

The International Journal on Advances in Software is published by IARIA.

ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Software, issn 1942-2628

vol. 8, no. 1 & 2, year 2015, http://www.iariajournals.org/software/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Software, issn 1942-2628

vol. 8, no. 1 & 2, year 2015,<start page>:<end page> , http://www.iariajournals.org/software/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2015 IARIA

International Journal on Advances in Software

Volume 8, Number 1 & 2, 2015

Editor-in-Chief

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Editorial Advisory Board

Hermann Kaindl, TU-Wien, Austria

Herwig Mannaert, University of Antwerp, Belgium

Editorial Board

Witold Abramowicz, The Poznan University of Economics, Poland

Abdelkader Adla, University of Oran, Algeria

Syed Nadeem Ahsan, Technical University Graz, Austria / Iqra University, Pakistan

Marc Aiguier, École Centrale Paris, France

Rajendra Akerkar, Western Norway Research Institute, Norway

Zaher Al Aghbari, University of Sharjah, UAE

Riccardo Albertoni, Istituto per la Matematica Applicata e Tecnologie Informatiche “Enrico Magenes” Consiglio

Nazionale delle Ricerche, (IMATI-CNR), Italy / Universidad Politécnica de Madrid, Spain

Ahmed Al-Moayed, Hochschule Furtwangen University, Germany

Giner Alor Hernández, Instituto Tecnológico de Orizaba, México

Zakarya Alzamil, King Saud University, Saudi Arabia

Frederic Amblard, IRIT - Université Toulouse 1, France

Vincenzo Ambriola , Università di Pisa, Italy

Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus

Annalisa Appice, Università degli Studi di Bari Aldo Moro, Italy

Philip Azariadis, University of the Aegean, Greece

Thierry Badard, Université Laval, Canada

Muneera Bano, International Islamic University - Islamabad, Pakistan

Fabian Barbato, Technology University ORT, Montevideo, Uruguay

Peter Baumann, Jacobs University Bremen / Rasdaman GmbH Bremen, Germany

Gabriele Bavota, University of Salerno, Italy

Grigorios N. Beligiannis, University of Western Greece, Greece

Noureddine Belkhatir, University of Grenoble, France

Jorge Bernardino, ISEC - Institute Polytechnic of Coimbra, Portugal

Rudolf Berrendorf, Bonn-Rhein-Sieg University of Applied Sciences - Sankt Augustin, Germany

Ateet Bhalla, Oriental Institute of Science & Technology, Bhopal, India

Fernando Boronat Seguí, Universidad Politecnica de Valencia, Spain

Pierre Borne, Ecole Centrale de Lille, France

Farid Bourennani, University of Ontario Institute of Technology (UOIT), Canada

Narhimene Boustia, Saad Dahlab University - Blida, Algeria

Hongyu Pei Breivold, ABB Corporate Research, Sweden

Carsten Brockmann, Universität Potsdam, Germany

Antonio Bucchiarone, Fondazione Bruno Kessler, Italy

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

Dumitru Burdescu, University of Craiova, Romania

Martine Cadot, University of Nancy / LORIA, France

Isabel Candal-Vicente, Universidad del Este, Puerto Rico

Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain

Jose Carlos Metrolho, Polytechnic Institute of Castelo Branco, Portugal

Alain Casali, Aix-Marseille University, France

Yaser Chaaban, Leibniz University of Hanover, Germany

Patryk Chamuczyński, Radytek, Poland

Savvas A. Chatzichristofis, Democritus University of Thrace, Greece

Antonin Chazalet, Orange, France

Jiann-Liang Chen, National Dong Hwa University, China

Shiping Chen, CSIRO ICT Centre, Australia

Wen-Shiung Chen, National Chi Nan University, Taiwan

Zhe Chen, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China

PR

Po-Hsun Cheng, National Kaohsiung Normal University, Taiwan

Yoonsik Cheon, The University of Texas at El Paso, USA

Lau Cheuk Lung, INE/UFSC, Brazil

Robert Chew, Lien Centre for Social Innovation, Singapore

Andrew Connor, Auckland University of Technology, New Zealand

Rebeca Cortázar, University of Deusto, Spain

Noël Crespi, Institut Telecom, Telecom SudParis, France

Carlos E. Cuesta, Rey Juan Carlos University, Spain

Duilio Curcio, University of Calabria, Italy

Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania

Paulo Asterio de Castro Guerra, Tapijara Programação de Sistemas Ltda. - Lambari, Brazil

Cláudio de Souza Baptista, University of Campina Grande, Brazil

Maria del Pilar Angeles, Universidad Nacional Autonónoma de México, México

Rafael del Vado Vírseda, Universidad Complutense de Madrid, Spain

Giovanni Denaro, University of Milano-Bicocca, Italy

Hepu Deng, RMIT University, Australia

Nirmit Desai, IBM Research, India

Vincenzo Deufemia, Università di Salerno, Italy

Leandro Dias da Silva, Universidade Federal de Alagoas, Brazil

Javier Diaz, Rutgers University, USA

Nicholas John Dingle, University of Manchester, UK

Roland Dodd, CQUniversity, Australia

Aijuan Dong, Hood College, USA

Suzana Dragicevic, Simon Fraser University- Burnaby, Canada

Cédric du Mouza, CNAM, France

Ann Dunkin, Palo Alto Unified School District, USA

Jana Dvorakova, Comenius University, Slovakia

Lars Ebrecht, German Aerospace Center (DLR), Germany

Hans-Dieter Ehrich, Technische Universität Braunschweig, Germany

Jorge Ejarque, Barcelona Supercomputing Center, Spain

Atilla Elçi, Aksaray University, Turkey

Khaled El-Fakih, American University of Sharjah, UAE

Gledson Elias, Federal University of Paraíba, Brazil

Sameh Elnikety, Microsoft Research, USA

Fausto Fasano, University of Molise, Italy

Michael Felderer, University of Innsbruck, Austria

João M. Fernandes, Universidade de Minho, Portugal

Luis Fernandez-Sanz, University of de Alcala, Spain

Felipe Ferraz, C.E.S.A.R, Brazil

Adina Magda Florea, University "Politehnica" of Bucharest, Romania

Wolfgang Fohl, Hamburg Universiy, Germany

Simon Fong, University of Macau, Macau SAR

Gianluca Franchino, Scuola Superiore Sant'Anna, Pisa, Italy

Naoki Fukuta, Shizuoka University, Japan

Martin Gaedke, Chemnitz University of Technology, Germany

Félix J. García Clemente, University of Murcia, Spain

José García-Fanjul, University of Oviedo, Spain

Felipe Garcia-Sanchez, Universidad Politecnica de Cartagena (UPCT), Spain

Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany

Tejas R. Gandhi, Virtua Health-Marlton, USA

Andrea Giachetti, Università degli Studi di Verona, Italy

Robert L. Glass, Griffith University, Australia

Afzal Godil, National Institute of Standards and Technology, USA

Luis Gomes, Universidade Nova Lisboa, Portugal

Diego Gonzalez Aguilera, University of Salamanca - Avila, Spain

Pascual Gonzalez, University of Castilla-La Mancha, Spain

Björn Gottfried, University of Bremen, Germany

Victor Govindaswamy, Texas A&M University, USA

Gregor Grambow, University of Ulm, Germany

Carlos Granell, European Commission / Joint Research Centre, Italy

Christoph Grimm, University of Kaiserslautern, Austria

Michael Grottke, University of Erlangen-Nuernberg, Germany

Vic Grout, Glyndwr University, UK

Ensar Gul, Marmara University, Turkey

Richard Gunstone, Bournemouth University, UK

Zhensheng Guo, Siemens AG, Germany

Phuong H. Ha, University of Tromso, Norway

Ismail Hababeh, German Jordanian University, Jordan

Shahliza Abd Halim, Lecturer in Universiti Teknologi Malaysia, Malaysia

Herman Hartmann, University of Groningen, The Netherlands

Jameleddine Hassine, King Fahd University of Petroleum & Mineral (KFUPM), Saudi Arabia

Tzung-Pei Hong, National University of Kaohsiung, Taiwan

Peizhao Hu, NICTA, Australia

Chih-Cheng Hung, Southern Polytechnic State University, USA

Edward Hung, Hong Kong Polytechnic University, Hong Kong

Noraini Ibrahim, Universiti Teknologi Malaysia, Malaysia

Anca Daniela Ionita, University "POLITEHNICA" of Bucharest, Romania

Chris Ireland, Open University, UK

Kyoko Iwasawa, Takushoku University - Tokyo, Japan

Mehrshid Javanbakht, Azad University - Tehran, Iran

Wassim Jaziri, ISIM Sfax, Tunisia

Dayang Norhayati Abang Jawawi, Universiti Teknologi Malaysia (UTM), Malaysia

Jinyuan Jia, Tongji University. Shanghai, China

Maria Joao Ferreira, Universidade Portucalense, Portugal

Ahmed Kamel, Concordia College, Moorhead, Minnesota, USA

Teemu Kanstrén, VTT Technical Research Centre of Finland, Finland

Nittaya Kerdprasop, Suranaree University of Technology, Thailand

Ayad ali Keshlaf, Newcastle University, UK

Nhien An Le Khac, University College Dublin, Ireland

Sadegh Kharazmi, RMIT University - Melbourne, Australia

Kyoung-Sook Kim, National Institute of Information and Communications Technology, Japan

Youngjae Kim, Oak Ridge National Laboratory, USA

Roger "Buzz" King, University of Colorado at Boulder, USA

Cornel Klein, Siemens AG, Germany

Alexander Knapp, University of Augsburg, Germany

Radek Koci, Brno University of Technology, Czech Republic

Christian Kop, University of Klagenfurt, Austria

Michal Krátký, VŠB - Technical University of Ostrava, Czech Republic

Narayanan Kulathuramaiyer, Universiti Malaysia Sarawak, Malaysia

Satoshi Kurihara, Osaka University, Japan

Eugenijus Kurilovas, Vilnius University, Lithuania

Philippe Lahire, Université de Nice Sophia-Antipolis, France

Alla Lake, Linfo Systems, LLC, USA

Fritz Laux, Reutlingen University, Germany

Luigi Lavazza, Università dell'Insubria, Italy

Fábio Luiz Leite Júnior, Universidade Estadual da Paraiba,Brazil

Alain Lelu, University of Franche-Comté / LORIA, France

Cynthia Y. Lester, Georgia Perimeter College, USA

Clement Leung, Hong Kong Baptist University, Hong Kong

Weidong Li, University of Connecticut, USA

Corrado Loglisci, University of Bari, Italy

Francesco Longo, University of Calabria, Italy

Sérgio F. Lopes, University of Minho, Portugal

Pericles Loucopoulos, Loughborough University, UK

Alen Lovrencic, University of Zagreb, Croatia

Qifeng Lu, MacroSys, LLC, USA

Xun Luo, Qualcomm Inc., USA

Shuai Ma, Beihang University, China

Stephane Maag, Telecom SudParis, France

Ricardo J. Machado, University of Minho, Portugal

Maryam Tayefeh Mahmoudi, Research Institute for ICT, Iran

Nicos Malevris, Athens University of Economics and Business, Greece

Herwig Mannaert, University of Antwerp, Belgium

José Manuel Molina López, Universidad Carlos III de Madrid, Spain

Francesco Marcelloni, University of Pisa, Italy

Eda Marchetti, Consiglio Nazionale delle Ricerche (CNR), Italy

Leonardo Mariani, University of Milano Bicocca, Italy

Gerasimos Marketos, University of Piraeus, Greece

Abel Marrero, Bombardier Transportation, Germany

Adriana Martin, Universidad Nacional de la Patagonia Austral / Universidad Nacional del Comahue, Argentina

Goran Martinovic, J.J. Strossmayer University of Osijek, Croatia

Paulo Martins, University of Trás-os-Montes e Alto Douro (UTAD), Portugal

Stephan Mäs, Technical University of Dresden, Germany

Constandinos Mavromoustakis, University of Nicosia, Cyprus

Jose Merseguer, Universidad de Zaragoza, Spain

Seyedeh Leili Mirtaheri, Iran University of Science & Technology, Iran

Lars Moench, University of Hagen, Germany

Yasuhiko Morimoto, Hiroshima University, Japan

Antonio Navarro Martín, Universidad Complutense de Madrid, Spain

Filippo Neri, University of Naples, Italy

Muaz A. Niazi, Bahria University, Islamabad, Pakistan

Natalja Nikitina, KTH Royal Institute of Technology, Sweden

Roy Oberhauser, Aalen University, Germany

Pablo Oliveira Antonino, Fraunhofer IESE, Germany

Rocco Oliveto, University of Molise, Italy

Sascha Opletal, Universität Stuttgart, Germany

Flavio Oquendo, European University of Brittany/IRISA-UBS, France

Claus Pahl, Dublin City University, Ireland

Marcos Palacios, University of Oviedo, Spain

Constantin Paleologu, University Politehnica of Bucharest, Romania

Kai Pan, UNC Charlotte, USA

Yiannis Papadopoulos, University of Hull, UK

Andreas Papasalouros, University of the Aegean, Greece

Rodrigo Paredes, Universidad de Talca, Chile

Päivi Parviainen, VTT Technical Research Centre, Finland

João Pascoal Faria, Faculty of Engineering of University of Porto / INESC TEC, Portugal

Fabrizio Pastore, University of Milano - Bicocca, Italy

Kunal Patel, Ingenuity Systems, USA

Óscar Pereira, Instituto de Telecomunicacoes - University of Aveiro, Portugal

Willy Picard, Poznań University of Economics, Poland

Jose R. Pires Manso, University of Beira Interior, Portugal

Sören Pirk, Universität Konstanz, Germany

Meikel Poess, Oracle Corporation, USA

Thomas E. Potok, Oak Ridge National Laboratory, USA

Christian Prehofer, Fraunhofer-Einrichtung für Systeme der Kommunikationstechnik ESK, Germany

Ela Pustułka-Hunt, Bundesamt für Statistik, Neuchâtel, Switzerland

Mengyu Qiao, South Dakota School of Mines and Technology, USA

Kornelije Rabuzin, University of Zagreb, Croatia

J. Javier Rainer Granados, Universidad Politécnica de Madrid, Spain

Muthu Ramachandran, Leeds Metropolitan University, UK

Thurasamy Ramayah, Universiti Sains Malaysia, Malaysia

Prakash Ranganathan, University of North Dakota, USA

José Raúl Romero, University of Córdoba, Spain

Henrique Rebêlo, Federal University of Pernambuco, Brazil

Hassan Reza, UND Aerospace, USA

Elvinia Riccobene, Università degli Studi di Milano, Italy

Daniel Riesco, Universidad Nacional de San Luis, Argentina

Mathieu Roche, LIRMM / CNRS / Univ. Montpellier 2, France

José Rouillard, University of Lille, France

Siegfried Rouvrais, TELECOM Bretagne, France

Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster / North-

German Supercomputing Alliance, Germany

Djamel Sadok, Universidade Federal de Pernambuco, Brazil

Ismael Sanz, Universitat Jaume I, Spain

M. Saravanan, Ericsson India Pvt. Ltd -Tamil Nadu, India

Idrissa Sarr, University of Cheikh Anta Diop, Dakar, Senegal / University of Quebec, Canada

Patrizia Scandurra, University of Bergamo, Italy

Giuseppe Scanniello, Università degli Studi della Basilicata, Italy

Daniel Schall, Vienna University of Technology, Austria

Rainer Schmidt, Munich University of Applied Sciences, Germany

Cristina Seceleanu, Mälardalen University, Sweden

Sebastian Senge, TU Dortmund, Germany

Isabel Seruca, Universidade Portucalense - Porto, Portugal

Kewei Sha, Oklahoma City University, USA

Simeon Simoff, University of Western Sydney, Australia

Jacques Simonin, Institut Telecom / Telecom Bretagne, France

Cosmin Stoica Spahiu, University of Craiova, Romania

George Spanoudakis, City University London, UK

Alin Stefanescu, University of Pitesti, Romania

Lena Strömbäck, SMHI, Sweden

Osamu Takaki, Japan Advanced Institute of Science and Technology, Japan

Antonio J. Tallón-Ballesteros, University of Seville, Spain

Wasif Tanveer, University of Engineering & Technology - Lahore, Pakistan

Ergin Tari, Istanbul Technical University, Turkey

Steffen Thiel, Furtwangen University of Applied Sciences, Germany

Jean-Claude Thill, Univ. of North Carolina at Charlotte, USA

Pierre Tiako, Langston University, USA

Božo Tomas, HT Mostar, Bosnia and Herzegovina

Davide Tosi, Università degli Studi dell'Insubria, Italy

Guglielmo Trentin, National Research Council, Italy

Dragos Truscan, Åbo Akademi University, Finland

Chrisa Tsinaraki, Technical University of Crete, Greece

Roland Ukor, FirstLinq Limited, UK

Torsten Ullrich, Fraunhofer Austria Research GmbH, Austria

José Valente de Oliveira, Universidade do Algarve, Portugal

Dieter Van Nuffel, University of Antwerp, Belgium

Shirshu Varma, Indian Institute of Information Technology, Allahabad, India

Konstantina Vassilopoulou, Harokopio University of Athens, Greece

Miroslav Velev, Aries Design Automation, USA

Tanja E. J. Vos, Universidad Politécnica de Valencia, Spain

Krzysztof Walczak, Poznan University of Economics, Poland

Jianwu Wang, San Diego Supercomputer Center / University of California, San Diego, USA

Yandong Wang, Wuhan University, China

Rainer Weinreich, Johannes Kepler University Linz, Austria

Stefan Wesarg, Fraunhofer IGD, Germany

Wojciech Wiza, Poznan University of Economics, Poland

Martin Wojtczyk, Technische Universität München, Germany

Hao Wu, School of Information Science and Engineering, Yunnan University, China

Mudasser F. Wyne, National University, USA

Zhengchuan Xu, Fudan University, P.R.China

Yiping Yao, National University of Defense Technology, Changsha, Hunan, China

Stoyan Yordanov Garbatov, Instituto de Engenharia de Sistemas e Computadores - Investigação e

Desenvolvimento, INESC-ID, Portugal

Weihai Yu, University of Tromsø, Norway

Wenbing Zhao, Cleveland State University, USA

Hong Zhu, Oxford Brookes University, UK

Qiang Zhu, The University of Michigan - Dearborn, USA

International Journal on Advances in Software

Volume 8, Numbers 1 & 2, 2015

CONTENTS

pages: 1 - 10
Creating and Using Personas in Software Development Practice
Jane Billestrup, Department of Computer Science, Aalborg University, Denmark
Jan Stage, Department of Computer Science, Aalborg University, Denmark
Lene Nielsen, Games & Interaction Design, IT University of Copenhagen, Denmark
Kira Storgaard Hansen, Games & Interaction Design, IT University of Copenhagen, Denmark

pages: 11 - 26
A Feedback-Controlled Adaptive Middleware for Near-Time Bulk Data Processing
Martin Swientek, Plymouth University, Germany
Bernhard Humm, University of Applied Sciences Darmstadt, Germany
Paul Dowland, Plymouth University, United Kingdom
Udo Bleimann, University of Applied Sciences Darmstadt, Germany

pages: 27 - 37
A Study on Transport and Load in a Grid-based Manufacturing System
Leo van Moergestel, HU Utrecht University of Applied Sciences, the Netherlands
Erik Puik, HU Utrecht University of Applied Sciences, the Netherlands
Daniel Telgen, HU Utrecht University of Applied Sciences, the Netherlands
John-Jules Meyer, Utrecht University, the Netherlands

pages: 38 - 52
Opportunistic Use of Cloud Computing for Smart Mobile Applications: Realizing Qo*-awareness with Dynamic
Decision Networks in Execution
Nayyab Zia Naqvi, iMinds-DistriNet, KU Leuven, Belgium
Davy Preuveneers, iMinds-Distrinet, KU Leuven, Belgium
Yolande Berbers, iMinds-Distrinet, KU Leuven, Belgium

pages: 53 - 64
Car Drive Classification and Context Recognition for Personalized Entertainment Preference Learning
Thomas Christian Stone, BMW Group, Germany
Stefan Haas, SAP SE, Germany
Sarah Breitenstein, BMW Group, Germany
Kevin Wiesner, LMU Munich - Institute for Informatics, Germany
Bernhard Sick, University of Kassel - Intelligent Embedded Systems, Germany

pages: 65 - 74
Hands-on Smart Card User Interface Research, Development, and Testing
Markus Ullmann, Federal Office for Information Security, Germany
Ralph Breithaupt, Federal Office for Information Security, Germany

pages: 75 - 84
Real-Time and Distributed Applications for Dictionary-Based Data Compression
Sergio De Agostino, Sapienza University of Rome, Italy

pages: 85 - 102
τOWL: A Framework for Managing Temporal Semantic Web Documents Supporting Temporal Schema Versioning
Abir Zekri, University of Sfax, Tunisia
Zouhaier Brahmia, University of Sfax, Tunisia
Fabio Grandi, University of Bologna, Italy
Rafik Bouaziz, University of Sfax, Tunisia

pages: 103 - 114
Productivity-Based Software Estimation Models and Process Improvement: an Empirical Study
Alain Abran, École de technologie supérieure, Canada
Jean-Marc Desharnais, École de technologie supérieure, Canada
Mohammad Zarour, Prince Sultan University, Saudi Arabia
Onur Demirors, Middle East Technical University, Turkey

pages: 115 - 124
An Extensible Benchmark and Tooling for Comparing Reverse Engineering Approaches
David Cutting, University of East Anglia, United Kingdom
Joost Noppen, University of East Anglia, United Kingdom

pages: 125 - 135
Towards a Classification Schema for Development Technologies: an Empirical Study in the Avionic Domain
Davide Taibi, Free University of Bolzano-Bozen, Italy
Valentina Lenarduzzi, Free University of Bolzano-Bozen, Italy
Christiane Plociennik, University of Kaiserslautern, Germany
Laurent Dieudonné, Liebherr-Aerospace, Germany

pages: 136 - 145
Challenges in Assessing Agile Methods in a Multisite Environment
Harri Kaikkonen, University of Oulu, Finland
Pasi Kuvaja, University of Oulu, Finland

pages: 146 - 155
Automated Unit Testing of JavaScript Code through Symbolic Executor SymJS
Hideo Tanida, Fujitsu Laboratories Ltd., Japan
Guodong Li, Fujitsu Laboratories of America, Inc., USA
Indradeep Ghosh, Fujitsu Laboratories of America, Inc., USA
Tadahiro Uehara, Fujitsu Laboratories Ltd., Japan

pages: 156 - 166
Quality-Oriented Requirements Engineering of RESTful Web Service for Systemic Consenting
Michael Gebhart, iteratec GmbH, Germany
Pascal Giessler, iteratec GmbH, Germany
Pascal Burkhardt, Karlsruhe Institute of Technology (KIT), Germany
Sebastian Abeck, Karlsruhe Institute of Technology (KIT), Germany

pages: 167 - 181
From Software Engineering Process Models to Operationally Relevant Context-aware Workflows: A Model-
Driven Method
Roy Oberhauser, Aalen University, Germany

pages: 182 - 213
Modeling Responsibilities of Graphical User Interface Architectures via Software Categories
Stefan Wendler, Ilmenau University of Technology, Germany

pages: 214 - 231
Model Inference and Automatic Testing of Mobile Applications
Sébastien Salva, LIMOS, University of Auvergne, France
Patrice Laurençot, LIMOS, Blaise Pascal University, France

pages: 232 - 246
Developing Heterogeneous Software Product Lines with FAMILE - a Model-Driven Approach
Thomas Buchmann, University of Bayreuth, Germany
Felix Schwägerl, University of Bayreuth, Germany

pages: 247 - 261
A Modular Architecture of an Interactive Simulation and Training Environment for Advanced Driver Assistance
Systems
Kareem Abdelgawad, Heinz Nixdorf Institute, University of Paderborn, Germany
Bassem Hassan, Heinz Nixdorf Institute, University of Paderborn, Germany
Jan Berssenbrügge, Heinz Nixdorf Institute, University of Paderborn, Germany
Jörg Stöcklein, Heinz Nixdorf Institute, University of Paderborn, Germany
Michael Grafe, Heinz Nixdorf Institute, University of Paderborn, Germany

pages: 262 - 275
HiPAS: High Performance Adaptive Schema Migration - Development and Evaluation of Self-Adaptive Software
for Database Migrations
Hendrik Müller, pasolfora GmbH, Germany
Andreas Prusch, pasolfora GmbH, Germany
Steffan Agel, pasolfora GmbH, Germany

pages: 276 - 287
A Study on the Difficulty of Accounting for Data Processing in Functional Size Measures
Luigi Lavazza, Universita` degli Studi dell'Insubria, Italy
Sandro Morasca, Universita` degli Studi dell'Insubria, Italy
Davide Tosi, Universita` degli Studi dell'Insubria, Italy

Creating and Using Personas in Software Development Practice

Jane Billestrup, Jan Stage
Department of Computer Science

Aalborg University
Aalborg, Denmark

{jane,jans}@cs.aau.dk

Lene Nielsen, Kira Storgaard Hansen
Games & Interaction Design
IT University of Copenhagen

Copenhagen, Denmark
{lene,kist}@itu.dk

Abstract — Personas has been suggested as a strong technique
for providing software developers with a deep understanding
of the prospective users of a software system. This paper
reports from two separate but related empirical studies. The
first study was a questionnaire survey about Personas usage in
software development companies. The purpose was to uncover
to what extent and in which ways Personas are used in
software development companies located in a specific
geographical area. This study demonstrated that less than half
of the respondents had ever heard about Personas. We also
identified key obstacles towards use of the technique: lack of
knowledge of the technique, lack of resources, sparse
descriptions and scarce integration in development. The
second study was based on detailed interviews with four
software developers about their usage of Personas in
development processes in the software industry. We identified
basic practices in Personas creation and usage, and found that
the respondents understand Personas creation and use
differently from the practice described in the literature. In
fact, developers are evolving their own practices for creating
and using Personas.

Keywords—Personas; Personas creation and use; software
development; questionnaire survey; interview.

I. INTRODUCTION

This paper is an extended version of the paper “Creating
and Using Personas in Software Development Practice: Ad-
vantages, Obstacles and Experiences” [1].

Personas is being promoted as a technique that supports
design and engineering of interactive software systems with
an explicit focus on the prospective end-users.

The general definition of the technique is that a Persona
is a description of a fictitious person based on data collected
about the target user group of a system [2][3]. The common
way to represent a Persona is as a text describing, and usu-
ally also a photo depicting, the fictitious person [2][4].

The main idea for introducing Personas is consistent with
results from numerous reports that have documented that
software developers lack knowledge and understanding of
their users, their work, and their goals, e.g., [5][6]. A con-
sequence is that when a system has been developed, it does
not fulfil the needs of the users and is incompatible with their
work processes. The Personas technique has been suggested
as a strong tool to overcome these problems by providing
software developers with a specific understanding of pro-
spective end-users of their software [7].

It has been argued that the use of Personas provides soft-
ware developers with empathy for, and engagement in, the
end-users of the software solution [8]. There are also literat-
ure that concludes that the use of Personas has been a suc-
cess [9][10].

The literature includes several conclusions about the be-
nefits of the Personas technique, if it is used to its full poten-
tial. Matthews et al. [11] found that the designers who had a
very positive attitude towards Personas were primarily those
who had done extensive work with Personas, and had some
training in the creation of Personas, and used them as pre-
scribed by the literature. The Personas technique is not yet
incorporated as an integrated and general part of the toolbox
in the software development industry [11]. It has been docu-
mented that a main reason for this is that many developers in
the industry have problems using Personas in practice [12].
Thus, there are still many unanswered questions about the
actual advantages of using Personas in software development
practice. The strength of using Personas compared to other
techniques are also unexplored.

The purpose of this paper is to inquire into the way in
which software companies use Personas and whether the
technique is used as proposed in the literature. We report
from a questionnaire survey and a case study of experiences
with creation and use of Personas in software development
practice. The questionnaire survey (Study A) was conducted
in a delimited region in Denmark, where we inquired into the
experiences software companies in this region had in using
Personas and incorporating the technique as a part of their
development toolbox. The case study (Study B) was based
on interviews with four developers who were or had been
working with Personas in practice. Our focus in this paper is
on comparing the literature with the experiences and the per-
ceived strengths and weaknesses of the Personas technique
from the perspective of the software development industry,
Our empirical basis includes using a mixed method approach
involving both quantitative and qualitative data collection.

Section II presents a more detailed description of work
related to this study. It describes how Personas are created
and used, including the pitfalls to avoid. Section III describes
the method used in the questionnaire survey (Study A). Sec-
tion IV presents the results from this survey. Section V
presents the method used in the case study (Study B). Sec-
tion VI provides the findings derived from the interviews.
Section VII compares the findings from the two studies and
discusses the results compared to experiences about Personas

1

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

reported in the literature. Finally, Section VIII provides the
conclusion.

II. RELATED WORK

The literature offers four different perspectives regarding
the basis for and role of Personas [13]: 1) Cooper’s goal-dir-
ected perspective 2) Grudin, Pruitt and Adlin’s role-based
perspective 3) the engaging perspective, which emphasises
how the story can engage the reader. These three perspect-
ives agree that the Persona descriptions should be founded
on real data. However, 4) the fiction-based perspective, does
not include data as a basis for Persona description, but cre-
ates Personas from the designers’ intuition and assumptions.
Even though the Personas technique has been around for
more than a decade, when comparing the four perspectives,
it is still unclear what and how much background material is
required to create Personas [14].

The common perceived benefits of Personas, when
designing products are two-fold: 1) the technique facilitates
that designers remember that they are different from the end-
users, and 2) the technique enables designers to envision the
end-users' needs and wants. Furthermore, in the design pro-
cess Personas increase the focus on users' and their needs.
The technique is an effective communication tool, which
uses the Persona description to acquire direct design influ-
ence and lead to better design decisions and definition of the
products' feature set [2][3][7][10][15][16][17].

The literature includes a rich variety of guidelines and
experiences about the use of Personas.

1) Defining Personas. The literature originally defined a
Persona as a text and a photo describing the character [2]
[18]. Later developed into posters, websites and hand-outs
[19]. Personas are considered to be most useful if they are
developed as whole characters, described with enough detail
for designers and developers to get a feeling of its personal-
ity [7][12][19]. The benefits of Personas are that they enable
designers to envision the end-user’s needs and wants, re-
minding designers that their own needs are not necessarily
the end-users' needs, and provide an effective communica-
tion tool, which facilitates better design decisions [10][15]
[16][17].

2) Creating Personas. Before creating Personas, a com-
prehensive study of the target user group is suggested. It has
been recommended to acquire this information through in-
terviews with the target user group [20] or observational
studies of them [21]. Yet Chapman and Milham argue that it
is not possible to verify that the created Personas actually
reflect the target user group [22]. It has been suggested to
create 3-5 Personas [23][24], but the amount of users one
Persona can represent has been questioned [22].

3) Personas Critique. Personas has been characterized
as unreliable and preventing designers from meeting actual
users [5][12][13]. Problems have been reported regarding
creation and distribution of the developed Personas [12]
[19]. The descriptions have been perceived as unreliable and
not well communicated. Also, developers lack understand-
ing of how to use Personas [3][12][19]. The technique itself
is criticised for being too founded on qualitative data and, as
a consequence of that, being non-scientific, being difficult
to implement. Also, for not being able to describe actual
people as it only portrays some characteristics, and for pre-

venting designers from meeting actual users [5]. Moreover,
the unsolved question about how many users one Persona
can represent is emphasized as problematic [22].

Some have tried to prevent poor use of the Personas tech-
nique, e.g., Faily and Flechais [25] describe regularly send-
ing information about the Personas to the development team,
to ensure that the designers and developers consider the Per-
sonas in the design process. They also suggest that the creat-
ors should hand over instructions and provide tools that sup-
port the developers’ usage [25]. Problems in applying Perso-
nas are reported as also involving the mindset of the de-
velopers, which is documented by both Blomquist and Ar-
vola [6], and Pruitt and Adlin [3].

Matthews et al. [11] focused mainly on designers and
user experience professionals who had some training in Per-
sonas creation and had done extensive work with Personas
using them as described by others [2][3]. These designers
had a very positive attitude towards the technique. Those
who had done minor use of Personas had a moderate or neut-
ral opinion regarding Personas, and those who had not
worked with Personas at all had a negative or indifferent
opinion regarding the technique.

The use of the Personas technique in software develop-
ment processes, e.g., by combining Personas and agile devel-
opment like XP, has also been explored. In this case, the cus-
tomer preferred a Persona without a picture, merely describ-
ing a job title and maybe a name, but Powell et al. do not
support this as it will take away the developers' empathy for
the users. Moreover, by using Personas integrated in XP, the
developers felt confident to make decisions without in-
volving the onsite customer every time [29].

4) Personas in Practice. An inquiry of design teams in
13 Danish multi national companies report that Personas
help keep the focus on user needs instead of what the de-
velopers and designers like, and help in gaining an under-
standing of how the product can create value for end-users
[26]. A different study describe how designers are using
Personas contrary to the original intended usage; instead of
creating Personas on research results, designers tend to base
the Personas on their own experiences and thoughts [27].
This will make it even harder to ensure that the right Perso-
nas are created to represent the relevant user groups [8].
Problems in application of the Personas technique caused by
the mindset of the developers have also been reported [3]
[12]. It has been suggested to overcome this by regularly
sending information about the Personas to the development
team [19][25]. It seems difficult in practice to avoid making
stereotypes when creating Personas, and using Personas
does not seem to solve the problem that Cooper originally
intended to solve [28].

III. STUDY A: METHOD

In order to inquire into the usage of Personas we conduc-
ted a questionnaire study in 60 software development com-
panies. We chose to focus on a well-defined geographical
area in order to allow us to do as complete a survey with as
many companies as possible, and thereby achieve a more
complete coverage of software companies in that area. The
focus on one defined region is that it allows us to establish
contact with all companies located in the region. This
provides a more complete picture than randomly picking out

2

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

companies located in several regions or even countries. We
made considerable efforts to identify and contact all compan-
ies in the area. The selection of companies would be more
random if we had chosen a larger geographical area.

A. Participants

We focused on companies that were developing software,
either for internal or external use. We ended up with soft-
ware companies with the following characteristics:

The company;
• develops software with a graphical user interface

(e.g., mobile phones, games, web applications, PC
or PDA software).

• develops software for customers or for internal use
and is geographically located within the defined
geographical area.

• employs more than a single person and it is not a
hobby company.

TABLE I. THE NUMBER OF RELEVANT COMPANIES.

Companies

Lists used
to find
companies

Total number of
companies on

list

Out of scope or
gone out of

business

Relevant com-
panies

List 1 77 -35 42

List 2 139 -63 76

Linked In 16 0 16

Total 134

To obtain a list with as many software development com-
panies as possible we acquired two lists containing software
companies located in the chosen region. These lists were
from a previous study of companies (List 1) and an industry
network (List 2). This was followed by a search on Linked-
In to include companies that only had a smaller development
department in the region and had their headquarters located
either in another region or in another country. Table I shows
the total number of software companies in the region, which
were within the scope of this study.

B. Data Collection

We created an online questionnaire using the tool Sur-
veyXact [30]. The first part of the questionnaire was made to
gain information about the respondent and his or her place of
employment (e.g., job function, business, number of employ-
ees in the company and line of business, within software de-
velopment). The second part was designed to uncover if the
respondents knew what a Persona was and what it was used
for. The third part was about the use of Personas in the com-
panies. This part was only filled out by the people who
answered that they knew of, and worked with, Personas. The
questionnaire consisted of 35 questions, but only respondents
who knew of and was working with Personas in their current
employment got to answer all 35 questions. The question-
naire consisted of both open and closed questions.

The distribution of the questionnaire was done in two
ways. First, 43 companies in which we had a known contact
person was contacted by phone. Then the remaining 91 of
the 134 companies were contacted to acquire a contact per-
son. Eight of these declined to participate and 14 we could
not locate a viable phone number or email address. This res-
ulted in 112 emails being sent out with a link to the question-
naire. The recipients were given three weeks to fill out the
questionnaire survey. The data collection process resulted in
69 responses in total. Of the 69 respondents nine did not fin-
ish the questionnaire, leaving us with 60 complete responses.
The nine who did not complete the questionnaire were
mainly CEO's in small companies. These respondents mainly
stopped filling out the quiestionnaire after entering their per-
sonal details.

The responding companies were asked to characterize
their main line of business. The distribution is shown in
Table II.

TABLE II. THE DISTRIBUTION OF THE COMPANIES AFTER LINE OF
BUSINESS.

Characterization of Companies Number of Answers

Software development 44

Design and development 4

Financial services 2

Marketing and advertisement 2

Game development and
entertainment

1

Telecom 2

Web development 4

Other line of business 1

Total 60

Table II shows that the respondents prevailingly characterize
their main line of business as software development.

C. Data Analysis

Data analysis was conducted continuously while the
questionnaire was still open for submissions, as suggested by
Urquhart [31]. When the questionnaire was closed, the data
was updated with the results from the latest incoming ques-
tionnaires.

In the questionnaire, we used both open and closed ques-
tions. All responses to closed questions were analysed quant-
itatively. For the open questions, the grounded theory ap-
proach, as described by Corbin and Strauss [32], Urquhart
[31] and Urquhart et al. [33], was used as analysis method.
The aim of grounded theory is described as “building theory,
not testing theory” [34]. This means that theory should
emerge while the analysis takes place and should not be used
to prove an already existing theory.

1) Open Questions: Coding was used to analyse the open
questions. One question was: “How would you explain what
a Persona is and how it is used?”. For this question the fol-

3

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

lowing coding categories were assigned: technique (for cre-
ating Personas), finding target user group, when in the pro-
cess the Personas are used and how they are used. Grounded
theory coding was not used for other open questions since
the respondents mainly answered in very short sentences and
they were sent directly to the end of the questionnaire when
answering “No”, e.g., “Have you ever heard about
Personas?” or “Have you ever worked with Personas?”
meaning that the number of respondents dropped for every
question. As it makes no sense to ask a respondent about
their knowledge about the use of Personas if they have
already indicated they have never heard about Personas.

2) Closed Questions: Statistics was produced directly
from the closed questions.

IV. STUDY A: RESULTS

This section presents the results of the questionnaire sur-
vey. It is divided into two sub-sections. ‘Knowledge about
the Personas technique’ is referring to the first part of the
questionnaire. This subsection reports if the Personas tech-
nique has been adopted by the software developing compan-
ies in the defined region. The second subsection “The under-
standing of Personas and their use” is dividing the obstacles
towards Personas usage into four main areas.

A. Knowledge about the Personas technique

The results of the questionnaire indicate that 27 out of 60
respondents, or 45%, have heard about Personas. Fourteen
respondents out of 60 have worked with Personas. Seven re-
spondents out of 60 are using Personas as a development tool
in their current job. This can be seen in Table III.

TABLE III. DISTRIBUTION OF RESPONDENTS AND KNOWLEDGE ABOUT
PERSONAS

Knowledge about Personas Number of respondents

Heard about Personas 27 out of 60

Have Worked with Personas 15 out of the 27

Are using Personas in current job 7 out of the 15

Meaning that 11.5% of the responding companies are cur-
rently using Personas as a development tool and 55% of the
respondents have never heard about the technique.

TABLE IV. DISTRIBUTION OF RESPONDENTS ON COMPANY SIZE.

Number of Employees

Number of companies 1-10
11-
50

51-
200

200< Total

Using Personas 1 3 1 2 7

Not using Personas 23 16 8 6 53

Total 24 19 9 8 60

The distribution across different sizes of companies is
shown in Table IV, showing the number of respondents fa-
miliar with Personas.

TABLE V. RESPONDENTS' KNOWLEDGE ABOUT PERSONAS IN
COMPANIES THAT DO NOT USE THEM.

Number of Employees

Knowledge about Personas 1-10
11-
50

51-
200

200< Total

Never heard about Personas 18 7 6 2 33

Heard about Personas, but
never used them

4 5 2 2 13

Worked with Personas in
other employment or while
studying

1 2 0 1 4

Have used Personas, but
stopped

2 1 0 0 3

Total 25 15 8 5 53

In Table V, the 53 responding companies that do not use
Personas have been grouped. It shows that 33 respondents
have never heard about Personas. Three of the organisations
did use Personas at some point but stopped. One respondent
stated his organisation used Personas in a project where they
collaborated with a group of university students, but did not
find the Personas technique useful for other projects. The
other two respondents stated that their respective companies
stopped using Personas, because they did not find the de-
veloped Personas applicable in their line of development. 13
respondents stated they had heard about the Personas tech-
nique but had never worked with creating Personas them-
selves and four respondents had worked with creating Perso-
nas in an earlier employment or while studying.

B. Understanding of Personas and their use

An open question in the questionnaire was analysed with
coding to reveal all the participating companies' understand-
ing of the term “Persona”. “Personas being an imaginary
user”, were expressed by 22 respondents, e.g., “a fictitious
user of the system you are developing”. “Personas are used
as a validation of the design”, were expressed by 17 respond-
ents, e.g., “making sure user needs are met by a given
design”.

A Persona “being a representation of a larger user seg-
ment” was expressed by 13 respondents, e.g., “description of
a set of characteristics characterizing a certain group of users'
behavioural patterns”. Personas “being a tool for making
sure to keep the users and their needs in mind all the way
through the development process” were recognised by four
respondents, e.g., “...the Personas are used as focus points for
planning the entire product life cycle”. This means that Per-
sonas by far are recognised as fictionalised users used as a
tool for designing features requested by users and user seg-
ments. On the other hand, no more than four respondents ex-
pressed that Personas should be used through the entire de-
velopment cycle. This means that the common idea seems to
be that Personas are mainly a tool for identifying some as-

4

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

pects of the user group and not so much a tool to be used
during the entire development process.

TABLE VI. DISTRIBUTION OF JOB TITLES OF RESPONDENTS.

Job Title of re-
spondents

Not working with Per-
sonas in current

employment

Currently working with
Personas

CEO, CTO, Owner 12 4

System developer or
consultant

11 1

Project, Product or
Sales manager

16 0

Business architect,
Communication and
PR

8 0

UX or Web
Designer or
Manager

6 2

Total 53 7

1) Lack of Knowledge (of the technique): Lack of know-
ledge about the Personas technique seems to be a major
obstacle regarding usage of Personas as shown in Table III.
The analysis showed that 55% of the respondents had never
heard about the concept or technique. Of the respondents
who had never heard about Personas, 10 people were CEOs,
owners or partners (primarily in micro- or small sized com-
panies), five were managers in IT and three worked as sales
managers (all three in medium sized companies). In Table
VI, the respondents’ job titles have been divided into groups
based on whether the company is currently working with
Personas, or not. This indicates that the chance of allocating
resources to Personas development might be slim. One re-
spondent indicated that the company did not recognise the
importance for any communicative tools. “The company has
downsized and has eliminated the communications position
since it is primarily a production company and they do not
really understand the importance of, e.g., Personas, ambas-
sadors, first movers, e.g., or communication in general for
that matter”. This means that in these companies the know-
ledge about the Personas technique will not come from man-
agement, and even if employees bring the knowledge about
Personas into the companies, funding will probably not be
allocated. On the other hand, as seen in Table IV, in the sev-
en companies currently working with Personas four respond-
ents was CEO, CTO or owner.

2) Lack of Resources (time and funding): The analysis
found that Personas are mainly created if a need has been
identified for a specific project and “cutting a corner” when
using Personas seems to be the general idea. Some only use
Personas to the point that they think it creates value for the
customer and thereby, profit for the company. Also, when
asked in the survey how much resources were allocated to
develop Personas, the general answer was zero.

3) Sparse descriptions: When a Persona is created too
superficially the Persona will lack the depth that would nor-
mally be the strength of the technique, making the Personas

untrustworthy and unusable. This contradicts with what
helps making Personas useful tools that lead to better design
decisions [2][3][15][16][17]. When a Persona is created with
much detail and described as a whole character, and not a
stereotype, it will support the design and innovation process.
One respondent indicated difficulty in finding a suitable tem-
plate for the descriptions and that they wanted to create short
descriptions instead of detailed character descriptions. “It is
hard to find good templates for constructing Personas. We
ended up with a few lines in bullets describing each Persona,
which could be used as a fast reference. Instead of a large
scheme describing lots of details nobody wanted to read any-
way”. This corresponds with the descriptions of Personas by
some respondents answering the questionnaire. These de-
scriptions were quite superficial and did not describe indi-
vidual Personas but mainly a job role and a use situation.

4) Not integrated in the development: This ties-in with
the finding of lacking resources. The superficial Personas are
created to be used in the design process. The descriptions are
not meant to be used in any other stages of the design pro-
cess. Furthermore, they are not used to keep reminding
neither developers nor designers about the end-user’s and
their needs. This means that the potential of the Personas
technique is not explored.

C. Advantages of using Personas

The respondents currently using Personas described why
their companies are using Personas as follows: “to support
the development of a system that is easy to use for all types
of users...It is very important for us that the system will be
very easy to use, which is why a mapping of the various user
groups is important”.

Another respondent stated: “Internally in the company,
Personas are used to communicate characteristics of the
customer segments that we want to focus on especially”. Yet
another respondent stated that “Personas are primarily used
for optimizing the product”. These advantages correspond
with the advantages identified in the related work section.

V. STUDY B: METHOD

We have conducted a case study about the use of Perso-
nas as a development technique in four software develop-
ment organizations, including if, and how practitioners per-
veive Personas and how they actually use this technique in
practice.

A. Respondents

From Study A software developers were identified, who
had different types of experience using Personas as part of
the software development process. Four kinds of software
developers were identified, whom had different experiences
and perceptions in regards to using Personas. One software
developer from each category was identified and asked to
participate in this study. The four different types are de-
scribed as follows;

• Wants to start using Personas as a development tech-
nique. (R1)

• Has formerly used Personas as a development tech-
nique. (R2)

5

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Is currently using Personas as a development tech-
nique. (R3)

• Has knowledge about it but never used it as a devel-
opment technique. (R4)

R1 – R4 shows which respondent falls under what cat-
egory.

The respondents were working as software developers or
project managers. None of them had any education in user
experience. All respondents had worked in the industry for at
least ten years and been in their current organization for at
least two years. All four interviewees use an agile software
development method in their current organisations. All are
using SCRUM or an adjusted version of SCRUM.

B. Data Collection

The four interviews were conducted as semi-structured
qualitative interviews [35]. The interviews were recorded
and later transcribed. Each interview lasted between 22 and
55 minutes. All interviewees were asked about their educa-
tional background and their current and previous job func-
tions. Through the interviews the interviewees' knowledge
about and previous experiences with the Personas technique
was explored.

C. Data Analysis.

All interviews were analysed using grounded theory [32]
[33] and open coding with the Dedoose tool (http://www.de-
doose.com/). This resulted in the following seven categories;

• Learning to Create Personas
• The Basis for Creating Personas
• Usefulness of Personas
• Strengths of Personas
• Redundancy of Personas
• Weaknesses and Limitations of Personas
• Personas and other techniques

 These seven categories were used to categorise the
findings.

VI. STUDY B: FINDINGS

This section presents the findings based on the analysis
of the interviews. The findings are divided into seven sub-
sections in accordance with the coding categories.

A. Learning to Create Personas

The respondents learned about the Personas technique in
different ways. Their first meeting with Personas seems to
mainly have happened by chance. Two respondents describe
it this way:

R2: The first time I heard about Personas was at a ses-
sion at the universitys' humanities department four or five
years ago. … Microsoft has created a number of Personas
describing the users some years ago. They encourage us, as
Microsoft consultants, to use these in our development pro-
cess.

R1: I have a background as a software developer but in
my former employment I worked very closely with user ex-
perience designers.

One respondent described coming from a smaller com-
pany where he learned about several usability techniques and
why it is important to understand and represent the users' in
the development process.

None of the respondents learned about Personas and oth-
er User-Centered Design or Usability techniques through
education.

B. The Basis for Creating Personas

The respondents use different ways of collecting data for
the creation of Personas. Yet all of them depend either on in-
formation they already have or information their customers
have.

R1: If we do not have enough information ourselves to
create the Personas we will ask our customers about their
usage of the existing systems.

None of the respondents get money or time allocated spe-
cifically to gather information about the target user group,
which is why they have to make use of the information they
already have themselves or they can get from their custom-
ers.

Another respondent explained that due to not having a
budget for data collecting, he was creating Personas a bit dif-
ferently than suggested by the literature. He primarily
thought about the existing users and the archetypes that were
standing out.

R3: We know our users quite well. Our Personas are
based on real users, like “can this user understand this?”
We use them like Personas archetypes and we do not use
Personas formalized. - Unformalized we use Personas quite
a lot. Personas are based on the users who are critical to-
wards our system; the people that make noise if they have a
problem.

Another respondent described making Personas that were
short and without much detail.

R2: To me a Persona does not have to be too detailed in
the description of the person.

None of the respondents remembered reading specific lit-
erature about Personas. They had mainly learned the do's and
don'ts about Personas from others, or from their own experi-
ences.

C. Usefulness of Personas

Personas are considered particularly useful when the de-
velopers are missing information about the users and their
needs. As all four respondents are employed in companies
that use an agile development method, they usually work
with an onsite costumer. Personas was found particularly
useful if they did not have an onsite customer on a project.
The greater the distance between the users, and the designers
and developers the more useful Personas are considered to
be. One respondent explained that he found Personas very
useful as a substitute for onsite customers:

R1: If there is no onsite customer or employee that
knows the field we are developing for very well, Personas
seems to be very usable. The further the designers and de-

6

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

velopers are from the users, the more value Personas can
bring to the development process.

Another respondent described Personas as a useful tool if
there was a geographical distance between designers and de-
velopers. This was meant as Personas could help the de-
velopers remember the end-users during the development
process. So instead of the design team present to make sure
the developers focused on the end-users, Personas could do
the same thing, if the Personas was made visible for the de-
velopers.

R3: I find Personas useful if the distance between design-
ers and developers is substantial and they are not working
side by side all day.

One respondents described that his company does con-
siderable work for the health sector, and they used to have a
former nurse employed to help them understand that domain.
However, this was no longer an option, so they needed to
find new techniques to bring an understanding of the user
groups into the development process. He thought Personas
could be useful for exactly that.

Another respondent described Personas as useful when
developing software solutions for very specific user seg-
ments.

R2: We are creating ERP solutions. I feel that Personas
are a relevant tool for us. Because we are developing very
specific software solutions for our customers.

This respondent also outlined different opinions about the
usefulness of Personas and other techniques in regards to
User-Centered Design;

R2: One of my colleagues approached me one day and
said the following “we live by creating solutions, not draw-
ings.” I understand his position but personally I feel that
drawing up the organization first can help me understand
their needs.

Other respondents described similar experiences of col-
leagues having different oppinions in regards to using User-
Centered Design techniques or Usability theory in regards to
software development.

D. Strengths of Personas

The respondents expressed different expectations about
the benefits of using Personas in the development process.
The respondents were asked to describe situations in which
the Personas technique would have been beneficial.

R4: I believe using Personas would have helped us de-
velop a more user-friendly system.

Personas are also perceived as a strong tool for ensuring
the software developers keep the end-users in mind during
the development process.

R1: Personas can help keeping the developer’s focus on
the users' needs. Personas will provide the software de-
veloper with the ability to understand the users' perspective.

R2: I think that Personas can provide the security for us
not developing the wrong system for our user group.

One respondent added that he found Personas especially
useful if using a development method like the waterfall
method. His argument was that when using the waterfall
method the developers have only one possibility to get
everything right.

R3: If using the waterfall development method you have
to get everything right the first time. When developing agile

it is not as critical if we make a mistake, we can change that
in the next iteration as a new iteration starts every two
weeks.

The respondents find that a strenght of the Personas tech-
nique is that it can support the developers in developing soft-
ware that live up to the users' requirements, and that Perso-
nas is especially useful in situations where it is eminent get-
ting it right the first time.

E. Redundancy of Personas

Two respondents stated that Personas are unnecessary if
user experience designers or expert users are part of the pro-
ject team, meaning that the design decisions are not only left
to the developers.

R4: Personas are unnecessary when design is not left to
the developer but is in place long before the developers be-
gin to create the software.

R3: If you have an employee who is an expert user and
knows what the user group need, Personas are unnecessary.

The Personas technique is considered redundant if User
Experience Designers or similar are involved in the develop-
ment process.

F. Weaknesses and Limitations of Personas

The respondents agreed that using Personas incorrectly
can have substantial negative impact on software or product
development. They also agreed that Personas should not be
used if there is insufficient data or if the creators are unfamil-
iar with Personas.

R2: If the choice you make when creating the Personas is
wrong they will work against the design.

Another respondent raised the concern that he felt con-
strained by some formalized Personas. Every time he was in
doubt he went to look at the Persona, but this meant that he
felt boxed in, and it stopped him from looking outside of the
box.

R3: When using Personas formalized you might be a bit
constrained, always going to look at the posters with the
Personas [...] To me it works better if I just keep them in my
head. Of course our company is not that large anyway so I
can just go talk to the developers if I need to change
something.

Another respondent had drawn a similar conclusion:
R1: What tends to go wrong in software development is

that developers tend to lock on some user requirements
pretty early in the process, without documentation, and then
describe the entire solution. If the user requirements or the
solution change at some point, the developers tend to forget
the user and their needs somewhere in the process.

The respondents described using a technique like Perso-
nas could be a limitation in regards to the software de-
velopers, as the respondents could have a problem changing
focus if the requirements changed at some point.

Using Personas requires a certain level of maturity. An-
other respondent’s current organization was not using Perso-
nas:

R1:“We are not using the Personas technique at the mo-
ment. I have worked with Personas in my last employment
and found them very useful. I would like to introduce Perso-
nas in my current employment but the company needs to be

7

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

at a higher level of maturity before it would make sense. We
simply have larger issues at the moment than this”.

Using the Personas technique is described as a strenght,
but only if the company has reached a certain level of matur-
ity. Personas are perceived as usable if the organisation is
unmature.

G. Personas with Other Techniques

The respondents stated that scenarios are very usable in
combination with Personas.

R4: Scenarios are often used in combination with Perso-
nas.

Workshops and focus groups were also considered useful
in combination with creating Personas.

R3: We have a community around our product and we
host meetings with user groups, where we meet three times a
year and discuss new releases and improvements.

Three respondents described that they are primarily using
user stories to document the users' needs. The user stories are
described by two respondents as being used instead of devel-
oping a specification of requirements.

R3: We use common sense and we are not afraid of mak-
ing a mistake because it is okay if we do not get it right the
first time.

Even though Personas are considered useful the respond-
ents also discribed working agile meaning that correcting er-
rors was not perceived a big deal.

VII. DISCUSSION

In this section, we discuss our results in relation to exper-
iences about Personas reported in the literature, and we com-
pare the findings across the two studies.

The discussion is structured with the following four is-
sues: 1) software developers lack knowledge and understand-
ing of their users, their work, and goals, 2) the Personas tech-
nique has been promoted as a strong tool for providing the
software developers with a better understanding of the poten-
tial users, 3) the use of Personas has been a success, and 4)
the Personas technique is not necessarily an incorporated
part of the toolbox in the software development industry and
the industry might experience problems using Personas.

A. Lack of knowledge and understanding of the users

 Software developers lack knowledge and understanding
of their users and their needs [5][6]. In many development
situations, users do not know what they want, thus, it is the
designer’s job to find out. Pruitt and Grudin [19] argue that a
good design does not come from users, but from designers.
This is because users do not really know what they want un-
til they get it. But for this approach to work, the designers
need in-depth knowledge of the users and their needs. The
aim of Personas is to provide that knowledge.

Among our findings was poor application of the Personas
technique in practice. This relates precisely to the point about
developers lacking knowledge and understanding of the
users, since the Personas descriptions, if applied, are made
sparse and only used in a very narrow time frame of the de-
velopment process. Another finding was that the develop-
ment of the Personas lacked resources, since none of our re-

spondents had a budget allocated specifically for the Perso-
nas development. This is contrary to the related work em-
phasizing that Personas can lead to better design decisions
[2][3][10][15][16][17].

B. Personas can help developers understand users

The Personas technique has been promoted as a strong
tool for providing software developers with a better under-
standing of the potential users [7]. Thus, Personas is presen-
ted as a useful technique to keep the developers focused on
the users and their needs and give them empathy towards the
Personas and the end-users [7][8].

The results from our questionnaire indicate that the most
useful aspect of using the Personas technique was that Perso-
nas helped the team share a specific and consistent under-
standing of several, different user groups; which can lead to
another advantage of product optimization.

In our case study, we found that the respondents per-
ceived Personas as a technique that supports designing and
engineering interactive systems with a focus on the end-
users. Matthews et al. [11] found that mainly developers who
have been working with Personas are positive in regards to a
technique like Personas. We got the same impression from
our respondents. Unfortunately, the Personas technique is
still suffering from developers considering it unnecessary;
e.g., one respondent explained that his colleague told him
that creating background material or drawings was a waste of
time.

C. Personas used as a successful tool

Several papers conclude the use of Personas has been a
success [9][10]. This corresponds with the experiences of our
respondents who are using Personas. The tool is described as
useful to help developers understand the users and their
needs, especially if the system needs to be usable for several
different types of end-users. Some respondents using Perso-
nas, identified some challenges for creating Personas, e.g.,
“it can be hard to find templates for creating Personas.” an-
other respondent stated that “it is a challenge to map all user
groups without asking all customers”. These obstacles have
to be resolved before Personas can be applied as a useful
tool.

In our case study, we found that the practitioners do not
use Personas as suggested in the literature. Instead, data is
collected before creating Personas and it is mainly collected
within their own or the customers’ organization, or Personas
are created on the basis of real users.

Baird [36] argued that Personas could be developed in a
workshop while discovering requirements. One of our re-
spondents described how they used Personas, and hosted
meetings with their user group regularly. These meetings
were also used to get to know their users and to help get an
understanding of the customers’ needs.

Personas are primarily considered useful if designers and
developers are not working closely together to ensure that
the developers understand the intended users and use, or
merely as a representation of a user if there is no onsite cus-
tomer available.

Using Personas has also been described as being risky. If
the Personas created are targeting a wrong user group, the

8

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

software solution could end up being developed for the
wrong users.

Scenarios and user-stories are considered useful in com-
bination with Personas. In particular, user stories have been
used to describe user situations and as a requirements spe-
cification.

D. Personas are not incorporated in the industry

The Personas technique is not necessarily an incorporated
part of the toolbox in the software development industry, and
the industry might have problems using Personas [12]. Since
only 44% of our respondents have ever heard about the Per-
sonas technique and less than 12% have worked with creat-
ing Personas, it is fair to say that Personas are not an integ-
rated tool in the software development industry in this re-
gion. Also, we found that only four respondents indicated
that Personas should be used through the entire development
process, meaning that even if Personas are used, they are not
necessarily used to their full potential. In companies using
Personas, the technique is used mainly to identify types of
users or use cases.

The Personas are kept to a minimum and not focused on
describing whole characters. As in the related work, we
found developers lacking understanding of how to use Perso-
nas to gain most from their usage [7][12][19]. The reasons
for that could be a combination of several aspects. We found
that resources are not allocated specifically for creating Per-
sonas, which corresponds with the area of usability in gener-
al [5][19][37].

The full potential of Persona usage does not seem to have
caught on in the industry. Matthews, Judge and Whittaker
[11] found a connection between, on one hand, the percep-
tion of Personas and, on the other hand, to what extent the
technique was used and, the amount of training the de-
velopers had had using Personas.

VIII. CONCLUSION AND FUTURE WORK

This paper has reported from a combined questionnaire
survey and case study of experiences with creation and use
of Personas in software development practice. There are still
only few studies of the actual use of Personas in software de-
velopment practice [1]. The purpose of these studies were to
identify both on the overall level and in detail how practi-
tioners in the industry create and use Personas in their devel-
opment processes.

In the questionnaire study, we explored to what extent
Personas were used by software development companies in a
defined geographical area and whether they used Personas as
proposed in the literature. To accomplish this, we conducted
a questionnaire survey with complete responses from 60
software development companies. The study showed that
only 7 out of the 60 software development companies used
Personas. The results from the questionnaire also uncovered
four issues. Lack of knowledge of the technique as such and
lack of resources both related to companies not using the
Personas technique. Sparse or badly designed descriptions or
not being part of the development process both related to
poor application, when using the technique.

Our findings are well linked to other studies described in
the related work section. Yet our study contributes with a
new angle by focusing on making a complete study within a

limited geographical area we now have a pretty good idea
about if the Personas technique is an integrated tool in soft-
ware development in this geographical area. We have not
been able to find related work that has done a similar study
in another country. This means that this paper is the first pa-
per assessing whether and how Personas are used for devel-
oping software in the industry.

The main limitation on our results is that we focussed on
a defined geographical area. This was necessary to achieve a
high level of coverage of all companies in that area. As fu-
ture work it would be interesting to learn more about the ad-
vantages of using Personas. This area still needs further stud-
ies even though some advantages have been identified in this
paper, also, it would be interesting to learn if companies that
do not use Personas are using another tool instead. The num-
ber of respondents for the questionnaire survey can also bee
seen as a limitation.

We have presented results that are qualitative and based
on four developers who have been interviewed in depth. The
number of respondents is obviously a limitation of this study;
yet only few software companies are using the Personas
technique in their development process, so it is very challen-
ging to find even a few respondents with experiences from
using the Personas technique. Conducting a qualitative study
means that the perspective of the interviewees are in focus.
Conducting a study like this obviously requires that the in-
tereviewees are trustworthy and telling the truth from their
perspective.

It would be interesting to conduct a more extensive series
of interviews with practitioners about their use of Personas
and study how that influence the quality of the systems they
develop. Also, if there is a correlation between the type of
company that uses Personas and the product being de-
veloped, and if the use of Personas differs by type of soft-
ware development company or product being developed.
And if the use of Personas differs by the size of the com-
pany.

ACKNOWLEDGMENT

We would like to thank the companies and their employ-
ees that participated in our questionnaire survey. We would
also like to thank the Danish innovation network in Informa-
tion Technologies, Infinit for providing partial financial sup-
port to the research.

REFERENCES

[1] J. Billestrup, J. Stage, L. Nielsen, and K. S. Nielsen,
“Persona usage in software development; Advantages and
Obstacles,” Proc. of International Conference on Advances
in Computer-Human Interactions (ACHI 2014), IARIA,
2014, pp. 359-364.

[2] A. Cooper, “The inmates are running the asylum: Why High-
Tech Products Drive Us Crazy and How to Restore the
Sanity,” Sams Publishers, 1999.

[3] J. Pruitt and T. Adlin, “The Persona Lifecycle: Keeping
People in Mind Throughout Product Design,” Morgan
Kaufman, 2006.

[4] L. Nielsen, “A model for Personas and scenarios creation,”
Roskilde, Denmark 27th November, 2003, 71.

[5] J. Bak, K. Nguyen, P. Riisgaard, and J. Stage, “Obstacles to
usability evaluation in practice: a survey of software

9

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

development organizations,” Proc. of Nordic Conference on
Human-Computer Interaction: Building Bridges (NordiCHI
2008), ACM Press, 2008 pp. 23-32. doi:
10.1145/1463160.1463164

[6] A. Bruun and J. Stage, “Training software development
practitioners in usability testing: an assessment acceptance
and prioritization,” Proceedings of the 24th Australian
Computer-Human Interaction Conference (ozCHI 2012), pp.
52-60. doi: 10.1145/2414536.2414545

[7] A. Cooper and R. Reimann, “About face 2.0: The Essentials
of Interaction Design,” Wiley Publishing, 2003.

[8] L. Nielsen, “Engaging Personas and Narrative Scenarios,”
Vol 17, PhD Series. Copenhagen: Samfundslitteratur, 2004.

[9] A. Cooper, R. Reimann, and D. Cronin, “About Face 3.0:
The Essentials of Interaction Design,” Wiley 2007.

[10] A. Dotan, N. Maiden, V. Lichter, and L. Germanovich,
“Designing with Only Four People in Mind? - A Case Study
of Using Personas to Redesign a Work-Integrated Learning
Support System,” Procedings of Human-Computer
Interaction – INTERACT (INTERACT 2009) pp. 497-509.

[11] T. Matthews, T. Judge, and S. Whittaker, “How Do
Designers and User Experience Professionals Actually
Perceive and Use Personas?,” Proceedings of SIGCHI
Conference on Human Factors in Computing Systems (CHI
2012), ACM Press, pp. 1219-1228.
doi: 10.1145/2207676.2208573

[12] Å. Blomquist and M. Arvola, “Personas in action: Ethno-
graphy in an Interaction Design Team,” Proceedings of Nor-
dic Conference Human-Computer Interaction (NordiCHI
2002), pp. 197-200. doi: 10.1145/572020.572044

[13] L. Nielsen, “Personas – User Focused Design,” Human-
Computer Interaction. Springer, 2012.

[14] L. Nielsen, “Personas. In The Encyclopedia of Human-
Computer Interaction,” 2nd Ed., Aarhus, Denmark: The
Interaction Design Foundation,
http://www.interactiondesign.org/encyclopedia/Personas.htm
l, 2013. 2015.05.30

[15] F. Long, “Real or Imaginary - the Effect of Using Personas
in Product Design,” IES Conference, Dublin: Irish
Ergonomics Review, 2009, pp. 1-10.

[16] J. Ma and C. LeRouge, “Introducing User Profiles and
Personas into Information Systems Development,” AMCIS.
Paper 237, 2007. http://aisel.aisnet.org/amcis2007/237
2015.05.30

[17] T. Miaskiewicza and K. A. Kozarb, “Personas and User-
Centered Design: How Can Personas Benefit Product Design
Processes?,” Design Studies 32, 5. 2011, pp. 417–430.
doi:10.1016/j.destud.2011.03.003

[18] A. Cooper, R. Reimann, and D. Cronin, “About Face 3.0:
The Essentials of Interaction Design,” Wiley 2007.

[19] J. Pruitt and J. Grudin, “Personas: Practice and Theory,”
Proceedings of the 2003 conference on Designing for user
experiences (DUX 2003), pp. 1-15. doi:
10.1145/997078.997089

[20] D. Levin, (2004). “Which Personas are you targeting?,” 5
Minute Whitepaper.

[21] W. Quesenbery, “Using Personas: Bringing Users Alive,”
STC Usability SIG Newsletter-Usability Interface, 2004.

[22] C. N. Chapman and R. Milham, “The Personas' new Clothes:
Methodological and Practical Arguments Against a Popular
Method,” Proceedings of the Human Factors and Ergonom-
ics Society Annual Meeting, October 2006 vol. 50 no. 5 634-
636 (HFES 2006), pp. 634-636,. doi:
10.1177/154193120605000503

[23] T. Adlin and J. Pruitt, “The essential Persona lifecycle: Your
guide to building and using Personas,” Morgan Kaufmann,
Burlington, MA, 2010.

[24] E. Friess, “Personas and decision making in the design pro-
cess: an ethnographic case study,” Proceedings of SIGCHI
Conference on Human Factors in Computing Systems (CHI
2012), ACM Press pp. 1209-1218, 2012. doi:
10.1145/2207676.2208572

[25] S. Faily and I. Flechais, “Persona Cases: A Technique for
Grounding Personas,” Proceedings of SIGCHI Conference
on Human Factors in Computing Systems (CHI 2011), ACM
Press, pp. 2267-2270, 2011. doi: 10.1145/1978942.1979274

[26] L. Nielsen, K. S. Nielsen, J. Stage, and J. Billestrup, “Going
global with Personas,” Procedings of Human-Computer
Interaction – INTERACT (INTERACT 20013), pp. 350-357.
Springer Berlin Heidelberg. 2013. doi: 10.1007/978-3-642-
40498-6_27

[27] Y. Chang, Y. Lim, and E. Stolterman, “Personas: From The-
ory to Practices,” Proceeding of Proc. of Nordic Conference
on Human-Computer Interaction: Building Bridges (Nordi-
CHI 2008), pp. 439-442. doi 10.1145/1463160.1463214

[28] P. Turner and S. Turner, “Is stereotyping inevitable when
designing with Personas?,” Design Studies, 32, 1, 30-44,
(2011) doi:10.1016/j.destud.2010.06.002

[29] S. Powell, F. Keenan, and K. McDaid, “Enhancing Agile
Requirements Elicitation With Personas,” IADIS
International Journal on Computer Science and Information
Systems, 2(1), 82-95, 2007.

[30] www.survey-xact.com 2015.05.30
[31] C. Urquhart, “Grounded Theory for Qualitative Research: A

Practical Guide,” Thousand Oaks, California: Sage, 2013.

[32] J. Corbin and A. Strauss, “Basics of Qualitative Research,
Techniques and Procedures for Developing Grounded The-
ory,” 3rd edition, Sage Publications, 2008.

[33] C. Urquhart, H. Lehmann, and M. D. Myers, “Putting the
Theory Back Into Grounded Theory,” Guidelines for
grounded theory studies in Information Systems”. Info
Systems J 20, 2010, pp. 357-381. doi: 10.1111/j.1365-
2575.2009.00328.x

[34] S. Pace, “A Grounded Theory of the Flow Experiences of
Web Users,” Proceedings of International Journal of Human-
Computer Studies (IJHES, 2003), pp. 327-363. 2003. doi:
doi:10.1016/j.ijhcs.2003.08.005

[35] Kvale, S.: “Interview,” København: Hans Reitzel (1997)
NordiCHI, 2008, pp. 353-362.

[36] S. Baird, “Using Personas To Discover Requirements,”
http://philarnold.co.uk/wp-content/uploads/2009/10/User-
Personas.pdf (2002) 2015.05.30

[37] D. Svanæs and J. Gulliksen, “Understanding the Context of
Design – Towards Tactical User Centered Design,” Proceed-
ings of Nordic Conference oon Human-Computer Interac-
tion: Building Bridges (NordiCHI, 2008), pp. 353-362. doi:
10.1145/1463160.1463199

10

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Feedback-Controlled Adaptive Middleware for Near-Time Bulk Data Processing

Martin Swientek
Paul Dowland

School of Computing and Mathematics
Plymouth University

Plymouth, UK
e-mail: {martin.swientek, p.dowland}@plymouth.ac.uk

Bernhard Humm
Udo Bleimann

Department of Computer Science
University of Applied Sciences Darmstadt

Darmstadt, Germany
e-mail: {bernhard.humm, udo.bleimann}@h-da.de

Abstract—The processing type is usually a fixed property of
an enterprise system that is decided when the architecture of
the system is designed, prior to implementing the system. This
choice depends on the non-functional requirements of the system.
These requirements are not fixed and can change over time.
In this article, the concept of a middleware is introduced that
adapts its processing type fluently between batch processing
and single-event processing using a feedback-control loop. By
adjusting the data granularity at runtime, the system is able
to minimize the end-to-end latency for different load scenarios.
The proposed middleware concept has been implemented with
a research prototype and has been evaluated. The results of the
evaluation show that the concept is viable and is able to optimize
the end-to-end latency of a system for bulk data processing.

Keywords–adaptive middleware; message aggregation; latency;
throughput.

I. INTRODUCTION

This article extends previous work in [1]. Enterprise Sys-
tems like customer-billing systems or financial transaction
systems are required to process large volumes of data in a
fixed period of time. For example, a billing system for a large
telecommunication provider has to process more than 1 million
bills per day. Those systems are increasingly required to also
provide near-time processing of data to support new service
offerings.

Traditionally, enterprise systems for bulk data processing
are implemented as batch processing systems [2]. Batch pro-
cessing delivers high throughput but cannot provide near-time
processing of data, that is, the end-to-end latency of such a
system is high. End-to-end latency refers to the period of time
that it takes for a business process, implemented by multiple
subsystems, to process a single business event. For example,
consider the following billing system of a telecommunications
provider:

• Customers are billed once per month
• Customers are partitioned in 30 billing groups
• The billing system processes 1 billing group per day,

running 24h under full load.

In this case, the mean time for a call event to be billed by
the billing system is 1/2 month. That is, the mean end-to-end
latency of this system is 1/2 month.

A. An Example: Billing Systems for Telecommunications Car-
riers

An example of a system for bulk data processing is a billing
system of a telecommunications carrier. A billing system is
a distributed system consisting of several sub components
that process the different billing sub processes like mediation,
rating, billing and presentment (see Figure 1).

The performance requirements of such a billing system are
high. It has to process more than 1 million records per hour and
the whole batch run needs to be finished in a limited timeframe
to comply with service level agreements with the print service
provider. Since delayed invoicing causes direct loss of cash, it
has to be ensured that the bill arrives at the customer on time.

Mediation Rating Billing Presentment

Figure 1. Billing process

B. Near-Time Processing of Bulk Data

A new requirement for systems for bulk data processing is
near-time processing. Near-time processing aims to reduce the
end-to-end latency of a business process, that is, the time that
is spent between the occurrence of an event and the end of its
processing. In case of a billing system, it is the time between
the user making a call and the complete processing of this call
including mediation, rating, billing and presentment.

The need for near-time charging and billing for telecom-
munications carriers is induced by market forces, such as
the increased advent of mobile data usage and real-time data
services [3]. Carriers want to offer new products and services
that require real-time or near-time charging and billing. Cus-
tomers want more transparency, for example, to set their own
limits and alerts for their data usage, which is currently only
possible for pre-paid accounts. Currently, a common approach
for carriers is to operate different platforms for real-time billing
of pre-paid accounts and traditional batch-oriented billing for
post-paid accounts. To reduce costs, carriers aim to converge
these different platforms.

A lower end-to-end latency can be achieved by using
single-event processing, for example, by utilizing a message-
oriented middleware for the integration of the services that

11

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

form the enterprise system. While this approach is able to
deliver near-time processing, it is hardly capable for bulk data
processing due to the additional communication overhead for
each processed message. Therefore, message-based processing
is usually not considered for building a system for bulk data
processing requiring high throughput.

The processing type is usually a fixed property of an
enterprise system that is decided when the architecture of
the system is designed, prior to implementing the system.
This choice depends on the non-functional requirements of
the system. A system is therefore either optimized for low
latency or high maximum throughput. These requirements are
not fixed and can change during the lifespan of a system, either
anticipated or not anticipated.

Additionally, enterprise systems often need to handle load
peaks that occur infrequently. For example, think of a billing
system with moderate load over most of the time, but there are
certain events with very high load such as New Year’s Eve.
Most of the time, a low end-to-end latency of the system is
preferable when the system faces moderate load. During the
peak load, it is more important that the system can handle the
load at all. A low end-to-end latency is not as important as an
optimized maximum throughput in this situation.

In this article, a solution to this problem is proposed:

• The concept of a middleware is presented that is able
to adapt its processing type fluently between batch pro-
cessing and single-event processing. By adjusting the data
granularity at runtime, the system is able to minimize the
end-to-end latency for different load scenarios.

• A prototype has been built to evaluate the concepts of the
adaptive middleware.

• A performance evaluation has been conducted using this
prototype to evaluate the proposed concept of the adaptive
middleware.

This article extends the adaptive middleware concept,
which has been presented in [1]. It adds a discussion of
its underlying concepts and design aspects, that should be
considered when implementing such an adaptive middleware
for near-time processing of bulk data. In addition, it describes
the prototype implementation of the middleware concept and
presents the results of the evalution of the propposed approach,
as well as its limitations.

The remainder of this article is organized as follows.
Section II defines the considered type of system and the terms
throughput and latency. Section III gives an overview of other
work related to this research. The concept, components and
design aspects of the adaptive middleware are presented in
Section IV through VI. Section VII describes the prototype
system that has been build to evaluate the proposed concepts.
The evaluation of the prototype system is presented in Section
VIII. Section IX describes the limitations of this research.
Finally, Section X concludes the paper and gives and outlook
to further research.

II. BACKGROUND

We consider a distributed system for bulk data processing
consisting of several subsystems running on different nodes
that together form a processing chain, that is, the output of

subsystem S1 is the input of the next subsystem S2 and so on
(see Figure 2a).

S1 S3S2

(a) Single processing line

S1 S3S2

S1 S3S2

(b) Parallel processing lines

Figure 2. A system consisting of several subsystems forming a processing
chain

To facilitate parallel processing, the system can consist of
several lines of subsystems with data being distributed among
each line. For simplification, a system with a single processing
line is considered in the remainder of this article.

We discuss two processing types for this kind of system,
batch processing and message-based processing.

A. Batch processing

The traditional operation paradigm of a system for bulk
data processing is batch processing (see Figure 3). A batch
processing system is an application that processes bulk data
without user interaction. Input and output data is usually
organized in records using a file- or database-based interface.
In the case of a file-based interface, the application reads a
record from the input file, processes it and writes the record
to the output file.

S1 S2 S3

Figure 3. Batch processing

B. Message-base processing

Messaging facilitates the integration of heterogeneous ap-
plications using asynchronous communication. Applications
are communicating with each other by sending messages (see
Figure 4). A messaging server or message-oriented middleware
handles the asynchronous exchange of messages including an
appropriate transaction control [4].

S1 S2 S3

Figure 4. Message-based processing

12

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Message-based systems are able to provide near-time pro-
cessing of data due to their lower latency compared with
batch processing systems. The advantage of a lower latency
comes with a performance cost in regard to a lower maxi-
mum throughput because of the additional overhead for each
processed message. Every message needs, amongst others,
to be serialized and deserialized, mapped between different
protocols and routed to the appropriate receiving system.

C. End-to-end Latency vs. Maximum Throughput

Throughput and latency are performance metrics of a
system. We are using the following definitions of maximum
throughput and latency in this article:

• Maximum Throughput
The number of events the system is able to process in a
fixed timeframe.

• End-To-End Latency
The period of time between the occurrence of an event
and its processing. End-to-end latency refers to the to-
tal latency of a complete business process implemented
by multiple subsystems. The remainder of this article
focusses on end-to-end latency using the general term
latency as an abbreviation.

Latency and maximum throughput are opposed to each
other given a fixed amount of processing resources. High
maximum throughput, as provided by batch processing, leads
to high latency, which impedes near-time processing. On the
other hand, low latency, as provided by a message-based
system, cannot provide the maximum throughput needed for
bulk data processing because of the additional overhead for
each processed event.

III. RELATED WORK

This section gives an overview of work related to the
research presented in this article. It discusses performance opti-
mizations in the context of transport optimization, middleware
optimizations and message batching.

The proposed middleware for high-performance near-time
processing of bulk data adjusts the data granularity itself at
runtime. Work on middleware discusses different approaches
for self-adjustment and self-awareness of middleware, which
can be classified as adaptive or reflective middleware.

Automatic scaling of server instances is another approach
to handle infrequent load spikes. Additionally, the section gives
a brief overview of feedback-control of computing systems.

Research on messaging middleware currently focusses on
Enterprise Service Bus (ESB) infrastructure. An ESB is an
integration platform that combines messaging, web services,
data transformation and intelligent routing to connect multiple
heterogeneous services [5]. It is a common middleware to
implement the integration layer of an Service Oriented Archi-
tecture (SOA) and is available in numerous commercial and
open-source packages.

A. Transport Optimization

Most of the work that aims to optimize the performance of
service-oriented systems is done in the area of Web Services
since it is a common technology to implement a SOA.

In particular, various approaches have been proposed to
optimize the performance of SOAP, the standard protocol for
Web Service communication. This includes approaches for
optimizing the processing of SOAP messages (cf. [6] [7] [8]),
compression of SOAP messages (cf. [9] [10]) and caching (cf.
[11] [12]). A survey of the current approaches to improve the
performance of SOAP can be found in [13].

[14] proposes an approach to transfer bulk data between
web services per File Transfer Protocol (FTP). The SOAP
messages transferred between the web services would only
contain the necessary details how to download the correspond-
ing data from an FTP server since this protocol is optimized
for transferring huge files. This approach solves the technical
aspect of efficiently transferring the input and output data
but does not pose any solutions how to implement loose
coupling and how to integrate heterogeneous technologies, the
fundamental means of an SOA to improve the flexibility of an
application landscape.

Data-Grey-Box Web Services are an approach to transfer
bulk data between Web Services [15]. Instead of transferring
the data wrapped in SOAP messages, it is transferred using an
external data layer. For example, when using database systems
as a data layer, this facilitates the use of special data transfer
methods such ETL (Extract, Transform, Load) to transport the
data between the database of the service requestor and the
database of the Web service. The data transfer is transparent
for both service participants in this case. The approach includes
an extension of the Web service interface with properties
describing the data aspects. Compared to the SOAP approach,
the authors measured a speedup of up to 16 using their
proposed approach. To allow the composition and execution
of Data-Grey-Box Web services, [16] developed BPEL data
transitions to explicitly specify data flows in BPEL processes.

[17] proposes three tuning strategies to improve the
performance of Java Messaging Service (JMS) for cloud-based
applications.

1) When using persistent mode for reliable messaging the
storage block size should be matched with the message
size to maximize message throughput.

2) Applying distributed persistent stores by configuring mul-
tiple JMS destinations to achieve parallel processing

3) Choosing appropriate storage profiles such as RAID-1

In contrast, the optimization approach presented in this
thesis is aimed at the integration layer of messaging system,
which allows further optimizations, such as dynamic message
batching and message routing.

B. Middleware Optimizations

Some research has been done to add real-time capabil-
ities to ESB or messaging middleware. [18] proposes an
architecture for a real-time messaging middleware based on
an ESB. It consists of an event scheduler, a JMS-like API
and a communication subsystem. While fulfilling real-time

13

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

requirements, the middleware also supports already deployed
infrastructure.

In their survey [19], the authors describe a real-time
ESB model by extending the Java Business Integration (JBI)
specification with semantics for priority and time restrictions
and modules for flow control and bandwidth allocation. The
proposed system is able to dynamically allocate bandwidth
according to business requirements.

MPAB (Massively Parallel Application Bus) is an ESB-
oriented messaging bus used for the integration of business
applications [20]. The main principle of MPAB is to fragment
an application into parallel software processing units, called
SPU. Every SPU is connected to an Application Bus Mul-
tiplexor (ABM) through an interface called Application Bus
Terminal (ABT). The Application Bus Multiplexor manages
the resources shared across the host system and communicates
with other ABM using TCP/IP. The Application Bus Terminal
contains all the resources needed by SPU to communicate with
its ABM. A performance evaluation of MPAB shows that it
achieves a lower response time compared to the open source
ESBs Fuse, Mule and Petals.

Tempo is a real-time messaging system written in Java that
can be used on either a real-time or non-real-time architecture
[21]. The authors, Bauer et al., state that existing messag-
ing systems are designed for transactional processing and
therefore not appropriate for applications with with stringent
requirements of low latency with high throughput. The main
principle of Tempo is to use an independent queuing system for
each topic. Resources are partitioned between these queueing
systems by a messaging scheduler using a time-base credit
scheduling mechanism. In a test environment, Tempo is able
to process more than 100,000 messages per second with a
maximum latency of less than 120 milliseconds.

In contrast to these approaches, the approach presented in
this thesis is based on a standard middleware and can be used
with several integration technologies, such as JMS or SOAP.

C. Message Batching

Aggregating or batching of messages is a common ap-
proach for optimizing performance and has been applied to
several domains. TCP Nagle’s algorithm is a well-known
example of this approach [22].

Message batching for optimizing the throughput of Total
Ordering Protocols (TOP) have first been investigated by [23].
In their work, the authors have compared the throughput
and latency of four different Total Ordering Protocols. They
conclude that “batching messages is the most important opti-
mization a protocol can offer”.

[24] extends the work of [23] with a policy for varying
the batch level automatically, based on dynamic estimates of
the optimal batch level.

[25] presents a mechanism for self-tuning the batching
level of Sequencer-based Total Order Broadcast Protocols
(STOB), that combines analytical modeling an Reinforcement
Learning (RL) techniques.

[26] proposes a self-tuning algorithm based on extremum
seeking optimization principles for controlling the batching

level of a Total Order Broadcast algorithm. It uses multiple
instances of extremum seeking optimizers, each instance is
associated with a distinct value of batching b and learns the
optimal waiting time for a batch of size b.

[27] describes two generic adaptive batching schemes for
replicated servers, which adapt their batching level automati-
cally and immediately according to the current communication
load, without any explicit monitoring of the system.

The approach presented in this research applies the concept
of dynamic message batching to minimize the end-to-end
latency of a message-based system for bulk data processing.

D. Self-Adaptive Middleware

[28] argues that “the most adequate level and natural locus
for applying adaption is at the middleware level”. Adaption at
the operating system level is platform-dependent and changes
at this level affect every application running on the same node.
On the other hand, adaption at application level assigns the
responsibility to the developer and is also not reusable.

[29] proposes an adaptive, general-purpose runtime infras-
tructure for effective resource management of the infrastruc-
ture. Their approach is comprised of three components:

1) dynamic performance prediction
2) adaptive intra-site performance management
3) adaptive inter-site resource management

The runtime infrastructure is able to choose from a set of
performance predictions for a given service and to dynamically
choose the most appropriate prediction over time by using the
prediction history of the service.

AutoGlobe [30] provides a platform for adaptive resource
management comprised of

1) Static resource management
2) Dynamic resource management
3) Adaptive control of Service Level Agreements (SLA)

Static resource management optimizes the allocation of ser-
vices to computing resources and is based on on automati-
cally detected service utilisation patterns. Dynamic resource
management uses a fuzzy controller to handle exceptional
situations at runtime. The Adaptive control of Service Level
Agreements (SLAs) schedules service requests depending on
their SLA agreement.

The coBRA framework proposed by [31] is an approach
to replace service implementations at runtime as a foundation
for self-adaptive applications. The framework facilitates the
replacement of software components to switch the implemen-
tation of a service with the interface of the service staying the
same.

DREAM (Dynamic Reflective Asynchronous Middleware)
[32] is a component-based framework for the construction
of reflective Message-Oriented Middleware. Reflective mid-
dleware “refers to the use of a causally connected self-
presentation to support the inspection and adaption of the
middleware system” [33]. DREAM is based on FRACTAL,
a generic component framework and supports various asyn-
chronous communication paradigms such as message passing,

14

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

event-reaction and publish/subscribe. It facilitates the construc-
tion and configuration of Message-Oriented Middleware from
a library of components such as message queues, filters, routers
and aggregators, which can be assembled either at deploy-time
or runtime.

E. Adaption in Service-Oriented Architectures

Several adaption methods have been proposed in the con-
text of service-based applications. In their survey [34], the
authors describe the following adaption methods:

• Adaption by Dynamic Service Binding
This adaption method relies on the ability to select
and dynamically substitute services at run-time or at
deployment-time. Services are selected in such a way that
the adaption requirements are satisfied in the best possible
way.

• Quality of Service (QoS)-Driven Adaption of Service
Compositions
The goal of this adaption approach is to select the best
set of services available at run-time, under consideration
of process constraints, end-user preferences and the exe-
cution context.

• Adaption of Service Interfaces and Protocols
The goal of this adaption approach is to mediate between
two services with different signatures, interfaces and pro-
tocols. This includes signature-based adaption, ontology-
based adaption or behavior-based adaption.

F. Adaptive ESB

Research on messaging middleware currently focusses on
ESB infrastructure. An ESB is an integration platform that
combines messaging, web services, data transformation and
intelligent routing to connect multiple heterogeneous services
[5]. It is a common middleware to implement the integration
layer of an Service Oriented Architecture (SOA) and is avail-
able in numerous commercial and open-source packages.

Several work has been done to extend the static service
composition and routing features of standard ESB implemen-
tations with dynamic capabilities decided at run-time, such as
dynamic service composition [35], routing [36] [37] [38] and
load balancing [39].

The DRESR (Dynamic Reconfigurable ESB Service Rout-
ing), proposed by [36], allows the routing table to be changed
dynamically at run-time based on service selection preferences,
such as response time. It defines mechanisms to test and
evaluate the availability and performance of a service and to
select services based on its testing results and historical data.

[38] proposes a framework for content-based intelligent
routing. It evaluates the service availability and selects services
based on its content and properties.

[39] proposes a load balancing mechanism that distributes
requests to services of the same service type, having the same
function and signature, and enables the dynamic selection of
the target service.

Work to manage and improve the QoS of ESB and service-
based systems in general is mainly focussed on dynamic
service composition and service selection based on monitored

QoS metrics such as throughput, availability and response time
[40].

[41] proposes an adaptive ESB infrastructure to address
QoS issues in service-based systems, which provides adaption
strategies for response time degradation and service saturation,
such as invoking an equivalent service, using previously stored
information, distributing requests to equivalent services, load
balancing and deferring service requests.

In contrast to these solutions, the approach presented in this
article uses dynamic message aggregation and message routing
as adaption mechanism to optimize the end-to-end latency of
messaging system for different load scenarios.

G. Automatic Scaling

A different solution to handle infrequent load spikes is
to automatically instantiate additional server instances, as
provided by current Platform as a Service (PaaS) offerings
such as Amazon EC2 [42] or Google App Engine [43]. While
scaling is a common approach to improve the performance of
a system, it also leads to additional operational and possible
license costs. Additionally, it is often difficult to scale certain
components or external dependencies of the system, such
as databases or external services. Of course, the approach
presented in this article can be combined with these auto-
scaling approaches.

H. Feedback-control of Computing Systems

Feedback-control has been applied to several different
domains of computing systems since the early 1990s, including
data networks, operating systems, middleware, multimedia and
power management (cf. [44]). Feedback-control of middleware
systems include application servers, such as the Apache http-
Server, database management systems, such as IBM Universal
Database Server, and e-mail servers, such as the IBM Lotus
Domino Server. [44] describes 3 basic control problems in this
context:

• Enforcing service level agreements
• Regulate resource utilization
• Optimize the system configuration

Additionally, feedback-control has been applied recently
to web environments, such as web servers and web ser-
vices, application servers, including data flow control in J2EE
servers, Repair Management in J2EE servers and improving
the performance of J2EE servers and cloud environments (cf.
[45]).

The Adaptive Middleware presented in this article utilizes
a closed-feedback loop to control the aggregation size of the
processed messages, depending on the current load of the
system to minimize the end-to-end latency of the system. This
is a novel approach that has not previously been investigated.

IV. MIDDLEWARE CONCEPTS

The adaptive middleware is based on the following core
concepts: (1) message aggregation, (2) message routing, and
(3) monitoring and control.

15

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Message Aggregation

Message aggregation or batching of messages is the main
feature of the adaptive middleware to provide a high maximum
throughput. The aggregation of messages has the following
goals:

• To decrease the overhead for each processed message
• To facilitate optimized processing

There are different options to aggregate messages, which
can be implemented by the Aggregator:

• No correlation: Messages are aggregated in the order in
which they are read from the input message queue. In this
case, an optimized processing is not simply possible.

• Technical correlation: Messages are aggregated by their
technical properties, for example, by message size or
message format.

• Business correlation: Messages are aggregated by busi-
ness rules, for example, by customer segments or product
segments.

In [1], a static aggregation size has been used to optimize
the latency and the throughput of a system. This is not feasible
for real systems, since the the latency and throughput also
depends on the load of the system. Therefore, a dynamic
aggregation size depending on the current load of the system
is needed.

B. Message Routing

The goal of the message routing is to route the message
aggregate to the appropriate service, which is either optimized
for batch or single event processing, to allow for an optimized
processing. Message routing depends on how messages are
aggregated. Table I shows the different strategies of message
routing.

TABLE I
STRATEGIES FOR MESSAGE ROUTING

Routing Strategy Examples Description

Technical routing Aggregation size Routing is based on the tech-
nical properties of a message
aggregate.

Content-based rout-
ing

Customer segments (e.g. busi-
ness customers or private cus-
tomers)

Routing is based on the con-
tent of the message aggregate,
that is, what type of messages
are aggregated.

With high levels of message aggregation, it is not preferred
to send the aggregated message payload itself over the message
bus using Java Messaging Service (JMS) or SOAP. Instead, the
message only contains a pointer to the data payload, which
is transferred using File Transfer Protocol (FTP) or a shared
database.

Message routing can be static or dynamic:

• Static routing:
Static routing uses static routing rules, that are not
changed automatically.

• Dynamic routing:
Dynamic routing adjusts the routing rules automatically
at run-time, for example, depending on QoS properties of
services. For example, see [36], [37] or [38].

C. Monitoring and Control

In order to optimize the end-to-end latency of the system,
the middleware needs to constantly monitor the load of the
system and control the aggregation size accordingly (see
Figure 5).

System

Feedback Control

Measure
System Load

Control
Aggregation

Figure 5. Monitoring and Control

If the current load of the system is low, the aggregation
size should be small to provide a low end-to-end latency of
the system. If the current load of the system is high, the
aggregation size should be high to provide a high maximum
throughput of the system.

To control the level of message aggregation at runtime, the
adaptive middleware uses a closed feedback loop as shown in
Figure 6, with the following properties:

• Input (u): Current aggregation size
• Output (y): Change of queue size measured between

sampling intervals
• Set point (r): The change of queue size should be zero.

Ultimately, we want to control the average end-to-end
latency depending on the current load of the system. The
change of queue size seems to be an appropriate quantity
because it can be directly measured without a lag at each
sampling interval, unlike for example, the average end-to-end
latency.

Controller System
y = Net change of queue sizer = 0 e = r-y

u = Aggregation size

Figure 6. Feedback loop to control the aggregation size

V. MIDDLEWARE COMPONENTS

Figure 7 shows the components of the middleware, that are
based on the Enterprise Integration Patterns described by [46].
A description of these components can be found in Table II.

VI. DESIGN ASPECTS

This section describes aspects that should be taken into
account when designing an adaptive system for bulk data
processing.

16

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

S1
Endpoint A

S1
Endpoint BAggregator Router

QueueMessages Message
Aggregate

Figure 7. Middleware components

TABLE II
COMPONENTS OF THE ADAPTIVE MIDDLEWARE. WE ARE USING THE

NOTATION DEFINED BY [46]

Symbol Component Description

Message A single message representing a
business event.

Message Aggregate A set of messages aggregated by the
Aggregator component.

Queue Storage component which stores
messages using the FIFO principle.

Aggregator

Stateful filter which stores correlated
messages until a set of messages is
complete and sends this set to the
next processing stage in the messag-
ing route.

Router Routes messages to the appropriate
service endpoint.

Service
Endpoint Service Endpoint Represents a business service.

A. Service Design

The services that implement the business functionality of
the system need to be explicitly designed to support the run-
time adaption between single-event and batch processing.

There are different options for the design of these services:

• Single service interface with distinct operations for single
and batch processing
◦ The service provides different distinct operations for

high and low aggregation sizes with optimized imple-
mentations for batch and single-event processing. The
decision which operation should be called is done by
the message router. It is generally not possible to use
different transports for different aggregation sizes.

• Single service interface with a single operation for both
single and batch processing
◦ The service provides a single operation that is called for

all aggregation sizes. The decision which optimization
should be used is done by the service implementation.
It is not possible to use different transports for different
aggregation sizes.

• Multiple service interfaces for single and batch processing
(or different aggregation sizes)
◦ The logical business service is described by distinct

service interfaces which contain operations for either
batch processing or single-event processing. The deci-
sion which operation should be called is done by the
message router. It is possible to use different transports
for different aggregation sizes.

The choice of service design relates to where you want
to have the logic for the message routing for optimized
processing. With a single service offering distinct operations
for single-event and batch processing, as well as with distinct
service for each processing style, the message router decides
which service endpoint should be called. In contrast, using
a single service with a single operation for both processing
styles, the service itself is responsible for choosing the appro-
priate processing strategy. Using a different integration type
for each processing style is not possible in this case.

Listing 1 shows the interface of a service offering differ-
ent operations for batch processing (line 6) and single-event
processing (line 10).

B. Integration and Transports

The integration architecture defines the technologies that
are used to integrate the business services. In general, different
integration styles with different transports are used for batch
processing and single-event processing, which needs to be
taken into account when designing an adaptive system for bulk
data processing.

When using high aggegration sizes, it is not feasible to
use the same transports as with low aggregation sizes. Large
messages should not be transferred over the messaging system.
Instead, a file based transport using FTP or database-based
integration should be used. When using a messaging system,
the payload of large messages should not be transported over
the messaging system. For example, by implementing the
Claim Check Enterprise Integration Pattern (EIP) (cf. [46]).

Additionally, the technical data format should be consid-
ered.

The concrete threshold between low and high aggregation
sizes depends on the integration architecture and implementa-
tion of the system, such as the integration architecture and the
deployed messaging system.

17

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Listing 1. Java interface of a web service offering different operations for single and batch processing.
1 @WebService
2 @SOAPBinding(style=Style.DOCUMENT, use=Use.LITERAL, parameterStyle=ParameterStyle.WRAPPED)
3 public interface RatingPortType {
4 @WebMethod(operationName="processCallDetails")
5 @WebResult(name="costedEvents")
6 public Costedevents processCallDetails(@WebParam(name="callDetailRecords") SimpleCDRs

callDetailRecords) throws ProcessingException, Exception;
7
8 @WebMethod(operationName="processCallDetail")
9 @WebResult(name="costedEvent")

10 public Costedevent processCallDetail(@WebParam(name="simpleCDR") SimpleCDR callDetailRecord)
throws ProcessingException, Exception;

11 } �
TABLE III

TRANSPORT OPTIONS FOR HIGH AND LOW AGGREGATION SIZES

Aggregation Size Transport Options

High
• Database
• File-based (e.g. FTP)
• Claim Check EIP

Low
• JMS
• SOAP

The choice of the appropriate integration transport for a
service is implicitly implemented by the message router (see
Section IV-B).

C. Error Handling

Message aggregation has also an impact on the handling
of errors that occur during the processing. Depending on the
cause of the error, there are two common types of errors:

• Technical errors
Technical errors are errors caused by technical reasons,
for example, an external system is not available or does
not respond within a certain timeout or the processed
message has an invalid format.

• Business errors
Business errors are caused by violation of business rules,
for example, a call detail record contains a tariff that is
no longer valid.

The following points should be taken into account, when
designing the error handling for an adaptive system for bulk
data processing:

• Write erroneous messages to an error queue for later
processing.

• Use multiple queues for different types of errors, for
example, distinct queues for technical and business errors
to allow different strategies for handling them. Some type
of errors can be fixed automatically, for example, an error
that is caused by an outage of an external system, while
other errors need to be fixed manually.

• If the erroneous messages is part of an aggregated mes-
sage, it should be extracted from the aggregate to prevent

the whole aggregate from beeing written to the error
queue, especially when using high aggregation sizes.

D. Controller Design

There are several approaches for the implementation of
feedback-control systems. [44] describes two major steps:

1) modeling the dynamics of the system
2) developing a control system

There are different approaches that are used in practice to
model the dynamics of a system [47]:

• Empirical approach using curve fitting to create a model
of the system

• Black-box modeling
• Modeling using stochastic approaches, especially queuing

theory
• Modeling using special purpose representations, for ex-

ample, the first principles analysis

For practical reasons, the following approach has been
taken in this research:

1) Define the control problem
2) Define the input and output variables of the system
3) Measure the dynamics of the system
4) Develop the control system

1) Control Problem: The control problem is defined as
follows:

• Minimize the end-to-end latency of the system by con-
trolling the message aggregation size.

• The aggregation size used by the messaging system
should depend on the current load of the system.

• When the system faces high load, the aggregation size
should be increased to maximize the maximum through-
put of the system.

• When the system faces low load, the aggregation size
should be decreased to minimize the end-to-end latency
of the system.

2) Input/Output Signals: [48] describes the following
criteria for selecting input control signals:

• Availability
It should be possible to influence the control input directly
and immediately.

18

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Responsiveness
The system should respond quickly to a change of the
input signal. Inputs whose effect is subject to latency or
delays should be avoided when possible.

• Granularity
It should be possible to adjust the control input in small
increments. If the control input can only be adjusted in
fixed increments, then it could be necessary to consider
this in the controller or actuator implementation.

• Directionality
How does the control input impact the control output?
Does an increased control input result in increased or
decreased output?

Additionally, the following criteria should be considered
for selecting output control signals:

• Availability
The quantity must be observable without gaps and delays.

• Relevance
The output signal should be relevant for the behavior of
the system that should be controlled.

• Responsiveness
The output signal should reflect changes of the state of
the system quickly without lags and delays.

• Smoothness
The output signal should be smooth and does not need to
be filtered.

With regard to these criteria, the following input and output
control signals have been chosen

• Input (u): Current aggregation size
• Output (y): Change of queue size measured between

sampling intervals
• Set point (r): The change of queue size should be zero.

3) Control Strategy: We use a simple non-linear control
strategy that could be implemented as follows (cf. [48]):

• When the tracking error is positive, increase the aggrega-
tion size by 1

• Do nothing when the tracking error is zero.
• Periodically decrease the aggregation size to test if a

smaller queue size is able to handle the load.

VII. PROTOTYPE IMPLEMENTATION

To evaluate the proposed concepts of the adaptive middle-
ware, a prototype of a billing system has been implemented
using Apache Camel [49] as the messaging middleware.

Figure 8 shows the architecture of the prototype. It consists
of three nodes, the billing route, mediation service and rating
service. The billing route implements the main flow of the
application. It is responsible for reading messages from the
billing queue, extracting the payload, calling the mediation
and rating service and writing the processed messages to the
database. The mediation service is a webservice representing
the mediation component. It is a SOAP service implemented
using Apache CXF and runs inside an Apache Tomcat con-
tainer. The same applies to the rating service, representing the
rating component.

TABLE IV
TECHNOLOGIES AND FRAMEWORKS USED FOR THE IMPLEMENTATION OF

THE PROTOTYPES

Language Java 1.6

Dependency Injection Spring 3.0.7

Persistence API OpenJPA (JPA 2.0) 2.1.1

Database MySQL 5.5.24

Logging Logback 1.0.1

Test JUnit 4.7

Batch Framework Spring Batch 2.1.8

Messaging Middleware Apache Camel 2.10.0

Other Frameworks Joda-Time, Apache Commons

The prototypes are implemented with Java 1.6 using Java
Persistence API (JPA) for the data-access layer and a MySQL
database. See Table IV for complete list of technologies and
frameworks used for the implementation of the prototypes.

The prototype performs the following steps:

1) The message is read from the billing queue using JMS.
The queue is hosted by an Apache ActiveMQ instance.

2) The message is unmarshalled using JAXB.
3) The Mediation service is called by the CXF endpoint of

the billing route.
4) The response of the Mediation webservice, the normalized

call detail record, is unmarshalled.
5) The Rating service is called by the CXF endpoint of the

billing route.
6) The response of the Rating webservice, that is the costed

event, is unmarshalled.
7) The costed event is written to the Costed Events

Database.

The feedback-control loop of the prototype is implemented
by the following components:

• Performance Monitor
The Performance Monitor manages the feedback-control
loop by periodically calling the Sensor and updating the
Controller. Additionally, it calculates the current through-
put and end-to-end latency of the system.

• Sensor
The Sensor is responsible for getting the current size of
the message queue using Java Management Extensions
(JMX).

• Controller
The Controller calculates the new value for the aggrega-
tion size based on the setpoint and the current error.

• Actuator
The Actuator is responsible for setting the new aggrega-
tion size of the Aggregator calculated by the Controller.

A. Aggregator

The Aggregator is configured to dynamically use the ag-
gregation size (completionSize) set by a message header, as
shown in Listing 2 (line 2). This message header is set by
the Actuator (see Section VII-B3), which is controlled by the
Controller (see Section VII-B2).

19

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Camel

Billing Route
ActiveMQ

Event
Generator

Tomcat

Costed Events

Master Data

Rating
Service

Tomcat

Mediation
Service

SO
AP

SO
AP

JPA

JMS

JM
S

CDR NCDR Costed
Event

MySQL

MySQL

Qeue
Aggregator Router

Performance Monitor

Queue Sensor Controller Actuator

Figure 8. Components of the prototype system

Listing 2. Aggregator configuration in definition of BillingRoute
1 .aggregate(constant(true), new

UsageEventsAggrationStrategy())
2 .completionSize(header(completionSizeHeader)

)
3 .completionTimeout(completionTimeout)
4 .parallelProcessing() �

B. Feedback-Control Loop

Figure 9 shows the components of the feedback-control
loop.

System

Controller Message
QueueAggregatorActuator

Sensor

e = r-y

y = Net change of queue size

u = Aggregation size

r = 0

Figure 9. Components of the feedback-control loop

1) Sensor: The JmxSensor implements the Sensor interface
(see Figure 10). It reads the current length of the input queue
of the ActiveMQ server instance using JMX.

2) Controller: A Controller has to implement the Con-
troller interface. The following implementations of the Con-
troller interface have been implemented (see Figure 11):

• BasicController
Implements a generic controller. The control strategy is
provided by an implementation of the ControllerStrategy.

• TestController
A controller used for testing the static behavior of the
system.

Figure 10. UML classdiagram showing the sensor classes

The strategy of the controller is implemented by a con-
troller strategy which implements the ControllerStrategy inter-
face.

Figure 12 shows the available implementations of the
ControllerStrategy.

Listing 3 shows the implementation of the simple control
strategy, as described in Section VI-D3:

• If the queue size increases, increase the aggregation size
(line 10-13).

• Otherwise, do not change the aggregation size (line 22).
• Periodically decrease the aggregation size by one (line

17-20).

The controller uses two different timers depending on the
previous action.

3) Actuator: The AggregateSizeActuator is responsible for
setting the aggregation size of the Aggregator and is controlled
by the Controller (see Figure 13).

The AggregateSizeActuator implements the Actuator inter-
face. It sets the aggregation size (completionSize) by setting a
specific header in the currently processed message.

4) Performance Monitor: The Performance Monitor man-
ages the feedback-control loop by periodically calling the
Sensor and updating the Controller. Additionally, it calculates
the current throughput and end-to-end latency of the system
using the StatisticsService (see Figure 14).

C. Load Generator

The Load Generator is used to generate the system load
by generating events (Call Detail Records (CDRs)) and writing
them to the input message queue of the system. It is imple-
mented as a stand-alone Java program using a command-line
interface.

The DataGenerator uses a Poisson Process to simulate
the load of the system, which is commonly used to model

20

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. UML classdiagram showing the controller classes

events that occur continuously and independently of each other
with exponentially distributed inter-arrival times, e.g. to model
requests on a web server [50] or telephone calls [51].

VIII. EVALUATION

The prototype described in the previous section has been
used to evaluate the general feasibility of the adaptive middle-
ware.

A. Test Environment

The tests have been run on a development machine to
decrease the development-build-deploy cycle, as described in
Table V.

TABLE V
TEST ENVIRONMENT

Memory 3 GiB

CPU Intel Core i5 M520 @ 2,40 GHz

Architecture 32-bit

Disk Drive 150 GB SSD

Operating System Windows 7

Database MySQL 5.5.24

Messaging Middleware Apache ActiveMQ 5.6.0

B. Test Design

[52] defines a set of properties, that should be considered
when designing feedback-control systems for computing sys-
tems, called the SASO properties (Stable, Accurate, Settling
times, Overshoot):

• Stability
The system should provide a bounded output for any
bounded input.

• Accuracy
The measured output of the control system should con-
verge to the reference input.

• Settling time
The system should converge quickly to its steady state.

• Overshoot
The system should achieve its objectives in a manner that
does not overshoot.

C. Static Tests

To test the relationship between the input and output
variables of the control-loop, aggregation size and change of
queue size, the following static tests have been performed:

• The TestController has been configured to periodically
increase the aggregation size after 100 time steps (1 time
step equals 1 second).

21

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. UML classdiagram showing the controller strategy classes

Listing 3. Implementation of the simple control strategy
1 public class SimpleControlStrategy
2 implements ControllerStrategy {
3
4 @Value("${simpleController.period1}")
5 private int period1;
6 @Value("${simpleController.period2}")
7 private int period2;
8 private int timer = 0;
9

10 public Double getOutput(Double error) {
11 if (error > 0) {
12 timer = period1;
13 return +1.0;
14 }
15
16 timer--;
17
18 if (timer == 0) {
19 timer = period2;
20 return -1.0;
21 }
22 return 0.0;
23 }
24 } �

• The test has been repeated with different load of the
system, that is, using different arrival rates for the Data-
Generator.

Figure 15 shows the queue size of the system in relation-
ship to the aggregation size, for different arrival rates.

• The system is not able to handle the load with an
aggregationsize < 5 and an arrivalrate = 50. With
an aggregationsize ≥ 5, the system is able to process
the events faster than they occur.

• With an arrivalrate = 100, the system is not able to
handle the load with an aggregationsize < 15. With an
aggregationsize ≥ 15, the system is able to process the
events faster than they occur.

• With an arrivalrate = 150, the system is not able to
handle the load with an aggregationsize < 25. With an
aggregationsize ≥ 25, the system is able process the

Figure 13. UML classdiagram showing the actuator classes

events faster than they occur.

The change of queue size between each time step is shown
in Figure 16.

D. Step Test

To measure the dynamic response of the system, the
following step test has been performed:

• The TestController has been configured to increase the
aggregation size from 1 to 50.

• Messages occur with an arrival rate of 150.

Figure 17 shows the result of the step test:

• With an aggregation size of 1, the system is not able to
handle the load. The queue length is constantly increasing.

• When the aggregation size is set to 50 at timestep 100,
the queue size is directly decreased, without a noticeable
delay.

22

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. UML classdiagram showing the PerformanceMonitor

0 100 200 300 400 500 600 700 800 900 1000
0

25

50

75

100
Aggregate Size

Time steps

A
g

g
re

g
a

te
 s

iz
e

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000
Arrival Rate = 50.0

Time steps

Q
u

e
u

e
 s

iz
e

0 100 200 300 400 500 600 700 800 900 1000
0

1

2
x 10

4 Arrival Rate = 100.0

Time steps

Q
u

e
u

e
 s

iz
e

0 100 200 300 400 500 600 700 800 900 1000
0

2

4
x 10

4 Arrival Rate = 150.0

Time steps

Q
u

e
u

e
 s

iz
e

Figure 15. Static test: queue sizes

E. Controller Tests

The following test has been performed to evaluate the
performance of the Simple Controller:

0 100 200 300 400 500 600 700 800 900 1000
0

25

50

75

100
Aggregate Size

Time steps

A
g

g
re

g
a

te
 s

iz
e

0 100 200 300 400 500 600 700 800 900 1000
−200

−100

0

100
Arrival Rate = 50.0

Time stepsQ
u

e
u

e
 s

iz
e

 c
h

a
n

g
e

0 100 200 300 400 500 600 700 800 900 1000
−1000

−500

0

500
Arrival Rate = 100.0

Time steps

Q
u

e
u

e
 s

iz
e

 c
h

a
n

g
e

0 100 200 300 400 500 600 700 800 900 1000
−1000

−500

0

500
Arrival Rate = 150.0

Time steps

Q
u

e
u

e
 s

iz
e

 c
h

a
n

g
e

Figure 16. Static test: queue size changes

• Events are generated with an arrival rate = 50.0 for
100 time steps.

• At timestep = 100, the arrival rate is set to 150.0 for
another 100 time steps.

23

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 50 100 150 200 250 300
0

25

50
Aggregate Size

Time steps

A
g

g
re

g
a
te

 s
iz

e

0 50 100 150 200 250 300
−500

0

500
Queue size change

Time steps

Q
u

e
u

e
 s

iz
e

 c
h

a
n

g
e

0 50 100 150 200 250 300
0

5000

10000
Queue size

Time steps

Q
u

e
u

e
 s

iz
e

Figure 17. Step test

• At timestep = 200, the arrival rate is set back to 50.0.

Figure 18 shows the results of the test using the Simple
Control strategy:

• The controller is reasonably able to control the size of
the queue. At timestep = 100, it increases the aggregate
size to a maximum value of 36.

• At timestep = 200, the controller starts to decrease the
aggregation size. At timestep = 375, the aggregation
size is back at 3.

0 50 100 150 200 250 300 350 400 450 500
50

100

150
Load

Time steps

A
rr

iv
a
l
ra

te

0 50 100 150 200 250 300 350 400 450 500
−20

0

20

40
Aggregate size

Time steps

A
g
g
re

g
a
te

 s
iz

e

0 50 100 150 200 250 300 350 400 450 500
−200

−100

0

100
Queue size change

Time steps

Q
u
e
u
e
 s

iz
e
 c

h
a
n
g
e

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150
Queue size

Time steps

Q
u
e
u
e
 s

iz
e

Figure 18. Simple control strategy

F. Results

Summarizing the results of the evaluation, the proposed
concept for the adaptive middleware is a viable solution to
optimize the end-to-end latency of data processing system.
The results show that using a closed-feedback loop is a
feasible technique for implementing the dynamic control of

the aggregation size. Using the queue size change to measure
the system load is also shown to be appropriate.

IX. LIMITATIONS

The research presented in this article has some limitations,
that are summarized below:

• The services that implement the business functionality of
the system need to be explicitly designed to support the
run-time adaption between single-event and batch pro-
cessing, as described in Section VI-A. Therefore, existing
services need to be changed in order to be integrated into
the system. This can pose a problem when using off-
the-shelf services or Software as a Service (SaaS). The
integration of such services has not been considered in
this research.

• The services integrated by the prototype do not implement
any further optimizations for batch processing. They
use the same implementation for batch and single-event
processing. Thus, the impact of batch optimizations has
not been investigated. This was not necessary to show
the performance improvements of message aggregation
on the maximum throughput of the messaging prototype.

• The adaption mechanisms of the Adaptive Middleware
only uses message aggregation and message routing,
depending on the aggregation size. Other mechanisms
such as dynamic service composition and selection and
load balancing have not been investigated.

• The prototype of the Adaptive Middleware only uses a
single message queue, the integrated services are called
synchronous, using a request/response pattern. This de-
sign was chosen, to simplify the dynamics of the system.
Thus, the impact of using multiple message queues has
been investigated in the evaluation.

• The impact of different controller architectures has not
been exhaustively analyzed and researched. Only two
controller architectures have been implemented and evalu-
ated. Other controller designs, such as fuzzy control, have
not been investigated. Additionally, a formal analyzation
of the feedback-control system has not been conducted,
for example, by creating a model of the system. Instead,
an empirical approach has been taken to evaluate the
viability of the proposed solution.

X. CONCLUSION AND FURTHER RESEARCH

In this section, a novel concept of middleware for near-
time processing of bulk data has been presented, which is
able to adapt itself to changing load scenarios by fluently
shifting the processing type between single event and batch
processing. The middleware uses a closed feedback loop to
control the end-to-end latency of the system by adjusting
the level of message aggregation depending on the current
load of the system. Determined by the aggregation size of
a message, the middleware routes a message to appropriate
service endpoints, which are optimized for either single-event
or batch processing.

Additionally, several design aspects have been described
that should be taken into account when designing and im-
plementing an adaptive system for bulk data processing, such

24

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as how to design the service interfaces, the integration and
transport mechanisms, the error-handling and controller design.

The solution is based on standard middleware, messaging
technologies and standards and fully preserves the benefits of
an SOA and messaging middleware, such as:

• Loose coupling
• Remote communication
• Platform language Integration
• Asynchronous communication
• Reliable Communication

To evaluate the proposed middleware concepts, a prototype
system has been developed. The tests show that the proposed
middleware solution is viable and is able to optimize the end-
to-end latency of a bulk data processing system for different
load scenarios.

The next steps of this research are to further analyze the
dynamics of the system and to optimize the controller.

During the implementation of the prototype of the adaptive
middleware, it became apparent that the design and imple-
mentation of such a system differs from common approaches
to implement enterprise software systems. Further research
addresses a conceptual framework that guides the design,
implementation and operation of a system for bulk data pro-
cessing based on the adaptive middleware.

REFERENCES

[1] M. Swientek, B. Humm, U. Bleimann, and P. Dowland, “An Adaptive
Middleware for Near-Time Processing of Bulk Data,” in ADAPTIVE
2014, The Sixth International Conference on Adaptive and Self-
Adaptive Systems and Applications, Venice, Italy, May 2014, pp. 37–41.

[2] J. Fleck, “A distributed near real-time billing environment,” in Telecom-
munications Information Networking Architecture Conference Proceed-
ings, 1999. TINA ’99, 1999, pp. 142–148.

[3] J. Cryderman, “Is Real-Time Billing and Charging a Necessity?”
Pipeline, vol. 7, no. 11, 2011.

[4] S. Conrad, W. Hasselbring, A. Koschel, and R. Tritsch, Enterprise
Application Integration: Grundlagen, Konzepte, Entwurfsmuster, Prax-
isbeispiele. Elsevier, Spektrum, Akad. Verl., 2006.

[5] D. Chappell, Enterprise Service Bus. Sebastopol, CA, USA: O’Reilly
Media, Inc., 2004.

[6] N. Abu-Ghazaleh and M. J. Lewis, “Differential Deserialization for
Optimized SOAP Performance,” in SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing. Washington, DC, USA:
IEEE Computer Society, 2005, p. 21.

[7] T. Suzumura, T. Takase, and M. Tatsubori, “Optimizing Web Services
Performance by Differential Deserialization,” in ICWS ’05: Proceedings
of the IEEE International Conference on Web Services. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 185–192.

[8] A. Ng, “Optimising Web Services Performance with Table Driven
XML,” in ASWEC ’06: Proceedings of the Australian Software Engi-
neering Conference. Washington, DC, USA: IEEE Computer Society,
2006, pp. 100–112.

[9] J. C. Estrella, M. J. Santana, R. H. C. Santana, and F. J. Monaco,
“Real-Time Compression of SOAP Messages in a SOA Environment,”
in SIGDOC ’08: Proceedings of the 26th annual ACM international
conference on Design of communication. New York, NY, USA: ACM,
2008, pp. 163–168.

[10] A. Ng, P. Greenfield, and S. Chen, “A Study of the Impact of Compres-
sion and Binary Encoding on SOAP Performance,” in Proceedings of
the Sixth Australasian Workshop on Software and System Architectures
(AWSA2005), 2005.

[11] D. Andresen, D. Sexton, K. Devaram, and V. Ranganath, “LYE: a
high-performance caching SOAP implementation,” in Proceedings of
the 2004 International Conference on Parallel Processing (ICPP-2004),
2004, pp. 143–150.

[12] K. Devaram and D. Andresen, “SOAP optimization via parameterized
client-side caching,” in Proceedings of the IASTED International Con-
ference on Parallel and Distributed Computing and Systems (PDCS
2003), 2003, pp. 785–790.

[13] J. Tekli, E. Damiani, R. Chbeir, and G. Gianini, “Soap processing per-
formance and enhancement,” Services Computing, IEEE Transactions
on, vol. 5, no. 3, 2012, pp. 387–403.

[14] T. Wichaiwong and C. Jaruskulchai, “A Simple Approach to Optimize
Web Services’ Performance,” in NWESP ’07: Proceedings of the Third
International Conference on Next Generation Web Services Practices.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 43–48.

[15] D. Habich, S. Richly, and M. Grasselt, “Data-Grey-Box Web Services
in Data-Centric Environments,” in IEEE International Conference on
Web Services, 2007. ICWS 2007, 2007, pp. 976–983.

[16] D. Habich, S. Richly, S. Preissler, M. Grasselt, W. Lehner, and A. Maier,
“BPEL-DT – Data-Aware Extension of BPEL to Support Data-Intensive
Service Applications,” Emerging Web Services Technology, vol. 2,
2007, pp. 111–128.

[17] Z. Zhuang and Y.-M. Chen, “Optimizing jms performance for cloud-
based application servers,” in Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on, 2012, pp. 828–835.

[18] L. Garces-Erice, “Building an enterprise service bus for real-time soa: A
messaging middleware stack,” in Computer Software and Applications
Conference, 2009. COMPSAC ’09. 33rd Annual IEEE International,
vol. 2, 2009, pp. 79–84.

[19] C. Xia and S. Song, “Research on real-time esb and its application
in regional medical information exchange platform,” in Biomedical
Engineering and Informatics (BMEI), 2011 4th International Conference
on, vol. 4, 2011, pp. 1933–1937.

[20] R. Benosman, Y. Albrieux, and K. Barkaoui, “Performance evaluation
of a massively parallel esb-oriented architecture,” in Service-Oriented
Computing and Applications (SOCA), 2012 5th IEEE International
Conference on, 2012, pp. 1–4.

[21] D. Bauer, L. Garces-Erice, S. Rooney, and P. Scotton, “Toward scalable
real-time messaging,” IBM Systems Journal, vol. 47, no. 2, 2008, pp.
237–250.

[22] J. Nagle, “Congestion control in ip/tcp internetworks,” SIGCOMM
Comput. Commun. Rev., vol. 14, no. 4, Oct. 1984, pp. 11–17. [Online].
Available: http://doi.acm.org/10.1145/1024908.1024910

[23] R. Friedman and R. V. Renesse, “Packing messages as a tool for boost-
ing the performance of total ordering protocls,” in Proceedings of the
6th IEEE International Symposium on High Performance Distributed
Computing, ser. HPDC ’97. Washington, DC, USA: IEEE Computer
Society, 1997, pp. 233–.

[24] A. Bartoli, C. Calabrese, M. Prica, E. A. Di Muro, and A. Montresor,
“Adaptive Message Packing for Group Communication Systems,” 2003,
pp. 912–925.

[25] P. Romano and M. Leonetti, “Self-tuning batching in total order
broadcast protocols via analytical modelling and reinforcement learn-
ing,” in Computing, Networking and Communications (ICNC), 2012
International Conference on, Jan 2012, pp. 786–792.

[26] D. Didona, D. Carnevale, S. Galeani, and P. Romano, “An extremum
seeking algorithm for message batching in total order protocols,” in
Self-Adaptive and Self-Organizing Systems (SASO), 2012 IEEE Sixth
International Conference on, Sept 2012, pp. 89–98.

[27] R. Friedman and E. Hadad, “Adaptive batching for replicated servers,”
in Reliable Distributed Systems, 2006. SRDS ’06. 25th IEEE Sympo-
sium on, 2006, pp. 311–320.

[28] H. A. Duran-Limon, G. S. Blair, and G. Coulson, “Adaptive
Resource Management in Middleware: A Survey,” IEEE Distributed
Systems Online, vol. 5, no. 7, 2004, p. 1. [Online]. Available:
http://portal.acm.org/ft_gateway.cfm?id=1018100&type=external&
coll=ACM&dl=GUIDE&CFID=59338606&CFTOKEN=18253396

[29] B.-D. Lee, J. B. Weissman, and Y.-K. Nam, “Adaptive middleware
supporting scalable performance for high-end network services,” J.
Netw. Comput. Appl., vol. 32, no. 3, 2009, pp. 510–524.

25

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[30] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, and A. Kemper,
“Adaptive Quality of Service Management for Enterprise Services,”
ACM Trans. Web, vol. 2, no. 1, 2008, pp. 1–46.

[31] F. Irmert, T. Fischer, and K. Meyer-Wegener, “Runtime Adaptation in
a Service-Oriented Component Model,” in SEAMS ’08: Proceedings of
the 2008 international workshop on Software engineering for adaptive
and self-managing systems. New York, NY, USA: ACM, 2008, pp.
97–104.

[32] M. Leclercq, V. Quéma, and J.-B. Stefani, “DREAM: a Component
Framework for the Construction of Resource-Aware, Reconfigurable
MOMs,” in ARM ’04: Proceedings of the 3rd workshop on Adaptive
and reflective middleware. New York, NY, USA: ACM, 2004, pp.
250–255.

[33] F. Kon, F. Costa, G. Blair, and R. H. Campbell, “The Case for Reflective
Middleware,” Commun. ACM, vol. 45, no. 6, 2002, pp. 33–38.

[34] R. Kazhamiakin, S. Benbernou, L. Baresi, P. Plebani, M. Uhlig, and
O. Barais, “Adaptation of service-based systems,” in Service Research
Challenges and Solutions for the Future Internet, ser. Lecture Notes in
Computer Science, M. Papazoglou, K. Pohl, M. Parkin, and A. Metzger,
Eds. Springer Berlin Heidelberg, 2010, vol. 6500, pp. 117–156.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-17599-2_5

[35] S.-H. Chang, H. J. La, J. S. Bae, W. Y. Jeon, and S. D. Kim, “Design of
a dynamic composition handler for esb-based services,” in e-Business
Engineering, 2007. ICEBE 2007. IEEE International Conference on,
Oct 2007, pp. 287–294.

[36] X. Bai, J. Xie, B. Chen, and S. Xiao, “Dresr: Dynamic routing in
enterprise service bus,” in e-Business Engineering, 2007. ICEBE 2007.
IEEE International Conference on, Oct 2007, pp. 528–531.

[37] B. Wu, S. Liu, and L. Wu, “Dynamic reliable service routing in
enterprise service bus,” in Asia-Pacific Services Computing Conference,
2008. APSCC ’08. IEEE, Dec 2008, pp. 349–354.

[38] G. Ziyaeva, E. Choi, and D. Min, “Content-based intelligent routing
and message processing in enterprise service bus,” in Convergence
and Hybrid Information Technology, 2008. ICHIT ’08. International
Conference on, Aug 2008, pp. 245–249.

[39] A. Jongtaveesataporn and S. Takada, “Enhancing enterprise service
bus capability for load balancing,” W. Trans. on Comp., vol. 9, no. 3,
Mar. 2010, pp. 299–308. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1852392.1852401

[40] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli, “Dynamic qos management and optimization in service-based
systems,” Software Engineering, IEEE Transactions on, vol. 37, no. 3,
May 2011, pp. 387–409.

[41] L. González and R. Ruggia, “Addressing qos issues in service based
systems through an adaptive esb infrastructure,” in Proceedings of
the 6th Workshop on Middleware for Service Oriented Computing,
ser. MW4SOC ’11. New York, NY, USA: ACM, 2011, pp. 4:1–4:7.
[Online]. Available: http://doi.acm.org/10.1145/2093185.2093189

[42] “Amazon ec2 auto scaling,” http://aws.amazon.com/autoscaling, [re-
trieved: March 2014].

[43] “Auto scaling on the google cloud platform,”
https://cloud.google.com/developers/articles/auto-scaling-on-the-
google-cloud-platform, [retrieved: March 2014].

[44] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

[45] R. K. Gullapalli, C. Muthusamy, and V. Babu, “Control systems
application in java based enterprise and cloud environments–a survey,”
Journal of ACSA, 2011.

[46] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[47] J. L. Hellerstein, “Challenges in control engineering of computing
systems,” in American Control Conference, 2004. Proceedings of the
2004, 2004, pp. 1970–1979.

[48] P. K. Janert, Feedback Control for Computer Systems. O’Reilly Media,
Inc., 2013.

[49] “Apache Camel,” http://camel.apache.org, 2014, [retrieved: July 2014].
[50] M. F. Arlitt and C. L. Williamson, “Internet Web servers: workload

characterization and performance implications,” IEEE/ACM Transac-
tions on Networking (TON), vol. 5, no. 5, Oct. 1997, pp. 631–645.

[51] D. Willkomm, S. Machiraju, J. Bolot, and A. Wolisz, “Primary user
behavior in cellular networks and implications for dynamic spectrum
access,” Communications Magazine, IEEE, vol. 47, no. 3, March 2009,
pp. 88–95.

[52] T. Abdelzaher, Y. Diao, J. Hellerstein, C. Lu, and X. Zhu, “Introduction
to Control Theory And Its Application to Computing Systems,” in
Performance Modeling and Engineering, Z. Liu and C. Xia, Eds.
Springer US, 2008, pp. 185–215–215.

26

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Study on Transport and Load in a Grid-based Manufacturing System

Leo van Moergestel, Erik Puik, Daniël Telgen
Department of Computer science

HU Utrecht University of Applied Sciences
Utrecht, the Netherlands

Email: {leo.vanmoergestel, erik.puik, daniel.telgen}@hu.nl

John-Jules Meyer
Intelligent systems group

Utrecht University
Utrecht, the Netherlands

Email: J.J.C.Meyer@uu.nl

Abstract—Standard mass-production is a well-known manufac-
turing concept. To make small quantities or even single items of
a product according to user specifications at an affordable price,
alternative agile production paradigms should be investigated and
developed. The system presented in this article is based on a
grid of cheap reconfigurable production units, called equiplets.
A grid of these equiplets is capable to produce a variety
of different products in parallel at an affordable price. The
underlying agent-based software for this system is responsible
for the agile manufacturing. An important aspect of this type
of manufacturing is the transport of the products along the
available equiplets. This transport of the products from equiplet
to equiplet is quite different from standard production. Every
product can have its own unique path along the equiplets. In this
article several topologies are discussed and investigated. Also, the
planning and scheduling in relation to the transport constraints is
subject of this study. Some possibilities of realization are discussed
and simulations are used to generate results with the focus on
efficiency and usability for different topologies and layouts of
the grid and its internal transport system. Closely related with
this problem is the scheduling of the production in the grid. A
discussion about the maximum achievable load on the production
grid and its relation with the transport system is also included.

Keywords-Multiagent-based manufacturing; Flexible transport.

I. INTRODUCTION

In standard batch processing the movement of products is
mostly based on a pipeline. Though batch processing is a very
good solution for high volume production, it is not apt for
agile manufacturing when different products at small quantities
are to be produced by the production equipment. This article
describes an agile and flexible production system, where the
production machines are placed in a grid. Products are not
following a single path, but different paths can be used in
parallel, leading to parallel manufacturing of different prod-
ucts. The grid arrangement of production machines reduces
the average path when products move along their own possibly
unique paths within the grid during the production. To move
the products around during production, the ways the production
machines are interconnected should be investigated to find an
affordable and good solution. An important aspect will also be
the amount of products in the grid during production, because
too many products will result in failures in the scheduling
of the production. The investigation about transport and the
amount of products in the grid, resulting in the total load of

the grid, are the motivation and purpose of this article. The
goal is to investigate the effect of different interconnection
possibilities to the average production path and to see how
the grid behaves under load. The work in this article is based
on a paper presented at the Intelli 2014 conference [1] and
other previous work. The design and implementation of the
production platforms and the idea to build a production grid
can be found in Puik [2]. In Moergestel [3] the idea of using
agent technology as a software infrastructure is presented.
Two types of agents play a major role in the production: a
product agent, responsible for production of a product and an
agent responsible for performing certain production steps on a
production machine. Another publication by Moergestel [4] is
dedicated to the production scheduling for the grid production
system. The rest of this paper is organised as follows: In
Section II of this article related work will be discussed.
Section III will explain grid manufacturing in more detail,
followed by Section IV about transport in the grid. Section V
introduces the software tools built. The results are presented
and discussed in Section VI. Finally, a conclusion where the
results are summarized will end the article.

II. RELATED WORK

Using agent technology in industrial production is not
new though still not widely accepted. Important work in
this field has already been done. Paolucci and Sacile [5]
give an extensive overview of what has been done in this
field. Their work focuses on simulation as well as production
scheduling and control [6]. The main purpose to use agents
in [5] is agile production and making complex production
tasks possible by using a multi-agent system. Agents are also
introduced to deliver a flexible and scalable alternative for
manufacturing execution systems (MES) for small production
companies. The roles of the agents in this overview are quite
diverse. In simulations agents play the role of active entities
in the production. In production scheduling and control agents
support or replace human operators. Agent technology is used
in parts or subsystems of the manufacturing process. On the
contrary, we based the manufacturing process as a whole on
agent technology. In our case a co-design of hardware and
software was the basis.

Bussmann and Jennings [7][8] used an approach that com-
pares to our approach. The system they describe introduced
three types of agents, a workpiece agent, a machine agent and

27

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a switch agent. Some characteristics of their solution are:

• The production system is a production line that is
built for a certain product. This design is based
on redundant production machinery and focuses on
production availability and a minimum of downtime
in the production process. Our system is a grid and is
capable to produce many different products in parallel;

• The roles of the agents in this approach are different
from our approach. The workpiece agent sends an
invitation to bid for its current task to all machine
agents. The machine agents issue bids to the work-
piece agent. The workpiece agent chooses the best
bid or tries again. In our system, the negotiating is
between the product agents, thus not disrupting the
machine agents;

• They use a special infrastructure for the logistic sub-
system, controlled by so called switch agents. Even
though the practical implementation is akin to their
solution, in our solution the service offered by the
logistic subsystems can be considered as production
steps offered by an equiplet and should be based on a
more flexible transport mechanism.

However, there are important differences to our approach.
The solution presented by Bussmann and Jenning has the
characteristics of a production pipeline and is very useful as
such, however, it is not meant to be an agile multi-parallel
production system as presented here.

Other authors focus on using agent technology as a solution
to a specific problem in a production environment. In [9]
a multi-agent monitoring system is presented. This work
focusses on monitoring a manufacturing plant. The approach
we use monitors the production of every single product. The
work of Xiang and Lee [10] presents a multiagent-based
scheduling solution using swarm intelligence. Their work uses
negotiating between job-agents and machine-agents for equal
distribution of tasks among machines. The implementation and
a simulation of the performance is discussed. In our approach
the negotiating is between product agents and load balancing is
possible by encouraging product agents to use equiplets with a
low load. We did not focus on a specific part of the production
but we developed a complete production paradigm based on
agent technology in combination with a production grid. This
model is based on two types of agents and focuses on agile
multiparallel production. There is a much stronger role of the
product agent and a product log is produced per product. This
product agent can also play an important role in the life-cycle
of the product [11].

In agent-based manufacturing the term holon is often used.
While agent technology emerged from the field of computer
science, the concept holon has its origin in computer integrated
manufacturing (CIM) [12]. The concept was proposed by
Koestler [13]. Parts of a system can be autonomous and stable
on their own, but by cooperation they may form a bigger
whole. This bigger whole could again be a part of an even
bigger whole. A holon is both a part and a whole. A holon
can represent a physical object or a logical activity. In the
domain of manufacturing this can be a production machine, a
production order or a human operator [14]. Agent technology

can be used to implement a holon. This is where the two
approaches, agent technology and the holon concept, meet.
An important difference is that a holon can also be a passive
entity like the aforementioned production order, while agents
represent active autonomous entities. Fisher [15] uses a holonic
approach for manufacturing planning and control. His work is
based on the use of the Integration of Reactive behaviour and
Rational Planning (InterRRap) agent architecture proposed by
Müller [16]. Agents represent the holonic manufacturing com-
ponents, forming a multiagent system. In our manufacturing
model the holonic approach was not used, because a more
simple multiagent system fitted our requirements.

III. GRID MANUFACTURING

In grid production, manufacturing machines are placed in
a grid topology. Every manufacturing machine offers one or
more production steps and by combining a certain set of
production steps, a product can be made. This means that when
a product requires a given set of production steps and the grid
has these steps available, the product can be made [2]. The
definition of a production step as used in this article is:

Definition[Production step] A production step is an action or
group of coordinated or coherent actions on a product, to bring
the product a step further to its final realisation. The state of
the product before and after the step are stable, meaning that
the time it takes to do the next step is irrelevant and that the
product can be transported or temporarily stored between two
steps.

The software infrastructure that has been used in our grid
is agent-based. Agent technology opens the possibilities to let
this grid operate and manufacture different kinds of products
in parallel, provided that the required production steps are
available [3]. The manufacturing machines that have been
built in our research group are cheap and versatile. These
machines are called equiplets and consist of a standardized
frame and subsystem on which several different front-ends can
be attached. The type of front-end specifies what production
steps a certain equiplet can provide. This way every equiplet
acts as a reconfigurable manufacturing system (RMS) [17]. An
example of an equiplet front-end is a delta-robot. With this
front-end, the equiplet is capable of pick and place actions.
A computer vision system is part of the frontend. This way
the equiplet can localise parts and check the final position
they are put in. A picture of an equiplet with a delta-robot
front-end is shown in Figure 1. For a product to be made a
sequence of production steps has to be done. More complex
products need a tree of sequences, where every sequence ends
in a half-product or part, needed for the end product. The
actual production starts at the branches of the tree and ends
at the root. The equiplet is represented in software by a so-
called equiplet agent. This agent advertises its capabilities
as production steps on a blackboard that is available in a
multiagent system where also the so-called product agents
live. A product agent is responsible for the manufacturing of
a single product and knows what to do, the equiplet agents
knows how to do it. A product agent selects a set of equiplets
based on the production steps it needs and tries to match these
steps with the steps advertised by the equiplets. The planning
and scheduling of a product is an atomic action, done by the
product agent in cooperation with the equiplet agent and takes

28

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1: An equiplet with a delta-robot frontend.

seven stages [4]. First, Let us assume that a single sequence
of steps is needed:

1) From the list of production steps, build a set of
equiplets offering these steps;

2) Ask equiplets about the feasibility and duration of the
steps;

3) Indicate situations where consecutive steps on the
same equiplet are possible;

4) Generate at most four paths along equiplets;
5) Calculate the paths along these equiplets;
6) Schedule the shortest product path using first-fit (take

the first opportunity in time for a production step) and
a scheduling scheme known as earliest deadline first
(EDF) [4];

7) If the schedule fails, try the next shortest path.

For more complex products, consisting of a tree of sequences,
the product agent spawns child agents, which are each re-
sponsible for a sequence. The parent agent is in control of
its children and acts as a supervisor. It is also responsible for
the last single sequence of the product. In Figure 2, the first
two halfproducts are made using step sequences < σ1, σ2 >
and < σ3, σ4 >. These sequences are taken care of by child
agents, while the parent agent will complete the product by
performing the step sequence < σ4, σ7, σ2, σ1 >.

1 2

3 4

4 7 12

Figure 2: Manufacturing of a product consisting of two half-products.

Every product agent is responsible for only one product to
be made. The requests for products arrive at random. In
the implementation we have made, a webinterface helps the
end-user to design or specify his or her specific product.
At the moment, all features are selected a product agent
will be created. During manufacturing a product is guided
by the product agent from equiplet to equiplet. In Figure 3,

X2 X3

X4

X5

equiplet A

equiplet B

production steps product X

Y2

Y3

Y4

Y5

equiplet C

production steps product Y

Z2

Z3

production steps product Z

 Time

X1

Y1

Z1

equiplet D

equiplet E

Figure 3: Three products in production.

the situation is shown for three products X,Y and Z using
five different equiplets (A,B,C,D,E). Production step i of
product X is denoted by Xi. From Figure 3 the following
properties become clear:

• Production steps can differ in length as opposed to
batch processing, where every step in the production
line should normally take the same amount of time;

• Production can start at random;

• It will be unlikely that all equiplets are used at 100%;

• A failing production step on a product will not block
the whole manufacturing process of other products as
in a production pipeline used in mass production;

• Products have their own unique paths along the
equiplets.

The path the product has to follow during manufacturing will
in general be a random walk along the equiplets. Figure 4 gives
an impression of such a random walk.

Manufacturing Grid

In
Out

Figure 4: Random walk of a product in the grid.

This random walk is more efficient when the equiplets are in
a grid arrangement against a line arrangement as used in batch
processing. Some calculations on the average number of hops
has been done for a random path between nodes on a line,
on a circle and in a grid. In Figure 5, the number of hops is
plotted against

√
N , where N is the number of nodes among

the line, the circle or in the grid. The increase of the average
path length (number of hops) is the highest for nodes put on
a line. So a random walk along a line is behaving bad, when
the number of nodes increases.

Figure 6 shows the global system architecture. The mul-
tiagent system is a distributed system consisting of com-
puters belonging to the equiplet hardware where the equilet
agents (EqA) live and some general computer platforms. The
general computer platforms contain the product agents (PA)
and blackboards that are used for sharing information that

29

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

nu
m

be
ro

fh
op

s

SQRT(N)

line
circle
grid

Figure 5: Number of hops for different configurations of N nodes.

PA

EqA EqA EqA EqA

PA PA PA

Black
Boards

MultiAgent System

Internet

Figure 6: Global architecture of the software infrastructure.

should be available for all agents. The platforms are connected
using standard Ethernet. New request for products to be built
are received from the internet. Such a request will spawn
a new product agent, that will plan its production path and
schedule its production using the information available on the
blackboards as described earlier in this section.

IV. TRANSPORT IN THE GRID

In the production grid, there is at least the stream of prod-
ucts to be made. Another stream might be the stream of raw
material, components or half-products used as components.
We will refer to this stream as the stream of components.
These components could be stored inside the equiplets, but
in that case there is still a stream of supply needed in case the
locally stored components run short. This increases the logistic
complexity of the grid model. In the next subsections, models
will be introduced that alleviate the complexity by combining
the stream of products with the stream of components.

A. Building box model

In the building box model, a tray is loaded with all the
components to create the product. To maintain agility, this
set of components can be different for every single product.
Before entering the grid, the tray is filled by passing through a
pipeline with devices providing the components. In this phase
a building box is created that will be used by the grid to
assemble the product. The equiplets in the grid are only used
for assembling purposes. Figure 7 shows the setup.

Part-supply Line

Manufacturing Grid

Figure 7: Production system with supply pipeline.

A problem with the previous setup is the fact that more
complex products should be built by combining subparts that
should be constructed first. In the previously presented setup
all parts needed for the construction of the subparts should
be collected in the building box, making the assembling
process more complicated. Another disadvantage of putting
all components for all subparts together in a building box is
that this slows down the production time, because normally
subparts can be made in parallel. A solution is shown in the
setup of Figure 8. Subparts can be made in parallel and are
input to the supply-line that eventually could be combined with
the original supply-line.

Part-supply Line

Manufacturing Grid

Half-product Supply Line

Figure 8: Production system with loops.

The next refinement of the system is presented in Figure 9.
Here a set of special testnodes has been added to the system.
These nodes are actually also equiplets, but these equiplets
have a front-end that makes them suited for testing and
inspecting final products as well as subparts that should be
used for more complicated products.

Part-supply Line

Manufacturing Grid

Half-product Supply Line

Test Nodes

accept
supply

accept
+ exit

reject

Figure 9: Production system with tests and loops.

A test can also result in a reject and this will also inform the
product agent about the failure. If the product agent is a child

30

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Belt R

Belt L

switch A

switch B

Figure 10: Bidirectional conveyor belt with switches.

agent constructing a subpart, it should consult the parent agent
if a retry should be done. In case it is the product agent for
the final product, it should ask its maker what to do.

B. Conveyor belt-based systems

A conveyor belt is a common device to transport material.
Several types are in use in the industry. Without going into
detail, some kind of classification will be presented here:

• belts for continuous transport in one direction;

• belts with stepwise transport from station to station.
These types of belts can be used in batch environ-
ments, where every step takes the same amount of time
and the object should be at rest when a production step
is executed;

• belts with transport is two directions. This can also be
realised by using two one direction belts, working in
opposite direction.

In Bussmann [7], an agent-based production system is built us-
ing transport belts in two directions where a switch mechanism
can move a product from one belt to another. A special switch-
agent is controlling the switches and thus controlling the flow
of a product along the production machines. In Figure 10
this solution is shown. Switch A is activated and will shift
products from belt R to the belt L that will move it to the left.
This concept fits well in the system developed by Bussmann,
because that system is actually a batch-oriented system. In a
grid the use of conveyor belts might be considered, but for agile
transport several problems arise, giving rise to complicated
solutions:

• should the direction in the grid consist of one-way
paths or should be chosen for bidirectional transport?

• a product should be removed from the moving belt
during the execution of a production step. A stepwise
transport is inadequate, because of the fact that pro-
duction steps can have different execution times in
our agile model. This removal could be done by a
switch mechanism as used by Bussmann, but every
equiplet should also have it own switch-unit to move
the product back to the belt.

• because the grid does not have a line structure for
reasons explained in the first part of this paper, a lot
of crossings should be implemented. These crossings
can also be realised with conveyor belt techniques, but
it will make the transport system as a whole expensive
and perhaps more error-prone.

C. Transport by automatic guided vehicles

An alternative for conveyor belts is the use of automatic
guided vehicles (AGV). An AGV is a mobile robot that follows
certain given routes on the floor or uses vision, ultrasonic
sonar or lasers to navigate. These AGVs are already used in
industry mostly for transport, but they are also used as moving
assembly platforms. This last application is just what is needed
in the agile manufacturing grid. The AGV solution used to be
expensive compared to conveyor belts but some remarks should
be made about that:

• The AGVs offer a very flexible way for transport that
fits better in non-pipeline situations;

• Low cost AGV platforms are now available;

• From the product agent view, an AGV is like an
equiplet, offering the possibility to move from A to
B.

• A conveyor-belt solution that fits the requirements
needed in grid productions will turn out to be a com-
plicated and expensive system due to the requirements
for flexible transport.

In the grid, a set of these AGVs will transport the product
between equiplets and will be directed to the next destination
by product agents.

1) AGV system components: An AGV itself is a driverless
mobile robot platform or vehicle. This AGV is mostly a
battery-powered system. To use an AGV, a travel path should
be available. When more than one AGV is used on the travel
path, a control system should manage the traffic and prevent
collisions between the AGVs or prevent deadlock situations.
The control system can be centralised or decentralised.

2) AGV navigation: There are plenty ways in which nav-
igation of AGVs has been implemented. The first division in
techniques can be made, based on whether the travel path itself
is specially prepared to be used by AGVs. This can be done
by:

• putting wires in the path the AGV can sense and
follow;

• using magnetic tape along the path to guide the AGV;

• using coloured paths, by using adhesive tape on the
path to direct the AGV;

• using transponders, so the AGV can localise itself.

The second type of AGV does not require a specially prepared
path. In that case navigation is done by using:

• laser range-finders

• ultrasonic distance sensors

• vision systems

Though it might look as if the decision for using AGVs has
already been made, further research should be done to see what
the efficiency will be for several implementations. This will be
the subject of the next two sections.

31

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. SOFTWARE TOOLS

Two simulation software packages have been built. A
simulation of the scheduling for production and a simulation
for the path planning. The path planning tool will be used to
calculate the efficiency for different transport interconnections.
The scheduling tool will be used to calculate the number
of active product agents within the grid. This number is
important, because it will tell how many products should be
temporally stored, waiting for the next production step to be
executed.

