architecture: A Field Guide to 
Integrating XML and Web Services,” Prentice Hall, 2004. 

[13] T. Erl, “Service-Oriented Architecture (SOA): Concepts, 
Technology, and Design,” Prentice Hall, 2005. 

[14] Microsoft, Service Bus for Windows Server Quotas. [Online]. 
Available from: https://msdn.microsoft.com/en-us/library/ 
dn441429.aspx [retrieved: June, 2016] 

[15] M. Fowler, Anemic Domain Model. [Online]. Available from: 
http://www.martinfowler.com/bliki/AnemicDomainModel.html 
[retrieved: June, 2016] 

 

 

127

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Facial Part Effects Analysis using Emotion-evoking Videos focused on Smile 

Expression Process 

 
 

Kazuhito Sato and Hirokazu Madokoro 

Department of Machine Intelligence and Systems 

Engineering, 

Faculty of Systems Science and Technology, Akita 

Prefectural University 

 Yurihonjo, Japan 

e-mail:{ksato, madokoro}@akita-pu.ac.jp 

Momoyo Ito 

Institute of Technology and Science, 

Tokushima University 

 Tokushima, Japan 

e-mail: momoito@is.tokushima-u.ac.jp 

 

 

Sakura Kadowaki 

 Smart Design Corp. 

Akita, Japan 

e-mail: sakura@smart-d.jp 

 
Abstract - This study specifically examines the expressive 

process of "happiness" related facial expressions after giving a 

stress stimulus. In addition, it presents a quantitative analysis 

of expressive tempos and rhythms using mutual information. 

By acquiring image datasets of facial expressions under states 

of pleasant-unpleasant stimulus for 20 participants, we 

calculated the information in three region of interests (ROIs): 

ROI 1, the whole face and the upper face; ROI 2, the whole 

face and the lower face; and ROI 3 between the upper face and 

the lower face. Additionally, we tried to express complexity 

and ambiguity objectively during facial expressions because of 

human psychological states. The results clarified the possibility 

of estimating the impression of facial expressions from the 

magnitude relation and order relation of mutual information 

of each ROI. More than male participants, female participants 

were able to create facial expressions of "happiness" easily and 

intentionally, and were less susceptible to discrepancy 

expressions. Finally, we discussed the differences of expressive 

paths between intentional and spontaneous facial expressions 

based on the order of the mutual information of the ROIs. As a 

result, we figured out the validity of our hypotheses concerning 

to the individual expressive path of each facial expression. 

 

Keywords - Psychological stress measures; Intentional facial 

expression; Machine learning approaches; Behavior modeling 

I.  INTRODUCTION 

Human faces are often described as a window by which 

one can discern information of various types such as the 

state of a person's mind and health condition. Especially, 

facial expressions can reveal aspects of internal psychology, 

reflective emotions such as delight, anger, sorrow, pleasure, 

and the existence of stress. In contrast, humans can feel 

rhythms from all of their personal surroundings that are 

moving, especially any emitting sound. Additionally, they 

feel rhythms from engaging in daily life, such as rhythms 

related to conversation and rhythms of human life. To 

clarify the relevance between psychological states and facial 

expressions, we have been studying a dynamical framework 

that specifically examines actions to repeat intentional facial 

expressions after giving a stress stimulus [1]. 

Attractive smiles attract people and represent a symbol of 

happiness, soothing another person’s mind. Smiles are 

therefore effective as a lubricant of human communication. 

According to a study [2] that analyzed geometric features 

with respect to charming smiles, the most attractive part of 

smiles in both men and women is perceived as the eye, 

followed by the mouth. In addition, facial parts associated 

with the eyes and mouth, such as the corners of the eyes and 

mouth, are reportedly more important as attractive factors of 

smiles. In attractive smiles, the existence of a golden ratio 

was observed in the aspect ratio of the expression rectangle. 

Furthermore, Yamada et al. [3] investigated the relevance 

between the whole and partial impression formed from 

facial parts and pointed out the following points. Eyes play 

an extremely important role in forming impressions of 

others. It is possible to some degree to illustrate the overall 

impression by adding and coupling the partial impression 

formed from each part. However, they suggest that 

individual differences exist in the information of the parts 

which are expected to be related to emphasis. Assessing 

male and female viewpoints of smile expressions 

specifically, women are said to tend to expose smiles more 

than men [4]. Moreover, smiles are natural for women: 

women are better at making smiles than men. Particularly, 

women have excellent skills to adjust positive emotional 

expressions. Such natural expressions can elicit positive 

effects on a person viewing the smile (recipient). 

Nevertheless, for the creation of intentional facial 

128

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



expressions, different facial muscles are said to move in 

conjunction with natural facial expressions [5]. Particularly 

examining the expressive process, the deformation degree, 

and operation timing of facial parts creating smiles are 

expected to vary slightly. 

To clarify the relevance between facial expressions and 

psychological states to date, as a result of verifying the 

relevance between psychological stress and facial 

expressions using the framework of Facial Expression 

Spatial Charts (FESCs), we demonstrated that the degree of 

stress accumulation can be easily ascertained from facial 
expression types and expressive processes [6] [7]. 

Additionally, we proposed a framework of rhythms and 

tempos that specifically examines actions to repeat 

intentional facial expressions after giving a stress stimulus 

[8]. We define one rhythm as one tempo repeated several 

times. In addition, regarding one tempo as the period during 

which facial expressions transform from a neutral face (i.e., 

expressionless) to the next neutral face, we found that the 

variation in unpleasant stimulus became greater than that in 

pleasant stimulus, addressing the variation of the number of 

frames constituting one tempo. Furthermore, using Bayesian 

networks, we constructed a graphical model of the relation 

between these three facial expressions and psychological 

stress factors. Results show that facial expressions 

displaying the effects of psychological stress easily were 

"happiness" and "sadness." Additionally, we showed the 

possibilities that facial parts (such as the eyes and mouth) 

easily differed by facial expression type [9] [10] [11]. 

In this study, particularly addressing the expressive 

process of "happiness" facial expression after giving a 

pleasant-unpleasant stress stimulus by emotion-evoking 

videos, we strove objectively to express complexity and 

ambiguity through facial expression because of human 

psychological states, by quantitative analysis of expressive 

rhythms from the viewpoint of mutual information. 

This paper is presented as follows. We review related 

work to clarify the position of this study in Section II. 

Section III presents a definition of a new framework of 

exposed rhythms and tempos for analyzing relations of 

psychological stress and facial expressions. Section IV 

describes a method to capture facial expression images, in 

addition to preprocessing, classification of facial expression 

patterns with self-organizing maps, integration of facial 

expression categories with fuzzy adaptive theory, and 

quantification of expressive rhythms using mutual 

information. We explain our originally developed facial 

expression datasets including stress measurements in 

Section V. In Section VI, based on the calculation results of 

mutual information in a time-series change of ELs for each 

facial region, we analyze the respective trends exhibited by 

men and women. Additionally, we discuss the effects of a 

pleasant-unpleasant stimulus which would give the 

expressive rhythm of facial expressions from the perspective 

of mutual information. Finally, we present conclusions and 

intentions for future work in Section VII. 

II. RELATED WORKS 

In spite of increasing or decreasing attractiveness of a 

"smile" with changes in expressive process, many 

conventional studies have examined the shape of a post-

expression face. Case studies examining the expressive 

process are few [12]-[15]. Regarding impression formation 

of friendly and thoughtful smile expressions, Ishi et al. [12] 

described the following. A continuous video presentation, 

such as expression levels from a neutral face become the 

maximum, is the most effective. Hanibuchi et al. [13] 

proposed a smile training method that specifically examines 

facial expressions process. Through impression evaluation 

experiments, they demonstrated the validity of goal setting 

with the actor's perspective. In addition, particularly 

addressing a natural smiling face, Fujishiro et al. [14] [15] 

investigated how eye, cheek, and mouth movements 

contribute to the impression formation of natural smiles in 

the expressive process. Results revealed moderate 
correlation between the behavioral termination of the eyes 

and cheek and the impression formation of natural smiles. 

Nevertheless, the authors did not report the psychological 

state of the actor when viewing a "natural smile" and 

"forced smile," such as a disagreement expression or 

expression suppression. Particularly, they were unable to 

come up to address impression formation based on the 

timing structure of facial parts. 

For a good impression on the face of a conversation 

partner, Kampe et al. [16] revealed that the good impression 

was more emphasized with matching of each other's eye-

gaze. Using anthropomorphic agents, Kuroki et al. [17] 

indicated the following. The combination of eye-gaze and 

facial expressions affects emphases of impressions. The 

impressive transmission of friendship properties can be 

emphasized particularly. Moreover, by analyzing brain 

activities using functional magnetic resonance imaging 

(fMRI) as physiological indices, an activation is observed in 

the prefrontal cortex responsible for higher cognitive 

functions such as emotional processing, motivation, and 

reasoning. Furthermore, the same activation is observed in 

the amygdala associated with emotions and rewards. 

Therefore, the formation of a good impression shows that 

the prefrontal cortex and the amygdala play mutually 

important roles [18]. However, impression evaluation has 

not been done subjectively for overall impressions of the 

face. Moreover, dealing with impression formation based on 

the timing structure of facial parts has not been achieved. 

III. FRAMEWORK OF EXPOSED RHYTHMS AND TEMPOS 

As an index for quantifying individual facial expression 

spaces, we proposed a framework of expression levels (ELs) 

[6]. The ELs include both features of the pleasure and 

129

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



arousal dimensions based on the arrangement of facial 

expressions on Russell’s circumplex model [19]. 

Specifically, we extract the dynamics of topological changes 

of facial expressions of facial components such as the eyes, 

eyebrows, and mouth. Topological changes show the 

structure defining the connection form of the elements in the 

set. The ELs obtained in this study are sorted to categories 

according to their topological changes in intensity from 

expressions that are regarded as neutral facial expressions. 

As discussed above, the ELs in this study include features of 

both pleasure and arousal dimensions. In Russell’s 

circumplex model, all emotions are constellated on a two-

dimensional space: the pleasure dimension of pleasure-

displeasure and arousal dimension of arousal-sleepiness. In 

the intentional facial expressions covered in this study, 

direct handling of the facial expressions for the influence of 

pleasure dimension is difficult. As a method of measuring 

the transitory stress response, we conduct an evaluation 

using the salivary amylase test during the task of watching 

emotion-evoking videos causing a pleasant-unpleasant state. 

Specifically examining the values of salivary amylase 

activity before and after watching videos, we can effectively 

perform stress measurements using salivary amylase tests to 

assess the stress state transiently. Consequently, we target 

the intentional facial expressions under pleasant and 

unpleasant stimulation states. 

In this study, using temporal variation of ELs, we intend 

to visualize rhythms and tempos of facial expressions that 

humans create. We defined one rhythm as a tempo that is 

repeated several times. One tempo is the period during 

which facial expressions are transformed from a neutral 

state to the next neutral state. Facial expressions exhibited 

intentionally by humans form an individual space based on 

the dynamic diversity and static diversity of the human face. 

Facial expression dynamics can be regarded as "topological 

changes in time-sequential facial expression patterns that 

facial muscles create." Static diversity is individual diversity 

that is configured by the facial component position, size, 

and location, consisting of the eyes, nose, mouth, and ears. 

In contrast, dynamic diversity denotes that a human can 

move facial muscles to express internal emotions 

unconsciously and sequentially or to express emotions as a 

message. After organizing and visualizing topological 

changes of face patterns by ELs, we attempt to use the 

framework of rhythms and tempos with expressions to 

examine ambiguities and complexities of facial expressions 

attributable to a psychological state. 

IV. PROPOSED METHOD 

Facial expression processes differ among individuals. 

Therefore, adaptive learning mechanisms are necessary for 

modification according to individual characteristic features 

of facial expressions. In this study, our target is intentional 

facial expressions. We use self-organizing maps (SOMs) 

[20] to extract topological changes of facial expressions and 

for normalization with compression in the direction of the 

temporal axis. After classification by SOMs, facial images 

are integrated using Fuzzy ART [21], which is an adaptive 

 
 

Figure 1. Overview of the procedures used for our proposed method.  

 

130

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



learning algorithm with stability and plasticity. In fact, 

SOMs perform unsupervised classification input data into a 

mapping space that is defined preliminarily. In contrast, 

Fuzzy ART performs unsupervised classification at a 

constant granularity that is controlled by the vigilance 

parameter. Therefore, using SOMs and Fuzzy ART, time-

series datasets showing changes over a long term are 

classified using a certain standard. Figure 1 presents an 

overview of the procedures used for our proposed method. 

In the following, we describe extraction of time-sequential 

changes of ELs, and also explain quantification of 

expressive tempos and rhythms by mutual information. 

A. Acquisition of Time-series Variation of ELs 

We set the region of interest (ROI) to 90 × 80 pixels, 

including the eyebrows, which all contribute to the 

impression of a whole face as facial feature components. 

