

The International Journal on Advances in Software is published by IARIA.

ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Software, issn 1942-2628

vol. 7, no. 1 & 2, year 2014, http://www.iariajournals.org/software/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Software, issn 1942-2628

vol. 7, no. 1 & 2, year 2014,<start page>:<end page> , http://www.iariajournals.org/software/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2014 IARIA

International Journal on Advances in Software

Volume 7, Number 1 & 2, 2014

Editor-in-Chief

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Editorial Advisory Board

Hermann Kaindl, TU-Wien, Austria

Herwig Mannaert, University of Antwerp, Belgium

Editorial Board

Witold Abramowicz, The Poznan University of Economics, Poland

Abdelkader Adla, University of Oran, Algeria

Syed Nadeem Ahsan, Technical University Graz, Austria / Iqra University, Pakistan

Marc Aiguier, École Centrale Paris, France

Rajendra Akerkar, Western Norway Research Institute, Norway

Zaher Al Aghbari, University of Sharjah, UAE

Riccardo Albertoni, Istituto per la Matematica Applicata e Tecnologie Informatiche “Enrico Magenes” Consiglio

Nazionale delle Ricerche, (IMATI-CNR), Italy / Universidad Politécnica de Madrid, Spain

Ahmed Al-Moayed, Hochschule Furtwangen University, Germany

Giner Alor Hernández, Instituto Tecnológico de Orizaba, México

Zakarya Alzamil, King Saud University, Saudi Arabia

Frederic Amblard, IRIT - Université Toulouse 1, France

Vincenzo Ambriola , Università di Pisa, Italy

Renato Amorim, University of London, UK

Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus

Annalisa Appice, Università degli Studi di Bari Aldo Moro, Italy

Philip Azariadis, University of the Aegean, Greece

Thierry Badard, Université Laval, Canada

Muneera Bano, International Islamic University - Islamabad, Pakistan

Fabian Barbato, Technology University ORT, Montevideo, Uruguay

Barbara Rita Barricelli, Università degli Studi di Milano, Italy

Peter Baumann, Jacobs University Bremen / Rasdaman GmbH Bremen, Germany

Gabriele Bavota, University of Salerno, Italy

Grigorios N. Beligiannis, University of Western Greece, Greece

Noureddine Belkhatir, University of Grenoble, France

Imen Ben Lahmar, Institut Telecom SudParis, France

Jorge Bernardino, ISEC - Institute Polytechnic of Coimbra, Portugal

Rudolf Berrendorf, Bonn-Rhein-Sieg University of Applied Sciences - Sankt Augustin, Germany

Ateet Bhalla, Oriental Institute of Science & Technology, Bhopal, India

Ling Bian, University at Buffalo, USA

Kenneth Duncan Boness, University of Reading, England

Fernando Boronat Seguí, Universidad Politecnica de Valencia, Spain

Pierre Borne, Ecole Centrale de Lille, France

Farid Bourennani, University of Ontario Institute of Technology (UOIT), Canada

Narhimene Boustia, Saad Dahlab University - Blida, Algeria

Hongyu Pei Breivold, ABB Corporate Research, Sweden

Carsten Brockmann, Universität Potsdam, Germany

Mikey Browne, IBM, USA

Antonio Bucchiarone, Fondazione Bruno Kessler, Italy

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

Dumitru Burdescu, University of Craiova, Romania

Martine Cadot, University of Nancy / LORIA, France

Isabel Candal-Vicente, Universidad del Este, Puerto Rico

Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain

Jose Carlos Metrolho, Polytechnic Institute of Castelo Branco, Portugal

Alain Casali, Aix-Marseille University, France

Alexandra Suzana Cernian, University POLITEHNICA of Bucharest, Romania

Yaser Chaaban, Leibniz University of Hanover, Germany

Savvas A. Chatzichristofis, Democritus University of Thrace, Greece

Antonin Chazalet, Orange, France

Jiann-Liang Chen, National Dong Hwa University, China

Shiping Chen, CSIRO ICT Centre, Australia

Wen-Shiung Chen, National Chi Nan University, Taiwan

Zhe Chen, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China

PR

Po-Hsun Cheng, National Kaohsiung Normal University, Taiwan

Yoonsik Cheon, The University of Texas at El Paso, USA

Lau Cheuk Lung, INE/UFSC, Brazil

Robert Chew, Lien Centre for Social Innovation, Singapore

Andrew Connor, Auckland University of Technology, New Zealand

Rebeca Cortázar, University of Deusto, Spain

Noël Crespi, Institut Telecom, Telecom SudParis, France

Carlos E. Cuesta, Rey Juan Carlos University, Spain

Duilio Curcio, University of Calabria, Italy

Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania

Paulo Asterio de Castro Guerra, Tapijara Programação de Sistemas Ltda. - Lambari, Brazil

Cláudio de Souza Baptista, University of Campina Grande, Brazil

Maria del Pilar Angeles, Universidad Nacional Autonónoma de México, México

Rafael del Vado Vírseda, Universidad Complutense de Madrid, Spain

Giovanni Denaro, University of Milano-Bicocca, Italy

Hepu Deng, RMIT University, Australia

Nirmit Desai, IBM Research, India

Vincenzo Deufemia, Università di Salerno, Italy

Leandro Dias da Silva, Universidade Federal de Alagoas, Brazil

Javier Diaz, Rutgers University, USA

Nicholas John Dingle, University of Manchester, UK

Roland Dodd, CQUniversity, Australia

Aijuan Dong, Hood College, USA

Suzana Dragicevic, Simon Fraser University- Burnaby, Canada

Cédric du Mouza, CNAM, France

Ann Dunkin, Palo Alto Unified School District, USA

Jana Dvorakova, Comenius University, Slovakia

Lars Ebrecht, German Aerospace Center (DLR), Germany

Hans-Dieter Ehrich, Technische Universität Braunschweig, Germany

Jorge Ejarque, Barcelona Supercomputing Center, Spain

Atilla Elçi, Aksaray University, Turkey

Khaled El-Fakih, American University of Sharjah, UAE

Gledson Elias, Federal University of Paraíba, Brazil

Sameh Elnikety, Microsoft Research, USA

Fausto Fasano, University of Molise, Italy

Michael Felderer, University of Innsbruck, Austria

João M. Fernandes, Universidade de Minho, Portugal

Luis Fernandez-Sanz, University of de Alcala, Spain

Felipe Ferraz, C.E.S.A.R, Brazil

Adina Magda Florea, University "Politehnica" of Bucharest, Romania

Wolfgang Fohl, Hamburg Universiy, Germany

Simon Fong, University of Macau, Macau SAR

Gianluca Franchino, Scuola Superiore Sant'Anna, Pisa, Italy

Naoki Fukuta, Shizuoka University, Japan

Martin Gaedke, Chemnitz University of Technology, Germany

Félix J. García Clemente, University of Murcia, Spain

José García-Fanjul, University of Oviedo, Spain

Felipe Garcia-Sanchez, Universidad Politecnica de Cartagena (UPCT), Spain

Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany

Tejas R. Gandhi, Virtua Health-Marlton, USA

Andrea Giachetti, Università degli Studi di Verona, Italy

Robert L. Glass, Griffith University, Australia

Afzal Godil, National Institute of Standards and Technology, USA

Luis Gomes, Universidade Nova Lisboa, Portugal

Diego Gonzalez Aguilera, University of Salamanca - Avila, Spain

Pascual Gonzalez, University of Castilla-La Mancha, Spain

Björn Gottfried, University of Bremen, Germany

Victor Govindaswamy, Texas A&M University, USA

Gregor Grambow, University of Ulm, Germany

Carlos Granell, European Commission / Joint Research Centre, Italy

Christoph Grimm, University of Kaiserslautern, Austria

Michael Grottke, University of Erlangen-Nuernberg, Germany

Vic Grout, Glyndwr University, UK

Ensar Gul, Marmara University, Turkey

Richard Gunstone, Bournemouth University, UK

Zhensheng Guo, Siemens AG, Germany

Phuong H. Ha, University of Tromso, Norway

Ismail Hababeh, German Jordanian University, Jordan

Shahliza Abd Halim, Lecturer in Universiti Teknologi Malaysia, Malaysia

Herman Hartmann, University of Groningen, The Netherlands

Jameleddine Hassine, King Fahd University of Petroleum & Mineral (KFUPM), Saudi Arabia

Tzung-Pei Hong, National University of Kaohsiung, Taiwan

Peizhao Hu, NICTA, Australia

Chih-Cheng Hung, Southern Polytechnic State University, USA

Edward Hung, Hong Kong Polytechnic University, Hong Kong

Noraini Ibrahim, Universiti Teknologi Malaysia, Malaysia

Anca Daniela Ionita, University "POLITEHNICA" of Bucharest, Romania

Chris Ireland, Open University, UK

Kyoko Iwasawa, Takushoku University - Tokyo, Japan

Mehrshid Javanbakht, Azad University - Tehran, Iran

Wassim Jaziri, ISIM Sfax, Tunisia

Dayang Norhayati Abang Jawawi, Universiti Teknologi Malaysia (UTM), Malaysia

Jinyuan Jia, Tongji University. Shanghai, China

Maria Joao Ferreira, Universidade Portucalense, Portugal

Ahmed Kamel, Concordia College, Moorhead, Minnesota, USA

Teemu Kanstrén, VTT Technical Research Centre of Finland, Finland

Nittaya Kerdprasop, Suranaree University of Technology, Thailand

Ayad ali Keshlaf, Newcastle University, UK

Nhien An Le Khac, University College Dublin, Ireland

Sadegh Kharazmi, RMIT University - Melbourne, Australia

Kyoung-Sook Kim, National Institute of Information and Communications Technology, Japan

Youngjae Kim, Oak Ridge National Laboratory, USA

Roger "Buzz" King, University of Colorado at Boulder, USA

Cornel Klein, Siemens AG, Germany

Alexander Knapp, University of Augsburg, Germany

Radek Koci, Brno University of Technology, Czech Republic

Christian Kop, University of Klagenfurt, Austria

Michal Krátký, VŠB - Technical University of Ostrava, Czech Republic

Narayanan Kulathuramaiyer, Universiti Malaysia Sarawak, Malaysia

Satoshi Kurihara, Osaka University, Japan

Eugenijus Kurilovas, Vilnius University, Lithuania

Philippe Lahire, Université de Nice Sophia-Antipolis, France

Alla Lake, Linfo Systems, LLC, USA

Fritz Laux, Reutlingen University, Germany

Luigi Lavazza, Università dell'Insubria, Italy

Fábio Luiz Leite Júnior, Universidade Estadual da Paraiba,Brazil

Alain Lelu, University of Franche-Comté / LORIA, France

Cynthia Y. Lester, Georgia Perimeter College, USA

Clement Leung, Hong Kong Baptist University, Hong Kong

Weidong Li, University of Connecticut, USA

Corrado Loglisci, University of Bari, Italy

Francesco Longo, University of Calabria, Italy

Sérgio F. Lopes, University of Minho, Portugal

Pericles Loucopoulos, Loughborough University, UK

Alen Lovrencic, University of Zagreb, Croatia

Qifeng Lu, MacroSys, LLC, USA

Xun Luo, Qualcomm Inc., USA

Shuai Ma, Beihang University, China

Stephane Maag, Telecom SudParis, France

Ricardo J. Machado, University of Minho, Portugal

Maryam Tayefeh Mahmoudi, Research Institute for ICT, Iran

Nicos Malevris, Athens University of Economics and Business, Greece

Herwig Mannaert, University of Antwerp, Belgium

José Manuel Molina López, Universidad Carlos III de Madrid, Spain

Francesco Marcelloni, University of Pisa, Italy

Eda Marchetti, Consiglio Nazionale delle Ricerche (CNR), Italy

Leonardo Mariani, University of Milano Bicocca, Italy

Gerasimos Marketos, University of Piraeus, Greece

Abel Marrero, Bombardier Transportation, Germany

Adriana Martin, Universidad Nacional de la Patagonia Austral / Universidad Nacional del Comahue, Argentina

Goran Martinovic, J.J. Strossmayer University of Osijek, Croatia

Paulo Martins, University of Trás-os-Montes e Alto Douro (UTAD), Portugal

Stephan Mäs, Technical University of Dresden, Germany

Constandinos Mavromoustakis, University of Nicosia, Cyprus

Jose Merseguer, Universidad de Zaragoza, Spain

Seyedeh Leili Mirtaheri, Iran University of Science & Technology, Iran

Lars Moench, University of Hagen, Germany

Yasuhiko Morimoto, Hiroshima University, Japan

Muhanna A Muhanna, University of Nevada - Reno, USA

Antonio Navarro Martín, Universidad Complutense de Madrid, Spain

Filippo Neri, University of Naples, Italy

Toàn Nguyên, INRIA Grenobel Rhone-Alpes/ Montbonnot, France

Muaz A. Niazi, Bahria University, Islamabad, Pakistan

Natalja Nikitina, KTH Royal Institute of Technology, Sweden

Marcellin Julius Nkenlifack, Université de Dschang, Cameroun

Roy Oberhauser, Aalen University, Germany

Pablo Oliveira Antonino, Fraunhofer IESE, Germany

Rocco Oliveto, University of Molise, Italy

Sascha Opletal, Universität Stuttgart, Germany

Flavio Oquendo, European University of Brittany/IRISA-UBS, France

Claus Pahl, Dublin City University, Ireland

Marcos Palacios, University of Oviedo, Spain

Constantin Paleologu, University Politehnica of Bucharest, Romania

Kai Pan, UNC Charlotte, USA

Yiannis Papadopoulos, University of Hull, UK

Andreas Papasalouros, University of the Aegean, Greece

Rodrigo Paredes, Universidad de Talca, Chile

Päivi Parviainen, VTT Technical Research Centre, Finland

João Pascoal Faria, Faculty of Engineering of University of Porto / INESC TEC, Portugal

Fabrizio Pastore, University of Milano - Bicocca, Italy

Kunal Patel, Ingenuity Systems, USA

Óscar Pereira, Instituto de Telecomunicacoes - University of Aveiro, Portugal

Willy Picard, Poznań University of Economics, Poland

Jose R. Pires Manso, University of Beira Interior, Portugal

Sören Pirk, Universität Konstanz, Germany

Meikel Poess, Oracle Corporation, USA

Thomas E. Potok, Oak Ridge National Laboratory, USA

Dilip K. Prasad, Nanyang Technological University, Singapore

Christian Prehofer, Fraunhofer-Einrichtung für Systeme der Kommunikationstechnik ESK, Germany

Ela Pustułka-Hunt, Bundesamt für Statistik, Neuchâtel, Switzerland

Mengyu Qiao, South Dakota School of Mines and Technology, USA

Kornelije Rabuzin, University of Zagreb, Croatia

J. Javier Rainer Granados, Universidad Politécnica de Madrid, Spain

Muthu Ramachandran, Leeds Metropolitan University, UK

Thurasamy Ramayah, Universiti Sains Malaysia, Malaysia

Prakash Ranganathan, University of North Dakota, USA

José Raúl Romero, University of Córdoba, Spain

Henrique Rebêlo, Federal University of Pernambuco, Brazil

Bernd Resch, Massachusetts Institute of Technology, USA

Hassan Reza, UND Aerospace, USA

Elvinia Riccobene, Università degli Studi di Milano, Italy

Daniel Riesco, Universidad Nacional de San Luis, Argentina

Mathieu Roche, LIRMM / CNRS / Univ. Montpellier 2, France

Aitor Rodríguez-Alsina, University Autonoma of Barcelona, Spain

José Rouillard, University of Lille, France

Siegfried Rouvrais, TELECOM Bretagne, France

Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster / North-

German Supercomputing Alliance, Germany

Djamel Sadok, Universidade Federal de Pernambuco, Brazil

Arun Saha, Fujitsu, USA

Ismael Sanz, Universitat Jaume I, Spain

M. Saravanan, Ericsson India Pvt. Ltd -Tamil Nadu, India

Idrissa Sarr, University of Cheikh Anta Diop, Dakar, Senegal / University of Quebec, Canada

Patrizia Scandurra, University of Bergamo, Italy

Giuseppe Scanniello, Università degli Studi della Basilicata, Italy

Daniel Schall, Vienna University of Technology, Austria

Rainer Schmidt, Munich University of Applied Sciences, Germany

Cristina Seceleanu, Mälardalen University, Sweden

Sebastian Senge, TU Dortmund, Germany

Isabel Seruca, Universidade Portucalense - Porto, Portugal

Kewei Sha, Oklahoma City University, USA

Simeon Simoff, University of Western Sydney, Australia

Jacques Simonin, Institut Telecom / Telecom Bretagne, France

Cosmin Stoica Spahiu, University of Craiova, Romania

George Spanoudakis, City University London, UK

Alin Stefanescu, University of Pitesti, Romania

Lena Strömbäck, SMHI, Sweden

Kenji Suzuki, The University of Chicago, USA

Osamu Takaki, Japan Advanced Institute of Science and Technology, Japan

Antonio J. Tallón-Ballesteros, University of Seville, Spain

Wasif Tanveer, University of Engineering & Technology - Lahore, Pakistan

Ergin Tari, Istanbul Technical University, Turkey

Steffen Thiel, Furtwangen University of Applied Sciences, Germany

Jean-Claude Thill, Univ. of North Carolina at Charlotte, USA

Pierre Tiako, Langston University, USA

Ioan Toma, STI, Austria

Božo Tomas, HT Mostar, Bosnia and Herzegovina

Davide Tosi, Università degli Studi dell'Insubria, Italy

Peter Trapp, Ingolstadt, Germany

Guglielmo Trentin, National Research Council, Italy

Dragos Truscan, Åbo Akademi University, Finland

Chrisa Tsinaraki, Technical University of Crete, Greece

Roland Ukor, FirstLinq Limited, UK

Torsten Ullrich, Fraunhofer Austria Research GmbH, Austria

José Valente de Oliveira, Universidade do Algarve, Portugal

Dieter Van Nuffel, University of Antwerp, Belgium

Shirshu Varma, Indian Institute of Information Technology, Allahabad, India

Konstantina Vassilopoulou, Harokopio University of Athens, Greece

Miroslav Velev, Aries Design Automation, USA

Tanja E. J. Vos, Universidad Politécnica de Valencia, Spain

Krzysztof Walczak, Poznan University of Economics, Poland

Jianwu Wang, San Diego Supercomputer Center / University of California, San Diego, USA

Yandong Wang, Wuhan University, China

Rainer Weinreich, Johannes Kepler University Linz, Austria

Stefan Wesarg, Fraunhofer IGD, Germany

Sebastian Wieczorek, SAP Research Center Darmstadt, Germany

Wojciech Wiza, Poznan University of Economics, Poland

Martin Wojtczyk, Technische Universität München, Germany

Hao Wu, School of Information Science and Engineering, Yunnan University, China

Mudasser F. Wyne, National University, USA

Zhengchuan Xu, Fudan University, P.R.China

Yiping Yao, National University of Defense Technology, Changsha, Hunan, China

Stoyan Yordanov Garbatov, Instituto de Engenharia de Sistemas e Computadores - Investigação e

Desenvolvimento, INESC-ID, Portugal

Weihai Yu, University of Tromsø, Norway

Wenbing Zhao, Cleveland State University, USA

Hong Zhu, Oxford Brookes University, UK

Qiang Zhu, The University of Michigan - Dearborn, USA

International Journal on Advances in Software

Volume 7, Numbers 1 & 2, 2014

CONTENTS

pages: 1 - 19
Multiagent genetic optimisation to solve the project scheduling problem under uncertainty
Konstantin Aksyonov, Ural Federal University, Russia
Anna Antonova, Ural Federal University, Russia

pages: 20 - 30
Review and Performance Analysis of Shortest Path Problem Solving Algorithms
Mariusz Głąbowski, Poznan University of Technology, Faculty of Electronics and Telecommunications, Chair of
Communication and Computer Networks, Poland
Bartosz Musznicki, INEA S.A., Poland
Przemysław Nowak, Poznan University of Technology, Faculty of Electronics and Telecommunications, Chair of
Communication and Computer Networks, Poland
Piotr Zwierzykowski, Poznan University of Technology, Faculty of Electronics and Telecommunications, Chair of
Communication and Computer Networks, Poland

pages: 31 - 43
Rapid Design of Meta Models
Bastian Roth, University of Bayreuth, Germany
Matthias Jahn, University of Bayreuth, Germany
Stefan Jablonski, University of Bayreuth, Germany

pages: 44 - 62
Detecting Software Usability Deficiencies Through Pinpoint Analysis
Dan Tamir, Texas State University, United States
Divya Dasari, Texas State University, United States
Oleg Komogortsev, Texas State University, United States
Gregory LaKomski, Texas State University, United States
Carl Mueller, Texas A&M University Central Texas, United States

pages: 63 - 76
A Detailed Description of the EC2M Project: Exploiting Ontologies for the Automatic and Manual Documents
Classification in Industrial Enterprise Content Management Systems
Daniela Briola, DIBRIS, Genoa University, Italy
Alessandro Amicone, GFT Italia S.r.l., Italy

pages: 77 - 87
Supporting Ambient Assisting Living by using Executable Context-Adaptive Task Models
Estefanía Serral, KU Leuven, Belgium
Pedro Valderas, UPV, Spain
Vicente Pelechano, UPV, Spain

pages: 88 - 100
Testing Self-adaptive Software: Requirement Analysis and Solution Scheme
Georg Püschel, Technische Universität Dresden, Germany
Sebastian Götz, Technische Universität Dresden, Germany

Claas Wilke, Technische Universität Dresden, Germany
Christian Piechnick, Technische Universität Dresden, Germany
Uwe Aßmann, Technische Universität Dresden, Germany

pages: 101 - 111
{Runtime Variability in Online Software Products: A Comparison of Four Patterns
Jaap Kabbedijk, Utrecht University, Netherlands
Slinger Jansen, Utrecht University, Netherlands
Tomas Salfischberger, Utrecht University, Netherlands

pages: 112 - 122
Advanced Preprocessing of Binary Executable Files and its Usage in Retargetable Decompilation
Jakub Kroustek, Faculty of Information Technology, Brno University of Technology, Czech Republic
Peter Matula, Faculty of Information Technology, Brno University of Technology, Czech Republic
Dusan Kolar, Faculty of Information Technology, Brno University of Technology, Czech Republic
Milan Zavoral, Faculty of Information Technology, Brno University of Technology, Czech Republic

pages: 123 - 138
Towards High Quality Mobile Applications: Android Passive MVC Architecture
Karina Sokolova, University of Technology of Troyes, France
Marc Lemercier, University of Technology of Troyes, France
Ludovic Garcia, EUTECK SSII, France

pages: 139 - 149
Time-based Visualization of Large Data-Sets An Example in the Context of Automotive Engineering
Werner Sturm, Fraunhofer Austria Research GmbH, Visual Computing, Graz, Austria & Institute of
ComputerGraphics and KnowledgeVisualization, Graz University of Technology, Austria, Austria
René Berndt, Fraunhofer Austria Research GmbH, Visual Computing, Graz, Austria & Institute of ComputerGraphics
and KnowledgeVisualization, Graz University of Technology, Austria, Austria
Andreas Halm, Fraunhofer Austria Research GmbH, Visual Computing, Graz, Austria & Institute of
ComputerGraphics and KnowledgeVisualization, Graz University of Technology, Austria, Austria
Torsten Ullrich, Fraunhofer Austria Research GmbH, Visual Computing, Graz, Austria & Institute of
ComputerGraphics and KnowledgeVisualization, Graz University of Technology, Austria, Austria
Eva Eggeling, Fraunhofer Austria Research GmbH, Visual Computing, Graz, Austria & Institute of ComputerGraphics
and KnowledgeVisualization, Graz University of Technology, Austria, Austria
Dieter W. Fellner, Institute of ComputerGraphics and KnowledgeVisualization, Graz University of Technology,
Austria & Fraunhofer IGD and TU Darmstadt, Darmstadt, Germany, Austria

pages: 150 - 160
Towards Secure Mobile Computing: Employing Power-Consumption Information to Detect Malware on Mobile
Devices
Thomas Zefferer, Institute for Applied Information Processing and Communications - Graz University of
Technology, Austria
Peter Teufl, Institute for Applied Information Processing and Communications - Graz University of Technology,
Austria
David Derler, Institute for Applied Information Processing and Communications - Graz University of Technology,
Austria
Klaus Potzmader, Institute for Applied Information Processing and Communications - Graz University of
Technology, Austria
Alexander Oprisnik, Institute for Applied Information Processing and Communications - Graz University of
Technology, Austria
Hubert Gasparitz, Institute for Applied Information Processing and Communications - Graz University of

Technology, Austria
Andrea Höller, Institute for Applied Information Processing and Communications - Graz University of Technology,
Austria

pages: 161 - 170
VizMIR: A Cross-media Music Retrieval System Supporting Bidirectional Transformation between Mood-based
Color Changes and Tonal Changes in Music
Shuichi Kurabayashi, Keio University, Japan
Yoshiyuki Kato, Keio University, Japan

pages: 171 - 181
The Data Checking Engine: Complex Rules for Data Quality Monitoring
Felix Heine, University of Applied Sciences & Arts Hannover, Germany
Carsten Kleiner, University of Applied Sciences & Arts Hannover, Germany
Arne Koschel, University of Applied Sciences & Arts Hannover, Germany
Jörg Westermayer, SHS Viveon, Germany

pages: 182 - 196
Conceptual Modelling in UML and OWL-2
Jesper Zedlitz, University Kiel, Germany
Norbert Luttenberger, University Kiel, Germany

pages: 197 - 210
A Technique to Avoid Atomic Operations on Large Shared Memory Parallel Systems
Rudolf Berrendorf, Bonn-Rhein-Sieg University, Germany

pages: 211 - 223
Development Framework for Distributed Agile Software Development
Abdullah Alqahtani, Glasgow Caledonian University, UK
John David Moore, Glasgow Caledonian University, UK
David Harrison, Glasgow Caledonian University, UK
Bruce Wood, Glasgow Caledonian University, UK

pages: 224 - 237
CREATE: A Co-Modeling Approach for Scenario-based Requirements and Component-based Architectures - A
Detailed View
Björn Schindler, Technische Universität Clausthal, Germany
Marcel Ibe, Technische Universität Clausthal, Germany
Martin Vogel, Technische Universität Clausthal, Germany
Andreas Rausch, Technische Universität Clausthal, Germany

pages: 238 - 252
When May the Accuracy of Expert Estimation Be Improved by Using Historical Data?
Gabriela Robiolo, Universidad Austral, Argentina
Silvana Santos, Universidad Nacional de La Plata, Argentina
Bibiana Rossi, Univ. Argentina de la Empresa, Argentina

pages: 253 - 265
An Ontology-Driven Personalization Approach for Data Warehouse Exploitation
Lama El Sarraj, LSIS UMR 7296, Marseille, France

Bernard Espinasse, LSIS UMR 7296, Marseille, France
Thérèse Libourel, Espace-Dev UMR 228, Montpellier, France

pages: 266 - 276
Formal Models in Software Development and Deployment: A Case Study
Radek Koci, Brno University of Technology, Czech Republic
Vladimir Janousek, Brno University of Technology, Czech Republic

pages: 277 - 288
Localizing Software Bugs using the Edit Distance of Call Traces
Themistoklis Diamantopoulos, Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki,
Greece
Andreas Symeonidis, Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki, Greece

pages: 289 - 301
On Exploiting Passing and Failing Test Cases in Debugging Hardware Description Languages
Bernhard Peischl, Softnet Austria, Austria
Naveed Riaz, College of Computer Science and Information Technology, Saudi Arabia
Franz Wotawa, Graz Univeristy of Technology, Institute for Software Technology, Austria

pages: 302 - 317
Long-term Sustainable Knowledge Classification with Scientific Computing: The Multi-disciplinary View on
Natural Sciences and Humanities
Claus-Peter Rückemann, Westfälische Wilhelms-Universität Münster (WWU) and Leibniz Universität Hannover and
North-German Supercomputing Alliance (HLRN), Germany

pages: 318 - 329
A Text Retrieval Approach to Recover Links among E-Mails and Source Code Classes
Giuseppe Scanniello, Dipartimento Dipartimento di Matematica, Informatica e Economia, Università della
Basilicata, Italy
Licio Mazzeo, Dipartimento Dipartimento di Matematica, Informatica e Economia, Università della Basilicata, Italy

pages: 330 - 340
Using Function Point Analysis and COSMIC for Measuring the Functional Size of Real-Time and Embedded
Software: a Comparison
Luigi Lavazza, Universita` degli Studi dell'Insubria, Italy
Sandro Morasca, Universita` degli Studi dell'Insubria, Italy
Davide Tosi, Universita` degli Studi dell'Insubria, Italy

pages: 341 - 352
Confirming Design Guidelines for Evolvable Business Processes Based on the Concept of Entropy
Peter De Bruyn, University of Antwerp, Belgium
Dieter Van Nuffel, University of Antwerp, Belgium
Philip Huysmans, University of Antwerp, Belgium
Herwig Mannaert, University of Antwerp, Belgium

pages: 353 - 369
A Framework for Autonomic Software Deployment of Multiscale Systems
Raja Boujbel, Université de Toulouse, UPS - IRIT, France
Sébastien Leriche, Université de Toulouse, ENAC, France
Jean-Paul Arcangeli, Université de Toulouse, UPS - IRIT, France

pages: 370 - 380
An Overall Framework for Reasoning About UML/OCL Models Based on Constraint Logic Programming and MDA
Beatriz Pérez, University of La Rioja, Spain
Ivan Porres, Åbo Akademi University, Finland

pages: 381 - 390
Simulation-Based Optimization for Software Dynamic Testing Processes
Mercedes Ruiz, University of Cadiz, Spain
Javier Tuya, University of Oviedo, Spain
Daniel Crespo, University of Cadiz, Spain

pages: 391 - 401
Implementation Variants for Position Lists
Andreas Schmidt, Karlsruhe University of Applied Sciences/Karlsruhe Institute of Technology, germany
Daniel Kimmig, Karlsruhe Institute of Technology, germany
Steffen Scholz, Karlsruhe Institute of Technology, germany

pages: 402 - 421
Instance-Based Integration of Multidimensional Data Models
Michael Mireku Kwakye, University of Ottawa, Canada
Iluju Kiringa, University of Ottawa, Canada
Herna L. Viktor, University of Ottawa, Canada

Multiagent Genetic Optimisation to Solve the Project Scheduling Problem under
Uncertainty

Konstantin Aksyonov and Anna Antonova
Department of Information Technologies

Ural Federal University, UrFU
Yekaterinburg, Russia

wiper99@mail.ru, antonovaannas@gmail.com

Abstract—This paper considers a project scheduling problem
under uncertainty, which belongs to a class of multiobjective
problems of complex systems control whose decision search
time grows exponentially depending on the problem dimension.
In this paper, we propose a multiagent genetic optimisation
method based on evolutionary and multiagent modelling by
implementing different decision searching strategies, including
a simulation module and numerical methods application. The
comparative analysis of the scheduling methods has shown that
the proposed method supports all features that might be useful
in effective decision searching of the stochastic scheduling
problem. The proposed multiagent genetic optimisation
method, the MS Project resource reallocation method, and a
heuristic simulation method were compared whilst addressing
a real-world deterministic scheduling problem. The
comparison has shown: firstly, the unsuitability of the MS
Project planning method for solving the formulated problem;
and secondly, both the advantage of the multiagent genetic
optimisation method in terms of economic effect and
disadvantage in terms of performance. Experimental results in
conditions of uncertainty demonstrate the effectiveness of the
proposed method. Some techniques to reduce the impact of the
method’s disadvantage are proposed in the conclusion, as well
as the aims of future work.