A. Path planning simulation software

A path planning tool has been built, to calculate a path a
certain product has to follow along the equiplets. The Dijkstra
path algorithm has been used [18]. The tool can work on
different grid transport patterns. This tool will be used to study
several possible grid topologies. A screen-shot of the graphical
user interface of the tool is shown in Figure 11. Several differ-
ent topologies and interconnections can be chosen by clicking
the appropriate fields in the GUI. The average transport path
for all nodes is one of the results of this simulation.

Figure 11: Path planning GUI.

B. Scheduling simulation software

The software for the scheduling simulations consists of two
parts. One part is a command-line tool that is driven by a
production scenario of a collection of product agents, each
having their own release time, deadline and set of production
steps. This production scenario is a human readable XML-file.
The second part is a GUI for visualisation of the scheduling
system. In Figure 12, a screen shot of this visualisation tool
is shown.

Figure 12: GUI of the scheduling simulator.

Figure 13: Standard fully connected grid.

Figure 14: Grid with bidirectional lanes and bidirectional backbone lanes.

VI. RESULTS

This section shows two types of results. First, the transport
possibilities are investigated using the path planning tool. Next,
the results of the scheduling simulations are discussed.

A. Transport possibilities

To calculate the average pathlength in the grid for different
paths, several structures have been investigated. Some of these
structures were chosen to fit conveyor belt solutions of some
type. All structures will also fit within the AGV-based solution.

1) A fully connected grid. where all paths are bidirec-
tional paths as in Figure 13.

2) A grid where all paths are bidirectional, but this
design has removed the crossings as in Figure 14.
This structure could be implemented by conveyor
belts in combination with switches;

3) A structure with five unidirectional paths and two
bidirectional paths as in Figure 15. This structure is
also a possible implementation with conveyor belts;

4) A structure with bidirectional paths combined in a
single backbone as in Figure 16;

5) A structure with five bidirectional paths and two
unidirectional paths as in Figure 17;

6) A fully connected grid, but now with half of the paths
unidirectional as in Figure 18.

For all these structures the average path is the result from a
simulation of 1000 product agents, all having a random walk
within the grid. Each product agent has an also random set
of equiplets it has to visit ranging from 2 to 50 equiplets per
product agent. Every path or hop between adjacent nodes is
considered to be one unit length. If the paths have no crossings,
a conveyor belt might be used, because crossing belts will

32

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 15: Grid with unidirectional lanes and bidirectional backbone lanes.

Figure 16: E-shaped connection, with bidirectional lanes.

Figure 17: Bidirectional lanes with unidirectional backbones.

Figure 18: Fully connected grid with unidirectional lanes.

result in a more complex system. All structures can also be
implemented with AGVs. For some structures the average path
can also easily be calculated and the results of these exact
calculations are comparable with the simulation results.

The results of the simulation are given in a table and
also plotted as a histogram in Figure 19. In Table I, a
second outcome from the simulation is also shown. This is
the percentage of agents that could find an alternative path of

TABLE I: Results of the simulation.

Structure 1 2 3 4 5 6
Average path 3.2 3.9 6.4 5.1 6.0 3.6

% Alternatives 60 16.7 8.4 0 0 27

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

A
ve

ra
ge

pa
th

Structure

Figure 19: Simulation results for different structures.

the same length. This result is of interest when in a traffic
control implementation, alternative paths become important.

As could be expected, the best result is achieved in the fully
connected grid with bidirectional paths. Changing the grid to
an almost identical structure of Figure 18 with unidirectional
paths, results in only a small penalty. This structure could also
be useful in an AGV-based transport system, reducing collision
problems because of the one-way paths used. Both structures
also offer a relative high percentage of alternative paths, that
could also be useful in an AGV-based system. The structures
that fit a conveyor belt solution show a path length that is
considerably higher.

When AGVs are used, the architecture of the production
system slightly changes. The solution fits well in the software
infrastructure. For the product agent, the AGV can be seen
as just another equiplet, but instead of providing production
steps, transport in the grid is offered. Another difference is
that the product agent will be tied to an AGV during the whole
production. The resulting architecture is shown in Figure 20.
The AVGs are represented by transport agents (TA). During
the execution of a production step, the equiplet agent can also
cooperate with the transport agent to put the product on the
AGV in the right position. This might come handy when a
product is too large for the equiplet to handle by itself.

B. Scheduling

The next results were generated using the scheduling tool.
This tool was used in earlier research [4] to discover the
scheduling approach to be used. The scheduling is based on
timeslots, having a certain duration. Such a timeslot is the min-
imal allocatable unit of time. The methods used for scheduling
were derived from real time scheduling schemes adapted to
the multiagent environment. To explain these schemes, some
symbols used in expressions should be defined:

33

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

PA

EqA EqA EqA EqA

PA PA PA

Black
Boards

MultiAgent System

Internet

TA TA TA TA

Figure 20: Global architecture with transport.

P is the product set. A single product is denoted as Pi.

ri is the first timeslot after release of product Pi

di is the timeslot for the deadline of product Pi

τ is the current timeslot

si(τ) is the number of timeslots of product Pi that is left to
be done.

Five well-known scheduling schemes are as follows.

1) Fixed priority, FP. Every task is assigned a priority
depending on the task type. The highest priority tasks
are completed before the lower priorities are run.

2) Earliest deadline first, EDF. The task with the first
deadline to come gets the highest priority and is
handled first.

3) Least slack first, LSF. The task with the minimum
slack gets the highest priority and is handled first.
Slack is defined as the total time available until the
deadline minus the time to complete the task. The
slack for product Pi at timeslot τ can be written as
(di − τ)− si(τ).

4) Smallest critical ratio first, CR. The critical ratio is
defined as the total number of timeslots available
divided by the number needed. For a product Pi at
timeslot τ : (di − τ)/si(τ). If this number turns out
to be 1, all timeslots should be used. If it is lower
than 1, the scheduling is infeasible. A high number
shows that many slots are available for a relative
small number of needed timeslots.

5) Shortest process first, SPF. The task with the shortest
time to complete gets the highest priority.

All these types can be used in conjunction with what is called
preemption. By this is meant that when a higher priority task
arrives, another already running task is paused (preempted)
to make way for the higher priority task. After completion
of the higher priority task, the preempted task is resumed.
Because all agents are equal, fixed priority is inadequate as a
scheduling scheme for the production grid. Both EDF and LSF
are considered optimal in the sense of feasibility: this means
that if there exists a feasible schedule, EDF or LSF will find
it [19]. However, this is only true for the situation where a
single resource is scheduled among requesters, as is the case
in a single processor computer system, where the processor
time is scheduled among different tasks.

The adjustments that has been made to adapt the scheduling
schemes to the situation of the production grid had to do with
preemption and the way a feasible scheduling and a failing
scheduling are treated. For scheduling in the grid the following
list of objectives has been worked out:

1) It should offer a best effort to schedule products that
will arrive at random times.

2) It should schedule products at high grid loads.
3) It should be fast and reliable. The scheduling should

take a small amount of time.
4) It should introduce only a small intercommunication

overhead. This will mean that the amount of inter-
agent messages should be kept low.

5) It should be fair. When a product is scheduled for
production with a feasible scheduling, meaning the
product will be completed before the deadline, the
scheduling system should be designed such that it
will guarantee that the feasible scheduling will not
be changed to an infeasible scheduling at a later time
by the scheduling system.

In [4], two approaches for preemption are introduced. To
describe the differences EDF will be used as an example. If a
product arrives at time t with deadline Td, two scenarios are
possible:

1) All products with a later deadline will temporarily
give up their schedules starting from t to make way
for the newly arrived product. This product will
be scheduled and the products that gave up their
scheduling try to reschedule within the constraints
for their deadlines according to the EDF scheme.
However, if one of these reschedules fails, objective
5 of the scheduling system is not achieved. This will
result in reporting a scheduling failure for the newly
arrived product and a restore of the schedules of the
already active products. This approach is called the
strong approach.

2) The newly arrived product will first try to schedule
its production without disturbing the other products.
Only if it fails it will follow the schedule and resched-
ule approach mentioned in the first scenario. This
approach is called the weak approach.

The implementation of these two approaches is done by send-
ing broadcast messages as well as agent to agent messages. In
case of an infeasible schedule for the newly arrived agent, this
agent will broadcast its deadline to all active product agents. In
reply to this broadcast, agents with a later deadline will send
their claimed production steps to the new agent and this will
try to schedule its production assuming these claimed steps
are now available. If the scheduling succeeds it will try to
reschedule all other active agents. In case of success it will
adjust the scheduling information on the blackboard involved
with the new scheduling and send the new schedules to the
participating agents. By locking the access to the blackboard
by other agents during (re)scheduling, this scheduling action
is atomic.

In [4], it is shown that the approaches weak and strong
result in almost the same rate of successful schedules, having
an average difference in results below 0.5%. Both approaches

34

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500
10000
10500
11000

100 200 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
ro

fp
re
em

pt
io
ns

Number of products

Strong EDF
Weak EDF

Figure 21: Number of preemptions for strong and weak EDF.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

600000

100 200 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um
be
ro
fa
ge
nt
s
in
vo
lv
ed

Number of products

Strong EDF
Weak EDF

Figure 22: Number of agents involved for strong and weak EDF.

fulfill objectives 1 and 2. In Figure 21, the number of preemp-
tions for both strong and weak versions of EDF are plotted for
different sizes of test sets. Another important value that gives
and impression of the inter-agent communication overhead
is shown in Figure 22. From both figures it becomes clear
that the amount of overhead in inter-agent communication and
rescheduling calculations used by the strong version is much
higher than the weak version. Objectives 3 and 4 are more
feasible using the weak version. Both versions were already
by design compliant with objective 5. When we consider
the different scheduling algorithms mentioned before, leaving
out fixed priority, and using the weak approach the resulting
number of failures for different numbers of products are plotted
in Figure 23. Earliest deadline first (EDF) turned out to be
a good choice. The success rate is comparable to LSF, but
the advantage of EDF over LSF is that the deadline is a
constant value while the slack changes over time and has to
be recalculated, introducing an extra small overhead.

For the previous and coming simulations, the following
conditions were used:

• Every product agent has a random number of equiplets

0

500

1000

1500

2000

2500

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fa
ilu
re
s

Number of products

SPF
CR
LSF
EDF

NO

Figure 23: Failure-count for different scheduling algorithms.

0

200

400

600

800

1000

2000 4000 6000 8000 10000

Fa
ilu

re
s

Test set size

Figure 24: Simulation Results for different sizes op product sets.

to visit ranging from 1 to 20 with an average of 10
equiplets.

• The number of timesteps in a simulation run is 10000
and the duration of a production step is 1 timestep.

• The time window between release time and deadline
of a product is random between 1 to 20 times the total
production time of a product. This total production
time in timesteps is in this case equal to to number of
equiplets the product agent has to visit.

• Each equiplet is offering a single unique production
step.

For a set with 10000 product agents, each having an aver-
age number of 10 production steps, the amount of production
steps needed is 100000. During 10000 timesteps the grid
consisting of 10 equiplets is actually offering a maximum of
100000 production steps. Figure 24 shows that in the given
situation of 10000 product agents the number of scheduling
failures is over 1000. In Figure 25, the average number of prod-
uct agents in a manufacturing grid consisting of 10 equiplets is
shown for different sizes of test sets. This information shows

35

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0

10

20

30

40

50

60

70

80

2000 4000 6000 8000 10000

P
ro

du
ct

s
in

gr
id

Test set size

Figure 25: Simulation Results for different sizes op product sets.

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n
u

m
b

e
r

o
f

p
ro

d
u

c
ts

timesteps

number of product-agents in grid

Figure 26: Increasing number of active products in the grid.

that the number of products exceeds the number of equiplets
by far above 8000 products. Given the aforementioned test
conditions, a number of 8000 products compares to a load of
80%. At a load of 80% the number of products, which are not
handled by equiplets and have to wait, is two times the number
of equiplets, resulting in an average of two AGVs waiting for
service by an equiplet.

Another simulation has been set up to study the behaviour
of the grid under increasing load. This simulation is based on
a scenario with a linear increasing amount of product agents
in time as shown in Figure 26. In this situation, a product is
considered active in the grid between its release time and its
deadline. Because of the fact that at the end of the graph, the
grid is actually overloaded, the maximum number of active
agents in the grid will not increase due to the fact that more
and more products will have an infeasible scheduling and will
not contribute to the number of products in the grid. This
effect is shown in Figure 27. The actual number of products
in the grid is shown in Figure 28. This graph is not based
on release time and deadline, but on release time and time
of completion. When we look at the actual number of active
products in the grid, the resulting graph shows an remarkable

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

nu
m

be
ro

fp
ro

du
ct

s

timesteps

maximumnumber of products in grid

Figure 27: Maximum number of active products in the grid.

0

10

20

30

40

50

60

70

80

90

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

nu
m

be
ro

fp
ro

du
ct

s

timesteps

actual number of products in grid

Figure 28: Actual number of products in the grid.

shape. In the beginning, the actual number is even less than
the number plotted in the graph of Figure 26. This is due to
the fact that in a grid that is only used by a small amount of
product agents, every product will be finished far before its
deadline. A finished product is now not considered active in
the grid any more. However, at a certain point there is a steep
increase in the number of products and the graph saturates at
the same level of 70 products as shown in Figure 25 for a test
set of 10000. The number of rejected products due to a failing
scheduling will increase. This also means that overloading the
grid will generate many active products that should be stored
somewhere, because in this given situation, only 10 products
can be handled by an equiplet.

VII. CONCLUSION

For the agile grid-based and agent-based manufacturing the
buildingbox as well as the AGV-based system offer advantages:

• By using a building box, the transport of parts to the
assembling machines (equiplets) is combined with the
transport of the product to be made. It will not happen
that a part is not available during manufacturing;

36

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Because the product as well as it parts use one
particular AGV during the production, there is never
a competition for AGV during the manufacturing
process;

• An AGV can use the full possibility and advantage
of the grid-based system being a compact design
resulting in short average paths;

• The product agent knows which equiplets it should
visit and thus can use the AGV in the same way as
an equiplet. The product agent can instruct the AGV
agent to bring it to the next equiplet in the same
way as it can instruct an equiplet agent to perform
a production step;

• An AGV can bring the production platform exact to
the right position for the equiplet and can even add
extra movement in the X-Y plane or make a rotation
around the Z-axis;

• If an AGV fails during production the problem can be
isolated and other AGVs can continue to work. In a
conveyor belt system a failing conveyor might block
the whole production process.

There are also some disadvantages:

• There should be a provision for charging the battery
of the AGV.

• Simulations show that the amount of agents in the grid
shows a strong increase in a grid that is loaded over
80%. This will result in a lot of AGVs in the grid
leading to traffic jam;

• Only products that fit within the building box manu-
facturing model can be made.

Agent-based grid manufacturing is a feasible solution for agile
manufacturing. Some important aspects of this manufacturing
paradigm have been discussed here. Transport can be AGV-
based provided that the load of the grid should be kept under
80% to overcome the temporary storage requirements and
problems with the communication and rescheduling overhead.

ACKNOWLEDGEMENT

The authors would like to thank Mathijs Kuijl, Bas Alblas,
Jaap Koelewijn, Pascal Muller, Lars Stolwijk, Roy de Kok and
Martijn Beek for their effort and contributions in developing
the software tools.

REFERENCES

[1] L. v. Moergestel, E. Puik, D. Telgen, M. Kuijl, B. Alblas, J. Koelewijn,
and J.-J. Meyer, “A simulation model for transport in a grid-based manu-
facturing system,” Proceedings of the Third International Conference on
Intelligent Systems and Applications (INTELLI 2014), Sevilla, Spain,
2014, pp. 1–7.

[2] E. Puik and L. v. Moergestel, “Agile multi-parallel micro manufacturing
using a grid of equiplets,” Proceedings of the International Precision
Assembly Seminar (IPAS 2010), Chamonix, France, 2010, pp. 271–
282. Springer ISBN-13: 978-3642115974.

[3] L. v. Moergestel, J.-J. Meyer, E. Puik, and D. Telgen, “Decentralized
autonomous-agent-based infrastructure for agile multiparallel manufac-
turing,” Proceedings of the International Symposium on Autonomous
Distributed Systems (ISADS 2011) Kobe, Japan, 2011, pp. 281–288.

[4] L. v. Moergestel, J.-J. Meyer, E. Puik, and D. Telgen, “Production
scheduling in an agile agent-based production grid,” Proceedings of the
Intelligent Agent Technology (IAT 2012), Macau, 2012, pp. 293–298.

[5] M. Paolucci and R. Sacile, Agent-based manufacturing and control
systems: new agile manufacturing solutions for achieving peak per-
formance. Boca Raton, Fla.: CRC Press, ISBN-13: 978-1574443363,
2005.

[6] E. Montaldo, R. Sacile, M. Coccoli, M. Paolucci, and A. Boccalatte,
“Agent-based enhanced workflow in manufacturing information sys-
tems: the makeit approach,” J. Computing Inf. Technol., vol. 10, no. 4,
2002, pp. 303–316.

[7] S. Bussmann, N. Jennings, and M. Wooldridge, Multiagent Systems for
Manufacturing Control. Berlin Heidelberg: Springer-Verlag, ISBN-13:
978-3642058905, 2004.

[8] N. Jennings and S. Bussmann, “Agent-based control system,” IEEE
Control Systems Magazine, vol. 23, no. 3, 2003, pp. 61–74.

[9] D. Ouelhadj, C. Hanachi, and B. Bouzouia, “Multi-agent architecture
for distributed monitoring in flexible manufacturing systems (fms),”
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA 2000), San Francisco, CA, USA, 2000, pp. 2416–
2421.

[10] W. Xiang and H. Lee, “Ant colony intelligence in multi-agent dynamic
manafacturing scheduling,” Engineering Applications of Artificial In-
telligence, vol. 16, no. 4, 2008, pp. 335–348.

[11] L. van Moergestel, E. Puik, D. Telgen, H. Folmer, M. Grünbauer,
R. Proost, H. Veringa, and J.-J. Meyer, Enhancing Products by Embed-
ding Agents: Adding an Agent to a Robot for Monitoring, Maintenance
and Disaster Prevention, ser. Communications in Computer and Infor-
mation Science, J. Filipe and A. Fred, Eds. Springer Berlin Heidelberg,
2014, vol. 449, ISBN-13: 978-3662444399.

[12] P. Leitão, “Agent-based distributed manufacturing control: A state-
of-the-art survey,” Journal on Engineering Applications of Artificial
Intelligence, vol. 22, issue 7, pp. 979–991, Pergamon Press, Inc.
Tarrytown, NY, USA, 2009.

[13] A. Koestler, The Ghost in the Machine. Arkana Books, London, 1969,
Reprinted 1990, Penguin Books, ISBN-13: 978-0140191929.

[14] S. Bussmann and D. McFarlane, “Rationales for holonic manufacturing
control,” Proceedings of the second international workshop on intelli-
gent manufacturing systems, 1999, pp. 177–184.

[15] K. Fisher, “Agent-based design of holonic manufacturing systems,”
Robotics and Autonomous Systems, vol. 27, no. 1-2, 1999, pp. 3–13.

[16] J. Müller, The design of intelligent agents: a layered approach.
Springer, 1996, ISBN 978-3540620037.

[17] Z. M. Bi, S. Y. T. Lang, W. Shen, and L. Wang, “Reconfigurable
manufacturing systems: the state of the art,” International Journal of
Production Research, vol. 46, no. 4, 2008, pp. 599–620.

[18] M. Sniedovich, “Dijkstras algorithm revisited: the dynamic program-
ming connexion,” Control and Cybernetics, vol. 35, no. 3, 2006, pp.
599–620.

[19] F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri, Scheduling in Real-
Time Systems. Chichester, West Sussex: John Wiley and sons, 2002,
ISBN-13: 978-0470847664.

37

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Opportunistic Use of Cloud Computing for Smart Mobile Applications:

Realizing Qo*-awareness with Dynamic Decision Networks in Execution

Nayyab Zia Naqvi, Davy Preuveneers, and Yolande Berbers
iMinds-DistriNet, KU Leuven, Belgium

Email:{nayyab.naqvi, davy.preuveneers, yolande.berbers}@cs.kuleuven.be

Abstract—Smart and context-aware Mobile Cloud Computing
applications challenge the way Quality-of-Service and Quality-of-
Context are maintained when operating with a federated mobile
cloud environment. Many resource and performance trade-offs
exist for the federated deployment of smart mobile applications.
Consequently, finding the best strategy to deploy and configure
intelligent applications in this federated environment is a non-
trivial task. We analyse the challenges and requirements for the
dynamic deployment of smart applications in such a setting and
present a quality-aware federated framework for the development
and deployment of smart mobile applications to use the cloud
opportunistically. Our framework utilizes Qo*-awareness and
dynamic adaptability to account for the uncertain conditions
given the partially observable context. Experiments with our
framework demonstrate the feasibility and the potential benefits
to automate the deployment and configuration decisions in the
presence of a changing environment and runtime variability.

Keywords–dynamic deployment; Bayesian models; mobile cloud
computing; smart applications; decision support.

I. INTRODUCTION

Mobility and context-awareness have multiplied the use
of mobile devices in homes or offices, health and cities
giving them a Smart label. Intelligent and smart applications
are gaining popularity day-by-day due to the ease and the
control they offer to the user. Continuous advancements in
mobile technology are changing our habits and the ways
we interact with these mobile applications [1]. This rapidly
evolving mobile technology is giving a momentum to the
smartness of these devices and a better control of our mobile
applications, considering the perspective of the user and his
situation [2]. A wide range of sensing, communication, storage
and computational resources makes these mobile devices a
perfect platform for ubiquitous computing offering pervasive
connectivity and a source for context-awareness.

Context-awareness is a congenital characteristic [3] of
intelligent applications to the notion of adaptability and smart-
ness. Context [4] is defined as any information that can be
used to characterize the situation of an entity, where an entity
can be an object, a place or a person relevant to the current
scope of the system. Research and development of context-
awareness is narrowing the gap between us, our devices and the
environment. Context aims to become the fabric of ubiquitous
computing. The consequent smart applications behave as the
constituents of ubiquitous environments as envisioned by Mark
Weiser [5].

The user takes a passive role in context-aware applications
and these mobile applications decide on his behalf. These ap-
plications require continuous processing and high-rate sensors’
data to capture the user’s context, such as his whereabouts and
ongoing activities as well as the runtime execution context

on the mobile device. However, being smart requires being
right in an adaptation decision. Context is dynamic in nature
and is prone to ambiguity. This uncertainty not only leads to
incorrect decisions but also makes proactive decision making
impossible, impacting the Quality-of-Service (QoS) of the
application in a negative fashion. We need certain attributes
that signify the adequacy or degree of suitability of the context
data. This degree of suitability, often regarded as the Quality-
of-Context (QoC) [6], can highly affect the adaptation decision.

Despite the continuous improvements in mobile technol-
ogy, the exponential growth in mobile usage is formidable to
cope with the resource limitations. Mobile Cloud Computing
(MCC) offers Mobile Cloud Augmentation (MCA) with the
aim to empower mobile devices to run more demanding or long
running tasks by providing plentiful storage and processing
capabilities on cloud servers. Cloud computing [7] offers
access to an always connected, decentralized, and abstracted
infrastructure of a heterogeneous pool of configurable com-
puting resources (e.g., networks, servers, storage, applications,
and services) that can scale up or down instantly in a controlled
fashion. This federated design can be applied to almost any
application and has been shown to improve both the speed and
energy consumption [8]. Most of the cloud applications follow
a thin client philosophy where resource intensive tasks are
outsourced to the cloud infrastructure in a brute force fashion.

A modular design philosophy for smart applications is ideal
enabling an optimal deployment in MCA. However, attaining
the most suitable deployment and configuration strategy for
these applications is not always clear and straightforward.
The MCA federation for such type of applications is a non-
trivial task. On the one hand, we have mobile devices with
built-in sensors to sense the context of user. On the other
hand, cloud resources can be utilized opportunistically to save
resources for mobile users [9][10]. At the core of such a
distributed environment, a decision of what to run where and
when is gruelling under a changing runtime execution context.
Figure 1 shows an overview of the federation in MCA for
context-aware applications. There can be multiple deployment
strategies for a smart application both at design time and at
runtime. However, it is not clear which component should
be deployed where, as the context changes at runtime. The
crux of the problem lies in the decision of when to change
the location of a component and decide where to deploy
it in an adaptive manner. The Topology and Orchestration
Standard for Cloud Applications (TOSCA) [11] is an xml-
based standard to define the topology of cloud web services,
their components, relationships, and the processes that manage
them. It can also be used to define the orchestration of a
mobile cloud application with an additional decision making

38

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Overview of context-driven optimized federation in MCA.

support to choose the location of a component, based on the
involved context factors and the resource-performance trade-
offs. Abolfazli et al. [12] define decision making factors for the
augmentation in MCC. The trade-offs between computations
versus communication and performance versus latency are
generally the most significant. User preferences with respect
to privacy and security for sensitive data also play a role in
the decision of which information to process where.

Computation on mobile devices always involves compro-
mises and trade-offs [13] with respect to the required QoS [14]
and QoC [6]. Context sensing and simple processing run on
the mobile device and other computationally more expensive
context management tasks like pattern detection, reasoning and
learning are offloaded on the cloud infrastructure. The question
is how we can effectively blend them to always achieve a
feasible and beneficial augmentation? The constraints of a
mobile environment play a role in the deployment decision.
Additionally, The requirements of semantic knowledge and the
resource characteristics of the application components make
this decision highly dynamic. A primary challenge is to liberate
device resources without compromising the QoS while pre-
serving the QoC necessitating a Qo*-awareness in deployment
decision making. Moreover, runtime uncertainty and erratic
nature of the context information [15] periodically impact these
deployment decisions and consequently performance; hence,
the decision support needs to be flexible enough to ascertain
the quality of its own decisions. The system should be aware
of the impact of its decisions over time to optimize the runtime
deployment and learn from its mistakes as humans do.

To address the needs of real-time dynamic systems,
the Monitor-Analyze-Plan-Execute (MAPE-K) [16] framework
with a concept of a feedback loop seems promising. We present
a framework for self-adaptation of smart mobile applications
as an instance of MAPE-K framework. Dynamic Decision
Networks (DDNs), a specialized form of Bayesian Networks
(BNs) are employed to analyze, plan, execute and update the
knowledge-base at runtime with the changing context of the
execution environment. Self-reinforcement [17] with the help
of utility functions and temporal delays enables the framework
to learn from its mistakes [18] in order to ascertain the
quality of the taken adaptive decisions. Building on recent
work of Bencomo et al. [19] in self-adaptive systems, we
have adopted a model@Runtime approach applying DDNs, to
incorporate the impact of trade-offs and to take an optimal

decision under variability. DDN modelling is an emerging
research topic, and researchers are investigating its use in
the area of self-adaptation for autonomous systems in several
domains [20][21][22][23].

In this work, we extend our previous work [1] and present a
multi-objective application model with a fair trade-off between
the required objectives. We highlight the challenges to exploit
the cloud infrastructure opportunistically, and investigate the
requirements to achieve a federation in MCA for smart mobile
applications. Our presented framework is able to learn the
deployment trade-offs of intelligent applications on the fly and
is capable of learning from earlier deployment or configuration
mistakes to better adapt to the settings at hand in a Qo*-
aware fashion. To verify the effectiveness of our framework, a
feasibility analysis is conducted on Smart Lens, an Augmented
Reality (AR) based use case application. Research is conducted
with respect to the communication cost and resource utilization
when extending an AR application with context-awareness and
cloud computing.

Our research offers the following contributions to support
effective smart application deployment in a Qo*-aware feder-
ated environment:

• An investigation of the trade-offs that arise for data-
intensive context-aware smart applications in MCA

• A federated dynamic deployment with respect to Qo*
trade-offs

• Use of specialized probabilistic models to automati-
cally learn the overhead of deployment trade-offs and
compromises

This paper is structured in seven sections. In Section II, we
give an overview of the background and the related work in
MCA and discuss the gaps in state-of-the-art for federated de-
ployments and decision making under uncertainty. Section III
details our use case scenario motivating the need for smart
deployment decisions. This is followed by Section IV, where
we highlight the requirements and objectives of Qo*-aware
decisions. Section V provides a brief account of our federated
framework and the details about our approach of learning
the trade-offs for dynamic deployments using a probabilistic
decision model to mitigate the influence of runtime uncertainty.
Finally, after evaluating our approach applied on our use case
scenario in Section VI, the paper concludes and offers a
discussion of topics of interest for future work.

39

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. The three offloading frameworks compared in terms of trade-off modeling and decision making.

Criteria Features MAUI CloneCloud ThinkAir Our approach

Trade-Offs Objective Energy Performance Performance Both
Flexibility Low Medium Medium High

Decision

Context-Aware High Low High High
Data store Remote Local Local Local
Approach Optimization Optimization Rules Network
Metric Cost Cost Property Property

II. BACKGROUND AND RELATED WORK

In this section, we discuss and examine related work in
the area of MCA, i.e., an active research domain in MCC. The
strategies for runtime optimization in the presence of uncertain
operational conditions are also briefed here.

A. Mobile cloud augmentation (MCA) and Qo*-awareness
Outsourcing the computation to the cloud can be beneficial

to achieve an ideal QoS [14][24]. It has been proven to reduce
the resource load on mobile devices [24], also for context-
aware data-intensive applications [25]. This combination may
result in improved energy efficiency and a reduced load
on resources, such as CPU and memory. Beside context-
awareness, a number of use cases combining data intensive mo-
bile application and cloud computing have been described in
the literature [26][27]. However, the use of context-awareness
in cloud computing is often approached from a functional
standpoint. The question for federated deployment is where
do you draw the line? What should be run on the cloud
and what work should be done by the mobile device? The
easiest option is to have everything stay local and not use
the cloud or Internet at all, but as mentioned earlier, this
could lead to bad performance of the application. Since the
cloud has enormous processing power, it is also possible to
adopt a thin client approach and do almost all the work
online. However, we cannot forget that communication with
the cloud has a price as well, economically and in terms of
time and energy. In this case, multiple conflicting objectives
affect the decisions and the distribution is never clear-cut
in the scenario of intelligent systems considering trade-offs
with respect to QoS and QoC [13]. Furthermore, acquiring
knowledge from the available data for context information,
requires a trustworthy mechanism where the ambiguity and
uncertainty in context data can be mitigated.

Previous research [28][29] was carried out on how to
realize platforms that allow the applications to make the
partitioning decision while it is running, providing the user
with the best experience possible. Even more impressive,
some of these platforms can let applications enjoy the best of
computation offloading by only making minor changes [28].
Context-awareness and computation offloading is added to
achieve the desired functionality but the accompanying trade-
offs regarding deciding what to offload and when are not ex-
plored. Narayanan et al. [30] predict the resource consumption
on the basis of historical data by applications. They use this
data to modify the fidelity of an application, based on the
inputs and parameters received by any mobile application at
runtime. Huerta and Lee [31] discuss a profiling based smart
offloading policy using historic resource usage data. However,
processing entire history logs is cumbersome. Cuckoo [32],
ThinkAir [29] and MAUI [33] present an MCA model based
on multi-objective criteria with respect to the performance

and energy consumption. Cuckoo offers static offloading de-
cisions without context-awareness. ThinkAir and MAUI make
a decision based on the execution time, energy consumption,
and previous execution history. MAUI processes the offloading
requests by using the historic data to predict the execution time
of any task without considering the input size of that execution,
resulting in wrong prediction and offloading decisions [12].
We show a comparison of our approach with closely related
approaches in Table I.

Chen et al. [35] investigate challenges related to the fact
that each platform has its own capabilities and limitations to
achieve certain QoS requirements. They present a context-
aware resource management approach for service oriented
applications with the ability to handle the inherent service and
network dynamics and to provide end-to-end QoS in a secure
way. QoC attributes and their modelling comes into play to
capture the uncertainties in context data. Bellavista et al. [36]
discuss the QoC requirements and their impact on context
usage. Sheikh et al. [37] identify several quality indicators
like precision, freshness, spatial resolution, temporal resolution
and probability of correctness. The authors propose that these
quality indicators are well-suited in ubiquitous systems for
healthcare. However, no quantification mechanism has been
proposed by the authors in order to evaluate the role of
these parameters in critical decision support. Kim et al. [38]
present the quality dimensions such as accuracy, completeness,
representation consistency, access security and up-to-dateness
for measuring QoC in ubiquitous environments.

Our solution starts without historic information and uses
only the context at hand to predict the Qo*-aware dynamic
deployment scheme for each component of a smart mobile
application. Our solution does not focus on the partitioning
scheme, but the optimal decision making for each of the
component cloned on both the mobile and cloud ends.

B. Decision support under changing circumstances
Restating the obvious, intelligent applications have to take

into account the runtime uncertainty in context data. Context
sources are dynamic in nature. They can disappear and re-
appear at any time and context models change to include new
context entities and types. The properties of context sources
and context types can change randomly and the uncertainty
can vary too. Pearl [39] explains the problem of uncertainty
and argues that extensional or rule based systems cannot
perform well under uncertainty. Probabilistic theory allows
complex reasoning with a combination of observed evidences.
Probabilistic systems can handle unseen situations addressing
the influence of involved uncertainty. In our work, we are
concerned with the mechanism of deciding when to reconfigure
the deployment under a changing context at runtime.

Context-aware applications borrow decision models from
artificial intelligence and machine learning field such as su-

40

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Legend:

Decision node Evidence node Chance node Utility node

X

Y

Obs1 Obs2

A Bayesian Network

Obs1t Obs2t

Ut

Obs1t+1 Obs2t+1

Ut+1

Obs1t+n Obs2t+n

Ut+n

Xt Xt+1 Xt+n

Yt
Yt+1 Yt+1

Dt Dt+1
Dt+n

A Dynamic Decision Network

Figure 2. Structure of a DDN with dynamic chance nodes affecting utility nodes with decision nodes and evidences [34].

pervised learning (Bayesian models, decision trees, Markov
models), unsupervised models (Neural networks), rules and
fuzzy logic [25]. BNs are usually used to combine uncertain
information from several sources to interpret high-level con-
text information. Wolski et al. [40] presented the offloading
decision as a Bayesian decision problem with a point of
view of when to decide offloading under changing bandwidth
using Bayesian theory arguing that in a Bayesian decision
the inference of a new prediction is a well-defined function
of the previously inferred prediction. Fenton and Neil [41]
have used BNs for predictions of the satisfaction of non-
functional aspects of a system. Esfahani et al. [42] employ
fuzzy mathematical models to tackle the inherent uncertainty
in their GuideArch framework while making decisions on soft-
ware architectures. Dynamic configuration of service oriented
systems was investigated by Filieri et al. [43] using Markov
models. Many works use utility functions to qualify and
quantify the desirability of different adaptation alternatives.
These works are QoS-based, applied in different domains for
resource allocation [44], typically in component-based mobile
and pervasive systems such as Odyssey [45] and QuA [46].

Bayesian based models are well researched in multi-
criteria decision making [41][47] as well and generally ap-
plied in clinical artificial intelligence [48]. Nonetheless, re-
searchers [19][49][50] have investigated the feasibility and
tractability of DDNs to solve the problem of decision making
under uncertainty in self-adaptive systems. Bencomo et al. [19]
used DDNs to deal with the runtime uncertainty in self-
adaptive systems. In recent years, two optimization techniques
have been developed to address dynamic decision scenarios:
partially observable Markov decision processes (POMDP) and
dynamic decision networks (DDNs). Both techniques are pow-
erful enough and aim at solving complex, real-life problems
that rely on the postulates of multi-attribute utility theory and
probability theory. Costa and Buede [50] present a comparison
between both the approaches and conclude that POMDP lacks
an ability to achieve any tractable model [51], while DDN
systems can present feasible solutions for complex cases.
The value structure can not be replicated in an explicit way
in POMDP for a multi-optimal decision environment. The
current state of the system has to be known, in order to
use Markovian decision models. It involves an extensive re-
engineering effort to the system since its value structure is
implicit in its every state and transition. Although the basic

dynamics of POMDP are still Markovian, as the current state
is not directly accessible, decisions require keeping track of
(possibly) the entire history of the process, contrary to the
Markovian property where there is no need to keep a track of
all the previous states and observations to take a decision or
perform an action [52][53]. In a DDN, all nodes that contain
value objectives are explicitly connected to a utility/value node.

C. Learning the deployment trade-offs using DDNs
Conditional probability distributions (CPDs) derived by

analysing historical attribute values helped solve stochastic
problems in the past. The runtime setting for every component
is hard to determine in advance due to the dynamic interaction
of these components with the environment and the user. The
adaptation module in our framework takes an advantage of
probability theory and statistics to describe uncertain attributes.
Probabilistic reasoning allows the system to reach rational
decisions even when complete information is not available.
We give a brief overview of the concepts of BNs and DDNs
to understand the structure of the model used at runtime and
how it is applied.

A BN is a Directed Acyclic Graph (DAG) that depends on
Bayes’ theorem [54] and CPDs. The graph is represented by a
triplet (N, E, P), where N is the set of parameters, E is the set
of arcs where each arrow declares the one parameter directly
dependent on the one at the tail of the arrow, and P is the CPD
for each parameter [34]. Figure 2 shows a BN with two chance
nodes and two observation nodes. Chance nodes represent the
influencing factors. BNs are able to reverse their inference
logic due to the symmetry and usage of Bayes rule (given in
Eq. (1)) and are able to update their beliefs on the fly as soon
as a new evidence is observed [55]. Moreover, the Markov
assumption (given in Eq. (2)) enables BNs and its dynamic
counterparts, i.e., Dynamic Bayesian Networks (DBNs) to be
fully operational even if an expert’s opinion is fed to the model
instead of an account of historic events.

P (A|B) =
P (B|A)P (A)

P (B)
(1)

At+1 ⊥ A(0:t−1)|At (2)

The computation of a posterior probability distribution over
a model (or parameters) is called inference. It is one of the

41

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. Functional and non-functional (Qo*) requirements of the Smart Lens use case scenario.

Requirement Description
Localization (QoS) Smart Lens localizes the user within a building based on the camera. After recognizing a scene, it displays the

position and orientation on a floor map and can give additional information about the user’s surroundings.
Maximum Reliability (QoC) The application should run reliably between the mobile and the cloud end without draining the mobile resources for

other applications. A low reliability signifies that mobile is not the ideal execution environment, so the component
should be deployed on the cloud.

Minimum Latency (QoS) In MCC, the response time and performance of the application depends upon the location of the components and
the amount of communication required to fulfil a task. Based on test data from CloneCloud [26], it should be
reasonable to expect the application to return the results under 15 seconds.

Minimum Cost (QoC) The switching cost between mobile and cloud impacts the performance of an application. It depends on the
execution context, hence is considered a QoC requirement

Accuracy (QoS) The results should be accurate. Because of the multitude of scenes that can be added to the dataset, it is also
likely different locations will be represented by similar scenes, corridors and hallways.

basic operations offered by a BN. The precondition for infer-
ence is that the structure of the network/model is known and
the prior probability distribution is already available. Learning
can refer to the structure of the model, or the parameters, or
both. Furthermore, learning may take place under either fully
or partially observed variables. Learning offers a way to know
the values of the parameters to properly explain the observed
evidence. To represent parameters that change over time, it is
possible to use a time-sliced network such that each time-slice
corresponds to a time point in a form of a DBN. A BN/DBN
does not necessarily require a historic data from one state to
another for its inference, it can be suitable to perform the
context reasoning for high-level context [56]. In order to realize
proactive and situational decision making, two main concepts
of Bayesian models are utilized, (1) Probabilistic QoS and QoC
awareness using DBNs, and (2) dynamic decision making with
DDNs to decide when to redeploy and where.

A DDN is a DBN that also includes a set of decision
and utility nodes. The basic structure of a DDN is depicted
in Figure 2. Decision node represents all the desired decision
alternatives, connected to the utility node to compute its impact
while making a decision. A chance node and other decision
nodes can be the parents of a decision node. The utility
nodes express the preferences among possible states of the
world in terms of a subset of chance nodes and decision
nodes. A probability-weighted expected utility is calculated
for each decision alternative given the evidence. A chance
node, decision node and even utility node can be expressed
as its parents. The decision alternative is chosen according to
the Maximum Expected Utility (MEU) principle. If a decision
parameter D contains decision alternatives {d1, d2, ..dn} and
E is the evidence parameter containing {e1, e2, ..en} for a
state parameter with states {s1, s2, ..sn}, then the expected
utility based on Bernoulli’s equation [57] for taking a decision
alternative is give as:

EU(dj) = max
D

∑
i

P (si | E, dj)U(si, dj) (3)

We have employed DDNs to solve multi-objective, con-
flicting criteria problems while making Qo*-aware decisions
over time for smart applications in MCC. Using a DDN is
crucial in this research work for following reasons, given as:

• The type of relevant contexts evolve over time. There-
fore, capturing the dependencies between the tempo-
rally variable relevance is difficult.

• If a static BN is employed, the interpretation of
new evidence will lead to reinterpretation of previous
evidence [58]. In order to overcome such a drawback,
a DDN should be employed instead of a static BN.

Several intelligent applications are pretty lightweight, but
others require a lot of computational effort (e.g., for predic-
tion) or require analysis of large amounts of data (e.g., for
pattern analysis). This work explores and utilizes the trade-
offs involved in combining a data-intensive mobile application
with context-awareness and cloud computing, and investigates
the deployment of such applications in federated MCC envi-
ronment. After identifying the deployment and performance
trade-offs for outsourcing data and computation, our approach
addresses the federation concern by continuously learning and
adapting under multiple conflicting QoS and QoC objectives.

In the next section, we explain a use case scenario of a
smart application, motivating the federated deployment of its
components with our Qo*-aware framework.

III. MOTIVATING SCENARIO FOR THE DYNAMIC
DEPLOYMENT DECISION

Advances in mobile technology accelerate the use of high-
end data-intensive platforms on mobile devices using built-
in sensors, such as an AR platform using the camera of the
device. Mobile AR allows the devices to recognise objects.
It requires extensive processing for image recognition and
matching.

A. Use case scenario
We considered an indoor positioning use case application

called Smart Lens [59] to investigate the relevant trade-offs
motivating the runtime deployment requirements for context-
aware applications in MCC. Context-aware intelligence is often
found in AR applications to help the user explore certain
places, be it cities, expositions, museums or malls.

In many cases, it makes the phone act as a camera but adds
extra information next or onto objects that appear on screen.
The core functionality of the application is to position the user
based on the view of the camera. As soon as the application
recognizes the scene, it displays additional information, such
as a floor map, to give the user an idea of where he is as shown
in Figure 3. Table II shows the functional and non-functional,
i.e., Qo* requirements of the use case.

Smart Lens localizes the user within a building based
on camera frames taken from a doorway. After recognizing
a scene, it displays the position and orientation on a floor

42

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Scene recognition and image matching in the Smart Lens.

map and can give additional information about the user’s
surroundings. The dataset can be large and continue to grow,
adding more locations and poses, but can also be restricted
to specific positions such as doorways to keep it practical.
Modifiability can help the expansion of the dataset, which
is having users capture and register their own scenes with
the application. These users could be system operators, ad-
ministrators of cooperating buildings, robots that explore the
buildings or simply any user who wishes to register a location
to navigate from or to. This application utilizes the location
information of the user and the time of the day to further
reduce the search space of objects to recognize and make the
comparison smarter. We have analysed the performance and
resource utilization trade-offs for our use case, motivating the
need of the smart offloading decision. The next subsection
discusses few of them.

B. Trade-off analysis
The AR components Feature Extraction and Object Recog-

nition components require a relatively large amount of process-
ing time, which not only drain the battery further but causes
the application and the phone as a whole to slow down as
well. Figure 4, provides an overview of the composition of the
components for the Smart Lens. The resource and performance
trade-offs are investigated for AR components by analysing a
correlation between the latency of recognition, the structure
of the dataset, i.e., its size and the quality of the images.
Communication and computation trade-offs are also analysed
for our use case.

The mobile device is held up facing an exact copy of
a sample in the set. The use case application is started and
shortly after, the time until recognition of the scene is printed
on the screen. It is repeated for datasets of size 3, 50, and 100,
consisting of high quality samples, low quality samples or a
mixture of both. The size determines against what number of
samples each scene needs to be compared, and the quality and
detail in the samples themselves affect the amount of work
needed for such comparisons.

Two different experiment scenarios are conducted: 1) when
dataset is stored on the mobile device and the AR components

Semantic
Spatial Reasoner

Geo-Localization

GPS, GSM, Wifi

Sample
Store

Feature
Extraction

Camera

Object
Recognition

Smart Lens

Au
gm

en
te

d
R

ea
lit

y

Figure 4. Overview of the components of Smart Lens use case.

perform the computations locally on the device, 2) when the
cloud deployment for AR components is used keeping the
entire dataset on the remote location as well.

1) Performance vs dataset size on the mobile: The results
in Figure 5 demonstrate the effects of the dataset structure (on
x-axis) on the recognition latency (on y-axis). Choosing the
right dataset has an important influence on the performance.
Larger local datasets slow down any data intensive scenario, in
our case image recognition and AR based application requiring
more resources impacting the performance negatively, and the
use of high quality feature rich samples slows down detection
when faced with an ideal scene.

However, it should be noted that smaller sets are less likely
to contain the correct sample and require more computations
if the applications is used for multiple detections, and lower
quality samples have considerably more difficulties detecting
scenes from a perspective that is not the same as the one
when capturing the sample. Similarly, low quality samples
also reduce the file size of the dataset. A smaller set not
only reduces latency, calculation time and therefore energy
consumption, it also reduces the file size, lowering the need
for memory and possibly data communication. Smaller datasets
can be obtained by filtering all samples in the system to those
that are plausible given the current context of the device and
the users. Additionally, devices with limited resources can
choose to use datasets of lower quality, if offered, to save
energy and calculations while sacrificing performance, hence
instating the decision making on trade-offs.

2) Performance vs dataset size on the cloud: Figure 6
shows the latency when the dataset is placed on the cloud and
the computation is done on the cloud. Lower latency with Wi-
Fi shows that the performance of the application now improves
with better Internet connectivity, as could be expected. It is not
possible to offload fewer computations without fetching a part
of the dataset, requiring additional communication with remote
servers and anticipation and filtering of the dataset. AR appli-
cations using context-awareness to filter datasets, results in less
memory usage and lower detection latency, whereas with cloud
computing detection latency is approximately constant with
respect to the dataset size, and no local memory is occupied

43

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 20 40 60 80 100

1
0
0
0

2
0
0
0

5
0
0
0

1
0
0
0
0

2
0

0
0

0
5
0
0
0
0

Number of samples in the dataset

R
e
c
o
g
n
it
io

n
 l
a

te
n
c
y
 (

m
s
)

o

o

o

Mixed quality samples

High quality samples

Low quality samples

Figure 5. The latency in milliseconds (scaled logarithmically), when the recognition is
performed on the mobile device with local dataset.

by the dataset. But the latency due to connectivity type and the
amount of data to be communicated is a major trade-off. The
trade-off curves for our use are also shown in Figure 6. Placing
the dataset on the cloud servers with the computation intensive
components, leads to a need for a smart computation offloading
method on the mobile device that learns the resource utilization
and performance trade-offs in order to dynamically deploy the
components between mobile and cloud infrastructure.

We will discuss the research requirements for automated
decision support for the dynamic deployment considering the
above mentioned trade-offs.

IV. REQUIREMENTS FOR QO*-AWARE SMART
DEPLOYMENT DECISION

A modular design philosophy for data and control pro-
cessing on the mobile and cloud ends is needed to achieve
a flexible distributed deployment. It simplifies redeployments
and reconfigurations significantly. In our previous work [60],
we demonstrated that a modular application design philosophy
helps to support optimal mobile cloud application deploy-
ments. Moreover, we identified that many resource and perfor-
mance trade-offs exist [13] in such a federated deployments for
other use cases as well. The large number of parameters associ-
ated with the deployment configurations for these applications
make it nearly impossible for developers to fine tune them
manually. Therefore, automated deployment and optimization
are necessary [61].

Many opportunities for optimization exist as there are sev-
eral distributed deployments of the application components and
different configurations per component possible. The challenge
is to find and analyse different optimization trade-offs in a
federated environment of MCC, each characterized by varying
sensing, communication, computation and storage capabilities.
Furthermore, addressing the influence of runtime uncertainty
in the context and its quality is an utmost essential task.

The investigated research requirements for a Qo*-aware
deployment framework are given below:

1) Offer reflective decision support: The decision
maker should be able to decide for which execution

0 20 40 60 80 100

1
0
0
0

2
0
0
0

5
0
0
0

1
0
0
0
0

2
0
0
0
0

5
0
0
0
0

Number of samples in the dataset

R
e
c
o
g
n
it
io

n
 l
a
te

n
c
y
 (

m
s
)

o

o

o

Mixed quality samples

High quality samples

Low quality samples

Averages for local

Averages for 3G

Figure 6. The latency in milliseconds with AR components and the dataset are
offloaded to the cloud and accessed via WiFi. The trade-off curves of latency average

for datasets stored on mobile and accessed via 3G are shown by the dashed lines.

scenario the cloud is better and for which ones a cloud
based deployment does not bring any added value,
addressing when to offload in an automated way.
Generally, the adaptation decision includes the ways
to split responsibilities between devices, applications
and the cloud servers. Since last decade, MCC re-
search focus is to develop algorithms and techniques
for deciding whether offloading would be beneficial
or not and what to offload [62]. With continuous
improvements in connectivity and mobile technology,
the focus is shifting to smart offloading where the de-
cision support is required with an aim of when to use
MCA. Context-aware applications generate data at a
large rate and sometimes in an uncontrollable fashion.
The essence of the problem is finding the middle
ground, determining what the mobile devices should
handle and what the cloud should handle. Sending
the raw data to the remote cloud servers is not always
feasible [13]. Moreover, smart offloading demands a
reflective decision support where the decision maker
can look-ahead for the impact of the current decision
and predict its impact on future situations.

2) Process and provision the context: As context is an
essential constituent of smart applications. Runtime
Context provisioning is inevitable in such a federated
decision making. It always incurs a cost to profile
the resources or other context parameters in mobile
runtime environment. Furthermore, the continuous
varying context and processing of the heterogeneous
sensory data introduce challenges to take the most
rational decision.

3) Process the Quality-of-Context (QoC): QoC raises
more questions while dealing with automated adap-
tation. Context provisioning is a multi-level pro-
cess [36] where low-level events are enriched through
filtering and aggregation. For example, GPS coordi-
nates are read from the sensor and translated into
a high-level description of the location of the user.
Finally, the desired high-level context is inferred

44

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. Objectives of the Qo*-aware offloading in MCC.

Objective Description
Qo*-awareness A traditional QoS & QoC requirements gathering to identify and model the required quality attributes at design

time. It is domain specific and involves the type of context being utilized. The system should be able to capture
the real-time context of the user and his environment.

Self-Adaptive The system must be self-adaptive at runtime to optimize the resource consumption of the application by
outsourcing few components to the cloud.

Optimize Offloading The system should detect the runtime context of the mobile device, i.e., CPU usage, memory consumption
and battery usage. Runtime support to detect a change in QoC in a particular context type and optimize the
offloading for Qo* requirements while performing opportunistic offloading. System should measure its impact
on other context types before making any decision. Runtime support to detect a change in QoS before making
any decision.

Resolve conflicts The system should select the deployment strategy with respect to QoS & QoC requirements from the application’s
perspective in a total qo*-aware fashion, such as Maximum Reliability, Minimum Latency and Minimum Cost
should be met in our use case.

through context reasoning. For instance, presence of
the user can be inferred by his/her location. The
adaptation decision is based upon this high-level
context. End-to-end QoC control is a safeguard to
monitor the quality of the context data through-
out this multi-level process. The framework should
consolidate the requirements of QoC in the context
provisioning under varying context.

4) Maintain the Quality-of-Service (QoS): The re-
configuration adaptation needs to be performed in
an efficacious way without hindering the QoS of the
applications. The possible re-configuration variants of
any application can be determined at design-time in
a static way but to achieve the multiple-objectives in
MCA, it highly depends on the varying situation at
runtime introducing the need of a decision support
at runtime that does not hurt the QoS requirements
of the smart applications in all possible deployment
scenarios. This imposes a big challenge, especially
for resource-limited mobile devices, when conflicting
optimization objectives are involved. The decision
maker should not only process the context but also
predict the effect of the decision for future QoS
requirements.

5) Display retrospective behaviour for trade-offs in
federated deployments: Ascertaining the quality of
the decisions is an important aspect in order to meet
the QoS requirements that are directly affected by the
context and its quality for smart applications.

QoS & QoC
Requirements

Context
Reasoning

Low-level
context with QoC

QoC
Processing

Engine

High-level context

uses

Probabilistic
 Modeluses

Decision
Support

Qo*-aware decisions
provides

Context
Requirements

uses

Figure 7. An abstract view of QoC-aware decision support in our framework.

Context data is generated depending on the objectives
of any smart application and its size varies accord-
ingly. If the decision maker decides to achieve a
certain requirement, obviously it has to compromise
on another aspect. It is non-trivial for the decision
maker to learn and memorize the decisions taken.
Attaining a retrospective behaviour for MCC feder-
ated deployment decision is challenging due to the
constrained mobile environment and the overhead has
to be taken into account.

Table III shows the overall objectives of our framework accord-
ing to the above mentioned requirements. An abstract overview
of the QoC-aware adaptation is shown in Figure 7. It depicts
the flow of end-to-end QoC and its processing at each level of
the context-processing. The dotted area shows the significance
of QoC-awareness in decision support using probabilistic mod-
els. We have used probabilistic models to mitigate the runtime
uncertainty in the available context. In the next section, we will
explain our Qo*-aware dynamic deployment framework and
its learning mechanism using probabilistic models to achieve
well-informed and reflective decision making with the above
described features.

V. CONTEXT-DRIVEN DYNAMIC DEPLOYMENT APPROACH

Our framework consists of a loosely-coupled context-
processing system along with an adaptation module. As shown
in Figure 8, mobile hosts a Dynamic Adaptation Module, i.e.,

Mobile

Run-time
Resource Profiler

D
yn

a
m

ic
 A

d
a

pt
a

tio
n

 M
o

d
u

le Context-Awareness

Smart
Applications

QoC
Processing Engine

Context
Provisioning
Components

S
e

rv
ic

e
 A

d
a

p
ta

tio
n

 M
od

u
le

Cloud

Figure 8. A blueprint of our federated framework and its dynamic deployment modules.

45

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a component running on the mobile device to adapt the de-
ployment configuration of the applications. However, the cloud
environment hosts a Service Adaptation Module, which aims to
optimize the runtime deployment of the required components
and acts as an entry point for the adaptation module on mobile
client. This module receives raw or pre-processed context data
(including the type of the content and the identity of the
source) and forwards it to a publish/subscribe subsystem so
that interested parties (i.e., the subscribers) receive context up-
dates. Dynamic Adaptation Module uses the model@Runtime
approach and hosts the DDN model for adaptation. The next
subsection details the working procedure of this module.

A. Deployment and reconfiguration decision making
Deployment Adaptation Module takes the decision

of how to split responsibilities between mobile devices,
applications and the framework itself. It is able to decide
on the opportunistic use of the cloud. Our decision making
approach for redeployment and reconfiguration is explained
in the steps mentioned below:

Information discovery and selection − The framework
discovers and explores the application’s runtime environment
in order to get the context information to work with. Figure 9
shows a taxonomy of the runtime environment of a mobile
device. Its resources can affect the ability to meet the
QoS requirements and eventually, the decision of dynamic
deployment. Our framework discovers the sensors and context
types required for the smart application. Built-in sensors in
mobile devices are important to fetch the context data, but
the size of the acquired context data varies, depending on the
application’s objectives. The framework filters the acquired
context according to specific needs of the application. This
selection process can be fairly complex as it may require
complex filtering techniques to decide which sensor or device
is offering relevant information. QoS and QoC requirements
are gathered at this step to bootstrap the decision making.
Runtime Resource Profiler component deployed on the
mobile side, gathers these requirements. The utility structure
of the system is maintained here corresponding to the
QoS requirements of Minimum Latency (Lmin) and QoC
requirement of Maximum Reliability (Rmax) for the mobile
device.

Analysis and decision making − The inferred context
information is used to bootstrap the deployment decision or
to change the configuration or behaviour of the application.
System does a probabilistic analysis among the conflicting

platform service

userVirtual Machine

Rendering Engine

Operating System

Middleware

software
application

Mobile
deviceResource

Network

CPU

Memory

Storage

Power

is-a

is-a

provides
provides

uses

requires

has

has

Figure 9. Taxonomy of the runtime environment of a mobile.

objectives in order to achieve the QoS and QoC requirements
while making a decision. The computation or storage resources
on the device and the communication cost affect the decision.
For instance, the user points his mobile device on a scene. The
image/video frame from the mobile device is captured. The
feature points for the image in the frame are extracted. With
these feature points, scenes are then identified by matching
the extracted feature points to those of known scenes in a
database. There is little memory because of his running video
player. In this situation, a thin client configuration is chosen
for Smart Lens, delegating Spatial Reasoning and Object
Recognition components to cloud infrastructure. Furthermore,
when the user shuts down the video player, a context change
is raised: the free memory on the hand-held increases.

Enactment of the decisions − With a thin client configuration
as in the previous step, the framework has to observe the
real-time impact of the configuration to maintain QoS
requirement of Lmin. In order to decrease the application
response time Smart Lens is reconfigured with a thick client
and caching of data to save power and to become less
vulnerable to network instability. The decision making is
a continuous process, where the framework optimizes the
application behaviour to reach certain objectives on the basis
of the required attributes. When the availability of required
resources varies significantly, the framework has to decide
whether to trigger an adaptation in the form of reconfiguration
of the components. It learns from its previous decisions and
the available context in order to ascertain the quality of the
decision and learn from its own mistakes to achieve better
results in the future. The adaptation modules on both the
ends communicates with the QoC Processing Engine for
the deployment decision support. The context provisioning
services use the QoC Processing Engine in order to provide
Qo*-awareness.

B. Model structure

We present the details of the model structure and the
involved multi-criteria parameters in this section. A DDN is
modelled for the enactment of the decisions that change over
time influenced by dynamic states and preferences. The first
step is to identify the involved uncertain parameters and the
causal relationships between those parameters [47]. Extensive
interaction with the domain experts is vital to structure a
quality model in order to fulfil the requirements. Table IV
shows the identified parameters for our problem domain and
their nature based on the requirements of the use case (see
Section III). The value of the static variables is independent of
their counterpart in multiple time slices. Dynamic parameters
are affected in multiple time slices by their historic values.
The effectiveness of reconfiguration decisions over time are
investigated for multiple consecutive time slices. Each time
slice contains an action taken by the system.

TABLE IV. Parameters types and values for QoC*-aware dynamic deployment.
Parameters Values Nature Availability
CPU Usage high, low static observed
Memory Usage high, low static observed
Data Storage remote, local static provided
Available Bandwidth low, high static observed
Available Resources yes, no static inferred
Required Connectivity yes, no static inferred
Maximum Reliability low, medium, high dynamic inferred
Minimum Switching cost low, high dynamic inferred
Minimum Latency minimum, average, maximum dynamic inferred

46

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CPUsaget

Utilityt

Memory
Usaget

Available
Resourcest

Maximum
Reliabilityt

Minimum
Latencyt

Data
Storaget

Minimum
Switching

Costt

Available
Bandwidtht

CPUsaget+1

Utilityt+1

Memory
Usaget+1

Available
Resourcest+1

Maximum
Reliabilityt+1

Minimum
Latencyt+1

Minimum
Switching

Costt+1

Bandwidtht+1

Deployment
Decisiont

Timeslice t Timeslice t+1

Deployment
Decisiont+1

Data
Storaget+1

Required
Connectivityt

Required
Connectivityt+1

Figure 10. DDN model for dynamic deployment domain expanded in two time slices.

We have designed a DBN model to tackle the requirements
2, 3, and 4 identified in Section IV and a refined in the form
of a two time sliced DDN model to address the rest of the
requirements, i.e., 1 and 5 from Section IV. Figure 10 shows
our DDN model.

The Deployment Adaptation Module uses this network
to decide about the dynamic redeployments for the smart
application components. We modelled the decision as a finite-
horizon, sequential decision process [34]. At each time slice,
the Deployment Adaptation Module decides on the fly about
a component, whether to put it on the mobile or it should be
running on the cloud. The time slice corresponds to a change in
the context values of the execution environment of the mobile
device depending upon the profiling interval. The use and
feasibility of the DDN models are evaluated in [19][49] for
other self-adaptive domains.

Our model expresses QoS and QoC requirements (REQ)
by chance nodes and these requirements are causally linked
by the involved context expressed as the observation nodes
as shown in Figure 10. These chance nodes make a BN
with the CPDs corresponding to the effects of Deployment
Decision Dj alternatives {mobile, cloud} over conflicting
REQs {Maximum Reliability, Minimum Cost} expressed as
P(REQi | dj). Available Resources is a context parameter
that stochastically varies according to the runtime environment
parameters, i.e., CPU usage and Memory bringing uncertainty.
Bandwidth is a random parameter observed dynamically. Max-
imum Reliability is the QoC parameter as it is inferred from
the Available Resources on the mobile device and Available
Bandwidth information, playing a vital role in decision making.
Its value low shows that mobile device is not a reliable exe-
cution environment for the components, therefore, Maximum
Reliability effects the utility of the decision. Minimum Switch-
ing Cost is another QoC parameter casually linked with Data
Storage to capture the communication trade-offs while taking
a Deployment Decision. The QoS parameter Minimum Latency
is effected from the QoC parameter Maximum Reliability and
plays a vital role in decision prediction, hence it is causally
linked with the Deployment Decision in future time slice.

C. Utility function

A utility function computes the subjective choices of a deci-
sion maker for available decision alternatives and its outcomes.
Elicitation of utility values requires the knowledge of the
involved subjective probabilities [63]. In Bayesian inference,
a decision is determined with both the utility function and the
posterior probabilities. The utility values can be obtained by
the domain experts or from the decision making preferences.
We assigned the utility function for each of the preference
criteria same as defined in [47]. We applied a linear trans-
formation to normalize the utility values in order to reduce
the computations for our DDN. The normalization formula is
given as [47]:

Ui = 1− Vmax − Vi

Vmax − Vmin
(4)

The normalized utility values are given in Figure 11 for
the most desirable decision alternative in the range from 1
to 100. For each REQi, the utility nodes express the utility
function that takes the CPDs of the REQs and their priorities
into account. U(REQi | Dj) represents the numerical weight
of each requirement and P(REQi | E, Dj) represents the con-
ditional probability for each REQ under the current observed
context (evidence) E {CPU Usage, Memory Usage, Available
Bandwidth, Data Storage}. The expected utility [34] for each
decision is computed by Eq. (5) and the decision is chosen by
the MEU principle.

EU(Dj | E) = P (REQi | E,Dj)U(REQi, Dj) (5)

VI. EXPERIMENTAL EVALUATION

In this section, we discuss the experimental setup and the
results obtained towards an opportunistic offloading decision
support using DDNs.

47

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

*

Switching cost
(communication)

min

Reliability
(device is good)

Deploy
(where)

0.04

high

mobile cloud

high

mobile cloud

high

mobile cloud

min

high

mobile cloud

high

mobile cloud

high

mobile cloud

0.59 0.64 0.09 0.79 0.01 0.01 0.79 0.09 0.67 0.79 0.04

Figure 11. The numeric weights assigned to the conflicting objectives, the most favourable path is highlighted with a green line.

Figure 12. Prior probabilities of our DDN in two time slices.

A. Enabling technologies & implementation
In order to implement our framework, discussed in Sec-

tion V-A, we are using an HTC One X with a 1.5 GHz Quad
Core ARM Cortex processor (at about 2.5 MIPS per MHz per
core) to run the Android-based Smart Lens, augmented reality
application, which embeds the Vuforia library to recognize any
scene.

Our infrastructure runs VMware’s open source Platform-
as-a-Service (PaaS) offering known as Cloud Foundry on a
server with 8 GB of memory and an Intel i5-2400 3.1 GHz
running a 64-bit edition of Ubuntu Linux 12.04. A Java-
based implementation has been used for Runtime Resource
Profiler that captures the runtime context of mobile device.
We have modelled a DDN-based probabilistic model for the
components of our Smart Lens use case using the Netica
development environment (http://www.norsys.com). We give
a detailed account of the experiments conducted in Netica to
analyse the deployment adaptation decisions in our model.

B. Belief propagation and computation of the expected utilities
We investigated the belief propagation in our DDN model

to analyse the decisions taken by it under changing context of
the mobile device. The model can be bootstrapped with prior
probabilities. These probabilities are learnt from experience
dataset or can be set by domain experts in the same way as the

policies can be set for rule based systems. Figure 12 depicts
the initial computation of our model bootstrapped with the
prior probabilities set according to the domain requirements.
Under favourable conditions for execution environment, it can
be seen that the decision to run the component on mobile has
higher expected utility. As context is generated from mobile
device, the prior probability for Data Storage is set to local.
These prior probabilities are overwritten by the evidence in the
form of observations from mobile resource profiling for belief
propagation in the network. The experiments are conducted for
the redeployment of Object Recognition component, whenever
the execution environment changes on the mobile device.

In our first scenario, we observed the CPU usage as high
with all the other parameters uncertain, the expected utility
for the decision changes on the basis of the inferred Maximum
Reliability as the Switching Cost remains min (see Figure 13a).
When the Switching Cost changes to max, the expected utility
is recalculated and it is triggered to choose mobile as a
deployment option (see Figure 13b). This experiment shows
that our model can effectively cope with the conflicting trade-
offs and choose a favourable decision. In the second time slice,
state of the Qo*-parameters are predicted and analysed. Once
the decision is chosen it updates the decision for the future
and recompute the belief propagation as shown in Figure 13c.

To evaluate the proactive adaptivity of our DDN model, we

48

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) Expected utility with CPU Usage observed as high.

(b) Expected utility with CPU Usage observed as high and Switching Cost observed as max.

(c) Predicted state of the Qo*-parameters and beliefs in future.

Figure 13. Belief propagation in our DDN model for dynamic deployments on the fly.

49

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE V. Evaluation of our DDN model for different dynamic deployment
Expected utilities (EU) Context parameters Qo*-awareness parameters Decision
Mobile Cloud Resource Available bandwidth Reliability on mobile Switching cost Performance max(EU)
0.664 0.958 yes but with high CPU high high min avg cloud
0.636 0.928 no high very high min avg cloud
0.427 0.396 prior belief prior belief prior belief prior belief max mobile
1.089 0.505 prior belief low low max max mobile
1.006 0.563 no high high max avg mobile

Figure 14. Expected utilities when there are no resources available on mobile device.

have conducted several experiments with the changing context
environment on the mobile device. Table V shows the sce-
narios and the Maximum expected utility for these scenarios.
Figure 14 depicts a snapshot of all the parameters and their
beliefs. The Maximum Latency value is always analysed in
the second time slice to achieve a proactive behaviour. In
our first experiment, an automated trade-off analysis is done
before choosing the cloud as the Available Bandwidth is high
but Resources are on a low side. The decision model triggers
an adaptation decision on the basis of the context parameters
for mobile execution environment and do a trade-off analysis
for Qo*-awareness. The most favourable decision alternative
is chosen, as evident from the results in every case. Figure 15
shows the results for these experiments and chosen decision
alternative for each runtime setting. The third scenario in
the graph shows the intelligence of our model when there
is no information available and it makes a decision in total

Resources Yes, high CPU No Prior belief Prior belief No

Bandwidth High High Prior belief Low High

Reliability High Very high Prior belief Low High

Cost Min Min Prior belief Max Max

Performance Avg Avg Max Max Avg

1 2 3 4 5

Cloud 0.958 0.928 0.396 0.505 0.563

Mobile 0.669 0.636 0.427 1.089 1.006

0.2

0.4

0.6

0.8

1

1.2

Ex
p

e
ct

e
d

 U
ti

lit
y

Decision-making with DDN under changing context

Figure 15. Dynamic decision making for the changing context on the mobile device.

uncertainty based on the prior beliefs.
We have conducted several experiments with and without

stressing the CPU, in order to evaluate the performance over-
head of processing a DDN-based model for deployment deci-
sion making. The performance overhead of running a 2-sliced
DDN on a Samsung S4 Android device is 5.8 milliseconds
without stressing the CPU. But if the CPU is busy and stressed,
the processing time goes up to 6 milliseconds. There is an
overhead involved due to the evidence collection for runtime
context. The processing with stressed CPU on the same device
goes up to 16 milliseconds with an overhead of 10 milliseconds
for the evidence collection.

VII. CONCLUSION AND FUTURE WORK

MCA addresses the challenges to the resource limitation for
mobile devices preserving the QoS requirements. Deployment
for the components of smart applications in MCA is a non-
trivial task in the presence of many resource-performance
trade-offs and compromises. These compromises can affect
the QoS or QoC for context-aware applications. The opti-
mal strategy to deploy and configure intelligent applications
with dynamic and heterogeneous resource availability cannot
ignore the interplay between QoS and QoC. A modular design
philosophy for developing intelligent applications helps to
dynamically configure, compose and deploy these components.
The overall aim of our work is to intelligently automate the
distributed deployment and configuration of the components
across the mobile and cloud infrastructure, and to realize an
opportunistic use of the cloud.

In this paper, we have presented a novel approach for
dynamic deployment decision making in federated environ-
ment of MCC by leveraging DDN to automate decisions in
a continuously evolving runtime environment context. DDNs
build upon DBNs. However, the latter is only able to learn

50

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

conditional probabilities based on a dataset, whereas DDNs
can quantify the impact of the evidence and the effect of the
decisions. Furthermore, by exploiting the utility of deployment
decisions, our framework can learn how to automatically
improve its decisions for future. Our first contribution is an
analysis for the involved trade-offs for smart applications.
To cope with the trade-offs for quality-aware deployment
decisions, we present a Qo*-aware decision making frame-
work based on DDNs in MCC domain. A feasibility analysis
of incorporating DDNs for decision making was performed,
and our experiments have clearly demonstrated the ability of
adapting its decision in the presence of evolving situations
and an uncertain context of the environment. By incorporating
QoS and QoC in our DDNs, we are able to assess the quality
of our context-driven decisions, ascertain their quality and
update future decisions and corresponding actions according
to the outcome and impact. Our experiments have shown that
an intelligent application can achieve optimal deployment for
its components under a reasonable overhead, whenever the
context is updated. However, the overall success of the model
highly depends on the subjective probabilities and the utility
function and its values. The sensitivity analysis [19][39] of
these models validates their dependency on the prior beliefs
and the utility values.

Applications of probabilistic theory and other artificial
intelligence techniques can help to achieve the real meaning
of smartness in several domains particularly in MCC. The
limited tool support for their application is indeed a hurdle
to widely utilize these techniques. We are actively working
on our framework to realize the practical use of DDNs for
dynamic deployment purposes in MCC using different avail-
able platforms for Bayesian inference and DDN support. In our
work, we used two time slices network but we are interested to
conduct a performance analysis of DDNs on a mobile device
where it can be investigated that how many time slices are
important in order to practically utilize these models in mobile
environment without creating an overhead on device resources.
Further work is required towards more systematic techniques
for the runtime synchronization of multiple DDN models and
to empirically study the scalability of these models. The value
of the probabilities that change over time and their impact on
alternative decisions can also be of interest. Finally, developing
tools to specify the QoC requirements would be certainly very
helpful as current tools support is fairly limited.

ACKNOWLEDGMENT

This research is partially funded by the Research Fund KU
Leuven.

REFERENCES

[1] N. Z. Naqvi, D. Preuveneers, and Y. Berbers, “Dynamic deployment and
reconfiguration of intelligent mobile cloud applications using context-
driven probabilistic models,” in INTELLI 2014, The Third International
Conference on Intelligent Systems and Applications, pp. 48–53, 2014.

[2] A. K. Dey, “Understanding and using context,” Personal and ubiquitous
computing, vol. 5, no. 1, pp. 4–7, 2001.

[3] E. H. Aarts and S. Marzano, The new everyday: Views on ambient
intelligence. 010 Publishers, 2003.

[4] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in Handheld and ubiquitous computing, pp. 304–307,
Springer, 1999.

[5] M. Weiser, “The computer for the 21st century,” Scientific american,
vol. 265, no. 3, pp. 94–104, 1991.

[6] T. Buchholz, A. Küpper, and M. Schiffers, “Quality of context: What
it is and why we need it,” in Proceedings of the workshop of the
HP OpenView University Association, vol. 2003, Geneva, Switzerland,
2003.

[7] P. Mell and T. Grance, “The nist definition of cloud computing,” 2011.

[8] B.-G. Chun and P. Maniatis, “Augmented smartphone applications
through clone cloud execution.,” in HotOS, vol. 9, pp. 8–11, 2009.

[9] Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can offload-
ing computation save energy?,” Computer, vol. 43, no. 4, pp. 51–56,
2010.

[10] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proceedings of the 2nd USENIX conference on
Hot topics in cloud computing, pp. 4–4, 2010.

[11] OASIS, Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) Version 1.0, 2013 (accessed May 23, 2015). Available:
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html.

[12] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya, “Cloud-
based augmentation for mobile devices: motivation, taxonomies, and
open challenges,” Communications Surveys & Tutorials, IEEE, vol. 16,
no. 1, pp. 337–368, 2014.

[13] N. Z. Naqvi, D. Preuveneers, Y. Berbers, et al., “Walking in the clouds:
deployment and performance trade-offs of smart mobile applications for
intelligent environments,” in Intelligent Environments (IE), 2013 9th
International Conference on, pp. 212–219, IEEE, 2013.

[14] D. Chalmers and M. Sloman, “A survey of quality of service in mobile
computing environments,” Communications Surveys & Tutorials, IEEE,
vol. 2, no. 2, pp. 2–10, 1999. [retrieved: October, 2013].

[15] N. Chen and A. Chen, “Integrating context-aware computing in decision
support system,” in Proceedings of the International MultiConference
of Engineers and computer Scientists, vol. 1, 2010.

[16] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[17] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning.
MIT Press, 1998.

[18] A. Filieri, M. Maggio, K. Angelopoulos, N. D’Ippolito,
I. Gerostathopoulos, A. Hempel, H. Hoffmann, P. Jamshidi,
E. Kalyvianaki, C. Klein, et al., “Software engineering meets
control theory,” in Proceedings of the 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, 2015.

[19] N. Bencomo, A. Belaggoun, and V. Issarny, “Dynamic decision net-
works for decision-making in self-adaptive systems: A case study,” in
Proceedings of the 8th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems, SEAMS ’13, (Piscataway,
NJ, USA), pp. 113–122, IEEE Press, 2013.

[20] C.-Y. Ting and S. Phon-Amnuaisuk, “Factors influencing the per-
formance of dynamic decision network for inqpro,” Computers &
Education, vol. 52, no. 4, pp. 762–780, 2009.

[21] L. Portinale and D. Codetta-Raiteri, “Using dynamic decision networks
and extended fault trees for autonomous fdir,” in Tools with Artificial
Intelligence (ICTAI), 2011 23rd IEEE International Conference on,
pp. 480–484, IEEE, 2011.

[22] A. Y. Tawfik and S. Khan, “Temporal relevance in dynamic decision
networks with sparse evidence,” Applied Intelligence, vol. 23, no. 2,
pp. 87–96, 2005.

[23] T. Charitos and L. C. Van Der Gaag, “Sensitivity analysis for
threshold decision making with dynamic networks,” arXiv preprint
arXiv:1206.6818, 2012.

[24] A. Khan, M. Othman, S. Madani, and S. Khan, “A survey of mobile
cloud computing application models,” Communications Surveys Tutori-
als, IEEE, vol. 16, pp. 393–413, First 2014.

[25] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the internet of things: A survey,” Communications
Surveys & Tutorials, IEEE, vol. 16, no. 1, pp. 414–454, 2014.

[26] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings of
the sixth conference on Computer systems, pp. 301–314, ACM, 2011.

51

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[27] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards an
elastic application model for augmenting the computing capabilities of
mobile devices with cloud computing,” Mobile Networks and Applica-
tions, vol. 16, no. 3, pp. 270–284, 2011.

[28] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang,
“Refactoring android java code for on-demand computation offloading,”
in Proceedings of the ACM international conference on Object oriented
programming systems languages and applications, pp. 233–248, ACM,
2012.

[29] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Unleashing
the power of mobile cloud computing using thinkair,” arXiv preprint
arXiv:1105.3232, 2011.

[30] D. Narayanan, J. Flinn, and M. Satyanarayanan, “Using history to
improve mobile application adaptation,” in Mobile Computing Systems
and Applications, 2000 Third IEEE Workshop on, pp. 31–40, IEEE,
2000.

[31] G. Huerta-Canepa and D. Lee, “An adaptable application offload-
ing scheme based on application behavior,” in Advanced Information
Networking and Applications-Workshops, 2008. AINAW 2008. 22nd
International Conference on, pp. 387–392, IEEE, 2008.

[32] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a compu-
tation offloading framework for smartphones,” in Mobile Computing,
Applications, and Services, pp. 59–79, Springer, 2012.

[33] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services, pp. 49–62, ACM, 2010.

[34] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards,
Artificial intelligence: a modern approach, vol. 74. Prentice hall
Englewood Cliffs, 1995.

[35] S. Chen, J. J. Lukkien, and P. Verhoeven, “Context-aware resource
management for secure end-to-end qos provision in service oriented
applications,” Journal of Ambient Intelligence and Smart Environments,
vol. 3, no. 4, pp. 333–347, 2011.

[36] P. Bellavista, A. Corradi, M. Fanelli, and L. Foschini, “A survey
of context data distribution for mobile ubiquitous systems,” ACM
Computing Surveys (CSUR), vol. 44, no. 4, p. 24, 2012.

[37] K. Sheikh, M. Wegdam, and M. v. Sinderen, “Quality-of-context and
its use for protecting privacy in context aware systems,” Journal of
Software, vol. 3, no. 3, pp. 83–93, 2008.

[38] Y. Kim and K. Lee, “A quality measurement method of context infor-
mation in ubiquitous environments,” in Hybrid Information Technology,
2006. ICHIT’06. International Conference on, vol. 2, pp. 576–581,
IEEE, 2006.

[39] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann, 1988.

[40] R. Wolski, S. Gurun, C. Krintz, and D. Nurmi, “Using bandwidth data
to make computation offloading decisions,” in Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on,
pp. 1–8, IEEE, 2008.

[41] N. Fenton and M. Neil, “Making decisions: using bayesian nets and
mcda,” Knowledge-Based Systems, vol. 14, no. 7, pp. 307–325, 2001.

[42] N. Esfahani, K. Razavi, and S. Malek, “Dealing with uncertainty in
early software architecture,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
p. 21, ACM, 2012.

[43] A. Filieri, C. Ghezzi, and G. Tamburrelli, “A formal approach to adap-
tive software: continuous assurance of non-functional requirements,”
Formal Aspects of Computing, vol. 24, no. 2, pp. 163–186, 2012.

[44] T. Kelly, “Utility-directed allocation,” in First Workshop on Algorithms
and Architectures for Self-Managing Systems, vol. 20, 2003.

[45] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” Pervasive Computing, IEEE,
vol. 8, no. 4, pp. 14–23, 2009.

[46] S. Amundsen, K. Lund, F. Eliassen, and R. Staehli, “Qua: platform-
managed qos for component architectures,” in Proceedings from Norwe-
gian Informatics Conference (NIK), pp. 55–66, 2004. [retrieved: March,
2014].

[47] W. Watthayu and Y. Peng, “A bayesian network based framework for
multi-criteria decision making,” in Proceedings of the 17th international

conference on multiple criteria decision analysis, pp. 6–11, Citeseer,
2004.

[48] C. C. Bennett and T. W. Doub, “Temporal modeling in clinical artifi-
cial intelligence, decision-making, and cognitive computing: Empirical
exploration of practical challenges,” in Proceedings of the 3rd SIAM
Workshop on Data Mining for Medicine and Healthcare (DMMH).
Philadelphia, PA, USA, 2014.

[49] T. H. Bui, M. Poel, A. Nijholt, and J. Zwiers, “A tractable hybrid
ddn–pomdp approach to affective dialogue modeling for probabilistic
frame-based dialogue systems,” Natural Language Engineering, vol. 15,
no. 02, pp. 273–307, 2009.

[50] P. C. Da Costa and D. M. Buede, “Dynamic decision making: a com-
parison of approaches,” Journal of Multi-Criteria Decision Analysis,
vol. 9, no. 6, pp. 243–262, 2000.

[51] T. H. Bui, M. Poel, A. Nijholt, and J. Zwiers, “A tractable hybrid
ddnpomdp approach to affective dialogue modeling for probabilistic
frame-based dialogue systems,” Natural Language Engineering, vol. 15,
pp. 273–307, 4 2009.

[52] A. R. Cassandra, Exact and approximate algorithms for partially
observable Markov decision processes. Brown University, 1998.

[53] N. Meuleau, K.-E. Kim, L. P. Kaelbling, and A. R. Cassandra, “Solving
pomdps by searching the space of finite policies,” in Proceedings of the
Fifteenth conference on Uncertainty in artificial intelligence, pp. 417–
426, Morgan Kaufmann Publishers Inc., 1999.

[54] M. Bayes and M. Price, “An essay towards solving a problem in the
doctrine of chances. by the late rev. mr. bayes, frs communicated by
mr. price, in a letter to john canton, amfrs,” Philosophical Transactions
(1683-1775), pp. 370–418, 1763.

[55] B. McCabe, S. M. AbouRizk, and R. Goebel, “Belief networks for
construction performance diagnostics,” Journal of Computing in Civil
Engineering, vol. 12, no. 2, pp. 93–100, 1998.

[56] W. Dargie, “The role of probabilistic schemes in multisensor context-
awareness,” in Pervasive Computing and Communications Workshops,
2007. PerCom Workshops’ 07. Fifth Annual IEEE International Con-
ference on, pp. 27–32, IEEE, 2007.

[57] D. Bernoulli, “Exposition of a new theory on the measurement of risk,”
Econometrica: Journal of the Econometric Society, pp. 23–36, 1954.

[58] R. Schäfer and T. Weyrath, “Assessing temporally variable user proper-
ties with dynamic bayesian networks,” in User Modeling, pp. 377–388,
Springer, 1997.

[59] Z. W. Bhatti, N. Z. Naqvi, A. Ramakrishnan, D. Preuveneers, and
Y. Berbers, “Learning distributed deployment and configuration trade-
offs for context-aware applications in intelligent environments,” Journal
of Ambient Intelligence and Smart Environments, vol. 6, no. 5, pp. 541–
559, 2014.

[60] N. Z. Naqvi, D. Preuveneers, and Y. Berbers, “A quality-aware feder-
ated framework for smart mobile applications in the cloud,” Procedia
Computer Science, vol. 32, pp. 253–260, 2014.

[61] A. Ramakrishnan, S. N. Z. Naqvi, Z. W. Bhatti, D. Preuveneers, and
Y. Berbers, “Learning deployment trade-offs for self-optimization of
internet of things applications,” in Proceedings of the 10th International
Conference on Autonomic Computing, ICAC 2013, pp. 213–224, 2013.

[62] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Networks and Applications,
vol. 18, no. 1, pp. 129–140, 2013.

[63] B. Houlding, Sequential decision making with adaptive utility. PhD
thesis, Durham University, 2008.

52

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Car Drive Classification and Context Recognition for Personalized Entertainment

Preference Learning

Thomas Christian Stone

BMW Group
Munich, Germany

Email: thomas.stone@bmw.de

Stefan Haas

SAP SE
Munich, Germany

Email: stefan.haas02@sap.com

Sarah Breitenstein

BMW Group
Munich, Germany

Email: sarah.breitenstein@bmw.de

Kevin Wiesner

Institute for Informatics
LMU Munich

Munich, Germany
Email: kevin.wiesner@ifi.lmu.de

Bernhard Sick

Intelligent Embedded Systems
University of Kassel

Kassel, Germany
Email: bsick@uni-kassel.de

Abstract—The automotive domain, with its increasing number of
comfort and infotainment functions, offers a field of opportunities
for pervasive and context-aware personalization. This can range
from simple recommendations up to fully automated systems,
depending on the information available. In this respect, frequent
trips of individual drivers provide promising and interesting
features, on the basis of which, usage patterns may possibly
be learned and automated. This automation of functions could
increase safety as well as comfort, as the driver can concentrate
more on the experience of driving instead of repeatedly and
manually adjusting comfort- or entertainment-related systems. To
identify frequent driving contexts in a set of recorded signal in a
vehicle, e.g., GPS tracks, this paper presents two different clus-
tering algorithms: First, a hierarchical Drive-Clustering, which
combines drives based on their number of common GPS points.
Second, a Start-Stop-Clustering, which combines trips with the
same start- and stop-cluster utilizing density based clustering. The
Start-Stop-Clustering showed particularly good results, as it does
not depend on the concrete routes taken to a stop position and it
is still able to detect more trip clusters. To predict these drives,
a Bayesian network is presented and evaluated, with logged trip
data of 21 drivers. The Bayes Net uses context information, i.e.,
the time, weekday and the number of people in the car, to predict
the most likely drive context with high accuracy. A new automated
entertainment source selection algorithm demonstrates the use-
fulness of the retrieved information. The algorithm learns and
predicts a driver’s preferences for selected entertainment sources
depending on recognized drive contexts.

Keywords–Context-aware Vehicle; Spatial Clustering; Drive
Context Prediction; In-Car Infotainment; Automation

I. INTRODUCTION

Many different definitions for context exist, depending on
the domain and conception. In [1], the frequent drives of a
car owner considered contextual information useful for vehicle
personalization.

In common literature, there seems to be a general notion
for the meaning of the term context. However, up until now,
there is no single definition accepted as the common standard.
In [2], context is described as ”. . . any information that can
be used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the
user and applications themselves.” [3] claims to have found
over a 150 definitions for context. Despite lacking a single,
universally accepted definition, there is no argument about
it’s usefulness in certain applications. Context-awareness is
considered an important building block in the development
of intelligent systems as it is said to significantly improve the
interaction between a user and a system. Knowledge about
a specific context is normally gathered by sensor readings
and their interpretation [4], [5]. In the course of this article,
context will be considered any piece of information that can
be aggregated in a vehicle and enables ”intelligent behavior”
of in-car systems. This includes not only information such
as daytime, weekday, number of passengers, fuel level and
frequent trip targets, but also the driver’s control behavior in
terms of the car’s functions.

With its increasing number of comfort and infotainment
functions, the automotive domain offers a unique field of
opportunities for context-sensitive functions. In recent years,
many different context-aware advanced driver assistance sys-
tems (ADAS) have been introduced. They depend on infor-
mation provided by dedicated sensor systems, particularly in
the areas of safety and comfort. The lane departure warning
system (LDW), adaptive cruise control (ACC) and intelligent
speed adaption (ISA) are well-known examples for context-
aware ADAS.

Another interesting and promising context to advance ve-
hicle personalization is the drive itself. Above all, the repeated

53

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

drives of a person offer a lot of potential for finding consistent
usage patterns. Subsequently, the found user behavior can be
used for automating certain comfort functions. For example,
if a driver usually checks received emails on the way to work
or likes to listen to the news, the vehicle could adapt to these
preferences by recognizing the drive context as a regularly
drive to work and by automating the desired functions. This
automation of functions could improve safety as well as
comfort because the driver is no longer forced to adjust his
personal settings by himself.

In the following, we will describe and evaluate different
methods for the detection and prediction of repeated drives
of individual drivers. To develop and evaluate our proposed
methods, we had the possibility of utilizing recorded vehicle
sensor data of 21 drivers collected over several months by a
data logger. The collected data includes many different sen-
sor signals exchanged between the different in-car electronic
control units (ECU) over the Controller Area Network (CAN)
bus, ranging from Global Positioning System (GPS) position
to seat belt status.

The contributions of our article are two novel clustering
methods for detecting repeated trips of individual drivers, a
novel distance measure based on the Jaccard distance for
comparing GPS tracks and a hybrid Bayesian network for
predicting frequent drive contexts right away from the start
of the trip based on contextual information, e.g., the time of
the day and the number of passengers in the car. The frequent
drives and the additional context information will be used to
infer the intention of drives, e.g., ”drive to work” or ”drive to
spare time activity”, what we consider as the drive context.

The article is structured as follows. Section II gives an
overview on existing work in the fields of route prediction,
route recognition, destination prediction, and place mining.
Section III outlines two new spatial clustering methods for
detecting the frequent drive contexts of a particular driver.
In Section IV, we present a hybrid Bayesian network to
predict the frequent drive contexts of an individual driver
immediately from the start of the trip, or even during a trip.
The results we obtained running the algorithms individually
on the collected drive data of each driver are described in
Section V. Additionally, in Section VI, we provide a case study
for in-car infotainment automation based on the presented
algorithms. The results prove our claim about the usefulness
of the presented algorithm. We close our work in Section VII
with a summary and an outlook on possible future work.

II. RELATED WORK

Route recognition and prediction systems have been pro-
posed in many different works [6], [7], [8], [9], [10]. In the
majority of these publications, the general way to predict,
and respectively recognize, the current route is based on the
comparison of the current driving trajectory to previously
recorded trajectories through suitable distance measures. Com-
paring GPS tracks can not be done with classic Lp metrics
due to their length related inequality, dimension and noise.
As a result, more elastic similarity measures are necessary.
Already proposed distance measures are, for instance, based
on the longest common sub-sequence (LCSS) algorithm [6],
[11], [12], the Hausdorff distance [7] or the Jaccard distance
[13]. In [11], this simple instance based learning approach
of comparing the current route to already recorded routes is
further enhanced by the inclusion of contextual information,

e.g., time of the day, to better differentiate overlapping routes.
Probabilistic approaches for route and destination predic-

tion have been presented amongst others in [13], [14], [15] and
[16]. The investigated prediction methods are frequently based
on Bayesian techniques and include additional contextual
information, such as the time of the day, the particular weekday
or even background information about locations to infer the
most likely route or destination [16]. By contrast, [15] uses
an unspecified type of Markov model instead of a Bayesian
approach to predict the next location of a user.

Identifying personally important places of users in recorded
GPS data has, for example been investigated in [17], [18], [19],
[15], [10] and [20]. Density based clustering hereby proved
more efficient than classic partitioning algorithms like k-means
[21], [22], [17], [18], as the final clusters only consist of dense
regions in the data space. Regions of low object density are
not included in the final clusters and are considered as noise.

Also, there has been work on using location based contex-
tual information in proactive recommendation and automation.
In [20], a probabilistic approach was presented for learning
individual locations of interest. The learned locations were
then used for recommendation and automation of a vehicular
comfort function. The approach of learning an explicit user
preference model proves helpful, especially for integration of
user feedback and uncertainty quantification.

Our work differs from existing publications, as we focus
on the personal, repeated drives of individual drivers and their
prediction. This helps recognizing individual drive contexts.
The drive contexts themselves denote regular drives, e.g.,
”drive from home to work” or ”drive from work to home”. We
consider the drive contexts as the basis for learning a driver’s
control behavior of certain functions. Therefore, the learned
behavior is useful for recommendation and automation, which
we will prove in a short-term study.

III. DETECTING FREQUENT DRIVES

The basis for drive context recognition will be the fre-
quent drives of a driver. To detect frequent drive clusters of
an individual driver, we present and evaluate two different
spatial clustering methods explained in the following two
subsections. Drive-Clustering is based on the Jaccard distance
and compares whole trajectories using hierarchical clustering.
In contrast, Start-Stop-Clustering focuses on more semantic
similarity measurement of routes, based on the determination
of frequent start and stop positions of a particular driver. The
goal of both algorithms is to identify repeated patterns in
the set of recorded GPS tracks in order to detect repeatedly
occurring drive contexts, e.g., drives from home to work. In
Section V, we compare the obtained results of both algorithms
applied to our test data set.

A. Drive-Clustering
An important factor in cluster analysis is a similarity mea-

sure to determine the distances between elements contained in
the data, for the purpose of grouping similar elements together
in clusters. In trajectory data the standard way for identifying
patterns is to compare whole trajectories. In our case, the
trajectory data of each drive is stored as a sequence of GPS
points Si = {pi,1, pi,2, ..., pi,n}, with pi,1 being the start point
of the drive and pi,n being the end or stop point.

To compare two point sequences we use a dissimilarity

54

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

measure based on the well known Jaccard distance, which
measures dissimilarity between sample sets [23] (see equation
(1)):

d(X,Y) = 1− |X ∩ Y |
|X ∪ Y |

. (1)

Our dissimilarity measure thereby calculates the intersec-
tion of the two GPS sequences Si and Sj by counting the
number of common points NOCP (Si, Sj) contained in both
sequences starting from the shorter sequence (see equation (2)).
This number of common points is then divided by the number
of points contained in the shorter sequence min(|Si|, |Sj |).
In order to obtain a dissimilarity measure the quotient is
subtracted from 1, so that a result of 0 indicates maximum
similarity and a value of 1 maximum dissimilarity.

d(Si, Sj) = 1− NOCP (Si, Sj)

min(|Si|, |Sj |)
. (2)

GPS points of two geometrically similar trajectories are
unlikely to have exactly the same coordinates. Even if a
drive can be done exactly the same way several times, the
GPS sequences will not be equal because of the noisy nature
of GPS measurements. Hence, it is necessary to define a
threshold distance Θ, e.g., 50 meters, to decide whether two
GPS points from two sequences can be considered as ”equal”.
This is necessary to find the GPS points shared by both
sequences, i.e., the ”common points”. The threshold needs to
be defined dependent on the logging frequency, assumed the
GPS measurements were done periodically. In our case, the
logging frequency is f = 1Hz. If we, for example, consider
135 km/h as the maximum vehicle speed, the maximum
distance between two subsequent measured GPS points will be
(135 · 1000)m/3600s = 37.5m. In the evaluation we set the
threshold to 50 meters, which is sufficient for driving speeds
up to 180 km/h with a logging frequency of f = 1Hz.

The number of common points (NOCP) algorithm iterates
over all points pi,k ∈ Si included in the shorter sequence
and tries to find at least one point in the other sequence
pj,l ∈ Sj whose distance is less or equal than the defined
threshold distance Θ. If the set of found points in range is not
empty, the number of common points counter is increased.
Consequently, the presented distance measure is more elastic
than distance measures based on dynamic programming, such
as the longest common sub-sequence (LCSS) or dynamic time
warping (DTW), as it is able to match several elements of one
sequence to just one element of the other sequence, without
taking into account the sequence ordering. This behavior is
important in our case to handle traffic jams and different
driving speeds. The implementation of the number of common
points (NOCP) function can be significantly sped up by storing
the queried sequences’ points in a k-d tree [24].

To calculate the distance between two-dimensional GPS
points we use a simplification of the haversine formula [25]
based on the Euclidean distance, which in contrast to the
standard Euclidean distance allows metric parametrization of
our algorithms (φ latitude, λ longitude) (see equation (3)).

dist(φ1, λ1, φ2, λ2) = (((111.3 · cos (
φ1 + φ2

2
)·

(λ1 − λ2)2) + (111.3 · (φ1 − φ2)2))
1
2 · 1000.

(3)

The haversine formula calculates the distance of two points

on a sphere along their respective great-circle. While the
original haversine formula is costly to calculate with all it’s
trigonometric functions, the given approximation is fast and
precise for world GPS coordinates.

In order to avoid the problem of a much shorter sequence
being contained in a longer sequence and to speed up the
comparison, the number of common points in the two se-
quences is only calculated, when the first and last points of
the two sequences are sufficiently similar. This means their
respective distances do not exceed a predefined threshold, e.g.,
250 meters (pi,1 ∼ pj,1 and pi,n ∼ pj,m). Otherwise, the
maximum dissimilarity value 1 is returned without any further
calculation (see equation (4)).

dopt(Si, Sj) =

1− NOCP (Si,Sj)

min(Si,Sj)
, if pi,1 ∼ pj,1

and pi,n ∼ pj,m
1, otherwise

. (4)

To group similar routes in clusters, we use single-linkage
clustering, an agglomerative hierarchical clustering method,
starting from single GPS sequences. We use the function
dopt for distance measurement. A merging threshold ε decides
whether two clusters are close or similar enough to be merged,
e.g., ε = 0.05. The clustering stops when there are no clusters
left for merging. The smaller the value ε the more similar the
trips contained in a cluster are, but in general, less clusters will
be merged. This threshold will cut the dendrogram at a certain
level and lead to the final drive clusters. The resulting clusters
without enough observations can be considered outliers and
will be deleted. To predefine the minimum cluster size we use
another parameter MinDrives. As every point in our clusters
represents a single drive, MinDrives represents the parameter
MinPoints introduced in the density based clustering in [22].
This renaming was done for the purpose of convenience.

B. Start-Stop-Clustering
Another way of determining frequent drives of a certain

driver is based on his frequent start and stop positions of
drives. The start and stop positions are the GPS locations,
where the car is started and parked respectively. In contrast to
the above presented trajectory clustering method, this method
focuses on drives with the same start and stop positions, not
on geometrically similar routes.

As the vehicle is typically not parked at the exact same
coordinates, it is necessary to merge similar parking positions
to start-stop-clusters. To obtain these frequent start and stop
position clusters of a particular driver, we use a density based
clustering, the DJ-Cluster algorithm presented in [17], which
is a simplification of DBSCAN [22], [26]. Density based
clustering has the advantage of explicitly eliminating outlier
points compared to partitioning clustering, e.g., k-means [21],
[26]. As we are only interested in dense regions included in the
set of start and stop positions of an individual driver in order
to identify frequent drive contexts, density based clustering is
suitable for our task.

Consequently, the first step in Start-Stop-Clustering is to
calculate dense regions of start and stop positions in the set
of GPS sequences and to store the cluster IDs of every GPS
sequences’ start and stop points. Therefore, it is necessary to
specify the two parameters MinDrives and ε, representing
the minimum cluster size and search radius respectively. Figure

55

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 shows an example of a dense point cluster found in the drive
data of a particular driver with ε = 100m.

Figure 1. Visualization of the start (red) and stop points (blue) of a driver.
All shown points are included in the same point cluster.

The equality of GPS sequences for Start-Stop-Clustering is
determined by a binary function (see equation (5)).

d(Si, Sj) =

0, if Cs(pi,1) = Cs(pj,1)

and Ce(pi,n) = Ce(pj,m)

1, otherwise
. (5)

Trip A

Trip B

Start-Cluster End-Cluster

Figure 2. Illustration of a route-independent Start-Stop-Cluster.

Two GPS sequences Si and Sj are considered as equal,
when their corresponding start (pi,1, pj,1) and stop points (pi,n,
pj,m) lie in the same start Cs, respectively end cluster Ce.
Hence, the final frequent drive clusters are comprised of GPS
sequences whose start and stop points lie in the same dense
region or point cluster and therefore have the same cluster IDs.
The clusters are direction-dependent just like those obtained
with the above presented Drive-Clustering approach. However,
the drives included in a Start-Stop-Clustering drive context
cluster do not necessarily follow the same routes (see Figure
2). To predefine the minimum cluster size we also use the
MinDrives parameter.

IV. PREDICTING FREQUENT DRIVE CONTEXTS

The frequent drive clusters will be merged with additional
information, forming a new context we will call frequent drive
context. A drive context denotes a contextual description, or
at least a semantic clustering of drives, depending on the
intention of the drive, e.g., ”drive to work” or ”drive to gas
station”. Frequent drive contexts denote drives that happen to
be periodic or frequent in a sense, e.g., daily drive to work and
back home. As we will concentrate on frequent drives from

now on, we will refer to them simply as drive contexts.
To predict frequent drive contexts that have been identified

with one of the above presented methods, we propose a hybrid
Bayesian network, incorporating more than just the clustered
frequent drives as location based features. This is a basic
requirement stated in [27], where contexts should not only
consist of location based features. The structure of the network
is shown in Figure 3.

Start Point

Frequent
Drive

Context

No. of
Passengers

Passengers

Weekday

Start Time

Fuel Level

Figure 3. Topology of the hybrid Bayesian network for predicting the most
likely frequent drive context.

Using the start point of the drive we are able to eliminate
impossible contexts, e.g., a drive from work to home if the
start point is home, which significantly reduces the possible
contexts, prevents false positives and speeds up the imple-
mentation. The variable Frequent Drive/Context represents
the a priori probability distribution over the set of identified
drive contexts, already constrained by the current start point.
The variables Weekday, No. of Passengers and Fuel level
are conditionally independent of each other given the class
variable Frequent Drive Cluster. The variables described so far
all underlie a discrete probability distribution. The fuel level is
discretized to ”at least half full” and ”not half full”, in order
to ease modeling. The number of passengers are discretized to
1, 2, 3, 4, 5.

In contrast to the other probability variables, we model
the variable Start Time as a continuous variable. By the
edges between Frequent Drive/Context, Day and Start Time
we receive a drive context dependent start time probability
density function (PDF) for every single day. This enables a
stronger differentiation between the drive contexts, as the start
time probabilities for the different contexts are also dependent
on the day.

To approximate the probability density function for the start
times associated with a certain drive context we use kernel
density estimation (KDE) (equation (6)) with a Gaussian kernel
(equation (7)) and Scott’s rule of thumb (equation (8)) for
bandwidth selection h [28]:

f̂(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K(
x− xi
h

). (6)

56

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

K(x) =
1√
2π

exp (−x
2

2
). (7)

hscott = n−1/(d+4). (8)

n is the number of observed starting times for approxi-
mating the underlying probability distribution. K ∈ [0, 24]→
R+

0 defines the kernel function used in the estimator, with
x ∈ [0, 24] being the daytime and d the dimensionality of the
problem.

By using kernel density estimation, we receive a continuous
approximation of the probability density of starting points (see
Figure 4).

0 2 4 6 8 10 12 14 16 18 20 22 24
Time

0.00

0.05

0.10

0.15

0.20

D
e
n
si

ty
 f

u
n
ct

io
n

Gaussian kernel

Figure 4. Example of a probability density function for the Start Time
variable of a particular drive context.

When a drive context has not occurred before, at a certain
day or time, the probability for the whole context will be zero.
This kind of behavior is not always acceptable. A Laplacian
correction, also called Laplacian estimator, is a common
technique to solve this problem, as it adds observations to
the dataset for unseen entities to prevent zero probabilities.
We deliberately do not use Laplacian correction, thereby
improving on false positives. In general, we assume a long-
term observation phase for our proposed system, effectively
eliminating this problem.

The probability for a certain context C, given the start point
s, the weekday d, the time t, the number of persons in the car p
and the fuel level f , can then be calculated with the following
formula:

P (C|s, d, t, p, f) ∝
P (C|s)P (d|C)P (t|d,C)P (p|C)P (f |C). (9)

The context Ci leading to the highest probability value
P (Ci|s, d, t, p, f) is then assumed to be the present context:

arg max
Ci

{P (Ci|s, d, t, p, f)}. (10)

The prediction in the presented form lacks the possibility
to make online adaptions and corrections of the predictions.

This may be necessary due to ambiguous information at the
beginning of a trip, which prevents a good prediction of the
current drive context. In the case where the starting points do
not deliver enough information to predict the frequent drive
cluster, the Bayes Net can be re-evaluated when the drive
cluster is known during the trip. For instance, this can be
achieved by constantly calculating the similarity of the current
route to the frequent drive clusters. To that end, the similarity
measure from Section III-A can be used. If the predicted
frequent drive class of the current drive changes, the presented
Bayes Net re-predicts the current drive context.

V. EVALUATION

To evaluate the described methods, we have access to a data
set collected from 21 drivers over several months. The logger
used for collecting the data, records all kinds of data bus traffic,
also when the car is not moved, e.g., when the electronic key
is pressed. To filter out this unwanted ”noise”, we only used
recorded data for our evaluation where the vehicle was at least
moved 1 kilometer (air-line distance). The number of filtered
drives per driver ranged from 225 to 983 drives. This wide-
spread distribution is related to the 3 to 8 months of recording
duration and the individual use of the cars. The majority of
the subjects ranged between 400 to 600 recorded drives.

A. Drive clustering
Figures 5 and 6 show the results obtained applying Start-

Stop-Clustering and Drive-Clustering to the data set. Figure 5
illustrates the average number of found clusters for different
minimum cluster sizes (MinDrives = {3, 5, 10}). Figure
6 presents the average share of frequent drives of the total
quantity of drives, i.e., ”frequent” and ”non-frequent” drives.
As no ground truth could be gathered, the analysis must follow
qualitative and quantitative reasoning.

MinDrives = 3 MinDrives = 5 MinDrives = 10
0

5

10

15

20

25

30

35

40

a
v
e
ra

g
e
 n

u
m

b
e
r

o
f

cl
u
st

e
rs

30

25

14
13

7 6

average number of found clusters

Start-Stop-Clustering
Drive-Clustering

Figure 5. Average number of found clusters with Start-Stop- and
Drive-Clustering dependent on the minimum number of drives contained in

the clusters (MinDrives).

As one can see, Start-Stop-Clustering is on an average able
to identify more clusters than Drive-Clustering (see Figure 5).
However, with increasing minimum cluster size, the difference
between the average number of found clusters by Start-Stop-
Clustering and Drive-Clustering decreases. This leads to the

57

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

MinDrives = 3 MinDrives = 5 MinDrives = 10
0

10

20

30

40

50

60
p
e
rc

e
n
ta

g
e
 o

f
re

p
e
a
te

d
 d

ri
v
e
s

52

46

42

37

32

28

percentage of repeated drives

Start-Stop-Clustering
Drive-Clustering

Figure 6. Percentage of repeated drives identified with Start-Stop- and
Drive-Clustering dependent on the minimum number of drives contained in

the clusters (MinDrives).

assumption that for frequent drives (MinDrives = 10),
drivers usually have a preferred route that they normally take,
whereas for less frequent drives (MinDrives = 3) they also
take different routes to the same destination. Furthermore,
Start-Stop-Clustering includes all route alternatives (see Figure
6), thus, assigning a larger fraction of the overall number of
drives to a repeated drive cluster.

As we are rather interested in detecting frequent drive
contexts than the frequent routes taken by a driver, Start-Stop-
Clustering is more appropriate for our use case. Large clusters
(MinDrives ≥ 10) may provide promising and interesting
contexts, on the basis of which usage patterns may possibly be
learned and automated. The average fraction of trips, repeated
at least 10 times by the participants during the survey, amounts
to approximately 30% of the overall trips (see Figure 6).

To keep the set of frequent driving contexts up-to-date one
could use a shifting time frame and only consider drives for
the cluster calculation that for example occurred during the last
6 months. This would lead to a slow exclusion of no longer
appearing driving contexts over time and also limit the amount
of data used for the context identification.

B. Prediction
To evaluate our proposed Bayesian inference system for

predicting frequent drive contexts, we made use of cross-
validation and focused on clusters identified by Start-Stop-
Clustering with a cluster size larger than 10 drives. The cross-
validation was done for every driver to even out the different
recording times and to be able to differentiate between different
types of drivers. The applied evaluation method was leave-one-
out cross-validation to cope with the small data sets.

Figure 7 shows the overall prediction result for all drives,
including also non-frequent drives, as well as the prediction
result for solely frequent drives belonging to a cluster. The pre-
diction result improves significantly, to almost 100% (∼97%),
when a prediction result is considered correct when lying
within the top 3 predictions.

Evaluating the top 3 results shows the usability in recom-
mendation systems. Presenting the user a recommendation for

each of the n most likely drive contexts is a common setup. In
the case of recommendation based on learned user preferences,
showing the most likely recommendation to the most likely
contexts leads to a higher chance of user acceptance.

all drives only frequent drives
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
re

d
ic

ti
o
n
 A

cc
u
ra

cy

71
74

89

97drive context prediction

top match
whithin top 3 matches

Figure 7. Prediction result for all drives and only frequent drive contexts
(MinDrives = 10).

The differentiation between the different drive contexts
is relatively accurate (∼ 89% respectively ∼97% for top
3 matches). Moreover, in Figure 8 one can see that, when
considering all drives, the main share in false predictions
not lying within the top 3 matches is produced by false
positives. A false positive is the classification of a starting
drive as a ”frequent drive”, when it is not. A large fraction
of false positives could be detected correctly (∼60%), but as
there might be highly frequent start and stop positions, e.g.,
home coordinates, with overlapping context information, e.g.,
time and weekday, some infrequent drives were predicted as
belonging to a frequent drive context.

In the evaluation, we used a binary probability distribution
for the day variable (workday, weekend) due to the relatively
small minimal cluster size of 10 drives. It might be possible to
achieve a better recognition of infrequent drives by assuming
a discrete probability distribution for every day (Monday,
Tuesday, Wednesday, etc.), which would also lead to time
probabilities for every day for each drive context. However,
this would only make sense with a higher minimal cluster
size, in order to get representative probability distributions for
every day.

Compared to the rate of false positives the rate of true
negatives is extremely low and underlines the accuracy of our
inference system related to the prediction of frequent drive
contexts (see Figure 8). However, eliminating false positives
is crucial in order to not annoy the driver with unwanted
function automation and might only be solvable with little
driver interaction. A solution could be to provide the driver
with the top 3 most likely contexts. Then, the driver is able
to choose the most appropriate one. If none is selected by the
driver after a certain driving time, the system assumes that, in
the current situation, no function automation is wanted by the
driver.

58

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

false positives overall error rate
0%

10%

20%

30%

40%
e
rr

o
r

ra
te

26 26

error rate - drive context prediction

Figure 8. Overall prediction error rate and the share of false positives at the
overall error rate.

VI. CONTEXT-AWARE AUTOMATION CASE STUDY

The use of comfort and infotainment functions in a car
generally depends on the driver’s preferences. In turn, those
depend strongly on the intention for the drive, represented by
drive contexts. As a consequence, the use of comfort functions
depends on the drive context, e.g., commuting drive or regular
fitness club visit. The class of climatic functions are a good
example. For instance, while a driver heats up the car in the
morning, lower temperatures may be wished-for after regular
fitness center visits.

In the case of infotainment functions, e.g., integrated TV
or audio player, this dependence is also visible. The selected
audio source can be related to the driver’s mood, time of the
day, or again on the drive context. A driver may always listen
to a certain radio station for traffic information on the way
to work. But then, leaving work, she listens to CDs, music
from the connected smartphone, or any other device connected.
While this can have different reasons, the trip’s goal or the
intention behind the trip may be the most important. This leads
to the idea of using the previously recognized drive contexts
for audio source automation.

Starting from this idea and the presented drive context
recognition, an explicit user preference model for infotainment
functions can be realized. In the following, we will present an
audio source selection automation algorithm. The algorithm
will serve as a showcase for the usefulness of the drive
context information in infotainment automation. Also, it will
demonstrate a modular, purely probabilistic view for the use
of an explicitly modeled user preference relying on contextual
information.

A. Entertainment source selection
In a modern car, there are several different audio sources

to choose from. Typically, these include various types of radio
sources, TV, internal storage and connected personal devices
or a subset of these. The driver can select one of them at a
time or disable all audio sources. Depending on the car’s user
interface, disabling audio is either done by disabling audio
output or decreasing volume to zero.

The goal of the following case study is to showcase
the use of the drive context recognition integrated into an

automation of an infotainment function. The chosen function
is the selection of the current entertainment source in the car.
This means that we would like to recognize a driver’s behavior
in terms of selecting entertainment sources depending on the
current drive context.

For the justification of declaring the drive context as the
main context for entertainment source selection, we conducted
a preliminary study. 30 subjects were interviewed and ques-
tioned about their user behavior in terms of infotainment
systems. This also included the use of the navigation system,
eliminating the need for the prediction of the current drive
cluster related to the current drive context.

While 80% of the subjects always use the navigation
system, 7% use it frequently and 13% use it occasionally, no
one would never use it. This indicates the necessity of the
prediction of the current drive cluster, hence the target of the
current drive.

28 of the 30 use more than just one entertainment source.
While two subjects would listen to the radio only, one of
them depicted music as generally not important. The different
sources used are listed in Figure 9.

0 20 40 60 80 100
Entertainment source

CD

TV

Internal Storage

Music via USB/IPod

Telephone

Music via Bluetooth

Online Entertainment

Radio

S
u
b
je

ct
s

u
si

n
g
 t

h
e
 s

o
u
rc

e
 i
n
 %

Figure 9. The amount of subjects using the different entertainment sources
available.

25 of the 30 subjects stated to choose the entertainment
source depending on the drive context. One answer was given,
that because of the spare time drives mostly going abroad, the
subject listened to the online entertainment rather than listening
to the local radio. Another representative answer was that the
subject listens to the radio to get to work and ”moderately”
start into the day, while listening to CDs or making calls on
the way back home.

Three of the 30 subjects would never change their behavior
according to the co-driver or the passengers in the back.
The rest of the subjects would either give the control of
the entertainment source to the passengers or completely go
without any entertainment source. In Figure 10, additional
influencing contexts were given.

The results from the interviews give some important indi-
cations about using the drive context for learning the driver’s
entertainment source behavior. The contextual information
used in Section IV, daytime, number of passengers and the
frequent drive clusters are the most important information
for predicting the selected entertainment source. Therefore,

59

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 5 10 15 20 25 30
Number of subjects depending on the context information

Weather

Traffic

Daytime

Mood

Road type

Passengers

Speed

Drive abroad
C

o
n
te

x
tu

a
l
in

fo
rm

a
ti

o
n

Figure 10. Additional dependencies influencing entertainment source
selection.

the drive clusters abstraction delivers most of the information
necessary for predicting the selected sources.

B. Probabilistic view
This case study is targeted at automating a comfort function

through imitating the driver’s control behavior. In [20], a
similar problem is formulated: Proactive recommendation or
automatic activation of a certain camera-based comfort system
at locations of interest. The locations are learned by observing
a driver’s individual use of the camera system. As an outcome,
a modular system for location based activation of comfort
functions is presented. It relies on a probabilistic view on
the integration of abstract contextual information into the
process of automation. This has several advantages over non-
probabilistic methods, also discussed thoroughly in [20]. The
main goal in [20] is formulated as

p(A|B) =
∑
O

p(A,O|B) (11)

being the probability of the driver intending to activate a
comfort function under observation B and learned locations O.
With some basic assumptions, the probability of an intended
activation A can be simplified to

p(A|B) ≈ p(A|Oj) · p(Oj |B), (12)

where Oj is a context, describing an ”abstract location”. The
observation B can be any information currently accessible to
the car. This separation of activation and location context in
[20], makes it possible to model both contexts differently. In
[20], this was used to implement user feedback and uncertainty
quantification for better decision making.

This approach of separating the intention of an activation
and the major influencing contexts of the decision can be
adapted to our showcase. Instead of the probability of an acti-
vation A, we want the probability about the possibly selected
audio sources. The selections of available audio sources will be
denoted by E = (En)n∈N , with N = {0, 1, . . . ,]sources−1}.
Every En represents a different audio source, e.g., radio, DVB-
T or disc player. E0 is not an active audio source itself, but
implies ”disabled audio” output of the entertainment system.

This simple definition will be useful later on, enforcing∑
i∈N

p(Ei) = 1. (13)

This implies that we always want an answer for the
automation mechanism.

The targeted automation does not depend on the notion
of a learned location of interest, but rather on the current
drive context. Therefore, the probability of an audio source
Ei being selected under individually learned drive contexts
can be described as

p(Ei|B) =
∑
C

p(Ei, C|B) (14)

=
∑
C

p(Ei|C,B) · p(C|B). (15)

C = (Cm)m∈M is the family of observable drive contexts
indexed by M = {0, 1, . . . ,]drive contexts− 1}.

This is analogous to the situation in [20]. It is important to
notice, that in [20], the probability of ”no activation desired”
is not calculated explicitly, but rather included in working
with the probability of a wanted activation. In our case of
automating the entertainment selection, the ”disabled audio”
selection is treated as another selection. Thus, the system
always selects and activates a source.

In [20], some assumptions were made regarding the prob-
ability densities involved in equation (11). This allows the
deduction of equation (12) for estimating p(A|B). In our case
study, similar assumptions can be made to estimate p(Ei|B):

1) Given the information of the current drive context,
any other information denoted by B does not gain
additional valuable information for the automation.
This is inferred from our basic assumption that the
drive context is the major dependence for the driver’s
audio source preference. This means all information
of the observation B is included in the context. This
assumption induces the following simplification:

p(Ei|C,B) ≈ p(Ei|C) (16)

In the case of having more than one context, this can
be a dangerous assumption, but is viable for the case
study.

2) The previous evaluation of the presented drive context
recognition in Section V-B shows a high accuracy.
Taking the k most likely drive contexts into account,
the accuracy is close to 100%. If I is the index set
for the k most likely selected audio sources,

∀j /∈ I : p(Cj |B) ≈ 0 (17)

can be seen as a viable assumption. Taking an even
sharper condition, setting k = 1, the same assumption
as in [20] can be made, leading to

∀i /∈ N\I : p(Ci|B) ≈ 0 (18)
i ∈ I : p(Cj |B) ≈ 1 (19)

for Cj being the most likely drive context to be
predicted. This approximation is supported by the
high accuracy evaluated for only taking the most
likely drive context.

60

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Essentially, this simplifies the prediction of the audio
source selection. Analogous to [20], the estimation of the
probability for the selection of a specific source Ei simplifies
to

p(Ei|B) ≈ p(Ei|Cj) · p(Cj |B) (20)

In the case of a recommendation system, the system may
be free to offer the driver to play the audio source with
the highest likelihood. If a source would not be available,
the system should not recommend it and, therefore, does not
have to recommend anything at all. But, in the case of a
fully automated system, logic dictates to choose and play the
most likely audio source available. If a source is unavailable,
the source with the closest likelihood will be selected. The
automatically selected source Ei0 then is determined by

i0 = arg max
i∈Iavail

p(Ei|Cj) · p(Cj |B) (21)

where Iavail is the index set for the available audio sources.
As p(Cj |B) is the probability of the current drive context, its
calculation can be seen in Section V-B. From now on we will
call it Drive Context Distribution. The probability distribution
of the selected source, i.e., p(Ei|Cj) will be shown in Section
VI-C. The term will be called the Source Distribution.

Still, there is another simplification possible in equation
(21). Since the p(Cj |B) is a constant in equation (21), it can
be eliminated, not changing the decision process on Ei0 . Thus,
under given context drive Cj , the automated selection of the
audio source can be formulated as

i0 = arg max
i∈Iavail

p(Ei|Cj) (22)

When radio is selected as an audio channel, the preferred
radio channel should also be automated depending on the drive
context. Therefore, we define all radio channels to be denoted
by R = (Rk)k∈K with K being the index set for every listened
or known radio channel. Analogue to the entertainment source
selection, the most likely selected radio channel Rk0 given a
specified drive context Cj can be formulated as

k0 = arg max
k

arg p(Rk|Cj , E1) (23)

when E1 denotes the radio source.

C. Selected source
For the final decision, which source must be selected

by the presented system, Source Distribution p(Ei|Cj) must
be learned. This can be done in several ways, involving to
”observe” the active source on a trip. We will present two
intuitive approaches to decide which entertainment source is
considered to be ”listened to”. One will serve as example for
a whole class of point evaluation methods, while the other is
motivated differently. As the same ideas for finding the active
entertainment source apply to the active radio source, it will be
referred to as active source of a trip from now on. These two
basic ideas are illustrated in Figure 11. Figure 11a illustrates
the time-lines for three different trips from a drive cluster. The
colors orange and blue imply the relative time of one of the
two active sources along each trips time line.

The first approach is to observe the activated source at a

predefined point in time, relative to the drive’s beginning or
ending and declare it the active source of the trip. In Figure
11b, the first source that is observed as being active at the
beginning of the trip is declared to be the active source of
the trip. Defining a point in time, to designate the currently
selected entertainment source as the active source of the trip
is difficult. While the targeted automation should work at the
beginning of the trip, it is hardly a good idea to do so. Most
automotive audio systems will start when starting the car and
choose to play the last active source or radio station. If the
driver now has a different preference, the automation system
must recognize this. Defining when the driver has settled for an
active source is also non-trivial, because the driver may change
the source periodically. This is illustrated in the middle trip in
Figure 11a.

The second approach is to decide the active source de-
pending on the source switching behavior from the driver.
Periodic changes of the active source may strongly depend
on other influences from the environment and the content of
the audio source itself. In Figure 11a, the top trip shows some
switching between the two sources. While the orange source
may be solely for entertainment purposes, the second one may
be preferred by the driver as news or traffic information source.
The driver then would switch in between sources when this
information is wanted, e.g., when stuck in traffic. Taking the
longest active source is acceptable, as the driver listened to it
for the longest, thus the audio source delivering most of the
preferred content to the driver.

As for the sake of practicability of this case study, the latter
approach was used. The focus is on the demonstration of the
drive context for entertainment source selection.

D. Case study data
For this case study of drive context for personalized en-

tertainment source prediction, eight drivers participated in a
short-term study. The drivers were provided with prepared cars,
logging the standard bus systems and the central entertain-
ment system. The logging system was a prototype explicitly
developed for this study and had to be installed in the cars
with connections to the internal data bus system of the central
entertainment system. The cars were provided for about four
to six days to each participating subject, being enough time
to recognize the working time. This provided the data for
an offline evaluation of the algorithms. The entertainment
system could not be controlled externally, making testing the
automation online impossible.

The drivers were also interviewed, allowing the comparison
of the offline prediction and the subjects statements. This
would ensure a higher expressiveness of the short-term results
of the study.

Gathering enough data from the subjects over this short
time span was not possible with every subject. For the
previously presented drive context algorithm to work, at
least several drives for every context must be observed.
The MinDrives, declared in Section III-A, was set to
MinDrives = 3 for the GPS route clustering, as it was
proved to work accurately with small values for MinDrives
(see Section V). Also, the predicting algorithm for the source
selection automation needs some observations of every drive
context.

In the case of this study, only six subjects delivered enough
data for a significant analysis. This is enough to give a coarse

61

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

S
T

(a) Two sources on three routes

S
T

(b) Active source at the beginning

S
T

(c) Longest active sources per route

Figure 11. Two approaches for tagging the active source of a trip: 11a illustrates an example for a drive context’s current active source (orange and blue) on
time scales from Start to Target. 11b and 11c demonstrate declaring either one of the listened sources or the longest listened source of a trip as the trip’s

observed active source.

quality indication for the usefulness of the drive context in
automation and the integration for the entertainment source
prediction.

E. Evaluation

For the evaluation of the in-field case study, the logs
of the 6 subjects were analyzed. The analysis includes the
clustering of frequent drives and subsequent recognition of
the drive context. On top of the recognized context, the
presented algorithm from Section VI-B was used to learn the
subjects’ current audio listening preference. The outcome of
the comparison of the predicted information and the subjects’
interviews are listed in Table I.

In the interview, the subjects were asked about their
personal preferences of infotainment use. This included the
dependence on the frequent drives, passengers, co-passengers
and mood. The given information was useful for a better
understanding of the preferences learned in the study. The
information of the preferred audio sources itself was divided
into three different categories of drive context: home to work,
work to home and non-work related / leisure drives.

Table I was structured for ease of comparison between
the prediction and the data from the interviews. While on the
leftmost side are the numbers of 6 useful subjects, on the right
side are the most three categories of detected drive contexts.
Per category of drive context, the table includes the prediction
of the presented automation algorithm, as well as the answer
from the interview. The table shows the information given in
the interview, while on the right, the algorithm estimated the
user’s preference.

A general problem was that the non-work related drives
were not properly detected. This is due to the short-term of
the study, as well as the time of the recordings. The cars
were provided mostly over working days, while most non-
work related drives are done at weekends. Nevertheless, Table
I, showing the detected preferences and the information given
at the interviews, indicates promising results.

The trivial case of a constant preference, non-dependent
on drive context or any contextual information must not be a
problem for the algorithm from Section VI-B. Subject number
4 never changes the active audio source and, therefore, is a
good example for trivial preferences. The presented algorithm
indeed has no problem recognizing the constant behavior and
predicts radio and the channel properly and verifiable.

Subject 3 also shows the working of the preference recogni-
tion. The subject said it would not listen to different radio chan-
nels, thus, recognizing the radio as the preferred source was
the primary target. The presented recognition always chooses
the most likely radio channel as explained in Section VI-C.
To stabilize the automation in a long-term study, the presented
learning of entertainment source preferences has to implement
a form of uncertainty quantification as shown in [20]. Also,
the preference recognition does not take into account the use
the telephone, because calls are not necessarily made for the
same reason as audio source are selected. Therefore, CD was
the best prediction result possible on work to home drives.

Subject 5 provided 4 days of logged information, mostly
on workdays. Despite the small amount of data gathered, the
prediction showed a significant difference in preference on
work travel. While listening to CDs in the morning work
travel, listening to the radio driving back home was clear and
coincided with the data given at the interview. The non-work
drives did not deliver enough information for a significant
statement, but gave a coarse direction. The given influencing
factors confirmed the use of the indicated information in Figure
10.

The presented case study showed that the presented drive
context recognition works well as a basis for an explicit
user preference model. Using the number of passengers and
daytime information in the drive contexts is clearly a benefit as
shown in the evaluation of the study. The influencing factors
given at the interviews approve the benefits. This confirms the
initial assumption, that the drive context is a major dependency
of driver preferences in comfort functions and useful for
recommendation and automation systems.

VII. CONCLUSION AND FUTURE WORK

In this article, we investigated the detection and prediction
of frequent drive contexts as an important building block
for automatized vehicle personalization. We proposed two
different spatial clustering approaches for identifying frequent
drive patterns in a GPS data set. The route independent Start-
Stop-Clustering is promising, as it detects patterns indepen-
dently of the chosen routes. The presented Bayesian Net’s
accuracy in differentiating frequent drive contexts was about
89% respectively 97% for a top 3 match.

We also presented a case study incorporating the rec-
ognized drive context. The study showcased the usefulness
of the presented drive context recognition algorithm, when

62

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. Offline evaluation example and interview comparison.

Subject Home to work Work to home Non-work related Influencing factors
Driver Predicted Driver Predicted Driver Predicted

1 radio DAB, R1,0 radio DAB, R1,1 Bluetooth - daytime, co-driver
2 radio DAB, R2,0 radio/telephone AuxIn mostly radio DAB, R2,0 daytime, co-driver
3 radio FM, R3,0 CD/telephone CD CD/radio radio daytime, mood, co-driver
4 radio FM, R4,0 radio FM, R4,0 radio FM, R4,0 passengers
5 CD CD DAB, R5,0 DAB, R5,1 misc. - daytime, co-driver
6 radio FM, R6,0 radio/telephone FM, R6,1 radio FM, R6,2 weather, road type,

passengers

learning driver preferences. The targeted comfort function
was the entertainment source selection and proved to work
very well. It also showed a modular way incorporating such
context information. The next step should be a long-term
study for significant confirmation of the results. Also, the
number of contexts should be increased and techniques for
reducing the burn-in phase of the preference learning should
be investigated. This would include techniques ranging from
uncertainty quantification to collaborative approaches.

The duration of the learning phase is critical for using
learning systems in the field of comfort and infotainment. In
this regard, the presented algorithms need to be evaluated with
further field studies before being deployed in series production
vehicles.

ACKNOWLEDGMENT

The authors would like to thank the participants of the
studies and BMW Group for providing the drive data and the
equipment, including the test vehicles. All location and drive
data was anonymized to ensure the participants’ privacy.

REFERENCES

[1] S. Haas, K. Wiesner, and T. C. Stone, “Car ride classification for drive
context recognition,” in MOBILITY 2014, The Fourth International
Conference on Mobile Services, Resources, and Users, 2014, pp. 61–66.

[2] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in Handheld and ubiquitous computing. Springer, 1999,
pp. 304–307.

[3] M. Bazire and P. Brzillon, “Understanding context before using it,”
in Modeling and Using Context, ser. Lecture Notes in Computer
Science, A. Dey, B. Kokinov, D. Leake, and R. Turner, Eds. Springer
Berlin Heidelberg, 2005, vol. 3554, pp. 29–40. [Online]. Available:
http://dx.doi.org/10.1007/11508373 3

[4] G. D. Abowd et al., “Towards a better understanding of context and
context-awareness,” in Proceedings of the 1st international symposium
on Handheld and Ubiquitous Computing, ser. HUC ’99. London, UK,
UK: Springer-Verlag, 1999, pp. 304–307.

[5] A. Schmidt, “Ubiquitous Computing - Computing in Context,” Ph.D.
dissertation, Lancaster University, November 2002.

[6] O. Mazhelis, “Real-time recognition of personal routes using instance-
based learning,” in IEEE Intelligent Vehicles Symposium (IV 2011),
2011, pp. 619–624.

[7] J. Froehlich and J. Krumm, “Route prediction from trip observations,”
in Proceedings of the Society of Automotive Engineers (SAE) 2008
World Congress, SAE Technical Paper 2008-01-0201, April 2008, pp.
1–13.

[8] D. Tiesyte and C. S. Jensen, “Similarity-based prediction of travel
times for vehicles traveling on known routes,” in Proceedings of the
16th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, ser. GIS ’08. New York, NY, USA:
ACM, 2008, pp. 14:1–14:10.

[9] A. Brilingaite and C. S. Jensen, “Online Route Prediction for Auto-
motive Applications,” in Proceedings of The 13th World Congress and
Exhibition on Intelligent Transport Systems and Services (ITS 2006),
London, October 2006, pp. 1–8.

[10] K. Torkkola, K. Zhang, H. Li, H. Zhang, C. Schreiner, and M. Gardner,
“Traffic Advisories Based on Route Prediction,” in Proceedings of
Workshop on Mobile Interaction with the Real World, 2007, pp. 33–36.

[11] O. Mazhelis, I. Žliobaite, and M. Pechenizkiy, “Context-aware personal
route recognition,” in Proceedings of the 14th international conference
on Discovery science, ser. DS’11. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 221–235.

[12] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering similar
multidimensional trajectories,” in Data Engineering, 2002. Proceedings.
18th International Conference on, 2002, pp. 673–684.

[13] K. Laasonen, “Route Prediction from Cellular Data,” in Proceedings
of the Workshop on Context-Awareness for Proactive Systems (CAPS).
Helsinki, Finland: University Press, 2005, pp. 147–158.

[14] K. Tanaka, Y. Kishino, T. Terada, and S. Nishio, “A destination pre-
diction method using driving contexts and trajectory for car navigation
systems,” in Proceedings of the 2009 ACM Symposium on Applied
Computing, ser. SAC ’09. New York, NY, USA: ACM, 2009, pp.
190–195.

[15] D. Ashbrook and T. Starner, “Using gps to learn significant locations
and predict movement across multiple users,” Personal Ubiquitous
Comput., vol. 7, no. 5, Oct. 2003, pp. 275–286.

[16] J. Krumm and E. Horvitz, “Predestination: Inferring destinations from
partial trajectories,” in Ubicomp, 2006, pp. 243–260.

[17] C. Zhou, N. Bhatnagar, S. Shekhar, and L. Terveen, “Mining personally
important places from gps tracks,” in Data Engineering Workshop, 2007
IEEE 23rd International Conference on, 2007, pp. 517–526.

[18] C. Zhou, D. Frankowski, P. Ludford, S. Shekhar, and L. Terveen,
“Discovering Personally Meaningful Places: An Interactive Clustering
Approach,” ACM Trans. Inf. Syst., vol. 25, no. 3, July 2007.

[19] J. H. Kang, W. Welbourne, B. Stewart, and G. Borriello, “Extracting
places from traces of locations,” in Proceedings of the 2Nd ACM
International Workshop on Wireless Mobile Applications and Services
on WLAN Hotspots, ser. WMASH ’04. New York, NY, USA: ACM,
2004, pp. 110–118.

[20] T. Stone, O. Birth, A. Gensler, A. Huber, M. Jänicke, and B. Sick,
“Location based learning of user behavior for proactive recommender
systems in car comfort functions,” in Proceedings of INFORMATIK
2014, GI-Edition - Lecture Notes in Informatics (LNI), 2014, pp. 2121–
2132.

[21] J. B. Macqueen, “Some methods of classification and analysis of multi-
variate observations,” in Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, 1967, pp. 281–297.

[22] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in KDD, vol. 96, no. 34. AAAI Press, 1996, pp. 226–231.

[23] M. Lewandowsky and D. Winter, “Distance between sets,” in Letters to
nature. nature publishing group, 1971, pp. 34–35.

[24] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for
finding best matches in logarithmic expected time,” ACM Transactions
on Mathematics Software, vol. 3, no. 3, September 1977, pp. 209–226.

[25] R. W. Sinnott, “Virtues of the Haversine,” Sky and Telescope, vol. 68,
no. 2, 1984, pp. 159+.

[26] J. Han, M. Kamber, and A. K. H. Tung, “Spatial clustering methods

63

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in data mining: A survey,” in Geographic Data Mining and Knowledge
Discovery, Research Monographs in GIS, H. J. Miller and J. Han, Eds.
Taylor and Francis, 2001, pp. 201–231.

[27] A. Schmidt, M. Beigl, and H.-W. Gellersen, “There is more to context
than location,” Computers & Graphics, vol. 23, no. 6, 1999, pp. 893–
901.

[28] D. W. Scott and S. R. Sain, ”Multi-Dimensional Density Estimation”.
Amsterdam: Elsevier, 2004, pp. 229–263.

64

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Hands-on Smart Card User Interface Research, Development, and Testing

Markus Ullmann∗ † and Ralph Breithaupt∗
∗ Federal Office for Information Security

D-53133 Bonn, Germany
Email: {markus.ullmann ralph.breithaupt}@bsi.bund.de
† University of Applied Sciences Bonn-Rhine-Sieg

Institute for Security Research
D-53757 Sankt Augustin, Germany
Email: markus.ullmann@h-brs.de

Abstract—The latest advances in the field of smart card technolo-
gies allow modern cards to be more than just simple security
tokens. Recent developments facilitate the use of interactive
components like buttons, displays or even touch-sensors within
the card’s body thus conquering whole new areas of application.
With interactive functionalities the usability aspect becomes the
most important one for designing secure and popularly accepted
products. Unfortunately, the usability can only be tested fully with
completely integrated hence expensive smart card prototypes.
This restricts severely application specific research, case studies
of new smart card user interfaces and the optimization of design
aspects, as well as hardware requirements by making usability
and acceptance tests in smart card development very costly and
time-consuming. Rapid development and simulation of smart card
interfaces and applications can help to avoid this restriction.
This paper presents a rapid development process for new smart
card interfaces and applications based on common smartphone
technology using a tool called SCUIDSim. We will demonstrate
the variety of usability aspects that can be analyzed with such a
simulator by discussing some selected example projects.

Keywords–Smart Card; Smart Card User Interface Design, In-
teractive Smart Card Applications; Rapid Prototyping; Simulation;
Testing; Usability.

I. INTRODUCTION

Today, smartphones belong to the most widely used elec-
tronic consumer devices for communication, infotainment and
entertainment. High end systems are equipped with a powerful
processor, graphics processor, camera, high resolution display
as well as a lot of sensors and support various communi-
cation technologies, thus providing a powerful combination
of convenience and versatile possibilities. That is why more
and more applications that require a high level of security
like banking or electronic shopping are becoming tools for
everyday use. Therefore, a secure element on the device
is included to store the cryptographic keys and to perform
cryptographic operations. Unfortunately, it is very challenging
to combine high security elements with complex consumer
electronics optimized for convenience with their different open
APIs, communication interfaces and update mechanisms, as
jailbreaks and other successful attacks on employed security
measures have shown in the past.

If security is the dominant issue, e.g., for personal identifi-
cation, authentication, access control, banking, pay-tv, crypto
services, etc., another system progression takes place based
on smart cards, which consists mainly of a secure element
embedded in a smart card body. Smart cards are superior in
the area of low cost, mobility and especially certifiably high

security. However, common smart cards are simple security
tokens and have no user interface. Every additional authen-
tication process requires external devices like, e.g., keypads
for entering passwords, which by themselves are potentially
vulnerable against side channel attacks, eavesdropping, etc. It
would be ideal to combine the security level of a smart card
with the convenience of a smartphone to keep everything “on
card”. Recently developed interactive components allow the
integration of input devices, like buttons, keypads or touch
based gesture interfaces as well as output devices like displays
and LEDs directly into a smart card.

With such interactive functionalities the usability aspect
becomes the most important one for designing a usable smart
card and adds many new demands to the development process.
Now, aspects like the adequate size of a button, the visibility
of a touch interface, the resolution, contrast and speed of a
display and the overall design of the card have to be addressed
as well as an appropriate hardware/software-codesign to ensure
clear user guidance and high overall usability. This can only
be achieved by conducting extensive field tests with as many
people as possible. Creating the necessary card prototypes with
the complete design and full hardware and software func-
tionality can be very expensive and time-consuming, which
makes usability centered security research difficult. This is
the motivation for SCUIDSim (Smart Card User Interface
Development Simulator): to support the development and
evaluation of smart cards with user interfaces. In this paper,
we present an alternative approach to allow all the necessary
testing in order to determine the requirements for design,
hardware components and the software without the need to
build costly prototypes. By using common smartphones as a
development and evaluation platform, almost all user related
aspects can be investigated by simulating the “look & feel” of
a new smart card design before any real hardware integration
is needed.

SCUIDSim is an android application and therefore usable on
a wide range of smartphones, which combine all the necessary
hardware input/output components as well as communication
links, cryptographic services, the processor power and memory
needed for simulating a large variety of current and future
smart card interfaces and applications in a single compact de-
vice. With SCUIDSim the visible aspects of a multi-component
smart card can be designed on the smartphone. Based on a
simple SCUIDSim-API, user defined card applications can be
executed while SCUIDSim simulates the behavioural properties
of all interactive components. New requests and requirements

65

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

can be implemented, simulated and evaluated instantly. This
way SCUIDSim supports detailed requirement engineering for
software as well as hardware and the development of new user
interface concepts hand in hand. This is especially useful for
the design and integration of new usable user centric security
algorithms in smart cards. SCUIDSim was firstly published at
The Fourth International Conference on Ambient Computing,
Applications, Services and Technologies (AMBIENT 2014)
[1]. In this enhanced journal version, the focus is on smart
card user interface research, development and testing using
SCUIDSim.

In recent years much effort has been made in order to
integrate segmented displays into smart cards. Most prototypes
used electrophoretic display technology, as shown in Figure 3,
known from ebook readers. But this direction was no success
story to date. High costs were one reason - but the main
problem was its typical update delay of 1 second, which for
small displays did not get enough public acceptance. From
this experience many questions emerged, like: how fast does
such a display have to be in order to be acceptable for certain
applications? What resolution and contrast is necessary for
adequate usability? Such usability centred questions are very
hard to investigate with real smart card prototypes.

SCUIDSim is a framework to initially develop and test new
usability approaches very quickly prior to the development
of the smart card hardware. This way all user acceptance
related issues can be investigated and optimized resulting in a
detailed requirement list for all hardware components. It was
our goal to significantly increase the speed and efficiency of
the development and evaluation of new interactive smart card
concepts.

The following sections of this paper are organized as
follows: Section II starts with a description of related work.
Section III provides a brief overview of the software archi-
tecture of SCUIDSim and its functionality. Next, Section IV
describes applications of SCUIDSim for the design of smart
card user interfaces. We focus our attention on different LED
matrix based displays which are very easy to handle, cheap and
flexible as an example how the possibilities and challenges
of such a technology can be investigated with SCUIDSim.
We present the evaluation of various interaction concepts like
animated symbols, scrolling text and even rapid serial visual
presentation displays for long text passages in regard to the
constraints of a smart card. As input mechanism, we present a
one-character display input device and in addition user inputs
based on touch-gestures. Finally, in Section V we summarize
our results.

II. RELATED WORK

The first research and development projects investigating
the idea to integrate input and output elements in smart cards
go back as far as the late 1990s, see [2]. With the advances in
low power and low profile embedded technologies many differ-
ent component technologies have been successfully developed
and integrated in ID1-compatible smart cards during the last
decade. Primarily, a variety of display types and buttons, even
fingerprint scanners, are discussed for integration, see [3] and
[4]. Moreover, in [5] smart cards with an integrated display as
security enforcing component are introduced. A first approach
to integrate a 2D on-card gesture input sensor, implemented as
capacitive touch matrix, is introduced first in [6]. It has also

been an important topic for public funding in many countries
(e.g., the INSITO-project of the German Federal Office for
Information Security (BSI) and the SECUDIS-project of the
German Ministry of Education and Research, see [7] and [8]).
Despite all the effort and the growing number of available
components, interactive smart cards have not yet been used
in many real applications. Among other reasons this is due
to high production costs and the much higher complexity
of such smart cards. With the recent advances in printed
electronics capacitive sensors have become a widely accepted
standard technology and even printed displays are available
today, see [9], [10], and [11]. But the complexity issue is
still a serious obstacle on the way to the final product. At
least regarding the system integration issues of combining
several hardware components there have been approaches for
rapid prototyping tools. One of the first was the FlexCOS
system suggested by Beilke et al. [12], which uses FPGAs
for a very flexible and rearrangeable interface to connect
separate component prototypes into one complete system.
Although this approach became a standard procedure for many
manufacturers and researchers, it only covers the technological
aspects. Such functional prototypes are much too bulky and
fragile to conduct real world tests with many people in real
application scenarios outside the lab. The usability aspects that
first and foremost define how the smart card should interact,
and therefore, what the requirements for the hardware and
software components really are can not be tested without
fully integrated and designed card prototypes. Unfortunately,
each version of real prototypes to test for user acceptance
requires huge expenses of time and money. This lack of end-
user centered rapid prototyping tools was the starting point
for the development of the SCUIDSim tool. Simulation of user
interfaces was very popular in the beginning of ubiquitous
computing. One approach was the iStuff toolkit to support
the development of user interfaces for the post-desktop age
for multiple displays, multiple input devices, multiple sys-
tems, multiple applications and multiple concurrent users, see
[13]. Alternative technologies were developed by the Stanford
Interactive Workspaces project for multi-person and multi-
device collaborative work settings, see [14]. To the best of our
knowlege, SCUIDSim is the first approach to model, simulate
and analyze user interfaces for (contactless) smart cards.

III. SCUIDSIM ARCHITECTURE

SCUIDSim consists of two modules: a card designer that
enables a flexible but simple arrangement of smart card layouts
based on preconfigured components and a card simulator. In
the card simulator, such a card layout can be paired with a
smart card application in a real time simulation. It was a
design decision to separate the card design process and the
card simulation process in two independent software modules.
Figure 1 illustrates the SCUIDSim architecture.

A. Card Designer
The card designer is a simple tool to engineer smart

card layouts. Figure 2 gives an overview of the available
components in the current version of SCUIDSim. Currently, the
following predefined components are supported: push buttons,
segmented displays (7- and 14-segments), matrix displays
(RGB, greyscale and black & white), LEDs, n × m LED-
matrixes, 2D-touch sensors, image boxes and the overlay

66

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Overview of the SCUIDSim software architecture.

Figure 2. Available card components (in the card designer)

image of the smart card. There are also non-visible components
like acceleration sensors that are automatically available to all
cards if the used android smartphone is supporting it. With this
initial set of predefined components, SCUIDSim can already
simulate a huge variety of smart card layouts. Figure 3 depicts
a real card prototype opposite to a replicated design of this
card within SCUIDSim. This figure illustrates the very realistic
replication capabilities of our tool.

Within the card designer, the properties of each component
like position & size can easily be controlled via simple
finger gestures commonly known from many other mobile
applications. Additional properties like the appearance of the
component (overlay image), a color modifier (to the overlay
image, in RGB and alpha for transparency) or component
specific properties like X/Y-resolution of a matrix display, or
the update delay time for a display component can be set
in a component property page that is dynamically generated

Figure 3. Confrontation real - and simulated card layout within SCUIDSim

Figure 4. Software architecture of the card designer module

Figure 5. Software architecture of the card simulator module

based on all the properties of a selected card component.
Each card component, its properties and its specific simulated
behaviour (e.g., delay of the visual update) is defined in the
respective class within the component library of SCUIDSim.
To add new components or behavioural functionality to this
library, the developer simply inherits and modifies the provided
component base class. All administrative support like the list
of available component types and the components property
page are generated “on the fly”. The complete card design can
be loaded from and saved to a card library in a XML-format
that can be read and edited outside SCUIDSim with all existing
standard XML-viewers/editors. New overlay images and even
new components are easily added to the designer. Figure 4
depicts the software architecture of the card designer.

B. Card Simulator
The two main objectives of the card simulator are to

provide a flexible framework for the development and eval-
uation of card applications and to simulate an user interaction
with a realistic “look & feel”-experience. For creating card
applications, the card simulator offers a simple API in order
to access the interactive components of the simulated card. In

67

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

order to keep the application as close to a real card program
as possible the API allows input components to be polled and
provides a simulated interrupt event handling. The concept of
the API is based on the intention to shield the application
developer from Android Java specific constructs in order to
facilitate application code that can easily be transferred to
real smart cards. In addition, the card simulator consists of
a ressource manager module for simple profiling purposes as
well as a flexible XML-based logging system. Since most ap-
plications for contactless smart cards imply a communication
to a reader/server via NFC (ISO 14443) the card simulator
offers an interface to the real NFC component of a smartphone.
This way the simulated card can also be used in the targeted
environment. If the real NFC component cannot be used, the
framework allows the execution of NFC server applications
in order to also simulate the reader functionality. A manual
describing the usage and programming of applications can be
found in [15]. Figure 5 depicts the software architecture of the
card simulator module.

IV. USING SCUIDSIM FOR SMART CARD USER
INTERFACE DEVELOPMENT AND TESTING

In this section, we present some examples how usability as-
pects of interactive smart cards can be analyzed and optimized
by using SCUIDSim. Typically, contactless cards follow the
ISO 14443 specification, see [16]. This means that contactless
smart cards usually have no battery. They are powered by
the magnetic field of the terminal device. So, the available
energy on real contactless smart cards for powering additional
components is very limited and energy is only available if the
card is in the activation distance of a terminal. The most used
smart card format is ID-1 according ISOIEC 7816 [17]. This
format is restricted to 85,60 mm x 53,98 mm. This makes it
obvious that there is only very restricted space for additional
on-card input and output components on such a smart card.