With preprocessing, brightness values are normalized for 

time-series images of facial expressions. The influence of 

brightness values attributable to illumination conditions is 

thereby reduced. Moreover, smoothing the histogram is 

useful to adjust contrast and clarify the images. In addition, 

using the orientation selectivity of Gabor Wavelets filtering 

as a feature representation method, the facial parts 

characterizing the dynamics of facial expressions are 

emphasized, such as the eyes, eyebrows, mouth, and nose. 

By down-sampling (i.e., 10 × 10 pixels) time-series facial 

expressions converted with Gabor Wavelets filtering [22], 

the effects of a slight positional deviation when taking facial 

images were minimized. Then data size compression was 

conducted. 

First, SOMs are used to learn the time-series images of 

facial expressions with down-sampling. The face images 

showing topological changes of facial expressions that are 

similar are classified into 15 mapping units of SOMs. Next, 

similar units (i.e., Euclidean distances of the weight vectors 

are close) among 15 mapping units of SOMs are integrated 

into the same category using Fuzzy ART. By sorting the 

facial expression categories integrated by Fuzzy ART from 

neutral facial expression to the maximum of facial 

expression, we obtain ELs labeled as expressive intensities 

of facial expressions quantitatively. The integrated category 

sorting procedure is based on the two-dimensional 

correlation coefficient of the average image of the facial 

expression images classified into each category. Finally, we 

conduct correspondence of ELs with each frame of the 

facial images to assess a time-series dataset of variation of 

ELs. 

B. Quantification of Exposed Rhythms using Mutual 

Information 

Mutual information [23] [24] can express changes 

between signals with the entanglement and synchrony. It 

can be regarded as an amount that represents linear and 

nonlinear dependence between the two time-series datasets. 

Moreover, it represents information flows and dynamically 

coupled rings between two signals. Mutual information 

between these two signals is zero if the two systems for 

observation target differ completely from independent ones. 

Applying this scheme to the facial expression process, it is 

possible to quantify the synchronicity and functional 

connectivity between facial parts. Figure 2 presents one 

example of time-series changes of ELs in the "Whole face," 

"Upper part of face," and "Lower part of face" obtained in 

Section Ⅳ .A. In this study, three ROIs listed below are 

calculated as the mutual information among facial parts in 

the expressive process. The time-series changes of ELs with 

respect to the "Whole face," "Upper part of face," and 

"Lower part of face" respectively represent )(tRR ww  , 

)(tRR uu  , and )(tRR dd  . Then, mutual information of 

each ROI is obtained as described below. 

Mutual information between the "Whole face" and 

"Upper part of face" is :);( uw RRI  

 
 

Figure 2. Each mutual information among time-series changes of facial parts. 

 

131

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



),()()();( uwuwuw RRHRHRHRRI   (1) 

Mutual information between the "Whole face" and 

"Lower part of face" is :);( dw RRI  

),()()();( dwdwdw RRHRHRHRRI   (2) 

Mutual information between the "Upper part of face" and 

"Lower part of face" is :);( du RRI  

),()()();( dududu RRHRHRHRRI   (3) 

In that equation, )( wRH , )( uRH , and )( dRH respectively 

represent the entropy of )(tRw , )(tRu , and )(tRd . ),( uw RRH , 

),( dw RRH , and ),( du RRH  respectively denote the joint 

entropy of both. 

V. DATASETS 

For this study, we constructed an original and long-term 

dataset for the specific facial expressions of participants. 

Details of the experimental protocols are the following. One 

experiment comprises three steps: step 1 is conducted under 

a normal state; step 2 is done during viewing of a pleasant 

video; and step 3 is done during viewing of an unpleasant 

video. We gave participants the task of watching emotion-

evoking videos, causing a pleasant-unpleasant state, and 

took stress measurements by salivary amylase tests to assess 

the stress state transiently. In addition, the watching time is 

about 3 min for each emotion-evoking video. We prepared 

unpleasant videos (i.e., implant surgery and cruel videos) 

and pleasant videos (i.e., comedy videos of three types). The 

subjective assessment of five stages was also conducted at 

watching videos. For all participants, we fully explained the 

experiment contents in advance, based on the research ethics 

policy of our university, and also obtained the consent of 

experiment participants in voluntary writing of participants. 

Moreover, from each, we received agreement to publish 

facial images as part of their experimental participation. 

A. Facial Expression Images 

Open datasets of facial expression images are open to the 

public through the internet from universities and research 

institutes. However, the specifications vary among datasets 

because of imaging with various conditions. As static facial 

images, the dataset presented by Ekman and Friesen [25] is 

a popular dataset comprising collected various facial 

expressions used for visual stimulation in psychological 

examinations of facial expression cognition. As dynamic 

facial images, the Cohn-Kanade dataset [26] and Ekman-

Hager dataset [27] are used widely, especially in 

experimental applications. In recent years, the MMI Facial 

Expression Database presented by Pantic et al. [28] and the 

CK+ dataset [29] have become a widely used open dataset 

containing both static and dynamic facial images. These 

datasets contain a sufficient number of people as horizontal 

datasets. However, facial images are taken only once for 

each person. No dataset exists in which the same person has 

been traced over a long term. Therefore, we created original 

and longitudinal datasets that include collections of the 

specific facial expressions of the same person during a long 

term. 

The six basic facial expressions proposed by Ekman et al. 

[25] are "happiness," "anger," "sadness," "disgust," "fear," 

and "surprise." Among those six basic facial expressions, 

we specifically examined the facial expression of 

"happiness," which is believed to be most likely to be 

exhibited spontaneously. As the target facial expression of 

"happiness" under pleasant and unpleasant stimulation states, 

we acquired the facial expressions of 20 people. As a 

stimulation method, we pre-selected emotion-evoking 

videos that elicit pleasant or unpleasant emotions, with all 

participants expressing facial expressions of "happiness" 

immediately after viewing them. Participants, all of whom 

were university students, were 10 men, whom we 

designated as A-J (J was 20 years old; B, G, H, and I were 

21; A, E, and F were 22; C and D were 23) and 10 women 

whom we designated as K-T (K, M, O, and P were 20 years 

old; L, Q, R, S, and T were 21; N was 23). The imaging 

period was three weeks at one-week intervals for all 

participants. The imaging environment for facial 

expressions was an imaging space partitioned by a curtain in 

the corner of the room. We took frontal facial images with 

conditions including the head of the participant in each 

image. In advance, we instructed each participant to expose 

the facial expression with no head movement. Consequently, 

imaging the face region to fit within the scope was possible. 

However, with respect to extremely small changes caused 

by body motion, we used template-matching methods to 

trace the face region by setting the initial template to include 

facial parts. By consideration of the application deployment 

and ease of imaging in future studies, we used commercially 

available USB cameras (QcamOrbit; Logicool Inc. [30]). 

When taking images of each facial expression, the same 

expression was repeated three times based on the neutral 

facial expression during the image-taking period of 20 s. We 

had previously instructed all participants to express an 

emotion three times at their own timing according to a 

guideline for 20 s. One dataset consisted of 200 frames with 

the sampling rate of 10 frames per second.  

B. Stress Measurement Method 

Because types of psychological stress are regarded as 

affecting facial expressions, we assessed transient stress and 

chronic stress. Chronic stress is that which humans have on 

a daily basis, whereas transient stress is that caused by a 

temporary stimulus. To assess transient stress stimulus to 

the participants in this study, we applied the salivary 

amylase test, which measures transient stress reactions. As a 

biological reaction, salivary amylase activity is detected as a 

low value if one is in a pleasant state. In contrast, the value 

132

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



is high if one is in an unpleasant state. As stress reactions 

when subjected to external transient stimulus, Yamaguchi et 

al. [31] confirmed that salivary amylase activity is an 

effective means of stress evaluation. For this study, using 

emotion-evoking videos as an external transient stimulus, 

we used the salivary amylase test method to measure stress 

reactions immediately after participants watched the videos. 

We verified the validity of emotion-evoking videos, 

which give a pleasant-unpleasant stimulus. Using the 

salivary amylase test, we examined the validity of emotion-

evoking factor in watching the video used as a pleasant-

unpleasant stimulus. The following were shown for salivary 

amylase activity. The value of salivary amylase activity is 

reduced if in a pleasant state. In contrast, its value is 

increased if one is in unpleasant circumstances [31]. 

Accordingly, letting Snormal be the value of salivary amylase 

activity at normal state, and letting Sstimu be the value of 

salivary amylase activity after watching the video, then the 

difference of salivary amylase activity between the normal 

state and after watching video (Sdif) is defined by the 

following equation.  

normalstimudif SSS   (4) 

0difS  (i.e., after watching pleasant videos)  

0difS  (i.e., after watching unpleasant videos)  

 Figure 3 presents results of Sdif obtained for target to the 

20 subjects of A-T. As noted previously, this figure 

                                  
Figure 3. Results of Sdif obtained for target to the 20 subjects of A-T.         Figure 4. Results of Sdif addressed only the score of 4 and 5 with 

subjective evaluations. 

 
 

 
Figure 5. NIRS signals at pleasant stimulus for whole subjects. 

 
 

 
Figure 6. Changes of NIRS signals at unpleasant stimulus for whole subjects. 

 

133

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



indicates each average value of three pleasant videos (i.e., 

comedy videos of three types) and three unpleasant videos 

(i.e., implant surgery and cruel videos). Generally, it is 

known that increase or decrease of the salivary amylase 

activity is well consistent with the enhancement and calm 

down of sympathetic nerve activity. If all of these videos 

might be effectively acting on each subject, the value of 

salivary amylase activity should be reduced if in a pleasant 

state. In contrast, its value should be increased if in an 

unpleasant state. However, we are unable to confirm such a 

significant tendency in Figure 3. In this case, the perception 

for the pleasant-unpleasant videos differs slightly among 

subjects, so this fact might cause the results of salivary 

amylase activity of C and B differ with previous studies [31]. 

Therefore, we decided to calculate the salivary amylase 

activity only for data for which subjective evaluation of the 

subject is high. The subjective evaluation receives a score of 

1-5, score 1 (i.e., not at all), score 5 (i.e., strong) at watching 

each emotional video. Figure 4 presents results of salivary 

amylase activity in the case of particularly addressing only 

the score of 4 and 5 because we consider that the emotional 

video is effectively working as a pleasant-unpleasant 

stimulus. Based on this result, the average of all Sdif 

indicates -2 [kIU/l] at a pleasant state, 5 [kIU/l] at an 

unpleasant state. 

Furthermore, using NIRS (Near-Infrared Spectroscopy: 

OEG-16; Spectratech Inc. [32]), we measured the activation 

states of brain for three periods: i.e., 1 minute before 

      
 

(a) Pleasant stimulus with emotion-evoking videos                              (b) Unpleasant stimulus with emotion-evoking videos 

 
Figure 7. Mutual information results among each facial part for female. 

 

    
(a) Subject K                                   (b) Subject M  

 

Figure 8. Time-series changes of smile facial expression with pleasant stimulus for specified subjects of female. 

 

134

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



watching each video, 3 minutes during watching each video, 

and 1 minute after watching each video. As a new functional 

brain analysis method, NIRS for measuring the cerebral 

blood volume changes locally non-invasively is also 

attracting attention as a stress measuring method, which 

indicates that the activity of the prefrontal cortex is changed 

significantly [33]. Generally, when the brain is activated, the 

following findings are reported: i.e., the oxygenated 

hemoglobin (Oxy-Hb) in the brain would increase. 

Conversely, the deoxygenated hemoglobin (Deoxy-Hb) 

should decrease [34]. In addition, because NIRS signals 

indicates the relative changes on the basis of the time of 

measurement start, we separated the noise to signal 

components by multiresolution analysis, and we carried out 

the standardized scoring (Z) using the following equation. 

Here, X is the NIRS signal, μ is the average, ρ is the 

standard deviation. 





X

Z  (5) 

After standardized scoring, we calculated the average of 

all subjects. Then, we compared the activated state of brain 

at the pleasant-stimulus and the unpleasant-stimulus. These 

results are shown in Figure 5 and Figure 6. Although the 

signals of Oxy-Hb and Deoxy-Hb during watching videos 

are varied little by little, after watching videos, it indicates 

that the value of Oxy-Hb is higher than Deoxy-Hb 

        
(a) Pleasant stimulus with emotion-evoking videos                    (b) Unpleasant stimulus with emotion-evoking videos 

 

Figure 9. Mutual information results among each facial part for male. 

 

 

       
(a) Subject D                                      (b) Subject J  

 

Figure 10. Time-series changes of smile facial expression with pleasant stimulus for specified subjects of male. 

 

135

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



obviously, which represents the state of brain are activated. 
Consequently, we convinced that the emotion-evoking 

videos used as pleasant-unpleasant stimulus in this study 

might be act effectively. Particularly, we considered that the 

unpleasant videos would be more effective than the pleasant 

videos as a transient stress stimulus. Therefore, these results 

show that the emotion-evoking video functioned as a 

pleasant-unpleasant stimulus. 