Keywords-project scheduling; genetic algorithms;
simulation; subcontract work optimisation; problem under
uncertainty.

I. INTRODUCTION

This paper is an improved and expanded version of the
ICCGI 2013 conference paper "Multiagent Genetic
Optimisation to Solve the Project Scheduling Problem" [1].
The paper extends the scheduling method proposed in the
original paper by taking into account environment
uncertainty removal with the help of the integration of
numerical methods, simulation, multiagent, and evolutionary
modelling. A comparison of the new method and existing
scheduling methods is conducted in this paper. An
application of the new method to a real scheduling problem
is described.

The scheduling problem is one of the key problems in the
management of organisational and technical systems.
Inefficient scheduling can lead to financial losses, quality of
service losses, and loss of competitiveness for the company.
Companies with various different scopes are faced with the

scheduling problem, for example, industrial and project
companies, shopping centres, hospitals, and call centres.

There are several types of scheduling problem depending
on the application sphere: operations calendar planning [2]–
[6], assignment of limited resources to a set of tasks [7]–[9],
and the travelling salesman problem [10].

Classical scheduling problem-solving methods have a
number of disadvantages. Thus, the use of combinatorial
methods and mathematical programming is associated with
internal difficulties because the model of system processes is
nonlinear, non-convex, and non-differentiable [11]. In
addition, these methods are applied poorly to problems with
dynamically changing constraints. Simulation takes into
account the dynamic nature of the problem, but leads to a
random search process, which does not guarantee optimal
decision finding. The use of genetic optimisation allows the
shortcomings of the previous methods to be overcome [10].
The application of genetic optimisation to the scheduling
problem with defined constraints is widely considered in the
literature [2]–[10].

In the real world, the scheduling problem is connected to
the uncertainty of environment behaviour and is a stochastic
version of the classical scheduling problem. It can involve
many sources of uncertainty: activity duration, renewable
resource availability, resource consumption, and cost of
activity [11]–[16]. Mainly non-structural (parametric)
uncertainty is introduced into the basic deterministic
scheduling problem by researchers [17]. The design of the
optimal (efficient) calendar work plan taking into account the
structural uncertainty associated with the insertion of new
projects is a topical task.

This paper focuses on the project scheduling problem
under conditions of structural uncertainty by using
evolutionary computation [18], simulation, and numerical
methods of uncertainty removal [19]. The remainder of the
paper is organised as follows. Section II provides an
overview of the related works in the field of deterministic
and stochastic scheduling. Section III formulates the
deterministic project scheduling problem with time
constraint. Section IV introduces the genetic algorithm based
on an annealing simulation and novelty search. Section V
describes a dynamic model of multiagent resource
conversion processes that has been selected as a system
formalisation model. Section VI presents the algorithm for
the multiagent genetic optimisation program based on the

1

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

integration of evolutionary computation and multiagent
simulation. Section VII introduces the multiagent genetic
optimisation method under uncertainty. Section VIII presents
the algorithm of the multiagent genetic optimisation program
under uncertainty based on the integration of the
evolutionary computation, multiagent simulation, and
numerical optimisation methods. Section IX presents a
comparative analysis of the existing methods and the
proposed method of solving the deterministic and stochastic
scheduling problem. Section X evaluates the practical
implementation of the multiagent genetic optimisation
program to solve a real-world scheduling problem, both
deterministic and stochastic. Section XI concludes this paper
and explores future work.

II. RELATED WORK

In general, the deterministic scheduling problem is
connected to the problem of seeking an operations sequence
that satisfies the constraints and optimises the objective
functions. Renewable resources (such as staff or equipment)
are usually considered when studying the scheduling
problem. For certain tasks (for example, production
planning) nonrenewable resources should be determined [2].

In the various scheduling problem studies different
constraint sets are considered, depending on the specific task.
Four constraint types were identified in [4]: resource,
precedence, physical layout, and information constraints.
The time constraint type should be added to the list of
constraint types when analysing workflow inside a project
development company. Time limitation is associated with
having a time frame for the operations start date.

All constraints, except precedence ones, have been
studied by Brezuliani et al. [7]. Precedence and resource
constraints were considered by Okada et al. [2], Klimek [3],
Abdel-Khalek et al. [5], and Dhingra and Chandna [8].
Resource and information constraints were studied by Yang
and Wu [9]. Resource, precedence, and time constraints were
considered by Karova et al. [6]. A study of scheduling with a
resource constraint to determine a public transport route was
presented by Osaba et al. [10].

The optimisation objects are different in the studies
reviewed. The classical objective function of working time
(makespan) minimization was considered by Sriprasert and
Dawood [4], Osaba et al. [10], He and Wan [12], Zhang and
Chen [13], Csebfalvi [14], and Artigues et al. [15]. The
objective function of constraints violation penalty
minimization has been considered by Karova et al. [6] and
Yang and Wu [9]. Both mentioned objective functions were
considered by Okada et al. [2], Brezuliani et al. [7], and
Dhingra and Chandna [8]. The objective function of net
present value of discounted cash flow maximization was
considered by Chen and Zhang [16].

There are different ways of conducting an objective
function evaluation: analytical methods, simulation, artificial
neural networks, fuzzy systems, and component modelling.
Analytical methods are the most widely used; the drawback
of this approach is the lack of analysis of the dynamic
behaviour of complex systems. This drawback is overcome
by using the simulation model of Osaba et al. [10] to

evaluate the objective function. The integration of
evolutionary modelling and simulation can limit the random
search space and enhance heuristic optimisation by taking
into account the dynamically changing constraints of the
scheduling problem.

The reviewed studies do not consider subcontracted
workforce optimisation, while this problem is very real to
developers and even to mass production enterprises. The
optimisation problem of the subcontracted workforce is
connected to scheduling subcontractors in order to maximise
the utilisation of the company’s own resources. In the
literature, a problem regarding the appropriate selection of
subcontractors using artificial intelligence methods was
studied by Chen et al. [20]. A subcontract optimisation
technique based on a simulation and heuristics has been
suggested by Aksyonov and Antonova [21]. The current
article considers new subcontract optimisation techniques for
a deterministic scheduling problem with the use of a genetic
algorithm.

An unexpected external influence may result in
deterministic schedules becoming more expensive and
longer than expected, or even becoming unfeasible. Many
researches in previous years have been dedicated to solving
the stochastic scheduling problem. They have analysed
different non-structural (parametric) sources of uncertainty,
such as the examination of renewable resource availability
and resource consumption by He and Wan [12] and the cost
of activity by Chen and Zhang [16] and Xu and Feng [11]. A
stochastic activity duration analysis was applied by all the
authors [11]–[16].

There are three groups of methods for solving the
stochastic scheduling problem: predictive, proactive, and
reactive methods [17]. Predictive methods ignore
uncertainty, so the predictive schedules can be late, over the
budget, or even become infeasible. Proactive methods are
intended to construct a predictive schedule that will perform
well under a wide variety of external situations. Reactive
methods are intended for online scheduling at the time of job
execution, incorporating up-to-date information, and
changing the schedule when disruptions take place [22].

Proactive methods are the most popular in researches on
the stochastic scheduling problem. The main idea of
proactive methods is to distinguish the two decision
searching stages: the stage of the uncertainty removal and the
stage of the deterministic problem solving. The direct order
of the stages is used in most of the researches. The following
techniques of uncertainty removal are considered by
different authors: two-stage algorithm based on chance-
constrained programming by He and Wan [12], 99-methods
by Zhang and Chen [13], heuristic algorithm with forbidden
sets and forward-backward list scheduling by Csebfalvi [14],
and Monte-Carlo simulation by Chen and Zhang [16]. The
reverse order of the stages was used by Artigues et al. [15].
In this research, first, the initial schedule is found by solving
the deterministic equivalent of the stochastic problem
obtained by replacing the uncertain parameters with their
average values. Second, the schedule is modified by inserting
buffer times into the schedule to discourage the propagation
of schedule disruptions.

2

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The reviewed studies do not consider the structural
uncertainty associated with the insertion of new projects into
the schedule, while this problem is real in small and
medium-sized enterprises. The current article considers a
new proactive scheduling method under structural
uncertainty with the use of a genetic algorithm, simulation,
and numerical methods.

III. DETERMINISTIC PROBLEM STATEMENT

Let us consider the deterministic problem of project
scheduling aimed at the calendar planning of operations. All
project operations have to be carried out in combination with
a set of time constraints. The set of time constraints is
defined through negotiations with customers. In the case of
the organisation’s own lack of resources, subcontracted
resources have to be involved to meet the time constraints.

The objective functions of the considered problem are: 1)
subcontract cost minimization and 2) minimization of total
downtime of own resources. The second objective function is
associated with the fixed labour costs in the project
companies. If the salaries are fixed then downtime is also
paid, which is not profitable for the company.

For the project scheduling problem considered in this
study, the following assumptions have been made:

1. A single project consists of a number of operations
with a known processing time, early and late start dates,
labour input, and labour cost.

2. The operation requires the availability of renewable
resources (own or subcontracted workforces).

3. Nonrenewable resources are not considered.
4. Operations cannot be interrupted.
5. Subcontractors can be involved in performing part of

the operation.
6. Subcontractors can be interrupted and the operation

can continue with the use of the company’s own resources in
the event of the reappearance of its own available resources.

7. Subcontractors are available every day on request in
unlimited quantities.

Let us describe the problem of project portfolio
scheduling with the use of the following designations.

Indices:
 i: project index, i = 1, 2, …, P.
 j: operation index, j = 1, 2, …, Opi.
 w: department index, w = 1, 2, …, V.
 t: time index, t = 0, 1, 2, …, T.
Decision variables:

TB(i,j): set of start dates of operations.
Initial parameters:

ES(i,j): early start date of the operation (i,j).
LS(i,j): last start date of the operation (i,j).
SLw: number of persons in the department w.
SLO(i,j,w):amount of workforce (persons) needed in
department w to fulfil the operation (i,j).
SS(i,j): operation (i,j) subcontracting cost per day.

Parameters obtained in the decision-making process:
Active(i,j,t): a sign of the operation (i,j) execution at

time t.

=

otherwise,0

momenttheatexecutedis),(operationif,1
),,(

tji
tjiActive

 RD(t,w): resources from department w demanded to
fulfil the active operations at the time t.

[]∑∑
= =

⋅=
P

i

Op

j

i

wjiSLOtjiActivewtRD
1 1

),,(),,(),(

VF(t,w): amount of free workforce of department w
at the time t.

 ≤−

=
otherwise,0

),(if),,(
),(ww SLwtRDwtRDSL

wtVF

VSC(i,j): volume of subcontracted workforces on
operation (i,j).

Problem description:

∑∑
= =

→⋅=
P

i

Opi

j
SC jiVjiSSOF

1 1
1 min)),(),((, (1)

min
),(

0 1
2 →

⋅
=
∑∑

= =

VT

wtVF
OF

T

t

V

w , (2)

jijiLSjiESjiTB ∀∀∈ ,)],();,([),((3)

Objective function (1) minimises the total subcontracting
cost. Objective function (2) minimises the total downtime of
own resources. Constraint (3) maintains the time frame of the
operations’ start.

IV. GENETIC ALGORITHM BASED ON ANNEALING

SIMULATION AND NOVELTY SEARCH

The genetic algorithm (GA) is one of the evolutionary
approaches that can be used to solve complex system
management problems in a short time [18]. The technique of
the GA application includes the following steps: 1) selecting
the method of encoding the problem decision (phenotype)
into a chromosome (genotype); 2) definition of the
evaluation method of the chromosome fitness function (FF);
3) the genetic operator’s description; and 4) the initial
population generation and GA work. The modification of the
GA on the basis of an annealing simulation and novelty
search is considered in the article in order to enhance the
quality of the decisions on the scheduling problem.

A. Chromosome Encoding

There are various techniques for decision encoding
presented in the literature: operations sequence encoding
[3][6][10], operations precedence encoding [2][4], operations
start dates encoding [5][7], and encoding of resource
assignment for the operation [7]–[9]. We used the encoding
of the shifting of the operation start dates because this
technique supports time constraints, is not redundant, and is
simple to implement.

The GA chromosome encodes the operations’ start dates,
shifting from the initial work plan to the right or left on the

3

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

time axis via binary code (0/1). The shift range is two weeks
on either side of the initial operation start date. The
chromosome size is 5�r genes, where r is the number of
analysed operations, 5 is the number of genes needed to
encode a single operation shifting (4 genes to encode 24 = 16
shifting days and 1 gene to encode the shifting direction).

B. Genetic Algorithm Modification

The concept of a novelty is a major GA concept. This
concept is connected with the emergence of new elements
and interactions in the environment during evolution. Two
novelty types are distinguished in [23]: 1) combinatorial
novelty, when the new species emerge by combining the
existing species; and 2) creative novelty, when the new
species are not reproducible by a combination of the species.
The validity of the fundamental feasibility of the second
novelty type is still open.

Let us consider the case of a combinatorial novelty
search as an adaptation mean in an open system. To
implement this approach we modify a simple GA by
introducing the concept of "decision originality" as a
measure of the decision fitness to the environmental
conditions [23]. The decision-chromosome’s originality in
the population is determined via the numerical
transformation of the Hamming distance matrix.

Let us define the Hamming distance matrix as follows:

()N

jiijhH
1,1 ==

= , (4)

where hij is the Hamming distance between the i-th and j-th
chromosomes (Chi and Chj), equal to the number of
positions, at which the corresponding gene values are
different in chromosomes Chi and Chj; N is the number of
chromosomes.

We associate the matrix H with the matrix of originality
weights W defined as follows:

()N

jiijwW
1,1 ==

= , (5)

where wij is the weight of the corresponding value of the
Hamming distance determined as a quadratic function,
increasing in the range from 1 to R as element hij is changed
in the range of 0 to L:

1
1 +⋅−= ijij h

L

R
w , (6)

where L is the chromosome size, and R is the maximum
weight of the chromosome in the pair, R > 0.

The two strategies of chromosome crossing have been
described using the concept of originality. The first strategy
– the originality search strategy (OSS) [24] – focuses on the
combinatorial search for the new decisions in the population
by crossing chromosomes that have different encodings. The
second strategy – the maximum search strategy (MSS) [18] –
focuses on the targeted search for the best chromosomes by
crossing chromosomes that are the most adapted to the

environment. The fitness of the i-th chromosome to the
environment is evaluated by the fitness function FFi,
i=1…N.

Let us define the chromosome crossing probability
matrices on the basis of the proposed strategies as follows:

()N

ji

OSS
ijOSS pP

1,1 ==
= ,

∑
=

=
N

j
ij

ijOSS
ij

w

w
p

1

, (7)

()N

i
MSS
iMSS pP 1== ,

∑
=

=
N

i
i

iMSS
i

FF

FF
p

1

. (8)

In formulas (7) and (8) the matrices’ cells are filled by
probability values in accordance with the roulette law [18].
In the case of the OSS strategy, the weight of the
chromosome originality serves as a measure of chromosome
importance. In the case of the MSS strategy, the
chromosome FF serves as a measure of chromosome
importance.

An annealing simulation algorithm (ASA) [25] is
intended to implement the proposed chromosome crossing
strategies during the GA work. This algorithm is based on
the analogy of the metal annealing process, which results in
the appearance of new metal properties. The technique for
ASA and GA integration is proposed below.

Step 1. Set the annealing simulation algorithm
parameters: the initial value of the parameter tZ; the value of
the parameter α, which controls the rate of annealing
temperature decrease, 0 ≤ α ≤ 1.

Step 2. Set the GA parameters: the number of
generations K; the chromosome size L; the likelihood of the
genetic operators being applied. Set the number of the
current population Z: Z = 1. Generate the initial population.

Step 3. Apply the genetic operators to the current
population Z with a probability that depends on the value of
parameter tZ. Increase the number of the current population
Z= Z + 1. Change the value of parameter tZ [25]:

ZZZ ttt ⋅+=+ α1
. (9)

Step 4. Check the condition: Z > K. If the condition is
satisfied then go to Step 5, otherwise return to Step 3.

Step 5. Stop.
The probability of the genetic operator’s application is

defined on the basis of the annealing simulation in order to
reflect the operator’s dynamic nature.

C. Crossover Operator

The probability of selecting the first and second parents
from the current population Z for the crossover operator
(CO) is described below. The probability of selecting the
first parent has to take into account both random selection
and targeted selection based on the MSS strategy (8). The
probability of random selection should be reduced in the

4

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

population’s evolution, and the probability of the MSS
strategy should be increased. This fact is reflected in the
probability of selecting the first parent i in the population Z:

−⋅+

−−⋅=

Z

MSS
i

Z

Z
i t

p
tN

COP
1

exp
1

exp1
1

)(. (10)

The probability of selecting the second parent has to take
into account the OSS and MSS strategies. The probability of
the OSS applying (7) should be reduced during the
population’s evolution, and the probability of the MSS
applying (8) should be increased. This circumstance is
reflected in the probability formula for selecting the second
parent j for the first parent i in population Z:

−⋅+

−−⋅=

Z

MSS
j

Z

OSS
ij

Z
j t

p
t

pCOP
1

exp
1

exp1)(. (11)

D. Mutation and Inversion Operators

The applied probability of the mutation operator (MO) in
population Z is described below. This formula has to take
into account the probability reducing during evolution in
order to save genetic material [24]:

−−⋅=

Z
Z t

MOPMOP
1

exp1)()(0
, (12)

where P0(MO) is the initial value of the mutation operator
applied probability.

The applied probability of the inversion operator in
population Z is described by analogy with the mutation
operator applied probability.

E. Fitness Function

The following fitness function considers both objective
functions (1) and (2) described in Section III:

max)()(
2

2
2

1

1
1 →⋅+⋅= OF

OF
OF

OFFF
InitInit

ωω , (13)

where ω1, ω2 are weight coefficients, ω1+ω2=1; OF1
Init,

OF2
Init are objective function initial values obtained by expert

evaluation of the operation start date.
Used FF is described with the use of the linear

convolution of normalised heterogeneous criteria (1) and (2).

V. THE DYNAMIC MODEL OF MULTIAGENT RESOURCE

CONVERSION PROCESSES (MRCP)

The processes of the project's work execution have to be
formalised via a simulation model in order to evaluate the
objective function values. The use of multiagent approach at
the stage of business process model formalisation is caused
by the presence of decision makers in the system; their
behaviour is motivated, they cooperate with each other, and

accumulate knowledge of the problem domain. The problem
of the model selection for business process formalisation was
addressed by the authors in [26]. The following models for
supporting agent representation of business processes were
considered: Gaia model, Bugaichenko’s model, Masloboev’s
model, simulation model of intelligent agents interaction
(SMIAI), resource-activity-operation model (RAO), and
multiagent resource conversion processes model (MRCP).
The comparison showed that the MRCP model has the fullest
functionality in area of business process formalisation: it
includes a hybrid agent model (intelligent and reactive), a
model of a resource converter and a queue system, allowing
the analyst to examine the dynamic features of processes
[26].

Let us consider the basic principles of the MRCP model.
The MRCP model [27] was developed on the basis of

resource conversion process (RCP) model [28] and it targets
the modelling of business processes and decision support for
management and control processes. A key concept of the
RCP model is a resource converter consisting of input,
launch condition, conversion module, control block, and
output.

The launch condition, once it becomes true, enables the
conversion process to take place based on the state of input
resources, control commands, available conversion tools, and
other external environment events. Conversion time becomes
known right before the start of the conversion process as a
function of the control commands and active resources
limitation.

The MRCP model may be considered as an extension of
the basic RCP model, adding the functionality of agents. The
main objects of the discrete multiagent RCP are: operations
(Op), resources (Res), control commands (U), conversion
devices (Mech), processes (PR), sources (Sender) and
resource receivers (Receiver), junctions (Junction),
parameters (P), agents (Agent), and coalitions (C). Process
parameters are set by the object characteristics function.
Relations between the resources and conversion device are
set by the link object (Relation). The agents and coalitions’
existence assumes availability of the situations (Situation)
and decisions (action plan) (Decision).

The MRCP model has a hierarchical structure, defined by
high-level integration system graphs. Agents control the
RCP objects. Every agent includes a unique model of a
decision maker. The agent (software or hardware entity) is
defined as an autonomous artificial being with active and
motivated behaviour, capable of interacting with other
objects within a given virtual environment. With every
system tick the agent performs the following operations [27]:
environment (current system state) analysis, state diagnosis,
knowledge base access (knowledge base [KB] and database
[DB] interaction), and decision-making. Thus, the functions
of analysis, situation structuring and abstraction, as well as
the control commands generation of the resource conversion
process are performed by agents.

Consequently, coalition is generated after the union of
several agents. Figure 1 shows an example of C1 coalition
formation after the union of A2 and A3 agents.

5

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Interaction and coalition formation.

Agent coalition has the following structure:
С = <Name, {A1,…,Am}, GС, KBС, M_In, M_Out, SPC,

Control_O >,
where Name is coalition name; {A1,…, Am} is a collection of
agents forming a coalition; GС is coalition goal; KBС is
coalition knowledge base; M_In is a collection of incoming
messages; M_Out is a collection of outgoing messages; SPC
is a collection of behaviour scenarios acceptable within
coalition; Control_O is a collection of controlled objects of
the resource conversion process.

The simulation algorithm of the agent-containing model
comprises the following main stages: system time
determination, agent and coalition actions processing (state
diagnosis, control commands generation), conversion rules
queue generation, conversion rules execution, and operation
memory state (i.e., resources and mechanism values)
modification. The simulator makes use of the expert system
unit for diagnosis of situations and generation of control
commands.

Each agent possesses its knowledge base, set of goals
needed for the behaviour configuration setting, and priority
that defines agent order in control gaining queue.

The following agent behaviour rules structure was used
in the resource conversion processes subject area:

Name <Rule Name>
If <Message Conditions, RCP Conditions, G_Ag

Conditions>
Then <G_Ag Changes, Message Actions, Private

Actions>,
where Message Conditions are message-related conditions;
RCP Conditions are resource conversion process-related
conditions; G_Ag Conditions are goal-related conditions;
G_Ag Changes are agent current goals modifying actions;
Message Actions are message generation actions; Private
Actions are converters and resource-related actions (activity
plan), targeting the achievement of set goals.

The MRCP agent behaviour rules have been developed
on the basis of the special-purpose object-oriented Reticular

Agent Definition Language (RADL) in the form of When-
If -Then [29].

Generally, in the case of any situation corresponding to
the agent’s activity, the agent tries to find a decision (action
scenario) in the knowledge base or work it out itself
according to the existing behaviour rules, makes a decision,
controls goals' achievement, delegates the goals to its own or
another agent's RCP objects, and exchanges messages with
others.

The MRCP model was chosen to evaluate the
chromosome FF value (13). The decision variables and input
parameters described in Section III are fed in the model
input. The parameters obtained in the decision-making
process are the model output. In the MRCP model, we use
agents to implement the resource allocation algorithm and
use simulation to perform the operation’s execution. The
resource allocation algorithm is described in [23] and allows
executors of operations to be appointed in accordance with
the assumptions made in Section III.

VI. MULTIAGENT GENETIC OPTIMISATION PROGRAM

One of the software development problems when
addressing the implementation of the proposed scheduling
method is the choice of modelling tool. The modelling tool
should support the RCP, multiagent, and expert models’
description and have built-in, object-oriented development
tools in order the additional tool functions to be developed
by the systems analyst (programmer).

A. Comparative Analysis of Modelling Systems

Let us consider the following modelling systems:
simulation modelling tools PlantSimulation (P) [30] and
Simio (S) [31], particularly real-time expert system G2 (G)
[32], multiagent simulation systems AnyLogic (A) [33],
RepastJ (R) [34], MagentA (M) [35], and BPsim (B) [26].
The results of the comparative analysis of these tools are
presented in Table I.

6

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. ANALYSIS OF THE MODELLING TOOLS

Comparison criteria P S G A R M B
RCP modelling availability

Subject area conceptual model
design

○ ○ ○ ○ ○ ● ●

RCP description language ● ● ● ● ● ● ●
Hierarchical process model ● ● ● ● ○ ○ ●
Use of natural language for
model definition

○ ○ ● ○ ○ ○ ○

Multiagent modelling availability
“Agent” element ○ ● ○ ● ● ● ●
Agents behaviour models ○ ● ○ ● ● ● ●
Agent’s knowledge base
support

○ ○ ○ ○ ○ ● ●

Message exchange language ○ ○ ○ ● ● ● ●
Other modelling techniques availability

Simulation modelling ○ ○ ● ● ○ ○ ●
Expert modelling ○ ○ ● ○ ○ ○ ●
Situational modelling ○ ○ ● ○ ○ ○ ●
Evolution modelling ○ ○ ○ ○ ○ ○ ○

Object-oriented approach
Use of UML language ○ ○ ○ ○ ● ○ ●
Object-oriented programming ● ● ● ● ● ○ ●
Wizard technology for agent
design

○ ○ ○ ○ ○ ○ ●

Object-oriented simulation ○ ○ ● ● ○ ○ ●
Subject area conceptual model
and object-oriented simulation
integration

○ ○ ○ ○ ○ ○ ●

As we can see, all the current systems lack the support of

some features that might be useful for effective simulation.
For example, the problem domain conceptual model design
and agent-based implementation approach is limited. Also,
some systems, e.g., AnyLogic and G2, require users to have
several programming skills. So, for a non-programming user
there is no system that can offer a convenient description of a
multiagent resource conversion process. Again, AnyLogic
and G2 make use of high-level programming language,
which results in these products being highly functional.

Not all of the systems support the evolutionary modelling
methods. Only the BPsim system includes wizard technology
for agent design and tools for the integration of the subject
area conceptual model and object-oriented simulation. As a
result of the comparison of modelling systems, the BPsim
system was selected as the basis for the proposed scheduling
method implementation because the system supports the
development and integration of the intelligent agents
(wizards) with the object-oriented simulation using a
common database.

B. BPsim Agent Architecture

The BPsim system consists of the following subsystems:
BPsim.MAS dynamic situations modelling system and
BPsim.MSN technical and economic development system
[26]. BPsim.MAS supports the MRCP model (including
reactive agents) description via graphical notation of the
resource conversion processes. BPsim.MSN ensures the
development of the decision search information technology
(intelligent agent) based on the UML sequence diagrams
[36] and Transact-SQL database management language [37].

So, the BPsim agent may have a hybrid nature, and it
contains two components:

• Intelligent (agent is described via a decision search
diagram defined on the UML sequence diagram).

• Reactive (agent is described via production rules
and/or frame-based expert system).

Two main agent architecture classes are distinguished
[38]:

1. Deliberative agent architecture based on artificial
intelligence principles and methods, i.e., knowledge-based
systems.