The main idea of SCUIDSim is to rapidly design smart card
layouts including on-card input and output devices and related
applications according to this restricted dimensions and re-
sources hand-in-hand. These capabilities can be used to design
and explore new applications and to perform user studies on
standard smartphones before any real smart card prototype is
produced. Moreover, these capabilities of SCUIDSim can be
used for requirement engineering of real cards.

Our design and simulation framework, in combination
with the wide availability of simulation platforms (android
smartphones), made it possible for our students to quickly
and easily investigate isolated usability aspects. The following
brief examples of our latest studies should provide an adequate
overview over the kind of analyses that can be performed with
our simulation approach. Although we have performed first
user studies, we do not give priority to this topic in this paper.
But we include some interesting findings of these studies. The
group consists of thirty unspecific persons with different levels
of knowledge of information technology (in age 20 - 70: 11
female, 19 male). Obviously, there are no adequate user cross
sections and no statistical relevant number of attendees.

A. Corporate Design Aspects
An important aspect in the smart card business is the

combination of functional elements with the corporate design.
Here the SCUIDSim card designer can be easily used to design

different layouts of the card body including any kind of brand-
ing as well as visual user guidance elements. These designs
can be thoroughly evaluated with the simulator to explore the
influence of the branding to the usability. Specifically: design
of the interactive components (size, look and placement), the
necessary user guidance elements and the corporate design
elements to find suitable combinations in a way that the
handling of the card is always clear to most of the targeted
customers. Figure 3 illustrates this issue.

B. On-Card Output-Components
Most outputs on electronic devices are usually performed

with optical segment- or matrix-displays. Due to the very
restricted form factor of smart cards the displays itself are
very restricted in their dimensions. Here physiological studies
are very interesting, which were already performed in the 80’s
and 90’s with text display formats. These display formats are
rapid serial visual presentation (RSVP), in which each word
is displayed sequentially at the same place on the display
screen, and scrolled text, in which 13 characters are scrolled
continuously from right to left or left to right across the screen.
The dynamic and continuous presentation of text in this both
displays requires smaller eye movements compared to usual
monitors. This change in eye-movement in contrast to classical
displays is believed to be responsible for higher reading rates
in contrast to reading rates of usual monitors. The detailed
results in the studies differ a little bit, see [18], [19], and [20],
but these types of text presentation opens the perspective for
displaying larger texts in restricted smart card displays.

General properties for displays are the resolution, contrast,
color of the characters and background color for smart card
displays, too. But besides that, the visibility of the display
within the card body is an important issue. See the difference
of the optical awareness of the displays between Figure 10
and Figure 12. In Figure 12, the LED matrix is included in
a box and has a different background color compared to the
card body. That is an important usability issue.

Besides the general display requirements and the awareness
of the display, the application of the smart card display is
important. Is it intended for displaying one time passwords
(strings of up to 16 random characters), control instructions,
short text outputs, user feedbacks, telephone numbers, long
text of a few sentence, graphical symbols or others? What is
the real use case of the display and which information has to
be presented to the user in an adequate and readable manner?
A further issue is the required speed of the display from an
application perspective. So, the real display requirements are
application specific and have to be tested in regard of user
readability and comprehension.

1) Segmented Text Displays with Low Printing Rate:
Figure 3 presents our first project in which we simulated an
existing smart card prototype in order to start with ground-
truth tests to determine the comparability of real and simulated
cards. These cards were equipped with a standard 14-segment
display component with 10 characters based on electrophoretic
display technology and two buttons. The real display had good
properties like high contrast and low power consumption, but
unfortunately, a very low refresh rate of 1 word/update per
second. It was surprising how similar the overall look and
feel of the simulated card actually was. It turned out in our
tests that the bigger body of the smartphone is not a big issue

68

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

when it comes to usability aspects. The biggest issue of the
simulated card was still the very long delay of the display.
From this point on we were able to change the key parameters
in the simulation: update delay, contrast, size of the display
in order to find out what the minimal properties of such a
display should be in order to be acceptable for most of our
test subjects.

2) LED-Matrix Display for Displaying One Symbol: Com-
plex displays, especially matrix-displays will always be a
problem for smart cards. Even if the costs for the display itself
can be reduced significantly, there will always be the need
for display drivers, which means more complexity and costs.
Also, a bigger display size would be good for usability but an
increasing challenge in the integration process. Looking for
alternatives, the old concept of using LEDs to build low reso-
lution displays came to mind. LEDs are quick (even animations
are possible), relatively cheap and easy to control and have the
advantage that they can be mixed with other components. In
that way, LED-displays can be almost as big as the card itself.
On the other hand, the power consumption of LEDs is an issue
and depends largely on the number of used LEDs and their
brightness. In order to find out, if LED-displays could actually
be a practicable alternative in smart cards, we used SCUIDSim

to determine the requirements regarding speed, brightness,
color, size and resolution and investigated appropriate interface
concepts regarding fonts, symbols, animation, user guidance
and feedback.

We started with the lowest configuration humans generally
can read comfortably: a 3 × 5 LED-matrix.

0 1 2 3

4 5 6 7

8 9 A B

C D E F

G H I J

K L M N

O P Q R

S T U V

W X Y Z

Figure 6. Used 3 × 5 LED matrix font

Figure 6 shows that our chosen font for a 3 × 5 LED
matrix works quite well for digits, while on the other hand,
some characters are only poorly distinguishable (like: U, W,
H, M, O or Q). Lower letters worsen the problem even more.

This means if only digits are processed a 3 × 5 LED matrix
seems to be sufficient. But, if letters should be processed higher
resolutions, like in a 4 × 5, 5 × 5, 4 × 7, or 5 × 7 LED matrix,
displays are needed to achieve better character readability. That
has to be analyzed.

But, which character representation should be chosen?
There are no standard fonts and tests are needed to achieve
distinct human readability. Figure 7 shows this difficulty for
the number nine in a 5× 7 LED matrix setting. But this holds
for the whole font and has to be analyzed seriously.

Figure 7. Digit 9 in five different illustrations in a 5× 7 font

Next, the principle illustration facilities of a 3 × 5 LED
matrix display are presented. Static characters:

1) Characters, e.g., alphabet shown in Figure 6
2) Special characters, e.g., dice symbols shown in Figure

8
3) Symbols, e.g., arrows, rectangle, box, horizontal and

vertical lines, etc.

Animated symbols:

4) Special characters, e.g., falling dice symbols
5) Symbols, like a falling arrow (picture frequency 200

ms), curtain up (picture frequency 200 ms), curtain
down (picture frequency 200 ms) and rotary dots (dot
frequency 200 ms) shown in the first row from left to
right in Figure 9 and helix construction (sequentially
build up dot by dot with dot frequency 200 ms), helix
destruction (sequentially build up dot by dot with dot
frequency 200 ms), o.k. symbol (sequentially build
up dot by dot with dot frequency 200 ms) and fail
symbol (sequentially build up dot by dot with dot
frequency 200 ms) shown in the second row from
left to right in Figure 9.

Not surprisingly, animated symbols like falling arrows and
rectangles, dynamic curtains, circling dots, etc. seem to be very
intelligible to the user and compensate for the low resolution
to some degree. Animated symbols seem to be a suitable

Figure 8. Digits 1 up to 6 as dice symbol

69

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Animated symbols

alternative to text output to indicate card states and to give
feedback information to the user.

This project showed that even a very restricted 3×5 LED-
matrix display enables the presentation of a large range of
characters and symbols, especially, when static and dynamic
(animations) effects are exploited. Our first test results indi-
cated that even symbols need to be chosen very carefully and
have to be explained to the user in detail in order to achieve
a high recognition rate. If it is possible to use symbols which
are intelligible to all, they should be applied in any case.

Additionally, we tried to output short words (e.g., on, off,
etc. . . .) by sequentially displaying the characters of the word
(rapid serial visual presentation of characters). The test users
had enormous problems to read and identify even very short
words depicted as sequence of letters, when they did not know
the displayed word beforehand. In consequence, this approach
does not seem to be suitable for displaying words. A known
alternative for displaying text in a LED-matrix is of course
based on scrolling text.

3) LED-Matrix Display for Srolling Text: The lower bound
from a human readability perspective seems to be more or less
displaying at least 2 clearly separated characters at a time. For
a 5 × 5 font a 11 × 5 LED matrix display is needed to fulfil
this requirement. Such a card layout is shown in Figure 10.
This card is intended to perform user tests of scrolling text.
Therefore, this card is equipped with a slider component and
buttons for card configuration. Especially, the slider component
provides user controlled repeatability of already shown text
(here by swiping the finger to the left).

Figure 10. Layout of a smart card with 11× 5 LED matrix display and
slider component to perform user tests of scrolling text

Concerning the real application of the LED-matrix display
numerous questions arise: Which font with which size should
be used, what is the adequate speed for the displayed informa-
tion and how many characters are to be displayed each time?
These are specific questions, which we started to investigate
in our latest studies.

Due to readability issues the majority of our testing group
would prefer higher resolution fonts like 4×7 or 5×7 instead
of 3 × 5, 4 × 5, or 5 × 5 and conceive the slider component
as very helpful especially if a sequence of digits (e.g., Tel-Nr.:
“0228999582”) or random characters (e.g., “H7FZ84Q2H07”)
is shown. Furthermore, the impression is given that short
texts (e.g., “PIN”) or longer semantic texts (e.g., “BITTE PIN
EINGEBEN FUER ANMELDUNG”) can be read quite well.
It turned out that a scroll speed of 52 characters per minute
(cpm) instead of 95 or 38 cpm is comfortable for most of our
test subjects.

If longer texts have to be displayed, scrolling text with
LEDs has its limits. For such applications, rapid serial visual
presentation seems to be much more adequate as we will
present in the following example.

a) Matrix-Display for Rapid Serial Visual Presentation:
Rapid Serial Visual Presentation (RSVP) uses the phenomenon
that presenting a text word after word while keeping the centre
of each word on the same spot in the display reduces the
necessity for eye-movements and thereby can speed up the
reading speed significantly. Studies have shown that with little
training reading speeds of 1000 words per minute (wpm) and
more are possible. Hence, this technique could be the ideal
solution for smart cards with a one word display in applications
where it could be necessary to read longer legal or technical
instructions.

Figure 11. Layout of a smart card with a display for rapid serial visual
presentation to perform user tests

Figure 11 shows an example for user tests of rapid serial
visual presentation. The simulated smart card is equipped with
a fast matrix display and buttons to configure the parameters
of the test.

Concerning the real application of a display for RSVP,
precise requirements have to be analyzed. This includes the
useable font and the size, adequate speed for the displayed
information, color of the central character of a word to fix the
eyes to this position etc.

Result of the case study with the test group: The majority
of the group enjoyed the following text configuration: largest
font of 20 point instead of 16 or 12 point and a printing

70

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

rate of about 150 words per minute (wps) instead of 140
wps or 270 wps, font latin instead of courier and red color
for the character marker, see Figure 11. Long text (e.g.,
“DAS IST EIN TEST TEXT. WIR KOENNEN KURZE WO-
ERTER UND LANGE WOERTER WIE DONAUDAMPF-
SCHIFFFAHRTSKAPITAEN NUTZEN. WIR KOENNTEN
UNS AUCH EINEN BESSEREN TEXT AUSSUCHEN”) is
very well conceivable. But a problem arises if words do not fit
completely into the display (e.g., “DONAUDAMPFSCHIFF-
FAHRTSKAPITAEN”). Then the word has to be split into parts
and the parts have to be displayed sequentially. Humans can
read complete words in a RSVP very well. But this is not
the case if only parts of words are sequentially displayed very
rapidly.

b) Matrix-Display for Graphics: The most flexible (and
technically most challenging) display type for a smart card is
of course a high resolution matrix display. ID-Cards or driver
licence cards are typically equipped with a printed photo of
the face of the legitimate user. This static photo binds the card
permanently to one user and can only illustrate one perspective.
A matrix display would make such a smart card reusable
while also providing different views of the face and additional
information about the user. This is very helpful for a manual
inspection of the legitimate user. But again questions arise:
which display resolution is necessary and what is the required
update rate? Another application of a matrix display is to show
bar codes. Bar codes can be used for optical data transmission
from a smart card to a terminal for automatic data recognition
and data processing. Which display size and which resolution
is needed? Again, this can be easy implemented and tested
with SCUIDSim.

C. On-Card User Input Components
A complete on card interface needs input components as

well as displays. Since in early studies almost all known button
technologies with a sensible pressure point or any other kind of
haptic feedback share the disadvantage to reduce the physical
integrity of the smart card body, capacitive sensors are an
almost ideal alternative. They are cheap and easy to integrate
into a smart card and can even be used as 2D-touch sensors
for complex gesture inputs - they just do not provide any kind
of feedback. With such input components the aspect of visual
design and user guidance is the most important issue. Also,
parameters like the reading rate and resolution can be a crucial
factor for the success of a specific application. Is the input
component intended for the use of numbers like PINs or one
time passwords (strings up to 16 random characters) or control
instructions for applications? So, the real input requirements
are again application specific and have to be tested in regard
of user understanding and awareness.

1) Buttons: The test card in Figure 10 uses the preconfig-
ured buttons of SCUIDSim. But what is an adequate button
design regarding size, distance between buttons for precise
operation, color, or the user feedback in case the button is
pressed? Again these design issues have to be analyzed in
future studies.

2) One Character Display Input: In Section IV-B2, we
have shown that a 3× 5 LED matrix can be sufficient if only
digits are used. Figure 12 shows a smart card with a 3 × 5
LED matrix for illustrating only one-character and a slider
component for user input. With wiping gestures the user can

Figure 12. Layout of a smart card with a 3 × 5 LED matrix display and
slider component to perform user inputs

scroll through the characters of the alphabet and a long touch
(e.g., ≥ 1 second) selects the currently displayed character
for input. User control and feedback (e.g., about the current
position within a PIN, error or success messages, etc.) can
be given with a variety of generally accepted static or even
animated symbols. Such control and feedback concepts can
again be implemented and tested based on SCUIDSim with
users under conditions that are in many aspects very similar
to real cards. In [1], a case study on user authentication based
on a PIN is given for the card configuration shown in Figure
12.

3) One Character Gesture Input: In recent years, 2D
finger-gestures became the favoured control concept for oper-
ating (smart-)phones. This very flexible, intuitive and therefore
widely accepted input interface has also the huge advantage to
be integrable into a smart card in a relatively cheap and easy
way. In [6], a first real smart card prototype with such a gesture
input component is presented. The sensor is a capacitive touch
matrix with the size of 40 x 40 mm and is able to calculate the
position of a finger-sensor contact with a resolution of 6-7 bits
(which results in 64 to 128 distinguishable positions for each
axis, or about 80 DPI) with a sampling rate of one point every
16ms. Gestures are recognized by the touch sensor as a time
series of touch point coordinates within the active area. In that
way, stroke directions and complex gestures can be detected.
In contrast to a keypad a gesture interface is not restricted to
input digits or characters. But it requires some form of on-
line character recognition. On-line character recognition has
to process and recognize the handwriting in real-time, ideally
while the writing is still ongoing [21], in order to reduce
delays. The process of character recognition can be divided
into three general steps:

1) pre-processing of the input character information
2) extraction of the character features and
3) classification of the input character

Due to the primary application of smart cards, the recogni-
tion of digits (for the input of a PIN or a OneTimePassword)
and control commands to operate a card are very important.
But again it has to be analyzed which specific pre-processing,
feature extraction and classification mechanisms are adequate
for the mentioned characters and can be implemented on a
very resource restricted device like a smart card. This task
becomes particularly difficult if the card should detect the
input of as many people as possible. In the master thesis [22],

71

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Layout of a smart card with a gesture component to perform user
inputs

our simulation approach was used to develop and compare
suitable gesture recognition algorithms with the focus on the
reduced computing capability and memory resources of a smart
card with good first results for small and middle sized sets of
character and command gestures. Figure 14 shows an example
for a set of predefined digits, while Figure 15 shows a subset
of predefined control commands that have been used in this
study. The concept of predefining the allowed alphabet for
simplifying handwriting recognition was firstly introduced by
Palm Inc. in their handwriting recognition software called
Graffiti. The set of predefined digits [0 - 9] introduced here is
similar to a simplified version of Graffiti.

Pre-Processing: The main purpose of pre-processing is to
improve the input data to make the recognition process easier
and more reliable, e.g., by removing irrelevant information
from the sensor input which might have a negative effect
on the character recognition [23]. The most important pre-
processing techniques for online handwritten characters are:
”filtering”(e.g., ”noise reduction”), ”rotation”, ”size normal-
ization” and ”filling”. Noise produced by the touch sensor
may result in duplicate or erratic data points [24]. Filtering
is applied to remove this kind of input data [25]. Rotation
is needed to obtain an aligned representation of the inserted
gesture. Users do not put in handwritten characters in exact
the same size. Especially, when pixel based feature extraction
is applied, this can have a negative affect on the character
classification. So, size normalization is performed to obtain
characters of uniform size [26]. Touch sensors have only a
limited sampling rate. Depending on the user’s writing speed
touch points may differ in the distance. The pre-processing
technique ”filling” eliminates small gaps and holes. There
exists a lot of algorithms to deal with filling, e.g., Bresenham’s
line algorithm [27]. Further complex pre-processing techniques
needed for off-line character recognition such as character
isolation, line and word detection, etc., very often have high
demands for memory and/or a capable CPU and, therefore, are
not suitable in our context.

Feature Extraction: Feature extraction is the process of
identifying essential characteristics in the representation of
the given characters. Two classes of feature extraction meth-

Figure 14. Predefined digits 0 to 9 for easier PIN recognition. A red dot
marks the beginning of an episode

Figure 15. Predefined control gestures. A red dot marks the beginning of an
episode

ods are distinguished: structural characteristics and statistical
characteristics. Usually, feature extraction methods based on
structural analysis provide a high tolerance to distortions and
style variations [28]. A statistical analysis extracts statistical
distribution of points, e.g., in multiple zones by dividing the
character image into several overlapping or non-overlapping
sub-images. Next, e.g., the percentage or density of black
points in each sub-image [29] is calculated. As an alternative,
the distance of black points from a given boundary, such as
the upper and lower portion of the character, can be used as
statistical feature [30].

Classification: During classification an unknown input
character image is assigned to its corresponding character class
based on a metric [26]. Due to the needed memory and CPU
requirements only following character recognition classes are
analyzed.

• Pixel Matching: In general, pixel matching determines
to which degree the pixel representation of the given
input character image corresponds to a pixel repre-
sentation of a character of the defined character set
[31]. For large character sets pixel matching will not
provide high recognition rates because the character
classes overlap [32].

• Decision Tree: Decision trees are tree-like graphs
constructed of multiple decisions and their possible
outcome [33]

• Random Forest: Basically, random forest are a com-
bination of several random trees. The idea goes back
to Leo Breiman [34]

• k-Nearest Neighbors Algorithm (k-NN): The k-nearest
neigbors algorithms calculates the distance of the

72

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

feature vector of the input character image to all
sample feature vectors in a character set [35].

Due to the necessary training effort and memory require-
ments artificial neural networks and support vector machines
(SVM) often used for such classification purposes are generally
problematic and have not been investigated in this study. To
correctly compare recognition results and to identify the most
suitable recognition system a fixed test procedure is used. For
the class of predefined digits 0 . . . 9 the detection rate differs
from 65.4% (pixel matching) to 98.1 % (random forest). For
control gestures the detection rate differs from 60.8% (pixel
matching) to 90% (random forest). Moreover, estimations are
given concerning memory consumption and calculation time
for the mentioned feature extraction and character recognition
algorithms.

Now, SCUIDSim can be used to analyze and optimize
feature extraction and character recognition algorithms as well
as to determine the needed resources for a given target platform
(CPU speed, RAM, etc.), if specific character recognition rates
have to be assured. Moreover, SCUIDSim can again be utilized
to test the usability aspects and the general acceptance of
gesture based on-card authentication concepts with a number
of applicants in order to test for aspects like: acceptable size
of a touch-interface on a smart card, necessary resolution and
speed of a 2D-touch sensor and also visual design aspects for
clear user guidance.

D. Technical Implementation of Real Smart Card Prototypes
Obviously, not all analyzed user requirements for input

and output components are directly realizable in regard to the
current state of technology and the energy and cost constraints.
In these cases, some further investigation is necessary in order
to find a feasible trade-off. We intentionally analyzed different
LED matrix displays instead of modern OLED-displays or
printed electronics. Contrary to bendable OLED displays and
printed displays, real LEDs are available at the market and our
prototypes are technically implementable today.

V. CONCLUSION

In this paper, we present how the tool SCUIDSim can
be used for rapid development and simulation of smart card
user interfaces and applications. It is utilizable for early
considerations of user handling requirements and overall user
acceptance of user interfaces before a time-consuming and
costly prototype development has to be started. Especially,
card designs and application modifications are performed very
quickly in software without any hardware modification. This
reduces the need for development of smart card prototypes
for early considerations and speeds up the whole development
process.

Within this paper different specific input and output ap-
proaches are presented. First, different LED n × m matrix
displays are described. Surprisingly, even a very restricted
3 × 5 LED matrix display enables the presentation of digits
and a large range of symbols especially when static and
dynamic (animations) effects are exploited. Next, a 5×11 LED
matrix is presented for scrolling text. This restricted display
enables reading words and short sentences although only two
characters were presented at each time in this display format.
Surprisingly, this form of text presentation was acceptable for
the majority of test users. This is a very interesting result and

we will further investigate this type of presentation. For long
text passages, a display for rapid serial visual presentation is
illustrated. RSVP means that words of a text are displayed
sequentially at the same place at a display. Users can read
even long text in this kind of display. These results show that
even long texts can be displayed in very restricted displays if
necessary. Regarding user inputs, we introduce a one character
display input based on a 3 × 5 LED-matrix display and one
character input based on flexible gestures. The latter enables
the input of control commands as shown in Section IV-C3,
too. This concept opens totally new usability concepts of
smart cards if acceptable character recognition rates can be
achieved. Especially, it is shown that even the analysis of
feature extraction and character recognition algorithms can be
supported by the tool SCUIDSim.

VI. ACKNOWLEDGEMENT

The authors would like to thank our students Anton Buzik,
Tim Ludemann, Alexander Kreth and David Sosnitza for
their support implementing SCUIDSim, Martin Klöckner for
the analysis of feature extraction and character recognition
algorithms as well as our colleagues Sven Freud and Chris-
tian Wieschebrink for valuable remarks. Also thanks to the
anonymous reviewers for the valuable comments.

REFERENCES

[1] M. Ullmann and R. Breithaupt, “ScuidSim: A platform for smart card
user interface research, development and testing,” in The Fourth Interna-
tional Conference on Ambient Computing, Applications, Services and
Technologies. AMBIENT 2014. IARIA, www.thinkmind.org, August
24 - 28, 2014 - Rome, Italy, pp. 82–87.

[2] Gerald V. Piasenka, and Thomas M. Fox, and Kenneth H. Schmidt,
“Solar cell powered smart card with integrated display and interface
keypad,” 1998, US patent US5777903.

[3] J. Fischer, F. Fritze, M. Tietke and M. Paeschke, “Prospects and
Callenges for ID Documents with Integrated Display,” in Proceedings
of Printed Electronics Europe Conference, 2009.

[4] Bundesdruckerei, “RFID Security Card with a One-Time Password and
LED Display,” 2013, www.rfidjournal.com/articles/10512.

[5] M. Ullmann, “Flexible visual display unit as security enforcing com-
ponent for contactless smart card systems,” in Firth International
EURASIP Workshop on RFID Technology (RFID 2007), 2007, pp. 87–
90.

[6] M. Ullmann, R. Breithaupt, and F. Gehring, “On-card user authenti-
cation for contactless smart cards based on gesture recognition,” in
Proceedings GI Sicherheit 2012, ser. Lecture Notes In Informatiks, no.
108, 2012, pp. 223–234.

[7] BDR, “Secudis Project,” 2012, http://www.bundesdruckerei.de/en/684-
innovative-high-security-solutions.

[8] “Thin chips for document security,” in Ultra-thin Chip Technology and
Applications, J. Burghartz, Ed., 2011.

[9] Taybet Bilkay, and Kerstin Schulze, and Tatjana Egorov-Brening, and
Andreas Bohn, and Silvia Janietz, “Copolythiophenes with Hydrophilic
and Hydrophobic Side Chains: Synthesis, Characterization, and Perfor-
mance in Organic Field Effect Transistors,” Macromolecular Chemistry
and Physics, vol. 213, September, 26 2012, pp. 1970–1978.

[10] P. Andersson, R. Forchheimer, P. Tehrani, and M. Berggren, “Printable
all-organic electrochromic active-matrix displays,” Advanced Functional
Materials, vol. 17, no. 16, 2007, pp. pp. 3074–3082. [Online]. Available:
http://dx.doi.org/10.1002/adfm.200601241

[11] PaperDisplay, “Printed Display Products,” 2013,
http://www.paperdisplay.se.

[12] K. Beilke and V. Roth, “Flexcos: An open smartcard platform for
research and education,” in Proceedings of the 6th International Con-
ference on Network and System Security, NSS 2012, ser. Lecture Notes
In Computer Science, no. 7645, 2012, pp. 277–290.

73

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[13] R. Ballagas, M. Ringel, M. Stone, and J. Borchers, “istuff: a physical
user interface toolkit for ubiquitous computing environments,” in Pro-
ceedings of the SIGCHI conference on Human factors in computing
systems. ACM, 2003, pp. 537–544.

[14] J. Borchers, M. Ringel, J. Tyler, and A. Fox, “Stanford interactive
workspaces: a framework for physical and graphical user interface
prototyping,” Wireless Communications, IEEE, vol. 9, no. 6, 2002, pp.
64–69.

[15] BSI, “SCUIDSim manual, version 0.3,” 2013.
[16] ISO/IEC, “ISO/IEC 144443 contactless Integrated Circuits Cards, Part

1-4: Physical Characteristics (1), Radio Frequency Power and Signal
Interface (2), Initialization and Anticollision (3) and, Transmission
Protocol (4),” 2000.

[17] ISO, “ISO-IEC 7816-X Identification Cards - Integrated Circuit Cards
with Contacts,” 2011.

[18] M. C. Potter, “Rapid serial visual presentation (rsvp): A method for
studying language processing,” New methods in reading comprehension
research, vol. 118, 1984, pp. 91–118.

[19] H.-C. Chen, “Effects of reading span and textual coherence on rapid-
sequential reading,” Memory & cognition, vol. 14, no. 3, 1986, pp.
202–208.

[20] G. S. Rubin and K. Turano, “Reading without saccadic eye movements,”
Vision research, vol. 32, no. 5, 1992, pp. 895–902.

[21] A. Drissman et al., “Handwriting recognition systems: An overview,”
1997.

[22] M. Klöckner, “Gesture Based On-Card User Authentication for Con-
tactless Smartcards,” Master Thesis, University Bochum, Bundesamt für
Sicherheit in der Informationstechnik (BSI), 2014.

[23] B. Q. Huang, Y. Zhang, and M.-T. Kechadi, “Preprocessing techniques
for online handwriting recognition,” in Intelligent Text Categorization
and Clustering. Springer, 2009, pp. 25–45.

[24] Charles C. Tappert, Ching Y. Suen and Toru Wakahara, “The State
of the Art in On-Line Handwriting Recognition,” IEEE Transaction on
Pattern Analysis and Machine Intelligence, vol. 12, no. 8, August 1990.

[25] N. Arica and F. T. Yarman-Vural, “An overview of character recognition
focused on off-line handwriting,” Systems, Man, and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on, vol. 31, no. 2,
2001, pp. 216–233.

[26] L. Eikvil, “Optical character recognition,” citeseer. ist. psu. edu/142042.
html, 1993.

[27] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Systems journal, vol. 4, no. 1, 1965, pp. 25–30.

[28] C. Y. Suen, M. Berthod, and S. Mori, “Automatic recognition of
handprinted charactersthe state of the art,” Proceedings of the IEEE,
vol. 68, no. 4, 1980, pp. 469–487.

[29] D. Hunt, “A feature extraction method for the recognition of handprinted
characters,” Machine Perception of Patterns and Pictures, London,
England: The Institute of Physics, 1972, pp. 28–33.

[30] R. M. Brown, “On-line computer recognition of handprinted characters,”
Electronic Computers, IEEE Transactions on, no. 6, 1964, pp. 750–752.

[31] J. LaViola, “A survey of hand posture and gesture recognition tech-
niques and technology,” Brown University, Providence, RI, 1999.

[32] R. Watson, “A survey of gesture recognition techniques,” Trinity College
Dublin, Department of Computer Science, Tech. Rep., 1993.

[33] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and regression trees. CRC press, 1984.

[34] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, 2001,
pp. 5–32.

[35] R. D. Short and K. Fukunaga, “The optimal distance measure for nearest
neighbor classification,” Information Theory, IEEE Transactions on,
vol. 27, no. 5, 1981, pp. 622–627.

74

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Real-Time and Distributed Applications for
Dictionary-Based Data Compression

Sergio De Agostino
Computer Science Department

Sapienza University
Rome, Italy

Email: deagostino@di.uniroma1.it

Abstract—The greedy approach to dictionary-based static
text compression can be executed by a finite state machine.
When it is applied in parallel to different blocks of data
independently, there is no lack of robustness even on standard
large scale distributed systems with input files of arbitrary
size. Beyond standard large scale, a negative effect on the
compression effectiveness is caused by the very small size of
the data blocks. A robust approach for extreme distributed
systems is presented in this paper, where this problem is
fixed by overlapping adjacent blocks and preprocessing the
neighborhoods of the boundaries. Moreover, we introduce
the notion of pseudo-prefix dictionary, which allows optimal
compression by means of a real-time semi-greedy procedure
and a slight improvement on the compression ratio obtained
by the distributed implementations.

Keywords-data compression; decoding; real time application;
distributed system; scalability; robustness

I. INTRODUCTION

Real time algorithms are very important in the field of
data compression, expecially during the decoding phase, and
further speed-up can be obtained by means of distributed
implementations. We studied these topics in the context of
lossless compression applied to one-dimensional data and
preliminary results were presented in [1] and [2].

Static data compression implies the knowledge of the in-
put type. With text, dictionary-based techniques are particu-
larly efficient and employ string factorization. The dictionary
comprises typical factors plus the alphabet characters in
order to guarantee feasible factorizations for every string.
Factors in the input string are substituted by pointers to
dictionary copies and such pointers could be either variable
or fixed length codewords. The optimal factorization is the
one providing the best compression, that is, the one mini-
mizing the sum of the codeword lengths. Efficient sequential
algorithms for computing optimal solutions were provided
by means of dynamic programming techniques [3] or by
reducing the problem to the one of finding a shortest path
in a directed acyclic graph [4]. From the point of view of
sequential computing, such algorithms have the limitation
of using an off-line approach. However, decompression is
still on-line and a very fast and simple real time decoder
outputs the original string with no loss of information.
Therefore, optimal solutions are practically acceptable for

read-only memory files where compression is executed only
once. Differently, simpler versions of dictionary-based static
techniques were proposed, which achieve nearly optimal
compression in practice (that is, less than ten percent loss).
An important simplification is to use a fixed length code for
the pointers, so that the optimal decodable compression for
this coding scheme is obtained by minimizing the number
of factors. Such variable to fixed length approach is robust
since the dictionary factors are typical patterns of the input
specifically considered. The problem of minimizing the
number of factors gains a relevant computational advantage
by assuming that the dictionary is prefix-closed (suffix-
closed), that is, all the prefixes (suffixes) of a dictionary
element are dictionary elements [5], [6], [7]. The left to right
greedy approach is optimal only with suffix-closed dictionar-
ies. An optimal factorization with prefix-closed dictionaries
can be computed on-line by using a semi-greedy procedure
[6], [7]. On the other hand, prefix-closed dictionaries are
easier to build by standard adaptive heuristics [8], [9]. These
heuristics are based on an ”incremental” string factorization
procedure [10], [11]. The most popular for prefix-closed
dictionaries is the one presented in [12]. However, the
prefix and suffix properties force the dictionary to include
many useless elements, which increase the pointer size
and slightly reduce the compression effectiveness. A more
natural dictionary with no prefix and no suffix property is the
one built by the heuristic in [13] or by means of separator
characters as, for example, space, new line and punctuation
characters with natural language.

Theoretical work was done, mostly in the nineties, to
design efficient parallel algorithms on a random access
parallel machine (PRAM) for dictionary-based static text
compression [14], [15], [16], [17], [18], [19], [20], [21],
[22]. Although the PRAM model is out of fashion today,
shared memory parallel machines offer a good computa-
tional model for a first approach to parallelization. When we
address the practical goal of designing distributed algorithms
we have to consider two types of complexity, the inter-
processor communication and the input-output mechanism.
While the input/output issue is inherent to any parallel
algorithm and has standard solutions, the communication
cost of the computational phase after the distribution of

75

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the data among the processors and before the output of
the final result is obviously algorithm-dependent. So, we
need to limit the interprocessor communication and involve
more local computation to design a practical algorithm. The
simplest model for this phase is, of course, a simple array
of processors with no interconnections and, therefore, no
communication cost. Parallel decompression is, obviously,
possible on this model [17]. With parallel compression, the
main issue is the one concerning scalability and robustness.
Traditionally, the scale of a system is considered large
when the number of nodes has the order of magnitude of a
thousand. Modern distributed systems may nowadays consist
of hundreds of thousands of nodes, pushing scalability well
beyond traditional scenarios (extreme distributed systems).

In [23], an approximation scheme of optimal compres-
sion with static prefix-closed dictionaries was presented
for massively parallel architectures, using no interprocessor
communication during the computational phase since it is
applied in parallel to different blocks of data independently.
The scheme is algorithmically related to the semi-greedy
approach previously mentioned and implementable on ex-
treme distributed systems because adjacent blocks overlap
and the neighborhoods of the boundaries are preprocessed.
However, with standard large scale the overlapping of the
blocks and the preprocessing of the boundaries are not
necessary to achieve nearly optimal compression in practice.
Furthermore, the greedy approach to dictionary-based static
text compression is nearly optimal on realistic data for
any kind of dictionary even if the theoretical worst-case
analysis shows that the multiplicative approximation factor
with respect to optimal compression achieves the maximum
length of a dictionary element [9]. If the dictionary is
well-constructed by relaxing the prefix property, the loss
of greedy compression can go down to one percent with
respent to the optimal one. In this paper, we relax the prefix
property of the dictionary and present two implementations
of the greedy approach to static text compression with an
arbitrary dictionary on a large scale and an extreme dis-
tributed system, respectively. Moreover, we present a finite-
state machine implementation of greedy static dictionary-
based compression with an arbitrary dictionary that can be
relevant to achieve high speed with standard scale distributed
systems. We wish to point out that scalability cannot be
guaranteed with adaptive dictionary approaches to data
compression, as the sliding window method [24] or the
dynamic one [11]. Indeed, the size of the data blocks over
the distributed memory of a parallel system must be at least
a few hundreds kylobytes in both cases, that is, robustness is
guaranteed with scalability only with very large files [14],
[26]. This is still true with improved variants employing
either fixed-lenght codewords [27], [28] or variable-length
ones [29], [30], [31], [32], [33].

Finally, we introduce pseudo-prefix and pseudo-suffix
dictionaries and show that the algorithms computing optimal

factorizations with suffix-closed and prefix-closed dictionar-
ies still work. The advantage of using pseudo-prefix and
pseudo-suffix dictionaries is that we add to an arbitrary
dictionary only those prefixes or suffixes needed to guar-
antee the correctness of the optimal solution. This implies
a slight improvement on the compression ratio obtained
by the distributed implementations. Moreover, we show
the impossibility of real-time optimal factorizations if the
dictionary is arbitrary.

In Section II, we describe the different approaches to
dictionary-based static text compression. The previous work
on parallel approximations of optimal compression with
prefix-closed dictionaries is given in Section III. Section IV
shows the finite-state machine and the two implementations
of the greedy approach for arbitrary dictionaries. Experi-
ments are discussed in Section V. Section VI presents the no-
tion of pseudo-prefix and pseudo-suffix dictionaries, where
theoretical and further experimental results are discussed.
Conclusions and future work are given in Section VII.

II. DICTIONARY-BASED STATIC TEXT COMPRESSION

As mentioned in the introduction, the dictionary com-
prises typical factors (including the alphabet characters)
associated with fixed or variable length codewords. The
optimal factorization is the one minimizing the sum of the
codeword lengths and sequential algorithms for computing
optimal solutions were provided by means of dynamic
programming techniques [3] or by reducing the problem to
the one of finding a shortest path in a directed acyclic graph
[4]. When the codewords are fixed-length, with suffix-closed
dictionaries we obtain optimality by means of a simple left
to right greedy approach, that is, advancing with the on-line
reading of the input string by selecting the longest matching
factor with a dictionary element. Such a procedure can be
computed in real time by storing the dictionary in a trie
data structure. If the dictionary is prefix-closed, there is an
optimal semi-greedy factorization which is computed by the
procedure of Figure 1 [6], [7]. At each step, we select a
factor such that the longest match in the next position with
a dictionary element ends to the rightest. Since the dictionary
is prefix-closed, the factorization is optimal. The algorithm
can even be implemented in real time with a modified trie
data structure [7].

j:=0; i:=0
repeat forever

for k = j + 1 to i + 1 compute

h(k): xk...xh(k) is the longest match in the kth position
let k′ be such that h(k′) is maximum

xj ...xk′−1 is a factor of the parsing; j := k′; i := h(k′)

Figure 1. The semi-greedy factorization procedure.

The semi-greedy factorization can be generalized to any
dictionary by considering only those positions, among the

76

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ones covered by the current factor, next to a prefix that
is a dictionary element [6]. The generalized semi-greedy
factorization procedure is not optimal while the greedy one
is not optimal even when the dictionary is prefix-closed. The
maximum length of a dictionary element is an obvious upper
bound to the multiplicative approximation factor of any
string factorization procedure with respect to the optimal so-
lution. We show that this upper bound is tight for the greedy
and semi-greedy procedures when the dictionary is arbitrary
and that such tightness is kept by the greedy procedure
even for prefix-closed dictionaries. Let baban be the input
string and let {a, b, bab, ban} be the dictionary. Then, the
optimal factorization is b, a, ban while bab, a, a, ..., a, ...a is
the factorization obtained whether the greedy or the semi-
greedy procedure is applied. On the other hand, with the
prefix-closed dictionary {a, b, ba, bab, bak : 2 ≤ k ≤ n},
the optimal factorization ba, ban is computed by the semi-
greedy approach while the greedy factorization remains the
same. These examples, obviously, prove our statement on
the tightness of the upper bound.

III. PREVIOUS WORK

Given an arbitrary dictionary, for every integer k greater
than 1 there is an O(km) time, O(n/km) processors dis-
tributed algorithm factorizing an input string S with a cost
which approximates the cost of the optimal factorization
within the multiplicative factor (k+m−1)/k, where n and
m are the lengths of the input string and the longest factor
respectively [14]. However, with prefix-closed dictionaries a
better approximation scheme was presented in [23], produc-
ing a factorization of S with a cost approximating the cost
of the optimal factorization within the multiplicative factor
(k + 1)/k in O(km) time with O(n/km) processors. This
second approach was designed for massively parallel archi-
tecture and is suitable for extreme distributed systems, when
the scale is beyond standard large values. On the other hand,
the first approach applies to standard small, medium and
large scale systems. Both approaches provide approximation
schemes for the corresponding factorization problems since
the multiplicative approximation factors converge to 1 when
km converge to n. Indeed, in both cases compression is
applied in parallel to different blocks of data independently.
Beyond standard large scale, adjacent blocks overlap and the
neighborhoods of the boundaries are preprocessed.

To decode the compressed files on a distributed system,
it is enough to use a special mark occurring in the sequence
of pointers each time the coding of a block ends. The input
phase distributes the subsequences of pointers coding each
block among the processors. Since a copy of the dictionary
is stored in every processor, the decoding of the blocks
is straightforward. In the following two subsections, we
describe the two approaches. Then, how to speed up the
preprocessing phase of the second approach is described in
the last subsection. Next section will argue that we can relax

the requirement of computing a theoretical approximation of
optimal compression since, in practice, the greedy approach
is nearly optimal on data blocks sufficiently long. On the
other hand, when the blocks are too short because the scale
of the distributed system is beyond standard values, the
overlapping of the adjacent blocks and the preprocessing
of the neighborhoods of the boundaries are necessary to
garantee the robustness of the greedy approach.

A. Standard Scale Distributed Systems

We simply apply in parallel the optimal compression
to blocks of length km. Every processor stores a copy
of the dictionary. For an arbitrary dictionary, we execute
the dynamic programming procedure computing the optimal
factorization of a string in linear time [3] (the procedure in
[4] is pseudo-linear for fixed-length coding and, even, super-
linear for variable length). Obviously, this works for prefix-
and suffix-closed dictionaries as well and, in any case, we
know the semi-greedy and greedy approaches are imple-
mentable in linear time. It follows that the algorithm requires
O(km) time with n/km processors and the multiplicative
approximation factor is (k +m− 1)/k with respect to any
factorization. Indeed, when the boundary cuts a factor the
suffix starting the block and its substrings might not be in
the dictionary. Therefore, the multiplicative approximation
factor follows from the fact that m − 1 is the maximum
length for a proper suffix as shown in Figure 2 (sequence of
plus signs in parentheses). If the dictionary is suffix-closed,
the multiplicative approximation factor is (k + 1)/k since
each suffix of a factor is a factor.

+(+++++++)
———————/——————————–

Figure 2. The making of the surplus factors.

The approximation scheme is suitable only for standard
scale systems unless the file size is very large. In effect, the
block size must be in the order of kilobytes to guarantee
robustness. Beyond standard large scale, overlapping of
adjacent blocks and a preprocessing of the boundaries are
required as we will see in the next subsection.

B. Beyond Standard Large Scale

With prefix-closed dictionaries a better approximation
scheme was presented in [23]. During the input phase
blocks of length m(k + 2), except for the first one and
the last one that are m(k + 1) long, are broadcasted to
the processors. Each block overlaps on m characters with
the adjacent block to the left and to the right, respectively
(obviously, the first one overlaps only to the right and the
last one only to the left). We call a boundary match a factor

77

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

covering positions in the first and second half of the 2m
characters shared by two adjacent blocks. The processors
execute the following algorithm to compress each block:

• for each block, every corresponding processor but
the one associated with the last block computes the
boundary match between its block and the next one
ending furthest to the right, if any;

• each processor computes the optimal factorization from
the beginning of its block to the beginning of the
boundary match on the right boundary of its block (or
the end of its block if there is no boundary match).

++(++++++)
———————/——————————–

xxxxxxxxxxx
..................

Figure 3. The making of a surplus factor.

Stopping the factorization of each block at the beginning
of the right boundary match might cause the making of
a surplus factor, which determines the multiplicative ap-
proximation factor (k + 1)/k with respect to any other
factorization. Indeed, as it is shown in Figure 3, the factor
in front of the right boundary match (sequence of x’s) might
be extended to be a boundary match itself (sequence of
plus signs) and to cover the first position of the factor after
the boundary (dotted line). Then, the approximation scheme
produces a factorization of S with a cost approximating the
cost of the optimal factorization within the multiplicative
factor (k + 1)/k in O(km) time with O(n/km) processors
(we will see in the next subsection how the preprocessing
can be executed in O(m) time).

In [23], it is shown experimentally that for k = 10 the
compression ratio achieved by such factorizarion is about the
same as the sequential one and, consequently, the approach
is suitable for extreme distributed systems, as we will explain
in the next section.

C. Speeding up the Preprocessing

The parallel running time of the preprocessing phase
computing the boundary matches is O(m2) by brute force.
To lower the complexity to O(m), an augmented trie data
structure is needed [1]. For each node v of the trie, let
f be the dictionary element corresponding to v and a an
alphabet character not represented by an edge outgoing
from v. Then, we add an edge from v to w with label a,
where w represents the longest proper suffix of fa in the
dictionary. Each processor has a copy of this augmented
trie data structure and first preprocess the 2m characters

overlapped by the adjacent block on the left boundary and,
secondly, the ones on the right boundary. In each of these
two sub-phases, the processors advance with the reading of
the 2m characters from left to right, starting from the first
one while visiting the trie starting from the root and using
the corresponding edges. A temporary variable t2 stores the
position of the current character during the preprocessing
while another temporary variable t1 is, initially, equal to t2.
When an added edge of the augmented structure is visited,
the value t = t2−d+1 is computed where d is the depth of
the node reached by such edge. If t is a position in the first
half of the 2m characters, then t1 is updated by changing its
value to t. Else, the procedure stops and t2 is decreased by
1. If t2 is a position in the second half of the 2m characters
then t1 and t2 are the first and last position of a boundary
match, else there is no boundary match.

IV. THE GREEDY APPROACH

We provide a finite-state machine implementation of the
greedy approach with an arbitrary dictionary. Then, we show
the two implementations on standard large scale and extreme
distributed systems.

A. The Finite-State Machine Implementation

We show the finite-state machine implementation pro-
ducing the on-line greedy factorization of a string with
an arbitrary dictionary. The most general formulation for
a finite-state machine M is to define it as a six-tuple
M = (A,B,Q, δ, q0, F) with an input alphabet A, an
output alphabet B, a set of states Q, a transition function
δ : QxA → QxB∗, an initial state q0 and a set of accepting
states F ⊆ Q. The trie storing the dictionary is a subgraph
of the finite-state machine diagram. It is well-known that
each dictionary element is represented as a path from the
root to a node of the trie where edges are labeled with an
alphabet character (the root representing the empty string).
The edges are directed from the parent to the child and the
set of nodes represent the set of states of the machine. The
output alphabet is binary and the factorization is represented
by a binary string having the same length as the input
string. The bits of the output string equal to 1 are those
corresponding to the positions where the factors start. Since
every string can be factorized, every state is accepting. The
root represents the initial state. We need only to complete the
function δ, by adding the missing edges of the diagram. The
empty string is associated as output to the edges in the trie.
For each node, the outgoing edges represent a subset of the
input alphabet. Let f be the string (or dictionary element)
corresponding to the node v in the trie and a an alphabet
character not represented by an edge outgoing from v. Let
fa = f1 · · · fk be the on-line greedy factorization of fa and
i the smallest index such that fi+1 · · · fk is represented by a
node w in the trie. Then, we add to the trie a directed edge
from v to w with label a. The output associated with the

78

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

edge is the binary string representing the sequence of factors
f1 · · · fi. By adding such edges, the machine is entirely
defined. Redefining the machine to produce the compressed
form of the string is straightforward.

B. The Distributed Implementations

In practice, greedy factorization is nearly optimal. As
a first approach, we simply apply in parallel left to right
greedy compression to blocks of length km. With standard
scale systems, the block size must be the order of kilobytes
to guarantee robustness. Each of the O(n/km) processors
could apply the finite-state machine implementation to its
block. Beyond standard large scale, overlapping of adjacent
blocks and a preprocessing of the boundaries are required
as for the optimal case. Again, during the input phase
overlapping blocks of length m(k + 2) are broadcasted
to the processors as in the previous section. On the other
hand, the definition of boundary match is extended to
those factors, which are suffixes of the first half of the 2m
characters shared by two adjacent blocks. The following
procedure, even if it is not an approximation scheme from
a theoretical point of view, performs in a nearly optimal way:

• for each block, every corresponding processor but the
one associated with the last block computes the longest
boundary match between its block and the next one;

• each processor computes the greedy factorization from
the end of the boundary match on the left boundary of
its block to the beginning of the boundary match on
the right boundary.

The approach is nearly optimal for k = 10, as the approx-
imation scheme of the previous section. The compression
ratio achieved by such factorizarion is about the same as
the sequential one. Considering that typically the average
match length is 10, one processor can compress down to 100
bytes independently. This is why the approximation scheme
was presented for massively parallel architecture and the
approach, presented in this section, is suitable for extreme
distributed systems, when the scale is beyond standard large
values. Indeed, with a file size of several megabytes or
more, the system scale has a greater order of magnitude
than the standard large scale parameter. We wish to point
out that the computation of the boundary matches is very
relevant for the compression effectiveness, when an extreme
distributed system is employed, since the sub-block length
becomes much less than 1K. With standard large scale
systems the block length is several kilobytes with just a few
megabytes to compress and the approach using boundary
matches is too conservative. After preprocessing, each of
the O(n/km) processors could apply the finite-state machine
implementation to its block. However, blocks are so short
that it becomes irrelevant. On the other hand, with standard

scale systems and very large size files the application of the
finite-state machine in parallel to the distributed blocks plays
an important role to achieve high speed.

C. Speeding up the Preprocessing

To lower the time of the preprocessing phase to O(m),
the same augmented trie data structure, described in the
previous section, is needed but, in this case, the boundary
matches are the longest ones rather than the ones ending
furthest to the right. Then, besides the temporary variables
t1 and t2, employed by the preprocessing phase described
in the previous section, two more variables τ1 and τ2 are
required and, initially, equal to t1 and t2. Each time t1 must
be updated by such preprocessing phase, the value t2−t1+1
is compared with τ2 − τ1 before updating. If it is greater or
τ2 is smaller than the last position of the first half of the 2m
characters, τ1 and τ2 are set equal to t1 and t2−1. Then, t1
is updated. At the end of the procedure, τ1 and τ2 are the
first and last positions of the longest boundary match. We
wish to point out that there is always a boundary match that
is computed, since the final value of τ2 always corresponds
to a position equal either to one in the second half of the
2m characters or to the last position of the first half.

V. EXPERIMENTAL RESULTS

Suffix-closed and prefix-closed dictionaries have been
considered in static data compression because they are
constructed by the LZ77 [24] and LZ78 [11] adaptive
compression methods, when reading a typical string of a
given source of data. When the input string to compress
matches the characteristics of a dictionary given in advance
and already filled with typical factors, the advantage in
terms of compression efficiency is obvious. However, the
bounded size of the dictionary (typically, 216 factors) and
its static nature imply a lack of robustness and the adaptive
methods might result more effective in some cases, even
if the type of data is known and the dictionary is very
well constructed. We experimented this with the ”compress”
command line on the Unix and Linux platforms, which is
the implementation of a variant of the LZ78 method, called
the LZC method. LZC builds a prefix-closed dictionary of
216 factors while compressing the data. When the dictio-
nary is full, it applies static dictionary greedy compression
monitoring at the same time the compression ratio. When the
compression ratio starts deteriorating, it clears the dictionary
and restarts dynamic compression alternating, in this way,
adaptive and non-adaptive compression. We experimented
that, when compressing megabytes of english text with a
static prefix-closed dictionary optimally, there might be up
to a ten percent loss in comparison with the compression
ratio of the LZC method [23]. However, as we pointed out
earlier, there is no scalable and robust implementation of the
LZC method on a distributed memory system (except for
the static phase of the method as shown in [26]), while a

79

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

nearly optimal compression distributed algorithm is possible
with no scalability and robustness issues if we accept a ten
percent compression ratio loss as a reasonable upper bound
to the price to pay for it [23].

A prefix-closed dictionary D in [23] was filled up with
216 elements, starting from the alphabet (each of the 256
bytes). Then, for each of the most common subbstrings
listed in [9], every prefix of length less or equal to ten was
added to D. On the other hand, for each string with no
capital letters and less than eleven characters in the Unix
dictionary of words, we added every prefix of length less or
equal to six. For every word in the Unix dictionary inserted
in D, a space was concatenated at the end of the copy in
D. Another copy ending with the new line character was
inserted if the word length is less than six. Finally, it was
enough to add a portion of the words with six characters
plus a new line character to fill up D. The average optimal
compression ratio we obtained with this dictionary is 0.51,
while the greedy one is even 0.57. On the other hand,
the LZC average compression ratio is 0.42. It turned out
that both gaps are consistently reduced when the prefix
property of the dictionary is relaxed. A not prefix-closed
dictionary D′ was filled up with 216 elements, starting from
the alphabet and the 477 most common subbstrings listed in
[9]. Then, we added each string with no capital letters and
less than ten characters from the Unix dictionary of words.
Again, for every word in the Unix dictionary inserted in
D′, a space was concatenated at the end of the copy in
D′. Finally, it was enough to add a portion of short words
with a new line character at the end to fill up D′. With
such dictionary, the loss on the compression ratio goes down
from ten to five percent with respect to the adaptive LZC
compression. Moreover, the greedy approach has just a one
percent loss with respect to optimal, as shown in Figure 4.
This is because the dictionary is better constructed. In Figure
4, we also show the compression effectiveness results for the
two approaches with or without boundaries preprocessing
(that is, for an extreme or a standard distibuted system). The
two approaches perform similarly and have a one percent
loss with respect to sequential greedy, whether the dictionary
is prefix-closed or not.

Figure 4. Compression ratios with english text.

We observed in the introduction that for read-only mem-
ory files, speeding up decompression is what really matters
in practice. In this context, the results presented in this paper
suggest a dynamic approach (that is, working for any type
of input), where the dictionary is not given in advance but

learned from the input string and, then, used staticly to com-
press the string. This models a scheme where compression is
performed only once with an off-line sequential procedure
reading the string twice from left to right in such a way
that decompression can be parallelized with no scalability
issues. The first left-to-right reading is to learn the dictionary
and better ways than the LZC algorithm exist since the
dictionary provided by LZC, after reading the entire string,
is constructed from a relatively short suffix of the input. A
much more sophisticated approach employs the LRU (least
recently used) strategy [9]. With such strategy, after the
dictionay is filled up elements are removed in a continuous
way by deleting at each step of the factorization the least
recently used factor which is not a proper prefix of another
one. A relaxed version of this approach was presented in
[34], that is easier to implement, and experimental results
show that the compression ratio with this type of dictionary
goes down to 0.32 for english text [35]. This performance
is kept if the greedy approach is applied staticly during the
second reading of the string, using the dictionary obtained
from the first reading. Moreover, if the compression is
applied independently to different blocks of data of 1Kb or
to smaller blocks after the boundaries preprocessing, there
is still just a one percent loss on the compression ratio.

VI. PSEUDO-PREFIX AND PSEUDO-SUFFIX
DICTIONARIES

We partially relax the suffix and prefix properties to keep
respectively optimal the greedy and semi-greedy approaches
by introducing pseudo-suffix and pseudo-prefix dictionaries.
Then, we give an insight of why optimal factorizations can
be computed in real time with pseudo-prefix and pseudo-
suffix dictionaries while this is not possible if the dictionary
is arbitrary. Finally, we present experimental results using
pseudo-prefix dictionaries.

A. Introducing Pseudo-Prefix and -Suffix Dictionaries

Given a finite alphabet A, let p and s be a prefix and
a suffix of a string x ∈ A∗ such that x = ps. Then, we
call p the complementary prefix of s with respect to x.
Accordingly, we call s the complementary suffix of p with
respect to x. We say a dictionary D is pseudo-prefix if:

• let p be a prefix of x ∈ D such that the complementary
suffix s with respect to x is a prefix of an element in
D. Then, p ∈ D.

Accordingly, we say a dictionary is pseudo-suffix if:

• let s be a suffix of x ∈ D such that the complementary
prefix p with respect to x is a suffix of an element in
D. Then, s ∈ D.

80

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We prove, now, the optimality of the on-line greedy
factorization approach with pseudo-suffix dictionaries.

Theorem 1. Given a finite alphabet A, let D ⊆ A∗

be a pseudo-suffix dictionary. For every x ∈ A∗, the on-line
greedy factorization of x is optimal.

Proof. The pseudo-suffix property implies, as the suffix
property, that the on-line greedy approach selects, at each
step, the factor ending furthest to the right. Indeed, assume
that the factor selected by the greedy choice at the i-th
step of the process ends to the right of the i-th factor of
the optimal solution (which is always true at the first step).
Then, there is a suffix s of the i+1-th factor of the optimal
solution with a complementary prefix that is a suffix of
the factor selected by the greedy choice at the i-th step.
It follows that s is a dictionary element. Therefore, the
on-line greedy approach selects, at each step, the factor
ending furthest to the right and its optimality follows. q. e. d.

With the next theorem, we prove the optimality of the semi-
greedy factorization process with pseudo-prefix dictionaries.

Theorem 2. Given a finite alphabet A, let D ⊆ A∗

be a pseudo-prefix dictionary. For every x ∈ A∗, the
semi-greedy factorization of x is optimal.

Proof. The pseudo-prefix property implies, as the prefix
property, that the semi-greedy approach selects, at each step,
a factor such that the longest match in the next position
with a dictionary element ends to the rightest. This is true
at the first step, since for each suffix of the greedy factor
that is a prefix of a dictionary element the complementary
prefix is a dictionary element. Then, inductively, it is true
for every step and the optimality follows. q. e. d.

It follows from the two theorems above and the
results shown in the previous section that, as for prefix-
closed and suffix-closed dictionaries, real-time optimal
factorizations are possible with pseudo-prefix and pseudo-
suffix dictionaries. Moreover, an optimal factorization
using a pseudo-suffix dictionary is implementable with a
finite state machine. However, the making of a pseudo-
prefix dictionary is much simpler than the making of a
pseudo-suffix one. Indeed, let D be an arbitrary dictionary
stored in a trie and add prefixes of its elements to make it
pseudo-prefix. The most natural way to do this is to visit
the trie with a depth-first search. For each path from the
root to a node representing a string not in D, such string
is added to D if a descendant of the node is in D. The
running time for such procedure is about the dictionary size
times the depth of the trie.

B. Canonical Factors

We prove a property concerning optimal factorizations
with pseudo-prefix and pseudo-suffix dictionaries. This
property was previously proved for prefix-closed dictionaries
in [18] and it gives an insight of why optimal factorizations
can be computed in real time with this type of dictionary.
First, we prove the property for pseudo-prefix dictionaries.

Theorem 3. Given a finite alphabet A, let D ⊆ A∗

be a pseudo-prefix dictionary. Let k be the number of
factors of an optimal factorization of a string s ∈ A∗. Then,
for 1 ≤ i ≤ k, there is an optimal factorization such that
its i-th factor is a substring of the i-th factor of every other
optimal factorization of s.

Proof. First of all, given two optimal factorizations
s = f1

1 · · · f1
k = f2

1 · · · f2
k we prove that f1

i and f2
i overlap

for 1 ≤ i ≤ k. Given any substring f of s, denote with
first(f) and last(f) the first and the last position of
s covered by f . Then, suppose last(f2

i) < first(f1
i)

for some i with 1 < 1 < k. Let j be such that
first(f1

j) ≤ last(f2
i) ≤ last(f1

j). It follows from the
optimality of the two factorizations and the pseudo-prefix
property that last(f1

j) < last(f2
i+1). Denote with pref(f1

j)
the prefix of f1

j such that last(pref(f1
j)) = last(f2

i). Then,
pref(f1

j) ∈ D since D is pseudo-prefix. It follows that
the factorization f1

1 · · · f1
j−1pref(f

1
j)f

2
i+1 · · · f2

k comprises
less than k phrases since j < i. Therefore, f1

i and f2
i must

have a not empty intersection. Suppose now that, for every
optimal factorization s = f1 · · · fk, first(fi) ≤ first(f1

i)
and last(fi) ≥ last(f2

i). Denote with pref(f1
i) the

prefix of f1
i such that last(pref(f1

i)) = last(f2
i). Then,

pref(f1
i) ∈ D since D is pseudo-prefix. It follows that

f1
1 · · · f1

i−1pref(f
1
i)f

2
i+1 · · · f2

k is an optimal factorization
of s, with pref(f1

i) substring of the i-th factor of every
other optimal factorization. q. e. d.

In the next theorem, we prove the property for pseudo-suffix
dictionaries with similar arguments.

Theorem 4. Given a finite alphabet A, let D ⊆ A∗

be a pseudo-suffix dictionary. Let k be the number of
factors of an optimal factorization of a string s ∈ A∗. Then,
for 1 ≤ i ≤ k, there is an optimal factorization such that
its i-th factor is a substring of the i-th factor of every other
optimal factorization of s.

Proof. First of all, given two optimal factorizations
s = f1

1 · · · f1
k = f2

1 · · · f2
k we prove that f1

i and f2
i

overlap for 1 ≤ i ≤ k. Given any substring f of s,
denote with first(f) and last(f) the first and the last
position of s covered by f , as in Theorem 3. Then,
suppose last(f2

i) < first(f1
i) for some i with 1 < 1 < k.

81

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Let j be such that first(f1
j) ≤ last(f2

i) ≤ last(f1
j). It

follows from the optimality of the two factorizations and
the pseudo-suffix property that first(f1

j) > first(f2
i−1).

Denote with suff(f2
i) the suffix of f2

i such that
first(suff(f2

i)) = first(f1
j). Then, suff(f2

i) ∈ D
since D is pseudo-suffix. It follows that the factorization
f1
1 · · · f1

j−1suff(f
2
i)f

2
i+1 · · · f2

k comprises less than k
phrases since j < i. Therefore, f1

i and f2
i must have a not

empty intersection. Suppose now that, for every optimal
factorization s = f1 · · · fk, first(fi ≤ first(f1

i) and
last(fi) ≥ last(f2

i). Denote with suff(f2
i) the suffix

of f2
i such that first(suff(f2

i)) = first(f1
i). Then,

suff(f2
i) ∈ D since D is pseudo-suffix. It follows that

f1
1 · · · f1

i−1suff(f
2
i)f

2
i+1 · · · f2

k is an optimal factorization
of s, with suff(f2

i) substring of the i-th factor of every
other optimal factorization. q. e. d.

Given a finite alphabet A, a dictionary D ⊆ A∗ and
a string s ∈ A∗, let a string f ∈ A∗ be the i-th factor of
an optimal factorization of s with respect to D for some
positive integer i less or equal to the optimal cost k. Then,
we call f canonical if it is the substring of the i-th of every
other optimal factorization of s. We proved, in the two
theorems above, that if the dictionary is pseudo-prefix or
pseudo-suffix then, given any input string, for every positive
integer between 1 and the optimal factorization cost there
is a canonical factor. The presence of these cannical factors
gives an insight of why a real-time factorization is possible
for this type of dictionaries since it proves that in order to
determine the next factor of an optimal factorization we
need to process only the current one.

Now, we show the impossibility of a real-time optimal
factorization for every input string if the dictionary is
arbitrary, by presenting an example where the dictionary
is {a, b, ai, aj , ak(j−i)b2} with ki < j. Then, we consider
two strings s1 and s2 sharing the same prefix akj but
with two different complementary suffixes equal, respec-
tively, to ak(j−i)b2 and b2. Then, the optimal factorization
is aj , ..., aj , ak(j−i)b2 for s1 and ai, ..., ai, ak(j−i)b2 for
s2. This proves that any approach to produce an optimal
factorization is not independent from the maximum factor
length L of the dictionary and that the complexity of the
optimal factorization problem is Ω(nL), where n is the input
string length.

C. Experimental Results

The results presented in Figure 4 for a not prefix-closed
dictionary D′ are reported again in Figure 5 as results
for a not pseudo-prefix dictionary, since the dictionary D′

described in the previous section was not pseudo-prefix
as well. If we add prefixes to D′ to make it pseudo-
prefix, optimal compression is the same as before and
greedy is basically optimal (less than one percent loss),
as shown in Figure 5. We also show that the compression

effectiveness results for the pseudo-prefix dictionary with or
without boundaries preprocessing (that is, for an extreme or
a standard distibuted system) have a one percent loss with
respect to sequential greedy, so the pseudo-prefix dictionary
has a better performance.

Figure 5. Compression ratios with english text.

Now, we consider the off-line dynamic approach reading
twice the input, which can be applied in the case of read-
only memory files. The dictionary, bounded by the LRU
strategy, is not pseudo-prefix if it is learned by the heuristic
in [13]. We mentioned in the previous section the average
compression ratio for english text is 0.32 and if the compres-
sion is applied independently to different blocks of data of
1Kb or to smaller blocks after the boundaries preprocessing,
there is still just a one percent loss on the compression ratio.
This loss disappears if we make the dictionary pseudo-prefix
and apply the approximation scheme in [23] to optimal
compression.

VII. CONCLUSION

We presented parallel implementations of the greedy
approach to dictionary-based static text compression suit-
able for standard and non-standard large scale distributed
systems. In order to push scalability beyond what is tradi-
tionally considered a large scale system, a more involved
approach distributes overlapping blocks to compute bound-
ary matches. These boundary matches are relevant to main-
tain the compression effectiveness on a so-called extreme
distributed system. If we have a standard small, medium or
large scale system available, the approach with no boundary
matches can be used. The absence of a communication
cost during the computation guarantees a linear speed-up.
Moreover, the finite state machine implementation speeds
up the execution of the distributed algorithm in a relevant
way when the data blocks are large, that is, when the size of
the input file is large and the size of the distributed system
is relatively small. Finally, we introduced the notion of
pseudo-prefix dictionary, which allows optimal compression
by means of a real-time semi-greedy procedure and a slight
improvement on the compression ratio obtained by the
distributed implementations. As future work, experiments
on parallel running times should be done to see how the
preprocessing phase effects on the linear speed-up when
the system is scaled up beyond the standard size and
how relevant the employment of the finite state machine
implementation is when the data blocks are small.

82

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] S. DeAgostino, ”The Greedy Approach to Dictionary-Based
Static Text Compression on a Distributed System,” Pro-
ceedings International Conference on Advances Engeneering
Computing with Applications to Sciences, 2014, pp. 1-6.

[2] S. DeAgostino, ”Approximating Dictionary-Based Optimal
Data Compression on a Distributed System,” to appear in
Proceedings ACM International Conference on Computing
Frontiers, 2015.

[3] R. A. Wagner, ”Common Phrases and Minimum Text Stor-
age,” Communications of the ACM, vol. 16, 1973, pp. 148-
152.

[4] E. J. Shoegraf and H. S. Heaps, ”A Comparison of Algorithms
for Data Base Compression by Use of Fragments as Language
Elements,” Information Storage and Retrieval, vol. 10, 1974,
pp. 309-319.

[5] M. Cohn and R. Khazan, ”Parsing with Suffix and Prefix Dic-
tionaries,” Proceedings IEEE Data Compression Conference,
1996, pp. 180-189.

[6] M. Crochemore and W. Rytter, Jewels of Stringology, World
Scientific, 2003.

[7] A Hartman and M. Rodeh, ”Optimal Parsing of Strings,”
Combinatorial Algorithms on Words (eds. Apostolico, A.,
Galil, Z.), Springer, 1985, pp. 155-167.

[8] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression,
Prentice Hall, 1990.

[9] J. A. Storer, Data Compression: Methods and Theory, Com-
puter Science Press, 1988.

[10] A. Lempel and J. Ziv, ”On the Complexity of Finite Se-
quences,” IEEE Transactions on Information Theory, vol. 22,
1976, pp. 75-81.

[11] J. Ziv and A. Lempel, ”Compression of Individual Sequences
via Variable-Rate Coding,” IEEE Transactions on Information
Theory, vol. 24, 1978, pp. 530-536.

[12] T. A. Welch, ”A Technique for High-Performance Data Com-
pression,” IEEE Computer, vol. 17, 1984, pp. 8-19.

[13] V. S. Miller and M. N. Wegman, ”Variations on Theme by
Ziv - Lempel,” Combinatorial Algorithms on Words (eds.
Apostolico, A., Galil, Z.), Springer, 1985, pp. 131-140.

[14] L. Cinque, S. De Agostino, and L. Lombardi, ”Scalability
and Communication in Parallel Low-Complexity Lossless
Compression,” Mathematics in Computer Science, vol. 3,
2010, pp. 391-406.

[15] S. De Agostino, Sub-Linear Algorithms and Complexity
Issues for Lossless Data Compression, Master’s Thesis, Bran-
deis University, 1994.

[16] S. De Agostino, Parallelism and Data Compression via Tex-
tual Substitution, Ph. D. Dissertation, Sapienza University of
Rome, 1995.

[17] S. De Agostino, ”Parallelism and Dictionary-Based Data
Compression,” Information Sciences, vol. 135, 2001, pp. 43-
56.

[18] S. De Agostino S. and J. A. Storer, ”Parallel Algorithms
for Optimal Compression Using Dictionaries with the Prefix
Property,” Proceedings IEEE Data Compression Conference,
1992, pp. 52-61.

[19] D. S. Hirschberg and L. M. Stauffer, ”Parsing Algorithms for
Dictionary Compression on the PRAM,” Proceedings IEEE
Data Compression Conference, 1994, pp. 136-145.

[20] D. S. Hirschberg and L. M. Stauffer, ”Dictionary Compres-
sion on the PRAM,” Parallel Processing Letters, vol. 7, 1997,
pp. 297-308.

[21] H. Nagumo, M. Lu, and K. Watson, ”Parallel Algorithms for
the Static Dictionary Compression,” Proceedings IEEE Data
Compression Conference, 1995, pp. 162-171.

[22] L. M. Stauffer and D. S. Hirschberg, ”PRAM Algorithms
for Static Dictionary Compression,” Proceedings International
Symposium on Parallel Processing, 1994, pp. 344-348.

[23] D. Belinskaya, S. De Agostino, and J. A. Storer, ”Near
Optimal Compression with respect to a Static Dictionary on a
Practical Massively Parallel Architecture,” Proceedings IEEE
Data Compression Conference, 1995, pp. 172-181.

[24] A. Lempel and J. Ziv, ”A Universal Algorithm for Sequen-
tial Data Compression,” IEEE Transactions on Information
Theory, vol. 23, 1977, pp. 337-343.

[25] S. DeAgostino, ”Parallel Implementations of Dictionary Text
Compression without Communication,” London Stringology
Days, 2009.

[26] S. DeAgostino, ”LZW Data Compression on Large Scale and
Extreme Distributed System,” Proceedings Prague Stringol-
ogy Conference, 2012, pp. 18-27.

[27] Y. Matias and C. S. Sahinalp, ”On the Optimality of Parsing in
Dynamic Dictionary-Based Data Compression,” Proceedings
SIAM-ACM Symposium on Discrete Algorithms, 1999, pp.
943-944.

[28] M. Crochemore, A. Langiu, and F. Mignosi, ”Note on the
Greedy Parsing Optimality for Dictionary-Based Text Com-
pression,” Theoretical Computer Science, vol. 525, 2014, pp.
55-59.

[29] M. Crochemore, L. Gianbruno, A. Langiu, F. Mignosi, and A.
Restivo, ”Dictionary-Simbolwise Flexible Parsing,” Journal of
Discrete Algorithms, vol. 14, 2012, pp. 74-90.

[30] A. Farrugia, P. Ferragina, A. Frangioni, and R. Venturini, ”Bi-
criteria Data Compression,” Proceedings SIAM-ACM Sym-
posium on Discrete Algorithms, 2014, pp. 1582-1585.

[31] P. Ferragina, I. Nitto, and R. Venturini, ”On Optimally Par-
titioning a Text to Improve Its Compression,” Algorithmica,
vol. 61, 2011, pp. 51-74.

83

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[32] P. Ferragina, I. Nitto, and R. Venturini, ”On the Bit-
Complexity of Lempel-Ziv Compression,” SIAM Journal on
Computing, vol. 42, 2013, pp. 1521-1541.

[33] A. Langiu, ”On Parsing Optimality for Dictionary-Based Text
Compression - the Zip Case”, Journal of Discrete Algorithms,
vol. 20, 2013, pp. 65-70.

[34] S. DeAgostino and R. Silvestri, ”Bounded Size Dictionary
Compression: SCk-Completeness and NC Algorithms,” In-
formation and Computation, vol. 180, 2003, pp. 101-112.

[35] S. DeAgostino, ”Bounded Size Dictionary Compression: Re-
laxing the LRU Deletion Heuristic,” Proceedings Prague
Stringology Conference, 2005, pp. 135-142.

84

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

τOWL: A Framework for Managing Temporal Semantic Web Documents
Supporting Temporal Schema Versioning

Abir Zekri
University of Sfax

Sfax, Tunisia
abir.zekri@fsegs.rnu.tn

Zouhaier Brahmia
University of Sfax

Sfax, Tunisia
zouhaier.brahmia@fsegs.rnu.tn

Fabio Grandi
University of Bologna

Bologna, Italy
fabio.grandi@unibo.it

Rafik Bouaziz
University of Sfax

Sfax, Tunisia
raf.bouaziz@fsegs.rnu.tn

Abstract — The OWL 2 Web Ontology Language allows
defining both schema and instances of ontologies for Semantic
Web applications, but lacks explicit support for time-varying
ontologies. Hence, knowledge engineers or maintainers of
Semantic Web documents have to use ad hoc techniques in
order to specify an OWL 2 schema for time-varying instances
and to cope with its temporal evolution. In this paper, for a
disciplined and systematic approach to the temporal
management of OWL 2 ontologies, we propose the adoption of
a framework called Temporal OWL 2 (τOWL), inspired by the
Temporal XML Schema (τXSchema) framework defined for
XML data. Hence, τOWL allows creating a temporal OWL 2
ontology from a conventional (i.e., non-temporal) OWL 2
ontology and a set of logical and physical annotations. Logical
annotations identify which elements of a Semantic Web
document can vary over time and physical annotations specify
how the time-varying aspects are represented in the document.
By using annotations to integrate temporal aspects in the
traditional Semantic Web, our framework (i) guarantees
logical and physical data independence for temporal schemas
and (ii) provides a low-impact solution since it requires neither
modifications of existing Semantic Web documents, nor
extensions to the OWL 2 recommendation and Semantic Web
standards. Furthermore, temporal versioning of the schema
itself is supported in τOWL by means of a temporal schema,
which is a document that binds the three components of a
τOWL schema to the temporal versions they belong to. In
τOWL, either the conventional schema and the temporal
schema can be versioned, by means of two dedicated complete
sets of schema change primitives, which are defined in this
work. We also illustrate their use and show their impact on
OWL 2 instances through an example.

Keywords – Semantic Web; Ontology; OWL 2; τXSchema;
Logical annotations; Physical annotations; Temporal database;
XML Schema; XML; τOWL; Conventional schema; Temporal
schema; Schema versioning; Temporal ontology; Ontology
versioning

I. INTRODUCTION

Time is an omnipresent dimension in both modern [1]
and classical [2] applications; it is used to timestamp data
values to keep track of changes in the real world and model
their history. Hence, studying time has been, and continues
to be, one of the main research interests in different scientific
fields, such as databases and knowledge representation.

Since the second half of the 1980s, a great deal of work
has been done in the field of temporal databases [3][4][5].
Several data models and query languages have been
proposed for the management of time-varying data.
Temporal databases usually adopt one or two time
dimensions to timestamp data: (a) transaction time, which
indicates when an event is recorded in the database, and (b)
valid time, which represents the time when an event
occurred, occurs or is expected to occur in the real world. Bi-
temporal data are timestamped by both transaction time and
valid time dimensions. Snapshot data are traditional data,
without time support.

On the other hand, the World Wide Web (WWW or
Web) [6] was shifted from the semi-structured internet to a
more structured Web called the Semantic Web [7][8]. The
new generation of Web aims at providing languages and
tools that specify explicit semantics for data and enable
knowledge sharing among knowledge-based applications. In
this vision, ontologies [9] are used for defining and relating
concepts that describe Web resources, in a formal way. The
new emerging standard for describing ontologies, which has
been recommended by the W3C since 2009, is OWL 2
[10][11][12]. It allows defining both schema (in terms of
entities, axioms, and expressions) and instances (i.e.,
individuals) of ontologies; OWL 2 ontologies are stored as
Semantic Web documents.

Due to the dynamic nature of the Web, ontologies that
are used on the Web (like other Web application components
such as Web databases, Web pages and Web scripts) evolve
over time to reflect and model changes occurring in the real-
world. Furthermore, several Semantic Web-based
applications (like e-commerce, e-government and e-health
applications) require keeping track of ontology evolution and
versioning with respect to time, in order to represent, store
and retrieve time-varying ontologies.

Unfortunately, while there is a sustained interest for
temporal and evolution aspects in the research community
[13], existing Semantic Web standards but also state-of-the-
art ontology editors and knowledge representation tools do
not provide any built-in support for managing temporal
ontologies. In particular, the W3C OWL 2 recommendation
lacks explicit support for time-varying ontologies, at both
schema and instance levels. Thus, knowledge engineers or
maintainers of semantics-based Web resources must use ad

85

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

hoc techniques when there is a need, for example, to specify
an OWL 2 ontology schema for time-varying ontology
instances or to deal with temporal evolution of the ontology
schema itself. In the rest of the paper, we define as
Knowledge Base Administrator (KBA) a knowledge
engineer or, more in general, the person in charge of the
maintenance of semantics-based Web resources.

According to what precedes, we think that if we would
like to handle ontology evolution over time in an efficient
manner and to allow historical queries to be executed on
time-varying ontologies, a built-in temporal ontology
management system is needed. For that purpose, we propose
in this paper a framework, called τOWL, for managing
temporal Semantic Web documents, through the use of a
temporal OWL 2 extension. In fact, we want to introduce
with τOWL a principled and systematic approach to the
temporal extension of OWL 2, similar to that Snodgrass and
colleagues did to the XML language with τXSchema
[14][15][16]. τXSchema is a framework (i.e., a data model
equipped with a suite of tools) for managing temporal XML
documents, well known in the database research community
and, in particular, in the field of temporal XML [17].
Moreover, in our previous work [18][19][20], with the aim
of completing the framework, we augmented τXSchema by
defining necessary schema change operations acting on
conventional schema, temporal schema, and logical and
physical annotations (extensions which we plan to apply to
τOWL too).

Being defined as a τXSchema-like framework, τOWL
facilitates the creation of a temporal OWL 2 ontology from a
conventional (i.e., non-temporal) OWL 2 ontology
specification and a set of logical (or temporal) and physical
annotations. Logical annotations identify which components
of a Semantic Web document can vary over time; physical
annotations specify how the time-varying aspects are
represented in the document. By using temporal schema and
annotations to introduce temporal aspects in the conventional
(i.e., non temporal) Semantic Web, our framework (i)
guarantees logical and physical data independence [21] for
temporal schemas and (ii) provides a low-impact solution
since it requires neither modifications of existing Semantic
Web documents, nor extensions to the OWL 2
recommendation and Semantic Web standards.

Furthermore, with respect to the preliminary version of
this work presented at SEMAPRO 2014 [1], in this paper we
extend the τOWL framework to also support schema
versioning [22][23], which is the most powerful technique
for managing the history of schema changes. Since ontology
schemata are also evolving over time to reflect changes in
real-world applications [24], keeping a fully fledged history
of ontology changes (i.e., involving both the ontology
instances and the ontology schema) is a very required feature
for many Semantic Web applications. More precisely, we
present our technique for the versioning of a τOWL schema,
and define necessary schema change operations acting on
conventional ontology schema and on temporal ontology
schema. We do not deal in this paper with changes acting on
logical and physical annotations; that will be studied in a
future work.

The remainder of the paper is organized as follows.
Section II motivates the need for an efficient management of
time-varying Semantic Web documents. Section III describes
the τOWL framework that we propose for extending the
Semantic Web to temporal aspects: the architecture of τOWL
is presented and details on all its components and support
tools are given. Section IV presents our approach for
versioning of a τOWL schema. Section V introduces the
schema change primitives that we propose, in the τOWL
framework, for changing the conventional schema and for
updating the temporal schema. Section VI discusses related
work. Section VII provides a summary of the paper and
some remarks about our future work.

II. MOTIVATION

In this section, we present a motivating example that
shows the limitation of the OWL 2 language for explicitly
supporting time-varying instances. Then, we state the
desiderata for an OWL 2 extension, which could
accommodate time-varying instances in a disciplined and
systematic way.

A. Running Example

As a motivating and illustrative example for τOWL, we
recall and extend the example presented in the preliminary
version of this work [1], dealing with the management of the
evolution of an ontology based on Friend Of A Friend
(FOAF). The FOAF project [25] is creating a Web of
machine-readable pages describing people, the links between
them and the things they create and do.

Suppose that the Web site “Web-S1” publishes the FOAF
definition for his user “Nouredine”. A fragment of the FOAF
Resource Description Framework (RDF [26]) document of
“Nouredine” is presented in Figure 1. It describes, according
to the FOAF ontology, the personal information of
“Nouredine” (i.e., name and nickname) and the information
about his online accounts on diverse sites (i.e., the home
page of the site, and the account name of the user). In this
example, we limit to describe user’s information concerning
the account on the online Web site “Facebook”.

…
<foaf : Person rdf:ID="#Person1">

<foaf : name>Nouredine Tounsi</ foaf : name>
<foaf : nick >Nor</ foaf : nick >
<foaf : holdsAccount >

<foaf : OnlineAccount
 rdf:about="https://www.facebook.com/
 Nouredine.Tounsi">

<foaf : accountName >Nor_Tunsi
</ foaf : accountName >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >
…

Figure 1. A fragment of Nouredine FOAF RDF document on January 15,
2014.

Assume that information about the user “Nouredine” of

the Web site “Web-S1” was added on January 15, 2014. On
February 08, 2014, Nouredine modified his nickname from

86

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

“Nor” to “Nouri” and his account name of Facebook from
“Nor_Tunsi” to “Nouri_Tunsi”. Thus, the corresponding
fragment of the Nouredine FOAF RDF document was
revised to that shown in Figure 2.

…
<foaf: Person rdf:ID="#Person1">

<foaf : name>Nouredine Tounsi</ foaf : name>
<foaf : nick >Nouri</ foaf : nick >
<foaf : holdsAccount >

<foaf : OnlineAccount
 rdf:about="https://www.facebook.com/
 Nouredine.Tounsi">

<foaf : accountName >Nouri_Tunsi
</ foaf : accountName >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >
...

Figure 2. A fragment of Nouredine FOAF RDF document on February 08,
2014.

In many Semantic Web-based applications, the history of

ontology changes is a fundamental requirement, since such a
history allows recovering past ontology versions, tracking
changes over time, and evaluating temporal queries [27]. A
τOWL time-varying Semantic Web document records the
evolution of a Semantic Web document over time by storing
all versions of the document in a way similar to that
originally proposed for τXSchema [14].

Suppose that the webmaster of the Web site “Web-S1”
would like to keep track of the changes performed on our
FOAF RDF information by storing both versions of Figure 1
and of Figure 2 in a single (temporal) RDF document. As a
result, Figure 3 shows a fragment of a time-varying Semantic
Web document that captures the history of the specified
information concerning “Nouredine”.

…
<foaf : Person rdf:ID="#Person1">

<foaf : name>Nouredine Tounsi</ foaf : name>
<versionedNick >

<NickVersion >
<nickValidityStartTime >2014-01-15
</ nickValidityStartTime >
<nickValidityEndTime >2014-02-07
</ nickValidityEndTime >
<foaf : nick >Nor</ foaf : nick >

</ NickVersion >
<NickVersion >

<nickValidityStartTime >2014-02-08
</ nickValidityStartTime >
<nickValidityEndTime >now
</ nickValidityEndTime >
<foaf : nick >Nouri</ foaf : nick >

</ NickVersion >
</ versionedNick >
<foaf : holdsAccount >

<foaf : OnlineAccount
 rdf:about="https://www.facebook.com/
 Nouredine.Tounsi">

<versionedAccountName >
<AccountNameVersion >

<accountNameValidityStartTime >
2014-01-15

</ accountNameValidityStartTime >
<accountNameValidityEndTime >

2014-02-07
</ accountNameValidityEndTime >
<foaf : accountName >Nor_Tunsi
</ foaf : accountName >

</ AccountNameVersion >
<AccountNameVersion >

<accountNameValidityStartTime >
2014-02-08

</ accountNameValidityStartTime >
<accountNameValidityEndTime >

now
</ accountNameValidityEndTime >
<foaf : accountName >Nouri_Tunsi
</ foaf : accountName >

</ AccountNameVersion >
</ versionedAccountName >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >
...

Figure 3. A fragment of the time-varying Nouredine FOAF RDF document.

In this example, we use valid-time to capture the history

of such information. In order to timestamp the entities which
can evolve over time, we use the following optional tags:
nickValidityStartTime and nickValidityEndTime , for
recording nick name evolution, and
accountNameValidityStartTime and
accountNameValidityEndTime, for keeping the
accountName history. These are optional Data Properties
which can be added to a temporal entity. The domain of
nickValidityEndTime or accountNameValidityEndTime
includes the value “now” [28]; the entity that has “now” as
the value of its validity end time property represents the
current entity until some change occurs.

Assume that the extract of the FOAF ontology presented
in Figure 4 contains the conventional (i.e., non-temporal)
schema [14] for the FOAF RDF document presented in both
Figure 1 and Figure 2. The conventional schema is the
schema for an individual version, which allows updating and
querying individual versions.

<rdf:RDF>

<owl:Ontology rdf:about="http://purl.org/
 az/foaf#">

<rdfs:Class rdf:about="#Person">
<rdf:type rdf:resource="http://www.w3.org/

 2002/07/owl#Class"/>
</rdfs:Class>
<rdf:Property rdf:about="#holdsAccount">

<rdf:type rdf:resource="http://www.w3.org/
 2002/07/owl#ObjectProperty"/>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="#OnlineAccount"/>

</rdf:Property>
<rdf:Property rdf:about="#accountName">

<rdf:type rdf:resource="http://www.w3.org/
 2002/07/owl#DatatypeProperty"/>
<rdfs:domain rdf:resource="#OnlineAccount"/>

</rdf:Property>
…

</rdf:RDF>

Figure 4. An RDF/XML extract from the OWL 2 FOAF ontology.

The problem is that the time-varying ontology document

87

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(see Figure 3) does not conform to the conventional ontology
schema (see Figure 4). Thus, to resolve this problem, we
need a different ontology schema that can describe the
structure of the time-varying ontology document. This new
schema should specify, for example, timestamps associated
to entities, time dimensions involved, and how the entities
vary over time. This example will be continued in Section
III.A, in order to show how these problems can be solved in
our proposed τOWL framework.

Furthermore, we want our framework also allows KBAs
to effect and keep track of changes to the conventional
schema itself. In Section V.D, we will complete this example
by describing some changes made by the KBA on this initial
framework and showing their effects both at schema and at
instance levels.

B. Desiderata

There are several goals that can be fulfilled when
augmenting the OWL 2 language to support time-varying
instances. Our approach aims at satisfying the following
requirements:

• facilitating the management of time for KBAs;
• supporting both valid time and transaction time;
• supporting (temporal) versioning of OWL 2 ontology

instances;
• keeping compatibility with existing OWL 2 W3C

recommendations, standards, and editors, without
requiring any changes to these recommendations,
standards, and tools;

• supporting existing applications that are already
using OWL 2 ontologies;

• providing OWL 2 data independence so that changes
at the logical level are isolated from those performed
at the physical level, and vice versa;

• accommodating a variety of physical representations
for time-varying OWL 2 instances;

• supporting (temporal) versioning of OWL 2 ontology
schemata.

III. THE τOWL FRAMEWORK

In this section, we present our τOWL framework for
handling temporal Semantic Web documents and provide an
illustrative example of its use. We describe the overall
architecture of τOWL and the tools used for managing both
τOWL schema and τOWL instances. Since τOWL is a
τXSchema-like framework, we were inspired by the
τXSchema architecture and tools while defining the
architecture and tools of τOWL.

The τOWL framework allows a KBA to create a
temporal OWL 2 schema for temporal OWL 2 instances
from a conventional OWL 2 schema, logical annotations,
and physical annotations. Since it is a τXSchema-like
framework, τOWL use the following principles:

• separation between (i) the conventional (i.e., non-
temporal) schema and the temporal schema, and (ii)
the conventional instances and the temporal
instances;

• use of temporal and physical annotations to specify
temporal and physical aspects, respectively, at
schema level.

Figure 5 illustrates the architecture of τOWL. Notice that
only the components that are presented in the figure as
rectangular pink boxes with bold border are specific to an
individual time-varying OWL 2 document and need to be
supplied by a KBA. The framework is based on the OWL 2
language [10], which is a W3C standard ontology language
for the Semantic Web. It allows defining both schema (i.e.,
entities, axioms, and expressions) and instances (i.e.,
individuals) of ontologies. Thus, we consider that the
signature of an OWL 2 ontology O can be defined as
follows: O = {E, A, Exp} such that:

i) E = {C, DP, OP, AP} represents the set of the entities
with:

• C: Class, represents the set of concepts;
• DP: Data Property, represents the set of properties of

the concepts;
• OP: Object Property, represents the set of the

semantic relations between the concepts;
• AP: Annotation Property, represents the set of

annotations on the entities and those on the axioms.
ii) A = {EAx, KAx} represents the set of axioms with:

• EAx: Entity Axioms, represents the axioms which
concern the entities;

• KAx: Key Axioms, represents all the identifiers
associated to the various classes.

iii) Exp = {CE, OPE, DPE} represents the set of the used
expressions (an expression is a complex description
which results from combinations of entities by using
constructors such as enumeration, restriction of
cardinality and restriction of properties) with:

• CE: Class Expressions, represents the set of
combinations of concepts by using constructors;

• OPE: Object Property Expressions, represents the set
of combinations of relations;

• DPE: Data Property Expressions, represents the set of
combinations of properties.

The KBA starts by creating the conventional schema
(box 7), which is an OWL 2 ontology that models the
concepts of a particular domain and the relations between
these concepts, without any temporal aspect. To each
conventional schema corresponds a set of conventional (i.e.,
non-temporal) OWL 2 instances (box 12). Any change to the
conventional schema is propagated to its corresponding
instances. Notice that our approach deals with OWL 2
ontologies with an RDF/XML syntax [29], which is,
according to the OWL 2 specification document [11], the
only syntax that must mandatorily be supported by OWL 2
tools.

After that, the KBA augments the conventional schema
with logical and physical annotations, which allow him/her
to express, in an explicit way, all requirements dealing with
the representation and the management of temporal aspects
associated to the components of the conventional schema, as
described in the following.

Logical annotations [16] allow the KBA to specify:

88

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) whether a conventional schema component varies over
valid time and/or transaction time;

2) whether its lifetime is described as a continuous state
or a single event;

3) whether the component may appear at certain times
(and not at others);

4) whether its content changes.
If no logical annotations are provided, the default logical

annotation is that anything can change. However, once the
conventional schema is annotated, components that are not
described as time-varying are static and, thus, they must have
the same value across every instance document (box 12).

Physical annotations [16] allow the KBA to specify the
timestamp representation options chosen, such as where the
timestamps are placed and their kind (i.e., valid time or
transaction time) and the kind of representation adopted. The
location of timestamps is largely independent of which
components vary over time. Timestamps can be located
either on time-varying components (as specified by the
logical annotations) or somewhere above such components.
Two OWL 2 documents with the same logical information
will look very different if we change the location of their
physical timestamps. Changing an aspect of even one
timestamp can make a big difference in the representation.
τOWL supplies a default set of physical annotations, which
is to timestamp the root element with valid and transaction

times. However, explicitly defining them can lead to more
compact representations [16].

In order to improve conceptual clarity and also to enable
a more efficient implementation, we adopt a “separation of
concerns” principle in our approach: since the entities, the
axioms and the expressions of an OWL 2 ontology evolve
over time independently, we distinguish between three
separate types of annotations to be defined and to be
associated to a conventional schema: the entity annotations
(box 9), the axiom annotations (box 10) and the expression
annotations (box 11).

Entity annotations describe the logical and physical
characteristics associated to the components of an OWL 2
ontology: classes, relations, and properties. They indicate
for example the temporal formats of these components,
which could be valid-time, transaction-time, bi-temporal or
snapshot (by default). The schema for the logical and
physical entity annotations is given by EntASchema (box 4).
Axiom annotations and expression annotations describe the
logical and physical aspects of axioms and expressions
defined on classes or on properties. The schema for the
logical and physical axiom annotations is given by
AxiASchema (box 5) and the schema for the logical and
physical expression annotations is given by ExpASchema
(box 6).

Figure 5. Overall architecture of τOWL. In the picture, rectangular boxes represent documents, hexagonal boxes represent tools, solid arrows denote

Input/Output data flows, dotted arrows link documents to namespaces and dashed arrows stand for “references” relationships. Moreover, the meaning of the
color and the border pattern of rectangular boxes is as follows: pink box with bold border for documents created/added by the KBA (7, 9, 10, 11 and 12), blue

box with dotted border for documents automatically generated by the system (8, 13, 14, and 15), green box with dashed border for predefined documents
making part of the framework (2, 3, 4, 5 and 6), and white box with thin border for reference documents created by the W3C (0 and 1).

89

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Notice that EntASchema, AxiASchema, and
ExpASchema, which all contain both logical and physical
annotations, are XML Schemas [30]. The annotations
associated to the same conventional schema can evolve
independently. Any change to one of the three sets of
annotations does not affect the two other sets.

Finally, when the KBA finishes annotating the
conventional schema and asks the system to save his/her
work, this latter creates the temporal schema (box 8) in order
to provide the linking information between the conventional
schema and its corresponding logical and physical
annotations. The temporal schema is a standard XML
document, which ties the conventional schema, the entity
annotations, the axiom annotations, and the expression
annotations together. In the τOWL framework, the temporal
schema is the logical equivalent of the conventional OWL 2
schema in a non-temporal context. This document contains
sub-elements that associate a series of conventional schema
definitions with entity annotations, axiom annotations, and
expression annotations, along with the time span during
which the association was in effect. The schema for the
temporal schema document is the XML Schema Definition
document TSSchema (box 3).

To complete the figure in our temporal context, after
creating the temporal schema, the system creates a temporal
document (box 14) in order to link each conventional
ontology instance document (box 12), which is valid to a
conventional ontology schema (box 7), to its corresponding
temporal ontology schema (box 8), and more precisely to its
corresponding logical and physical annotations (which are
referenced by the temporal schema). A temporal document is
a standard XML document that maintains the evolution of a
non-temporal ontology instance document over time, by
recording all of the versions (or temporal slices) of the
document with their corresponding timestamps and by
specifying the temporal schema associated to these versions.
This document contains sub-elements that associate a series
of conventional ontology instance documents with logical
and physical annotations (on entities, axioms, and
expressions), along with the time span during which the
association was in effect. Thus, the temporal document is
very important for making easy the support of temporal
queries working on past versions or dealing with changes
between versions. The schema for the temporal document is
the XML Schema Definition document TDSchema (box 2).

Notice that, whereas TDSchema (box 2), TSSchema (box
3), EntASchema (box 4), AxiASchema (box 5), and
ExpASchema (box 6) have been developed by us, OWL 2
(box 0) and XML Schema (box 1) correspond to the
standards endorsed by the W3C.

In a similar way to what happens in the τXSchema
framework, the temporal schema document (box 8) is
processed by the temporal schema validator tool in order to
ensure that the logical and physical entity annotations, axiom
annotations and expression annotations are (i) valid with
respect to their corresponding schemas (i.e., EntASchema,
AxiASchema, and ExpASchema, respectively), and (ii)
consistent with the conventional schema. The temporal
schema validator tool reports whether the temporal schema

document is valid or invalid.
Once all the annotations are found to be consistent, the

representational schema generator tool generates the
representational schema (box 13) from the temporal schema
(i.e., from the conventional schema and the logical and
physical annotations); it is the result of transforming the
conventional schema according to the requirements
expressed through the different annotations. The
representational schema becomes the schema for temporal
instances (box 15). Temporal instances could be created in
four ways:

i) automatically from the temporal document (box 14)
(i.e., from non-temporal ontology instances (box 12)
and the temporal ontology schema (box 8)), using the
temporal instances generator tool (such an operation
is called “squash” in the original τXSchema
approach);

ii) automatically from instances stored in a knowledge
base, i.e., as the result of a “temporal query” or a
“temporal view”;

iii) automatically from a third-party tool, or
iv) manually (i.e., temporal instances are directly inserted

by the KBA into the τOWL repository).
Moreover, temporal instances are validated against the

representational schema through the temporal instances
validator tool, which reports whether the temporal instances
document (box 15) is valid or invalid.

Notice that the four mentioned tools (i.e., Temporal
Schema Validator, Temporal Instances Validator,
Representational Schema Generator, and Temporal Instances
Generator) are under development. For example, the
temporal instances validator tool is being implemented as a
temporal extension of an existing conventional ontology
instance validator.

A. Running example reprise

In order to show the functioning of the proposed
approach, we continue in the following our motivating
example of Section II.A, in order to show how management
of temporal ontology document versions is dealt with in the
τOWL approach.

On January 15, 2014, the KBA creates a conventional
ontology schema (box 7), named “PersonSchema_V1.owl”
(as in Figure 4), and a conventional ontology document (box
12), named “Persons_V1.rdf” (as in Figure 1), which is valid
with respect to this schema. We assume that the KBA
defines also a set of logical and physical annotations,
associated to that conventional schema; they are stored in an
ontology annotation document (boxes 9, 10, and 11) titled
“PersonAnnotations_V1.xml” as shown in Figure 6.

<?xml version=”1.0” encoding=”UTF-8”?>
<ontologyAnnotationSet >

<logicalAnnotations >
<item target=”/Person/nick”>

<validTime kind=”state”
 content=”varying”
 existence=”constant”/>
</ item >

</ logicalAnnotations >
<physicalAnnotations >

90

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<stamp target=”Person/nick”
dataInclusion=”expandedVersion”>

<stampkind timeDimension=”validTime”
 stampBounds=”extent”/>
</ stamp >

</ physicalAnnotations >
</ ontologyAnnotationSet >

Figure 6. The annotation document on January 15, 2014.

After that, the system creates the temporal ontology

schema (box 8) in Figure 7, which ties
“PersonSchema_V1.owl” and “PersonAnnotations_V1.xml”
together; this temporal schema is saved in an XML file titled
“PersonTemporalSchema.xml”. Consequently, the system
uses the temporal ontology schema of Figure 7 and the
conventional ontology document in Figure 1 to create a
temporal document (box 14) as in Figure 8, which lists both
versions (i.e., temporal “slices”) of the conventional
ontology documents with their associated timestamps. The
squashed version (box 15) of this temporal document, which
could be generated by the Temporal Instances Generator, is
provided in Figure 9.

<?xml version=”1.0” encoding=”UTF-8”?>
<temporalOntologySchema >

<conventionalOntologySchema >
<sliceSequenc e>

<slice location=” PersonSchema_V1.owl ”
 begin=”2014-01-15” />
</ sliceSequence >

</ conventionalOntologySchema >
<ontologyAnnotationSet >

<sliceSequence >
<slice

location=” PersonAnnotations_V1.xml ”
begin=”2014-01-15” />

</ sliceSequence >
</ ontologyAnnotationSet >

</ temporalOntologySchema >

Figure 7. The temporal schema on January 15, 2014.

<?xml version=”1.0” encoding=”UTF-8”?>

<td:temporalRoot
temporalSchemaLocation= ”PersonTemporalSchema.xml

” />
<td:sliceSequence >

<td:slice location =”Persons_V1.rdf ”
 begin=”2014-01-15” />

</ td:sliceSequence >
</ td:temporalRoot >

Figure 8. The temporal document on January 15, 2014.

<foaf : Person rdf:ID="#Person1">

<foaf : name>Nouredine Tounsi</ foaf : name>
<nick_RepItem >

<nick_Version >
<timestamp_ValidExtent
 begin=”2014-01-15” end=”now” />
<foaf : nick >Nor</ foaf : nick >

</ nick_Version >
</ nick_RepItem >
<foaf : holdsAccount >

<foaf : OnlineAccount
 rdf:about="https://www.facebook.com/

 Nouredine.Tounsi">
<accountName_RepItem >

<accountName_Version >
<timestamp_ValidExtent
 begin=”2014-01-15” end=”now” />
<foaf : accountName >Nor_Tunsi
</ foaf : accountName >

</ accountName_Version >
</ accountName_RepItem >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >

Figure 9. The squashed document correponding to the temporal document
on January 15, 2014.

On February 08, 2014, the KBA updates the conventional

ontology document “Persons_V1.rdf” as presented in Section
II.A to produce a new conventional ontology document
named “Persons_V2.rdf” (as in Figure 2). Since the
conventional ontology schema (i.e., PersonSchema_V1.owl)
and the ontology annotation document (i.e.,
PersonAnnotations_V1.xml) are not changed, the temporal
ontology schema (i.e., PersonTemporalSchema.xml) is
consequently not updated. However, the system updates the
temporal document, in order to include the new slice of the
new conventional ontology document, as shown in Figure
10. The squashed version of the updated temporal document
is provided in Figure 11.

<?xml version=”1.0” encoding=”UTF-8”?>

<td:temporalRoot
temporalSchemaLocation= ”PersonTemporalSchema.xml

” />
<td:sliceSequence >

<td:slice location =”Persons_V1.rdf ”
 begin=”2014-01-15” />
<td:slice location =”Persons_V2.rdf ”
 begin=”2014-02-08” />

</ td:sliceSequence >
</ td:temporalRoot >

Figure 10. The temporal document on February 08, 2014.

<foaf : Person rdf:ID="#Person1">

<foaf : name>Nouredine Tounsi</ foaf : name>
<nick_RepItem >

<nick_Version >
<timestamp_ValidExtent begin=”2014-01-15”
 end=”2014-02-07” />
<foaf : nick >Nor</ foaf : nick >

</ nick_Version >
<nick_Version >

<timestamp_ValidExtent begin=”2014-02-08”
 end=”now” />
<foaf : nick >Nouri</ foaf : nick >

</ nick_Version >
</ nick_RepItem >
<foaf : holdsAccount >

<foaf : OnlineAccount
 rdf:about="https://www.facebook.com/
 Nouredine.Tounsi">

<accountName_RepItem >
<accountName_Version >

<timestamp_ValidExtent
 begin=”2014-01-15”
 end=”2014-02-07”/>
<foaf : accountName >Nor_Tunsi
</ foaf : accountName >

91

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

</ accountName_Version >
<accountName_Version >

<timestamp_ValidExtent
 begin=”2014-02-08”
 end=”now” />
<foaf : accountName >Nouri_Tunsi
</ foaf : accountName >

</ accountName_Version >
</ accountName_RepItem >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >

Figure 11. The squashed document correponding to the temporal document
on February 08, 2014.

Obviously, each one of the squashed documents (see

Figure 9 and Figure 11) should conform to a particular
schema, which is the representational schema (box 13),
which is generated (by the Representational Schema
Generator) from the temporal schema shown in Figure 7.

The example will be completed in Section V.D, after that
the management of schema changes has been introduced.

IV. OUR APPROACH TO SCHEMA VERSIONING IN THE

τOWL FRAMEWORK

In this section, we describe how τOWL conventional
schema and τOWL logical and physical annotations can be
versioned in our approach.

The first step of a schema versioning sequence is the
creation of a first schema version: the KBA creates a
conventional ontology schema (i.e., an OWL 2 file) and
annotates it with some logical and physical annotations in an
independent document (which is stored as an XML file),
through, for instance, a graphical interface. Consequently,
the system creates the temporal ontology schema (also stored
as an XML file) that ties together the conventional schema
and the annotations.

In further steps of the versioning sequence, applied when
necessary, the KBA can independently change the
conventional ontology schema, the logical or the physical
ontology annotations.

Changing the conventional ontology schema leads to a
new version of it. Similarly, changing logical or physical
ontology annotations leads to a new version of the whole
ontology annotation document. Therefore, the temporal
ontology schema is implicitly and automatically updated by
the system after each change of the conventional schema or
of the annotation document.

Schema change operations performed by the KBA are
high-level, since they are usually conceived having in mind
high-level real-world specifications. Each of these high-level
schema change operations is then mapped onto a sequence of
low-level schema change operations (or schema change
primitives). The mapping is performed by a schema change
processor.

Each high-level change can be expressed as a sequence
of change primitives. Thus, the consistency of the resulting
conventional ontology schema (respectively, the resulting
ontology annotation document or the resulting temporal
ontology schema) is always guaranteed, if change primitives

preserve the conventional ontology schema (respectively, the
ontology annotation document or the temporal ontology
schema) consistency.

Notice that in our approach, like in [15], the temporal
schema, which ties the conventional schema and the
annotations together, is not “explicitly” versioned; for each
conventional schema (i.e., all the versions of this schema)
and its associated annotation document (i.e., all the versions
of this document), there is always one XML document that
represents the temporal schema, which is updated when the
conventional schema and/or the annotation document are
changed. In fact, in the τOWL framework, the temporal
schema is instrumental to support versioning of anything can
change in the managed Semantic Web repository. As a
consequence, by its nature, the temporal schema comes out
“implicitly” versioned (i.e., all versions of a temporal
schema document are stored within this document; the
version of a temporal schema, valid at any given time Tx,
could be extracted from that schema by removing all the
<slice ... begin=Ty/> elements where Ty>Tx). Thus, we
think that other kinds of versioning of the temporal schema
are neither necessary nor could be meaningfully put at user’s
disposal (without getting out of the τOWL framework).

Notice also that neither conventional schema versioning
nor annotation versioning lead automatically to proliferation
of schema versions. The creation of a new conventional
schema version (or of a new annotation document version) is
anyway a seldom task during the Semantic Web repository
lifetime, which can only be performed by an administrator of
this repository. This task may consist of dozens of schema
change operations, which are grouped together in the same
single transaction.

V. PRIMITIVES FOR CHANGING CONVENTIONAL SCHEMA

AND TEMPORAL SCHEMA IN THE τOWL FRAMEWORK

In this section, we first present our design principles and
then introduce our proposed change primitives. We start by
providing change primitives acting on conventional schema
in τOWL and then we provide primitives for changing the
temporal ontology schema. We have individuated change
primitives (i.e., non-further decomposable in terms of the
other ones), which make up a complete set of changes (i.e.,
such that any possible complex change can be defined via a
combination/sequence of them). For each change primitive,
we describe its arguments and its operational semantics.
Finally, we give an example that illustrates the use of these
primitives for versioning of τOWL conventional schema.

A. Design principles

The definition of the primitives will obey the following
principles and conventions:

1) all primitives must work on a well-formed and valid
Conventional Ontology Schema (COS) (or on the Temporal
Ontology Schema (TOS)), that is, primitives must have a
well-formed and valid COS (or TOS) as input and produce a
well-formed and valid COS (or TOS) as output;

2) all primitives need to work on an OWL 2 file (or an
XML file) storing the COS (or TOS), whose name must be
supplied as argument;

92

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3) for all primitives, arguments that are used to identify
the object on which the primitive works are in the first place
of the argument list;

4) primitives adding elements with possibly optional
attributes have the values for all the attributes as arguments;
empty places in the argument list stand for unspecified
optional attributes;

5) for primitives changing elements, values are specified
only for attributes that are changed; the value “unchanged”
means that the corresponding attribute is not updated; an
empty place in the argument list means that the
corresponding attribute receives a nil value.

The lists of operations in the subsections that follow are
the applications of the design principles presented above.

B. Primitives for changing conventional schema

Based on the OWL 2 ontology definition we adopted in
Section III (e.g., assuming the signature O = {E, A, Exp}),
we define a complete set of primitives for changing a
conventional ontology schema, composed of twenty-eight
operations. The idea is that each primitive deals with an
OWL 2 ontology component (e.g., a class, a data property,
an object property), by creating, removing or modifying
such a component. For each primitive change, we describe
its arguments and its operational semantics. Obviously, each
primitive change has an effect on the COS. We do not
present in this paper the effects of all primitive changes. We
give only the effect of some selected primitive changes.

We have organized the proposed primitives into eight
categories: (i) primitives acting on the whole COS (in the
sub-section V.B.1), (ii) primitives acting on a class (in the
sub-section V.B.2), (iii) primitives acting on a data property
(in the sub-section V.B.3), (iv) primitives acting on an
object property (in the sub-section V.B.4), (v) primitives
acting on an annotation property (in the sub-section V.B.5),
(vi) primitives acting on an entity axiom (in the sub-section
V.B.6), (vii) primitives acting on a key axiom (in the sub-
section V.B.7), and (viii) primitives acting on an entity
expression (in the sub-section V.B.8).

1) Primitives acting on the whole COS
We have only three primitives:
• CreateConventionalOntologySchema(COS.owl)
It produces a valid empty OWL 2 file. According to the

second design principle, the argument is the name of the
OWL 2 file where the new COS is stored.

Notice also that the name of this file is the name of the
ontology (e.g., Author, Paper, and Conference).

The effect of such a primitive, that is, the contents of the
COS.owl file after its application, is as follows:

<rdf:RDF>

<owl:Ontology rdf:about=”” />
</rdf:RDF>

• RenameConventionalOntologySchema(oldCOS,

newCOS)
It changes the name of a COS from “oldCOS” to

“newCOS” (or, it changes the name of an ontology from
“oldOntoName” to “newOntoName”).

• DropConventionalOntologySchema(COS.owl)
It removes the COS.owl file from disk, with the

constraint that the argument represents an empty COS (i.e.,
like the one above initially created by the
CreateConventionalOntologySchema primitive). Any other
contents must have been removed before.

2) Primitives acting on a class
We have defined three primitives:
• AddClass(COS.owl, className)
It adds a new class having the name “className” to the

COS.
The effect of such a primitive, that is, the contents of the

COS.owl file after its application, is as follows:

<rdf:RDF>
<owl:Ontology rdf:about=””>

<owl:Class rdf:about=" className"/>
</owl:Ontology>

</rdf:RDF>

• RenameClass(COS.owl, oldClassName,

newClassName)
It changes the name of a class from “oldClassName” to

“newClassName”, in the COS.
• DropClass(COS.owl, className)
It removes the class having the name “className” from

the COS.
3) Primitives acting on a data property
We have defined five primitives:
• AddDataProperty(COS.owl, className,

DataPropertyName, DataPropertyType)
It adds a new data property having the name

“DataPropertyName” and the type “DataPropertyType” to
the class “className”, in the COS.

Notice that the “className” and the “DataPropertyType”
are considered as the “DataPropertyDomain” and the
“DataPropertyRange”, respectively.

The effect of such a primitive, that is, the contents of the
COS.owl file after its application, is as follows:

<rdf:RDF>

<owl:Ontology rdf:about=””>
<owl:Class rdf:about=" className"/>
<owl:DatatypeProperty

rdf:about=" DataPropertyName">
<rdfs:domain rdf:resource=" className"/>
<rdfs:range rdf:resource=" DataPropertyType"/>

</owl:DatatypeProperty>
</owl:Ontology>

</rdf:RDF>

• DropDataProperty(COS.owl, className,

DataPropertyName)
It removes the data property having the name

“DataPropertyName” from the class “className”, in the
COS.

• RenameDataProperty(COS.owl, className,
oldDataPropertyName, newDataPropertyName)

It changes the name of a data property from
“oldDataPropertyName” to “newDataPropertyName” in the

93

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

class “className”, in the COS.
• ChangeDataPropertyDomain(COS.owl, className,

DataPropertyName, newDataPropertyDomain)
It replaces the domain (or class) “className” of the data

property “DataPropertyName” with a new domain
“newDataPropertyDomain”, in the COS.

The effect of such a primitive, that is, the contents of the
COS.owl file after its application, is as follows:

<rdf:RDF>

<owl:Ontology rdf:about=””>
<owl:Class rdf:about=" newDataPropertyDomain"/>
<owl:DatatypeProperty

rdf:about="DataPropertyName">
<rdfs:domain

rdf:resource=" newDataPropertyDomain"/>
<rdfs:range rdf:resource="DataPropertyType"/>

</owl:DatatypeProperty>
</owl:Ontology>

</rdf:RDF>

• ChangeDataPropertyRange(COS.owl, className,

DataPropertyName, oldDataPropertyRange,
newDataPropertyRange)

It replaces the range (or type) “oldDataPropertyRange”
of the data property “DataPropertyName” of the class
“className” with a new range “newDataPropertyRange”, in
the COS.

4) Primitives acting on an object property
We have defined five primitives:
• AddObjectProperty(COS.owl,

ObjectPropertyName, ObjectPropertyDomain,
ObjectPropertyRange)

It creates an object property (a relation) having the name
“ObjectPropertyName” between a source class
“ObjectPropertyDomain” and a target class
“ObjectPropertyRange”, in the COS.

The effect of such a primitive, that is, the contents of the
COS.owl file after its application, is as follows:

<rdf:RDF>

<owl:Ontology rdf:about=””>
…
<owl:ObjectProperty

rdf:about=" ObjectPropertyName">
<rdfs:domain

rdf:resource=" ObjectPropertyDomain"/>
<rdfs:range

rdf:resource=" ObjectPropertyRange"/>
</owl:ObjectProperty>

</owl:Ontology>
</rdf:RDF>

• DropObjectProperty(COS.owl,

ObjectPropertyName)
It removes the object property “ObjectPropertyName”

from the COS.
• RenameObjectProperty(COS.owl,

oldObjectPropertyName, newObjectPropertyName)
It changes the name of an object property from

“oldObjectPropertyName” to “newObjectPropertyName”, in
the COS.

• ChangeObjectPropertyDomain(COS.owl,
ObjectPropertyName, oldObjectPropertyDomain,
newObjectPropertyDomain)

It replaces the domain “oldObjectPropertyDomain” of
the object property “ObjectPropertyName” with a new
domain “newObjectPropertyDomain”, in the COS.

• ChangeObjectPropertyRange(COS.owl,
ObjectPropertyName, oldObjectPropertyRange,
newObjectPropertyRange)

It replaces the range “oldObjectPropertyRange” of the
object property “ObjectPropertyName” with a new range
“newObjectPropertyRange”, in the COS.

5) Primitives acting on an annotation property
We have defined three primitives:
• AddAnnotationProperty(COS.owl, propertyType,

propertyName, annotationProperty)
It defines a new annotation property

“annotationProperty” on the propertyType (i.e., Class,
DataProperty, ObjectProperty, EntityAxiom, or KeyAxiom)
named “propertyName”, in the COS.

• DropAnnotationProperty(COS.owl, propertyType,
propertyName, annotationProperty)

It removes the annotation property “annotationProperty”
defined on the propertyType (i.e., Class, DataProperty,
ObjectProperty, EntityAxiom, or KeyAxiom) named
“propertyName”, in the COS.

• ChangeAnnotationProperty(COS.owl,
propertyType, propertyName,
oldAnnotationProperty, newAnnotationProperty)

It replaces the annotation property
“oldAnnotationProperty” defined on the propertyType (i.e.,
Class, DataProperty, ObjectProperty, EntityAxiom, or
KeyAxiom) named “propertyName”, in the COS, with a new
annotation property “newAnnotationProperty”.

6) Primitives acting on an entity axiom
 We have defined three primitives:
• AddEntityAxiom(COS.owl, entityType, entityName,

entityAxiom)
It defines a new entity axiom “entityAxiom” on the

entityType (i.e., Class, DataProperty, ObjectProperty, or
AnnotationProperty) named “entityName”, in the COS.

• DropEntityAxiom(COS.owl, entityType,
entityName, entityAxiom)

It removes the entity axiom “entityAxiom” defined on
the entityType (i.e., Class, DataProperty, ObjectProperty, or
AnnotationProperty) named “entityName”, in the COS.

• ChangeEntityAxiom(COS.owl, entityType,
entityName, oldEntityAxiom, newEntityAxiom)

It replaces the entity axiom “oldEntityAxiom” defined on
the entityType (i.e., Class, DataProperty, ObjectProperty, or
AnnotationProperty) named “entityName”, in the COS, with
a new entity axiom “newEntityAxiom”.

7) Primitives acting on a key axiom
We have defined also three primitives:
• AddKeyAxiom(COS.owl, className, keyAxiom)
It defines a new key axiom “keyAxiom” on the class

“className”, in the COS.
• DropKeyAxiom(COS.owl, className, keyAxiom)

94

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It removes the key axiom “keyAxiom” defined on the
class “className”, in the COS.

• ChangeKeyAxiom(COS.owl, className,
oldKeyAxiom, newKeyAxiom)

It replaces the key axiom “oldKeyAxiom” defined on the
class “className” in the COS, with a new key axiom
“newKeyAxiom”.

8) Primitives acting on an entity expression
We have only three primitives:
• AddEntityExpression(COS.owl, entityType,

entityName, entityExpression)
It defines a new entity expression “entityExpression” on

the entityType (i.e., Class, DataProperty, or ObjectProperty)
named “entityName”, in the COS.

• DropEntityExpression(COS.owl, entityType,
entityName, entityExpression)

It removes the entity expression “entityExpression”
defined on the entityType (i.e., Class, DataProperty, or
ObjectProperty) named “entityName”, in the COS.

• ChangeEntityExpression(COS.owl, entityType,
entityName, oldEntityExpression,
newEntityExpression)

It replaces the entity expression “oldEntityExpression”
defined on the entityType (i.e., Class, DataProperty, or
ObjectProperty) named “entityName”, in the COS, with a
new entity expression “newEntityExpression”.

C. Primitives for changing the temporal ontology schema

Changing the temporal ontology schema is a task that
must be done within the same transaction that changes the
corresponding conventional ontology schema and/or the
ontology annotation document. We also propose in this sub-
section a complete set of primitives acting on a temporal
ontology schema (their total number is four). For each
primitive, we provide specifications for its actions and
explanation of its parameters. We also present the effects of
some of them. These primitives are as follows:

• CreateTemporalOntologySchema(TOS.xml)
It produces a valid empty TOS. According to the second

design principle, the argument is the name of the XML file
where the new TOS is stored.

The effect of the
CreateTemporalOntologySchema(TOS.xml) primitive, that
is, the contents of the COS.xml file after its application, is as
follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<temporalOntologySchema/>

• DropTemporalOntologySchema(TOS.xml)
It removes the TOS.xml file from disk, with the

constraint that the argument represents an empty TOS (i.e.,
like the one above initially created by the
CreateTemporalOntologySchema primitive). Any other
contents must have been removed before.

• AddSlice(TOS.xml, toWat, sourceSlice, targetSlice)
It adds the <slice/> element with specified sourceSlice

and targetSlice to the toWhat (i.e.,
<conventionalOntologySchema/> or

<ontologyAnnotationSet/>) container.
- The sourceSlice parameter could be:
a) The keyword empty; in this case, the resource pointed

by targetSlice is initialized to an empty conventional
ontology schema or ontology annotation document according
to the toWhat value.

b) The keyword current; in this case, the resource pointed
by targetSlice is initialized with a copy of the current
conventionalOntologySchema or ontologyAnnotationSet
resource (according to toWhat), whose location is found in
the TOS.xml temporal schema file by choosing the slice with
the maximum value of begin in the corresponding
sliceSequence (note: after the creation of the first schema
version, this is the normal case).

c) A specified file name (URL): in this case, a copy of
the specified resource is renamed as targetSlice and used as
the new location (e.g., this case is used to create a new
conventional ontology schema version from an already
existing OWL 2 file, which could be quite common when
creating the first schema version but can be used also later
for reuse purpose and/or integrating independently
developed schemata into a τOWL framework).

- The targetSlice parameter is the value assigned to the
location attribute of <slice/> and must not correspond to the
URL of any already existing OWL 2 file/resource.

For example, the effects of the AddSlice(“TOS.xml”,
conventionalOntologySchema, empty, “COS_V1.owl”)
primitive are described in the following:

i) The contents of the TS.xml file is updated as follows
(the transaction time associated to the execution of the
transaction that includes this primitive is March 01, 2012,
which is used as value of begin in the <slice/> element):

<?xml version=”1.0” encoding=”UTF-8”?>
<temporalOntologySchema>

<conventionalOntologySchema>
<sliceSequence>

<slice location=”COS_V1.owl”
 begin=”2012-03-01” />

</sliceSequence>
</conventionalOntologySchema>

</temporalOntologySchema>

ii) A new empty conventional ontology schema, titled

“COS_V1.owl”, is created as follows:

<rdf:RDF>
<owl:Ontology rdf:about=”” />

</rdf:RDF>

• DropSlice(TOS.xml, fromWat, targetSlice)
It removes the <slice/> element with specified targetSlice

from the fromWhat (i.e., <conventionalOntologySchema/>
or <ontologyAnnotationSet/>) container.

D. Running example conclusion

Let us resume the example started in Section II.A.
Suppose that on July 18, 2014, the KBA decides to make
some changes to the first version of the conventional
ontology schema, in order to meet some changes in the code

95

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the application that exploit such an ontology schema.
These changes are as follows:

– define an irreflexive relationship (or object property),
named “childOf”, on the class “Person”;

– create two new classes, named “Man” and “Woman”,
which inherit from the class “Person”;

– define a symmetric relationship, named “hasSpouse”,
between the class “Man” and the class “Woman”;

– specify a relationship, named “hasWife”, between the
class “Man” and the class “Woman”. This relationship
inherits from the relationship “hasSpouse”;

– change the name of the property (or data property)
“name” of the class “Person” to “fullName”;

– add a new property, named “age” and having the XSD
type “nonNegativeInteger”, to the class “Person”;

– specify an expression on the relationship
“holdsAccount”, which indicates that each person must have
at least one online account.

The second version of the conventional ontology schema
and the second version of each one the two conventional
ontology instance documents are shown in Figure 12, Figure
13, and Figure 14, respectively. The temporal ontology
schema is also updated by adding a new slice related to this
new version of the conventional ontology schema, as shown
in Figure 15. Moreover, the temporal document is updated,
in order to include two new slices corresponding to the two
new conventional ontology instance documents, as shown in
Figure 16. The squashed version of the updated temporal
document that consequently can be generated by the
Temporal Instances Generator tool is similar to documents
provided in Figure 9 and Figure 11. Notice that changes are
presented in red, in Figures 12-16.

<rdf:RDF>

<owl:Ontology
rdf:about="http://purl.org/az/foaf#">

<owl:Class rdf:about="Person"/>
<owl:Class rdf:about="OnlineAccount"/>
<owl:Class rdf:about="Man"/>
<owl:Class rdf:about="Woman"/>
<owl:DatatypeProperty rdf:about="accountName">

<rdfs:domain rdf:resource="Person"/>
<rdfs:range rdf:resource=
"http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="nick">

<rdfs:domain rdf:resource="Person"/>
<rdfs:range rdf:resource=
"http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="fullName">

<rdfs:domain rdf:resource="Person"/>
<rdfs:range rdf:resource=
"http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="age">

<rdfs:domain rdf:resource="Person"/>
<rdfs:range rdf:resource=
"http://www.w3.org/2001/XMLSchema#nonNegativeI

nteger"/>
</owl:DatatypeProperty>

<owl:ObjectProperty rdf:about="holdsAccount">
<rdfs:domain rdf:resource="Person"/>
<rdfs:range rdf:resource="OnlineAccount"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="hasSpouse">

<rdfs:domain rdf:resource="Man"/>
<rdfs:range rdf:resource="Woman"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="hasWife">

<rdfs:domain rdf:resource="Man"/>
<rdfs:range rdf:resource="Woman"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="childOf">

<rdfs:domain rdf:resource="Person"/>
<rdfs:range rdf:resource="Person"/>

</owl:ObjectProperty>
<owl:Class rdf:about="Man">

<rdfs:subClassOf rdf:resource="Person"/>
</owl:Class>
<owl:Class rdf:about="Woman">

<rdfs:subClassOf rdf:resource="Person"/>
</owl:Class>
<owl:SymmetricProperty rdf:about="hasSpouse"/>
<owl:IrreflexiveProperty rdf:about="childOf"/>
<owl:ObjectProperty rdf:about="hasWife">

<rdfs:subPropertyOf rdf:resource="hasSpouse"/>
</owl:ObjectProperty>
<owl:Restriction>

<owl:onProperty rdf:resource="#holdsAccount"/>
<owl:minCardinality rdf:datatype=
"http://www.w3.org/2001/XMLSchema#nonNegativeI

nteger">1
</owl:minCardinality>

</owl:Restriction>
…

</owl:Ontology>
</rdf:RDF>

Figure 12. Second version of the conventional ontology schema
(PersonSchema_V2.owl), on July 18, 2014.

…
<foaf:Person rdf:ID="#Person1">

<foaf: fullName >Nouredine Tounsi</foaf:fullName>
<foaf:nick>Nor</foaf:nick>
<age/>
<childOf />
<hasSpouse />
<hasWife />
<foaf:holdsAccount>

<foaf:OnlineAccount rdf:about=
"https://www.facebook.com/Nouredine.Tounsi">

<foaf:accountName>Nor_Tunsi</foaf:accountName>
</foaf:OnlineAccount>

</foaf:holdsAccount>
</foaf:Person>
…

Figure 13. “Persons_V3.rdf”: the second version of the conventional
ontology instance document “Persons_V1.rdf”, on July 18, 2014.

…
<foaf:Man rdf:ID="#Person1">

<foaf: fullName >Nouredine Tounsi</foaf: fullName >
<foaf:nick>Nouri</foaf:nick>
<age/>
<childOf/>
<hasSpouse/>
<hasWife/>

96

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<foaf:holdsAccount>
<foaf:OnlineAccount rdf:about=
 "https://www.facebook.com/Nouredine.Tounsi">

<foaf:accountName>Nouri_Tunsi
</foaf:accountName>

</foaf:OnlineAccount>
</foaf:holdsAccount>

</foaf:Person>
…

Figure 14. “Persons_V4.rdf”: the second version of the conventional
ontology instance document “Persons_V2.rdf”, on July 18, 2014.

<?xml version=”1.0” encoding=”UTF-8”?>
<temporalOntologySchema>

<conventionalOntologySchema>
<sliceSequence>

<slice location=”PersonSchema_V1.owl”
begin=”2014-01-15” />

<slice location=”PersonSchema_V2.owl”
begin=”2014-07-18” />

</sliceSequence>
</conventionalOntologySchema>
<ontologyAnnotationSet>

<sliceSequence>
<slice location=”PersonAnnotations_V1.xml”

begin=”2014-01-15” />
</sliceSequence>

</ontologyAnnotationSet>
</temporalOntologySchema>

Figure 15. The temporal ontology schema (PersonTemporalSchema.xml), on
July 18, 2014.

<?xml version=”1.0” encoding=”UTF-8”?>

<td:temporalRoot
temporalSchemaLocation= ”PersonTemporalSchema.xml

” />
<td:sliceSequence >

<td:slice location =”Persons_V1.rdf ”
 begin=”2014-01-15” />
<td:slice location =”Persons_V2.rdf ”
 begin=”2014-02-08” />
<td:slice location=”Persons_V3.rdf”
 begin=”2014-07-18” />
<td:slice location=”Persons_V4.rdf”
 begin=”2014-07-18” />

</ td:sliceSequence >
</ td:temporalRoot >

Figure 16. The temporal document (PersonTemporalDocument.xml)
on July 18, 2014.

The transaction listed in the following contains the

sequence of primitives that have been performed on the
temporal ontology schema (PersonTemporalSchema.xml, in
Figure 7), on the first version of the conventional ontology
schema (PersonSchema_V1.owl in Figure 4), on the first
version of the conventional ontology instance document
(Persons_V1.rdf in Figure 1) and on the second version of
the conventional ontology instance document
(Persons_V2.rdf in Figure 2), in order to update the
temporal ontology schema (see Figure 15) and the temporal
document (see Figure 16) and to produce the second version
of the conventional ontology schema, named
“PersonSchema_V2.owl” (see Figure 12), and the third and

the fourth versions of the conventional ontology instance
document, named “Persons_V3.rdf” (see Figure 13) and
“Persons_V4.rdf” (see Figure 14), respectively, which are
valid with respect to “PersonSchema_V2.owl”:

Begin Transaction

(i) AddSlice(“PersonTemporalSchema.xml”,

conventionalOntologySchema, current,

“PersonSchema_V2.owl”)

(ii) AddObjectProperty(“PersonSchema_V2.owl”,

“childOf”, “Person”, “Person”)

(iii) AddEntityAxiom(“PersonSchema_V2.owl”,

ObjectProperty, “childOf”,

“IrreflexiveProperty”)

(iv) AddClass(“PersonSchema_V2.owl”, “Man”)

(v) AddClass(“PersonSchema_V2.owl”, “Woman”)

(vi) AddEntityAxiom(“PersonSchema_V2.owl”, Class,

“Man”, “subClassOf(Person)”)

(vii) AddEntityAxiom(“PersonSchema_V2.owl”, Class,

“Woman”, “subClassOf(“Person”)”)

(viii) AddObjectProperty(“PersonSchema_V2.owl”,

“hasSpouse”, “Man”, “Woman”)

(ix) AddEntityAxiom(“PersonSchema_V2.owl”,

ObjectProperty, “hasSpouse”,

“SymmetricProperty”)

(x) AddObjectProperty(“PersonSchema_V2.owl”,

“hasWife”, “Man”, “Woman”)

(xi) AddEntityAxiom(“PersonSchema_V2.owl”,

ObjectProperty, “hasWife”,

“subObjectPropertyOf(“hasSpouse”)”)

(xii) RenameDataProperty(“PersonSchema_V2.owl”,

“Person”, “name”, “fullName”)

(xiii) AddDataProperty(“PersonSchema_V2.owl”,

“Person”, “age”,

“http://www.w3.org/2001/XMLSchema#nonNegativeIn

teger”)

(xiv) AddEntityExpression(“PersonSchema_V2.owl”,

ObjectProperty, “holdsAccount”,

“minCardinality(1)”)

Commit

The transaction time associated to the execution of the

transaction above is July 18, 2014, which is used as value of
the attribute “begin” of the new <slice/> element,
corresponding to the new conventional ontology schema
version, in the temporal ontology schema file.

Notice that on July 18, 2014, our multiversion τOWL
framework is thus composed of two successive versions of
the conventional ontology schema (shown in Figure 4 and
Figure 12, respectively), four versions of the conventional
ontology instance documents (shown in Figure 1, Figure 2,
Figure 13, and Figure 14, respectively), one version of the
ontology annotation document (shown in Figure 6), the
temporal document (shown in Figure 16) and the temporal
ontology schema (shown in Figure 15).

97

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Notice also that “Persons_V3.rdf” (shown in Figure 13)
and “Persons_V4.rdf” (shown in Figure 14) are the results
of schema change propagation (i.e., the effects of schema
changes on instances), in order to adapt all existing
instances, stored in “Persons_V1.rdf” (shown in Figure 1)
and “Persons_V2.rdf” (shown in Figure 2), to the new
schema version “PersonSchema_V2.owl” (shown in Figure
12). In fact, after creating "Persons_V3.rdf" as a copy of
"Persons_V1.rdf" and "Persons_V4.rdf" as a copy of
"Persons_V2.rdf", the two following XQuery Update
Facility [31] statements could be executed on
"Persons_V3.rdf" and "Persons_V4.rdf", respectively, to
achieve the purpose:

for $p in fn:doc("Persons_V3.rdf")//foaf:Person

return {

rename node $p/foaf:name as "foaf:fullName",

insert node <age/> after $p/foaf:nick,

insert node <childOf/> after $p/age,

insert node <hasSpouse/> after $p/childOf,

insert node <hasWife/> after $p/hasSpouse

}

for $p in fn:doc("Persons_V4.rdf")//foaf:Person

return {

rename node $p/foaf:name as "foaf:fullName",

insert node <age/> after $p/foaf:nick,

insert node <childOf/> after $p/age,

insert node <hasSpouse/> after $p/childOf,

insert node <hasWife/> after $p/hasSpouse

}

These statements are derived, in an automatic and

transparent way, by the system as a part of the semantics of
the schema change primitives. They are not part of what the
KBA puts in his/her schema change transaction, but it is the
system to generate and add them to the transaction that is
actually executed.

VI. RELATED WORK DISCUSSION

In the literature, there are several proposals that deal with
managing temporal aspects in ontologies or Semantic Web.
OWL-Time (formerly DAML-Time) [32] is a temporal
ontology that has been developed for describing the temporal
content of Web pages and the temporal properties of Web
services. Excepting language constructs for representing time
in ontologies, mechanisms for representing evolution of
concepts (e.g., events) over time are absent. Furthermore,
temporal relations cannot be expressed directly in OWL,
since they are ternary (i.e., properties of objects that change
in time involve also a temporal value in addition to the object
and the subject); representing such temporal relations in
OWL requires appropriate methods (e.g., 4D-fluents [33]).
Our approach allows a KBA to represent (i) evolution of
concepts over time, and (ii) temporal relations.

In [34], the authors present the annotation features of
OWL 2 by showing that it allows for annotations on
ontologies, entities, anonymous individuals, axioms (e.g.,

giving information about who asserted an axiom or when),
and annotations themselves. In our work, we took another
direction from using OWL 2 annotation features because we
rather wanted to exploit the power of the τXSchema
approach (e.g., including the exploitation of a τXSchema-
like underlying infrastructure).

Time dimension(s) are explicitly added to Semantic Web
languages and formalisms (e.g., RDF, OWL and SPARQL
[35]) in order to represent time in semantic annotations, to
build temporal ontologies and to support temporal querying
and reasoning. An annotated bibliography of previous work
in this area is presented in [13], and a survey on the models
and query languages for temporally annotated RDF is
provided in [36]. In particular, in the literature, there are
various contributions that propose to represent temporal data
in the Semantic Web.

Gutiérrez et al. [37] presented a comprehensive
framework to incorporate temporal reasoning into RDF,
yielding temporal RDF graphs. They define a syntactic
notion of temporal RDF graphs. A powerful system, called
CHRONOS, for reasoning over temporal information in
OWL ontologies is presented in [38]. Since qualitative
representations are very common in natural language
expressions such as in free text or speech and can be proven
to be valuable in the Semantic Web, the authors choose to
represent both qualitative temporal (i.e., information whose
temporal extents are unknown such as “before”, “after” for
temporal relations) and quantitative information (i.e., where
temporal information is defined precisely, e.g., using dates).
The CHRONOS reasoner can be applied to temporal
relations in order to infer implied relations and to detect
inconsistencies while retaining soundness, completeness and
tractability over the supported relations set. The paper [39]
proposes a logic-based approach to introduce valid-time into
RDFS and OWL 2 languages. An extension of SPARQL that
can be used to query temporal RDF(S) and OWL 2 is also
presented. Moreover, the author describes a general query
evaluation algorithm that can be used with all entailment
relations used in the Semantic Web. Finally, he presents two
optimizations of the algorithm that are applicable to
entailment relations characterized by a set of deterministic
rules, such RDF(S) and OWL 2 RL/RDF Entailment. As
opposed to Gutiérrez et al. [37], Anagnostopoulos et al. [38]
and Motik [39], in our present approach, we are not
interested in temporal (or spatio-temporal) reasoning.

Two complementary and alternative proposals for
modeling temporally changing information in OWL are
proposed in [40]. They are based on the perdurantist theory
and benefit from results coming from the discipline of
Formal Ontology, in order to restrict the appropriate use of
the proposed frameworks. In the first proposal, the authors
combine the perdurantist worm view with the notion of
individual concepts for formulating a conceptual structure
that allows one to separate, from the information that define
all the individuals, the information concerning those that can
possibly change. In the second proposal, they extend the first
proposal with the distinction between objects and moments
and the notion of qua individuals, where a qua individual is
the way an object participates in a certain relation.

98

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Differently from Zamborlini et al. [40], our approach does
not deal with modeling of time inside the ontology, but just
aims at supporting temporal versioning.

O’Connor et al. [41] present a methodology and a set of
tools for representing and querying temporal information in
OWL ontologies. Their approach uses a lightweight temporal
model to encode the temporal dimension of data. It also uses
the OWL-based Semantic Web Rule Language (SWRL) and
the SWRL-based OWL query language (SQWRL) to reason
with and query the temporal information represented using
the proposed model. By now, our approach does not support
temporally-aware semantic rules.

The authors of [42] propose a new language, called
temporal OWL (tOWL), which is an extension of the
Ontology Web Language Description Logics (OWL-DL) to
the temporal aspect. It enables the representation of time and
change in dynamic domains. Through a layered approach,
they introduce three extensions: (i) Concrete Domains,
which allow the representation of restrictions using concrete
domain binary predicates, (ii) Temporal Representation,
which introduces timepoints, relations between timepoints,
intervals, and Allen’s 13 interval relations [43] into the
language, and (iii) TimeSlices/Fluents, which implement a
perdurantist view on individuals and enable the
representation of complex temporal aspects such as process
state transitions. The main purpose of our approach is to
support past ontology versions, to be accessed via time-slice
queries. We think that supporting temporal ontology versions
is very interesting for several purposes and in different areas.
The problem of not having temporal versions is that, e.g., if
we have now to investigate on someone having put some
illegal material on Facebook last week, we want to be able to
individuate the account details even if they have been
changed thereafter.

As far as ontology schema evolution and versioning
problems are concerned, we can find also several studies
which have dealt with them. In general, we could summarize
them under the three following groups of issues taken into
account:

– modeling, implementing, and detecting changes in
ontologies [44][45][46][47][48];

– preserving the consistency of evolving ontologies
[49][50][51][52];

– ontology versioning support
[53][54][55][56][57][58][59][60][61].

Our approach belongs to the last set of contributions. In
[53], the authors consider the notion of context as an
abstraction mechanism to deal with multi-representation
ontologies (contextual ontologies). A formal representation
language based on modal description logics is proposed to
comply with the requirements of multiple perspectives of
domain ontology.

Bouquet et al. [54] show how ontologies can be
contextualized, by proposing Context OWL (C-OWL), a
language whose syntax and semantics have been obtained by
extending the OWL syntax and semantics to allow for the
representation of contextual ontologies. Notice that an
ontology is said to be contextualized when its contents are
kept local, and, therefore, not shared with other ontologies,

and mapped with the contents of other ontologies via explicit
(context) mappings.

Heflin et al. [55] show that the Semantic Web needs a
formal semantics for the various kinds of links between
ontologies and other documents, and then provide a model
theoretic semantics that takes into account ontology
extension and ontology versioning.

Völkel et al. [56] present an RDF-centric versioning
approach and an implementation called SemVersion. The
proposed approach separates the management aspects from
the versioning core functionality. SemVersion provides
structural and semantic versioning for RDF models and
RDF-based ontology languages like RDFS, considering
blank node enrichment as a technique to identify the blank
nodes in the versioned models.

Bedi et al. [57] introduce an approach that combines the
concepts of temporal frame and slot versioning with the
ontology to create temporal tagged ontologies with
embedded versioning. The authors also propose to enhance
the existing OWL to enable the creation of temporal tagged
OWL ontologies: two new tags, “rdf:Validity” and
“rdf:Timestamp”, are introduced and a scheme is presented
for the value of the “rdf:Id” and “rdf:Resource” tags to make
the temporal tagged ontologies consistent with the non-
temporal ontologies.

Kondylakis et al. [61] propose a solution that allows
query answering in data integration systems under evolving
ontologies without mapping redefinition. This is achieved by
rewriting queries among ontology versions and then
forwarding them to the underlying data integration systems
to be answered.

The works that are more strictly related with our
approach are [58], [59], and [60]. Grandi [58] provides a
multi-temporal RDF database model; a database consists in a
set of RDF triples timestamped along the valid and/or
transaction time axes. The data model is equipped with
manipulation operations which allow the KBA to maintain a
multi-temporal RDF database in order to manage temporal
versions of an ontology. Grandi et al. [59] introduce “The
Valid Ontology”, a framework to represent and store
multiple temporal versions of an ontology in a compact
temporal XML format and efficiently extract ontology
snapshots from the multiversion XML document via a
temporal XML processor. Grandi [60] focuses on temporal
versioning of light-weight ontologies expressed in RDF(S)
and show how the multi-temporal RDF data model proposed
in [58] can be used to support RDF(S) ontology versioning.
The data model is equipped with a complete set of primitive
ontology change operations, which are defined in terms of
low-level updates acting on RDF triples. When used within
the transaction template, which has also been introduced, the
proposed ontology changes allow a KBA to define and
manage temporal versions of an RDF(S) ontology.

However, whereas all the works in this group, including
[58], [59], and [60], basically propose ad hoc solutions for
the management of temporal versions of RDF, RDF(S) or
OWL resources, we introduce a τXSchema-like general
framework embodying a disciplined and principled approach
to temporal versioning of Semantic Web documents, both at

99

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

instance and at schema levels.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed τOWL, a τXSchema-like
framework, which allows creating a temporal OWL 2
ontology from a conventional OWL 2 ontology and a set of
logical and physical annotations. Our framework ensures
logical and physical data independence, since it (i) separates
conventional schema, logical annotations, and physical
annotations, and (ii) allows each one of these three
components to be changed independently and safely.
Furthermore, adoption of τOWL provides for a low-impact
solution, since it requires neither modifications of existing
Semantic Web documents, nor extensions to the OWL 2
recommendation and Semantic Web standards. The
extension of OWL 2 to temporal and versioning aspects is
performed without having to depend on approval of
proposed extensions by standardization committees (and on
upgrade of existing tools conforming to standards to comply
with approved extensions).

Moreover, we have extended our τOWL framework by
proposing a general approach for schema versioning in it and
focusing on the definition of a set of change primitives for
supporting the evolution of both temporal and conventional
ontology schema. Our approach helps the KBA in the
management of conventional schema changes in τOWL-
based Semantic Web repositories and guarantees the
maintenance of a full history of evolving conventional
ontology instances and schemata.

In order to embed our approach into a user-friendly
environment at the disposal of KBAs, a tool for the
management of temporal ontologies in the τOWL framework
is under development at the University of Sfax. A first
release of the tool, named τOWL-Manager [62], is already
available and implements our τOWL framework with the
support of temporal versioning of ontology instances. The
new release currently under development will support all
schema change primitives proposed in this paper, and put
them at the disposal of KBAs, via an intuitive interface
which assists them in expressing their needs to fulfill
application requirements. Furthermore, we are also
extending the present work by defining a complete set of
schema change primitives for the ontology annotation
document which stores logical and physical annotations
specified on the conventional ontology schema.

Besides, in order to further simplify the work of KBAs
and to make our approach more useful, we intend to propose
in our future work high-level and more user-friendly schema
change operations, based on the primitives introduced in this
paper and on those that will be defined for changing
annotations. A high-level operation is a valid sequence of
primitives, which correspond to frequent schema evolution
needs and allows expressing complex changes in a more
compact way [63]. Moreover, we will also allow the KBA to
build his/her own high-level schema change operations, by
combining in a consistent way pre-defined high-level
operations and/or primitives, through the use of a specific
tool that will be integrated in a future release of the τOWL-
Manager environment.

As a part of our future work, we will also thoroughly
study the propagation of changes performed on conventional
ontology schema, i.e., their effects on conventional ontology
instances stored in conventional ontology instance
documents, which are valid with respect to the conventional
ontology schema.

Finally, we also plan to address querying of temporal
ontology instances under schema versioning, in the τOWL
framework. The starting point for this extension will be the
T-SPARQL language [27], which allows end users and
KBAs to express queries on multi-temporal ontology
instances (which are composed of multi-temporal RDF
triples) under a single ontology schema version; such a
language could be extended with features to support schema
versions and specify multi-schema queries, i.e., queries
involving instances of several schema versions [64].

REFERENCES
[1] A. Zekri, Z. Brahmia, F. Grandi, and R. Bouaziz, “τOWL: A

Framework for Managing Temporal Semantic Web
Documents,” Proceedings of the 8th International Conference
on Advances in Semantic Processing (SEMAPRO 2014),
Rome, Italy, 24-28 August 2014, pp. 33-41.

[2] C. S. Jensen and R. T. Snodgrass, “Temporal Data
Management,” IEEE Transactions on Knowledge and Data
Engineering, vol. 11, January/February 1999, pp. 36-44.

[3] O. Etzion, S. Jajodia, and S. Sripada (eds.), “Temporal
Databases: Research and Practice,” LNCS 1399, Springer-
Verlag, 1998.

[4] C. S. Jensen and R. T. Snodgrass, “Temporal Database,” in
Liu L., Özsu M.T., (Eds.), Encyclopedia of Database Systems,
Springer US, 2009, pp. 2957-2960.

[5] F. Grandi, “Temporal Databases,” in M. Koshrow-Pour, (Ed.),
Encyclopedia of Information Science and Technology (3rd
Ed.), IGI Global, Hershey, in press.

[6] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and
A. Secret, “The World Wide Web,” Communications of the
ACM, vol. 37, August 1994, pp. 76-82.

[7] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic
Web,” Scientific American, vol. 284, May 2001, pp. 34-43.

[8] W3C Semantic Web Activity. <http://www.w3.org/2001/sw/>
[retrieved: May, 2015]

[9] N. Guarino (Ed.), Formal Ontology in Information Systems,
IOS Press, Amsterdam, 1998.

[10] W3C, OWL 2 Web Ontology Language – Primer (Second
Edition), W3C Recommendation, 11 December 2012.
<http://www.w3.org/TR/owl2-primer/> [retrieved: May,
2015]

[11] W3C, OWL 2 Web Ontology Language – Document
Overview (Second Edition), W3C Recommendation, 11
December 2012. <http://www.w3.org/TR/owl2-overview/>
[retrieved: May, 2015]

[12] W3C, OWL 2 Web Ontology Language – Profiles (Second
Edition), W3C Recommendation, 11 December 2012.
<http://www.w3.org/TR/owl2-profiles/> [retrieved: May,
2015]

[13] F. Grandi, “Introducing an Annotated Bibliography on
Temporal and Evolution Aspects in the Semantic Web,”
SIGMOD Record, vol. 41, December 2012, pp. 18-21.

[14] F. Currim, S. Currim, C. E. Dyreson, and R. T. Snodgrass, “A
Tale of Two Schemas: Creating a Temporal XML Schema
from a Snapshot Schema with tXSchema,” Proceedings of the
9th International Conference on Extending Database
Technology (EDBT 2004), Heraklion, Crete, Greece, 14-18

100

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

March 2004, pp. 348-365.
[15] R. T. Snodgrass, C. E. Dyreson, F. Currim, S. Currim, and S.