VI. EXPERIMENT 

Based on the calculation result of mutual information in a 

time-series change of ELs for each facial region, we 

analyzed the respective male and female trends. Finally, we 

discussed the effects of a pleasant-unpleasant stimulus 

which would give the expressive rhythm of facial 

expressions from the perspective of mutual information. 

A. Analysis of Female Participants 

Figure 7 depicts the calculation results of mutual 

information of five cases of female participants K, L, M, O, 

and P. The results show the mutual information of the time-

series variation of ELs in each face region described in 

Section Ⅳ.B. Figure 7-(a) presents the calculation results 

obtained after giving a pleasant stimulus. Figure 7-(b) 

shows calculation results obtained after giving unpleasant 

stimulus. As an overall trend of female participants, we 

confirmed the following. For K, L, O, and P, the value of 

the mutual information is reduced to the order of "ROI 1: 

between the whole face and upper face," "ROI 2: between 

the whole face and lower face," and "ROI 3: between the 

upper face and lower face." The value of "ROI 2: between 

the whole face and lower face" is clearly larger than those 

for other ROIs in M. For K, M, and O, we were unable to 

recognize a marked change in the trend of mutual 

information by pleasant-unpleasant stimulus. However, for 

L and P, we detected a specific change in the trend of the 

mutual information after giving pleasant-unpleasant 

stimulus. Particularly, the tendency of L is remarkable. In 

pleasant stimulus, the value of the mutual information is 

reduced to the order of "ROI 1: between the whole face and 

upper face," "ROI 2: between the whole face and lower 

face," and "ROI 3: between the upper face and lower face." 

Otherwise, "ROI 2: between the whole face and lower face" 

shows a large value for the unpleasant stimulus. In the 

unpleasant stimulus, the value of the mutual information is 

reduced to the order of "ROI 1: between the whole face and 

upper face," "ROI 2: between the whole face and lower 

face," and "ROI 3: between the upper face and lower face." 

However, in pleasant stimulus, the order relation of mutual 

information of P is reversed with L because the value of 

"ROI 1: between the whole face and upper face" is reduced. 

Next, although the same trend is apparent for both pleasant 

and unpleasant stimuli, we compare K to M, for which the 

order relation of the mutual information in each facial 

region is markedly different. For K in both pleasant and 

unpleasant stimuli, the mutual information value of "ROI 1: 

between the whole face and upper face" is larger than "ROI 

2: between the whole face and lower face." In addition, 

particularly addressing "ROI 3: between the upper face and 

lower face," the value of K is larger than M. However, for 

M with both pleasant and unpleasant stimuli, the mutual 

information value of "ROI 2: between the whole face and 

lower face" is markedly larger than others. Furthermore, 

particularly addressing "ROI 1: between the whole face and 

upper face" and "ROI 3: between the upper face and lower 

face," the values of M are clearly smaller than those of K. 

For K and M, thumbnail images representing the time-series 

changes of "happiness" in pleasant stimulus are shown in 

Figure 8. Figures 8-(a) and 8-(b), respectively present 

thumbnail images of K and M. The top of each figure shows 

the characteristic section during exposed facial expression 

of "happiness." Comparing the thumbnail images shown in 

Figure 8 to the calculation result of mutual information 

shown in Figure 7, for K exposed "happiness," we can 

recognize the change of facial expression in the upper face 

such as the brow and the area around the eyes, and in the 

lower face such as the mouth. Otherwise, for M, we can not 

observe any change of facial expression in the upper face. 

However, only the corner of mouth in the lower face has 

changed significantly. Actually, K has the characteristics 

which the upper part and lower face change both 

synchronized during facial expressions. Staying on the 

subjective impression of the experimenter, the result for 

"happiness" looks more natural facial expressions. In 

contrast, for M, only the corner of the mouth in the lower 

face has been changed. Therefore, we have an 

uncomfortable feeling about the unnatural facial expression 

of "happiness." 

B. Analysis of Male Participants 

Figure 9 presents calculation results of mutual 

information of five cases of male participants. Figure 9-(a) 

presents the calculation results after giving pleasant stimulus. 

Figure 9-(b) shows the calculation results after giving 

unpleasant stimulus. As an overall trend of male participants, 

we confirmed the following. For D and F, the value of the 

mutual information is reduced to the order of "ROI 1: 

between the whole face and upper face," "ROI 2: between 

the whole face and lower face," and "ROI 3: between the 

upper face and lower face." The value of "ROI 2: between 

the whole face and lower face" is markedly larger than those 

of other ROIs in C, G, and J. For male participants C, D, F, 

G and J, we were unable to recognize a marked change in 

the trend of mutual information by pleasant-unpleasant 

stimulus. 

Next, regarding male participants, we compare D to J, for 

whom the order relation of the mutual information in each 

facial region is significantly different. For D, in both 

136

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



pleasant and unpleasant stimuli, the mutual information 

value of "ROI 1: between the whole face and upper face" is 

larger than "ROI 2: between the whole face and lower face." 

In addition, particularly addressing "ROI 3: between the 

upper face and lower face," the value of D is larger than that 

of J. However, for J in both pleasant and unpleasant 

stimulus, the mutual information value of "ROI 2: between 

the whole face and lower face" is markedly larger than 

others. In addition, particularly addressing "ROI 1: between 

the whole face and upper face" and "ROI 3: between the 

upper face and lower face," the values of J are clearly 

smaller than those of D. For D and J, the thumbnail images 

representing the time-series changes of "happiness" in 

pleasant stimulus are portrayed in Figure 10. Figures 10-(a) 

and 10-(b) respectively present thumbnail images of D and J. 

The top of each figure shows the characteristic section 

during exposed facial expression of "happiness." Comparing 

the thumbnail images shown in Figure 10 to the calculation 

result of mutual information shown in Figure 9, for D 

exposed "happiness," we can recognize the change of facial 

expression in the upper face such as the brow and around the 

eyes, and in the lower face such as mouth. Otherwise, for J, 

no change of facial expression can be observed in the upper 

face. Only the corner of the mouth in the lower face has 

changed substantially. Actually, D has characteristics by 

which the upper part and lower face change at the same time 

during facial expressions. Therefore, the exposing result of 

"happiness" looks more natural facial expressions. In 

contrast, for J, only the corner of the mouth in the lower 

face has been changed. Therefore, we have an 

uncomfortable feeling about the unnatural facial expression 

of "happiness." These results underscore a common 

tendency between male and female participants and can be 

anticipated as a new index for quantification of the 

impression during facial expressions based on the mutual 

information of the time-series change of each face region. 

C. Effects of Pleasant-unpleasant Stimulus on Mutual 

Information 

The discrepancy expression in facial expressions means 

to expose the emotions that do not match one’s own feelings 

when experiencing certain emotions, such as having a smile, 

even though one might be in a sad mood. In previous studies, 

being positive emotional expressions during negative 

emotional experiences has been shown to engender the 

following: an amplification of actor’s sympathetic nerve 

activities [35], an increase of subjective emotional 

experiences, and some memory loss [36]. The discrepancy 

expression can easily take cognitive loads for expressive 

person. Additionally, it can potentially give bad effects to 

the mental health of actors. Furthermore, the expressive 

suppression in facial expressions indicates an emotional 

suppression by facial expressions when experiencing a 

certain emotion, such as to stifle crying when in a sad mood. 

Expressive suppression is reportedly associated with social 

support, closeness with others, and reduction in social 

satisfaction [37]. In comparison to men, women are more 

skilled at making smiles and excellent adjustments of 

positive emotional expressions. Moreover, women show 

similar effects such as natural expressions to recipients [4]. 

Exposing facial expressions related to "happiness" after 

viewing an unpleasant video is equivalent to a discrepancy 

expression. In contrast, exposing the facial expression of 

"happiness" after viewing a pleasant video is a matching 

expression. For female participants K and M, such order of 

mutual information was markedly different; Figure 11 

presents their facial expression rhythms. In the impression 

analysis of Section VI.B, the smile of K gave us a natural 

impression. In contrast, we received an unnatural impression 

from the smile of M. Focusing on an expressive rhythm of 

each facial part, the expressive rhythm of K indicates a 

time-series change such as to work together in each facial 

    

[frame]

[frame]

[frame]

[E
L

s]
[E

L
s]

[E
L

s]

Whole face

Upper part of face

Lower part of face   

[frame]

[frame]

[frame]

[E
L

s]
[E

L
s]

[E
L

s]

Whole face

Upper part of face

Lower part of face  
(a) Subject K                                                                                          (b) Subject M 

 
Figure 11. Comparison of time-series changes of ELs with unpleasant stimulus. 

 

137

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



part. In contrast, we were unable to recognize cooperative 

movements at all in the expressive rhythm of M because the 

upper face and the lower face are independent. The mutual 

information of the ROIs (i.e., ROI 1, ROI 2, and ROI 3) 

effectively expresses the degree of similarity and 

synchronization of signal waveforms in facial expression 

rhythms. These mutual information values can be 

interpreted as quantified indices of the timing structure 

indicating the synchronization between the upper face (e.g., 

the eyebrows and eyes) and the lower face (e.g., mouth), 

which contribute the impression formation to the whole face. 

We should comprehensively consider the analysis results of 

Sections VI.B and VI.C. By particularly addressing the 

magnitude relation between ROI 1 and ROI 2 with respect 

to the mutual information, we were able to interpret "Eyes 

say things sufficient to mouth" quantitatively. Around the 

value of ROI 3 quantifying the timing structure between the 

upper face and the lower face, noting the magnitude relation 

and order relation between the values of ROI 1 and ROI 2, it 

is effective as an index for quantifying the degree of 

spontaneity and artificiality in facial expressions. 

Furthermore, more than male participants, the female 

participants easily created facial expressions of "happiness" 

intentionally. Then we assumed that result was only slightly 

affected by the discrepancy expression. 

D. Consideration for Differences of Expressive Paths 

From a viewpoint of the order of the mutual information 

values, we try to discuss differences of expressive paths 

between intentional and spontaneous facial expressions. 

Blair [38] has reported that, for facial expressions, four 

brain domains are mutually related: (1) parts producing 

feelings (insular cortex and amygdala), (2) parts forming 

facial expressions involuntarily (basal ganglia), (3) parts 

embellishing facial expressions according to the 

surrounding circumstances (prefrontal area), and (4) motor-

related areas actually moving mimic muscles. As presented 

in Figure 12, in cases where facial expressions are 

embellished intentionally or spontaneously, time-sequential 

differences exist based on the route through which facial 

expressions are revealed. According to specific brain waves 

of four brain area, nerve cells of each brain area are used to 

work cooperatively, in the case of the repetition process of 

facial expressions under a pleasant-unpleasant stimulus 

particularly. Mimic muscles are activated by coordination of 

nerve cells with different speed, a unique expression is 

exposed through the individual path of each facial 

expression, such as the intentional or spontaneous 

expressive path described in Figure 12-(a). Therefore, the 

order of the mutual information of the ROIs (i.e., ROI 1, 

ROI 2, and ROI3) is able to figure out the expressive paths 

between intentional and spontaneous facial expressions. 

Figure 12-(b) indicates the order of mutual information 

values corresponding to "Intentional expressive path." In 

contrast, Figure 12-(c) presents the order of mutual 

information values corresponding to "Spontaneous 

expressive path." Even an intentional smile, it seems to 

strike a natural impression (e.g., hospitality smile), if 

exposing through "Expressive path of hospitality and actor 

mind" described in Figure 12-(a). 

VII. CONCLUSION AND FUTURE WORK 

In this study, by quantitative analysis of expressive 

rhythms from the viewpoint of mutual information, 

particularly addressing expressive processes of "happiness" 

 

 
(b) The order of mutual information values corresponding to 

 "Intentional expressive path" 

 
 

 
(c) The order of mutual information values corresponding to 

 "Spontaneous expressive path" 

 

 
 

 

 

 

 
 

 
(a) Block diagram of expressive paths based on four brain domains 

 

Figure 12. Differences of expressive paths between intentional and spontaneous facial expressions 

 focusing on the order of the mutual information values, i.e.,M1, M2, and M3. 

138

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



facial expression after giving a pleasant-unpleasant stress 

stimulus by emotion-evoking videos, we objectively strove 

to ascertain complexity and ambiguity when making facial 

expressions because of human psychological states. Using 

evaluation experiments examining 10 participants (i.e., 5 

men, 5 women), we analyzed the information of time-series 

changes in ROIs (i.e., ROI 1, ROI 2, and ROI 3), revealing 

the following points. By particularly addressing the 

expressive rhythm of each face region, one can estimate the 

impression of facial expressions from the magnitude relation 

and order relation of mutual information of each ROI. 