2. Reactive architecture based on a system reaction to
external environment events.

The currently existing architectures cannot be defined as
purely behavioural or purely knowledge-based, and any
designed architecture is hybrid, offering features of both
types.

Multiagent resource conversion process architecture,
which is implemented in the BPsim, is based on the
InteRRaP architecture [39], as the most appropriate for the
problem domain.

In accordance with InteRRaP architecture’s common
concept, the BPsim agent model is represented in four levels
(Figure 2).

1. The subsystem of cooperation with other agents
corresponds to the following MRCP elements: converters,
resources, tools, parameters, and goals. The subsystem of
cooperation performs the following actions: generates tasks,
transfers messages between agents, processes agent
commands (performs resource conversion), and alters the
current state of the external environment (transfers situation
Sn into state Sn+1).

2. The external environment interface and reactive
behaviour components are implemented in the form of an
agent rules base and inference machine (simulation
algorithm).

3. The reactive subsystem performs the following
actions: receives tasks from the external environment, places
tasks in a goal stack, collates the goal stack in accordance
with the adopted goal ranging strategy, selects a top goal
from the stack, and searches in the knowledge base. If the
appropriate rule is located, the subsystem transfers control to
the corresponding resource converter from the external
environment. Otherwise, the subsystem queries the local
planning subsystem.

Figure 2. BPsim agent hybrid architecture.

7

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

BPsim.MAS

Local planning

component access

BPsim.MSN

Decision located?

Message

generation and sending

Decision search in

strategical knowledge base

Goals and action rules for

tactical knowledge base
generation

Begin

Environment
analysis

Any messages from

external environment?

Read messages

Select first goal

from stack

Access tactical
knowledge base

Transfer of control to
external environment

Environment model
generation

Performing actions

End

Diagnosed

situations count

Message conversion into

goals and tactical
knowledge base rules

Place goals into stack

Rearrange goals,

according to priorities

Any messages
from planning

component?Tactical knowledge

base update

Locate decision with

maximum estimation

Yes

No

No

No

Yes

Yes

>=1

=0

Figure 3. Hybrid BPsim agent activity algorithm.

4. The local planning subsystem’s purpose is to search

effectively for decisions in complex situations (e.g., when
goal achievement requires several steps or several ways of
goal achievement are available). The local planning
component is built on a frame-based expert system. The
frame concept and conceptual graph-based approach are
utilised for knowledge formalisation.

5. The scheme presented on Figure 3 shows the
interaction of separate units during agent activity within
BPsim.MAS and BPsim.MSN.

The problem domain conceptual model and agent
knowledge base design are based on the UML class diagram
extension. Semantically, this notion may be interpreted as the
definition of the full decision search graph, containing all the
available ways of goal achievement (pre-defined by experts).
The current knowledge base inference machine is
implemented in the decision search diagram, based on the
UML sequence diagram. Each decision represents an agent
activity plan. Each plan consists of a set of rules from a
reactive knowledge base. Based on the located decision, the
current agent plan is updated. Examination of all available
options contained in the knowledge base generates an agent
plans library.

If an agent, when processing a task or message received
from the external environment, is unable to locate the
appropriate rule in its knowledge base (e.g., select an option
from several ones), the reactive behaviour component
queries the plans library, indicating goal (i.e., task to execute,
or external environment state to bring into). The planning
subsystem searches the plans library, selects an appropriate

plan, and places the first rule of the selected plan into the
reactive goals stack.

The problem of the implementation of the BPsim.MAS
and BPsim.MSN systems integration is solved by
implementing the communication between BPsim agents
using a single database.

The communication between BPsim agents is
implemented in different ways on the different levels:

1. The message exchange between reactive agents within
the dynamic model MRCP is implemented by the transacts'
(messages) introduction into the process model and by the
description of the message processing rules in the agent's
model.

2. The message exchange between reactive and
intelligent agents within the dynamic model (MRCP) is
implemented via applying the clipboard messages containing
common variables used in BPsim.MAS and BPsim.MSN
systems.

3. The message exchange between BPsim agents and
external systems (in cases when the interaction is necessary
to transmit not only data but also knowledge) is implemented
by applying the communication protocols. As an interaction
standard, the Foundation for Intelligent Physical Agents
(FIPA) standard has been selected because it has the
following advantages: highest reliability, ontology
description availability, problem area compliance, and easy
implementation. The Agent Communication Language
(ACL) message type, supported in the FIPA standard [40], is
used in the message exchange between BPsim agents and the
environment.

8

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Multiagent Genetic Optimisation Program
Development

The multiagent genetic optimisation (MGO) program has
been developed on the basis of the BPsim.MAS and
BPsim.MSN systems. The MGO program is intended to
solve the problem of simulation and evolution modelling
integration. The genetic optimisation information technology
(IT) has been designed on the basis of BPsim.MSN, and is
intended to aid GA setting and GA execution.

The algorithm for the interaction between the decision
maker and MGO program during the decision-making
process is shown in Figure 4. The MRCP model is intended
to conduct the chromosome’s FF evaluation by carrying out
an experiment with the model. The decoded chromosome
phenotype (operations calendar planning) is fed into the
model input. The FF evaluation in accordance with (13) is
obtained in the model output. Agents in the MRCP model are
used to allocate the renewable resources (both own and
subcontracted). The decision maker carries out the problem
statement and solution choice among the solutions obtained
by the use of the MGO program.

The MGO program has a number of advantages (key
strengths) compared to existing evolutionary scheduling
optimisation software [3][5][9][10]:

1. The integration of simulation, expert, multiagent,
conceptual, and evolutionary approaches in order to decide
the scheduling optimisation problem.

Figure 4. Interaction between the decision maker and MGO program.

2. The availability of the hybrid multiagent system
architecture, which allows complex scheduling models to be
built consisting of two interacting elements: 1) the dynamic
model MRCP and 2) the genetic optimisation model
intended for control of model MRCP parameters.

3. Description of the system models using MRCP and
UML graphical notation.

4. The evolutionary and simulation models' integration
via wizard technology for users without programming skills.

5. The modified genetic algorithm implementation in the
genetic optimisation model.

6. Support for the development of the user's own ways of
solving the scheduling problem by the use of a modified GA
through the decision's phenotype encoding description using
Transact SQL query language and decision search diagrams
based on the UML (only for user-programmers).

The MGO program is intended to decide the scheduling
problem under certainty. Let us consider the modification of
the MGO method in order to solve the scheduling problem
under uncertainty.

VII. THE MGOU METHOD OF PROJECT SCHEDULING

UNDER UNCERTAINTY

The project scheduling process is a time-consuming task
that is complicated by the incompleteness of the initial
information, the reduction of decision-making time, and
increased requirements for the experience and expertise of
decision makers (DM). The incompleteness of initial
information is related to the uncertainty of the situation in
which the decision should operate.

Two different types of uncertainty are allocated in [19]:
the uncertainty of the environment state and the "active
partner" uncertainty, reflecting the behaviour of the other
decision makers. Accounting for the "active partner"
uncertainty leads to the problem statement in conflict
situations; methods for solving such problems are considered
by the theory of games [19].

A. Problem Statement Under Uncertainty

We considered the scheduling problem under the
environment’s behaviour uncertainty. We associated the
environment’s behaviour uncertainty in the project
scheduling with the lack of information on the number and
size of additional projects that may arise during the planning
period. The statement of the problem given in Section III
takes the following form:

max))},(()),,(({ 21 →= zxOFzxOFy ϕϕ , YyZzXx ∈∈∈ ,, (14)

where X = {x1,…,xn} is a set of the alternative schedules;
Z={z1,…,zS} is a set of the environment states; ϕ(x,z) is a
transformation function of the alternative schedule x at the
environment state z in some results; OF1,OF2 are objective

functions of the problem considered; sj
niijyY ..1

..1}{ =
== is a set

of the decisions evaluation (matrix of decisions).

9

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Each element of the matrix (14) yij is a collection of 2
estimates of the alternative xi outcome for environmental
condition zj.

We denoted the set of the probabilities that the
environment will be in the states Z as follows: P= {p1,…,pS},
Σpj = 1. The vector P can be unknown for the selected
environmental states Z.

The main difficulty in solving the problem (14) is the
function ϕ definition, since this function should consider the
cumulative system behaviour statistics, dynamic system
processes, and DM behaviour scenario that it is not always
possible to represent analytically for real management
problems. The use of multiagent simulation allows the
imposed requirements of the transformation function ϕ to be
taken into account. The MRCP model is used for the system
processes' formalisation and representation of the function
ϕ(x,z).

There are various methods of multi-criteria decision
making that reduce the multi-criteria problem to the single-
criterion problem [19].

In the main criterion method, one of the functions is
selected as the objective function. This function best reflects
the purpose of the decision making from the user’s point of
view. Such a transition is not always equivalent to the
original problem.

The linear convolution method allows the criterion vector
to be replaced by a scalar via a linear combination of all the
weighted criteria functions. It is a requirement that all the
functions’ values should be presented on a numerical scale.

The maximin convolution method is focused on the worst
case and chooses the optimality criterion, which corresponds
to the smallest value of all the criteria. The disadvantage of
this method is its focus on the worst criteria.

In the presence of knowledge about the decision maker
preferences, the criteria coefficients can be determined using
the Saaty method [41]. The main object of the Saaty method
is a triangular matrix S of pairwise comparisons, each
element of which is interpreted as the superiority ratio of the
one criterion over the other. Coefficients of superiority can
be selected by the user from a fixed Saaty scale. Further, the
matrix S is transformed to the new matrix S’, for which the
maximum eigenvalue is determined through a linear
equations system. The weighted coefficients vector of the
individual criteria significance is an eigenvector of the
matrix S’ corresponding to the maximum eigenvalue of the
matrix S’. The Saaty method's disadvantages are the need to
solve linear systems of equations and the quadratic
dependence of the pairwise comparison's number on the
criteria and number of alternatives [41].

The linear convolution method was selected to reduce the
considered multi-criteria scheduling problem to the single-
criterion problem using normalisation of the criteria with
respect to the reference values (13).

Reduction of the problem under uncertainty (14) to the
deterministic problem implies the application of numerical
criteria. These criteria reflect the optimistic/pessimistic
perspective of the decision maker on the processes [19]. The
optimistic criterion is the Hurwitz criterion with the
coefficient equal to 1. The pessimistic criteria are: Wald

criterion, Savage criterion, and Hurwitz criterion with
coefficients equal to 0. The neutral criteria are: Bayes-
Laplace criterion, Bernoulli criterion, and Hurwitz criterion
with coefficients equal to 0.5.

All the mentioned criteria are used for uncertainty
removal in the scheduling method described below.

B. Multiagent Genetic Optimisation Method Under
Uncertainty

The multiagent genetic optimisation method under
uncertainty (MGOU method) integrates simulation, genetic
algorithms, and numerical methods. The MGOU method
includes the following steps.

Step 1. Definition of the input information: a) sets Z of
the environment state and sets P of the probabilities that the
environment is in the certain state; b) the function ϕ with the
use of MRCP model. The alternative work schedule x and
environment state z are fed into the model input. The OF1
and OF2 evaluations are obtained in the model output.

Step 2. Formation of a set of alternative schedules X, that
include the efficient (optimal) solution of the problem (1–3)
under conditions of certainty. At this step the MGO method
is used to find the chromosome population (set of alternative
work schedules) including the efficient (optimal) solution of
the problem (1–3).

Step 3. Formation of the matrix of decisions Y for the
problem (14) via conducting n⋅s experiments with the MRCP
model with n alternatives from the set X and s alternatives
from the set Z. The matrix of decisions Y for the problem
(14) is presented in Table II.

Step 4. Replacement of the optimality criterion vector
{ OF1,OF2} of the problem (14) on the scalar value. The
replacement can be performed using known numerical
methods, such as the linear convolution as in formula (13).
The statement of the problem (14) after the step's fulfilment
takes the form:

max),(→= zxFy , ZzXxYy ∈∈∈ ,, , (15)

where F(x,z) is the function of implementing an alternative x
in environment state z to decision evaluation y.

Step 5. Reduction of the problem under uncertainty (15)
to the deterministic problem using numerical functions J.
There are several numerical functions, depending on the
knowledge of probabilities vector P and the strategy used for
the uncertainty removal: the Bayes-Laplace criterion
(mathematical expectation criterion), Wald criterion
(criterion of the guaranteed result, maximin criterion),
Savage criterion (criterion of minimum regret), Bernoulli
criterion (principle of insufficient grounds), and Hurwitz
criterion (criterion of pessimism-optimism) [19].

TABLE II. MATRIX OF DECISIONS FOR THE MULTI-CRITERIA
PROBLEM UNDER UNCERTAINTY

 z1 … zS
x1 OF1(ϕ(x1,z1)), OF2(ϕ(x1,z1)) … OF1(ϕ(x1,zs)), OF2(ϕ(x1,zS))
… … … …
xn OF1(ϕ(xn,z1)), OF2(ϕ(xn,z1)) … OF1(ϕ(xn,zs)), OF2(ϕ(xn,zS))

10

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Let us consider the description of selected numerical
functions of uncertainty removal.

The Bayes-Laplace criterion is applied with knowledge
of probabilities P and characterises the "average income"
when making an alternative work schedule x [19]:

∑
= ∈

→⋅==
S

i
Xx

iiBL zxFpzxFxJ
1

max),(),()(, (16)

where the line on top of the symbol denotes the mathematical
expectation. The decision of the problem (16) will be an
alternative work schedule xi* : i* = arg(maxJBL(xi)).

The Wald criterion characterises the best solution for the
most unfavourable situation [19]:

Xx
i

Zz
zxFxJv

i ∈∈
→= max),(min)(. (17)

This formula is valid if the function F(x,z) characterises
the "income". Otherwise, the maximin criterion is
transformed into a minimax criterion.

The Savage criterion characterises the best solution when
comparing the worst losses. The losses emerge when there is
preference of others for one alternative x at a fixed
environment state z [19]:

Xx
jij

XxZz
xzxFxJs

ji ∈∈∈
→

 −= min),(maxmax)(. (18)

The Bernoulli criterion characterises decisions by
considering equiprobable external environment events [19]:

Xx

S

i
izxF

S
xJb

∈=
→⋅= ∑ max),(

1
)(

1

. (19)

The disadvantage of this criterion is that the unknown
distribution law of the magnitude P is replaced by the
uniform distribution law.

The Hurwitz criterion characterises the solution for a
given propensity DM to pessimism or optimism [19]:

Xx
i

Zz
i

Zz
zxFzxFxJh

ii ∈∈∈
→⋅−+⋅= max),(min)1(),(max)(αα , (20)

where α is the indicator of pessimism or optimism. If α = 0
the case of extreme pessimism comes about, if α = 1 the case
of extreme optimism comes about.

VIII. MULTIAGENT GENETIC OPTIMISATION PROGRAM

UNDER UNCERTAINTY

The program for multiagent genetic optimisation under
uncertainty (MGOU program) has been developed on the
basis of an MGO program, BPsim.MAS dynamic situations
modelling system and BPsim.MSN technical and economic
development system. The information technology for
uncertainty removal has been designed on the basis of
BPsim.MSN.

The algorithm for the interaction between the decision
maker and MGOU program during the decision-making
process under uncertainty is shown in Figure 5. The decision
maker carries out the problem statement, definition of the
different environment condition, and alternative work
scheduling set formed with the help of the genetic
optimisation IT.

The uncertainty removing IT is intended to aid risk
assessment under the uncertainty behaviour of the
environment. The MRCP model is intended to conduct the
experiments according to the plan for different values of
work scheduling and project size (environment condition).

The MGOU program has a number of advantages (key
strengths) compared to existing scheduling optimisation
under uncertainty software [11]–[13][15]–[17], as well as the
advantages of the MGO program that have already been
described in the Section VI:

1. The integration of simulation and evolutionary
approaches with numerical decision support methods to
decide the optimisation problem of scheduling under
uncertainty.

2. Consideration and removal of parametric and
structural environmental uncertainty.

3. The availability of uncertainty removal via wizard
technology for users without programming skills.

Problem description

Optimisation start

Is the experiment

last?

Replacement of the
objective functions

vector at scalar

quantity

Uncertainty removing

Better decision choosing

Optimisation end

No

Yes

Conducting the current

experiment

 Evaluation schedule
 for state via

objective functions

and

Multiagent simulation

model development

MGO method

performing. Forming a
set of alternative

schedules

Evaluation of the found
decision sensitivity

Definition of the sets of
the environment state S

and sets of the

probabilities P

Forming an experiments
plan for sets and

Choosing the following

experiment

Figure 5. Interaction between the decision maker and MGOU program.

11

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IX. COMPARATIVE ANALYSIS OF THE PROJECT

SCHEDULING METHODS

Let us consider the following project scheduling
methods: critical path method (CPM) and program
evaluation and review technique (PERT), branch and bound
method (B&B), genetic algorithms, Xu and Feng's method,
Osaba's method, and the MGOU method. A comparison of
the selected methods is presented in Table III.

The CPM and PERT methods allow the reserves of time
for the execution of certain works to be determined [17][42].
CPM assumes the deterministic duration of activities and
PERT incorporates uncertainty into activity durations.

The branch and bound method uses the evaluation of
upper and lower bounds to cut a set of solutions via removal
of the subsets containing no optimal solutions. The upper
bound is obtained using heuristics, while the lower bound
can be found using mathematical programming [17][42][43].

Genetic algorithms are used to find the optimal schedule
via the evolution of populations of schedules with the help of
genetic operators [2]–[10][18]. The optimal solution can be
found in GA by considering not only the one improvement
decision but many improvement decisions.

Xu and Feng’s method is intended to optimise project
scheduling with uncertain activity durations and activity
costs [11]. First, fuzzy random parameters are transformed
into fuzzy variables that are subsequently defuzzied using an
expected value operator with an optimistic-pessimistic index.
Second, the deterministic problem is solved with the use of a
hybrid particle swarm optimisation algorithm.

The Osaba’s method is intended to solve the dynamic
travelling salesman problem with the use of integrated
simulation and genetic algorithms [10]. Simulation is used to
reflect the dynamic nature of the system processes and
objective function.

TABLE III. ANALYSIS OF THE SCHEDULING METHODS

Comparison
criteria

CPM,
PERT

B&B GA Xu/Feng
meth.

Osaba
meth.

MGOU
meth.

Problem statement
Scheduling ● ● ● ● ● ●
Renewable
resources

● ● ● ● ● ●

Nonrenewable
resources

○ ○ ○ ● ○ ●

Subcontract
optimisation

● ○ ○ ○ ○ ●

Methods for solving the deterministic problem
Simulation ○ ○ ○ ○ ● ●
Multiagent
modelling

○ ○ ○ ○ ○ ●

Optimisation
methods:
exact/heuristic

●/○ ●/○ ○/● ○/● ○/● ○/●

Uncertainty consideration
Parametric
uncertainty
with:
distribution
law/fuzzy
logic

●/○ ○/○ ○/○ ○/● ○/○ ●/○

Structural
uncertainty

○ ○ ○ ○ ○ ●

The MGOU method integrates the simulation,
multiagent, and evolutionary modelling and numerical
methods in order to solve the project scheduling problem
under uncertainty.

The following comparison criteria were distinguished:
application of renewable and nonrenewable resources;
optimisation of subcontracting volume in order to decrease
the project costs; application of simulation in order to
adequately formalise the nonlinear, non-convex, and non-
differentiable system processes model; application of
multiagent model in order to reflect the decision makers
model; application of exact and heuristic optimisation
methods in order to conduct the optimisation experiment for
optimal solution finding; consideration of the uncertainty
with different description in order to reflect unexpected
external influences on the schedule.

As we can see from the table, all methods except the
MGOU method lack the support of some features that might
be useful in effective decision searching of the scheduling
problem. For example, subcontract optimisation (except
CPM and PERT), agent-based approach implementation, and
structural uncertainty evaluation are limited. Another
disadvantage of the four most popular scheduling methods
(CPM, PERT, B&B, GA) are lack of nonrenewable resource
consumption (including the resource life cycle description),
lack of simulation that helps to analyse the dynamic system
processes of the resources allocation, and lack of uncertainty
consideration (except PERT). The Xu and Feng's method
considers nonrenewable resource consumption and
uncertainty with fuzzy logic, but does not use simulation and
multiagent models to optimise subcontracted work. The
Osaba's method includes simulation but does not consider
uncertainty.

The full potential of scheduling under uncertainty is
implemented in the MGOU method. The disadvantage of the
method is its lack of fuzzy uncertainty description.

X. EXPERIMENTAL RESULTS

The application of the MGO and MGOU programs to
solve the project scheduling problem is presented in this
section. Let us consider a company, Telesystems, which
consists of project, manufacturing, and supply departments.
The goal is the minimization of the company departments'
total downtime and the total cost of the subcontract. In this
section we consider the application of the MGO method to
both the project scheduling problem without uncertainty and
to the project scheduling problem under uncertainty.

A. Experimental Results for the Deterministic Problem

A detailed statement of the considered problem is given
in [21]. The MRCP model has been developed to evaluate
the chromosome FF (13). The MRCP model implements the
resource allocation model, which satisfies the assumptions
determined in Section III. The model adequacy has been
proven in [21] through the evaluation of 5 projects. The
following input information has been used in the model: 1)
number of projects – 10 with 35 operations; 2) time interval
– T = 430 days (1 year and 3 months); and 3) time limit – the
early and late start of the operations is determined by the

12

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

shift in the provisional operational start dates by 2 weeks to
the right or left along the time axis.

The following GA parameters have been determined in
the course of the genetic optimisation IT work: the
population size – 10 chromosomes; the chromosome size –
175 genes (5 genes to encode the 35 project operations); the
following genetic operators – reproduction based on roulette,
five-point crossover with probabilities determined by (10)
and (11), five-point mutation with an initial probability equal
to 10% and dynamic probability determined by (12),
inversion with initial probability equal to 5%; algorithm
stopping criterion – a change of 10 populations; random
initial population; and following the ASA parameters values
of tZ0 = 1, α = 0.9, K = 10.

A comparison of the application of simple GA and
modified GA was performed. For a better comparison both
algorithms proceeded from one initial population. The
dependencies of the chromosome FF and the scheduling
problem objective function values from the population
number were obtained as a result of genetic optimisation
using the developed MGO program. The change in the
minimum value of the objective function (1) during genetic
optimisation via simple and modified GA is shown in Figure
6.a. The change in the maximum value of the fitness function
(13) during genetic optimisation via simple and modified GA

is shown in Figure 6.b. The problem solution involves the
maximization of the GA fitness function and minimization of
subcontract cost.

At the initial stage of the modified GA (change of the
generations 1–5) the search of the original decisions
predominates and leads to the FF value variations, which
does not always ensure the achievement of the best FF values
compared with the simple GA. However, the search results
are the basis of the targeted search for an extremum in the
later stages of GA (change of the generations 6–10) that
leads to the higher quality of the solution found. For the
problem considered, the decision found with the use of the
modified GA leads to the subcontract cost of 35189 rubles,
which is 14% below the subcontract cost obtained by using
simple GA (41050 rubles). The best decision is achieved in
the ninth population.

The project scheduling problem for the Telesystems
company has also been solved by use of the MS Project 2007
resources reallocation method and heuristic-simulation (HS)
method described in [21]. MS Project 2007 provides the
opportunity for resource reallocation (with smoothing) in
order to avoid exceeding the own renewable resources
availability. The percentage utilisation of the manufacturing
department for the initial work plan for the Telesystems
company is shown in Figure 7 by means of MS Project.

a. b.

Figure 6. Dependencies of the fitness function and objective function values from the population number when applying simple GA (solid line) and
modified GA (dotted line).

13

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Percentage utilisation of the manufacturing department for

initial work plan in MS Project.

The initial work plan has been formed by a decision
maker. In the figure, the x-axis shows the time intervals
(each of which lasts 12 days); the y-axis shows percentage
utilisation. The overallocated resource availability (time
intervals where the use of subcontracting is necessary) is
shown in the figure by the dark shading of the stripes above
the horizontal line at the 100% utilisation level. The
application of the MS Project resource reallocation method
has allowed the total subcontract cost to be reduced to zero;
that is, the objective functions (1) and (2) have reached their
optimal values. But the time constraints (3) have not been
satisfied by the use of this method. In this way, the MS
Project resource reallocation method is not considered
suitable for the scheduling problem.

The HS method is based on the analysis of the MRCP
model output parameters. In the HS method, the following
steps are performed [21]: 1) modelling the results analysis of
the subcontract cost and company resources utilisation; 2)
search for bottlenecks associated with operations that require
high costs of subcontracting; 3) shifting the start dates of
operations to the period determined by HS information
technology; and 4) transferring the adjusted model at the
experiment stage and experiment results evaluation.

Histograms of the objective functions (1) and (2)
obtained by the MGO and HS methods are shown in Figures
8.a and 8.b compared with the initial work plan. The total
subcontract cost and total downtime of the manufacturing
department has been consistently reduced by the use of HS
and MGO methods. All time constraints have been satisfied.

Based on the analysis of the results it was concluded that
the MGO method is more effective than the HS method in
addressing the project scheduling problem in terms of
economic effect. The total subcontract cost of the project
portfolio has been reduced by 30% and the total downtime of
the manufacturing department has been reduced by 1.5% for
a six month period using the MGO method compared to the
HS method. The total subcontract cost has been reduced by 7
times using the MGO method compared with the initial work
plan. Applying the genetic optimisation based on the
simulation and evolutionary modelling integration enhances
the efficiency of the decision making by taking into account
the dynamic resource allocation model in the simulation
model and the fulfilment of the direct search in the decision
space by the GA. The economic effect of applying the MGO
program to solve the scheduling problem for the Telesystems
company will be 430000 rubles per year, which is 9% higher
than the economic effect of the use of the HS method to
solve the same problem.

Let us compare the HS and MGO methods in terms of
performance by measuring CPU time. The CPU time for the
HS method THSM consists of the sum of the HS IT runtime
THSIT and the model MRCP runtime TMRCP. The sum is
multiplied by the number of experiments XIterations conducted
during the HS technology work. Thanks to the fact that
THSIT<<TMRCP we can neglect the term THSIT and define THSM
time as follows: THSM = XIterations⋅TMRCP.

The CPU time for the MGO method TMGO consists of the
sum of the genetic optimisation IT runtime TGOIT and model
MRCP runtime TMRCP, which is multiplied by the
chromosome number N. The sum is multiplied by the
generation number K. Thanks to the fact that TGOIT<<TMRCP
we can neglect the term TGOIT and define TMGO time as
follows: TMGO = K⋅N⋅TMRCP.

For the real-world scheduling problem the following
parameter values were used: XIterations= 3, K = 10, N = 10. In
this case, the HS method is more desirable in terms of
performance and consumes 33 times less CPU time than the
MGO method. This is connected to the use of the simulation
model in the GA for fitness function evaluation, which is
performed K⋅N times. The CPU time of the MGO method is
equal to 30 minutes.

a. b.

Figure 8. Dependencies of the objective function values on the decision-seeking method.

14

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Experimental Results for the Problem under
Uncertainty

Let us consider the uncertainty behaviour of the
environment associated with the appearance of four
additional projects in the spring, summer, autumn, and
winter, respectively. We defined the sets Z and P through the
different events occurring in the system L = { l1,…,lr} and a
set of probabilities of the events’ occurrence
PL={pL(l1),…,pL(lr)}; and we considered the set L consisting
of the following r = 8 events: appearance/absence of
additional complex project in each of the seasons.

The graph of the determined environment states Z by
using events L is shown in Figure 9.

Sixteen environment states {SA,...,SP} were allocated
(s=16) as a result of the description of the graph of system
states. Each state is characterised by the simultaneous
execution of h events from the set L:

h
iiiiii lllLLLz ∧∧∧=⊆∃⇔ ...: 21** , where Ll i ∈ , Zzi ∈ ,

si ..1= , rh ≤ .
The probability pi of the system's being in the state zi

according to the [19] is determined by

∏
=

=
h

j

j
iLi lpp

1

)(, *
i

j
i Ll ∈ ,

L
j

iL Plp ∈)(, ∑
=

=
s

i
ip

1

1. (20)

For the problem considered r = 8, h = 4, s = 16; that is, 8
events are considered that define the 16 states of the system,
and each state is specified by the simultaneous performance
of 4 events. The probabilities of the events' occurrence are
specified in Table IV.

The probabilities of the systems being in the environment
states zi calculated for the selected initial conditions are
shown in Table V.

Let us calculate, for example, the probability of the
systems being in the state z16 = SP: L16* = l1∧l3∧l5∧l7
(according to Figure 9). We use the formula (20):

05.025.05.05.075.0)()()()(753116 =⋅⋅⋅=⋅⋅⋅= lplplplpp LLLL
.

The model MRCP of the project work performance was
used to evaluate the work schedules for 16 selected states of
the environment. The MRCP model, which has been
described for the MGO method, was supplemented with the
following input parameters: marks of the systems being in
one of the analysed states.

Figure 9. Graph of the system states.