Joshi, “Validating Quicksand: Schema Versioning in
τXSchema,” Data Knowledge and Engineering, vol. 65, May
2008, pp. 223-242.

[16] F. Currim, S. Currim, C. E. Dyreson, S. Joshi, R. T.
Snodgrass, S. W. Thomas, and E. Roeder, “τXSchema:
Support for Data- and Schema-Versioned XML Documents,”
TimeCenter Technical Report TR-91, 279 pages, September
2009.
<http://timecenter.cs.aau.dk/TimeCenterPublications/TR-
91.pdf> [retrieved: May, 2015]

[17] C. E. Dyreson and F. Grandi, “Temporal XML,” in L. Liu and
M. T. Özsu (Eds.), Encyclopedia of Database Systems,
Springer US, 2009, pp. 3032-3035.

[18] Z. Brahmia, R. Bouaziz, F. Grandi, and B. Oliboni, “Schema
Versioning in τXSchema-Based Multitemporal XML
Repositories,” Proceedings of the 5th IEEE International
Conference on Research Challenges in Information Science
(RCIS 2011), Guadeloupe - French West Indies, France, 19-
21 May 2011, pp. 1-12.

[19] Z. Brahmia, F. Grandi, B. Oliboni, and R. Bouaziz,
“Versioning of Conventional Schema in the τXSchema
Framework,” Proceedings of the 8th International Conference
on Signal Image Technology & Internet Systems
(SITIS’2012), Sorrento – Naples, Italy, 25-29 November
2012, pp. 510-518.

[20] Z. Brahmia, F. Grandi, B. Oliboni, and R. Bouaziz, “Schema
Change Operations for Full Support of Schema Versioning in
the τXSchema Framework,” International Journal of
Information Technology and Web Engineering, vol. 9, April-
June 2014, pp. 20-46.

[21] T. Burns, E. Fong, D. Jefferson, R. Knox, L. Mark, C. Reedy,
L. Reich, N. Roussopoulos, and W. Truszkowski, “Reference
Model for DBMS Standardization, Database Architecture
Framework Task Group (DAFTG) of the ANSI/X3/SPARC
Database System Study Group,” SIGMOD Record, vol. 15,
March 1986, pp. 19-58.

[22] J. F. Roddick, “Schema Versioning,” in Liu L., Özsu M.T.,
(Eds.), Encyclopedia of Database Systems, Springer US,
2009, pp. 2499-2502.

[23] Z. Brahmia, F. Grandi, B. Oliboni, and R. Bouaziz, "Schema
Versioning," in M. Khosrow-Pour (Ed.), Encyclopedia of
Information Science and Technology (3rd Ed.), IGI Global,
2014, pp. 7651-7661.

[24] D. Rogozan and G. Paquette, “Managing ontology changes on
the semantic web,” Proceedings of the 2005 IEEE/WIC/ACM
International Conference on Web Intelligence (WI 2005),
Compiegne, France, 19-22 September 2005, pp. 430-433.

[25] The Friend of a Friend (FOAF) project. <http://www.foaf-
project.org/> [retrieved: May, 2015]

[26] W3C, Resource Description Framework (RDF), Semantic
Web Standard. <http://www.w3.org/RDF/> [retrieved: May,
2015]

[27] F. Grandi, “T-SPARQL: a TSQL2-like temporal query
language for RDF,” Proceedings of the 1st International
Workshop on Querying Graph Structured Data (GraphQ
2010), Novi Sad, Serbia, 20 September 2010, pp. 21-30.

[28] J. Clifford, C. Dyreson, T. Isakowitz, C. S. Jensen, and R. T.
Snodgrass, “On the Semantics of "Now" in Databases,” ACM
Transactions on Database Systems, vol. 22, June 1997, pp.
171–214.

[29] W3C, RDF/XML Syntax Specification (Revised), W3C
Recommendation, 10 February 2004.
<http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-
20040210/> [retrieved: May, 2015]

[30] XML Schema Part 0: Primer Second Edition, W3C

Recommendation, 28 October 2004.
<http://www.w3.org/TR/2004/REC-xmlschema-0-
20041028/> [retrieved: May, 2015]

[31] W3C, XQuery Update Facility 1.0, W3C Candidate
Recommendation, 17 March 2011.
<http://www.w3.org/TR/2011/REC-xquery-update-10-
20110317/> [retrieved: May, 2015]

[32] W3C, Time Ontology in OWL, W3C Working Draft, 27
september 2006. <http://www.w3.org/TR/owl-time/>
[retrieved: May, 2015]

[33] C. A. Welty and R. Fikes, “A Reusable Ontology for Fluents
in OWL,” Proceedings of the 4th International Conference on
Formal Ontology in Information Systems (FOIS 2006),
Baltimore, Maryland, USA, 9-11 November 2006, pp. 226-
236.

[34] W3C, OWL 2 Web Ontology Language – New Features and
Rationale (Second Edition), W3C Recommendation, 11
December 2012. <http://www.w3.org/TR/owl2-new-
features/> [retrieved: May, 2015]

[35] W3C, SPARQL Query Language for RDF, W3C
Recommendation, 15 January 2008,
<http://www.w3.org/TR/2008/REC-rdf-sparql-query-
20080115/> [retrieved: May, 2015]

[36] A. Analyti and I. Pachoulakis, “A survey on models and
query languages for temporally annotated RDF,” International
Journal of Advanced Computer Science and Applications,
vol. 3, September 2012, pp. 28-35.

[37] C. Gutiérrez, C. A. Hurtado, and A. A. Vaisman, “Introducing
time into RDF,” IEEE Transactions on Knowledge and Data
Engineering, vol. 19, February 2007, pp. 207-218.

[38] E. Anagnostopoulos, S. Batsakis, and E. G. M. Petrakis,
“CHRONOS: A Reasoning Engine for Qualitative Temporal
Information in OWL,” Proceedings of the 17th International
Conference in Knowledge-Based and Intelligent Information
& Engineering Systems (KES 2013), Kitakyushu, Japan, 9-11
September 2013, pp. 70-77.

[39] B. Motik, “Representing and Querying Validity Time in RDF
and OWL: A Logic-based Approach,” Proceedings of the 9th
International Semantic Web Conference (ISWC 2010),
Shanghai, China, 7-11 November 2010, pp. 550-565.

[40] V. Zamborlini and G. Guizzardi, “On the representation of
temporally changing information in OWL,” Workshops
Proceedings of the 14th IEEE International Enterprise
Distributed Object Computing Conference (EDOCW 2010),
Vitória, Brazil, 25-29 October 2010, pp. 283-292.

[41] M. J. O’Connor and A. K. Das, “A method for representing
and querying temporal information inOWL,” In Biomedical
Engineering Systems and Technologies, volume 127 of
Communications in Computer and Information Science, pp.
97-110. Springer-Verlag, Heidelberg, Germany, 2011.

[42] V. Milea, F. Frasincar, and U. Kaymak, “tOWL: A Temporal
Web Ontology Language,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B, vol. 42, February 2012, pp.
268-281.

[43] J. F. Allen, “Maintaining Knowledge About Temporal
Intervals,” Communications of the ACM, vol. 26, November
1983, pp. 832-843.

[44] M. C. A. Klein and D. Fensel, “Ontology versioning on the
Semantic Web,” Proceedings of the 1st Semantic Web
Working Symposium (SWWS 2001), Stanford University,
California, USA, 30 July – 1 August 2001, pp. 75-91.

[45] M. C. A. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov,
“Ontology Versioning and Change Detection on the Web,”
Proceedings of the 13th International Conference on
Knowledge Engineering and Knowledge Management.
Ontologies and the Semantic Web (EKAW 2002), Siguenza,
Spain, 1-4 October 2002, pp. 197-212.

101

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[46] N. F. Noy and M. A. Musen, “Ontology versioning in an
ontology management framework,” IEEE Intelligent Systems,
vol. 19, July 2004, pp. 6-13.

[47] J. Eder and C. Koncilia, “Modelling changes in ontologies,”
Proceedings of the OTM Confederated International
Workshops and Posters, GADA, JTRES, MIOS, WORM,
WOSE, PhDS, and INTEROP 2004, Agia Napa, Cyprus, 25-
29 October 2004, pp. 662-673.

[48] T. Redmond, M. Smith, N. Drummond, and T. Tudorache,
“Managing change: an ontology version control system,”
Proceedings of the 5th International Workshop on OWL:
Experiences and Directions (OWLED 2008), Karlsruhe,
Germany, 26-27 October 2008. CEUR Workshop Proceedings
(CEUR-WS.org), Vol-432. <http://ceur-ws.org/Vol-
432/owled2008eu_submission_33.pdf> [retrieved: May,
2015]

[49] P. De Leenheer, “Revising and managing multiple ontology
versions in a possible worlds setting,” Proceedings of the
OTM Confederated International Workshops and Posters,
GADA, JTRES, MIOS, WORM, WOSE, PhDS, and
INTEROP 2004, Agia Napa, Cyprus, 25-29 October 2004, pp.
798-809.

[50] P. Haase and L. Stojanovic, “Consistent Evolution of OWL
Ontologies,” Proceedings of the 2nd European Semantic Web
Conference (ESWC 2005), Heraklion, Crete, Greece, 29 May
– 1 June 2005, pp. 182-197.

[51] N. Sassi, W. Jaziri, and F. Gargouri, “How to Evolve
Ontology and Maintain Its Coherence - A Corrective
Operations-based Approach,” Proceedings of the International
Conference on Knowledge Engineering and Ontology
Development (KEOD 2009), Funchal - Madeira, Portugal, 6-8
October 2009, pp. 384-387.

[52] W. Jaziri, N. Sassi, and F. Gargouri, “Approach and tool to
evolve ontology and maintain its coherence,” International
Journal of Metadata, Semantics, and Ontologies, vol. 5, May
2010, pp. 151-166.

[53] A. Arara and D. Benslimane, “Towards formal ontologies
requirements with multiple perspectives,” Proceedings of the
6th International Conference on Flexible Query Answering
Systems (FQAS 2004), Lyon, France, 24-26 June 2004, pp.
150-160.

[54] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and
H. Stuckenschmidt, “Contextualizing ontologies,” Journal of
Web Semantics, vol. 1, October 2004, pp. 325-343.

[55] J. Heflin and Z. Pan, “A model theoretic semantics for
ontology versioning,” Proceedings of the 3rd International
Semantic Web Conference (ISWC 2004), Hiroshima, Japan,

7-11 November 2004, pp. 62-76.
[56] M. Völkel and T. Groza, “SemVersion: An RDF-based

Ontology Versioning System,” Proceedings of the IADIS
International Conference on WWW/Internet (ICWI 2006),
Murcia, Spain, 5-8 October 2006, vol. 1, pp. 195-202.
<http://www.xam.de/2006/10-SemVersion-ICIW2006.pdf>
[retrieved: May, 2015]

[57] P. Bedi and S. Marwaha, “Versioning OWL ontology using
temporal tags,” Proceedings of the 21st International
Conference on Computer, Electrical, Systems Science and
Engineering (CESSE'07), Vienna, Austria, 25-27 May 2007,
pp. 332-337.

[58] F. Grandi, “Multi-temporal RDF ontology versioning,”
Proceedings of the 3rd International Workshop on Ontology
Dynamics (IWOD 2009), Washington DC, USA, 26 October
2009. CEUR Workshop Proceedings (CEUR-WS.org), Vol-
519. <http://ceur-ws.org/Vol-519/grandi.pdf> [retrieved:
May, 2015]

[59] F. Grandi and M. R. Scalas, “The valid ontology: A simple
OWL temporal versioning framework,” Proceedings of the 3rd
International Conference on Advances in Semantic Processing
(SEMAPRO 2009), Sliema, Malta, 11-16 October 2009, pp.
98-102.

[60] F. Grandi, “Light-weight Ontology Versioning with Multi-
temporal RDF Schema,” Proceedings of the 5th International
Conference on Advances in Semantic Processing (SEMAPRO
2011), Lisbon, Portugal, 20-25 November 2011, pp. 42-48.

[61] H. Kondylakis and D. Plexousakis, “Ontology evolution
without tears,” Journal of Web Semantics, vol. 19, March
2013, pp. 42-58.

[62] A. Zekri, Z. Brahmia, F. Grandi, and R. Bouaziz, “τOWL-
Manager: A Tool for Managing Temporal Semantic Web
Documents in the τOWL Framework,” Proceedings of the 9th
International Conference on Advances in Semantic Processing
(SEMAPRO 2015), Nice, France, 19-24 July 2015, in press.

[63] Z. Brahmia, F. Grandi, B. Oliboni, and R. Bouaziz, “High-
level Operations for Changing Temporal Schema,
Conventional Schema and Annotations, in the τXSchema
Framework,” TimeCenter Technical Report TR-96, 56 pages,
January 2014.
<http://timecenter.cs.aau.dk/TimeCenterPublications/TR-
96.pdf> [retrieved: May, 2015]

[64] F. Grandi, “A relational multi-schema data model and query
language for full support of schema versioning,” Proceedings
of SEBD 2002 – National Conference on Advanced Database
Systems, Isola d’Elba, Italy, 19-21 June 2002, pp. 323-336.

102

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Productivity-Based Software Estimation Models and Process Improvement: an

Empirical Study

Alain Abran, Jean-Marc Desharnais Mohammad Zarour Onur Demirörs
Department of Software Engineering & IT

École de technologie supérieure,

University of Québec,

Montreal, Canada

alain.abran@etsmtl.ca,

 jean-marc.desharnais@etsmtl.ca

College of Computer and

Information Sciences

Prince Sultan University,

Riyadh, Saudi Arabia

mzarour@psu.edu.sa

Middle East Technical University,

Ankara, Turkey

demirors@metu.edu.tr

Abstract—This paper proposes an approach to software

estimation based on productivity models with fixed/variable

costs and economies/diseconomies of scale. The paper looks

first at productivity alone as a single variable model, and

then discusses multi-variable models for estimation in

specific contexts. An empirical study in a Canadian

organization that illustrates the contribution of these

concepts from economics in developing tailor-made

estimation models based on the performance of the

organization studied is presented, as well as the use of the

SWEBOK Guide for the identification of process
improvements areas.

Keywords-Software economics; productivity models; fixed

variable cost; estimation models; Function Point.

I. INTRODUCTION

Over the past 40 years researchers have approached

software effort estimation using different mixes of cost

drivers as well as various techniques that combine costs

drivers with either expert opinion or mathematical

models. The main goal is to produce ‘accurate estimates’,

either intuitively based on expert opinion, or through

mathematical models.

In contrast to traditional approaches and strategies in

software engineering that focus strictly on estimation, this

paper examines an approach common in economics that

looks first at productivity alone as a single variable
model, before moving on to multi-variable models for

estimation in specific contexts. The paper expands on

these concepts and reports on an empirical study that

illustrates the contribution of these concepts from

economics to develop tailor-made estimation models

based on the performance of the organization studied.

This paper reports in more detail on the empirical study

presented briefly in [1], including data quality controls,

functional size measurement and the identification of

process improvement based on the SWEBOK Guide [2].

Some of the concepts introduced in this paper have been

explored initially in [3] that identified a new approach to
software benchmarking and estimation.

The mathematical estimation models from the

literature are broadly derived from two distinct strategies

that take into account information from completed

projects:

 Strategy 1: Statistical analyses represented by multi-

variable models with as many independent variables

as the cost drivers taken into account. Some examples

are linear and nonlinear regressions techniques,

neural network models, and genetic algorithms [4, 5].

For an adequate statistical analysis, it is generally

accepted that there should be 20 to 30 observations

for each independent quantitative variable.

 Strategy 2: Statistical analyses with a unique

independent variable (typically size) combined with a
single adjustment that combines the impact of

multiple cost drivers, individual values of which

come from fixed pre-determined step-functions for

each cost driver. This can be observed, for instance,

in COCOMO-like models [6, 7].

Multi variables models built with insufficient data

points (as in strategy 1) or with models with an

adjustment factor bundling multiple categorical variables

(strategy 2) do not necessarily reduce the risks inherent in

estimation. They may lead managers to believe that the

majority of important cost drivers have been duly taken
into account by the models whereas, in practice, even

more uncertainty may have been created [8, 9]. Numerous

other mathematical techniques exist in software

engineering, such as analogy-based reasoning and

machine learning estimation models, which differ from

the above in their mathematical peculiarities, but which

similarly use a multi-variable approach [10, 11].

Although accurate estimation of a single project is

important, estimation is not the unique management

concern, nor the most important one for a specific project

or for a set of projects for an organization or a customer.
For example, greater productivity, profitability, and high

quality have often greater management relevance than

accuracy of estimation.

Many current estimation models are built without

reference to productivity issues, frequently taking into

account a large number of variables (at times over too

small data sets) in an attempt to predict the better fit of

data points, and then evaluating these models by how

103

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

close the models ‘estimates’ are to ‘actual data’.

However, when actual (internal or external) data come

from highly unproductive projects (and uncompetitive

ones) plagued with numerous quality issues, that an

estimation model estimate ‘accurately’ is of limited value

to customers.
Similarly, how relevant are estimation models built

from external data when a software organization cannot

compare its own productivity with the productivity of the

organizations the data is coming from? If its own

productivity is lower, an external-based estimation

technique will under estimate: without insights into its

own productivity, use of external-based estimation tools is

an inadequate approach.

The rest of the paper is organized as follows. Section II

presents the productivity concept as defined in economics

to represent the performance of a production process,

including fixed/variable costs and
economies/diseconomies of scale. This section also

illustrates how to recognize these concepts in software

engineering data sets. Section III presents how these

concepts are used in a Canadian organization to address

management requests for information on the productivity

of their development process. Section IV presents the

productivity analysis and the estimation models

developed for the organization on the basis of economic

concepts. Section V presents the usage of the SWEBOK

Guide to identify process improvement opportunities for

the organization. Section VI presents a summary and
implications for estimation effort.

II. PRODUCTIVITY MODELS AND ECONOMICS

CONCEPTS

A. A productivity model represents a ‘production’

process

A project is typically set up to plan and manage a
unique event, with a start date, an end date, and a unique

outcome that typically has not been produced before.

Building a house is a project, building a road is a project,

as is developing a software application A for customer B

for a specific deadline.

To improve the odds of meeting the project targets a

project process is implemented to plan activities, monitor

project progress and take remedial action when something

goes off track. Similarly, even though each piece of

software is different, its delivery is organized in a

structured manner and not left to randomness and
individual moods and intuitions of the day. To deliver the

right outcome on time and within the expected cost and

level of quality, a ‘development process’ is implemented

to meet the target taking into account the set of priorities

within a reasonable range of predictability.

A project, including software projects, is a process and

each process corresponds to a level of performance

aligned with its own specificities in terms of activities,

structure of activities, constraints and resources involved

in the process. The question is: How can the performance

of a process be estimated in the future if its current and

past performance and any variations in performance are

not known? What are the economic concepts at work in

software projects? And, when this is understood and
quantified, how can these economics insights be used for

estimation purposes?

A software development project can be modeled as a

production process, in its simplest form using three main

components:

1) Inputs: to calculate productivity, the people involved

in the production process are considered as the inputs

from an economics perspective. In a software project,

the inputs are typically measured in work-hours (or

person-days/-weeks/-months).

2) Activities within the process itself: for calculating

productivity, all of the activities and constraints of
the process are considered as a black-box and are not

taken into account: they are, therefore, implicit

variables, not explicit variables in productivity

calculations.

3) Outputs: the outputs are represented by the number of

functional units produced by the process. The output

of the software development process is the set of

functions delivered to the users, which functions can

now be quantified with international standards of

measurements, such as with any of the relevant ISO

standards on software functional size [12-15].
The productivity of a process is its ratio of outputs

over the inputs used to produce such output. In software,

the productivity of a software project can be represented,

for example, as 10 Function Points per work-month. It is

to be observed as well that, by convention, the

productivity ratio ignores all process characteristics: it is

process and technology independent and, therefore,

allows objective comparison of the productivity of a

process across technologies, organizations and time.

Productivity describes this single concept, and does

not explain why the productivity has varied and may vary

over time within the same process, or across distinct
processes. To explain productivity variability (within and

across processes) additional variables are necessary.

Multi-variable models are useful to investigate which

variable impacts productivity (in a positive or negative

manner), and to what extent. The investigation of why the

productivity of a process varies is the realm of efficiency

studies, not productivity studies.

B. Productivity models with fixed and variable costs

The use of productivity models has a long history that

can be traced back to a large body of knowledge

developed in the domains of economics and engineering.

This section introduces some of these concepts, which

may also be useful in modeling, analyzing and estimating

the performance of software projects.

104

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A productivity model is typically built with data from

completed projects, that is, it uses the information of a

project for which there is no more uncertainty:

 The outputs: i.e., all the software functions have been

delivered; and,

 The hours worked on the project: i.e., they have been
accurately entered into a time reporting system.

This is illustrated in Fig. 1 where:

 The x axis represents the functional size of the

software projects completed;

 The y axis represents the effort in number of hours

that it took to deliver a software project.

The straight line across Fig. 1 represents a statistical

model of the productivity of the software projects. More

specifically, this single independent variable linear

regression model represents the relationship between

effort and size, and is represented by the following
formula:

Y (effort in hours) = f(size)

 = a x Size + b where:

 Size = number of Function Points (FP)

 a = variable cost = number of hours per function

point (hours/FP)

 b = constant representing fixed cost in hours

In terms of units, this equation gives:

Y (hours) = (hours/FP) x FP + hours = hours

Figure 1: Fixed & variable cost in a productivity model

Insights from economics have identified two distinct

types of costs incurred to produce different quantities of

the same types of outputs:

Fixed costs: the portion of the resources expended (i.e.,

inputs) that does not vary with an increase in the number

of outputs. In Fig. 1, this corresponds to b, the constant in

hours at the origin when size = 0.

Example of a fixed cost: a cost of b hours of project effort

is required for mandatory project management activities,

whatever the size of the software to be developed.

Variable costs: the portion of the resources expended (i.e.,
inputs) that depends directly on the number of outputs

produced. In Fig. 1, this corresponds to the slope of the

model, that is: slope = a in terms of hours/FP (i.e., the

number of work hours required to produce an additional

unit of output).

It is to be observed that in productivity models, the

constant b does not represent the errors in the estimates as

in multi-variable estimation models. In productivity

models, b has a practical interpretation corresponding to
the economic concepts explained above, that is: the

portion of the cost that does not vary with increases in the

production outputs.

C. Wedge-shaped datasets in software engineering

Often, a graphical representation of projects in large

datasets has the wedge-shaped distribution illustrated in
Fig. 2 with the software size as the single independent

variable. It can be observed in Fig. 2 that, as the project

size increases on the x axis, there is a correspondingly

larger dispersion of the data points across the vertical axi.

In other words, there are increasingly wide variations in

project effort on the y axis as the project size increases,

that is, large productivity differences across software of

similar size delivered. Such wedge-shaped datasets have

initially been observed by [16, 17] and are representative

of datasets collected from multiple organizations, each

with their own distinct development processes using a
variety of technologies and corresponding distinct

abilities to exploit them.

Looked at from a control process view point within a

single organization, a wedge-shape data set could

represent:

A. A process ‘out of control,’ that is, a process with a

large variation in productivity across increases in the

size of the outputs is due to a lack of repeatability in

a process, i.e., an ad-hoc process dependent on

individual actions and expertise and unknown

quality, rather than repeatable and ‘under control,’ as

happens when a development methodology is
enforced, leading to repeatability However, a process

‘under control’ may be highly repeatable, predictable

and with high quality, but it may concurrently be

highly inefficient and expensive; or,

B. Data originating from various distinct processes, each

with their distinct productivity ratios, thereby ‘only

appearing as out of control’ because the single-

variable model does not take into account the

presence of the distinct processes of each

organization, each with their distinct productivity

ratios; or
C. A process where each project has large variations in

unit-effort due to factors other than size, that is a

multi-variable dependent process. Adequate

modeling of such factors in multi-variable models is

only feasible when there are enough data points (i.e.,

the sample size should increase by 20 to 30 projects

for each additional variable introduced in the model).

Models introducing multi-variables without sufficient

data points will provide mathematical models with

105

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

quantitative parameters, but will have no

generalization power for future usage, including in

similar contexts.

Figure 2: Example of a wedge-shaped productivity dataset

It is obvious from Fig. 2 that a single-variable

productivity model built from this data set is not directly

useful for estimation purposes in this context. All other

process and product variables combined together have a

large impact on the total variation of the dependent

variable (i.e., here, Effort). Therefore, for estimation

purposes, multi-variable models would be necessary.

However, such multi-variable models, while useful for

estimation purposes, do not allow productivity

comparisons and evaluation.
The next question is: what causes these different

behaviors? Of course, the answers cannot be found by

graphical analysis alone, since in the productivity model

there is only a single independent quantitative variable in

a two-dimensional graph. This single independent

variable does not provide, by itself, any information about

the other variables, or about similar or distinct

characteristics of the completed projects for which data

are available. Efficiency investigation with additional

independent variable can help identify which other

variables cause variations in productivity and to what
extent for each.

When a data set is large enough (that is 20 to 30 data

points for each independent variable), the impact of the

other variables can be analyzed by statistical methods. In

practice, most software organizations do not have data set

large enough for valid multi-variable statistical analysis.

However, within a single organization the projects

included within a data set can be identified nominally by

the organizations that collected the data [3, 16]. Each

project in each subset should be subsequently analyzed to

determine:

 Which of their characteristics (or cost drivers) have
similar values within the same subset; and

 Which characteristics have very dissimilar values

across the two (or three) subsets.

Of course, some of these values can be descriptive

variables with categories (i.e., on a ‘nominal’ scale type:

for example, a specific Data Base Management System

(DBMS) has been used for a subset of projects, etc.). It

then becomes necessary to discover which additional

independent variables have the most impact on the

relationship with project effort. The different values of

such characteristics can then be used to characterize such

datasets, and set the parameters for selecting which of

these productivity models to use later on for estimation
purposes.

D. Homogeneous datasets in software engineering

Another type of project distribution is represented in

Fig. 3, which illustrates a strong consistency in the

dispersion of the effort as size increases. This would

represent more homogeneous data sets in which the
increase in software size explains well the increase in

effort. Such a homogeneous distribution of software

projects data appears as well in the literature [18-21]. In

these datasets, the increase in functional size explains

80% to 90% of the increase in effort, while all of the other

factors together explain at most 10% to 20% of the

increase in effort. Such datasets would be considered

homogeneous with respect to the dependent and

independent variables being investigated. This low

dispersion in project productivity would typically have

one or a mix of the following causes:

 The project data comes from a single organization

with well implemented development standards.

 The project data is representing the development of

software products with very similar characteristics in

terms of software domains, non-functional

requirements and other characteristics.

 The development process is under control with a

predictable productivity performance.

 Data collected in an organization based on an in-

process sound measurement program, and where

standardized measurement definitions have been
adopted by all projects participants, leading to high

data integrity.

Figure 3: A homogeneous productivity dataset

It is obvious from Fig. 3 that the one-variable

productivity model built from this data set is directly

useful for estimation purposes. All other process variables

combined together have a very small impact on the total

variation of the dependent variable (i.e., here, Effort).

Looked at from a control process view point, this data set

represents a process ‘under control’, that is a process with

106

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a predictable performance, both in terms of productivity

and efficiency.

III. A PRACTICAL USE OF THESE ECONOMIC CONCEPTS:
AN EMPIRICAL STUDY

A. Context

A Canadian organization interested in determining its

own productivity, in understanding some of the key

drivers behind its major productivity variations, and in

using the findings to improve its organizational

performance in general and its estimation process in

particular was selected for the empirical study.

This organization, a government agency, provides
specialized financial services to the public, and its

software applications are similar to those of banking and

insurance providers. It has a software development

methodology fully implemented across all of its projects.

The main objectives of the empirical study were:

1. Internal benchmarking, i.e., compare the productivity

of individual projects.

2. Develop estimation model(s) based on the data

collected.

3. Identify and explain significant productivity

variations across the organization’s projects.
4. Identify opportunities for process improvement.

B. Data collection procedures

The initial step was to identify projects that could be

measured for the productivity and benchmarking

analyses. The selection criteria were:

 Projects completed within the previous two years,
and

 Project documentation available for functional size

measurement.

For this study, all data were recorded using the data

field definitions of the data collection questionnaire of the

International Software Benchmarking Standards Group

[22].

C. Data Quality Controls

Quality control of the data collection process is

important for any productivity study. Here, two

quantitative variables are critical: the effort reported for

each project, and the project functional size:

A- Effort data: in this organization, the time reporting

system is considered highly reliable and is used for

decision making, including payment of invoices when

external resources are hired to complement project

staffing.
B- Measurement of functional size: the quality of the

measurement results depends on the expertise of the

measurers and on the quality of the documentation

available for the measurement process. For this

productivity study: all functional size measurements were

carried out by the same measurer with 20 years expertise

in functional size measurement.

Table I from [23] lists the criteria used to rank the

quality of the documentation used for measuring

functional size, on the basis of the documentation of the

individual functional processes developed [23, 24]. Note
that this is not a global subjective assessment of the

documentation, but an assessment of the documentation

of each of the functional processes based on the detailed

documentation elements available for measurement. The

individual rankings of each functional process were

recorded by the measurer in parallel to the measurement

of the functional size of each of the 16 projects.

Table I: Criteria for ranking documentation quality [23]

Rank Criteria

A Every function completely documented

B Function documented, but without a precise data
model

C Functions identified at a high level, but without any

detail

D An approximation of the number of functions is

available, with the individual functions not listed

E Some functions are not explicitly described in the
documentation, but an expert measurer adds
information based on his expertise, e.g., missing
validation functions

Table II reports the documentation quality rankings of

each project and specifies for each project what

proportion of the project documentation met the various

criteria listed in Table I. For this study, the documentation

is considered ‘good’ when it meets criterion A or B in

Table I. The following observations were made from
Table II:

- For 11 projects: the documentation of more than 95%

of the functional processes measured was rated as

being of good quality (equal to A or B). Considering

the extended measurement expertise of the measurer

and the high quality of documentation, the size

measured for these 11 projects can be considered

highly accurate.

- For Projects 3 and 13: the documentation quality was

rated as being of good quality for 62% and 71% of

the functional processes respectively.
- For project 10: the documentation was rated as being

of average quality (criterion C). This could impact

the accuracy of the size measured for this project, as

it used less detailed documentation.

- The documentation of Project 7 was rated as being of

good quality for 31% of the functional processes.

- For Project 8: most of the functions measured had to

be derived from documentation at a very high level,

that is criterion E = 100%. This means that the

107

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

functional size for this project has been approximated

rather than measured precisely, with an undetermined

range of size variation.

Overall, at the detailed level, 85% of all the processes

measured for the 16 projects had a good level of

documentation and provided a sound basis for the
measurement of the functional size of the projects

included in the productivity analysis reported in this

paper.

Table II: Quality of the documentation ranked at the

functional process level

D. Descriptive Analysis

1) Projects characteristics
For this study, the 16 software development and

improvement projects were measured in terms of
functional size, effort, and various environment qualifiers.

The staff who developed these projects included both

internal and external developers, distributed equally

overall. In this dataset:

 Project size varied from a minimum of 111 FP to a

maximum of 646 FP.

 Effort varied from 4,879 hours to 29,246 hours.

 Unit effort varies from 14 h/FP 12 to up to 98 h/FP, a

factor of approximately eight between the least

productive and the most productive within the same

organization.

 Duration varied from 10 to 35 months.

 Maximum development team size for 12 of the 16

projects ranged from 6 to 35 employees.

The descriptive statistics of this dataset are as follows,

while details are reported in [8 – Table 12.2]:

 Average project effort = 12,033 hours (or, 1,718

person-days at 7 hours per day, or 82 person-months

at 21 days per month).

 Average unit effort = 41.5 h/FP

 Average project duration = 18 calendar months.

 One-third of the projects = newly developed

software.

 Two-thirds of the projects = functional enhancements

to existing software.

2) Project priorities
Each project typically met four targets that are determined

at project inception:

 Project scope (i.e., the functions to be delivered to the

users)

 Project cost (or effort)

 Project deadline

 Quality of software delivered

In a context of limited resources and a high level of

uncertainty, it is extremely challenging to meet all these

targets at the same time, and a number of compromises

must be made during a project life cycle. To empower
project managers to make such compromises, an

organization will typically determine the priority targets

for each project among those specific to any one project.

The information on the priorities assigned to each of these

four targets was collected through interviews of the

project managers of these projects and recorded during

the data collection process. A summary of project

priorities is presented in Table III, where:

 For 8 of the 16 of the projects (i.e., 50%), the

‘deadline’ target was listed as priority 1.

 For 75% of the projects, the ‘scope’ target was listed
as priority 1 or 2.

 For 50% of the projects, ‘quality’ was listed as

priority 2 (and two projects listed it as priority 1).

 For none (0%) of the projects was the ‘cost’ target

listed as priority 1 (and only one project listed cost as

priority 2).

Table III: Summary of project priorities
 Number of projects

Priority

1
Priority

2
Priority

3
Priority

4

Deadline 8 1 1 6
Scope 6 6 4 0

Quality 2 8 2 4

Cost 0 1 9 6

These observations indicate that for this organization

the project’s deadline is a high priority, while cost is a

low priority. The reasons for favoring the deadline over

the cost of the measured project were the following:

 The urgency to solve the problem for internal

reasons;

 Obligations linked to current laws or future ones;

 The pressures of client managers for the reasons

mentioned above or other reasons.

108

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. PRODUCTIVITY ANALYSIS AND ESTIMATION

MODELS

A. The overall productivity model for the organization

The dispersion of points for the organization is

illustrated in Fig. 4 for all 16 projects, with functional size

on the x axis, and effort on the y axis: at first sight it

appears somewhat like a wedge-shape data set rather than

an homogeneous data set with respect to the functional
size at the independent variable.

Figure 4: The dispersion of project productivity for the

organization – N = 16 projects [8]

Fig. 5 shows next the overall single-variable

productivity model for the organization, using a single

regression model:

Effort = 30.7 h/FP x project size + 2,411 h (Fig. 5)

The coefficient of determination (R2) of this model is

relatively low, at 0.39.

Figure 5: The organization’s overall productivity model –

N = 16 projects [1]

The practical interpretation of the above equation is as

follows:

 Fixed effort = 2,411 h

 Variable effort = 30.7 h/FP

Possible reasons for the high fixed and high variable

unit effort numbers discussed with the managers, and the

following observations provided in terms of the

development methodology deployed in the organization:

A. It is highly procedural and time-consuming.

B. It included heavy documentation requirements.

C. It required lengthy consensus building procedures

across stakeholders and development staff.
D. It required a relatively high number of inspections.

This is the productivity model that should be used,

across the 2-year time period, for later internal

benchmarking as well as for external benchmarking.

Productivity models based only on functional size allow

independent comparisons across time periods and

variations of technologies of processes used by others.

From Fig.5, it can be observed that, for this

organization, five projects had effort 100% higher than

projects of comparable functional size:

 A project of approximately 100 FP required twice as

much effort as two other projects of similar size.

 Four large projects (between 400 and 500 FP)

required two or three times more effort than, projects

only relatively smaller (between 350 and 400 FP).

The effect of these four projects was to pull up the

linear model (and corresponding slope) and

considerably influence both the fixed and variable

costs.

Therefore, this data sample was split into two groups

for further analysis.

A. The group of 11 projects that have the best

productivity (i.e., lower unit effort, and that are
below or very close to the regression line in Fig. 5).

B. The group of five projects that have a productivity

much worse (i.e., a unit effort twice the unit effort of

the 11 other projects, and that are largely above the

regression line in Fig. 5).

B. Organizational process capability: the most

productive projects

Fig. 6 presents the 11 projects with a much lower unit

effort per project that is, those which were most

productive. For these projects, the linear regression model

is:

Effort = 17.1 h/FP x size of the project + 3,208 h

The coefficient of determination (R2) of this model is

0.589, higher, relatively, than that for the overall model.

The practical interpretation of this equation is:

 Fixed costs = 3,208 h

 Variable Costs = 17.1 h/FP

C. Productivity model of the least productive projects

For the five least productive projects in group B, the

productivity model in Fig. 7 is:

Effort = 33.4 h/FP x project size + 8,257 h

The coefficient of determination (R2) of this model is

better, at 0.637. Of course, with a sample of only five
projects, this number is not statistically significant, but is

still interesting for the organization.

109

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6: Most productive projects - N = 11 projects [8]

Figure 7: The productivity model of the least productive

projects – N = 5 [8]

The practical interpretation of the above equation is

as follows:

 Fixed effort = 8.257 h

 Variable effort = 33.4 h/FP

This group of the five least productive projects is

characterized by a fixed cost that is almost four times

higher than that of the full set of projects (8,257 hours vs.

2,411 hours), and a relatively similar variable effort unit

(33.4 h/FP vs. 30.7 h/PF).

The group of 11 most productive projects is

characterized by a fixed cost approximately 40% lower

than that of the least productive projects (3208 hours vs.

8257 hours), and a variable unit effort almost 50% lower

(17.1 h/FP vs. 32.4 h/FP); that is, with interesting
economies of scale and an R2 of 0.55.

A summary of each group is presented in Table IV,

where 11 projects represent what the organization is

'capable' of delivering in normal conditions and the other

five projects illustrate how projects are significantly

impacted by the presence of factors that have not yet been

identified through the single independent variable (i.e.,

functional size) analysis. Exploration of these additional

impact factors is discussed in the next sub-section D.

The single variable productivity model still provides

useful insights to the organization and allows it to monitor

its own productivity models across time. For example:
A. Would the fixed-variable cost improve over the next

two-year period? A subsidiary question would be to

identify the factors that caused this positive (or

‘negative’) impact?

B. Could the organization avoid or, when avoidance is

not possible, more effectively mitigate, the

occurrence of the negative factors beyond the project

manager’s control?

Table IV: Fixed & variable efforts: Capability versus least

productive projects [1]

Samples/

Regression coefficients
All 16

projects

Most

productive:

11 projects

Least

productive:

5 projects

Fixed

effort (hours)
2,411 3,208

8,257

Variable effort (h/FP) 30.7 17.1

34.4

D. Qualitative causal analysis

The data collected has allowed us to identify the

overall productivity of the organization, to observe the

fixed and variable contributions of its process capability,

as well as observing an 100% increase in both fixed and

variable costs when there were factors negatively

impacting on the productivity.

Of course a single independent variable model cannot

explain the causes of such variations. Furthermore, with a
dataset of only 16 projects, there are not enough data

points within a single organization (unless they have been

collecting data for many years) to rely on quantitative

analysis. Each additional independent typically requires

20 to 30 additional data points. In the absence of sample

sizes large enough for quantitative analysis, qualitative

analysis can help identify probable causes of increases. In

the context here, qualitative analysis will not attempt to

quantify precisely the impact of a cause (or cost drivers),

but will attempt to identify qualitatively factors that could

have the greatest negative impact on productivity.
Firstly, in the causal analysis of the productivity

variations in the organization, we eliminated two

candidate cost drivers since they were considered constant

in both groups of productivity performance:

- Development methodology: in the organization the

use of the industry-tailored development

methodology was fully deployed across all software

development projects: none of the activities and

controls was bypassed. Therefore, there was no

development methodology difference across all

projects.

- Project management expertise: some of the projects
managers had, within this same two-year period,

supervised projects that were both among the most

productive and the least productive. Therefore, the

expertise of specific project managers could not

explain large project productivity differences.

110

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The question that arises: What are the factors that led

to such large (i.e., +100%) increases in unit effort? What

may be the major cause-effect relationships? To identify

and investigate these relationships, available project

managers were interviewed to obtain feedback as what

they believed had contributed to either an increase or a
decrease in the productivity of their respective projects.

The project managers interviewed had managed seven of

the 16 projects:

A. Three projects with the lowest productivity (i.e., the

highest unit effort);

B. Two projects with average productivity;

C. Two projects with the highest productivity (i.e., the

lowest unit effort).

The aim of the interviews was to obtain qualitative

information from the project managers on the factors they

believed had contributed, or not, to the increase in project

effort compared to that of other projects of similar size
developed in the organization’s environment or elsewhere

during their project management practice. Their feedback

is summarized as follows:

A- The most productive projects had the following

characteristics:

1. Users familiar were with both the business and

software development processes;

2. Users were involved throughout the project;

3. Software developers working on the projects were

experienced in the use of the development

environment.
B. The least productive projects had the following

characteristics:

B1. Customer related issues:

1. Customer requirements were poorly expressed,

or a customer representative did not know his

environment (business area), leading to frequent

change requests during a project life cycle.

2. High turnover of users involved in the projects,

leading to instability in the requirements and

delays in decision making.

3. Customers not familiar with the software

development process in the organization,
including their required involvement in project

activities, including activity reviews.

B2. Project constraints:

1. Tight project deadlines for legal constraints or

public face-saving leading to compressed

scheduling and resources ‘piled up’ to make the

problem disappear.

2. New technologies unknown to the developers.

B3: Product constraints: Multiple links with other

software applications of the organization.

An example of a negative product constraint was
reported for the project with the highest unit effort (98

h/FP). The software delivered by this project was of a

small functional size, but required twice as much effort to

develop as another of similar size as it interacted with

almost all the other software applications of the

organization and was dependent on other organizational

units. Another project had a very tight deadline, which led

management to ‘throw’ resources at the problem to meet

the deadline irrespective of the total effort required.

It can be observed that although it was possible to
identify ‘qualitatively’ some factors with major negative

impact, the sample size was much too small for statistical

tests to quantify such impact.

V. IDENTIFICATION OF PROCESS IMPROVEMENTS

USING THE SWEBOK GUIDE

A. Implementation and coverage of best practices

In previous years, the organization had invested

considerably in designing and deploying improvements to

its development methodology. For this empirical study,

additional analyses were carried out to identify process

strengths and weaknesses in order to identify

improvement opportunities in development processes and

techniques.

The study included verification of the use of the

recommended best software engineering practices in the

participating organization. For this verification, the

software engineering practices listed in the SWEBOK
Guide [2] were used. This guide represents a broad

international consensus on the concepts and practices of

software engineering that are recognized as providing

benefits to the majority of projects in most cases. All 10

knowledge areas of the 2004 version of the SWEBOK

Guide were taken into account, with the exception of the

maintenance knowledge area, which was not relevant for

this empirical study – see Table V.

To collect this information, the quality specialist

participating in all project phases for each project was

interviewed and asked to confirm whether or not each of

the practices in the SWEBOK Guide was indeed being
widely used across all projects in the organization.

B. Coverage of best practices

The percentages of software engineering practices in

use in the organization for each knowledge area are

presented in Table VI, in decreasing order of coverage.

These percentages represent the ratio between the

practices observed to be in general use in this

organization, divided by the total number of practices

listed in each of the SWEBOK knowledge areas.

From all the knowledge areas related directly to the
development life cycle, that is, from requirements

engineering up to software testing, those with over 60%

coverage indicates a very widespread use of

organizational processes across the organization. In

comparison to the capability level of the CMMI model,

this would align with a number of Key Process Areas at

Level 3, meaning that the software engineering processes

111

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in the organization have been deployed and are in use

throughout the organization.

Table V: SWEBOK 2004 Knowledge Areas

SWEBOK Knowledge Areas

Requirements Engineering

Software Design

Software Construction

Software Testing

Software Maintenance

Software Engineering Management

Configuration Management

Software Engineering Process

Software Quality

Tools and Methods

Table VI: Coverage of SWEBOK practices

SWEBOK Knowledge Areas %

coverage

Software Design 89

Software Management 75

Configuration Management 74

Requirements Engineering 73

Software Construction 71

Software Testing 61

Tools & Methods 54

Software Engineering Process 44

Software Quality 38

However, coverage was much less extensive in

support areas, such as Tools & Methods, Software

Engineering Process, and Software Quality, where the

product and process measures were not covered at all. For

this reason, the organization had no measurable

information on the effectiveness of the implementation of

their practices and the benefits derived, that is,

quantitative information to support the decision making

process was lacking.

This can be illustrated in the following way: while

each project must use the corporate development process
it generally lacked data for its evaluation and control

functions. Therefore, the organization would not qualify

for the fourth level of capability using the CMMI process

evaluation model.

VI. SUMMARY AND IMPLICATIONS FOR MANAGEMENT

This paper has reported on productivity analysis of

software projects developed by a governmental

organization utilizing the productivity concepts from the

field of economics, including fixed/variable costs

modeling. For the organization studied, three productivity

models were identified that represented respectively:
- An overall productivity model of the organization

that can be used for external benchmarking purposes.

This overall productivity model can be used later

across other times periods to verify whether or not

productivity of the organization is improving over

time, and with respect to external similar

organizations.

- A productivity model built from the best productive

projects representing a capability to deliver a
software project with a lower fixed/variable effort

structure, in the absence of major disruptive factors.

- A productivity model based on the five projects with

the highest unit effort: in this case, the presence of

disruptive factors led to greater than 100% increase

in project effort in comparison to the organization’s

capability for process productivity.

Of course, the limited number of projects available in

these mathematical models does not permit generalization

to other contexts, but does describe quantitatively and

objectively many features of productivity in the

organization. These models are representative of the
organization studied where a unique software

development methodology is widely implemented and

represents well deployed, repeatable corporate software

practices, rather than unpredictable individual and ad-hoc

practices.

For future project estimation, the organization should

use the process capability model represented by the best

performing projects, provided that a risk analysis has not

detected the presence of any of the disruptive factors that

have in the past increased effort twofold. Whenever such

disruptive factors are identified with a high probability of
occurrence the organization should estimate such projects

using the productivity model derived from the least

productive projects. The use of these two single-variable

productivity models would be expected to provide more

accurate estimates than the overall productivity model

combining all previous projects.

An organization such as the one studied having

measured only a small set of projects is typical of many

organizations without much historical data: there are not

enough data points to build with high confidence multi-

variable estimation models representing local conditions

and related organizational performance.
The insights from productivity models developed from

an economic perspective are important since relevant

improvement activity may directly impact the

productivity of the organization, by lowering either the

fixed or variable project costs.

Furthermore, the empirical study also identified

opportunities for improvement in three areas, namely:

1. Early identification of project risks with a potentially

twofold impact on project effort.

2. Increase in project management efficiency:

 Improvement in productivity analysis and
current productivity models.

 Improvement in the estimation process.

3. Process improvement:

112

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Establishment of mechanisms for monitoring and

evaluating processes.

 Reduction in fixed effort (establishment of

predefined selection rules in the project context).

 Monitoring the impact of new technologies and

new development processes.

REFERENCES

[1] A. Abran, J. M. Desharnais, M. Zarour, and O.

Demirors, "Productivity Based Software

Estimation Model: An Economics Perspective

and an Empirical Study," 9th International

Conference on Software Engineering Advances -

ICSEA 2014, Nice (France), pp. 196-201, 2014.

[2] Abran A. and Moore, J. (co-executive editors),

Bourque, P. and Dupuis, R. (co-editors), Tripp,

L. (2005), "Guide to the Software Engineering

Body of Knowledge - 2004 Version -
SWEBOK," IEEE-Computer Society Press, 200

pages.

[3] A. Abran and J. J. Cuadrado, "Software

Estimation Models & Economies of Scale,"

presented at the 21st International Conference on

Software Engineering and Knowledge

Engineering - SEKE'2009, Boston (USA), July

1-3, 2009.

[4] M. Jørgensen and M. Shepperd, "A Systematic

Review of Software Development Cost

Estimation Studies," IEEE Transactions on

Software Engineering, vol. 33 no. 1, pp. 33-53,
2007.

[5] M. Shepperd and M. and S. MacDonell,

"Evaluating prediction systems in software

project estimation," Information and Software

Technology, Elsevier, vol. 54, pp. 820–827,

2012.

[6] B. Boehm, Software Engineering Economics:

Englewood Cliffs, NJ, Prentice Hall, 1981.

[7] B. Boehm, C. Abts, A. W. Brown, S. Chulani, B.

Clark, E. Horowitz, et al., Software Cost

Estimation with COCOMO II: Prentice Hall,
2000.

[8] A. Abran, Software Project Estimation – The

Fundamentals for Providing High Quality

Information to Decision Makers: IEEE-CS Press

& John Wiley & Sons – Hoboken, New Jersey,

2015.

[9] Barbara Kitchenham and E. Mendes, "Why

comparative effort prediction studies may be

invalid," in 5th International Conference on

Predictor Models in Software Engineering,

PROMISE, Vancouver, BC, Canada, 2009.

[10] F. A. Amazal, A. Idri, and A. Abran, "Analogy-
based Software Development Effort Estimation:

A Systematic Mapping and Review,"

Information and Software Technology, vol. 58,

pp. 206-230., 2014.

[11] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang,

"Systematic literature review of machine

learning based software development effort

estimation models," Information and Software
Technology, Elsevier, vol. 54, pp. 41-59, 2012.

[12] International Organization for Standardization

(ISO), "ISO/IEC 20968: Software Engineering -

Mk II Function Point Analysis - Counting

Practices Manual," ed. International

Organization for Standardization, Geneva, 2002.

[13] International Organization for Standardization

(ISO), "ISO/IEC 24750: Software Engineering -

NESMA functional size measurement method

version 2.1 - Definitions and counting guidelines

for the application of Function Point Analysis,"

ed. International Organization for
Standardization, Geneva, 2005.

[14] International Organization for Standardization

(ISO), "ISO/IEC 20926: Software Engineering -

IFPUG 4.1 Unadjusted functional size

measurement method - Counting Practices

Manual," ed. International Organization for

Standardization, Geneva, 2009.

[15] International Organization for Standardization

(ISO), "ISO/IEC 19761: Software Engineering –

COSMIC - A Functional Size Measurement

Method," ed. International Organization for
Standardization, Geneva, 2011.

[16] B. Kitchenham, "Empirical studies of

assumptions that underlie software cost-

estimation models," Information and Software

Technology, vol. 34, pp. 211-218, 1992.

[17] B. Kitchenham and N. Taylor, "Software Cost

Models," ICL Technical Journal, vol. 4, pp. 73-

102, 1984.

[18] K. Lind and R. Heldal, "Estimation of Real-Time

Software Code Size using COSMIC FSM,"

presented at the IEEE Intl. Symposium on

Object/component/service-oriented Real-time
distributed Computing (ISORC), Tokyo, Japan,

2009.

[19] K. Lind and R. Heldal, "A Model-Based and

Automated Approach to Size Estimation of

Embedded Software Components," presented at

the ACM/IEEE 14th International Conference on

Model Driven Engineering Languages and

Systems, Wellington, New Zealand, 2011.

[20] S. Stern and O. Guetta, "Manage the automotive

embedded software development cost by using a

Functional Size Measurement Method
(COSMIC)," presented at the 5th International

Congress and Exhibition: Embedded Real Time

Software and Systems, ERTS, Toulouse, France,

2010.

113

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[21] A. Abran and P. Robillard, "Function Points

Analysis: An Empirical Study of its

Measurement Processes," IEEE Transactions on

Software Engineering, vol. 22, pp. 895-909,

1996.

[22] ISBSG R11. (2009, 2015.01.15). International
Software Benchmarking Standard Group.

Available: http://www.isbsg.org/

[23] J. M. Desharnais and A. Abran, "Quality of

Functional User Requirements documentation

using COSMIC ISO 19761: verification

process," presented at the International

Workshop on Software Measurement – IWSM

Stuttgart, Germany, 2010.

[24] J. M. Desharnais, B. Kocatürk, and A. Abran,

"Using the COSMIC Method to Evaluate the

Quality of the Documentation of Agile User

Stories," presented at the 21st International
Workshop on Software Measurement – 6th

International Conference on Software Process

and Product Measurement - IWSM-Mensura,

Nara, Japan, 2011.

114

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Extensible Benchmark and Tooling for
Comparing Reverse Engineering Approaches

David Cutting and Joost Noppen

School of Computing Science
University of East Anglia

Norwich, Norfolk, UK
Email: {david.cutting,j.noppen}@uea.ac.uk

Abstract—Various tools exist to reverse engineer software source
code and generate design information, such as UML projections.
Each has specific strengths and weaknesses, however, no stan-
dardised benchmark exists that can be used to evaluate and
compare their performance and effectiveness in a systematic
manner. To facilitate such comparison in this paper we introduce
the Reverse Engineering to Design Benchmark (RED-BM), which
consists of a comprehensive set of Java-based targets for reverse
engineering and a formal set of performance measures with which
tools and approaches can be analysed and ranked. When used
to evaluate 12 industry standard tools performance figures range
from 8.82% to 100% demonstrating the ability of the benchmark
to differentiate between tools. To aid the comparison, analysis and
further use of reverse engineering XMI output we have developed
a parser which can interpret the XMI output format of the most
commonly used reverse engineering applications, and is used in
a number of tools.

Keywords–Reverse Engineering; Benchmarking; Tool Compar-
ison; Tool Support; Extensible Methods; XMI; Software Compre-
hension; UML; UML Reconstruction.

I. INTRODUCTION

Reverse engineering is concerned with aiding the com-
prehensibility and understanding of existing software systems.
With ever growing numbers of valuable but poorly documented
legacy codebases within organisations reverse engineering has
become increasingly important. As explored in our previous
work [1], there are a wide number of reverse engineering
techniques, which offer a variety in their focus from Unified
Modelling Language (UML) projection to specific pattern
recognition [2][3][4][5].

However, it is difficult to compare the effectiveness of
reverse engineering techniques against each other, as no stan-
dard set of targets exist to support this goal over multiple
approaches, a problem also found in the verification and
validation of new tools and techniques [6]. Any performance
evaluations that do exist are specific to an approach or tech-
nique. Therefore, it is impossible to gain a comparative un-
derstanding of performance for a range of tasks, or to validate
new techniques or approaches. Therefore, this paper introduces
a benchmark of such targets, the Reverse Engineering to
Design Benchmark (RED-BM), created in order to compare
and validate existing and new tools for reverse engineering.

Therefore, our goals are to:

• Create a benchmark suitable for empirical comparison
of reverse engineering tools

• Apply this benchmark to current tools and evaluate
the result, and their performance

• Make the benchmark extensible to support further
approaches

• Provide support for extensibility through the means of
data exchange between implementations

The benchmark described in this article builds on and ex-
tends previous work [1], including greater details and specifics
on an inherent extensibility mechanism with an example.

The intent of the benchmark, in addition to ranking of
current reverse engineering approaches, is to support further
extensibility in a generic and easily accessible manner. To
achieve this, a number of tools have been developed and
provided which aid in the open analysis and exchange of
reverse engineering output.

The remainder of this paper is organised as follows: in
Section II, we introduce our benchmark before introducing the
target artefacts (Section II-A) provided. Section II-B covers the
performance measurements used, with Section II-C detailing
how complexity is broken down for granular measurement.
Extensible features of the benchmark are demonstrated in
Section III, specifically the definition of new measurements
(Section III-A) and use of reverse engineering output for data
exchange (Section III-B). Section IV details the toolchain
support for the benchmark. In Section V, the benchmark is
applied against a number of industry standard tools with an
evaluation of these results in Section VI and a discussion in
Section VII. Related work is covered in Section VIII and the
final Section IX draws a conclusion and identifies our future
direction for research.

II. THE REVERSE ENGINEERING TO DESIGN
BENCHMARK (RED-BM)

RED-BM facilitates the analysis of reverse engineering
approaches based on their ability to reconstruct class diagrams
of legacy software systems. This is accomplished by offering
the source code of projects of differing size and complexity as
well as a number of reference UML models. The benchmark
provides a set of measures that facilitate the comparison of
reverse engineering results, for example class detection, to
reference models including a gold standard and a number of
meta-tools to aid in the analysis of tool outputs. The gold
standard is a set of manually verified correct UML data, in
whole or in part, for the artefacts.

115

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The benchmark allows ranking of reverse engineering
approaches by means of an overall performance measure that
combines the performance of an approach with respect to a
number of criteria, such as successful class or relationship
detection. This overall measure is designed to be extensible
through the addition of further individual measures to facilitate
specific domains and problems. In addition, the benchmark
provides analysis results and a ranking for a set of popular
reverse engineering tools which can be used as a yardstick
for new approaches. Full details, models, targets, results as
well as a full description of the measurement processes used
can be found at [7]. Although based on Java source code, the
core concepts and measurements, such as detection of classes,
relationships, and containers, are applicable to any object-
oriented language and the benchmark could be extended to
include other languages.

A. Target Artefacts

Our benchmark consists of a number of target software
artefacts that originate from software packages of varying
size and complexity. These include projects such as Eclipse,
an open-source integrated development environment, and Li-
breOffice, a large popular open-source fully-featured office
package, as well as some smaller custom examples.

Artefacts were chosen for inclusion on the basis that they
provided a range of complexity in terms of lines of code and
class counts, used a number of different frameworks, offered
some pre-existing design information and were freely available
for distribution (under an open-source licence). Two artefacts
(ASCII Art Examples A and B) were created specifically for
inclusion as a baseline offering a very simple starting point
with full UML design and use of design patterns.

Cactus is also included as, although depreciated by the
Apache Foundation, it has a number of existing UML diagrams
and makes use of a wide number of Java frameworks. Eclipse
was included primarily owing to a very large codebase which
contains a varied use of techniques. The large codebase of
Eclipse also provides for the creation of additional targets
without incorporating new projects. JHotDraw has good UML
documentation available both from the project itself and some
third-party academic projects which sought to deconstruct it
manually to UML. As with Eclipse, Libre Office provides a
large set of code covering different frameworks and providing
for more targets if required.

The benchmark artefact targets represent a range of com-
plexity and architectural styles from standard Java source
with simple through to high complexity targets using different
paradigms, such as design patterns and presentation tech-
niques. This enables a graduated validation of tools, as well as
a progressive complexity for any new tools to test and assess
their capabilities. The complete range of artefacts is shown in
Table I, where large projects are broken down into constituent
components. In addition, the table contains statistics on the
number of classes, sub-classes, interfaces and lines of code
for each of the artefacts. Also, included within RED-BM are
a set of gold standards for class and relationship detection
against which tool output is measured. These standards were
created by manual analysis supported by tools, as described in
Section IV.

TABLE I. SOFTWARE ARTEFACT TARGETS OF THE RED-BM

Software
Target Artefact Main

Classes
Sub
Classes

Inter-
faces

Lines of
Code

ASCII Art Example A
Example A 7 0 0 119
ASCII Art Example B
Example B 10 0 0 124
Eclipse
org.eclipse.core.
commands

48 1 29 3403

org.eclipse.ui.ide 33 2 6 3949
Jakarta Cactus
org.apache.cactus 85 6 18 4563
JHotDraw
org.jhotdraw.app 60 6 6 5119
org.jhotdraw.color 30 7 4 3267
org.jhotdraw.draw 174 51 27 19830
org.jhotdraw.geom 12 8 0 2802
org.jhotdraw.gui 81 29 8 8758
org.jhotdraw.io 3 2 0 1250
org.jhotdraw.xml 10 0 4 1155
Libre Office
complex.writer 11 33 0 4251
org.openoffice.java.
accessibility.logging

3 0 0 287

org.openoffice.java.
accessibility

44 63 1 5749

All bundled code
(sw + accessibility)

241 173 33 39896

B. Measuring Performance

RED-BM enables the systematic comparison and ranking
of reverse engineering approaches by defining a set of perfor-
mance measures. These measures differentiate the performance
of reverse engineering approaches and are based on accepted
quality measures, such as successful detection of classes and
packages [8][9]. Although such functionality would be ex-
pected in reverse engineering tools, these measures provide a
basic foundation for measurement to be built on, and represent
the most common requirement in reverse engineering for
detection of structural elements. Further, as seen in Section VI,
these measures are alone capable of differentiating wide ranges
of tool performance. The performance of tools with respect to a
particular measure is expressed as the fraction of data that has
been successfully captured. Therefore, these measures are built
around determining the recall factor, e.g., how complete is the
recovered set. Individual measures are then used in conjunction
to form a weighted compound measure of overall performance.
In our benchmark, we define three base measures to assess the
performance of reverse engineering tools and approaches:

• Cl: The fraction of classes successfully detected

• Sub: The fraction of sub-packages successfully de-
tected

• Rel: The fraction of relationships successfully de-
tected (successful in that a relationship was detected
and is of the correct type)

Each of these measures are functions that take a system to
be reverse engineered s and a reverse engineering result r (i.e.,
a structural UML class diagram) that is produced by a reverse
engineering approach when applied to s. The formal definition
of our three base measures are as follows:

116

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Cl(s,r) =
C(r)

C(s)
, Sub(s,r) =

S(r)

S(s)
, Rel(s,r) =

R(r)

R(s)
(1)

where

C(x) is the number of correct classes in x

S(x) is the number of correct (sub-)packages in x

R(x) is the number of correct relations in x

The overall performance P of a reverse engineering ap-
proach for the benchmark is a combination of these perfor-
mance measures. The results of the measures are combined
by means of a weighted sum, which allows users of the
benchmark to adjust the relative importance of, e.g., class
or relation identification. We define the overall performance
of a reverse engineering approach that produces a reverse
engineering result r for a system s as follows:

P(s,r) =
wClCl(s, r) + wSubSub(s, r) + wRelRel

wCl + wSub + wRel
(2)

In this function, wCl, wSub and wRel are weightings that
can be used to express the importance of the performance in
detecting classes, (sub-)packages and relations, respectively.
The benchmark results presented in this article all assume that
these are of equal importance: wCl = wSub = wRel = 1,
unless mentioned otherwise.

C. Complexity Categories

To further refine the evaluation of the reverse engineering
capabilities of approaches we divide the artefacts of the bench-
mark into three categories of increasing complexity; C1, C2
and C3. These categories allow for a more granular analysis
of tool performance at different levels of complexity. For
example, a tool can be initially validated against the lowest
complexity in an efficient manner only being validated against
higher complexity artefacts at a later stage. Our complexity
classes have the following boundaries:

• C1: 0 ≤ number of classes ≤ 25

• C2: 26 ≤ number of classes ≤ 200

• C3: 201 ≤ number of classes

The complexity categories are based on the number of
classes contained in the target artefact. As source code grows
in size both in the lines of code and the number of classes
it becomes inherently more complex and so more difficult
to analyse [10], [11]. While a higher number of classes
does not necessarily equate to a system that is harder to
reverse engineer, we have chosen this metric as it provides
a quantitative measure without subjective judgement.

The bounds for these categories were chosen as results
demonstrated a noticeable drop-off in detection rates observed
in the tools, as can be seen in Section VI. However, any
user of the benchmark can introduce additional categories
and relate additional performance measures to these categories
to accommodate for large scale industrial software or more
specific attributes such as design patterns. The extensibility
aspect of our work is explained in more detail in Section III.

III. EXTENSIBILITY OF THE BENCHMARK

A. Extensibility of Measurements
RED-BM’s included performance measures provide a solid

foundation to evaluate and compare current standards of re-
verse engineering. To accommodate the continual advance-
ments in this field we have made the performance measure
aspect of our benchmark extensible. Any user of the bench-
mark can introduce new performance measures, such as the
fraction of successfully detected design patterns in a given code
base. Once a gold standard has been determined for a specific
detection within the artefacts it can be tested against tool output
(as explained in Section II-C for the initial criteria). With these
new measures the performance of approaches can be defined
for specific reverse engineering areas. In a generalised fashion
we define a performance measure to be a function M that
maps a system s and its reverse engineering result r to the
domain [0..1], where 0 means the worst and 1 the best possible
performance.

In addition to providing means for creating new
performance measures, we provide the possibility to create
new compound performance measures (i.e., measures that are
compiled from a set of individual performance measures).
Formally, we define a compound measure to be a function C
that maps a system s and its reverse engineering result r to
the domain [0..1], where 0 means the worst and 1 the best
possible performance:

C(s,r) =

n∑
i=1

wiMi(s, r)

n∑
i=1

wi

(3)

In this expression wi is the weighting that determines the
importance of the individual performance measure i. Note
that the performance measures we introduced in Section II-B
conform to this definition and, therefore, can be seen as an
example of the extensibility of the benchmark.

To further illustrate how researchers and practitioners can
use this mechanism to specialise the application of RED-
BM we create a performance measure that acknowledges the
capability of an approach to detect design patterns during
reverse engineering. This is an active research field for which
to the best of our knowledge a specialised benchmark is not
available.

According to literature the detection of creational and
structural design patterns is easier than behavioural design
patterns [12]. Therefore, we introduce two new performance
measures Db for the successful identification of creational
and structural design patterns(Dcs), and behavioural design
patterns (Db) for a system s and reverse engineering result
r:

Dcs(p, s) =
Pc(r) + Ps(r)

Pc(s) + Ps(s)
, Db(p, s) =

Pb(r)

Pb(s)
(4)

where

Pc(x) is the number of creational design patterns in x

117

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. Simplified Comparative XMI Output from Tools

ArgoUML Enterprise Architect Astah Professional

<UML:Class <packagedElement <UML:Class
xmi.id = “. . . ” xmi:id = “. . . ” xmi.id = “. . . ”
name = “Circle” name = “Circle” name = “Circle”
visibility = “package” visibility = “package” version = “0”
. . .> . . .> . . .>

<UML:GeneralizableElement.generalization> <ownedOperation <UML:ModelElement.namespace>
<UML:Generalization xmi.id = “. . . ” <UML:Namespace

xmi.idref = “. . . ” /> name = “Circle” xmi.idred = “. . . ”
</UML:GeneralizableElement.generalization> visibility = “public” . . .> </UML:Namespace
.
<UML:Classifier.feature <generalization <UML:ModelElement.visibility
<UML:Operation xmi:type = “uml:Generalization” xmi.value = “package” />

xmi.id = “. . . ” xmi:id = “. . . ” . . .
name = “Circle” general = “. . . ” > <UML:GeneralizableElement.generalization>
visibility = “public” . . .> </packagedElement> xmi.idref = “. . . ” />

</UML:Class> xmi.idref = “. . . ” />
</UML:GeneralizableElement.generalization>

Ps(x) is the number of structural design patterns in x
Pb(x) is the number of behavioural design patterns in x
In addition to these performance measures we introduce

additional measures that demonstrate how to consider negative
influences on performance. In this case, we consider falsely
identified creational and structural design patterns (Ecs) and
behavioural design patterns (Eb) a reverse engineering ap-
proach produces as part of the overall result:

Ecs(p, r) = 1− Fc(r) + Fs(r)

Pc(r) + Ps(r) + Fc(r) + Fs(r)
(5)

Eb(p, r) = 1− Fb(r)

Pb(r) + Fb(r)
(6)

where

Fc(x) is the number of falsely identified creational design
patterns in x

Fs(x) is the number of falsely identified structural design
patterns in x

Fb(x) is the number of falsely identified behavioural
design patterns in x

These individual performance measures for design patterns
can now be combined into a single compound performance
measure DPR for design pattern recognition in system p with
reverse engineering result r that includes weightings for each
individual component:

DPR(p,r) =
wDcs

Dcs + wDb
Db + wFcs

Fcs + wFb
Fb

wDcs + wDb
+ wFcs + wFb

(7)

B. Extensibility in Data Exchange
Another prominent aspect that needs to be addressed for

a reusable and extensible benchmark is the gap that exists
between input and output formats of various reverse engineer-
ing tools. Indeed, to make further use of reverse engineering
output, for example, between tools or for re-projection of UML
there is an Object Management Group (OMG) standard, the
XML Metadata Interchange (XMI) format [13]. XMI is a

highly customisable and extensible format with many differ-
ent interpretations. Therefore, in practice, tools have a wide
variation in their XMI output and exchange between reverse
engineering tools, useful for interactive projection between
tools without repetition of the reverse engineering process, is
usually impossible. This variance in XMI format also hinders
use of XMI data for further analysis outside of a reverse
engineering tool, as individual tools are required for each XMI
variation.

During the creation of the reverse engineering benchmark,
two tools were developed, which could analyse Java source
code identifying contained classes, and then, check for the
presence of these classes within XMI output.

However, the need remained to make more generalised
use of reverse engineering output XMI, beyond this specialist
utility. Our research required the ability to load XMI into a
memory model and manipulate and/or compare it. Additionally
it was foreseen that future, as yet not specifically defined, uses
could be found for programmatic access to reverse engineering
output.

One of the challenges in making automated programmatic
use of XMI output from different tools was the wide variety of
output format. This is due to the wide range of customisation
possibilities in the XMI format itself [13], it’s parent Meta-
Object Format (MOF; [14]), and the representation of UML
elements within XMI [15]. Even the most basic structural ele-
ments such as classes, and relationships such as generalisation
(inheritance) are represented in very different ways.

Such variation is shown in three XML listings showing par-
tial example output for a class representation from ArgoUML,
Enterprise Architect and Astah Professional (Table II).

Further work based upon the identification and analysis of
variances within different reverse engineering tools’ output,
along with a desire to be able to integrate such output within
more detailed analysis, led to the creation of a generic XMI
parser (Section III-C). The parser solves the problem of XMI
accessibility through generic use and abstract representation
of structural data contained in XMI files of multiple formats.
This parser is used by further tools for structural analysis or
comparison as well as automated UML re-projection within
Eclipse.

118

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. XMI Parser
The XMI Parser is a generic component designed for

integration within other projects consisting of a Java package.
The parser is capable of reading an XMI file, of most common
output formats, recovering class and relationship information
in a structured form. Data access classes are provided, which
contain the loaded structural information, and can be accessed
directly or recursively by third-party tools. As a self-contained
utility package, the XMI Parser can be developed in isolation
to tools making use of it and be incorporated into tools when
required. A number of tools have been and continue to be
developed within UEA to make use of reverse engineering
information through implementation of the XMI Parser.

1) XMI Analyser: XMI Analyser uses the generic XMI
Parser to load one or more XMI files which can then be
analysed. Features include a GUI-based explorer showing the
structure of the software and items linked through relation-
ships. A batch mode can be used from the command line for
automated loading of XMI files and analysis. XMI Analyser
is primarily used for testing revisions to the XMI Parser, as an
example application and also for the easy viewing of structural
information contained within XMI, as shown in Figure 1.

Figure 1. XMI Analyser Structure Display

XMI Analyser is also capable of comparison between mul-
tiple XMI files generating a report highlighting any differences
found. This analysis can inform decisions as to the accuracy of
the reverse engineering data represented in reverse engineering
output.

2) Eclipse UMLet Integration: One of our desired out-
comes was the ability to re-project UML outside of a specific
reverse engineering tool. Such a capability would not only
allow for detailed UML projections without access to the
reverse engineering tool, but also programatic projection, for
example in an interactive form. The Eclipse UMLet Integra-
tion, the interface of which is shown in Figure 2, is in the
form of a plugin for the Eclipse Framework. The XMI Parser
and supporting interfaces are included along with a graphical
window-based interface and a visualisation component. This
tool can load one or more XMI files and associate them with
open or new UMLet documents. These documents can then be
used to automatically generate a UML class diagram projection
containing the structural elements contained within the XMI.
An example of a re-projection within UMLet can be seen in
Figure 3; please note, however, owing to a limitation in our
UMLet API relationships are recovered but not shown.

3) Java Code Relation Analysis (jcRelationAnalysis): The
jcRelationAnalysis tool is a generic utility designed to analyse
and comprehend the relationship between elements (classes)
in Java source code. This is accomplished by first building a
structural picture of the inter-relationships between elements,
such as classes, contained within a source code corpus, initially
from reverse engineering output, for which the XMI Parser

Figure 2. Eclipse Visualisation Interface

Figure 3. Eclipse UMLet Re-Projection of UML

is used. The ultimate intention of the tool is to work with
combinational data from a number of different sources to
compare or augment relationship information. This tool is now
being used and further developed within our current and future
research (Section IX).

IV. BENCHMARK TOOLCHAIN

The generic stages required to perform benchmarking are
shown in Figure 4; the source code must be extracted from
the project, the structural elements contained within the source
code extracted directly and also by a reverse engineering tool,
before the outputs are compared.

Figure 4. RED-BM Generic Process

To facilitate effective analysis and ease reproduction or
repetition of the results a toolchain was developed for use
within RED-BM, consisting of two main components (jcAnal-
ysis and xmiClassFinder), combined to measure the rate of
class detection. The steps followed in the application of the
benchmark are shown in Figure 5 with the developed tools
highlighted.

4) jcAnalysis: This tool recurses through a Java source
tree analysing each file in turn to identify the package along
with contained classes (primary and nested classes). The list of
classes is then output in an intermediate XML format (DMI).
For every target artefact, jcAnalysis’ output was compared
against a number of other source code analysis utilities,
including within Eclipse, to verify the class counts. A manual

119

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. RED-BM Process with Toolchain Elements Highlighted

analysis was also performed on sections of source code to
verify naming. Once verified, this output then constitutes the
gold standard for class detection against which tool output is
compared.

5) xmiClassFinder: This tool analyses an XMI file from a
reverse engineering tool and attempts to simply identify all the
classes contained within the XMI output (the classes detected
by the reverse engineering tool in question). The classes
contained within the XMI can be automatically compared
to input from jcAnalysis (in DMI format) for performance
(classes correctly detected) to be measured.

Once an analysis had been completed, a manual search
was then performed on the source code, in XMI output, and
within the reverse engineering tool itself, to try and locate
classes determined as “missing” by the toolchain. This step
also served to validate the toolchain, in that classes identified
as “missing” were not then found to be actually present in the
reverse engineering output.

V. APPLICATION OF THE BENCHMARK

To analyse the effectiveness of our benchmark, we have
applied a range of commercial and open source reverse en-
gineering tools (shown in Table III) to each target artefact.
Each of the tools is used to analyse target source code,
generate UML class diagram projections (if the tool supports
such projections) and export standardised XMI data files.
Although the source code target artefacts used for testing are
broken down into the package level for analysis, the reverse
engineering process is run on the full project source code
to facilitate package identification. The output produced by
each of the tools is subsequently analysed and compared to
the generated gold standard using a benchmark toolchain we
specifically created for comparison of class detection rates
(see Section IV). Finally, we perform a manual consistency
between the standard tool output and XMI produced to identify
and correct any inconsistencies where a tool had detected an
element but not represented it within the generated XMI. For
this analysis we used weightings as stated, where all types of
elements are of equal weight (wCl = wSub = wRel = 1), and
categories of increased complexity have higher weight in the
compound measure (wC1 = 1, wC2 = 1.5, wC3 = 2).

When analysing the results a wide range of variety was
observed even for simple targets. Example A, one of the
simplest targets with just 7 classes and two types of relation-
ship, as depicted in Figure 6, demonstrates this variety. It can
be seen in Figure 7 that Software Ideas Modeller failed to
identify and display any relationship between classes. Other
tools such as ArgoUML [16] (Figure 8) were very successful
in reconstructing an accurate class diagram when compared to
the original reference documentation.

TABLE III. LIST OF TOOLS AND VERSIONS FOR USE IN EVALUATION

Tool Name
(Name Used)

Version Used (OS)
Licence

ArgoUML 0.34 (Linux)
Freeware

Change Vision Astah Professional
(Astah Professional)

6.6.4 (Linux)
Commercial

BOUML 6.3 (Linux)
Commercial

Sparx Systems Enterprise Architect
(Enterprise Architect)

10.0 (Windows)
Commercial

IBM Rational Rhapsody Developer for Java
(Rational Rhapsody)

8.0 (Windows)
Commercial

NoMagic Magicdraw UML
(MagicDraw UML)

14.0.4 Beta (Windows)
Commercial

Modeliosoft Modelio
(Modelio)

2.2.1 (Windows)
Commercial

Software Ideas Modeller 6.01.4845.43166
(Windows)
Commercial

StarUML 5.0.2.1570 (Windows)
Freeware

Umbrello UML Modeller
(Umbrello)

2.3.4 (Linux)
Freeware

Visual Paradigm for UML Professional
(Visual Paradigm)

10.1 (Windows)
Commercial

IBM Rational Rose Professional J Edition
(Rational Rose)

7.0.0.0 (Windows)
Commercial

Figure 6. Reference Class Diagram Design for ASCII Art Example A

Figure 7. ASCII Art Example A Output for Software Ideas Modeller

Figure 8. ASCII Art Example A Output for ArgoUML

120

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. org.jhotdraw.io Output from Astah Professional (reconstructed)

Figure 10. org.jhotdraw.io Output from Rational Rhapsody (reconstructed)

Figure 11. org.jhotdraw.io Output from ArgoUML

Another aspect in which difference is obvious relates to
tool presentation, particularly when the target artefact is a
Java package, which contains sub-packages nested to multiple
levels. Some of the different ways tools visualise this, even
for a single nesting level, is shown by the org.jhotdraw.io
target. Tool output varies from a simple display of classes and
packages at the top level (ArgoUML, Figure 11), a partial
decomposition of top-level sub-packages showing contained
constituent items (Rational Rhapsody, Figure 10), to a full
deconstruction showing all constituent parts and relationships,
but without indication of sub-package containment (Astah
Professional, Figure 9).

In stark contrast to tools which performed well (e.g.,
Rational Rhapsody and ArgoUML) a number of tools failed
to complete reverse engineering runs of benchmark artefacts
and even crashed repeatedly during this procedure. The result
of which is that they are classified as detecting 0 classes for
those target artefacts. While some tools failed to output valid
or complete XMI data, a hindrance to their usability and ease
of analysis, this has not affected their performance evaluation

TABLE IV. CRITERIA RESULTS BY TOOL

Criterion >
∨ Tool

CD
%

C1
%

C2
%

C3
%

CM
%

ArgoUML 100 98.15 75 100 88.27
Astah Professional 100 97.62 100 100 99.47
BOUML 100 92.59 75 100 86.42
Enterprise Architect 100 66.67 62.22 100 80.00
Rational Rhapsody 100 100 100 100 100.00
MagicDraw UML 100 98.15 100 100 99.38
Modelio 47.33 95.92 29.66 12.02 36.54
Software Ideas Modeller 86.41 62.15 41.48 46.04 48.10
StarUML 47.11 47.22 23.47 31.16 32.17
Umbrello 9.2 35.79 5.95 0 9.94
Visual Paradigm 12.42 38.18 51.68 16.67 33.12
Rational Rose 8.69 38.05 1.09 0 8.82

as their performance could be based on our manual analysis
of their UML projection.

VI. EVALUATION OF ANALYSIS RESULTS

For the analysis of the results produced by the reverse en-
gineering tools, we use a standard class detection performance
measure for all targets (CD, formula (1)). Artefact results are
broken into complexity categories as defined in Section II-C.

Finally, we use the compound measure CM (as defined in
Section II-B, formula (3)), which contains the three complexity
measures with weighting as follows: wC1 = 1, wC2 =
1.5, wC3 = 2; giving a higher weighting to target artefacts
that contain more lines of code.

Using these performance measures a wide range of results
between the tools used for analysis can be seen. Some tools
offer extremely poor performance, such as Rational Rose and
Umbrello, as they crashed or reported errors during reverse
engineering or UML projection, failing to detect or display
classes and relationships entirely for some targets. As a general
trend, the percentage of classes detected on average declined as
the size of the project source code increased. As the number of
classes detected varied significantly in different tools (Figure
12) so did the amount of detected relationships, to a degree
this can be expected as if a tool fails to find classes it would
also fail to find relationships between these missing classes. In
this figure, the difference between the standard class detection
measure CD and the compound measure CM becomes clear

121

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Overall Class Detection (CD) and Compound Measure (CM) Performance by Tool

as, for example, ArgoUML was very strong in class detection
but performed at a slightly lower level on relation detection,
which is explicitly considered in the compound measure. It
is also interesting to note that Visual Paradigm offered better
performance for the compound measure as opposed to class
detection highlighting its superior ability to deal with relations
and packages as compared to class detection.

Overall, our benchmark identified IBM Rational Rhapsody
as the best performer as it achieved the maximum score for
our compound measure (100%) with two other tools, Astah
Professional and MagicDraw UML coming in a close second
scoring in excess of 99%. As the poorest performers our
work highlighted Umbrello, Visual Paradigm and notably IBM
Rational Rose which scored the lowest with a compound
measure of just 8.82% having only detected 8.69% of classes.
A detailed breakdown of the performance of the tools for
individual targets is provided with the benchmark [7].

This range of performance scores clearly shows a very
marked differentiation between tools. At the top end some
six tools score 80% or above in the compound measure, with
three over 90%. In most a clear drop-off in detection rates are
seen in the complexity measures as the size and complexity of
the targets increase with an average measure score of 73.47%,
58.70% and 54.66% through the complexity categories C1, C2
and C3, respectively (Table IV and Figure 13).

There is a noticeable distribution of tool performance for
the compound measure; five score under 40%, six score in
excess of 80% and only one lies in the middle (48.1%).

It is interesting to note that of the top four performing tools
three are commercial with ArgoUML, a freeware tool, scoring
88.27%. This makes ArgoUML a significantly better performer
than well-known commercial solutions such Software Ideas
Modeller and Rational Rose. For complete results, targets
and reference documentation for this analysis please visit the
benchmark website [7].

Although outside the scope of this paper, in general we
found that the workflow processes of some tools were much

more straightforward than others. For example, Change Vision
Astah Professional and IBM Rational Rhapsody provided for
straightforward generation of diagrams with configurable detail
(such as optional inclusion of members and properties within
class diagrams) either during or immediately after reverse
engineering. On the other hand, tools such as BOUML and
IBM Rational Rose required considerable manual effort in
the generation of class diagrams with the need for individual
classes to be placed in the diagram although relationships
between classes were automatically generated. For a number
of tools the lack of usability was further aggravated as their
reverse engineering process repeatedly crashed or returned
numerous errors on perfectly valid and compilable source code.

VII. DISCUSSION

In the previous sections, we have demonstrated the abil-
ity of RED-BM to assess and rank reverse engineering ap-
proaches. In the following, we discuss the accuracy and valid-
ity of our approach. The targets in RED-BM currently range
in size from approximately 100 to 40,000 lines of code. It can
be argued that this is not representative of industrial software
systems that can consist of millions of lines of code. In
practice, however, reverse engineering activities tend to focus
on specific areas of limited size rather than reconstructing the
entire design of a very large system in a single pass [3] making
our targets representative for a typical application scenario.
This is supported by the capability of our benchmark to provide
targets diverse enough to be able to classify the performance
of a range of industry standard tools.

RED-BM currently supports the evaluation of reverse en-
gineering approaches that focus on traditional design elements
such as classes, packages and relations. It is possible that novel
reverse engineering approaches will be introduced that focus
on more complex design elements such as design patterns,
traceability links, etc., and are beyond the current evaluation
capabilities of RED-BM. However, the evaluation capabilities
of the benchmark can be improved by using the extension

122

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Tool Performance by Complexity Criteria

mechanism illustrated in Section III. Using this mechanism
new performance criteria and measures can be defined that
explicitly take more advanced properties of reverse engineering
approaches into account.

A final point we would like to highlight is that the effort
involved in evaluating tools and approaches requires the ability
to efficiently compare their outputs. While there is a standard-
ised output format available in the shape of XML Metadata
Interchange (XMI) files, a wide variety of implementations
exist which makes its use impractical. This can severely inhibit
the application of the benchmark. To accommodate this we
provide a number of utilities which can be used to a) analyse
Java source code, b) analyse XMI output and c) identify
components missing from the XMI output, which were found
in the source code. Use of these utilities drastically reduces the
time required to compare tool performance in terms of class,
package and relation detection.

VIII. RELATED WORK

The use of benchmarks as a means to provide a stan-
dardised base for empirical comparison is not new and the
technique is used widely in general science and in computer
science specifically. Recent examples where benchmarks have
been successfully used to provide meaningful and repeatable
standards include comparison of function call overheads be-
tween programming languages [17], mathematical 3D perfor-
mance between Java and C++ [18], and embedded file systems
[19]. Our benchmark provides the ability for such meaningful
and repeatable standard comparisons in the area of reverse
engineering.

These previous benchmarks and others which have been
reviewed (such as [20], [21], [5], and [22]) share many
common features in their structure and presentation which
have been incorporated into this benchmark and paper. Such is
the perceived importance of benchmarks to support empirical
comparison that the Standard Performance Evaluation Corpo-
ration are in the process of forming sets of standards to which

benchmarks in certain areas of computer science can be created
to [23].

Previous work reviewing reverse engineering tools has
primarily focused on research tools many with the specific
goal of identification of design patterns [3], [4], [24], [12],
[25], clone detection [26] or a particular scientific aspect
of reverse engineering such as pattern-based recognition of
software constructs [27]. A previous benchmarking approach
for software reverse engineering focused on pattern detection
with arbitary subjective judgements of performance provided
by users [5]. The need for benchmarks within the domain
of reverse engineering to help mature the discipline is also
accepted [6].

This previous work defines the importance of reverse
engineering in industry as well as a research challenge. Our
benchmark is a novel yet complimentary approach to previous
reverse engineering benchmarks, providing a wider set of
target artefacts and tool analysis than those just focused on
design patterns or other specific outputs. As such it provides
a solid framework for the generalised comparison of reverse
engineering tools with the option of extensibility when specific
measurements are required and also allows for integrating
previous efforts into a single benchmark.

IX. CONCLUSION AND FUTURE DIRECTION

In this paper we introduced RED BM, a benchmark for
evaluating and comparing reverse engineering approaches in a
uniform and reproducible manner. To analyse the effectiveness
of RED-BM we applied it to a range of reverse engineering
tools, ranging from open source to comprehensive industrial
tool suites. We demonstrated that RED-BM offers complexity
and depth as it identified clear differences between tool per-
formance. In particular, using the compound measure (CM)
RED-BM was capable of distinguishing and ranking tools
from very low (8.82%) to perfect (100%) performance. The
benchmark is inherently extensible through the definition of

123

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

further measures, changes to weighting to shift focus, and the
creation of new compound measures.

The XMI Parser allows tools to make direct use of reverse
engineering output overcoming the fragmentation issues. The
capability of direct use of reverse engineering output is clearly
demonstrated through the ability for UML to be re-projected
within UMLet, and also used in other tools for further analysis.

The future direction of our work will be to combine reverse
engineering output with other sources of information about
a source corpus, for example mining repository metadata or
requirement documentation. The jcRelationAnalysis tool is
being used as a programmable basis for integration of different
sources of information into a common format of relationships
between source code elements. These relationships, be they
direct and found through reverse engineering, such as gen-
eralisations, or semantic in nature and found through other
means, will be used in combination to form a more complete
understanding of a software project.

Such analysis will aid both general comprehension of
software and also change impact analysis by identifying re-
lationships between elements not immediately obvious at the
code or UML level.

REFERENCES

[1] D. Cutting and J. Noppen, “Working with reverse engineering
output for benchmarking and further use,” in Proceedings
of the 9th International Conference on Software Engineering
Advances. IARIA, Oct. 2014, pp. 584–590. [Online]. Available:
http://www.thinkmind.org/index.php?view=article&articleid=
icsea 2014 21 40 10425

[2] G. Rasool and D. Streitfdert, “A survey on design pattern recovery
techniques,” International Journal of Computing Science Issues, vol. 8,
2011, pp. 251–260.

[3] J. Roscoe, “Looking forwards to going backwards: An assessment of
current reverse engineering,” Current Issues in Software Engineering,
2011, pp. 1–13.

[4] F. Arcelli, S. Masiero, C. Raibulet, and F. Tisato, “A comparison of
reverse engineering tools based on design pattern decomposition,” in
Proceedings of the 2005 Australian Software Engineering Conference.
IEEE, 2005, pp. 262–269.

[5] L. Fulop, P. Hegedus, R. Ferenc, and T. Gyimóthy, “Towards a bench-
mark for evaluating reverse engineering tools,” in Reverse Engineering,
2008. WCRE’08. 15th Working Conference on. IEEE, 2008, pp. 335–
336.

[6] S. E. Sim, S. Easterbrook, and R. C. Holt, “Using benchmarking to
advance research: A challenge to software engineering,” in Proceedings
of the 25th International Conference on Software Engineering. IEEE
Computer Society, 2003, pp. 74–83.

[7] UEA, “Reverse engineering to design benchmark,”
http://www.uea.ac.uk/computing/machine-learning/traceability-
forensics/reverse-engineering, 2013, [Online; accessed May 2013].

[8] R. Koschke, “Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 15, no. 2, 2003,
pp. 87–109.

[9] G.-C. Roman and K. C. Cox, “A taxonomy of program visualization
systems,” Computer, vol. 26, no. 12, 1993, pp. 11–24.

[10] N. E. Fenton and S. L. Pfleeger, Software metrics: a rigorous and
practical approach. PWS Publishing Co., 1998.

[11] B. Bellay and H. Gall, “A comparison of four reverse engineering tools,”
in Reverse Engineering, 1997. Proceedings of the Fourth Working
Conference on. IEEE, 1997, pp. 2–11.

[12] I. Philippow, D. Streitferdt, M. Riebisch, and S. Naumann, “An approach
for reverse engineering of design patterns,” Software and Systems
Modeling, vol. 4, no. 1, 2005, pp. 55–70.

[13] OMG et al., “OMG MOF 2 XMI Mapping Specification,”
http://www.omg.org/spec/XMI/2.4.1, 2011, [Online; accessed Decem-
ber 2012].

[14] OMG, “OMG Meta Object Facility (MOF) Core Specification,”
http://www.omg.org/spec/MOF/2.4.1, 2011, [Online; accessed Decem-
ber 2012].

[15] OMG, “Unified modelling language infrastructure specification,”
http://www.omg.org/spec/UML/2.0/, 2005, [Online; accessed December
2012].

[16] ArgoUML, “Argouml,” http://argouml.tigris.org/, 2012, [Online; ac-
cessed December 2012].

[17] A. Gaul, “Function call overhead benchmarks with matlab, octave,
python, cython and c,” arXiv preprint arXiv:1202.2736, 2012.

[18] L. Gherardi, D. Brugali, and D. Comotti, “A java vs. c++ performance
evaluation: a 3d modeling benchmark,” Simulation, Modeling, and
Programming for Autonomous Robots, 2012, pp. 161–172.

[19] P. Olivier, J. Boukhobza, and E. Senn, “On benchmarking embedded
linux flash file systems,” arXiv preprint arXiv:1208.6391, 2012.

[20] Q. Quan and K.-Y. Cai, “Additive-state-decomposition-based tracking
control for tora benchmark,” arXiv preprint arXiv:1211.6827, 2012.

[21] A. Bonutti, F. De Cesco, L. Di Gaspero, and A. Schaerf, “Benchmark-
ing curriculum-based course timetabling: formulations, data formats,
instances, validation, visualization, and results,” Annals of Operations
Research, vol. 194, no. 1, 2012, pp. 59–70.

[22] A. Klein, A. Riazanov, M. M. Hindle, and C. J. Baker, “Benchmarking
infrastructure for mutation text mining,” J. Biomedical Semantics,
vol. 5, 2014, pp. 11–24.

[23] W. Bays and K.-D. Lange, “Spec: driving better benchmarks,” in
Proceedings of the third joint WOSP/SIPEW international conference
on Performance Engineering. ACM, 2012, pp. 249–250.

[24] S. Uchiyama, H. Washizaki, Y. Fukazawa, and A. Kubo, “Design
pattern detection using software metrics and machine learning,” in First
International Workshop on Model-Driven Software Migration (MDSM
2011), 2011, p. 38.

[25] N. Pettersson, W. Lowe, and J. Nivre, “Evaluation of accuracy in design
pattern occurrence detection,” Software Engineering, IEEE Transactions
on, vol. 36, no. 4, 2010, pp. 575–590.

[26] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” Software Engineering,
IEEE Transactions on, vol. 33, no. 9, 2007, pp. 577–591.

[27] M. Meyer, “Pattern-based reengineering of software systems,” in Re-
verse Engineering, 2006. WCRE’06. 13th Working Conference on.
IEEE, 2006, pp. 305–306.

124

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Towards a Classification Schema for Development Technologies: an Empirical
Study in the Avionic Domain

Davide Taibi, Valentina Lenarduzzi
Free University of Bolzano-Bozen

Bolzano-Bozen, Italy
{davide.taibi, valentina.lenarduzzi}@unibz.it

Christiane Plociennik

University of Kaiserslautern
Kaiserslautern, Germany

christiane.plociennik@cs.uni-kl.de

Laurent Dieudonné
Liebherr-Aerospace

Lindenberg, Germany
laurent.dieudonne@liebherr.com

Abstract— Software and hardware development organizations
that consider the adoption of new methods, techniques, or tools
often face several challenges, namely to: guarantee process
quality, reproducibility, and standard compliance. They need
to compare existing solutions on the market, and they need to
select technologies that are most appropriate for each process
phase, taking into account the specific context requirements.
Unfortunately, this kind of information is usually not easily
accessible; it is incomplete, scattered, and hard to compare.
Our goal is to report on an empirical study with high-level
practitioners, to extend our previous work on a classification
schema for development technologies in the avionic domain.
We investigate the acceptance and the possible improvements
on the schema, with the aim to help decision makers to easily
find, compare and combine existing methods, techniques, and
tools based on previous experience. The study has been carried
out with five technical leaders for the development of flight
control systems, from Liebherr-Aerospace Lindenberg GmbH
and the results show that the schema helps to transfer
knowledge between projects, guaranteeing quality,
reproducibility, and standard compliance.

Keywords-component; process improvement; technology
classification; technology selection; tool selection; method
selection; process configuration.

I. INTRODUCTION
The definition of a product development process that

guarantees quality and reproducibility often takes years.
Moreover, in certain domains, such as avionics, the process
must comply with a set of standards.

The introduction of a new technology may break the
consistency and standards compliance of the process. To
limit this risk, two major aspects must be considered. First,
the objectives and prerequisites for each process step must be
fully documented and structured. Second, the contribution of
each method and tool intended to be used, must be limited to
the objectives set by each domain process activity and their
role in each process step must be fully described.

A structuring framework, enabling the classification of
the technologies in process activities would speed up the
integration of new technologies and contribute to
guaranteeing compliance with the company processes.

To facilitate the classification of technologies, the
Reference Technology Platform (RTP) has been developed.
RTP is a set and arrangement of methods, workflows, and
tools that allow interaction and integration on various levels
in order to enable efficient design and development of
(complex) systems [1] [3].

In the context of the ARAMiS project (Automotive,
Railways, Avionics Multicore Systems) [4], a classification
schema based on the RTP has been developed. It classifies
technologies along two dimensions: abstraction levels and
viewpoints. In our previous work, we introduced how RTP
and Process Configuration Framework (PCF) could have
been applied in the avionic domain [1].

The goal of this paper is to conduct an empirical study
with the goal of evaluating the RTP and PCF approaches, for
the purpose of understanding their acceptance and
applicability to the selection process, in the context of new
product development in the avionic domain.

For this purpose, in this paper, we present the results of
the case study proposed in [1] and we conduct an empirical
study so as to validate the approach with high-level
practitioners from Liebherr-Aerospace.

The results of this work suggest that the classification
provides a useful framework for decision makers and allows
them to base their decisions on previous experience instead
of on personal opinions. Moreover, the classification allows
them to guarantee process quality, reproducibility and
standards compliance, facilitating knowledge transfer from
project to project or between employees.

The remainder of this paper is structured as follows:
Section II describes related work; Section III introduces the
classification schema and its implementation in PCF, while
Section IV describes the avionic use case. In Section V, we
describe the Empirical Study while in Section VI we report
results of the study. Finally, we draw conclusions in Section
VII and provide an outlook on future work.

II. RELATED WORK
Here, we present some common technology classification

schemas.
In 1987, Firth et al. published an early classification

schema [5]. In this work, software development methods are

125

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

classified according to two dimensions: the stages of the
development process (specification, design, and
implementation) and the view (functional, structural, and
behavioral). The stages are specification, design, and
implementation; the views are functional, structural, and
behavioral. Our schema, too, is two-dimensional, and our
viewpoints dimension is similar to the views dimension of
Firth et al. However, Firth et al.'s second dimension is
concerned with the process stages, which we map onto the
viewpoints dimension. Instead, the second dimension in our
schema is concerned with abstraction levels.

In the late 1980's, the idea of the Experience Factory was
first published [6]. It was then updated in 1991 [7] and in
1994 [8]. The idea is to describe software development
artifacts in so-called experience packages and to include
empirical evidence on how these artifacts have been used
previously. This way, the Experience Factory provides a
comprehensive framework for the reuse of software. The
goal is to enable software engineers to base their decisions
on company experience.

The Experience Factory is a more general concept than
ours. In the Experience Factory, any software engineering
artifact can be an object for reuse, e.g., products or
requirements documents. Moreover, a specific schema for
storing different technologies for reuse is not provided in the
Experience Factory. Neither does it include any algorithms
to search for or to combine technologies.

The C4 Software Technology Reference Guide (C4 STR)
is a catalog that contains more than 60 technologies. It
constitutes an alternative approach to technology
classification and was developed in parallel to the later
versions of the Experience Factory.

In comparison to our work, the C4 STR schema includes
a large number of technologies. However, the attributes it
uses are not as detailed as those in our schema, and it
includes no reference to context or to impact.

Later, Birk merged the Experience Factory approaches
with the C4 STR [8]. This evolved into the concept of
experience management in the late 1990's. This work served
as the basis for other publications that evolved this schema
and extended the idea of the Experience Factory [9].

A classification schema for software design projects was
developed by Ploskonos [10]. With the help of this schema,
generic process descriptions and methods can be adapted to
individual processes more easily. It classifies design projects
into one of the four groups Usability, Capability, Extension,
and Innovation. Each of these groups is associated with
specific process characteristics in order to help the user in
setting up the actual process. Ploskonos' approach is more
narrow than ours: It classifies processes with respect to the
project type, ignoring other characteristics, e.g., project size
or domain.

III. THE CLASSIFICATION SCHEMA
As a foundation for the case study, which we present in

the next section, we now introduce the classification schema
we applied. The goal of the schema is to provide a complete
engineering tool chain that can be used to collect and

integrate technologies. This way, the schema supports the
activities required for a structured development process.

With our schema, we address the development of
industrial projects that are big and complex. Typically, such
projects run several years and require the joint efforts of
many employees.

In the industry, requirements-based process models are
commonly used to plan the different baselines and to ensure
that these baselines are accomplished on time in different
phases of realization. Usually, every phase and every step of
the processes produces artifacts which then constitute the
inputs for the next phase(s) or step(s). These process models
are based on, or are extensions of, the V-Model [11].

An instance of the V-Model for the avionics domain is
shown in Figure 1. It is an extract of the avionics standard
SAE ARP4754A [12], and it includes the interaction
between both avionics development and safety integral
processes.

Traditionally, the V-Model is used in the iterations that
are carried out in order to accomplish each baseline. In
addition to the iterations, concepts such as the definition of
phases, the definition of objectives, periodical assessments,
the definition of roles, and traceability (forward and
backward) are traditionally included in these development
processes. Current agile methodologies, like SCRUM [11],
have also been inspired by these concepts.

The schema we present in this paper serves as a generic
development model that covers the industrial development
processes. Naturally, the instances of this generic
development model depend both on the development
standards in the industry and on the particular company.

Using the information provided in the schema, decision
makers can find the most appropriate technologies based on
the technologies' interaction and integration on multiple
levels. This helps to efficiently design and develop complex
systems. Moreover, the schema may provide an overview of
the tools and methods used in previous projects. As the
activities inherent to the industrial processes (e.g., planning
phases, assessment meetings and accomplishment
summaries) are performed periodically throughout each
project development, a huge amount of data can be collected
during the development life cycle of every project. This data
includes, for example, the decisions made, or the quality and
special uses of the tools, technologies and methods. This
helps to build a knowledge base that is adapted to the
company's development processes and addresses best
practices as well as pitfalls. Thus, new projects can benefit
from prior experience instead of starting from scratch.

Furthermore, the schema can help new employees to
quickly become familiar with the tools and methods
available in the company for every phase of the development
process fostering knowledge transfer within a company.

Inspired by the work done in SPES2020 [13] and
SPES_XT [14], our schema can be envisaged as a two-
dimensional matrix, where viewpoints form the columns and
abstraction levels form the rows. The viewpoints dimension
consists of “Requirements”, “Functional”, “Logical”, and
“Technical”.

126

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1: Avionics V-Model extract from the ARP4754A [12]

Figure 2: Generic representation of our classification schema

Those four viewpoints can be mapped to the three phases
of the development process: the requirements viewpoint
corresponds to the requirements capture phase, the functional
and logical viewpoints can be mapped onto the design phase,
and the technical viewpoint corresponds to the construction
or implementation phase (see Figure 2). Figure 2 depicts the
generic version of the schema. The abstraction levels
correspond to different decompositions of the system. These
are (from coarse-grained to fine-grained): system, sub-
systems, components, and units. This generic set of
abstraction levels can be substituted by different, domain-
specific abstraction levels according to the specific

application domain (automotive, railways, avionics etc.). For
instance, the avionics domain defines the following
abstraction levels (see Figure 3): “Aircraft”, “System”,
“Equipment”, and “Item”.

Each step of the product development process that must
be carried out is represented as a cell in the schema, to be
traversed from the top left cell to the rightmost. This is
represented by the arrows in Figure 2 and Figure 3.

Each step produces artifacts as outputs. These outputs
may contribute directly to the accomplishment of the process
objectives required by the domain, or indirectly if they serve
as inputs for other cells in later steps. The objectives
specified by the domain process depend on the development
phase and the abstraction level.

Here, we explain how the matrix is traversed, as shown
in Figure 3. We start at a given abstraction level. First, the
requirements related to this abstraction level are recorded in
the requirement viewpoint. The outputs of this viewpoint are
the filtered requirements, applicable for the (sub…)system
under focus. They are needed in order to start the design of
the (sub…)system. The design phase comprises the
functional and the logical viewpoint. In the functional
viewpoint, the network of functions representing the system
workflow is determined. It is then undertaken into the logical
viewpoint, where a structuration (decomposition and/or
composition) of the identified functions is performed. If the
objectives of the logical viewpoints are fulfilled, we move on
to the technical viewpoint. Here, the construction of the
system is started.

127

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3: Example of classification schema for the avionics domain.

Sometimes iterations must be carried out, e.g., to

introduce new requirements or to incorporate realization
constraints that appear a posteriori and that influence the
design of the system.

If not all requirements derived from the design (and
hence from the requirement viewpoint) have been fulfilled at
the end of the abstraction level, the unfulfilled requirements
are used as a basis in the next abstraction level. They are
recorded in the requirement viewpoint of this new current
abstraction level. Now the steps described above for the
previous abstraction level are carried out again for the next
abstraction level.

In order to foster partial and iterative development, a set
of transition criteria is defined. These transition criteria
control the transition from one cell to the next. With the help
of transition criteria, it is possible to evaluate the risks of
commencing the next development step if not all objectives
of the current step are fulfilled. It is then possible to control
the current status of fulfillment of the objectives, which will
be realized after several iterations.

In order to fulfill the objectives of each step, the methods
used by the system and software engineers are usually
supported by tools. Which methods and tools are required
depends on the specific characteristics of the respective
development process: the category of product that is to be
developed, the requirements, the abstraction level, and the
focus of the current development iteration (e.g., the
objectives to be addressed). Furthermore, the integration of
the technology chain used may also differ. The methods
must as well support the transition criteria between the
process steps.

A. The implementation of the classification schema in PCF
The proposed schema has been implemented as a web

application in the PCF tool [15]. PCF is an online platform,
developed by means of the Moonlight SCRUM process
[16][17]. PCF allows users to search for technologies based
on abstraction levels and viewpoints as defined in the
schema. Furthermore, PCF adds two more aspects to provide

information about previous experience using a specific
technology: Context and Impact. Hence, the data schema in
PCF is based on three models as defined in [18] (as shown in
Figure 6):
• Technology: includes a set of attributes for describing

a technology in as much detail as possible.
• Context: includes information on the context, such as

application domain, project characteristics, and
environment in which the respective technology has
been applied.

• Impact: includes previous experience on applying a
specific technology in a specific context.

The PCF tool contains a search feature that allows users
to search for technologies based on the attributes defined in
the models in Figure 6. This enables the user to search for
technologies used in projects with specific characteristics,
e.g., projects fulfilling a certain industrial standard.

Basic use cases for PCF, as shown in Figure 4, are:
• Search for a technology based on context

requirements (not mandatory)
o List view
o Matrix view

• View details for a technology
• View related context
• View details for a context
• View related impacts
• View details for a related impact
Moreover, PCF implements the schema for different

domains (avionics, automotive, and railways).
Figure 5 shows an example of the schema represented in

PCF for the avionics domain. This figure includes the
methods mentioned in the use case or directly the tools
realizing them, as well as several other technologies for the
avionics domain in addition to those mentioned above. In
this version of the tool, we do not consider interoperability
issues. The next version of the tool will address the challenge
of interoperable tool chains.

128

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4: PCF Use Cases

Traditionally, at the aircraft and system abstraction level,

but also partly persistent at the lower levels, mainly few and
text-based tools (IBM Rational DOORS, MS-Excel, MS-
Word, …) are used, completed pointwise with advanced
graphical tools (MS-Visio, etc.) for architecture overview,
and with specific tools simplifying the validation and
verification of the system under development. Model-based
methods and tools appears more and more for parts of the
functional aspects needing to be simulated, or where better
structuration, formalization and automation can be obviously
performed to save time and money (SysML/UML
technologies, MATLAB/Simulink, ESTEREL Scade, etc.).
The model-based development methods facilitate an
overview of the system, but need a strong defined formalism
to be uniquely understandable. Structured text can be more
precise with less formalism, but for big projects, many
additional informative descriptions or pictures are needed to
keep the red line with acceptable workload, in particular for
engineers having to work with these requirements for the
next development step. A mix of the both methods is
probably the most efficient, if interoperability between the
tools is provided. Both are also accurate enough to ensure
exact traceability with a minimum of orderliness.
 Thanks to the structured methodology, to the overview and
to the collection of experience enabled by the PCF,
development tools offering more automatisms but also being
complex to integrate, can be easier incorporated in
development processes. An example of possible enhanced
tool environment is done in Figure 5. Some details about
inputs-outputs are given in section IV, but it is not the goal
of this paper to describe the details of use of each tool – this
is also depending of company processes. Attributes to
evaluate the quality, the adequacy and the added value of the
tool are integrated in the PCF template by filling the
technology, context and impact information like defined in
Figure 6. For example, a tool having a qualification kit for
the automation of a specific process step (e.g., code
generation with ESTEREL Scade) provides a substantial
advantage by avoiding manual work like a review activity,
which saves much development time.

But its integration in the development process has also an
impact on recurring and non-recurring costs, among other
concerning purchase, training or maintenance fee. At the
end, a trade-off decision must be taken to select the adequate
chain of technologies and tools which could support an
optimal project budget.

Figure 5: An example of the schema in the avionic domain implemented in

PCF.

IV. APPLYING THE CLASSIFICATION SCHEMA IN THE
AVIONIC DOMAIN

In this section, we sketch an example of a use case of the
classification schema in the avionics domain.

In the avionic industry, two main processes are defined
and address two different aspects corresponding to the two
branches of the V-Model: the Development Process and the
Integral Process [12] (see Figure 1). The combination of both
main processes defines abstraction levels (Aircraft, System,
Equipment/Item, Software, Hardware, etc.) and specific
processes for each of them. Iterations can be done inside an
abstraction level, or inclosing them.

129

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6: PCF Data Schema.

The overall resulting applicable development process can

be summarized like the following suite of development
phases, where the previous ones are required by the next
ones: Aircraft Requirements Identification, Aircraft Function
Development, Allocation of Aircraft Function to Systems,
System Requirements Identification, Development of System
Architecture, Allocation of System Requirements to Items,
Item Requirements Identification, Item Design (corresponds
to Software and Hardware Development, both having
specific processes), Item Verification, System Verification,
and Aircraft Verification.

These different phases can be well mapped onto the
generic development model, by instancing the abstraction
levels and by specifying the objectives of the viewpoints for
each abstraction level, according to the company and project
needs.

For example, at the system level, the System
Requirements Identification corresponds to the Requirement
Capture Viewpoint, the Development of System Architecture
is realized via the Functional and Logical Viewpoints, the
Allocation of System Requirements to Items belongs to the
Technical Viewpoint, where the decision is taken on which
technology will be involved to realized the Items (Item
Design corresponds to Software and Hardware
development). The Verification phases are realized in the
Technical Viewpoint of corresponding abstraction levels,
where the integration activity is performed. For each phase,
objectives concerning safety assessments, validation,
verification, etc. are defined via the Integral Process and
should be met in order to move to the next phase, or must be
accomplished during a next iteration. The same logic applies
when moving to the next abstraction level.

Identical principles apply for all the other abstraction
levels. This is also true for the Software and Hardware
development, but with different steps inside the phases and
different objectives, because they are defined by specific
processes specified in the avionics standards DO-178C [2]
and the DO-254 [19].

We consider the development of a safety-critical system
– a Flight Control System (FCS). We give an example on
how the regular avionic development process, according to
the civilian aircraft and systems development process
guidelines ARP4754A [12], can be mapped on the
classification schema (see Figure 2). This mapping is shown
in Figure 3, where the different represented process artifacts
originate from the avionics V-Model depicted in Figure 1.

Here, we briefly introduce how to use the classification
schema efficiently by describing the most important
development process steps and their artifacts. The example
summarized below starts at the system abstraction level. It
follows the simplified process instance shown in Figure 3.

Based on the high-level aircraft requirements and design
decisions, the requirements on the FCS must first be
captured, expressed, and validated precisely (requirement
viewpoint). The artifacts for this step are the functional and
non-functional requirements that contain the goals of the
system (e.g., “control the three axes of the aircraft: pitch,
yaw, and roll”), the operational requirements (e.g.,
operational modes), the safety requirements (e.g., which
criticality for which surface/axis), the high-level
performance requirements (e.g., aircraft response time
following cockpit control requests), etc. The requirement
capture can be facilitated with model-based methods, for
example by using context, use-cases and scenarios diagrams
representable with SysML/UML diagrams and elements
among other supported by the tools Enterprise Architect
(Sparx Systems) or Artisan Studio (Atego), or with
requirements tools using structured text, like with DOORS
(IBM Rational) – see Figure 5, cell “System – Requirement”.

Once captured, the requirements must be validated,
which is a transition criterion for proceeding to the next step.
Different activities and requirements types are analyzed
using different technologies, according to the avionics
standards. For this step, manual reviews are performed.

These requirements, expressed as text, model or in-tools-
integrated mix of both, are then considered as valid inputs
for the design phase. Based on them, the behavior of the

130

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

system is analyzed and a functional architecture in the form
of a network of the essential functions covering the major
system functionalities must be formulated (functional
viewpoint). An example of a major functionality at the
system abstraction level is the altitude control via the pitch
axis, which is realized by the elevator surfaces. Essential
functions are those realizing the functionality and having an
external interface with other parts of the system, for example
actuator control, acquiring of the surface position,
synchronization with the other surfaces, etc. For example,
block definition diagrams from the SysML (e.g., with
Enterprise Architect, Artisan Studio, …) and signal flow
diagrams (e.g., with MATLAB/Simulink from The
Mathworks) are suitable to model the functions network
(Figure 5, cell “System – Functional”). The resulting
functional architecture shapes a part of the outputs of this
step. First simulations of the system overall behavior can be
realized with MATLAB/Simulink and some SysML/UML
tools supporting model execution (e.g., Artisan Studio). This
contributes to an early system validation.

Once the definition of these functions and their related
requirements is completed, a Functional Hazard Assessment
(FHA) must be performed [12], still in the functional
viewpoint, like shown in Figure 3. The resulting FHA
requirements express a fundamental output required by the
avionics process at the system design phase. The FHA
produces safety requirements and design constraints for the
next design step (inside the logical viewpoint) which are
necessary to make decisions about the decomposition and
structuration of the functions in order to realize a suitable
system design. In the logical viewpoint (Figure 3, cell
“System – Logical Viewpoint”), these essential functions are
structured, completed, and/or decomposed in order to shape
the components to be realized on this abstraction level – here
named “logical components”. The logical architecture
determination is also efficiently supported by the
SysML/UML technologies (block diagrams, activity
diagrams) and tools, and the behavior can be well designed
via control flow diagrams, state machines, etc., among other
supported by MATLAB/Simulink (Figure 5, cell “System –
Logical”). Both categories of artifacts serve the expression of
the required output of the system design phase (system
architecture, interfaces definition, behavior details). At the
end of the logical viewpoint, different validation activities
(part of the transition criteria) must be accomplished, like a
Preliminary System Safety Assessment (PSSA), a
preliminary common cause analysis (CCA), etc. [12] in order
to validate the decisions made in the design phase, that is, in
the functional and logical viewpoints. Simulation
technologies (e.g., MATLAB/Simulink) can also be used to
validate the interactions and behavior between the logical
components, once they are correctly formalized.

Based on these components and their inherited
requirements (the logical components are derived from the
functions of the functional viewpoint, which are themselves
derived from the requirements of the requirement
viewpoint), technical solutions suitable for this abstraction
level are identified or existing technical solutions are chosen
(technical viewpoint, see cell “System – Technical

Viewpoint” in Figure 3). These technical solutions are called
“technical components” in this paper. The requirements
expressed by the logical components drive the selection of
the technical components. At the system (and equipment)
abstraction level(s), the technical viewpoint contains the
allocation activities like defined in the avionic process [12]
and shown in Figure 1. Systematic methods and semi-
automatic deployment tools can support the allocation
activity. Common activity to all abstraction levels, the new
developed, previously integrated or already existing
technical components are integrated in the above abstraction
level. These integrated components represent the major
outputs of the technical viewpoint.

Iterations inside an abstraction level are feasible for
introducing new requirements, or for increasing the
reusability rate by considering already existing technical
components. As a consequence, the structuring
(decomposition and composition) of the logical components
may be performed in a different way. A configuration
management system is mandatory for managing the different
alternatives and versions.

At the end of the technical viewpoint, different
verification activities must be accomplished, depending on
the abstraction level. At the system (and aircraft) one(s), a
System Safety Assessment (SSA), a common cause analysis
(CCA), etc. [12] are performed in order to verify the
decisions made in the functional, logical, and technical
viewpoints. These safety process verification activities are
shown in Figure 3 and Figure 5 (e.g., cell “System –
Technical Viewpoint”). For functional verification, generic
tools and methods supporting these activities are very
specific to the developed system (test bench, etc.). In some
cases an incremental integration can be performed and parts
of the system can be simulated with Model-in-the-Loop
methods (e.g., with MATLAB/Simulink generated
applications) to simplify the integration steps.

If the already existent technical components fulfill
exactly the requirements expressed by the logical
components mapped onto them, the work is completed and
the associated requirements are considered as fulfilled. This
is an ideal case of reusability and will probably not arise very
often at higher abstraction levels such the Aircraft and the
System levels, but may arise at the Equipment or Item level.

The technical components that do not exist yet or that do
not completely fulfill the requirements expressed by the
logical components mapped onto them, and the logical
components that are still too complex to be allocated to a
particular technical solution are both inputs for the next
abstraction level. They express requirements that have not
been fulfilled at the current abstraction level and must be
dealt with at the next one. Thus, the work on the next
abstraction level can start.

The traceability, required by avionics processes at the
different abstraction levels, is performed 1) between the
viewpoints of the same abstraction level and 2) between the
abstraction levels. For this second case, the traceability is
performed between the technical and logical viewpoints of a
given abstraction level and the requirement viewpoint of the
next abstraction level.

131

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For example: For 1), the technical components (technical
viewpoint) are assigned to the logical components (logical
viewpoint) that drove their selection. For 2), on abstraction
level AL, each technical component not already realized and
each logical component that cannot be mapped to a technical
component must be addressed on abstraction level AL-1.
They express requirements to be captured in the requirement
viewpoint of AL-1. The requirements expressed at the
Requirement viewpoint of AL-1 are then linked to the
requirements expressed by the corresponding technical and
logical components from the abstraction level AL.

The other abstraction levels follow the same logic for
each step with methodology objectives, process objectives
and artifacts, and similar activities that need to be carried
out. All of them can be well mapped in the classification
schema.

For example, at the Aircraft abstraction level, similar
process activities as for the system level are realized, like an
FHA, a (Preliminary and final) Aircraft Safety Assessment
((P)ASA), and Common Cause Analyses (CCA). For the
equipment abstraction level, Fault Tree Analyses (FTA) are
required as well as Common Mode Analyses (CMA), etc.
(see Figure 1 and Figure 3). At the item abstraction level,
several different activities are also expected at the technical
viewpoint, like the realization of hardware components or
the implementation the software ones. Specifically to the
software development, the avionics standard DO-178 [2]
defines different phases (called “processes”, such as the
Software Requirements Process and the Software Design
Process) with several objectives requiring numerous
artifacts, such as requirements and detailed design
descriptions, validation and verification artifacts, etc., which
can be performed by using different methods and tools (e.g.,
for verification: Classification Tree, Equivalence
Partitioning, Cause-and-Effect Analysis), each containing
pros and cons, depending on the context of the current
development. The selection of tools is specific to the
company process implementation.

Another issue that belongs to the top-down process
explained here is that the reusability of existing solutions
potentially fulfilling parts of the system also requires suitable
and standardized methods and tools. Existing technical
solutions may also consist of components developed outside
the company, such as microcontrollers, software libraries,
etc. with other degrees of quality and using different
processes. In any case, these existing solutions need to be
completely and suitably characterized and must be integrated
efficiently into the development process.

 However, reusability is not a separate activity that can be
transposed directly as a technology that can be integrated
into the schema. In fact, it influences different activities,
such as the decomposition in the design phase at the logical
viewpoint, the accurate characterization of the existing
solutions and the deployment activity at the technical
viewpoint, etc. All these aspects related to reusability must
also be taken into account in these activities. For example, it
should be possible to integrate a systematic deployment
process and its related techniques as explained by Hilbrich
and Dieudonné [17] into the schema via these activities. As

an example for this case, the software applications that are to
be mapped optimally onto electronic execution units (ECU)
need to be decomposed and structured in a way that makes
them well compatible with the capabilities of the ECUs in
order to allow the use of a minimum number of ECUs.
However, on the other hand, the ECUs must be formalized
completely and their description must be easily accessible by
the system and software architects in order to influence the
system design and to be correctly selected during
deployment. In ARAMiS, we also provide a template for
formalizing multicore processor capabilities in a form and on
an abstraction level that can be used by system and
equipment engineers. The formalization must be performed
by the software and hardware engineers who design the
ECUs. A noticeable advantage is to be able to validate per
analysis or per simulation more aspects of the system, like
the timing reactions, or the resource consumption.

These activities related to reusability are scattered across
different cells of the matrix. At present, they need to be taken
care of by the system designer. It would be helpful if they
could be better integrated into the chain of methods and tools
in the future.

V. THE EMPIRICAL STUDY
In this section, we first specify the goal of the study,

describe the design used for the study and the procedure
followed for its execution. Study design and material are
described in deep so as to enable external replications of this
study.

The main goal of this study is:
G1: to evaluate the RTP and PCF for the purpose of

understanding their applicability to the technology
selection process in the context of new product
development in the avionic domain.

Since we are also interested to understand potential room

for improvements, to adopt the framework in Liebherr-
Aerospace, we also define a second goal as:
G2: to elicit the requirements for the next version of the RTP

and PCF to be adopted in Liebherr-Aerospace.

A. Design and procedure
The focus group is designed as a group discussion to be

executed in a timeframe of 2 hours with a set of participants
(from 4 to 6) that provide their answers as group discussion.

The discussion is designed to gather information from the
participants in regard to the following outcomes:
1. To gather the general feedback on the methodology
2. To understand the difficulties perceived in using the

methodology
3. To understand if the methodology can help to save time
4. To elicit the requirements for the next version of the

methodology

The study is planned as follows:
• 30 minutes introduction to the RTP and PCF

(methodology)
• 40 minutes questions and answers
• 35 minutes: requirements elicitation

132

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• 10 minutes: closing questions
• 5 minutes wrap-up

The discussion is driven by a session moderator, with

experience in conducting empirical studies.

The questions raised by the moderator are:

Q1: Which is your general impression of the methodology?
Q2: Which difficulties do you see in using the

methodology?
Q3: Which are the advantages and disadvantages in using

the methodology?
After this first session of questions, the participants are

asked to elicit the requirements for the next version of the
platform by following these steps:
• Participants receive three post-its in three different

colors (red, yellow and green), for a total of nine post-
its.
They are then requested to write the three most
important features they would like to add (on the
green post-its), remove (on the red post-its) or modify
(on the yellow post its).

• Then, each participant is invited to describe what they
wrote on the post-its.

• Finally, in group, participants are requested to group
similar ideas.

Then, after the requirement elicitation, we conclude the
session with the last 30 minutes of questions where we ask:
Q4: Do you think the methodology developed considering

the requirements elicited, can be useful for your work?
Q5: Are you interested in using the methodology developed

considering the requirements elicited, in the future?

VI. EMPIRICAL STUDY RESULTS AND DISCUSSION
The study has been conducted on November 13 2014

from 8:30 to 10:35, respecting the planned time-frame of 2
hours.

Participants were 5 technical leaders for the development
of flight control systems, from Liebherr-Aerospace. All
participants were male, Germans, and have more than 5
years of experience in their position.

The technology has been introduced by one of the
authors of the technology itself, working at Liebherr-
Aerospace while the session has been moderated by a
research assistant from the University of Kaiserslautern,
expert in conducting and designing empirical studies.

A. General impression of the methodology
All participants had a positive impression but they

requested more details to better understand it.

Q1: Which difficulties do you see in using the

methodology?
One participant reported that they usually adopt a less

structured process, starting from different point of the
previously presented matrix. For this reason, he suggests to
allow users to start in any point of the matrix, instead of in

the first row and column. However, another participant made
the remark, that the avionics development is a requirement
based process, and it cannot be started in any development
phase efficiently and such structure may be positive to avoid
or limit the risks of rework. .

Two participants report that they use several standards
that can influence the structure of the technology. A more
detailed structure of the abstraction levels should be defined.

Q2: Which are the advantages and disadvantages in
using the methodology at Liebherr-Aerospace?

Participants identified several advantages. The platform
would provide a good overview of our process and the tools
used. Moreover, the platform would allow to increase the
quality of the development process, also helping to avoid to
miss some steps.

Finally, the platform would increase the acceptance of
some technologies, by means of the experience learnt from
other groups.

Finally, they see some difficulties in applying this
version of the platform to the current process applied at
Liebherr-Aerospace, or this process has to be adapted.

B. Requirements elicitation for the next version of the
platform
In order to understand if a new customized version of the

platform should be developed, we now executed a task to
elicit the requirements of the next version of the platform.

As introduced in the Study Design Section, participants
received a total of 9 post its in 3 different colors and they
were asked to individually write the 3 most important
features they would like to add (on the green post-its),
modify (on the yellow post its) or remove (on the red post-
its).

We collected a total of 13 green post-its, 6 yellow and 1
red post-its.

After the first step, participants clustered the
requirements in common groups.

The final groups identified are:
New Features (add):
• Definition of more precise viewpoints / more detailed

for each step [4 participants]
• Definition of possible transitions between viewpoints

[4 participants]
• Change Management support [1 participant]
• Problem Reporting [1 participant]
• Established preferred tools / solutions for each cell [1

participant]
• More standards inputs are needed [2 participants]

Changes :
• Separate the requirement column from the other

columns [3 participants]
• Renaming Technical Viewpoint in “implementation”

[1 participant]
• Change the strict separation of viewpoints into a more

general one [2 participants]
Remove:
• Improve the graphical representation [1 participant]

133

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Closing Questions
Before the beginning of this session, one participant had

to left the focus group. We continued the session with the
last two questions with 4 participants.
Q4: Do you think the methodology developed considering

the requirements elicited, can be useful for your work?
All participants consider the methodology useful,

considering the implementation of the requirements elicited.
Q5: Are you interested in using the methodology developed

considering the requirements elicited, in the future?
All participants are willing to adopt the methodology in

the future (considering the previously wished extensions).

D. Benefits
The classification schema provides benefits for different

people working in software-related projects, especially for
project managers, system and software engineers, and
technology providers (software and hardware vendors).

The use case indicates that, from the point of view of
engineers and decision makers, the classification schema
provides an effective platform for searching for existing
technologies. For industry domains strongly based on
process based development, it also provides a toolbox for
accurately specifying the use of each technology for rigorous
process steps.

The main benefit for the ARAMiS project was that
creating the classification schema for the avionics domain
helped us to improve the schema. Several changes to the
schema have been suggested based on issues raised during
the application of the schema concept in practice. Another
major benefit for the ARAMiS project was the identification
and specification of methods and tools for improving the
integration of multicore processors for safety-critical
domains.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a use case reporting on the

usage of a classification schema in the avionics domain and
its implementation in the PCF tool and an empirical study,
with the goal of evaluating the acceptance and elicit
requirements for a future version of the schema and PCF.

The schema is aimed at collecting and integrating
methods and technologies to support the activities of a
structured development process. It allows decision makers to
find the most appropriate technology based on the
technologies interaction and integration on various levels to
enable efficient design and development of complex
systems.

The schema provides a matrix representation of the
development activities classified into viewpoints and
abstraction levels that enables users to easily search for the
most appropriate technologies throughout the whole
development lifecycle.

The empirical study has been conducted with five
technical leaders for the development of flight control
system, from Liebherr-Aerospace Lindenberg GmbH, that
provided their answer so as to understand their acceptance

and the applicability of the schema and its implementation in
PCF in Liebherr-Aerospace.

Results of the empirical study show that the schema
could be very useful in critical domains, such as avionic, and
help process managers to enable knowledge transfer inside
the company and keep track of the technologies used in
previous projects and to maintain traceability throughout the
whole process.

Future work includes the implementation of the
recommendation collected during the focus group and the
collection of existing technologies to create a baseline for the
platform. Moreover, we are planning to run an empirical
study to validate the effectiveness of the schema in different
domains. .

ACKNOWLEDGMENT
This paper is based on research carried out in the ARAMiS
and the SPES_XT projects, funded by the German Ministry
of Education and Research (BMBF O1IS11035Ü,
01|S11035T, and BMBF 01|S12005K)

REFERENCES
[1] D.Taibi, C. Plociennik, and L.Dieudonné, “A Classification Schema

for Development Technologies,” Ninth International Conference on
Software Engineering and Advances, IARIA, Oct. 2014, pp. 577-583,
ISBN: 978-1-61208-367-4

[2] RTCA DO-178C, “Software considerations in airborne systems and
equipment certification,” Dec. 2011.

[3] P. Reinkemeier, H. Hille, and S. Henkler, “Towards creating flexible
tool chains for the design and analysis of multi-core systems,” Vierter
Workshop zur Zukunft der Entwicklung softwareintensiver,
eingebetteter Systeme (ENVISION 2020), colocated with Software
Engineering 2014 conference, Feb. 2014. [Online]. Available from:
http://ceur-ws.org/Vol-1129/paper37.pdf. Last access: 2014.07.21.

[4] ARAMiS project, “Automotive, railway and avionics multicore
systems”. [Online]. Available from: http://www.projekt-aramis.de/.
Last access 2014.07.18.

[5] R. Firth, W. G. Wood, R. D. Pethia, L. Roberts, and V. Mosley, "A
classification scheme for software development methods,” Technical
Report CMU/SEI-87-TR-041, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania, 1987.

[6] V. Basili and D. Rombach, “Towards a comprehensive framework for
reuse: A reuse-enabling software evolution environment,” Technical
Report, University of Maryland, 1988.

[7] V. Basili and D. Rombach, “Support for comprehensive reuse,”
Software Engineering Journal, vol. 6, Sep. 1991, pp. 303-316, ISSN:
0268-6961.

[8] V. Basili, G. Caldiera, and D. Rombach, “Experience factory,” In:
Encyclopedia of Software Engineering, Marciniak, John J., Ed., New
York: Wiley, pp. 469-476, 1994.

[9] A. Jedlitschka, D. Hamann, T. Göhlert, and A. Schröder, “Adapting
PROFES for use in an agile process: An industry experience report,”
Sixth International Conference on Product-Focused Software Process
Improvement (PROFES 2005), Springer, Jun. 2005, pp. 502-516,
ISSN: 0302-9743, ISBN: 3-540-26200-8.

[10] A. Ploskonos and M. Uflacker, “A classification schema for process
and method adaptation in software design projects,” Tenth
International Design Conference (DESIGN 2008), May 2008, pp.
219-228.

[11] K. Schwaber and M. Beedle, “Agile software development with
Scrum,” Prentice Hall, 2002, ISBN: 0-13-067634-9.

134

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[12] SAE ARP4754 Rev. A, “Guidelines for development of civil aircraft
and systems,” Dec. 2010. Available from:
http://standards.sae.org/arp4754a. Last access 2014.07.21.

[13] K. Pohl, H. Hönninger, R. Achatz, and M. Broy, “Model-based
engineering of embedded systems - The SPES 2020 Methodology,”
Springer, 2012, ISBN: 978-3-642-34614-9.

[14] SPES_XT project, “Software platform embedded systems”. [Online].
Available from: http://spes2020.informatik.tu-muenchen.de/spes_xt-
home.html. Last access 2014.07.18.

[15] P. Diebold, L. Dieudonné, and D. Taibi, “Process configuration
framework tool,” Euromicro Conference on Software Engineering
and Advanced Applications 2014, in press.

[16] P. Diebold, C .Lampasona, and D. Taibi, “Moonlighting Scrum: An
agile method for distributed teams with part-time developers working
during non-overlapping hours,” Eighth International Conference on
Software Engineering and Advances, IARIA, Oct. 2013, pp. 318-323,
ISBN: 978-1-61208-304-9.

[17] V. Lenarduzzi, I. Lunesu, M. Matta, and D. Taibi, “Functional Size
Measures and Effort Estimation in Agile Development: a Replicated
Study,” in XP2015, Helsinky, Finland 2015

[18] P. Diebold, “How to configure SE development processes context-
specifically?,” 14th International Conference on Product-Focused
Software Process Improvement (PROFES 2013), Springer, Jun. 2013,
pp. 355-358, ISSN: 0302-9743.

[19] RTCA DO-254, “Design Assurance Guidance for Airbone Electronic
Hardware,” Apr. 2000.

[20] R. Hilbrich and L. Dieudonné, “Deploying safety-critical applications
on complex avionics hardware architectures,” Journal of Software
Engineering and Applications (JSEA), vol. 6, May 2013, pp. 229-235,
ISSN: 1945-3124.

[21] K. Forsberg and H. Mooz, “The Relationship of System Engineering
to the Project Cycle,” First Annual Symposium of National Council
on System Engineering, Oct. 1991, pp. 57-65.

135

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Challenges in Assessing Agile Methods in a Multisite Environment

Harri Kaikkonen

Department of Industrial Engineering and Management

University of Oulu

Oulu, Finland

harri.kaikkonen@oulu.fi

Pasi Kuvaja

Department of Information Processing Sciences

University of Oulu

Oulu, Finland

pasi.kuvaja@oulu.fi

Abstract—Organizations utilize agile development methods in

addition to multisite environments with the intent to reduce

costs and development time. Assessment results and possible

challenges of utilizing and adopting such methods are typically

qualitative and lack concrete evidence of the challenges. An

assessment survey instrument was used to analyze the

transformation of a multisite software development

organization from waterfall-type development into agile

development. The transformation was done in two globally

distributed sites in Finland and India. The assessment survey

was conducted in the Finnish site 6 months after it had

changed its working methods, and again 12 months later in

both sites. The site in India had adopted similar methods after

the previous assessment survey was conducted. The results of

the assessment survey in the Finnish site indicated regression

between the two assessment rounds, while the results in India

appeared to be better compared to Finland in the second

round. Analysis of the results suggests that cultural differences

and time elapsed from the organizational transformation may

influence the assessment results and should be taken into

account when assessing the implementation of development

methods.

Keywords-organizational change; global software

development; agile methods; Scrum; process assessment.

I. INTRODUCTION

This article extends previous work in [1]. Adopting agile

development methods such as Scrum [2] and extreme

programming (XP) [3] have seen a great deal of interest in

the software development community because of their

claimed benefits of delivering working software and being

more responsive to changes, among other reasons [4].

However, scaling agile methods into larger organizations

than those with a single or a few teams has come with some

difficulties yet there have been several descriptions to

address the matter (e.g., [5][6]).

As development organizations become larger, they often

also spread out globally out of necessity or because of their

business environments [7]. This, in turn, tends to cause a

whole array of issues to be considered while managing the

development work.

This article describes selected results of a quantitative

process assessment conducted at a medium-sized software

development organization. The organization adopted a

Scrum-based software development process in their

multisite organization. The adoption and the assessment

were conducted in two phases. First, the process was

adopted by a smaller unit in Finland with approximately 30

people. The unit was later assessed approximately six

months after the adoption. With the experience gathered

from the first site, similar processes were adopted in another

site of about 50 people in India, within the same

organization. The assessment was then repeated at both

sites.

The aim of this article is to provide evidence of issues in

assessing the implementation of organizational changes

such as new development processes in a global software

development (GSD) organization, or other multisite

organization.

The remainder of the publication is organized as follows.

Section II contains a description of related work as literature

background of agile development methods and global

software development. Section III presents a description of

the assessment process and Section IV a description of the

organization in which the assessment was conducted.

Section V presents the relevant results of the assessments.

Section VI includes discussion based on the results and the

paper concludes in Section VII.

II. RELATED WORK

Several methodologies gained popularity in the late

1980’s to early 1990’s to challenge the prevalent waterfall

development processes. Early methodologies include the

spiral model [8] and incremental development methods [9].

Later, these methodologies and their influence spawned the

agile movement to give more practical descriptions of how

to develop software.

The agile movement gained publicity within the

software development community during the 1990’s, and

was later epitomized in the agile manifesto, published in

2001 [4]. The manifesto was a collaborative agreement of

what practitioners saw as the values and principles of agile

software development. The original manifesto reads [4]:

“We are uncovering better ways of developing software

by doing it and helping others do it. Through this work we

have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

136

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Responding to change over following a plan

That is, while there is value in the items on the right, we

value the items on the left more.”

In addition to the actual manifesto, the authors also

described twelve principles behind it [4]. These twelve

principles were agreed as common to the agile practitioners,

although agile methods had already been described and

were in use in many different settings. ‘Agile methods’ is an

umbrella term for a wide different set of approaches (e.g.,

Scrum, XP and Kanban [10]), that have challenged the

traditional waterfall model of software development and

introduced a more lightweight process of producing

software [11].

Today, Scrum can be viewed as the most widely used

agile software development approach, but the first

description of a ‘Scrum team’ was in an article about

flexibility on traditional new product development [12]. In

many ways, the software development waterfall model that

Scrum challenges, can be characterized as similar to the

stage-gate model [13] in physical product development -

exactly what the Scrum-team was designed to challenge.

There are several defined roles, meetings, practices and

working methods in the Scrum methodology. One example

of typical practices in Scrum is the sprint retrospective. The

retrospective is a meeting held after each sprint for

inspecting and adapting the process and environment of

development [14].

The main difference between Scrum and waterfall type

of development is the iterative nature of development work.

Key differences between all agile methods and traditional

software development include iterative development and

promoting empowered teamwork. However, a common

misinterpretation of agile software development is that

agility is achieved with practices and tools [11], although

the focus should be on being agile, instead of doing it [4].

During the same time that agile methods started to

become increasingly prevalent in software development,

globalization of high-technology businesses have increased

the need for GSD. Software and its use as both products and

services has become a competitive weapon, which must be

utilized efficiently to stay ahead in high-technology

competition [7].

The factors that have accelerated this trend include [7]:

 the need to capitalize on the global resource pool to

successfully and cost-competitively use scarce

resources, wherever located;

 the business advantages of proximity to the market,

including knowledge of customers and local

conditions, as well as the good will engendered by

local investment;

 the quick formation of virtual corporations and

virtual teams to exploit market opportunities;

 severe pressure to improve time-to-market by using

time zone differences in “round-the-clock”

development; and

 the need for flexibility to capitalize on merger and

acquisition opportunities wherever they present

themselves.

According to [15], the benefits of GSD include reduced

development costs, cross-site modularization of

development work, access to large skilled labor pool, and

closer proximity to markets and customers.

One of the most obvious benefits of GSD is reducing

costs by moving development work into countries with

lower wages. This is also the main driver for many

companies to utilize GSD. However, distributing work

among different locations reduces the cost savings by

adding complexity to development projects with added

communication interfaces [15].

Another benefit of GSD is the modularization of

development work across sites, which is intended to reduce

cycle-time of development. Modularization of work can

cause integration issues since development work is

separated and, therefore, needs to be addressed when

designing modularization of work. Organizations have

divided development work between sites based on features

or development modules, but also created co-located or

virtual teams that share the workload between sites [7][15].

It is also widely known that the skilled developers have

a high impact on development speed and quality. Many

organizations utilize GSD to access skilled labor pools in

lower cost countries such as India or China when local

resources are not abundant enough to fulfill the needs of

organizations. Larger labor pools also provide for greater

opportunities in scalability of the organization [7]. However,

the attrition levels are higher in low-cost countries, which is

a disadvantage in any development organization [15].

There are also benefits in locating developers closer to

customers in some cases. By having developers with

culturally and linguistically similar backgrounds as the

customer, misunderstandings become rarer. Of course, the

organization has to then find a balance between cultural

divide internally and externally [15].

Although GSD is also intended to reduce time-to-market

by utilizing “round the clock” development [7], as [15] has

pointed out, the intended benefits of leveraging time-zone

effectiveness and innovation and shared practice may not be

that abundant in GSD. The differences in time-zones may

not actually provide benefits for GSD and may, in fact, be a

hindrance for development work. Time-zone separation

reduces collaborative time window and may cause unusual

working hours for both parties [15].

Also, the sharing of innovation and best practices among

different locations may be problematic in some

organizations. Employees who feel threatened by their

lower cost colleagues may not always be willing to share all

of their knowledge, which reduce the benefits of having best

practices shared among the organization [15].

137

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The challenges of GSD have been described in several

sources (e.g., [15][16][17][18][19]). Issues range from

strategic level issues such as how to divide work between

different sites, to more tactical level problems like how to

arrange effective daily communication channels, to more

complex systems like cultural differences and their effect on

project and process management [7]. It is clear that many

types of issues become apparent when dividing any kind of

work globally, and with development work that often

realizes inside developers’ and designers’ heads, the

problems can be all the more difficult. Methods have also

been proposed to reduce the effects of the challenges

involved with GSD. These methods range from the use of

maturity models [20] to suggested practices and techniques

[18].

As organizations try to improve their processes and

products, they often turn to assessments to get further

understanding of their processes. Some of these assessments

have also been conducted in global development

environments (e.g., [21]). Similarly to the identified

challenges with GSD, analyzing assessment results from

GSD organizations may also contain challenges that are

unknown. This is true for assessment results in any multisite

organization, not just for GSD organizations.

The challenges that have been described on GSD and on

agile adoption are often based on interview studies and are

qualitative by nature. There is a lack of quantitative

assessment data on GSD environments and the effect of the

challenges in the assessment data. The following sections

provide an example of the issues that are related to assessing

the implementation of agile methods in a multisite

environment.

III. RESEARCH METHOD

One of the challenging things in any organizational

transformation towards a new way of working is how to

assess the transition process and guide the next steps. This

research was conducted using the Lean and Agile

Deployment Survey, which is an assessment instrument

developed by the University of Oulu in collaboration with

industrial partners in the Cloud Software Program [22] in

Finland. The instrument is specifically designed for

enabling an effective transformation to a lean and agile way

of working. The survey is based on a generic structure of

three organizational levels; portfolio, program and project

[6], and focuses on four main dimensions: organizational

set-up, practices, outputs and culture/mindset. The survey

was part of a larger effort that University of Oulu was

performing in identifying the right agile practices to adopt

and to determine whether organizations are ready for lean

and agile. Additionally, the approach is meant to provide

information for deciding what necessary preparations and

potential difficulties may be faced during the adoption

process.

The conducted survey contained four context

information questions for analyzing purposes, and over 70

statements that described the organization’s agile

development process as it had been planned and taken in use

internally. The statements were tailored from general

statements in the Lean and Agile Deployment Survey to

correspond with the terminology and processes of the case

organization. Some generic examples of the statements are

presented below:

 The product backlog prioritization is clear.

 The product owner guides the Scrum team by

prioritizing the user stories.

 I understand when the user stories are complete

and can be accepted within the sprint.

IV. CASE ORGANIZATION

The case organization designs software for network

protocol analyzers. One of the organization’s sites in

Finland started their agile transformation with pilots during

the spring of 2010. They further changed that site’s

organization of around 30 employees to an agile way of

working in the beginning of fall of the same year by starting

to follow the methods of Scrum development [2][14].

During 2011, after initial results and experiences in Finland,

similar processes were taken in use at a development unit in

India and were planned to be taken in use in other sites as

well.

The Lean and Agile Deployment Survey was conducted

twice in the organization. The first survey took place about

6 months after the agile methods had been adopted in

Finland. The second survey was conducted 12 months later

and was expanded to include the site in India, which had

adopted similar agile practices during that time.

The targets of the survey assessment were i) to review

the current status of agile adoption at two of the case

organization’s sites, ii) to see how the unit in Finland had

been progressing with agile methods between the two

survey rounds, iii) to identify focus areas for continuous

improvement efforts and iv) to receive feedback on the

impressions and assumptions on agile and Scrum processes

in other sites of the organization.

To obtain results for the last goal, the survey was also

conducted in a third site, which had not yet fully adopted

similar processes as the two case sites. The responses of the

third site are omitted from the results presented in this

publication.

The total number of respondents for the first round in

Finland was 25. For the second round, there were 62

responses in total, 25 responses from Finland and 37 from

India.

V. RESULTS

The survey was very successful in terms of response

rate, which was a full 100 percent in the first round and 80.5

percent in the second round. The high response rate was

138

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attributed to the close collaboration between the case

organization and researchers and extensive communication

to the survey participants. Personnel of the case organization

also sponsored the survey noticeably, so it was well

received.

TABLE I. RESPONDENT EXPERIENCE

How many years of experience in software

industry do you have?

Round 1

(Finland)

Round 2

(Finland)

Round 2

(India)

Round 2

(Total)

None 0 0 0 0

Less than 2 1 0 6 6

2-5 4 2 13 15

5-10 5 5 16 21

10-20 13 16 2 18

More than

20
2 2 0 2

Total 25 25 37 62

A comparison of the respondents’ experience shows that

the personnel that participated in the survey were generally

very experienced in software development (see Table I).

There is also some difference between the experiences

between the two sites. Many respondents in Finland had

over a decade of experience in software development, which

may amount to some opinions reflected in the survey

results. The amount of experience in the Indian site is

somewhat lower than in Finland, but, overall, the people in

both sites had enough experience on software development

to answer the survey.

TABLE II. RESPONDENT ROLES

 Round 1

(Finland)

Round 2

(Finland)

Round 2

(India)

Round 2

(Total)

Developer 13 16 18 34

Tester 4 1 10 11

Product
owner

4 4 2 6

Scrum

master
3 2 6 8

Other 1 2 1 3

Total 25 25 37 62

Most of the responses in the survey came from

developers and testers (see Table II). The other roles with

significant number of responses were the product owner and

Scrum master. As the focus of the survey was at the

implementation of agile development process, the responses

from these roles also provides a solid basis for the analysis

of the results. The other roles that the respondents identified

with were individual manager roles of the organization.

Because of the case organization’s preference, the

statements were evaluated by the respondents on a four-

point scale, with an additional option of ‘I don’t know’

instead of a 5-point Likert-type scale [23] usually utilized

with the Lean and Agile Deployment Survey. The answering

options with corresponding weights used in average

calculation in the following results section were as follows

(see Table III).

TABLE III. SURVEY ANSWERING OPTIONS

Option Option weight

Disagree 1

Partially agree 2

Largely Agree 3

Fully Agree 4

I don’t know -

The following tables and figures present selected

findings from the survey, which may be interesting in the

context of multi-site agile adoption. The results for

individual statements (see Figures 1-10) are presented as the

distribution of responses and an average result in the

statements in four separate rows. The first row presents the

results received in the first survey that was conducted

around 6 months after the agile adoption had taken place in

the Finnish unit. The second and third rows include

responses 12 months later from the Finnish and Indian units,

respectively. The final row shows the combined answers in

the second survey round from both sites (Finland and India).

Please note that the ‘I don’t know’ –answers are not

included in the average calculations. However, in some

statements the amount of ‘I don’t know’ –responses itself is

significant.

Firstly, a very interesting finding can be made by

looking at the collective average of the overall responses

between the two survey rounds (see Table IV).

TABLE IV. SURVEY AVERAGE

 Round 1

(Finland)

Round 2

(Finland)

Round 2

(India)

Round 2

(Total)

Response
average

3,04 2,76 3,28 3,07

The fact that the average score in Finland in the second

survey is lower than 12 months earlier is an alerting sign, as

the statements were formed in a positive form in accordance

with the case organization’s process description (i.e.,

respondent’s agreement with a statement would imply that

the respondent feels that processes are followed as

described). There was some indication from the case

organization that they had not had sufficient resources to

actively react to issues raised in the first survey and

subsequent retrospectives during the 12 month period

between the two surveys. One possible cause for the

reduction in the average results may also be increased

experience and awareness of the agile methods. This could

139

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

affect the results as people became more aware of their

processes and the issues concerning them than before.

Perhaps surprisingly, the average score in India was

much higher than it was in Finland as seen in the second

round average scores. Several reasons may affect this

difference, with cultural reasons perhaps being the most

obvious explanation. The results of the first survey were

also higher in Finland, although not as high as in Indian

site’s first respective survey. Naturally, lessons learned from

implementing the practices in Finland first could have

improved the implementation in India, which would yield

more positive results in the latter implementation.