Additionally, the mutual information of expressive rhythms 

is effective as an index for measuring degree of spontaneity 

and artificiality during facial expressions. Female 

participants were better able to create facial expressions of 

"happiness" easily and intentionally than male participants 

were. Moreover, they were less susceptible to discrepancy 

expressions. Finally, we discussed the differences of 

expressive paths between intentional and spontaneous facial 

expressions based on the order of the mutual information of 

the ROIs. As a result, we figured out the validity of our 

hypotheses concerning to the individual expressive path of 

each facial expression. In future work, by quantifying 

fluctuations of expressive tempos in facial parts upon the 

impression formation, and analyzing their timing structure, 

we intend to clarify differences of expressive paths between 

intentional and spontaneous facial expressions. 

ACKNOWLEDGMENT 

The authors thank the 20 students at our university who 

participated by letting us take facial images over such a long 

period. This work was supported by the Japan Society for 

the Promotion of Science (JSPS) KAKENHI Grant Number 

25330325 and the Cosmetology Research Foundation. 

REFERENCES 

[1] K. Sato, M. Ito, H. Madokoro, and S. Kadowaki, “Facial Part Effects 

Analysis using Emotion-evoking Videos: Smile Expression,” 
Proceedings of the Tenth International Multi-Conference on 

Computing in the Global Information Technology (ICCGI2015),  pp. 

30-39,  Oct. 2015. 
[2] T. Iguchi, “Geometrical Features of the Attractive Smile: -Attractive 

Production by Kansei X Technology = Kanseiweab-,” The Institute 

of Electronics, Information, and Communication Engineers, 

Technical Report, pp. 51-56, Mar. 2007. 

[3] T. Yamada and I. Sasayama, “A Study of the Correlation between 

the Impression Formed from Each Features and the Impression 

Formed from Face,” Bulletin of Fukuoka University of Education，
vol. 48, no. 4, 1999, pp. 229-239. 

[4] L. Ellis, “Gender differences in smiling: An evolutionary 

neuroandrogenic theory,” Physiology and Behavior, vol. 88, pp. 303-

308, 2006. 
[5] K. M. Prkachin, “Effects of deliberate control on verbal and facial 

expressions of pain,” Pain, vol. 114, pp. 328-338, 2005. 

[6] H. Madokoro, K. Sato, and S. Kadowaki, “Facial expression spatial 
charts for representing time-series changes of facial expressions,” 

Japan Society for Fuzzy Theory, vol. 23, no. 2, pp. 157-169, 2011. 

[7] H. Madokoro and K. Sato, “Facial Expression Spatial Charts for 
Representing of Dynamic Diversity of Facial Expressions,” Journal 

of Multimedia, vol. 6, no. 1, pp. 1-12, Jan. 2007. 

[8] K. Sato, H. Madokoro, and S. Kadowaki, “Transient Stress Stimulus 

Effects on Intentional Facial Expressions,” Japan Society for Fuzzy 
Theory, RJ-005, pp. 29-36, 2012. 

[9] K. Sato, H. Otsu, H. Madokoro, and S. Kadowaki, “Analysis of 

Psychological Stress Factors on Intentional Facial Expressions,” 
Japan Society for Fuzzy Theory, RJ-002, pp. 21-28, 2013. 

[10] K. Sato, H. Otsu, H. Madokoro, and S. Kadowaki, “Analysis of 

Psychological Stress Factors and Facial Parts Effect on Intentional 
Facial Expressions,” Proceedings of the Third International 

Conference on Ambient Computing, Applications, Services and 

Technologies, pp. 7-16, Oct. 2013. 
[11] K. Sato, H. Otsu, H. Madokoro, and S. Kadowaki, “Analysis of 

Psychological Stress Factors by Using Bayesian Network,” 

Proceedings of 2013 IEEE International Conference on 
Mechatronics and Automation, pp. 811-818, Aug. 2013. 

[12] H. Ishi, M. Kamachi, and J. Gyoba, “Effect of Facial Motion on 

Impression of Smile,” The Institute of Electronics, Information, and 
Communication Engineers, Technical Report, pp. 25-30, Dec. 2004. 

[13] S. Hanibuchi, K. Ito, and S. Nishida, “Analysis of Transformed 

Impression of Smile Process: - An Approach to Supporting Facial 
Expression Process Training -,” The Institute of Electronics, 

Information, and Communication Engineers, Technical Report, pp. 

35-40, Oct. 2009. 
[14] H. Fujishiro, A. Maejima, and S. Morishima, “Natural Smile 

Synthesis Considering Impression of Facial Expression Process,” 

The Institute of Electronics, Information, and Communication 
Engineers, Technical Report, pp. 31-36, Mar. 2011. 

[15] H. Fujishiro, A. Maejima, and S. Morishima, “Analysis of Relation 
between Movement of Smile Expression Process and Impression,” 

The Journal of the Institute of Electronics, Information, and 

Communication Engineers, vol. J95-A, no. 1,  pp. 128-135,  2012. 
[16] K. W. Kampe, C. D. Frith, R. J. Dolan, and U. Frith, “Reward value 

of attractiveness and gaze,” Nature, vol. 413, Oct. 2001. 

[17] Y. Kuroki, S. Shiraishi, N. Mukawa, M. Yuasa, and N. Fukayama, 
“Interaction between Human and Human-like Agent with Gaze and 

Facial Expression for Human Computer Interaction,” The Institute of 

Electronics, Information, and Communication Engineers, Technical 
Report, pp. 49-54, Mar. 2005. 

[18] Y. Kuroki, S. Shiraishi, N. Mukawa, M. Yuasa, and N. Fukayama, 

“Impression of Human-like Agent with Gaze and Facial Expression: 
-Brain Activity Analysis of HCI using fMRI-,” The Institute of 

Electronics, Information, and Communication Engineers, Technical 

Report, pp. 43-48, Mar. 2006. 
[19] J.A. Russell and M. Bullock, “Multidimensional Scaling of 

Emotional Facial Expressions: Similarity from Preschoolers to 

Adults,” Journal of Personality and Social Psychology, vol. 48, pp. 
1290-1298, 1985. 

[20] T. Kohonen, Self-organizing maps, Springer Series in Information 

Sciences, 1995. 
[21] G. A. Carpenter, S. Grossberg, and D.B. Rosen, “Fuzzy ART: fast 

stable learning and categorization of analog patterns by an adaptive 

resonance system,” Neural Networks, vol. 4, pp. 759-771, 1991. 
[22] M. Haghighat, S. Zonouz, and M. Abdel-Mottaleb, “Identification 

Using Encrypted Biometrics,” Computer Analysis of Images and 

Patterns, Springer Berlin Heidelberg, pp. 440-448, 2013. 
[23] T. Ikeda, H. Ishiguro, and M. Asada, “Moving Signal-Source 

Tracking Based on Mutual Information Maximization,” The 

Transactions of the Institute of Electronics, Information, and 
Communication Engineers D, vol. J90-D, no. 2, pp. 535-543, 2007. 

[24] T. Kikuchi, K. Kishi, and J. Miyamichi, “An Automatic Data 

Classification Algorithm Adjusted by Mutual Information, ” The 
Transactions of the Institute of Electronics, Information, and 

Communication Engineers D, vol. J82-D, no. 4, pp. 660-668, 1999. 

[25] P. Ekman and W. V. Friesen, “Unmasking the Face: A Guide to 
Recognizing Emotions from Facial Clues,” Malor Books, 2003. 

[26] T. Kanade, J. F. Cohn, and Y. L. Tian, “Comprehensive database for 

facial expression analysis,” Proc. of the Fourth IEEE Int. Conf. on 
Automatic Face and Gesture Recognition, pp. 46-53, 2000. 

139

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[27] M. Bartlett, J. Hager, P. Ekman, and T. Sejnowski, “Measuring 

facial expressions by computer image analysis,” Psychophysiology, 
vol. 36, pp. 253-264, 1999. 

[28] M. Pantic, M.F. Valstar, R. Rademaker, and L. Maat, “Web-based 

Database for Facial Expression Analysis,” Proc. IEEE Int'l. Conf. 
Multimedia and Expo, Amsterdam, The Netherlands, Jul. 2005. doi: 

10.1109/ICME.2005.15214. 

[29] P. Lucey et al., “The Extended Cohn-Kanade Dataset (CK+): A 
complete expression dataset for action unit and emotion-specified 

expression,” Proc. of the Third Int. Workshop on CVPR for Human 

Communicative Behavior Analysis, pp. 94-101, 2010. 
[30] QcamOrbit; Logicool Inc., http://www.logicool.co.jp/ja-jp/webcam-

communications/webcams [retrieved: June, 2016] 

[31] M. Yamaguchi, T. Kanamori, M. Kanemaru, Y. Mizuno, and H. 
Yoshida, “Correlation of Stress and Salivary Amylase Activity,” 

Japanese Journal of Medical Electronics and Biological Engineering: 

JJME, vol. 39, no. 3, pp. 46-51, Sep. 2001. 

[32] OEG-16; Spectratech Inc., 

http://www.spectratech.co.jp/product/16me/ [retrieved: June, 2016] 

[33] I. Akirav and M. Maroun, “The role of the medial prefrontal cortex-

amygdala circuit in stress effects on the extinction of fear,” Neural 
Plast. Published online 2007 Jan. doi: 10.1155/2007/30837. 

[34] K. Yanagisawa, H. Tsunashima, Y. Marumo, S. Hirose, T. Shimizu, 

M. Taira, and T. Haji, “Measurement and Evaluation of Higher 
Brain Function Using Functional Near-Infrared Spectroscopy 

(fNIRS),” Journal of Human Interface Society, vol.11, no.2, pp.21-

29, 2009. 
[35] J. L. Robinson and H. A. Demaree, “Physiological and cognitive 

effects of expressive dissonance,” Brain and Cognition, vol. 63, pp. 

70-78, 2007. 
[36] W. Sato, M. Noguchi, and S. Yoshikawa, “Emotion elicitation effect 

of films in a Japanese sample,” Social Behavior and Personality, vol. 

35, pp. 863-874, 2007. 
[37] S. Srivastava, M. Tamir, K. M. McGonigal, O. P. John, and J. J. 

Gross, “The social costs of emotional suppression: A prospective 

study of the transition to college,” Journal of Personality and Social 

Psychology, vol. 96, pp. 883-897, 2009. 

[38] R.J.R. Blair, “Facial expressions, their communicatory functions and 

euro-cognitive substates,” Philos. Trans. R. Soc. Lond., B358, pp. 
561-572, 2003. 

140

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Infinite Horizon Decision Support For Rule-based Process Models

Michaela Baumann∗, Michael Heinrich Baumann†, Dominik Franz-Xaver Gruber‡, and Stefan Jablonski∗
∗Institute for Computer Science, University of Bayreuth, Germany
†Institute for Mathematics, University of Bayreuth, Germany

‡Faculty of Computer Science, Hochschule Kempten – University of Applied Sciences, Germany
email: {michaela.baumann, michael.baumann, stefan.jablonski}@uni-bayreuth.de, dominik.f.gruber@stud.fh-kempten.de

Abstract—In recent years, process models tend to turn away from
common procedural models to more flexible, rule-based models.
These models are characterized by the fact that in each execution
step users usually have to decide between several rule-consistent
tasks to perform next. Precise execution paths are not given,
which is why adequate execution support needs to be provided.
Simulation is one means to facilitate the users’ decisions. In this
context, we suggest an execution simulation tool with an infinite
horizon, i.e., in each (simulated) step, users are informed about
the tasks that in any case still need to be done to properly finish
one process instance, and about tasks that may no longer be
executed. The forecasts consider an actual or a simulated history
of the process instance and the rules given by the model. In
contrast to systems that show consequences of decisions for the
next 1, 2, 3, . . . steps, our system deals with impacts until the end
of the process instance, independent of the length of the instance,
i.e., the number of steps, which is what we call “infinite horizon.”

Keywords–Process execution; Rule-based process models; Pro-
cess decision support;

I. INTRODUCTION

This paper is based on the ICCGI 2015 contribution [1].

In many fields of economy, industry, and research, process
models are used for supporting the execution of operating
processes, for designing work steps, for documentation pur-
poses, and so on [1]. Usually, these process models are a
sort of procedural process models, where the execution order
of the process steps is prescribed through the control flow.
Notations for this kind of process models are, for example,
Event-driven Process Chains (EPCs) [2], the Business Process
Model and Notation (BPMN) [3], and petri nets [4]. See the
left side of Figure 1 for an imperative process model example
in BPMN. Other execution orders than the prescribed ones
are not provided. This is why computational offloading (“the
extent to which differential external representations reduce the
amount of cognitive effort required to solve informationally
equivalent problems” [5]) is quite well achieved in procedural
process models. For rule-based process models, this is not the
case [6], as they take a different modeling and representation
approach. They are typically used when procedural process
models are too restrictive or get too complicated when complex
facts shall be displayed. The approach of rule-based process
models is to provide a set of tasks, firstly without stating
any execution order, and then to restrict all possible execution
orders by adding rules or constraints that should be met during
the execution. An example for such a rule could be: “If task A
has been executed, afterwards task C needs to be eventually
executed, too.” See Figure 2 or the right side of Figure 1 for an
example of a graphically represented rule-based process model

in the ConDec language [7] whose elements will be explained
in Section III. In some related work ConDec is also called
DECLARE [8], but the term DECLARE is also used for a
constraint-based system that supports LTL-based models like
ConDec.