TABLE IV. EVENTS L AND PROBABILITIES PL OF EVENTS’
OCCURRENCE

l i
Spring

project l1
Summer
project l3

Autumn
project l5

Winter
project l7

pL(l i) 0.75 0.5 0.5 0.25

As a result of the application of the MGO method, 10

generations of chromosomes were obtained with information
stored in the genes about the start dates of the projects'
operations. Let us choose as a set of alternatives X the
decoded chromosomes in the ninth population of GA, where
the best solution to the problem considered was obtained
according to Figure 6. Let us define the dimension of the set
of alternatives n = 8.

The matrix of decisions Y for the project scheduling
problem under uncertainty is formed by assessing, with the
use of MRCP model, the selected alternatives {x1,…,x8} via
the set of criteria {OF1,OF2} for each system state
{ z1,…,z16}. Table II has been filled as a result of conducting
the n⋅s = 128 experiments. The criterion vector {OF1,OF2}
has replaced the scalar value with the use of the formula (13)
and following the values of the formula coefficients: ω1=0.5;
ω2=0.5. The removal of uncertainty has been carried out by
applying the removing uncertainty IT that implements
selected numerical criteria.

We applied the Bayes-Laplace criteria (16) for
replacement of the matrix of decisions Y on the vector of
decisions JBL(x). After performing the transformation, the
following vector was obtained: JBL(x) = {104.0; 95.8; 90.4;
121.5; 120.7; 127.7; 143; 126.5}. It is easy to determine that
the best solution is an alternative x7 with the criterion value
JBL(x7) = 143. The data obtained agree with the results of the
MGO method application.

Let us investigate the stability of the solution x7 when
changing the initial search conditions. By the term “stability
of the solution” we mean the preservation of the solution’s
advantages over alternative solutions when changing the
decision-maker preferences in the evaluation of the
importance of objective function (13) criteria and the
probabilities of events if they are known. The stability of the
found solution x7 can be evaluated by the application of the
Bayes-Laplace criterion to remove the uncertainty of the
alternative sets. A series of experiments were carried out in
order to find a vector function for evaluating the alternatives
X for different initial conditions. The initial conditions were
obtained by varying the degree of importance of criteria in
forming the implementation function (coefficients ω1 and ω2
in formula (13)) and the probabilities of events pL (see Table
IV).

TABLE V. ENVIRONMENT STATES Z AND PROBABILITIES P

z i

S
A

S
B

S
C

S
D

S
E

S
F

S
G

S
H

S
I

S
J

S
K

S
L

S
M

S
N

S
O

S
P

p i

0
.0

5

0
.1

4

0
.0

5

0
.1

4

0
.0

5

0
.0

1

0
.0

1

0
.1

4

0
.0

5

0
.0

5

0
.0

5

0
.0

1

0
.0

1

0
.1

4

0
.0

5

0
.0

5

15

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The dependence of the Bayes-Laplace function on the
changes in initial conditions is shown in Figure 10. Analysis
of the behaviour of the function JBL(x) for different initial
conditions has shown that the optimal value of the alternative
x7 is preserved for all the analysed situations. Superiority of
the calendar plan x7 is maximum in the case of the
equiprobable occurrence of the four additional projects (with
a probability of no more than 0.75) and when the objective
function OF1 (which minimises the total subcontracting cost)
is selected as the most important criterion of the problem
considered. The superiority of the calendar plan x7 is

minimum (right side of the upper chart on Figure 10) in the
case of high probabilities of four additional projects.

Let us apply the 4 remaining numerical criteria for
removing uncertainty and let us evaluate the stability of the
solution x7 relative to the alternatives set X by changing the
coefficient values ω1 and ω2 in formula (13). For the Hurwitz
criterion we define α = 0.5. The dependence of the function
J(x) behaviour (for different numerical functions) on the
significance of the individual components of the criterion
function (13) is shown in Figure 10.

Figure 10. Values of the function J(x) for various numerical criteria when the coefficients of the objective function (13) are changed.

16

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As follows from the charts, the use of the Savage,
Bernoulli, and Hurwitz criteria reveals the optimal solution
x7 that maintains stability when changing the function (13)
coefficients. The scatter of the function J(x) values is
observed for experiments in which function OF1 is selected
as the most important criterion of the problem considered.
Function J(x) values approximation is observed for the
experiments in which function OF1 becomes insignificant
when compared with the remaining component (function
OF2). In applying the Wald criterion, the correlation between
function J(x) values is set for each experiment. This fact is
connected only to the analysis of the worst situations in
which all alternatives provide comparable outcomes for each
experiment.

The solution (calendar plan of the works) that provides
the best outcome from the perspective of subcontract cost
and the minimization of own resources downtime, and which
provides resistance to external factors, was identified with
the use of the MGOU method. Also, this solution is optimal
for the scheduling problem under certainty. We concluded
that the cost of subcontracting is the most important
criterion, which greatly affects the objective function when
changing environmental conditions.

XI. CONCLUSION AND FUTURE WORK

In this paper, a multiagent genetic optimisation method
used to solve the deterministic and stochastic project
scheduling problem has been described on the basis of the
annealing simulation algorithm, novelty search algorithm,
genetic algorithm, multiagent simulation, and numerical
methods. In order to reflect the dynamic nature of the genetic
operators applied, the method combines three different
decision-seeking strategies: a random search strategy,
originality search strategy, and maximum search strategy.
The proposed integration of evolutionary modelling and
simulation limits the search space and adequately evaluates
the dynamic fitness functions of the chromosomes. The
method described has been implemented in MGO and
MGOU programs built on the basis of the BPsim.MAS
multiagent modelling system and BPsim.MSN development
system. The programs integrate simulation, expert,
multiagent, conceptual, and evolutionary modelling with
numerical methods of uncertainty removal. The comparative
analysis of the scheduling methods has shown the
disadvantages of the four the most popular scheduling
methods (CPM, PERT, B&B, GA) with regard to the lack of
nonrenewable resource consumption, simulation, and
uncertainty consideration. Also, the analysis has shown the
advantages of the MGOU method in the presence of
subcontract optimisation, agent-based approach
implementation, and structural uncertainty evaluation. The
MGO method's application to a real-world deterministic
project scheduling problem was compared with the MS
Project and HS methods. The MS project resource
reallocation method was found to be unsuitable for the
scheduling problem under consideration because of the lack
of constraints considered. As a result of the comparison
between the MGO and HS methods, an improvement in

decision quality under the constraints considered has been
achieved using the MGO method.

The disadvantage of the MGO method is the high CPU
time, which is 33 times higher than that of the HS method.
This fact imposes constraints on the GA generation size (no
more than 10 chromosomes) and GA iteration number (no
more than 10 generations). Different ways of enhancing the
applied GA convergence should be considered in future
work to meet the described constraints.

The MGOU method of multi-criteria decision making
under uncertainty has been applied to the project scheduling
problem aimed at optimising the utilisation of subcontracted
workforces and own resources. The decisions found by the
MGO method have been analysed under the structural
uncertainty of the four additional projects appearance.
Inferences have been drawn about the optimal decision
flexibility with the environmental condition changes. The
results of the experiments have shown the coherence of the
use of selected numerical criteria.

The aim of future research is to improve the rate of
convergence of the proposed genetic algorithm by applying
elitism and taboo algorithms. The dependency between the
decision search time and problem dimensions is assumed to
be established for the MGOU method. Also, consideration of
nonrenewable resource allocation and fuzzy description of
uncertainty is planned.

It is planned to extend and apply the developed method
for the scheduling of technological logistics in the field of
metallurgy. Similar problems have the following features:
first, the presence of a plurality of industrial units and
vehicles to be scheduled and, secondly, the presence of
conflict situations when driving vehicles (cranes and steel
teeming ladle cars in the shops). The technological logistics
scheduling is complicated by consideration of the production
plan for the units of output and the availability of additional
technological support operations, which are strictly related to
the number of the completed basic technological operations
at the industrial unit. It is planned to develop a multiagent
simulation model of the industrial unit’s work and vehicle
movements and optimise the values of the controlled model
variables – the route of vehicle movement and the industrial
unit' s work plan – using a modified genetic algorithm.

ACKNOWLEDGEMENT

This work was performed under contract №
02.G25.31.0055 (project 2012-218-03-167).

REFERENCES
[1] K. Aksyonov and A. Antonova, “Multiagent genetic

optimisation to solve the project scheduling problem,” Proc.
ICCGI 2013: The Eighth International Multi-Conference on
Computing in the Global Information Technology, Nice,
France, pp. 237–242, July 2013.

[2] I. Okada, X. F. Zhang, H. Y. Yang, and S. Fujimura, “A
random key-based genetic algorithm approach for resource-
constrained project scheduling problem with multiple modes,”
Proc. Int. MultiConf. Engineers and Computer Scientists, vol.
1, Hong Kong, pp. 106–111, March 2010.

17

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] M. Klimek, “A genetic algorithm for the project scheduling
with the resource constraints,” Annals UMCS Informatica,
vol. 10, issue 1, pp. 117–130, 2010.

[4] E. Sriprasert and N. Dawood, “Genetic algorithms for multi-
constrained scheduling: an application for the construction
industry,” Proc. CIB W78's 20th International Conf.
Construction IT, Construction IT Bridging the Distance, CIB
Report 284, Waiheke Island, New Zealand, pp. 341–353,
April 2003.

[5] H. Abdel-Khalek, M. H. Sherif, A. M. el-Lacany, and Y.
Abdel-Magd, “Financing – scheduling optimization for
construction projects by using genetic algorithms,” World
Academy of Science, Engineering and Technology, vol. 5, pp.
289–297, 2011.

[6] M. Karova, J. Petkova, and V. Smarkov, “A genetic algorithm
for project planning problem,” Proc. Int. Scientific Conf.
Computer Science, Krakov, Poland, pp. 647–651, June 2008.

[7] A. Brezuliani, L. Fira, and M. Fira, “A genetic algorithm
approach for scheduling of resources in well-services
companies,” International Journal of Advanced Research in
Artificial Intelligence, vol. 1, no. 5, pp. 1–6, 2012.

[8] A. Dhingra and P. Chandna, “A bi-criteria M-machine SDST
flow shop scheduling using modified heuristic genetic
algorithm,” International Journal of Engineering, Science and
Technology, vol. 2, no. 5, pp. 216–225, 2010.

[9] F.-C. Yang and W.-T. Wu, “A genetic algorithm based
method for creating impartial work schedules for nurses,”
International Journal of Electronic Business Management,
vol. 10, no. 3, pp. 182–193, 2012.

[10] E. Osaba, R. Carballedo, and F. Diaz, “Simulation tool based
on a memetic algorithm to solve a real instance of a dynamic
TSP,” Proc. IASTED Int. Conf. Applied Simulation and
Modelling, Napoli, Italy, pp. 27–33, June 2012.

[11] J. Xu and C. Feng, “Multimode resource-constrained multiple
project scheduling problem under fuzzy random environment
and its application to a large scale hydropower construction
project,” The Scientific World Journal, vol. 2014, 2014.
[Online]. Available from:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914335/pdf/
TSWJ2014-463692.pdf [Retrieved: May 2014]

[12] J. He and Z.-P. Wan, “Construction project scheduling
problem with uncertain resource constraints,” Journal of
Construction Engineering and Management ASCE, vol. 15,
no.1, pp. 324–326, 2002.

[13] X. Zhang and X. Chen, “A new uncertain programming
model for project scheduling problem,” An International
Interdisciplinary Journal, vol. 15, no. 10, pp. 1–10, 2012.

[14] A. Csebfalvi, “A unified model for resource constrained
project scheduling problem with uncertain activity durations,”
International Journal of Optimization in Civil Engineering,
vol. 2, no. 3, pp. 341–355, 2012.

[15] C. Artigues, R. Leus, and F. T. Nobibon, “Robust
optimization for resource-constrained project scheduling with
uncertain activity durations,” Flexible Services and
Manufacturing Journal, vol. 25, no. 1–2, pp. 175–205, 2013.

[16] W.-N. Chen and J. Zhang, “Scheduling multi-mode projects
under uncertainty to optimize cash flows: a Monte Carlo ant
colony system approach,” Journal of Computer Science and
Technology, vol. 27, no. 5, pp. 950–965, 2012.

[17] M. Brcic, D. Kalpik, and K.Fertalj, “Resource constrained
project scheduling under uncertainty: a survey,” Proc. Central
European Conference on Information and Intelligent Systems,
Varazdin, Croatia, pp. 401–409, September 2012.

[18] D. Goldberg, Genetic Algorithms. Addison Wesley, 1989.
[19] I.G. Chernorutskii, Decision-making methods. St. Petersburg:

BHV-Petersburg, 2005.

[20] M.-Y. Chen, H.-C. Tsai, and E. Sudjono, “Evaluating
subcontractor performance using evolutionary fuzzy hybrid
neural network,” International Journal of Project
Management, no. 29, pp. 349–356, 2011.

[21] K. A. Aksyonov and A. S. Antonova, “Application of
simulation and intelligent agents to solve project management
problem,” International Journal of Computer Science
Engineering and Information Technology Research, vol. 3,
no. 1, pp. 321–330, 2013. [Online]. Available from:
http://www.tjprc.org/view_archives.php?year=2013&id=14&j
type=2&page=3 [Retrieved: May 2014]

[22] B. Keller and G. Bayraksan, “Scheduling jobs sharing
multiple resources under uncertainty: a stochastic
programming approach,” IE Transactions, vol. 42, no. 1, pp.
16–30, 2009.

[23] J. Lehman and K. Stanley, “Exploiting open-endedness to
solve problems through the search for novelty,” Proc.
Eleventh Intern. Conf. Artificial Life (ALIFE XI),
Cambridge, MA, pp. 329–336, August 2008.

[24] L. A. Zinchenko, V. M. Kureichik, and V. G. Redko (Eds.),
Bionic Information Systems and their Practical Applications,
Moscow, FIZMATLIT, 2011.

[25] W. L. Goffe, G. D. Ferrier, and J. Rogers, “Global
optimization of statistical functions with simulated
annealing,” Journal of Econometrics 60, pp. 65–99, 1994.

[26] K. Aksyonov et al., “Decision Support Systems Application
to Business Processes at Enterprises in Russia,” in Efficient
Decision Support Systems – Practice and Challenges in
Multidisciplinary Domains, C. Jao, Ed. InTech, pp. 83–108,
2011. ISBN: 978-953-307-441-2. [Online]. Available from:
http://www.intechopen.com/articles/show/title/decision-
support-systems-application-to-business-processes-at-
enterprises-in-russia. [Retrieved: May 2014]

[27] K. A. Aksyonov and N. V. Goncharova, Multi-agent resource
conversion processes dynamic simulation, Yekaterinburg:
USTU, 2006.

[28] K. A. Aksyonov, Research and development of tools for
discrete resource conversion processes simulation, DPhil
research paper, Ural State Technical University,
Yekaterinburg, Russia, 2003.

[29] A. V. Andreichikov and O. N. Andreichikova, Intelligent
information systems. Moscow: Finance and statistics, 2004.

[30] Modelling system Plant Simulation. The official web site.
[Online]. Available from:
http://www.plm.automation.siemens.com/en_us/products/tecn
omatix/plant_design/plant_simulation.shtml [Retrieved: May
2014]

[31] W. D. Kelton, J. S. Smith, D. T. Sturrock, and A. Verbraeck,
Simio and Simulation: Modeling, Analysis, Applications.
New York: McGraw-Hill, 2010.

[32] Real-time expert system G2. The official web site. [Online].
Available from: http://www.gensym.com/en/product/G2
[Retrieved: May 2014]

[33] Mutiagent modelling system AnyLogic. The official web site.
[Online]. Available from: http://www.anylogic.com
[Retrieved: May 2014]

[34] Mutiagent modelling system RepastJ. The official web site.
[Online]. Available from:
http://repast.sourceforge.net/index.html [Retrieved: May
2014]

[35] G. Rzevski, J. Himoff, and P. Skobelev, “MAGENTA
technology: a family of multi-agent intelligent schedulers.
International conference on multi-agent systems” Proceedings
of Workshop on Software Agents in Information Systems and
Industrial Applications 2 (SAISIA). Fraunhofer IITB,
Germany, 2006. [Online]. Available from:

18

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

http://rzevski.net/06%20i-Scheduler%20Family.pdf
[Retrieved: May 2014]

[36] The official UML web site. [Online]. Available from:
http://www.uml.org [Retrieved: May 2014]

[37] SQL Server language reference. [Online]. Available from:
http://msdn.microsoft.com/en-
us/library/ms166026(v=sql.90).aspx [Retrieved: May 2014]

[38] M. Wooldridge, “Intelligent agent: theory and practice,”
Knowledge Engineering Review, vol. 10 (2), 1995.

[39] J.P. Muller and M. Pischel, The Agent Architecture InteRRap:
Concept and Application. Sarbrücken: German Research
Centre for Artificial Intelligence (DFKI), 1993.

[40] FIPA ACL Message Structure Specification. [Online].
Available from:
http://www.fipa.org/specs/fipa00061/SC00061G.html
[Retrieved: May 2014]

[41] T. L. Saaty, Decision making with dependence and feedback:
the analytic network process. University of Pittsburgh: RWS
Publications, 1996.

[42] F. S. Hillier and G. J. Lieberman, Introduction to stochastic
models in operations research. New York: McGraw-Hill,
1990.

[43] A. Chaleshtari and S. Shadrokh, “A branch and bound
algorithm for resource constrained project scheduling problem
subject to cumulative resources,” Proc. International
Conference on Information Management, Innovation
Management and Industrial Engineering (ICIII), IEEE, vol. 1,
Shenzhen, China, pp. 147–152, November 2011.

19

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Review and Performance Analysis of Shortest Path Problem Solving Algorithms

Mariusz Głąbowski*, Bartosz Musznicki**, Przemysław Nowak*, and Piotr Zwierzykowski*

* Poznan University of Technology, Faculty of Electronics and Telecommunications,
Chair of Communication and Computer Networks, Poznań, Poland,

e-mail: mariusz.glabowski@put.poznan.pl, przemyslaw.nowak@inbox.com, piotr.zwierzykowski@put.poznan.pl
** INEA S.A., Poznań, Poland, e-mail: bartosz.musznicki@inea.com.pl

Abstract—The development of concepts derived from the
generic approach to solving the problem of the shortest path
resulted in numerous and various algorithms that appeared
over the past decades. The studies on the most basic operation
aimed at the determination of the shortest path between two
given points in a graph (in other words, often a network)
have resulted in sophisticated solutions designed for more and
more demanding applications. Those include finding the sets
of paths with the shortest distance between all pairs of nodes
or searching for a shortest path tree. The aim of the present
article is to give the reader an introduction to the problem of
the shortest path and a detailed review of two groups of selected
algorithms designed to solve particular problems. In the study
described herein, different algorithms have been examined for
their efficacy in their operation in directed graphs of different
type represented in a well-defined data structure. The empirical
simulation-based analysis proves that the performance varies
among algorithms under investigation and allows to suggest,
which methods ought to be used to solve specific variants of the
shortest path problem and which algorithms should be avoided
or used with caution.

Keywords-shortest path; algorithms; review; performance;
analysis

I. INTRODUCTION

This article is an extended version of a conference paper
presented at AICT 2013, The Ninth Advanced International
Conference on Telecommunications [1]. It introduces numer-
ous additions, such as, more information on the problem
of the shortest path, a detailed description of approaches
and algorithms being tested, and a discussion of new sim-
ulation results. The foundations for the present review and
performance analysis of selected algorithms are given by the
research studies on shortest path problem solving using Ant
Colony Optimization (ACO) metaheuristic approach [2]. It
is just in the initial stage in the assessment of the potential
in the applications of the ACO algorithms that the authors
decided to start an in-depth analysis of those algorithms that
represented a more traditional approach to the problem. As
a result of the following investigations, relevant tests have
been carried out. They are presented and compared in this
article. It should be stressed that both well-known [3] and
less commonly used algorithms are presented as long as they
provide a possibility of finding the optimal solution having

first satisfied some pre-defined initial requirements. Heuristic
ACO algorithms have not been included in the presented
evaluation for the simple reason that their operation does
not, in fact, guarantee finding a solution that would always
be optimal [4]. Moreover, the results obtained on the basis
of ACO can be strongly dependent on the structure of the
graph and there is no guarantee that any solution of any kind
would be found at all [5].

The contents of the subsequent sections are arranged as
follows. Section III shows two distinct approaches to the
definition of the problem of the shortest path, lists some of
its applications, and introduces the key assumptions, which
shall be applied. Section IV is aimed at presenting the
general types of shortest path problem solving algorithms.
A detailed description and discussion of the two groups of
algorithms that have been put to the analysis are presented
in Section V. In addition, the relevance to and relationship
with the shortest path tree is discussed. The data structure
that represents the graphs under consideration is discussed
in Section VI. Then, in Section VII, the graphs in which the
simulations were carried out are described. The description
is followed by Section VIII that will focus on the presen-
tation and discussion of the results of the study. Finally, in
Section IX, the article is summed up with conclusions.

II. RELATED WORK

In the process of careful investigation of publications
related to the shortest path problem, numerous books and
papers have been studied. The bulk of comparison papers are
either directed at specific aspects and applications of the al-
gorithms [6]–[9] or are focused on comparing new concepts
with more classical methods [10], [11]. Some papers are
concerned with asymptotic computational complexity [12]–
[15], while other works are aimed at empirical computational
complexity analysis of a number of algorithms based on
implementation and simulation [7], [16]–[19]. In this paper,
we decided to follow the latter approach to build this article
upon experimental findings with respect to practical perfor-
mance of a range of 12 closed-form complexity algorithms
for solving shortest path problems that have not been com-
pared before. The introduced homogeneous data structure

20

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

representing graphs under scrutiny is carefully discussed.
Owing to the well-defined data structure, the results can be
directly compared, which is critical in conclusive evaluation
of the efficiency.

III. PROBLEM OF THE SHORTEST PATH

For the directed graph G = (N ,A), where N is the set of
nodes (vertices) and A is the set of arcs (edges), we assign
the cost aij to each of its edges (i, j) ∈ A (alternatively,
this cost can be also called the length). We denote the
biggest absolute value of an edge cost by C [see (1)]. For
the resulting path (n1, n2, . . . , nk), its length aP can be
expressed by (2).

C = max
(i,j)∈A

aij (1)

aP =

k−1∑
i=1

anini+1 (2)

A path is called the shortest path if it has the shortest length
from among all paths that begin and terminate in given
vertices. The shortest path problem involves finding paths
with shortest lengths between selected pairs of vertices. The
initial (start) vertex will be designated as s, while the end
(goal) vertex as t.

The problem of the shortest path can be also expressed
differently [20]. If we go back to the original definition
and define aij as the cost (and not the length), the problem
can be reduced in its essence to a transmission of one flow
unit between a pair of vertices as cheaply as it is possible.
The problem is defined as follows: minimize (3a) limited
by (3b) and (3c). ∑

(i,j)∈A

aijxij (3a)

0 ≤ xij , ∀ (i, j) ∈ A (3b)

∑
{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji =

1, for i = s

−1, for i = t

0, otherwise
(3c)

This makes it possible to formulate the shortest path
problem by defining a linear function that is analogous to
the function that defines the minimum cost flow problem. To
illustrate the comparison drawn above, let us assign a flow
vector x that is described by

xij =

{
1, for (i, j) ∈ P

0, otherwise
(4)

to a randomly selected path P from s to t.
Then x can be a solution to the problem (3), while the

cost x is equal to the path length P . Hence, if vector x in
the representation of formula (4) is the optimum solution to
the problem (3), then the relevant corresponding path P is
the shortest path.

A number of basic variants of the shortest path problem
can be distinguished [21]:
• finding the shortest path between a pair of vertices

For a given pair of vertices s and t the shortest path
between them should be found. It should be mentioned
here that so far no algorithm is known that solves this
problem asymptotically in its worst case better than the
best algorithm for the problem with one initial vertex.

• finding the shortest paths with single initial vertex
For a given vertex s the shortest path between the vertex
and each of the vertices i ∈ N is to be found.

• finding the shortest paths with single end vertex
This is a reverse of the previous variant — the shortest
path from each of the vertices i ∈ N to a given vertex
t is to be found. By reversing each of the edges of the
graph, the previous problem is obtained.

• finding the shortest paths between all pairs of vertices
The shortest path between each pair of the vertices i
and j that belong to N is to be found. A solution to this
problem can be obtained by a solution of the shortest
path problem with one initial vertex for each of the
vertices in the graph.

In solving the problem of the shortest path we shall
apply the following assumptions (which, in the case of some
specific algorithms, may not be required).
• The graph is a directed graph. In the case of the

undirected graph with non-negative weights, it is easy
to transform it into a directed graph.

• The graph does not include negative cycles. The prob-
lem of the shortest path with negative cycles is
NP-hard (impossible to be presented using a polyno-
mial algorithm).

• There is a directed path between the pairs of vertices
under consideration.

• Costs of the edge aij are integers (this requirement
applies to only some of the algorithms). In the case of
the real costs of the edge, we can convert summations
to integers multiplying them by an appropriately high
number. Imaginary values would introduce unnecessary
complications with their representations in computer-
mediated activities.

The solution to the problem of the shortest path finds
its application in a number of areas such as transportation
or routing in communication networks [3], [22], [23] and
is often related to searching for the shortest path tree in a
graph.

It can be proved that the shortest paths from one node of
a graph to all of the remaining nodes create a shortest paths
tree [21], [25]. A characteristic feature of this tree is the fact
that its root is formed from the initial (source) vertex, all of
its edges are directed in the direction opposite to the vertex,
and each path that can be created from the initial vertex to
any other vertex is the shortest path to this vertex.

21

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. TYPES OF SHORTEST PATH PROBLEM SOLVING
ALGORITHMS

The shortest path algorithms are characterized by certain
common features — they are iterative, while their operation
is based on assigning to particular vertices distance labels
that are currently the best distances from the beginning of
the path that is to be found. During the performance of
these algorithms a set of valid vertices that can be taken into
consideration is maintained. The method for a representation
of this set may vary depending on a particular algorithm
and can be representative for it. The difference in these
algorithms is based on the method of updating the distance
labels and a selection of a vertex expected to leave the
mentioned set. Therefore, we can divide the shortest path
algorithms into two groups [24]:
• label-setting algorithms

This type of algorithms is characterized by a permanent
setting of the distance label of one of the vertices in
each iteration. This is equivalent to a single removal of
a given vertex from the set of vertices under scrutiny.
The most computationally complex part in these algo-
rithms is mainly a selection, in each of the iterations, of
a vertex with the lowest distance label from among the
vertices that belong to the set of vertices under scrutiny.
Algorithms from this group can be additionally applied
only to acyclic graphs with defined (e.g., integer) edge
lengths, or in the case when edges have non-negative
lengths.

• label-correcting algorithms
Unlike the algorithms of the previous group, algorithms
of the type label-correcting treat all distance labels of
vertices as temporary until the last iteration, whereupon
all labels are set to the optimum value. This is translated
then into a multiple addition of a vertex to the set of
vertices under consideration and its multiple removal
from the set. Due to the above, a choice of a vertex in
each of the iterations is less computationally complex.
Algorithms of this type can be used to solve all classes
of the shortest path problem, including those with
negative lengths of edges.

Label-setting algorithms can be viewed as a particular
case of label-correcting algorithms. This means that Label-
correcting algorithms can be used for solving more general
cases of the problem. Label-setting algorithms for the case of
non-negative lengths (costs) of edges have lower pessimistic
complexity, which does not necessarily have to translate into
better expected (average) complexity. All discussed label-
correcting algorithms achieve identical pessimistic com-
putational complexity. Differences in effectiveness of the
algorithms can be seen in their practical applications or with
particular graphs.

By taking into consideration practical applications of the
algorithms under study, a numbers of factors are in favour

of label-correcting algorithms. These algorithms are more
elastic and, in consequence, can be better adjusted to making
use of additional initial data for a given graph. They can be
also better adjusted to a problem in providing a solution to
which they have been used — it is even possible in some
cases to make distance labels set only once (for one vertex to
be added and removed from the set of considered vertices).
This equalizes the most important advantage of label-setting
algorithms.

In practice, graphs that have edges with negative costs are
rare, while for these cases good label-correcting algorithms
have better expected complexity than label-setting algo-
rithms. It is so because, beside the required O(A) number
of operations for the algorithms of both types that is needed
to check each of the edges at least once, the label-setting
algorithms require approximately additional operations with
their number proportional to N , while the number of op-
erations of additional label-correcting algorithms approxi-
mately increases linearly with A. For rare graphs the ratio
of additional operations of both groups of algorithms is
much favourable for label-correcting algorithms, whereas
for dense graphs, for label-setting algorithms.

V. ALGORITHMS FOR SOLVING SHORTEST PATH
PROBLEMS

The following subsections of this section focus on the
algorithms for a determination of the shortest paths between
a given single initial vertex and all the remaining vertices
of the graph.

The algorithms solving shortest path problems that are
briefly discussed in the following subsections have been
evaluated through efficiency analysis. Each of the algorithms
has particular features that eventually lead to their differ-
ences in their properties and performance. On account of
their possible applications, the algorithms have been, in turn,
divided into two categories.