Reasons for the drop in score are evident in some survey

results. One main improvement area for the case

organization based on the first survey was the lack of

identified value of continuous improvement activities (see

Figures 1 and 2). Figure 1 shows how the respondents feel

about the results of retrospectives. In the first survey round

in Finland, it was identified that although the general view

on retrospective results was positive, not all respondents felt

that the teams were actually changing their ways of working

based on retrospectives. The results of the same statement

year after the first survey show actually even lower results,

with none of the respondent’s fully agreeing with this

statement. There is also a small drop in the Finnish site’s

results on the statement “we reduce wasteful activities

frequently” in the second survey round (see Figure 2). At

the same time, the majority of Indian respondents show that

the same practices are working well in their site.

Figure 1. Scrum teams change their ways of working based on

retrospectives.

Figure 2. We reduce wasteful activities frequently.

The lack of resources assigned for following up on this

improvement area show as reduced results in the topic of

improving working practices. The results on continuous

improvement are significantly higher in the Indian site with

results averages being much higher.

A second major improvement area identified based on

the first survey round was the lack of measured and

communicated evidence of the benefits of the agile methods

for the organization. This included the measuring and

communication of benefits in productivity (see Figures 3

and 4), product quality (see Figure 5) and development time

(see Figure 6).

Figure 3. I am more productive with the agile way of working.

Figure 4. We are more productive as a Scrum team.

In the first survey round in Finland, it was evident that

there were at least some differences of opinion in individual

productivity between previous waterfall type of

development and newly introduced agile methods (see top

of Figure 3). There were also respondents who were

unaware of any productivity changes related to their

individual performance. Surprisingly, there were no

disagreeing opinions on the productivity increase for the

entire team even though some felt that their individual

performance had decreased at the same time. This would

imply that even if some individuals were not convinced of

increases to their individual productivity, they felt that as a

team their performance had still improved. Even if this was

the case in the first survey round in Finland, in the second

survey round the results had also dropped dramatically in

terms of team productivity.

Again the results in this topic appear very high in India

in relation to Finland. Especially in individual productivity

(see Figure 3), the responses in India are overwhelmingly

positive. Similar trend is evident also in the results of team

productivity.

140

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Product quality has been improved by applying agile

development.

In Finland, similar trends are seen in the results of

perceived improvements in product quality as in

performance (see Figure 5). There are a lot of ‘I don’t

know’ responses in Finland in the statement “Product

quality has been improved by applying agile development”.

This was the case in both survey rounds, but the results

average in this statement also decreased between the survey

rounds similarly to the previous statements about

productivity. In India, the results are not as positive in terms

of quality as they are in productivity, although the results

are again much higher than they are in Finland.

Figure 6. Development time has decreased by applying agile

development.

Similar trends as with productivity and product quality

changes are evident in yet another topic on development

time (see Figure 6). In the first survey round, there was a lot

of ‘I don’t know’ responses to the statement ‘Development

time has decreased by applying agile development’. This

was also the case in the second survey round, but many

respondents also plainly disagreed with this statement.

Actually, in the second survey round, only a handful of

people showed any level of agreement to this statement and

most of the respondents either disagreed with the statement

or did not answer to it.

In India, there were also some ‘I don’t know’ responses

and disagreement with the above statement. However, a

majority agreed with the statement saying that the

development time has actually decreased with the

introduction of agile methods.

An action point after the first survey round was to

provide the teams more information on the benefits of agile

in comparison to earlier working methods. This issue had

apparently not received enough attention because the second

survey round indicated some decrease in all results on the

matter as well as an increase in ‘I don’t know’ –responses in

Finland. Another possibility for the results is that the quality

and productivity have actually not been improved with the

new methods. The measuring of the benefits of agile is a

very interesting and difficult topic among all organizations

implementing the methods, but high consideration should be

used on how to provide teams more information on actual

benefits of agile.

Other findings of the survey showed that there were also

possible needs for further training within the organization

(see Figures 7 and 8).

Figure 7. I have received enough training for carrying out my work.

In the responses of individual competence, there were

small disagreement with the statement ‘I have received

enough training for carrying out my work. Even though

most of respondents appear to be satisfied with their

training, it may be interesting to note that the results in

Finland dropped between the two survey rounds to include

more respondents disagreeing with this statement. As the

nature of the work during the 12 months between the

surveys did not change, this may be indication of “conscious

incompetence”, where people become more aware of their

own needs for more training with time. In contrast to the

other findings, in this particular statement there were no

major differences in the responses between Finland and

India.

Even though there were no significant differences in the

statement about training needs, there were some differences

between the sites in terms of individuals feeling confident

about themselves with the agile way of working (see Figure

8). In the first survey round in Finland, nearly all

respondents largely or fully agreed with the statement ‘I feel

confident with myself with the agile way of working’. In the

second survey round, the results in this statement had

dropped significantly even though the methods had been in

use longer and, therefore, should be more familiar to the

respondents. In India, the distribution of responses appear to

be very similar than in Finland in its respective first round.

The respondents in India feel very confident with

themselves with the new working methods.

141

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. I feel confident with myself with the agile way of working.

When comparing the results between the sites in Finland

and India, it can be seen that the training needs appear to be

equally divided between the two sites. However, there is a

noticeable difference between the sites in the confidence in

individual capabilities. One possible explanation for this can

be cultural differences in answering the survey, but as the

results appear similar in both sites with their respective first

implementation of the survey, this could imply that the

results will reduce with time.

Perhaps the most compelling evidence of bias in the

survey results is evident in statements about the preference

of team co-location between the sites (see Figures 9 and 10).

There is a very noticeable difference in the answers between

Finland and India.

Figure 9. I prefer to work in a multisite Scrum team.

When asked about the preference of working in a

multisite Scrum team (see Figure 9), the results in Finland

remain similar between the two survey rounds. Most of the

respondents disagree with the statement ‘I prefer to work in

a multisite Scrum team’, and there are only individual

respondents fully or largely agreeing with the statement. In

the second survey round, the results have reduced even

more with most of the agreeing responses being now only in

the ‘partially agree’ –response. In India, the results in the

same statement appear somewhat different with almost half

of the respondents fully agreeing with this statement. There

are also some disagreeing opinions to the statement and

individual ‘I don’t know’ –responses.

Figure 10. I prefer to work in a local Scrum team.

When asked about the preference of location the other

way around, the responses show distinctive differences

between the two sites (see Figure 10). In the statement ‘I

prefer to work in a local Scrum team’, the responses in

Finland appear to be very parallel to the previous statement

on preferring to work in a multisite Scum team as expected.

This was the case in both survey rounds, and the amount of

‘fully agreeing’ responses to this statement formed the clear

majority.

On the contrary, in India the responses to this statement

of local Scrum team preference were not parallel to the

previous statement, or actually anywhere near it. The

responses were mostly agreeing in both statements of team

location preference, which in nature should be contrary with

each other. The distribution of responses between these two

statements is also very similar, with most respondents ‘fully

agreeing’ in both statements.

Differing from the answers in India, there seems to be a

clear preference to co-location of team members in Finland.

The co-location in generally viewed as an important part in

Scrum processes and the results in Finland show the

preference that has come by experience in that site. The

conflictingly high results of India in both of the two above

tables may involve cultural influences, but also some lack of

experience since the agile methods had been in use there for

a shorter period of time.

It should be noted that the statements on team location

preference (Figures 9 and 10) were asked next to each other.

During the analysis, the results of these two statements also

raised the question of whether some respondents did not

bother reading the survey statements at all. The validity of

these responses was ensured by looking at individual

response sheets and there was no evidence of individuals not

filling the survey purposefully.

Although generalizing a large set of survey statements

may be problematic, an additional interesting comparison

was made between the two survey rounds in the overall

amount of ‘I don’t know’ –answers (see Table V).

142

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE V. PERCENTAGE OF ‘I DON’T KNOW’ RESPONSES IN ALL

STATEMENTS

Round 1

(Finland)

Round 2

(Finland)

Round 2

(India)

Round 2

(Total)

9,8% 12,7% 7,62 % 9,8%

In the second survey round, the amount of ‘I don’t know’

-answers in Finland is quite a lot higher than in India. When
results between the two rounds are compared, we find that
the percentage in Finland has increased between the two
rounds and that the percentage in India is even lower than in
Finland in the first round. There was a similar amount of
time elapsed from the agile adoption in Finland in the first
round and India in the second. This could indicate that the
amount of knowledge acquired during the 12 months
between the survey rounds in Finland had lead to an increase
in awareness over issues.

This can also be an indication of the cultural differences
in the two locations. The total percentage of ‘I don’t know’ –
responses appeared to be identical between the two survey
rounds at first, but the difference in the amount between the
two sites is a clear indication that this type of analysis should
be done to get a comprehensive image of survey results.

VI. DISCUSSION

Generally speaking, the case organization was pleased

with the results obtained by the adoption of agile methods in

their development process. They felt that agile methods had

increased communication and predictability of their

software processes, even if there had been some difficulties

in the adoption. The results highlighted in this publication

did not diminish the organization’s commitment to the agile

methods and the survey results were openly communicated

throughout the assessed organizational units.

Based on the survey results, the main improvement areas

identified in the first survey round were not given enough

attention after conducting the survey. This was also

admitted by the case organization because of reduced

resources for the improvement efforts. This is one of the

main reasons why the results in the Finnish site appear

lower in the second round.

As an organization commits itself to new working

methods, it also has to show and communicate this

commitment. In this case organization, there was a clear

lack of resources for improving the newly introduced

methods, which shows as apparent lack of commitment

from the employees as well as time passed. If an

organization does not provide sufficient resources for

change management and addressing possible issues that

arise from organizational changes, the employees may lose

confidence in the changes and start reverting to old working

methods.

Another main reason for the reduction in response

averages in some statements is believed to be increased

awareness on the topic of agile methods and possible issues

related to them. The combined average result in all

statements between Finland in round 1 and India in round 2

are similar. The amount of time that these two sites had

been using the agile development methods before their first

respective survey rounds was also similar. This would

indicate that as the adoption methods of the case

organization were similar in the two sites, the results of the

working practices appear to be the same in the beginning of

the adoption for the most part. However, the increase in the

amount of ‘I don’t know’ –responses in Finland over time

may be indicative of increased awareness of the process and

that it is not followed as it should.

Based on the first survey results, the first important

improvement suggestion for the case organization was to

improve the resources currently utilized for change

management and improvement efforts. It was suggested that

the teams may need more support and resources for

successful organizational transformation. The reduction in

the results related to improvement efforts (see Figures 1 and

2) shows that these suggestions were not followed

sufficiently.

The same suggestion was given to the case organization

after the second survey round as well. It was noted that the

reduction in the results regarding improvement efforts must

be given higher priority in both sites. In Finland, more

resources were to be made available to start addressing

possible issues with the new working methods to ensure that

the employees will stay committed to the changes. In India,

same resources should be made available to prevent a

similar reduction in the results, if possible. It may be that

the previously mentioned notion of increased awareness and

subsequent reduction of results will become evident

anyway. However, this should not diminish the importance

of the organization communicating its commitment to the

organizational changes.

The increased resources should include both support for

continuous improvement activities and especially the follow

up of these activities, since there were no definitive

improvements that could be identified from the first

assessment round.

The identified decrease in results should be taken

seriously to see what kind of improvement actions could be

taken. This should also include very active participation

from all members of the development organization, since

they will be most aware of the issues regarding their daily

work. The practices and processes that do not work should

be adapted according to the organization- or unit-specific

preferences while remembering to include the agile

principles and mindset.

Continuous improvement activities should have a strict

process to follow, which includes communication to all

interested stakeholders on the progress of the activities and

responsible individuals who have allocated time to conduct

the activity. [24] has also presented evidence of additional

success factors that can support the sustainability of

improvement activities as well, which should be kept in

mind when implementing changes.

143

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The follow-up of the activities should also include a

larger scale follow-up of the adoption of agile methods.

Some forms of quantitative or qualitative measurements of

the possible benefits of agile (in productivity, quality, etc.)

should be measured and communicated in all units,

including the sites that may take the agile methods into use

in the future. This shows that the organization is committed

to the changes and that the activities that are requested of

the members of the organization have justifications behind

them. There was already some evidence of doubt in the agile

methods in the first survey round and these doubts should be

addressed properly through discussion.

Measuring the benefits of organizational or process

changes can be difficult, especially if these kinds of metrics

are not introduced before the changes. The adoption of

organizational changes will still have some motivation, and

that motivation needs to be assessed after the changes have

been done in order to make sure that the changes have been

valid.

In addition to the assessment results changing with time

elapsed between the organizational change and the

assessment, the results of the survey also indicate bias in the

results based on cultural differences. When assessing the

success of multisite organizational changes, it should be

noted that the results may vary between locations for

reasons that may not be possible to influence with any

change management processes. Therefore, it may be useful

in some cases to assess different global sites individually,

instead of comparing the results of sites between each other.

The cultural differences in this article have been

identified on a national level. The differences can be also

found on other levels of the organization as well.

Differences between working cultures also appear on

individual and team levels, and no individuals should be

categorized only based on their nationality or other

characteristic. However, based on this survey, there are

cultural characteristics, which need to be taken into account

when assessing organizational changes. Any assessment

effort related to organizational changes should be made with

the notion that there may be underlying differences between

nationalities, sites, organizational levels or working cultures.

VII. CONCLUSION

The managerial implication of this study is the

importance of providing resources for following up on

continuous improvement activities when they are expected

from the employees. If resources are not available for

removing issues or attention is not given to the

improvement tasks, employees may also start losing

confidence in organizational changes. The other managerial

implication is the high importance of measuring and

communication of the benefits of organizational changes.

Without clear communication about the possible benefits of

organizational changes, employees will start to doubt their

significance, which will hinder further improvement efforts

as well.

Scientific implications of this study is the importance of

taking cultural factors into consideration when analyzing

research results. The evidence on the influence of cultural

factors does is not limited to assessments such as [21], but

also maturity models such as [20]. Cultural influences may

cause issues in comparison between research results.

The results of this research can be used by researchers

and practitioners when assessing organizational changes.

Assessment results between geographically distributed sites

may not always be directly comparable between each other.

Cultural differences in results and the difference in elapsed

time from the organizational change may also affect

assessment results and should be noted when analyzing data.

It would also be beneficial to compare results of a

similar assessment with a different scaling method like, e.g.,

the Likert-type scale. The scaling itself should not be a

contributing factor in this study, but additional assessment

cases with similar backgrounds could be used to validate the

influence of the used survey scale.

The assessment process could be repeated in the case

organization for a third time to analyze further progress of

the organizational change. The findings of this assessment

were used to focus future improvement efforts in the case

organization and to provide feedback on how they

understand their agile transformation so far. The results

were presented to all participants through an open

discussion session by the researchers and a written report

was communicated openly inside the organization. The

report was also brought into general knowledge by giving

access to it within the organization.

The findings of this study related to cultural influences

affecting assessment results should also be validated in

other assessments. The results should be applicable in other

types of assessments as well, but this would need further

validation of the results.

ACKNOWLEDGMENT

The authors would like to acknowledge the contribution

of the Finnish Cloud Software Program [22] for the funding

received for this research.

REFERENCES

[1] H. Kaikkonen, P. Rodriguez, and P. Kuvaja “On Some Challenges in

Assessing the Implementation of Agile Methods in a Multisite
Environment,” The Ninth International Conference on Software
Engineering Advances (ICSEA 2014) IARIA pp. 179-184,
ISBN:978-1-61208-367-4

[2] K. Schwaber and M. Beedle, “Agile Software Development with
SCRUM,” Prentice Hall, 2001.

[3] K. Beck, “Embracing change with extreme programming,” Computer,
Volume 32, Issue 10, pp. 70-77, 1999.

[4] K. Beck et al., “Principles behind the agile manifesto,” [Online]
Available from: http://agilemanifesto.org/principles.html 2014.08.12.

[5] C. Larman and B. Vodde, “Scaling Lean & Agile development.
Thinking and Organizational tools for Large-scale Scrum,“ Addison-
Wesley, USA. 2009.

144

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[6] D. Leffingwell, “Scaling software agility: Best practices for large
enterprises,” Pearson Education, USA, 2007.

[7] J.D. Herbsleb and D. Moitra, “Global software development,” IEEE
Software, Volume 12, Issue 2, pp. 16-20, 2001.

[8] B.W. Boehm, “A spiral model of software development and
enhancement,” Computer, Volume 21, Issue 5, pp. 61-72, 1988.

[9] C. Larman and V. Basili, “Iterative and incremental development: a
brief history,” Computer, Volume 36, Issue 6, pp. 47-56, 2003)

[10] D. Anderson, “Kanban - Successful Evolutionary Change for your
Technology Business,” Blue Hole Press, USA, 2010.

[11] M. Poppendieck and M. Cusumano, “Lean software development: A
Tutorial,” IEEE Software, Volume 29, Issue 5, pp. 26-32, 2012.

[12] H. Takeuchi and I. Nonaka, “The new new product development
game,” Harvard Business Review, January-February 1986, pp. 137-
146, 1986.

[13] R.G. Cooper “Winning at new products,” Addison-Wesley, Mass.,
USA, 1986.

[14] P. Deemer, G. Benefiend, C. Larman, and B. Vodde, “Scrum primer
v2.0. A lightweight guide to the theory and practice of Scrum,”
[Online] Available from
http://www.infoq.com/resource/news/2013/02/scrum-primer-book-
download/en/resources/ , 2012. 2015.02.09

[15] E.Ó. Conchúir, P. J. Ågerfalk, H.H. Olsson, and B. Fitzgerald,
“Global Software development: Where are the benefits?,”
Communications of the ACM, Volume 52, No. 8, 2009.

[16] J. Bosch and P. Bosch-Sijtsema, “From integration to composition:
On the impact of software product lines, global development and
ecosystems,” The Journal of Systems and Software, Volume 83, Issue
1, pp. 67-76, 2010.

[17] P.J. Ågerfalk et al., “A framework for considering opportunities and
threats in distributed software development,” Proceedings of the
International Workshop on Distributed Software Development, Paris,
France. Computer Society, 2005. pp. 47-61

[18] A. S. Alqahtani, J. D. Moore, D. Harrison, and B. Wood, “Distributed
agile software development challenges and mitigation techniques: A
case study,” The Eight International Conference on Sofware
Engineering Advances, (ICSEA 2013) IARIA pp. 352-358, ISBN:
978-1-61208-304-9.

[19] A. Mockus and J. Herbsleb “Challenges of Global Software
Development,” Proceedings of the Seventh International Software
Metrics Symposium, (METRICS 2001, IEEE), pp. 182-184.

[20] T. Oliveira and M. Silva, “Method for CMMI-DEV Implementation
in Distributed Teams,” The Sixth International Conference on
Software Engineering Advances (ICSEA 2011) IARIA pp. 312-317,
ISBN:978-1-61208-165-6.

[21] S. Misra and L. Fernández-Sanz, “Quality Issues in Global Software
Development,” (ICSEA 2011) IARIA pp. 325-330, ISBN: 978-1-
61208-165-6.

[22] Cloud Software Finland. [Online]. Available from:
http://www.cloudsoftwareprogram.org/cloud-software-program
2014.08.12.

[23] R. Likert. "A Technique for the Measurement of Attitudes," Archives
of Psychology Volume 140, pp. 1–55, 1932.

[24] N. Nikitina and M. Kajko-Mattson, ”Success factors leading to the
sustainability of software process improvement efforts,” The Sixth
International Conference on Software Engineering Advances (ICSEA
2011) IARIA pp. 581-588, ISBN: 978-1-61208-165-6.

145

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Automated Unit Testing of JavaScript Code through Symbolic Executor SymJS

Hideo Tanida, Tadahiro Uehara

Information System Technologies Laboratory

Fujitsu Laboratories Ltd.

Kawasaki, Japan

Email: {tanida.hideo,uehara.tadahiro}
@jp.fujitsu.com

Guodong Li, Indradeep Ghosh

Software Systems Innovation Group

Fujitsu Laboratories of America, Inc.

Sunnyvale, CA, USA

Email: {gli,indradeep.ghosh}
@us.fujitsu.com

Abstract—JavaScript is expected to be a programming language
of even wider use, considering demands for more interactive
web/mobile applications and deployment in server-side software.
While reliability of JavaScript code will be of more importance,
testing techniques for the language remain insufficient, compared
to other languages. We propose a technique to automatically
generate high-coverage unit tests for JavaScript code. The tech-
nique makes use of symbolic execution engine for JavaScript, and
symbolic stub/driver generation engine, which injects symbolic
variables to system under test. Our methodology allows for
automatic generation of input data for unit testing of JavaScript
code with high coverage, which ensures quality of target code
with reduced effort.

Keywords–JavaScript; test generation; symbolic execution; sym-
bolic stub and driver generation.

I. INTRODUCTION

Extensive testing is required to implement reliable soft-
ware. However, current industrial practice rely on manually-
written tests, which result in large amount of effort required
to ensure quality of final products or defects from inadequate
testing.

Verification and test generation techniques based on formal
methods are considered to be solutions to overcome the prob-
lem. One such technique is test generation through symbolic
execution, which achieves higher code coverage compared to
random testing [1]–[7].

In order to symbolically execute a program, input variables
to the program are handled as symbolic variables with their
concrete values unknown. During execution of the program,
constraints to be met by values of variables in each execution
path are obtained. After obtaining constraints for all the paths
within the program, concrete values of input variables to
execute every paths can be obtained, by feeding a solver such
as Satisfiability Modulo Theory (SMT) [8] solver with the
constraints. Normal concrete execution of the program using
all the obtained data, results in all the path within the program
went through.

Manually-crafted test inputs require effort for creation,
while they do not guarantee exercising all the execution path
in the target program. In contrast, test generation based on
symbolic execution automatically obtains inputs to execute all
the path within the program. As the consequence, it may find
corner-case bugs missed with insufficient testing.

There are tools for symbolic execution of program code,
including those targeting code in C/C++ [2], [3], [5], Java [4],
and binary code [6], [7]. It is reported that the tools can
automatically detect corner-case bugs, or generate test inputs
that achieve high code coverage.

JavaScript was historically introduced as an in-browser
scripting language of light weight use. However, it is now
heavily used for implementation of feature rich client-tier
within interactive web applications. The language is also
used to implement software product of other kind, including
application servers based on Node.js [9] and standalone mobile
applications implemented with PhoneGap [10].

The wider adoption of the language has brought efficient
testing technique for JavaScript code into focus. In order to ex-
ercise tests in an efficient manner, unit testing frameworks such
as Jasmine [11], QUnit [12] and Mocha [13] are developed and
used in the field. However, only execution of once developed
tests can be supported through the tools, and large amount of
effort is still required to prepare test cases that ensure quality of
target code. Therefore, automatic test generation techniques for
the language are becoming of more importance, and symbolic
execution is again considered one key technology to play a
role.

Existing symbolic execution tools for JavaScript code
include Kudzu [14] and Jalangi [15]. Kudzu automatically
generates input data for program functions, with the aim
of automatically discovering security problems in the target.
Jalangi allows for modification of path constraints under nor-
mal concrete executions, in order to obtain results different
from previous runs. However, the tools could not be applied
to unit testing of JavaScript code in field, due to limitations
in string constraint handling and need for manual coding of
driver and stub used in testing.

We propose a technique to generate test inputs for
JavaScript code through symbolic execution on a tool
SymJS [1], [16]. Test inputs generated by the tool exercise
target code with high coverage. After augmenting generated
test inputs with user-supplied invariants, application behavior
conformance under diverse context can be checked in a fully
automatic fashion. Our proposal includes automatic generation
of symbolic stubs and drivers, which reduces need for manual
coding. Therefore, our technique allows for fully automatic
generation of input data used in unit testing of JavaScript code.
Test inputs generated by our technique exercise every feasible

146

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

execution paths in the target to achieve high coverage.

Our methodology has the following advantages to existing
works. Our JavaScript symbolic execution engine SymJS is
applicable to JavaScript development in practice for the fol-
lowing reasons.

• Our constraint solver PASS [17] allows test generation
for programs with various complex string manipula-
tions

• SymJS does not require any modification to the tar-
get code, while the existing symbolic executors for
JavaScript [14], [15] needed modifications and multi-
ple runs

• Our automatic stub/driver code generation allows for
fully automatic test data generation

An existing work [15] could be employed for generation of
unit tests. However, it required manual coding of stub/driver,
which requires knowledge on symbolic execution and error-
prone. The engine also suffered from limitations in string
constraint handling. Our fully automatic technique can be
applied to development in practice.

The rest of this paper is organized as follows. Section II
explains the need for automatic test generation/execution with
an example, and introduces our test input generation technique
through symbolic execution. Section III describes our method
to automatically generate stub/driver code used in test gener-
ation/execution. Evaluation in Section IV shows applicability
and effectiveness of our technique on multiple benchmarks. We
discuss the lessons learnt in Section V. Finally, we come to
the conclusion in Section VI and show possible future research
directions.

II. BACKGROUND AND PROPOSED TEST

GENERATION TECHNIQUE

A. Demands for Automatic Test Generation

Generally, if a certain execution path in a program is exer-
cised or not, depends on input fed to the program. Therefore,
we need to carefully provide sufficient number of appropriate
test input data, in order to achieve high code coverage during
testing.

For example, function func0() shown in Figure 1 con-
tains multiple execution path. Further, whether each path is
exercised or not depends on input fed to the program, which
are value of arguments s,a and return value of function
Lib.m2(). Current industrial testing practice depends on
human labor to provide the inputs. However, preparing test
inputs to cover every path within software under test requires
large amount of efforts. Further, manually-created test inputs
might not be sufficient to exercise every path within the target
program.

Figure 2 shows possible execution path within the example
in Figure 1. In the example, there are two sets of code blocks
and whether blocks are executed or not depend on branch
decisions. The first set of the blocks contains blocks 0-3,
and the second set contains blocks A-B. Conditions for the
blocks to be executed are shown at the top of each block in
Figure 2. Block 2 has a contradiction between conditions for

�

�

�

�

f u n c t i o n func0 (s , a) {
i f (” ” . e q u a l s (s)) { / / b l o c k 0

s = n u l l ;
} e l s e {

i f (s . l e n g t h <= 5) { / / b l o c k 1
a = a + s t a t u s ;

} e l s e {
i f (” ” . e q u a l s (s)) { / / b l o c k 2

Lib . m0 () ; / / Unreachable
} e l s e { / / b l o c k 3

Lib . m1 () ;
}

}
}
i f (a <= Lib . m2 ()) { / / b l o c k A

a = 0 ;
} e l s e { / / b l o c k B

a = a + s . l e n g t h ; / / Error w i t h n u l l s
}

}
Figure 1. Code Fragment Used to Explain our Methodology:

s, a, Lib.m2() may Take Any Value

Table I. Constraints to Execute Paths in Figure 2 and
Satisfying Test Inputs (under assumption status=-1)

Test Blocks Path Test
No. Executed Conditions Data

1 0,A "".equals(s) ∧ s="", a=0
a<=Lib.m2() Lib.m2()=0

2 0,B "".equals(s) ∧ s="", a=0
a>Lib.m2() Lib.m2()=-1

3 1,A !"".equals(s) ∧ s="a", a=0
s.length <= 5 ∧ Lib.m2()=0
a-1<=Lib.m2()

4 1,B !"".equals(s) ∧ s="a", a=1
s.length <= 5 ∧ Lib.m2()=0
a-1>Lib.m2()

5 3,A !"".equals(s) ∧ s="aaaaaa", a=0
s.length > 5 ∧ Lib.m2()=0
a<=Lib.m2()

6 3,B !"".equals(s) ∧ s="aaaaaa", a=0
s.length > 5 ∧ Lib.m2()=-1
a>Lib.m2()

execution, which are s.length()>5 and "".equals(s),
and will never be executed. However, the other blocks have
no such contradiction and are executable. Tests to execute
every possible combination of blocks 0,1,3 and blocks A,B
correspond to 3× 2 = 6 set of values for the inputs.

Table I shows combinations of blocks to execute, path
condition to be met by arguments s,a and return value of
Lib.m2(). In the example, it is possible to obtain concrete
values meeting the conditions for the inputs, and the values can
be used as test inputs. We will discuss how to automatically
obtain such test inputs in the sequel.

B. Test Input Generation through Symbolic Execution

We propose a methodology to automatically generate test
inputs with SymJS, a symbolic execution engine for JavaScript.
During symbolic execution of a program, constraints to be met
in order to execute each path (shown as “Path Conditions” in

147

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Execution Paths within Code Shown in Figure 1

Table I) are calculated iteratively. After visiting every possible
path within the program, constraints corresponding to all the
path are obtained. Concrete values of variables meeting the
constraints can be obtained with solvers such as SMT solver.
Obtained values are input data to exercise paths corresponding
to the constraints, which we can use for testing.

While JavaScript functions are often executed in a event-
driven and asynchronous fashion, our technique focuses on
generation of tests that invoke functions in deterministic and
synchronous orders. We assume the behavior of generated
tests are reasonable, considering what is inspected in current
JavaScript unit tests in field, as opposed to integration/system
testing. Each generated test data exercise single path within
the target, and only single data set is generated for each path.

SymJS allows for symbolic execution of JavaScript code.
SymJS interprets bytecode for the target program, and symbol-
ically executes it in a way KLEE [3] and Symbolic JPF [4] do.
SymJS handles program code meeting the language standard
defined in ECMAScript [18].

SymJS is an extended version of Rhino [19], an open-
source implementation of JavaScript. Our extensions include
symbolic execution of target code, constraint solving to obtain
concrete test input data, and state management. While there
are existing symbolic executors for JavaScript, SymJS does
not reuse any of their code base. Table III shows comparison
between SymJS and existing symbolic executors.

SymJS interprets bytecode compiled from source code of
target program. This approach is taken by existing symbolic
executors such as KLEE [3] and Symbolic PathFinder [4].

Table II. Instructions with their Interpretations Modified from
Original Rhino

Arithmetic/Logical ADD, SUB, MUL, DIV, MOD, NEG, POS, BITNOT,
Operations BITAND, BITOR, BITXOR, LSH, RSH, URSH etc.

Comparisons EQ, NE, GE, GT, LE, LT, NOT, SHEQ, SHNE etc.

Branches IFEQ, IFNE, IFEQ POP etc.

Function Calls RETURN, CALL, TAIL CALL etc.

Object NEW, REF, IN, INSTANCEOF,
Manipulations TYPEOF, GETNAME, SETNAME, NAME etc.

Object GETPROP, SETPROP, DELPROP,
Accesses GETELEM, SETELEM, GETREF, SETREF etc.

Handling bytecode instead of source code allows for imple-
mentation of symbolic executors without dealing with complex
syntax of the target language. SymJS is implemented as an
interpreter of Rhino bytecode, which updates the program state
(content of heap/stack and path condition) on execution of
every bytecode instruction. Upon hitting branch instruction, it
duplicates the program state and continues with the execution
of both the branches.

In order to implement symbolic execution of target pro-
grams, we have modified interpretation of the instructions
shown in Table II from the original Rhino. Handling of
instructions for stack manipulation, exception handling, and
variable scope management remain intact.

For example, an instruction ADD op1 op2 is interpreted as
follows.

1) Operands op1 and op2 are popped from stack. The
operands may take either symbolic or concrete value.

2) Types of the operands are checked. If both the
operands are String, the result of computation is the
concatenation of the operands. If they are Numeric,
the result is the sum of the operands. Otherwise, val-
ues are converted according to ECMAScript language
standard, and the result is either concatenation or
addition of the obtained values.

As JavaScript is a dynamically typing language, types of
operands for Rhino instructions are not known prior to execu-
tion. Therefore, types of results also need to be determined at
run time. For example, evaluation of instructions v1 = ADD
e1:number v:untyped; v2 = ADD v1 “abc” yields, v1 = e1 +
v:number; v2 = toString(e1 + v:number) concat “abc”. Types of
variables v1,v2 are fixed just at run time in a dynamic fashion.

Comparison instructions are followed by branch instruc-
tions in Rhino bytecode. SymJS handles compare and branch
instruction pairs as in the following. First, it creates Boolean
formula corresponding to result of comparison after necessary
type conversions. Assuming the created formula is denoted by
symbol c, we check if c and its negation ¬c are satisfiable
together with current path condition pc. In other words, we
check for satisfiablity of pc ∧ c and pc ∧ ¬c. If both are
satisfiable, we build states s1, s2 corresponding to pc ∧ c and
pc ∧ ¬c and continue with execution from states s1 and s2.
If one of them is satisfiable, the state corresponding to the
satisfiable one is chosen and execution resumes from that point.

SymJS supports two ways to manage states, which are
forked on hitting branches etc. The first method is to store all
program state variables including content of heap/stack, as is

148

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table III. Comparison of Symbolic Executors

Tool Target Sym. Dep./Cache String
Lang. VM Solving Solving

SymJS JavaScript Yes Yes Yes
KLEE [3] C Yes Yes No
SAGE [7] x86 binary No Yes No

Sym JPF [4] Java Yes No No
Kudzu [14] JavaScript No No Yes
Jalangi [15] JavaScript No No Limited

Table IV. Representation of States in Fuzzing after Executing
Code on Figure 1 under Path Conditions in Table I

Test No. Blocks Executed State Representation

1 0,A L;L
2 0,B L;R
3 1,A R;L;L
4 1,B R;L;R
5 3,A R;R;R;L
6 3,B R;R;R;R

done in [3], [4]. The second method is to remember only which
side is taken on branches. This method needs to re-execute the
target program from its initial state on backtracking. However,
it benefits from its simple implementation and smaller memory
footprint. The method is called “Fuzzing” and similar to the
technique introduced in [5], [7]. However, our technique is
implemented upon our symbolic executor and does not need
modification of target code required in the existing tools [14],
[15] for JavaScript.

During symbolic execution of programs through fuzzing,
states are represented and stored only by which side is taken
on branches. The information can be used to re-execute the
program from its initial state and explore the state space
target may take. States after symbolically executing the target
program in Figure 1 with path conditions corresponding to tests
1-6 in Table I, are represented as shown in Table IV during
fuzzing. Symbols L,R denote left/right branch is taken on a
branching instruction.

For each of state representations shown in Table IV, corre-
sponding path condition can be obtained. Table I includes path
conditions for the states in Table IV. If it is possible to obtain
solutions satisfying the constraints, they can be used as inputs
used during testing. Constraints on numbers can be solved by
feeding them into SMT solvers. However, SMT solvers cannot
handle constraints of strings, which is heavily used in most
of JavaScript code. Therefore, we employ constraint solver
PASS [17] during test input generation.

PASS can handle constraints over integers, bit-vectors,
floating-point numbers, and strings. While previous constraint
solvers with support for string constraints used bit-vectors or
automata, PASS introduced modeling through parameterized-
arrays, which allows for more efficient solving. PASS converts
string constraints into quantified expressions. The expressions
are solved through an efficient and sound quantifier elimi-
nation algorithm. The algorithm speeds up identification of
unsatisfiable cases. As the consequence, it can solve complex
constraints corresponding to string manipulations within EC-
MAScript standard. Multiple optimizations are also introduced
on incorporating PASS into SymJS. Such optimizations include
dependency solving, cache solving and expression simplifica-
tion to reduce computation within the solver.

�
�

�
	symjs assume (a rg0 . l e n g t h ==16) ;

Figure 3. Use of symjs assume() to Constrain Length of arg0
to be 16

As the nature of symbolic execution, SymJS may suffer
from path explosion on targeting programs with large state
space. In order to eliminate program behavior of uninterest,
SymJS can make use of symjs_assume(assumption)
function call, which prunes state space violating the assump-
tion. The code snippet shown in Figure 3 shows an example
of constraining length of string arg0 to be 16.

C. Symbolic Stubs and Drivers

Symbolic variables are targets of test input generation
through symbolic execution. SymJS allows definition of
symbolic variables through function calls. The code snippet
below shows an example of defining symbolic string
variable. var s = symjs_mk_symbolic_string();
While the example defines a symbolic variable of
string type, functions symjs_mk_symbolic_int(),
symjs_mk_symbolic_bool() and
symjs_mk_symbolic_real() allow definition of
symbolic variables with their type being integer, Boolean, and
floating-point, respectively. While SymJS allow only string,
integer, Boolean, and floating-point numbers to be symbolic,
their constraints are retained on assignments/references as
fields of more complex objects, allowing generation of tests
with values of object fields varied.

In order to determine test inputs for the function func0()
in Figure 1, additional code fragments are required. First, a
symbolic driver shown in Figure 6 is required. The driver
declares symbolic variables and passes them to the function
as arguments. Stubs to inject dependencies are also required.
A symbolic stub in Figure 7 includes a symbolic variable dec-
laration. With the stub, return values of function Lib.m2()
are included to test inputs obtained by SymJS.

D. Test Execution within Web Browsers

Functions symjs_mk_symbolic_*() used to define
symbolic variables are interpreted as expressions to define
new symbolic variables during test generation. SymJS itself
allows for normal concrete test execution with the generated
test inputs. During concrete execution, the functions return
concrete values contained in test inputs.

SymJS can export test inputs into external test runners
based on a test framework Jasmine [11]. The runners contain
test playback library, which returns corresponding test input
data on symjs_mk_symbolic_*() function calls. Figure 4
shows an example of test runner generated. Each of tests
contains automatically generated test data in an array structure,
and users can easily create new tests through duplication and
modification of existing tests.

The runners can be loaded into typical web browser and al-
low for execution of generated tests with no custom JavaScript
interpreter. The runner has an extension to Jasmine, which

149

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

�

�

�

�

d e s c r i b e (” T e s t w i th u n d e r s c o r e . s t r i n g . symjs . j s−c a m e l i z e . j s ” , f u n c t i o n () {
i t (” s h o u l d run t e s t 1 ” , f u n c t i o n () {

r e p l a y L i s t . i n i t (
[[” a rg0 #0 ” , n u l l] , [” a rg1 #1 ” , f a l s e]]

) ;
v a r a rg0 = s y m j s m k s y m b o l i c s t r i n g (” a rg0 ”) ;
v a r a rg1 = symjs mk symbol ic boo l (” a r g1 ”) ;
v a r r e t v a l = c a m e l i z e (arg0 , a rg1) ;
e x p e c t (t rue) . toBe (t rue) ; / / d e f a u l t a s s e r t i o n

}) ;
}) ;

Figure 4. Test Runner Code with Test Data

Figure 5. Test Runner View with Test Data and Stacktrace

prints test data and stacktrace on use of test input as shown in
Figure 5.

III. AUTOMATIC GENERATION OF SYMBOLIC STUBS AND

DRIVERS

As explained in Section II-C, symbolic stubs and drivers
are required to symbolically execute target functions and obtain
test inputs. Symbolic stubs that return symbolic variables are
used to generate return values of functions, which are called
from functions under test. Symbolic drivers are needed to vary
arguments passed to functions tested.

While it is possible to employ manually implemented
symbolic stubs and drivers, additional cost is required for
implementation. Therefore, it is desirable to have symbolic
stubs and drivers automatically generated. Hence, we have
decided to generate symbolic stubs and drivers in an automatic
manner, and use them for test generation and execution.

A. Strategy for Generating Symbolic Stubs and Drivers

Our symbolic stub generation technique produces stub
for functions and classes specified. Our driver generation
technique emits code that invokes program under test.

As for stub generation, we have decided to generate func-
tions, which just create and return objects according to type of
return value expected by caller. The following is the mapping
between expected type and returned object:

• String, integer, Boolean and floating-point numbers
which SymJS can handle as symbolic
(Hereafter referred to as SymJS primitives):
Newly defined symbolic variable of the corresponding
type.

• Other classes:
Newly instantiated object of the expected type. If the
class is targeted for stub generation, newly instantiated
stub object is returned.

• Void: Nothing is returned.

In order to create stubs for classes, stubs for constructors also
need to be generated. Here, we generate empty constructors,
which result in all stateless objects. Our approach assumes
there is no direct access to fields of stub classes, and does not
generate stubs for fields.

We have to note even in case type of return value from a
stub is a non-SymJS primitive, we may get multiple test inputs
on invocation on the stub. That is the case if returned objects
contain functions that return symbolic variables. The situation
happens if the non-SymJS primitive class contain functions that
return objects of SymJS primitive class, and the non-SymJS
primitive class is stubbed. Therefore, it is possible to obtain
more than one set of test inputs by calling functions returning
non-SymJS primitive.

Symbolic drivers generated with our technique have the
following functionality:

• If the function to be tested is not static and needs an
object instance to be executed, instantiate an object of
the corresponding class and call the function

• If the function is a static one, just call the function

As arguments passed to the function, drivers give the following
objects according to the expected types:

150

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

�

�

v a r s = s y m j s m k s y m b o l i c s t r i n g (” a rg0 ”) ;
v a r a = s y m j s m k s y m b o l i c f l o a t (” a rg1 ”) ;
func0 (s , a) ;

Figure 6. Symbolic Driver to Execute Code in Figure 1

�

�

Lib . m2 = f u n c t i o n () {
re turn s y m j s m k s y m b o l i c f l o a t () ;

} ;

Figure 7. Symbolic Stub Providing Lib.m2() Used in Figure 1�
�

�
�/∗ ∗ @return {Number} m2 v a l u e ∗ /

Lib . m2 = f u n c t i o n () { . . . } ;

Figure 8. Function Definition with an Annotation to
Automatically Generate Symbolic Stub in Figure 7�

�
�
�/∗ ∗ @return { t x . Data} da ta ∗ /

t x . Ui . g e t V a l u e = f u n c t i o n () { . . . } ;

⇓

�

�

t x . Ui . g e t V a l u e = f u n c t i o n () {
re turn new t x . Data () ;

} ;

Figure 9. Function with an Annotation Returning non-SymJS
Primitive and Generated Symbolic Stub

�
�

/∗ ∗ @param { S t r i n g } s
∗ @param {Number} a ∗ /

f u n c t i o n func0 (s , a) { . . . }
Figure 10. Annotations for Function under Test to

Automatically Generate Symbolic Driver in Figure 6

• SymJS primitives:
Newly defined symbolic variable of corresponding
type.

• Other classes:
Newly instantiated object of the expected type. If the
class is targeted for stub generation, newly instantiated
stub object is passed.

The manner to choose arguments is similar to the one resolves
what to return in symbolic stubs.

B. Generating Symbolic Stubs and Drivers from Annotations

Symbolic stub/driver generation strategy proposed in Sec-
tion III-A requires type information from target code. Types
of return values expected by caller are required for stub
generation. Types of arguments passed to functions under test
are required to generate drivers.

However, JavaScript is a dynamically typing language,
which makes it difficult to determine type of return values
and arguments prior to run time. On the contrary, many
JavaScript programs have some expectations in types of return

values and arguments, which are often defined in Application
Programming Interface (API) etc. Further, there is a way to
express type information for JavaScript code in a machine
readable manner, which is JSDoc-style annotation. Therefore,
we have decided to obtain type information from annotations
in JSDoc3 [20] convention, and generate symbolic drivers and
stubs.

Symbolic stubs are generated from original source code
of functions to generate stubs for. Functions need to contain
annotations, which provide type information on return values
of functions. Symbolic stub for a function can be generated if
the type of its return values is obtained from annotations.

JSDoc3 allows for declaration of return value type, mainly
through @return annotations. In order to generate symbolic
stub for function Lib.m2() used in code snippet on Figure 1,
an annotation like the one shown in Figure 8 is required. If such
annotation is attached to original source code of the function,
it is possible to figure out type of return values. From the
obtained type of return values, the symbolic stub in Figure 7
can be generated in a fully automatic manner. The example
demonstrates generation of symbolic stub for a function re-
turning a SymJS primitive. An example of generating symbolic
stub for a function that returns a non-SymJS primitive is shown
in Figure 9.

Symbolic drivers are generated from source code of func-
tions to be tested. Source code need to contain annotations
expressing type of arguments passed to the function, in order to
automatically generate symbolic driver to invoke the function.

Types of parameters passed to functions are often given
through @param annotation for JSDoc3. Symbolic driver for
the function func0() can be generated from the annotations
in Figure 10, attached to the function. The annotations give
types of parameters for the function, allowing generation of
the symbolic driver in Figure 6.

The proposed technique for automatic generation of sym-
bolic stub and drivers is implemented as plugins for JSDoc3.
JSDoc3 allows implementation of custom plugins, and they
may contain hooks to be invoked on finding classes or func-
tions. Within the hooks, it is possible to obtain types for return
values and parameters. The developed plugins automatically
generate symbolic stubs and drivers for classes and functions
found in input source code.

While we have proposed a technique to automatically
generate symbolic stubs and drivers based on type information
obtained from annotations, it is also possible to use type infor-
mation from other sources. Such sources of type information
include API specification documents.

IV. EVALUATION

A. Experimental Setup

In order to confirm that our proposed technique can auto-
matically generate and execute unit tests achieving high code
coverage, we have performed experiments using two JavaScript
programs with their statistics shown in Table V.

The first subject (INDUSTRIAL) corresponds to the client
part of web application implemented upon our in-house frame-
work for web application implementation. Within the target

151

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table V. Statistics on the Target Program

Name INDUSTRIAL UNDERSCORE.STRING

#Statement 123 427
#Public Function 22 57

program, calls to API not defined in ECMAScript standard are
wrapped in our framework. As the consequence, it contains
only calls to standard API or our framework. We have to
note common API to manipulate HTML Document Object
Model (DOM) or to communicate with servers are not part of
ECMAScript standard and not used directly in the program.

The second subject (UNDERSCORE.STRING) is
a free and open-source string manipulation library
Underscore.string [21]. It provides many useful string
operations, which are not standardized in JavaScript
programming language. The library has no functionality
involving HTML DOM manipulation or communication, and
implemented using only functionality defined in ECMAScript
standard. It can be employed on server-side Node.js platform
as well as web browsers on clients. We have manually
annotated source code of the target to provide argument type
information required for automatic driver generation.

All experiments are performed on a workstation with Intel
Xeon CPU E3-1245 V2@3.40GHz and 16GB RAM.

B. Generation of Symbolic Stubs and Drivers

In order to perform automatic generation of test input
proposed in Section II, we have generated symbolic stubs and
drivers with the technique explained in Section III.

Symbolic stubs to target INDUSTRIAL are generated from
source code of the framework used to implement the applica-
tion. Source code has annotations meeting JSDoc3 standard,
which allow for retrieval of types for return values of func-
tions. Stubs are successfully generated for all the classes and
functions defined in the framework. UNDERSCORE.STRING

that depends only on functionality provided by ECMAScript
standard required no stub to be generated. As the program is
implemented only upon API defined in ECMAScript language
standard and the framework, all the stubs required for symbolic
execution of the program are ready at this stage.

Symbolic drivers are generated from source code of the
program under test. INDUSTRIAL had JSDoc3-style anno-
tations as is. Manually annotated source code of UNDER-
SCORE.STRING is used to extract type information for func-
tion arguments within the subject. Types of arguments in
UNDERSCORE.STRING could be found in its document, and
the annotation process was straightforward. Drivers for all
functions within the two targets are generated successfully.

C. Test Input Generation

All functions within the target programs are symbolically
executed using the automatically generated drivers and stubs.
Table VI contains statistics on the generated tests.

In the first trial, the subject programs are symbolically
executed with no special configuration. While all functions
in INDUSTRIAL are processed within 1 second, analysis of

2 functions in UNDERSCORE.STRING did not finish within
timeout of 1 minute. In order to process the functions within
reasonable time, we have introduced the following constraints
during symbolic execution of UNDERSCORE.STRING.

• count(string,substring), which counts num-
ber of substring occurrences in string, resulted
in timeout assuming arbitrary string as string and
substring. This is due to non-terminating loop and
resulting large number of forked states during sym-
bolic execution. we have limited maximum number of
branches a state may go through to 7 from its default
configuration of 20.

• words(string,delimiter), which counts
number of words within string separated by
delimiter also resulted in timeout, assuming
arbitrary string as the two parameters. We have
constrained length of two arguments to equal to 16
and 1, respectively. Constraints can be introduced
through insertion of symjs_assume() calls to the
driver.

After introducing the constraints, all functions within UNDER-
SCORE.STRING are processed within 2 seconds.

D. Test Execution

Test inputs for all functions in INDUSTRIAL and UN-
DERSCORE.STRING are automatically exported to test runners
based on Jasmine test framework. Code coverage during testing
is measured with Blanket.js [22], and line coverage of 92.7%
and 76.0% on average is obtained for INDUSTRIAL and
UNDERSCORE.STRING, respectively.

Figure 11 shows distribution of statement coverage for
functions in the benchmarks. The result shows our technique
can generate unit test input with high coverage. For instance,
100% statement coverage is achieved with more than 60% of
the functions. However, some of the benchmarks are not fully
covered due to limitations in symbolic execution or stub/driver
generation. In the sequel, we discuss the source of failure to
cover some statements.

E. Code Not Covered in the Experiments

While the experimental results show that the proposed
method can generate test input achieving high code coverage,
100% coverage is not reached, implying some portion of the
target program is not exercised. Automatically generated test
runner code shown in Figure 4 allows for manual modification
and insertion of cases in order to test such code. However,
additional labor is required and it is desirable to have such code
automatically covered. The followings are the classes of code
not executed, and possible enhancements to our methodology,
which allows for coverage of missed code.

1) Code Exercised on Matches to Regular Expressions

JavaScript features regular expression library within its
core ECMAScript language standard. The functionality is very
useful to perform string manipulations and heavily used in
UNDERSCORE.STRING. However, SymJS cannot obtain and
manage path conditions corresponding to matches and un-
matches on some regular expressions. The limitation results

152

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table VI. Statistics on the Tests Generated

Target INDUSTRIAL UNDERSCORE.STRING UNDERSCORE.STRING

(w/o constraints) (w/ constraints)

Functions with generated tests 22 55 57
#Test per function(max./avg./min.) 27/2.6/1 201/24.4/1 48/6.4/1

Max. test generation time per function (sec.) < 1 > 60 (timed out) < 2
Statement coverage(%) 92.7 73.5 76.0

 0

 20

 40

 60

 80

 100

20-40 40-60 60-80 80-99 100

Pe
rc

en
ta

ge
 o

f F
un

ct
io

ns

Statement Coverage (%)

INDUSTRIAL
UNDERSCORE.STRING

Figure 11. Distribution of Statement Coverage for Functions in INDUSTRIAL and UNDERSCORE.STRING

�

�

�

�

/ / fm t i s a s y m b o l i c S t r i n g v a r i a b l e
/ / c r e a t e d from argument s t o t h e f u n c t i o n
i f ((match = / ˆ [ˆ \ x25] + / . exec (fmt))

!== n u l l) {
p a r s e t r e e . push (match [0]) ;

}
Figure 12. Code Exercised on Matches to Regular

Expressions from sprintf() Function in
UNDERSCORE.STRING

in failure to cover code to be exercised on matches of input
string to such regular expressions.

11 functions in UNDERSCORE.STRING are not fully cov-
ered due to this limitation in handling regular expressions.
Figure 12 shows such code fragment found in sprintf()
function from UNDERSCORE.STRING. The restriction results
in 57/75 statements within the large function missed, down-
pressing total coverage achieved with UNDERSCORE.STRING.

We are planning to enhance string constraint solver PASS,
in order to model and handle larger class of regular expres-
sions.

2) Code Handling Objects of Unexpected Type

As JavaScript is a dynamically typing language, objects of
unexpected type might be returned from functions. In order
to handle such scenario, the target programs contained type
checking and subsequent branching code. However, symbolic
stubs generated through our technique, always return an object
of type specified in source code annotation. Such stubs fail to
cover code portions handling objects of type different from

�

�

�

�

/∗ ∗
. . .
∗ @param {Number} p o s i t i o n
∗ /

f u n c t i o n endsWith (s t r , ends , p o s i t i o n) {
. . .
i f (t y p e o f p o s i t i o n == ’ u n d e f i n e d ’) {

p o s i t i o n = s t r . l e n g t h − ends . l e n g t h ;
} . . .

}
Figure 13. Code Handling Objects of Unexpected Type from

endsWith() Function in UNDERSCORE.STRING

annotations.

1 function in INDUSTRIAL and 2 functions in UNDER-
SCORE.STRING contain such code, and full coverage is not
achieved. Figure 13 shows the corresponding code fragment
from endsWith() function in UNDERSCORE.STRING.

Code handling objects of unexpected type can be exercised
by making use of multiple symbolic stubs/drivers, which
return/pass objects of different type. Currently, we support
@return and @param annotations each specifying single
type. However, JSDoc3 includes support for annotations with
multiple possible types of arguments and return values. Our
symbolic driver and stub generator can be extended easily to
support such annotations.

3) Code with No Premise on Object Type

INDUSTRIAL also contained 1 function, which determines
type of objects at run time and process them accordingly.

153

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

However, our technique cannot cover such procedures. From
functions with types of their return values unknown, we
generate stubs that return the default JavaScript “Object”. As
the consequence, code interacting with objects of custom class
is uncovered.

Object types a variable may take can be extracted by means
of static analysis or random tests. Our symbolic execution
technique can be employed to create test input variation within
the obtained type.

4) Code Iterating through Entries in Hash or Array

1 function within INDUSTRIAL had loop iterating through
members in objects returned from a symbolic stub. Such
control structure is often observed in JavaScript code, in order
to make use of a plain “Object” as a hash table. However,
automatically generated symbolic stub returns newly created
“Object” with no members, and loop body is missed in the
experiment. Code that inspects content of arrays from symbolic
stubs is also expected to missed, as symbolic stubs generated
by our tool return newly created empty arrays.

Loop bodies in such functions can be exercised by stubs
that returns “Object” or array with one or more members
contained.

5) Catch Blocks Handling Exceptions

1 function from INDUSTRIAL contained catch blocks for
exceptions thrown from the framework used in the program.
However, after replacing the framework with the automatically
generated symbolic stubs, exceptions are never thrown and
catch blocks are not exercised.

In order to cover catch blocks in target, we have to generate
symbolic stubs that throws exception during execution, in
addition to those do not throw exceptions.

V. DISCUSSION

A. Completeness

Our symbolic execution technique depends on modeling of
computation performed, including complex one such as string
manipulations. While we have employed constraint solver
PASS, which is capable of handling complex string constraints,
some constraints such as the one corresponding to code with
regular expressions could not be handled.

Another limitation comes from automatically generated
symbolic stubs/drivers from our technique. Type annotations
used as input of our stub/driver generation technique, do not
provide enough information to model environments where
target software is executed. For instance, target software might
be fed objects of unexpected type, or thrown exceptions. Our
symbolic stub/driver generation technique does not take such
situations into account.

However, compared to existing industrial practice of test-
ing based on manually written tests, our technique can test
behavior of wider scope in an automatic fashion.

B. Scope

Like other automated test input generation techniques
based on symbolic execution, we do not automatically generate

assertions to check target application behavior conformance
with the obtained test inputs. In other words, users need to
provide assertions/invariants to ensure target code is function-
ing as expected.

However, invariants and many assertions can be shared
between multiple test cases, and costs for writing them is much
smaller compared to those required to write tests from scratch.
Further, our Jasmine-based test runner allows for insertion of
global invariants, as well as to assertions specific to test cases.

C. Automation Level

Our test generation technique may require some user
inputs on targeting complex applications such as UNDER-
SCORE.STRING. In the experiment, maximum number of
branches and constraint to string length are required to end
test generation for some functions. However, the number of
parameters that needed to be adjusted are quite small. In
addition, more than 95% of functions in the subject could
be handled with the default configuration of the symbolic
executor.

D. Correctness

Symbolic stubs generated with our technique always return
newly defined symbolic variable. Such behavior may result in
over-approximation of real system behavior before introducing
stubs. For example, an expression containing multiple calls to
a single function getValue()!=getValue() is unlikely
to be satisfied, assuming target variable of the getter functions
is not accessed from other execution contexts between two
function calls. However, as the stubbed getValue() func-
tion returns newly defined symbolic variable on every call, it
is possible to generate tests that make the expression true.

Combination of the generated test input and stub allows for
reproduction of behavior that makes the expression true during
test execution. However, the behavior might be quite different
and hard to reproduce in real system under development. In
that case, stubs need to be manually modified or developed,
in order to mock behavior of environment in which software
under test is executed.

E. Scalability

Our case studies confirm that our technique can be applied
to real-world JavaScript code used in field. While we need to
adjust some parameters used in test generation, we were able
to target all functions in the benchmarks within 2 seconds.

However, we need to perform experiments on applications
with their size varied. In order to target software of larger
scale, test generation techniques such as DART [23] would
be required, in addition to pure symbolic execution used in
current SymJS.

F. Threats to Validity

Issues related to the external validity of our evaluation are
handled in the discussions above. The internal validity of our
experiments may depend on software tools used. We have min-
imized the chance by writing tests for the toolchain developed,
which are completely different from the benchmarks used in
the evaluation.

154

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We proposed a technique to automatically generate unit
test input data for JavaScript code. The technique makes
use of a symbolic executor SymJS, in order to achieve high
code coverage during testing. The technique is a two-phase
approach, consisting of the following fully-automatic steps:

1) Symbolic stub/driver generation based on type infor-
mation obtained from annotations

2) Test input generation through symbolic execution of
target code

The experiments were conducted targeting client part of
proprietary web application and open-source string manipu-
lation library. Our technique generated tests that achieve line
coverage higher than 75%, and more than 60% of functions
in the subject are fully covered with the generated tests.
The results show the technique can automate generation and
execution of high-coverage unit tests for large portion of
JavaScript code in the field.

B. Future Work

Future work includes more verification trials with variety of
target programs. While we have performed experiments with
programs of relatively small size, experiments on larger targets
are also required.

In order to exercise target code missed in the experiment
automatically, constraint solver PASS and symbolic stub/driver
generator need to be improved. However, our methodology
allows for manual modification of generated tests to cover
such code, which is found in less 40% of the subject in the
evaluation.

In the experiment, we have targeted JavaScript code with
HTML DOM API encapsulated in our custom framework
(INDUSTRIAL) and code that involves API defined in EC-
MAScript standard associated only (UNDERSCORE.STRING).
As the consequence, symbolic stubs required for test gen-
eration and execution in the experiment were only those
corresponding to our custom framework. However, in order
to target JavaScript code, which has interactions with server-
side API such the one in Node.js or client-side API for HTML
DOM manipulations, symbolic stubs for corresponding APIs
need to be developed. To target mobile applications, it is
required to prepare symbolic stubs for frameworks used in
their implementation. Development support techniques for new
symbolic stubs are necessary, in order to support larger set of
platforms with JavaScript code deployed with reduced effort.

REFERENCES

[1] H. Tanida, G. Li, M. Prasad, and T. Uehara, “Automatic Unit Test
Generation and Execution for JavaScript Program through Symbolic
Execution,” in Proceedings of the Ninth International Conference on
Software Engineering Advances, 2014, pp. 259–265.

[2] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: Automatically Generating Inputs of Death,” in Proceedings of
the 13th ACM Conference on Computer and Communications Security,
2006, pp. 322–335.

[3] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic
Generation of High-coverage Tests for Complex Systems Programs,”
in Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, 2008, pp. 209–224.

[4] C. S. Păsăreanu and N. Rungta, “Symbolic PathFinder: Symbolic
Execution of Java Bytecode,” in Proceedings of the IEEE/ACM In-
ternational Conference on Automated Software Engineering, 2010, pp.
179–180.

[5] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit Testing En-
gine for C,” in Proceedings of the 10th European Software Engineering
Conference, 2005, pp. 263–272.

[6] N. Tillmann and J. De Halleux, “Pex: White Box Test Generation for
.NET,” in Proceedings of the 2nd International Conference on Tests and
Proofs, ser. TAP’08, 2008, pp. 134–153.

[7] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox Fuzzing
for Security Testing,” Queue, 2012, pp. 20:20–20:27.

[8] L. De Moura and N. Bjørner, “Satisfiability Modulo Theories: Intro-
duction and Applications,” Commun. ACM, vol. 54, no. 9, 2011, pp.
69–77.

[9] “Node.js,” https://nodejs.org/, [Online; accessed 2015.05.28].

[10] “PhoneGap — Home,” http://phonegap.com/, [Online; accessed
2015.05.28].

[11] “Jasmine: Behavior-Driven JavaScript,” http://jasmine.github.io/, [On-
line; accessed 2015.05.28].

[12] “QUnit: A JavaScript Unit Testing framework,” http://qunitjs.com/,
[Online; accessed 2015.05.28].

[13] “Mocha - the fun, simple, flexible JavaScript test framework,” http:
//mochajs.org/, [Online; accessed 2015.05.28].

[14] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“A Symbolic Execution Framework for JavaScript,” in Proceedings of
the 2010 IEEE Symposium on Security and Privacy, 2010, pp. 513–528.

[15] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective
record-replay and dynamic analysis framework for javascript,” in Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, 2013, pp. 488–498.

[16] G. Li, E. Andreasen, and I. Ghosh, “SymJS: Automatic Symbolic
Testing of JavaScript Web Applications,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2014, pp. 449–459.

[17] G. Li and I. Ghosh, “PASS: String Solving with Parameterized Array
and Interval Automaton,” in Proceedings of Haifa Verification Confer-
ence, 2013, pp. 15–31.

[18] ECMA International, Standard ECMA-262 - ECMAScript Language
Specification, 5th ed., June 2011. [Online]. Available: http://www.
ecma-international.org/publications/standards/Ecma-262.htm

[19] “Rhino,” https://developer.mozilla.org/en-US/docs/Rhino, [Online; ac-
cessed 2015.05.28].

[20] “Use JSDoc,” http://usejsdoc.org/index.html, [Online; accessed
2015.05.28].

[21] “underscore.string,” https://epeli.github.io/underscore.string/, [Online;
accessed 2015.05.28].

[22] “Blanket.js —Seamless javascript code coverage,” http://blanketjs.org/,
[Online; accessed 2015.05.28].

[23] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed Automated
Random Testing,” in Proceedings of the 2005 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, 2005,
pp. 213–223.

155

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Quality-Oriented Requirements Engineering of

RESTful Web Service for Systemic Consenting

Michael Gebhart, Pascal Giessler

iteratec GmbH

Stuttgart, Germany

michael.gebhart@iteratec.de,

pascal.giessler@iteratec.de

Pascal Burkhardt, Sebastian Abeck

Cooperation & Management

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

pascal.burkhardt@student.kit.edu,

abeck@kit.edu

Abstract—Making decisions is a typical and recurring

challenge in a society as humans often have different opinions

concerning a certain issue. Consensuses have to be found that

satisfy all participants. To support the finding of consensuses,

at the Karlsruhe Institute of Technology a new software

service is developed, the Participation Service, to support the

systemic consenting. This service is expected to be part of the

already existing service-oriented campus system of the

university that supports students in their daily life. The

Participation Service is expected to be developed in an agile

manner. Furthermore, as the entire architecture is based on

the Representational State Transfer paradigm, also the new

service is expected to be RESTful. One of the key success

factors of such projects is the gathering of requirements as the

software bases on them. In agile projects, scenarios are an

appropriate way to describe a system from the user’s point of

view. However, it is not obvious how to specify the

requirements so that they are of high quality. This article

presents an enhancement of scenario-based requirements

engineering techniques, so that the resulting requirements

fulfill the quality characteristics of the international standard

ISO/IEC/IEEE 29148. The requirements engineering

technique has been created for the development of RESTful

web services. For that reason, this article demonstrates its

application by means of the Participation Service. Functional

and non-functional requirements are elicited and constraints

that emerged from the existing RESTful service-oriented

architecture are considered.

Keywords: requirements engineering; agile; scenario; rest;

service; participation; iso 29148

I. INTRODUCTION

This article is an extended version of [1]. It describes the
requirements engineering approach that has been applied for
the Participation Service, a web service for systemic
consenting more in detail. Furthermore, compared to the
original work, it is shown that the approach is not necessarily
limited to RESTful web services as REST is only a
constraint in the methodology. Nevertheless, the focus is still
on web services in a service-oriented architecture. The
general applicability on all kind of software systems is
possible, but not yet proven. This kind of applicability
should be considered in future research work.

Decision-making is always a typical and recurring
challenge in a society. When having a certain issue,
stakeholders and participants have different opinions. They
defend their points of view and try to convince the others of
their personal opinion. To make a decision, consensuses
have to be found that satisfy all stakeholders and
participants.

At the Karlsruhe Institute of Technology (KIT) a new
software service, the Participation Service, is expected to be
developed that supports the finding of consensus. The
Participation Service is based on the idea of systemic
consenting. This approach describes how to find a
compromise or consensus that is near to an optimal
consensus for the entire group and all stakeholders and
participants. For that purpose, possible solutions are scored
with points. However, compared to usual decision-making
processes, the solutions are not scored with agreement points
but with refusing points. This means, after describing the
issue and collecting possible solutions, the one solution is
selected that has the fewest refusing points. This solution
represents the one with minimum resistance.

The Participation Service is expected to be part of the
already existing service-oriented campus system of the
university. The so-called SmartCampus is a system that
provides functionality for students to support their daily life.
For example, today the SmartCampus offers functionality to
find free workplaces or to determine the route to a certain
destination, such as the library of the university. As the
services of the SmartCampus are expected to be used by
several different devices, such as notebooks, smartphones
and tablets, the software services are developed as web
services based on the Representational State Transfer
(REST) paradigm [2] as lightweight alternative to
technologies, such as SOAP over Hypertext Transfer
Protocol (HTTP), Extensible Markup Language (XML), and
Web Services Description Language (WSDL). The RESTful
web services are invoked by a web application that is
responsive and can be therefore used on all the required
devices. Furthermore, the service is developed in an agile
manner to rapidly receive feedback about its usability.

For successful software projects, one key success factor
is the requirements engineering with its underlying process
and methodology [3][4]. In this phase, the functional and

156

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

non-functional requirements are gathered and described.
They represent the basis for the entire software project. In
agile projects, the usage of scenario has evolved as an
appropriate way to describe the requirements. Scenarios
represent the requirements from a user’s point of view. As
the entire software project bases on the requirements, their
high quality is very important. For that reason, the IEEE has
created a set of quality characteristics for requirements. They
are summarized in the IEEE recommended practice for
software requirements specifications IEEE Std 830-1998 [5]
and its successor, the ISO/IEC/IEEE 29148 [6]. However,
existing scenario-based requirements engineering
methodologies do not consider these quality characteristics
explicitly.

This article enhances existing requirements engineering
methodologies for agile projects in a way that quality
characteristics of the international standard ISO/IEC/IEEE
29148 [6] are considered. For that purpose, in a first step,
existing methodologies are analyzed and described. In a next
step, the most appropriate methodology is reused and
adapted where necessary. In this phase, these parts of other
methodologies that support the achievement of certain
quality characteristics of the international standard are reused
and combined with the chosen methodology. As result, a
methodology is created that combines the best parts of all
analyzed methodologies.

To illustrate the resulting methodology, the Participation
Service for the SmartCampus as a real-world project is
considered. Its requirements are gathered and described
using the elaborated methodology. Based on this approach,
in a first step, the stakeholders are identified. Afterwards, the
goals of the Participation Service are elicited and prioritized.
In the last step, the functional and non-functional
requirements are formalized and it is shown that they fulfill
the quality characteristics of ISO/IEC/IEEE 29148.

The article is structured as follows: Section II examines
existing work in the context of requirements engineering
methodologies and quality characteristics for requirements.
Section III introduces the Participation Service as
exemplarily scenario. In this context, the idea behind the
service is described in detail. Our quality-oriented
requirements engineering methodology is presented in
Section IV. Section V concludes this article and introduces
future research work in the context of a quality-oriented
development of RESTful web services.

II. BACKGROUND

This section analyzes existing approaches in the context
of requirements engineering methodologies that identify the
goals of stakeholders and writes them down in a precise way
so that they can be used in the following development phases
[7].

In IEEE Std 830-1998 [5], the IEEE offers an official
recommended practice for software requirements
specifications, which was replaced by the new international
standard ISO/IEC/IEEE 29148 [6]. Based on them, quality
characteristics for high quality requirements can be derived.
Furthermore, the new standard provides language criteria for
writing textual requirements and requirements attributes to

support requirement analysis. It also provides guidance for
applying requirements-related processes. These concepts will
be used to analyze existing scenario-based requirements
engineering methodologies and to design the one introduced
in this article.

Sharp et al. [8] present a domain-independent approach
for identification of the stakeholders based on four
determined groups of so-called baseline stakeholders. They
can be further refined into three different groups based on
their role. This approach will be used to identify the
stakeholders in this article. However, in large projects the
resulting network of stakeholders can be huge.

For that reason, Ackermann et al. [9] describe a method
with a matrix in which the stakeholders were arranged by
their importance and their influence on the project. This
method can be used to prioritize the discovered stakeholders
for the project.

There are different requirement types, which have to be
taken into account when eliciting requirements for a software
product. Glinz [10] provides a concern-based taxonomy of
requirements, which consists of functional requirements,
non-functional requirements, and constraints. These types
will be reflected in the introduced requirements engineering
methodology, however with one difference: The
performance will not be considered as a separate entity since
it is already an ingredient of ISO/IEC 25010:2011 [11].

For eliciting functional requirements, Rolland et al. [12]
present a goal modeling approach by using scenarios. A goal
represents something that the stakeholders want to achieve in
the future, while a scenario represents the required
interactions between two actors to achieve the corresponding
goal. Once a scenario has been composed, it is investigated
to addict more goals. This approach can be aligned with
ISO/IEC/IEEE 29148 [6], which is why it will be reused in
this article.

However, there are two issues: 1) Goals cannot be
regarded separately because they could be composed of
existing goals and 2) the recursive process is repeated until
no more subgoals can be derived, but this can lead to a big
bunch of subgoals. A solution for 1) is a repository of
already analyzed goals, which can be reused by reference.
The determination of a threshold in 2) is difficult, because it
cannot be set easily by metrics. So the requirements engineer
has to decide on its own when the abstraction meets its
expectations. For this purpose, some conditions had to be
found, which support the decision-making. Furthermore, it is
not obvious how to achieve the initial goals.

At this point, Bruegge and Dutoit [13] introduce some
interview questions that can be used for identification of the
initial goals. Furthermore, elicitation techniques can be
found in [3]. To support agile software engineering, the
discovered goals have to be arranged by importance to select
the goals with the highest rank similar to iteration.

For that reason, the approach by Karlsson and Ryan [14]
will be applied, which uses pairwise comparisons in
consideration of cost and value. But, for many goals, this
approach will rapidly become impracticable as the number of
comparisons increases significantly. For that reason and the
statement “Keep the prioritization as simple as possible to

157

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

help you make the necessary development choices” by
Wiegers [15], a simple classification approach with three
different scales based on IEEE Std 830-1998 [5] is best
suited for the initial prioritization.

When writing scenarios, the quality characteristics by [6]
have to be considered. Glinz [16] presents an approach,
which respects the quality characteristics by the old
recommendation IEEE Std 830-1998 [5]. His findings will
be used to improve the quality of requirements.

Also, Terzakis [17] presents techniques for writing
higher quality requirements by providing an overview of
requirements and pitfalls by using the natural language for
their description. Based on this, the quality of requirements
will be improved even further.

In [11], the ISO provides a quality model comprising
quality characteristics that are further decomposed into sub-
characteristics. This model will be used for determining the
quality aspects of a software product.

For eliciting non-functional requirements, the approach
by Ozkaya et al. [18] will be used. Due to the fact that
statements like “The system shall be maintainable” are
imprecise and not very helpful, this approach is using so-
called quality attribute scenarios. Based on these, the
corresponding quality characteristic of ISO 25010 [11] can
be derived. However, for many quality characteristics it can
be very time-consuming.

To reduce the effort, the decision-making approach by
Saaty [19] will be applied by using pairwise comparison of
the quality characteristics in ISO/IEC 25010:2011 [11] with
regard to their importance for the product strategy.

With the provided constraints of the architectural style
REST in [1], the last requirement type according to the
taxonomy in [10] will be considered.

III. SCENARIO

To illustrate the requirements engineering approach, the
SmartCampus System at KIT is to be enhanced by a new
service, the Participation Service. The SmartCampus system
is a service-oriented system to support professors, students,
and other KIT members in their daily life. For example, the
SmartCampus system already provides services to determine
the route to a certain room or to find free workplaces.

Figure 1. Systemic consenting process.

The services of the SmartCampus can be used by means
of web applications that can be also used on mobile devices,
such as smartphones and tables. For that reason, the web
applications are developed with a responsive layout using
modern and standardized web technologies, such as
Hypertext Markup Language (HTML) 5.

The Participation Service is designed to support the
process of decision-making between professors, students,
and other KIT members according to the principle of
systemic consenting. In the first phase, participants can
create and describe their own subjects of debate and share
them to a group of participants. In the second phase, the
participants rate suggestions by expressing their dislike
instead of their like as usually expected. They are able to do
that in the form of refusing points from zero to ten. Refusing
points indicate how much a participant dislikes a possible
suggestion. Thus, rating a suggestion with zero refusing
points means that the participant totally agrees with the
suggestion. Rating a suggestion with ten refusing points
means that the participant rejects the suggestion. The
suggestion with the fewest amount of refusing points
represents the one with the highest acceptance of all
participants. This suggestion has minimum resistance and is
the consensus of the group. Fig. 1 illustrates the described
process. For example, the Participation Service can be used
for determining new lecture contents in collaboration with
students in the context of the Research Group Cooperation &
Management (C&M).

For illustration of our scenario-based requirements
engineering technique, the simple goal “Rate a suggestion”
of the Participation Service was chosen: A participant
requests the website of the Participation Service and gets to
see a login screen. After he logged in correctly, he gets a list
of subjects of debate. He selects a subject of debate, which
he is interested in. He sees a description of the subject and a
list of suggestions sorted descending by acceptance. Once
reading all suggestions, the participant rates each suggestion
with refusing points from zero to ten to express his dislike
against the suggestion. The Participation Service updates the
acceptance of each suggestion and rearranges them.

IV. QUALITY-ORIENTED REQUIREMENTS ENGINEERING

OF RESTFUL WEB SERVICE FOR SYSTEMTIC CONSENTING

In this section, our requirements engineering
methodology is introduced. This represents our proposed
solution for gathering requirements that verifiably fulfill
quality attributes introduced in ISO/IEC/IEEE 29148 [6].
This can be proven to the customer. First, the quality
characteristics of the standards IEEE Std 830-1998 [5] and
ISO/IEC/IEEE 29148 [6] are presented. Next, the
stakeholders are identified followed by an elicitation of their
goals. With the prioritization of the goals, they are selected
for the iteration. Afterwards, the functional and non-
functional requirements are discovered and documented
according to the derived quality characteristics of [6] and the
provided taxonomy by Glinz [10]. Finally, the elicited
requirements for iteration were verified according to specific
quality characteristics in [6]. The entire requirements
engineering methodology is shown in Fig. 2.

158

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Requirements engineering methodology for agile development of

RESTful web services.

A. Quality Characteristics for Requirements

According to IEEE Std 830-1998 [5], the requirements

quality focuses on correctness, unambiguousness,

completeness, consistence, prioritization, verifiability,

modifiability, and traceability. The IEEE Std 830-1998 [5]

was replaced by the international standard ISO/IEC/IEEE

29148 [6], which introduces feasibility, necessity, free of

implementation, and singularity as new characteristics for

requirements while removing prioritization, correctness and

modifiability. Furthermore, the new standard distinguishes

between individual and a set of requirements. According to

them, a set of requirements shall be complete, consistent,

affordable, and bounded. The full set of quality

characteristics with its definition is shown in Tables I and II

[6].

TABLE I. QUALITY CHARACTERISTICS FOR
 INDIVIDUAL REQUIREMENTS

Quality

Characteristic
Definition

Necessary “The requirement defines an essential capability,

characteristic, constraint, and/or quality factor. If it
is removed or deleted, a deficiency will exist, which

cannot be fulfilled by other capabilities of the

product or process…” [6]

Implementation
free

“The requirement, while addressing what is
necessary and sufficient in the system, avoids

placing unnecessary constraints on the architectural

design…” [6]

Unambiguous “The requirement is stated in such a way so that it

can be interpreted in only one way. The requirement
is stated simply and is easy to understand.” [6]

Consistent “The requirement is free of conflicts with other
requirements.” [6]

Complete “The stated requirement needs no further
amplification because it is measurable and

sufficiently describes the capability and

characteristics to meet the stakeholder's need.” [6]

Singular “The requirement statement includes only one
requirement with no use of conjunctions.” [6]

Feasible “The requirement is technically achievable, does
not require major technology advances, and fits

within system constraints (e.g., cost, schedule,

technical, legal, regulatory) with acceptable risk.”
[6]

Traceable “The requirement is upwards traceable to specific
documented stakeholder statement(s) of need… The

requirement is also downwards traceable to the
specific requirements in the lower tier requirements

specification or…” [6]

Verifiable “The requirement has the means to prove that the

system satisfies the specified requirement. Evidence
may be collected that proves that the system can

satisfy the specified requirement…” [6]

In [1], we took the assumption that the full set of quality

characteristics can be fulfilled by ensuring the individual

ones. But, this is not true for the full set of quality

characteristics since a complete requirement does not

provide information about the completeness of a set of

requirements.

TABLE II. QUALITY CHARACTERISTICS FOR
 A SET OF REQUIREMENTS

Quality

Characteristic
Definition

Complete “The set of requirements needs no further
amplification because it contains everything

pertinent to the definition of the system or system

element being specified.” [6]

Consistent “The set of requirements does not have individual
requirements which are contradictory.

Requirements are not duplicated. The same term is

used for the same item in all requirements.” [6]

Affordable “The complete set of requirements can be satisfied
by a solution that is obtainable/feasible within life

cycle constraints (e.g., cost, schedule, technical,

legal, regulatory).” [6]

Bounded “The set of requirements maintains the identified
scope for the intended solution without increasing

beyond what is needed to satisfy user needs.” [6]

Due to that, we formalized the quality characteristics in

Table II in a way that it can be applied on a set of

requirements for easier quality control at the end of a

requirements engineering phase. The formalization for each

quality characteristic is shown in Equations (1)-(4), while

Table III will give the explanation of the used elements. The

necessary information for the interpretation of the results

will be given in Table IV.

Requirements of

product increment

#2

Identification of

stakeholder

Elicitation

of the goals

Prioritization

Of the goals

Iteration 1 Iteration 2 Iteration n

Functional

requirements

Non-functional

requirements

Requirements of

product increment

#1

Functional

requirements

Non-functional

requirements

Functional

requirements

Non-functional

requirements

Requirements of

product increment

#n

Constraints

Verification Verification Verification

159

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

COM(Rd)=
Rd ∩ Rs

Rs
 if |Rs|> 0 else 1

𝐶𝑂𝑁1(Rd)= 1 -
|𝑅(𝑅𝑑)|

|Rd|
 if |R𝑑|> 0 else 1

𝐶𝑂𝑁2(Rd)= 1 -
|𝐶(𝑅𝑑)|

|Rd|
 if |R𝑑|> 0 else 1

𝐶𝑂𝑁3(Rd)= 1 -
|𝑇(𝑅𝑑)|

|Rd|
 if |R𝑑|> 0 else 1

𝐶𝑂𝑁1(Rd)=
1

3
 * (𝐶𝑂𝑁1(Rd) + 𝐶𝑂𝑁2(Rd) + 𝐶𝑂𝑁3(Rd))

AFF(Rd)=
|𝐴(𝑅𝑑)|

|Rd|
 if |Rd|> 0 else 1

BOU(Rd)=
|𝑅𝑑 \𝑅𝑠|

|Rd|
 if |Rd|> 0 else 1

TABLE III. EXPLANATION OF THE METRICS

Element Explanation

𝑅𝑑 Set of requirements, which should be considered

𝑅𝑠 Not absolutely necessary right now

𝐴(𝑅𝑑) Set of feasible requirements

𝐶(𝑅𝑑) Set of requirements with conflicts

𝑅(𝑅𝑑) Set of duplicated requirements

𝑇(𝑅𝑑) Set of requirements in which introduced terms are not used

consistently

TABLE IV. EXPLANATION OF THE RESULTS

Result Explanation

1 The quality characteristic is completely fulfilled

< 1 The quality characteristic is not completely fulfilled

B. Identification of Stakeholders

In the elicitation phase, all stakeholders of the project
have to be identified. A missing stakeholder can lead to
incomplete requirements, which endanger the project
success. For this purpose, we apply the approach by Sharp et
al. [8]. Based on the four groups a) users, b) developers, c)
legislators, and d) decision-makers, for the Participation
Service, we could identify all stakeholders as listed in Table
V and assign them to the corresponding scrum role.

TABLE V. STAKEHOLDERS OF THE PARTICPATION SERVICE

Group Stakeholders

Users Enrolled students and members of the KIT

Developers Students at C&M and KIT as operator of the
Participation Service

Legislators State of Baden-Wuerttemberg and Federal

Republic of Germany

Decision-Makers C&M leader, C&M members and one expert of

systemic consenting

The user represents people, groups, or organizations,

which interact with the system or make use of the provided
information. The developers are the stakeholders of the
requirement engineering process, such as analysts or
operators. The legislators represent government authorities
that provide guidelines for the development and operation of
the Participation Service. The last group stands for the
development manager and the user manager, who have the
power to make decisions with regard to the characteristics of
the system in development.

Depending on the quantity of the stakeholders, a
prioritization step is sometimes necessary to assess the
importance of the elicited requirements regarding to the
influence of the stakeholder. For this reason, Sharp et al. [8]
provide an outlook how network theories can be used to
determine the influence of a stakeholder. But, such
approaches can be time-consuming. A more pragmatic
method is the usage of power-interest grid by which the
stakeholders are classified in quadrants [22].

In this project, the prioritization of the stakeholders with
regard to their influence on the project was not necessary at
this point. Due to the fact that the complexity of the project
and the amount of involved stakeholders is not as high as in
an industrial project.

C. Elicitation of Goals

After the identification of stakeholders, the elicitation of
goals can be initiated. For this purpose, the interview and
brainstorming technique was chosen and the questions
introduced by Bruegge and Dutoit [13] were used for easier
discovery of the goals according to the definition by [12],
which is shown in Fig. 3. Each goal corresponds exactly to
one requirement in order to fulfill the singularity according
to [6]. An excerpt of the determined goals is shown in Table
VI. Goal G2 will be further refined in the upcoming sections.

In contrast to traditional software methodologies, such as
the waterfall approach, in agile development, more goals can
be added in the course of the software project.

TABLE VI. EXCERPT OF GOALS OF THE PARTICIPATION SERVICE

ID Goal Stakeholder

G1 Logs in at the Participation Service C&M member

G2 Rate a suggestion C&M member

G3 Add a new proposal for solution C&M member

(1)

(2)

(3)

(4)

160

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Meta-model of a goal.

By investigating the quality characteristic of the current
standard [6], we discovered that the meaning was changed
compared to IEEE Std 830-1998 [5]. In [5], requirements
were expected to be complete for the entire system.
According to the current standard, a set of requirements
contains everything to define a system or only a system
element. This allows us to use iterations in which system
elements are described.

D. Prioritization of Goals

The next step is the prioritization of the goals with regard
to their importance for the stakeholders. Due to the
abstraction level of the goals and the statement by Wiegers
[15], we applied a simple classification approach based on a
three-level scale that is shown in Table VII according to
IEEE Std 830-1998 [5]. In order to prevent ambiguousness,
each stakeholder has agreed on the meaning of each level
[15]. After rating of goals, a specific amount of highest
ranked goals, which reflects the necessity [6], form the basis
for the first iteration. The amount depends on the estimated
velocity of the development team and expected effort for the
implementation. In this context, the essential goals are those
presented in Table VI.

TABLE VII. CLASSIFICATION FOR GOAL PRIORITIZATION

Group Meaning

Essential Essential for the next release

Desireable Not absolutely necessary right now

Optional Would be nice to have someday

E. Functional Requirements

For each selected goal, a scenario will be authored or
reused that describes the required interactions to reach the
goal. Based on a scenario, further goals can be derived. The
combination of a goal and the corresponding scenario is
called requirement chunk as described in [12].

Figure 4. Meta-model of a requirement chunk.

Fig. 4 illustrates this by showing a meta-model that
defines the rules and the elements of a requirement chunk.
This recursive process with objective of functional
decomposition can be aligned with the process defined in the
standard [6]. But, this recursive process can be repeated
several times, which results in rising costs.

For that reason, we propose three conditions that serve as
abort criteria for the process. If all of the following
conditions apply, the process can be aborted:

1) no additional benefit in form of new derived goals
2) other scenarios will definitively not reuse atomic

actions of the current scenario
3) the size of the scenario exceeds more than 20 atomic

actions
According to Glinz [16], the decomposition in user functions
and the ease of understanding assure the precondition of
correct specification. Furthermore, the decomposition allows
us to describe the capability and properties of a given
requirement chunk in detail according to the stakeholder’s
need, which represents the completeness of individual
requirements. In the following, authoring and reusing of
scenarios will be presented.

Figure 5. Reusing a requirements chunk from the repository.

Goal

Verb Parameter

Target Direction Way Beneficiary

DestinationResult SourceObject Means Manner

1..* 1..*

Goal

Scenario

Realized by

0..* Subgoal

1

G3

Add a new proposal

for solution

Scenario

G3.1 = G.1

Logs in at the

Participation Service

Scen.

G3.2 = G2.2

Select a subject of

debate

Scen.

G3.3

Create a new proposal

for solution

Scen.

Repository

Realized by

Realized by

Realized byRealized by

Refined inReused by

161

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E.1. Reusing Scenarios
 In the best case, a requirement chunk still exists in
the repository, which contains all analyzed goals and their
scenarios. Therefore, redundant scenarios will be avoided,
which ensures the consistence regarding to a set of
requirements. As a result, we can compose different
requirement chunks to support higher goals. For example,
the goal G1 “Logs in at the Participation Service” represents
a cross-sectional goal, which will be used by G2 and G3.
Fig. 5 shows how the goal G3 is refined in three different sub
goals, while two of them will be reused from the repository.
E.2. Authoring Scenarios
 If no requirement chunk for the given goal can be found
in the repository, a new scenario has to be authored while
considering the quality characteristics by [6].

 The unambiguousness cannot be fulfilled properly as we

use the natural language with inherent equivocality for the

description of the scenario [5]. So a trade-off between ease

of understanding and formalism has to be made. For this, we

used the provided meta-model of a scenario by Rolland et

al. [12] to reduce equivocality, which is shown in Fig. 6

Moreover, we used the introduced structural constructs of

Glinz [16] to further reduce the level of equivocality. To

detect ambiguousness during description or validation of

scenarios, Terzakis [17] offers a detailed checklist. Also, the

current standard [6] provides some terms, such as

superlatives or vague pronouns, which should be prevented

to ensure bound and unambiguousness. For newly

introduced terms and units of measure, we have created a

separate document, which acts as a glossary.

Figure 6. Meta-model of a functional scenario.

According to [6], a scenario should be implementation free.

This means that no architectural design decisions take place

in this phase. This is the nature of a scenario as it describes

what is needed in form of a concrete instance to achieve its

intended goals. The nature of a scenario also allows us to

derive acceptance criteria to verify the requirements in the

form of test cases [16], which fulfills the verifiability [6].

 The feasibility is another quality characteristic of the

standard [6] with focuses on technical realization of the

requirement. At this point, the scenario has to be

investigated with regard to system constraints such as the

existing environment (cf. Section G).
To ensure the traceability [6], each scenario must have a

unique identifier. In the course of modification over time, the
scenarios also need a version number representing the
current state.

State

Action

Action flow Atomic action

Actor Resource

Object

Initial state 1

Final state 1

1..*

1..*

1

2

Scenario

Title: Rate a proposed suggestion ID: G2 Priority: High

Source: C&M member Risk: Middle Difficulty: Nominal

Rationale: Integral ingredient of systemic finding Version: 1.0 Type: Functional

Initial state: User wants to rate a proposed solution

Final state: User rated a proposed solution

Dependable goals: None

No. Normal action flow Ref.

1
User logs in at the Participation service

G1
System verifies the credentials

2
System redirects him to the secured area (Def. 1.1)

-
User gets a list of available subjects of debate

3
User selects a subject from the provided list

-
System receives the selection and redirects him to the subject of debate

4
User rates a proposed solution by selecting the refusing points

G5
System calculates the acceptance of the suggested solution

No. Concurrency / Alternative action flow

2’

IF the list of available subjects is empty

THEN the system displays: There are currently no subjects of debate

TERMINATE

Figure 7. Style for representation of scenarios.

162

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Due to the fact of reusing scenarios, each scenario should
also be aware of dependable requirement chunks to clarify,
which requirement chunks will be affected by modifications
of one scenario.

Based on these findings, the representation in [16], and
the provided requirement attributes in [6], we created a style
for representation of scenarios, which is illustrated in Fig. 7.
Similar to the approach by Glinz [16], the representation can
also be easily transformed into a state chart.

F. Non-Functional Requirements

After all goals have been analyzed, the resulting
requirement chunks represent the functional aspects of the
system. Each scenario can now be investigated with regard
to non-functional aspects. For this purpose, we use quality
attribute scenarios by Ozkaya et al. [18] and link these with
the corresponding requirement chunk. The meta model for
quality attribute scenario is shown in Fig. 8.

Figure 8. Meta-model of quality attribute scenario.

The stimulus represents the condition for the release of
the event, while its source is the entity that triggers it. The
response is the activity of the stimulus. The environment,
such as normal operation of a service, stands for the
constraint under which the stimulus occurred. The functional
scenario represents the stimulated artifact. Finally, the
response measure represents the measure for evaluating the
response of the system.

To align this with the product strategy, the product
quality characteristics of ISO/IEC 25010:2011 [11] have to
be ranked by their importance for the stakeholders. For
example, the security is probably more important than the
user experience for a product in the banking sector. This is
why we used pairwise comparisons of the quality attributes
according to the Analytical Hierarchy Process (AHP) by
Saaty [19].

If quality characteristic A is more important than B, we
assign A the value 2 and B the value 0. If A and B are equally
important, we assign each of them the value 1.

We took the results of each stakeholder and calculated
the average, which is shown in Fig. 9. As Fig. 9 shows,
security, functionality, and usability are more important than
the others. Based on this result, we could focus on the most
important quality attributes. Nevertheless, we still have to
keep the quality attributes with minor importance for the
product strategy in mind. We can thus reduce the effort for
eliciting the non-functional requirements since resources,
such as time, often limit a project.

Figure 9. Results of the Analytical Hierarchical Process (AHP).

Similar to the description of the functional scenarios (c.f.
Section E), we have to respect the same conditions. This is
why we do not describe this in detail at this point.

For the prioritization of non-functional requirements, we
used the ranked result of the AHP. But, it is also possible to
add another prioritization step, such as the ones mentioned in
[15] or [18]. Fig. 10 shows one non-functional requirement
of goal G2.

Figure 10. Style for representation of quality attribute scenarios.

G. Constraints

According to Glinz [10], the constraints restrict the
solution space for the functional and non-functional
requirements. For example, a constraint can be company-
based human interface guidelines, legal issues, or existing
environments [10]. With regard to the Participation Service,
we only had to investigate the constraints emerging from the
existing environment. As described in the introduction, the
Participation Service should be a part of the existing service-
oriented SmartCampus System based on REST.

Artifact

(Functional scenario)

1..*

Source of

stimulus
Stimulus Environment Response

Response

measure

Quality attribute

scenario

1 1 1 1 1

F
u

n
ct

io
n

al
su

it
ab

il
it

y

P
er

fo
rm

an
c
e

ef
fi

ci
en

cy

U
sa

b
il

it
y

C
o

m
p

at
ib

il
it

y

R
el

ia
b

il
it

y

S
ec

u
ri

ty

M
ai

n
ta

in
ab

il
it

y

P
o

rt
ab

il
it

y

S
u

m

W
ei

g
h

t

Functional suitability 11 6 10 7 6 9 11 60 0.18

Performance efficiency 1 0 4 2 0 2 7 16 0.04

Usability 6 12 10 8 3 9 11 59 0.18

Compatibility 2 8 2 4 2 3 8 29 0.09

Reliability 5 10 4 8 3 5 7 42 0.13

Security 6 12 9 10 9 9 12 67 0.20

Maintainability 3 10 3 9 7 3 10 45 0.13

Portability 1 5 1 4 5 0 2 18 0.05

Sum 336 1.0

Type: Usability ID: N2 Priority: 0.18

Source: C&M member, students Risk: Low Difficulty: Easy

Rationale: Better user experience Version: 1.0 Reference: G2

Quality

attribute

scenario

Source of stimulus: User

Stimulus: clicks on the button

Environment: during normal operation,

Response: the system gives a feedback

Response measure: within a period of 200ms

163

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig 11 shows the layered architecture according to Evans
[23] with components of the current SmartCampus System,
which consists of four layers: 1) user layer, 2) application
layer, 3) domain, and 4) infrastructure layer. The latter ones
are combined in the illustration for a better overview.

REST is a hybrid architectural style for distributed
hypermedia systems according to Fielding [2], which he
defines as follows: “REST is a hybrid style derived from
several of the network-based architectural styles ... and
combined with additional constraints that define a uniform
connector interface.“ [1, p. 76]. This definition implies the
consideration of several constraints that can be segmented in
architectural (1 - 5) and interface constraints (6) [1][21]:

1) Client-Server indicates a client and server

component. The client component sends a request to

the server that should be performed. Based on the

request, the server component either rejects or

performs the request.

2) Statelessness avoids the need of maintaining

information about a previous request on server side.

This leads to an improvement of server scalability.

3) Caching avoids a replication of already transmitted

information over the network.

4) Layered architecture facilitates the usage of

mediator components for adding features such as

load-balancing.

5) Code on demand is an optional constraint, which

extends the client functionality at runtime trough

downloading an executable artifact.

6) Uniform interface is an “umbrella term for the four

interface constraints” [21, p. 356]: the identification

of resources, the manipulation of resources through

representation, the self-descriptive messages und the

hypermedia constraint.
These constraints were written down in a separate

constraints document similarly to the glossary so that we are
able to reference this over the whole iteration cycle with
regard to the feasibility [6].

H. Verification

After the elicitation of the requirements in a quality-

oriented way, we have investigated the requirements

according to the formalized characteristics for a set of

requirements in Section IV. These results give us a hint to

what extent the elicited requirements fulfill the quality

characteristics of ISO/IEC/IEEE 29148:2011 [6].

<<mediator>>

Gateway

<<client>>

Client Application

<<controller>>

Info Controller

<<controller>>

Map Controller
<<controller>>

Route Controller

<<controller>>

Workplace Controller

<<controller>>

Discussion Controller

<<capability>>

Info Service

<<capability>>

Discussion

Service

RESTful API RESTful API

<<delegate>> <<delegate>> <<delegate>>

<<Server>>

Domain and infrastructure layer

<<Server>>

Application layer

<<Client>>

User layer

RESTful API

<<delegate>>

RESTful APIRESTful API

<<delegate>>

<<capability>>

Workplace

Service

<<capability>>

SocialNetwork

Service

<<capability>>

Storage

Service

<<capability>>

User

Service

<<capability>>

Sensor

Service

<<capability>>

Route

Service

<<capability>>

Map

Service

<<capability>>

Infrastructure

Service

<<capability>>

CampusEvent

Service

Figure 11. Component diagram of the SmartCampus system at the KIT.

164

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VIII. RESULTS OF THE VERIFIED SET OF REQUIREMENTS
 IN EACH PERFORMED ITERATION

Based on the results in Table VIII, we could prove our

assumption that the full set of quality characteristics can be

fulfilled by ensuring the individual ones. The only exception

is the completeness, which was already mentioned in

Section IV. Because of this, we recommend the

investigation of the completeness before designing and

implementing the specified system or system element to

ascertain the quality of the requirements.

V. EVALUATION

Our results by applying this technique showed us that we

improved the quality of our requirements by using this

technique, which considers the quality characteristic of

ISO/IEC/IEEE 29148:2011 [6]. For example, we have

detected some inconsistencies during the authoring of the

scenarios and reduced the communication effort emerged

from misunderstandings.

Compared to the previous recommendation [5], it is

easier to meet the desired qualities of ISO/IEC/IEEE

29148:2011 [6]. The reason for this is that the new standard

does not give tough specifications for the satisfaction of the

quality characteristics.

Due to the fact that we are using the natural language for

describing requirements, we can only merely reduce the

ambiguousness and not prevent completely. However, this

does not imply bad requirements but rather potential for

improvements. Furthermore, sometimes it is adequate to

achieve 90 percent of the quality criteria, because the cost to

reach 100 percent is too high.

Furthermore, we propose the adjustment of the

completeness so that partial specifications in form of

iterations are allowed. The precondition of the completeness

will be analyzed with regard to the goals of the current

iteration.

VI. CONCLUSION AND OUTLOOK

In this article, we introduced a methodology for
requirements engineering of RESTful web service for
systemic consenting. The methodology ensures that the
requirements fulfill quality characteristics defined by the
international standard ISO/IEC/IEEE 29148. For that
purpose, we analyzed existing methodologies and combined
those parts that consider a certain quality characteristic to a
new methodology. Thus, the methodology presented in this
article is a combination of existing work.

As stakeholders and participants often have different
opinions, it is necessary to find consensuses. For that
purpose, the Participation Service implements functionality
that is based on the concept of systemic consenting. By
applying the requirements engineering methodology
presented in this article, the quality of the requirements for
the Participation Service could be improved. For example,
we detected some inconsistencies during the authoring of the
scenarios and reduced the communication effort and the
costs emerged from misunderstandings.

Compared to the previous IEEE Std 830-1998 [5], it is
easier to meet the desired qualities of ISO/IEC/IEEE 29148
[6]. The reason for this is that the new standard does not give
tough specifications for the satisfaction of the quality
characteristics. Due to the fact that in a scenario-based
approach we are using the natural language for describing
requirements, we can only merely reduce the ambiguousness
and not prevent it completely. However, this does not imply
bad requirements but rather potential for improvements.

Our approach is currently focused on the Participation
Service and its specifics. We assume that the methodology is
also applicable for further services or even software systems
in general. However, this is not proven yet. With this
approach, we expect to support requirements engineers and
business analysts when they have to describe the
requirements for a RESTful web service. In our scenario, the
presented methodology helped with gathering and describing
functional and non-functional requirements in a systematic
way so that they are of high quality. As the quality
characteristics considered in this article are part of an
international standard, they can be seen as valid and of
importance. Furthermore, requirements engineers and
business analysts can apply this methodology to analyze and
improve already described requirements regarding their
quality. As the requirements constitute the basis for the rest
of the development process, it is of high importance that a
certain level of quality is reached. For that reason, when
generalizing this approach, it will contribute to the
development of high-quality software solutions.

For the future, before generalizing the approach, we plan
to focus on further parts of the development of high-quality
RESTful web services. With this article, we considered the
initial phase of the development process, the gathering and
description of requirements. In the next step, we will focus
on the design of RESTful web services that fulfill the
previously gathered requirements. Also in this case, the
quality of the result will be considered. For that purpose, we
will analyze existing best practices for the design of RESTful
web services. We will combine these best practices with
quality characteristics of ISO 25010:2011 as a standard for
the quality for software products. Especially in environments
with limited resources, such as time and money, not all best
practices can be considered. By associating best practices
with quality characteristics, it will be possible to prioritize
best practices for the design of RESTful web services and to
select the for a certain project most valuable ones. Finally,
we aim to enable an automatic measurement of the best
practices to rapidly get an impression of the degree of
fulfillment.

Metric Iteration

#1

Iteration

#2

Iteration

#3

Iteration

#4

COM(Rd) 0,97 0,92 0,93 0,99

CON(Rd) 1,0 1,0 1,0 1,0

AFF(Rd) 1,0 1,0 1,0 1,0

BOU(Rd) 1,0 1,0 1,0 1,0

165

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For that purpose, we will enhance our existing work in
the context of quality assurance of service-oriented
architectures [20]. We are also already working on an open
source tool, the QA82 Analyzer, to automate the
measurement of best practices [24]. After focusing on the
requirements engineering, the future work will help us to
also design and develop the Participation Service and future
web services in a quality-oriented manner.

REFERENCES

[1] M. Gebhart, P. Giessler, P. Burkhardt, and S. Abeck, “Quality-
oriented requirements engineering for agile development of restful
participation service,” Ninth International Conference on Software
Engineering Advances (ICSEA 2014), Nice, France, October 2014,
pp. 69-74.

[2] R. Fielding, “Architectural styles and the design of network-based
software architectures,” University of California, Irvine, 2000.

[3] Standish group, “Chaos report,” http://www.projectsmart.co.uk/
docs/chaos-report.pdf, 1995, Accessed 2014-05-21.

[4] A. F. Hooks and K. A. Farry, “Customer centered products: creating
successful products through smart requirements management,”
American Management Association, 2000, ISBN 978-0814405680.

[5] IEEE, IEEE Std 830-1998 “Recommended practice for software
requirements specifications,” 1998.

[6] ISO/IEC/IEEE, ISO/IEC/IEEE 29148:2011 “Systems and software
engineering – life cycle processes – requirements engineering,” 2011.

[7] B. Nuseibeh and S. Easterbrook, “Requirements engineering: a
roadmap,” The Future of Software Engineering, Special Volume
published in conjunction with ICSE, 2000, pp. 35-46.

[8] H. Sharp, A. Finkelstein, and G. Galal, “Stakeholder identification in
the requirements engineering process,” Database and Expert Systems
Applications, 1999, pp. 387-391.

[9] F. Ackermann and C. Eden, “Strategic management of stakeholders:
theory and practice,” Long Range Planning, Volume 44, No. 3, June
2011, pp. 179-196.

[10] M. Glinz, “On non-functional requirements,” 15th IEEE International
Requirements Engineering Conference (RE 2007), 2007, pp. 21-26.

[11] ISO, ISO/IEC 25010:2011 “Systems and software engineering -
systems and software quality requirements and evaluation (SQuaRE)
- system and software quality models,” 2011.

[12] B. C. Rolland, C. Souveyet, and C. B. Achour, “Guiding goal
modeling using scenarios,” IEEE Transactions on Software
Engineering, Volume 24, No. 12, 1998, pp. 1055-1071.

[13] B. Bruegge and A. H. Dutoit, “Object-oriented software engineering:
using uml, patterns and java,” Pearson Education, 2009, pp. 166-168.

[14] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing
requirements,” IEEE Software, Volume 14, No. 5, 1997, pp. 67-74.

[15] K. Wiegers, “First things first: prioritizing requirements,” Software
Development, No. 9, Volume 7, Miller Freeman, Inc, September
1999, pp. 48-53.

[16] M. Glinz, “Improving the quality of requirements with scenarios,”
Proceedings of the Second World Congress on Software Quality,
Yokohama, 2000, pp. 55-60.

[17] J. Terzakis, “Tutorial writing higher quality software requirements,”
ICCGI, http://www.iaria.org/conferences2010/filesICCGI10/ICCGI_
Software_Requirements_Tutorial.pdf, 2010, Accessed 2014-07-16.

[18] I. Ozkaya, L. Bass, R. L. Nord, and R. S. Sangwan, “Making practical
use of quality attribute information,” IEEE Software, April 2008, pp.
25-33.

[19] T. L. Saaty, “How to make a decision: the analytic hierarchy
process,” Informs, Volume 24, No. 6, 1994, pp. 19-43.

[20] M. Gebhart, “Measuring design quality of service-oriented
architectures based on web services,” Eighth International Conference
on Software Engineering Advances (ICSEA 2013), Venice, Italy,
October 2013, pp. 504-509.

[21] L. Richardson, M. Amundsen, S. Ruby “RESTful Web APIs,”
O’Reilly, 2013.

[22] F. Ackermann, C. Eden “Strategic Management of Stakeholders:
Theory and Practice,” Long Range Planning, Volume 44, No. 3,
2011, pp. 179-196.

[23] E. Evans, “Domain-Driven Design: Tacking Complexity In the Heart
of Software,” Addison-Wesley Longman Publishing Co., Inc., 2003.

[24] QA82, QA82 Analyzer, http://www.qa82.org, Accessed 2015-02-12.

166

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

From Software Engineering Process Models
to Operationally Relevant Context-aware Workflows:

A Model-Driven Method

Roy Oberhauser
Computer Science Dept.

Aalen University
Aalen, Germany

roy.oberhauser@htw-aalen.de

Abstract - Software engineering (SE)-specific process models
and their notation, such as the Software & Systems Process
Engineering Metamodel, are typically not specified or available
in an executable form that can provide automated guidance in
human-centric software engineering workflows. These SE
process models generally remain abstract in order to be
broadly applicable, and when any are concretized, they often
exist only in the form of documentation. Thus, they are not
actually relevant operationally, affecting process utilization
and governance. On the other hand, common business process
modeling notation such as BPMN is generalized and not
conducive for providing the context-aware support needed for
executable SE workflows. Thus, a practical method is needed
that supports comprehensive SE process documentation, yet
also provides an SE workflow modeling capability that can
transform documented SE workflows into an enactable form
executable in today's workflow management systems. The
method presented in this paper can utilize an available
comprehensive SE process documentation meta-model and
automatically extract incorporated SE concepts and workflow
concepts to a workflow model, specifically the Software
Engineering Workflow Language (SEWL). From this the
following are supported: 1) graphical-based workflow
modeling, 2) model-based transformation of workflow concepts
to diverse workflow management systems (WfMS), and 3) the
semantic transformation of SE concepts to contextually-aware
process-centered software engineering environments. The
results show the viability and practicality of such a method to
document, extract, graphically model, transform, and enact SE
workflows in support of contextual guidance capabilities for
software engineers.

Keywords - process-centered software engineering
environments; software engineering environments; software
engineering process modeling; software engineering process
model transformation; SPEM; UMA; Unified Method
Architecture; model-driven software development.

I. INTRODUCTION
This article extends our previous work in [1]. In order to

be generally applicable to various software development
projects, most software engineering (SE) process models
remain abstract and require tailoring to the specific project,
team, and tool environment. Examples of SE process models
include the V-Model XT [2] (specified for all public-sector
IT development in Germany) and the Open Unified Process

(OpenUP) [3]. Typical SE process models are documented to
a great extent in natural languages, and are thus not easily
executable in an automated form. The technical
implementation of an executable process, whose sequence
can be modeled with and automatically enacted in a
workflow management system (WfMS), is called a
workflow. SE workflows, many of which are human-centric,
can cover some sequence of activities and steps related to
requirements, design, testing, etc., for instance Activity
Flows in VM-XT [4] or workflows in OpenUP [5].

Because they integrate SE concepts, SE process meta-
models can be useful in the modeling and comprehensive
documentation of such SE processes. For instance, the
Eclipse Process Framework (EPF) [6] is an open source
project for software process engineering that provides a
framework and supporting tools, one being the EPF
Composer (EPFC) [7] for method and process authoring and
publishing. It utilizes a process meta-model, the Unified
Method Architecture (UMA), a large extent of which was
adopted into the Software & Systems Process Engineering
Metamodel (SPEM) 2.0 [8].

Additionally, process-centered software engineering
environments (PCSEEs) have attempted to investigate and
address automated guidance and assistance mechanisms for
SE processes [9]. Yet they remain intrusive, rigid, and
inflexible [10], and fail to adequately support the human,
creative, and dynamic aspects of software development.
While more generalized automated process assistance and
guidance for humans has been available in the form of
process-aware information systems (PAIS) [11], this area has
lacked satisfactory standards and SE support and often lacks
the integration of the project and human context. Thus, such
systems and capabilities have not been readily leveraged by
software engineers.

A. Our Previous Work
To address these challenges for such human-centric SE

processes, we created a PCSEE that we call the Context-
aware Software Engineering Environment Event-driven
Framework (CoSEEEK) [12]. Beyond SE tool sensors and
other contextual knowledge, it utilizes workflows to
understand the process context. That includes knowing
which activities a software engineer performed, which
activity is likely currently being worked on, which activity is
next, and associating these with SE-specific concepts such as

167

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

projects, teams, persons, roles, tools, and artifacts via an
ontology and reasoner. While various facets were
investigated, including collaboration [13], quality integration
[14], and others, we still faced the problem of providing an
easy way for software engineers to access, model, and
transform SE workflows and integrate SE concepts without
vendor lock-in to a specific WfMS. Considering possible SE
workflow modeling notation, the SPEM is aimed primarily at
defining a domain-specific notation for the documentation of
SE processes, and does not completely address issues related
to executable SE processes so that automatic support and
guidance for software engineers in operational activities can
occur. On the other hand, a general workflow language
notation such as the Business Process Model and Notation
(BPMN) 2.0 [15], while executable, lacks the inclusion and
semantic meaning of various SE domain-specific concepts
and thus becomes cumbersome.

Thus, to address the executable SE workflow language
gap, our team created the text-based language SEWL [16]
and previously targeted the adaptive WfMS AristaFlow [17]
and YAWL [18] to evaluate its portability. Our previous
work in [1] contributed various extensions to the original
workflow concepts, including: a new graphical
representation for SE-specific workflows blending BPMN
and SPEM notation; a graphical editor for SE workflows;
details on the model-driven generation of tailored artifacts
that target the ontology and heterogeneous WfMS support,
specifically the common of-the-shelf (COTS) WfMS jBPM
[19] and Activiti [20]; and the workflow ontology generator,
which addresses the aspect of contextual-awareness support
for workflows in conjunction with CoSEEEK.

B. Contribution
This article extends our work in in [1] by expanding the

scope of the original solution approach. It contributes an
automated model-driven method for SE process modelers
that incorporates a standard SE process meta-model, namely
the UMA, thus supporting comprehensive SE process
documentation capabilities while generating concrete
enactable workflows that can be used in automated SE
guidance support. Based on the information gleaned from the
SE model, workflow concepts are transformed into an
intermediate workflows language SEWL, from which further
workflow transformations to specific WfMS can occur. An
evaluation utilizes the EPF Composer with both existing and
new SE process models and with Activiti and jBPM WfMS,
the results showing the viability and practicality of the
method for documenting an SE model with existing tooling,
extracting SE concepts, graphically modeling SE workflows,
transforming SE workflows to specific WfMS formats, and
enacting SE workflows in support of contextual guidance
capabilities for software engineers.

The summary of the paper is as follows: the following
section discusses related work, and Section III describes the
solution method. Section IV then describes our realization of
the method. Section V presents an evaluation, followed by a
discussion and then the conclusion.

II. RELATED WORK
With regard to related work, SPEM 2.0 [21] was

approved without supporting full process enactment. It
proposes two possible approaches for enactment: One
proposes a mapping to project planning tools. However, this
does not support automated adaptation to changing project
contexts during project execution. The other proposal is to
use the Process Behavior package to relate SPEM process
elements to external behavior models using proxy classes.
Both approaches lack full workflow modeling and
executability at the level of BPMN.

Other work related to enactment of SPEM includes
eXecutable SPEM (xSPEM) [21]. Process execution is
addressed via transformation to the Business Process
Execution Language (BPEL), while process validation is
addressed via transformation to a Petri net in combination
with a model checker. [22] maps SPEM to the Unified
Modeling Language Extended Workflow Metamodel (UML-
EWM) in order to create a concretely executable workflow.
[23] and [24] investigate transforming SPEM to BPMN,
while [25] maps SPEM to the XML Process Definition
Language (XPDL). xSPIDER ML [26] is an extension
profile of SPEM 2.0 to enable process enactment.

The novelty of our solution method is that, in contrast to
the above approaches, it targets a simple graphical as well as
textual SE process language and notation for modeling,
blending the strengths of BPMN and SPEM; it concretely
generates executable workflows on different WfMS targets;
and it generates an Web Ontology Language (OWL)-
compliant ontology of SE concepts for context-aware
PCSEE tooling support. This addresses prior hindrances and
challenges for modeling and contextually integrating SE
workflows in SEE. Furthermore, the model-driven
integration of SE process meta-models provides a way to
support comprehensive SE process documentation while
providing an automated method to extract enactable SE
workflows and contextual concepts.

III. SOLUTION
This section describes our model-driven solution method

(refer to Figure 1). The description below will refer to the
four phases in the method shown at the top of Figure 1,
namely model, transform, deploy, and operate.

The basis of the solution concept is an SE workflow
model, such as SEWL workflows which we had previously
developed. While the method supports the use of any SE
workflow format, SEWL was used as an intermediate
workflow model in our realization of this method. A SEWL
workflow is modeled, either with the graphical SEWL editor
or a textual editor, and provided as input for our Generator.
To transform the input, our Generator utilizes various
adapters we created that generate appropriate workflow
templates tailored for a specific WfMS, while concurrently
providing OWL-DL [27] output of the semantic concept
instances. These templates are then deployed. During
operations, a Process Manager Service we created abstracts,
via an interface, the WfMS-specific integration and
interaction details for our CoSEEEK (thus CoSEEEK does

168

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

not need to be a PAIS but only extend one) and the ontology
is referenced internally during operations by CoSEEEK.
Ontologies and semantic technology are advantageous in
providing a taxonomy for modeled entities and their
relations, a vocabulary, and supporting logical statements
about entities [28]. Automated consistency checking and
interoperability between different applications and agents
also support SE environment concept reuse.

A. The Model Phase
In the model phase (see Figure 1), an SE process is

modeled and documented based on an SE meta-model, such
as a UMA model created using the EPF Composer. This
model serves as an input to our Generator during the
transform phase, which automatically generates a SE
workflow model that maps all the correlating SE concepts to
an intermediate SE workflow format such as SEWL.
Alternatively, one could model or adapt the workflows
directly in SEWL. In the process modeling phase, a graphical
SEWL Editor assists the process modeler in creating the
textual SEWL workflows, which maintain the essence of
workflow concepts. Supplemental graphical diagram
information (position, font, color, etc.) is retained in
separately maintained diagram files, which are kept in sync
with the SEWL workflows. Direct editing of the XML-based
SEWL format is also possible; however, the Generator will
remove all non-applicable elements from the graphical
SEWL diagrams since the SEWL template XML file is
considered the primary model source. Further details are
provided in the next section.

B. The Transform Phase
As shown in Figure 1, in the transform phase SE

workflow model inputs in a format such as SEWL are
transformed by a Generator with a plug-in transformation
adapter architecture to the executable workflow template
format of a given WfMS target. An OWL adapter in the
Generator also semantically transforms SE concepts in the
workflow to produce an OWL-DL compliant ontology that it
utilized for process contextual awareness by CoSEEEK.

To exemplify what the transform phase of our method
does, Table I shows the mapping of common SE workflow
concepts. Here WU stands for Work Unit and WUC for

Work Unit Container. The primary difference between jBPM
and Activiti concept mapping is that in Activiti loops are
typically expressed via inclusive gateways and in jBPM via
exclusive gateways. E.g., any concurrent tasks in an SE
workflow would be modeled with the BPMN
parallelGateway, which activates all branches
simultaneously and, when merging, waits for all branches to
complete. Most WfMS support such basic features.

TABLE I. MAPPING OF SE AND WORKFLOW CONCEPTS

SEWL Activiti jBPM Ontology
Phase Service Task +

inclusiveGateway
Service Task +
exclusiveGateway

WUC + WU

Activity Service Task Service Task WUC + WU
Iteration Service Task +

inclusiveGateway
Service Task +
exclusiveGateway

WUC + WU

Task Service Task Service Task WU
Sequence - - -
Parallel parallelGateway parallelGateway -
Loop inclusiveGateway exclusiveGateway -
XOR exclusiveGateway exclusiveGateway -
Roles - - Role Template
Artifacts - - Artifact Template
Variables - - Workflow Variables

Template

To address and abstract the integration, communication,

and coordination details of the specific WfMS, each Activity
or Task is represented as a Service Task and, during
generation, wrapped with code that supports the tracking or
triggering of the start and finish of an activity or task via
event sources and event listeners. This is done since a
Process Manager Service abstracts the integration specifics
of a WfMS for CoSEEEK, and a Space (a tuple space [29])
we developed is used to handle loosely-coupled
communication during operation with CoSEEEK. Details on
this are provided later in this and the next section.

C. The Deploy Phase
In the process deployment phase shown in Figure 1,

workflows in a WfMS-specific format are deployed into
their respective WfMS engine (e.g., jBPM or Activiti) and
the workflow ontology deployed into CoSEEEK. Typically
this implies transferring the workflow files to the expected
locations for a given configuration.

Figure 1. Solution method for SE process model transformation to executable and contextually-aware workflows.

169

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. The Operate Phase
In the operate phase, a specific WfMS instantiates and

executes workflow instances as prescribed by a Process
Manager Service, which integrates a WfMS and abstracts its
details and peculiarities. In our method, to support
heterogeneous WfMS a Process Manager acts as an
intermediary to support indirect and loosely-coupled event-
based interaction between a Service Task and the context-
aware PCSEE. In our method implementation, CoSEEEK
uses our Space for this. Note that the transform phase needs
to incorporate the expected operational semantics in order to
generate the appropriate workflows for the operational phase.

Figure 2 provides an example of the operational
interactions in our implementation of the method. The
Process Manager has registered as a listener for certain
events. CoSEEEK writes a Start Process Event into the
Space. The Space notifies the Process Manager of this event,
which in turn instantiates and starts a given process in the
WfMS. For each Service Task in the workflow, a Service
Task Start Event is sent to the Process Manager and the task
waits until further notice. When CoSEEEK becomes aware
of a context state change via tool sensors (e.g., a commit of
source code was done, a test was started, or the software
engineer manually chose a new activity) that affects this
workflow and indicates that the current task is completed,
CoSEEEK writes a Task Finish Event to the Space. The
Space notifies the registered Process Manager of this event,
and it in turn notifies the WfMS. The Service Task sends an
End Event when it completes, and the Process Manager write
a Node End Event in the Space. The Space notifies
CoSEEEK of the event, which updates its state. When the
final Service Task completes, the workflow completes, and
the Process Manager writes an End Process Event to the
Space, which notifies CoSEEEK, which in turn updates its
state. As an aside, because all event history is kept in the
Space, any CoSEEEK components or a Process Manager
coming online after some absence (e.g., restart) can
determine the context or catch up on any missed events.

IV. REALIZATION
This section provides details on the implementation of

our method, the current contribution being primarily the
integration of UMA support. To support loose-coupling with
CoSEEEK, a service-oriented event-driven architecture was

used in conjunction with a tuple space [29] composed on top
of a native XML database eXist [30], and provides a Web
Service for remote access. A Process Manager Service
manages and abstracts the peculiarities of a WfMS,
interacting indirectly with CoSEEEK via events in the Space.

The Eclipse Graphical Modeling Framework (GMF) [31]
and Eclipse Modeling Framework (EMF) [32], which
includes ecore, were utilized by the SEWL editor. Figure 3
shows a simplified snippet of the ecore-based metamodel.

Figure 3. Simplified portion of the metamodel used with ecore.

Transformation Adapters. The Generator and associated
pluggable transformation adapters (SEWL, UMA, OWL,
jBPM, Activiti, AristaFlow, YAWL) were realized primarily
in Scala. Unique IDs were generated for every element
transformed and its target transformed element. This permits
a clear mapping association, which is also useful for logging.
The ontology adapter uses the Jena framework for
programmatic ontology access [33] to generate the ontology
instances for phases, activities, roles, artifacts, etc.

Figure 4 shows an example workflow snippet generated
for a jBPM Service Task, while Figure 5 shows one for
Activiti. For details on XML grammar of inputs or outputs,
refer to the respective WfMS or UMA documentation.

WfMS Process Manager Space CoSEEEK
Start Process EventStart Process Event

Start Process

End Process End Process Event End Process Event

Service Task Start Event Wait for Task Finish Event

Task Finish Event
Task Finish Event

Service Task End Event
Node End Event

Node End Event

For each
Service Task

Figure 2. Primary runtime component interaction.

170

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<task id='2'name='RequestChange'tns:taskName='SEWL Task'>
 <extensionElements>
 <tns:onEntry-script
scriptFormat='http://www.java.com/java'>
 <script>StartEventListener listener = new
StartEventListener();
 kcontext=listener.writeNodeStart(kcontext);</script>
 </tns:onEntry-script>
<tns:onExit-script
scriptFormat='http://www.java.com/java'>
 <script>EndEventListener listener = new
EndEventListener();
 listener.writeNodeEnd(kcontext);</script>
 </tns:onExit-script>
 </extensionElements>
</task>

Figure 4. Listing snippet of generated jBPM Service Task.

<serviceTask id='RequestChange' name='Request Change'
activity:class='Service'>
 <extensionElements>
 <activity:executionListener event='start'
class='StartEventListener'/>
 <activity:executionListener event='end'
class='EndEventListener'/>
 </extensionElements>
</serviceTask>

Figure 5. Listing snippet of generated Activiti Service Task.

Generated OWL output was loaded into the Protégé
ontology editor [34] and is shown for a work unit activity in
Figure 7. Because the entire XML is very verbose, it is not
shown. Figure 8 shows a small portion of the CoSEEEK
software engineering environment ontology in graphical
form to give an impression of how software engineering
environment concepts, properties, and relations, such as
work units and activities are tied into the larger project and
environment, which is then utilized to provide contextual
awareness.

These workflows and the associated ontology concepts
serve as input to CoSEEEK, which then can provide
contextual guidance for a software engineer during SE

process execution, as can be seen in the screenshot of the
HTML- and JavaScript-based CoSEEEK GUI (Graphical
User Interface) shown in Figure 6. Context notifications are
shown in the upper region, and process context guidance is
in the bottom region, showing the current workflow activity
(here 'Test Solution') and the next possible follow-on activity
choices for guidance and/or manual selection by the user
[35]. Details on CoSEEEK's holistic approach to support
contextual guidance [12] and collaboration [13] during the
SE process are published in other papers and beyond this
paper's scope. For example, [14][36][37][38] provide details
on the automated integration of software quality measures
into executing SE workflows.

Figure 7. Generated OWL ontology for CoSEEEK shown in Protégé.

Figure 6. CoSEEEK guidance GUI.

171

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Screenshot of a portion of the CoSEEEK's software engineering environment ontology.

Figure 9. SEWL Editor showing the OpenUP Inception Phase in the SEWL graphical format.

172

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SEWL Editor. The SEWL textual language described in
[16] supports the modeling of SE workflow concepts that a
SE process may have. Multi-lingual support for referencing
the same SE concept instance in various natural languages
(e.g., German and English) was also implemented
previously, supporting global software development (GSD)
processes and their documentation in multiple languages.

The graphical notation used in the editor is extensible and
can be adapted or "skinned" with icons to suit the
preferences of the user, which can minimize notation
confrontations between different user "tribes", e.g., BPMN
purists or SPEM purists. In order to get the "best of both
worlds", the SEWL Editor currently applied a mix of
graphical notation as follows:
- SPEM icons for all SE concepts (e.g., phase, activity,

iteration, task, role, artifact),
- BPMN icons for process notation, e.g., events, gateways,

and connections.
As an example, an OpenUP Inception phase workflow

modeled in the SEWL Editor is shown in its graphical
(Figure 9) and textual (Figure 10) notation. One can see that
various SE concepts such as roles, phases, artifacts,
activities, inputs, and outputs can be modeled and sequenced.

<process base="default_process.xml" xmlns=...>
 <resources>
 <roles>
 <role id="1" name="Analyst" />
 <role id="2" name="Project Manager" />
...

 <elements>
 <element name="phase" base="container">
 <structure>
 <attribute name="repeatable">true</attribute>
 <rules>
 <contains element="activity" />
 <contains element="iteration" />
...

 <artifacts>
 <types/>
 <instances>
 <artifact type="Artifact">Project Plan</artifact>
...

 <tools/>
 <element type="sequence" name="OpenUP Process"
resource="6">
 <element type="phase" name="Inception"
milestone="Lifecycle Objectives">
 <element type="sequence">
 <element type="activity" name="Initiate Project">
 <element type="task" name="Develop Technical
Vision" resource="1">
 <output>
 <parameter name="vision"
tailoring="true">Vision</parameter>
 <parameter name="glossary"
tailoring="true">Glossary</parameter>
...

 <element type="parallel">
 <element type="activity" name="Identify and
Refine Requirements">
 <element type="sequence" resource="1">
...

 <element type="activity" name="Agree on
Technical Approach" resource="4">
...

 <element type="activity" name="Plan and Manage
Iteration" resource="2">
 <element type="sequence">
 <output>...
 </output>

Figure 10. Example OpenUP SEWL workflow snippets (end-tags omitted).

To retain the graphical details of the layout of nodes and
edges, a separate file in XMI [39] notation was used. Figure
11 gives an example.

<graphicsystem:Graphicsystem
xmi:id='WUC_Phase_1_Inception'
parentDiagram='WUC_Process_OpenUPProcess.sewl_diagram' >
 <newObjects xmi:type='graphicsystem:Start'
xmi:id='startevent1' ObjectToObjects='sequenceStart1' />
 <newObjects xmi:type='graphicsystem:Sequenz'
xmi:id='sequenceStart1'
ObjectToObjects='WU_Activity_1_InitiateProject' />
 <newObjects xmi:type='graphicsystem:Activity'
xmi:id='WU_Activity_1_InitiateProject' Name='Initiate
Project'
Reference='WUC_Activity_1_InitiateProject.sewl_diagram'
ObjectToObjects='parallelGatewayStart1' />
...
 </graphicsystem:Graphicsystem>
 <notation:Diagram xmi:id='id_WUC_Phase_1_Inception'
type='SEWL' element='WUC_Phase_1_Inception'
name='Inception.sewl_diagram' measurementUnit='Pixel'>
 <children xmi:type='notation:Shape'
xmi:id='shape_startevent1' type='2043'
element='startevent1'>
...
 </children>
 <children xmi:type='notation:Node'
xmi:id='shape_WU_Activity_1_InitiateProject' type='2034'
element='WU_Activity_1_InitiateProject'>
 <children xmi:type='notation:DecorationNode'
xmi:id='4e841147-2f14-445a-b0b4-30e714be504e'
type='5039'/>
 <children xmi:type='notation:BasicCompartment'
xmi:id='0b62527e-b592-4e3d-a367-541f17843fb9'
type='7011'/>
 <styles xmi:type='notation:DescriptionStyle'
xmi:id='1b9fea72-5856-4be5-9203-1ef5cc58d000'/>
 <styles xmi:type='notation:FontStyle'
xmi:id='3051a516-b9f4-42c6-9698-8072fbe9a301'/>
 <styles xmi:type='notation:LineStyle'
xmi:id='7ea4d238-14fc-4068-a4ce-ed6bb08820af'/>
 <layoutConstraint xmi:type='notation:Bounds'
xmi:id='11135191-6e30-4c7a-a803-dfd437a058bc' x='440'
y='185' />
 </children>
...
 <styles xmi:type='notation:DiagramStyle'
xmi:id='_avAfkaznEeGl_a7M295XCw'/>
 <edges xmi:type='notation:Connector' xmi:id='flow23'
type='4020' source='shape_startevent1'
target='shape_sequenceStart1'>
 <styles xmi:type='notation:FontStyle'
xmi:id='8712763c-8e17-4285-948b-0b78f41f90af' />
 <element xsi:nil='true' />
 <bendpoints xmi:type='notation:RelativeBendpoints'
xmi:id='71805553-c9c1-46ff-8d13-56c6a3ab24fc'
points='[20, 0, -125, 10]$[130, -14, -15, -4]'/>
 <sourceAnchor xmi:type='notation:IdentityAnchor'
xmi:id='63f1b22c-d2fd-408e-9b8a-99044df18ce6' id='EAST'
/>
 <targetAnchor xmi:type='notation:IdentityAnchor'
xmi:id='0fd5db1f-daac-468a-a457-2dcf6bf1ee43' />
 </edges>

Figure 11. Example SEWL diagram XMI code snippet.

An exemplary subset of the included constraints used to
validate the model is listed here, i.e., audit rules. These were
implemented in Java to allow usage outside of the GMF:
- verify phase/activity element has an output and a

submodel,
- verify end element has no output,
- verify task does not target iteration/activity/phase,
- verify Loop has LoopEnd, Sequence has SequenceEnd,

XOR has XOREnd, And has AndEnd.

173

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. EVALUATION
The evaluation of the solution method focuses on its

practicality and viability. Three usage scenarios were
evaluated, namely: a) the ability to use the method without
utilizing any UMA model (SEWL only), b) starting with a
new customized UMA model that represents an
organization's own tailored SE process, and c) using an
existing publicized UMA model. Furthermore, the
performance of the method realization should be evaluated to
determine if a model-driven XML-centric approach is
adequate.

As to supporting a broad modeling spectrum, the Eclipse
Process Framework (EPF) was used as a reference for
modeling Scrum and OpenUP. These models were
successfully modeled and transformed. Although the entire
OpenUP process was modeled, only portions of the Inception
Phase are shown below due to space constraints.

A. SEWL Non-UMA Process Model Example
The entire OpenUP process was modeled using the

SEWL Editor as a starting point as was seen in Figure 9, and
the generator was executed and jBPM and Activiti outputs
were generated. Figure 12 was rearranged by hand. A snippet
of the corresponding generated output is shown in Figure 14
for Activiti and in Figure 15 for jBPM. Thus processes that

do not have or wish to use UMA can still utilize the method
and SEWL for SE workflows.

B. New UMA Process Model Case Study
For this case, we started with a new EPF Composer

project and modeled a portion of the Waterfall model based
on Royce's original paper [40] as shown in Figure 13.

Figure 13. Screenshot of a Waterfall process modeled in EPF.

Figure 12. jBPM generated output (rearranged by hand).

174

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<<process id='WUC_Phase_1_Inception' name='Inception'>
 <extensionElements>
 <activiti:executionListener event='start'
class='coseeek.workflow.process.activiti.extension.Proces
sStartEndListener'></activiti:executionListener>
 <activiti:executionListener event='end'
class='coseeek.workflow.process.activiti.extension.Proces
sStartEndListener'></activiti:executionListener>
 </extensionElements>
 <startEvent id='startevent1' name='Start'></startEvent>
 <endEvent id='endevent1' name='End'></endEvent>
 <serviceTask id='WU_Activity_1_InitiateProject'
name='Initiate Project'
activiti:class='coseeek.workflow.process.activiti.extensi
on.DummyService '>
 <extensionElements>
 <activiti:executionListener event='start'
class='coseeek.workflow.process.activiti.extension.EventL
istener'></activiti:executionListener>
 <activiti:executionListener event='end'
class='coseeek.workflow.process.activiti.extension.EventL
istener'></activiti:executionListener>
 </extensionElements>
 </serviceTask>
 <parallelGateway id='parallelGatewayFork1' />
 <serviceTask
id='WU_Activity_2_IdentifyandRefineRequirements'
name='Identify and Refine Requirements'
activiti:class='coseeek.workflow.process.activiti.extensi
on.DummyService'>
 <extensionElements>
 <activiti:executionListener event='start'
class='coseeek.workflow.process.activiti.extension.EventL
istener'></activiti:executionListener>
 <activiti:executionListener event='end'
class='coseeek.workflow.process.activiti.extension.EventL
istener'></activiti:executionListener>

Figure 14. Example Activiti XML snippet.

<process processType='Private' isExecutable='true'
id='WUC_Phase_1_Inception' name='Inception'>
 <extensionElements>
 <tns:import name='coseeek.workflow.process
.jbpm.extension.JBPMEventListener'/>
 </extensionElements>
 <startEvent id='_1' name='Start'></startEvent>
...
 <parallelGateway id='_3' gatewayDirection='Diverging'
/>
 <parallelGateway id='_4' gatewayDirection='Converging'
/>
 <task id='_5'
name='WU_Activity_2_IdentifyandRefineRequirements'
tns:taskName='SEWL Task' >
 <extensionElements>
 <tns:onEntry-script
scriptFormat='http://www.java.com/java'>
 <script>JBPMEventListener listener =
 new JBPMEventListener();
 kcontext=listener.writeNodeStart(kcontext);</script>
 </tns:onEntry-script>
 <tns:onExit-script
 scriptFormat='http://www.java.com/java'>
 <script>JBPMEventListener listener = new
JBPMEventListener();
 listener.writeNodeEnd(kcontext);</script>
 </tns:onExit-script>
 </extensionElements>
 <ioSpecification>
 <inputSet/>
 <outputSet/>
 </ioSpecification>
 </task>
<task id='_6' name='WU_Activity_3_AgreeonTechnicalApp...

Figure 15. Example jBPM workflow snippet.

This demonstrates that an organization's model can be
used conveyed to UMA, and that as long as phases,

activities, and/or tasks are modeled, default sequential
workflows can be automatically generated from this in
SEWL as shown in Figure 17. Here, the phases are shown as
a sequential workflow. The Testing Phase is shown as a
workflow of activities as shown in Figure 18. In Figure 19,
tasks within the activity related to product assurance
techniques specified by the Waterfall model are shown. If
desired, workflows can then modified in the SEWL, e.g., for
more complex non-sequential workflow models. The SEWL
workflows were automatically transformed by the Generator
into corresponding jBPM workflows (shown in Figures 20-
22) and Activiti workflows (shown in Figures 23-25).

C. Existing UMA Process Model Case Study
The published UMA process model OpenUP, shown in

Figure 16, was modified to simulate a customization scenario
for an organization. Here a "Review Solution" task was
added to the "Develop Solution Increment" activity.

Figure 16. OpenUP screenshot showing Review Solution customization.

175

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 17. SEWL diagram of the Waterfall phases.

Figure 18. SEWL workflow diagram of Waterfall's Testing Phase.

Figure 19. SEWL workflow diagram showing tasks of the Waterfall's activity Use Product Assurance Techniques.

Figure 20. jBPM diagram of the Waterfall phases workflow.

176

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 21. jBPM diagram of Waterfall's Testing Phase Workflow.

Figure 22. jBPM diagram of Waterfall's activity Use Product Assurance Techniques.

Figure 23. Activiti diagram of Waterfall's phases workflow.

Figure 24. Activiti diagram of Waterfall's Test Phase workflow.

Figure 25. Activiti diagram of the tasks in the Waterfall's activity Use Product Assurance Techniques.

177

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 26. SEWL diagram of the OpenUP phases workflow.

Figure 27. SEWL diagram of OpenUP's Construction Phase workflow.

Figure 28. SEWL diagram of the OpenUP's Develop Solution Increment workflow.

Figure 29. jBPM diagram of the OpenUP phases workflow.

Figure 30. jBPM diagram of OpenUP's Construction Phase workflow.

Figure 31. jBPM diagram of the OpenUP Develop Solution Increment workflow.

Figure 32. Activiti diagram of the OpenUP phases workflow.

Figure 33. Activiti diagram of OpenUP's Construction Phase workflow.

Figure 34. Activiti diagram of OpenUP's Develop Solution Increment workflow.

This was done to demonstrate that an existing
comprehensive UMA model from the community can be
customized and default sequential workflows automatically
generated in SEWL. In Figure 26, the phases are shown as a
sequential workflow. The Construction Phase was modeled
as a workflow of activities in Figure 27. In Figure 28, the
tasks for the activity related to product assurance techniques

are shown. If necessary, these workflows can then be
modified in the SEWL graphical editor to suit the needs for
more complex non-sequential workflow models.
Nevertheless, a starting basis is automatically provided.
From the SEWL model, we transformed these SEWL
workflows using the Generator into corresponding jBPM
(Figures 29-31) and Activiti (Figures 32-34) workflows.

178

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Performance
We evaluated our model-driven solution to determine if it

exhibits acceptable transformation performance for expected
usage.

1) Performance for provided SE Models: For this
scenario we wanted to determine the performance one can
expect for model transformation of basic and realistic SE
process models that conform to the EPF XML Schema. The
configuration for these measurements consisted of an Intel
Core i7-3740QM CPU @2,70GHz, 16 GB RAM, Windows
7 Ultimate SP1 x64, Java 8, Scala 2.11.5.

The performance results presented in Table II
differentiate the two UMA SE processes Waterfall and
OpenUP, with Waterfall being a new relatively small model
example, and OpenUP being a comprehensive model
example. The second major column shows the resulting file
sizes in bytes, lines, and number of files involved for each
of the generation steps. The major center column then
shows the duration in milliseconds for various
transformations. The EPF input files are the starting point,
with the generation steps being the EPF to SEWL
transformation (EPF->SEWL), the SEWL to diagram
transformation (SEWL->diagram), the SEWL to jBPM
transformation (SEWL->jBPM), and the SEWL to Activiti
transformation (SEWL->Activiti). The maximum time
needed was about 1 second needed to create 83 XMI
diagram files with over 10,0000 XML lines from the input
of 995 lines of SEWL XML. This performance seems
acceptable for such a comprehensive SE model.

TABLE II. EPF MODEL TRANSFORMATION PERFORMANCE

Generation Steps
Duration

(milliseconds)
Generated XML

in bytes [lines] (files)
Waterfall OpenUP Waterfall OpenUP

EPF Input files - - 9,480
[75] (1)

1,671,816
[24109] (1)

EPF -> SEWL 341 505 3,084
[85] (1)

51,695
[995] (1)

SEWL -> diagram 811 1040 32,344
[332] (3)

1,008,362
[10277] (83)

SEWL -> jBPM 646 833 20,929
[442] (12)

222,632
[5438] (83)

SEWL -> Activiti 609 950 17,218
[183] (3)

383,087 [3747]
(83)

2) Plugin Performance: We compared performance of

the various generator plugins for their different types of
output to determine if there are significant differences or
issues with such a plugin concept. For this, a five node
OpenUP process sequence was provided as the input to the
SEWL Editor, and the performance of each of the adapters
in the Generator measured. For each round, a loop of 1000
generations was averaged. For generating the SEWL
template, the SEWL diagram files served as input.
Otherwise the SEWL XML template alone was used as

input. The configuration for these measurements consisted
of an Intel Core 2 Duo CPU 2.26 GHz, 3 GB RAM,
Windows XP Pro SP3, Java JDK 1.6.0-31, Scala 2.9.1,
Activiti 5.8, jBPM 5.2, Jena 2.6.4, and Eclipse EMT
(Helios) SR2. The performance results are presented in
Table III, with the left column indicating the adapter
measured, the center column the average duration, and the
right column the size of the inputs and outputs in bytes,
lines, and files.

TABLE III. GENERATOR ADAPTER PERFORMANCE

Average
Duration
(millisec)

XML File Size
in bytes [lines] (files)

Input Generated
SEWL

template 10.3 212,490 [2255] (22) 19,431
[416] (1)

SEWL-
Diagram 65.1 19,431 [416] (1) 212,490

[2255] (22)

Activiti 23.8 19,431 [416] (1) 79,088
[822] (22)

jBPM 27.5 19,431 [416] (1) 86,169
[1856] (22)

Ontology 6917.8 19,431 [416] (1)
823,020 [12965] (1)

1,469,639
[15750] (1)

Generating a SEWL template from the diagram involves

the least amount of writing, and is thus fastest. The
generation of SEWL diagrams in XMI format is more
verbose in bytes and lines by at least a factor of 2, and its
duration is correspondingly longer compared to the jBPM or
Activiti adapters. With regard to the Ontology adapter, two
files serve as input for generating the OWL ontology; in
addition to the SEWL template input, the Jena Semantic
Web framework is used to parse and create internal objects
from the existing ontology (a comparatively large file with
its additional 12 related remote namespace schema), then
the relevant ontology instances are updated based on the
SEWL file, and finally a complete OWL file that contains
the modifications is generated. Since much more XML is
involved in both the input parsing and generation, and the
use of specialized semantic OWL APIs, here the overall
performance for generating semantic workflow context
concepts is noticeable.

Because the RDF and OWL-DL XML formats are
standardized, possible optimization strategies include
partitioning the ontology to only those areas applicable for
workflow ontology concepts, rather than the total ontology.
Another possibility is the use of solid state disks on the
devices involved in the ontology generation, e.g., by placing
the adapter behind a web service.

In summary, the performance of the generators appears
satisfactory for typical SE process transformation.

179

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. DISCUSSION
While there is potential for further automation of SE

processes and automated guidance support, a number of
practical hindrances remain.

In the past, since SE process documentation lacked
contextually adapted and WfMS supported workflows, it has
often seemed not to be operationally relevant, but rather
something relatively abstract. It might serve to satisfy the
appearance of the existence of a disciplined and professional
method for approaching the software engineering work, with
no real way to monitor actual usage or compliance with it.
Thus, for most of the actors involved in using the
documentation of SE processes, the documented workflows
appear not to add significant value and most of the work is
done without referring to the SE process documentation with
any of its specified abstract workflows. Perhaps the swing in
prior decades to overly documented und irrelevant SE
processes caused an understandable and reactionary agile
movement, as codified in the Agile Manifesto [1], to
minimize tools and documentation.

However, if SE process documentation could include
operationally concrete and WfMS-enactable workflows that
provide contextually relevant guidance, and these workflows
involved the actual tools and artifacts used and were tied in
to the SE process documentation as well, then it would bring
"life" to the relatively "dead" SE process documentation,
since contextually adapted workflows would be mostly
relevant and helpful to the software engineers in their actual
work context. They would no longer have the hurdle of
manually finding their current context in the abstract and
perhaps quite comprehensive SE process documentation, and
then manually determining the workflow portions they are
supposed to follow and keep jumping from their work
context to their process documentation context.

Activities and processes are an inherent part of SE and
will continue to be used to accomplish SE work, be they
explicit and documented or implicit and undocumented. As
automation and intelligence in SE environments increases, a
middle-ground may be found between these two extremes, so
that the benefits that other domains have reaped from WfMS
support for human-centric and hybrid human and automated
workflows can be better integrated and leveraged in the SE
landscape. This will involve documentation and workflow
modeling, and a model-driven approach can automate many
of the aspects in order to minimize the effort involved for
software engineers.

The SE environment, tooling, and process area has seen
relatively little standardization for various reasons. Efforts to
better integrate the heterogeneous SE tooling landscape in a
vendor-neutral manner, such as the semantic services
approach of Open Services for Lifecycle Collaboration
(OSLC) project, seem to have fizzled at the moment for all
practical purposes. As tools continue to change, keeping the
data models and integrations updated seems to involve
significant effort without significant incentives. Future
approaches may move more tooling to the cloud, enabling
better context-aware SE integration.

VII. CONCLUSION AND FUTURE WORK
This article contributed a practical model-driven

methodology that supports the usage and transformation of
software engineering process documentation to workflows
executable in modern workflow management systems. The
method can utilize comprehensive SE process documentation
meta-models and automatically extract incorporated SE
concepts and workflow models to an intermediate SE
workflow format such as the Software Engineering
Workflow Language (SEWL). These workflows can
optionally be edited in a common SE format that is aware of
SE process and environment concepts and can then
transformed into various enactable WfMS formats and
ontological concepts for context-aware support.

Automated workflow guidance for SE projects remains a
challenge, and current SE process meta-models have hitherto
not integrated support for intricate and enactable workflow
modeling capabilities. With our practical model-driven
method we showed that, beginning with only a rudimentary
process documentation of a set of SE concepts conformant to
some SE process meta-model such as the UMA, actually
enactable workflows can be automatically generated for
various common WfMS. Our method enables the utilization
of currently available SE process documentation tooling such
as the EPF Composer, without needing to deal with separate
manual process modeling techniques for a vendor-specific
WfMS due to our model-driven adapters. Such generated
sequential workflows extracted and transformed from some
SE process documentation can provide a starting point for
more intricate operational SE workflow modeling in, for
instance, our SEWL editor, should certain workflows be
more complex or require branches or loops. These can be
readily adjusted either with the SEWL graphical editor or
directly in the SEWL text-based model, and then WfMS-
specific workflows can be automatically generated.

This solution method provides an easy to use graphical
modeling capability for executable SE workflows that can
execute on commonly available WfMS, while retaining SE
semantic information in a separate OWL file for contextually
aware PCSEEs. The evaluation results show that such a
model-based method for transforming SE workflows to
common WfMS is both feasible and practical.

Future work includes case studies with industry partners
in live settings as well as more comprehensive utilization of
the ontological concepts extractable from such UMA-based
models with those of CoSEEEK. Also, bidirectional
workflow transformation support between SEWL and an
engine-specific workflow format would allow editing in the
workflow editor of choice. This entails providing reverse
transformation support for engine-specific workflow
templates, enabling engine-specific usage of features and
editing capabilities via workflow engine-specific editors. For
instance, changes made to jBPM and Activiti workflows
could be automatically reflected in a SEWL template.

180

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENT
The author thanks and acknowledges Vitali Koschewoi

and Julian Donauer for their work on the implementation and
diagrams, and Gregor Grambow for his assistance with
CoSEEEK-related concepts, ontology, and adaptations.

REFERENCES
[1] R. Oberhauser, "An Approach for Modeling and

Transforming Contextually-Aware Software Engineering
Workflows," Proceedings of the Ninth International
Conference on Software Engineering Advances (ICSEA
2014), published by IARIA, ISBN: 978-1-61208-367-4
(2014), pp. 117-122.

[2] S. Biffl, D. Winkler, R. Höhn, and H. Wetzel, "Software
process improvement in Europe: potential of the new V-
modell XT and research issues," Software Process:
Improvement and Practice, 11(3), 2006, pp. 229-238.

[3] P. Kroll and B. MacIsaac, Agility and Discipline Made Easy:
Practices from OpenUP and RUP. Pearson Education, 2006.

[4] http://v-modell.iabg.de/v-modell-xt-html-english/ 2015.05.30.
[5] http://epf.eclipse.org/wikis/openup/ 2015.05.30.
[6] http://www.eclipse.org/epf/ 2015.05.30.
[7] P. Haumer, "Eclipse process framework composer," Eclipse

Foundation, 2007.
[8] Object Management Group, "Software & Systems Process

Engineering Metamodel Specification (SPEM) Version 2.0,"
Object Management Group, 2008.

[9] V. Gruhn, "Process-Centered Software Engineering
Environments: A Brief History and Future Challenges,"
Annals of Software Engineering, 14(1-4), 2002, pp. 363-382.

[10] A. Fuggetta, "Software process: a roadmap," Proc. Conf. on
the Future of Software Eng., ACM, May 2000, pp. 25-34.