The two notations of Figure 1 express the same circum-
stance, namely that task A has to be executed at least two
and at most five times in one process instance. As [9] states,
declarative process models may be transformed into imperative
ones, but the resulting model will probably look like a so-
called “spaghetti-model” as the number of execution paths is
incredibly large [10]. An example of such a transformation is
given in Figure 1. Especially for rule-based process models,
guidance for the user through the process is necessary, as the
execution sequences leading to a proper process completion
are not easy to see [11]. The paper at hand provides one
mechanism for such a guidance through rule-based process
models.

The work proceeds as follows: Section II briefly describes
the research question in contrast to related work. Section III
presents the declarative modelling language ConDec, which is
based on linear temporal logic and considered in the further
course of this paper. Section IV introduces the basic idea of
the infinite horizon decision support whereas Section V then
presents the concrete mechanism through deriving so-called
status values out of the declarative process rules. Section VI
briefly introduces a prototypical implementation. Section VII

A
A

A

A

A

A
2..5

Figure 1: The same process model: on the left hand side an imperative
representation, on the right hand side a declarative one.

141

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 2: An example process model where ν has to look forward intelligently.

provides an exemplary process execution with infinite horizon
status indicators and Section IX concludes the paper with
topics for ongoing research.

II. RELATED WORK AND RESEARCH QUESTION

For imperative process models a variety of execution
support tools are available [12], like Workflow Management
Systems (WfMSs) and electronical or paper-based checklists
[13]. These support tools help the user to proceed the process
adequately and can be based on the underlying process models
but also on log data gained from previous process instances
[14]. This is typically done by telling the user which tasks
he has to perform or is allowed to perform next, or which
tasks still have the possibility to be performed and which are
no longer allowed due to previous decisions. Also, advice and
frequently performed task orders together with some kind of
evaluation may be provided to the user. For declarative process
models, the basic functions of execution support tools are
the same. However, due to the differences in the modelling
approaches, there may be differences in the tools as well, for
example the handling of the high level of flexibility when
executing declarative process models [15]. In the work at hand,
a mechanism for answering the following list of questions
when processing a declaratively modelled process shall be
presented:

(a) Which tasks still need to be executed during the process
instance? How many times?

(b) Which tasks still can be executed during the process
instance (but do not have to)? Is there a maximum number
of executions?

(c) Which tasks are no longer allowed to be executed during
the process instance?

(d) What changes take place for (a), (b), and (c) if a certain
task would be performed next?

We do not want to answer the question, which tasks may
be executed in the next step (finite horizon with step size 1).
This has been done in other work, e.g., in [16] for ConDec
models via automata. Instead, we want to look at the infinite
horizon, i.e., a possibly infinite number of future steps, to give
hints about process activities valid for an indefinite future time
frame, exactly as specified in (a)-(d). To the best of the authors’
knowledge, such a feature is not yet available. However, we
assume that there is a mechanism ν available, like the one of
[16], that chooses tasks for the next step in a way that every
resulting process history is model conform and that dead ends
are avoided. Furthermore, we need process models that do not

contain conflicting constraints, i.e., that there is at least one
possibility to finish the process successfully (satisfiability of
the model) and that do not contain dead activities [16].

Our approach is in general independent of the underlying
modelling language, i.e., also independent of the underlying
logic the rules are based on, e.g., linear temporal logic or
predicate logic. One reason, why we cannot use state automata
for answering the above questions (a)-(d) is that it is not clear
whether all declarative process models can be expressed as
finite state automata at all [17]. If it is possible to express a
model via an automaton, then for realistic models the automata
usually suffer from a state explosion [18] and their computation
gets very costly [19]. Furthermore, we want to be able to
express exact numbers of activity recurrences (see (a) and (b)).

For run-time support, recommendations for effective execu-
tion [15] can be given. However, these recommendations are
usually based on past experiences and need a specific goal,
i.e., a rating of experiences in terms of desirability [8], as
input. Due to this preselection, parts of the executable tasks
are hidden from the executing agent. The decision support we
head for is somehow different as we do not intend to give
recommendations based on a specific goal (as input into the
system) but to provide an overview over the impact of each of
his decisions to the process participant. He can then decide,
according to the overview and a goal (which is only in his
mind), which step to execute next. The system and the model
do not need to be changed, which may cause history-based
violations when done at run-time [8]. As in declarative process
models there is not necessarily a limit of steps till the end of
an instance for answering questions (a)-(d), we talk of infinite
horizon in this context. A use case for this approach could be
the following example situation: in one section of a company
problems have occurred (e.g., power failure, machine failure).
Now, all processes that are executed until the problem is fixed
shall be proceeded without consulting this section. A change
of the workflow system is not needed as the problem can be
fixed any time.

III. THE DECLARATIVE PROCESS MODEL

At first we have to specify the process model that will serve
as input for the execution support tool. As already mentioned
in Section II, the model shall be declarative, i.e., based on
certain rules. One declarative modelling language is ConDec
[7], a language based on LTL. It is usable in the DECLARE
system [8], but it only allows for rules considering the tasks,
i.e., the functional perspective of a process model in the five
perspective approach of [20]. Rules for the other process per-
spectives like the data perspective, the operational perspective,
or the organizational perspective are not covered. The control-
flow perspective regarding the tasks is induced by the rules
themselves. The limitation to the functional and the control-
flow perspective through the use of ConDec simplifies the
presentations but still makes clear the method of our apporach.
As our approach is not dependent on ConDec but ConDec is
just an example, we can extend the infinite horizon decision
support to other rules involving other process perspectives
as well. This extensibility comes from the fact that we do
not directly use the particular modelling language’s elements
but the meaning behind the specific constructs, which can be
called dependency patterns or generic activity relationships, a

142

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I: LTL symbols and their meanings, taken from [24].

∧, ∨, ¬ Common logical operators (AND, OR, NOT)
⇒, ⇔ Abbreviations for expressions formed with above operators (IMPLICA-

TION, EQUIVALENCE)
©φ φ has to hold next in the process history (NEXT)
�φ φ has to hold always in the subsequent process history (ALWAYS)
♦φ φ has to hold eventually in the subsequent process history (EVENTU-

ALLY)
φ ∪ ψ φ has to hold in the process history at least until ψ holds where ψ

holds eventually in the process history (UNTIL)

term used in [21]. Examples for other declarative modelling
languages are the Case Management Model and Notation
(CMMN) [22] specification of the Object Management Group
(OMG) or the textual Declarative Process Intermediate Lan-
guage (DPIL) [17]. The model elements of CMMN are to some
extent very particular and exceed the scope of our approach,
which is why we did not consider CMMN. DPIL is at that
time not yet fully established, but it contains rules also for
the other perspectives as well as cross-perspective rules. As
ConDec is very common, we illustrate our approach with this
graphical notation.

Independently of the underlying modelling language we
have tasks A,B,C, . . . ∈ A that may be executed in one
process instance. The rules applied on the tasks of A are
summarized in set R. In the ConDec language there exist 19
basic rule types, also representable in linear temporal logic
(LTL) [23], which will be considered further on. The basic
LTL elements are listed in Table I.

The 19 basic rules of ConDec are the following ones. Every
rule has a textual macro, an LTL representation indicated in
square brackets, and a graphical representation, see [24]. The
graphical representations are in Figures 3 and 4.

i) existence(A,m): Task A has to be executed at least m
times, 0 < m <∞
[♦(A ∧ (©existence(A,m− 1))) where
existence(A, 1) = ♦A]

ii) absence(A): Task A may not be performed
[¬existence(A, 1)]

iii) absence(A,n + 1): Task A may only be executed up to
n times, 0 < n <∞
[¬existence(A,n+ 1)]

iv) exactly(A,n): Task A has to be performed exactly n
times, 0 < n <∞
[existence(A,n) ∧ absence(A,n+ 1)]

v) init(A): Each process instance has to start with the
execution of task A
[A]

vi) respondedExistence(A,B): If task A appears in the
process instance, then task B has to appear at some point,
too
[♦A⇒ ♦B]

vii) coExistence(A,B): If task A appears in the process
instance, then task B has to appear at some point, too,
and vice versa
[♦A⇔ ♦B]

viii) response(A,B): If task A appears in the process in-
stance, then task B has to appear after A, too
[�(A⇒ ♦B)]

ix) precedence(A,B): Task B can only be executed if task

A has already been executed, i.e., already appears in the
process history
[(¬B ∪A) ∨�(¬B)]

x) succession(A,B): If task A shall be executed, then task
B needs to be executed at some point afterwards and if
B shall be executed, A needs to be performed in advance
[response(A,B) ∧ precedence(A,B)]

xi) alternateResponse(A,B): If task A appears in the pro-
cess instance, then task B has to appear after A, too, and
A may not appear a second time before B
[�(A⇒©(¬A ∪B))]

xii) alternatePrecedence(A,B): Task B can only be exe-
cuted if task A has already been executed and between
two executions of B at least one execution of A has to
appear
[precedence(A,B) ∧�(B ⇒©(precedence(A,B)))]

xiii) alternateSuccession(A,B): Task A has to be followed
by B and B has to be preceded by A and two executions
of A need to have an execution of B before the second
A and two executions of B need to have an execution of
A after the first B
[alternateResponse(A,B)
∧ alternatePrecedence(A,B)]

xiv) chainResponse(A,B): Every execution of task A has to
be directly followed by B
[�(A⇒©B)]

xv) chainPrecedence(A,B): Every execution of task B has
to be directly preceded by A
[�(©B ⇒ A)]

xvi) chainSuccession(A,B): Every execution of task A has
to be directly followed by B and every execution of task
B has to be directly preceded by A
[�(A⇔©B)]

xvii) notCoExistence(A,B): Once task A is executed the first
time, task B may not be executed any more and vice versa
[¬(♦A ∧ ♦B)]

xviii) notSuccession(A,B): Once task A is executed, task B
may not be executed any more after A
[�(A⇒ ¬(♦B))]

xix) notChainSuccession(A,B): Task B may not be exe-
cuted directly after A
[�(A⇒©(¬B))]

Graphical representations of the constraints are presented in
Figure 3 and 4. These representations correspond to that ones
shown in [16]. However, rules i)-iv) or i)-v) may be combined
into the following two rules that are also shown in Figure 3
with 0 ≤ m ≤ n ≤ ∞ and m < ∞. We consider rules i’)
and ii’) instead of the original ones in the further course of
the paper.

i’) existence(A,m, n): Task A has to be performed at least
m times but not more than n times

ii’) initExistence(A,m, n): Task A has to be performed
at least m times but not more than n times and every
process instance has to start with the execution of A

The LTL representation of each of these templates implies
that formal model checking and verification can be applied.
This is done via a translation to automata [16]. We require
that set R is executable, i.e., that the underlying set of LTL
formulas is satisfiable. Rules i)-v) or i’) and ii’), resp., are
also known as existence templates, rules vi)-xvi) as relation

143

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 3: ConDec rules i)-x) and rules i’) and ii’).

templates and rules xvii)-xix) as negative relation templates.
A fourth group of rules, choice templates, has been skipped
like in [24] where the first three groups are referred to as basic
rule types. In [16], LTL formulas for the choice templates are
listed. However, as the rules base on LTL expressions, arbitrary
rules can be added or existing rules modified or removed. The
templates are always evaluated regarding their LTL expression,
not their shortcut or graphical representation that are only used
for better readability.

IV. CONCEPT OF THE INFINITE HORIZON DECISION
SUPPORT

We already stated in Section I that a function or machine
called ν exists that correctly returns all tasks that are exe-
cutable in the next step. This means that according to every
given and rule-consistent history h ∈ H, where H is the
space of all admissible histories, function ν : H → P(A)

Figure 4: ConDec rules xi) - xix).

returns those tasks that will not inevitably lead to an erro-
neous instance state. From every task supposed by ν at least
one correct path, i.e., a rule-consistent task sequence, to a
successful process completion has to exist. Regard Figure 2
for an example. Three tasks, namely A, B, and C may be
executed during an instance of this example process. More
precisely, task A has to be executed exactly once and task
C exactly twice. However, after the execution of A, task
B may no longer be executed. But after any execution of
C task B must eventually be executed. Let h = � be the
empty history at the beginning of a process instance. Then
ν(�) = {B,C} and not {A,B,C} because if A would be
executed at the very beginning, task B may no longer be
executed. But the execution of task C, and C has to be
executed even twice, requires at least one execution of B
afterwards. This is a contradiction and would lead to a non-
correct process completion. This is why function ν may not
suggest task A as first task in the process instance.