A. Single-Source Shortest Paths problem

The following subsections of this section focus on algo-
rithms for a determination of the shortest paths between a
given single initial vertex and all the remaining vertices of
the graph.

1) Generic algorithm: The operation of the generic algo-
rithm [20] is based on iterative checking of edges from the
vertex under consideration i and on label setting for vertex
j, in which a given edge terminates, to dj = di + aij , in
the case when dj > di + aij . To store the vertices that are
to be checked, the list V is used, called candidates list. The
way vertices are stored in this list, as well as the method
determining the addition and the retrieval of vertices to and
from it, is frequently the major factor that distinguishes
individual algorithms under consideration. In the case of the
generic algorithm, the candidates list is a FIFO queue in

22

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

which operations of additions and retrieval of a vertex to
the end of it or from its head, respectively, are performed.

The algorithm starts to check from the initial vertex s,
with initial conditions defined by (5).

V = {s}, ds = 0

di =∞, ∀ i 6= s
(5)

The algorithm checks individual edges of the initial vertex
and, if an appropriate condition is satisfied, sets the labels
of the vertex in which a given edge terminates, adding it to
the candidates list if it is not already there. The procedure
is then repeated until the list of candidates is empty.

During the performance of the algorithm labels are mono-
tonically non-increasing and if di < ∞, then vertex i has
appeared on the candidates list V at least once.

2) Dijkstra’s algorithm: Dijkstra’s algorithm is presum-
ably the best known algorithm for finding the shortest path
in the directed graph [26]. The method is an algorithm of
the type label-setting, which means that once considered
vertex does not appear again on the list of candidates, while
its label, once it is set, is ultimate and denotes the shortest
distance from the initial vertex to this vertex.

The initial conditions are illustrated in (5), while an
additional constraint is non-negativity of the length of the
edge (6).

aij ≥ 0 (6)

The basic difference between this algorithm and the
generic algorithm is the way in which vertices are drawn
from the candidates list — the selected vertex is the vertex
that has the smallest label from all available vertices in the
list:

di = min
j∈V

dj (7)

This causes the vertex with its label set, as well as all
vertices that are in the path from the initial vertex to this
particular vertex, to have the minimum value of the label and
to not be added again to the candidates list. The number of
iterations of the algorithm is equal to the number of vertices
N . During each iteration, two operations are performed —
the choice of a vertex from among all vertices on the list of
candidates, and scanning and, should the need arises, setting
of distance labels. The choice of a vertex in its worst case
requires O(N) operations, which in conjunction with the
number of iterations gives O(N2) operations. Checking of
the labels is performed A times, since in each iteration the
algorithms checks all edges that start in the vertex under
scrutiny, whereas each vertex is considered only once. O(A)
is not taken into account because it is far smaller than
O(N2). Therefore, the total number of operations that the
Dijkstra’s algorithm needs to perform to solve the shortest
path problem is O(N2).

3) Dijkstra’s algorithm using a heap: It is not possible
to decrease the number of operations that are performed
in order to check labels, because this would not make
it possible to guarantee the optimum solution finding —
each edge has to be checked at least once. A selection of
an optimum data structure that represents the candidates
list makes it possible, in turn, to reduce significantly the
computational complexity of the operation of the selection
of a vertex from the candidates list [27]. Here, heaps (also
known as priority queues) can serve ideally the purpose.
Using Fibonacci heap we can solve the shortest path problem
using Dijkstra’s algorithm and performing O(A+N logN)
operations.

4) Dial’s algorithm: Another way to reduce the number
of operations accompanying the selection of a vertex from
the candidates list is a division of the list into buckets [28].
Each bucket Bk stores only vertices with a given label k.
This causes lengths of edges to have to be integers and non-
negative. When this is the case, labels can take on values
from 0 to (N − 1)C. This gives (N − 1)C + 1 of different
values of the labels and, at the same time, buckets that
have to be scanned in increasing order until the first non-
empty bucket is found. After a given vertex is checked, it is
removed from the bucket and scanning in the next iteration
starts with this particular bucket. As a result, once emptied
bucket is not checked again any more. It happens so because
the currently checked vertex always has the lowest (smallest)
label from among any other vertices in the buckets and, since
lengths of edges are non-negative, while setting labels in a
given iteration none of the label will be set to a value that is
lower than the value of the label of the vertex that is being
checked.

A good structure for the implementation of buckets is
the two-way list. The list allows all operations (checking
whether a bucket is empty, addition of a vertex and its
removal from the bucket) to be performed in time O(1).
Taking it all into consideration, the choice of a vertex
requires O(NC) operations, which, after taking into account
O(A) operations for checking and setting labels, results
in the computational complexity of Dial’s algorithm being
O(A + NC). What is crucial to understand, is that the
bucket deletion and insertion operations require linear time
and not more than NC buckets need to be examined by
the procedure [17]. The higher the absolute value of an
arc cost C, the more operations need to be performed by
the algorithm, and thus, the performance gain related to
the usage of buckets dramatically diminishes. Therefore, for
small values C � N , Dial’s algorithm performs very well
in practice.

5) Bellman-Ford algorithm: The Bellman-Ford algorithm
belongs to algorithms of the label-correcting type, i.e., the
ones treating all labels for vertex distances as temporary
until the last iteration, after which all labels are set to
optimum values [29]. This algorithm provides a possibility

23

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to solve the shortest path problem in graphs with negative
lengths of edges. In the case when a negative cycle is
found, the algorithm yields false return as the result of its
operation. Because of this particular method of operation
of the algorithm, the candidates list is not required. The
initial conditions are in accordance with (5), though with
the omission of the list V . The algorithms checks all edges
of the graph N − 1 times, which allows the minimum
labels in the graph to be propagated. In its final stage,
the algorithm checks whether any of the labels is non-
optimum — this situation happens only in the case of the
occurrence of a negative cycle in the graph, which is reported
by the algorithm by yielding false returns. This algorithm
makes N − 1 iterations in which it checks A edges. Its
computational complexity is then equal to O(NA).

6) D’Esopo-Pape algorithm: The D’Esopo-Pape algo-
rithm uses the candidates list in the form of a queue [30].
Vertices that are to be checked are always retrieved from
the head of the list. However, the place a given vertex is
added to in the candidate list depends on whether the vertex
has already been placed in this list. If this is the case, it is
added to its head, otherwise — to the end of the list. This is
caused by the fact that a modification of the label of vertex
i can be followed by a modification of vertices j such that
(i, j) ∈ A. A quicker updating of the vertices in which the
edge that starts in the considered vertex terminates effects
in the optimum of the solution to be quicker achieved. Such
an operation of the algorithm results in its good results in
practice. There are instances, however, when the algorithm
completely cannot cope with, and the number of additions
of some vertices to the candidates list is non-polynomial.

7) SLF algorithm: The Small Label First algorithm (SLF)
seeks to manage the candidates list in such a way as to make
vertices with small labels located as close to the head of the
list as possible [31]. The reason for this operation is the fact
that the smaller the label of a vertex that is retrieved from
the candidates list, the lower the probability that this vertex
will be forwarded to the list once again. This algorithm,
just as the two following algorithms, attempts to reach
the characteristic operation of Dijkstra’s algorithm with a
lower computational outlay. The algorithms are designed for
graphs with non-negative edges, though they also operate
otherwise (there is no guarantee then that they will perform
better).

In each of its iteration the algorithm SLF checks the vertex
that is placed at the head of the candidates list. The place
of the addition of a vertex after its label has been changed
depends on the value that is taken on by the label. If the
vertex label of the vertex that is to be added to the candidates
list is lower or equal to the label of the vertex that is currently
at the head of the list, this vertex is added as the first in the
list. Otherwise, the vertex is added at the very end of the
candidates list.

8) LLL algorithm: The Large Label Last algorithm (LLL)
attempts to achieve the operation that is similar to that of the
previous algorithm using a specific method for the retrieval
of vertices from the candidates list [32]. The addition of
vertices to the candidates list is not defined in any way.
However, the method for their retrieval from the list is
defined. Each time when a vertex is to be taken from the
list, the average value of the labels of the vertices in the list
is calculated. Then, the label of the vertex that is at the head
of the list is compared with this average. If the label of the
vertex is higher than the average, the vertex is moved to the
end of the list. Otherwise, the vertex is returned as the one
that has to be considered in this iteration.

9) SLF/LLL algorithm: The SLF/LLL combines the SLF
algorithm method for the addition of vertices to the candi-
dates list and the LLL algorithm method for their retrieval
from the list [20]. The SLF/LLL algorithm requires a lower
number of iterations to solve the shortest path problem than
the algorithms it combines. This is done, however, at the
cost of the increased number of necessary calculations. To
speed up the process, parallel computing methods can be
applied.

B. All-Pairs Shortest Path problem

The following subsections present algorithms that are
dedicated to finding the shortest paths between all pairs of
vertices.

1) The doubling algorithm: The algorithm’s operation is
based on iterative calculation of the shortest paths for all
vertices composed of an increasing number of edges [33].
It starts with paths that are composed of just one edge,
and then checks whether paths that are composed of two
edges would not be shorter. This operation is then repeated
until all paths that are composed of N − 1 edges are
checked. This procedure has some similarity with matrix
multiplication [25].

Matrices that are used in the algorithms Dm = {dmij} and
Predm = {predmij} have the initial values (8a) and (8b),
respectively.

d1ij =

0, for i = j

aij , for (i, j) ∈ A
+∞, otherwise

(8a)

pred1ij =

0, for i = j

i, for (i, j) ∈ A
0, otherwise

(8b)

In its simplest case, the matrix D1 would be multiplied
by itself N − 2 times to take into account paths that have
1, 2, . . . , N − 1 edges. The matrices that correspond to
particular iterations would be as in (9), though such a case

24

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

would effect in the complexity at the level Θ(N4).

D1

D2 = D1 ·D1

D3 = D2 ·D1

...
D(N−1) = D(N−2) ·D1

(9)

The knowledge of the values of all matrices D is not,
however, necessary — it is the matrix D(N−1) that needs
special attention. Hence, the doubling algorithm, instead
calculating successive matrices D, calculates only its powers
of 2 [see (10)].

d2
m

ij = mink{d2
(m−1)

ik + d2
(m−1)

kj },
i, j, k ∈ N , m = 1, 2, . . . , dlog2(N − 1)e

(10)

Bearing in mind the fact that a path that is composed of
more than N − 1 edges cannot be shorter than the shortest
path, we know that Dn = D(N−1) for all n ≥ N − 1. In
such a case we have a sequence of matrices [see (11)].

D1

D2 = D1 ·D1

D4 = D2 ·D2

...
D2dlog2(N−1)e

= D2dlog2(N−1)e−1 ·D2dlog2(N−1)e−1

(11)

This gives the ultimate computational complexity of the
algorithm equal to Θ(n3 log2 N).

2) Floyd-Warshall algorithm: The Floyd-Warshall algo-
rithm obtains what the previous algorithm was capable of,
using a different approach and achieving at the same time
lower computational complexity equal to Θ(N3) [34], [35].
The algorithm analyses the internal vertices of the path
P = (i, n1, n2, . . . , nk, j), i.e., those that are neither the
initial (original) vertex nor the goal vertex. For the given
path P , these are the vertices from the set {n1, n2, . . . , nk}.

Assuming that N = {1, 2, . . . , N}, for a certain k, let
us consider the sub-set {1, 2, . . . , k} and all paths from i
to j whose internal vertices belong to this sub-set, for each
pair of the vertices i, j ∈ A. From among all the paths we
denote the shortest path as P . The assumption is that the
graph does not include non-negative cycles and, thus, this
path is a simple path (does not have repeated vertices or
edges). We analyse this path against the shortest paths from
i to j that have the set of internal vertices limited to the
sub-set {1, 2, . . . , k − 1}.

Depending on whether k is an internal vertex of path P ,
we can draw the following conclusions. If k is not an internal
vertex of the path P , then it means that its internal vertices
are limited to the sub-set {1, 2, . . . , k − 1}. Then, P is the
shortest path also when the set of its internal vertices is equal
to {1, 2, . . . , k}. Intuitively, this means that an expansion of
the set of internal vertices does not change the shortest path.
If, however, k is the internal vertex of the path P , we divide

it into two paths P1 from i to k and P2 from k to j. Both
paths are the shortest paths, while the set of their vertices is
limited to the sub-set {1, 2, . . . , k−1}, since vertex k is the
goal vertex of path P1 and the initial vertex of path P2. This
means, in turn, that by dividing the path into two shortest
paths we can limit the set of their internal vertices. In both
cases we obtain the shortest path for a given k using the
shortest path for k − 1.

The matrices used in this algorithm are exactly the same
as the matrices used in the doubling algorithm. The initial
values for these matrices are identical with equation (5) with
the only difference that, instead d1ij and pred1ij , we define
respectively d0ij and pred0ij .

On the basis of the earlier considerations and initial
conditions we obtain the recurrent formula (12).

dkij = min{d(k−1)ij , d
(k−1)
ik + d

(k−1)
kj }, i, j, k ∈ N (12)

The formula illustrates precisely in how the length of the
shortest path is dependent on whether k is its internal vertex
and whether uses the values obtained for k − 1.

3) Johnson’s algorithm: For sparse graphs (i.e., those in
which the number of edges is far lower than N2) it is possi-
ble to improve the process of calculation of the shortest paths
between all pairs of vertices using Johnson’s algorithm [36].
For this purpose, the two algorithms discussed earlier, i.e.,
the Bellman-Ford algorithm and Dijkstra’s algorithm (most
favourably in its form with a heap), are used. Therefore, the
Johnson’s algorithm has a number of particular properties
and limitations of both algorithms. It can determine whether
a graph includes a negative cycle (just like the Bellman-Ford
algorithm) and requires non-negative lengths of the edge
(like Dijkstra’s algorithm). Getting round this limitation is
possible thanks to an appropriate transformation of the graph
presented in (13).

In the initial stage of the Johnson’s algorithm, the graph
is being modified in order to get rid of edges with negative
lengths. Such a transformation has to guarantee additionally
that the shortest paths in the graph do not change. To achieve
that, the graph is being added the additional vertex s that is
to be the initial vertex for the Bellman-Ford algorithm. To
each of the earlier vertices the edge that starts in s with the
length equal to 0 is also added.

G′ = (N ′,A′)
N ′ = N ∪ {s}, s /∈ N
A′ = A ∪ {(s, j) : j ∈ N}

a′ = a, a′sj = 0, ∀ j ∈ N

(13)

Thus created graph G′ has no paths that would include the
vertex s except those that start in it, and includes negative
cycles only when the graph G has included such cycles. If
the graph G does not include negative cycles, then, after the
execution the Bellman-Ford algorithm on the graph G′ with
the vertex s as the initial vertex, we obtain the vector h that

25

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

defines the lengths of the shortest paths in this graph. The
vector is then used to modify the lengths of edges in such
a way as not to make them non-negative, in line with (14).

a′ij = a′ij + hi − hj , i, j ∈ A′ (14)

Then, for each vertex i that belongs toA Dijkstra’s algorithm
is applied to calculate all the shortest paths that start in it.
After the calculation of the lengths of the paths that start
in a given vertex, they are modified in such a way as to
reflect and correspond to the lengths of paths in the original
graph [see (15)].

dij = d′j + hj − hi, i, j ∈ A (15)

In this way, the matrix D = {dij} is obtained. The matrix
includes the lengths of the paths between all pairs of the
vertices.

In the Johnson’s algorithm, Dijkstra’s algorithm is per-
formed N times and it is the latter algorithm that signifi-
cantly influences the computational complexity of the whole
algorithm. If we choose to apply the implementation of Di-
jkstra’s algorithm with Fibonacci heap, then we are obliged
to perform O(NA + N2 logN) operations to calculate the
shortest paths between all the pairs of vertices in a sparse
graph. Using a binary heap would result in an increase in
the number of necessary operations to O(NA logN).

VI. DATA STRUCTURE REPRESENTING GRAPHS

To represent graphs during the simulation, a double asso-
ciative adjacency array was used. This structure is composed
of two associative arrays — one (external), representing
vertices from which edges originate, and the other (internal)
representing all vertices, which edges for a given row of the
first matrix (table) join. Such a representation provides an
opportunity to minimize shortcomings of typical structures,
such as the list of edges or the adjacency matrix, providing at
the same time appropriately low computational complexity
for individual operations. The applied structure makes it
possible to store additional information about edges, e.g.,
weights or costs. A homogeneous method for the projection
(mapping) of graphs for all simulated algorithms ensures
further comparability of the results of simulations.

The operation of the structure may differ depending on the
implementation of the associative array and is dependable on
the programming language used if embedded structures are

Figure 1. Exemplary directed graph

used. The most crucial operation is the operation of checking
whether a given key is in the array, hence structures that
handle this best, e.g., hash tables or self-balancing binary
search trees, are applied. Additionally, we can adjust the
operation of the double associative adjacency array for our
particular needs and thus make it possible, for example, to
sort vertices in the internal array, which a given edge joins
using a heap.

For a graph with edge weights, the double, associative
adjacency array T2asoc can be written as follows:
T2asoc = Text external array

T2asoc[i] = Text[i] = Tinti
internal array for edge coming out
from vertex i

T2asoc[i][j] = Tinti [j] = ai,j edge weight (i, j)

Therefore, the graph in Fig. 1 will be mapped in the
following way:

T2asoc[1] = Tint1
T2asoc[1][3] = Tint1 [3] = a1,3
T2asoc[1][5] = Tint1 [5] = a1,5
T2asoc[2] = Tint2
T2asoc[2][1] = Tint2 [1] = a2,1
T2asoc[2][2] = Tint2 [2] = a2,2
T2asoc[3] = Tint3
T2asoc[3][2] = Tint3 [2] = a3,2
T2asoc[3][5] = Tint3 [5] = a3,5
T2asoc[4] = Tint4
T2asoc[4][1] = Tint4 [1] = a4,1
T2asoc[4][3] = Tint4 [3] = a4,3
T2asoc[5] = Tint5
T2asoc[5][4] = Tint5 [4] = a5,4

Characteristic features of the structure:
• required memory: O(N + A)
• effective memory complexity for directed sparse graphs
• effective execution of graph algorithms that require to

reach all vertices adjacent to a given vertex (logarithmic
complexity)

• capacity of remembering parallel edges (all edges be-
tween the same pair of verices)

• effective execution of checking whether the graph in-
cludes a given edge (logarithmic complexity)

• effective execution of addition and removal of edges of
a graph (logarithmic complexity)

• possibility of a substitution of the internal associative
table with some other structure, e.g., in order to sort

Figure 2. Manually created custom 1 graph in which the edges
marked with the solid line create a shortest paths tree with the root
in node 1

26

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. STRUCTURE OF THE GRAPHS USED IN THE
SIMULATION

graph vertices edges

number lengths

custom 1 (c1) 10 19 〈1, 7〉
custom 2 (c2) 20 43 〈0, 9〉

multistage 1 (ms1) 52 420 〈1, 9〉
multistage 2 (ms2) 86 249 〈1, 10〉

random 1 (r1) 25 125 〈1, 9〉
random 2 (r2) 100 628 〈1, 20〉

vertices in which a given edge terminates by the weight
of the edge (e.g., using binary, Fibonnaci, binomial or
Relaxed heap)

• fairly complicated in its execution

VII. GRAPHS USED IN THE SIMULATION

To examine the efficiency and performance of the algo-
rithms during their operation in different graphs, directed
graphs constructed manually and those that were generated
pseudo-randomly were used. To discuss the results, the 6
representative graphs described in Table I were selected.
Graph custom 1 shown in Fig. 2 was created manually
from 10 vertices that were joined together by 19 edges. The
custom 2 graph was created manually as well and consists
of 20 vertices and 43 edges. Another two graphs that were
used in the tests are the graphs that are characteristic for
a multi-stage shortest path problem. An exemplary graph is
presented in Fig. 3. The first multi-stage graph used in the
tests, multistage 1, has 5 stages, each having 10 vertices.
The lengths of edges were generated randomly from within
the interval 〈1, 9〉. The second multi-stege graph, multistage
2, has 30 stages, each having 3 vertices, and therefore, the
structure comprises 249 edges. The random 1 graph was
generated randomly, without loops, and with 5 edges coming
out of each of the vertices. The last graph under scrutiny,
random 2, was also generated randomly, without loops, but
with 3 to 10 edges coming out of each of the vertices.

Figure 3. A general structure of a multi-stage graph

VIII. RESULTS OF THE SIMULATIONS OF THE
ALGORITHMS

All the tests were carried out in a simulation environment
prepared in C# programming language. In order to achieve
reliable results, each algorithm was performed 100 times
for each of the graphs. To eliminate the influence of the
simulation environment, extreme results were rejected and
then the average of the remaining results was calculated.

Table II shows the running (execution) times of the algo-
rithms tested for the graphs discussed in Section VII. The
results are divided into two groups — algorithms solving
Single-Source Shortest Paths problem (SSSP) and algorithms
solving All-Pairs Shortest Path problem (APSP). The best
results for each graph are highlighted in bold text, and the
worst are in italics.

The graph custom 1 was solved by all SSSP algorithms
in almost identical times. Of all the algorithms only two
deserve a mention here — Dijkstra’s algorithm with a heap
(that operated within the longest time), and SLF (that solved
the problem slightly quicker than the rest). The results that
were very similar to that of the SLF algorithm were also
shared by Dijkstra’s algorithm, Dial’s algorithm and the LLL
algorithm. From the group of the APSP algorithms, it was
the Floyd-Warshall algorithm that fared the best, being less
than twice as long as the SSSP algorithms. The remaining
algorithms needed about twice as much time to find all paths.

The next graph the simulations were performed on, cus-
tom 2, was salved in the group of SSSP algorithms in the
shortest time by the SLF algorithm. Bellman-Ford algorithm
and Dijkstra’s algorithm with a heap were the slowest ones.
The remaining algorithms finished in quite similar times.
In the case of APSP algorithms Johnson’s was the fastest,
being slightly better than Floyd-Warshall algorithm and over
3 times faster than the doubling algorithm.

The first graph characteristic for the multi-stage shortest
path problem multistage 1 brought a significant increase in

TABLE II. COMPARISON OF RUNNING TIMES FOR THE
ALGORITHMS SOLVING THE SHORTEST PATH PROBLEM
IN MICROSECONDS

algorithm graph

c1 c2 ms1 ms2 r1 r2

generic 112 127 312 247 163 603
Dijkstra 100 122 324 258 148 405

DijkstraHeap 146 176 466 323 200 518
Dial 104 128 322 282 172 395

Bellman-Ford 119 217 3252 3097 511 8526
D’Esopo-Pape 113 147 1260 4171 239 1222

SLF 96 111 262 236 143 376
LLL 102 121 336 274 155 422

SLF/LLL 112 132 318 288 161 431

doubling alg. 324 2594 47678 233517 4756 364714
Floyd-Warshall 184 1031 16045 70420 2057 112880

Johnson 418 879 9309 12970 2959 41904

27

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

generic
Dijkstra

DijkstraHeap

Dial
Bellman-Ford

D’Esopo-Pape

SLF
LLL SLF/LLL

A
lg

or
ith

m
 r

un
ni

ng
 ti

m
e

[µ
s]

Algorithm

c1
c2

ms1
ms2

r1
r2

Figure 4. Chart of running (execution) times of the algorithms
solving the shortest path problem with one initial vertex (SSSP)

differences between SSSP algorithms. Again, the SLF algo-
rithm was the quickest, whereas Bellman-Ford and D’Esopo-
Pape algorithms handled the problem the worst. Except
Dijkstra’s algorithm with a heap, which was performing
slightly longer than the rest, the remaining algorithms had
similar running times. This situation for the APSP algorithms
was exactly as in the case of the previous graph — Johnson’s
algorithm was the quickest and the doubling algorithm was
the slowest, while the distance between Johnson’s and Floyd-
Warshall algorithms increased.

The SLF proved to be the quickest for the multistage 2
graph, and hence, it was faster than the generic algorithm
and the SLF/LLL algorithm that came second and third,
accordingly. The D’Esopo-Pape and the Bellman-Ford algo-
rithms performed the worst and were 10 to 14 times slower
than other algorithms. In the group of APSP algorithms
the Johnson’s algorithm took the shortest time to solve the
problem, about 5 times faster than Floyd-Warshall algorithm
and about 18 times faster than the doubling algorithm.

Another graph under consideration, random 1, was solved
the quickest in the SSSP mode by the SLF algorithm, with
Dijkstra’s algorithm as the runner up and the Bellman-Ford
and the D’Esopo-Pape algorithms well behind the two. The
latter two were the worst as compared to all involved SSSP
algorithms. This time, the quickest APSP algorithm was the
Floyd-Warshall algorithm. Johnson’s algorithm performed
slightly worse, while the doubling algorithm was the worst
(the longest) of the lot.

The last graph, random 2, consists of the highest number
of edges. However, it poses no problem for the SLF algo-
rithm to solve it in the shortest time in the group of SSSP
algorithms. Dial and Dijkstra’s algorithms gave good results
as well. Bellman-Ford algorithm operated clearly longer as
compared to the rest of the algorithms. The D’Esopo-Pape

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

doubling Floyd-Warshall Johnson

A
lg

or
ith

m
 r

un
ni

ng
 ti

m
e

[µ
s]

Algorithm

c1
c2

ms1
ms2

r1
r2

Figure 5. Chart of running (execution) times of the algorithms solv-
ing the shortest path problem between all pairs of vertices (APSP)

algorithm was also slow once again. If we take a look at
the APSP algorithm the results are analogical to the most
of the prior results. Johnson’s algorithm is the most time-
efficient with the Floyd-Warshall algorithm being almost 3
times slower and the doubling algorithm to be far behind,
and thus, the last one in the race.

The procedures that solve the SSSP problem best include
the SLF algorithm, that had the shortest times for each tested
graph, and Dijkstra’s algorithm, that always performed with
a quite similar time. The LLL and the SLF/LLL algorithms
performed very well and did not generate solutions over
times that differ much from those provided by the quickest
algorithm. The generic algorithm and Dial’s algorithm per-
formed slightly better or slightly worse depending on the
chosen graph. Dijkstra’s algorithm with a heap had some
problems and, instead of performing quicker than Dijkstra’s
algorithm, was slower. In this particular case, this can be
most probably explained by the missing optimization of the
heap that formed the base for the algorithm. Undoubtedly,
however, an improvement in the running time during, which
solutions are provided is still possible. At least, an improve-
ment in the execution time needed for the algorithm to
generate solutions is possible. As it is clear from Fig. 4, for
the Bellman-Ford and D’Esopo-Pape algorithms, the worst
case occurs far too often, which may result from both non-
optimal implementation and from the possibility of their
operation on graphs that were unsuitable for them. The
D’Esopo-Pape algorithm was much quicker to solve graphs,
but irrespective of the fact it underperformed far too much as
compared to the rest of the algorithms. Underperformance
of the latter group of algorithms is particularly visible in
graphs that have a higher number of edges, which results
from the assumptions, as they were, that served as a basis
for their design.

The APSP algorithms were decidedly varied across dif-

28

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ferent performance dimensions, in particular in relation to
the time necessary to generate results, which is clearly
shown in Fig. 5. The doubling algorithm was the slowest
and performed several times slower than the competitors.
The Floyd-Warshall algorithm was the fastest for 2 graphs,
while for the remaining graphs it was in second place. The
differences in the time needed for graphs to be solved are in
its case significant as compared to Johnson’s algorithm that
overall turned out to be the fastest one.

IX. CONCLUSION

This article provides a detailed presentation of 12 al-
gorithms solving the shortest path problem and presents
an analysis of their performance. The study showed that
in a prepared simulation environment that ensured directed
graphs of different type to be provided, the weakest aggre-
gated time results from among all the available algorithms
solving the Single-Source Shortest Paths problem were those
of, in the descending order, the Bellman-Ford and the
D’Esopo-Pape algorithms. The fastest algorithm was Small
Label First algorithm, slightly faring better than Dijkstra’s
algorithm. From the pool of the algorithms dedicated for
All-Pairs Shortest Path problem, the doubling algorithm
performed decidedly worst, while the best results were those
of Johnson’s algorithm.

In addition to the presentation of run-time relationships
between the algorithms, the study indicates the importance
and significance of an appropriate choice of a method des-
tined to solve the problem that would be the most efficient
for a type of the graph structure that is to be used. Moreover,
it is worthwhile to remember that details concerning the
implementation as well as the architecture of the structures
for the representation of data can significantly influence the
performance of an algorithm.

Future work could focus on conducting experiments in
larger graphs, including those obtained by using Internet-
like topology generators, and in the structures that reflect
the relationships in the society or complex databases. The
operation in graphs with a power-law distribution of node
degrees may prove to be interesting and useful as well.
Furthermore, the performance measured and evaluated in
FLOPS (FLoating point Operations Per Second), instead of
average running time, may give a new and broader insight
into the problem.

ACKNOWLEDGEMENT

This work has been partially supported by a grant from
Switzerland through the Swiss Contribution to the enlarged
European Union (PSPB-146/2010, CARMNET).