[11] M. Reichert and B. Weber, "Enabling flexibility in process-
aware information systems: challenges, methods,
technologies," Springer Science & Business Media, 2012.

[12] R. Oberhauser, "Leveraging Semantic Web Computing for
Context-Aware Software Engineering Environments,"
Semantic Web, Gang Wu (ed.), In-Tech, Austria, 2010.

[13] G. Grambow, R. Oberhauser, and M. Reichert, "Enabling
Automatic Process-aware Collaboration Support in Software
Engineering Projects," Software and Data Technologies
(Editors: J. Cordeiro, M. Virvou, B. Shishkov), CCIS 303,
Springer Verlag, ISBN 978-3-642-29577-5, 2012, pp. 73-88.

[14] G. Grambow, R. Oberhauser, and M. Reichert, "Contextually
Injecting Quality Measures into Software Engineering
Processes," the International Journal On Advances in
Software, ISSN 1942-2628, vol. 4, no. 1 & 2, 2011, pp. 76-99.

[15] Object Management Group, "Business Process Model and
Notation (BPMN) Version 2.0," 2011.

[16] G. Grambow, R. Oberhauser, and M. Reichert, "Towards a
Workflow Language for Software Engineering," Proc. of the
The Tenth IASTED Int'l Conf. on Software Engineering (SE
2011), ISBN 978-0-88986-880-9, ACTA Press, 2011.

[17] P. Dadam et al., "From ADEPT to AristaFlow BPM suite: a
research vision has become reality," in Business process
management workshops, Springer, Jan. 2010, pp. 529-531.

[18] W. Van Der Aalst and A. Ter Hofstede, "YAWL: yet another
workflow language," Information systems, 30(4), 2005, pp.
245-275.

[19] M. Salatino and E. Aliverti, jBPM5 Developer Guide, ISBN
1849516448, Packt Publishing, 2012.

[20] T. Rademakers, "Activiti in Action: Executable business
processes in BPMN 2.0," Manning Publications Co., 2012.

[21] R. Bendraou, B. Combemale, X. Crégut, and M. Gervais,
"Definition of an Executable SPEM 2.0," In Proc. APSEC
2007, IEEE, 2007, pp. 390-397.

[22] N. Debnath, D. Riesco, M. Cota, J. Garcia Perez-Schofield,
and D. Uva, "Supporting the SPEM with a UML Extended
Workflow Metamodel," Proc. IEEE Conf. on Computer
Systems and Applications, AICCSA, 2006, pp. 1151-1154.

[23] D. Riesco, G. Montejano, N. Debnath, and M. Cota,
"Formalizing the Management Automation with Workflow of
Software Development Process Based on the SPEM Activities
View," Proc. 6th Int’l Conf. on information Technology: New
Generations, 2009, pp. 131-136.

[24] M. Perez Cota, D. Riesco, I. Lee, N. Debnath, and G.
Montejano, "Transformations from SPEM work sequences to
BPMN sequence flows for the automation of software
development process," J. Comp. Methods in Sci. and Eng. 10,
1-2S1, (September 2010), 2010, pp. 61-72.

[25] Y. Feng, L. Mingshu, and W. Zhigang, "SPEM2XPDL:
Towards SPEM Model Enactment," Proc. of SERP, 2006, pp.
240-245.

[26] C. Portela et al. "xSPIDER ML: Proposal of a Software
Processes Enactment Language Compliant with SPEM 2.0,"
J. of SW Eng. & Applications, 5(6), 2012, pp. 375-384.

[27] D. McGuinness and F. Van Harmelen, "OWL web ontology
language overview," W3C recommendation, 2004.

[28] D. Gasevic, D. Djuric, and V. Devedzic, Model driven
architecture and ontology development. Springer, 2006.

[29] D. Gelernter, "Generative communication in Linda," ACM
Transactions on Programming Languages and Systems, 7(1),
1985, pp. 80-112.

[30] W. Meier, "eXist: An open source native XML database.
Web," Web-Services, and Database Systems, LNCS, 2593,
2009, pp. 169-183.

[31] http://www.eclipse.org/modeling/gmp/ 2015.05.30.
[32] http://www.eclipse.org/modeling/emf/ 2015.05.30.
[33] B. McBride, "Jena: a semantic web toolkit," Internet

Computing, Nov. 2002, pp. 55-59.
[34] N. F. Noy et al., "Creating semantic web contents with

protege-2000," IEEE intelligent systems, 16(2), pp. 60-71,
2001.

[35] G. Grambow, R. Oberhauser, and M. Reichert, "User-centric
Abstraction of Workflow Logic Applied to Software
Engineering Processes," Proceedings of the 1st Int'l
Workshop on Human-Centric Process-Aware Information
Systems (HC-PAIS'12), 2012.

[36] G. Grambow and R. Oberhauser, "Towards Automated
Context-Aware Selection of Software Quality Measures,"
Proc. 5th Intl. Conf. on Software Engineering Advances,
2010, pp. 347-352.

[37] G. Grambow, R. Oberhauser, and M. Reichert, "Employing
Semantically Driven Adaptation for Amalgamating Software
Quality Assurance with Process Management," Proc. 2nd
Int’l. Conf. on Adaptive and Self-adaptive Systems and
Applications, 2010, pp. 58-67.

[38] G. Grambow, R. Oberhauser, and M. Reichert, "Contextual
Quality Measure Integration into Software Engineering
Processes," International Journal on Advances in Software,
4(1&2), 2011, pp. 76-99.

[39] Object Management Group, "MOF 2 XMI Mapping Version
2.4," 2010.

[40] W. W. Royce, "Managing the development of large software
systems," Proceedings of IEEE WESCON, Vol. 26, No. 8,
1970, pp. 328-339.

[41] K. Beck et al., "The agile manifesto," 2001.

181

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Modeling Responsibilities of Graphical User Interface Architectures via Software

Categories

Stefan Wendler
Software Systems / Process Informatics Department

Ilmenau University of Technology
Ilmenau, Germany

stefan.wendler@tu-ilmenau.de

Abstract — Business information of our days systems heavily

rely on graphical user interfaces (GUIs) as a sub-system that

provides rich interaction options to access business services

and stands out with high usability. To develop and maintain a

GUI sub-system, high efforts accumulate due to missing

standard solutions and limited reuse of already established

architectures. Published architectural patterns and few

reference architectures are primary sources for GUI

architecture development. However, these concepts need to be

extensively adapted, since individual requirements are to be

met and available sources do not describe all necessary details.

These are fine-grained GUI responsibilities, differentiated state

handling for application and presentation as well as

implementation structures. Therefore, GUI development

projects create high efforts and their resulting architecture

often does not represent the desired separation of concerns,

and so, is hard to maintain. These architectures are no proper

foundation for the integration of recent user interface pattern

(UIP) concepts, which promise a reuse of proven usability

concepts and enable the automated generation of vast GUI

parts. In this work, the design issues that occur during GUI

architecture development are to be analyzed. To prepare the

analysis, selected GUI architecture and pattern concepts are

presented. Furthermore, the general responsibilities of GUI

sub-systems and their structural elements are identified. In

detail, software categories are applied to model the GUI

responsibilities and their relationships by separating their

concerns based on several dimensions of knowledge. The

resulting software category tree serves as a basis to review the

well-known model view controller pattern and the Quasar

client architecture, which is a detailed GUI reference

architecture of the domain. As result, the major design issues

of GUI systems are derived and summarized. Eventually, the

created GUI software category tree can be applied as a

foundation for the creation, understanding and assessment of

other GUI patterns or reference architectures.

Keywords — GUI software architecture; software

architecture; user interface patterns; graphical user interface.

I. INTRODUCTION

A. Motivation

Domain. Business information systems represent a
domain that is largely influenced by software architecture
considerations. Especially the graphical user interface (GUI)
sub-system is likely to induce high efforts [2] for both
development and later maintenance. According to a survey
among 23 major Germany-based IT service companies, IT

departments of banking, logistics and power supply
industries, as well as medium-sized IT developers, the
development efforts for GUI systems is still estimated to be
considerably high compared to other common sub-systems
of business information systems. On a basis of 100% total
development effort, the aggregated efforts across all
development phases were estimated for the four principal
business information systems layers as follows: workflow
layer 24,8%; presentation layer or GUI 26,8%; application
layer 29,8% and lastly persistence layer 18,6%. In sum, the
presentation layer was rated as the second highest concerning
total effort.

The high efforts for GUI development apply for both
standard and individual software systems as a high demand
for individually designed GUI systems is actually present.
The companies require their business information systems to
be closely matched to their business processes. As a
consequence, custom services are often to be developed or
configured, which require a customized GUI to reflect the
functional aspects. In addition, a high usability is almost
always a desired goal to achieve during the development of
new GUI dialogs.

Problems. However, GUI architectures are not
standardized to the required detail, since historically applied
patterns have not converged towards a detailed standard
architecture that models every responsibility needed for
considering current functional, usability and technological
influences during development or maintenance. According to
functional aspects, the higher degree of system integration
into business processes demands for exact implementations
of comprehensive requirement artifact types like use cases,
tasks and business processes. The customers expect the GUI
system to closely match the specified scenarios with dialogs
that reflect the flow and branching of actions along with the
proper display of context relevant and even optional data.
Users no longer reenact those scenarios by activating the
single functions with their belonging dialogs in the right
order. They expect the GUI system to provide guidance
instead, navigation facilities and adequate presentation
layouts to attain a dialog structure that perfectly mirrors and
complements the functional requirements specification.

Those current GUI development needs are facing rather
old GUI architecture patterns like model view controller
(MVC) [3] and its variants [4], which did not consider such a
deep and vast requirements basis. To resolve some MVC
limitations or add some detail, other MVC pattern derivates
like HMVC [5], MVP [6][7], MVVM [8] and MVA, RMR,
ADR (reference [9] provides some overview only) were This work is an extensively revised and substantially augmented version of

“A Software Category Model for Graphical User Interface Architectures”,
which appeared in the Proceedings of The Ninth International Conference
on Software Engineering Advances (ICSEA 2014) [1].

182

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

introduced and occasionally found their role as a principal
architecture of GUI frameworks. However, mostly single
dialogs are considered by those patterns, so that concerns
like the design of navigation among dialogs, the structuring
and separation of visual layout, presentation control, dialog
control [10] and application flow are not comprehensively
described by a single pattern. There is no standard solution
available by the books; many sources [11][12][13] focus on
the proper handling of programming languages or mastering
certain GUI framework facilities without paying much
attention to architecture structuring. Thus, many details
remain to be refined by the developers [14], who will adapt
architectures individually for each system and most likely
will not extract a commonly reusable architecture due to
lacking time or budget.

According to Fowler [15], during the course of analyzing
and refining patterns many different interpretations may
emerge, so that there will be no common understanding of a
single pattern and its involved roles. This may due to the
complex structure of patterns, which are regularly containing
several ideas at once that may even comprise smaller sub-
patterns. Thus, developers will instantiate one pattern
according to their gained understanding, experience with
other patterns and the integration of surrounding frameworks
and architecture aspects to be addressed.

Ultimately, there is no consensus on GUI patterns, which
one offers the optimal structuring of responsibilities, so that
it is fairly common to decide on their application and
adaptation anew for each GUI development project.
Although MVC is very commonly applied, this pattern also
is very often misunderstood [15]. To apply common GUI
architecture patterns in practice, several implementation
problems have to be solved that are not sufficiently
addressed by the patterns [10]. Besides, reference
architectures [2][16] and several patterns (design and
architectural) [17][18] had been suggested, but have not been
properly integrated with traceability [19][20] concepts to
keep track of requirements during architecture design.

Moreover, GUI frameworks often dictate to closely adopt
a certain pattern-based architecture, so that they have a large
impact on the GUI system’s structure and often cannot be
isolated properly to separate technical implementations from
domain or project specific requirements.

So far, the functional aspects were considered. As far as
the demand for high usability is concerned, the above
mentioned patterns do not solve the integration of
ergonomically effective presentation layouts or interaction
designs. They focus on mere technical reuse of software
architecture structure and do not consider content-based
reuse.

Consequences. Foremost, GUI systems remain hard to
develop concerning the effective adaptation of available
patterns or reference architectures, as well as the cost-
efficient implementation of current functional and usability
requirements. In addition, developers may be frequently
required to work with a certain GUI framework to be able to
integrate the new created GUI system parts with an existing
system or maintain a certain corporate design already in use
with other neighboring systems. In the end, the coupling
between system layers and the separation of concerns remain

vague due to different pattern characteristics and project
budgets.

Furthermore, when systems have grown after several
maintenance steps, different concerns tend to be mixed up
within the GUI architecture the larger the requirements basis
is and the more complicated the integrated frameworks are.
For instance, application server calls, data handling, task and
dialog control flow can no longer clearly allocated to certain
elements of the software architecture. These concerns are
likely to be scattered among several units of design. Finally,
the GUI and application sub-systems cannot be separated
easily, so that the evolution of both depends on each other.
Business logic tends to be scattered in the GUI dialogs [21]
and the “smart UI antipattern” [22] may become a regular
problem. Initially, the architecture was layered during design
phase, but the encapsulation of components and separation of
concerns did not prove in practice [21]. This is maybe due to
used frameworks that expect a certain architecture, which
alters original design. More likely is the phenomenon that the
architecture was based on common patterns and reference
architectures that could not be refined in time with respect to
desired quality and extensibility. Lastly, the two concluding
points from Siedersleben [21] are still of relevance:
standardized interfaces between layers are missing and
technical frameworks dominate the architecture and
evolution. Currently, there are often more than three layers in
business information systems and the segregation got even
more complex.

User interface patterns. There are perspectives that are
promising to address the persisting issues. Current research
is occupied with the integration of a new artifact type in the
development of GUI systems. Being based on design pattern
concepts and likewise description schemes [23], user
interface patterns (UIPs) have been approached [24][25][26]
to facilitate the generative development of GUIs and highly
increase the reuse of proven visual and interaction design
solutions that originate from descriptive human computer
interaction (HCI) patterns [27][28].

According to the generative nature of UIP integration
approaches, the development of GUIs shall be shortened by
model-based sources that specify both the GUI system’s
view instances and the coupling between functional related
and GUI system architecture components. This new kind of
pattern is intended to bridge the gap between descriptive HCI
patterns and implementation oriented architecture patterns.
Ultimately, with the application of UIPs the technical reuse
of architecture structures of common design or architecture
patterns shall be combined with the reuse of content relevant
for ergonomics (visual design and layout, interaction design,
HCI patterns) bound to certain design units, which usually
remain abstract in common pattern descriptions. In that way,
UIPs shall be stored in a repository to be configured and
instantiated for different projects. In short, both technical
architecture parts and visual design shall be coupled and
reused in different contexts.

Current limitations. Currently, there are still design
issues within GUI patterns or reference architectures that
hinder the evolution and maintenance of existing systems. To
establish a target software architecture of high quality for the
implementation of UIPs, these issues have to be addressed in

183

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the first place. A commonly applicable GUI architecture has
to be derived. In fact, UIPs need a clear basis of reuse: an
architecture with well separated concerns that permits the
flexible allocation and exchange of these greater units of
design without the need to adapt other components.
Otherwise, the previously described problems would persist:
due to lacking standard solutions, each project would need an
individual target architecture with every responsibility
detailed to accept UIP instances. Generator templates would
have to be created and revised over and over again for any
GUI framework or platform. The visual designs of UIPs
would only be available for specification and context
configuration, but would miss a technical architecture for
their implementation on a certain system. To be able to
increase reuse with UIPs, a standardized architecture solution
is truly needed. The individual refinement of patterns will
greatly hinder the benefits UIP-based reuse would promise.

Whether UIPs will be generated, interpreted or provided
by a virtual user interface [29][30] the resulting architecture
will be at least as complex as for standard GUIs. Therefore,
the common issues in design will prevail and affect UIP
based solutions.

B. Objectives

To prepare the integration of UIPs into GUI architecture
and at the same time preserve their reusability and variability
in different contexts, open issues in GUI architecture
development have to be identified and solved. Therefore, our
first objective is to provide a detailed analysis of perpetual
design problems. Design issues regularly occur whenever
one of the following cases is encountered:

• Requirements are not met due to missing allocation

of responsibilities to design units.
• Several design units share are certain set of

responsibilities, so that either cohesion or separation
of concerns is not ideal.

• One design unit takes responsibility for many tasks
at once, and thus, may not represent a proper degree
of cohesion.

Hence, we will have to identify the re-occurring

responsibilities of GUI architectures to be able to analyze
possible GUI design issues. In this regard, our second
objective is to derive a pattern- and architecture-independent
model of those responsibilities and their relationships.

On that basis, the frequently applied MVC pattern is
reviewed. In addition, we will analyze the Quasar client
reference architecture [2] that provides more detail than
regular patterns and was created especially for the domain.
Together with the presentation of selected related work, the
responsibilities model and the analysis will lead us to reveal
persisting issues in GUI design.

C. Structure of the Paper

The following section provides descriptions of common
patterns and reference architecture considerations for GUIs
of our particular domain. In the third section, we will
elaborate a general responsibilities model for GUI
architectures. In Section IV, the GUI architecture patterns are

reviewed. The results are summarized and discussed in
Section V, before we conclude in Section VI.

II. RELATED WORK

A. Architecture Patterns for Graphical User Interfaces

With the invention of object oriented programming
languages, a clear assignment of the cross-cutting concerns,
which are common for a GUI dialog, had to be enforced.

Eventually, the MVC pattern was introduced [3], which
distinguishes three object types as abstractions to accept
defined responsibilities. The typical roles of an MVC triad
are the following: View and Controller comprise the GUI
part; the Model represents the application parts with the core
functionality and data structures [18].

With these roles, the MVC pattern promised a separation
of concerns, modularity and even reuse of selected
abstractions [31]. According to Fowler, one main idea of
MVC was the concept of “Separated Presentation” [15][32].
Hereby, an application layer is separated from the GUI layer,
which regularly accesses the former but not vice versa. In
other words, the GUI part of a system strictly represents an
independently developed sub-system, comprised of View and
Controller elements, that calls the application or domain
layer services by using a dedicated interface element
provided by the Model of the MVC triad. Thus, the
communication with the application layer is mostly initiated
and controlled by the GUI part of a system. However, the
application layer does call the GUI layer in a clearly defined
way: by applying the observer pattern [18][17] Views are
promptly updated whenever changes to the application layer
or Model part are committed. This design allows for multiple
Views sharing a certain Model and displaying different data
in different ways.

In Figure 1, we present a possible architecture application
diagram of the classic MVC pattern. Please note that an
interface notation was used to describe the visibility (a
certain set of operations) each involved design unit has on its
interaction partners.

cmp Classic MVC

MVC triad

Model

GUI Framework

PresentationEvent

RegisterNotification

ApplicationKernelService

DataRetrieval

ViewLayoutDefinition

ObserverUpdate

DomainObject

View

Controller

DataEdit

DomainServiceObject

ChangeView

«use»

«use»

«call»

«call»

«call»

«use»

«call»

«call»

«call»

Figure 1. The classic MVC architecture pattern described by the three

roles Model, View and Controller and their typical interfaces.

184

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The initial setup of the triad is supported by the interfaces
ViewLayoutDefinition (creation of screen layout, definition
of UI-Controls) and RegisterNotification, which enables both
Views and Controllers to receive notifications whenever
Model data has changed. So, the latter is part of the observer
pattern implementation. It should be considered that in the
original MVC design applied in Smalltalk environments the
access to the Model was strictly differentiated among View
and Controller: the read-only DataRetrieval interface is used
by the View to update its UI-Controls with current data
whenever changes to Model have been applied. The retrieval
of data by the View is typically preceded by a call from the
Model via ObserverUpdate. In contrast, the DataEdit is a
write-operation interface exclusively called by the Controller
to apply changes to the Model, e.g., when the user has
entered new data during interaction with the View’s UI-
Controls. Typical results that follow a user interaction
scenario from the Controller’s perspective are the previously
mentioned change of Model’s data (DataEdit), a request to
the View to alter its display (ChangeView), and finally, a
value creating call to the Model (ApplicationKernelService)
that processes application data and changes the system’s
state concerning business data.

Besides these elementary interfaces and basic interaction
mechanisms, the MVC pattern is affected by several
problems.

Firstly, there exist many sources of the MVC pattern,
which either do not cover the pattern with its multiple facets
in entirety or are more or less influenced by the specific
requirements of an application environment like certain GUI
frameworks for either desktop or web clients. We consulted
references [15], [31], [32], [33], [34] and [35] for related
work. In addition, a widely accepted and often cited
description can be found in [18], which was considered here
of course. As mentioned in the introduction, there is no
consensus on GUI patterns and their details. Ultimately,
MVC ends up as “the most misquoted” pattern [15].

Secondly, the classic MVC pattern is bound to the
Smalltalk environment and its basic facilities like abstract
classes to create each specific member of the triad by using
inheritance. As a result, the complete application was woven
in MVC as a principal architecture or architectural style. This
is often not applicable for nowadays system layers and
current GUI frameworks. The classic MVC is conflicting and
must be adapted to modern needs. For instance, Karagkasidis
[10] discussed some implementation variants for a Java
based MVC design.

Thirdly, from a practical point of view the classic MVC
pattern misses many details that are essential to enable its
benefits of modularity and separated concerns. Karagkasidis
[10] already provided an elaborate examination of different
concerns among popular GUI architecture patterns including
MVC. In sum, the creation and assembly of GUI layout, user
event handling, dialog control and the integration with
business logic were identified as topics with several
implementation issues.

In this regard, the MVC pattern leaves the task to
decouple the three abstractions to be solved by the developer.
It is noteworthy that the Controller is in charge of many
responsibilities at once: a Controller has to handle the

technical events (PresentationEvent), update the data of the
Model (DataEdit), delegate the View to adapt its layout
(ChangeView) to current data state, and finally, initiate the
concluding processing of Model data by the application
kernel (ApplicationKernelService). Therefore, this design
unit is closely coupled to the View, as well as to the Model.
As far as the View is concerned, the structure of the Model
has to be known to enable the update of defined UI-Controls
via DataRetrieval.

To cope with the close coupling and missing details,
several variations of the MVC have been discussed [4][10].
In general, the variations in design differ concerning the
distribution of responsibilities among the three abstractions.
Several more patterns [6][7][18][32] occurred that mainly
altered the control or introduced new concerns and
abstractions. Nevertheless, they fulfill the same purpose of
guiding the identification and modularization of classes in
object-oriented GUI architectures. Their effectiveness can
hardly be evaluated for the long term maintenance or a
standardization perspective, since there are no elaborate or
comprehensive descriptions available; some MVC derivates
are only sourced from websites or weblogs [9][36];
comprehensive accounts on MVC variations are still under
construction [37] or do not cover all variations.

B. Graphical User Interface Event Processing Chain

To be able to discuss the GUI responsibilities with
increasing detail, we would like to refer to the conceptual
model of the event processing within GUI architectures as
described by Siedersleben [38]. In Figure 2, a variation of
this model is displayed. Thereby, technical events will be
emitted from the Operating System or later the GUI
Framework when the user has interacted with a certain GUI
element. Within the architecture, the event is either
processed or forwarded by the individual components
depicted in Figure 2 and the associations between
components therein.

It is notable that there is a distinction of events inside the
Dialog component. For reasons of separation of concerns,
and ultimately, better maintenance of systems, the
Presentation was assigned responsibilities with a closer
connection to the technical aspects of the GUI Framework.
Accordingly, the Presentation is in charge of governing the
layout of the current Dialog and applies changes in layout,
e.g., mark the UI-Controls where entered data failed the
validation or activate panels when current data state requires
for additional inputs. In contrast, the DialogKernel is to be
kept independent from any technical issues as far as this is
possible. So, the latter is assigned the task to communicate
with the ApplicationKernel and its components instead.

sd Event Processing Chain

Operating
System

GUI Framework

Dialog
Presentation DialogKernel

ApplicationKernel

ApplicationComponent

Application

eventsDialog events

Presentation

eventsTechnical

events

Figure 2. Value creation chain of graphical user interfaces derived from

[38].

185

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

By flowing all the way from the Operating System
towards the Application Component, a tiny technical event
may result in the initiation of greater operations inside the
DialogKernel or even ApplicationComponent. Thereby, the
Dialogs fulfill the purpose to connect the users with the main
business services provided by ApplicationComponents. First
of all, several user inputs that result in events need to be
enhanced with further information. Then they can finally be
forwarded through the components to trigger business
services, which create business value. That is why
Siedersleben speaks of a “value creation chain” [16][38].

C. Standard Architecture for Business Information

Systems

Siedersleben and Denert tended to the issues of close
coupling and a better separation of concerns for GUI
architectures in [29]. The main goal of their attempts was to
improve the general quality of the software architecture of
business information systems. With respect to the GUI, they
made suggestions [29] that would prepare the standardization
of the architecture of the particular domain.

Quasar. Siedersleben pushed towards further
standardization attempts concerning the GUI architecture of
business information systems. His efforts culminated in the
creation of the quality software architecture (Quasar) [16].
Acclaimed design principles and architectural patterns, as
well as the vast usage of interfaces for decoupling in
combination with a new instrument for component
identification were incorporated into a single software
architecture manifest, which was intended to become the
domain’s standard.

Parts of a reference architecture [2] and the object-
relational mapper Quasar Persistence [39] have been
published. Conversely, the main ideas of standardization
were neglected in [2] and reference architecture elements
should fill the gap.

Software categories. As far as the component
identification is concerned, so called software categories [16]
were introduced. They consist of the five categories 0, A, T,
R and AT.

0 software designates elements that are reusable in any
domain like this is applicable for very basic data types a
programming language would offer.

A software is dedicated to implement a certain domain’s
requirements, meaning particular functions like the
calculation of target costing or the scheduling of production
plans for a certain machinery. So, A software would
represent the core of each business information system.

In contrast, T software is responsible for the integration
of technical aspects like data bases and GUI frameworks.

R software is needed whenever a technical data
representation has to be converted for processing with A
software types, e.g., a GUI string type describing a book
attribute is converted to a ISSN or ISBN. In fact, R software
also is AT software per definition as both domain specific
and technical knowledge or types are mixed up. Thus, AT
software should be avoided and would be an indicator for the
quality of the implementation or architecture [16]. Only the
R software used for type conversions would be permitted.

GUI reference architecture. Concerning the reference
architecture portions of Quasar, the GUI client architecture
[2][16] has to be mentioned for the scope of our work.
Compared to common GUI architecture patterns, the Quasar
GUI client architecture resembles a comprehensive
architecture addressing the specific needs of a domain by
incorporation of pattern elements and certain refinements.

The main parts of that architecture are illustrated by
Figure 3 that is derived from [16], since this is the most
detailed source available. The interface names in brackets
quote the original but not very descriptive designations. The
unique elements of the Quasar client architecture are the
following three aspects:

Firstly, there was made a distinction of presentation and
application related handling of events; the basic concept of
the “value creation chain” introduced in Section II.B was
developed further. Thus, there are the two design units
Presentation and DialogKernel that resume original MVC
Controller tasks besides other ones. The software categories
mark both units according to their general responsibilities:
the Presentation possesses the knowledge how certain data is
to be displayed and how the user may trigger events. In
contrast, the DialogKernel determines what data needs to be
displayed and how the application logic should react to the
triggered events. The communication between them is
exclusively conducted via three A type interfaces.

Secondly, the Quasar client introduces relatively detailed
interfaces and communication facilities between components
compared to other GUI patterns.

To be able to fulfill its objectives, the Presentation relies
on the ViewDefinition interface to construct the visual part of
the dialog. Via InputDataQuery, the current data stored in
the technical data model of respective UI-Control instances
can be altered or read by the Presentation. Events emitted
from UI-Control instances are forwarded to the Presentation
with the operations of PresentationEvent.

The interfaces between Presentation and DialogKernel
are mainly concerned with event forwarding and the
synchronization of data between both components.

cmp Quasar client

Dialog
DialogManager

DialogEvent (DE)

InputDataQuery (A)

GUI Framework

PresentationEvent (PE)

DataUpdate (SY)

ApplicationKernelService (AF)

DialogActivity (U)

DialogCompletion (V)

ApplicationEventsRegistration (DA)

ViewDefinition (DP)

ApplicationEvents (AE)

Presentation

DialogKernel

DataRead (R)

ApplicationKernel

SessionControl

A
T
AT
0

Software categories

«call»

«use» «use»

«call»«call»

«call»

«call»

«call»

«call»

«create»

«create»

«call»

«call»

Figure 3. The Quasar client architecture based on [16].

186

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In detail, DialogEvent is called by the Presentation
whenever the DialogKernel has to be notified of an event
relevant for application logic processing, e.g., a command
button like OK or a search for available data was initiated.
The Quasar client foresees two options for data
synchronization. This communication step is essential, since
both components possess different knowledge, and thus,
work with different data structures, what is marked by the
different software categories. Either the Presentation could
read current data via DataRead or the DialogKernel would
update the Presentation by the means of DataUpdate. This
design shall decouple the application logic from technical
aspects found inside Presentation and its interfaces for
interaction with the current GUI Framework.

Thirdly, aspects that are concerned with surrounding
components are also described with the Quasar client. These
are interfaces dealing with the construction, deletion of
dialog instances (DialogActivity) and reporting of results
(DialogCompletion). Furthermore, a DialogKernel can
register for notification (ApplicationEventsRegistration)
about events (ApplicationEvents) originated from
ApplicationKernel. To create value relevant for business
logic, the interface ApplicationKernelService is called by the
DialogKernel. There are more interfaces available for the
coordination of transactions and the checking of permissions
via an authorization component. For more details, interface
specifications and a dynamic view on the architecture, please
consult [2].

III. GENERAL GUI RESPONSIBILITIES MODEL

A. Problem Statement

As we learned from the introduction, standardized GUI
architectures are not available, so that custom architectures
prevail. Accessible architecture sources remain only as
references to be adapted to specific requirements besides
standardization efforts. The basic GUI patterns and the more
detailed Quasar client reference architecture are too abstract
and general to describe detailed responsibilities required for
implementation purposes. Hence, our conclusion from
Section II is that developers have to select and always adapt
a MVC or other GUI architecture pattern variant suitable for
their domain.

Although the available sources will not model an
extensive set of GUI responsibilities, they provide a basic set
of tasks and associated components. A closer examination of
given sources proved that they may complement each other,
as some sources are more focused on certain responsibilities
than others. A common intersection of responsibilities can
easily be found. However, it is challenging to enhance this
intersection in order to obtain an almost complete set of GUI
responsibilities.

Finally, those GUI responsibilities have to be modeled in
a systematic way, but independently from any specific
pattern or framework. The target architecture for UIPs has
yet to be created and it would be of little use to modify
existing architectures without having identified the
prevailing design issues. In addition, the influence of UIPs
on the target architecture and these issues can only be
understood when a complete set of GUI responsibilities was
identified.

The software categories of Quasar, which were
introduced in Section II.C, can serve the purpose of
modeling the GUI responsibilities, since they were invented
to model the occurring concerns of a system’s architecture
prior to the identification of components. In the following
section, we will review this concept.

B. Quasar Software Categories Reviewed

We found that the concept of the Quasar software
categories is ambiguous. They promise to be an instrument
for component identification and quick software quality
assessments. Nevertheless, they were not provided along
with a clearly defined method for their proper definition or
application.

Relationships. The software category types defined by
Quasar can be applied for the very basic valuation of
architectures, since they symbolize a very rudimentary
separation of concerns between neutral (0), domain (A) and
technical related (T) as well as mixed domain and technical
(AT) concepts. Figure 4 displays those basic categories and
their relationships. The dependencies in Figure 4 symbolize,
which specialized category is derived from a more basic one.
In this regard, 0 software is the parent category to be used for
the composition of every other category. The elementary
data structures and operations of 0 software are used to form
other and often more complex data structures with their
specialized operations that are unique in their purpose, which
designates their final categorization.

Refinement. The further and project relevant refinement
of the basic categories A and T will eventually lead to a much
more powerful representation of design criteria like cohesion
and coupling or design principles like modularization as well
as hierarchy. During refinement each category will
symbolize a certain concern of system. In this regard,
“concerns” represent heavily abstracted requirements and
related functions. Siedersleben [16] states that each software
category ideally acts as a representative for a certain
delimited topic. Consequently, the preparation of
components with the aid of software category trees shall help
to create high cohesive and encapsulated design units.

Complexity. By refining parent categories, a number of
child categories are created that directly depend on each
parent category and implicitly take over the dependencies of
their parents. Following that way, it is ensured that every
category may access the basic programming language
facilities modeled by the 0 software category. Moreover,
Siedersleben [16] speaks of complexity when refinements
are created. It is obvious that refined categories truly create
more complex units of design, since they potentially contain
or access their own knowledge with the addition of all
ancestor parent categories.

cmp Quasar basic categories

0

A T

AT

Figure 4. The basic software categories of Quasar [16].

187

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Traceability. On that basis, refined software categories
can be used to judge the purity of traceability-link [19][20]
targets, meaning that these artifacts will be examined with
respect to their responsibilities. When a target is made up of
a mixed category, in the worst case AT, then it will be
considered either as a model lacking detail or a design that is
harder to maintain, since the developers will eventually
separate the concerns during implementation by themselves.
The latter is a major aspect besides the identification of
potential components; that is why we consider software
categories as a relevant marker.

In sum, software categories can be useful to reduce the
complexity while tracing requirements to design: the
categories could be kept in order to mark certain design
elements inside traceability-metamodels, which are outlined
in [20]. Thus, the general or refined responsibilities of design
elements will be visible, so traceability-link targets can be
more detailed and better differentiated.

Problems. A major problem lies in the definition and
segregation of software categories. It was not clearly defined
what elements drive the creation and delimitation of a
software category. According to known sources [16][21],
this might either be specialized knowledge how to handle
certain algorithms and data structures or dependencies of an
entity.

Moreover, there are only few examples [16] that explain
the proper usage of the software categories. The related
sources about Quasar [2][38][40][41] only use the basic
software categories to mark components, but do not establish
a category tree with refinements like this is done for a card
game in [16].

Lastly, there exists no standard modeling concept for the
software categories of Quasar. This issue could be regarded
as a problem in analogy how to model architectures or
identify classes. One could imply that the software categories
miss comparative hierarchical concepts for their modeling
like they are available for common design of architectures:
architectural styles drive the identification of components.
The inner design of greater components can be guided by
selected architectural patterns (MVC can be given as an
example). Consequently, the patterns with their defined roles
drive the identification of classes and the latter serve to
instantiate needed objects. However, nothing comparative is
mentioned by available sources about the software categories
of Quasar.

In sum, missing aspects for software category modeling
are the following:

• Software category definition and delimitation,

• Software category identification approach,

• Software category standard modeling levels or style,
arrangement for ease of readability or understanding

In the next sub-section, we will try to resolve these issues

of software category modeling as far as our gathered
knowledge and experience on this concept will guide us.

C. Rationale on Software Category Modeling

In this section, we will have to cope with the previously
described problems of the software category modeling. We

will have to find a way how a fine-grained responsibilities
model based on the software category instrument suggested
by Quasar can be established.

1) Software Category Modeling Purpose

The software categories are intended to refine tasks and
document gaps left open by the available patterns. According
to the Quasar rules and ideals [16], the category model to be
created will represent a model with least coupling and
cohesive elements that allows for planning dependencies
among potential units of design. The categorization will be
used in analogy to the suggested identification of
components [16]; this step is essential to maintain separated
concerns between identified responsibilities. Thus, the found
responsibilities can be re-allocated during the development
of a target architecture for UIPs or for solving common GUI
design issues, but their separation can be maintained for a
gain in software architecture quality and interface design
with least coupling.

2) Software Category Modeling Levels

Quasar examples. With the given explanations, the
software categories’ scope remains vague. Therefore, we
analyzed the provided example software category trees in
reference [16]: on the one hand, some trees model abstract
concepts like GUI, Swing and data access. On the other
hand, the categories are applied to express certain component
instances of a particular sub-system, as this is shown for an
application kernel component dedicated to services a book
library would offer.

From these examples, we conclude that a category tree
can be situated on two principal levels of refinement: a
software category tree that models abstract concepts and a
tree, which is used to represent certain instances of a chosen
concept of the former, are to be differentiated.

Abstract concept tree. The abstract description level is
used to identify the general areas of knowledge that occur in
a system and its components. This category tree is an
abstract view on responsibilities that we understand as the
arrangement of meta-types, which are permitted to occur in a
system. So, the software categories on that level determine
what type of tasks or sets of responsibilities are to be
considered. Each set of responsibilities will correspond to a
certain component stereotype. We understand that level of
modeling in analogy to the object-oriented (OO) class
concept: software categories model meta-types for design
units to be identified. As OO classes determine what kind of
objects can be instantiated, the software categories establish
the types of design units, which define the software
architecture’s structural components.

The software categories of the abstract level are derived
from the two basic categories A and T, and thus, the
fundamental areas of knowledge of domain specific logic
and technical interactions within the software architecture.
Figure 5 illustrates an example for an abstract software
category tree and its meta-types. Each meta-type expresses a
set of tasks or responsibilities like this is the case for
categories like GUI dialog component, Application kernel
component and File system persistence, which express that
layers or even components fulfilling the general task of
proving application logic, a graphical user interface and file

188

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

system based access will be present in the system. This kind
of modeling of software categories can be understood as
principal or general architecture modeling where the required
layers and major component types are identified. In other
words, the abstract software category tree answers the
following question: what layer, component or other types of
design units do occur in a system?

 The sub-categories of the meta-types will be the actual
layers, components, classes, and operations depending on the
chosen detail in the hierarchy of modeling. According to
traceability concepts mentioned in the previous section, the
meta-types symbolize traceability-link targets in a
taceability-metamodel: these are the principally allowed
target types. For instance, a primary and simple distinction
based on Figure 5 can be made between application and GUI
components. So, requirements can either be associated to one
of each type. This distinction is rather simple, but more
effective than just allow the requirements to be traced to any
arbitrary design entity. Another example can be derived from
Evans’ [22] domain model stereotypes. He identified
concepts like services, entities, factories and value objects.
These are abstract, but more concrete than arbitrary design
units, and could be modeled in a software category tree as
meta-types. Any other pattern type that has distinctive roles
and their tasks described could be modeled with an abstract
software category tree. In this regard, patterns with their set
of characteristic classes can fill the gap that exists between
components and bare classes: with the aid of software
categories they permit the modeling of collaborations.

The sole modeling of one pattern makes little sense as the
pattern’s own description would suffice and most likely
would be more detailed rather than a corresponding software
categories tree. However, the modeling of system specific
meta-types and the integration of patterns could be
beneficial. Thereby, the categories would express the sum of
all potential instances and the fact, that a certain pattern is
present at a certain level in the systems’s hierarchy of needed
or allowed software categories. In addition, the software
categories could be used to arrange a certain pattern and its
roles in order with the existing hierarchy of design units. As
result, the single roles or elements of a pattern do not need to
be allocated to a fixed design hierarchy level like OO
classes; they could be assigned to components as well.

cmp Abstract categories

0

A T

Application kernel

component

Java Swing

GUI

File system

persistence

GUI dialog

component

Model

View

Controller

Figure 5. An example of an abstract software category tree.

This approach could be used for the refinement or even the
combination of several patterns to structure a custom
hierarchy or collaboration of classes.

For the sake of the example, Figure 5 was detailed with
the categories Model, View and Controller to express that the
MVC pattern (see Section II.A) will be applied in this
system. In addition, the influences for that specific pattern
application were added as dependencies among the software
categories.

Accordingly, the View will be determined both by
knowledge how to build visual forms with Java Swing GUI
and how to properly access (assignment of data to UI-
Controls in the correct order) the business data provided by
the Model. In addition, View is implicitly determined by
knowledge about the system’s GUI specification with
required layouts for certain functions or use cases
represented by the GUI dialog component category. By
maintaining the dependency to the Model, the View
implicitly is connected to the parent categories including
GUI dialog component on higher levels up to the basic 0
category, which is needed for the realization of every
software category. Moreover, the Controller category is both
influenced by the Model and View category: to perform data
changes and coordinate application service calls, the
dependency or knowledge of the Controller category must
span the Model internals. The dependency on the View
expresses that the Controller has to know about the View’s
structure or state to be able to request a proper change of the
current screen layout or react on a certain UI-Control event
trigger. The knowledge on Java Swing GUI, which is
required for the Controller to be able to implement GUI
framework specific event listener interfaces, is incorporated
implicitly with the dependency on the View category.

However, this example points out what difficulties may
occur by the integration of GUI or architectural patterns in a
custom component architecture. Foremost, the three
categories Model, View and Controller symbolize rather
abstract concepts as they are described by the sources
mentioned in Section II.A. More details about these three
stereotypes have to be revealed in order to prepare the
derivation of system specific instances and their
implementation. Therein the difficulties are situated, whilst
there is no consensus about the further refinement of each
category or pattern role. Since acclaimed sources [3][18][32]
do not provide sufficient details for current requirements,
several different refinements [4][10] or interpretations for the
MVC exist that result in varying dependencies and may
differ from our example in Figure 5. Thus, the inner structure
of each MVC category is not clearly determined and may
vary as well. So will be the final quality of architecture and
the separation of concerns depended on individual
refinements. We could further detail each MVC category to
achieve a clear distribution of responsibilities and guide the
identification of smaller design units such as interfaces,
classes and operations. This step can be quite helpful, since
components are the ordinary corresponding unit of design for
software categories [16], but these units are to be assigned to
available programming language elements. Common
programming languages do not feature a component as a unit
for implementation after all.

189

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cmp Instance categories

Application kernel

component

Book catalog

Customers

Fees

Lendings

Book inventory

Figure 6. An example software category tree derived from [16] displaying

identified components on the basis of a meta-type software category.

Refined software categories on the basis of certain class
collaborations provide a modeling level in between and may
fill the gap.

Instance tree. A second modeling level of software
categories can be applied on the basis of the abstract concept
tree. When the meta-types have been identified, the system
specific instances or actual components or even classes need
to be identified based on the found categories.

For instance, a software project would need 20 dialogs to
appear in a system, which would contain 30 View instances,
since 10 dialogs each would require two separate Views.
These categories with their scope set to instances resemble
concrete traceability-link targets in a project that are part of
certain associations or dependencies.

Figure 6 displays an example based on Figure 5 where
the abstract meta-type category Application kernel
component was detailed with five needed instances as sub-
categories. One could insert a suitable pattern for Application

kernel component in Figure 5 like this was done for the
MVC. Maybe Evans’ domain concepts [22] could detail the
Application kernel component as mentioned above, but this
would alter the level of detail of Figure 6 as well.

It is obvious that the relationships of Figure 6 are rather
simple and stereotype. We are inclined that the instance
categories may introduce relationships among each other and
eventually alter the dependencies inherited from the abstract
parent software category. But these considerations are out of
the scope of this work.

Summary. We outlined how the software categories of
Quasar can be used to describe patterns in more detail or
independently describe their responsibilities. We will tend to
the described pattern refinement problem, and so, follow a
similar way as seen in Figure 5. Our idea is to compose the
GUI responsibilities from several sources at once and make
use of an abstract software category tree to arrange them in
an appropriate way. So, the categories will serve as the
means for structuring, grouping and proper separation of
responsibilities.

3) Software Category Identification Approach

We seek to establish a basis for the responsibilities that
are regularly discovered in a GUI architecture. Our approach
is depicted in Figure 7.

In detail, we will rely on four different kinds of sources
and analyze them to identify the GUI responsibilities:

cmp Classic MVC

Model

Notification

DataRead

Observer

View

Controller
DataEdit

«ca ll»

«call»

«call»

«call»

req U ser In terface Pattern s Infl ue nce factors

UIP

de finition
View
aspect

Interactio n
aspect

Hiera rchi cal c ontrol fl ow for UIP co mpo si tio ns
C ontro l

a spect

Da ta-binding

Configuration o f U IP contex t a t design-timeR eusabil ity
of U IPs Vari ability o f

UIP

instances

Structural

composition
abili ty

Acc eptance of
data types

A da ptabili ty

o f view
structure

Behavi oral
composition
ability

Visual el ement structur e definitionVi sual element structure states definition

Intercommuni cation eve nts definition

Sty le defi ni tio n

La yout definiti on

Encapsula tio n of UIP ar tifacts

Dia log action-binding

C onfig ura ti on of UIP co ntext at run-ti me

C onfig ur ati on of UIP
i nsta nc es

Presenta ti on action-binding

View
definiti on

V iew
v aria bi lity

para meters

Enumer ati on of elements

Orderi ng of eleme nts

N aming o f elements

La yout pl acement of elements

Styl e customi zati on of elements

Adaptio n o f presenta ti on contro l in

correspondence to a ctual visual structure

cmp GU I Software C ategori es

TA

View

Definition

Presentation

Event Handling

Presentation
(FUI)

Arrangement of

UI-Controls

Layout

Definition

UI-Control

Configuration

View State
Changes

Construction of

UI-Controls

Re-Arrangement

of UI-Controls

Technical Data

Models

Model Data
Edit

Modification of

UI-Control Properties

Addition and Removal of

UI-Controls

Dialog Logic

Data

Validation

Application
Logic

Application

Server Calls

Dialog

Navigation

Dialog Data

Model

Dialog Lifecycle

Actions

GUI

Framework

UI-Control

Library

Layout

Manager

Event

Forwarding

Action

Binding

Dialog Event

Handling

Domain Data
Model

Data Types and

Validation Rules

Data

Conversion

0

Construction and

Configuration

UI-Control

PropertiesPresentation

Data H andling

Model Data
O bserverData

Quer ies

Application
Services Event Listener

Definition

Dialog State

Changes

Presentation

State Update

Data

Display

View
Navigation

Dialog Logic
Construction

P resentation

Construction

Figure 7. Process applied for the derivation of GUI software categories.

relevant responsibilities will be derived mainly from related
work about patterns and reference architectures; considered
sources are references [3], [4], [5], [6], [7], [8], [10], [14],
[15], [16], [18], [29], [31], [32], [33], [34], [35], [36], [37]
and [38]. In addition, we rely on more sources not described
in this work: we use sample dialogs, consult the UIP factor
model [42] and integrate own experiences from software
development projects.

In fact, we do a decomposition of GUI architectures to
rather atomic object types, related operations and nested
object types. These entities will be separated and delimited in
order to establish a unique software category tree. We
examine, what can be solved with 0 or A software and what
concerns are definitely dependent on GUI framework code
(T software). Finally, the found responsibilities will be
assigned to individual software categories, which will be
used according to the rules of Quasar to synthesize an
abstract software category tree displaying GUI architecture
responsibility concepts.

Basic software categories. As the software categories
are not clearly defined in original sources, we will have to
point out how to create new and delimit existing software
categories.

On the root level, we will comply with Quasar and use
the basic categories 0 (white), A (light grey), T (medium grey
with white caption) and AT (dark grey with white caption).
The basic category Construction and Configuration was
added to represent the creation of new objects as well as the
configuration of interfaces with implementing objects.

On the next level, layers and technological boundaries of
the application architecture are represented. With that step,
the main ordering concept of the analysis in the middle
column of Figure 7 is established. Finally, the main layer
categories Application Kernel, Dialog Logic, Presentation
were identified as A category children, since they depend on
the individual domain-specific requirements of a software
system. Moreover, Presentation and Dialog Logic were
separated as software categories according to the event
processing chain of Figure 2.

Category identification. As the tree gets more detailed,
software categories will become very fine grained and
embody components, collaborations, classes or even
operations. Since the categories can distinguish components
and their dependencies, they could be applicable for the
delimitation of the smaller units of design, too.

190

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To identify each of the refined categories, we applied
several rules of thumb. During the analysis of GUI
architectures and patterns, we derived categories from the
different families of operations that regularly occur in the
scope of certain units of design. In general, these were the
definition or modification of object types or their data types,
event triggering or processing, as well as forwarding of both
data and events. These kinds of operations occur for different
layers like technical or application related objects of general
GUI pattern components that are common for MVC or the
Quasar client. The different layers symbolize certain levels
in the software category tree and were derived from
reasonable abstractions like application logic, presentation
logic and presentation technology. These layers should help
us to prepare a coarse-grained order principle of GUI
responsibilities and let us establish a high level
categorization. The applied layers are partially related to the
ones outlined in [10]. We alter and extend the given
description. The layers will be explained in the following
listing:

• Application logic: The objects and operations are
dedicated to realize the core functional requirements
of a business information system.

• Presentation logic: This layer is settled in-between
the two other layers. So, it resumes tasks that cannot
clearly be assigned to one of the other layers. These
tasks include the handling of states that affect the
visual appearance and navigation among different
screens or dialogs. Furthermore, the logic that
determines what application logic calls are
appropriate in a certain state or how data states
influence the screen layout and its UI-Control states
is realizes in that layer. In sum, it couples application
logic and presentation technology layers to create a
seamless flow of interaction. This is done by
translation of events emitted from presentation
technology to application logic services and data
changes. Changed data has to be reflected on the
presentation technology layer; hence the presentation
logic has to initiate a respective update of the
presentation technology layer. Basically, this layer
addresses the need that the different components on
the various layers do influence each other with their
internal state changes as this is described by
Karagkasidis [10].

• Presentation technology: Both GUI framework and
system objects are combined to create or alter the
views and visual effects of a GUI for displaying data
and interaction facilities. The visual states are
implemented with that layer’s objects and
operations, but its tasks do not include the logic
required for deciding what state is appropriate in a
certain situation. In addition, the reaction to user
inputs and the activation of event processing are
further tasks of that layer.

For each of the layers, we distinguished the belonging

operations and data structures according to the knowledge
and types required for their processing. When operations
demanded for the usage of certain types in a context that was

not in scope of the originator then categories were definitely
of a mixed kind. In contrast, categories were left pure when
interfaces using neutral 0 or A types could be used for
delegations. A hint close to implementation considers what
would be the import declarations in a unit of design with
respect to Java language. If the import was based on
interface types using neutral 0 types, the category would
remain pure. The software category would be mixed, if the
imports will demand for the addition of types defined
exclusively in the imported unit of design.

These considerations led us to finding software
categories on different levels of an abstract software category
tree; it also inspired us to establish a clear definition of
software categories that is presented in the following sub-
section.

4) Software Category Definition and Delimitation

So far, the fundamentals surrounding software categories
were described. It is still to be declared what are the concrete
contents of a software category. This aspect is essential to
describe each software category’s individual details and to be
able to delimit them.

However, the clarification of software category contents
is not supported by available sources. Therefore, we derived
certain dimensions that exist in a hierarchical order of
dependency. These dimensions outline the contents of one
specific software category. Figure 8 illustrates what
dimensions define the knowledge that resides inside software
categories. The following paragraphs will explain each of the
dimensions.

Specific content. Each software category is dedicated to
a specific topic or area of knowledge. All sub-ordinate
dimensions depend on the choice of that content. Thus, the
dimension acts as a filter to permit the inclusion or exclusion
of certain Contained entities, what Type of operation is to be
performed with them, and finally, what Knowledge must be
possessed for the implementation or usage of defined
operations.

Figure 8. Software category definition via successive dimensions.

191

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For instance, the software category Java Swing GUI of
Figure 5 permits the containment of every class of the Java
Swing GUI framework and all basic Java foundation classes
that can be assigned to 0 Software further upwards in the
tree.

The expression of that dimension can hardly be formal. A
semi-formal approach may be established by assigning
certain requirement models as the specific content.

Contained entities. This dimension determines what
object types or units of design are to be considered inside the
software category. Two particular cases are to be
differentiated: in the first case, a software category may
introduce and define specific units of design. These originate
from and exist in the scope of that particular software
category. In the other case, the software category is
referencing entities or units of design that originate from
other software categories and are not defined inside the
current software category. This case often occurs for the
import of interfaces connecting different components or
classes or for the incorporation of foreign data structures.

The entities may consist of layers, components,
interfaces, classes or even smaller units of design. It largely
depends on the hierarchy level the software category resides
on. To constrain the set of entities the first dimension puts up
a global limitation for the software category. The scope of
topics, and so, the number of contained entities differs
greatly with respect to the given software category hierarchy
level. Thus, the concept of software categories follows a
hierarchical de-composition downwards the tree. It is of the
essence for each architect to find a suitable level for detailed
modeling to achieve proper cohesion and no coarse or too
fine-grained units of design.

Besides, the second dimension affects the third
dimension in a way that objects and data structures both for
calling (allowed parameters) and implementing (interfaces
and data structures) operations are defined. According to the
refinement of software categories, the dependencies of the
current software category express that all Contained entities
from the previously defined parent categories are implicitly
contained as Referenced entities.

With the given definition of the second dimension a
software category may formally be defined by the entities it
contains or references.

Type of operations. The next dimension is concerned
about the general type of operations performed with the
previously Contained entities. There are various options:

• Creation: Entities are created with the knowledge of
the software category. Additionally, the entire
lifecycle of entities may be governed.

• Implementation: Interfaces required to interact with
certain entities are implemented. These can be call-
back interfaces that are typical for the event listeners
of GUI frameworks. Furthermore, interfaces can be
defined by superior entities that need a certain set of
operations to be implemented by lower situated
interaction partners.

• Calls / delegations: Operations of other entities are
called and the control is passed on to them.

• Control: Other entities are called with their
operations but the control remains inside the
software category. This kind of operation is applied
in order to coordinate a flow of operations or events.

• Algorithms: Domain specific calculations are
performed or technical routines activated. The
results are obtained from the knowledge present in
the software category or are gathered from
Referenced entities operations that may eventually
be used for enhancement or aggregation.

Depending on the type of operation combined with the
considered entities, the software category type, its purity or
coloring may change. For instance, the Controller of Figure
5 is no pure category, but of a mixed type, since it controls
both the appearance of the View (compare ChangeView
interface of Figure 1) and simultaneously coordinates calls to
the Application kernel components (compare
ApplicationKernelService interface of Figure 1). So it must
possess knowledge about both topics at once. In addition, the
Controller has to implement event call-back interfaces that
are referenced within its scope but are defined in and
constitute parts of other software categories like Java Swing
GUI.

Both the second and third dimension can be sharply
determined and delimited by enumeration of entities and
operation types performed with them. Therefore, the two
dimensions together represent the formal part of a software
category’s definition.

Knowlegde of operations. This final dimension
expresses the proper moment in time and purpose of a
contained operation inside the software category. Essentially,
it represents the proper sequence, atomic steps and meaning
of operations. This knowledge combined with the definitions
of the previous dimensions embodies the ability to finally
implement the operations of a software category.

D. Graphical User Interface Software Category Model

In this section, we will apply the approach presented with
Figure 7 before we describe the GUI software category tree.
Hence, the following sub-sections will analyze the
responsibilities covered by GUI architectural patterns and
their sources introduced in Section II. We will begin with the
MVC and its variants, which is followed by the analysis of
the Quasar client.

1) Analysis of the Model View Controller

Responsibilities

The responsibilities described by the MVC pattern and its
variants are summarized in TABLE I. Please note that the
sources for the different MVC responsibilities are not
completely mentioned; only the primary or sources with
significant descriptions of these responsibilities are
considered. Moreover, the assignments of operations may
vary due to several MVC design options, which are
exemplarily described in [4] and [10]. Our scope is the
completeness of responsibilities and not the display of
different design options.

192

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Analysis of the Quasar Client Reference Architecture

Responsibilities

Compared to the previously illustrated MVC
responsibilities, the Quasar client includes many of these but
considerably adds detail concerning the presentation logic

and application logic layers. According to Siedersleben [16],
the Quasar client compares to MVC as follows: the View is
contained in the Presentation.

TABLE I. MODEL VIEW CONTROLLER PATTERN RESPONSIBILITIES.

Pattern role Responsibility Operations Defined / referenced entities Layer

stores business data [18][31],
provides results of data queries or
intermediary object data [31]

read model data,
change model data

Defined / referenced:
data read and write interfaces for business objects and data
types, aggregates or selections of business objects and their
attributes (intermediaries [31])
(Inclusion or references depend on the realization of the
model as a part of the application / business layer or as a
separate unit of design.)

application
logic

validate data [4][35],
provide additional information for
visual interpretation of data [15]

validate data,
read data interpretation
information

Defined:
data interpretation information
Referenced:
business data types and validation information

application
logic

provide an interface for calling
application services [18]

call application service Referenced:
application services,
business objects and data types as parameters

application
logic

register observers to be notified
upon data changes [18]

register observer,
deregister observer

Defined:
list of observers
Referenced:
observer interface

presentation
logic

Model

notify observers about data changes
[18][31]

notify observers Defined:
setChanged interface
Referenced:
observer interface

presentation
logic

display data, information and
functions [18][31],
arrange screen layout [31][15],
visually interpret data [15],
highlight validation errors

display initial screen,
change screen layout,
read model data,
interpret model data

Defined:
possibly specializations of GUI framework classes (may be
used for data interpretation)
Referenced:
UI-Controls and layout managing facilities provided by the
GUI framework,
model data

presentation
technology

update data display [18] read model data,
update UI-Controls

Defined:
update display interface
Referenced:
UI-Controls provided by the GUI framework,
model data

presentation
technology

transform business data to technical
GUI data model [31][35][16]

read model data,
transform data

Referenced:
model data,
UI-Control data models required by the GUI framework

application
logic,
presentation
technology

create corresponding controller [18] create controller Referenced:
associated controller

presentation
logic

register as observer of the model
[18]

register observer,
deregister observer

Referenced:
model observer interface

presentation
logic

View

composition of hierarchical views
[18][10]

create sub-view Referenced:
subordinate views,
UI-Controls provided by the GUI framework

presentation
technology

receive and react to user input
[18][31]

handle event Referenced:
event listener interface provided by the GUI framework,
possibly view’s UI-Controls to determine event source and
react differentiated

presentation
technology

translate events to service requests
of either model or view [18][31]

call model service,
change model data,
call view display update

Referenced:
model service interface,
model data interface,
view state change interface

presentation
logic,
presentation
technology

register as observer of the model
[18]

register observer,
deregister observer

Referenced:
model observer interface

presentation
logic

Controller

update upon receiving notification
from model [18]

update controller state,
update view state

Defined:
update controller interface
Referenced:
view state change interface,
model data

presentation
technology,
presentation
logic

193

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. QUASAR CLIENT REFERENCE ARCHITECTURE RESPONSIBILITIES.

Pattern role Responsibility Operations Defined / referenced entities Layer

display data, information and
screen layout, provide a proper
localization

display initial screen,
change screen layout (DP),
read dialog data (R)

Defined:
possibly specializations of GUI framework classes
(may be used for data interpretation),
presentation data model
Referenced:
UI-Controls and layout managing facilities provided
by the GUI framework,
dialog data model, localization data

presentation
technology

react to user input handle presentation event (PE) Referenced:
event listener interface provided by the GUI
framework

presentation
technology

forward events to dialog kernel
when events are out of
presentations’ scope, attach event
data

forward dialog event (DE),
forward event data

Referenced:
dialog event interface,
presentation data model

presentation
logic

update upon receiving
notification from dialog kernel

update presentation state (SY) Defined:
presentation data model,
update presentation state interface
Referenced:
UI-Controls provided by the GUI framework,
dialog data model

presentation
technology,
presentation
logic

control presentation states and
trigger changes in screen display

change presentation state Defined:
presentation states
Referenced:
UI-Controls and layout state,
presentation data model

presentation
technology,
presentation
logic

transform dialog data to
presentation data

read dialog data (R),
transform data

Defined:
presentation data model
Referenced:
dialog data model,
UI-Control data models required by the GUI
framework

application
logic,
presentation
technology

Presentation

validate input data to ensure
proper formats are entered by the
user

validate presentation data Defined:
presentation data model
Referenced:
business data types and validation information

application
logic

handle dialog events,
control dialog states and dialog
lifecycle

forward dialog event (DE),
change dialog states,
close dialog,
open sub-dialog

Defined:
dialog states model
Referenced:
sub-dialogs

presentation
logic

control data states and retrieve
data from the application kernel

ApplicationKernelService (AF),
update dialog data model,
update dialog state

Defined:
dialog data model
Referenced:
application data model,
application data queries

presentation
logic,
application
logic

notify presentation about data
changes

update presentation state (SY) Referenced:
update presentation state interface

presentation
logic

translate events to service
requests for the application
kernel

ApplicationKernelService (AF) Defined:
dialog data model
Referenced:
application kernel service interface,
application data model

application
logic

update upon receiving
notification from application
kernel

ApplicationEvents (AE),
update dialog state,
update dialog data model

Defined:
dialog data model,
dialog states model,
ApplicationEvents interface

application
logic,
presentation
logic

register application kernel as
observers of data or state changes

ApplicationEventsRegistration
(DA)

Defined:
ApplicationEventsRegistration interface
Referenced:
ApplicationKernelService interface, list of observers

application
logic

Dialog

kernel

validate dialog data before
calling application kernel
services

validate dialog data Defined:
dialog data model
Referenced:
application data model,
business data types and validation information

application
logic

Dialog

manager

control the lifecycle of the dialog
composition

create and close dialog kernel,
create and close presentation

Referenced:
associated dialog kernel and presentation

presentation
logic

194

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Controller tasks are shared among Presentation and
DialogKernel; they implement different control facilities
with respect to their individual scopes (presentation
technology and presentation logic). Lastly, the Model is
realized by the data models of Presentation and
DialogKernel.

In TABLE II, the responsibilities of the Quasar client,
which we could reveal from references [2][14][16], are
presented. Please note that Siedersleben mentions several
design options in reference [16] that affect the
communication between Presentation and DialogKernel
(Figure 3). We based our description of the responsibilities
on the architecture diagram of Figure 3; the displayed
interfaces were considered in TABLE II accordingly.

3) Synthesis and Description of the Graphical User

Interface Software Category Model

The resulting software category tree is depicted in Figure
10 and will be developed in the following paragraphs. It has
to be considered that the software categories do model
dependencies between units of design and no flow of events
or algorithms. Although there will be interfaces between
software categories for later implementation, these cannot be
illustrated by the software category tree but can be later on
determined concerning the possible type.

Principal units of GUI design. To clarify what units of
design will be considered for a GUI system, we consulted the
directions given by related work. Our findings were that
MVC patterns often relate to single Views that model the
visual display for a certain state of data or processing. In
contrast, the Quasar client considers Dialog units that
comprise of visual and logic components. Additionally,
Dialogs feature an own life cycle and can activate or de-
active each other, so that a flow of Dialogs and
corresponding presentations or Views is established.

For a general GUI responsibilities model and its possible
practical applications, the given definitions of both MVC and
Quasar client were not entirely sufficient. As far as the
Quasar client [16] is concerned, the relationship between
input masks (or views) and dialogs is not entirely clarified,
so that we received the impression that each Quasar client
Dialog (Figure 3) is expected to have only one dialog data
model and one Presentation (Figure 3) unit. As a
consequence, we incorporated the following enhancements
in the hierarchy of GUI design units:

A Dialog corresponds to one or more Use Cases of the
system requirements specification and may be associated
with several follow-up dialogs or auxiliary dialogs [16]. To
provide data for display, processing and storing user inputs,
each Dialog unit contains a Dialog Data Model. This model
is closely related to the data requirements of the realized Use
Cases. To be able to present several Use Cases steps
individually or partition data among several views, each
Dialog is associated with one to many Presentation units,
which realize the corresponding display of a given Dialog or
Dialog Data Model state.

From our experience, it is reasonable to keep dialog data
and consecutive user interaction steps with several different
displays together in one GUI design unit.

cmp GUI design units

Dialog

Use Case

Presentation

Sub-Dialog

included Use Case

extending Use Case

Dialog Data Model

11

«extend»

1..* «trace»

0..*

1..*

«trace»

0..*

«include»

-main dialog

1

-auxiliary dialogs

0..*

-main dialog 1

-follow-up dialogs 0..*

-Dialog Logic

1

-Views

1..*

1

«trace»

1..*

Figure 9. Principal units of GUI design and their requirement sources.

For instance, a Dialog may consist of a Dialog Data Model
with several objects that cannot be displayed with one single
window. Accordingly, the data is structured among several
Views, which can be realized with different tabs of one
window or with several windows. That is why each Dialog
may reference several Presentation units, which serve as
different Views (Figure 1) with their sets of UI-Controls and
layout definitions. Accordingly, the user may proceed with
required Use Case interaction steps straight forward or may
return to previous steps in order to revise inputs. The data for
all steps is kept together in one Dialog unit and its respective
Dialog Data Model. Therefore, the communication needs
between Dialogs concerning data exchange is reduced to a
required minimum.

Furthermore, a Dialog may reference Sub-Dialogs that
are closely related to either included or extending Use Cases.
For instance, a search for certain objects can be added to
some Dialogs as a Sub-Dialog to support the user during the
selection of relevant data (included Use Case) for a certain
context (Use Case). The particular search Sub-Dialog may
appear in other Dialogs as well.

Figure 9 illustrates the GUI design units and their
described relationships. The GUI design units were
identified in correspondence to the event processing chain of
Figure 2 and the basic software categories and layers of
Section III.C.3) we apply for software category modeling.
Thus, the Dialog serves the presentation logic and
Presentation is responsible for presentation technology. Both
GUI design units will lead the identification of detailed
software categories and respective responsibilities within
their scope of data and event handling.

The sub-trees of software categories illustrated by Figure
10 will be described with respect to their different scope as
follows.

Presentation layout. The categories derived from
Presentation are closely related to the View and Controller
of the MVC pattern [18] and detail both their
responsibilities. TABLE III provides a summary of the
software categories modeling Presentation layout concerns.

195

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Presentation is marked with FUI (final user interface)
[43] given that this category symbolizes the certain
knowledge required for creating the specific View part of a
given GUI system. This category is further branched into
View Definition, View Navigation and Presentation Event
Handling. The involved software categories have to comply

with project specific dialog specifications and at the same
time need to possess knowledge about the types and
operations the integrated GUI Framework offers. Hence, all
sub-categories heavily depend on technical aspects. They
each constitute a mixed category.

TABLE III. PRESENTATION SUB-TREE SOFTWARE CATEGORIES.

Sub-Category Topic Contained entities Operations

Presentation Visual parts of a Dialog that realize the presentation
technology layer.
defines interfaces used in child software categories
for construction purposes

Defined:
Presentation Construction interface,
View Definition interface,
Presentation Event Handling
interface

Abstract

Presentation
Construction

constructor of a Presentation unit Referenced:
Presentation Construction interface,
View Definition interface,
Presentation Event Handling
interface

Creation:
Presentation (View) units with their
comprising parts of View
Definition, Presentation Event
Handling and View Navigation
Implementation:
Presentation Construction interface
(activates the constructor of a View
to enable its creation along with
associated UI-Controls, layout and
event handling)

View Navigation Changes and activates the Views that can be part of
of one Dialog unit. This responsibility is essential
for Dialogs that constitute several steps with or
without different choices leading to certain Views.
Views shall be decoupled from each other to
facilitate their exchangeability and even reuse. That
is why the View Navigation interface has to be
called from outside the Presentation.

Defined:
View Navigation interface,
states or target Views for navigation
Referenced:
Presentation interface

Creation:
Creates different Views by calling
Presentation interface
Implementation:
View Navigation interface (offers
access for entities outside
Presentation to trigger View
changes)

View Definition Visual part of a View that creates and holds all UI-
Control and layout information

Defined:
UI-Control Configuration interface,
Layout Definition interface
Referenced:
View Definition interface

Creation:
UI-Control Configuration,
Layout Definition
Implementation: View Definition
interface (constructor)

UI-Control
Configuration

construction of UI-Controls, setting of UI-Control
specific properties

Defined:
possibly specialized UI-Controls
created by inheritance from the GUI
framework,
UI-Control state data
Referenced:
UI-Controls of the GUI framework
and their properties,
UI-Control Configuration interface

Creation:
create UI-Control
Delegation:
set UI-Control property
Implementation:
UI-Control Configuration interface
(creates the UI-Controls upon being
called by View Definition)

Data Display UI-Control specific display of data, interpretation of
model data [15] like coloring and highlighting of
validation errors
The dependency to the GUI framework Technical

Data Models is derived from Model Data Observer
and its parent software category Presentation Data

Handling.

Defined:
UI-Control display data (for simple
data display and interpretation of
data)
Referenced:
Dialog Data Model read interface
Technical data model interface

Delegation:
Read Dialog Data Model
Algorithm:
Interpret Dialog Data Model
Control:
change the technical data model and
associated display of UI-Controls
based on Dialog Data Model
contents and its interpretation

Layout Definition

Creates and defines the layout of the View
The category itself is abstract, so that its child
software categories do the actual implementation of
layout creation. Thus, the child categories can be
regarded as different strategies of the Layout

Definition interface.

Referenced:
Layout Definition interface,
Layout managers of the GUI
framework,
UI-Controls of the View

abstract

Arrangement of UI-
Controls

Creates the general View layout,
assigns layout to containers like panels, parts, cells
positions UI-Controls inside layout containers

Referenced:
Layout Definition interface

Implementation:
Layout Definition interface (creates
the View layout upon being called
by View Definition)
Algorithm:
create View layout with the help of
layout manager operations

196

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The View Definition category is detailed with the
responsibilities required for the initial creation of the visual
parts of a Dialog and the declaration of layout specific
elements. We separated the Layout Definition and UI-
Control Configuration as the layout aspects often involve the
usage of dedicated objects and operations that considerable
differ from the instantiation and configuration of UI-
Controls. For the reasons that events require dedicated
operations and not all created UI-Controls have to be bound
to certain events, the category Action Binding was separated
as a specialization of the UI-Control Configuration.

View Navigation enables the change of different
Presentations of a Dialog with respect to Figure 9.

Data Display was added to better reflect the visual
presentation of data, which was formerly [1] included in UI-
Control Configuration (setting properties for data values),
and includes the interpretation of certain data values as an
additional responsibility derived from [15].

Presentation event handling. The Presentation Event
Handling category serves the task to receive and evaluate
Presentation events according to Figure 2. It is branched into

Presentation Data Handling, View State Changes and Event
Forwarding. The first child handles both the reading (Model
Data Observer) and editing (Model Data Edit) of Dialog
data from the Presentation perspective. The changes in
layout, properties and arrangement of active UI-Control
instances during runtime are optional tasks that are embodied
by the category View State Changes and its children. Certain
events cannot be further processed by the visual dialog units,
so that they need to notify the next unit in the chain of
responsibility. This rationale is based on Figure 2. The
required knowledge how to react to any received events is
concentrated in Presentation Event Handling. Its child
software categories serve the above described
responsibilities on demand of the superior evaluation of
Presentation Event Handling. For instance, the decision
about what respective events are to be forwarded is made by
Presentation Event Handling and the actual forwarding
command is encapsulated by Event Forwarding.

In TABLE IV, the software categories responsible for
Presentation based event handling are summarized.

TABLE IV. PRESENTATION EVENT HANDLING SOFTWARE CATEGORY SUB-TREE.

Sub-Category Topic Contained entities Operations

Presentation Event
Handling

Event handler called by an UI-Control with active
Action Binding

This software category evaluates any incoming
events from UI-Controls and decides on a proper
reaction: Presentation Data Handling, View State

Changes or Event Forwarding are triggered. For
instance, it decides what events can and cannot be
processed by the Presentation and must be
forwarded to the Dialog Event Handling. Just the
decision is covered here, how the forwarding is
performed is in the scope of the respective child
software category.

Defined:
Event Forwarding Interface,
View State Change Interface,
Presentation Data Handling
interface,
Action Binding interface
Referenced:
Presentation Event Handling
interface

Implementation:
Presentation Event Handling
interface (constructor),
Action Binding interface (to be
notified of any event intercepted by
UI-Control Action Binding)
Algorithm:
Determine the proper reaction in
response of the received event
Control:
Activate the proper reaction
implemented by its child software
categories

Action Binding definition of various event listeners for UI-Controls
to enable a reaction to specific events
The event is just intercepted by the implementation
of the event listener interface. Eventually, the
resulting reaction is not covered but prepared with
the delegation to the presentation event handling.

Referenced:
Event listener interfaces of the GUI
framework,
Action Binding interface

Implementation:
specific event listener interfaces of
the GUI framework
Delegation:
call Action Binding interface to
notify Presentation Event Handling
about user inputs

Event Forwarding forwards events to the Dialog Event Handling Referenced:
Event Forwarding interface,
Dialog Event Handling interface

Implementation:
Event Forwarding interface
Delegation:
forward event (Dialog Event
Handling interface)

View State Changes Interface that permits the change of Presentation
states, which can be called by the Presentation

State Update. May be called for changes like the
activation of hidden or collapsed panels.
The possible states a View can adopt are modeled
by this software category.

Defined:
Interfaces of child software
categories (Re-Arrangement of UI-
Controls, Modification of UI-
Control Properties, Addition and
Removal of UI-Controls),
View state model
Referenced:
View State Change Interface

Implementation:
View State Change Interface
Control:
Call appropriate child interface to
enable the appropriate change of
visual state

Re-Arrangement of
UI-Controls

Change the position of UI-Controls inside the View
layout on request of View State Changes

Referenced:
Re-Arrangement of UI-Controls
interface

Implementation:
Re-Arrangement of UI-Controls
interface
Algorithm:
alter View layout with the help of
layout manager operations

197

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Sub-Category Topic Contained entities Operations

Modification of UI-
Control Properties

activate, hide, or change UI-Controls in size, color
or any other visual property on request of View

State Changes
May be called when data validation failed or new
data state requires the update of particular UI-
Controls only. In addition, UI-Controls can be set to
be read-only when no further editing shall be
permitted.

Referenced:
Modification of UI-Control
Properties interface,
UI-Control state data,
UI-Controls of the GUI framework
and their properties

Implementation:
Modification of UI-Control
Properties interface
Delegation:
set UI-Control property

Addition and
Removal of UI-
Controls

change the set of active UI-Controls of a particular
View on request of View State Changes
UI-Controls may be added or removed as a result
depending on the current data state or events
evaluation.

Defined:
possibly specialized UI-Controls
created by inheritance from the GUI
framework,
UI-Control state data
Referenced:
Addition and Removal of UI-
Controls interface,
UI-Controls of the GUI framework
and their properties

Implementation:
Addition and Removal of UI-
Controls interface
Creation:
create UI-Control,
delete UI-Control
Delegation:
set UI-Control property

Presentation Data
Handling

event handling that is only concerned about data
changes and storage from the Presentation point of
view

Defined:
Model Data Edit interface,
Model Data Observer interface
Referenced:
Domain Data Model,
Technical Data Models of the GUI
framework,
Dialog Data Model interface,
Dialog Data Model observer
registration interface

Delegation:
register as observer with Dialog

Data Model
Algorithm:
determine proper data handling
reaction
Control:
initiate data update via Model Data
Observer interface,
Activate Model Data Edit interface

Model Data Edit changes Dialog Data Model in order to store user
inputs present in active UI-Controls

Referenced:
Dialog Data Model write interface,
Model Data Edit interface

Implementation:
Model Data Edit interface
Delegation:
change dialog data

Model Data
Observer

retrieves data from the Dialog Data Model after
being notified as observer of that model,
loads data for Presentation

Referenced:
Dialog Data Model read interface,
Model Data Observer interface

Implementation:
Model Data Observer interface
Delegation:
read dialog data

With respect to View State Changes, the Quasar client

reference architecture [16] seems to miss an interface
provided by Presentation that can be called by the
DialogKernel to trigger changes like the activation of a
dedicated panel that displays properties when the user
performs a certain selection. Reference [14] states that this
problem can be solved via an additional observer pattern
instance.

GUI Framework. As far as the GUI Framework is
concerned, we decided for the distinction of layout and UI-
Control specific knowledge or types. The UI-Control
Library implements all operations and types that are required
for the instantiation of any available UI-Control, the
modification of its properties (UI-Control Properties) and
the definition of its data content (Technical Data Models).
Often there are various data types with different complexity
associated to the available UI-Controls of a framework. They
need to be handled by the Presentation Data Handling
category in order to store and retrieve data in the specific
formats like lists, trees, text areas or table grids.

The applied branching of the GUI Framework serves the
fine-grained presentation of dependencies, so that these
model what detailed relationships the other software
categories have with T software categories.

Dialog Logic. The last main category that is to be placed
in the vicinity of a Dialog is the Dialog Logic. Software
categories that are involved in the data structure definition
and its logical processing refine the Dialog Logic. The basis

of these categories is provided by the Quasar client [2][16]
and the Model part of the MVC pattern [18]. In analogy to
the Presentation category, we distinguish the definition of
data objects (Dialog Data Model) with associated operations
and the event handling (Dialog Event Handling). The latter
are based on Dialog Data Model, since dialog state
evaluations largely depend on current Dialog Data Model
states, which already reflect the inputs and choices the user
may has actuated.

Dialog Data Model. The software category Dialog Data
Model depends on knowledge about the Domain Data Model
defined by the Application Kernel as well as Data Queries
that may deliver the composition of selected attributes from
different entities in order to create new aggregates relevant
for display. The Data Queries category belongs to the
Application Server Calls category, which encapsulates
knowledge about the available application services, their pre-
conditions, invariants and possible results with respect to the
presentation logic layer (see Section III.C.3)).

The Dialog Logic category graph mostly constitutes pure
A category refinements. However, the Data Conversion
category is of mixed character. To define data structures that
can be used in close cooperation with the Application
Services, it needs to know about Dialog Data Model, and
thus, incorporates its dependencies to the Data Queries and
Domain Data Model. Besides, the Data Conversion category
has to be aware of the current Technical Data Models in
order to provide access for Presentation Data Handling. The

198

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

latter has to know about the structure of defined data models
(Dialog Data Model and Technical Data Models) to be able
to delegate proper updates in both directions.

TABLE V summarizes the responsibilities that are
concerned with handling Dialog data.

TABLE V. DIALOG DATA MODEL SOFTWARE CATEGORIES SUB-TREE.

Sub-Category Topic Contained entities Operations

Dialog Data Model establishes the data model used in the entire Dialog
unit,
serves as a global Model element according to
MVC terms

Defined:
Dialog Data read interface,
Dialog Data write interface,
aggregates or selections of business
objects and their attributes
(intermediaries [31]),
additional data evaluation or
interpretation information not
present in Domain Data Model,
list of observers
Referenced:
data read and write interfaces of
Domain Data Model and data types
(Data Types and Validation Rules),
Presentation Data Handling
interface (observer update),
Dialog Data Model interface

Delegation:
data read and write operations on
the Domain Data Model and its data
types,
notifies Presentation Data

Handling about data changes
(observer pattern)
Algorithm:
offer browsing and selections of
contained Dialog Data Model
elements specific for display choice
options
Implementation:
Dialog Data read interface,
Dialog Data write interface,
Dialog Data Model interface

Data Validation validates Dialog data
This responsibility may cover the comprehensive
validation of multiple attributes or objects at once.
Otherwise just the validation interface of individual
objects is called and evaluated in order to provide
validation information for the Presentation.

Defined:
validation information beyond the
scope of single business objects or
data types
Referenced:
validation interface of Domain Data

Model or its data types (Data Types
and Validation Rules),
Dialog Data write interface

Creation:
validation information
Algorithms:
validation of Dialog data objects
beyond the scope of single objects
Delegation:
call the validation interface of
Domain Data Model or its data
types
Control:
Change Dialog Data Model based
on validation results

Data Conversion offers transformations between technical and
domain data model formats
The Dialog Data Model may define new getters and
setters that accept GUI Technical Data Models
types or may trigger the call of a dedicated
component (R software) [6] providing generic
conversions.

Referenced:
data read interface of Domain Data

Model and data types (Data Types

and Validation Rules) (derived from
parent category Dialog Data

Model),
Technical Data Models

Algorithm:
data conversion operations
Delegation:
data read operations from both data
model formats

The Dialog Data Model serves as the primary Model

according to MVC terms; UI-Controls do only hold their
properties that mirror small parts of the Dialog Data Model.
Furthermore, observer functions are considered 0 software
and can be included anywhere, so they require no special
interfaces. For the sake of completeness, selected operations
have been included in TABLE IV and TABLE V.

Dialog event processing. The entire event processing
chain and its association to software categories was
challenging; our rationale will be explained as follows.

Foremost, logical and presentation states were separated:
presentation logic tends to be stable (enter data, evaluate,
present suggestions, make a choice and confirm), is traced to
functional requirements (see Figure 9), and thus, should be
decoupled from GUI layout specifications. Although the
flow of presentation logic is unaffected, the GUI and its
technology supporting the user in his tasks may be altered
several times starting with updated visual specifications and
ending with the deployment of different GUI Frameworks.

Additionally, the Presentation can be further differentiated
into abstract visual states that have a close connection to the
current application state (or Dialog Data Model of Figure 9)
and technological or concrete presentation states, which
implement the former by using visual appearances. The latter
is translated to GUI UI-Controls via GUI Framework and its
sub-categories. As result, we identified three major
categories for state control to be considered below.

The Dialog Event Handling tree governs the presentation
logic part of a Dialog and has no concrete visual
representations or related tasks. In contrast, it assumes the
Presentation to maintain appropriate visual representations,
but these remain abstract for the Dialog Event Handling,
e.g., a View for data input is activated, data input was
completed or current data leads to another View state for data
input.

The responsibilities for dialog event handling and
respective software categories are summarized in TABLE
VI.

199

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VI. SOFTWARE CATEGORIES RESPONSIBLE FOR DIALOG EVENT HANDLING.

Sub-Category Topic Contained entities Operations

Dialog Logic The software category and its children are
responsible for the presentation logic part of a
Dialog that connects application logic and
presentation technology.
Defines interfaces used in child software categories
for construction purposes.

Defined:
Dialog Data Model interface,
Dialog Event Handling interface,
Dialog Logic Construction interface

Abstract

Dialog Logic
Construction

constructor of a Dialog Logic unit Referenced:
Dialog Data Model interface,
Dialog Event Handling interface,
Presentation Construction interface,
Dialog Logic Construction interface

Creation:
Dialog units with their comprising
parts of Dialog Data Model, Dialog

Event Handling,
Presentation (initial state of a
Dialog is created)
Implementation:
Dialog Logic Construction interface

Dialog Event
Handling

definition of Dialog states and associated actions

It is computed what actions are allowed (reload
data, confirm) in a given Dialog state and how the
Dialog is altered because of received events. The
results or reactions of the Dialog Event Handling
are each modeled by child software categories:
Dialog Lifecycle Actions, Application Server Calls
or Presentation State Updates are activated, which
enable different behavior or control states of other
lower situated entities (sub-dialogs, follow-up

dialogs, Presentation). However, the parent
category Dialog Event Handling resumes the task to
decide what child category is finally called in a
certain Dialog state.
In some Dialogs data evaluations are needed to
trigger the proper View from several configurations,
which may be rule-based. In this regard, the logic
required for changing pages in large scale Dialogs
like wizards when data was validated successfully
is modeled by this software category. The
evaluation is done by the Dialog Event Handling,
but the actual change of View is performed by
Presentation State Update. The latter receives the
command to just switch to a certain View. The
decision to what view is to be switched lies in the
scope of Dialog Event Handling.
Please note that the branching of Views is not
assigned to the Dialog Data Model, since the model
can be reused elsewhere with different rules for
navigation or display.

Defined:
dialog state model,
dialog event forwarding interface,
dialog event reaction interfaces
(Dialog Lifecycle Actions interface,
Application Server Calls interface,
Data Queries interface, Presentation
State Update interface)
Referenced:
Dialog Event Handling interface,
Dialog Data Model

Creation:
dialog state model
Algorithm:
evaluate current Dialog state and
determine appropriate reactions
(e.g., evaluate Dialog state on the
basis of Dialog data in order to
determine navigation options)
Implementation:
Dialog Event Handling interface
(constructor),
dialog event forwarding interface
(called by Presentation Event

Handling to notify about events to
be processed)
Control:
Call appropriate event reaction
interfaces,
proper sequences of Application

Server calls or Dialog Navigation

Dialog Lifecycle
Actions

construction of Dialog units, changes global states
of current and other Dialogs

The scope of this category is the reaction on special
events like OK, Cancel and similar terminal
notifications. As a result, an entire Dialog unit is
created or discarded. The associated design units
represented by Dialog Data Model and
Presentation are created indirectly by activating a
cascade controlled by the Dialog Logic and its
states. In addition, other Dialog units may be
ordered to be activated or de-activated by calling
the Dialog Navigation interface.

Defined:
Dialog Navigation interface
Referenced:
Dialog Logic,
Dialog Lifecycle Actions interface,
Dialog Logic Construction interface

Creation:
Dialog Logic creation / deletion
(Dialog Data Model and associated
Presentation are created or deleted
implicitly)
Implementation:
Dialog Lifecycle Actions interface
(called by Dialog Event Handling)
Control:
determines the proper sequence of
Dialog units to be activated and de-
activated (Dialog Navigation
interface)

Dialog Navigation performs the navigation among Dialogs or
activation of Sub-Dialogs

The opening and closing of auxiliary Dialogs like
search dialogs for master data (e.g., customer ID
and address) is performed.

Referenced:
Dialog Navigation interface,
Dialog Data Model,
Dialog Logic Construction interface
(other Dialog instance units)

Create:
Create and discard sub- or follow-up

dialogs
Implementation:
Dialog Navigation interface

Dialog State
Changes

addresses the possible changes in state with respect
to the currently active Dialog only

Abstract Abstract

200

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Sub-Category Topic Contained entities Operations

Application Server
Calls

event handling routines that interact with the
Application Logic services
This software category models the reactions on
particular events that require the activation of
services of the Application Logic.

Referenced:
Application Server Calls interface,
Application Services interface,
Domain Data Model

Implementation:
Application Server Calls interface
Delegation:
Application Services interface

Data Queries loading and updating domain layer data
As a specialization of Application Server Calls, the
retrieval and sending of data in correspondence
with the interfaces of Application Services is of
particular interest.

Referenced:
Data Queries interface,
Application Services interface,
Domain Data Model,
Dialog data interface

Algorithm:
Assembly or selection of
appropriate data queries provided
by Application Services
Implementation:
Data Queries interface
Delegation:
Proper calling sequence of
Application Services for data
retrieval
Control:
Setting Dialog data

Presentation State
Update

triggers the change of Presentation states / visual
layout

Referenced:
Presentation State Update interface,
View State Change interface,
View Navigation interface

Implementation:
Presentation State Update interface
Delegation:
calling of state change notifications
of the Presentation (View State
Change Interface, View Navigation
interface)

The interfaces that connect the software categories for

event handling are to be defined in detail as reusable 0 or A
software (much like the observer pattern [17]). That is why
there are no dependencies visible in Figure 10 between
Dialog Event Handling and Presentation Event Handling.
The same applies for the visibility between Presentation
State Update and View State Changes or View Navigation.
Finally, a command [17] interface may be used that contains
only stereotype operations and can be typed as 0 software.
Each of the involved event handling software categories is
implicitly connected to 0 software via the various parent
software categories in the hierarchy.

Please note that the parent software categories of Dialog
Event Handling and Presentation Event Handling define
most interfaces for their children, so that they are able to
control them but do not depend on their detailed actions,
internal types or implementations. The children encapsulate
the results of a response chosen by the parent category for a
certain event.

From the presentation logic’s perspective, a Dialog may
adopt different states during runtime. The required
knowledge to enact these states is represented by the abstract
category Dialog State Changes: only its refinements will be
assigned to design units; the parent software category Dialog
State Changes serves grouping purposes and summarizes
commonalities of the children. Dialog State Changes is
separated into children, which either interact with the
ApplicationKernel or the Presentation. Both its categories
reflect the two general situations that may occur in any
Dialog: Application Server Calls may be initiated or a
Presentation State Update can be triggered. The parent
category Dialog Event Handling possesses the knowledge
how to react in a given situation. Its children are dedicated to
solely apply the required change of state that either addresses
the Application Server or Presentation, which provide the
state change execution. Thus, the children and other server-
like entities (e.g., Application Services, View Navigation and
State Changes) do not know when their services are called.

cmp GUI Software Categories

TA

View

Definition

Presentation

Event Handling

Presentation

(FUI)

Arrangement of

UI-Controls

Layout

Definition

UI-Control

Configuration

View State

Changes

Construction of

UI-Controls

Re-Arrangement

of UI-Controls

Technical Data

Models

Model Data

Edit

Modification of

UI-Control Properties

Addition and Removal of

UI-Controls

Dialog Logic

Data

Validation

Application

Logic

Application

Server Calls

Dialog

Navigation

Dialog Data

Model

Dialog Lifecycle

Actions

GUI

Framework

UI-Control

Library

Layout

Manager

Event

Forwarding

Action

Binding

Dialog Event

Handling

Domain Data

Model

Data Types and

Validation Rules

Data

Conversion

0

Construction and

Configuration

UI-Control

PropertiesPresentation

Data Handling

Model Data

ObserverData

Queries

Application

Services Event Listener

Definition

Dialog State

Changes

Presentation

State Update

Data

Display

View

Navigation

Dialog Logic

Construction

Presentation

Construction

Figure 10. GUI responsibilities modeled as a software category tree.

201

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4) Object Lifecycles and Construction

In this Section, we briefly describe how the construction
of instances is considered by the software categories of
Figure 10.

As we learned from Figure 9, there are the principal GUI
design units Dialog, Sub-Dialog and associated
Presentations, which will bear the major part of
responsibilities in real GUI systems. To lead to creation of
these units, we have incorporated constructor responsibilities
within the software category tree that compare to the
DialogManger of the Quasar client (see Figure 3).
Particularly, the Dialog and Presentation both were
supplemented with responsibilities dedicated to construct the
child elements of these parent software categories.

In this regard, the Dialog Logic Construction is
responsible for the creation of the main Dialog unit. We
assume that a Dialog design unit will correspond to the
software category sub-tree modeled by Dialog Logic. Based
on the responsibilities a Dialog has to fulfill, it initiates the
construction of the starting Presentation as an entry point for
user interaction after the creation of own member objects.
This sequence is to be followed, since the Dialog Logic
controls the states of the Presentation anyway.

Concerning the Presentation, this design unit also
features a software category (Presentation Construction)
dedicated to the construction of its child elements.

Both the Presentation and Dialog Logic may call the
construction of additional units of their type when respective
events occur: for the Presentation, new Views will be
requested by View Navigation upon a call from Presentation
State Update was received. With respect to the Dialog Logic,
during the event processing by Dialog Event Handling a
Dialog may be finalized or a new Dialog instance may be
created as a result of a Dialog Navigation event reaction.
Both options are controlled by Dialog Lifecycle Actions.

Figure 11 provides an overview about the dependencies
concerning lifecycles and construction of instances based on
the software categories of Figure 10.

cmp Lifecycles

ViewUnit :

Presentation (FUI)

DialogUnit :

Dialog Logic

ViewConstructor :

Presentation

Construction

DialogConstructor :

Dialog Logic

Construction

InitialView :View

Definition

ViewEventHandler :

Presentation Event

Handling

DialogData :

Dialog Data

Model

DialogEventHandler :

Dialog Event Handling
ViewNavigator :

View Navigation

DialogLifecycle :

Dialog Lifecycle

Actions

ViewUpdater :

Presentation

State Update

«call»

«create»

«create»

«create»

«create»

«create»

«create»

«create»

«create»
«call»

«call»

«call»

«create»

Figure 11. Intended lifecycle dependencies and constructors of possible

objects derived from the GUI software category model.

Whenever new instances are to be created, an object that
implements the respective construction responsibility of
either Dialog Logic Construction or Presentation
Construction is to be delegated.

5) The Event Processing of the Software Categories

Figure 12 provides an overview of possible interface
connections between software categories involved in event
processing. Please note that the interfaces need to be of the
basic A category type as this is the common parent category
of the displayed interacting categories. Basically, three
different scopes for states are modeled by the software
categories. They are the following:

• Dialog Logic - Application Services: The scope of

this state model is concerned with the data model of
the entire Dialog unit and the interaction with
Application Services. Decisions are to be taken what
services and data contents are to be combined for the
required interaction of a given Use Case. As a result
of the Dialog Logic state model evaluation, a change
of the visual state may need to be delegated. It
depends on the GUI specification with respect to the
required steps a given Use Case scenario may
demand for.

• Dialog Logic - Presentation, View level: A Dialog
may require consecutive Views to be displayed in a
certain sequence or based on user decisions. These
changes of Views are in the scope of a dedicated
state model.

• Presentation, UI-control level: The different states a
particular View may adopt are considered herein.
This covers different changes in layouts and UI-
Control configurations.

The general flow of events is indented to work as

follows: initially, the user triggers some events that are
intercepted by UI-Controls that have an Action Binding
configuration. In any case, the event is passed on via
PresentationEventHandlingInterface to the Presentation
Event Handling. A first evaluation of that event may result in
a decision by Presentation Event Handling to further move
the event on the event processing chain via
EventForwardingInterface to Dialog Event Handling for the
final evaluation.

Depending on the current state of the Dialog, Dialog
Lifecycle Actions (creation and deletion of Dialogs and their
objects), a Dialog Navigation (change of current View or the
instantiation of Sub-Dialogs), Application Server Calls
(commit a sequence of service calls) or a Presentation State
Update (change of the visual representation) may be
activated as reactions by Dialog Event Handling.

In this regard, the key design issue is that the
Presentation has no knowledge in its sub-categories how to
decide on a proper reaction for events relevant for Dialog
Logic. Please remember that Presentations or Views may be
reused in different contexts (compare pluggable Views in
reference [31]), and so, a direct binding of their UI-Control
events to state changes would greatly limit their flexibility
and adaptability. Therefore, the event firstly is forwarded via

202

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the DialogEventHandlingInterface interface of Figure 12.
Then, the Dialog Event Handling evaluates the event and
controls one of its children, which further delegates to the
displayed interfaces of Figure 12 and initiates the final
change of state. Concerning the Presentation State Update in
Figure 12, View State Changes (panels are activated) or View
Navigations (wizard steps or tabs are switched) are
committed via interfaces. Another option would be a change
of the Dialog’s lifecycle or even a Dialog Navigation
(separate Dialogs or an auxiliary search Dialog are
instantiated) could be performed.

In this context, the knowledge when to trigger any of the
interface operations is kept in the parent category Dialog
Event Handling. In contrast, the execution of the respective
state change is encapsulated in the child categories, which
are marked by a white border in Figure 12 and implement the
interfaces. At last, the state changes are completely
decoupled from the point in time when they are requested.

Moreover, the Presentation Event Handling is separated
into event processing that is either concerned with data or the
visual structure. Mostly the data relevant events can be
processed locally by the Presentation if no forwarding is
registered. However, the View State Changes do require the
forwarding of events to the Dialog Event Handling first,
before they can be committed. This is due to the decoupling
of View states and their better exchangeability. Furthermore,
the differentiation of event evaluation, triggering and state
change execution supports the reuse and change of Views as
they are better decoupled from Dialog Logic components. In
this regard, View states are relevant for the Dialog Logic but
not their concrete appearance, which can be adapted
frequently.

cmp Event handling categories and interfaces

View State
Changes

Application
Server Calls

Dialog
Navigation

Event
Forwarding

Application
Services

Presentation
State Update

ViewStateChangesInterface

DialogNavigationInterface

Dialog Event
Handling

DialogEventHandlingInterface

Dialog State
Changes

ApplicationServicesInterface

Dialog Lifecycle
Actions

Presentation
Event Handling

Action
Binding

PresentationEventHandlingInterface

EventForwardingInterface

ApplicationServerCallsInterface

PresentationStateUpdateInterface

DialogLifecycleActionsInterface

View Navigation

ViewNavigationInterface

«call»

«call»

«call»

«call»

«call»

«call»

«call»

«call»

«call»

«call»

Figure 12. Software categories relevant for event processing and possible

interfaces.

To conclude, the event handling approach and its
respective software categories ensure that the layers of
presentation technology and logic (introduced in Section
III.C.3)) remain strictly separated. In fact, there will be
dependencies among Dialog Logic and Presentation that
cannot be avoided like the consistency of logic and visual
states. However, the control of all states remains centered in
one unit of design (Dialog Logic), which will facilitate
development and maintenance of complex Dialogs.

IV. REVIEW OF GUI ARCHITECTURE PATTERNS

In this section, we review the presented GUI patterns of
Section II in the light of the elaborated software categories.

A. MVC Variants

For the review of classic GUI architecture patterns, we
would like to refer to exemplary work published in [4] and
[10], which is valuable for filling gaps and giving directions
for related design decisions. Therein, options for refinement
and customizing MVC based architectures are proposed and
discussed. It is still up to the developer to decide on the
several choices. In contrast, the Quasar client architecture
presents a reference for our domain that already has some
refinements incorporated.

1) Positive Aspects

Both patterns and Quasar client share two positive
aspects that motivate their application. Firstly, the data
storing component does not depend on any other of the
components, and so, can independently evolve. Secondly,
only one of the components resumes the task to call
ApplicationKernel services. This aspect eases the design
efforts for interfaces and data exchange formats between
Dialogs and ApplicationKernel.

2) Issues

According to the MVC variants, we see major design
issues that will be described in the following paragraphs.

Separation of concerns. To begin with, the degree of
encapsulation and separation of concerns of MVC variants is
very limited. There is no variant that is able to reduce the
dependencies of all three abstractions altogether. Solely, the
distribution of tasks is altered, and so, the visibility among
components changes accordingly. In the end, one component
will be assigned responsibilities that originate from the two
other components as they are defined by classic MVC [31].
Therefore, the component with concentrated tasks tends to be
overburdened, and finally, can end up as the bottleneck from
a maintenance perspective. Additionally, altering the tasks of
the three components in certain variants may result in a
simplification of one component that can only be employed
for stereotype tasks but fails to suit more complex scenarios.
There seems to be no ideal separation of concerns among the
three components. A fourth element may be missing.

In general, there are no hints given how the display for
certain portions of business logic or data can be decoupled
from their technical manifestation. More precisely, the View
part is directly coupled to the GUI Framework (Figure 1). In
addition, the knowledge of the View has to constitute of how
to operate the GUI Framework facilities (to construct the
visual dialog parts) and what layout as well as what

203

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

selection, order and arrangement of UI-Controls are needed
to embody the domain and the current service in use.

Event differentiation and related control. With regard
to the event processing chain of Section II.B, the GUI
patterns do not distinguish clearly between events related to
technical or application concerns. In general, a guideline is
missing for the decision when to shift between presentation
technology or presentation logic related processing of events.
TABLE I provides an overview about the assignment of
these layer specific responsibilities to MVC pattern roles.

Although the MVP variants [6][7] and HMVC [5]
employ a “Supervising Controller” [15], which receives each
event from any UI-Control and acts as a global MVC
Controller, the problem persists: the Presenter as well as the
HMVC Controller still have to decide whether the incoming
events require an presentation technology or presentation
logic specific processing and have to react accordingly. Yet,
these approaches solve the “visibility problem” described by
Karagkasidis [10] where the Controller and View are
separate classes. In any case, the developer has to refine the
architecture by himself to enable a differentiated handling of
presentation and application related events. Finally, the reuse
may be affected, since the Controllers end up processing
both types of events for the sake of initially quick releases.

Cohesion and granularity of triads. With the
application of MVC derivates that differ from the classic
MVC approach [31] a problem occurs concerning the
identification of possible instances and their proper size.
There are hardly any hints when to create new Dialog
instances or MVC-triads. Thus, the proper modularization of
Dialog components is to be done on behalf of the developer.
Only the HMVC [5] gives some rudimentary hints. In the
end, the general size and scope of MVC triads is not clear.
According to Karagkasidis [10], a View may constitute of
single UI-Controls (widgets), containers like panels with a
certain set of UI-Controls or complete Dialogs. The classic
MVC approach [31] was clearer on that topic, since MVC
triads were very fine-granular starting at the UI-Control
(widget) level and building a corresponding triad for every
element of the visual object hierarchy, ultimately ending
with a last triad at the window level. However, the classic
approach is not likely to be feasible for modern and more
complex application scenarios: the high integration of
business systems and their complexity would demand for a
large number of Dialogs that would result in myriad of MVC
triads.

Coupling of Controllers to both Model and View. With
respect to the above described limited separation of concerns
more issues arise. The controlling of both Presentation states
and the handling of application related events to initiate
ApplicationKernelService calls inside the Controller creates
close coupling of Controllers to both View elements and
naturally the Model. Usually, in many MVC variants
Controller and View maintain a strong dependency where the
Controller is fully aware of the UI-Controls of the View. In
fact, both components build an aggregated unit of design
(rather than representing separated classes) that cannot be
reused and is harder to maintain. Eventually, a Controller
can only interact with Views that comply with a certain set of
states. Whenever the set of UI-Controls changes the possible

states of the entire Dialog alter as well, so that the Controller
implementation may have to be revised each time. This is
due to the awareness of Controllers about the View’s UI-
Controls what results from the following. In modern GUI
frameworks the Controllers obtain user entered data directly
from UI-Controls and not as the payload of an incoming
event, as this was the case in Smalltalk or classic MVC [31].
With the latter, separate classes for View and Controller
could be realized but current GUI frameworks demand for
alternative solutions. Karagkasidis [10] exemplarily
discusses the solution provided by HMVC.

To partly resolve this issue and decouple the Controller
at least from application aspects, a developer could revert to
the “Model as a Services Façade” [4] MVC variant. The
Model would be assigned both data structures and related
service calls for interaction with the ApplicationKernel. This
step would raise a comparative discussion as whether it is
favorable to build a separate service layer [44] or use the
domain model pattern [32] exclusively for the structuring of
the ApplicationKernel. In our opinion, the Model should not
act as a service façade, since it would make parts of an
ApplicationKernel service layer obsolete. According to the
resulting dependencies to functional requirements, the
traceability-links of Use Cases or tasks would be scattered
among different Models and parts of the ApplicationKernel.
Furthermore, the operations of the Model would be closely
coupled to a certain data structure so that a Model cannot be
easily combined with other application services in the future.
Lastly, services should prevail, since there might be other
clients besides a particular GUI to rely on services. There are
more disadvantages with that solution like the stereotype
character of the Controller [4], which will only serve a
certain pattern of interaction. Thus, the Model should only
contain data-relevant operations (getter, setter, aggregation
and conversion, a state of current selections, validation state)
and be reusable with other services. In this regard, the Model
should act as a mere preparation of a data structure that is
useful in the context of a View, its display, as well as in- and
outputs.

3) Summary

The MVC and its derivates require much adaptation in
order to be prepared for implementation [14]. The above
mentioned issues may considerably have a negative impact
on the resulting architecture quality. The available patterns
are definitely not easy to interpret with respect to the
common set of GUI responsibilities illustrated by the
software category tree in Figure 10.

The tracing of functional requirements to the parts of the
GUI, which coordinates ApplicationKernel service calls, will
largely depend on the refinements the developers have
incorporated in the GUI architecture. Additionally, a clear
separation of presentation technology and logic (see Section
III.C.3)) is not supported in any variant, so that event
handling will always consume high efforts for development
and especially maintenance.

Anyway, the resulting architectures will be
heterogeneous and may add complexity to quickly provide
an adapted solution for the particular domain. As long as
there are no standard architectures or standardized

204

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

responsibilities available, the developer is left with many
choices that potentially will lead to vast differences in
software architecture quality. The improved segregation of
software categories in component architectures is a
challenging goal hard to achieve with available patterns.
Project budgets may severely limit the software architecture
quality to be attained.

B. Quasar Client Reference Architecture

1) General Valuation

The Quasar client architecture provides the most detailed
architecture view on GUI systems published so far and can
be regarded as a refinement of the common GUI patterns.

Positive aspects. In contrast to the MVC variants, the
Quasar client separates Presentation and DialogKernel as
principal dialog components. This separation is the main
source for its virtues, since more clearly distinguished
Controller tasks are achieved. In this regard, the
Presentation is required to handle technical events and the
DialogKernel will process application related events in close
cooperation with the ApplicationKernel services.

States and control. According to Siedersleben [16], the
Presentation and DialogKernel components share a common
structure: both possess memory for storing data, states and a
control. Thus, both components are able to manage their
states independently. A change of layout aspects in the
Presentation would not affect the DialogKernel accordingly.

In theory, the changes of states are implemented in each
component individually and can be triggered by A typed
interfaces that may be designed on the basis of a command
[17] pattern [14]. Consequently, the DialogKernel does not
require knowledge about the inner structure of the
Presentation and vice versa. Thereby, the Presentation may
provide a set of operations that alter the layout of a Dialog
depending on the current content of data received from the
DialogKernel via DataUpdate interface. The triggering of
visual state changes on behalf of the DialogKernel
(Presentation State Update) may be possible that way but is
not considered. For instance, a DialogKernel was notified
via DialogEvent that the user has selected an item in a table
listing available products. But the product is on back-order,
so the Presentation should receive the command to display a
certain state of the button bar, e.g., deactivate the “add to
cart” button. According to Siedersleben [16], the states of
visual elements are exclusively controlled by the
Presentation. However, in the particular example only the
DialogKernel would possess the knowledge when to trigger
the state change of the Presentation. It seems that the
cooperation of both units of design needs further elaboration
to be able to be implemented in practical examples. Besides,
a DialogKernel could be able to coordinate the inputs of a
user working with two Presentations simultaneously.

2) Traceability-Links to GUI Software Categories

To be able to better valuate the Quasar client
architecture, we traced the identified software categories of
Section III.D to its structural elements. Figure 13 displays
the resulting traceability matrix. The sources for traceability-
links constitute software categories of varying detail
arranged on the left hand side.

Figure 13. The GUI software categories traced to Quasar client reference

architecture components and interfaces.

Please note that the general parent software categories were
excluded, since all child categories are presented in the
matrix. On top of the matrix, the traceability-link targets are
represented either by the components or interfaces of the
Quasar client. Components not relevant as traceability-link
targets were excluded.

Interpretation. We need to provide directions about the
treatment of interfaces and connected dependencies, which
are depicted in Figure 3. A client that imports and calls a
foreign interface must have knowledge about the proper
usage and sequences of operations. In fact, the deeper and
more chained the commands (compare delegation and
control of Section III.C.4)) are the more likely is the mixture
of software categories. Finally, the client will be dependent
on the same software category the interface is composed of.

This particularly applies to the Presentation (obviously
an AT component) that extensively uses the GUI Framework
interfaces, which are to be included in the traceability matrix.

In contrast, single commands of abstract or stereotype
nature like notify calls can be realized with a 0 type
interface. Yet, the interfaces pose hard to valuate concepts as
they inspire a dynamic view on the architecture like the
sequences of commands or flow of algorithms. Ultimately,
the interface operations would need further refinement for a
final valuation. Partly, the Quasar reference architecture
provides basic sequences for interfaces in [2].

205

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Separation of concerns. For the valuation of both
cohesion and separation of concerns two directions inside the
traceability matrix of Figure 13 have to be considered.

Horizontal. The horizontal direction displays a number
of marks for the realization of software categories though
components or interfaces. For a high cohesion and well
separated concerns, there should be software categories
realized only by components or interfaces that belong to one
unit of design. In sum, Application Server Calls, Data
Queries, Data Validation, Dialog Lifecycle Actions, Dialog
Navigation, Model Data Edit and Model Data Observer are
realized by several Quasar elements, and thus, different units
of design.

The first three software categories mentioned before are
shared among the ApplicationKernel and DialogKernel.
Thus, the resulting coupling between these design units will
largely depend on the refinement of interfaces between both
components. Eventually, a mixture of A software categories
can be a probable result when no 0 interfaces can be
invented. The details of this client and server communication
remain an open issue as well as the construction of Data
Queries.

Besides, Model Data Observer is presented with two
options that are either implemented by the DialogKernel
(DataRead) or Presentation (DataUpdate). However, the
complementary task of Model Data Edit is only briefly
mentioned. Siedersleben states that the Presentation may
know the DialogKernel and its data interface (see association
in Figure 3) but not vice versa [16]. As an alternative, newly
entered data may be included as payload of the event emitted
via DialogEvent by the Presentation [16]. How the important
task of changing dialog data is performed in detail by the
Presentation and what interfaces are required is finally left
open.

Moreover, Dialog Lifecycle Actions are of less
importance. They are rather stereotype operations that could
be detailed by 0 type software. In contrast, for the Dialog
Navigation there may be missing directions in the Quasar
client reference architecture, so that responsibilities have to
be refined on behalf of the developer. We wonder how
dialog sequences resulting from task model specifications
[45] would affect the software category assignments. Maybe
the Session cannot be marked as 0 software anymore, since it
would need knowledge of the proper sequence of dialogs,
and thus, would be designated as A software that could not
be reused for different task model instances.

Vertical. A further assessment considers the vertical
direction that reveals targets with many traceability-links.
This can be a marker for lacking detail or even low cohesion.
Those targets would take on too many responsibilities at
once. There are multiple candidates that awake our attention.

As already stated above, the ApplicationKernelService
needs further refinement, so that the way how calls and data
queries are performed by the DialogKernel are both detailed
and differentiated concerning allowed data types and
resulting coupling. Consequently, another major issue is the
DialogKernel itself. This component is relatively vague in
definition, so that tasks like calls to the ApplicationKernel,
Data Queries, the Dialog Data Model definition, Data

Validation and the control of states need to be elaborated
from scratch.

Concerning functional requirements tracing, the
DialogKernel’s internal structure and state control are
important issues that affect the resulting dependencies to
requirements. For instance, it has to be decided what portions
of a use case will be exclusively realized by the Application
Services and what parts the DialogKernel is in charge of.
Above all, the DialogKernel is likely to depend to some
considerable extent on the ApplicationKernel and its Domain
Data Model. In this regard, it has to be cleared how Data
Queries are to be handled from the Dialog Data Model’s
point of view. The Dialog Data Model can either be
composed of pure entities, which may be embedded as
interfaces or data transfer objects, or aggregations that are
sourced from selected attributes of several entities retrieved
by a query.

Furthermore, the Presentation also requires further
elaboration in design. Being the complementary part of the
DialogKernel in a Dialog, the Presentation is declared as
having its own data model in parallel to the DialogKernel in
order to perform conversions to the Technical Data Models.
The main data definition is assigned to the DialogKernel,
since this component is in charge of any data retrieval from
the ApplicationKernel.

How the data related communication (read and edit)
besides the notification of updates between Presentation and
DialogKernel is originally intended remains another open
issue. In this regard, design decisions on both interfaces and
data types as well as their connection to the Domain Data
Model have to be considered. Moreover, details about the
triggering (Presentation State Update) and execution of View

State Changes are missing. This is due to the unclear
connection between Presentation and DialogKernel. When
decisions about reactions on events are bound to
Presentation, logical behavior will be closely coupled to
certain Views, so that they are less flexible for change and
reuse. In addition, events can only be emitted by View
elements and cannot be triggered by the evaluation of
gathered Dialog data alone, since there is no link for the
DialogKernel to initiate a View State Change via
Presentation State Update when an event was forwarded.

A look at the matrix of Figure 13 reveals that the event
handling of the Quasar client architecture with respect to
presentation technology and logic concerns seems not to be
elaborated with the necessary care and accuracy; there are
several responsibilities mixed within and among
Presentation and DialogKernel: firstly, the Presentation is in
charge of both receiving events (Presentation Event
Handling), deciding on visual states (Presentation State
Update) and executing them (e.g., Addition and Removal of
UI-Controls). Secondly, the needed knowledge for decisions,
and thus, presentation logic is likely to be based within the
DialogKernel as far as the interaction with the Application
Services is concerned. Yet, the latter is assigned to handle its
own state model (Dialog Event Handling) and partly
manages the Dialog data (Dialog Data Model) together with
Presentation. So, both design units share the information
necessary for deciding upon state changes. In contrast to the
GUI software category model of Figure 10, the Quasar client

206

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

architecture assigns state decisions and executions based on
a different point of view: presentation logic is strictly
separated between application (DialogKernel - Application
Server Calls) and visual behavior (Presentation -
Presentation State Updates), so that the Dialog Logic and its
state model is not centered but shared among two design
units. For that reason, with the Quasar client a Dialog will be
harder to adapt to a changed Use Case scenario affecting the
Dialog state model (a new step with a new or updated View
is required), since the Presentation is designed to both
manage and execute the View state changes. So, the
presentation logic required for deciding on a change or
update of the Views is lost and has to be re-implemented
whenever the Presentation has changed. From our point of
view, a centralization of event-based decisions found in the
GUI software category tree of Figure 10 would reduce the
portions of AT software existent in any Presentation and
could partly facilitate the exchange of Views.

As far as the visual part of the Presentation is concerned,
the ViewDefinition interface and related implementations
inside the Presentation need more refinement. The coarse
grained interface is employed for both handling view states
and their initial construction. In this context, a developer
would have to decide on how the DialogKernel may trigger
the visual state changes as a result of its own states defined
by Dialog State Changes and its children.

Lastly, the Presentation is assigned quite a are large set
of responsibilities, but is the design unit that is not likely to
be stable or reusable after technological changes compared
to the DialogKernel, which does not depend on any T
software influences.

Missing responsibilities. Responsibilities that were
entirely not mentioned with respect to the Quasar client
reference architecture, was the View Navigation. This task
may be confused with Dialog Navigation. Siedersleben
approaches the architecture of a Dialog with the definition of
the relevant terms in reference [16], but he does not use them
in a consistent way, so that some terms are only mentioned
and remain unrelated to the Quasar client architecture itself.
As a consequence, the design unit of a Dialog remains
unclear with respect to the delimitation of other Dialog
instances, Sub-Dialogs, and more urgently, Presentations or
Views of Figure 9 that express the different interaction steps
with a user.

3) Summary

Our review of the Quasar client revealed that this
reference architecture is more advanced than common GUI
patterns. It includes most of the common MVC pattern
responsibilities (TABLE I) and adds several additional ones
(TABLE II). Besides, its main advantage lies in the division
of Controller tasks among the Presentation and
DialogController, so a better separation of concerns can be
achieved. However, this results in increased complexity
concerning the number and type of interfaces to be
implemented.

In comparison to other architectural patterns, the Quasar
client provides more detail and descriptions that give hints to
many design decisions, but these are scattered among several
sources [16][29][38][14] only available in German language.

There was no comprehensive or updated description
published, which would provide the needed implementation
details. In the end, the Quasar client remains vague with
many important issues to solve by individual design
decisions. Nevertheless, we learn from the traceability matrix
of Figure 13 that there are already hints, which component is
to take on what responsibility. In practice, this would yield
only a partial improvement with respect to the common GUI
patterns. In reference [2], Haft et al. state that the Quasar
client could not be standardized, since most software projects
required specific adaptations. The many individual
refinements would affect the marking of software categories,
so that the purity of them and the separation of concerns may
not be maintained as intended. Even the Quasar client
assumes that some portions of AT software cannot be
avoided with conventional architectures relying on invasive
frameworks.

 To conclude, the Quasar architecture is not suitable for a
straight forward implementation. As we see, there are still
gaps in the reference architecture and the developer has to
incorporate own thoughts in order reach the desired quality
architecture. The separation of concerns can be improved
with a customized Quasar client architecture, but this largely
depends on the skills of the architect. In the end, the Quasar
client may be a better, and foremost higher detailed, basis for
reuse of architectural knowledge than the MVC variants
alone.

V. RESULTS AND DISCUSSION

1) GUI Responsibilities Software Category Tree

One of our objectives was to provide a software category
tree with separated concerns to describe a complete
decomposition of GUI architecture responsibilities.

Software category model. We derived a software
category model that structures the dependencies among
common responsibilities of GUI architecture design units
without being biased towards a certain GUI architectural
pattern or framework.

Software category definition and modeling. To be able
to model detailed, refined software categories and finally
delimit them, we had to invent modeling rules that were not
provided in the original sources. We are convinced that these
enhanced rules create a solid foundation for modeling
responsibilities of software architectures, since the results
make sense in our case of a better understanding of GUI
architecture patterns and bring us further towards UIP
integration.

Compared to the CRC method applied for the GUI
patterns in [18], the collaborators of a certain software
category are summarized in the second dimension but are
further outlined by the association with detailed operations.
On the CRC cards, every responsibility of a design unit is
noted on one card and there are not details about their
relationships to the mentioned collaborators on that card.

Nevertheless, there are not only positive aspects about
the software category modeling approach. In fact, there are
some weaknesses of the software categories tree display: For
instance, there is no hint what elements are actually derived
from the dependencies of parent software categories.
Generally, there can be all included or referenced entities or

207

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

only a sub-set of them considered in the child software
category. Some contained entities can even be derived from
the parents of a parent category (e.g., Data Display - Model
Data Observer - Presentation Data Handling - Technical
Data Models is an example of such a cascade of
dependencies or refinements to be discovered in Figure 10).
Moreover, there is also no hint, which parent categories are
skipped and will not be considered in child software
categories. In most cases 0 software is used and almost never
skipped, but along the way up to 0 not all software categories
are always considered. Some relationships just model the
potential visibility of entities. Maybe the detailed modeling
of instance based software category trees can remedy some
of these aspects by providing further detail.

Shape of the tree. Concerning the actual shape of the
software categories tree, there might be different structures
or aggregations possible (intermediate categories) but the
final child elements clearly mark the occurring
responsibilities. In this regard, is has to be noticed that the
software categories displayed here are pure and intended to
be well separated. This arrangement of responsibilities is
mostly not the case in real systems and designs; the software
category tree is an ideal construction.

Software architecture relationship. From our point of
view, the different MVC pattern variants are hard to
understand with all their facets concerning detailed
responsibilities and dependencies on other design units they
need to interact with. Often the MVC variants compose of
smaller patterns like “Supervising Controller” [15] and
“Presentation Model” [15], which are a proof of the ever
present complexity of GUI design.

To partly address the complexity issue, the software
category model presented in this work aims to display the
responsibilities of GUI architectures without favoring certain
structuring or role assignment of design units. They are
created to provide an overview of the general responsibilities
that may occur in GUI systems instead. Architects and
developers shall get a guide what tasks are to be fulfilled
within the GUI system.

There may be an inherent or obvious structure hidden in
the separated sub-trees with Presentation and Dialog Logic.
However, this structure simply emerges from the
dependencies of knowledge (modeled by the dimensions of
Figure 8), which is required for the different responsibilities.
The displayed separation or decomposition of software
categories has not to be strictly followed; there is rather high
degree of flexibility: the software categories can be
distributed differently to design units. For instance, the Data
Conversion responsibility is often differently solved in
designs. Some responsibilities may be omitted when
requirements do not demand for them. Eventually, the
resulting distribution of software categories to design units
determines the final quality of the software architecture.

In this regard, architects can consult this model without
the need to be restricted by given designs, their roles and
relationships. The descriptions and sources used for the
composition of the software category tree are not entirely
distracting or misleading, yet they are quite helpful for
understand certain designs. But their weakness is that they
are already biased towards a certain structure of design or

effects to achieve like this was elaborated by Alpaev in [4]
for the MVC design options.

Software category refinement level. One may argue
that the consideration and segregation of software categories
may overburden an architect with additional tasks and he
will eventually loose overview due to the management of a
set of fine-grained responsibilities. In contrast, the software
category tree shall be helpful and not a burden. In fact, the
software categories build on the refinement from basic to
detailed categories in a hierarchical tree. So, the architect
principally can decide on the level of detail he applies for
modeling, mapping or assessment of design. In this regard,
software categories always group several responsibilities into
a family of cohesive entities; children retain the more
detailed responsibilities and parents serve as a more general
aggregation. In that way, an architecturally meaningful re-
composition of GUI responsibilities is created. The architect
may pick a certain detail level of the category tree, which
ideally resembles a prepared separation of concerns in any
case, in order to re-distribute these responsibilities in a new
system design. This choice decides whether only basic
software categories are used for architecture planning or
refined ones are applied instead in order to achieve a much
better accuracy for cohesion as well as the evaluation of how
well concerns were separated.

Software architecture assessments. Furthermore, the
software category model can be of aid for the valuation of
the detail, cohesion and separation of concerns of reference
architectures or patterns. Section IV.B outlined the principal
approach and an example that assessed the Quasar client
reference architecture. In sum, the software categories
approach can reveal not supported tasks, design units that
bear many tasks at once, perfect matches and tasks that are
shared among two or more units of design.

In our opinion, the established software category tree is
well-suited for GUI architecture assessments: the software
categories embody a set union of the responsibilities of many
of the common GUI architecture patterns. In the context of
GUI design, the software categories resemble different and
delimited packages of knowledge, which are used to identify
and map components or smaller units of design. Later on, the
dependencies among the software categories will lead the
design of interfaces between components [16] to achieve a
minimum of coupling based on the rules established in
reference [16]. Thus, the proper distribution of identified
software categories among design units can have an
enormous impact on software quality. During assessments,
this intended way of identifying design units and delimiting
them by assigning distinct tasks to them can be reversed.
This enables an evaluation of the rationale the design is
based on.

Available architecture patterns cannot provide a
comparative view on GUI responsibilities, since they miss
some details, are interpreted differently among developers,
can be biased towards a certain programming language, and
the discussion of their trade-offs is limited to their scope, so
that the impact on the general architecture can only be partly
valuated. In addition, patterns often need to be combined
within a design, so that their different effects depend on the
actual combination and their adaptations.

208

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Interface design. When common GUI architecture
responsibilities have been identified and systematically
analyzed concerning their dependencies, the potential
interfaces for communication between components or classes
can be derived. According to Quasar [16], an interface
ideally should be defined on the basis of a software category
that serves as a parent for both software categories to be
linked. That way, the least coupling is ensured. Not always
can a shared parent software category be found to serve as a
basis for an interface between components. This may be due
to an improper distribution of responsibilities among design
units. As a result, the underlying software category model
needs to be revised. Anyway, the identification of design
units and their interface structure requires some detailed
planning.

Relationship to implementations. The responsibilities
modeled by the software category tree can be used to analyze
and reflect implementations. According to Quasar
references, this is only done on the level of the very basic
software categories 0, A, T and AT. With the now available
refinements for GUI architectures, an actual design or
implementation can be evaluated concerning the
correspondence to software categories. Thus, the cohesion
and separation of concerns ca be assessed. The other way
around, given implementations may refine the software
category tree and it could be practically examined if the
visibility is sufficient moving the tree upwards starting from
a certain category or if additional dependencies have to be
modeled.

Missing concerns. Currently, concerns like user profiles,
additional assistance, session management [14] and
authorization are not included. In general, terms in the field
of GUI architecture are not used uniformly, so we rely on
our category model that provides a clear description of tasks.
Furthermore, the software categories may be adapted to fit
other domains, since the separation of concerns is essential in
most software architectures.

Summary. By the application of software categories, the
GUI responsibilities to be identified have been ordered and
grouped according to their knowledge and purpose, but this
was modeled independently from any specific software
architecture. The software categories in that role are suitable
to represent a set of GUI responsibilities without the need to
mention specific data types or operations of certain
frameworks. Finally, the way how frameworks are applied
shall be adapted to the required set of responsibilities as well
as the software architecture based thereupon and not vice
versa.

2) Major Issues in GUI Architecture Design

Our first objective was to identify GUI design issues.
These issues naturally result from points of improper
coupling, non-separated concerns and in general missing
responsibilities not modeled by available GUI architectures
or patterns. We had to analyze the available architectural
patterns, which differ in structure as well as the
encapsulation of concerns. Finally, there is no standardized
GUI architecture ready for implementation. This is an issue
here but also for mobile devices [46]. We analyzed the
differences or missing details of presented architectural

patterns and identified four major design issues that may
have a considerable impact on GUI development and
maintenance.

Presentation logic and application control flow.
Firstly, a design decision has to treat the question what and
how much application logic is being processed by a single
Dialog, or particularly its Dialog Logic or DialogKernel.
Thus, the coordination and division of labor between dialog
and application related components should clearly define
what portions of the event processing chain will just be
handled by the DialogKernel.

As the primary controlling entity of a dialog, the
DialogKernel acts as a client of the ApplicationKernel and
its services [16][14]. The architect has to decide how much
control flow will be implemented by the client and what
operations or services are to be integrated in the controlling
object’s flow definition. For instance, the business logic can
be separated by different layers like services, auxiliary
services, domain model entities and data types [47]. The
coordination of the various algorithms and delegations,
which is essential to achieve the goals defined by use cases,
can either be performed by the ApplicationKernel or the
DialogKernel may govern the sequence of service calls and
their combination. The so called orchestration of services to
realize a certain use case is an option for the DialogKernel,
since this design unit determines the data structure for user
interaction. In this context, the DialogKernel directly can
react to valid user inputs and may decide on the further
processing via services or may even trigger corresponding
state changes for the Presentation. How the latter is to be
designed remains an open issue.

Siedersleben states that the ApplicationKernel
components constitute of use case realizations [16].
However, these components would definitely be incomplete
use cases realizations, since the latter regularly require much
user interaction. To conclude, the question arises how use
case realizations are sub-divided among ApplicationKernel
services (management of data structures and relationships,
service hierarchy), DialogKernels (logic for dialog flow and
control of user interaction) and finally Presentations (visual
part, in- and output UI-Controls, realization of visual states).
Ultimately, this design decision depends on the navigation
structure and whether one DialogKernel may control a
composition of Presentation units or Sub-Dialogs that form a
complete Dialog unit for the sake of one use case realization.

Dialog navigation. This leads us to the second issue that
is concerned with the flow of Dialog units or navigation
among them. Karagkasidis [10] already described this issue
from the perspective of an example with opening and closing
Sub-Dialogs. Important aspects mentioned by Karagkasidis
are the lifecycle management of Sub-Dialogs that can be
related to our presented GUI design units of Dialog, Sub-
Dialogs and Views from Figure 9: they need to be controlled
by a dedicated entity that is able to assign data to them,
which is appropriate in a certain context. In addition, events
from every GUI design unit of the hierarchy, which are
significant for the further event handling or application data,
have to be integrated in the presentation logic flow or event
processing chain, so that individual units do not act isolated
but create a comprehensive sequence of events.

209

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Recent research [48][49] investigated on the role of task
models for structuring the flow of dialogs. In analogy to the
above described issue of division of labor for use case
realizations between ApplicationKernel and DialogKernel,
the architect has to decide on the responsibilities of a single
DialogKernel concerning the flow of Dialogs. The question
arises what part of the navigation is governed by higher
situated components, e.g., a dedicated task controller, and
what view changes are in the responsibility of the
DialogKernel.

Large AT software portions. Thirdly, the Quasar
software categories serve a main purpose to separate
application from technical aspects, and thus, avoid AT
software.

As far as the GUI architecture is concerned, we identified
two aspects where AT software does regularly occur. The
Presentation communicates with both the GUI Framework
and DialogKernel in order to retrieve and store data inputs
from the user. Eventually, the Technical Data Models of the
GUI Framework and the Dialog Data Model have to be
converted in the respective formats to enable information
exchange. There may be a second conversion necessary
between Dialog Data Model and Domain Data Model when
the DialogKernel has to use a different data format.

Another aspect of AT software is the transformation of
the Dialog Data Model to visual representations, which are
constructed by the Presentation. Accordingly, the
Presentation needs to possess knowledge of both the proper
selection, arrangement of UI-Controls and the usage,
creation of the latter via the specific GUI Framework
facilities. Besides the first two issues, these two AT software
aspects can additionally increase maintenance efforts. To
solve the third issue, conventional architectures will not
suffice and specific designs for additional decoupling have to
be invented. An initial approach was formulated by
Siedersleben and Denert in [29].

Granularity of GUI pattern design units. Another GUI
design issue could be identified that is cross-cutting along
the previously described three GUI design problems. It is
concerned with the proper sizing of GUI design units, or
with respect to common GUI patterns, MVC triads [10]. In
detail, the main objective is keeping the event processing
chain of the GUI perfectly matched with the functional
requirement side of the value creation chain represented by
business processes and corresponding use cases. Ultimately,
these two mental models of event flows have to be kept in
close synchronization to be able to firstly realize
requirements properly and secondly apply changes to the
GUI system efficiently when requirements are altered or
added. Simple MVC or even greater HMVC [5] or MVP
[6][7] Controllers are quickly overburdened in their scope in
the attempt to trace functional requirements of the value
creation chain, and so, keep track individual steps of
application control flow.

The introduced GUI software categories (Figure 10) shed
light on the granularity problem as they clearly distinguish
greater and lesser components like Dialog Logic,
Presentation, View Definition and Presentation Event
Handling.

Originally, the MVC and its derivates were not designed
to address such complex and hierarchical structures within
information systems. Please remember that the classic MVC
was built with the assumption in mind having this
architecture applied as the global architectural style: there
were no additional units of application or domain related
design (generally A software descendants in terms of Quasar
software categories) besides Models.

Nowadays, application and presentation logic as well as
business processes do pose a difference to that rather simple
Model design of the past. Therefore, Controllers face a
different scope inside the value creation chain. To be able to
separate concerns and keep a high cohesion, Controllers
need to be assigned a proper level of responsibilities within
the GUI software category tree. This in turn requires a
corresponding sizing of triads or other pattern based GUI
design units.

Identification of GUI design unit instances. Besides
the granularity problem, there is an additional conflict
whether to provide a custom identified structure of MVP or
HMVC instances with better overview due to the reduced set
of design units or to adopt an easy to identify hierarchical
structure of classic MVC [31] with small fine-grained triads
that follow a stereotype assignment approach of GUI design
units (every UI-Control potentially serves as a triad
connected to a global Model or a part of it). It has to be
considered that the classic MVC approach can only be relied
on as far as the Presentation is concerned. A Dialog Logic or
DialogKernel unit of design and their responsibilities cannot
be covered and have to be realized by custom solutions.
According to the HMVC or MVP approach, the Controllers
couple the different triads for communication and navigation
purposes, so that the evolution or maintenance of both
Presentation and Dialog Logic or DialogKernel units of
design is closely coupled. Finally, this approach needs a
further separation of concerns to resolve the issue. A perfect
distribution of responsibilities will be difficult to achieve,
since there are only certain triad members to accept the set of
responsibilities symbolized by the principal software
categories View Definition, View Navigation, Presentation
Event Handling, Dialog Data Model and Dialog Event
Handling. These need to be distributed among the triad
members.

3) User Interface Patterns and Solution Approaches

Before we draw our conclusions, we briefly discuss how
the incorporation of UIPs for the Presentation component
may directly or indirectly resolve some of the identified GUI
design issues.

AT software. At first, the mixture of application and
technical aspects can directly be avoided by the integration
of UIPs. In this context, UIPs promise the reuse of visual
layout and related interaction. Thereby, the stereotype parts
therein would be implemented once and encapsulated in the
UIP units. Then the Presentation could be composed of these
pattern units and would specify their contents via parameters.
The UIP implementations would directly depend on the GUI
Framework and no longer each Presentation unit. Therefore,
fewer efforts would have to be spent on programming with
GUI Framework facilities in the long run when UIPs could

210

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be reused extensively. The development could be focused on
the DialogKernel design issues instead.

Event differentiation by software categories. To
integrate UIPs in the Presentation, the differentiated
software categories for event processing will be of great
value. The differentiation of events is a fundamental
preparation for UIP integration as they prepare the better
adaptability and even exchange of Presentation units.
Responsibilities would be centered in the DialogKernel to
raise the flexibility of UIPs.

We favor a solution that corresponds to the
responsibilities of the software category tree and identifies
Controller like design units accordingly. In detail, we think
about moving away from the concrete representation of
visual elements in each View of any triad. Controllers on
different A software levels should be established along with
abstract to more concretely defined View contents:
Controllers based on the Presentation sub-tree of software
categories can be closer coupled to a View, than Controllers
of the Dialog Logic sub-tree. For instance, for a Dialog
Logic level based Controller a visibility could be defined
that describes an associated View to be controlled in state
with only abstract elements like inputs, outputs, commands
and navigation signals (compare abstract user interface,
abstract interaction components of reference [50]), since this
level of detail is completely sufficient for this type of
Controller. In addition, this design keeps the opportunity to
easily change the concrete details of the concrete Views
lower in hierarchy. The higher situated Controllers do not
depend on the concrete details; as long as the number of
view states and in- as well as output events remain the same,
details of views concerning layout may freely be changed.
View states will be relevant for the Dialog Logic, but not
their concrete visual appearance. The Dialog Logic is
decoupled and kept independent from Views in turn.

In common MVC architectures, the Controllers are
closely coupled to the View they are associated with. When
the Views are altered or exchanged, the Controllers need to
be also adapted or will not be reusable at all. For UIPs, these
circumstances are not desirable; some Controller tasks need
to be stable and reusable, so that at least the design units
controlling the presentation logic states remain unaffected.

The above described approach to a solution is exactly
what UIPs may need: Controllers cannot rely on knowledge
about the View’s concrete visual composition, instead a small
interface is required that is both used for communication
between Dialogs and UIPs as units on Presentation level and
for the configuration or instantiation of UIPs. The UIP just
required to provide the states, in- and outputs of data
required by the Dialog Logic part. Anyway, these
requirements have to be met by any other Presentation,
which may be not UIP based, in order to comply with the
underlying use case. Therefore, we suggest that an abstract
representation of the Presentation from the Dialog Logic’s
point of view is sufficient and are confident that this
approach will improve software architecture quality.

UIP impacts. To conclude, the software category tree
displays the dependencies among the occurring GUI
responsibilities. When UIPs are to be integrated in the GUI
software architecture, an architect is able to assess the

impacts UIPs may have on the established relationships. In
particular, he can decide what interactions require a different
design for coupling in order to enable the reusability and
exchangeability of UIPs. A first description of such
assessments was presented in reference [51], but this was
based on an earlier revision of the software category tree.

VI. CONCLUSION AND FUTURE WORK

The scope of this work is a study of the prevailing issues
of GUI architecture design. A software category tree on the
basis of Quasar was elaborated, which displays common
responsibilities for GUI architectures and their dependencies.
This display is independent of any platform, framework or
architecture pattern. In contrast, available patterns can be be
detailed or adapted on that basis. Eventually, the identified
and described responsibilities can be re-structured in a GUI
software architecture that may serve as a basis for a
standardization of UIP integration. When no concern is
mixed-up, reuse of UIPs is principally facilitated.

With the aid of the software categories, we have analyzed
the common GUI MVC pattern and the Quasar client
reference architecture. As result, we identified pattern
specific and general issues of relevance for design decisions
within GUI architecture development. The herein applied
method with a decomposition of software categories and the
tracing to an architecture model can be applied for other
domains to assess the separation of concerns, cohesion and
coupling.

Software categories and their relationship to patterns
and design. One might ask what the difference is between
the reviewed GUI architecture patterns with the presented
tables of their responsibilities and the software category
model, which nearly contains the same set of responsibilities.

Foremost, the software category model of course
contains each responsibility of the patterns and is partly
sourced from them. Nevertheless, the difference of capital
importance is that the patterns already contain roles or design
units with their fixed interfaces, dependencies and
associations. These comprise the design as a structural and
behavioral pattern unit and cannot be altered without
changing the entire pattern concept.

On the contrary, the software categories model the
responsibilities not from a fixed role perspective but from a
point of view what topic, entities and operation types with
their intended purpose are required for a certain
responsibility. Hence, responsibilities in the software
category tree are based on differentiated areas of knowledge
and not on structural relationships in the first place. The
advantage of the software categories is that they can be re-
assigned to different designs, so that developers can be
assured of completeness when each of the software
categories can be traced to the resulting design. In that way,
the same tasks the patterns serve are realized but different
variations in design can be probed in a controllable manner.
The patterns do not enable such a fine-grained
decomposition of their responsibilities and allow no easy
modifications without compromising the pattern’
characteristic effects or forces.

Finally, the software categories do not only allow the
allocation of responsibilities to designs; they are essentially

211

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

supplemented with rules [6] that are to be applied on the
design of interfaces between interacting entities. This
concept of rules shall ensure an improvement of coupling
and a reduction of dependencies.

Future work. The findings of this work will influence
our further research into the implementation options for
UIPs. The Quasar client proved to be the most advanced
architecture publicly available. On the basis of the identified
issues of that architecture, we will have to develop dedicated
solutions to prepare a suitable target architecture for UIPs.
We need to further assess the architecture variants outlined
in our previous work [30]. The software categories will help
us to plan and evaluate possible solutions. Whatever
architecture variant will be favored, it definitely needs a
software architecture of high quality with well separated
concerns to accept UIPs as additional and reusable artifacts.
The solution must resolve the identified GUI design issues to
allow the integration of UIPs as artifacts that enable a
reduction of efforts for the adaptation of GUIs. Finally, UIPs
shall not add additional dependencies, otherwise they would
make GUI software systems even more difficult to maintain.

The established GUI software category tree will help us
to integrate UIPs into the existing responsibility relationships
and keep control about their influence. However, the
software category tree needs to be approved in practical
applications and possibly requires a revision.

ACKNOWLEDGMENT

We like to express our gratitude to the companies, close
friends and family members that took part in and contributed
valuable results to the survey mentioned in the introduction.

REFERENCES

[1] S. Wendler and D. Streitferdt, “A Software Category Model
for Graphical User Interface Architectures,” The Ninth
International Conference on Software Engineering Advances
(ICSEA 14) IARIA, Oct. 2014, Xpert Publishing Services, pp.
123-133, ISBN: 978-1-61208-367-4.

[2] M. Haft, B. Humm, and J. Siedersleben, “The architect’s
dilemma – will reference architectures help?,” First
International Conference on the Quality of Software
Architectures (QoSA 2005), Springer LNCS 3712, Sept.
2005, pp. 106-122.

[3] T. Reenskaug, “Thing-Model-View-Editor. An example from
a planningsystem,” Xerox PARC technical note, 1979.05.12.

[4] S. Alpaev, “Applied MVC patterns. A pattern language,”
The Computing Research Repository (CoRR), May 2006,
http://arxiv.org/abs/cs/0605020, 2015.06.01.

[5] J. Cai, R. Kapila, and G. Pal, “HMVC: The layered pattern for
developing strong client tiers,” JavaWorld Magazine,
http://www.javaworld.com/javaworld/jw-07-2000/jw-0721-
hmvc.html (2000), 2015.06.01.

[6] M. Potel, “MVP: Model-View-Presenter. The taligent
programming model for C++ and Java,” Taligent Inc., 1996,
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf,
2015.06.01.

[7] A. Bower and B. McGlashan, “Twisting the triad. The
evolution of the dolphin smalltalk MVP application
framework,” Tutorial Paper for European Smalltalk User
Group (ESUP), 2000, Object Arts Ltd., 2000,
http://www.object-arts.com/downloads/papers/
twistingthetriad.pdf, 2015.06.01.

[8] J. Smith, “WPF Apps With The Model-View-ViewModel
Design Pattern,” Microsoft Developer Magazine, 2009,

Februrary, https://msdn.microsoft.com/en-
us/magazine/dd419663.aspx, 2015.06.01.

[9] A. Ferrara, “Alternatives To MVC,”,
http://blog.ircmaxell.com/2014/11/alternatives-to-mvc.html,
2015.06.01.

[10] A. Karagkasidis, “Developing GUI applications: architectural
patterns revisited,” The Thirteenth Annual European
Conference on Pattern Languages of Programming
(EuroPLoP 2008), CEUR-WS.org, July 2008.

[11] M. Scarpino, SWT/JFace in action. Greenwich: Manning,
2005.

[12] T. Hatton, SWT: a Developer’s Notebook. Beijing: O'Reilly,
2004.

[13] R. Steyer, Google Web Toolkit: Ajax-Applikationen mit Java.
Unterhaching: entwickler.press, 2007.

[14] M. Haft and B. Olleck, “Komponentenbasierte Client-
Architektur [Component-based client architecture],”
Informatik Spektrum, vol. 30, issue 3, June 2007, pp. 143-
158, doi: 10.1007/s00287-007-0153-9.

[15] M. Fowler, “GUI Architecures,” 18.07.2006,
http://martinfowler.com/eaaDev/uiArchs.html, 2015.06.01.

[16] J. Siedersleben, Moderne Softwarearchitektur [Modern
software architecture], 1st ed. 2004, corrected reprint.
Heidelberg: dpunkt, 2006.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-oriented Software.
Reading: Addison-Wesley, 1995.

[18] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stahl, Pattern-Oriented Software Architecture, Volume 1:
A System of Patterns. New York: John Wiley & Sons, 1996.

[19] M. Lindvall and K. Sandahl, “Practical implications of
traceability,” Software - Practice and Experience (SPE), vol.
26, issue 10, Oct. 1996, pp. 1161-1180.

[20] P. Mäder, O. Gotel, and I. Philippow, “Getting back to basics:
promoting the use of a traceability information model in
practice,” The Fifth Workshop on Traceability in Emerging
Forms of Software Engineering, IEEE, May 2009, pp. 21-25.

[21] J. Siedersleben, “An interfaced based architecture for business
information systems,” The Third International Workshop on
Software Architecture (ISAW '98), ACM, Nov. 1998, pp.
125-128.

[22] E. Evans, Domain-Driven Design: Tackling Complexity in
the Heart of Software. Boston, MA: Addison-Wesley, 2004.

[23] J. Engel, C. Herdin, and C. Märtin, “Exploiting HCI pattern
collections for user interface generation,” The Fourth
International Conferences on Pervasive Patterns and
Applications (PATTERNS 12) IARIA, July 2012, Xpert
Publishing Services, pp. 36-44, ISBN: 978-1-61208-221-9.

[24] A. Wolff, P. Forbrig, A. Dittmar, and D. Reichart, “Tool
support for an evolutionary design process using patterns,”
Workshop on Multi-channel Adaptive Context-sensitive
Systems (MAC 06), May 2006, pp. 71-80.

[25] J. Engel and C. Märtin, “PaMGIS: A framework for pattern-
based modeling and generation of interactive systems,” The
Thirteenth International Conference on Human-Computer
Interaction (HCII 09), Part I, Springer LNCS 5610, July 2009,
pp. 826-835.

[26] K. Breiner, G. Meixner, D. Rombach, M. Seissler, and D.
Zühlke, “Efficient generation of ambient intelligent user
interfaces,” The Fifteenth International Conference on
Knowledge-Based and Intelligent Information and
Engineering Systems (KES 11), Springer LNCS 6884, Sept.
2011, pp. 136-145.

[27] M. J. Mahemoff and L. J. Johnston, “Pattern languages for
usability: an investigation of alternative approaches,” The
Third Asian Pacific Computer and Human Interaction
Conference (APCHI 98), IEEE Computer Society, July 1998,
pp. 25-31.

212

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[28] J. Borchers, “A pattern approach to interaction design,”
Conference on Designing Interactive Systems (DIS 00),
ACM, August 2000, pp. 369-378.

[29] J. Siedersleben and E. Denert, “Wie baut man
Informationssysteme? Überlegungen zur Standardarchitektur
[How to build information systems? Thoughts on a standard
architecture],” Informatik Spektrum, vol. 23, issue 4, Aug.
2000, pp. 247-257, doi: 10.1007/s002870000110.

[30] S. Wendler, D. Ammon, T. Kikova, I. Philippow, and D.
Streitferdt, “Theoretical and practical implications of user
interface patterns applied for the development of graphical
user interfaces,” International Journal on Advances in
Software, vol. 6, nr. 1 & 2, pp. 25-44, 2013, IARIA, ISSN:
1942-2628, http://www.iariajournals.org/software/.

[31] G. E. Krasner and S. T. Pope, “A Cookbook for Using the
Model-View-Controller User Interface Paradigm in Smalltalk
80,” Journal of Object Oriented Programming, vol. 1,
August/September, 1988, pp. 26-49.

[32] M. Fowler, Patterns of Enterprise Application Architecture.
New Jersey: Addison-Wesley Professional, 2003.

[33] D. Collins, Designing Object-Oriented User Interfaces.
Redwood City, CA: Benjamin/Cummings Publ., 1995.

[34] E. Horn and T. Reinke, Softwarearchitektur und
Softwarebauelemente [Software architecture and software
construction elements]. München, Wien: Hanser, 2002.

[35] J. Dunkel and A. Holitschke, Softwarearchitektur für die
Praxis [Software architecture for practice]. Berlin: Springer,
2003.

[36] D. Greer, “Interactive Application Architecture Patterns,”
http://aspiringcraftsman.com/2007/08/25/interactive-
application-architecture/, 2015.06.01.

[37] S. Borini, “Understanding Model View Controller,”
http://forthescience.org/books/modelviewcontroller/
00_introduction/00_preface.html, 2015.06.01.

[38] J. Siedersleben (ed.), “Quasar: Die sd&m Standardarchitektur
[Quasar: The standard architecture of sd&m]. Part 2, 2. edn.
sd&m Research: 2003.

[39] Open Qusasar Sourceforge project,
http://sourceforge.net/projects/openquasar/, 2015.06.01.

[40] B. Humm, “Technische Open Source Komponenten
implementieren die Referenzarchitektur Quasar [Technical
Open Source Components implement the Reference
Architecutre of Quasar],” in: ISOS 2004 - Informationsysteme
mit Open Source, H. Eirund, H. Jasper, O. Zukunft, Eds.
Proceedings GI-Workshop, Gesellschaft für Informatik, 2004,
pp. 77-87.

[41] B. Humm , U. Schreier, and J. Siedersleben, “Model-Driven
development – hot spots in business information systems,”
Proceedings of the First European conference on Model
Driven Architecture: foundations and Applications, Springer
LNCS 3748 , pp. 103-114.

[42] S. Wendler, D. Ammon, I. Philippow, and D. Streitferdt “A
factor model capturing requirements for generative user
interface patterns,” The Fifth International Conferences on
Pervasive Patterns and Applications (PATTERNS 13) IARIA,
IARIA, May 27 - June 1 2013, Xpert Publishing Services, pp.
34-43, ISSN: 2308-3557.

[43] J. Vanderdonckt, “A MDA-compliant environment for
developing user interfaces of information systems,” The
Seventeenth International Conference on Advanced
Information Systems Engineering (CAiSE 2005), Springer
LNCS 3520, June 2005, pp. 16-31.