The example in Figure 2 also illustrates the possibly
infinite length of a process instance. A valid process ex-
ecution would be to do task C twice, then B, then A:
h = C.C.B.A. This is indeed the shortest possible execu-
tion. But it would also be valid to do B ten times: h =
C.C.B.B.B.B.B.B.B.B.B.B.A, or even a hundred times,
as the number of executions of task B is not restricted. If
the user of a process support system has insight only into
the tasks executable in the next step, he will not be able to
recognize the impact of his decisions more than one step and
possibly infinite steps ahead. For answering the questions (a)-
(d) from Section I we introduce two counters for each task.
One counter for the mandatory executions of a task and one
for the optional executions. If the mandatory counter of a task
has value a ≥ 0, this means that no matter which decisions
are made from now on, this task has to be executed at least
a times. If the optional counter of a task has value b ≥ 0,
this means that from now on there is no path through the
process where this task may be executed more than b times. It
always holds that the mandatory counter is less than or equal to
the optional counter. Furthermore, the optional counter cannot
increase during the execution, otherwise the previous counter
value would have been wrong. If the optional counter value
is zero, the corresponding task may no longer be executed
during this process instance. Mandatory counters can only
decrease through the execution of a task. A process can only
be successfully finished when the mandatory counters of all
tasks are zero.

According to the declarative nature of the process model,
the initial values of the counters are zero for the mandatory
counters and infinite for the optional counters. Thus, the initial
status of every task is status(A) = (man(A), opt(A)) =
(0,∞) ∀A ∈ A. The initial status of the process of Figure
2 when subsuming the statuses of all tasks into one matrix
would be the following:

TABLE II: Initial status table for the example process of Figure 2; h = �.

Task mandatory optional
A 0 ∞
B 0 ∞
C 0 ∞

In the next step, these status values must be updated

144

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



according to the process model rules given inR. Every process
model rule implies several status update rules. The specific
update rules are derived in Section V, but we can state several
general conditions for the change of a status value. For all
model rules, we check these general conditions whether they
apply for a model rule and determine the consequences. The
possible conditions are the occurrences of the following events:

• The process instance has just been started (start)

• A certain task has just been executed (exec(task) with
task ∈ A)

• The mandatory value of a certain task is greater than
zero (man(task) > 0 with task ∈ A)

• The optional value of a certain task is equal to zero
(opt(task) == 0 with task ∈ A)

• The optional value of a certain task is finite
(opt(task) 6=∞ with task ∈ A)

• A certain task appears somewhere in the instance
history (task ∈ h with task ∈ A ∧ h ∈ H)

• A certain task appears on the last place in the instance
history (task = `(h) with task ∈ A ∧ h ∈ H and `
a one-input function returning the last element of the
history)

• A certain task appears more recently in the instance
history than another task (`(h, task, anothertask) =
task with task, anothertask ∈ A ∧ h ∈ H and ` a
three-input function returning the more recent element
of two of the history)

• A certain task does not appear somewhere in the
instance history (task /∈ h with task ∈ A ∧ h ∈ H)

• A certain task does not appear on the last place in the
instance history (task 6= `(h) with task ∈ A ∧ h ∈
H and ` a function returning the last element of the
history)

The statuses man(task) == 0 and opt(task) == ∞ for
task ∈ A do not have any consequences as theses statuses
are the default ones. Of course, a condition can also be
the conjunction of several of the above events. The possible
consequences are the following events:

• The mandatory value of a certain task is reduced
by one if it is greater than zero (man(task) ←
max{0,man(task)− 1} with task ∈ A)

• The mandatory value of a certain task is set to a fixed
value (man(task)← n with task ∈ A ∧ n ∈ N)

• The mandatory value of a certain task is set to at
least one or the value it was before (man(task) ←
max{1,man(task)} with task ∈ A)

• The mandatory value of a certain task is set
to at least the mandatory value of another
task (maybe increased or decreased by one)
and the value it was before (man(task) ←
max{man(task),man(anothertask[±1]} with
task, anothertask ∈ A)

• The optional value of a certain task is reduced
by one if it is greater than zero (opt(task) ←
max{0, opt(task)− 1} with task ∈ A)

• The optional value of a certain task is set to a fixed
value (opt(task)← n with task ∈ A ∧ n ∈ N)

• The optional value of a certain task is set to zero
(opt(task)← 0 with task ∈ A)

• The optional value of a certain task is set
to at most the optional value of another
task (maybe increased or decreased by one)
and the value it was before (opt(task) ←
min{opt(task), opt(anothertask[±1])} with
task, anothertask ∈ A)

The reduction of the mandatory and the optional value of
a certain task by one is only done when this task is executed.

If exec(A): max{0,man(A)← man(A)− 1};
If exec(A): max{0, opt(A)← opt(A)− 1};

Setting the mandatory and optional values to a fixed value
is only done once at the beginning when existence rules are
evaluated. For the remaining consequences it holds that the
optional value of a task never increases and the mandatory
value of a task never reaches infinity during the execution of
the process.

For every process rule we now have to check which
conditions imply which consequences for the involved tasks,
i.e., we have to find the specific status update rules for every
process rule.

V. TASK STATUS UPDATE RULES

For deriving the update rules we begin with the existence
rules as these are the first ones to be evaluated after starting
a process. The relation rules come next but without the chain
rules, as these require a more thorough investigation. As third
we examine the negation rules again without the negated chain
rule. Finally, we analyze the relation and negation chain rules
and observe particular behaviour for these rules because they
do not directly influence the infinite horizon by definition. The
derivation of the update rules is accompanied by the example
process of Figure 2.

A. Existence Rules

The ConDec existence rules are equivalent to rules i’) and
ii’). These rules only change the status values of the tasks at the
beginning of the process. After start they are evaluated once
and for the rest of the execution they are no longer relevant.
What the update rules do is that they set the mandatory and
optional values to the fixed values of the existence template
that state that a task has to be executed at least m times and
at most n times. If a value is not specified it remains the inital
mandatory or optional value of 0 and ∞, respectively.

Rule i)’:
∀ existence(A,m, n) ∈ R:
If start: man(A)← m;
If start: opt(A)← n;

145

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Whether a task has the init property or not does not affect
the infinite horizon, thus rule ii’) is exactly the same regarding
the status update values. Of course, if a task is marked as init,
its mandatory value has to be at least one and there may only
exist at most one initExistence rule.

Rule ii)’:
∀ initExistence(A,m, n): existence(A,max{1,m}, n)

The example in Figure 2 has two existence rules, namely
existence(A, 1, 1) and existence(C, 2, 2). According to the
update rules above the status matrix in Table II changes to the
matrix shown in Table III.

TABLE III: Status table for the example process of Figure 2 after evaluating
the update rules resulting from existence rules; h = �.

Task mandatory optional
A 1 1
B 0 ∞
C 2 2

B. Relation Rules without Chain Rules

The ConDec relation rules are rules vi)-xiii) plus
chainResponse, chainPrecedence, and chainSuccession,
but we consider the chain rules not until Section V-D. We
start with the response rule. As response(A,B) states that
after A has been executed, B has to be eventually executed,
too, the execution of A sets the mandatory value of B to at
least one. But we also know that if A still has to be executed
(not matter how often), B also has to be executed at least once.
And we know that if B can no longer be executed, A must be
prevented from execution, too, by setting opt(A) == 0. The
response rule is not history dependent.

Rule viii):
∀ response(A,B) ∈ R:
If exec(A): man(B)← max{man(B), 1};
If man(A) > 0: man(B)← max{man(B), 1};
If opt(B) == 0: opt(A)← 0;

In contrast to the response rule, precedence is his-
tory dependent. We do not want to state that for rule
precedence(A,B), if A has already been executed, B may
be executed in the next step, but we want to give long-range
information. That means, if A has not yet been executed (is not
in h) and can no longer been executed, the optional value of
B has to be set to zero, because the prerequisites for executing
B can never be fulfilled. The other way round, if B still needs
to be executed and A is not yet executed, its mandatory value
has to be at least one.

Rule ix):
∀ precedence(A,B) ∈ R:
If opt(A) == 0 ∧A /∈ h: opt(B)← 0;
If man(B) > 0 ∧A /∈ h: man(A)← max{man(A), 1};

For succession both the update rules of response and
precedence hold.

Rule x):
∀ succession(A,B) ∈ R:
response(A,B) ∧ precedence(A,B)

respondedExistence is a variant of response and causes
the same update rules as response in case that the second
input task not already appears in the history. If this task already
appears in the history, then the respondedExistence process
rule has no implications on the status values.

Rule vi):
∀ respondedExistence(A,B) ∈ R:
If exec(A) ∧B /∈ h: man(B)← max{man(B), 1};
If man(A) > 0 ∧B /∈ h: man(B)← max{man(B), 1};
If opt(B) == 0 ∧B /∈ h: opt(A)← 0;

For coExistence, the update rules of
respondedExistence with the tasks in original order
and transposed order hold.

Rule vii):
∀ coExistence(A,B) ∈ R:
respondedExistence(A,B) ∧
respondedExistence(B,A)

The status update rules implied by the ConDec alternate
rules make use of the function ` : H × A × A → A that
returns the more recent task out of two tasks under the current
history h. If only one of the two tasks is in History h then `
returns this task. If none of the tasks is in h, it returns NULL.
The update rules implied by the alternate rules are similar
to that of response, precedence, and succession, except that
for two of the update rules, a case differentiation based on the
current history has to be made. The alternateResponse is, in
contrast to the response rule, history dependent:

Rule xi):
∀ alternateResponse(A,B) ∈ R:
If exec(A): man(B)← max{man(B), 1};
If opt(B) 6=∞∧ `(h,A,B) == A:

opt(A)← min{opt(B)− 1, opt(A)};
If opt(B) 6=∞∧ `(h,A,B) == B:

opt(A)← min{opt(B), opt(A)};
If `(h,A,B) == A:

man(B)← max{man(B),man(A) + 1};
If man(A) > 0 ∧ `(h,A,B) == B:

man(B)← max{man(B),man(A)}

The second and third as well as the fourth and fifth update
rule can be combined via an indicator function. This is in line
with the possible NULL return of ` if neither A nor B appears
in h:

Rule xi):
∀ alternateResponse(A,B) ∈ R:
If exec(A): man(B)← max{man(B), 1};
If opt(B) 6=∞:

opt(A)← min{opt(B)− I`(h,A,B)==A, opt(A)};
If man(A) + I`(h,A,B)==A > 0:

man(B)← max{man(B),man(A) + I`(h,A,B)==A};

Also for alternatePrecedence, the usual precedence can
be applied modified by another history dependency:

146

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Rule xii):
∀ alternatePrecedence(A,B) ∈ R:
If opt(A) 6=∞:

opt(B)← min{opt(B), opt(A) + I`(h,A,B)==A};
If man(B)− I`(h,A,B)==A > 0:

man(A)← max{man(A),man(B)− I`(h,A,B)==A};

The update rules implied by alternateSuccession are the
conjuction of the update rules of alternateResponse and
alternatePrecedence:

Rule xiii):
∀ alternateSuccession(A,B) ∈ R:
alternateResponse(A,B) ∧
alternatePrecedence(A,B)

C. Negation Rules without Chain Rule

Like the relation rules, the negation rules xvii) and
xviii) are at first considered without the chain rule, in
this case without the notChainSuccession rule xix. For
notSuccession(A,B) it holds that as soon as task A is
executed, task B may no longer be executed, i.e., the optional
status value of B becomes zero. The fact that as long as B
has to be executed (man(B) > 0) prohibits A from execution
cannot be considered in the infinite horizon but this restraint
has to be realized in ν but this is not focussed in this paper.

Rule xviii):
∀ notSuccession(A,B) ∈ R: If exec(A): opt(B)← 0;

For the notCoExistence rule the fact that a mandatory
value of one of the tasks is greater than zero influences
the infinite horizon status update rules as there is no time
dependency for this rule.

Rule xvii):
∀ notCoExistence(A,B) ∈ R:
If exec(A): opt(B)← 0;
If exec(B): opt(A)← 0;
If man(A) > 0: opt(B)← 0;
If man(B) > 0: opt(A)← 0;

We can now futher analyze the model of Figure 2 and
its implications on the status update table. Table III shows the
statuses after start of the process. The update rules implied by
the relation and negation process rules have to be checked next,
still before having executed the first task. We have to consider
the following update rules, induced by response(C,B) and
notSuccession(A,B):

• If exec(C) : man(B)← max{man(B), 1};
• If man(C) > 0 : man(B)← max{man(B), 1};
• If opt(B) == 0 : opt(C)← 0;

• If exec(A) : opt(B)← 0;

Clearly, the update rules activated by exec have not effect
at the moment. Only one update rule (man(C) > 0) is
activated. The status changes are in Table IV. The mandatory
value of B has increased by one. Note that the status update
rules exclulding that ones with exec and start can in general
influence each other. The order of processing them does not

matter but they have to be processed as many times until
nothing more changes.

TABLE IV: Status table for the example process of Figure 2 after evaluating
all update rules without having executed a task; h = �.