REFERENCES

[1] M. Głąbowski, B. Musznicki, P. Nowak, and
P. Zwierzykowski, “Efficiency evaluation of shortest
path algorithms,” in Proceedings of AICT 2013, The Ninth
Advanced International Conference on Telecommunications,
Rome, Italy, 23–28 June 2013, pp. 154–160.

[2] M. Głąbowski, B. Musznicki, P. Nowak, and
P. Zwierzykowski, “Shortest path problem solving based on
ant colony optimization metaheuristic,” International Journal
of Image Processing & Communications, Special Issue:
Algorithms and Protocols in Packet Networks, vol. 17, no.
1–2, 2012, pp. 7–17.

[3] B. Y. Wu and K.-M. Chao, Spanning Trees and Optimization
Problems. USA: Chapman & Hall/CRC Press, 2004.

[4] C. Blum and A. Roli, “Metaheuristics in combinatorial
optimization: overview and conceptual comparison,” ACM
Computing Surveys, vol. 35, no. 3, September 2003, pp. 268–
308.

[5] M. Głąbowski, B. Musznicki, P. Nowak, and
P. Zwierzykowski, “An in-depth discussion of challenges
related to solving shortest path problems using
ShortestPathACO based algorithms,” in Information
Systems Architecture and Technology; Knowledge Based
Approach to the Design, Control and Decision Support,
J. Świątek, L. Borzemski, A. Grzech, and Z. Wilimowska,
Eds. Wrocław, Poland: Oficyna Wydawnicza Politechniki
Wrocławskiej, 2013, pp. 77–88.

[6] R. Vasappanavara, E. V. Prasad, and M. N. Seetharamanath,
“Comparative studies of shortest path algorithms and com-
putation of optimum diameter in multi connected distributed
loop networks,” Multi-, Inter-, and Trans-disciplinary Issues
in Computer Science and Engineering, vol. 2, no. 1, January
2006, pp. 62–67.

[7] B. V. Cherkassky, L. Georgiadis, A. V. Goldberg, R. E. Tarjan,
and R. F. Werneck, “Shortest path feasibility algorithms:
an experimental evaluation,” ACM Journal of Experimental
Algorithmics, vol. 14, 2009.

[8] K. Gutenschwager, A. Radtke, S. Völker, and G. Zeller,
“The shortest path - comparison of different approaches
and implementations for the automatic routing of vehicles,”
in Proceedings of the 2012 Winter Simulation Conference,
Berlin, Germany, 9–12 December 2012.

[9] M. Piechowiak, P. Zwierzykowski, and M. Stasiak, “Multicast
routing algorithm for packet networks with the application of
the lagrange relaxation,” in Proceedings of NETWORKS 2010,
14th International Telecommunications Network Strategy and
Planning Symposium, Warsaw, Poland, September 2010, pp.
197–202.

[10] U. Lauther, “An experimental evaluation of point-to-point
shortest path calculation on road networks with precalculated
edge-flags,” in Proceedings of Ninth DIMACS Implementa-
tion Challenge, Piscataway, NJ, USA, 13–14 November 2006.

[11] Y. Sharma, S. C. Saini, and M. Bhandhari, “Comparison of
Dijkstra’s shortest path algorithm with genetic algorithm for
static and dynamic routing network,” International Journal of
Electronics and Computer Science Engineering, vol. 1, no. 2,
2012, pp. 416–425.

[12] S. Pettie, “On the comparison-addition complexity of all-
pairs shortest paths,” in Proceedings of ISAAC 2002, 13th
International Symposium on Algorithms and Computation,
Vancouver, BC, Canada, 21–23 November 2002.

29

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[13] J. Hershberger, S. Suri, and A. Bhosle, “On the difficulty
of some shortest path problems,” ACM Transactions on
Algorithms, vol. 3, no. 1, 2007.

[14] R. Cohen and G. Nakibly, “On the computational complexity
and effectiveness of n-hub shortest path routing,” IEEE/ACM
Transactions on Networking, vol. 16, no. 3, 2008, pp. 691–
704.

[15] L. Roditty and U. Zwick, “On dynamic shortest paths prob-
lems,” Algorithmica, vol. 61, no. 2, 2011, pp. 389–401.

[16] B. L. Golden, “Shortest path algorithms: a comparison,”
Massachusetts Institute of Technology, Operations Research
Center, Tech. Rep., October 1975.

[17] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest
paths algorithms: Theory and experimental evaluation,” Math-
ematical Programming, vol. 73, no. 2, 1996, pp. 129–174.

[18] P. Biswas, P. K. Mishra, and N. C. Mahanti, “Computational
efficiency of optimized shortest path algorithms,” Interna-
tional Journal of Computer Science & Applications, vol. 2,
no. 2, 2005, pp. 22–37.

[19] C. Demetrescu, S. Emiliozzi, and G. F. Italiano, “Experimen-
tal analysis of dynamic all pairs shortest path algorithms,”
ACM Transactions on Algorithms, vol. 2, no. 4, 2006, pp.
578–601.

[20] D. P. Bertsekas, Network Optimization: Continuos and Dis-
crete Models. Belmont, Massechusetts: Athena Scientific,
1998.

[21] R. K. Ahuja, T. L. Magnati, and J. B. Orlin, Network flows:
Theory, algorithms and applications. Englewood Cliffs, N.J.:
Prentice-Hall, 1993.

[22] K. Stachowiak, J. Weissenberg, and P. Zwierzykowski, “La-
grangian relaxation in the multicriterial routing,” in IEEE
AFRICON, Livingstone, Zambia, September 2011, pp. 1–6.

[23] B. Musznicki, M. Tomczak, and P. Zwierzykowski, “Dijkstra-
based localized multicast routing in wireless sensor net-
works,” in Proceedings of CSNDSP 2012, 8th IEEE, IET
International Symposium on Communication Systems, Net-
works and Digital Signal Processing, Poznań, Poland, 18–20
July 2012.

[24] F. B. Zhan and C. E. Noon, “A comparison between label-
setting and label-correcting algorithms for computing one-to-
one shortest paths,” Journal of Geographic Information and
Decision Analysis 4, 2000.

[25] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction
to Algorithms. MIT Press, 1990.

[26] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik, vol. 1, 1959, pp. 269–271.

[27] S. Saunders, “A comparison of data structures for Dijkstra’s
single source shortest path algorithm,” Honours project, Uni-
versity of Canterbury, Department of Computer Science and
Software Engineering, 5 November 1999.

[28] R. B. Dial, “Algorithm 360: shortest-path forest with topo-
logical ordering,” Communications of the ACM, vol. 12,
November 1969, pp. 632–633.

[29] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms
and Applications. London: Springer-Verlag, December 2008.

[30] U. Pape, “Implementation and efficiency of Moore-algorithms
for the shortest route problem,” Mathematical Programming,
vol. 7, no. 1, 1974, pp. 212–222.

[31] D. P. Bertsekas, “A simple and fast label correcting algorithm
for shortest paths,” Networks, vol. 23, 1993, pp. 703–709.

[32] D. P. Bertsekas, F. Guerriero, and R. Musmanno, “Parallel
asynchronous labelcorrecting methods for shortest paths,”
Journal of Optimization Theory and Applications, vol. 88,
February 1996, pp. 297–320.

[33] E. Dekel, D. Nassimi, and S. Sahni, “Parallel matrix and
graph algorithms,” SIAM Journal on Computing, vol. 10,
no. 4, 1981, pp. 657–675.

[34] R. W. Floyd, “Algorithm 97: Shortest path,” Communications
of the ACM, vol. 5, June 1962, p. 345.

[35] S. Warshall, “A theorem on boolean matrices,” Journal of the
ACM, vol. 9, January 1962, pp. 11–12.

[36] D. B. Johnson, “Efficient algorithms for shortest paths in
sparse networks,” Journal of the ACM, vol. 24, January 1977,
pp. 1–13.

30

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Rapid Design of Meta Models

Bastian Roth, Matthias Jahn, and Stefan Jablonski

Chair for Databases & Information Systems

University of Bayreuth

Bayreuth, Germany

{bastian.roth, matthias.jahn, stefan.jablonski} @ uni-bayreuth.de

Abstract - Designing concise meta models manually is a complex

task. Hence, newly proposed approaches were developed, which

follow the idea of inferring meta models from given model

examples. Unlike most approaches in the state of the art, we

accept arbitrary model examples independent of a concrete

syntax. The contained entity instances may have assigned values

to imaginary attributes (i.e., attributes that are not declared

yet). Based on these entity instances and the possessed

assignments, a meta model is derived in a direct way. However,

this meta model is quite bloated with redundant information. To

increase its quality, we provide recommendations for applying

so-called language patterns like inheritance or enumerations.

For this reason, the applicability of those patterns is analyzed

concerning the available information gathered from the

underlying model examples. In addition to our previously

published work, we also support the derivation of meta model

changes based on modifications and extensions of the initial

example models. Furthermore, change recommendations are

provided wherever possible. This new approach for iteratively

building, modifying and refining meta models enables users to

focus on the real world instances. Consequently, they are not

distracted by keeping the meta level in mind and thus are able

to design meta models rapidly.

Keywords - meta model derivation; meta model inference;

derivation of meta model changes; refinement of meta models;

language patterns

I. INTRODUCTION

In [1], we presented an approach how a concise meta
model can be derived from a given set of example models.

The main aim of our work is to support users in defining
domain specific languages (DSLs). In general, a DSL consists
of three important parts: an abstract syntax, a concrete syntax
and a set of semantic rules [2]. The abstract syntax defines
language concepts and how they can be linked together. The
concrete syntax in turn describes a notation for the
visualization of the DSL, whereas the rule set defines the
semantics of concepts of the abstract syntax.

Nowadays, developers of a DSL often tend to describe the
abstract or concrete syntax with meta models [3]. These meta
models are models that specify how their (instance) models
are structured. Creating a meta model and hence a DSL is not
a trivial task, if it has to be done manually. That is why
different methods for developing meta models have been
discovered. The most recent approach is the derivation of meta
models out of some (possibly merely one) example models.

In the following, when talking from a meta model we
always mean the abstract syntax of a DSL. Since it requires a
large set of models, we explicitly do not support inference of
constraint (e.g., based on OCL). Additionally to that, negative
example models are needed as well to avoid
overgeneralization [4], [5]. Negative examples are models,
which expose an invalid scenario in terms of the intended
DSL. In our case, providing such examples is impracticable
because it forces the user to pre-think models that are out of
the regarding domain’s scope.

During the derivation of an abstract syntax, all meta model
artefacts are generated automatically and thus, could differ
from the user’s expectations, especially in terms of quality. In
order to achieve a tolerable degree of quality, the user is
pointed to parts of the meta model with potential of
improvement and also supplied with possible solutions in
form of language patterns (e.g., inheritance or enumerations).
In contrast to design patterns [6], language patterns are
supported by modelling systems themselves and can be
utilized in a direct and simple manner.

The development of a meta model is often driven by the
evolution in understanding of the domain of interest. Hence,
together with the growing knowledge, the meta model often
needs to be adapted to fulfil the domain’s requirements.
Therefore, it is essential that – based on modifications of the
example models – changes within the meta model can be
derived that define how such a meta model have to or may be
adapted to get a concise result again. We call this whole
process of incrementally deriving a meta model and providing
some recommendations for quality improvements “rapid
design of meta models”.

After this introduction, some fundamentals are explained,
which help understanding the later parts of this paper. Then,
an example model is presented that is used for exemplary
explanations through the entire paper. Following this, we
introduce a method how a meta model can be automatically
derived from a given set of such example models. Since this
meta model may have some potential for improvements, in the
subsequent Section V, two algorithms are presented that
detect constellations of meta model elements with the
aforesaid improvement potential. Also, each algorithm
suggests a suitable solution, which can be applied by the user
manually. Beyond tweaking the meta model, example models
may be evolved as well or new ones can be added. Thus, in
Section VI we describe an approach how freely performed
changes at example model side have impacts on an already
existing meta model. Afterwards, an overview of some related

31

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

work is given. Finally, we look out on future challenges in the
field of rapid design of meta models and even whole domain-
specific languages.

II. FUNDAMENTALS

In the following three subsections, we explain some
fundamentals that act as basis for the subsequently presented
rapid design approach.

A. Model Workbench

Model Workbench [7] is a web-based meta modeling
platform that targets on supporting developers for creating
their own modeling language. In contrast to other tools, it
leverages advanced language patterns (e.g., Powertypes [8])
building (meta) models. Its implementation is based on the
Orthogonal Classification [9]. Thus, the system provides a
Linguistic Meta Model (LMM) [10] and interprets (meta)
models at runtime in order to emulate a concrete textual syntax
(called Linguistic Meta Language, LML). Together with that,
Model Workbench is not limited to any number of meta levels
since it is able to manage arbitrary meta model hierarchies.
Therefore, it uses Clabjects [11] as a hybrid of a class and an
object for representing concepts of a model (the term
“concept” means a Clabject throughout the context of Model
Workbench). Hence, a concept always has two different
facets: a type and an instance facet. As a type (also called a
meta concept), a concept defines attributes whereas as an
instance (also called an instance concept), a concept contains
assignments each of which may be associated with an attribute
of an instantiated meta concept.

In general, Model Workbench divides attributes and
assignments into two different classes depending on their
respective type: literal and referential ones. Literal attributes
can have one of the following types: boolean, integer, float,
pointer, string or enumeration. In our understanding,
enumerations are regarded as literal types, too. That is
tolerable because enumerations can also be represented by
integers with a highly restricted range of values. Each defined
concept, however, may be used as a referential type.

B. Modelling modes

Creating instance models based on a given meta model is
a typical use case during modelling. Thereby, the instance
models have to satisfy the constraints specified by the meta
model. We call this kind of modelling the “stringent
(modelling) mode”.

By way of contrast, in context of the “free (modelling)
mode” the constraints of a possibly available meta model are
completely ignored. Accordingly, the LMM as specified in
[12] needs to be expanded by schemalessness. Concretely, it
means to be able to name an instance concept’s type that does
not exist (yet). Additionally, it must be possible to create
assignments to imaginary attributes. An imaginary attribute is
an attribute that is not (yet) declared by a meta concept.

C. Essential assumption on equally named elements

The most important assumption we take is that equally
named elements (types of instance concepts on the one hand,
assignments and attributes on the other hand) always relate to
the same semantic object at domain side. One could imagine
a meta model containing two different concepts, each with
exactly one string attribute labeled as owner. When trying to
make this meta model more concise, both concepts are
deemed to be candidates for generating a common super
concept because of the two equally named attributes.

This assumption is mandatory. Otherwise, neither a meta
model can be derived from one or more example models nor
elements can be identified that exhibit some potential for
improvement. Furthermore, the three inference approaches
presented in Section VII follow a comparable principal.

III. EXAMPLE MODEL

Before introducing the different algorithms for deriving a
meta model, a linguistic example model (Figure 1) is
presented on which we refer to in the following sections. This
model is created freely using the LML as concrete syntax (i.e.,
there is no underlying meta model) and represents a process
for planning a conference attendance. It only serves
demonstration purposes and hence, it does not lay claim to

Figure 1. Example model of a process

32

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

contentual completeness. Since the according syntax (LML)
is quite similar to the one of popular object-oriented
programming languages, it is easy to read for software
developers and modelers.

The process’s flow is as follows. After a suitable
conference has been found, an appropriate travel request
needs to be submitted. Only then, a hotel may be booked and
the journey may be scheduled. In parallel to these two steps,
the researcher can also register at the conference. At any time,
the scientist may inform herself/himself of the concrete topics
covered during the conference.

The successor relationships are reflected in the next

assignments. Furthermore, each task contains a title and

can be equipped with a duration. The individual steps differ
in that they have to be executed electronically
(ElectronicTask), on paper (PaperTask) or besides at an

undetermined time (DetachedTask). For the mentioned

parallel processing, there are the two elements Split and

Join with “and” semantic. The And means that all steps of
both threads have to be completed before the execution can
continue. Finally, there are two further elements, which
determine the process’s start and end points.

A meta model that matches this example process model is
shown in Figure 2. It fulfills important quality criteria
specified by Bertoa and Vallecillo in [13]. Looking at
ElectronicTask, PaperTask, DetachedTask, Start,

And and Exit, it exactly contains those concepts that are used
within the example model (completeness). The same is true

for the three attributes title, duration and next, which
are declared only once and thus, redundancy is avoided.
Moreover, because of the base concepts’ naming – Task and

FlowElement – their intention is obvious (self-
documentation).

The meta model, however, concedes more flexibility as
expressed by the underlying example model. For instance,
DetachedTask is fully unconnected from the whole control
flow, but the meta model states that it is a flow element
nevertheless. The advantage of this additional flexibility is
that when processing detached tasks, in some cases they need
not be handled separately. For example, think about a concrete
graphical syntax, which should be defined for this meta
model. Then, it suffices if one containment mapping is
specified for flow elements to lie within a certain process.

Suchlike assumptions concerning a higher degree of
flexibility cannot be inferred from the example model. They
require a profound knowledge about the particular domain and
how according models are processed. Consequently, the meta
model cannot be generated automatically as depicted by
Figure 2, but it can be approximated to a certain degree.
However, for further refinements, recommendations can be
provided, which hint the user at sets of model elements with
room for improvement. With improvements, we mean
language patterns that can be applied to those model elements.
Further details about this topic can be found in Section V.

FlowElement

-title : string

-duration? : float

Task

ElectronicTask PaperTask Start And Exit

next

**

next

DetachedTask

Figure 2. Meta model which matches exmple process model

Figure 3. Activity diagram of the initial bottom-up algorithm

33

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. DERIVING AN INITIAL META MODEL

In the following, a method (Figure 3) is presented how a
meta model can be derived from a set of example models. This
method is an extension of the algorithm introduced in [1]. It
exhibits some commonalities with the technique described in
[14], but goes deeper into potentially occurring problems as
well as respective solutions.

The algorithm’s input are all instance concepts of the
example models. At first, for each unique type name a separate
meta concept is generated. Afterwards, for each assignment
an associated attribute is created without allocating it to one
of the previously generated concepts. Hereby, the upper
bound of the attribute’s multiplicity can already be
determined. It is set to 1 if only one value is assigned,
otherwise it is set to *. Identifying the attribute’s type is done
using regular expressions. For values that have one of the
literal types boolean, integer, float, pointer (represented by
qualified names) or string, the result is always unambiguous.
However, in case only a qualified name is given, a further
differentiation is required because the value may either
represent another instance concept or an unspecified pointer.
If an instance can be found whose name matches the assigned
value, then the attribute type is set to the meta-concept of this
instance. Otherwise, the attribute is declared as a pointer
attribute.

After that, for every meta concept, sets of equally-named
attributes are computed that act as base for the actual attribute
declaration within the particular meta concept. Which

attribute belongs to which meta concept can be ascertained by
considering the underlying instance concepts.

For the example shown in Figure 1, TABLE I lists the
derived meta concepts as well as the associated sets of
equally-named attributes. In respect of a better traceability, the
table also contains the underlying instance concepts together
with the attributes inferred from the respective assignments.
After the computation of the attribute sets, all attributes of
each set are merged to one single attribute, which then is
added to the particular meta concept. Merging attributes is not
a trivial operation. Hence, it is explicated in the next
subsection in more detail.

Finally, the last step checks whether the number of
attributes of the original set is equal to the number of instances
of the particular meta concept. If so, the algorithm terminates.
Elsewise, the number of attributes is smaller than the number
of instance concepts, which results in denoting the attribute as
optional.

A. Merging attributes

Merging attributes is the central activity when deriving a
meta model because in doing so, the information and
constraints stemming from different attributes are combined
to one single attribute. This way, the domain knowledge
obtained from the model examples is consolidated by
considering the attribute’s name, type and multiplicity. Since
all attributes of the source set have the same name, it is
adopted by the resulting attribute.

TABLE I. DERIVED META CONCEPTS WITH RESPECITVE ATTRIBUTE SETS

Meta concepts Instance concepts Attributes Attribute sets

Start S next: ElectronicTask { next: ElectronicTask }
ElectronicTask Search title: string

duration: integer
next: PaperTask

{ title: string, title: string, title:
string, title: string }

{ duration: integer, duration: float,
duration: float }

{ next: PaperTask, next: And, next:
ElectronicTask, next: And }

Register title: string
duration: float
next: And

Booking title: string
next: ElectronicTask

Organize title: string
duration: float
next: And

PaperTask Request title: string
duration: float
next: And

{ title: string }
{ duration: float }
{ next: And }

And Split next[]: ElectronicTask { next[]: ElectronicTask, next: Exit }
Join next: Exit

DetachedTask Inform title: string
duration: integer

{ title: string }
{ duration: integer }

Exit E

 Boolean Integer Float Pointer String

Boolean false / true 0 / 1 0 / 1 - "false" / "true"

Integer - 3 / -2 3 / -2 - "3" / "-2"

Float - - 0.5 / -3e6 - "0.5" / "-3e6"

Pointer - - X1 / A.B.c "X1" / "A.B.c"

TABLE II. SUPPORTED LITERAL DATA TYPES WITH CONVERSION EXAMPLES

34

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) Merging attributes’ multiplicities
During the merging step, for multiplicities merely two

values need to be regarded, namely 1 and 1..*. The
multiplicity of an initially created attribute is set to 1 if the
underlying assignments embraces exactly one value. In case
of several values, the multiplicity is set to 1..*. Thus, when
merging attributes only the multiplicity’s upper bound can be
determined. Thereby, the maximum value range is adopted
(i.e., 1..* is preferred). Applied to the example from TABLE

I, it means that the attribute set next of meta concept And
leads to the multiplicity 1..*.

The lower bound is addressed in a downstream step. It
only is set to 0 if there are more instances of the currently
processed meta concept than attributes in the momentarily
handled attribute set (see the decision node’s successor in
Figure 3). Then, instances exist, which do not possess an
assignment to the current attribute. As an example, take a look
at the duration attribute of ElectronicTask in TABLE I
because it merely appears in three out of four instances.

2) Merging attributes’ types
Conflating the types of attributes is far more complex.

Thereby, literal and referential attributes need to be
distinguished.

Literal attributes as defined by the LMM are attributes
with one of these types: boolean, integer, float, string or
pointer. In case two or more attributes with different literal
types are detected, an automatic type conversion takes place,
which is similar to the one of dynamic programming
languages like JavaScript [15]. Thereby, the type with largest
value range is adopted. Consequently, assigned values from a
smaller value range have to be converted into the taken data
type.

The head row of TABLE II lists all literal data types
whereas the value range grows from left to right. Moreover,
the table contains some conversion examples (from small to
large value ranges). The type pointer occupies a special
position in the context of an automatic type conversion since
a pointer can solely be transformed into a string. Compatibility
to other data types is not given, which results in aborting the
derivation algorithm if such a scenario arises.

In TABLE I, a type conversion is required for the
duration attribute of ElectronicTask since it is two times
declared as float and one time as integer. Because of a larger
value range the resulting type will be float.

If two or more attributes to merge feature different meta
concepts as their type, for typing of the consolidated attribute,
a common meta concept has to be determined as well. This
use case is called Liskov substitution principle and is
characteristically for the language pattern “generalization” /
”inheritance” [16]. In case a common base concept already is
available, it is set as the attribute’s type. Otherwise, a suchlike
base concept needs to be introduced first.

Referred to TABLE I, this affects the attribute sets next

of ElectronicTask and And. As a consequence, for

ElectronicTask, PaperTask and And as well as for

ElectronicTask and Exit a base concept has to be created
respectively. In Figure 4, these base concepts are represented
as ElectronicTaskOrPaperTaskOrAnd and

ElectronicTaskOrExit. The automatic naming happens
by means of concatenating the names of the individual source
concepts, whereas between two names always “Or” is
inserted. Since the diagram shows the initially derived meta
model for the example process model from Figure 1 all
contained attribute sets are already merged and added to the
respective meta concept. The question mark behind a literal
attribute’s name tells it is as an optional one (e.g., duration).

B. Elimination of multiple inheritance

As obvious through Figure 4, the approach presented
above may lead to the introduction of multiple inheritance. In
several cases this is undesired because it carries some
potential risks [17] (e.g., name collision). That is why, an
additional operation can be connected in series with the initial
derivation process that removes multiple inheritance from the
generated meta model. In order to not increasing the meta
model’s complexity artificially, multiple inheritance is
replaced by the language pattern “single inheritance”.

The replacement strategy starts by looking for compounds
of concepts with multiple inheritance. For each such
compound, all base concepts are identified and conflated to
one common base concept using evolution techniques as
described in [18].

The naming is handled equally to the one from above, i.e.,
names are concatenated using a connecting “Or”. In order to
restrict the name’s length a bit, common partial strings are
only quoted once.

Figure 5 depicts the accordingly modified variant of the
meta model from Figure 4. The compound with multiple
inheritance initially consists of ElectronicTask, Exit,

PaperTask, And, ElectronicTaskOrExit and

ElectronicTaskOrPaperTaskOrAndElectronicTaskOrExit

Start

-title : string

-duration? : float

ElectronicTask

-title : string

-duration : float

PaperTask AndExit next

1

next

1

next

1

next 1..*

1

next

1

next

1

next

1..*next

-title : string

-duration : integer

DetachedTask

Figure 4. Initially derived meta model with multiple inheritance

35

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ElectronicTaskOrPaperTaskOrAnd. The two latter
mentioned meta concepts represent the base types, which are
merged into ElectronicTaskOrPaperTaskOrAndOr-

Exit.
Owing to later manual modifications, base concepts could

also contain some attributes that again may result in naming
conflicts. Such attributes have to be merged analogous to the
method described in Section IV.A. Since this may lead again
to more than one base concept per meta concept, the newly
introduced multiple inheritance needs to be eliminated in turn.
At the latest, this cycle terminates when a global base concept
is found, which acts as generalization for all other meta
concepts.

As an alternative to the foregoing strategy, instead of
conflating the base concepts, the generalization hierarchy can
be extended by introducing a super concept for those base
concepts. If the concept compound comprises a big number of
base concepts, it may result in a complex generalization
hierarchy. Because of the large amount of additional concepts,
the comprehensibility and thus the meta model’s quality
suffers [13]. However, the complexity of the meta model is
only increased slightly when pursuing the first mentioned
solution. Consequently, this one is preferred.

V. META MODEL REFINEMENT

Looking at the initially derived meta model in Figure 5,
some parallels to the expected variant in Figure 2 are indeed
obvious, but the automatically generated model contains a
bunch of redundancies, which impair its comprehensibility.
Furthermore, the expected variant comprises already amended
domain knowledge, which lacks the generated result. One
example is the concept Task that specifies as a generalization
which kind of information all tasks must/may provide. In this
concrete case, it is about a task’s title and a time designation
how long a Task instance will take approximately.

Hence, the requirement arises to rebuild the derived result
in a way that it widely corresponds to the expected model.
Since inferred meta models can be much bigger than the ones
shown in this article, it is desirable to point a modelling expert
to constellations of model elements with potential for
optimization. This is contrary to the method presented in [1]
where optimizations are performed automatically by applying
appropriate language patterns. The reason for limiting to
recommendations comes from the amount of different
possible solutions how a meta model may look like to fit a set
of example models.

This becomes clear when looking at Figure 2, Figure 5 and
Figure 6, which all are valid according to the example process
model and only utilize single inheritance as language pattern.
Which one to choose requires additional domain knowledge
that is not available to the derivation engine. However, this
knowledge is availble to the user and hence, (s)he can decide
herself/himself whether to introduce a certain suggested
pattern. Also, focusing on this challenge, we develop a
framework that provides support for user-oriented meta model
evolution [19].

To provide recommendations, we resort to the principle of
equally-named attributes explicated in Section II.B. Thereby,
in a given meta model, sets of concepts are searched, which
declare as many equally-named attributes as possible.
Suchlike sets represent candidates for introducing
generalizing language patterns. The most widespread
generalization pattern is single inheritance. It is addressed in
the first subsection.

Another kind of generalization can be achieved using
enumerations. An enumeration, however, does not relate to
concepts but to literal data types with a limited value range.
The basis are again equally-named attributes. This pattern is
covered within the second subsection.

ElectronicTaskOrPaperTaskOrAndOrExit

Start

-title : string

-duration? : float

ElectronicTask Exit

-title : string

-duration : float

PaperTask And

-title : string

-duration : float

DetachedTask next

1..*

next

1

next

1

next

1

1

next

1

next

1..*

next

1

next

Figure 5. Initially derived meta model with single inheritance

*
nextnext

*-title : string

-duration? : float

Task FlowSource FlowTarget

ElectronicTask PaperTask Start And Exit

-title : string

-duration : float

DetachedTask

Figure 6. Alternative meta model with single inheritance

36

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Single inheritance as refinement recommendation

In order to provide a refinement recommendation for
applying single inheritance, attributes need to be searched,
which (potentially) have the same meaning. In the following,
we call those attributes “corresponding attributes”. With
regard to Section II.B, two attributes correspond if they
coincide by name and kind (i.e., referential or literal). By
means of an external configuration it can be specified whether
type and multiplicity also have to match such that
correspondence is on hand. As opposed to equally-named
attributes, corresponding attributes are declared by different
meta concepts.