[44] R. Stafford, “Service Layer,” in [32].
[45] F. Paternò, C. Mancini, and S. Meniconi, “ConcurTaskTrees:

A Diagrammatic Notation for Specifying Task Models,”
Proceedings of The Sixth International Conference on
Human-Computer Interaction, INTERACT 1997, IFIP
Advances in Information and Communication Technology,
Springer, 1997, pp.362-369.

[46] K. Sokolova, M. Lemercier, and L. Garcia, “Android passive
MVC: a novel architecture model for the android application
development,” The Fifth International Conference on
Pervasive Patterns and Applications (PATTERNS 2013),
IARIA, May 27 - June 1 2013, pp 7-12.

[47] S. Wendler and D. Streitferdt, “An analysis of the generative
user interface pattern structure,” International Journal On
Advances in Intelligent Systems, vol. 7, nr. 1 & 2, pp. 113-
134, 2014, IARIA, ISSN: 1942-2679,
http://www.iariajournals.org/intelligent_systems/index.html.

[48] F. Radeke and P. Forbrig, “Patterns in task-based modeling of
user interfaces,” The Sixth International Workshop on Task
Models and Diagrams for Users Interface Design (TAMODIA
07), Springer LNCS 4849, Nov. 2007, pp. 184-197.

[49] V. Tran, M. Kolp, J. Vanderdonckt, and Y. Wautelet, “Using
task and data models for user interface declarative
generation,” The Twelfth International Conference on
Enterprise Information Systems (ICEIS 2010), vol. 5, HCI,
SciTePress, June 2010, pp. 155-160.

[50] E. Mbaki, J. Vanderdonckt, J. Guerrero, and M. Winckler ,
“Multi-level Dialog Modeling in Highly Interactive Web
Interfaces,” The Seventh International Workshop on Web-
Oriented Software Technologies (IWWOST 2008), ICWE
2008 Workshops, pp.38-43.

[51] S. Wendler and D. Streitferdt, “The Impact of User Interface
Patterns on Software Architecture Quality,” The Ninth
International Conference on Software Engineering Advances
(ICSEA 14) IARIA, Oct. 2014, Xpert Publishing Services, pp.
134-143, ISBN: 978-1-61208-367-4.

213

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Model Inference and Automatic Testing of Mobile Applications

Sébastien Salva
LIMOS - UMR CNRS 6158
Auvergne University, France

email: sebastien.salva@udamail.fr

Patrice Laurençot
LIMOS - UMR CNRS 6158

Blaise Pascal University, France
email: laurenco@isima.fr

Abstract—We consider, in this paper, the problem of au-
tomatically testing Mobile applications while inferring formal
models expressing their functional behaviours. We propose a
framework called MCrawlT, which performs automatic testing
through application interfaces and collects interface changes to
incrementally infer models expressing the navigational paths
and states of the applications under test. These models could
be later used for comprehension aid or to carry out some
tasks automatically, e.g., the test case generation. The main
contributions of this paper can be summarised as follows: we
introduce a flexible Mobile application model that allows the
definition of state abstraction with regard to the application
content. This definition also helps define state equivalence
classes that segment the state space domain. Our approach
supports different exploration strategies by applying the Ant
Colony Optimisation technique. This feature offers the ad-
vantage to change the exploration strategy by another one
as desired. The performances of MCrawlT in terms of code
coverage, execution time, and bug detection are evaluated on 30
Android applications and compared to other tools found in the
literature. The results show that MCrawlT achieves significantly
better code coverage in a given time budget.

Keywords-Model inference; Automatic testing; Android appli-
cations.

I. INTRODUCTION

One of the primary purposes of software testing is to
assess the quality of the features offered by an application
in terms of conformance, security, performance, etc., to dis-
cover and fix its defects. Traditionally, testing is performed
by means of test cases written by hands. But manual testing
is often tedious and error-prone. Model-based Testing is
another well-known approach, which automates the test case
generation from a formal model describing the functional
behaviours of the application. MbT makes possible the
generation of exhaustive test suites (composed of all combi-
nations of input values), but a complete model expressing all
the expected behaviours of an application is then required.
Unfortunately, writing complete models is often a long,
difficult, and tedious task. As a consequence, only partial
models are often proposed and available for testing. This
makes MbT less interesting and even impractical with many
real systems.

For specific applications, model inference methods based
upon automatic testing can strongly help in the design of
models. In particular, GUI applications (a.k.a. event-driven

applications) belong to this category. Such applications
offer a Graphical User Interface (GUI) to interact with
and respond to a sequence of events played by the user.
Partial models can be inferred by exploring (a.k.a. crawling)
interfaces with automatic testing approaches. Furthermore, a
large part of the application defects can be detected during
the process. Afterwards, these generated models may be
manually extended, analysed with verification techniques or
employed for generating test cases.

This work falls under the automatic testing category and
tackles the testing and the generation of functional models
for Mobile applications. It provides additional details over
[1] on various aspects, e.g., the use of strategies to explore
applications. Several works already dealt with the crawling
of GUI application, e.g., Desktop applications [2], Web
applications [3], [4], [5] or Mobile ones [6], [7], [8], [9].
These approaches interact with applications in an attempt to
either detect bugs or record models or both. These previous
works already propose interesting features, such as the test
case generation from the inferred models. However, it also
emerges that many interesting issues still remain open.
Firstly, performing experiments with the GUIs of Web or
Mobile applications may lead to a large and potentially
unlimited number of states that cannot be all explored.
Additionally, the application traversing is usually guided
by one of these strategies: DFS (Depth First path Search)
or BFS (Breadth First path Search). These are relevant on
condition that all the application states would be explored.
But when the application state number is large or the
execution time is limited, using other strategies could help
target the most interesting application features as a first step.

This paper contributes in these issues by proposing a
framework called MCrawlT. Its goals are to experiment
Mobile applications to infer both storyboards and formal
models, and to detect bugs. It also aims to achieve good
code coverage quickly. The originality of our approach lies
in the following features:
• model definition and state abstraction: we use PLTSs

(Parametrised Labelled Transition Systems) as models
that we specialise to capture the functional behaviours
of Mobile applications. Most of the model inference
approaches use state abstractions to produce models.
But they often either face the problem of state space

214

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

explosion or produce too abstract models that do not
capture sufficient information to later perform analysis
and testing. Both issues often occur because of an inap-
propriate and unmodifiable state abstraction definition.
Here, we propose a flexible PLTS state representation
which allows the definition of state abstraction with
regard to the application content. This PLTS state
definition also helps define state equivalence classes,
which slice a potentially infinite state space domain
into finite equivalence classes. Our algorithm aims at
exploring every discovered state equivalence classes
once. As a consequence, our algorithm terminates;

• exploration strategies performed in parallel: we propose
a first algorithm which uses exploration strategies to
target specific parts of a Mobile application. The al-
gorithm is based upon the Ant Colony Optimisation
(ACO) technique and simulates several ants represented
by threads, which explore application states and lay
down pheromones. These pheromone trails, built in
parallel, allow the ants to target the most relevant states
w.r.t. a chosen strategy. A strategy can be replaced by
another one as desired;

• code coverage enhancement: GUI application testing
approaches traditionally start exercising an applica-
tion from its root interface. Nevertheless, we observed
that some application features cannot be automatically
tested and hence block the application exploration,
which may lead to low code coverage. This is why we
propose an extended algorithm which tries to cover an
application starting from each of its available interfaces
and which infers several PLTSs along the execution.
If a blocking feature is bypassed, the application is
deeper covered and therefore the code coverage is
improved. Furthermore, the algorithm avoids exploring
states previously encountered to not build several iden-
tical models.

In collaboration with the Openium company, which is
specialised in the design of Mobile applications, we have
implemented MCrawlT for Android applications. The tool is
publicly available at https://github.com/statops/MCrawlerT.
We applied MCrawlT to 30 real-world Android applications
and compared its effectiveness against other available auto-
matic testing tool in terms of code coverage, execution time
and bug detection.

The paper is structured as follows: Section II surveys
related work and introduces our motivations. For exposi-
tory purposes, we start by presenting an overview of our
approach in Section III that we apply on the Ebay Mobile
application, taken as example throughout the paper. We also
give the assumptions that guided the design of our approach.
Section IV gives definitions and notations about the PLTS
model. In particular, we specialise the PLTS formalism for
Mobile applications and give a state equivalence relation.

Our exploration algorithms are detailed in Section V. Section
VI presents experimental results. Conclusions are drawn in
Section VII along with directions for further research and
improvements.

II. RELATED WORK AND DISCUSSION

Several papers dealing with automatic testing and model
inference approaches were issued in the last decade. Here,
we present some of them relative to our work.

Several works were proposed for white-box systems.
For example, Contest [6] is a testing framework which
exercises smartphone applications with the generation of
input events. This approach relies upon a systematic test
generation technique, a.k.a. concolic testing, to explore
symbolic execution paths of the application. Artzi et al.
[4] proposed an automatic white-box testing approach for
finding faults in PHP Web applications. The application code
is covered using combined concrete and symbolic (concolic)
execution, and constraint solving to detect execution fail-
ures and malformed HTML code. These white-box based
approaches should theoretically offer a better code coverage
than the automatic testing of black-box systems. However,
the number of paths being explored concretely limits to
short paths only. Furthermore, the constraints have not to
be too complex for being solved. As a consequence, the
code coverage of these approaches is not high in practice.

On the other hand, many black-box based methods were
also proposed. Memon et al. [2] initially presented GUI
Ripper, a tool for scanning and testing desktop applications.
This tool produces event flow graphs and trees showing
the GUI execution behaviours. Only the click event can
be applied, and GUI Ripper produces many false event
sequences which may need to be weeded out later. Fur-
thermore, the actions provided in the generated models are
quite simple (no parameters). This approach was extended
to support Mobile applications in [10] with the tool Guitar.
This one is based upon GUI Ripper but also supports the
inference of Event flow graphs and test case generation.
Mesbah et al. [3] proposed the tool Crawljax specialised
in Ajax applications. It produces state machine models
which capture the changes of the DOM structures of HTML
documents by means of events (click, mouseover, etc.).
An interesting feature of Crawljax is the concatenation of
identical states in the model under construction. If two states,
which represent the DOM structures of HTML documents,
are similar, they are assembled together. This helps reduce
the number of states which may be as large as the DOM
modifications. In practice, to limit the state space and to
avoid the state explosion problem, state abstractions have to
be given manually to extract a model with a manageable
size. Webmate [5] is another automatic testing tool for Web
applications. It produces graphs showing the observed GUI
and events.

215

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Since our approach targets Mobile applications, we ex-
plore more cautiously this field in the following. Monkey
[11] is a random testing tool proposed by Google. It is
considered as a reference in many papers dealing with
Android application automatic testing. However, it cannot
simulate complex workloads such as authentication, hence,
it offers light code coverage in such situations. The tool
Dynodroid [9] exercises Android applications with UI events
like Monkey but also with system events to improve code
coverage. A similar technique is applied on Android applica-
tions in [12]. But, the approach additionally performs static
analyses on Android application source codes to later guide
the application exploration. No model is provided with these
approaches. Amalfitano et al. [7], [13] proposed AndroidRip-
per, a crawler for crash testing and for regression test case
generation. A simple model, called GUI tree, depicts the
observed screens. Then, paths of the tree not terminated
by a crash detection, are used to re-generate regression test
cases. Joorabch et al. [14] proposed another crawler, similar
to AndroidRipper, dedicated to iOS applications. Yang et
al. proposed the tool Orbit [8] whose novelty lies in the
static analysis of Android application source code to infer
the events that can be applied on screens. Then, a classical
crawling technique is employed to derive a graph labelled
by events. This grey-box testing approach should cover an
application quicker than our proposal since the events to
trigger are listed by the static analysis. But Orbit can be
applied only when source code is available. This is not the
case for many Android applications though. The algorithm
implemented in SwiftHand [15] is based on the learning
algorithm L∗ [16] to generate approximate models. The
algorithm is composed of a testing engine which executes
applications to check if event sequences meet the model
under generation until a counterexample is found. An active
learning algorithm repeatedly asks the testing engine ob-
servation sequences to infer and potentially regenerate the
model w.r.t. all the event and observation sequences.

We deduced from these papers the main following key
observations:

1) to prevent from a state space explosion, the approaches
that infer models, e.g., [2], [8], [17], usually represent
application states in a fixed manner and with a high
level of abstraction. This choice is particularly suitable
for comprehension aid, but these models often lack
information for test case generation. In contrast, other
approaches try to limit the model size on the fly. The
algorithms introduced in [3], [13] concatenate iden-
tical states of the model under construction, but the
resulting model does not capture the same behaviours
as those expressed in the original model. Such an
extrapolated model may lead to false positives if used
for test case generation. We propose here another
solution based upon the PLTS formalism and the def-

inition of state equivalence classes. We specialise the
PLTS for Mobile applications to ease the definition of
state abstraction. Users can modify the latter to build
models as desired. We define state equivalence classes
to segment the potentially infinite state space domain
of an application in a finite manner. As a consequence,
we show that our algorithm terminates. Finally, we use
a bisimulation minimisation technique [18] to reduce
the PLTS size. This technique offers the advantage to
preserve behavioural equivalence between models;

2) many inference model methods consist in analysing
and completing interfaces with random test data and
triggering events to discover new interfaces that are
recursively explored in an in-depth manner. As a con-
sequence, the application exploration is usually guided
with a DFS strategy. When an application returns
a high number of new interfaces, the graph to be
explored may become too large to visit in a reasonable
time delay. The search is only performed to a limited
depth, and the explored section of the application is
not necessarily the most interesting one. We believe
that a strategy choice is relevant when the execution
time is limited, for instance or when an insight of the
application functioning (code structure) is known or
both. Indeed, strategies allow to quicker target some
application features. Our algorithm is based upon the
ACO technique in order to accept a large strategy
set. For instance, our algorithm supports semantics-
based strategies, i.e., strategies guided by the content
found in applications screens. Furthermore, the ACO
technique is known as a good heuristic to cover paths
through graphs in parallel;

3) crash reporting is another feature supported by some
of these methods. Stress testing is performed in [11],
[19], [9] for trying to reveal more bugs, for instance
by using random sequences of events. Besides, the
tool AndroidRipper [7] generates test cases for each
observed crash. Our approach also performs stress
testing: like Monkey [11], random sequences of events
are applied on screens. We also use well-known values
for revealing bugs for testing. Our tool reports the
observed bugs and generates one test case for each as
well. These ease the analysis of the detected errors and
help deduce whether some errors are false positives.
As crash reporting and detection are not original fea-
tures, we do not detail this part in the paper. We only
discuss about crash detection in the section dealing
with the evaluation of our framework (Section VI).

We presented in [1] a rudimentary introduction of this
work describing an initial algorithm based upon the ACO
technique. In this paper, we define another model, state
equivalence classes, and we revisit the exploration algorithm
to better match the concept of the ACO technique. Then,

216

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(i0) (i1) (i2)

(i3) (i4) (i5)

Figure 1: Ebay Mobile Screen examples

we propose a second Exploration algorithm to enhance
code coverage and we show that our algorithms terminate.
Finally, our evaluation focuses on much more applications
and criteria.

III. OVERVIEW

In this section, we introduce the terminology used
throughout the paper and a motivating example on which
we apply our framework MCrawlT. The formal details and
MCrawlT algorithms are introduced in Section V.

A. Terminology and assumptions

Generally speaking, we say that users expect screens to
interact with Mobile applications. We consider that a screen
represents one application state, the number of states being
potentially infinite. A screen is built by a GUI application
component, e.g., a class. We call them Activities (in ref-
erence to Android applications). These components display
screens by instantiating Widgets (buttons, text fields, etc.)
which are often organised into a tree structure. They also
declare the available (UI) events that may be triggered by
users (click, swipe, etc.). A Widget is characterised by a set
of properties (colour, text values, etc.). Hence, one Activity
can depicts several screens, composed of different Widgets
or composed of the same Widgets but having different
properties.

Figure 1 depicts some screen examples of the Ebay Mobile
application, which is available on the Google Play store
(https://play.google.com/store). This complex application in-
cludes 135 Activities and we only depict five of them in
Figure 1. The initial screen is loaded by the Activity eBay
(i0). A user may choose to search for an item by clicking
on the editable text field Widget. In this case, the Activity
RefineSearch is reached (i1). For instance, if the user enters
the keyword ”shoes”, the search result list is displayed in
the screen i2; the Activity RefineSearch is unchanged but
its content (Widgets) is. Then, three new Activities may
be reached: 1) an Activity called SegmentSearchResult (i3)
displays a result when one element of the proposed list in i2
is chosen, 2) a Scanner Activity is started when the text field
”Scan” is clicked (i4) and 3) a log-in process is performed
when the ”saved searches” item is selected (Activity SignIn,
i5). Now if we replace the value ”shoes” by any other String
value, one can easily deduce that this application can yield
a huge state number.

B. Assumptions

The purpose of our algorithm is to generate input events
in order to feed a Mobile application with respect to an
exploration strategy to achieve formal models and good code
coverage quickly. To design this approach, we had to assert
the following hypotheses:

Mobile application testing: we consider black box ap-
plications which can be exercised through screens. It is
possible to dynamically inspect the states of the running
application (to collect Widget properties). This assumption
holds with many recent GUI applications (Web applications,
Mobile applications, etc.). The set of user events enabled on
a screen should be collected as well. If not, Widgets provide
enough information (type, etc.) to determine the set of events
that may be triggered. Otherwise, our algorithm considers
them all for testing an application. Furthermore, any new
screen can be observed and inspected (including application
crashes),

Application reset: we assume that Mobile applications
and their environments (database, Operating System) can be
reset,

Back mechanism availability: several operating systems
or applications (Web navigators, etc.) also propose a spe-
cialised mechanism, called the back mechanism to let users
going back to the previous state of an application by undoing
the last event. We do not consider that this mechanism is
necessarily available and, if available, we assume that it
does not always allow to go back to the previous state of
an application (modified implementation, unreachable state,
etc.). Most of the other methods assume that the back
mechanism always works as expected, but this is frequently
not the case.

217

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2: Algorithm overview

Figure 3: Parallel exploration functioning

C. Exploration algorithm overview

An overview of our algorithm is depicted in Figure 2. It is
framed upon the Ant Colony Optimisation (ACO) technique
to support the definition and the use of exploration strategies,
which can be applied with concurrent threads. With the ACO
technique, the optimal path search in a graph is performed by
simulating the behaviour of ants seeking a path between their
colony and a source of food: firstly, ants explore randomly
and lay down little by little pheromone trails that are finally
followed by other ants.

Ants are here modelled with threads that explore applica-
tion states having the highest pheromone amount, earlier put

down by other ants. This part is implemented, as described
in Figures 2(a) and 3 by using the task-pool paradigm associ-
ated with tasks of the form Explore(q, p) with q the state to
visit and p the path allowing to reach q from the initial state
q0 of the application. Intuitively, this path corresponds to a
trail previously constructed by ants. Initially, the first screen
of the application under test is modelled with an initial PLTS
state q0. The exploration of a screen, modelled with a PLTS
state q, is conveyed with a task Explore(q, p), which is
placed into the task-pool, implemented as an ordered list
in descending order. A thread picks out a task having the
highest pheromone amount, reaches the state q and starts
the exploration. Once the task-pool is empty, the application
exploration is over and a PLTS P is achieved. This one is
minimised to reduce the PLTS state set.

The execution of a task Explore(q, p) is achieved by
the Explore procedure, illustrated in Figure 2(b)). The latter
consists in generating a set of test events (parameter values
combined with an event set) w.r.t. the current application
state. Each test event is applied on the application to reach
a new screen. This one is interpreted and modelled as a new
state q2. However, this step may lead to infinite state space
domains and endless explorations. To avoid this issue, the
algorithm slices state space domains into finite equivalence
class sets by means of a relation defined upon the state
content (see Section IV). We have chosen to explore one
state per equivalence class to keep a reasonable model size
but this could be modified. The algorithm completes the
model with a transition q

q−→ 2 and finally tries to backtrack
the application to go back to its previous state by undoing the
previous action. If the back mechanism cannot be triggered,
the application is restarted from its initial state q0. Once the
state q is explored, the thread can explore a next state iff
it includes a pheromone amount higher than the one found
in q. Likewise, if the back mechanism cannot be applied,
the Explore procedure execution terminates here. The thread
continues its execution in Algorithm 1 by taking another task
in the task-pool.

Figure 4 illustrates how our algorithm works on the Ebay
Mobile application. We have chosen the DFS exploration
strategy whose implementation is detailed in Section V-B.
With this strategy, the deeper a state is in the model from the
initial state, the higher the pheromone amount is. In order to
show a comprehensive but yet concise illustration, we use
only two text field values ”shoes” and ”All shoes” to fill
the editable text fields found in screens. Furthermore, we
consider that the back mechanism is available and that the
state equivalence relation is: two states are similar if they
have the same Widget properties except those related to the
text field values. These last Widget properties are usually
not considered for conceiving state abstractions since these
often lead to a large and potentially infinite set of states.

1) initially, the first screen of the application (Fig-
ure 1(i0)) is inspected to derive a first task

218

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4: Model inference progress on the Ebay application

Explore(q0, p0 = ∅). q0 is derived from the Widget
properties extracted from the screen. It also includes a
pheromone amount equal to 0. [q0] is the initial state
equivalence class. Then, the task Explore(q0, p0 = ∅)
is chosen by the algorithm. The outcome of this task
is depicted in Figure 4(a). A list of test events that
can be applied on the current screen is constructed:
intuitively, these events aims at clicking on the 2 but-
tons, the 2 images, or the text field home search text
found in the current screen. Some events are detailed
in Figure 5. When the test event a0 (click on the
Widget id/home) is executed, a new screen is observed.
The Widget properties are extracted to construct the
state q0 1. This state is marked as final (in grey in
the figure) since it has the same Widget properties as
q0, except for the text field values. In other words,
q0 1 belongs to the state equivalence class [q0]. The
transition q0 a0−→ q0 1 is added to the model. Then, we
call the back mechanism to go back to q0. This event
is illustrated with dashed transitions in Figure 4(a).
For the other test events, every time a new screen is
found, a new state and a new transition are added to
the model. These states include a pheromone amount

increased by one unit to meet the DFS strategy. For
each state, a new equivalence class is created, and a
new task is also put into the task-pool;

2) the algorithm now takes the next task having a state
with the highest pheromone amount. In this case,
the task Explore(q1, q0

clickhome search text−−−−−−−−−−−−−−−→ q1)
is picked out. q1 represents the ”RefineSearchAct”
Activity (Figure 1(i1)). This task gives the PLTS
of Figure 4(b) but to keep this figure readable, we
intentionally do not add the transitions which express
the calls of the back mechanism. As before, a list
of test events is generated. q1 is experimented with
these and new states, e.g., q6, q7, q8, are observed. For
instance, q6 is obtained by clicking on the Widget up
and by filling the editable Widget search text with the
value ”shoes”. q7 is reached in the same way but by
using the value ”All shoes”. The two states q6 and
q7 are obtained from the Activity ”RefineSearch” but
they differ from each other on the Widget listview
which is a container. In q6, listview has more items
than in q7, and consequently, they are not similar
and do not belong to the same equivalence class.
The events a8 1 or a8 2 (clik:widget=id/text2) lead

219

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to the Scanner Activity (Figure 1 (i4)). The event
a8 1 is firstly executed. We observe a new state q8,
which has to be explored. The event a8 2 leads to the
same screen from which a state q8 1 is derived. q8 1
exactly includes the same Widget properties as q8 but
it belongs to the equivalence class [q8] and is then
marked as final. The new states discovered during this
step include a pheromone amount increased by one
unit;

3) the task Explore(q6, q0
clickhome search text−−−−−−−−−−−−−−−→

q1
clickup,search text=”shoes”−−−−−−−−−−−−−−−−−−−→ q6) is now chosen in

the task-pool. This state expresses the Activity of
Figure 1(i3). As in the previous steps, test events are
generated to experiment the current screen. For sake
of readability, we chose to only consider the event
a 10 with the container ”listview”, which stands for
”the click on the first item of listview”. When the
event a 10 is triggered, a new state q9 is found and
another equivalence class is created. In contrast, for
the other events, all the arrival states belong to an
existing equivalent class and are marked as final. We
obtain the model illustrated in Figure 4(c);

4) even though the algorithm should continue with the
task composed of the state q9, we assume here that the
task-pool is empty to keep the example concise. The
model of Figure 4(c) is finally minimised. All the final
states are merged to one unique state B1 as illustrated
in Figure 4(d). States q6 and q7 are aggregated into
B2 since the same behaviours can be observed from
both states. The minimisation process is detailed in
Section V.

In this example, we have shown that the algorithm discov-
ers trails into the applications by laying down pheromone
amounts. The generated models contain the events and
screens observed while testing. As described previously,
this algorithm works with one thread. But, the task-pool
paradigm is particularly suitable to run a group of threads
exploring states in parallel.

In the following, we describe the functionalities, the
model and equivalence relation definitions, succinctly sug-
gested previously. Algorithm 1, given in Section V, imple-
ments with details this overview.

IV. MOBILE APPLICATION MODELLING

In this section, we introduce a few definitions and nota-
tions to be used throughout the paper.

We use PLTS (Parameterised Labelled Transition System)
as models that we specialise to represent Mobile application
behaviours. The PLTS is a kind of automata model extended
with variable sets. The use of variables helps describe valued
actions composed of parameter values and to encode the
states of a system.

Before giving the model definition, we give some nota-
tions on variables. We assume that there exist a domain of

values denoted D and a variable set X taking values in D.
The assignment of variables in Y ⊆ X to elements of D is
denoted with a mapping α : Y → D. We denote DY the
assignment set over Y . Given two assignments α1 ∈ DY

and α2 ∈ DZ with Y ∩ Z = ∅, their union is defined as
α1∪α2(x) = α1(x) iff x ∈ Y, α2(x) iff x ∈ Z. An example
of assignment is α = {x := ”blue”, y := 1} ∈ Dx,y .

Definition 1 (PLTS) A PLTS (Parameterised Labelled
Transition System) is a tuple < V, I,Q, q0,Σ,→> where:
• V ⊆ X is the finite set of variables, I ⊆ X is the finite

set of parameters used with actions,
• Q is the finite set of states, such that a state q ∈ Q is

an assignment over DV ,
• q0 is the initial state,
• Σ is the finite set of valued actions a(α) with α ⊆ DI ,
• →⊆ Q×Σ×Q is the transition relation. A transition

(q, a(α), q′) is also denoted q
a(α)−−−→ q′.

Below, we adapt this generalised PLTS definition to ex-
press Mobile application properties, i.e., screens and events.

UI event representation: We interact with Mobile appli-
cations by means of events, e.g., a click, applied on Widgets.
Furthermore, editable Widgets are possibly completed before
triggering events. We capture these events with PLTS actions
of the form event(α) with α = {widget := w,w1 :=
val1, ..., wn := valn} an assignment over DI ; the parameter
widget denotes the Widget name on which the event is
applied, and the remaining variables are assignments on
Widget properties. We also denote the triggering of the
back mechanism with the action back(α) with α an empty
assignment.

Mobile application state representation: We concluded
from the literature that some Widget properties are con-
sidered as more important than others to encode Mobile
application states. These properties usually indicate a strong
application behaviour modification and take only a few
values to prevent from a state space explosion. We denote
WP the set of these Widget properties. It often gathers
properties related to the Widget visibility, size, position,
colour, etc. The properties that usually take a lot of different
values, e.g., the properties about text field values, are not
chosen to identify Mobile application states. Consequently,
in the remainder of the paper, we consider that WP is
composed of all Widget properties except those related to
text field values.

We specialise PLTS states to store the content of screens
(Widget properties) in such a way as to later facilitate the
construction of state equivalence classes. We define a PLTS
state q as a specific assignment of the form act ∪ wp ∪
wo ∪ end ∪ ph where:
• act is an assignment returning an Activity name,
• (wp,wo) are two sets of Widget property assignments.

The union of wp and wo gives all the Widget property

220

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

values found in an application screen displayed by act.
We keep in wp the Widget properties of WP that
indicate a strong application behaviour modification
and that take only a few values. The other property
assignments are placed into wo,

• end is a boolean assignment marking a state as final,
• ph is an assignment related to the exploration strategy,

which stores a pheromone amount.
For readability, a state q = act ∪ wp ∪ wo ∪ end ∪ ph

is denoted (act, wp,wo, end, ph).
This state structure greatly eases the definition of the

state equivalence relation given below. This one shall be
particularly useful to determine if a state belongs to an
existing equivalent class and requires to be explored or not.

Definition 2 (State equivalence relation) Let P =< V, I,
Q, q0,Σ,→> be a PLTS and for i = 1, 2 let qi =
(acti, wpi, woi, endi, phi), be a state in Q. We say that q1
is equivalent to q2, denoted q1 ∼ q2 iff act1 = act2 and
wp1 = wp2. [q] denotes the equivalence class of equivalent
states of q. Q/∼ is the set of equivalence classes in Q.

This definition, combined with our algorithm, gives a very
adaptable state equivalence relation which can be modified
according to the WP set. As stated previously, we consider
that WP is initially composed of all Widget properties
except those related to text field values. But if, for an
application, a Widget property takes a large number of values
in WP , this one can be removed from WP to obtain a
constricted set of equivalence classes and to achieve a finite
exploration.

Let us consider an application including advertising strips
that are continuously updated. We assume that the Wid-
get property related to the advertising display is denoted
w.content. This property takes a potentially infinite number
of values and may lead to the state space explosion problem
while generating the PLTS. Indeed, for an Activity act
which holds w.content, the exploration algorithm shall
reach several states qi = (act, wpi, woi, endi, phi)(i>1) that
are almost similar except that they contain in wpi different
assignments w.content := vali related to the different
advertisings. Each state qi involves a new equivalence class
[qi](i>1). The application exploration will likely not termi-
nate. The removal of the property w.content in WP fixes
this problem. In this case, the algorithm now constructs
different states qi = (act, wp,woi, endi, phi)(i>1) such that
the different assignments w.content := vali are now placed
into woi. But, the algorithm builds one equivalence class [q]
since the assignment wp is unchanged. Therefore, when the
algorithm reaches a state q2 = (act, wp,wo2, end2, ph2), q2
belongs to [q] and is thus marked as final. Only one state of
[q] is explored, hence, the exploration is finite.

This example also shows that if WP is only composed of
discrete variables taking a finite number of values, then the

Label Action
a0 click(widget:=id/home)
a1 click(widget:=id/home search text)
a2 click(widget:=id/button sign in)
a3 click(widget:=id/button register)
a4 click(widget:=id/rtmImageView)
a5 click(widget:=id/home settings)
a6 1 click(widget:=id/up, search src text:=”All shoes”)
a6 2 click(widget:=id/up, search src text:=”shoes”)
a7 1 click(widget:=id/search button, search src text:=”All shoes”)
a7 2 click(widget:=id/search button, search src text:=”shoes”)
a8 1 click(widget:=id/text1, search src text:=”All shoes”)
a8 2 click(widget:=id/text1, search src text:=”shoes”
a9 1 click(widget=id/text2, search src text:=”All shoes”)
a9 2 click(widget:=id/text2, search src text=”shoes”)
a10 1 click(widget:=”listview at position 1”, search src text:=”shoes”)

Figure 5: Actions and Guards of the PLTS

number of state equivalence classes in a PLTS is bounded.
This is captured by the following Proposition, which shall
be particularly useful to prove the termination of our algo-
rithms.

Proposition 3 Let P =< V, I,Q, q0,Σ,→> be a PLTS
modelling a Mobile application App. Let n be the number of
Widget properties of WP . If m is the maximum number of
values that any Widget property can take during the testing
of App, then card(Q/ ∼) ≤ mn.

Sketch of proof: all the screens of App are expressed with
states of the form q = (act, wp,wo, end, ph). At most, we
have mn different assignments wp. Two states q1, q2 are
equivalent iff act1 = act2 and wp1 = wp2 (Definition 2).
But if there is no equivalent state, we have at most mn

equivalence classes including one state.
The choice of the Widget properties to keep in WP is

left to users. Intuitively, the more a Widget property of WP
takes values, the larger the generated models is. We observed
that ignoring the Widget properties related to text field values
is mostly sufficient. But sometimes, the first exploration of
an application makes emerge some properties that need to
be removed to achieve a finite model in a reasonable time
delay.

Figures 4(c), 5, and 6 illustrate a PLTS example derived
from the Ebay Mobile application, after covering only 5%
of its Activities. We detail some PLTS states in a reduced
form in Figure 6: we give the Activity name, the numbers
of Widget properties (wp and wo), and the assignments
end and ph. The PLTS actions are given in Figure 5. For
instance, the state q0 represents the initial Activity eBay of
the application, which includes 2 buttons, 6 images, and 7
text fields . q1 is reached from q0 by executing the action
a1, i.e., by clicking on the home search text Widget.

V. AUTOMATIC TESTING AND MODEL INFERENCE WITH
ACO

In this section, we formally describe the algorithms
implemented in MCrawlT. We firstly detail the algorithm

221

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

State Activity #wp #wt end ph
q0 eBay 2b,2im 6t,1e false 0
q1 RefineSearchAct 2b,4im 3t,1e false 1
q2 SignAct 2b,4im 2t,1e false 1
q6 RefineSearchAct 2b,3im,40l e 3t,1e false 2
q6 1 RefineSearchAct 2b,3im,40l e 3t,1e true 2
q7 RefineSearchAct 2b,3im,105l e 3t,1e false 2
q7 1 RefineSearchAct 2b,3im,105l e 3t,1e true 2
b: button e: editable text field t: text field im: image
l e: # elements in the listview Widget

Figure 6: Summary of some states of the PLTS

considered in the overview. Then, we propose an extended
version, which aims at improving code coverage. We also
provide (time) complexity results.

A. Model inference Algorithm 1

Our solution is framed upon the PLTS formalism to infer
formal models. The combination of the PLTS state definition
with the state equivalence relation segments the potentially
infinite state space domain into a finite set of equivalence
classes and every class is visited once. Our algorithm is
also based upon the ACO technique to perform explorations
in parallel and to support different application strategies.
Algorithm 1 implements the initial part of this solution. The
ACO technique is implemented with the task-pool paradigm
where the tasks of the pool are executed in parallel on
condition that the tasks are independent. This is the case here
since several application instances can be experimented into
independent test environments (smartphones or emulators).
All the threads share the same PLTS P and the same task-
pool implemented as an ordered list in descending order. For
sake of readability, we assume that these shared resources
are protected against concurrent accesses.

Algorithm 1 takes a Mobile application App as input and
launches it to analyse its first screen and to initialise the first
state q0 = (act, wp,wo, end := false, ph0) of the PLTS P.
q0 is obviously not marked as final and includes a pheromone
amount related to the chosen strategy. This initial step is
carried out by one thread only. Afterwards, the interface
exploration begins: each available thread executes the loop
of Algorithm 1 (line 7): it picks out a task Explore(q, p),
which corresponds to the exploration of the state q, such that
q holds the highest pheromone amount. Before exploring q,
an instance of the application is launched in a re-initialised
test environment and q is reached from q0 by covering and
executing the actions of the PLTS path p. Once there is no
more task to perform, a second PLTS MP is computed with
a minimisation technique. This PLTS minimisation aims to
yield more compact and readable models for comprehension
aid.

One task, pulled from the task-pool, is now executed by
calling the Explore procedure, which somehow simulates
an ant exploring a state and laying down pheromones.
Initially, we added a stopping condition limiting the ex-

Algorithm 1: Mobile application exploration V1
input : Application App
output: PLTS P, MP

// Initialisation performed by one thread only
1 Start the application App;
2 Analyse the current screen→ Activity act, the Widget property

lists wp, wt;
3 Initialise ph0 (depends on the chosen strategy);
4 Initialise PLTS P with q0 = (act, wp,wo, end := false, ph0);
5 Q/ ∼= {[q0]};
6 Add (Explore(q0, p = ∅)) to the task-pool;
// code executed in parallel, P, task-pool,

Q/∼ are shared
7 while the task pool is not empty do
8 Take a task (Explore(q, p)) such that

q = (act, wp,wt, end, ph) includes the highest pheromone
amount ph;

9 Reset and Execute app by covering the sequence of actions
of p;

10 Call Explore(q,p);

// code executed by one thread
11 MP:= Minimise(P);

ecution time. This condition was used in the experiments
presented in Section VI. The GenEvents procedure is called
and generates test events used to feed the application. It
starts by analysing the current screen, extracts the editable
Widgets, and produces a set of assignments expressing how
completing these editable Widgets with values. Similarly,
the events that can be triggered on the Widgets are dy-
namically detected. We obtain a set Events composed of
event(α) with α an assignment of the form {widget :=
w,w1 := val1, ..., wn := valn}. Then, the exploration of
the current state q begins (line 6). The editable Widgets are
completed, and an event is triggered with respect to the test
event event(α). It results in a new screen Inew (line 7),
which is analysed to extract the assignments constituting
the state q2. The pheromone amount, which is laid down
in q2, is computed with the Ph Deposit procedure. This
one implements the exploration strategies. The algorithm
now checks whether this new screen and its corresponding
state q2 have to be explored. Naturally, if Inew reflects the
termination of the application (exception, crash), q2 must not
be explored. As stated previously, we have chosen to explore
one state for each equivalence class. Hence, if q2 belongs to
a previously discovered equivalence class [q′] in Q/∼ then
q2 is marked as final with the assignment end := true and
is not explored. Otherwise, q2 has to be explored and a new
task Explore(q2, p.t) is added to the task-pool (lines 14-
16). In both cases, a new transition carrying event(α) and
leading to q2 is added to the PLTS P. To apply the next input
event event(α), the application has to go back to its previous
state by undoing the previous interaction. This is done with
the Backtrack procedure (line 17) whose role is to undo
the most recent action. When the direct interface restoration
is not possible, the Backtrack procedure returns false and

222

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Procedure Explore
1 Procedure Explore(q, p);
2 if [processing time > T] then
3 stop;
4 Events = GenEvents, analyse the current screen to generate

the set of test events
5 {event(α) | event is a UI event, α is an assignment};
6 foreach event(α) ∈ Events do
7 Experiment event(α) on App→ new screen Inew;
8 Analyse Inew→ assignments act2, wp2, wo2;
9 ph2= Ph Deposit(q, act2, wp2, wo2);

10 q2 = (act2, wp2, wo2, end := null, ph2);
11 if Inew reflects a crash or there exists [q′] ∈ Q/ ∼ such that

q2 ∈ [q′] then

12 Add a transition q
event(α)−−−−−−→ q2 =

(act2, wp2, wo2, end := true, ph := 0) to→P;

13 else

14 Add a transition t = q
event(α)−−−−−−→ q2 =

(act2, wp2, wo2, end := false, ph2) to→P;
15 Q/ ∼= Q/ ∼ ∪{[q2]};
16 Add the task (Explore(q2, p.t)) to the task-pool;

17 if Backtrack(q, p)==false then
18 Reset and Execute App by covering the sequence of

actions p;

19 foreach q
event(α)−−−−−−→ q2 such that ph2 > ph and Explore(q2, p2)

in the task-pool) do
20 Experiment event(α) on App;
21 Take and Execute Explore(q2, p2);
22 if Backtrack(q, q2)==false then
23 End;

Explore has to reset the application and to incrementally
replay the actions of the path p before experimenting the
state q.

Once the exploration of the state q is finished, the Explore
procedure now simulates an ant which pursues its trail. The
application exploration is indeed extended at the state q2, on
condition that q2 is directly reachable and that q2 contains
an assignment of the ph variable higher than the one found
in q (line 19). If there is no such state q2 or if the back
mechanism cannot be applied, then the Explore procedure
terminates. The current thread goes back to the task-pool,
and picks out a task previously built by any other thread (in
Algorithm 1).

Remark 4 MCrawlT supports both deterministic and non-
deterministic applications. For sake of readability, we have
concealed this feature in the previous algorithms in the line
”Reset and Execute App by covering the action sequence of
p”. Given a task Explore(q, p), when the path p is replayed
to reach the state q, MCrawlT continuously checks if the
arrival state is the one expected in the path p or a new state
q′(indeterministic case). If this is a new state, MCrawlT adds
a new transition leading to q′ and carries on the execution
of p.

Block States
B2 q6, q7
B1 q0 1, q2 1, q2 2, q6 1, q6 2, q7 1, q7 2, q8 1

Figure 7: Blocks of states of the minimised PLTS

The above algorithms rely upon some procedures that are
summarised below:

1) PLTS minimisation: We have chosen a bisimulation
minimisation technique [18] to make minimised PLTSs.
Given a PLTS P, this technique offers the strong advantage
to generate a minimised model MP, which is behavioural
equivalent to P. In short, this algorithm constructs the state
sets (blocks) that are bisimilar equivalent (every state can fire
the same actions and the arrival states have to be bisimilar
again). A detailed algorithm can be found in [18]. The time
complexity of this minimisation technique is also reasonable
(proportional to O(mlog(n)) with m the transition number
and n the state number).

Figures 4(d) and 7 depict the minimised PLTS obtained
with the Ebay Mobile application. Some locations are now
grouped into blocks. All the final states are bisimilar and
grouped into the block B1. Furthermore, the states q6 and
q7 are grouped into the Block B2 because the same action
sequences leading to bisimilar states can be executed from
both q6 and q7.

2) Test event generation : The Explore procedure calls
GenEvents, which constructs test events expressing how to
interact with screens. Since this part is already presented in
[1], we only briefly introduce it here.

Our algorithm generates a set of test events of the
form {event(α) | event is an event, α is an assignment}.
It starts collecting the events that may be applied on the
different Widgets of the current screen. Then, it constructs
assignments of the form {w1.value := v1, ..., wn.value :=
vn}, with (w1, ..., wn) the list of editable Widgets found on
the screen and (v1, ..., vn) a list of test values.

Instead of using random values, we propose to use
several data sets, which can be completed before starting
the exploration algorithm (the algorithm does not ask for
values) The first one, denoted User, is completed with
values provided by users. If required, this set should hold
the logins and passwords needed to access to the application
features relative to user accounts. This implies that the user
knows some features of the application. To reduce the test
event set, if a user value is devoted to some specific Widgets,
this value can be accompanied with Widget names.

The set RV is composed of values well known for
detecting bugs, e.g., String values like ”&”, ””, or null, com-
pleted with random values. A last set, denoted Fakedata, is
composed of fake user identities. An identity gathers a list of
parameters (p1, ..., pm), such as (name, age, email, address,
gender), which are correlated together to form realistic
identities. Both User and RV sets are segmented per type

223

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Procedure Backtrack
1 Procedure Backtrack(q = (act, wp,wo, end, ph), q2);

2 if the back mechanism is available then
3 Call the back mechanism→ screen INew;
4 Analyse Inew→ assignments act′, wp′, wo′;
5 if act 6= act′ or wp 6= wp′ or wo 6= wo′ then
6 return false;

7 else

8 Add a transition t = q2
back(α)−−−−−→ q to→P ;

9 return true;

10 else
11 return false;

(String, Integer, etc.). During the analysis of the current
screen, we collect the types and names of the Widget proper-
ties. Then, we search for the largest subset of properties that
form an identity with respect to the parameters of Fakedata
(e.g., name, age, email, address, gender). We obtain a list
of Widget properties (w1, ..., wn) that we bind with a set
of value lists extracted from Fakedata. For instance, if
two Widgets called name and email are found, the fake
identities of Fakedata are parsed to remove the undesired
parameters and to return a set of identities composed only
of a name and an email. Each remaining Widget property is
associated to the set User∪RV . For instance, if an editable
Widget takes String values, we bind this Widget with the set
String(User∪RV). Now, given a list of Widget properties
(w1, ..., wn), we have a corresponding list of value sets
(V1, ..., Vn). It remains to generate a set of assignments
of the form α = {w1.value := v1, ..., wn.value := vn}.
Instead of computing the Cartesian product of (V1, ..., Vn),
we adopted a Pairwise technique [20] to build these as-
signments. Assuming that errors can be revealed by mod-
ifying pairs of variables, this technique strongly reduces
the coverage of variable domains by constructing discrete
combinations for pairs of parameters only.

Finally, every UI event event is associated to an assign-
ment α = {w1.value := v1, ..., wn.value := vn}, which
is added to the set Events and returned to the Explore
procedure.

3) Call of the back mechanism: Based upon preliminary
studies, we observed that the back mechanism does not
always allow to go back to the previous state of an appli-
cation. Actually, this mechanism is sometimes considered
as an event allowing to reach a new application state. As a
consequence, we always check whether the state, reached
after calling this mechanism, is the expected one. The
pseudo-code is given in the Backtrack procedure.

This procedure calls the back mechanism to undo the most
recent action if available and to go back to the state q (line
3). A new screen is observed, and Backtrack checks whether
this screen is equivalent to the expected one, modelled with
q (we compare their Widget properties). If we observe a

state different from q or if the back mechanism is not
available, Backtrack returns ”false” (line 6). On the contrary,
a transition q2

back(α)−−−−−→ q is added to P and the procedure
returns ”true” (line 9).

B. Exploration strategies
Different strategies can be applied to cover an appli-

cation. These are mainly implemented by means of the
Ph Deposit procedure which is called to return pheromone
amounts but also with the task-pool paradigm. Independently
of the chosen strategy, the threads, which are executed to
explore an application, always pick out the first task of the
task-pool composed of a state having the highest pheromone
amount. The task-pool is implemented as an ordered list in
descending order.

We succinctly present how to implement some of strategy
examples below:
• BFS strategy: the classical breadth-first search strategy

is the easiest one to put in practice. Indeed, our algo-
rithm is tacitly based upon it. Whenever a new state q2
is built, it is only needed to set its pheromone amount
to 0. In our algorithm, a state is tested in a breadth-wise
order and each new task Explore(q2, p2) composed
of a new state q2 to visit, is added to the task-pool.
The threads shall only take the tasks in the task-pool
in the same order as they have been submitted. As a
consequence, the PLTS P is conceived in breadth-first
order;

• DFS strategy: the depth-first search strategy can be
implemented as follows: the initial state q0 is initialised
with a pheromone amount equal to 0. Afterwards,
whenever a new state q2 is detected from another one q,
it is completed with the pheromone amount found in q
increased by 1. In this case, the next task Explore(q, p)
chosen by a thread shall be composed by the last
detected state. Tacitly, a DFS strategy is followed;

• Crash-driven strategy: the number of detected bugs
could also be considered in a strategy: when the number
of bugs detected from the states of a path p is higher
than the one detected from the states of another path
p′, it may be more interesting to continue to cover
the former for trying to detect the highest number of
application defects. We call this strategy crash-driven
exploration. This can be conducted by initialising the
pheromone amount to 0 in q0. Next, given a task
Explore(q, p), whenever a new state q2 is detected,
it is completed with a pheromone amount equal to the
number of bugs detected from all the states of the path
p;

• Semantics-driven strategy: this kind of strategy de-
notes an exploration guided by the recognition of the
meaning of some Widget properties (text field values,
etc.). Here, the pheromone deposit mainly depends
on the number of recognised Widget properties and

224

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

on their relevance. It is manifest that the semantic-
driven strategy domain can be tremendously vast. For
e-commerce applications, the login step and the term
”buy” are usually important. A strategy example could
be then conducted as follows: an authentication process
is detected when a text field Widget has the type
”passwdtype”. In this case, the pheromone amount
considered is set to 10, otherwise it is equal to 1. When
a Widget name is composed of the term ”buy”, the
pheromone amount added in a new state could be equal
to 5, etc.

Many other strategies could be defined to meet the user re-
quirements. Some of them could be defined to target specific
application states or features. Others could be conceived in
accordance with the intended usage of the inferred models.
For instance, if models are later used for generating security
test cases, the exploration strategy should be defined to cover
the most sensitive features of the application. Other criteria
could also be considered, e.g., the number of Widgets found
in screens. Furthermore, the previous strategies could also
be mixed together.

The PLTS of Figure 4(c) is built with a DFS strategy.
Our algorithm starts by visiting the state q0 which holds a
pheromone amount equal to 0. The actions a0 to a5 lead
to new screens and states q0 1, q1, ..., q5, which have a
pheromone amount equal to 1 and have to be explored.
Here, the state q1 is chosen since it is the first not final
state encountered during the exploration of q0 and has
the highest pheromone amount. From q1, the execution of
actions leads to new states, e.g., q6, q7, or q8. These states
have a pheromone amount equal to 2. The next state having
the highest pheromone amount is q6. Therefore, this one is
explored, and so on.

C. Code coverage enhancement, Exploration Algorithm 2

After the evaluation of the previous algorithm, we ob-
served that the code coverages obtained with some applica-
tions was lower than expected. After investigation, we dis-
covered that MCrawlT was actually unable to launch some
specific features of these applications. As a consequence,
several screens were not displayed and explored, which
explains low code coverages. For instance, a text editor can
delete a document if and only if a document is available.
At the moment, no testing tool is able to automatically
deduce such a scenario since it belongs to the logic of the
application.

To solve an aspect of this problem and to enhance code
coverage, we propose a straightforward and general solution
that tries to bypass the blocking features in order to deeper
explore an application. Intuitively, it is technically possible
with Mobile applications to directly instantiate any Activity
instead of the initial ones. Doing this sometimes allows
to bypass a blocking Activity that cannot be automatically

Algorithm 2: Mobile application exploration v2
input : Application App
output: PLTS {P1, ...,Pn}, {MP1, ...,MPn}
// initialisation performed by one thread only

1 Analyse App→ list of activities LAct = {act1, ..., actn}, list of
PLTSs {P1, ...,Pn} with act1 this root Activity of App;

2 EQ = ∅;
3 foreach Activity acti in LAct such that acti has not been

encountered do
4 Start the application App and Launch acti;
5 Analyse the current screen→Widget property lists wp, wo;
6 Initialise ph0;
7 Initialise PLTS Pi with

q0Pi
= (acti, wp, wo, end := false, ph0);

8 EQ = EQ ∪ {[q0Pi
]};

9 Add (Explore(q0Pi
, p = ∅),Pi) to the task-pool;

10 while the task-pool is not empty do
11 Take a task (Explore(q, p,Pi)) such that

q = (act, wp,wt, end, ph) includes the highest
pheromone amount ph;

12 Reset and Execute App by executing the sequence of
actions of p;

13 Explore(q, p,Pi);

// code executed by one thread
14 MPi:= Minimise(Pi);

tested. The pseudo-code of this solution is given in Algo-
rithm 2. The latter tries to directly launch every Activity of
an application instead of only considering the initial one to
infer models. We do not provide the details of the Explore
procedure since it only requires slightly modifications. For
an application App, this algorithm tries to instantiate each
Activity and builds a PTLS for each. We obtain the PLTS
set {P1, ...,Pn} and the respective set of minimised PLTS
{MP1, ...,MPn}. The algorithm starts by analysing App
and extracts its Activity list; act1 represents the initial
Activity of App. As in the previous algorithm version, a first
PLTS P1 is generated from the initial Activity act1 (line 1).
Then, each Activity acti is launched, and a corresponding
PLTS Pi is built (line 3). But the algorithm is designed
to inspect new states only, i.e., to prevent from exploring
several times a state early encountered during the generation
of another PLTS. To do so, the state equivalence classes
are now kept in the set EQ, which is used all along the
execution. Given a model Pi(i > 1) under construction, the
exploration of a state q is done in the Explore procedure if
and only if q has not been previously encountered in one of
the previous PLTSs. In other words, q is marked as final if
q belongs to an equivalence class of EQ.

With this algorithm, we switch the initial Activity to start
an application from different entry-points and to potentially
scan deeper an application. This process does not always
deliver the intended outcomes though, since an Activity,
which was not designed to be launched at the beginning
of the application, may crash. We show in Section VI that
this algorithm achieves better code coverage on 1/3 of the
experimented applications.

225

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Algorithm complexities and termination
Both Algorithms 1 and 2 run in linear time. Theoretically,

for an application App, the number of states to visit may be
infinite. But our algorithm covers one state per equivalence
class. The number of equivalence classes is finite (Proposi-
tion 3), hence, the algorithm is finite. If we denote the num-
ber of states and transitions by N and M , Algorithm 1 has a
complexity proportional to O(M +N +MN +Mlog(N)).
Indeed, the Explore procedure covers every transition twice
(one time to execute an event and one time to go back
to the previous state), and every state is processed once.
Hence, the complexity should be proportional to O(M+N).
But, sometimes the back mechanism is not available. In this
situation, the application is reset and the event sequence of
a path p is executed from the initial state q0. This path is at
worst composed of M transitions and, in the worst case, this
step is done for every state with a complexity proportional
to NM . Furthermore, the minimisation technique has a
complexity proportional to O(Mlog(N)) [18].

More precisely, the number of states N is at most equal
to 2mn with m is the maximum number of values that any
Widget property can take during the testing of App, and n
the number of Widget properties in WP . Indeed, the number
of equivalence classes is bounded to mn (Proposition 3).
Additionally, a state has either an assignment end := true or
end := false (2 further possibilities). Regarding the number
of transitions M , it is finite and depends on the number of
test events executed on the application. If each state is at
most tested with e events and has k editable Widgets that
are iteratively fulfilled nb times with test values, then M is
equal to N ∗ e ∗ nb2 (nb2 is the maximum number of test
value tuples returned by the Pairwise technique [20]).

Algorithm 2 is designed as Algorithm 1 except that it
infers one model for each Activity of an application App.
The Activity number, denoted K is always finite, therefore
Algorithm 2 terminates as well. It complexity is proportional
to OK(M +N +MN +Mlog(N)).

VI. IMPLEMENTATION AND EVALUATION

A. Implementation for Android Applications
With the collaboration of the Openium company,

we have implemented our solution in a prototype
tool, called MCrawlT (Mobile Crawler Tool).
MCrawlT is publicly available in a GitHub repository
(https://github.com/statops/MCrawlerT), and is accompanied
with a detailed user guide. The tool is specialised
for Android applications: in short, these applications are
typically Mobile GUI applications built over a set of reusable
components. For instance, Activities are components that
display screens whereas Service components are used to
call remote servers.

As detailed in the above sections, MCrawlT infers models
from Android applications, it reports code coverage percent-
ages and execution times. Besides, it tries to detect bugs

with stress testing (use of values known for revealing bugs
such as unexpected values (wrong types), execution of large
random event flows on screens). It reports the detected bugs,
and generates test cases to replay them. Finally, it displays
lightweight or complete storyboards (graphs of screen shots)
to simplify the understanding of the application behaviours.
Figures 8 and 9 depict two storyboard examples derived from
the Ebay Mobile application with different execution times.

Figure 8: Ebay Mobile storyboard

Figure 9: Ebay Mobile storyboard 2

MCrawlT expects packaged Android applications or
source projects, a testing strategy and a delay for testing
(this delay can be set to some seconds up to several days).
A user may add some specific test data (login, password,
etc.) and prepare local and/or remote databases.

226

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 p u b l i c c l a s s DFSSt ra t egy e x t e n d s A n t S t r a t e g y {

3 p u b l i c i n t ge tRank (S t a t e s t , S c e n a r i o D a t a p a t h) {
i f (s t != n u l l) {

5 S t a t e l a s t = p a t h . g e t (p a t h . s i z e −1)) ;
r e t u r n l a s t . ge tPh () +1 ;

7 }
e l s e r e t u r n d e f a u l t R a n k ;

9 } }

Figure 10: Implementation of the DFS strategy

MCrawlT is composed by two main modules. MCrawlT-
Desktop corresponds to Algorithms 1, 2 and essentially
aims to construct PLTS and to manage the task-pool. The
second module, MCrawlTMobile, corresponds to the Explore
procedure. It is deployed on the smartphone side to exercise
application screens and to generate PLTS transitions. The
second module is implemented using the testing framework
Robotium [21]. Robotium is used to extract the Widget
properties found in screens. It also provides functionalities
for editing Widgets and simulating user events (click, scroll).
Additionally, we have extended the instrumentation package
of Android (InstrumentationTestRunner class) to detect and
observe application crashes, and periodically compute the
code coverage percentage by means of the tool Emma [22].
The communication between the modules is ensured by
the Android Debug Bridge (adb) tool, which is available
in the Android tool kit. MCrawlT can exercise applications
in parallel by launching several MCrawlerTMobile modules
on emulators or smartphones (Android versions from 2.3 to
4.2.2).

MCrawlT supports the strategies presented in Section
V-B and can be upgraded with additional ones. A strategy
is implemented in a Java class inherited from the class
”AntStrategy”, which must have a method public int ge-
tRank(State q, ScenarioData path). This one returns the
pheromone amount which is put down in a state q. Figure 10
illustrates the Java code used to implement the DFS strategy.

B. Limitations

The MCrawlT implementation has three main limitations:
• remote servers cannot be reset, so the tool violates an

assumption of the algorithm related to the application
environment reset. This limitation can be eliminated by
mocking remote servers. This can be done with the
SOAPUI framework [23];

• MCrawlT supports the following UI events: click and
scroll. This is a limitation imposed by Robotium. But
this tool is updated continuously, therefore, more events
should be available in the future;

• in the paper, we focus on UI events but Android
proposes a set of system events (sms calls, battery
notifications, etc.). We do not consider them yet as
inputs.

C. Empirical Evaluation

In this section, we evaluate MCrawlT on several real-
world Android applications. We chose to compare the effec-
tiveness of several recent tools in terms of execution time,
code coverage and crash detection. We tried executing the
following tools Monkey [11], Guitar [19], AndroidRipper
[7], SwiftHand [15] and Dynodroid [9]. The others are
not available. Unfortunately, we faced many difficulties to
use some of them. In summary, we do not know how
Guitar works with Mobile applications due to lack of
documentation; we were unable to launch AndroidRipper;
SwiftHand works well with the proposed examples but, for
new applications, source codes need to be instrumented
(with a lot of classes) and we do not know how to do this.

In this context, and to avoid any bias, we chose to apply
our tool, Monkey and Dynodroid on all the applications
whose source code is available and taken for experimentation
in the papers [7], [15], [9]. We have also taken the appli-
cations and experimental results found in [8] although the
corresponding tool Orbit is not available. This corresponds
to 30 applications. It is important to note that Monkey is
taken as a reference in most of the papers dealing with
Android testing. Thereby, our results can be compared with
other studies related to Android testing.

1) Code coverage and execution time: We compare here
the effectiveness, relating to code coverage and execution
time, of MCrawlT with the other recent Android testing
tools. Most of them explore these applications in an in-depth
manner. So, MCrawlT was executed only with this strategy
to carry out a fair comparison.

Figure 11 reports the percentages of code coverage ob-
tained with the different tools on 30 applications with a
time budget of three hours. If we do a side by side com-
parison of MCrawlT with the other tools, we observe that
MCrawlT provides better code coverage than Monkey for 23
applications, than SwiftHand for 29 applications, than Orbit
for 29 applications, and than Dynodroid for 24 applications.
In comparison to all the tools, MCrawlT provides better
code coverage with 20 applications, the coverage difference
being higher than 5% with 14 applications and higher than
10% with 10. This comparison is more explicitly given
in the radar chart of Figure 12, which depicts the code
coverage percentages obtained with Monkey, MCrawlT and
Dynodroid. When Monkey is confronted with all the other
tools, it offers better results for 5 applications and Dynodroid
for 3 applications.

Consequently, these results show that MCrawlT gives
better code coverage than each tool taken one by one and
overall offers good results against all the tools on half the
applications. Figure 12 clearly illustrates this claim.

Figure 11 shows that the code coverage percentage ob-
tained with MCrawlT is between 25% and 96%. We manu-
ally analysed the 10 applications that provide the lower code

227

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Application Mon
key

Orbit Gui
tar

And.
Rip-
per

MC
rawlT

Swift
Hand

Dyno
droid

NotePad 60 82 88
TippyTipperV1 41 78 79 48
ToDoManager 71 75 71 81 34
OpenManager 29 63 65
HelloAUT 71 86 51 96 76
TomDroid 46 70 40 76 42
ContactManager 53 91 71 68 28
Aardict 52 65 27 67 51
Musicnote 69 81 72.2 47
Explorer 58 74 74
Myexpense 25 61 41.8 40
Anynemo 61 54 52.9
Whohas 58 95 59.3 65
Mininote 42 26 34 39
Weight 51 34 62 56
TippyTipperV2 49 74 68 12
Sanity 8 26 19.6 1
Nectdroid 70.7 54 68.6
Alogcat 66.6 66 67.2
ACal 14 46 23
Anycut 67 71 69.7
Mirrored 63 76 60
Jamendo 64 46 3.9
Netcounter 47 56 70
Multisms 65 73 77
Alarm 77 72 55
Bomber 79 75 70
Adsdroid 72 83 80
Aagtl 18 25 17
PasswordFor
Android

58 61 58

Figure 11: Code coverage comparison (in %)

Figure 12: Code coverage comparison (in %)

coverage percentages with MCrawlT to identify the causes
behind low coverage.

These can be explained as follows:
• specific functionalities and unreachable code: several

applications are incompletely covered either on account
of unused code parts (libraries, packages, etc.) that are
not called by the application, or on account of function-

Figure 13: Code coverage comparison (in %)

alities difficult to start automatically. For instance, at
least one stored audio file is required for OpenManager
before testing the functionalities related to the audio file
management,

• unsupported events: Several applications, e.g., Nect-
droid, Multism, Acal or Alogcat chosen for experimen-
tation with Dynodroid take UI events as inputs but also
system events such as broadcast messages from other
applications or from the Android system. Our tool does
not support these events yet. Moreover, MCrawlT only
supports the event list also supported by the testing
tool Robotium (click, scroll). The long click event does
not belong to this list but it is used in some applica-
tions (Mininote and Contactmanager). In contrast, Orbit
supports this event and therefore offers a better code
coverage with the application Contactmanager.

We also experimented the 30 Android applications with
the second version of our algorithm, which tries to infer
models for every Activity (Algorithm 2). We kept the same
time budget of three hours. The radar chart of Figure 13
gives the code coverage percentages obtained with Monkey
(for comparison purposes), MCrawlT Algorithm 1 and Al-
gorithm 2. It illustrates that our extended algorithm visibly
offers better code coverage. More precisely, 13 applications
are more covered and 8 have a code coverage increased by
10 %. With some applications the code coverage difference
become significant. For instance, we observe a code cov-
erage increased by 23 % with Jamento and by 30 % with
Weight. In comparison to all the tools, MCrawlT provides
now better code coverage with 25 applications.

Regarding execution time, the evaluated tools work dif-
ferently. Monkey and Dynodroid take a number of events,
and perform fuzzy testing independently of the application

228

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Application Orbit Guitar Android
Ripper

MCrawlT Swift
Hand

NotePad 102 268
TippyTipperV1 198 251
ToDoManager 121 194 551
OpenManager 480 696
HelloAUT 156 117 106
TomDroid 340 529 235
Contact Man-
ager

125 194 233

Aardict 124 694 580
Musicnote 10696 10800
Explorer 10800 10800
Myexpense 10800 10800
Anynemo 10800 10800
Whohas 9260 10800
Mininote 8230 10800
TippyTipperV2 1556 10800
Weight 10800 10800
Sanity 10800 10800
Nectdroid 8120
AlogCat 10800
ACal 10800
Anycut 8037
Mirrored 6020
Jamendo 10800
Netcounter 10800
Multisms 10800
Alarm 10040
Bomber 4800
Adsdroid 10800
Aagtl 920
Password
ForAndroid

10800

Figure 14: Execution time (in seconds)

Application MCrawlT Monkey Dynodroid Android
Ripper

WordPress 63 3 37
Notepad 5
TomDroid 7 1 14
Mirror 25 3
Mininote 2
Aagtl 1 2
PasswordForAndroid 1 1
Sanity 5 1 1
Aardict 2

Figure 15: Application crash detection

coverage. We set an event number sufficiently high so as
to let the tools perform testing during three hours or more
(more than 10,000 events for Monkey and more than 600
events for Dynodroid). The other tools explore applications
with a delay of three hours or until all the application
states are explored. Figure 14 reports the execution times
obtained with the second category of tools (in seconds)
on the same application list. These results reflect the fact
that MCrawlT is comparable to the others despite using
strategies, state equivalence classes and a state minimisation
technique. For small applications (first eight lines), we
obtain roughly similar time executions as Orbit, Guitar
and AndroidRipper. SwiftHand always need more than three
hours to explore applications, whereas 18 applications are
completely explored with MCrawlT in less time.

2) Crash detection: MCrawlT, Monkey, Dynodroid and
AndroidRipper also detect application crashes. Figure 15 re-

ports the 9 applications that crashed while testing with one of
third first tools. We also added the empirical results obtained
with AndroidRipper found in [7]. Figure 15 exposes genuine
bugs only. We manually ascertained test reports to eventually
remove false positives such as emulator misbehaving. We
kept only the Exceptions that cause the termination of
the applications such as NullPointerException. On the 30
applications, MCrawlT revealed that 9 of them have bugs
and detected all the applications also found with Monkey
and Dynodroid. We deduce from these results that our
tool outperforms the others in automatic crash detection.
MCrawlT does stress testing like Monkey and Dynodroid but
it also uses values known for detecting bugs. This probably
explains the better performance.

3) Impact of the strategy choice and parallelism gain: To
illustrate the benefits of using different strategies, we applied
on the Ebay Mobile application, the DFS strategy exposed
in the previous section and a semantics-driven strategy. This
strategy aims to target the account management part of the
application and was applied by deposing a higher pheromone
amount in states including Widgets of type ”passwdtype” or
Widget properties composed of the terms ”account” or ”sign
in”.

For readability and comparison purposes, we illustrate in
Figure 16 a simplified graph showing the visited Activities
with the DFS strategy. The application is explored indepen-
dently of the meaning of the Widgets and the Activities.
Here, MCrawlT has mostly covered the ”Refine search”
feature of the Ebay Mobile application. Figure 17 illustrates
the simplified graph achieved after applying the second
one. Here, the Activity SignIn, allowing to log in to
user accounts, was firstly visited instead of the Activity
RefineSearch. Then, the second strategy has guided the
exploration on the Activity SavedSellerList, which allows
to manage the favourite seller list and on SellItem, which
shows the sold items. With the same time budget, the account
management part of the application has been explored with
the second strategy instead of the ”Refine search” feature.
As a consequence, since security vulnerabilities on the user
account management affect users and may lead to serious
consequences, this strategy makes the generated PLTS more
interesting to later analyse the security of the application.

The strategy choice also impacts the time required to
explore an application. Figure 18 shows the execution times
(in seconds) obtained with two strategies for completely
exploring 10 applications. MCrawlT were applied with a
DFS strategy (1 thread using 1 Android emulator), a BFS
(with 1 and 3 threads in parallel). These results show that
7 out of 10 applications are more rapidly covered with BFS
traversing. For instance, with toDoManager, using the BFS
strategy instead of the DFS one, reduces the exploration time
by 140 seconds because all of its Activities are directly
accessible from the initial one. Actually, when a user has
knowledge of the code structure or of how the Activities

229

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16: Ebay Mobile simplified graph obtained with a
DFS strategy

Figure 17: Ebay Mobile simplified graph obtained with a
semantics-driven strategy

Application DFS(1) BFS(1) BFS(3)
NotePad 268 310 175
TippyTipperv1 251 210 110
ToDoManager 551 410 210
OpenManager 696 560 489
HelloAUT 106 216 201
TomDroid 235 256 196
ContactManager 233 216 135
Bomber 6120 4800 3100
Mirrored 6690 6020 4090
Nectdroid 10650 8120 5020

Figure 18: Execution time with different strategies (in sec-
onds)

are composed together, he can choose the most appropriate
strategy to speed up the exploration.

Figure 18 also shows that the parallelization of our
algorithm is effective. With three emulators, the execution
time is always reduced. For instance, the parallel exploration
of TippyTipperV1 is achieved with a time almost divided by
two.

All these experimental results on real applications tend
to show that our tool is effective and leads to substantial
improvements in the automatic testing of Mobile applica-
tions. Indeed, on the 30 applications taken for evaluation

in [7], [15], [9], MCrawlT gives better code coverage for
25 applications with the same time budget and detects
more bugs. Furthermore, different exploration strategies can
be applied to directly target the most relevant application
features.

VII. CONCLUSION

Automatic testing of GUI applications is an interesting
solution that complements other testing techniques, e.g.,
Model-based testing. This approach may be used to generate
partial models, which can be later completed or reused for
test case generation. This paper brings some original contri-
butions by proposing: 1) a formal model definition that helps
limit the application exploration by segmenting state space
domains into finite sets of equivalence classes, 2) the use of
exploration strategies to cover applications by applying the
ACO technique, 3) a code coverage enhancement method
which infers sets of models.

The evaluation of MCrawlT against other recent tools
shows that our approach can be used in practice. It automates
testing tasks that users usually consider tedious. Further-
more, it generates models and storyboards that can be used
for model analysis and comprehension aid. MCrawlT also
provides good code coverage quickly and detects more bugs
than those exposed by the other tools.

The initial purpose of this work was to generate partial
models given to an automatic security testing method for
Mobile applications. Based upon this framework, we intend
to design this security testing method by developing these
future research directions: 1) define an exploration strategy
in order to automatically detect the highest number of
security issues while the model generation, 2) devise or reuse
verification methods on inferred models to detect security
vulnerabilities, 3) generate test cases to extend the inferred
models from some specific states in an attempt to expose
further security vulnerabilities.

REFERENCES

[1] S. Salva and S. R. Zafimiharisoa, “Model reverse-engineering
of mobile applications with exploration strategies,” in The
Ninth International Conference on Software Engineering Ad-
vances, ICSEA 2014, Nice, France, 10 2014, pp. 396–403.

[2] A. Memon, I. Banerjee, and A. Nagarajan, “Gui ripping:
Reverse engineering of graphical user interfaces for testing,”
in Proceedings of the 10th Working Conference on Reverse
Engineering, ser. WCRE ’03. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 260–269. [Online]. Available:
http://dl.acm.org/citation.cfm?id=950792.951350

[3] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling
Ajax-based web applications through dynamic analysis of
user interface state changes,” ACM Transactions on the Web
(TWEB), vol. 6, no. 1, pp. 1–30, 2012.

230

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[4] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and
M. Ernst, “Finding bugs in web applications using dynamic
test generation and explicit-state model checking,” Software
Engineering, IEEE Transactions on, vol. 36, no. 4, pp. 474–
494, 2010.

[5] V. Dallmeier, M. Burger, T. Orth, and A. Zeller, “Webmate:
a tool for testing web 2.0 applications,” in Proceedings of
the Workshop on JavaScript Tools, ser. JSTools ’12. New
York, NY, USA: ACM, 2012, pp. 11–15. [Online]. Available:
http://doi.acm.org/10.1145/2307720.2307722

[6] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated
concolic testing of smartphone apps,” in Proceedings of
the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, ser. FSE ’12. New
York, NY, USA: ACM, 2012, pp. 1–11. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393666

[7] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine,
and A. M. Memon, “Using gui ripping for automated
testing of android applications,” in Proceedings of the
27th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE 2012. New York, NY,
USA: ACM, 2012, pp. 258–261. [Online]. Available:
http://doi.acm.org/10.1145/2351676.2351717

[8] W. Yang, M. R. Prasad, and T. Xie, “A grey-
box approach for automated gui-model generation of
mobile applications,” in Proceedings of the 16th
international conference on Fundamental Approaches to
Software Engineering, ser. FASE’13. Berlin, Heidelberg:
Springer-Verlag, 2013, pp. 250–265. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-37057-1 19

[9] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An
input generation system for android apps,” in Proceedings
of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2013. New York, NY,
USA: ACM, 2013, pp. 224–234. [Online]. Available:
http://doi.acm.org/10.1145/2491411.2491450

[10] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. Ta, and
A. Memon, “Mobiguitar – a tool for automated model-based
testing of mobile apps,” IEEE Software, vol. 99, no. PrePrints,
pp. 1–6, 2014.

[11] Google. Ui/application exerciser monkey. Accessed: 2015-03-
01. [Online]. Available: http://developer.android.com/tools/
help/monkey.html

[12] T. Azim and I. Neamtiu, “Targeted and depth-first exploration
for systematic testing of android apps,” in Proceedings
of the 2013 ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages
& Applications, ser. OOPSLA ’13. New York, NY,
USA: ACM, 2013, pp. 641–660. [Online]. Available:
http://doi.acm.org/10.1145/2509136.2509549

[13] D. Amalfitano, A. Fasolino, and P. Tramontana, “Reverse
engineering finite state machines from rich internet appli-
cations,” in Reverse Engineering, 2008. WCRE ’08. 15th
Working Conference on, Oct 2008, pp. 69–73.

[14] M. E. Joorabchi and A. Mesbah, “Reverse engineering
ios mobile applications,” in Proceedings of the 2012
19th Working Conference on Reverse Engineering, ser.
WCRE ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 177–186. [Online]. Available: http:
//dx.doi.org/10.1109/WCRE.2012.27

[15] W. Choi, G. Necula, and K. Sen, “Guided gui testing
of android apps with minimal restart and approximate
learning,” in Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming
Systems Languages & Applications, ser. OOPSLA ’13.
New York, NY, USA: ACM, 2013, pp. 623–640. [Online].
Available: http://doi.acm.org/10.1145/2509136.2509552

[16] D. Angluin, “Learning regular sets from queries and
counterexamples,” Inf. Comput., vol. 75, no. 2, pp. 87–106,
Nov. 1987. [Online]. Available: http://dx.doi.org/10.1016/
0890-5401(87)90052-6

[17] D. Amalfitano, A. Fasolino, and P. Tramontana, “A gui
crawling-based technique for android mobile application test-
ing,” in Software Testing, Verification and Validation Work-
shops (ICSTW), 2011 IEEE Fourth International Conference
on, 2011, pp. 252–261.

[18] J.-C. Fernandez, “An implementation of an efficient algorithm
for bisimulation equivalence,” Science of Computer Program-
ming, vol. 13, pp. 13–219, 1989.

[19] B. Nguyen, B. Robbins, I. Banerjee, and A. Memon,
“Guitar: an innovative tool for automated testing of
gui-driven software,” Automated Software Engineering,
vol. 21, no. 1, pp. 65–105, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s10515-013-0128-9

[20] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J.
Colbourn, “Constructing test suites for interaction testing,”
in Proc. of the 25th International Conference on Software
Engineering, 2003, pp. 38–48.

[21] Robotium, user scenario testing for android. Accessed:
2015-03-01. [Online]. Available: http:/code.google.com/p/
robotium/

[22] Emma, a free java code coverage tool. Accessed: 2015-03-01.
[Online]. Available: http://emma.sourceforge.net

[23] Soapui. Accessed: 2015-03-01. [Online]. Available: http:
//www.soapui.org

231

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Developing Heterogeneous Software Product Lines
with FAMILE – a Model-Driven Approach

Thomas Buchmann and Felix Schwägerl
University of Bayreuth

Chair of Applied Computer Science I
Bayreuth, Germany

{thomas.buchmann, felix.schwaegerl}@uni-bayreuth.de

Abstract—Model-Driven Software Development and Software
Product Line Engineering are independent disciplines, which both
promise less development effort and increased software quality.
While Model-Driven Software Development relies on raising the
level of abstraction and automatic code generation, Software
Product Line Engineering is dedicated to planned reuse of
software components based upon a common platform, from which
single products may be derived. The common platform consists
of different types of artefacts like requirements, specifications,
architecture definitions, source code, and so forth. Only recently,
research projects have been started dealing with model-driven
development of software product lines. So far, the resulting tools
can only handle one type of artefact at the same time. In this
paper, requirements, concepts and limitations of tool support for
heterogeneous Software Product Line Engineering are discussed.
As a proof of concept, an extension to the model-driven tool
chain FAMILE is presented, which supports mapping of features
to different types of artefacts in heterogeneous software projects
at the same time. The added value of the approach is presented by
an example product line, which has been developed in a strictly
model-driven way using FAMILE.

Keywords–software product lines; model-driven development;
negative variability; feature models; heterogeneity.

I. INTRODUCTION

This article is an extended version of an ICSEA 2014
conference paper [1]. It contains a deeper insight into the tool
FAMILE and the adaptations, which enable the management
of heterogeneous software product lines. It also presents the
relevant ideas using a concrete example.

Model-Driven Software Engineering (MDSE) [2] puts
strong emphasis on the development of high-level models
rather than on the source code. Models are not considered as
documentation or as informal guidelines how to program the
actual system. In contrast, models have a well-defined syntax
and semantics. Moreover, MDSE aims at the development of
executable models. The Eclipse Modeling Framework (EMF)
[3] has been established as an extensible platform for the
development of MDSE applications. It is based on the Ecore
metamodel, which is compatible with the OMG Meta Object
Facility (MOF) specification [4]. Ideally, software engineers
operate only on the level of models such that there is no need
to inspect or edit the actual source code, which is generated
from the models automatically. However, practical experiences
have shown that language-specific adaptations to the generated
source code are frequently necessary. In EMF, for instance,
only structure is modeled by means of class diagrams, whereas

behavior is described by a posteriori modifications to the
generated source code.

Software Product Line Engineering (SPLE) [5][6] deals
with the systematic development of products belonging to a
common system family. Rather than developing each instance
of a product line from scratch, reusable software artefacts
are created such that each product may be composed from a
collection of reusable artefacts — the platform. Commonalities
and differences among different products may be captured in
a feature model [7], whereas feature configurations describe
the characteristics of particular products by selecting or dese-
lecting features. Typical SPLE processes distinguish between
domain engineering, which deals with the establishment of the
platform as well as the feature model, and application engi-
neering, which is concerned with the derivation of particular
products out of the product line by exploiting and binding the
variability provided by the platform.

To realize variability in SPLE, two distinct approaches
exist: In approaches based upon positive variability, product-
specific artefacts are built around a common core [8][9].
Composition techniques are used to derive products. In ap-
proaches based on negative variability, a superimposition of all
variants is created — a multi-variant product. The derivation
of products is achieved by removing all fragments of artefacts
implementing features that are not contained in the specific
feature configuration [10][11]. While approaches based on
positive variability typically require new languages, negative
variability can be applied to existing ones by means of using
preprocessor like tools. Thus, approaches based on negative
variability can easily be applied to already existing software
artefacts. The tool chain “Features and Mappings in Lucid
Evolution” (FAMILE) [12][13], which is used in this paper,
belongs to the latter category.

In the past, several approaches have been taken in combin-
ing SPLE and MDSE to get the best out of both worlds. Both
software engineering techniques consider models as primary
artefacts: Feature models [7] are used in SPLE to capture
the commonalities and differences of a product line, whereas
Unified Modeling Language (UML) models [14] or domain-
specific models are used in MDSE to describe the software sys-
tem at a higher level of abstraction. The resulting integrating
discipline, Model-Driven Software Product Line Engineering
(MDPLE), operates on a higher level of abstraction compared
to traditional software product line approaches operating on the
source code level. By this integration, an additional increase
in productivity is achieved. In the special case of negative

232

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

variability, the platform is provided as a multi-variant domain
model. The upcoming MDPLE approach has been successfully
applied in several case studies, including MOD2-SCM [15], a
model-driven product line for software configuration systems.

In this paper, requirements, concepts and limitations of tool
support for heterogeneous software product lines (HSPLs) are
discussed. Here, the term ‘heterogeneity’ means that (a) arte-
facts are distributed over multiple resources, (b) the underlying
data format of artefacts may differ (e.g., text files or XMI
files), (c) in the case of models, the metamodel may vary,
(d) artefacts are connected by both explicit and conceptual
links, and (e) variability among different resources may be
expressed by a shared variability model that uses a common
variability mechanism. Based upon these assumptions, several
conceptual extensions to MDPLE frameworks are developed,
which are implemented in the form of extensions to the tool
chain FAMILE as a proof of concept. The practical value of
the new approach is shown by developing a heterogeneous
product line for editors for graphs, which are distinguished
by properties such as the editor type (tree or graphical) or the
types of graphs that may be edited (weighted, directed, and/or
colored graphs, etc.).

The paper is structured as follows: After clarifying the
contribution (Section II), the state of the art of homogeneous
SPLE tools is outlined in Section III. A brief introduction of
the running example is given in Section IV, while Section V
explains the new concepts introduced for the support of
heterogeneous product lines. In Section VI, the example is
revisited in order to demonstrate the heterogeneous extension
to the MDPLE tool chain FAMILE on the graph product line,
which has been modeled using Eclipse Modeling Technology
(EMF and the Graphical Modeling Framework (GMF) [16]).
Related work is discussed in Section VII, while Section VIII
concludes the paper and outlines future work.

Both the tool chain and the running example project may
be retrieved via an Eclipse update site (http://btn1x4.inf.uni-
bayreuth.de/famile2/update).

II. STATE OF THE ART, CHALLENGES, AND
CONTRIBUTION

Heterogeneous software projects consist of a variety of
interconnected resources of different types. Different repre-
sentations may be used for requirements engineering, analysis
and design. The generated source code is typically expressed
in a general purpose language, e.g., Java, and extended with
language-specific – mostly behavioral – components. Further-
more, a software project contains a set of configuration files
such as build scripts, which are typically represented in plain
text or XML format. In order to adequately handle variability
of the overall software project, all these different artefacts need
to be subject to variability management.

In its current state, tool support for model-driven product
line engineering does not adequately address heterogeneous
software projects (see Section VII). In particular, the following
new challenges arise for SPLE tools:

(a) They should ensure the consistency of cross-resource
links between different artefacts.

(b) The level of abstraction needs to be variable, i.e., the
tool should be able to operate both at the modeling
and at the source code level.

(c) Different artefacts are based on different formalisms,
e.g., metamodels or language grammars. In the special
case of models, supporting a mixture of different
metamodels requires adequate tool support.

(d) In the case of model-driven engineering, there exist
conceptual links between different artefact types. For
example, when adding variability to a certain mod-
eling construct, the corresponding generated source
code fragment needs to be provided with the same
variability information in order to keep the product
line consistent.

(e) All artefacts must be handled by a uniform variability
mechanism (e.g., a common feature model) in order
to allow for product configuration in a single step.

In this paper, an approach to heterogeneous SPL develop-
ment is presented, which advances the state of the art by the
following conceptual contributions:

(a) Multi-resource artefacts Heterogeneous projects
consist of inter-related artefacts created for different
development tasks such as requirements engineering
or testing. The referential integrity among these inter-
related models is maintained during product deriva-
tion.

(b) Heterogeneous artefact types The approach pre-
sented here can handle product lines composed from
different kinds of artefacts. Technically, an abstraction
from different resource types is conducted by repre-
senting them as EMF models.

(c) Variable metamodels In the special case of mod-
els, the approach presented here does not assume a
specific metamodel but allows an arbitrary mixture of
models, which may be instances of any Ecore-based
metamodel(s).

(d) Maintenance of conceptual links The presented
approach recognizes dependencies between heteroge-
neous artefacts even in case they are not modeled
explicitly. This is true, e.g., for the concrete Java
syntax, which may be provided with variability in-
formation, too. Internally, the corresponding concrete
syntax fragment is mapped to an abstract syntax tree,
which is invisible to the user.

(e) Common variability mechanism In the original ver-
sion of FAMILE, the variability mechanism of feature
models has been applied to single-resource EMF mod-
els. The presented approach allows for an extension
of the product space to almost arbitrary resources. All
artefacts are managed by a unique feature model.

These conceptual contributions will be demonstrated by the
example of a proof-of-concept implementation that provides
an extension to the FAMILE toolchain [12][13]. The extended
version of FAMILE can deal with plain text files, XML files,
Java source code files, arbitrary EMF models, and further types
of resources. This way, variability within complete Eclipse

233

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Non-model
resource

resource
mapping model

resource
mapping model

feature model

resource set
mapping model

Internal
model

represen-
tation

resource
mapping model

Figure 1. Conceptual mapping of models and non-model artefacts in the
presented approach.

projects may be managed. Internally, all artefacts, even plain
text and XML files, are represented as EMF models.

For each resource that is subject to variability, a single-
resource mapping model (i.e., a model that maintains traceabil-
ity links between the variability model and the multi-variant
domain model) is created, which may be managed by the
existing FAMILE core. The consistency between those differ-
ent mapping models is maintained by an additional resource
set mapping model. Figure 1 shows how single resource and
resource set mapping models are used in order to manage a
heterogeneous Eclipse project. In Section VI-D, the interplay
between the different resource types is discussed in detail.

III. STATE OF THE ART: HOMOGENEOUS MDPLE TOOLS

This section provides a brief overview on the state of the
art of current tools for model-driven product line engineering.
The description is confined to approaches based on negative
variability. As one representative, the original version of the
FAMILE tool chain [12][13] is presented. FAMILE is tailored
towards software product line development processes that
distinguish between domain and application engineering [5][6].
Domain engineering is dedicated to analyzing the domain
and capturing the results in a feature model, which describes
commonalities and differences thereof. Furthermore, an imple-
mentation – the multi-variant domain model – is provided as
a result of this phase, which is then used during application
engineering to derive application specific products. Figure 2
depicts the software product line process.

Current MDPLE tools – in particular, FAMILE – support
this process by assisting in the following tasks:

1) Definition of a feature model At the beginning of
the domain engineering phase of the product line
life-cycle, the problem domain is analyzed and the
commonalities and differences are captured in a fea-
ture model [7]. For feature models, several extensions
such as cardinality-based feature modeling [17] have
been proposed.

2) Creation of the domain model For the construction
of a multi-variant domain model, modelers may use
their preferred modeling languages and tools. Most
MDPLE approaches only support single-resource
models. FAMILE requires that the resulting model
is an instance of an Ecore metamodel.

Analyze
Domain

Develop Multi-
variant

Domain Model

Establish
Mapping

Configure
Features

Configure
Product

A
p

p
lic

a
ti

o
n

 E
n

gi
n

e
er

in
g

D
o

m
a

in
 E

n
gi

n
e

er
in

g

Feature Model

Multi-variant
Domain Model

Mapping
Model

Feature
Configuration

Domain

Application
Specific

Requirements

Configured
Domain Model

1

2

3

4Validate
Mapping

5

6

Figure 2. The software product line process supported by the state-of-the-art
tool FAMILE.

3) Mapping features to model elements In order to
define which parts of the domain model realize which
feature (or which combination thereof), MDPLE tools
provide different mechanisms to map features to
model elements. For this purpose, FAMILE includes
the Feature to Domain Mapping Model (F2DMM)
editor, which supports the process of assigning fea-
ture expressions – arbitrary propositional formula on
the set of features – to particular model elements of
a single resource. A feature expression is a logical
combination of features, for which FAMILE pro-
vides a dedicated textual language (FEL, Feature
Expression Language). Modelers can either assign
feature expressions by drag-and-drop or by selecting
a model element in the editor and textually entering
the expression [12].

4) Ensuring the consistency of the product line The
increasing complexity coming with both the size of
the multi-variant domain model and the number of
features requires sophisticated mechanisms to detect
and repair inconsistencies among the artefacts of
the product line. In particular, the consistency be-
tween (a) the mapping model and the domain model,
(b) the feature model and its corresponding feature
configurations, and (c) feature expressions and the
feature model, must be ensured. Different approaches
are described in [17][18]. FAMILE introduces the
concepts of surrogates and propagation strategies
[13] for this purpose.

5) Definition of feature configurations As soon as
the mapping is complete, MDPLE tools support the
creation of feature configurations, each describing the
characteristics of a member of the software product
line. For each feature defined in the feature model,
a selection state must be provided that determines
whether a feature is present in the corresponding

234

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Screenshot of the F2DMM mapping model editor showing the multi-variant domain model of the (homogeneous) graph product line.

Instance of
Ecore

Metamodel

Feature
Metamodel

Feature
Model

Feature
Configuration

Instance of

Domain
Metamodel

Multi-variant
Domain model

F2DMM
Metamodel

Instance of

FEL
Metamodel

Resource Mapping Model Configured
Domain model

 derives

Figure 4. Metamodels and models involved in the original version of FAMILE. Different models are used to map a single-resource multi-variant domain
model. All metamodels are based on Ecore.

product.
6) Product derivation A specific product can be derived

by applying its corresponding feature configuration to
the product line. During the derivation process, the
multi-variant domain model is filtered by elements
whose assigned feature expressions evaluate to false,
i.e., the corresponding features are deselected in the
current feature configuration. In homogeneous MD-
PLE tools, the result of this operation is a product-
specific single-resource model represented as an in-
stance of the (previously fixed) domain metamodel.

IV. EXAMPLE: HOMOGENEOUS FAMILE PRODUCT LINE
FOR GRAPH METAMODELS

The following statements refer to the original version
of the tool FAMILE as one representative of homogeneous
MDPLE tools. Section V demonstrates how heterogeneous
project support is added to the tool chain. As a demonstrating
example within this paper, the graph product line example
has been adopted, which is frequently used in research papers
because it is easy to understand and its size is rather small
[19].

FAMILE itself has been developed using EMF as its
technological foundation. A model-driven software product
line developed with FAMILE is spread over multiple EMF
resources, which are instances of multiple metamodels (cf.
Figure 4): Feature models and configurations share a common
metamodel that supports cardinality-based feature modeling.
The (single-resource) F2DMM mapping model describes how

domain model elements are mapped to features. The domain
model is an instance of an arbitrary domain metamodel,
which is fixed for the mapped resource. It is assumed to
be a single-resource entity. The Feature Expression Language
(FEL) metamodel describes a textual language for feature
expressions [12].

With the F2DMM editor (see Figure 3), the user is assisted
in assigning feature expressions to domain model elements.
The underlying F2DMM mapping model is constructed auto-
matically and reflects the spanning containment tree structure
of the domain model (in this case, the domain model is an
Ecore class diagram). Using the reflective EMF editing mech-
anism [3], the F2DMM user interface emulates the reflective
EMF tree editor. Optionally, the user may load an example
feature configuration already during the mapping process in
order to comprehend how feature expressions are evaluated.
The screenshot shown in Figure 3 depicts an example feature
configuration in the left pane. Selected features or groups are
displayed in cyan, deselected features or groups in orange. The
right pane contains the mapping of specific features to artefacts
of the multi-variant domain model. Elements are annotated
with feature expressions after a colon. The calculated selection
states selected and deselected are represented in cyan and
orange.

The example feature configuration shown in Figure 3 rep-
resents a directed graph (with uncolored nodes and unweighted
edges) that realizes neither depth-first search nor breadth-first
search.

235

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Heterogeneous projectResource Set Mapping Model

Feature
Metamodel

Feature
Model

Feature
Configurations

Domain
Metamodels

MVDM A

F2DMM
Metamodel

FEL
Metamodel

FAMILE
Metamodel

Resource Mapping Model A

Products

 derives

Resource Mapping Model B

Resource Mapping Model C

MVDM B

MVDM C

CDM A

CDM B

CDM C

Figure 5. Metamodels and models involved in the extension of FAMILE. Abbreviations: MVDM = multi-variant domain model; CDM = configured domain
model.

Considering a (model-driven) software product line as a
homogeneous artefact causes a considerable amount of limita-
tions. When referring to the graph example, it is obvious that,
although being the core artefact of a model-driven project, the
metamodel is not “everything”. Using only the metamodel,
one is not able to express several behavioral aspects (e.g.,
the implementation of generated method bodies) or details of
representation (e.g., tree or diagram editors), only to name
a few. Thus, it is necessary to include further resources into
the product line. In the subsequent section, the conceptual
and technical prerequisites for heterogeneous SPL support
are discussed, before the running example is revisited in
Section VI, where the platform will be specified in a greater
level of detail. Furthermore, the underlying feature model will
be defined more precisely.

V. SUPPORT FOR HETEROGENEOUS APPROACHES

This section explains how support for heterogeneous
model-driven software product lines has been added to the
MDPLE tool FAMILE. From a technical point of view, this
requires multiple metamodels for the platform and multiple
models that describe different artefacts of the product in
different stages of the development process (e.g., requirements,
design, implementation). As stated in the introduction, it is
assumed that all project artefacts may be expressed using EMF.

Figure 5 shows the conceptual overview of the new, het-
erogeneous version of the FAMILE tool chain. A resource
set mapping model is an instance of the FAMILE metamodel
and wraps different single-resource F2DMM model instances,
which are used for mapping features to the different (heteroge-
neous) multi-variant domain model instances. A resource set
mapping model references a given feature model and one out
of an arbitrary number of corresponding feature configurations.
Features are mapped to the corresponding domain artefacts by
using a separate mapping model per resource.

In Subsection V-A, the new FAMILE metamodel will be
presented as the core of the heterogeneous extension. Sub-
section V-B explains how non-model artefacts are mapped to
EMF models, which is a technical necessity in order to manage
them in a FAMILE product line. Subsection V-C will present
additional user interface components that ease heterogeneous
SPL development.

A. The FAMILE Metamodel

The specific requirements of heterogeneous modeling
projects have been addressed by the FAMILE metamodel
and its corresponding instances, which constitute an extension
to the F2DMM metamodel, where models have been con-
sidered as self-contained single-resource entities [12]. While
this approach works well for projects with only one domain
metamodel, it is obvious that heterogeneous projects, e.g., a
GMF project, cannot be handled this way. Furthermore, even
in non-heterogeneous projects, a model might be split up into
different resources to better cope with size and/or complexity.
In order to support multiple (EMF-based) resources of poten-
tially different types, the new FAMILE model shown in Figure
6 wraps several instances of the F2DMM metamodel, which
still constitutes the core of the extended tool chain.

The FAMILE metamodel (cf. Figure 6) defines a logical
grouping of inter-related mapping models. The root element
– an instance of ProductLine – defines a number of global
project parameters, being the references to the used feature
model and optionally a feature configuration, as well as a prop-
agation strategy (used for automatic detection and resolution
of inconsistencies; see [13]). FAMILE takes care that global
project parameters are kept consistent within different resource
mappings of the same heterogeneous product line.

deriveProduct()

ps : PropagationStrategy

ProductLine
RootFeature

(from Feature
Metamodel)

name : EString
type : ArtefactType

F2DMMInstance

uri : Estring
contentType : EString

ResourceDescriptor

MappingModel
(from F2DMM
Metamodel)

Mapping
(from F2DMM
Metamodel)

FeatureExpr
(from FEL

Metamodel)

1

0..1

0..11

1

1

0..*

currentFeature
Configuration

featureModel

currentFCfeatureModel

mappingModel

mappingModels

domainArtefact

featureExpr0..1

Figure 6. The FAMILE metamodel, which is designed to support
heterogeneous software product lines.

236

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A single resource mapping model, which refers to exactly
one mapped EMF resource, is represented by F2DMMInstance.
This meta-class defines a number of resource-specific parame-
ters, such as the name and the artefact type (requirements, im-
plementation, test, etc.). Please note that F2DMMInstance ex-
tends the abstract meta-class Mapping defined in the F2DMM
metamodel, which manages variability by the use of feature
expressions and the calculation of selection states [12]. Thus,
variability on a coarse-grained level (i.e., on the level of
resources) is enabled. The referenced MappingModel describes
the mapping of the specific contents of a mapped resource, e.g.,
mapped EMF objects in the case of EMF model resources. Fur-
thermore, a contained ResourceDescriptor element describes
additional resource-specific parameters, being the relative URI
of the mapped resource, as well as its content type (plain
text, XML, EMF, etc.). The resource containing a multi-variant
domain model is referenced by its URI.

Besides the possibility of annotating specific resources of
the multi-variant domain model with feature expressions, the
presented extension addresses the fact that in heterogeneous
projects, cross-resource links occur frequently. For instance,
in the example in Section VI, elements of an Ecore model are
referenced by a corresponding GMF mapping model located
in a different resource. Please note: from the viewpoint of
FAMILE, the GMF mapping model is just an ordinary artefact
that is also based on the Ecore metamodel. During product
derivation, these links are detected and resolved automatically
in order to meet the requirement of referential integrity across
multiple resources.

B. Interpreting Non-Model Artifacts as EMF Instances

EMF and its metamodel Ecore are wide-spread in the
Eclipse community, thus a large number of potential domain
models is addressed by relying on EMF models as SPL arte-
facts. A (non-exhaustive) list comprises of course Ecore class
diagrams, Eclipse UML models [20], Xtext [21] / EMFText
[22] grammars and documents, GMF models [16], Acceleo
source code generation templates [23], MWE2 Workflow files
[24], Xtend specifications [25], domain-specific languages
based on Ecore, and many more. Additionally, FAMILE has
been applied successfully to Java source code as well. To
this end, the MoDisco [26] framework is used, which allows
to parse Java source code into a corresponding Java model
instance (which is also based on Ecore). MoDisco may be
also used to create EMF model instances out of XML files.

As explained before, the new framework considers all
artefacts part of the platform as models. In this subsection, it is
explained how particular resource types can be interpreted as
EMF instances. The new FAMILE implementation allows for
different extensions for specific heterogeneous resource types.
For each resource type, different user interface extensions are
provided, in order to allow the user to work at an adequate
level of abstraction. So far, five resource types have been
implemented.

• XMI-serialized EMF models. These are ordinary
models, which may be mapped using the F2DMM
editor, which represents the model as a tree.

• Xtext models may be mapped using their abstract
syntax tree, since Xtext files implement EMF’s

Resource interface. Currently, it is not possible to
add feature expressions to a text selection. It is planned
to add this feature in future.

• Java files. Invisibly to the user, Java source code
files are converted to EMF models using the MoDisco
framework. The user may select a source code frag-
ment and invoke the command Annotate Java element.
Behind the scenes, the mapping is applied to the
underlying MoDisco discovery model.

• XML files. Similarly to Java files, MoDisco offers
a discoverer for XML. Currently, only the concrete
syntax may be mapped using the standard F2DMM
single resource mapping editor.

• Unstructured text. For text files that do not fit any
of the categories above, the new FAMILE version
includes a fall-back representation. Text files are rep-
resented as an instance of a simple text meta-model,
which only consists of a sequence of text lines. This
way, single text lines may be assigned with feature
expressions using the F2DMM editor.

In the running example and in the screencast, the focus lies
on two resource types, being XMI-serialized EMF models and
Java files.

C. User Interface

The user interface has been extended to support hetero-
geneous software product lines. An additional editor manages
the mapping for a set of resources rather than single-resource
models, which are still covered by the existing F2DMM editor.
In addition to the tasks listed in Section III, the extended
FAMILE framework supports the following user interactions
(see also example in Section VI):

1) Adding heterogeneous product line support An
arbitrary Eclipse project containing any kind of re-
source (e.g., EMF models, source code and docu-
mentation) can be provided with the FAMILE nature,
which adds heterogeneous product line support by
automatically creating a FAMILE product line model.

2) Definition of a global feature model As soon as
the FAMILE nature has been added, the feature
model editor is opened automatically and can be
used to provide the results of domain analysis. Of
course, it is also possible to reuse an existing feature
model. Once a new feature model has been created
or an existing feature model has been selected, its
contained features may be used in feature expressions
annotating corresponding implementation fragments
from the multi-variant domain model(s).

3) Adding variability to resources Initially, it is as-
sumed that none of the project resources is subject
to variability. In order to add variability to a specific
resource, the Add F2DMM Instance command can be
invoked. It will create a new mapping model for the
selected resource and append it to the reference map-
pingModels of the ProductLine instance. Furthermore,
global project parameters are transferred to the new
F2DMM instance.

237

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Feature diagram for the graph product line.

4) Assigning feature expressions to resources In many
cases, variability is achieved at a rather coarse-
grained level, having resources rather than objects
implement features. The FAMILE editor supports this
requirement by the possibility of assigning feature
expressions to entire resources.

5) Applying a feature configuration globally The com-
mand Set Feature Configuration allows to change the
current configuration, which will restrict the visible
elements/resources in both the resource mapping and
the resource set mapping editor to elements with a
feature expression that satisfies the new configuration.
This global project parameter is propagated to all
existing F2DMM instances.

6) Deriving a multi-resource product After applying
a specific feature configuration, a product can be
exported. Invoking the Derive Product command will
prompt the user for a name of the derived Eclipse
project. As described above, single-resource product
derivation will be applied to each mapping model
covering a resource, keeping cross-resource links
consistent. Resources that are not wrapped by any
F2DMM instance or that are not annotated with
FEL expressions will be copied without any further
restriction.

VI. EXAMPLE REVISITED: HETEROGENEOUS PRODUCT
LINE FOR GRAPH METAMODELS AND CORRESPONDING

EDITORS

In Section III, the development process that is commonly
used in software product line engineering has been briefly
sketched. In the following, it is demonstrated how to use
FAMILE for model-driven product line engineering with this
process, using the running example introduced in Section IV.
In order to demonstrate the use of the heterogeneous extensions
to FAMILE, the example product line is enriched with editors
for the underlying graph data structure. In the domain engi-
neering sub-process, the variability is captured in a variability
model and a platform is established, which consists of not
only the graph metamodel, but also of resources that control
the aspects of representation as well as behavioral components
– i.e., graph algorithms – which are described at the level of
Java source code.

This section is organized as follows. The (heterogeneous)
platform and the variability model are introduced in Sub-
section VI-A. In Subsection VI-B, the mapping between

platform and variability model is described, with a focus on
heterogeneous resources. Subsection VI-C refers to the use of
two existing FAMILE concepts, being alternative mappings
and propagation strategies. In Subsection VI-D, the created
mapping is investigated with a focus on the interplay between
heterogeneous artefacts, i.e., different types of links among
them. The transition from domain engineering to application
engineering – i.e., product derivation – is subject of Subsec-
tion VI-E. Subsection VI-F gives an outlook for a more fine-
grained specification of variability among the platform.

A. Platform and Variability Model

The platform of the product line contains the following
types of artefacts:

• Ecore Model: An Ecore model is used to describe the
static structure of the product line for graph libraries.
EMF allows to generate Java code for the model
as well as code for a tree editor from the Ecore
specification.

• Java Code: As model-driven development using EMF
only allows to model the static structure of a software
system, it is necessary to supply the corresponding
method bodies using hand-written Java code. These
method bodies also contain variability, which needs
to be managed by FAMILE.

• GMF Models: The (optional) graphical editors for
the graph product line have been developed using the
Eclipse Graphical Modeling Framework (GMF) [16].

The variability of the graph product line is captured in a
feature model. The corresponding feature diagram is depicted
in Figure 7. A graph consists of Nodes and Edges. The
graphical notation uses filled dots for mandatory and unfilled
ones for optional features. Nodes may be Colored while edges
may be Weighted and/or Directed. Optional components of
the graph product line are the Search strategy (e.g., depth-
first search or breadth-first search), different Algorithms and
Editors. Child elements of feature groups are depicted with
arcs. Two different types of group relationships are possible:
“inclusive or” (filled arc) and “exclusive or” (unfilled arc)
of child elements. While the different search strategies are
mutually exclusive, the algorithms and the editor children
may be selected in arbitrary combinations. Please note that
there are also dependencies between features, which cannot

238

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Ecore model for the graph product line.

be displayed in the feature diagram. Features may also define
cross-tree constraints indicating feature inclusion or exclusion
once a certain feature is selected. E.g., the algorithm to detect
cycles in the graph requires Directed edges. Furthermore, the
calculation of a Shortest Path requires Weighted edges.

Figure 8 depicts the multi-variant domain model of the
graph product line. Following the model-driven approach, an
object-oriented decomposition of the underlying data structure
is applied: A Graph contains Nodes and Edges. Furthermore,
it may contain a Search strategy and Algorithms operating on
the graph data structure. For performance reasons, the data
structure may be converted into an Adjacency list, to speed up
certain algorithms. As the model depicted in Figure 8 is the
superimposition of all variants, the relation between nodes and
edges is expressed in multiple ways: (1) In case of undirected
graphs, an edge is used to simply connect two nodes, expressed
by the reference nodes. (2) Directed graphs on the other hand
demand for a distinction of the corresponding start and end
nodes of an edge. This fact is expressed by two single-valued
references named source and target.

As stated above, Ecore only allows for structural modeling,
i.e., it does not provide support to model method bodies. Thus,
the standard EMF development process [3] demands for a
manual specification of an EOperation’s body by completing
the generated source code. In the example, hand-written Java
source code for all operations contained in the class diagram
shown in Figure 8 has been supplied. A small cut-out of a
method implementation for the class Search is shown in Figure
9. In the corresponding Ecore model (cf. Figure 8), the Search
class defines three EOperations. While the EMF code gen-
eration only creates Java code for the method head, the body
implementation depicted in Figure 9 was supplied manually. In
this case, the method implementation also contains variability
as the corresponding references between nodes and edges are
different depending on the presence or absence of the feature
Directed in the current feature configuration. Please note that
the level of granualarity supported by FAMILE’s variability
annotations is arbitrary, ranging from single Java fragments,
over statements, blocks, methods or even classes and packages.

Figure 9. Example for method bodies written in Java.

The product line for graphs also allows for different types
of editors, which may be used to manipulate the graph data
structure. As shown in the corresponding feature model in
Figure 7, valid product configurations may either have no
editor at all, a tree editor, a graphical editor or they may
even contain both types of editor. While the tree editor may
be automatically generated from the Ecore model, a graphical
editor requires additional information. The Graphical Modeling
Framework (GMF) [16], which is also part of the Eclipse
Modeling Platform, allows for a creation of graphical editors
in a model-driven way. Generating graphical editors with GMF
requires the definition of three additional models:

1) GMFGraph (Graphical Definition Model) GMF
uses a GMFGraph model to define the graphical
representation of the concrete syntax. In case of the
example, the visual appearance of nodes and edges
of the graph is defined, by specifying the respective

239

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Abstract Syntax Concrete Syntax

Ecore Model

EMF Generator Model

GMF Mapping Model

Graphical Definition

Model

Tooling Definition

Model

GMF Generator Model

Java Source Code

decorates

generates generates

generates

Figure 10. Models involved in the GMF development process.

shapes.
2) GMFTool (Tooling Definition Model) Every graphi-

cal editor in Eclipse, which is based on the Graphical
Editing Framework (GEF), uses a so called palette to
drag new diagram elements to the drawing canvas.
As GMF is a model-driven extension to GEF, it
follows this paradigm. The GMFTooling definition
model is used to specify the contents of the editor’s
tool palette.

3) GMFMap (GMF Mapping Model) The models
described above are combined in the GMF mapping
model. In this model, a relation between abstract
syntax (Ecore), the graphical notation (GMFGraph)
and the tooling definition model (GMFTool) is estab-
lished. The GMF Mapping Model is then automati-
cally transformed into a generator model from which
the Eclipse plugin for the graphical editor is gener-
ated. Please note that the GMF mapping model is the
central part of the Graphical Modeling Framework. It
has nothing in common with the F2DMM mapping
model, which is the core of the FAMILE tool chain.
From the viewpoint of FAMILE, all the models that
have been described here are just ordinary artefacts
that may contain variability.

Figure 10 depicts the different models involved in the GMF
development process. All models are instances of Ecore-based
metamodels, and can thus be used easily with the FAMILE tool
chain. The abstract syntax of a GMF-based editor is defined
by an Ecore model (in this case, the superimposed graph
metamodel shown in Figure 8), while the editor providing the
concrete (graphical) syntax is defined by a graphical definition
model, a tooling definition model and a GMF mapping model.

The EMF generator model is used to generate Java source
code for the abstract syntax while the GMF generator model
is responsible for generating the diagram editor’s source code.
Please note that the screencast complementing this paper does
not cover the definition of the models mentioned below as
it just focuses on how to use FAMILE with these types of

Figure 11. Domain Engineering Process in the graph product line example.

artefacts.

B. Mapping Heterogeneous Artefacts

Figure 11 depicts the domain engineering phase in model-
driven software product lines developed with FAMILE. First,
the variability has to be captured in a feature model. The
features are then implemented using the appropriate modeling
languages. After that, a mapping between features and their
corresponding implementation fragments has to be established.
In the following subsection, the necessary steps are described
from the tool perspective.

In order to use FAMILE for a (heterogeneous) project,
the FAMILE project nature has to be assigned. As a result,
an empty feature model and a FAMILE model are created
within the project. Variability modeling, i.e., capturing the
commonalities and differences of the products in the product
line, is performed during the domain analysis step. The result
of this development task is a feature model. In the example,
the feature model shown in Figure 7 is applied to the entire
product line as a global project parameter. In order to map
features to corresponding implementation fragments, F2DMM
mapping models have to be created for each domain model.
In the example, five F2DMM instances have been defined,
one for each EMF/GMF resource mentioned above and one
for the Java source code — the underlying MoDisco AST
representation consists of a single EMF resource although
the source code is distributed over multiple packages and
compilation units in the physical file system. Please note that
for the EMF Generator model and the GMF Generator model
(cf. Figure 10) no F2DMM instances have been defined, as they
do not contain variability in this example. Furthermore, those
models have been automatically derived from the Ecore model
and the GMF mapping model and only contain information
for the code generators. Thus, they can easily be created again
after product derivation.

Since the graph metamodel as well as all GMF artefacts
are ordinary EMF models, their mapping is done in a straight-
forward way using the single resource F2DMM mapping editor
(see Section IV). For mapping the source code, the new con-
crete syntax connector of the FAMILE extension may be used.

240

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Screenshot of the FAMILE resource set mapping editor. The left pane shows the feature model and feature configuration. In the main pane, the
mapping for contents of the resource set are shown.

Figure 13. Usage of alternative mappings. The red box depicts where elements of the multi-variant domain model have been virtually extended by alternative
mapping values (in italics).

It allows to assign feature expressions to parts of the hand-
written method bodies directly in the textual representation of
the Java source code. The body of the method dfs shown in
Figure 9 is annotated as follows (see also screencast) in order
to provide an optimized depth-first search for directed graphs.
First, the user selects lines 257 until 262 in the editor. Next,
he/she invokes the command Annotate Java element
from the context menu. The entered feature expression “Di-
rected” will be assigned to the corresponding AST element in
the MoDisco model in the background. Similarly, the for-
loop consisting of lines 265 until 267 is restricted by the
feature expression “not Directed”. As a consequence, derived
products will only contain one of the two loops to calculate
the successors for a depth-first search, but never both of them.

Figure 12 depicts the state of the example project after
corresponding F2DMM instances have been created for the
models mentioned above. The red arrows in the left part of
the figure indicate which domain model resource the corre-
sponding F2DMM models refer to. As one can see, mapped
resources may also be annotated with feature expressions. For
the example, a feature called Editor has been introduced in
order to make the visualization (tree editor vs. diagram editor)
of the graph variable. In case the feature Diagram is deselected
in a feature configuration, it is obvious that the resulting
product must not contain the GMF models. As a consequence,

the respective F2DMM instances are annotated with the feature
expression Diagram, as shown in Figure 12.

C. Usage of Alternative Mappings and Propagation Strategies

Figure 3 has already shown the content of the F2DMM
mapping model for the Ecore model, which is used to de-
fine the abstract syntax of the graph model. Analogously,
F2DMM instances for the other required artefacts (GMFGraph,
GMFTool, GMFMap and Java code) are created. Each model
file contains a superimposition of all possible variants. Com-
mon approaches using negative variability suffer from restric-
tions imposed by the used domain metamodels, which usually
do not provide adequate support for variability. FAMILE
mitigates this restriction by offering the advanced concept of
alternative mappings. In the example, alternative mappings
are used in the Link mapping in the GMFMap model (cf.
Figure 13). In case of an undirected graph, the corresponding
graphical editor should just connect two nodes by a solid line.
To this end, the underlying semantic model (i.e., the Ecore
class model) provides a reference nodes in the class Edge. In
contrast, if the feature Directed edges is selected, the graphical
editor should indicate the direction of the edge connecting two
nodes by using an arrow as a target decorator. Furthermore,
the semantic model does no longer contain a reference nodes,
but instead two single-valued references source and target,

241

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

which are used to store the corresponding nodes connected
by the edge. In GMF, a link mapping requires to specify
the corresponding EReferences used as the link’s source and
target. While in the first case, both source and target features
in the GMFMap file are set to the EReference nodes, the
latter case requires those features to point at the corresponding
source and target EReferences.

In this example, FAMILE’s alternative mapping capabil-
ities are necessary because the GMF mapping model uses
a single-valued EReference to store the sourceMetaFeature
and linkMetaFeature features. In case of undirected edges, the
nodes Reference defined in the Ecore model of the graph
product line is used. However, in case of directed edges, a
distinction between source and target nodes is required. To
this end, the Ecore model provides corresponding source and
target EReferences in the class Edge (cf. Figure 8), which
have to be used in the GMFMap model instead in case the
feature Directed is chosen. Please note that the reason why
in this example, alternative mappings are necessary in the
GMF mapping model but not in the semantic model is the
fact that the references nodes, source, target can be
defined simultaneously in the Ecore model. The GMF mapping
model, however, requires the applied occurrence of exactly one
semantic model element here, which cannot be realized by a
single multi-variant model. Figure 13 depicts how this has been
solved using FAMILE’s alternative mappings [12], which can
virtually extend the multi-variant model and thus mitigate the
limited variability of the used domain metamodels.

It is aimed to keep the annotation effort small for the
users of the tool chain. This can be achieved by so called
propagation strategies, which avoid the necessity of repeated
feature annotations. In the graph product line example, the
propagation strategy forward is used throughout all mapped
resources. As its name says, this strategy propagates selection
states of mapped elements along the direction of dependency.
For instance, each EMF object has an existential dependency
to its eContainer. As a consequence, in case the presence
of an element is restricted by a specific feature expression,
this restriction also holds for all contained elements, making
repeated annotations unnecessary. For additional details on
propagation strategies, the reader is referred to [13].

D. Interplay Between Different Model Types

Through the use of two external frameworks, namely GMF
and MoDisco, the resulting example product line is highly het-
erogeneous. Figure 15 sketches the interplay between different
resource types, being the domain model, the GMF models,
the generated Java source code and its internal MoDisco
representation, which is invisible to the end user. Between
different resource types, seven external link types occur, two
of which are conceptual, i.e., they do not occur explicitly as
EMF links.

• GMF Mapping links emerge from the GMF mapping
model and reference the domain model, the tooling
model, and the graphical definition model. These links
are created by GMF.

• Conceptual CS/AS links virtually link an abstract
syntax tree element to its corresponding concrete
syntax fragment in the Java source code. This link

is restored automatically in case the user selects a
concrete syntax fragment and invokes the command
Annotate FEL Expression.

• Feature expression links: Within the feature expres-
sion of a mapping, elements of the feature model are
referenced. These links are created automatically when
feature expressions are specified.

• Conceptual links between CS and feature ex-
pression: From the user’s perspective, source code
elements are mapped in concrete syntax. This causes
a conceptual dependency between source code frag-
ments and features.

• Mapping links: Each element of the mapping model
references exactly one element of the multi-variant
domain model. These links are created automatically
upon creation of a resource mapping model.

• Cross-Resource Mapping links: Among different
domain models, cross-resource links may occur (see
the GMF mapping model). In order to adequately
connect these to the variability model, a link between
the corresponding resource mappings is established.
These links are created automatically during mapping
model creation.

• Resource Mapping links. The superordinate resource
set mapping model references one F2DMM instance
per mapped model resource. Links of this kind are
created by the user through the Add F2DMM Instance
command.

By automating sub-tasks such as the synchronization be-
tween domain and mapping model, and the discovery of the
Java source code, the larger part of the complex relationships
shown in Figure 15 is not exposed to the user at all, but
managed automatically “behind the curtains”.

E. Product Derivation

After the domain engineering phase has been completed,
the platform may be used to derive specific products from
the product line in the application engineering step (cf. Figure

Figure 14. Application Engineering Process in the graph product line
example.

242

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

domain model
(graph.ecore)

GMF mapping
model

GMF graphical

GMF tooling

domain
mapping model

GMFmap
mapping model

GMFgraph
mapping model

GMFtool
mapping model

feature model

Resource set
mapping model

Domain model element

GMF model element

F2D model element

Feature

FAMILE F2DMM
instance mapping

Domain model internal link

GMF model internal link

F2DMM internal link

Feature model internal link

GMF mapping external link

Mapping link

Cross-resource mapping link

Feature expression link

Resource mapping link

MoDisco discovery
mapping model

Java source
code

MoDisco discovery
model element

Java source code file

MoDisco internal link

Conceptual CS/AS link

Conceptual link between CS
and feature expression

Figure 15. Interplay between resources of different types, which are created in subsequent steps of the domain engineering phase.

14). In the presented approach, application engineering is
reduced to a simple configuration task. The user only has to
specify an appropriate feature configuration, by selecting and
deselecting corresponding features in the feature model, while
all constraints (e.g., parent-child relationships, requires/ex-
cludes relationships) must be satisfied. The subsequent product
derivation step is a fully automatic process.

In the example, a derived Eclipse project is created, which
contains the required model files. Sample feature configura-
tions are provided, which allow for a fully automatic gener-
ation of four Eclipse plugin projects, which differ from each
other as follows (cf. Figure 16):

(FC1) An EMF tree editor for undirected, unweighted, un-
colored graphs, traversed by depth-first search. No
additional algorithms are offered.

(FC2) A GMF graphical editor for undirected, unweighted,
uncolored graphs, traversed by depth-first search. No
additional algorithms are offered.

(FC3) A GMF graphical editor for directed, unweighted,
uncolored graphs, traversed by depth-first search. De-
ployed algorithms include cycle detection, as well
as calculation of a minimum spanning tree and the
transpose.

243

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

FC1: FC2: FC3: FC4:

Figure 16. Four example feature configurations for instances of the graph product line.

(FC4) A GMF graphical editor for directed, weighted, col-
ored graphs, traversed by breadth-first search. All
available graph algorithms are deployed.

Of course, this set of feature configurations does not contain
all possible combinations of features and it may be extended
arbitrarily based on the features and constraints defined in the
feature model.

F. Outlook: Increasing the Heterogeneity of the Project

The example described in this section has been conducted
using a variety of different resources as artefacts. All models
involved in the GMF development process, i.e., the Ecore
domain model, the Graphical Definition Model, the Tooling
Definition Model, as well as the GMF Mapping Model,
are instances of different Ecore-based metamodels. Manual
adaptations to the Java source code are managed with the
help of the MoDisco framework, letting the user operate on
concrete textual syntax. In the current state of the project,
these models constitute the adequate level of abstraction for
variability management. However, it might become necessary
to define additional F2DMM mapping models for additional
non-EMF resources, for different reasons:

• The file plugin.properties in the Eclipse
project contains language-specific UI string constants,
each declared in a separate text line. Currently, the
generated Editor displays UI elements in English.
However, if support for different languages is desired,
one may add an additional F2DMM mapping model
for the properties file, and corresponding features
for each additional language to the feature model.
The mapping may be adequately managed by means
of a per-line mapping, using the “fall-back” EMF
representation for plain text files (see Section V-B).

• The file plugin.xml defines plug-in extensions
used to integrate the generated editor with the Eclipse
platform. By adding an F2DMM mapping model and
corresponding features, variability may be added to
the plugin’s runtime configuration, i.e., in order to
make the editor’s icon, label, or file extension depend
on specific feature configurations. Assuming that no
EMF-compatible metamodel for Eclipse plugin files is

defined, the MoDisco based representation for XML
files (see Section V-B) may be used.

VII. RELATED WORK

Many different tools and approaches have been published
in the last few years, which address (model-driven) software
product line development. Due to space restrictions, the focus
of this comparison lies on support for heterogeneous soft-
ware projects, using the definition of heterogeneity given in
the introduction. Other comparisons of FAMILE and related
approaches can be found in [12] and [13].

The tool fmp2rsm [27] combines FeaturePlugin [28] with
IBM’s Rational Software Modeler (RSM), a UML-based mod-
eling tool. The connection of features and domain model
elements is realized by embedding the mapping information
into the domain model using stereotypes (each feature is
represented by its own stereotype), which requires manual
extensions to the domain model. While fmp2rsm is limited
to the support of RSM models, the approach presented in this
paper provides a greater flexibility since the only restriction is
that the domain model needs to be Ecore based. Furthermore,
the extensions presented in this paper allow to use several
domain metamodels within one software product line project.

FeatureMapper [10] is a tool that allows for the mapping
of features to Ecore based domain models. Like FAMILE, it
follows a very general approach permitting arbitrary Ecore
models as domain models. FeatureMapper only allows to
map a single (self-contained) domain model, while the work
presented in this paper allows to use FAMILE also for software
product lines whose multi-variant domain model is composed
of artefacts distributed over different resources. Furthermore,
the artefacts may be instances of different metamodels.

VML* [8] is a family of languages for variability man-
agement in software product lines. It addresses the ability to
explicitly express the relationship between feature models and
other artefacts of the product line. It can handle any domain
model as long as a corresponding VML language exists for
it. VML* supports both positive and negative variability as
well as any combination thereof, since every action is a small
transformation on the core model. As a consequence, the order
in which model transformations are executed during product
derivation becomes important. So far, VML* is designed to

244

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

work with text files, provided that a corresponding VML
language exists for it (i.e., a grammar has to be specified).
Theoretically, VML languages could be written that work with
XMI serializations of the respective models in the example
presented in this paper, whereas FAMILE provides generic
support for model-driven software development based on
Ecore compliant models. In other words, VML* and FAMILE
provide similar support for heterogeneous projects, but they
operate on different ”technological spaces“. As a consequence,
the example provided in Section VI cannot be realized with
VML* easily. In fact, significant effort would be required to
create VML languages for the different models involved in the
graph product line example as presented here.

MATA [9] is another language that also allows to develop
model-driven product lines with UML. It is based on positive
variability, which means that, around a common core specified
in UML, variant models described in the MATA language are
composed to a product specific UML model. Graph transfor-
mations based on AGG [29] are used to compose the common
core with the single MATA specifications. While MATA is
limited to UML, the approach presented in this paper provides
support for any Ecore based model and furthermore allows
the combination of different domain metamodels within one
product line project.

CIDE [11] is a tool for source-code based approaches. It
provides a product specific view on the source code, where
all source code fragments not part of the chosen configuration
are omitted. The approach is similar to #ifdef -preprocessors
known from the C programming language [30]. The difference
is that it abstracts from plain text files and works on the
abstract syntax tree of the target language instead. In its current
state, CIDE provides support for a wide range of different
programming languages. Unfortunately, it cannot be used for
model-driven development. In contrast, FAMILE provides full-
fledged support for model-driven development based on Ecore
models. Furthermore, it may also deal with regular Java source
code by using the MoDisco [26] framework.

Bühne et al. [31] and Dhungana et al. [32] present ap-
proaches for heterogeneous variability modeling, i.e., manag-
ing commonalities and differences across multi product lines.
Dhungana et al. aim at unifying multi product lines, which rely
on different tools and formalisms for modeling variability. Web
services are used for a prototypical implementation. In contrast
to the approach presented here, in both approaches, the term
‘heterogeneity’ concerns different variability models rather
than the product space. While Bühne et al. and Dhungana et
al. only address variability modeling, the approach presented
in this paper covers a larger part of the software life-cycle.
Furthermore, FAMILE does not only allow for variability
modeling, but also for mapping the variability information to
heterogeneous implementation artefacts.

VIII. CONCLUSION AND FUTURE WORK

In this paper, requirements, concepts and limitations with
respect to tool support for heterogeneous model-driven soft-
ware product lines have been discussed. The approach pre-
sented in this paper closes a significant gap in the tool support
for model-driven development of software product lines, whose
artefacts are heterogeneous in terms of the used metamodels

as well as in containing artefacts like source code or con-
figuration files or XML documents. As a proof of concept, an
implementation of an extension to the FAMILE tool chain was
shown. A concrete example has been given, demonstrating the
benefits of the presented approach on a concrete product line
for graphs.

Usually, (model-driven) software projects do not only con-
sist of one single model resource. In contrast, different models
and metamodels as well as non-model artefacts are involved.
FAMILE is able to map features to model fragments in such
heterogeneous projects and also to derive consistent products.
Besides the aforementioned heterogeneous support, FAMILE
advances the state of the art by allowing to flexibly change the
granularity of the mapping between features and the product
space (project-wide or resource-wide scope). Furthermore, the
tool chain also allows for the usage in model-driven projects,
where parts of the software are still realized with manually
written Java source code. Of course, FAMILE may be used
in regular (non model-driven) Java projects as well. The main
challenges of heterogeneous SPLE tool support are (a) to cope
with different levels of abstractions (models and source code /
plain text files) as well as (b) different forms of representation,
(c) to ensure that links between different resources are kept
consistent, (d) to adequately handle conceptual links between
artefacts of different types, e.g., between model elements and
source code fragments, and (e) to provide a uniform variability
mechanism with respect to all project resources.

The approach presented here comes with the assumption
that each resource type may be expressed by an EMF model;
the new version of FAMILE provides adequate mapping con-
structs in order to support entire Eclipse projects. Furthermore,
the presented solution to heterogeneous SPLE tooling is to
divide a heterogeneous software project into a set of single-
resource mapping models, for which adequate MDPLE support
is already available. Links between different models are kept
consistent during product derivation. Extensions to the user
interface ease the integration of new artefacts into hetero-
geneous product lines as well as modifications to existing
mappings. Non-model resources such as Java or XML files are
automatically interpreted as EMF models, using the MoDisco
framework under the hood. Furthermore, a fallback metamodel
for text files is provided, which also allows to map features
to those kinds of artefacts at a lower level of abstraction. A
demonstration of the presented approach was given by apply-
ing the heterogeneous FAMILE tool chain to a product line for
graph metamodels, including modifications of the generated
source code, and editors. The resulting heterogeneous product
line manages an entire Eclipse plug-in project.

Current and future work addresses a case study carried out
in the field of robotics [33][34]. Although first results produced
by the old (homogeneous) version of the FAMILE tool chain
are very promising, it is expected that a significant gain in
productivity is achieved by exploiting the new, heterogeneous
approach. In this case study, the platform of the product line
consists of language grammar files, code generation template
files and C++ source code files.

ACKNOWLEDGMENTS

The authors want to thank Bernhard Westfechtel for his
valuable comments on the draft of this paper.

245

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] T. Buchmann and F. Schwägerl, “A model-driven approach to the de-
velopment of heterogeneous software product lines,” in Proceedings of
the Ninth International Conference on Software Engineering Advances
(ICSEA 2014), H. Mannaert, L. Lavazza, R. Oberhauser, M. Kajko-
Mattsson, and M. Gebhart, Eds. Nice, France: IARIA, 2014, pp. 300–
308.

[2] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-Driven
Software Development: Technology, Engineering, Management. John
Wiley & Sons, 2006.

[3] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF Eclipse
Modeling Framework, 2nd ed., ser. The Eclipse Series. Boston, MA:
Addison-Wesley, 2009.

[4] OMG, Meta Object Facility (MOF) Core, formal/2011-08-07 ed., Object
Management Group, Needham, MA, Aug. 2011.

[5] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns, Boston, MA, 2001.

[6] K. Pohl, G. Böckle, and F. van der Linden, Software Product Line En-
gineering: Foundations, Principles and Techniques. Berlin, Germany:
Springer Verlag, 2005.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feature-oriented domain analysis (FODA) feasibility study,”
Carnegie-Mellon University, Software Engineering Institute, Tech. Rep.
CMU/SEI-90-TR-21, Nov. 1990.

[8] S. Zschaler, P. Sánchez, J. Santos, M. Alférez, A. Rashid, L. Fuentes,
A. Moreira, J. Araújo, and U. Kulesza, “VML* - A Family of
Languages for Variability Management in Software Product Lines,”
in Software Language Engineering, ser. Lecture Notes in Computer
Science, M. van den Brand, D. Gaevic, and J. Gray, Eds. Denver, CO,
USA: Springer Berlin / Heidelberg, 2010, vol. 5969, pp. 82–102.

[9] J. Whittle, P. Jayaraman, A. Elkhodary, A. Moreira, and J. Arajo,
“MATA: A Unified Approach for Composing UML Aspect Models
Based on Graph Transformation,” in Transactions on Aspect-Oriented
Software Development VI, ser. Lecture Notes in Computer Science,
S. Katz, H. Ossher, R. France, and J.-M. Jzquel, Eds. Springer Berlin
/ Heidelberg, 2009, vol. 5560, pp. 191–237.

[10] F. Heidenreich, J. Kopcsek, and C. Wende, “FeatureMapper: Map-
ping features to models,” in Companion Proceedings of the 30th
International Conference on Software Engineering (ICSE’08), Leipzig,
Germany, May 2008, pp. 943–944.

[11] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. S. Batory,
“Guaranteeing syntactic correctness for all product line variants: A
language-independent approach,” in TOOLS (47), ser. Lecture Notes in
Business Information Processing, M. Oriol and B. Meyer, Eds., vol. 33.
Springer, 2009, pp. 175–194.

[12] T. Buchmann and F. Schwägerl, “FAMILE: tool support for evolving
model-driven product lines,” in Joint Proceedings of co-located Events
at the 8th European Conference on Modelling Foundations and Ap-
plications, ser. CEUR WS, H. Störrle, G. Botterweck, M. Bourdells,
D. Kolovos, R. Paige, E. Roubtsova, J. Rubin, and J.-P. Tolvanen,
Eds. Building 321, DK-2800 Kongens Lyngby: Technical University
of Denmark (DTU), Jul. 2012, pp. 59–62.

[13] T. Buchmann and F. Schwägerl, “Ensuring well-formedness of config-
ured domain models in model-driven product lines based on negative
variability,” in Proceedings of the 4th International Workshop on
Feature-Oriented Software Development, ser. FOSD 2012. New York,
NY, USA: ACM, 2012, pp. 37–44.

[14] OMG, UML Superstructure, formal/2011-08-06 ed., Object Manage-
ment Group, Needham, MA, Aug. 2011.

[15] T. Buchmann, A. Dotor, and B. Westfechtel, “Mod2-
scm: A model-driven product line for software configuration
management systems,” Information and Software Technology, 2012,
http://dx.doi.org/10.1016/j.infsof.2012.07.010. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2012.07.010

[16] R. C. Gronback, Eclipse Modeling Project: A Domain-Specific Lan-
guage (DSL) Toolkit, 1st ed., ser. The Eclipse Series. Boston, MA:
Addison-Wesley, 2009.

[17] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Formalizing
cardinality-based feature models and their specialization,” Software
Process: Improvement and Practice, vol. 10, no. 1, pp. 7–29, 2005.

[18] F. Heidenreich, “Towards systematic ensuring well-formedness of soft-
ware product lines,” in Proceedings of the 1st Workshop on Feature-
Oriented Software Development. Denver, CO, USA: ACM, Oct. 2009,
pp. 69–74.

[19] R. E. Lopez-Herrejon and D. S. Batory, “A standard problem
for evaluating product-line methodologies,” in Proceedings of the
Third International Conference on Generative and Component-Based
Software Engineering, ser. GCSE ’01. London, UK, UK: Springer-
Verlag, 2001, pp. 10–24. [Online]. Available: http://dl.acm.org/citation.
cfm?id=645418.652082

[20] “Eclipse UML2 Project,” http://www.eclipse.org/modeling/mdt/
?project=uml2, accessed: 2014-07-15.

[21] “Xtext project,” http://www.eclipse.org/Xtext, accessed: 2014-07-15.
[22] “EMFText Project,” http://www.emftext.org, accessed: 2014-07-15.
[23] “Acceleo project,” http://www.eclipse.org/acceleo, accessed: 2014-07-

15.
[24] “MWE2 Project,” http://www.eclipse.org/modeling/emft/?project=mwe,

accessed: 2014-07-15.
[25] “Xtend project,” http://www.eclipse.org/xtend, accessed: 2014-07-15.
[26] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “MoDisco: a generic

and extensible framework for model driven reverse engineering,” in
Proceedings of the IEEE/ACM International Conference on Automated
software engineering (ASE 2010), Antwerp, Belgium, 2010, pp. 173–
174.

[27] “fmp2rsm project,” http://gsd.uwaterloo.ca/fmp2rsm, accessed: 2014-
07-15.

[28] M. Antkiewicz and K. Czarnecki, “FeaturePlugin: Feature modeling
plug-in for Eclipse,” in Proceedings of the 2004 OOPSLA Workshop on
Eclipse Technology eXchange (eclipse’04), New York, NY, 2004, pp.
67–72.

[29] G. Taentzer, “AGG: A Graph Transformation Environment for Modeling
and Validation of Software,” in Applications of Graph Transformations
with Industrial Relevance, ser. Lecture Notes in Computer Science,
J. Pfaltz, M. Nagl, and B. Böhlen, Eds. Charlottesville, VA, USA:
Springer Berlin / Heidelberg, 2004, vol. 3062, pp. 446–453.

[30] B. W. Kernighan, The C Programming Language, 2nd ed., D. M.
Ritchie, Ed. Prentice Hall Professional Technical Reference, 1988.

[31] S. Bühne, K. Lauenroth, and K. Pohl, “Modelling requirements vari-
ability across product lines,” in RE. IEEE Computer Society, 2005,
pp. 41–52.

[32] D. Dhungana, D. Seichter, G. Botterweck, R. Rabiser, P. Grünbacher,
D. Benavides, and J. A. Galindo, “Configuration of multi product lines
by bridging heterogeneous variability modeling approaches,” in SPLC,
E. S. de Almeida, T. Kishi, C. Schwanninger, I. John, and K. Schmid,
Eds. IEEE, 2011, pp. 120–129.

[33] J. Baumgartl, T. Buchmann, D. Henrich, and B. Westfechtel, “Towards
easy robot programming: Using dsls, code generators and software
product lines,” in Proceedings of the 8th International Conference on
Software Paradigm Trends (ICSOFT 2013), J. Cordeiro, D. Marca, and
M. van Sinderen, Eds. ScitePress, Jul. 2013, pp. 548–554.

[34] T. Buchmann, J. Baumgartl, D. Henrich, and B. Westfechtel, “Towards
a domain-specific language for pick-and-place applications,” in
Proceedings of the Fourth International Workshop on Domain-Specific
Languages and Models for Robotic Systems (DSLRob 2013)., U. P. S.
Christian Schlegel and S. Stinckwich, Eds. arXiv.org, 2013. [Online].
Available: http://arxiv.org/abs/1401.1376

246

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Modular Architecture of an Interactive Simulation and Training Environment for
Advanced Driver Assistance Systems

Kareem Abdelgawad, Bassem Hassan, Jan Berssenbrügge, Jörg Stöcklein, and Michael Grafe
Heinz Nixdorf Institute

University of Paderborn, Germany
{Kareem.Abdelgawad, Bassem.Hassan, Jan.Berssenbruegge, Joerg.Stoecklein, Michael.Grafe}@hni.upb.de

Abstract - Advanced Driver Assistance Systems (ADAS) are
mechatronic vehicle systems that collaborate with the driver to
improve road safety and increase driving comfort. Apart from
all technical challenges regarding control algorithms and
sensor quality, customer acceptance of ADAS is an important
concern to automobile manufacturers. Simulating ADAS and
demonstrating their benefits to customers in real traffic
environments are impractical and leads to significant efforts
and costs. This paper presents a modular architecture of a
driving simulation environment for ADAS demonstration
using driving simulators. The structure of the driving
simulation environment is discussed. Special focus is given to
the embedded framework for ADAS virtual prototyping and
demonstration. This framework is built in a flexible form that
ensures system scalability. That is, new ADAS prototypes can
be designed and added almost without significant input-output
interface adjustments. Furthermore, different ADAS can be
integrated together to implement more advanced capabilities,
such as autonomous driving. The framework is composed of
modular functional units, which enclose real-time capable
simulation models developed with MATLAB/Simulink. The
design of the functional units and the input-output
relationships are presented. Prototypes for Emergency Brake
Assist and Emergency steer Assist are presented as examples of
innovative ADAS that can be demonstrated using the
developed simulation environment.

Keywords - Advanced Driver Assistance Systems (ADAS);
Driving simulators; Virtual prototyping; MATLAB/Simulink.

I. INTRODUCTION

Driving is one of the most popular daily activities that
people perform. Nevertheless, it is a complex and relatively
dangerous activity. Drivers have to concentrate on many
tasks at the same time. Improving road safety standards is
one of the main concerns in the automotive industry.
Therefore, the automotive manufacturers develop Advanced
Driver Assistance Systems (ADAS) with the aim of helping
drivers in the complex driving task. ADAS are innovative
mechatronic vehicle systems that monitor vehicle
surroundings, as well as driving behavior [1]. They provide
drivers with essential information and take over difficult or
repetitive tasks. In critical driving situations, these systems
warn and may intervene actively to support the drivers, and
hence, lead to increased road safety. ADAS belong to the
active safety systems, which help to prevent accidents or at
least minimize possible consequences [2].

Using ADAS in cars and trucks has great benefits
regarding accident prevention. Reference [2] presented an
analysis for thousands of accidents insurance claims in
Germany in order to investigate the safety benefits of ADAS.
It was found that using one ADAS can prevent up to 45% of
a specific type of accident. Therefore, modern vehicles are
equipped with various types of sensors, which recognize and
analyze the environment. Moreover, the sensory data, which
is detected by each sensor can be integrated together to
assure its accuracy, and hence, to take appropriate decisions.

Diverse sensor technologies (camera, radar, ultrasonic,
etc.) and decision algorithms can provide different levels of
assistance [3]. On the one hand, some ADAS, like, e.g., Lane
Departure Warning [4], only alert the driver to critical
situations by means of optical, acoustic and/or haptic
feedback. On the other hand, other ADAS do not only
recognize driving situations and warn the driver, but also
intervene actively in order to prevent possible collisions. A
common example of the latter type is Emergency Brake
Assist [5], which applies full braking if driver fails to
respond to obstacles in front of the vehicle.

In general, ADAS can be classified according to their
functionality in two main categories [3]. Firstly, systems that
support the diver and make the driving task easier, like, e.g.,
navigation devices, night vision systems, and auto-parking
systems. Secondly, systems that support the vehicle and
make the driving task more safe [3], like, e.g., Adaptive
Cruise Control (ACC), Lane Keeping Assistance (LKA), and
Lane Change Assistance (LCA).

Automobile manufacturers and suppliers are confronted
with considerable technical challenges while developing
ADAS. However, there are additional challenging aspects
related to ADAS deployment and public acceptance. A
flexible test environment is required in order to validate
ADAS concepts and assess their decision logic. Clear
concepts for driver-vehicle interface have to be addressed in
early development phases; this ensures that drivers can
handle the systems appropriately. On the other hand,
demonstrating safety and comfort benefits of ADAS to
consumers is a key factor for smooth market penetration and
development.

However, validating and demonstrating ADAS in real
traffic environments are impractical and lead to significant
efforts and costs. Moreover, real traffic environments are
principally random and do not allow for standardized driving
tests or reproducible research results. Driving simulators
offer a potent virtual prototyping platform to test and verify

247

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ADAS in different development phases [6]. They allow the
design, testing, and validation of ADAS in a closed loop
together with vehicle components, environment, and driver.
ADAS control units and vehicle components could be real,
virtual, or a combination of real and virtual components. For
demonstration and training purposes, driving simulators can
be utilized to make drivers familiar with new ADAS, and
hence, accelerate the learning phase.

Driving simulators vary in their cost, structural
complexity, and validity from low-level to high-level
driving simulators. They extend from driving simulation
games for computers or smart phones to highly-
sophisticated driving simulators incorporating complex
motion platforms and high fidelity visualization systems.
ADAS development requires test environments with
different levels of details and complexity [7], e.g., Software-
in-the-Loop (SiL), Model-in-the-Loop (MiL), Hardware-in-
the-Loop (HiL), Driver-in-the-Loop (DiL), etc. For instance,
while a SiL environment can be used to test basic ADAS
concepts and control algorithms, a DiL environment can be
utilized to address the interaction between the driver and
vehicle and its systems.

The project TRAFFIS (German acronym for Test and
Training Environment for ADAS) is carried out at the
University of Paderborn with the target of supporting
industrial development, testing and training of modern
ADAS using a reconfigurable driving simulator [7]. Despite
the fact that the development of driving simulators is costly
and complex, available driving simulators in the market
nowadays are usually special purpose facilities. They are
individually developed by suppliers for a specific task.
These driving simulators cannot be reconfigured, or in the
best case, they have only some exchangeable components.
Only a driving simulator expert can modify the system
architecture or exchange one or more components. The
existing driving simulators do not allow the system operator
to change the system architecture or to exchange simulation
models without in-depth know-how of the driving simulator
system and its architecture. Therefore, the project TRAFFIS
aims to develop a comprehensive environment of
reconfigurable driving simulators to support ADAS
development. The project is funded by the European Union
“ERDF: European Regional Development Fund” and the
Ministry of Economy, Energy, Industry, Trade and Craft of
North Rhine Westphalia in Germany.

Three driving simulator variants with different
complexity levels and simulation fidelity have been built:
TRAFFIS-Light, TRAFFIS-Portable, and TRAFFIS-Full.
The TRAFFIS-Full variant was first developed for the
German Army in 1997 with the aim of performing safety
training for the military truck drivers. The Heinz Nixdorf
Institute of the University of Paderborn adopted this driving
simulator in 2009 in cooperation with Rheinmetall Defence
Electronics GmbH. This driving simulator incorporates a

complex motion platform, which consists of two dynamical
parts with 5 Degrees Of Freedom (DOF) to fully simulate
vehicle lateral and longitudinal accelerations. These two
parts are independent of each other and the system is fully
electrically actuated. The first dynamical part is the moving
base. It has 2 DOF and is used to simulate the lateral and
longitudinal acceleration of the simulated vehicle. It can
move in the lateral plane and at the same time, it has the
ability to tilt around the lateral axis with a maximum angle
of 13.5 degrees and around the longitudinal axis with a
maximum angle of 10 degrees. Four linear actuators are
used to control the movements in both directions. The
second dynamical part is the shaker system, which has 3
DOF to simulate the roll and pitch angular movements and
the heave translation of the simulated vehicle. The shaker is
driven by a three drive crank mechanism and by three
electrical motors. The driving simulator has an eight-
channel cylindrical projection system (powered by 8 LCD-
projectors), which covers a 240 degrees horizontal field of
view and three displays in order to visualize the simulated
rear mirror views. Moreover, the motion platform is
equipped with an innovative fixation system, which allows
the utilization of different driving cabins, e.g., truck cabin or
passenger vehicle cabin, so that drivers experience realistic
control cues. The driving simulator is operated by software
developed by dSPACE and the University of Paderborn.
The software consists of the simulation core, an operator
council GUI, a training scenario editing tool, vehicle model,
traffic model, and visualization and audio generation
components. Figure 1 shows the TRAFFIS-Full driving
simulator operated by the University of Paderborn.

Figure 1. TRAFFIS-Full driving simulator operated by the University
of Paderborn.

The TRAFFIS-Portable variant has a pneumatic motion
platform, which is composed of an actuated inverted
hexapod system. A simple motion controller regulates the
movements of the motion platform; it is based on virtual
vehicle position and orientation. This driving simulator has
a four-wall projection system. Figure 2 shows TRAFFIS-
Portable driving simulator at the University of Paderborn.

248

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. TRAFFIS-Portable driving simulator at the University of
Paderborn.

The TRAFFIS-Light variant is simple a PC-based
driving simulator with no motion platform. It has a
commercial wheel-transmission-pedals set and a racing seat
to provide low-cost, but reasonable, physical feedback and
control cues. Figure 3 shows TRAFFIS-Light driving
simulator at the University of Paderborn.

Figure 3. TRAFFIS-Light driving simulator at the University of
Paderborn.

These driving simulator variants, i.e., TRAFFIS-Full,
TRAFFIS-Portable, and TRAFFIS-Light, together with an
innovative configurability concept offer a flexible test and
training environment for various in-vehicle systems [7].
However, the focus is given mainly to the development of
ADAS. One particular objective of the project TRAFFIS is
the development of a modular simulation environment for
ADAS demonstration and training purposes. That is, a
simulation framework with flexible prototyping concepts is
required for easy and convenient ADAS demonstration and
training. As an extension to the work presented in [1], this
paper describes the structure of the whole simulation
environment utilized in a driving simulator within the
project TRAFFIS. Particular focus is given to the module
responsible for ADAS simulation and interactive
demonstration. Moreover, the main concepts of the
visualisation software are presented. That is, the topic of
ADAS simulation with driving simulators is addressed
thoroughly in this paper.

The architecture of the ADAS virtual prototyping
framework is discussed in more details. This framework
consists of several functional units enclosing simulation
models that were implemented with MATLAB/Simulink.
The models are arranged in a modular architecture and
developed, so that they communicate in a loosely coupled
fashion. The design of the architecture conforms to the
configurability concept discussed previously in this section.
Adaptation of models interfaces can be performed with
minimum effort. The design approach ensures maximum
flexibility and scalability for implementing any ADAS
virtual prototypes. The design of the functional units is
discussed along with input-output relationships of the
underlying models. All models are real-time capable, i.e.,
the simulation runs in real time using the Real-Time
Windows Target library from Mathworks.

The developed ADAS simulation framework was
integrated with the simulation environment of the
TRAFFIS-Light driving simulator, which represents the
simplest driving simulator variant within the project
TRAFFIS. Furthermore, virtual prototypes of two
innovative ADAS are presented to show and validate the
capability of the simulation environment and the ADAS
prototyping framework for demonstration and training.

This paper is structured as follows: Section II presents
related work in the field of ADAS simulation. Section III
discusses the modular driving simulation environment, with
which the developed ADAS framework was integrated.
Section IV presents the design approach of the developed
ADAS virtual prototyping framework along with the
concepts of its functional units and models. Section V
demonstrates two ADAS prototypes realised with the
developed framework and demonstrated using the
TRAFFIS-Light driving simulator. Section VI derives the
conclusion and summarizes the benefits of the presented
approach. Finally, Section VII presents the future work with
respect to interactive vehicle systems simulations.

II. RELATED WORK

According to literature review, most research work in
the field of ADAS simulation considers only the
development of specific components, like, e.g., sensor
models [8] [9], decision units [10] [11], signal or image
processing algorithms [12], etc. On the other hand, there are
several commercial solutions for specific ADAS simulation
and development. However, a common problem among
commercial solutions is the lake of sufficient modularity. In
other words, they provide solutions for individual ADAS
functionalities. Even if they can be parameterised flexibly to
some good extent, adding new ADAS logic and integrating
different ADAS functions are typical challenging issues
among these commercial solutions.