Task mandatory optional
A 1 1
B 1 ∞
C 2 2

Tasks executable next (the output of function ν with respect
to history h = �) are B and C. The execution of B implies
the following changes: B is executed and thus man(B) ← 0
and opt(B) ==∞ (reducing ∞ by one is still ∞). Then the
update rule man(C) > 0 activates and the mandatory value
of B is again set to one. The situtation is as before. When
executing C, h = C, the statuses change according to Table
V.

TABLE V: Status table for the example process of Figure 2 after execution
of C: h = C.

Task mandatory optional
A 1 1
B 1 ∞
C 1 1

Now, we have ν(C) = {B,C}. Executing B in the second
step would again lead to no changes, but executing C will
result in a status table as shown in Table VI.

TABLE VI: Status table for the example process of Figure 2 after execution
of C again; h = C.C.

Task mandatory optional
A 1 1
B 1 ∞
C 0 0

The output of ν under h = C.C is now only B, thus, task
B needs to be executed next. This results in statuses as seen in
Table VII. The output of ν under h = C.C.B is now A and B.

TABLE VII: Status table for the example process of Figure 2 after execution
of B; h = C.C.B.

Task mandatory optional
A 1 1
B 0 ∞
C 0 0

As soon as A is executed, the process has successfully finished
as all mandatory values have reached zero. Furthermore, all
optional values are zero as well, which means that no task may
be executed again as well, see Table VIII. Before executing
A, B can be executed arbitraritly often without changing the
status values.

D. Relation and Negation Chain Rules

The chainResponse behaves similar to the
alternateResponse with the difference that in the sequence
of several tasks A and B, B has to directly follow A.
Therefore, the update rules of alternateResponse can be

147

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE VIII: Status table for the example process of Figure 2 after execution
of A; h = C.C.B.A.

Task mandatory optional
A 0 0
B 0 0
C 0 0

modified through considering `(h) instead of `(h,A,B) with
` : H → A returning the most recent task in instance history
h.

Rule xiv):
∀ chainResponse(A,B) ∈ R :
If exec(A): man(B)← max{man(B), 1};
If opt(B) 6=∞:

opt(A)← min{opt(A), opt(B)− 1`(h)==A};
If man(A) + 1`(h)==A > 0:

man(B)← max{man(B),man(A) + 1`(h)==A};

The same modifications hold for chainPrecedence.

Rule xv):
∀ chainPrecedence(A,B) ∈ R :
If opt(A) 6=∞:

opt(B)← min{opt(B), opt(A) + 1`(h)==A};
If man(B)− 1`(h)==A > 0:

man(A)← max{man(A),man(B)− 1`(h)==A};

For chainSuccession, the update rules of chainResponse
and chainPrecedence are conjuncted.

Rule xvi):
∀ chainSuccession(A,B) ∈ R:
chainResponse(A,B) ∧ chainPrecedence(A,B)

Rule xix): notChainSuccession has no direct implica-
tions on the status update rules but affects them indirectly. We
address these indirect consequences in Section V-F.

E. Additional notSuccession and notChainSuccession
caused by chainResponse and chainSuccession

For chainResponse, as well as for chainSuccession
as it includes the chainResponse, we can make another
observation. As soon as A is executed, B has to be executed
next, and so all status changes B causes are actually
already caused through the execution of A. For the status
update rules, this transfer caused by a chainResponse
resp. chainSuccession is already done indirectly except for
the notSuccession and notChainSuccession rules. The

Figure 5: ConDec model where notSuccession(B,C) causes the addition
of notSuccession(A,C) because of chainResponse(A,B).

notSuccession only has one update rule, which is triggered
by the execution of a certain task, the notChainSuccession
has no update rules at all. Figure 5 shows a situation
where a notSuccession causes the addition of another
rule. Task A has to be directly followed by B and
then, after the execution of B, C may no longer be
executed because of the rule notSuccession(B,C). The
update rule implied by the notSuccession is, however,
If exec(B) : opt(C) == 0 although it is already clear
when executing A, C can no longer be executed. We
want the update rule If exec(A) : opt(C) == 0. This
can be achieved by including a notSuccession(A,C)
in addition to the original notSuccession(B,C).
Similar to this, it holds for notChainSuccession:
chainResponse(A,B) ∧ notChainSuccession(B,C):
add notChainSuccession(A,C) to the model. The addition
of a notChainSuccession may look like a redudant thing
to do because the chainResponse prohibits all other tasks
except the responding task in the next step, but the problem
gets clear with another observation described in Section V-F.

The chainPrecedence is only history dependent and does
not imply additions of process rules.

F. Infinite horizon implications of notChainResponse

At a first glance, the notChainSuccession rule does not
affect the infinite horizon as it prevents the execution of a
certain task only in the next step (which would be a matter for
ν). But indeed, it can have a considerable impact on the infinite
horizon. See Figure 6 for an example of the infinite horizon
effect of a notChainSuccession. The model consists only of
three tasks, A, B, and C, where A needs to be executed at least
once and C may not be executed directly after A. As soon as
B is executed, C may no longer be executed. When starting
with A, there is no direct infinite horizon status change for C.
The notSuccession causes no status changes at this point as
well, as it only triggers through the execution of B. But in fact,
C may no longer be executed as the next task after A is again
A or B (C is prohibited through the notChainSuccession).
Executing A again implies no changes, but the execution of
B sets the optional value of C to zero. That means, through
exec(A) is should have followed immediately opt(C) == 0.

The detection of such a connection can be very complicated
as it can involve any number of steps. A helpful approach
is to conduct a review of the notChainSuccession(A,B)
rules under the current history if A is executed. In our
example in Figure 6, the notChainSuccession implies the
same process behavior when executing A as a notSuccession
under h = �, i.e., it actually affects the infinite horizon
statuses. So, for the situation h = � the notChainSuccession
rule is translated into a notSuccession implying all status
update rules of the notSuccession. We call these trans-
lated notChainSuccession rules deFactoNotSuccession
rules. They turn back to notChainSuccession after one
process step as their transformation is history depen-
dent. That is, the status update rules implied by a
deFactoNotSuccession only hold for one turn. Figure
7 shows a situation where the notChainSuccession not
necessarily turns into a notSuccession. Before execution,
the rule notChainSuccession(A,D) has to be added to
the original model because of chainResponse(A,B) and

148

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 6: ConDec model where notChainSuccession(A,C) is a
deFactoNotSuccesion(A,C).

notChainSuccession(B,D). It is possible, to start the
process with execution of A: h = A. Now it has
to be checked, if task D is only locked for the next
step because of notChainSuccession(A,D) or if it is a
deFactoNotSuccession(A,D) setting opt(D) == 0. With
history h = A we find the following path to execute D
afterwards: task B has to follow immediately: h = A.B.
But also here, D is not allowed at least in the next step and
we also have to check for deFactoNotSuccession(B,D).
Task E requires C, but C immediately prohibits any fur-
ther execution of D. Instead, task F can be executed:
h = A.B.F . After execution of F , execution of D does
no longer conflict with notChainSuccession(A,D) and
notChainSuccession(B,D) and thus, D can be executed
next. However, if we consider the situation where F is ex-
ecuted first and then A, we are no longer able to find a way
to executed D afterwards. The only possible way to executed
D after A was to do F , but it has exact execution number
of one, i.e., its mandatory and optional values have turned to
zero after the first process step. So, with history h = F.A the
execution of A causes the rule notChainSuccession(A,D)
to transform to a notSuccession(A,D) and the optional value
of D is immediately reduced to zero. When executing B
afterwards, rule notChainSuccession(B,D) does not need
to be checked for being a deFactoNotSuccesion(B,D) as
already opt(D) == 0.

Rule xix):
notChainSuccession(A,B): As this rules points exactly
one task execution into the future, it has no direct implica-
tions for the infinite horizon. When A is executed, it must
be checked whether it is an actual notChainSuccession or
a deFactoNotSuccession, which applies the status update
rules of a notSuccession, depending on the current history.

This possible translation of notChainSuccession
rules into deFactoNotSuccession rules is the
reason why notChainSuccession rules have
to be added due to chainResponse rules as
described in Section V-E. The conduction whether a
notChainSuccession is a deFactoNotSuccession or

Figure 7: ConDec model where notChainSuccession(A,D) is a
deFactoNotSuccesion(A,D) with underlying history h = F .

an actual notChainSuccession can be done via model
verification: For notChainSuccession(A,B) simulate the
execution of A based on the current history h (simulated
history: h′ = h.A) and check the model for freeness
of conflicts when adding the rule response(A,B).
If the original model was conflict-free and now a
conflict occurs, it means that B cannot be executed
after A and thus, the notChainSuccession(A,B) is a
deFactoNotSuccession(A,B).

VI. IMPLEMENTATION

In this section, we demonstrate the functioning of the
derived infinite horizon status update rules with a prototyp-
ical proof-of-concept implementation of the infinite horizon
system in Java. This implementation is a stand-alone program
reflecting the infinite horizon mechanism and can be integrated
into existing process execution systems. Figure 8 presents a
reduced UML class diagram that shows the structure of the
infinite horizon update rule system. The rules not shown in
Figure 8 indicated through the “incomplete” annotation are
included in the same way as the respresented ones. The update
rules derived in Section V are implemented as methods in the
respective rule classes.

Because we did not implement interfaces yet in the pro-
totype, the process models we checked were entered by
hand. If necessary, we added transferred notSuccesion and
notChainSuccession rules. The derivation of those tasks that
are executable next, i.e., the functionality of ν, can be achieved
with an automaton based approach as described in [8]. The
same automaton based approach can be used when checking
for deFactoNotSuccessions as described in Section V-F: for
every notChainSuccession(A,B), history h = history.A
with history being the status of the process instance so
far and the model has to be entered into the verification
system. Additionally, the rule response(A,B) is needed to
check whether there are any conflicts or not, i.e., whether
B is eventually executable or not. If a conflict occurs, the
notChainSuccession(A,B) is a deFactoNotSuccession
and the respective update rule has to be added into our system.

Basically, the procedure of the update rules trigger mecha-
nism is the following where start-update rules (s-update rules)

149

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



view::IHD Runner

+ main(String[]) :void
+ start(List<Task>,TaskProcessor) :void

model::Task

+ addMasterShipOf(Rule) :void
+ addSlaveryOf(Rule) :void

rule::Rule

+ apply(Task, Task, boolean) :void
+ exec(Task) :Set<Task>

processor::TaskProcessor

+ exec(Task) :void
+ execUpdate(Task) :Set<Task>
+ update(Task) :void

rule::Precedence

+ exec(Task) :Set<Task>
+ update() :Set<Task>

rule::Response

+ exec(Task) :Set<Task>
+ update() :Set<Task>

rule::ChainResponse

+ exec(Task) :Set<Task>
+ update() :Set<Task>

#master

#slave

-ruleList

0..*

{incomplete}

Figure 8: UML class diagramm of the infinite horizon status update rule system.

are those beginning with “If start” and execution-update rules
(e-update rules) are those beginning with “If exec(·)”:

1) h← �;
initialization of status table (mandatory values zero, op-
tional values ∞);

2) start process:
go through s-update rules once;
go through other update rules (except e/s-update rules) as
many times until nothing more changes;

3) execution of task ∈ ν(h):
h← task;
go through e-update rules once;
go through other update rules (except e/s-update rules) as
many times until nothing more changes;

4) execution of task ∈ ν(h):
h← h.task;
go through execution-update rules once;
go through other update rules (except e/s-update rules) as
many times until nothing more changes;

5) etc.

The order of the rules when going through s-update rules, e-
update rules, or all other update rules is not important, as long
as the other update rules are processed until in one run no
changes apply to the status values. We tested the behavior
of the infinite horizon status update mechanism with several
distinct process models and always reached the desired, correct
behavior of the status updates. One such execution example is
provided in Section VII to illustrate the functionality of the
implemented prototype.

VII. EXAMPLE

As an illustrational example of the infinite horizon deci-
sion support we take the process given in Figure 9 repre-
senting a (fictional) clinical diagnosis process. The example
contains three precedence rules, one response rule, one
respondedExistence rule und one notChainSuccession
rule. In this example, the notChainSuccession rule never
turns into a deFactoNotSuccession rule as task “magnetic
resonance tomography” can always be executed. Thus, the
notChainSuccession rule has no influence on the infinite

TABLE IX: Diagnosis process: status table with history h = �.

Task mandatory optional
MRT 1 ∞
blood 0 1
assistant 1 ∞
Xray 0 ∞
head 0 1

horizon. With the abbreviations MRT (magnetic resonance
tomography), assistant (assistant physician’s round), blood
(blood test), head (head physician’s round), and Xray (X-ray
examination) for the tasks and the status rules applied after
initializing the states the table for history h = � looks like
Table IX.

Regarding the console output of our prototype in Figure
10, we get the same result.