The described correspondence is an equivalence relation,
because it is reflexive (each attributes corresponds to itself),
symmetric (if attribute a corresponds to attribute b then b
corresponds to a, too), and transitive (if attribute a
corresponds to attribute b and attribute b corresponds to c then
a corresponds to c as well). Consequently, the order of
corresponding attributes is irrelevant and thus, it is expedient
to represent them in form of sets.

Referred to the meta model in Figure 5, the following
attribute sets arise as a result if besides the attribute names no
further information is checked on equality:

 { DetachedTask.title: string,

ElectronicTask.title: string,

PaperTask.title: string }

 { DetachedTask.duration: float,

ElectronicTask.duration?: boolean,

PaperTask.duration: boolean }

 { Start.next: ElectronicTask,

ElectronicTask.next[]: ElectronicTask-

OrPaperTaskOrAndOrExit,

PaperTask.next: And, And.next:

ElectronicTaskOrPaperTaskOrAndOrExit }

In case multiplicity is considered as well, the particular
representatives of ElectronicTask of the duration and

next attribute sets are dropped. For it, the duration is
declared as optional while for the other concepts, it is specified
as mandatory. The electronic task’s next attribute, however,
permits to assign multiple values whereas the other concepts
require exactly one successor to be assigned.

A set of corresponding attributes implies that the declaring
concepts of the attributes contained by this set exhibit exactly
one correspondence, namely these attributes. In case of the
first listed set, the three title attributes form a

correspondence (communality) of the concepts Detached-

Task, ElectronicTask and PaperTask. The same is true

for the three duration attributes. Consequently, the three

concepts DetachedTask, ElectronicTask and Paper-

Task possess exactly two communalities, which are
determined by the two sets of corresponding attributes.

The issue of attribute sets with the same correspondences
can be generalized. If two sets of corresponding attributes
have the same size and the declaring concepts of the contained

next title duration

And - -

- DetachedTask DetachedTask

ElectronicTask ElectronicTask ElectronicTask

PaperTask PaperTask PaperTask

Start - -

next title next duration title duration

- - DetachedTask

ElectronicTask ElectronicTask ElectronicTask

PaperTask PaperTask PaperTask

 next title duration

ElectronicTask

PaperTask

1

2

Figure 7. Example for determining dependent sets of corresponding attributes

37

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attributes coincide, then we talk about a dependency between
these attribute sets regarding the common parent concepts.
Analogous to the corresponding attributes, this dependency
relationship constitutes an equivalence relation.

Visualizing this circumstance can be done using tables like
in Figure 7. Thereby, for each set of corresponding attributes,
the first row contains exactly one entry with the common
name of the respectively contained attributes. The rows below
list all those concepts that depend on each other based on the
attribute sets consolidated within the first row. Cells showing
a “-“ are included due to purpose of illustration without any
contentual meaning. Each one of these tables represents a
candidate for applying a generalizing language pattern and
thus for refining the meta model in relation to the concepts and
attributes listed by the table.

At large, in a meta model many such candidates can be
found. Hence, it is important to weight the determined
candidates and recommend them to the user ordered by this
weight. It is defined by the number of dependent sets of
corresponding attributes. As a consequence, a candidate is
better than another one if there is a greater number of such
attribute sets. In case this number is identical for two attribute
sets, the quantity of declaring concepts is considered as
secondary factor. It is justifiable because an in fact occurring
communality is more probable if two or more concepts
overlap in as many points (corresponding attributes) as
possible. In Figure 7, it is the case for the table at the bottom.
This table states that the concepts ElectronicTask and

PaperTask depend on each other concerning the attribute

sets next, title and duration.
The algorithm for determining all refinement candidates is

shown in Figure 8 in form of an activity diagram. It starts with
looking for corresponding attributes in a given collection of
meta concepts. The specific correspondence criteria are
predefined externally by means of an configuration.

The found sets of corresponding attributes are then
converted into a data structure called “dependency tuple”. Its
content is exemplarily depicted by the tables in Figure 7. The
first entry of such a tuple contains the dependent sets of
corresponding attributes and thus, it conforms to the first rows

of the example’s tables. The second entry comprises those
concepts, which declare exactly one attribute of every set of
the first entry. These concepts are located in the other rows of
the example tables. The three sets of corresponding attributes
listed above are equivalent to the first three dependency tuples
(represented as tables) in Figure 7.

The next step creates the initial dependency tuples and
puts it at the beginning of the results list. The results list
contains the refinement candidates, which are identified
during the execution of the algorithm. The tuples are ordered
descending by the quantity of included concepts. Accordingly,
the first entry is always the candidate with the greatest
probability in terms of an in fact occurring communality
within the real world.

If there are at least two dependency tuples, they are
combinated in pairs with formation of intersecting the
declaring concepts. Thereby, dependency tuples are created
only for such intersections, which contain at least two
concepts since elsewise no dependency exists. This
combination step is repeated as long as one tuple is left at a
max. After that, the algorithm terminates and returns a list of
refinement candidates ordered by the weight described above.

Applied to the example depicted by Figure 7, the results
list looks as follows (for reason of clarity, solely the names of
the corresponding attributes are specified):

({next, title, duration},

 {title, duration},

 {next, title},

 {next, duration},

 {next},

 {title},

 {duration})

At first place, it recommends the user to introduce a
common base concept for PaperTask and

ElectronicTask, which declares the three corresponding

attributes next, title and duration. If (s)he does not want
to do that (s)he can look at the next candidate. Based on the
attributes title and duration, it recommends to introduce

a base concept for DetachedTask, PaperTask and

ElectronicTask. This can be continued until the last

dependency tuple is arrived that only rests on duration.

Look for sets of

corresponding

attributes

corresponding

attribute sets

Insert dependency tuple at the

beginning of the global

candidates list

Pairwise creation of intersections

based on the attributes'

declaring concepts

One dependency tuple per

intersection with at least 2 concepts

Convert attribute sets

into dependency

tuples

One dependency

tuple per attribute set

concepts

Candidates in form of a list of

dependency tuples

#tuples
> 1

<= 1

Figure 8. Algorithm for the computation of candidates to apply single inheritance

38

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Enumeration as refinement recommendation

An enumeration represents a data type with a strongly
limited value range [20]. In general, it only consists of a few
literals, which come into question as values for assignments.
Therefore, recommending the introduction of an enumeration
as data type is merely reasonable for corresponding attributes
whose assignments exhibit repeatedly the same values. Owing
to the equal lexical structure of pointers and enumeration
literals, an enumeration can be only intended for pointer
attributes by users. Consequently, in the current context
merely two attributes may correspond to each other if they
feature the same name and are of type pointer.

Additionally, the number of the different values should be
stinted. However, a fix definition of where the border of
“stinted” is exceeded cannot be given because this depends on
the particular operational scenarios as well as the user’s
preferences. Instead, the analysis’s focus lies on the repeated
assignment of the same pointer values to corresponding
attributes. Hence, it will be recommended to introduce an
enumeration if at least two different values are repeatedly
assigned to the same set of corresponding attributes. An
example for a valid scenario is shown by Figure 9. It
represents a model with six instances that all contain an
assignment to the imaginary attribute phase. The derived

meta model only consists of the concept Job, which manifests

the aforementioned attribute phase. Since it is a pointer

attribute and the literal PRE as well as the literal DEFAULT are

used by at least two associated assignments (namely J1, J3,

J5 and J4, J5, respectively), a hint is generated that suggests
to introduce an enumeration.

VI. DERIVING META MODEL CHANGES

When deriving meta model changes, the fundamental
principle is to keep those changes to a minimum. Thus, the
existing meta model only gets adapted insofar that modified
or newly added example models become valid. This is
necessary because users are allowed to commute meta models
arbitrarily. In case an existing meta model is always discarded

and a complete re-generation takes place, all manually
performed modifications would be lost. Which modifications
are performed at the meta model automatically during the
repeated derivation is explicated in the first subsection.

In the second subsection, we seize the idea of
recommendations. Primarily, these recommendations can be
seen as counterparts to the explicit and implicit impacts on the
meta model presented in Section IV and Section V.

A. Required changes

In order to ensure the conformity of the example models
with regards to the meta model, in any case those artefacts of
the models need to be extracted that conflict with the meta
model. Potential for conflicts is carried by the LMM’s parts,
which are extended about schemalessness (Section II.B). On
the one hand, these are type names of concepts and on the
other hand these are names of assignments.

If free modelling mode is enabled, the user may equip new
instance concepts with a type name of a not yet available type
(meta concept). Suchlike instances are handled the same way
as during the initial inference of a meta model (Section IV). A
user may also change a type name of an existing instance
concept, which is already linked with a meta concept, such
that it does not fit with any other available meta concept. Then,
this concept is considered as new, too. Furthermore,
potentially present assignments are broken away from their
underlying attributes. Afterwards, processing can continue in
the same way as with completely new instances.

The free mode enabled, new dynamic assignments (i.e.,
assignments without an underlying attribute) can be created
inside of instance concepts, which already have an associated
meta concept. For every suchlike assignment an appropriate
attribute is generated, but without putting it into a meta
concept. After that, per meta concept sets of equally-named
attributes are determined. Each of these sets is merged to one
attribute and added to a particular meta concept, according to
the method described in Section IV.A. Thereby, an existing
meta concept is expanded by an attribute that matches one or
more dynamic assignments.

Furthermore, assignments with an underlying attribute
may feature arbitrary values on the right side provided that the
respective intention (referential or literal) is not violated.
Assuming that there is an integer attribute with name “height”,
then assignments may be of any other literal type in free mode.
For instance, a meaningful value would be 3.5 although it is
outside the value range of integers. Deriving the according
meta model changes would convert the “height” attribute’s
type to float. Here again, strategies are reused, which have
been introduced for inferring an initial meta model (Section
IV). In case of an underlying literal attribute, a type
conversion occurs towards a larger value range (examples are
depicted by TABLE II). For referential attributes, however, a
common base concept is required, which has to be created if
not yet existent.

In addition, enumeration attributes need to be handled
separately. Valid values are basically pointers that do not
reference another concept. If values are specified without a
suitable enumeration literal, an according literal is generated
and added to the enumeration. Beyond pointers, string values

Job J1

 phase = PRE

Job J2

 phase = POST

Job J3

 phase = PRE

Job J4

 phase = DEFAULT

Job J5

 phase = DEFAULT

Job J6

 phase = PRE

Figure 9. Example model that induces a recommendation for introducing an

enumeration

39

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

can also be assigned to enumeration attributes while free
modelling. This, however, leads to converting the underlying
attribute to a string attribute. Besides, all enumeration literals
are converted to strings as well. All other data types are not
permitted and will result in aborting the derivation process in
case they are used.

The presented five cases encompass all possible
modification kinds of instance models that require a
subsequent adaption of the underlying meta model to achieve
validity when modelling stringently.

B. Change recommendations

The different types of change requirements can be divided
into three categories. In the first category there are all
recommendations that affect the value ranges of attributes.
The second category encompasses recommendations to delete
certain concepts of the meta model. The third one contains
those recommendations that refer to a removal of language
patterns. Therewith this class stands inverse to the suggestions
presented in Section V.

1) Narrowing of attribute contraints
During the derivation of attributes all restriction in the

model are softened. This is desirable for reasons of manual
adaption. Instead, under certain circumstances narrowing the
attribute’s multiplicity or type can be recommended. For
recommending the narrowing of an attribute’s multiplicity,
the minimum and maximum have to be handle separately. If
all instances that can define an assignment do have such an
assignment, a change of the minimum from 0 to 1 is
suggested. Furthermore, narrowing the maximum of the
multiplicity can be useful if the current value is * and all
assignments are just single valued.

Dealing with the attribute’s type requires again to
distinguish between literal and referential attributes. A literal
attribute can be checked whether all according assignments
have a lower range than previously defined (TABLE II). In
this case a replacement of the old type with the new literal type

can be recommended. One could imagine that an attribute’s
type is float and all assigned values are within the integer rage.
Hence, a change of the attribute type may be expedient.

Referential attributes can be handled in a similar way.
However, they are tested whether a generalization of their type
can be replaced by a specialization of it. Thereby, all assigned
values have to be checked again. An example would be an
attribute of type ProcessOrAnd. This type has been chosen
because until now only processes and AND gateways have
been assigned. During the next derivation of changes it is
detected that only instances of Process were used as values.

According to that, changing the attribute’s type to Process is
recommended.

2) Concept removal
Based on changed instance models, a sure decision

whether a concept is not needed any longer and thus can be
deleted is hard to make. Every meta concept may be used in a
model repository out of the current scope or needed within a
code-generation step. That is why deleting a meta concept is
not done automatically but could be done by a modelling
expert who is supplied with a recommendation of an
according deletion operation. A typical representative would
be a non-abstract meta concept, which is not instantiated. Such
a concept is a candidate for removal.

3) Revocation of single inheritance
As stated above, the next case can be seen as opposite to

the introduction of language patterns explicated in Section V.
However, it claims for removing meta concepts, which again
may lead to invalid external references. Hence, a model expert
has to decide whether (s)he wants to adapt the model or not.
If an abstract concept has exactly one specialization this
concept is often obsolete. Thus, every concept that fulfils this
constraint is a candidate for inlining into its specialization.
One could imagine that the concept PaperTask (Figure 6)
was removed manually. After that, a hint will be generated
recommending the move of the two attributes title and

Figure 10. Manually modified example model

40

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

duration from Task to the specialization Electronic-

Task and replacing the concept Task by ElectronicTask
afterwards.

C. Example

The example model depicted by Figure 10 largely
represents the same process as shown by Figure 1. Both
models only vary on three user-performed changes, which are
highlighted in Figure 10 using red color. For the original
example, a meta model has already been generated. Also, it
has been adapted by the user so that it corresponds to the
variant from Figure 2. Now, this meta model constitutes the
foundation for deriving changes based on the modifications of
the example model described below.

The first change concerns the Request concept’s

duration assignment that is already bound to a float

attribute. The assignment of the floating point number 0.5 is

replaced by the string "0.5" (fourth issue in Section VI.A).
During the incremental meta model derivation, the type of the
existing literal attribute is widened to string (concept Task in
Figure 11) and all previously assigned values to this attribute
are converted to their string representation. For instance, the
value 1 from Search concept’s duration assignment

becomes "1".
Directly below the modified duration assignment, a new

assignment (waitForReturn) has been added without an
underlying attribute (third issue in Section VI.A). Since it
affects the one and only instance of PaperTask, this meta
concept is simply extended by an appropriate Boolean
attribute.

The third manipulation of the example model affects the
Inform concept. Its type has been changed from

DetachedTask to FreeTask, whereas no corresponding
meta concept exists for the latter. According to the second
issue in Section VI.A, a new meta concept called “FreeTask”
is induced that also receives two attributes title and

duration. As a result, there is no more concept, which

instantiates DetachedTask. For that reason, the system
suggests to the user to delete this concept (as per Section
VI.B.2).

VII. RELATED WORK

As mentioned in the introduction, deriving a meta model
from a set of model examples is not a totally new approach.
Depending on their purpose, the available related work can be
classified into two categories: meta model reconstruction and
meta model creation.

Meta model reconstruction stems from the field of
grammar reconstruction and grammatical inference [21].
Thereby, many textual sentences (ideally positive and
negative samples) are analyzed to infer a grammar [22].

In current research, the Metamodel Recovery System
(MARS) is one prominent representative for meta model
reconstruction [5], [23]. It receives a set of model samples and
transforms them to a representation that can be used by a
grammar inference engine. The output of this engine (a
grammar) is then converted back to an equivalent meta model.
As the title suggests, MARS focuses on the recovery of meta
models (e.g., if a meta model got lost). To obtain a meta
model, which corresponds as much as possible to the original
one, a large number of positive model samples is required.
Otherwise, the resulting meta model is strongly restricted in
its capabilities. Since we mostly receive only one or at least a
small set of model examples this approach is not practicable
for us.

Up to our knowledge, there are three research groups that
generate a meta model by deriving it from very few model
examples. BitKit as one representative has a rather different
intention [24]. Its authors aim at supporting the pre-
requirements analysis of software products by allowing to
model in a freeform way just like with general purpose office
tools. The resulting meta model is merely a means to an end.
Primarily, BitKit semantically combines equally looking
elements by deriving a common associated entity. After a
meta model is inferred and, for instance, the color of such an
element is changed the color of every other (equally looking)
element is adapted accordingly. Due to the office tool
intention of BitKit, the generated meta model is not intended
to be processed in any further way. Consequently, its quality
is not considered as well.

Another approach is proposed in [25]. Like BitKit, it is
also restricted to graphical DSLs. Nevertheless, we adopt their
general idea for applying patterns when inferring a meta
model. That meta model (which represents the abstract syntax
as stated by the author) highly corresponds to the concrete
syntax as well. This correspondence is obvious when
investigating another publication of Cho and Gray. In [26],
they introduce some design patterns well suited for meta
models. However, the presented patterns are very specific for
graphical DSLs and hence not universally valid. That can be
verified when comparing these patterns to the meta models for
visual languages defined in [27]. In contrast to our approach,
they directly apply design patterns wherever possible. Owing
to the visual information, they can resort to additional domain

FlowElement

-title : string

-duration? : string

Task

ElectronicTask

-waitForReturn : boolean

PaperTask Start And ExitDetachedTask

-title : string

-duration : integer

FreeTask

*

nextnext

*

Figure 11. Automatically adapted meta model according to the modified example model

41

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

knowledge, which we do not have on hand. However, our
recommendation framework can also be applied to their meta
models and hint to artefacts of these meta models with
potential for further refinement.

In parallel to our research, a similar approach has been
published in [14]. They infer a meta model from example
models, which are specified using a predefined textual
concrete syntax. From their approach, we adopted the idea of
providing recommendations such that a meta model’s quality
can be increased. Since [14] is rather an overview paper, the
authors do not provide detailed solutions how detection of
recommendations works. In this article, we minimized that
gap and presented some concrete methods how constellations
of meta model elements with potential for refinement can be
identified.

VIII. OUTLOOK

The presented rapid design approach works well for meta
models, which are formulated using a linguistic meta language
as concrete syntax. For entire DSLs, further effort is necessary
since each DSL features its own concrete syntax whose
specification process should also follow the proposed rapid
design principle. For sketching textual concrete syntaxes, we
already published a method in [28].

Our next step is to combine the meta model derivation
approach presented in the current paper with the construction
of custom concrete syntaxes. Beyond textual syntaxes, we
also contemplate to support graphical DSLs.

To conclude, the overall goal is developing a system,
which fosters the rapid design and usage of all artefacts DSLs
consist of. This means that the intended system provides a
seamless integration of free and stringent modelling when
working with meta models and even entire DSLs.

ACKNOWLEDGMENT

This article was authored in the context of the project
“Kompetenzzentrum für praktisches Prozess- und
Qualitätsmanagement” (KpPQ) funded by “Europäischer
Fonds für regionale Entwicklung” (EFRE). So, we thank this
institution, which has kindly facilitated our work.

REFERENCES

[1] B. Roth, M. Jahn, and S. Jablonski, “A method for directly deriving a
concise meta model from example models,” in Proceedings of the 5th
International Conferences on Pervasive Patterns and Applications,
2013, vol. 5, no. 1, pp. 52–58.

[2] T. Clark, P. Sammut, and J. Willans, Applied Metamodelling: A
Foundation for Language Driven Development. CETEVA, 2008, p.
227.

[3] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: Enabling
Full Code Generation, 1st ed. John Wiley & Sons, 2008, p. 444.

[4] E. M. Gold, “Language identification in the limit,” Inf. Control, vol.
10, no. 5, pp. 447–474, 1967.

[5] F. Javed, M. Mernik, J. Gray, and B. R. Bryant, “MARS: a metamodel
recovery system using grammar inference,” Inf. Softw. Technol., vol.
50, no. 9–10, pp. 948–968, 2008.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1994.

[7] B. Roth and M. Jahn, “Model Workbench,” 2013. [Online]. Available:
http://www.ai4.uni-
bayreuth.de/de/research/projects/003_ModelWorkbench/index.html.
[Accessed: 28-Jan-2013].

[8] J. Odell, Advanced object-oriented analysis and design using UML.
Cambridge University Press, 1998.

[9] C. Atkinson and T. Kühne, “Concepts for comparing modeling tool
architectures,” in Proceedings of the 8th International Conference on
Model Driven Engineering Languages and Systems, 2005, pp. 398–
413.

[10] B. Volz and S. Jablonski, “Towards an open meta modeling
environment,” in Proceedings of the 10th Workshop on Domain-
Specific Modeling, 2010.

[11] C. Atkinson and T. Kühne, “Meta-level independent modelling,” in
Proceedings of the International Workshop on Model Engineering at
14th European Conference on Object-Oriented Programming, 2000,
pp. 12–16.

[12] B. Volz, “Werkzeugunterstützung für methodenneutrale
Metamodellierung,” University of Bayreuth, PhD thesis, 2011.

[13] M. F. Bertoa and A. Vallecillo, “Quality attributes for software
metamodels,” in Proceedings of the 13th TOOLS Workshop on
Quantitative Approaches in Object-Oriented Software Engineering,
2010.

[14] J. Sánchez-Cuadrado, J. De Lara, and E. Guerra, “Bottom-up meta-
modelling: an interactive approach,” in Proceedings of the 15th
International Conference on Model Driven Engineering Languages
and Systems, 2012, pp. 3–19.

[15] D. Flanagan, JavaScript: The Definitive Guide, 6th ed. Sebastopol,
CA: O’Reilly Media, Inc., 2011, p. 1078.

[16] B. Liskov, “Data abstraction and hierarchy,” ACM SIGPLAN Not.,
vol. 23, no. 5, pp. 17–34, 1988.

[17] G. Singh, “Single versus multiple inheritance in object oriented
programming,” ACM SIGPLAN OOPS Messenger, vol. 6, no. 1, pp.
30–39, 1994.

[18] M. Herrmannsdoerfer, S. D. Vermolen, and G. Wachsmuth, “An
extensive catalog of operators for the coupled evolution of
metamodels and models,” in Proceedings of the 3rd International
Conference on Software Lanugage Engineering, 2010, pp. 163–182.

[19] M. Jahn, B. Roth, and S. Jablonski, “Remodeling to powertype
pattern,” in Proceedings of PATTERNS 2013, 2013, pp. 59–65.

[20] J. Bloch, Effective Java, 2nd ed. Upper Saddle River, New Jersey:
Addison-Wesley Longman, 2008, p. 384.

[21] M. Mernik, D. Hrncic, B. R. Bryant, A. P. Sprague, J. Gray, Q. Liu,
and F. Javed, “Grammar inference algorithms and applications in
software engineering,” in 22th International Symposium on
Information, Communication and Automation Technologies, 2009,
pp. 1–7.

[22] F. King-Sun and T. L. Booth, “Grammatical inference: introduction
and survey - part I,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 8,
no. 3, pp. 343–359, Mar. 1986.

[23] Q. Liu, B. R. Bryant, and M. Mernik, “Metamodel recovery from
multi-tiered domains using extended MARS,” in Proceedings of the
34th IEEE Annual Computer Software and Applications Conference,
2010, pp. 279–288.

[24] M. Desmond, H. Ossher, I. Simmonds, D. Amid, A. Anaby-Tavor, M.
Callery, and S. Krasikov, “Towards smart office tools,” in SPLASH
2010 Workshop on Flexible Modeling Tools, 2010.

[25] H. Cho, J. Gray, and E. Syriani, “Creating visual domain-specific
modeling languages from end-user demonstration,” in ICSE
Workshop on Modeling in Software Engineering, 2012, pp. 22–28.

[26] H. Cho and J. Gray, “Design patterns for metamodels,” in
Proceedings of the SPLASH ’11 Workshops, 2011, pp. 25–32.

[27] P. Bottoni and A. Grau, “A suite of metamodels as a basis for a
classification of visual languages,” in Symposium on Visual
Languages and Human Centric Computing, 2004, pp. 83–90.

42

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[28] B. Roth, M. Jahn, and S. Jablonski, “On the way of bottom-up
designing textual domain-specific modelling languages,” in

Proceedings of the 2013 ACM Workshop on Domain-Specific
Modeling, 2013, pp. 51–55.

43

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Detecting Software Usability Deficiencies Through Pinpoint Analysis

Dan E. Tamir, Divya K. V. Dasari
Oleg V. Komogortsev, Gregory R. LaKomski

Department of Computer Science
Texas State University

San Marcos, Texas USA
{dt19, dd1290, ok11, gl1082}@txstate.edu

Carl J. Mueller
Department of Computer Information Systems

Texas A&M University Central Texas
Killeen, Texas, USA

muellercj@ct.tamus.edu

Abstract— The effort-based model of usability is used for

evaluating user interface (UI), de velopment of usable software,

and pinpointing software usability defects. In this context, the

term pinpoint analysis refers to identifying and locating
software usability deficiencies and correlating these

deficiencies with the UI software code. For example, often,

when users are in a state of confusion and not sure how to

proceed using the software, they tend to gaze around the

screen trying to find the best way to complete a task. This
behavior is referred to as excessive effort. In this paper, the

underlying theory of effort-based usability evaluation along

with pattern recognition techniques are used to produce an

innovative framework for the objective of identifying usability

deficiencies in software. Pattern recognition techniques and
methods are applied to data gathered throughout user

interaction with software in an attempt to identify excessive

effort segments via automatic classification of segments of

video files containing eye-tracking results. The video files are

automatically divided into segments using event-based
segmentation, where a segment is the time between two

consecutive keyboard/mouse clicks. Subsequently, data

reduction programs are run on the segments for generating

feature vectors. Several different classification procedures are

applied to the features in order to automatically classify each
segment into excessive and non-excessive effort segments. This

allows developers to focus on the excessive effort segments and

further analyze usability deficiencies in these segments. To

verify the results of the pattern recognition procedures, the

video is manually classified into excessive and non-excessive
segments and the results of automatic and manual

classification are compared. The paper details the theory of

effort-based pinpoint analysis and reports on experiments

performed to evaluate the utility of this theory. Experiment

results show more than 40% reduction in time for usability

testing.

Keywords- Software Development; Software Usability;

Human Computer Interaction; Pinpoint Analysis; Pattern

Recognition; Clustering

I. INTRODUCTION

One of the primary goals of software is to simplify

various tasks and enable users to accomplish tasks with ease

and efficiency. Numerous fields have recently witnessed an

increase in software development and deployment.

Nevertheless, feedback from software applications end-

users consistently shows that software is at times non-

productive, confusing, counter-intuitive, and unsatisfactory

[1]-[5]. Clearly, if the users experience problems or

difficulty, it is highly unlikely that they will use that

software again. Hence, it is very important for software

engineers to place significant emphasis on usability

evaluation and testing in order to eliminate user complaints

and provide the user with a good experience [1]-[5].

Software engineers use a wide variety of tools , such as

prototyping, inspection, usability testing, and iterat ive

processes to ensure that the software they produce is usable

[1]-[5]. St ill, these tools may not address the usability

problem efficiently, resulting in a low ranking on usability

for several systems [1][5]. The classical methods used in

identifying usability techniques have not proven to be very

proficient in accurately locating the specific segment of

code that could be leading to the usability problems.

Without proper data to understand which part of code is

faulty, developers would have a hard time identifying and

fixing code that leads to usability issues.

The usability testing process involves observing users

engaged with a software application and obtain ing a set of

characteristics of the user experience. This methodology

requires an expert to construct, conduct, and assess the tests; as

well as devoted laboratory facilities and several users that

participate in the tests. Despite all of these efforts, generally

usability testing indicates that a problem exists but does not

identify the root cause for the problem [1][5]. This makes

usability-testing time consuming, expensive, and frustrating

for both developers and managers. Hence, it is often

ignored.

Most of the tools used to evaluate the usability of a

software application use ‘time to complete a task’, referred

to as (), as a measure for evaluating

usability [1]-[12]. This approach of giv ing high weight to

 may not produce accurate results when factors like

system performance, network delays, and interface design,

which are d ifficu lt to avoid, play a role. An alternate

approach is to measure usability in terms of user-effort,

which eliminates some of the system issues mentioned

earlier, allowing software engineers to focus on the interface

design [1][5].

The Effort-Based Usability Model of [1][5][6][9]-[12]

can be used for setting usability requirements, evaluating

44

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

user interface (UI), development of usable software, and

pinpointing software usability defects . It is developed using

the principle that usability is an inverse function of effort.

The model is used for comparison of d ifferent

implementations of the same application. The results of

several experiments conducted on the effort-based model

show a strong relationship between effort and usability

[1][5][6][9]-[12].

The underlying theory of the Effort-based Model is

used to produce a framework for identifying usability

deficiencies in the software. Accurately locating software

usability issues and correlating these issues with UI

software code is referred to as Pinpoint Analysis [1][9]-[12].

For example, users who are in a state of confusion, and

users that are not sure how to use the software, tend to look

around the screen to determine the best way to accomplish a

task. This behavior, which can be observed by eye tracking

[13][14], is referred to as an excessive search or as

excessive effort [1][5][9]-[12]. Identifying and pinpointing

excessive effort behavior helps UI designers to rectify

numerous usability related issues.