ASM software from dSPACE provides flexible models
for traffic and environment simulations to support the

249

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

development and testing of ADAS [13]. Developers can
simulate a test vehicle, complex networks, a large number of
fellow vehicles, and environmental objects, like, e.g.,
pedestrians and traffic signs. Moreover, ASM has a
graphical user interface to facilitate defining the simulation
scenarios and the necessary components.

DYNA4 software from TESIS is a flexible test
framework with software and hardware implementations of
environment sensors and some defined ADAS functions
[14]. It provides overview and automatic comparison of
simulation results for further analysis.

CarMaker software from IPG presents an open test
platform, which enables a wide spectrum of automotive
applications beside ADAS [15]. It offers sophisticated
driver model that performs complex driving manoeuvres.

SCANeR Studio software from OKTAL provides a
simulation environment to prototype, test and validate some
ADAS systems [16]. It includes several sensor models with
different levels of complexity. Its high quality real-time
visual rendering makes it suitable for camera-based ADAS
simulation.

Despite promising work in the research and commercial
fields, there is still no comprehensive ADAS simulation
platform that can be easily and fast extended to add or
integrate new ADAS functions. On contrary, the flexibility
and scalability of the developed architecture in this work
provide an extensive solution for ADAS simulation and
development. Due to its unique modular structure, it
presents no limits on the type and complexity of the
simulated ADAS functions. The following section describes
the developed driving simulation environment; the ADAS
simulation framework was integrated with this environment.

III. DRIVING SIMULATION ENVIRONMENT

The simulation environment of the TRAFFIS-Light
driving simulator consists of two main functional units: a
vehicle dynamics model and a traffic model. Figure 4
illustrates its structure and the direction of information flow.

Figure 4. Simulation environment of the PC-based simulator.

Each functional unit consists of real-time capable sub-
models implemented with MATLAB/Simulink. The

visualization software represents the main feedback cue of
the driving simulator. 3D models for the main vehicle, road,
and traffic participants are controlled through the
corresponding sub-models of the driving simulation
environment.

The visualization software was implemented with Unity
[17]; a development engine that provides rich and easy
functionalities for creating interactive 3D tools. Figure 5
presents sample screen shots for the 3D environment
developed with Unity.

Figure 5. Sample screen shots for the 3D environment developed
with Unity software.

Night and daylight drives can be performed and the driver
can be subjected to different weather conditions, like, e.g.,
rain, snow, fog, etc. Moreover real test tracks, city streets,
and highways can be generated, this is necessary for
realistic and engaging driver training. However, modeling
real world roads is a cumbersome and time-consuming task.
It involves a lot of manual modeling of details along the test
track, such as road signs, buildings, vegetation, or other
scenery details. Therefore, a method to automate the process
of generating models of real roads is utilized [18]. The
process uses data from a navigation database to define road
sections, from which geometries are generated. This is
based on official road construction regulations and
guidelines. These geometries are then integrated into models
of the surrounding landscape, which are generated from
Digital Elevation Models (DEM), aerial images, and Digital
Landscape Models (DLM) [18]. Moreover, a procedural rule
system for enriching digital terrain with authentic vegetation
is used [19]. This procedural approach defines planting
rules, which control the placement and distribution of plants

250

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in the scenery based on data from DLM and aerial images
[18]. Figure 6 shows a screen shot of a test track with
vegetation generation based on the described procedural rule
system, it is developed with Unity software [17].

Figure 6. Impression of a test track enriched with vegetation.

Furthermore, realistic sound effects that accompany the
3D models are also used to provide good acoustic feedback
cues to the driver. Hence, visual and acoustic information
from the ADAS functions are delivered to driver in
accordance with traffic situations.

Regarding the hardware and mechanical components, the
TRAFFIS-Light driving simulator incorporates a racing
wheel-transmission-pedals set from Logitech and a racing
seat from Speedmaster. That is, it is still fully interactive
with respect to steering, gears, acceleration, and brake
controls. This simulator and its simulation environment are
considered in this work. The next sub-sections discuss each
main functional unit of the simulation environment.

A. Vehicle dynamics model

Modeling realistic vehicle dynamics is essential for the
development of different in-vehicle systems. In particular,
the design of ADAS controllers relies primarily on the
underlying vehicle dynamics. The utilized vehicle dynamics
model produces the actual physical characteristics of the
main vehicle and allows for a total of 16 Degrees Of
Freedom (DOF) [20]. The so-called nonlinear double-track
model is used for modeling horizontal vehicle dynamics.
This model is responsible for 3 DOF: longitudinal and
lateral translational motions and a rotational motion around
the vertical direction of the road. Figure 7 shows the double-
track model, some of the parameters used in the differential
equations of this model are also depicted [20].

Fy
Fx

Fx
Fy

Fx

Fy
Fx

V

U Vg

β

ψ.

δL

δR

X

Y

Z

L1L2

E

α

α

Figure 7. Double-track model for horizontal vehicle dynamics.

In the double-track model, the longitudinal and lateral
velocities, as well as the yaw rate of the vehicle are
described by a set of differential equations using Newton's
law of motion and some basic geometrical relationships
[20].

The vertical dynamics of the vehicle depends principally
on suspension units at each wheel of the vehicle. The
chassis of the vehicle is connected to four wheels through
these suspension units. Each unit consists of a simple mass-
spring-damper model [21]. Springs and dampers represent
the four shock absorbers of the vehicle. The units are
constitutively connected through basic mathematical and
geometrical relationships [21]. Figure 8 illustrates a sketch
for the vertical dynamics of the vehicle.

Figure 8. Vertical vehicle model with simple suspension units.

Each wheel has a relative vertical translational motion
and a rotational motion around the wheel axis. In addition,
each of the front wheels has a relative rotational motion
around the vertical direction of the road. The vehicle
dynamics model receives control signals from the hardware
control set and calculates the resultant motions; these are
exported mainly to the visualization software to update
vehicle position and orientation on the screen.

The traffic model provides information about the road,
i.e., height and friction under each of the vehicle tires; these
in turn are used by the vehicle dynamics model to update the
calculations of the vehicle position, orientation and speed.
The vehicle dynamics model is composed of various sub-
models [21]. It implements the blocks shown in Figure 4 as
modular Simulink subsystems.

B. Traffic model

The traffic model is used to simulate the surrounding
vehicles and the road [22]. It simulates realistic behavior of
the traffic vehicles and their interactions, which is necessary
to give realistic feedback cue to the driver on the one hand,
and to efficiently test ADAS functions on the other hand.
The traffic model consists mainly of four sub-models: road
model, traffic vehicles models, driver model and a scenario
manager model. Figure 9 shows these sub-models and their
interconnections. The traffic model receives current
position, orientation and speed of the main vehicle from the
vehicle dynamics model; these are used mainly by the driver

Roll

Pitch

Fz Fz

Fz Fz

K K

K K

C C

CC

251

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

model to arrange for appropriate traffic flow without
collisions with the main vehicle.

Figure 9. Traffic model and its sub-models.

The road mathematical model is a Matlab function
implemented in Simulink, it is responsible for two tasks.
The first task is to perform the necessary transformations
from local coordinate system (s, t) to global coordinate
system (x, y) used by the visualization software. The
position of each object within the simulation environment is
defined relative to road local coordinate system. However,
the visualization software defines each object in 3D world
relative to a global coordinate system, which is fixed to the
ground. Both are right-hand coordinate systems.

The road consists simply of four straight segments and
four round corners. Each road segment has a mathematical
description that correlates the (s, t) and (x, y) coordinate
systems. Figure 10 shows the geometrical design of the
road, the origins of the local and global coordinate systems
are depicted together with a numerical example of a sample
input (s, t) point and the corresponding output (x, y) point
from the road model.

Figure 10. Road geometrical design.

A simple geometrical structure was designed to facilitate
the mathematics of coordinate transformation. This also
simplifies the implementation of the road 3D model. The
second task of the road model is to define the friction ‘f’ and
height ‘z’ of each point (s, t) of the road. The ‘z’ position is
required by the visualization software for appropriate

objects positioning within the 3D world. Both ‘f’ and ‘z’
values are required by the main vehicle model; they
contribute to the calculations of horizontal and vertical
vehicle dynamics, respectively.

Each traffic vehicle model consists of two sub-models:
longitudinal direction vehicle sub-model and lateral
direction vehicle sub-model. The longitudinal direction sub-
model receives the desired s-speed from the driver model,
discussed shortly. It calculates the actual s-speed with a
smooth transition, which results from a combination of a
simple second-order system and a P-controller. The actual s-
position of the traffic vehicle is then calculated by
integrating the actual s-speed. Similarly, the lateral direction
sub-model receives the desired t-position from the driver
model. It calculates the actual t-position with a smooth
transition, which results from a combination of a simple
second-order system and a P-controller. The idea of the
traffic vehicle model is to produce smooth and realistic, i.e.,
not abrupt, movements for the traffic vehicles [22]. This is
achieved through the transitional response of the second-
order system to unit step inputs of the driver model. The
model can be replicated arbitrarily according to the desired
number of traffic vehicles. Figure 11 shows a traffic vehicle
model and its main connections with the driver model. The
calculated (s, t) position of each traffic vehicle is exported
mainly to the visualization software to update the position
of the corresponding 3D models.

Figure 11. Traffic vehicle model.

The driver model is a Matlab function implemented in
Simulink. It arranges for smooth traffic flow by controlling
the speeds, and hence the positions, of all traffic vehicles.
The driver model calculates and adjusts the speeds
according to the current traffic situation. It receives the
current (s, t) position of each traffic vehicle as well as the
position and orientation of the main vehicle. Accordingly, it
monitors the distances between all the vehicles on the road
and overrides the default speed values of the traffic vehicles
in case of any possible collision. The traffic vehicles have to
follow the predetermined longitudinal speed and lateral
position given by the driver model.

The scenario manager model is used for moving the
traffic vehicles to compose a specific traffic situation, like,
e.g., a sudden vehicle incursion from right. It is a Matlab
function implemented in Simulink. The scenario manager
observes the position and speed of the main vehicle. It
moves the traffic vehicles according to a desired predefined

600 m

300 m

59 m

59 m 59 m

59 m

Road
model

(s, t)

(692.7, 0)

(x, y)

(657.2, 60)

50 m

50 m

y

x

t

s

3.0/*2

1

piS

S

1

1*2.0

1

S

S

1
S

1

252

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

scenario. According to the vehicle systems or functions
under test, arbitrarily further traffic scenarios can be added
to this model. The driver model receives the vehicle
positions and speeds determined by the scenario manager
model. According to the current traffic situation, the driver
model decides whether to execute the orders of the scenario
manager or to override them. The main target is it to achieve
the desired traffic scenario with smooth flow and without
vehicle collisions. Switching between the different scenarios
can be performed during simulation runtime.

IV. ADAS SIMULATION FRAMEWORK

The vehicle dynamics model and traffic model constitute
the central functional units of a simulation environment for a
simple driving simulator. However, a comprehensive
simulation framework is still required to conveniently
simulate different ADAS functionalities. Active safety in
general and ADAS in particular exhibit continuous
development. New ADAS functions are developed to
achieve safer traffic flow and more comfortable driving.
Moreover, the availability of a wide range of sensors and the
possibility to integrate different sources of information allow
the development of more new reliable ADAS. Hence, one
principal requirement for building a flexible ADAS test and
training environment is to maintain maximum modularity
and scalability. The developed ADAS virtual prototyping
framework is structured in a modular form that ensures its
scalability. That is, new ADAS prototypes can be added
almost without significant input-output interface
adjustments. Furthermore, different ADAS can be integrated
together to implement more advanced capabilities such as
autonomous driving.

Driving is a multitasking activity, where drivers have to
manage their attention between various actions and reactions
within a dynamic traffic environment [23]. The design
approach of the developed ADAS simulation framework is
based on an analogy between human driving behavior and
the functionality of ADAS. Figure 12 shows the structure of
the ADAS simulation framework. It consists of four
functional units or stages: user interface stage, recognition
stage, guidance stage and control stage. The latter three
functional units resemble the activity model the human
driver mainly follows while driving a vehicle. The
recognition stage represents the senses of human drivers for
recognizing road path and other traffic participants, i.e.,
current traffic situation. The guidance stage corresponds to
the reasoning capabilities of the human driver and
compromises made according to the recognized traffic
situation, i.e., decisions to accelerate, brake, steer or to make
a certain maneuver. The control stage simulates the actual
physical actions the human driver performs to carry out
appropriate decisions.

Related approaches for human driving models are
presented in [24] and [25]. The analogical comparison with
human drivers is valid under the assumption that any ADAS
can be represented as an assisting automatic driver that
warns the driver and/or takes over the driving tasks in critical
traffic situations.

Figure 12. ADAS simulation framework and its relation with the
driving simulation environment and HMI.

As shown in Figure 12, the ADAS virtual prototyping
framework is connected to the other functional units of the
driving simulation environment and the hardware controller
set along with the visualization software (HMI) of the
TRAFFIS-Light driving simulator. The ADAS simulation
framework receives inputs from the HMI to set the ADAS
states, i.e., activate, deactivate, or alter some parameters. It
eventually applies force feedback on the steering wheel
according to the driving situation and the type of the
activated ADAS. The ADAS simulation framework gets the
states of the main vehicle, i.e., position, orientation and
speed, which are calculated by the vehicle dynamics model.
In case of ADAS with active intervention, it overrides the
requests of the human driver and controls the states of the
vehicle. The ADAS simulation framework notifies the

253

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

traffic model regarding the activated ADAS, the traffic
model invokes in turn predefined traffic scenarios and
provides information about the traffic participants. The
following sub-sections discuss the design of each functional
unit of the ADAS simulation framework and the
fundamental input-output signals.

A. User interface stage

The user interface stage accounts for the interaction
between user, i.e., simulator driver, and the ADAS
simulation framework. It implements the logic required for
transitioning between different ADAS functional states,
like, e.g., on, off, standby, etc. Each ADAS user interface is
modeled separately as a Stateflow sub-model (a control
logic tool used to model event-driven systems within
Simulink). Figure 13 shows the structure of the user
interface stage and the main input-output signals.

Figure 13. ADAS user interface stage.

Each sub-model receives an enable/disable signal from
the buttons set, as well as the values of the acceleration and
brake pedals, gear selector and steering wheel of the
Logitech controller. Furthermore, it gets feedback signals
indicating the desired maneuvers of ADAS controllers,
namely, throttle angle, braking value and steering wheel
angle. These are compared with corresponding signals
indicating the intention of the driver, which is provided
through the HMI. If there is a difference, and taking ADAS
type into account, the corresponding sub-model decides if
ADAS should make a transition from one functional state to
another. For instance, while an autonomous driving function
will be deactivated if the driver moves the steering wheel
slightly; an emergency braking function will not be
deactivated for such an action.

As outputs, indications for ADAS functional states along
with the desired ADAS parameter values are exported to the
corresponding ADAS sub-routines within the guidance
stage, discussed in a later section.

This arrangement for the user interface stage conforms
to the modularity and scalability requirement of the ADAS
simulation framework. For modeling new ADAS,
corresponding Stateflow sub-models have to be

implemented separately within the user interface stage using
the same set of input-output interfaces.

B. Recognition stage

Driver assistance systems require surrounding
recognition capabilities to be able to perceive the traffic
environment. Any ADAS must incorporate one or more
sensors, like, e.g., GPS, cameras, radar, ultrasonic, laser,
lidar. Many variants already exist in market; moreover, a lot
of new sensor technologies and concepts are being
developed, like, e.g., sensor fusion [26]. Hence, there are a
lot of sensor models to be integrated in order to achieve a
comprehensive ADAS virtual prototyping framework. The
recognition stage is composed mainly of two units: a
detection unit containing different sensor models and a
relevance filter unit. Figure 14 shows the structure of the
recognition stage and the essential input-output signals.

Figure 14. ADAS recognition stage.

Information about road and traffic participants is
provided through the traffic model. Vehicle position,
orientation and speed, i.e., vehicle states, are provided by
the vehicle dynamics model. The detection unit is designed
in the form of a bowl that contains different sensor models,
like, e.g., radar sensor model, ultrasound sensor model, etc.
The main output from a sensor model is a list of objects
characterized with detection flags, i.e., detected objects list.
In addition, each sensor model provides the positions and
distances of detected object corners. Short-Range Radar
(SRR) and Long-Range Radar (LRR) sensor models have
been implemented within the detection unit. Both models
are based on the mathematical description or geometry of
detection area [27]. The long-range radar model is ideally
suited for detection distance longer than 30 meters; it can
typically detect objects 250 meters away. On the other hand,
the short-range radar model provides wider view and
detection distance below 30 meters. All parameter values
can be modified to alter the geometrical description of
detection area if necessary, i.e., the geometrical coverage
and detection range are adjustable, so that sensor
characteristics can be changed arbitrarily.

HMI
signals ADAS

states

ADAS
parameters

values

State 1 State 2

State N

ADAS user interface 1

State 1 State 2

State N

ADAS user interface N

.

.

.

User interface stage

Throttle
angle

Braking
value

Steering
Wheel
angle

Traffic vehicles
pos. & orient.

Vehicle
states

Target
object flag

Target
distance

.

.

.

Recognition stage

Detection unit

LRR sensor

Relevance
filter

Detected
objects list

Positions of
Objects corners

Traget
relative speed

Distances to
Objects corners

SRR sensor

Detected
objects list

Positions of
Objects corners

Distances to
Objects corners

Target
position

254

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Within the relevance filter unit, detected objects are
further filtered according to the position and orientation of
the main vehicle relative to the road. That is, the outputs of
all sensor models are forwarded to a relevance filter, which
generates a flag indicating the most relevant object to the
main vehicle, i.e., target object. Moreover, relative speed of
the target object and distance and position of its nearest
corner are calculated. Figure 15 illustrates the selection
functionality of the relevance filter unit.

Figure 15. Target object selection of the relevance filter unit.

The detection unit is extensible for additional sensor
models to be developed, whereas the functionality of the
relevance filter unit has not to be altered. However, the
relevance filter unit considers only sensors of the same
direction of detection and determines only one target object.
If other sensor models for other directions of detection are
to be implemented, like, e.g., right and left sides of the
vehicle, corresponding relevance filter units have to be
designed conforming to the structure of the recognition
stage and the same set of input-output signals.

C. Guidance stage

As mentioned previously while making analogy between
the developed ADAS simulation framework and the human
driving model, the guidance stage represents the
understanding of recognized traffic situations and the
decisions required for safe or comfortable driving. Figure 16
shows the structure of the guidance stage and the main
input-output signals.

Figure 16. ADAS guidance stage.

The guidance stage derives its central role from being in
the middle of a detection phase, i.e., recognition stage, and

an action phase, i.e., control stage. On the one hand, it
interprets the information provided by the recognition stage,
i.e., it evaluates the perceived traffic situations. On the other
hand, it determines the actions required to avert undesirable
traffic situations.

The guidance stage is consisted of three sub-functions:
Decision unit, speed determination and trajectory
generation. These sub-functions are discussed next.

 Decision unit

The logic of each ADAS is implemented within the
decision unit as a separate sub-routine. The decision unit
receives indication for the presence of a target object along
with its relative speed, distance to and position of its nearest
corner from the recognition stage. Figure 17 shows a flow
chart for the main function of the decision unit.

Figure 17. Transition logic between ADAS sub-routines.

The user interface stage implies which ADAS is to be
activated with which parameter values. The main function
of the decision unit loops through all the implemented
ADAS sub-routines. Only that of the chosen ADAS is
executed while other ADAS sub-routines are ignored. It
considers the traffic situation detected by the recognition
stage, ADAS states and parameter values exported by user
interface stage and vehicle states provided by vehicle
dynamics model. Accordingly, it determines desired
distance to a target object, set speed or desired lateral
position required to alter the path of the main vehicle. In
addition, it sends enable signals to corresponding vehicle
controllers, i.e., longitudinal and/or lateral controller,
discussed in a later section. The activated ADAS generates
warning signals required to trigger some display elements
within the visualization software.

Similar to the user interface stage and recognition stage,
the decision unit is extensible, so that any logic for new
ADAS prototypes can be simply added as new separate sub-
routines. The set of input-output signals is comprehensive
and suitable for almost all active and passive ADAS.

Main
vehicle

Not detected
Not relevant

Detected
relevant

Detected
Not relevant

255

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Speed determination

This function maintains constant time headway space to
a target object that eventually drives with lower speed than
that of the main vehicle [28]. Principally, the headway
distance varies with main vehicle speed; this allows for a
fixed margin in time for the ADAS to react to changes in the
speed of the target object. The speed determination function
is basically a distance controller that determines the speed
required to maintain the desired headway space, taking the
speed of the target object into account. It is based on the so-
called slide mode control [29]. It is a simple control method
that proves good stability especially, where the control
actions are discontinuous functions of system states and
inputs.

The speed determination function handles the orders of
the decision unit with respect to the longitudinal direction.
While the desired headway space is provided by the
decision unit, i.e., the sub-routine of an activated ADAS, a
speed command is generated to obtain this distance
accordingly. Figure 18 shows the difference between the
desired and actual headway distances.

Figure 18. Headway distance control and speed determination.

Moreover, the function selects the minimum of the
ADAS set speed, like, e.g., set speed of an adaptive cruise
control, and that required for following a target object while
preserving constant headway space. Finally, the desired
speed is forwarded to the longitudinal controller discussed
in a later section.

 Trajectory generation

 This function generates the trajectory required to guide
the vehicle through the road or to move it from one lateral
position to another. The function encloses the mathematical
description of the road, so that the generated trajectory
reconsiles with road path. The trajectory is generated in the
form of a moving point in front of the vehicle. The activated
ADAS within the decision unit determines the desired
lateral position required to adjust the vehicle path or to
avoid a collision for example. The function limits the rate of
lateral position change generated within the decision unit in
order to obtain reasonable and realistic lateral transitions.
Although it handles the orders of the decision unit mainly
with respect to the lateral direction, the function adds a
predetermined offset to the longitudinal component of
current vehicle position. Hence, the location of the moving
point is updated continuously and gradually to form the
desired trajectory, as shown in Figure 19.

Figure 19. Moving point for trajectory generation.

The desired trajectory represented as postion updates is
forwarded then to the lateral controller discussed in a later
section.

D. Control stage

A motion controller is required in order to control the
state of the vehicle in case of active ADAS intervention. As
shown in Figure 20, decoupled longitudinal and lateral
controllers were implemented to execute the orders of the
guidance stage and guide the vehicle accordingly.

Figure 20. ADAS control stage.

The control stage gets an enable signal from the
guidance stage that indicates which controller is to be
activated, and hence, moving the vehicle with a desired
speed in a desired direction. These controllers are discussed
next.

 Longitudinal controller

The longitudinal controller is a cascaded speed-
acceleration control loop system [30]. It is composed of two
successive controllers: speed controller and acceleration
controller. The speed controller is a Proportional-Integral
(PI) type that constitutes the outer loop of the longitudinal
controller. The speed command from the guidance stage is
compared with the actual speed of the vehicle to generate a
speed error. The speed controller generates an acceleration
value required to overcome the speed error. It is followed by
an anti-windup function to prevent output saturation [31].
The desired acceleration is forwarded then to the
acceleration controller.

The acceleration controller constitutes the inner loop of
the longitudinal controller. The desired acceleration is
compared with the actual acceleration of the vehicle to
generate an acceleration error. The acceleration controller
implements the inverse form of vehicle dynamics and
drivetrain of the vehicle model [32]. The acceleration

Desired
headway distance

Actual
headway distance

VmVt

Moving
point

Resulting
trajectory

256

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

controller is composed mainly of three sub-models, as
shown in Figure 21.

Figure 21. Sub-models of the acceleration controller.

The drive torque calculation sub-model generates the
wheels torque and engine torque required to achieve the
desired acceleration. It is based on the dynamics equations
of the vehicle model. The throttle control sub-model
generates the throttle angle according to the required engine
torque. It is based on the engine model within the vehicle
dynamics model. Similarly, the brake control sub-model
generates the braking value according to the required wheels
torque [33]. It is based on the braking model within the
vehicle model. The longitudinal controller exports the
throttle angle or braking value to the vehicle dynamics
model. For comfort driving and realistic vehicle behavior,
the throttle and brake control sub-models do not allow the
acceleration and deceleration to exceed predetermined
limits.

 Lateral controller

The lateral controller handles the path following control
problem, i.e., how to control the vehicle, so that it can
faithfully follow a prescribed path. As shown in Figure 20,
it is composed mainly of two sub-models. The path
following controller sub-model gets the trajectory generated
by the guidance stage in the form of a moving point, i.e., a
point directly in front of the vehicle that updates its location
on a certain path. It calculates the front axle force required
to let the vehicle adjust its orientation, and hence, follow the
moving point to pursue the desired trajectory. The path
following controller is based on the feedback linearization
control method [34]. The basic idea is to convert the closed-
loop control system including the plant, i.e., the horizontal
vehicle dynamics model in this case, into linear system
dynamics. The method was applied to the bicycle vehicle
model [20] and showed optimal robustness even at stability
borders, such as rapid steering maneuvers or driving at
relatively high speeds in sharp curves. According to the
horizontal vehicle dynamics, the steering calculation sub-
model determines the steering angle, which corresponds to
the desired lateral force. Moreover, it calculates the steering
wheel angle using the inversion of the steering model within
the vehicle dynamics model. Finally, the lateral controller
exports the steering wheel angle required to guide the
vehicle in the desired direction to the vehicle dynamics
model, and hence, following a certain trajectory.

The designed longitudinal and lateral controllers can
serve a variety of active ADAS functions, where a
spontaneous rapid maneuver or the whole driving task is

taken over by an automated intervention. The generality and
simplicity of the interface between the developed guidance
and control stages make it convenient to develop and plug
new ADAS functions. The following section presents the
logic of two innovative ADAS functions implemented in the
decision unit within the guidance stage.

V. ADAS PROTOTYPICAL IMPLEMENTATION

The developed ADAS virtual prototyping framework
can be used for simulating almost any ADAS function. The
recognition stage can be extended for additional sensor
models. The guidance stage is also extensible, so that any
logic for new ADAS functions can be simply added as new
separate sub-routines. The control stage covers the
longitudinal and lateral directions, and hence, it can be used
principally for any active ADAS.

To prove its usability in general and to show the benefits
of its modular structure in particular, prototypes for two new
ADAS were implemented: Emergency Brake Assist and
Emergency Steer Assist. These systems aim to help drivers
to avoid accidents by alerting them to a potential collision
and initiating automatic braking or steering maneuver. They
represent the state of the art in ADAS development [35].
Although they have different types of intervention, both
functions have been implemented without any special
interface adjustments due to the modularity and scalability
of the ADAS simulation framework described in this paper.

A. Emergency Brake Assist

Emergency Brake Assist (EBA) is an ADAS sub-routine
implemented within the decision unit of the guidance stage.
The system compensates for failures in the driver’s action
on the brake pedal. In general, drivers in emergency
situations tend to apply insufficient pressure or release
braking pressure too early. Figure 22 shows a flow chart for
a simplified version of the EBA sub-routine.

Figure 22. Simplified version of EBA logic within the decision unit.

257

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

According to recognized moving or standing objects in
front of the vehicle, EBA initiates automatic braking in the
case of a potential rear-end collision provided that the driver
has not responded to prior warnings signals [36].

The intention of the driver is observed through the user
interface stage, and hence, is embedded within the ADAS
states signal. The EBA sub-routine gets the distance and
relative speed of a target object existing in front of the
vehicle from the guidance stage. The critical braking
distance, i.e., safe distance, is calculated from the provided
inputs. This means, the safe distance is variable and depends
mainly on the relative speed of the target object. If the
actual distance to the target object gets close to the safe
distance within predefined limits, the function initiates
optical and acoustic warning signals to be handled by the
visualization software.

The optical warning has three levels: a green cautionary
signal if the target object ahead is close, a yellow alert
signal if the safe distance is reached and a red critical signal
if the actual distance is equal to or fell below the safe
distance. In the latter case, if the driver fails to take braking
or steering actions, i.e., when an emergency situation is fully
confirmed and the state of the target object flag does not
change, the EBA sub-routine enables the longitudinal
controller and sets the speed to zero. The sub-routine
overrides the acceleration request of the driver who is
effectively taken out of the loop. However, the driver still
can retain control anytime by taking an appropriate steering
action, and hence; changing the state of the target object
flag.

The function was tested and validated with many test
scenarios, where different values for the speed of the main
vehicle and traffic vehicle ahead were considered. Figure
23 illustrates the switching point between warnings and
active intervention distances of the EBA sub-routine

Figure 23. EBA intervention in case of no driver response.

B. Emergency Steer Assist

Emergency Steer Assist (ESA) is an ADAS function
implemented within the decision unit of the guidance stage.
The function supports the driver in the lateral driving task
[36]. According to recognized sudden right or left incursion
from a traffic object and if the driver has no time left for
braking, the function initiates rapid automatic steering
intervention in the case of predicted collision, as shown in
Figure 24. ESA calculates the optimal trajectory around the
appeared object and applies steering torque to help to follow
the trajectory and stabilize the vehicle. However, the driver

remains in control of the vehicle and can override the
system at all times

Figure 24. ESA intervention due to sudden road incursion.

Almost similar to the Emergency Brake Assist function,
the intention of the driver is observed through the user
interface stage. Figure 25 shows a flow chart for a
simplified version of the ESA sub-routine.

Figure 25. Simplified version of ESA logic within the decision unit.

If a target object appeared suddenly within the lane of
the vehicle, the function decides to steer the vehicle abruptly
in the opposite direction. This decision takes the form of a
desired (x, y) point, which is exported to the lateral
controller. The speed of the vehicle, the distance at which
the target object appeared and the intention of the driver are
factored in the decision of the function. The critical
incursion distance is variable and depends mainly on the

Critical incursion distance

Warnings level
distance

Emergency braking
distance

258

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

speed of the vehicle [36]. Figure 26 shows a screen shot
while ESA performs a rapid maneuver to avoid a pedestrian.

Figure 26. ESA performs a rapid maneuver to avoid a pedestrian.

The function was tested and validated with test
scenarios, where different values for the speed of the main
vehicle, as well as different distances to the incurring target
vehicle were considered.

VI. SUMMARY AND CONCLUSION

Advanced Driver Assistance Systems (ADAS) gain
importance due to their safety and comfort features. The
ADAS virtual prototyping framework described in this
paper offers a flexible solution to efficiently validate ADAS
concepts and easily demonstrate their benefits to customers.
The presented approach is based on an analogy between the
functionality of ADAS and the human driving model. This
resulted in a comprehensive architecture, which is
composed of modular and extensible functional units.

The developed ADAS virtual prototyping framework
was integrated with the real-time simulation environment of
the TRAFFIS-Light driving simulator. To validate the
approach and the capabilities of the developed ADAS
simulation framework, prototypical implementation of two
innovative ADAS functions was presented. Although both
functions show different types of intervention, no special
signal interface adjustments were necessary. The design of
the other functional units of the simulation environment,
i.e., vehicle dynamics model and traffic model, has not to be
adjusted for any future ADAS prototypes.

A group of test persons were involved in the behavioral
validation process of the driving simulator after integrating
the ADAS virtual prototyping framework [37]. In other
words, an assessment of how drivers react and perform with
respect to the implemented ADAS prototypes has been
made. The test persons have been subjected to near collision
situations, where different values for the speed of the main
vehicle and traffic vehicle ahead were considered. The

behavioral validation process showed how the test persons
could reasonably handle ADAS warnings and active
interventions with very good learning curves. Effectiveness,
proper operation and drivers’ acceptance of the
implemented ADAS were evaluated.

The presented approach added new capabilities to the
PC-based driving simulator for assessing ADAS algorithms
and performing drivers training by means of a driving
simulation environment. In general, the modularity and
scalability requirement of an ADAS training environment
for the project TRAFFIS was fulfilled.

VII. FUTURE WORK

Driving simulators are built to address several aspects in
the automotive and transportation fields. They are used for
the development of in-vehicle systems, analysis of driving
strategies, as well as for demonstration and training
purposes.

The majority of available simulators are single-user
stand-alone systems. However, as vehicle systems are
becoming more complex, driving simulation must keep up
in terms of scalability and flexibility. For instance, the
significance of C2X-Communication systems has grown in
the recent years [38]. These systems allow the vehicles to
communicate with other each other, as well as with road
infrastructure [39]. Similarly, cooperative advanced driver
assistance systems, i.e., interconnecting driver assistance
systems of different vehicles on the road, are gaining a lot of
attention [40] [41]. These systems benefit from the new
communication technologies and the utilization of GPS
receivers in vehicles. They add new dimensions of safety,
comfort, and optimized traffic flow.

Testing cooperative vehicle systems is even harder than
testing traditional stand-alone driver support systems [42].
There are more vehicles and interaction possibilities with
each other and road infrastructure. As a potent testing
platform, future driving simulation should allow realistic
cooperation between different interactive simulation
entities, which represent their counterparts in real traffic
situations.

Networked driving simulation systems can facilitate this
challenge [43]. They allow developers to embed the logic of
future cooperative vehicle systems into realistic and
interactive traffic scenarios without the effort and costs of
real test-drive [44]. Moreover, multi-user driving simulators
that communicate with each other can demonstrate realistic
effects of driver-driver interaction in more complex
simulation scenarios. This is the major motive for extending
the developed simulation framework to allow for the
simulation of multi-user interactive driving simulation.

The development of such a networked driving
simulation system includes many challenging tasks in order
to provide a reliable and realistic simulation environment.
For example, it requires utilization of the so-called global
time management [45] [46]. That is, synchronizing the local
time and event processing of each individual driving

259

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

simulator in order to guarantee simulation reliability and test
accuracy [47].

The next steps aim to develop a concept for a
synchronization mechanism for networked driving
simulators. This will allow the developed simulation
framework to be utilized in a distributed driving simulation
system. The synchronization mechanism should facilitate
coordination among different participating simulators,
which interact within one traffic simulation scenario. In
particular, it should guarantee performance and efficiency of
the driving simulation system. Finally, the new design
approach has to ensure a modular structure that allows easy
integration and exchange of driving simulators in a network.

REFERENCES
[1] K. Abdelgawad, M. Abdelkarim, B. Hassan, M. Grafe, and I.

Gräßler, “A Scalable Framework for Advanced Driver
Assistance Systems Simulation,” In Proceedings of SIMUL
2014, the Sixth International Conference on Advances in
System Simulation (IARIA), Nice, France, October 2014.

[2] T. Hummel, M. Kühn, J. Bende, and A. Lang, “Advanced
Driver Assistance Systems – An investigation of their
potential safety benefits based on an analysis of insurance
claims in Germany,” German Insurance Association - Insurers
Accident Research, Research Report FS 03, Berlin, 2011.

[3] J. Golias, G. Yannis, and C. Antoniou, “Classification of
driver assistance systems according to their impact on road
safety and traffic efficiency,” In Transport Reviews - Journal
of Intelligent Transportation Systems, Taylor & Francis
Group, vol. 22, 2002, pp. 179-196.

[4] P. Hsiao, K. Hung, S. Huang, W. Kao, and C. Hsu, “An
embedded lane departure warning system,” IEEE 15th
International Symposium on Consumer Electronics (ISCE),
Singapore, June 2011, pp. 162-165, ISSN: 0747-668X, ISBN:
978-1-61284-843-3.

[5] R. Zheng, K. Nakano, S. Yamabe, M. Aki, and H. Nakamura,
“Study on Emergency-Avoidance Braking for the Automatic
Platooning of Trucks,” IEEE Transactions on Intelligent
Transportation Systems, China, August 2014, Vol. 15, No. 4,
pp. 1748-1757, DOI: 10.1109/TITS.2014.2307160, ISSN:
1524-9050.

[6] F. Colditz, L. Dragon, R. Faul, D. Meljnikov, and V. Schill,
“Use of Driving Simulators within Car Development,” In
Proceedings of Driving Simulation Conference, North
America, Iowa City, USA, September 2007.

[7] B. Hassan and J. Gausemeier, “Concept of a Reconfigurable
Driving Simulator for Testing and Training of Advanced
Driver Assistance Systems,” IEEE Transl. ISAM 2013 China,
vol. 2, July 2013, pp. 337-339.

[8] S. Pechberti, D. Gruyer, and V. Vigneron, “Radar simulation
in SiVIC platform for transportation issues. Antenna and
propagation channel modelling,” IEEE Transactions on
Intelligent Transportation Systems, Alaska, USA, September
2012, pp. 469 - 474, DOI: 10.1109/ITSC.2012.6338631,
ISSN: 2153-0009.

[9] H. Chiang, Y. Chen, B. Wu, and T. Lee, “Embedded Driver-
Assistance System Using Multiple Sensors for Safe
Overtaking Maneuver,” IEEE Systems Journal, November
2012, Vol. 8, Issue 3, pp. 681 - 698, DOI:
10.1109/JSYST.2012.2212636, ISSN: 1932-8184.

[10] L. Yong and L. Xia, “Safety Driving Decision-Making of the
AVCSS,” IEEE Transactions on Intelligent Computation
Technology and Automation, Hunan, China, October 2008,
pp. 477 - 481, DOI: 10.1109/ICICTA.2008.171, ISBN: 978-0-
7695-3357-5.

[11] M. Horwick and K. Siedersberger, “Strategy and architecture
of a safety concept for fully automatic and autonomous
driving assistance systems,” IEEE Intelligent Vehicles
Symposium, California, USA, June 2010, pp. 955 - 960, DOI:
10.1109/IVS.2010.5548115, ISBN: 1931-0587.

[12] L. Genxian, W. Dongsheng, W. Haixia, and L. Zhenyu,
“Image Processing Memory Optimization for Multi-camera
Based Advanced Driver Assistance Systems,” IEEE
Transactions on Measuring Technology and Mechatronics
Automation, Zhangjiajie, China, January 2014, pp. 313 - 318,
DOI: 10.1109/ICMTMA.2014.78, ISBN: 978-1-4799-3434-8.

[13] dSPACE AutomationDesk, Real-Time Kernel (RTK) Real-
Time Kernel (RTK) on Models (ASM), DS2211, dSPACE
Catalog, dSPACE GmbH, 2009.

[14] D. Block, S. Heeren, S. Kühnel, A. Leschke, and B. Rumpe,
“Simulations on Consumer Tests: A Perspective for Driver
Assistance Systems,” In Proceedings of Engineering
Simulations for Cyber-Physical Systems Conference
(ES4CPS), Dresden, Germany, March 2014.

[15] S. Ziegler and R. Höpler, “Extending the IPG CarMaker by
FMI Compliant Units,” In Proceedings of 8th International
Modelica Conference, Dresden, Germany, March 2011.

[16] B. Lacroix, P. Mathieu, and A. Kemeny, “A Normative
Model for Behavioral Differentiation,” In Proceedings of the
IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, Sydney, Australia, 2008, pp. 96-99.

[17] A. Gloria, F. Bellotti, R. Berta, and E. Lavagnino, “Serious
Games for Education and Training,” International Journal of
Serious Games, Vol. 1, No. 1, 2014, pp. 100-105, ISSN:
2384-8766.

[18] L. Rui, D. Burschka, and G. Hirzinger, “Real time landscape
modelling and visualization,” IEEE International Geoscience
and Remote Sensing Symposium, Barcelona, Spain, July
2007, pp. 1820-1823, DOI: 10.1109/IGARSS.2007.4423175,
ISBN: 978-1-4244-1211-2.

[19] J. Berssenbrügge, J. Stöcklein, A. Andre and I. Gräßler,
“Procedural Generation of Vegetation for a Virtual Test
Track,” In Proceedings of the International Design
Engineering Technical Conferences & Computers and
Information in Engineering Conference ASME 2014, Buffalo,
NY, USA, August 2014.

[20] H. True, “The dynamics of vehicles on road and on tracks,”
Swets & Zeitlinger B.V., Lisse, Netherlands, vol. 37, April
2003, pp. 96–105.

[21] R. N. Jazar, “Vehicle dynamics: Theory and application,”
Springer Science+Business Media, LCC, New York, USA,
2008, pp. 37-279, e-ISBN 978-0-387-74244-1.

[22] J. Barcelo, “Fundamental of traffic simulation,” Springer
Science+Business Media, LCC, New York, USA, 2008, pp.
15-63, ISSN: 0884-8289, e-ISBN: 978-1-4419-6142-6.

[23] C. Macadam, “Understanding and modeling the human
driver,” Journal of Vehicle System Dynamics 49, vol. 40, nos.
1-3, 2003, pp. 101-134.

[24] D. T. Mcruer, R. W. Allen, D. H. Weir, and R. H. Klein,
“New results in driver steering control models,” Journal of
Human Factors and Ergonomics Society, 19(4), SAGE
Publications, California, USA, August 1977, pp. 381-397,
DOI: 10.1177/001872087701900406.

[25] G. A. Bekey, G. O. Burnham, and J. Seo, “Control Theoretic
Models of Human Drivers in Car Following,” Journal of
Human Factors and Ergonomics Society, 19(4), SAGE
Publications, California, USA, August 1977, pp. 399-413,
DOI: 10.1177/001872087701900406.

[26] R. Altendorfer, S. Wirkert, and S. Heinrichs-Bartscher,
“Sensor Fusion as an Enabling Technology for Safety-critical
Driver Assistance Systems,” SAE International Journal of
Passenger Cars - Electronic and Electrical Systems, October

260

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2010, SAE International, USA, 2010, pp. 183-192, ISSN
0148-7191.

[27] T. Akenine-Möller, “Fast 3D triangle-box overlap testing,”
Journal of Graphics Tools archive, Vol. 6, No. 2, September
2001, pp. 29-33.

[28] N. Benalie, W. Pananurak, S. Thanok, and M. Parnichkun
“Improvement of Adaptive Cruise Control System based on
Speed Characteristics and Time Headway,” IEEE/RSJ
International Conference on Intelligent Robots and Systems,
Missouri, USA, October 2009, pp. 2403-2408.

[29] J. E. Slotine and W. Li, “Applied nonlinear control,” Prentice
Hall Englewood Cliffs, New Jersey, USA, ISBN: 0-13-
040890-5, 1991, pp. 276–307.

[30] V. V. Sivaji and M. Sailaja, “Adaptive Cruise Control
Systems for Vehicle Modeling Using Stop and Go
Manoeuvres,” International Journal of Engineering Research
and Applications (IJERA), ISSN: 2248-9622, vol. 3, Issue 4,
July 2013, pp.2453-2456.

[31] C. Poussot-Vassala, O. Senameb, L. Dugardb, and S. M.
Savaresic, “Anti-windup Schemes for Proportional Integral
and Proportional Resonant Controller,” In Proceedings of
Power Electronics Conference, Roorkee, India, June 2010.

[32] K. Yi, Y. Cho, S. Lee, J. Lee, and N. Ryoo, “A Throttle/Brake
Control Law for Vehicle Intelligent Cruise Control,” In
Proceedings of Seoul 2000 FISITA World Automotive
Congress, Seoul, Korea, June 2000.

[33] C. Poussot-Vassala, O. Senameb, L. Dugardb, and S. M.
Savaresic, “Vehicle Dynamic Stability Improvements
Through Gain-Scheduled Steering and Braking Control,”
Journal of Vehicle System Dynamics 49, vol. 00, no. 00,
January 2009, pp. 1597-1621, DOI:
10.1080/00423114.2010.527995.

[34] M. Abdelkarim, T. Butz, and A. Moutchiho, “A nonlinear
path following controller for lateral vehicle guidance - Ein
nichtlinearer Bahnfolgeregler zur Fahrzeugquerführung,”
Fahrermodellierung in Wissenschaft und Wirtschaft,
Fortschritt-Berichte VDI, vol. 22, no. 35, VDI Verlag,
Düsseldorf, Germany, June 2013, pp. 135-145, ISBN: 978-3-
18-303522-9.

[35] A. Eckert, B. Hartmann, M. Sevenich, and P. Rieth,
“Emergency Steer & Brake Assist – A Systematic Approach
for System Integration of two Complementary Driver
Assistance Systems,” Continental AG. Germany: Paper Nr.
11-0111.

[36] C. Keller, T. Dang, H. Fritz , A. Joos, and C. Rabe, “Active
Pedestrian Safety by Automatic Braking and Evasive
Steering,” IEEE Transactions on Intelligent Transportation
Systems, December 2011, Vol. 12, Issue. 4, pp. 1292 - 1304,
DOI: 10.1109/TITS.2011.2158424, ISSN: 1524-9050.

[37] Z. Mao, X. Yan, H. Zhang, and C. Wu, “Driving Simulator
Validation for Drivers' Speed Behavior,” In Proceedings of
the Second International Conference on Transportation
Engineering, Chengdu, China, July 25-27, 2009, pp. 2887-
2892, ISBN: 9780784410394.

[38] H. Schweppe, Y. Roudier, B. Weyl, L. Apvrille, and D.
Scheuermann, “Car2X Communication: Securing the Last
Meter - A Cost-Effective Approach for Ensuring Trust in
Car2X Applications Using In-Vehicle Symmetric
Cryptography,” In Proceedings of IEEE Vehicular
Technology Conference, San Francisco, USA, Septemper

2011, pp. 1-5, DOI: 10.1109/VETECF.2011.6093081, ISSN:
1090-3038.

[39] S. Boskovich, K. Boriboonsomsin, and M. Barth, “A
developmental framework towards dynamic incident
rerouting using vehicle-to-vehicle communication and multi-
agent systems,” In Proceedings of the 13th International IEEE
Conference on Intelligent Transportation Systems, Funchal,
Portugal, September 2010, pp. 789-794, DOI:
10.1109/ITSC.2010.5625251, ISSN: 2153-0009.

[40] Y. Takatori and H. Yashima, “Performance evaluation of
vehicle cooperative driving assistance systems that uses
forward obstruction detecting sensors and inver-vehicle
communication,” In Proceedings of IEEE 9th International
Conference on Intelligent Transport Systems
Telecommunications, Lille, France, October 2009, pp. 622 -
627, DOI: 10.1109/ITST.2009.5399280, ISBN: 978-1-4244-
5346-7.

[41] J. Fischer, A. Menon, A. Gorjestani, C. Shankwitz, and M.
Donath, “Range sensor evaluation for use in Cooperative
Intersection Collision Avoidance Systems,” In Proceedings of
IEEE Vehicular Networking Conference, Tokyo, Japan,
October 2009, pp. 1-8, DOI: 10.1109/VNC.2009.5416389,
ISBN: 978-1-4244-5685-7.

[42] Q. Wang and C. Phillips, “Cooperative collision avoidance
for multi-vehicle systems using reinforcement learning,” In
Proceedings of IEEE 18th International Conference on
Methods and Models in Automation and Robotics,
Miedzyzdroje, Poland, August 2013, pp. 98-102, DOI:
10.1109/MMAR.2013.6669888, ISBN: 978-1-4673-5506-3.

[43] T. Bando and T. Shibata, “Networked driving simulator based
on SIGVerse and lane-change analysis according to frequency
of driving,” In Proceedings of 15th International IEEE
Conference on Intelligent Transportation Systems, Alaska,
USA, September 2012, pp. 1608-1613, DOI:
10.1109/ITSC.2012.6338804, ISSN: 2153-0009.

[44] Y. Zhao, A. Wagh, K. Hulme, C. Qiao, and W. Sadek,
“Integrated Traffic-Driving-Networking Simulator: A Unique
R&D Tool for Connected Vehicles,” In Proceedings of
International Conference on Connected Vehicles and Expo,
Beijing, China, December 2012, pp. 203-204, DOI:
10.1109/ICCVE.2012.45, ISBN: 978-1-4673-4705-1.

[45] I. Tacic and M. Fujimoto, “Synchronized data distribution
management in distributed simulations,” In Proceedings of the
12th IEEE Workshop on Parallel and Distributed Simulation,
Banff, Canada, May 1998, pp. 108-115, DOI:
10.1109/PADS.1998.685276, ISBN: 0-8186-8457-7.

[46] P. Galluscio, J. Douglass, A. Malloy, and A. Turner, “A
comparison of two methods for advancing time in parallel
discrete event simulation,” In Proceedings of the IEEE
Simulation Conference, Arlington, USA, December 1995, pp.
650-657, DOI: 10.1109/WSC.1995.478840, ISBN: 0-
78033018-8.

[47] W. Xuehui , Z. Lei, X. Nong, and T. Yuhua, “Time
Management in Parallel Discrete Event Simulation,” In
Proceedings of the IEEE International Forum on Information
Technology and Applications, Chengdu, China, May 2009,
pp. 209-212, DOI: 10.1109/IFITA.2009.96, ISBN: 978-0-
7695-3600-2.

261

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

HiPAS: High Performance Adaptive Schema Migration

Development and Evaluation of Self-Adaptive Software for Database Migrations

Hendrik Müller, Andreas Prusch, and Steffan Agel

Pasolfora GmbH

An der Leiten 37, 91177 Thalmässing, Germany

{hendrik.mueller|andreas.prusch|steffan.agel}@pasolfora.com

Abstract – HiPAS stands for “High Performance Adaptive

Schema Migration” and is a self-adaptive software system,

aimed at reducing downtime during offline database

migrations by automatically adapting to available system

resources. The process of a database migration can be

shortened by parallelizing the data transfer up to a certain

degree. In this article, we describe how HiPAS was enabled to

continuously adapt the parallelization degree according to its

operational environment in order to avoid both overloading

and idle resources. To automate the developed method, we

implemented HiPAS following decisions taken within the

dimensions of design space for self-adaptive software. Based on

a centralized control pattern in distributed systems, HiPAS

uses a feedback loop to enable adaptions. Hence, according to

monitored system information, the current utilization is

adjusted whenever necessity is assumed. To enable a flexible

adaption, the total amount of migration data is partitioned into

equal sized transfer jobs, which are distributed across

available instances and networks. HiPAS is invoked on

database layer and controlled by a temporarily created

autonomous database user. Therefore, migration metadata are

stored inside tables and highly integrated with the actual

migration data. HiPAS was designed and evaluated iteratively

following the IS research framework and reveals significant

downtime reduction potential compared to non-adaptive

migration approaches like Oracle “Data Pump”. Our results

serve as a contribution for all practitioners, who seek to

perform database migrations within a challenging timeframe,

as well as researchers on self-adaptive software and their

various fields of application.

Keywords-Adaptability; Anticipation; Self-Adaptive Software;

Database Migration; Parallelization.

I. INTRODUCTION

The rapid technical developments inside changing
markets, as well as the need for efficiency enhancements,
mainly driven by cost pressure, require an occasional transfer
of running information systems into a new environment,
which fulfills the operational requirements in a more suitable
way. This process is referred to as software migration [1], [2]
and meanwhile the software’s availability can be limited
depending on the chosen migration method. Regarding this,
basically two approaches can be differentiated:

 online Migration: continuous availability

 offline Migration: interrupted availability

In some critical environments, a downtime is not
acceptable, thus online migrations need to be performed.
This article deals with the variety of cases, which do not
require a costly and complex online migration and a planned
downtime is tenable. In that case, the main concern is to keep
the downtime as short as possible since the duration of
unavailability may result in opportunity costs. In particular,
we target migrations applying the “big-bang” strategy [3],
thus data is fully migrated at once in contrast to incremental
migrations. Since the legacy system (source system) is shut
down during the data transfer, starting the target system,
referred to as cut-over [4], cannot be performed before all
required data has been transferred to the target system’s
database. The length of downtime depends on the migration
approach taken. For database migrations, different system
layers can be involved determining the performance and
granularity of data selection (see Section II). We investigated
the applicability of adaptive capabilities for database
migration software in order to reduce the necessary
downtime by parallelizing data transfer up to an optimal
parallelization degree, which will be continuously adapted to
the system’s load capacity. Prior tests indicated that
overloading the target or source systems resources leads to a
temporary stagnation of the whole migration progress,
whereas a low utilization wastes available resources, thus
underachieving existing downtime reduction potential. In
this manner, we contribute to the field of self-adaptive
software and support the statement by de Lemos et al. that
“self-adaption has become an important research topic in
many diverse application areas” and “software systems must
become more versatile, flexible, dependable […] and self-
optimizing by adapting to changes that may occur in their
operational contexts, environments and system
requirements” [5].

Moreover, the developed approach “HiPAS” (High
Performance Adaptive Schema Migration [1]) is intended to
provide dependability and interruptibility, since migration
software should be able to identify where to resume an
interrupted migration process instead of starting from scratch
avoiding the necessity of rescheduling a planned downtime.

Further technically conditioned features will be added in
Section III as consequences of the preliminary
considerations. Section IV summarizes HiPAS´ architecture
by means of introducing adaptability challenges of the
subsequent described migration process (Section V). The
adaptive capabilities are outlined in Sections VI and VII.

262

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Finally, in Section VIII, we evaluate HiPAS, which refers to
both the designed migration method and the migration
software, currently implemented in Oracle PL/SQL syntax
comprising 8,540 lines of source code.

II. PRESENT MIGRATION APPROACHES

As introduced previously, migration approaches can be
differentiated regarding the availability of the migrated
systems into online and offline migrations. For stated
reasons, we focus on offline migrations, which can be further
classified concerning their own characteristics and their
applicability for certain database characteristics:

 invocation layer

 support for change of platform

 support for change of endianness

 support for change of character set

 downtime proportionality
To obtain an overview of present migration approaches,

we classified existing available methods using the example
of Oracle databases and the above enumerated
characteristics:

TABLE I. CLASSIFICATION OF PRESENT MIGRATION APPROACHES.

Migration Method

Invocation

Layer/

Granularity

Downtime

Proportionality

P
la

tf
o

r
m

C
h

a
n

g
e

E
n

d
ia

n
n

e
ss

C
h

a
n

g
e

C
h

a
ra

c
te

r
 S

e
t

C
h

a
n

g
e

Storage Replication Storage/

Storage

negligible no no no

Transportable

Database

OS/

Database

Database Size yes no no

Transportable

Tablespaces

OS/

Tablespace

Tablespace Size yes no no

Cross Platform

Transportable

Tablespace

OS/

Tablespace

Tablespace Size yes yes no

Transportable

Tablespaces using

Cross Platform

Incremental

Backups

OS/

Tablespace

Data Alteration

Rate

yes no no

Oracle-to-Oracle

(O2O)

OS/

Schema

Amount of

Migration Data

yes yes no

Datapump Database/

Value

Amount of

Migration Data

yes yes yes

Export/Import Database/

Value

Amount of

Migration Data

yes yes yes

As shown in Table I, the divergence of the source and

target database in terms of platform, endianness and
character set technically limits the available migration
methods.

A critical decision criterion for the remaining
contemplable methods is the demand for downtime shortness
resulting in lower opportunity costs during the unavailability
of the database and all relying applications. The fact that a

high throughput for data transfer was achieved as yet by
eliminating upper layers and protocols, leads to the
conflicting goals of flexibility and performance when
selecting a migration method. The lower a layer a migration
is invoked on, the more flexibility is lost, since changes of
database characteristics might not be supported and the
possible granularity for migration data selection decreases.
Finally, downtime proportionality refers to the entity, which
the downtime length depends on; this can be the amount of
migration data or the data alteration rate if incremental
methods are used.

When designing HiPAS, we pursued the goal of
achieving a short downtime and at the same time providing
the flexibility of migrating between divergent databases and
selecting the data as granular as possible. This was achieved
by invoking the migration on database layer without ever
leaving this layer during the whole migration process and by
parallelizing the data transfer adaptively in respect of the
system’s resources. Therefore, we add “adaptability” as a
further decision criterion for migration software capabilities.

III. PRELIMINARY CONSIDERATIONS

The performance of migration software highly depends
on how well its design fits to the operating environment and
the intended range of functions. Previous system and data
analyses are necessary to conclude with a migration design,
which has been aligned to the findings in multiple iterations
following the guidelines of design science in information
system research [6]. Figure 1 shows how the designed
artefact HiPAS is related to its environment and
knowledgebase base inside the information systems research
framework.

People
Usability

Organizations
License Costs

Platform Change
Downtime Shortness

Technology
Compatibility

Reliability
Interruptibility

No temporary storage

Developed Artefact
HiPAS

Utilizing Adaption for
Database Migrations

Evaluation
Multiple Test Runs

Varying Storage Systems
Varying Networks

Foundations
Law of Adaption
Utilization Law

Little´s Law
Implementation

Methodologies
Data Analyses

KPI based Measures

Environment IS Research Knowledge Base

Assess Refine

Application in the
Environment

Additions to the
Knowledgebase

B
u

si
n

es
s

N
ee

d
s

A
p

p
lic

ab
le

 K
n

o
w

le
d

ge

Figure 1. HiPAS as an IS Research Artefact (Adapted from Information

Systems Research Framework [6]).

HiPAS was intended to be built upon findings of
preliminary analyses (Knowledgebase) described in this
section, as well as business requirements (Environment) and
from then on has been improved continuously, based on
evaluation runs performed in a variety of different
environments provided generously by customers.

263

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Enterprise Data Structures

When moving existing data files to the target system, as
migration approaches invoked on storage and database layer
do (see Section II), the valuable downtime is partly spent
migrating unnecessary or useless data. The allocated size of a
data file implies unused space and indexes. To gain an
overview of typical storage occupancies, we analyzed 41
SAP systems productively running at a German public
authority by querying the allocated disk space, the used disk
space and the space used for indexes with a result shown in
Figure 2.

Figure 2. Average Structure of Allocated Data.

For these 41 SAP Systems, we identified an overall
amount of 93.08 TB allocated data. From this amount, about
28 TB (30 %) represented allocated space, which was not yet
filled with data. From the used space of 65 TB, about 22 TB
(24% of the overall amount) were filled with indexes. The
remaining 43 TB (46% of the overall amount) represent the
actual relevant data, which necessarily needs to be
transferred into the target database within a migration.
Indexes can be created at the target system and do not have
to be transferred, thus saving network bandwidth. Depending
on the layer the migration is invoked on, unused but
allocated data can be excluded as well.

In this case, if all of the analyzed SAP systems needed to
be migrated, migration tools not supporting data selection
would utilize all involved system resources for transferring
data, of which approximately 54% is useless on the target
system. Invoking a migration method on software layer,
enables both excluding useless data autonomously and
implementing self-adaptability.

B. Endianness

When performing a database migration, the byte order in
which the source and target system store bytes into memory
needs to be considered. This byte order is referred to as
endianness and data is stored into data files accordingly, so
the endianness can affect the amount of available migration
methods and the overall needed downtime.

A major part of migration demanding customers served
by the authors of this paper currently initiate migration
projects due to licensing and maintenance costs, this amount
is strongly influenced by an increasing number of platform
migrations from Solaris to Linux, requiring subsequent
migrations on upper layers such as the databases tier. The
latest International Data Corporation (IDC) report on
worldwide server market revenues substantiates this

observation by stating that Linux server revenue raised from
17% in Q4 2010 to 23.2% in Q2 2013 compared to Unix
decreasing from 25.6% down to 15.1% [7]. The Unix-based
Solaris operates on processors following Oracle´s SPARC
architecture, whereas Linux distributions can be used on
systems based on Intel processors. When migrating from
Solaris to Linux, the endianness changes accordingly from
big endian to little endian, so the data files cannot simply be
moved without converting them before or after the transfer
as shown in Figure 3.

01010001 01101110 11110101 10100000 1010111001100011

10100000 11110101 01101110 01010001 0110001110101110

Source
System

Target
System

Big Endian Byte Order

Little Endian Byte Order
Figure 3. Change of Endianness between Source and Target System.

Alternatively to converting data files, the database
migration can be invoked on a layer, which supports saving
the data into new files on the target system, such as export-
import-tools and HiPAS do. In this case, migration
performance can be enhanced by means of adaptive
capabilities.

C. Storage I/O Controller

As a consequence of the requirement for downtimes as
short as possible, a utilization degree of the underlying
storage systems has to be achieved, which enables short
response times. The overall amount of requests inside a
system (N) equals the product of arrival rate (a) and average
response time (R) as expressed by Little´s Law [8]:

 (1)

In addition the Utilization Law [9] defines the utilization
(U) of the I/O controller as the product of arrival rate and
average processing time (RS):

 (2)

By combining these relations, it becomes clear that the
response time depends on the I/O controller’s utilization as
described within the following formula [10]:

 (3)

264

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The relation shows that the response time does not
change linearly to the utilization. At higher utilizations, the
response time grows exponentially as clarified in Figure 4.

R
es

p
on

se
 T

im
e

70% 100%0%

Figure 4. Relation of Utilization and Response Time.

By adapting to the source and target system resources,
HiPAS continuously changes the utilization of the I/O
controller in order to achieve an optimal relation of response
time and utilization supporting the shortest possible overall
duration. The storage manufacturer EMC generally describes
an average utilization of 70% as optimal [10].

IV. HIPAS ARCHITECTURE

Following the goals introduced in Section I, we designed
the HiPAS migration method as describes in the following.

A. Everything is a Tuple

When performing an automated and controllable
migration, a number of interim results arise, e.g., during the
analysis of source data. Keeping these information, as well
as logging and status information is necessary for the
administrator to manage and verify the migration and for the
software itself to handle parallel job executions
autonomously. The necessity for saving and querying
migration metadata leads to HiPAS’s design paradigm of not
leaving the database layer during the whole migration
process. Interim results such as generated DDL and DML
Statements for later execution are represented by tuples of
tables inside a temporary migration schema enjoying
advantages of the databases transactional control
mechanisms. The paradigm of everything being a tuple is
emphasized by the following list:

 objects to create are tuples (table “cr_sql”)

 data to transfer are tuples (table “transfer_job_list”)

 running jobs are tuples (table “mig_control”)

 parameters are tuples (table “param”)

 logs are tuples (table “logging”)
After a migration has been performed, its success and the

transferred data´s integrity have to be verified. Since logging
information was stored during the whole process inside the
logging table, SQL can be leveraged to query for certain
transferred objects or states or both. For optimizing the
migration process, sorting, calculating and analytical
capabilities of SQL are utilized, thus, there is no need for any

other migration application on operating system level than
the database management system (DBMS) itself.

B. Adaptability and Dependability Problems

When designing the migration method and

implementing the related software, several challenges had to

be faced. In this section, we will briefly introduce some of

the most interesting problems and their intended solutions:

 Utilization Problem

 Knapsack Problem

 Distribution Problem

 Dependency Problem

 Index Problem

Subsequently described solution approaches for the above

listed problems will provide an overview of the conceived

migration method. In-depth sections are referenced.

1) Utilization Problem: Utilization cannot be planned

generally since systems behave differently depending on

their resources and further running processes. We varified

this statement during the evaluation phase by performing

migration test runs that have a preliminary defined static

parallelization degree. This leads to the risk of both

overloading a system and on the other hand not utilizing idle

resources. Derived from the relationship between utilization

and response time described in Section III-C, Figure 5

shows how the overall performance, in terms of transfer

time, behaves at increasing parallelization degrees:

Tr
an

sf
er

 R
at

e

Figure 5. Expansion when Overloading the Storage System.

By choosing the currently optimal parallelization degree

adaptively at any time, HiPAS targets an optimal and

dynamic utilization, which leads to the shortest possible

transfer phase. In this way, we reduced the risk of utilizing

the systems too much or not enough. Parallelization is

implemented by means of background jobs started through

the database scheduler. In this way, the yet manual task of

finding the optimal parallelization degree for the respective

system environment is intended to be done by HiPAS

automatically and adaptively, implicating the ability to

change this value dynamically during the whole transfer

process.

265

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

logging

transfer_job_list

mig_control

cr_sql

Temporary Migration Schema: MIG_ADM

Target Schema:
 e.g. SAPSR3

Source Schema:
e.g. SAPSR3

cr_sql_remote

logging

other

Temporary Migration

Schema: MIG_ADM

copy_table(_range)

build_transfer_schedule

get_schemas

_and_tables

paramexecute_next_

tab_job

Create schemas,

create_tables

otherS
o

u
rc

e
 D

a
ta

b
a

s
e

T
a

rg
e

t D
a
ta

b
a

s
e

1

2

3

4

5 optimizer6 migration_report7

Figure 6. HiPAS Architecture.

2) Knapsack Problem: From an amount of objects,

defined by their weights and values, a subset with limited

weight and maximum total value has to be chosen [11]. This

knapsack problem reflects the challenge of choosing optimal

combinations of different sized tables to transfer in parallel,

since the available computing resources are limited. Large

tables should be preferred in a way of starting their transfer

at the beginning of the migration process, because a possible

failure can require a restart of the table transfer thus delaying

the whole migration when started too late. HiPAS

circumvents the knapsack problem by dividing large tables

into equal sized partitions, which can be transferred in

parallel. This offers flexibility in scheduling the data transfer

and dynamically adapting the current parallelization degree.

3) Distribution Problem: Depending on the migration

environment, the accruing work load can be distributed on

multiple instances of a cluster. In terms of network

bandwidth, multiple database links can be created on

different physical network connections between the source

and target system. In this case, HiPAS will distribute data to

be transferred equally on the available database links in order

to utilize the total available bandwidths. In case of a real

application cluster (RAC), HiPAS distributes running

transfer jobs on the available instances. Then the fact of the

previously mentioned partitioning of large tables needs to be

considered. We optimized the data buffers of the instances

by distributing transfer jobs, which continue a large table, to

the instance, which already transferred previous parts of the

same table to avoid reloading the table into multiple buffers

of different instances. The corresponding algorithm is

explained in Section VII-D.

4) Dependency Problem: When invoking the migration

on database layer, dependencies among the transferred

objects need to be considered for the transfer order. Surely,

users need to exist before importing data into created tables

and granting permissions found in the source schema.

Constraints like foreign keys have to be disabled temporary,

so HiPAS does not have to spend time for calculate a strict

and inflexible transfer order. If reference partitioning was

used inside the source schema, a parent table needs to exist

before the child table can be created following the same

partitions. For considering such dependencies, HiPAS

calculates a transfer schedule in the first place. Since

possible existing triggers will be transferred as well, they

need to be disabled during the migration process in order to

avoid unexpected operations on the target system, e.g.,

invoked by an insert trigger.

5) Index Problem: Indexes can either be created directly

after table creation or after the table has been filled with data.

When creating the index before data load, they will be built

“on the fly” during the transfer phase, in contrast, after data

load, an additional index buildup phase would need to be

scheduled. The right time for indexing depends on the target

storage system and network bandwidths. In case of a highly

powerful storage system, it might be reasonable to build the

indexes directly during data import since the network

represents the bottleneck of the whole migration and the

storage system would idle otherwise. On the other hand,

storage systems can be overloaded when indexes have to be

created at import time. Consequently, the decision about the

indexing time is another use case for the adaptive capabilities

of HiPAS explained in Section VII-C.

266

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. COMPONENTS AND MIGRATION PROCESS

Assuming that both source and target database system
have been physically connected preliminary and are
configured to be accessible by each other, the migration
process consists of three main phases invoked on the target
system, which are briefly described subsequently:

1. Installation and Pre-Transfer (Step 1-3)
2. Adaptive Data Transfer (Step 4-6)
3. Post-Transfer and Uninstallation (Step 7)
Figure 6 shows the steps of these phases, which are

invoked on the target system.

A. Installation and Pre-Transfer

Following the paradigm of not leaving the database layer, an

additional and temporary schema is created inside both

source and target database during an automated installation

phase. All subsequent operations will be done by the owner

of this schema. Creating this user, as well as creating and

compiling a PL/SQL package, needed for performing the

migration, is part of an automated installation process. Prior

to the data transfer phase, the source schemas need to be

analyzed and accordingly created inside the target database.

For this purpose, SQL statements for creating the identified

objects will be generated and stored inside the table

“cr_sql_remote”. This table will be copied to the target site

and contains information regarding the objects to be created

and its creation status. In addition, every operation

performed causes status information to be written into the

table “logging” (see Figure 7), enabling the database

administrator to perform any necessary analysis, e.g., by

querying for possible errors during or after the migration:

select logdate, loginfo from logging where info_level
= ‘ERROR’;

After the initial analyses of the source schema, all

identified objects have the status “init” and, therefore, will

be created by HiPAS at the target site. All objects

containing “created” inside their corresponding status

column will be ignored, enabling the whole migration

process to be paused and continued at any time. The table

“param” (see Figure 7) serves as a user interface for

parameterizing HiPAS manually beforehand, in case certain

adaptive capabilities shall not be utilized.

Techniques like reference partitioning inside the source

schema have to be considered and will determine the order

of creation, since child tables will not be created and

partitioned unless the related parent table exists. The Index

creation is either part of the pre-transfer or will be initiated

after all tables are filled with data. HiPAS decides

automatically for the most suitable approach depending on

the storage system and network bandwidth as described in

Section VII-C.

B. Adaptive Data Transfer

The data transfer is based on two simple SQL statements:

 Insert into a table as selecting from a source table

 Querying remote tables through a database link

The combination of these statements makes it possible to

fill local tables with remotely selected data. The resulting

command is generated and parameterized at runtime:

sql_stmt := 'insert /*+ APPEND */ into "' || schema ||

'"."' || table_name || '" select * from "' || schema

|| '"."' || table_name || '"@' || db_link;

This statement is generated and executed by transfer

jobs. The number of transfer jobs running in background is

adapted continuously and depends on the resource

utilization. As a pre-transfer stage, metadata of all objects

stored in the source schema has been inserted into a table

named “transfer_job_list”. Tables to be transferred,

exceeding a defined size, will be partitioned and, thus,

transferred by multiple transfer jobs. In this case, the job

type changes from “table” to “table_range” and row IDs

mark the range’s start and end (see Figure 7).

TRANSFER_JOB_LIST

OWNERPS

ROW_ID_START

ROW_ID_END

OBJECT_NAMEPS

OBJECT_TYPEPS

PARTITION_IDPS

BLOCKS

STATUS

MIG_CONTROL

JOB_IDPS

COMMAND

STATUS

STARTED

ENDED

STATUS_UPD

JOB_ID
PS
FK

LOGGING

LOGDATEPS

LOGINFOPS

SQLPS

MODULE

INFO_LEVEL

PARAM

PARAM_NAMEPS

PARAM_VALUE

PARAM_COMMENT

Figure 7. Metadata Entities for the Adaptive Data Transfer Phase.

Through partitioning, HiPAS can adapt more flexible to the

current utilization, since the number of parallel jobs can be

reduced or increased more frequently. HiPAS’ table

“mig_control” (see Figure 7) lists all background jobs

transferring the objects stored in “transfer_job_list”. In this

respect, the column “command” inside “mig_control” serves

as an interface for controlling the transfer process, either

autonomously by HiPAS or manually by the database

administrator. When overwriting its content with keywords

like “stop” or “continue”, individual jobs will be stopped

after finishing or continued, causing timestamps to be written

into the column “status_upd” and if necessary into “ended”.

By this means, HiPAS is able to reduce or increase the

number of parallel running transfer jobs transparently in

respect of the optimizer’s decision, which is described in

Section VII. For the migration time, all constraints will be

disabled temporary by HiPAS, enabling the table

“transfer_job_list” to be ordered by blocks instead of

considering key dependencies. Existing database triggers

will also be disabled avoiding any unintended execution

during the database migration.

C. Post-Transfer

After all source data has been transferred into the target

schemas, the data has to be validated. Documenting data

consistency and integrity is mission critical both for target

267

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

database operation and for legal reasons. Only after verifying

the equality of source and target data, the migration can be

declared as successful, requiring HiPAS to not only

compare source and target sizes, but also counting the rows

of all tables. Finally, the disabled constraints and triggers

will be enabled again.

VI. ENABLING PARALLELIZATION

In order to control the degree of HiPAS utilizing the
available hardware resources the migration data transferred
at the same time must be limitable. Restricting the number of
parallel processed tables would be inappropriate since it
required similar sized tables. Instead, a defined number of
blocks form a pack of data and a certain number of packs can
be processed at the same time. That is, each pack has the
same size and will be transferred by a single transfer job.
Thus, adding or removing a transfer job burdens respectively
disburdens the source and target system. HiPAS adapts to the
underlying system resources by deciding autonomously how
many transfer jobs are possible at any time.

To enable the amount of data to be partitioned into equal
packs, a so called block split range defines their size. Since
the tables on the target system are filled by generated “insert
as select”-statements, its scope can be limited to a range
between two row IDs, which represent the beginning and the
end of each data pack. During the source schema analysis,
these row IDs are identified by an analytical function. In this
manner, large tables are partitioned into groups with row ID
boundaries as Figure 8 shows exemplary.

Figure 8. Assigning Row IDs as Group Boundaries.

The identified IDs will be used during the transfer phase
to limit the data of a single transfer job to the given block
split range by adding a “where rowid between”-clause when
selecting from the remote database:

insert into schema.table_name select * from
schema.table_name@db_link where rowid
between MIN_RID and MAX_RID;

Having partitioned the full amount of migration data into

parts of a maximum defined size (block split range), HiPAS

creates equally treatable transfer entities. These entities can

be parallelized up to a degree defined by an adaptive

transfer optimizer.

VII. ADAPTIVE CAPABILITIES

For parallelizing the data transfer during phase 2 of the
migration process (see Section V-B) with an optimal
parallelization degree, we target an adaptive migration
software. Adaptivity in general describes the capability of
adjusting to an environment. In biology, the term is often
used to describe physiological and behavioral changes of

organisms in process of evolution. In informatics, the term is
transferred to systems or components, which adapt to their
available resources. However, here not to increase
reproduction chances but often in order to achieve an optimal
system performance. Adaption improves the resource
efficiency and flexibility of software-intensive systems and
means that a system adapts to changes of its environment, its
requirements and its resources [12]. According to Martín et
al. adaption can also be seen as the first of three stages of the
currently conceivable system complexity extent.
Anticipation and rationality follow as further stages [13] (see
Figure 9).

System Complexity

Adaption Anticipation Rationality

Figure 9. Levels of System Complexity (Adapted from [13]).

Thus, adaption describes the interaction of two elements:
A control system and its environment. The goal is to reach a
defined state of the environment by means of actions
initiated by the control system [14]. The control system then
reacts on the self-precipitated changes of the environment
with initiating new changes. It has been defined that an
adaptive system is present, if the probability of a change of a
system S triggered by an event E is higher than the
probability of the system to change independently from the
event:

[13]

(4)

Furthermore, the condition has to apply that the system
reaches the desired state after a non-defined duration. This
implies the convergence of the mentioned probabilities
towards infinite:

[13]

(5)

This law of adaption [13] requires the control system to
know for each modification of its environment a sufficiently
granulated attribute, which contributes to the desired state´s
achievement allowing the adaption to end. For the first stage
of complexity, the direction and the extent of modifications
are built upon each other, thus, enabling the system to reach
the desired state incrementally. If the modifications are not
steps of a targeted adjustment process, but based on
knowledge, predictions [15] or intuition, the process can be
defined, in terms of system complexity, as anticipation. The
third stage “rationality” implies intelligence; those systems
are able to react to unpredictable changes of their
environment and to balance contradictory objectives against
each other [13]. This stage exceeds the objective of this
paper and, therefore, was not scoped. Applying this
differentiation on the design of an adaptive migration
software, two approaches emerge for parallelizing the data
transfer:

268

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 A solely adaptive system, based on an incremental
adjustment process, until changes do not evoke
further improvements, thus, reaching the state of an
optimal parallelization degree.

 An anticipatory system, which makes
continuously new modification decisions
independently of each other, based on knowledge
about used and monitored resources.

These two approaches have been designed and
implemented as described subsequently and evaluated as
described in Section VIII. Due to HiPAS’ scalable
architecture, the respective procedures could be implemented
as plugins and additionally started for evaluation. Both
plugins control the data transfer via values inside the table
“mig_control” (see Section V-B) serving as an interface.

A. Adaption

The solely adaptive approach will successively increase
the parallelization degree and, therefore, the source and
target systems utilization. After each enhancement its
consequences on the system environment meaning the
migration performance is measured in terms of inserted
megabytes per time unit. The adaption can be started by
running an additional procedure “calibrate”, which invokes
either the procedure “increase” or “decrease” for modifying
the parallelization degree, starting from one transfer job per
database link at the same time. The number of jobs to be
added or deducted will be reduced after each time a change
in direction was required, by this means the algorithm brings
the number of parallel jobs closer to the optimum. After
reaching a defined modification count (number of jobs to add
or deduct) the algorithm assumes having approximated the
optimal parallelization degree and the adaption ends,
representing the finiteness requirement of adaptive systems.

The variable “diff_level” describes the current
modification extent, meaning the number of jobs to start
additionally or to stop after finishing. To reach a required
level of flexibility for changing the number of jobs shortly,
the size of a transfer job is limited to the introduced
block_split_range. The following code example shows how
the number of jobs is reduced by the value of the variable
“diff_level”:

update mig_control set command = 'STOP' where job =
'loop_while_jobs_todo' and command = 'continue' and
rownum <= diff_level; commit;

Since the tuples inside “mig_control” represent
background jobs and each tuple has a row number, jobs can
be stopped for each row number being smaller than
“diff_level”. The mentioned value “loop_while_jobs_todo”
is the name of the procedure every background job runs for
processing all defined transfer jobs listed inside the table
“transfer_job_list”. If a background job is marked with the
command “STOP”, it will be deleted after finishing the
current transfer job and afterwards marked with the keyword
“ended”.

B. Anticipation

If the adaption is based on predictions, we call it
anticipation as the next level of complexity [13]. In contrast

to the solely adaptive approach, HiPAS now optimizes the
parallelization degree during the whole data transfer phase
and based on a different algorithm. For mapping the
described theoretical insights to our migration use case, we
implemented an optimizer package, which predicts the
optimal amount of parallel running jobs for the upcoming
period. In this manner, we developed self-adaptive software,
for which several definitions exist.

The anticipation-based version of HiPAS complies with a
widely referenced definition [16], which was provided by the
Defense Advanced Research Projects Agency (DARPA) in
an Agency Announcement of 1997: “Self-adaptive software
evaluates its own behavior and changes behavior when the
evaluation indicates that it is not accomplishing what the
software is intended to do, or when better functionality or
performance is possible” [17]. In particular, we address the
identification of possible performance improvements.
Another definition is given by Oreizy et al.: “Self-adaptive
software modifies its own behavior in response to changes in
its operating environment. By operating environment, we
mean anything observable by the software system, such as
end-user input, external hardware devices and sensors, or
program instrumentation” [18]. The operating environment
in our case is formed by the relevant components of the
source and target database system identified in the
“Observation” Paragraph.

Properties of self-adaptive software were introduced by
the IBM autonomic computing initiative in 2001 [19]–[21];
these are known as eight self-properties. According to
Salehie and Tahvildari, this classification serves as the de
facto standard in this domain [16]. On major level the
following self-properties exist:

 Self-configuring

 Self-healing

 Self-optimizing

 Self-protecting
Salehie and Tahvildari provided a list of research projects

in the domain of self-adaptive software from academic and
industrial sectors, and classified these projects according to
their supported self-properties. It was stated that the majority
of the analyzed projects focus on one or two of the known
self-properties [16]. When developing HiPAS, we strongly
focused on self-optimizing capabilities, which are demanded
by customers of our domain. In addition, some self-healing
properties for transfer job interruptions are supported. In the
following paragraphs, we explain the chosen design
decisions for HiPAS according to the dimensions of design
space for adaptive software [22] and the optimizer’s
functionality by running through the phases of one adaption
loop, also referred to as feedback loop or MAPE-K loop (see
Section B-2).

1) Design Space
Design decisions about how the software will observe its

environment and perform adaptions were defined by Brun et
al. as design space for self-adaptive systems: “A design
space is a set of decisions about an artifact, together with the
choices for these decisions. […] A designer seeking to solve
a problem may be guided by the design space, using it to

269

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

systematically identify required decisions, their alternatives,
and their interactions” [22]. The following dimensions of
design space were outlined by Brun et al.:

 Observation

 Representation

 Control

 Identification

 Enabling Adaption
Following this systematic approach, we describe the

main decisions within these dimensions.

a) Oberservation

Observation is concerned with information about the
external environment and the system itself, which needs to
be observed by the system [5]. Therefore, Hinchey and
Sterrit distinguish between environment-awareness and self-
awareness [23], whereby environment-awareness is also
called context-awareness [16], [24]. Based on the primarily
intended property of self-optimization with respect to
performance, we identified the following environmental
components, which need to be observed:

 Storage system of the source database system

 Storage system of the target database system

 CPU resources of the source system’s instances

 CPU resources of the target system’s instances

 Memory resources of the source system’s instances

 Memory resources of the target system’s instances
The instances of both source and target database system

use shared storage, but dedicated computing resources like
CPU and memory, therefore, the monitored information must
be analyzed on both global and instance-level.

To support system-awareness, the software needs to be
aware of the overall migration progress, the number of
currently running transfer jobs on each instance, and the
status of any job at any time. For implementing self-healing
capabilities, information about failed jobs needs to be stored
along with respective log information in order to identify
root causes and enable retry decisions.

Another important decision is related to the time of
observation, which highly depends on domain knowledge
about the expected frequency of environmental changes.
According to our experiences with job modifications that
need to be triggered manually, we implemented a timer,
which triggers a cyclic observation every two minutes.

b) Representation

The identified information, which needs to be observed,
is represented by performance values and monitored by the
database management system. The DBMS stores these
values inside performance views, which can be queried by
HiPAS. The following values represent the necessary
information to base adaption decisions on it:

 Concurrency events on target system

 Concurrency events on source system

 Average write time on target system

 Average read time on source system

 Average read time on target system

 Average write time on source system

 Redo log buffer size

 Available memory size
In order to be self-aware, HiPAS stores all status

information regarding running and pending jobs in tables as
described in Section V. These tables can be queried by
adaption plugins such as the HiPAS optimizer.

c) Control

Control related decisions determine the involved control
loops and their interaction, as well as the computation of
enacted changes for each adaption [16]. According to [22],
different patterns for interacting control loops exist. HiPAS
is based on a hierarchical relationship between one master
that is located on the target system and multiple slaves
represented by instances of the DBMS. This architecture
results in a variation of the Master/Slave pattern [22], where
the master is responsible for global monitoring, analyzing
and planning, and the slaves for instance-specific monitoring
and executing (see Figure 10).

Figure 10. Variation of Master/Slave Control Pattern (adapted from [22])

The master aggregates and analyzes all collected
information and then calculates a plan, which includes
instance-specific commands. This plan is executed only
against the target instances, since data is pulled by transfer
jobs running on the target system. Reducing the amount of
jobs will reduce the utilization on both target and source
system. Hence, we decided for centralized control in a
distributed system, which is comparably easy to realize,
since all information that is required for performing
adaptions is available at the target system through database
links [22].

d) Identification and Enabling Adaption

The identification dimension deals with identifying
instantiations of the self-adaptive system, which describes
the system structure and behavior at a specific point in time
[5]. HiPAS’ system state is defined by the set of values for
the observed performance attributes and the number of
transfer jobs running on each target instance. Information
about running jobs is stored inside a control table named
“MIG_CONTROL” (see Figure 7). This table serves as a
central interface for enabling adaptions because it allows
plugins such as the HiPAS optimizer to access and change
job information at runtime as described earlier in Section V.
In the next paragraph, we explain how adaptions are
performed by running through one adaption loop.

270

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Adaption Loop
The relevant system performance attributes, which

represent the information identified for observation, is
continuously monitored by the DBMS across all involved
database instances.

The optimizer analyzes the enumerated values and
calculates a fail indicator, as well as the number of
additionally possible jobs according to the measured
available resources like memory size and disk utilization. In
contrary, the fail indicator indicates possible bottlenecks and
can prompt the optimizer to reduce the amount of currently
running jobs. The introduced components form a feedback
loop according to the MAPE-K (Monitor-Analyze-Plan-
Execute-Knowledge) loop reference model developed by
IBM [21] as shown in Figure 11.

DBMS

Monitor Analyse & Plan

optimizer()
loop_while_
jobs_todo()

Performance Views mig_control

Execute

 logging

Figure 11. MAPE-K Based Adaptive Feedback Loop.

Typical indicators for possibly arising bottlenecks are
increasing concurrency events while the redo log buffer size
decreases. An important concurrency event, for instance,
occurs when the high water mark of a segment needs to be
increased, since new blocks are inserted into the same table
by multiple and competing processes, this is known as high
water mark enqueue contention [25].

If such a situation has been monitored, the optimizer will
reduce the number of parallel jobs based on a high failure
indicator. Whenever the optimizer acts, a log string is written
to the logging table as in the following example:

“Prev Jobs: 40/ Jobs: 40 Max Jobs: 400 # Read Avg:
3.32(20-40) # Write Avg: 105.9(100-200) # R_Read Avg:
.12(20-40) # R_Write Avg: .3(20-40) # R Fail Ind: 3
conc:3026(2607) redo:5720763732(5776886904)
r_conc:5157(5069) # numjobs > 0 # Jobs being stopped:
0 # (Resource Overload) and numjobs > minjobs and
jobs_being_stopped = 0 # Running: 20/Stopping: 5 on
inst:1 # Running: 20/Stopping: 5 on inst:2”

In the above extracted example, 40 jobs are running in
parallel. Due to increasing concurrency events, the optimizer
detects a possible overload of the target system and decides
to stop 5 running jobs on each instance. The jobs will
terminate after they completed transferring their current
objects. This is implemented by writing “stop” commands
into the table “mig_control” (see Figure 7), which the
procedure “loop_while_jobs_to_do()” will carry out. The
next log string will start with the information “Prev Jobs: 40/
Jobs: 30” accordingly. Additionally, not only the overall
amount of jobs is measured, but also the memory each server
process allocates. This value highly depends on the data
types of the currently transferred data. If too much memory
is allocated, the number of jobs will be reduced as well. In
order to avoid downward or upward spirals, e.g., due to the
reducing redo log buffer size when stopping jobs, bottom

lines and limits are defined. Hence, the optimizer decides on
the basis of a branched search for indicating relations
between the monitored information. Surely, these are only
indicators not to be seen as evidence, so the algorithm
follows a heuristic approach. In contrary to the solely
adaptive approach and to a statically parallelized transfer, the
optimizer is able to dynamically react to unexpected events
and predict a possibly optimum level of system utilization
during the whole migration process. In the following sections
and for the evaluation, when mentioning the adaptive
capabilities, we always refer to the anticipatory approach as
it was performing more efficient during preliminary tests.

C. Time of Indexing

As previously termed as the “index problem”, the right
time for indexing the data depends on the combination of
storage system performance and network bandwidth. If not
manually parameterized inside the “param” table, HiPAS
decides by means of test tables filled with random data and
having indexes on multiple columns, if it creates the indexes
before or after data loading. For the two possibilities of index
creation, the time for performing the respective steps is
measured and compared to each other. After comparing the
two measurements, HiPAS updates the parameter
“index_while_transfer” inside the “param” table
autonomously by inserting “true” or “false”. This test can be
performed during a common migration test run on the actual
system environment and excluded for the productive
migration reusing the “param” table.

D. Transfer Order and Instance Affinity

The table “transfer_job_list” contains all objects, which
need to be transferred to the target. When selecting the next
object for transfer, this table needs to be ordered by blocks
since large objects are preferred by HiPAS. Furthermore, an
instance prefers table partitions of tables, which already have
been started to be transferred by this instance. Accordingly,
the next table or table range to be transferred is always
selected as follow:

select * from transfer_job_list where status =
'PENDING' and object_type = 'TABLE' and (instance = 0
OR instance = sys_context('USERENV', 'INSTANCE'))
order by instance desc, blocks desc, partition_name;

If an instance starts transferring a table range of a large
table, it marks all other table ranges of the same table by
inserting the instance number into all tuples related to this
table. By this means, instances reserve tables in order to
avoid loading the same table into data buffers of other
instances. For this reason, instances prefer tuples marked by
themselves and tuples not reserved by any other instance,
which has been implemented by means of the above
displayed “where clause”. In addition, the actual block split
range, defining the limit for the size of all table ranges, is
identified partly adaptively. For a given maximum block
split range, HiPAS calculates the optimal block split range
by counting tables and their sizes resulting in an optimal
ratio of a ranges size and its total count.

271

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Adaptive Migration Process with HiPAS

VIII. EVALUATION

The migration method has been tested in several
customer environments with differently powerful server,
storage systems and networks. Following the design science
approach, HiPAS has been improved in multiple iterations
based on test results.

A. Experiment Setup

For this paper, we set up a test environment consisting of
a source and target system installed on physically separated
virtual machines, each having 4 CPUs and 16 GB of main
memory. Both the source and target database are real
application cluster (RAC) environments running Oracle
Database 11g Enterprise Edition Release 11.2.0.3.0. On each
side two instances are available connected to the other side
through a 1 Gigabit Ethernet. The source system reads from
solid state drives and the target system writes on common
SATA disks. For evaluation, we performed multiple test runs
belonging to the following three different main tests:

(1) Function test with a 300 GB schema (Test A)
(2) Performance test with a 16 GB schema (Test B.1)
(3) Performance test with a 32 GB schema (Test B.2)

To create the different database schemata, we
implemented a software package, which generates database
schemata filled with random data and including all special
cases we could imagine HiPAS to encounter at productive
customer environments. By means of this software, we
created different sized test schemata inside the source
database for test migrations. For the function test (Test A),
the schema included characteristics like foreign key
constraints, a variety of character, numeric and binary data
types, reference partitioning, indexes, table clusters, views,
as well as different rights and roles. In this manner, we were
able to test the compatibility of HiPAS with different data
types, objects and complex data structures. The used schema
has an overall size of 300 GB, which was large enough to
analyze HiPAS adaptive behavior during the migration run.
To compare HiPAS migration performance with the current
Oracle standard migration tool for exports and imports “Data
Pump” [26], [27], we reduced the size for being able to
perform multiple test runs and to average out performance
values across all performed runs. These performance focused

migration runs are referred to as test B. After each migration,
we fully deleted the migrated schema and rebooted the whole
server in order to have the same initial cache situation for all
runs. The results of all tests are shown subsequently.

B. Results

In the following the results of the function test (A) and
the performance tests (B) are presented.

1) Function Test (Test A): As described in Section VI-A,
“Test A” aims at analyzing HiPAS adaptive behavior and
compatibility. We implemented a package, which compares
the created target schema with the original source schema by
counting rows and columns. We verified that all data objects
were created inside the target schema successfully. The
optimizer, providing the adaptive capabilities of HiPAS,
writes log information whenever an adaption is needed. An
example of such a single log string has been introduced in
Section VII-B. Analyzing all tuples, written into the logging
table during a migration run, leads to the migration process
shown in Figure 12. The transfer started at 12:08 pm and
ended at 12:47 pm. HiPAS transferred the created test
schema, filled with 300 GB of random data, starting with 20
background jobs running in parallel meaning 10 jobs per
instance, since HiPAS identified two available instances on
the target system for job distribution. After 39 minutes, the
transfer ended with a current total number of 116 parallel
running jobs. The “block split range” was 25120 blocks, so,
with a configured data block size of 8 KB, each job
transferred a maximum amount of approximately 200 MB.

Tables, smaller than the split range, were not partitioned
and transferred at the end of the migration, since large tables
are preferred by the data selection algorithm. If a job
transfers less data (small table), more parallel jobs are
possible, so HiPAS raised the number of running jobs as the
migration time goes by, which explains the slope of the
graph shown in Figure 12.

In a different test using the same schema, we monitored
the network interfaces in order to evaluate how the 1 Gigabit
Ethernet is utilized by HiPAS. Figure 13 shows the number
of kilobytes received and transmitted by one of the physical
interfaces, which was monitored using the Linux command
“sar”.

272

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. Transfer Performance for a 16GB Schema (B.1).

Figure 13. Network interface Performance (Excerpt)

During the monitored timeframe, the network interface,
at its highest utilization, received up to 110138.34 KB per
second. At that time 12849.31 KB were transmitted,
resulting in a total amount of 122987.65 KB/s.

2) Performance Test (Test B.1): For the first

performance test, we created a schema of 16 GB including

the mentioned data types in Section VIII-A. The different

test runs of test B.1 are described as follows:

(1) Migration by means of HiPAS adaptively and with

enabled partitioning of large tables

(2) Migration by means of HiPAS with a static

parallelization degree of 20 running jobs and enabled

partitioning of large tables

(3) Migration by means of HiPAS with a static

parallelization degree of 10 running jobs and enabled

partitioning of large tables

(4) Migration by means of HiPAS with a static

parallelization degree of 10 running jobs and disabled

partitioning of large tables

(5) Migration by means of HiPAS without parallelization

(sequential) and with disabled partitioning of large

tables

(6) Migration by means of Oracle Data Pump
We performed the described test runs three times in order

to compensate statistical outliers, possibly caused by
uninfluenceable events of the database management system
or the operating system. This was necessary because the test
runs had to be performed successively to provide the same
environment for all tested methods. Afterwards, we
calculated for each method the average total duration of the
three runs. The final result is shown in Figure 14. The small
test schema of 16 GB has been transferred by HiPAS
averagely within 11 minutes, enabling adaptive capabilities
(more precisely “anticipation”) and partitioning of large
tables. Transferring the same schema by means of the Oracle
tool Data Pump, using the number of available CPUs as the
“parallel” parameter [26], took averagely 53 minutes, which
means a deceleration of approximately 382% compared to
HiPAS. Comparing the different HiPAS migration runs with
each other, it can be stated that parallelizing in general

273

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

noticeably reduces the transfer duration, which is indicative
for our assumption of utilizing the available resources more
efficiently by parallelizing. Comparing test run 3 and 4
shows that partitioning large tables for the transfer barely
improves the overall performance, since the partitioning
feature was implemented to improve the flexibility of HiPAS
when its optimizer needs to adapt quickly to changing
resource availabilities. Thus, the adaptive migration run with
enabled partitioning of large tables performed best in terms
of downtime shortness.

3) Performance Test (Test B.2): In addition to the 16 GB
schema, we performed the same test runs with a schema size
of 32 GB to evaluate how the adaptive capabilities work for
a longer period of transfer time. The static parallelized runs
have been performed as well and showed results proportional
to test B.1, so we excluded them from Figure 15.

Figure 15. Transfer Performance for a 32GB Schema (B.2).

HiPAS, with enabled partitioning, adaptively transferred the
schema within 51 minutes, compared to 2.23 hours needed
by Data Pump, meaning this time HiPAS took 38% of Data
Pump’s transfer duration, whereas the single threaded
configured HiPAS took about 75%. As a consequence, we
assume that non-adaptive sequential and Data Pump
migrations leave useful resources idle or need to be tuned
manually. In addition to the introduced test runs for
evaluation within the scope of this paper, we performed
several further tests in customer environments achieving
considerable results, especially for schemata storing large
objects. In terms of network bandwidth, we reached transfer
rates of 120 MB/s for each database link created on a 1
Gigabit Ethernet.

IX. CONCLUSION AND FUTURE WORK

By designing and developing HiPAS, we applied
adaptive software into the field of database migrations. We
focused on self-optimization as the main adaptive property
and implemented a system, which continuously optimizes

the system utilization by adjusting the current amount of
parallel workload. The observed environment is represented
by monitoring information regarding the performance of the
source and target database instances and their underlying
storage systems. For optimizing the transfer phase, we state
that implementing anticipatory capabilities into migration
software using a MAPE-K feedback loop significantly
improved the performance of migrations invoked on
database layer, compared to a solely adaptive approach or
non-adaptive migration software. Statically parallelized test
runs did not adapt to changing utilization requirements, thus,
performed less efficiently. The decisions taken in the design
space for adaptive software and the paradigm of saving all
migration metadata inside the database allows a highly
reliable and transparent architecture, which supports an
efficient interaction of all HiPAS migration components and
the actual migration data. On the contrary, the
implementation as a stored object leads to the disadvantage
of having to develop separate implementations for different
database systems. Therefore, we plan to build and evaluate
further versions of HiPAS supporting different types of
source and target systems. Another new version, we are
working on, is intended to support online migrations, where
the adaptive optimizer can be leveraged to utilize the source
system up to a degree, which does not affect its availability
and response time during productive use. Our results serve as
a contribution for all practitioners in the field of database
migrations, as well as researchers on self-adaptive software
and their various fields of application.

ACKNOWLEDGMENT

We strongly like to thank all members of the Pasolfora
Performance Research and Innovation Group (PPRG) for the
support and possibility of performing the countless number
of test and demo migrations during the development and
evaluation of HiPAS. Furthermore, we thank Prof. Dr.
Michael Höding of the Brandenburg University of Applied
Sciences for giving scientific relevant input when mapping
adaptive insights to the requirements of offline database
migrations.

REFERENCES

[1] H. Müller, A. Prusch, and S. Agel, “HiPAS: High

Performance Adaptive Schema Migration – Evaluation of a

Self-Optimizing Database Migration,” in DEPEND 2014,

The Seventh International Conference on Dependability,

2014, pp. 41–50.

[2] H. M. Sneed, E. Wof, and H. Heilmann, Softwaremigration

in Praxis. dpunkt.verlag, 2010.

[3] M. L. Brodie and M. Stonebraker, Migrating legacy

systems: gateways, interfaces & the incremental approach.

Morgan Kaufmann Publishers Inc., 1995.

[4] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy

information systems: Issues and directions,” IEEE software,

vol. 16, no. 5, pp. 103–111, 1999.

[5] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J.

Andersson, M. Litoiu, B. Schmerl, G. Tamura, N. M.

Villegas, T. Vogel, et al., “Software engineering for self-

adaptive systems: A second research roadmap,” in Software

274

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Engineering for Self-Adaptive Systems II, Springer, 2013,

pp. 1–32.

[6] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design

Science in Information Systems Research,” MIS quarterly,

vol. 28, no. 1, pp. 75–105, 2004.

[7] M. Eastwood, J. Scaramella, K. Stolarski, and S. M.,

“Worldwide Server Market Revenues Decline -6.2% in

Second Quarter as Market Demand Remains Weak,

According to IDC.” International Data Corporation, 2013

[Online]. Available:

http://www.reuters.com/article/2013/08/28/ma-idc-

idUSnBw276497a+100+BSW20130828 [Accessed: 29-

May-2015]

[8] J. D. Little, “A proof for the queuing formula: L= λ W,”

Operations research, vol. 9, no. 3, pp. 383–387, 1961.

[9] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C.

Sevcik, Quantitative System Performance: Computer

System Analysis Using Queueing Network Models, vol. 84.

Prentice-Hall Englewood Cliffs, 1984.

[10] R. et al. Alves, Information Storage and Management -

Storing, Managing, and Protecting Digital Information.

EMC Education Services, 2009.

[11] R. M. Karp, Reducibility Among Combinatorial Problems.

Springer, 1972.

[12] “Fraunhofer. Adaptive Systems. Fraunhofer Institute for

Embedded Systems and Communication Technologies.”

[Online]. Available:

http://www.esk.fraunhofer.de/de/kompetenzen/adaptive_sys

teme.html [Accessed: 29-May-2015]

[13] J. A. Mart𝚤n H, J. de Lope, and D. Maravall, “Adaptation,

anticipation and rationality in natural and artificial systems:

computational paradigms mimicking nature,” Natural

Computing, vol. 8, no. 4, pp. 757–775, 2009.

[14] N. Wiener, E. Henze, and E. H. Serr, Kybernetik. Econ-

Verlag Düsseldorf, 1963.

[15] R. Rosen, Anticipatory Systems. Springer, 2012.

[16] M. Salehie and L. Tahvildari, “Self-adaptive Software:

Landscape and Research Challenges,” ACM Transactions

on Autonomous and Adaptive Systems (TAAS), vol. 4, no. 2,

2009.

[17] R. Laddaga, “Self-adaptive Software,” Defense Advanced

Research Projects Agency, 1997.

[18] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G.

Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum, and

A. L. Wolf, “An architecture-based approach to self-

adaptive software,” IEEE Intelligent systems, vol. 14, no. 3,

pp. 54–62, 1999.

[19] P. Horn, “Autonomic Computing: IBM’s Perspective on the

State of Information Technology.” IBM, 2001 [Online].

Available:

http://people.scs.carleton.ca/ soma/biosec/readings/autonom

ic_computing.pdf [Accessed: 29-May-2015]

[20] “The 8 Elements.” IBM [Online]. Available:

http://www.personal.psu.edu/users/a/l/alw/autonomic/auton

omic8.pdf [Accessed: 29-May-2015]

[21] “An Architectural Blueprint for Autonomic Computing,”

IBM White Paper. Citeseer, 2005 [Online]. Available:

http://www-

03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%2

0Paper%20V7.pdf [Accessed: 29-May-2015]

[22] Y. Brun, R. Desmarais, K. Geihs, M. Litoiu, A. Lopes, M.

Shaw, and M. Smit, “A Design Space for Self-Adaptive

Systems,” in Software Engineering for Self-adaptive

Systems II, Springer, 2013, pp. 33–50.

[23] M. G. Hinchey and R. Sterritt, “Self-Managing Software,”

Computer, vol. 39, no. 2, pp. 107–109, 2006.

[24] M. Parashar and S. Hariri, “Autonomic Computing: An

overview,” in Unconventional Programming Paradigms,

Springer, 2005, pp. 257–269.

[25] “Enqueue: HW, Segment High Water Mark - Contention.”

Oracle, 2009 [Online]. Available:

http://docs.oracle.com/cd/B16240_01/doc/doc.102/e16282/

oracle_database_help/oracle_database_wait_bottlenecks_en

queue_hw_pct.html [Accessed: 29-May-2015]

[26] G. Claborn, W. Fisher, C. Palmer, J. Stenoish, and R.

Swonger, “Data Pump in Oracle Database 11g Release 2:

Foun-dation for Ultra High-Speed Data Movement

Utilities.” Oracle, 2010 [Online]. Available:

http://download.oracle.com/otndocs/products/database/enter

prise_edition/utilities/pdf/datapump11gr2_techover_1009.p

df [Accessed: 29-May-2015]

[27] K. Rich, “Oracle Database Utilities 11g Release 2.” Oracle,

2014 [Online]. Available:

http://docs.oracle.com/cloud/latest/db112/SUTIL.pdf

[Accessed: 29-May-2015]

275

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Study on the Difficulty of Accounting for Data Processing

in Functional Size Measures

Luigi Lavazza Sandro Morasca Davide Tosi

Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria

Varese, Italy

{luigi.lavazza, sandro.morasca, davide.tosi}@uninsubria.it

Abstract—The most popular Functional Size Measurement

methods adopt a concept of “functionality” that is based

mainly on the data involved in functions and data movements.

Functional size measures are often used as a basis for

estimating the effort required for software development.

However, Functional Size Measurement does not take directly

into consideration the amount of data processing involved in a

process, even though it is well-known that development effort

does depend on the amount of data processing code to be

written. Thus, it is interesting to investigate to what extent the

most popular functional size measures represent the data

processing features of requirements and, consequently, the

amount of data processing code to be written. To this end, we

consider three applications that provide similar functionality,

but require different amounts of data processing. These

applications are then measured via a few Functional Size

Measurement methods and traditional size measures (such as

Lines of Code). A comparison of the obtained measures shows

that differences among the applications are best represented by

differences in Lines of Code. It is likely that the actual size of

an application that requires substantial amounts of data

processing is not fully represented by functional size measures.

In summary, the paper shows that not taking into account data

processing dramatically limits the expressiveness of the

functional size measures. Practitioners that use size measures

for effort estimation should complement functional size

measures with measures that quantify data processing, to

obtain precise effort estimates.

Keywords- functional size measurement; Function Point

Analysis; IFPUG Function Points;COSMIC method.

I. INTRODUCTION

Functional Size Measurement (FSM) methods aim at
quantifying the “functional size” of an application. Such size
should represent the “amount of functionality” provided to
the user by a software application. It is quite reasonable to
expect that the “amount of functionality” is to some extent
correlated to the amount of data processing performed by the
application. In this respect, there are some doubts that FSM
methods properly account for the amount of data processing
when sizing software applications [1].

In fact, the most popular FSM methods adopt a concept
of “functionality” that is based mainly on the number of
operations that can be performed by the users via the
software application and the amount of data managed by the

application. More precisely, the most popular FSM methods
take into account

− the processes, named Elementary Processes (EP) in
IFPUG and Functional Processes (FPr) in COSMIC;

− the data that cross the boundary of the application being
measured or that are used (i.e., read or written) in the
context of a process.

In this paper, we consider the most widely known and
used FSM methods:

− IFPUG (International Function point User Group)
Function Points [2][3], which were originally proposed
in 1979 [4] and are widely known and used today;

− Mark II Function Points [5][6], which were proposed to
improve Function Points;

− COSMIC (Common Software Measurement
International Consortium) [7], which aims at further
improving the characteristics of functional size
measures;

− Use Case Points [8], a method that was proposed for
usage with the Objectory process [9] (which was then
incorporated into UML).

Quite noticeably, none of the mentioned methods
satisfactorily considers the amount of data processing
involved in a process. As a matter of fact, some methods
propose an adjustment of the size based on the characteristics
of data processing, but quite imprecisely and ineffectively, as
discussed in Section VIII, while other methods do not take
the amount of data processing into account at all.

The goal of the paper is to provide evidence, based on
examples, that not considering data processing dramatically
limits the expressiveness of functional size measures.

The core of the paper can be described as follows:

− Three applications are specified. These applications are
similar with respect to the aims and functionality offered
to the user, but they are very different in the amount of
data processing required.

− The considered applications are modeled and measured
according to four different functional size measurement
methods.

− It is highlighted that the applications have the same
functional size measures, even though the amount of
functionality to be coded is dramatically different.

− When measured via Lines of Code, it is apparent that the
implementations of the applications have quite different

276

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sizes. The reason is that –quite obviously– more data
processing requires more code.

It is unlikely that the additional code required for
additional data processing requires a negligible additional
amount of development effort. Thus, using only the
functional size to estimate development effort for
applications that require a substantial amount of data
processing may lead to large and dangerous effort
underestimations.

Currently, development effort is commonly estimated
based on the functional size and possibly some other
environmental factors, but without taking in due
consideration the amount of data processing required.
Sometimes this practice is justified by the fact that the
application to be developed is estimated using productivity
models derived from the analysis of previous projects in the
same application domain. There is an underlying assumption
that applications in the same domain require approximately
the same amount of data processing. In this paper, we show
that the contrary is true, by measuring programs that belong
to the same domain.

The difficulty to quantitatively represent the amount of
data processing appears as an intrinsic –though not generally
recognized– limit of FSM methods. It should be noted that
this paper does not aim at proposing a method to account for
data processing in functional size measures. Instead, we aim
at providing some evidence of the problem, to raise the
awareness of the limits of FSM methods and solicit research
efforts towards working out solutions. At the same time, we
warn practitioners about the risks connected with assuming
that the amount of data processing is somewhat
automatically incorporated in traditional functional size
measures, as such assumption could lead to severely
underestimating the actual size of the application to be
developed.

The paper is structured as follows. Section II reports a
few basic concepts of functional size measurement. Section
III illustrates the case studies used in the paper. Section IV
describes the models and measures of the considered
applications: the collected measures are then compared in
Section V. In Section VI, additional examples showing the
limitations of FSM methods in accounting for data
processing are given. Section VII discusses the alternatives
that should be considered for complementing standards
functional size measures with measures that represent data
processing. Section VIII accounts for related work. Finally,
Section IX draws conclusions and briefly sketches future
work.

This paper is an extended version of a previous paper [1].
Here, we use two additional sizing methods (namely Use
Case Points and Mark II Function Points): this allows us to
generalize the presented results. Moreover, we considered an
additional application in the board games with artificial
intelligence domain, which confirms the results given in [1],
thus increasing the reliability of our conclusions. To this end,
a discussion of different domains has also been added in
Section VI.

II. FSM CONCEPTS

Functional Size Measurement methods aim at providing
a measure of the size of the functional specifications of a
given software application. Here, we do not need to explain
in detail the principles upon which FSM methods are based.
Instead, for our purposes it is important to consider what is
actually measured, i.e., the model of software functional
specifications that is used by FSM methods.

A. Function Point Software Model

The model used by Function Point Analysis (FPA) is
given in Figure 1. Briefly, Logical files are the data
processed by the application, and transactions are the
operations available to users. The size measure in Function
Points is computed as a weighted sum of the number of
Logical files and Transactions. The weight of logical data
files is computed based on the Record Elements Types
(RET: subgroups of data belonging to a data file) and Data
Element Types (DET: the elementary pieces of data). The
weight of transactions is computed based on the Logical files
involved –see the FTR (File Type Referenced) association in
Figure 1– and the Data Element Types used for I/O.

SW application functional specifications

Logical file Transaction

Data Element TypeRecord Element Type

FTR

0..*

I/O
1..*

Figure 1. The model of software used in Function Point Analysis.

It is possible to see that in the FPA model of software,
data processing is not represented at all.

B. COSMIC Software Model

The model used by COSMIC is given in Figure 2.

SW application functional specifications

Functional Process

Data processing Data movement

Data group

Figure 2. The model of software used by the COSMIC method.

277

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The size of the functional specification expressed in
COSMIC function points (CFP) is the sum of the sizes of
functional processes; the size of each functional process is
the number of distinct data movements it involves. A data
movement concerns exactly one data group.

Although represented in Figure 2, neither data groups nor
data processing are directly used in the determination of an
application’s functional size. In particular, data processing is
not measured, since the COSMIC method assumes that a
fixed amount of data processing is associated with every data
movement; however, this is not the case in the examples
considered in this paper.

C. Mark II FP Model

Symons proposed Mark II Function Points as an
improvement of Albrecht’s FPA in 1988 [5].

The application to be measured is modeled (see Figure 3)
as a set of “logical transactions,” which are essentially
equivalent to IFPUG FP transactions and COSMIC
functional processes. Each logical transaction is
characterized in terms of the number of input DET, the
number of output DET, and the number of Data Entity Types
Referenced. In the Mark II FP model, DET have the same
meaning as in the IFPUG FP model, while entities replace
logical files (however, today the meaning associated with
logical files is the same as that of Symons’s entities).

The functional size in Mark II FP is the weighted sum,
over all Logical Transactions, of the Input Data Element
Types (Ni), the Data Entity Types Referenced (Ne), and the
Output Data Element Types (No).

So the Mark II FP size for an application is:

Size = Wi × ΣNi + We × ΣNe + Wo × ΣNo

where ‘Σ’ means the sum over all Logical Transactions, and
the industry average weights are Wi = 0.58, We = 1.66, and
Wo = 0.26 [6].

SW application functional specifications

Logical transaction

Input Data

Element

Entity

Output Data
Element

Data Entity
Type Reference

Figure 3. The model of software used in Mark II FP measurement.

D. Use Case Points Software Model

Use Case Points (UCP) were proposed by Karner to
measure the size of applications specified via use cases [8].
Thus, the model of software considered for UCP
measurement is centered on the concept of use case [9], as
shown in Figure 4.

The UCP measurement process involves two phases. In
the first one, the given application is measured in Unadjusted
Use Case Points (UUCP). In the second one, the size
expressed in UUCP can be “corrected” with the Technical
Complexity Factor (TCF), which represents how difficult to
construct the program is, and the Environmental Factor (EF),
which represents how efficient our project is.

To compute size in UUCP, the considered factors are the
application’s users, the use cases, the transactions carried out
in each use case, and the ”analysis objects” (i.e., (interface,
control, and entity objects, as defined in Objectory process
[9]) used to realize the use case.

SW application functional specifications

Use case

Transaction

ActorAnalysis object

Figure 4. The model of software used in Use Case Points measurement.

The functional size in UUCP is the weighted sum of the
Actors and the Use Cases. Both use cases and actors are
weighted according to their “complexity.” The complexity of
actors is determined by nature of the actor (human or
external system) and the type of interaction (e.g., via a GUI,
or a command line interface). The complexity of use cases is
determined by the number of involved transactions and the
number of analysis objects needed to implement the use
case.

The size in Use Case Points is calculated as follows.

TCF = 0.6 + 0.01 × Σ FCi × Wi

EF = 1.4 - 0.03 × Σ FEi × Wi

UCP = UUCP × TCF × EF

Where FCi are 13 factors contributing to complexity and
FEi are 8 factors contributing to efficiency. Wi are the
weights (integer value in the [0,5] interval) assigned to
factors.

The details of the measurement can be found in [8].

III. CASE STUDIES

In this section, we describe the functional specifications
of the software applications that will be used to test the
functional sizing ability of FPA and COSMIC.

The chosen applications are programs for playing board
games against the computer. They are similar as for the
functionality they provide, but they require different amounts
of data processing.

278

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The specifications that apply to both applications are as
follows.

− The program lets a human player play against the
computer.

− The program features a graphical interface in which the
game board is represented.

− The player makes his/her moves by clicking on the
board. Illegal moves are detected and have no effect. As
soon as the human player has made a move, the
computer determines its move and shows it on the
board.

− When the game ends, the result is shown, and the player
is asked if he/she wants to play another game.

The use case diagram of the considered applications is
shown in Figure 5. From the point of view of the player, two
main operations are available: to initiate a new game and to
perform a move. In the latter case, the program will also
compute its move. In both cases, the board is updated and
displayed. A minor functionality of the program allows the
player to show a few pieces of information concerning the
application and its authors.

System

Player

New game

Display board

Move
Computer move

Show credits

<<include>>

<<include>>

<<include>>

Figure 5. Use case diagram of the considered applications.

It is worth stressing that the use case diagram in Figure 5
describes all the considered applications, which differ from
each other only for the implemented game, hence for the
logic employed to compute the moves.

A. A Software Application to Play Tic-tac-toe

Tic-tac-toe is a very simple, universally known game. It
is played on a 3×3 board, as shown in Figure 6.

Each player in turn puts his/her token in a free cell. The
first player to place three tokens in a line (horizontally,
vertically, or diagonally) wins. When the board is filled and
no three-token line exists, the match is tie.

Playing Tic-tac-toe is very simple. In fact, to play
optimally, a software program has just to evaluate the
applicability of a short sequence of rules: the first applicable
rule determines the move.

Figure 6. Tic Tac Toe playing board.

There are a few possible rule sequences: the one
implemented in the considered application is the following:
1) If there is a line (row, column, or diagonal) such that

two cells contain your token and the third cell X is
empty, put your token in the free cell X, to win.

2) If there is a line in which your opponent has two tokens
and the third cell X is free, put your token in the free cell
X, so to prevent your opponent from winning at next
turn.

3) If there is a move that lets you gain a winning position,
make it.

4) If there is any move such that the adversary will not be
able to gain a winning position at next turn, make such
move. If possible, put the token in central cell.

5) If there is any cell free, put your token there.
A position is a winning one for a player when there are

two lines each occupied by two tokens of the player, while
the third cell is free.

The code that implements the playing logic described
above is very simple and very small: we can expect that a
few tens of lines of code are sufficient to code the game
logic.

B. A Software Application to Play “five in a row”

Five in a row (aka Gomoku) can be seen as a
generalization of Tic-tac-toe. In fact, it is played on a larger
board (typically 19×19, as in Figure 7) and the aim of the
game is to put five tokens of a player in a row (horizontally,
vertically, or diagonally).

Figure 7. Gomoku playing board.

279

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The functional specifications of Gomoku are exactly the
same as the specifications of Tic-tac-toe, except that the size
of the board is larger and the number of tokens to put in a
row is 5 instead of 3.

The combinations of tokens and free cells that can occur
on a Gomoku board are many more than in a Tic-tac-toe
game. Accordingly, a winning strategy is much more
complex, as it involves considering a bigger graph of
possibilities.

As a matter of fact, Gomoku has been a widely
researched artificial intelligence research domain, and there
are Gomoku professional players and tournaments.

Accordingly, we can safely state that Gomoku is a much
more complex game than Tic-tac-toe and requires a large
amount of processing, so that the machine can play at a level
that is comparable with that of a human player.

On the contrary, Tic-tac-toe is a very simple game: you
do not need to be particularly smart to master it and always
play perfectly.

C. A Software Application to Play “Reversi”

Reversi (aka Othello) is played on an 8×8 board. The
initial configuration is shown in Figure 8 a). Suppose player
A has black tokens. At his/her turn, player A has to put its
token in a position so as to form a horizontal, vertical, or
diagonal line of adjacent tokens that has black tokens at the
extremes and includes only white tokens (at least one). As an
effect of the move, the white tokens between the black
extremes become black. For instance, in the situation shown
in Figure 8 a), player A could place his/her black token
below the rightmost white token: such token is between two
black tokens and becomes black, as shown in Figure 8 b).
The game is named “Reversi” because usually the tokens are
black on one side and white on the opposite one, so to
change the color of a token you reverse it.

a) b)

Figure 8. Reversi playing board.

The strategy required to win a Reversi game is definitely
more complex than the strategy required to play Tic-tac-toe.
However, it is simpler than the strategy required for playing
Gomoku, as the move search space is smaller.

IV. APPLICATION SIZING

A. Measurement of the Tic-tac-toe Application

Let us apply the FSM methods described in Section II to
measure the Tic-tac-toe specifications given in Section III.A
above.

1) Measuring Tic-tac-toe with IFPUG Function Points.
The software model to be used includes just a Logical

data file: the board, which is a matrix of cells, each having
one of three possible values (circle, cross, free). So, it is easy
to see that there is only one Logical data file (the board),
which is a simple Internal Logical File (ILF), contributing 7
FP.

The software model to be used involves the following
elementary processes:

− Start a new game

− Make a move

− Show credits.
Start a new game is a simple External Input (EI),

contributing 3 FP. Make a move is a simple external output,
contributing 4 FP. One could wonder whether this operation
should be considered an input (because the move involves
inputting a position) or an output (because of the
computation and visualization of the move by the computer).
We consider that the latter is the main purpose of this
transaction, which is thus an external output. Show credits is
a simple External Query (EQ), contributing 3 FP.

In summary, the FPA size of the Tic-tac-toe application
is 17 FP.

2) Measuring Tic-tac-toe with the COSMIC Method
The COSMIC functional processes of the application are

the same as the FPA elementary processes. When measuring
the application using the COSMIC method, we have to
consider the data movements associated with each functional
process:

− Start a new game involves clearing the board and
possibly updating it, if the computer is the first to move
(a Write) and showing it (a Read and an Exit).
Therefore, this functional process contributes 3 CFP.

− Make a move involves entering a move (an Entry),
updating the board with the human player move (a
Write), reading it (a Read), and then updating it again
with the computer move and showing it (an Exit). In
addition, if a move concludes the game, the result is
shown (an Exit). Therefore, this functional process
contributes 5 CFP.

− Show credits involves the request to show credits (an
Entry), reading the credits (a Read) and outputting them
(an Exit). Thus, this functional process contributes 3
CFP.

In summary, the COSMIC size of the Tic-tac-toe
application is 11 CFP.

3) Measuring Tic-tac-toe with Use Case Points
The Tic-tac-toe application has one user, who interacts

with the system through a graphical user interface.
According to UCP rules, such user is a complex actor, with
weight 3.

280

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Tic-tac-toe application has three use cases, as shown
in Figure 5. All of these use cases have 3 or fewer
transactions and can be realized with less than 5 analysis
objects; hence they are simple and their weight is 5.

So, the size of Tic-tac-toe is 3+5+5+5=18 UUCP.
TCF and EF involve several factors. However, only the

“Complex internal processing” factor of TCF is relevant for
our study, so we assume that all the factors considered in the
TCF and EF have value 3, i.e., average relevance. As a

consequence TCF×EF is 0.99 + 0.01 × CIP, where CIP is the
value of the Complex Internal Processing.

The Complex Internal Processing factor is supposed to
represent the complexity of the processing that is carried out
in the application. It is rated on a scale 0, 1, 2, 3, 4, and 5.
Unfortunately, in the original definition, Karner did not
provide criteria to rate Complex internal processing;
therefore, different persons could rate the same application
differently. Tic-tac-toe surely is a very simple application,
but it is very difficult to say if its Complex Internal
Processing factor should be rated 0 or 1. So, we can conclude

that the size of Tic-tac-toe is 18 × (0.99 + 0.01 CIP), that is,
either 17.82 or 18, depending on the value assigned to CIP.

4) Measuring Tic-tac-toe with Mark II Function Points
To size the Tic-tac-toe application using Mark II FP, it is

first necessary to identify the involved entities and Logical
transactions. This is very easy, since we have only two
entities (the board and the credits) while the logical
transactions correspond to IFPUG FP transactions, COSMIC
functional processes and UCP Use Cases (i.e., New game,
Move, Show credits).

The size is computed according to the number of input
data, entities referenced and output data as shown in TABLE
I. While New game and Show credits have just one input
(the event that triggers the operation), Move has two inputs:
the row and column where the player puts his/her token.

New game and Show credits also have just one output
(the board and the credits’ text, respectively); Move outputs
the board and the users’ tokens, or a diagnostic message
(when the player clicks on an already occupied cell).

New game and Move access the board entity, Show
credits accesses the credits entity.

TABLE I. MEASURES OF TIC-TAC-TOE APPLICATION IN MARK II FP

Logical transaction Ni Ne No MKII FP

New game 1 1 1 2.5

Move 2 1 3 3.6

Show credits 1 1 1 2.5

Total 8.60

In conclusion, the application to play Tic-tac-toe has size
8.60 MKII FP.

5) Tic-tac-toe Code Measures
Since we are also interested in indications concerning the

amount of computation performed by the application, we
selected an open source implementation of Tic-tac-toe and
measured it.

To evaluate the “physical” size of the Tic-tac-toe
application, we looked for an open source application that
implements the specifications described above. Two such
applications are the programs available from [10] and [11].
To make the considered program functionally equivalent to
the other applications, we performed a merge of the code
from [10] and [11]. The main measures that characterize the
obtained code are given in TABLE II.

TABLE II. MEASURES OF THE TIC-TAC-TOE APPLICATION CODE

Measures
Tic-tac-toe

Total AI part

LoC 286 146

Number of Java statements 187 101

McCabe (method mean) 3.6 4.5

Num. classes 2 1

Num. methods 26 13

In TABLE I (and in TABLE II), column “AI part”

indicates the measures concerning exclusively the part of the
code that contains the determination of the computer move.

We reported both the number of lines of code and the
number of actual Java statements: the latter is a more precise
indication of the amount of source code, since it does not
consider blank lines, comments and lines containing only
syntactic elements, like parentheses. We also reported the
mean value of McCabe complexity of methods.

B. Measurement of Gomoku Application

Let us measure the Gomoku specifications given in
Section III.B above

1) Measuring Gomoku with IFPUG Function Points

and COSMIC
The functional size measures of the Gomoku application

are exactly the same as the measures of the Tic-tac-toe
application. In fact, the specifications of the two applications
are equal, except for the board size and winning row size,
which do not affect the measurement, because both IFPUG
FPA and COSMIC consider data types, not the value or
number of instances.

2) Measuring Gomoku with Use Case Points
Gomoku has the same actor and use cases as Tic-tac-toe.

Therefore, the size of Gomoku measured in UUCP is equal
to Tic-tac-toe’s.

As for Tic-tac-toe, we assume that the factors that
determine TCF and EF are all average, except for the CIP;

therefore, TCF×EF is 0.99 + 0.01 × CIP.
Gomoku is definitely a much more complex game than

Tic-tac-toe; therefore, the Gomoku playing program has to
perform quite complex processing to achieve an acceptable
playing level. We can therefore assign the Complex Internal
Processing a high rating, even though it is not clear whether
we should set CIP=5 or CIP=4. In conclusion, the size of
Gomoku is 18.54 or 18.72, depending on the value of CIP.

3) Measuring Gomoku with Mark II FP

281

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Gomoku application is characterized by the same
actors, use cases, transactions and entities as the Tic-tac-toe
application. Therefore, they have the same size measure
expressed in Mark II FP.

4) Gomoku Code Measures
As for Tic-tac-toe, we selected an open source

implementation of Gomoku and measured it. More precisely,
we looked for a program capable of sophisticated
“reasoning” that lets the program play at the level of a fairly
good human player. One such application is the Gomoku
Java program available from [12].

The main measures that characterize the code are given
in TABLE III.

TABLE III. MEASURES OF THE GOMOKU APPLICATION CODE

Measures
Gomoku [12]

Total AI part

LoC 859 373

Number of Java statements 419 212

McCabe (method mean) 2.6 5.4

Num. classes 17 3

Num. methods 83 25

Measures in TABLE III were derived using the same

tools and have the same meaning as the measures in TABLE
II.

C. Measurement of Reversi Application

1) Measuring Reversi with IFPUG Function Points and

COSMIC
The functional size measures of the Reversi application

are exactly the same as the measures of the Tic-tac-toe and
Gomoku applications. In fact, the specifications of the three
applications are characterized by the same basic functional
components.

2) Measuring Reversi with Use Case Points
Reversi has the same actor and use cases as Tic-tac-toe

and Gomoku. Therefore, the size of Reversi measured in
UUCP is equal to Tic-tac-toe’s and Gomoku’s.

As for the other applications, we assume that the factors
that determine TCF and EF are all average, except for the

CIP; therefore, TCF×EF is 0.99 + 0.01 × CIP.
Reversi is definitely more complex than Tic-tac-toe, but

less complex than Gomoku. We can therefore assign the
Complex Internal Processing a high rating, but not as high as
Gomoku’s. So, it is probably reasonable to set CIP=4 or
CIP=3. In conclusion, the size of Reversi is 18.36 or 18.54,
depending on the value of CIP.

Note that the value assigned to CIP is largely subjective:
this is due to the fact that the definition of UCP does not
provide precise guidelines for determining the values of TCF
and EF factors.

3) Measuring Reversi with Mark II Function Points
When measuring the Reversi applications with Mark II

FP, the same considerations reported for Tic-tac-toe and

Gomoku apply. The only difference is that when the New
game logical transaction is performed, the initial situation of
the board is not empty, therefore we have 2 additional output
DET associated to New game. This is shown in TABLE IV.

TABLE IV. MEASURES OF THE REVERSI APPLICATION IN MARK II FP

Logical transaction Ni Ne No MKII FP

New game 1 1 3 3.02

Move 2 1 3 3.6

Show credits 1 1 1 2.5

Total 9.12

In conclusion, the application to play Reversi has size
9.12 MKII FP.

4) Reversi Code Measures
Like with the other applications, we selected an open

source Java implementation of Reversi [13] and measured it.
More precisely, the implementation of Reversi that we

found [13] was richer than the implementations of Tic-tac-
toe and Gomoku in functionality (e.g., it features a help
function, the possibility of choosing the playing level and the
dashboard color, etc.). To make the Reversi application
comparable to the others, we simplified the implementation,
deleting all the additional functions and the corresponding
code.

The main measures that characterize the resulting code
are given in TABLE V.

TABLE V. MEASURES OF THE REVERSI APPLICATION CODE

Measures
Reversi [13]

Total AI part

LoC 419 218

Number of Java statements 290 180

McCabe (method mean) 3.1 4.4

Num. classes 6 4

Num. methods 36 17

Measures in TABLE V were derived using the same

tools and have the same meaning as the measures in TABLE
II and TABLE III.

V. COMPARISON OF MEASURES

The measures reported in Section IV and summarized in
TABLE VI show that a few applications may have the same
functional size, but very different code size: for instance, the
Gomoku application is twice as big as the Tic-tac-toe
application. Considering the nature of these applications, the
difference in code is largely explained by the different
amount of processing required. In the case of Tic-tac-toe, the
number of possible moves is very small, as is the number of
different possible configurations that can be achieved by
means of a move: hence, every move computation has to
explore a very small space. The contrary is true for the

282

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Gomoku application. The consequence is that Gomoku
requires an amount of code devoted to move computation
that is more than twice as much as the code required by Tic-
tac-toe. Reversi requires more data processing than Tic-tac-
toe and less processing than Gomoku; accordingly, its
implementation is bigger than Tic-tac-toe’s and smaller than
Gomoku’s.

The collected measures are summarized in TABLE VI.
Both measures concerning the complete application (column
Total) and measures concerning the artificial intelligence
part of the application (column AI) are given. It should be
noted that the functional size makes sense only concerning
the complete application, since it is not allowed in FSM
methods to measure only a portion of the application (this
would actually be possible with the COSMIC method, but
the resulting measure would not be comparable to those of
the complete applications, though).

TABLE VI. SUMMARY OF THE APPLICATIONS’ MEASURES.

Tic-tac-toe Reversi Gomoku

Total AI Total AI Total AI

Data proc. Average
Very

low
Average

Medium

-high
Average High

Java statem. 187 101 290 180 419 212

McCabe 3.6 4.5 3.1 4.4 2.6 5.4

Classes 2 1 6 4 17 3

Methods 26 13 36 17 83 25

IFPUG FP 17 17 17

CFP 11 11 11

UUCP 18 18 18

UCP 17.8–18 18.4–18.5 18.5–18.7

Mark II FP 8.60 9.12 8.60

These observations suggest a few important

considerations, which are reported below.

A. Functional Size and Data Processing

The definitions of IFPUG FP, COSMIC FP, Mark II FP,
and UUCP do not properly take into account the amount of
processing required by software functional specifications. If
we plot the three considered applications in a Cartesian
plane, where the axes represent the amount of required data
processing and the functional size (expressed via any
functional size measure), we get the situation described in
Figure 9 (note that the y axis is not in scale). It appears that
there is no relationship that links the functional size and the
amount of processing required.

Functional Size

Tic-tac-toe

Reversi

Gomoku

Data

processing

Figure 9. Plot of data processing vs. functional size for the considered

applications.

For the sake of precision, we must note that Mark II FP
and UUCP measures are not equal for all the applications,
but are only slightly different, while the differences in terms
of data processing are fairly large.

If we plot the three considered applications in a Cartesian
plane, where the axes represent the amount of required data
processing and the physical size (expressed in LoC, or
number of statement, or in number of methods, etc.), we get
the situation described in Figure 9 (note that axis scales are
just indicative). It is possible to see that there is a clear
relationship between the physical size and the amount of
processing required.

Data

processing

Physical Size

Tic-tac-toe

Reversi

Gomoku

Figure 10. Plot of data processing vs. physical size for the considered

applications.

If we assume –as is generally accepted– that the effort
required to implement a software application is related to the
number of Lines of Code to be written, the possibility of
having widely different sizes in LoC for applications that
have the same functional size implies that functional size is
not a good enough predictor of development effort.

B. Mark II FP Measures

In the considered cases, Mark II FP size measures
indicate that Reversi is marginally bigger than the other
applications. This is misleading when considering that the
Gomoku application is actually much bigger than Reversi. In
addition, the difference with respect to Tic-tac-toe’s size
does not give a proper idea of the actual difference: the
implementation of Reversi is 55% bigger than Tic-tac-toe’s,
while the functional size in Mark II FP is only 6% bigger.

283

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Effort Required for Non-coding Activities

The observation reported in Section V.A above does not
apply only to the coding phase. In fact, the difference in the
number of classes and methods (shown in TABLE VI)
suggests that also the effort required by design and testing
activities is better estimated based on measures that represent
the size of the code structure –like the number of classes–
rather than the functional size.

D. The Explanation Power of TCF

In the analyzed cases, the correction to UUCP due to the
TCF appears largely insufficient. In fact, assigning to CIP
the biggest possible value (i.e., 5) for Gomoku and the
smallest (i.e., 0) for Tic-tac-toe causes the size of Gomoku
(18.72 UCP) to be only 5% bigger than the size of Tic-tac-
toe (17.82 UCP). Such difference does not appear to be able
to predict the difference in terms of Java statements to be
written, as the AI code of Gomoku is twice as big as the AI
code of Tic-tac-toe.

We should note that in this paper we considered
Unadjusted Function Points, as defined in the ISO standard
[3]. However, the IFPUG also defines “adjusted” Function
Points, which are obtained by applying to the unadjusted
measure a value adjustment factor (VAF) that is based on a
few characteristics of the application being measured,
including “Complex Processing” [2]. Actually, the definition
of UCP’s TCF and EF were inspired by Function Points’
VAF. The considerations reported above concerning the
representativeness of TCF apply to VAF as well. The
“Complex Processing” component of VAF affects the size
by less than 8%: too little to explain the observed differences
in the considered applications’ code size.

E. The Explanation Power of McCabe Complexity

As a final remark, we can observe that mean McCabe
complexity is fairly similar in all the considered applications.
The mean McCabe complexity of the AI part of the
applications increases with the amount of data processing
required by the games, but the differences are very small:
from 4.5 of Tic-tac-toe to 5.4 of Gomoku. This means that
applications dealing with more complex games (like
Gomoku) do not need code that is much more complex (in
McCabe’s sense), but just more code. In other words, it is the
difference in the amount of data processing, not in the
complexity of the processing that is relevant, and that
existing functional size measures fail to represent.

VI. ADDITIONAL EVIDENCE

The problems described above are at the level of
elementary processes (alias transactions, alias functional
processes). Namely, the problem with the considered board
games is located in the Move process, which has the same
functional size in all applications, but requires quite different
data processing in the three considered applications.

Readers might wonder whether the described problem is
due to the nature of the considered applications, which
involve the usage of artificial intelligence. Actually, the same
type of problem can be found in different application
domains. Let us consider the measurement of source code.

Several processes that are frequently found in measurement
programs share the same set of properties, namely:

− Inputs: the request to measure and the name of the
source code file to be measured.

− Output: the value of the measure.

− Data read: the code file.
Examples of such processes are the measurement of LoC,

the measurement of Non commenting LoC (i.e., LoC not
including comments), the measurement of McCabe
complexity and the measurement of the coupling between
objects (CBO) [14].

It is easy to see that these processes have the same
functional size, whatever measure they compute. More
precisely, they all have the same functional size if IFPUG
FP, COMSIC FP or Mark II FP are used. If UCP are used,
the sizes could differ of up to 5%, because of differences in
the “Complex Internal Processing” factor.

However, different measures require different amounts of
data processing:

− Total LoC: the processing is extremely simple, as it just
involves counting the number of ‘new line’ characters.

− Non commenting: the required processing is more
complex than in the former case, but still rather simple.
In fact it is sufficient to recognize the beginning and end
of comments and exclude lines that are entirely included
in comments.

− McCabe complexity: the processing is more complex
than in the previous case, since syntax analysis is
required to recognize functions (or procedures or
methods, depending on the programming language) and
decision statements (if, while, for, etc.). The
computation of McCabe complexity is usually
performed by first parsing the code to obtain an abstract
syntax tree, and then visiting the tree to count the
relevant syntactic elements (if, while, etc.).

− CBO: the processing is still more complex. In fact,
semantic analysis of code is also required, in addition to
syntax analysis. For instance, when a statement like
a = b.new_class(x,y,z); is found in class C, it is

necessary to understand the type (class) returned by
method new_class, to properly count the number of
dependencies of class C.

So, a program that measures McCabe complexity and
CBO has the same functional size as a program that counts
total LoC and non-comment LoC; however, it is quite clear
that implementing the former program is much more
demanding in terms of development effort, since a greater
amount of data processing has to be implemented.

Similar examples in different domains are easily found.
For instance, in the statistical domain, a few processes have
to show a series of data concerning a time period, via
different representations. All the processes have the same
inputs, read similar data, and output similar information
(although using different graphical styles): accordingly, all
the processes have the same functional size, since graphical
styles are irrelevant. However, some of these process could
require a very small amount of data processing. For instance,
the process that shows data via a bar chart (Figure 11)

284

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

consists of a simple loop: at every iteration a value is read
and a bar of length proportional to the value is drawn. On the
contrary, a process that shows the data via a “smooth”
interpolation line, e.g., a lowess (locally weighted scatterplot
smoothing) curve [15] (Figure 12) has to perform a definitely
greater amount of data processing, since the computation of
weighted linear least squares regression is required.

Figure 11. Output of a transaction that represents a time series via an

histogram.

Figure 12. Output of a transaction that represents a time series via a

LOWESS curve.

Summarizing, there are many examples of transactions (alias
elementary processes, alias functional processes, etc.) whose
functional size measure does not appear effective in
representing the functionality delivered to the user, since the
–quite variable– amount of data processing is not accounted
for.

VII. DISCUSSION: WHAT SOLUTIONS ARE POSSIBLE?

The usefulness of the evidence given in this paper stems
from a few well-known facts:

− We need to estimate, during the early phases of a
project, the overall software development effort.

− Development effort has been widely reported to be
directly related to the size in LoC of software.
Unfortunately, the size in LoC is not available in the
early phases of projects, when estimates are most
needed.

− Therefore, we need FSM methods, i.e., we need
measures of functional specifications, because
specifications are available in the early phases of
projects.

− In this paper, we provided some evidence that current
FSM methods appear limited in representing the amount
of data processing required by functional specifications.
Therefore, we need to somehow enhance FSM methods
to remove such limitation.

So, we are facing the following research question: how
can we improve FSM methods so that the delivered
functional size measures account for the amount of data
processing described or implied by the functional
specifications?

This is an open research question, which calls for a
substantial amount of further studies. In the following
sections, we report a few observations, ideas, and evaluations
that could be useful considering when tackling the problem.

A. Software Models

FSM methods –like any measurement method– are
applied to models of the object to be measured. Hence, a
rather straightforward consideration is that data processing
must be represented in the model that describes the software
application to be measured.

We can observe that the conceptual model of software
proposed in the COSMIC method includes data processing,
but no criteria or procedures for measuring data processing
are given in the context of the COSMIC method.

In COSMIC, data processing is a sub-process of a
functional process. Therefore, functional processes should be
described in a manner that makes it possible to identify and
measure the extent of data processing that occurs within a
functional process.

Given the similarity of COSMIC functional processes
and FPA elementary processes (or transactions) any
technique used to enhance the expressivity of COSMIC
models as far as data processing is concerned should be
readily applicable to FPA models as well.

285

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Software Specifications

A question that should be considered is if the information
required for identifying and measuring data processing is
always available from the software specifications that are
derived from user requirements.

FSM methods use models of functional specifications: if
functional specifications do not include information on data
processing, neither do their models, and FSM methods will
not be able to account for data processing.

So, another open question is the following: is it necessary
to go beyond user requirements related specifications to be
able to represent data processing? In other words: should
elements of design be anticipated, to get better measures of
the amount of data processing to be implemented?

C. Qualitative Knowledge

Current FSM methods are inherently quantitative. Even
though some measurement activities –like deciding if two
sets of data should be two RET of a unique logic file or they
should belong to separate logic files– involve some
subjectivity, they are always meant to provide measures (the
number of ILF, RET, etc.) at the ratio level of measurement.

One could wonder if the use of more qualitative
knowledge, derived through inherently subjective
evaluations and expressed via ordinal scales, would be more
suitable for expressing the relevant information concerning
data processing.

For instance, after talking with stakeholders, an analyst
could easily classify the functional process “Make a move”
of the Tic-tac-toe application as very simple, while the same
process of the Gomoku application could be classified as
very complex.

D. Towards a Measure of Data Processing

As mentioned above, proposing a solution to the problem
outlined above is very difficult. Here, we outline a few
directions to be considered when addressing the problem.

A first consideration concerns the level of description of
data processing. At a high level, the “variability” of the
processes in terms of number of different cases to be
considered could easily determine the amount of data
processing required. Consider for instance a process that
starts by identifying users: if the specifications indicate that
the user can be identified in three different ways (e.g., by
name, by social security number, and by email address) it is
likely that it will have to process three times as much data as
a process that identifies users in a single way.

Another observation concerns how to differentiate
functionalities. A possibility is to account for the internal
states a function has to deal with. In the case of tic-tac-toe,
the number of states in which the game can be is quite small;
on the contrary, the states of a Gomoku game are very
numerous. Accordingly, the amount of computation could be
proportional to the number of states, since the function has to
properly deal with all states. However, the quantification of
data processing could be further complicated by the presence
of equivalent states, i.e., sets of states that are managed in the
same way, so that having N or N+1 states in such sets would
not affect the amount of processing required. For instance, a

date increase function has to account for months having 28
(or 29), 30, or 31 days: the fact that there are 7 months
having 31 days and just one having 28 days is irrelevant. In
complex cases, identifying the relevant states could be very
difficult; for instance, in Gomoku several token patterns can
be identified, and each pattern calls for a specific strategy.
So, the interesting states are the token patterns, but
imagining in advance all the possible patterns is quite hard.
A qualitative indication concerning the number of states
would probably be more appropriate, in this case.

VIII. RELATED WORK

Although several FSM methods (e.g., Mark II FP,
NESMA and FiSMA) have been proposed as extensions or
replacements of Function Point Analysis, very little attention
has been given to the measurement of data processing.

A noticeable exception is the proposal of Feature Points
by Capers Jones [16]. In this functional size measure,
algorithms were added to the set of FPA basic functional
components (ILF, EIF, EI, EO and EQ), and each component
type was assigned a unique value, i.e., the notion of
complexity was removed. The method was soon abandoned,
mainly due to the difficulty of identifying algorithms, which
are typically not documented in functional specifications.

Function Point Analysis and other methods –like Use
Case Points [8]– introduce a mechanism for “adjusting” the
size measure to take into account additional complexity
factors that are likely to increase the effort required for
implementation. In fact, among FPA value adjustment
factors (VAF) we find “Complex Internal Processing,”
which represents to what degree the application includes
extensive logical or mathematical processing. This
mechanism is similar to what we need, but has a few
shortcomings, including:

− In FPA the considered VAF’s value increases the
application size by 4% to 8%: at least one order of
magnitude less than needed in the Tic-tac-toe vs.
Gomoku case.

− The VAF applies to the whole application, so that it is
not possible to distinguish simple and complex
processes.

Noticeably, only the definition of unadjusted Function
Points was standardized [3].

The Path measure [17][18] represents the complexity of
processes in terms of the number of execution paths that are
required for each process. Although this measure proved
fairly effective in improving effort estimation based on
functional size measures, it is not applicable in cases like
those considered in this paper, since the alternative courses
of the specified processes are not known.

IX. CONCLUSIONS

In this paper, we have shown by means of examples that
FSM methods fail to represent the amount of data processing
required by software functional specifications.

One could wonder how general are the results reported in
the paper. As for this issue, we showed in Section VI that the

286

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

limits of FSM methods discussed in the paper apply to
several application domains.

The work reported in the paper indicates that we need a
measure that can complement traditional FSM methods to
represent the amount of data processing that is needed to
provide the required functionality.

We are interested in representing and quantifying the
amount of data processing not because of an abstract interest
in the definition of functional size measures, but because –as
shown in the paper– data processing is logically related to
code size, which in its turn is linked to the amount of
development effort required to build a software application.

How to measure the amount of data processing required
by the specifications of a software application is an open
research question of great practical interest that should
receive much more attention than it currently does.

ACKNOWLEDGMENT

The work presented here has been partly supported by the
FP7 Collaborative Project S-CASE (Grant Agreement No
610717), funded by the European Commission and by
project “Metodi, tecniche e strumenti per l’analisi,
l’implementazione e la valutazione di sistemi software,”
funded by the Università degli Studi dell’Insubria.

REFERENCES

[1] L. Lavazza, S. Morasca, and D. Tosi, “On the Ability of
Functional Size Measurement Methods to Size Complex
Software Applications,” 9th Int. Conf. on Software
Engineering Advances - ICSEA 2014, October 12-16 2014,
Nice. pp. 404-409.

[2] International Function Point Users Group. Function Point
Counting Practices Manual - Release 4.3.1, January 2010.

[3] ISO/IEC 20926: 2003, Software engineering – IFPUG 4.1
Unadjusted functional size measurement method – Counting
Practices Manual, Geneva: ISO, 2003.

[4] A. J. Albrecht, “Measuring Application Development
Productivity,” Joint SHARE/ GUIDE/IBM Application
Development Symposium, 1979, pp. 83-92.

[5] C. R. Symons, “Function point analysis: difficulties and
improvements,” IEEE Transactions on Software Engineering,
14.1, 1988.

[6] ISO/IEC 20968:2002, “Software engineering – Mk II
Function Point Analysis – Counting Practices Manual,” 2002.

[7] COSMIC – Common Software Measurement International
Consortium, The COSMIC Functional Size Measurement
Method - version 4.0 Measurement Manual, April 2014.

[8] G. Karner, “Resource estimation for objectory projects,”
Objective Systems SF AB, 17. 1993.

[9] I. Jacobson, G. Booch, and J. Rumbaugh. “The Objectory
Software Development Process,” Addison Wesley, 1997.

[10] http://algojava.blogspot.it/2012/05/tic-tac-toe-game-
swingjava.html, last accessed 15 May, 2105.

[11] http://sourceforge.net/projects/tictactoe-javab/files, last
accessed 15 May, 2105.

[12] http://sourceforge.net/p/gomoku/, last accessed 15 May, 2105.

[13] https://reversi.java.net/, last accessed 15 May, 2105.

[14] S.R. Chidamber and C.F. Kemerer. “A metrics suite for object
oriented design,” IEEE Transactions on Software Engineering
20.6, 1994.

[15] W.S. Cleveland, “LOWESS: A program for smoothing
scatterplots by robust locally weighted regression,” American
Statistician, 1981.

[16] C. Jones, “The SPR Feature Point Method,” Software
Productivity Research, 1986.

[17] G. Robiolo and R. Orosco, “Employing use cases to early
estimate effort with simpler metrics,” Innovations in Systems
and Software Engineering, 4(1), 2008, pp. 31-43.

[18] L. Lavazza and G. Robiolo, “Introducing the evaluation of
complexity in functional size measurement: a UML-based
approach,” ACM-IEEE Int. Symp. on Empirical Software
Engineering and Measurement, September 2010.

287

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

www.iariajournals.org

International Journal On Advances in Intelligent Systems

issn: 1942-2679

International Journal On Advances in Internet Technology

issn: 1942-2652

International Journal On Advances in Life Sciences

issn: 1942-2660

International Journal On Advances in Networks and Services

issn: 1942-2644

International Journal On Advances in Security

issn: 1942-2636

International Journal On Advances in Software

issn: 1942-2628

International Journal On Advances in Systems and Measurements

issn: 1942-261x

International Journal On Advances in Telecommunications

issn: 1942-2601