Table IX says that there are two tasks that need to be
done in any case, even in every instance of this process as
the history is empty at the moment, namely tasks MRT and
assistant. All other tasks may be done at some point during
an instance, however, not necessarily all tasks in one instance.
Now imagine that there is a patient for whom a diagnosis has
to be made without performing the X-ray examination in this
particular case. Is there a possibility to perform the diagnosis
process without this specific task? Table IX states “yes” as the
mandatory value of Xray is 0. This means, there is at least
one successful execution without having to perform the X-ray
examination.

Possible tasks in the first step give by ν(�) are MRT ,
blood and XRay. When executing blood, the output of the
prototype is shown in Figure 11.

Summarized in a status table, the status values for h =
blood are represented in Table X. The status values reveal that
if the blood test is done then the X-ray examination eventually
needs to be done, too. This is not desired for our patient, so
the blood test should not be the choice in the first step.

Instead of the blood test the MRT is executed in the first
step (this task has to be executed anyway during the process),
so we have history h =MRT . The prototype output of Figure

150

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE X: Diagnosis process: status table with history h = blood.

Task mandatory optional
MRT 1 ∞
blood 0 0
assistant 1 ∞
Xray 1 ∞
head 1 1

TABLE XI: Diagnosis process: status table with history h =MRT .

Task mandatory optional
MRT 0 ∞
blood 0 1
assistant 1 ∞
Xray 0 ∞
head 0 1

12 and the summarized status table in Table XI show that this
choice is fine since the X-ray examination is still optional, but
not mandatory.

The only remaining mandatory task is assistant. If this
task is performed next, then the diagnosis process can be
finished successfully as all mandatory values are 0. This is
apparent from both Figure 13 and summarized status Table
XII.

So, the answer to the question if the process can be
performed without having to do the X-ray examination can
be given directly after initializing the tasks’ states, but the
concrete steps that have to be taken to reach this goal can
only be detected through simulation. However, the execution
h = MRT.assistant.end is one possibility to finish the
process under the given constraints. There may exist others
as well.

VIII. INCLUSION OF THE NEXT FUNCTION

The function that returns the tasks executable in the next
step is not in the focus of this paper. However, to obtain a
satisfactory decision support tool, the functionality of such
a mapping ν has to be integrated into the system. At the
moment, the output of function ν is generated externally. We

Figure 9: A fictional clinical process model representing a diagnosis process.

Figure 10: Prototype output of the Diagnosis process for h = �.

Figure 11: Prototype output of the Diagnosis process for h = blood.

Figure 12: Prototype output of the Diagnosis process for h =MRT .

Figure 13: Prototype output of the Diagnosis process for h =
MRT.assistant.

151

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE XII: Diagnosis process: status table with history h =
MRT.assistant.

Task mandatory optional
MRT 0 ∞
blood 0 1
assistant 0 ∞
Xray 0 ∞
head 0 1

TABLE XIII: Diagnosis process: user decision support with next executable
tasks and their implications with h = �.

mandatory impossible

Current MRT , assistant

MRT assistant

blood MRT , assistant, Xray, head blood

Xray MRT , assistant

are currently working on the inclusion of ν in the same manner
as the mandatory and optional values are generated. We add
a third type of status value to each task indicating whether a
task is locked by certain process rules or not. The update rules
have to be extended by locking rules.

The response rule does not have any influence on the
locking of tasks, but for the precendence rule, we have to add
the following status update rule: ∀ precedence(A,B) ∈ R: If
A /∈ h: lock(B). This functionality could be realised with a
map in Java to ensure that a lock is released only once as one
task may have several locks from different process rules. This
locking mechanism wourld detach the dependency on process
models representable as finite state automata (see, e.g., [16])
but extent the set of possible process models.

A schematical representation of the user decision support
with next executable tasks is depictured in Table XIII. The
process is that one of Figure 9 with an empty history. Table
XIII shows the current mandatory/optional values not with
their concrete values but only distiguishes between a value of 0
or > 0. This current state is shown in the row above the double
horizontal line: MRT and assistant have to be executed
somewhen to finish the process under the current situation.
There are not any non-executable tasks at the beginning. The
tasks executable next, i.e., in the first step, are shown in the
left column below the double horizontal line as well as their
implications on the infinite horizon in the respective rows: the
tasks that are mandatory after the execution of one of the next
executable tasks and the tasks that are impossible to execute in
the further process instance. For example, if blood is executed
in the next, i.e., first, step, then it cannot be executed any more
but Xray and head get mandatory, too. MRT and assistant
remain mandatory as they have not been executed yet. The
optional values are indirectly given. If a task has an optional
value of zero, it is listed in column impossible. For example,
blood gets impossible for all future steps after execution of
blood in the first step.

IX. CONCLUSION AND ONGOING RESEARCH

The work at hand presents a possibility for decision support
for declarative process models. The presented decision support
applies to an infinitely long forecast horizon. It makes use of

the process rules and their implications to the states of the tasks
they refer to. The rules considered in this paper only concern
the sequence flow of a process so an extension to other rule
types, e.g., concerning roles and agents, is worthwhile. Further-
more, the tasks are only points in time, i.e., only their final
execution is registered. However, due to concurrency issues
it would be beneficial to split one task into different events,
at least into taskstarted and taskfinished. According to
these events, the update rules need to be adjusted. Furthermore,
tasks can also serve as containers implying subprocesses, like
activities marked as subprocesses in BPMN do. For such
nested process models the update rules can also be nested,
meaning, the execution of a container task initializes a separate
set of update rules for the subprocess. For larger process
models, the status value tables can be stored via a hash key
once they are computed to reduce runtime.

The mechanism presented in this paper can be seen as
an extension for existing decision support systems or process
navigation tools where it can be embedded into. Interfaces
for the respective target system have to be built then, but the
mechanism, i.e., the logic of the task status update rules, can
be taken one to one.

ACKNOWLEDGEMENT

The work of Michael Heinrich Baumann is supported
by a scholarship of “Hanns-Seidel-Stiftung (HSS)”, which is
funded by “Bundesministerium für Bildung und Forschung
(BMBF).” The authors wish to thank Josef Noll (Basic Internet
Foundation and University of Oslo, University Graduate Center
(UNIK), Norway), session chair at The Tenth International
Multi-Conference on Computing in the Global Information
Technology (ICCGI 2015) October 11 - 16, 2015 - St. Julians,
Malta.

REFERENCES

[1] M. Baumann, M. H. Baumann, and S. Jablonski, “An idea on infinite
horizon decision support for rule-based process models,” in ICCGI
2015, The Tenth International Multi-Conference on Computing in the
Global Information Technology, H. Kaindl, K. György, and D. Tamir,
Eds. Think Mind, 2015, vol. 5, pp. 73–75.

[2] A.-W. Scheer, O. Thomas, and O. Adam, “Process modeling using
event-driven process chains,” Process-Aware Information Systems, pp.
119–146, 2005.

[3] P. Wohed, W. van der Aalst, M. Dumas, A. ter Hofstede, and N. Russell,
“On the suitability of bpmn for business process modelling,” in Business
Process Management, ser. LNCS, S. Dustdar, J. Fiadeiro, and A. Sheth,
Eds. Springer Berlin Heidelberg, 2006, vol. 4102, pp. 161–176.

[4] J. Desel, “Process modeling using petri nets,” Process-Aware Informa-
tion Systems: Bridging People and Software through Process Technol-
ogy, pp. 147–177, 2005.

[5] M. Scaife and Y. Rogers, “External cognition: how do graphical repre-
sentations work?” International Journal of Human-Computer Studies,
vol. 45, no. 2, pp. 185–213, 1996.

[6] S. Zugal, J. Pinggera, and B. Weber, “Creating declarative process
models using test driven modeling suite,” in IS Olympics: Information
Systems in a Diverse World, ser. LNBIP, S. Nurcan, Ed. Springer
Berlin Heidelberg, 2012, vol. 107, pp. 16–32.

[7] M. Pesic and W. van der Aalst, “A declarative approach for flexible
business processes management,” in Business Process Management
Workshops, ser. LNCS, J. Eder and S. Dustdar, Eds. Springer Berlin
Heidelberg, 2006, vol. 4103, pp. 169–180.

152

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[8] M. Pesic, H. Schonenberg, and W. van der Aalst, “DECLARE: Full sup-
port for loosely-structured processes,” in Enterprise Distributed Object
Computing Conference, 2007. EDOC 2007. 11th IEEE International,
2007, pp. 287–287.

[9] D. Fahland, D. Lübke, J. Mendling, H. Reijers, B. Weber, M. Weidlich,
and S. Zugal, “Declarative versus imperative process modeling lan-
guages: The issue of understandability,” in Enterprise, Business-Process
and Information Systems Modeling, ser. LNBIP, T. Halpin, J. Krogstie,
S. Nurcan, E. Proper, R. Schmidt, P. Soffer, and R. Ukor, Eds. Springer
Berlin Heidelberg, 2009, vol. 29, pp. 353–366.

[10] C. Günther, S. Schönig, and S. Jablonski, “Dynamic guidance enhance-
ment in workflow management systems,” in Proceedings of the 27th
Annual ACM Symposium on Applied Computing, ser. SAC ’12. New
York, NY, USA: ACM, 2012, pp. 1717–1719.

[11] W. M. van der Aalst, M. Weske, and D. Grnbauer, “Case handling:
a new paradigm for business process support,” Data & Knowledge
Engineering, vol. 53, no. 2, pp. 129 – 162, 2005.

[12] S. Jablonski, “Do we really know how to support processes? consid-
erations and reconstruction,” in Graph Transformations and Model-
Driven Engineering, ser. LNCS, G. Engels, C. Lewerentz, W. Schäfer,
A. Schürr, and B. Westfechtel, Eds. Springer Berlin Heidelberg, 2010,
vol. 5765, pp. 393–410.

[13] M. Baumann, M. Baumann, S. Schönig, and S. Jablonski, “Enhancing
feasibility of human-driven processes by transforming process models
to process checklists,” in Enterprise, Business-Process and Information
Systems Modeling, ser. LNBIP, I. Bider, K. Gaaloul, J. Krogstie,
S. Nurcan, H. Proper, R. Schmidt, and P. Soffer, Eds. Springer Berlin
Heidelberg, 2014, vol. 175, pp. 124–138.

[14] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
discovering process models from event logs,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 16, no. 9, pp. 1128–1142,
Sept 2004.

[15] W. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative work-
flows: Balancing between flexibility and support,” Computer Science -
Research and Development, vol. 23, no. 2, pp. 99–113, 2009.

[16] M. Pesic, “Contraint-based workflow management systems: Shifting
control to users,” Ph.D. dissertation, Technische Universiteit Eindhoven,
2008.

[17] M. Zeising, S. Schönig, and S. Jablonski, “Towards a common platform
for the support of routine and agile business processes,” in Collaborative
Computing: Networking, Applications and Worksharing (Collaborate-
Com), 2014 International Conference on, Oct 2014, pp. 94–103.

[18] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, Informatics: 10
Years Back, 10 Years Ahead. Springer Berlin Heidelberg, 2001, ch.
Progress on the State Explosion Problem in Model Checking, pp. 176–
194.

[19] M. Montali, “Specification and verification of declarative open inter-
action models – a logic-based framework,” Ph.D. dissertation, Alma
Mater Studiorum Universitá di Bologna, 2009.

[20] S. Jablonski and C. Bussler, Workflow management: modeling concepts,
architecture and implementation. International Thomson Computer
Press, 1996.

[21] P. Dourish, J. Holmes, A. MacLean, P. Marqvardsen, and A. Zbyslaw,
“Freeflow: Mediating between representation and action in workflow
systems,” in Proceedings of the 1996 ACM Conference on Computer
Supported Cooperative Work, ser. CSCW ’96. ACM, 1996, pp. 190–
198.

[22] Object Management Group, “Case management model
and notation version 1.0,” 2014. [Online]. Available:
http://www.omg.org/spec/CMMN/1.0/PDF/ [accessed: 2015-07-19]

[23] F. Maggi, M. Montali, M. Westergaard, and W. van der Aalst, “Mon-
itoring business constraints with linear temporal logic: An approach
based on colored automata,” in Business Process Management, ser.
LNCS, S. Rinderle-Ma, F. Toumani, and K. Wolf, Eds. Springer Berlin
Heidelberg, 2011, vol. 6896, pp. 132–147.

[24] F. Maggi, A. Mooij, and W. van der Aalst, “User-guided discovery of
declarative process models,” in Computational Intelligence and Data

Mining (CIDM), 2011 IEEE Symposium on, April 2011, pp. 192–199.

153

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



www.iariajournals.org

International Journal On Advances in Intelligent Systems

issn: 1942-2679

International Journal On Advances in Internet Technology

issn: 1942-2652

International Journal On Advances in Life Sciences

issn: 1942-2660

International Journal On Advances in Networks and Services

issn: 1942-2644

International Journal On Advances in Security

issn: 1942-2636

International Journal On Advances in Software

issn: 1942-2628

International Journal On Advances in Systems and Measurements

issn: 1942-261x

International Journal On Advances in Telecommunications

issn: 1942-2601