The hypothesis of this research is that it is feasible to

devise a framework that can automatically identify excessive

effort segments by apply ing pattern recognition techniques ,

such as K-means clustering algorithm, thresholding,

principal component analysis (PCA), and feature selection

[15]-[17]. Usability experts can fu rther inspect the excessive

effort segments. Hence, the automatic part can save experts’

time and increase experts’ accuracy.

To validate the hypothesis, this research, attempts to

evaluate the utility of pinpointing UI deficiencies using

pattern recognition techniques for identifying excessive

effort in temporal segments of user software interaction. The

process of segmentation of user’s software interaction

session and linking segments is done automatically using

the time slice between two consecutive mouse/keyboard

clicks. Automat ic identification of segments with excessive

effort behavior reduces the time required for UI designers to

analyze and rearrange the interface at the pinpointed time

snapshot. The last phase of the pinpoint process involves an

expert evaluating excessive effort segments. Nevertheless,

the process of identifying these segments is automatic and

non-supervised.

The main contribution of this work is the development

of a new methodology for assessing the usability of

software. Th is methodology helps optimizing the t ime spent

on usability testing while also more accurately identify ing

specific segments of code that could be leading to the

usability issues.

Several experiments were conducted to validate the

hypothesis and evaluate the new framework for pinpointing

software usability issues. Experiment results show more

than 40% reduction in time for usability testing.

The rest of this paper, which is an expanded version of

[1], is organized as follows. Section II contains background

informat ion. Sect ion III summarizes related work. Section

IV presents the experimental setup. Section V details the

experiments performed. Sect ion VI presents experiment

results and Section VII contains results evaluation. Section

VIII concludes the paper with a summary of findings and

proposals for further research.

II. BACKGROUND

A. Software Usability

According to the International Organization for

Standardization/International Electro -technical Commission

(ISO/IEC) 9126 standard, software usability is: “The

capability of a software product to be understood, learned,

used, and be attractive to the user when used under specified

conditions” [8][9]. The standard lists several characteristics

that play an important role in defin ing software usability:

understandability, learnability, operability, and

attractiveness [8][9]. The effort-based theory focuses on the

first three characteristics.

Understandability helps determine how easy it is to

comprehend and use the software. It is the ability of a user

to understand the capabilities of the software and its

suitability to accomplish specific goals. Learnability

indicates the ease with which a user learns to use specific

software. Operability is the capability of a user to use the

software to accomplish a specific goal. Generally, the end-

goal of a software application is to enable performing a task

efficiently. As such, operability plays an important role in

usability. Attractiveness relates to the requirement that the

end-user’s experience is pleasant and rewarding. The next

section discusses several classical usability evaluation

methodologies.

B. Classical Methods for Measuring Usability

The classical usability measurements methods are

broadly classified into methods that make use of data

gathered from users and methods that rely on usability

experts. There are usability evaluation methods that apply to

all stages of design and development, fro m product

definit ion to final design modificat ions. Usability methods

are further classified into cognitive modeling methods,

inspection methods, inquiry methods, prototyping methods,

and testing methods.

Cognitive models are based on psychological principles

and experimental studies to determine times for cognitive

processing and motor movements. They are used to improve

user interfaces or predict problem areas during the design

process. In general, cognitive modeling involves creating a

computational model to estimate how long it takes for users

to perform a g iven task [1]-[5]. It involves one or more

evaluators inspecting a user interface by going through a set

of tasks by which understandability and ease of learn ing are

evaluated. The user interface is often presented in the form

of a paper mock-up or a working prototype; but it might be

a fully developed interface.

The inspection method involves cognition with

emphasis on a hands-on approach. Under the inspection

45

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

method, experimenters observe users while they are using

the software. The testing and evaluation of programs is done

by an expert reviewer. Th is provides quantitative data, as

tasks can be timed and recorded. In addition to quantitative

data, qualitative user experience data are collected.

Although some of the data collected is qualitative and

potentially subjective, it provides valuable information [2]-

[4].

Experts obtain information about users' likes, dislikes,

needs, and understanding of the system by talking to them,

observing them using the system, and through verbal or

written questionnaires. Since this information is collected by

inquiring and getting direct feedback from users, this model

is called the inquiry method [1]-[5].

While the above methods focus on usability testing at

an advanced stage in the development, the prototyping

method tries to improve usability by refining and providing

feedback as the software is being developed. Rapid

prototyping is a method used in early stages of development

to validate and refine the usability of a system. It is used to

quickly and efficiently evaluate user-interface designs

without the need for an expensive working model. This

helps to remove the developer’s resistance to design

changes since it is conducted before any actual

programming begins. Testing methods provide usability

evaluation through testing of users for the most quantitative

data. User interaction sessions are observed via two way

mirrors or recorded on video that provides task complet ion

time and allows for evaluation of user attitudes [1]-[5].

C. The Effort-based Usability Model

Several studies indicate that many system users

associate the physical and mental effort required for

accomplishing tasks with the usability of the software

[1][5][6][9]-[12]. The effort-based usability model for

software usability stems from the notion that the usability is

an inverse function of effo rt. For example, an eye t racking

device can be used to measure the effort expanded by the

user in navigating through the user interface of software.

According to the effort-based usability theory, the eye effort

is inversely proportional to the operability of the software.

Physical and mental effort are obtained and inferred

from logging user activity such as manual activities in the

form of mouse movements and eye activities. For this

model, E denotes the total effort required to complete a task

with computer software and is defined as:

 (

)

 (

)

 (

)

 denotes the amount of mental effort to

complete the task measured by eye related metrics.

 denotes the amount of mental effort

measured by other metrics.

 denotes the amount of physical effort needed to

complete the task.

 denotes the amount of manual effort

required to complete the task. Manual effort includes, but is

not limited to, the movement of fingers, hands, arms, etc.

 denotes the amount of physical

effort invested in the process of interaction,

measured by eye movement related metrics [13].

 denotes the amount of physical effort

measured by other metrics.

Consequently, the effort required to complete tasks is

associated with software usability [1][5][9]-[12]. Physical

effort includes manual effort and physical eye effort. In the

case of interactive computer tasks, it is possible to calculate

effort as a linear combination or a weighted sum of metrics

such as the number of mouse clicks, number of keyboard

clicks, average eye path traversed as well as other eye

activity measures, and mouse path traversed [1][9]-[12].

Mental effort is essentially the amount of brain activity

required to complete a task. To some extent, brain activity,

related to a task, can be approximated by processing eye

movement data recorded by an eye tracker [1][5][9]-[14].

Eye trackers acquire eye position data and enable

classifying the data into several eye movement types useful

for eye related effort assessment. The main types of eye

movements are [13][14]:

1) Fixation – eye movement that keeps an eye gaze

stable with regard to a stationary target providing visual

pictures with high acuity. Fixat ions might be a result of

“interest” or a result of confusion. In the context of task

completion, fixations are generally correlated to confusion.

2) Saccade – rapid eye movement from one fixat ion

point to another.

3) Pursuit – stabilizing the retina with regard to a

moving object of interest. Usually, however, the Human

Visual System (HVS) does not exhib it pursuits when

dynamically moving targets are not a part of the interface

[13][14].

In addition, some eye trackers supply informat ion about

 as well as user manual activity including mouse and

keyboard clicks.

In this research, we concentrate on the correlation

between physical effort and usability. The following

metrics, which have been identified as the most important

effort-based metrics, are used as a measure of the physical

effort [1][5][6][9]-[14]:

1) Average fixation duration,

2) Average saccade amplitude,

3) Number of fixations,

4) Number of saccades, and

5) Average eye path traversed.

46

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

T
im

e
 o

r
E

ff
o

rt

Tasks

Eavg

Eexp

Lp

LT

Figure 1. Learnability-based usability model

Additional commonly used metrics such as the number

of keyboard clicks and the number of mouse clicks are used

for identify ing segments of interaction rather than

classifying segments.

The effort -based software usability evaluation is

divided into three phases: Measurement, Analysis, and

Assessment [1]. In the Measurement phase, a group of users

executes a set of tasks referred to as identical independent

tasks, due to the fact that they share characteristics with an

identical independent distribution (iid) used in probability

theory. The tasks emerge from a single scenario; however,

several parameters change from task to task in a pseudo

random fashion. Hence, these tasks differ in key parameters ,

which prevent the users from memorizing a sequence of

interaction activities. Throughout the interaction process,

certain user actions such as eye movement, , keyboard

activities, and mouse activities are logged.

The Analysis phase involves accumulating data for

several physical effort-based metrics such as the number of

saccades, average saccade amplitude, number of fixations,

average fixation duration, and average eye path traversed.

Another metric is the . The average task completion

time and/or an effo rt-based metric are compared to a

learning curve, which reflects users’ mastery of software.

The final step is the Assessment. Using the above steps,

the learnability of software systems is assessed and the point

of users’ mastery of the software is identified. In addition,

as detailed in section D, the learnability curve is used to

obtain operability and understandability of various software

systems or different groups of users using the same system.

Effort-based metrics provide interface designers with means

to evaluate their designs [1][5].

D. The Learnability based Usability Model

Typically, as users become familiar with an application,

the effort and/or the t ime to complete tasks, which emerge

from the same scenario, become smaller or shorter [18].

Often, a graph of the averages of Effort-On-Task () or

Time-On-Task (), also known as effort average (Eavg),

for the users fits well into an exponential decay curve that

represents the average effort on task expended by the group

of users. Figure 1 depicts a typical graph. The Eexp line is the

effort that the interface designer expects an expert to expend

in order to complete a specific task. The point where the

user’s effort reaches the acceptable level is the learning

point Lp. The learn ing time (LT) is calculated by adding the

average task duration to the left of the learn ing point. Data

to the right of the learning point relates to the amount of

effort required by a trained user to complete tasks.

Understandability can be inferred from the graph by

investigating the difference between the expert curve and

the average user curve; while operability can be inferred

from the distance between the expert curve (Eexp) and the

47

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

axis. Thus, the effort-based usability model enables the

evaluation of the understandability learnability, and

operability of a specific system. In addition, comparing the

plots representing the results of tests with different systems

or different user populations (e.g., students vs. novice

employees) can be used to evaluate the relative usability of

these systems [1]. Th is is referred to as “system A vs.

system B” or “population A vs. population B” experiments

[1]. Moreover, this model is further used to identify outlier

tasks, which are studied to find usability shortfalls [1].

Outlier tasks are good candidates for a specific type of

pinpoint analysis referred to as inter-pinpoint analysis.

E. Pinpoint Analysis
Software usability testing is one of the most expensive,

tedious, and least rewarding tests to implement [1]-[5]. This

perception is likely to change if the usability testing is made

less expensive and more rewarding. This requires accurate

means through which an engineer can identify and pinpoint

issues in the software or the interface. Th is process is called

pinpoint analysis. Pinpoint analysis is one of two types;

inter-pinpoint analysis deals with identifying issues with

tasks performed by the users in a specific system, whereas

intra-pinpoint analysis refers to identifying issues within

tasks in a specific system. For example, outlier tasks might

be identified through inter-pinpoint analysis and used for

intra-pinpoint analysis. This analysis can help graphical user

interface (GUI) designers to make decisions about element

placement on displays and determine the level of effort that

is related to different widgets [1][5].

1) Inter-pinpoint Analysis

Inter-pinpoint analysis involves detecting tasks that

present anomalies and identifying the reasons for these

anomalies at a high level. The mouse is used as an example

to illustrate inter-p inpoint analysis. In a part icular task, the

right mouse button helps users complete a task effectively;

however, some of the users are unaware of it. It is possible

that anomalies like this can be identified in inter-pinpoint

analysis [1][5].

Inter-pinpoint analysis helps in identifying alternative

methods to perform a task effectively with less effort;

however, it does not provide users with a hint of the

alternative method. Other issues like the necessity of help

facilit ies in software are identified by the high level analysis

of tasks that present anomalies.

Figure 2 is a plot of the average of five subjects for

seven identical but independent tasks. The axis shows a

data point for each of the seven tasks, while the axis

shows information related to the The curve fitted to the

individual bars representing the average is an

exponential curve that actually corresponds to the

learnability model. The high correlation value ()

shows that the exponential curve well fits the data. Again,

placing the plot of more than one systems’ test in the same

graph can be used for a “system/population A vs.

system/population B” comparison. In this case, task-3 that

does not fit well in the curve shows an anomalistic behavior

and calls for further analysis and study [1][5].

2) Intra-pinpoint Analysis

Intra-pinpoint analysis is a detailed method for

analyzing tasks and identifying specific is sues with the

software. The analysis can be done manually by watching

video recordings of users’ interactions with software and/or

watching videos obtained from an eye-tracking device. The

review helps in identify ing interaction issues and areas

where the user has difficulty while performing tasks . For

example, the analysis might reveal that most of the users go

into a state of confusion in a specific part of a task, and are

searching the screen to identify the best way to proceed with

Figure 2. – Time-on-Task (TOT) for the use case of interest.

y = 7.4958x-0.321

R² = 0.962

3.00

3.50

4.00

4.50

5.00

5.50

1 2 3 4 5 6 7

M
in

u
te

s

Task

Average Power (Average)

48

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the task. This might prompt the designers to rearrange the

interface where a snapshot identifies excessive effort.

Clearly, the manual record ing inspection is tedious and

potentially expensive. An alternative is to use automatic

methods utilizing pattern recognition techniques. This

method eliminates the need for a person to watch the entire

video in order to identify interaction issues , thereby cutting

down the cost and time. It enables automatic identification

of areas where the user has difficulty and marking these

areas for further evaluation.

F. Pattern Recognition

One of the applications of pattern recognition is the

assignment of labels to a given input value, or instance,

according to a specific algorithm. An example of pattern

recognition procedure is classificat ion, which attempts to

assign each input value to one of a given set of classes.

Pattern recognition is generally categorized according

to the type of learn ing procedure used to generate the output

value. Supervised learning assumes that training data (the

training set), consisting of a set of instances that have been

properly manually labeled by an expert with the correct

output, has been provided. Next, a learn ing procedure

generates a model that attempts to meet two, somet imes

conflicting, ob jectives: Perform as well as possible on the

training data, and generalize as well as possible to new data.

On the other hand, unsupervised learning assumes the

availability of training data that has not been hand-labeled

and attempts to find inherent patterns that are used to

determine the correct classificat ion value for new data

instances [15]-[17].

Algorithms for pattern recognition depend on several

parameters, such as the type of output labels, and on the

training/learn ing methods that are supervised or

unsupervised. Additionally, the algorithms differ in the way

that inference is performed. For example, inference might

be based on probability, non-parametric clustering, fuzzy

logic, etc. [15]-[17]. The following are various relevant

pattern recognition techniques.

1) Segmentation

Pattern recognition procedures require the definition of

patterns (i.e ., segmentation). In this research, segments of

user activities records serve as the basic patterns. A segment

is defined as the time between two consecutive

keyboard/mouse clicks.

2) Feature Extraction and Feature Selection

Generally, the objects that are subject to classification,

i.e., the patterns (segments in the case of this research), are

represented through a set of measurements (say

measurements) or characteristics referred to as features.

Hence, the objects are considered as vectors in an -

dimensional space referred to as the feature space. Feature

selection is a technique for selecting a subset of relevant

features for build ing robust learning and inference models

[15][16]. Feature selection algorithms attempt to reduce the

dimensionality of the feature space and reduce the

complexity of the recognition process by pruning out

redundant, correlated, and irrelevant features. There are

several feature selection algorithms, some of which are

discussed below [16].

Exhaustive search is a brute-force feature selection

method where all possible subsets of the features are

exhaustively evaluated and the best subset is selected. The

number of combinations of r objects from a set of n features

is

)
). Th is might result in a very large set of

combinations of features to examine. Hence, generally the

exhaustive search’s computational cost is prohibitively high.

Thus, this method is impractical if the number of features in

the subset is large or the processing and evaluation time for

each subset is long [11][16]. Because of the problems

associated with exhaustive search, researchers resort to

adopting heuristic feature selection algorithms. In this paper,

there are five features of interest. This is a relat ively s mall

number of features. Nevertheless, each evaluation session

requires significant computation time. Hence, due to the

complexity o f the evaluation process, exhaustive search is

not a viable option. For these reasons, a heuristic approach

is adapted.

Heuristic search refers to selecting a feature subset by

making an educated guess and finding out if the selection

yields good results. Otherwise, the heuristic procedure

examines other subsets [16].

3) Principal Component Analysis

PCA is an unsupervised regression procedure that

analyzes data samples, such as the set of training patterns, in

order to identify a coordinate transformat ion that de-

correlates the data and “orders” the informat ion (or

variance) associated with the data in the axes of the new

space in a monotonically non-increasing fashion. In general,

as a result of the transformation, most of the informat ion

associated with the data is concentrated in the first few

components of the new space. This enables ignoring

components (axes) that do not carry significant information,

thereby reducing the dimensionality of the space used for

pattern representation and recognition. Each principal

component is a linear combination of the original variab les.

The principal components as a whole form an orthogonal

basis for the data space [16].

The distinction between PCA and feature selection is

that following the PCA the resulting features are different

from the original features; they do not correspond directly to

the set of measurements, and are not easily interpretable,

while the features left after feature selection are simply a

subset of the original features.

Following the feature selection and/or PCA,

classification is applied via different methods including

thresholding, discriminant analysis, decision functions, and

clustering [15]-[17].

49

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In this research, heuristic based greedy feature selection

techniques as well as PCA are used to reduce the

dimensionality of the data set consisting of a number of

interrelated variables, such as the number of saccades and

the average saccade amplitude, number of fixations and

average fixation duration while retain ing as much as

possible of the variat ion present in the data set. In the case

of PCA, this is achieved by transforming the data set into

principal components, The principal components are then

subjected to thresholding and/or clustering algorithms to

find segments of excessive effort.

4) The Threshold Method

The threshold method can be used to classify input data

based on a threshold value. In this research, the threshold

value for each feature is the average of the values of the

feature over the entire set of segments. All values greater

than the threshold are p laced into the “excessive effo rt”

group while input values below the threshold are placed into

the “non-excessive effort” group. One problem with the

threshold method is that it is limited to one dimensional

data. Hence, it is only applied to individual features, or a

combination of features, such as linear combination or a

specific component of the principle components . Clustering

techniques, however, are used to efficiently classify

multidimensional data.

5) Clustering

Clustering is a multi-disciplinary, widely-used,

unsupervised method for classifying data. It involves the

assignment of a set of patterns into subsets (called clusters)

so that patterns in the same cluster are similar in some

sense. To define a cluster, it is necessary to first define a

measure of similarity or distance, which establishes a rule

for assigning patterns to the domain of a particular cluster

center. Generally, and in this paper, Euclidian distance is

used as the distance measure. In Cartesian coordinates, if

 and are two points in an

 dimensional space, the Euclidean distance between and

 is:

n

i

ii pqqpD

1

2)(),(

The Euclidean distance is used as the measure of

similarity; the smaller the distance, the greater the

similarity. There are several clustering algorithms , such as

the hierarchical, part itional, density based, and subspace

clustering algorithms [15]-[17]. In this research, however,

partitional algorithms are of interest. Partit ional clustering

involves partitioning of observations (patterns) into

clusters where each observation belongs to the nearest

cluster. The K-means algorithm, used in this research, is a

partitional algorithm that attempts to min imize the mean

square distance between patterns and cluster centers, where

the cluster center is the centroid of the cluster patterns. The

algorithm consists of the following steps [15]:

Step 1 (seeding): Choose initial cluster centers

))) . The seeds can be chosen in many

different ways[13][15]. In this research, random centers

serve as seeds. The set of cluster centers at the iterat ion

is denoted by), where, .

Step 2: At the iterative step, distribute the patterns
{ } among the cluster domains, using the following

decision rule) if ‖)‖ ‖)‖ for

all , , where) denotes the set of

patterns whose cluster center is).

Step 3: Using the results of step 2, compute the new

cluster centers, such that the sum of the squared distances

from all points in) to the new cluster center is

minimized. The new cluster centers are given by

)

 ∑
)

For , where is the number of samples in

).

Step 4: Repeat step 2 and step 3 until there is no change

in the cluster centers, i.e., if)) for

 , then the algorithm has converged and the

procedure is terminated.

The advantage of the clustering technique is its ability

to classify excessive effort segments by considering a

number of features such as saccade count, average saccade

amplitude, fixation duration, and average eye path

traversed. In addition, the K-means clustering can be used

to identify thresholds. MATLAB, a high-level programming

language and interactive environment for numerical

computation, visualizat ion, and programming [19], has a

built in function for K-means that operates exactly as

described in this section. This function has been used in our

project.

III. LITERATURE REVIEW

Usability is a highly researched topic with much

literature available [1-6][21]-[23]. Nevertheless, extensive

review did not reveal any research papers related to

pinpointing usability issues (except for our p rior work

described in [1][9]-[12]. There are some papers on effort-

based usability evaluation that are discussed below.

Tamir et al. concluded that effort and usability are

related but they did not address pinpointing issues [5].

Mueller et al. use effort metrics to evaluate software

usability [6]. Their method allows comparison of two or

more implementations of the same application, but does not

identify where exact ly the problem lies. Hvannberg et al.

described the design and test of a defect classification

scheme that extracts informat ion from usability problem

[20], but is limited since it does not define the causes

underlying usability problems. Nakamich i et al. investigate

the relations between quantitative data, viewing behavior of

50

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

users, and web usability evaluation by subjects [21]. They

conclude that the moving speed of the gazing points is

effective in detecting low usability. Makoto et al. use a

Web-Tracer to evaluate web usability [22]. Web-Tracer is

an integrated environment for web usability testing that

collects the operation log of users on the Web pages .

However, the reasons for low usability are not identified

using this approach. Our paper thoroughly addresses and

resolves all of the issues listed above.

IV. EXPERIMENTAL SETUP

A. Manual Input Devices

The subject performs the tasks on a computer using a

standard keyboard and a mouse as input devices. An event
driven logging program is used to obtain details of mouse

and keystroke activities from the operating system event

queue. The program saves each event along with a time
stamp into a file. The logged events are: mickeys (mouse

pixels), keystrokes, mouse button clicks, mouse wheel
rolling, and mouse wheel clicks.

The eye tracker used for the experiments is Tobii X120

Eye Tracker with Tobii Studio version 2.2.5 [23] as well as

“in-house” developed software fo r estimat ing user’s gaze.

The Tobii device is a standalone eye tracking unit designed

for eye tracking studies. It provides raw eye gaze positional

data and is able to log mouse and keyboard events. The data

collected by the eye tracker is logged into a file, which is

referred to as a log file. The eye tracker also records a video

version of the user interaction session and is referred to as a

video file, which is very helpful in verifying experiment

results. In addition, the Tobii X120 eye tracker can log

mouse/keyboard clicks. The combination of the log file and

video file are referred to in this paper as the data file.

B. Software Environment for Analysis

A software program developed in MATLAB is used to

perform data analysis of the experiments reported in this

paper [19]. In addition, the program is responsible for

features collection and extraction.

C. Test Procedure

Experiments conducted to evaluate the capability of

pattern recognition techniques to identify software usability

issues are done using the steps depicted in Figure 3. As the

figure shows, the main steps are: data gathering,

segmentation, data reduction, feature extract ion and

selection. These actions are followed by several different

classification techniques. The sequence of actions depicted

in the figure is further described in the next three

subsections: data gathering, data reduction, and

identification of excessive effort segments.

1) Data Gathering

A group of five users executes a set of seven identical

independent tasks, which emerge from a single scenario.

Throughout the interaction process, certain user activities

such as eye movement, , keyboard, and mouse activities

are logged using the eye-tracking device. According to the

learnability-based usability model, the point at which the

user’s effort reaches the acceptable level is called the

learning point. Based on this model, and inspection of the

learning curve of the subjects, it is assumed that the users’

effort reaches the acceptable level by the time they perform

task-5. Hence, in this paper, task-5 of each subject is used

for conducting the pinpoint analysis experiments.

2) Data Reduction

Phase-2 includes activities such as segmentation, data

reduction, and feature extraction. The data logged

throughout the user interaction session is used for automatic

event based segmentation where the events are consecutive

keyboard/mouse clicks. Metrics such as:

(a) segment duration (for event based

 segmentation),

(b) the average fixation duration,

(c) the average saccade amplitude,

(d) the number of fixations,

(e) the number of saccades, and

(h) the average eye path traversed

are inferred for each segment. These metrics are used to

generate a feature set, which is obtained by applying data

reduction programs to the data file . The features data is

calculated for all features within each segment and this data

is used to identify excessive effort segments.

2) Identification of Excessive Effort Segments

Pattern recognition techniques are applied to the feature

set obtained from the data reduction process to identify

segments that exh ibit excessive effort. The techniques used

and applied on the feature set are thresholding, K-means

clustering, and PCA.
Thresholding - a threshold value is calculated for each

feature in the feature set. For a given feature, all the

segments that have a feature value that is less than the

threshold value are classified as non-excessive effort

segments and segments with a feature values above the

threshold are considered as excessive effort segments. In the

current research, the threshold is the average value of the

feature in the segment.
K-means clustering - the segments are grouped into

clusters. Based on the value of cluster centers, the cluster is

classified as excessive effort cluster or non-excessive effort

cluster.
PCA - the first, the second, and the third principal

components of the feature data are obtained. The threshold

classification, where the threshold is the average value of

the first princip le component computed over the set of

features extracted for the current segment, is applied on the

first principal component and K-means clustering is applied

on the first, second, and third components to classify the

segments into excessive effort or non-excessive effort

segments.

 By the end of phase-3, the software program identifies

the excessive effort segments. To verify the results, the video

51

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Experiment procedure

file is carefully watched segment by segment and classified

into excessive or non-excessive effort segments manually.

The manual analysis results are used as ground truth and

serve as the input for error analysis that further supports the

reliability of our results. The manual classification process

of the video file is described in the following section.

D. Manual Classification

The manual classification process involves automatic

event based segmentation on the entire video file. Each

segment is carefully watched and classified into the

following categories:
Idle behavior segments: Idle behavior is due to system

response. Waiting for a progress bar to complete or wait ing

for a page to load are examples of idle behavior. Segments

with such behaviors are classified as idle behavior segments.
Excessive effort segments: Segments without any

useful user actions are classified as excessive effort

segments. A subject looking at different components on an

interface instead of the actual target component, which help

in accomplishing the task, is an example of excessive effort

behavior. Such behavior can be eliminated without

sacrificing task completion quality.

Non-Excessive effort segments: Segments with useful

action that result in task completion are classified as non-

excessive segments.
Off screen behavior segments: Intervals of t ime where

the subject’s view is not within the screen for more than one

second, with no meaningful user action, are classified as off

screen behavior segments.

Attention segments: Segments with frequent on screen

behavior, e.g., segments with very frequent mouse/keyboard

clicks are classified as attention segments.

Once the video file is classified into one of the above

five segment categories, the manual classificat ion results are

compared with the automatic classificat ion results.

Nevertheless, idle behavior, off screen behavior, and

attention segments can be accurately identified by the

software tool and are discarded from further analysis in this

work. In this sense, our results are conservative as we so

not measure the additional time saving obtained via the

identification these types of segments.

E. Result Verification

The number of Excessive (E) vs. Excessive, Excessive

vs. Non-Excessive (NE), NE vs. E and NE vs. NE segments,

Clustering

Data Gathering

Segmentation

Data Reduction

Feature Extraction &
Selection

PCA
Clustering / Threshold

Method

Threshold
Method

52

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as well as related error rates , are calculated for each result

file and graphs are plotted to visualize the results and enable

comparing the performance of d ifferent methods and

features. Classifying NE segments as E segments is regarded

as false positive or type-I error.

It is assumed that all the segments classified as

Excessive Effort Segments are due for an additional process

of manual evaluation. Hence, in the case of type-I error, the

software program is highlighting ext ra segments for further

review but is not missing segments that need attention.

On a similar note, segments that show excessive effort

per manual classification but are identified as non-excessive

effort segments by the software program are regarded as

false negative or type-II error segments. These segments

require extra attention as the software program has

misidentified segments that require the stage of manual

inspection. The total time of segments classified as

excessive by the software program is referred as the

inspection time. It is the sum of the time interval o f each of

the excessive effort segments automatically identified by the

program. In this research, type-II errors and inspection time

are considered as the most important factors for analyzing

experiment results.

V. EXPERIMENTS

The automatic part o f the p rocess is used to analyze the

five data files by apply ing the different pattern recognition

techniques discussed. Each of the data files is a log file (log

of effort metrics expanded) and an eye tracking video file

that contains the entire data collected by the eye tracker

throughout each experiment. The fo llowing is a list of the

classification experiments performed: 1) Applying the

threshold method, 2) Applying heuristic feature selection

and K-means clustering, 3) Using PCA, and 4) Applying K-

means clustering on principal components.

Each experiment procedure is discussed in detail in the

following sections.

A. Experiment 1: Applying the threshold method

In this experiment, automatic event based segmentation

is applied to the eye tracking video and data file generated

by the eye tracker. Next, a feature set is generated for the

data file . All the segments are classified into excessive or

non-excessive effort segments by the software program,

which applies the threshold method on the following

features: 1) number of fixations, 2) average fixation

duration, 3) number of saccades, 4) average saccade

amplitude, and 5) average eye path traversed.

Figure 4 presents the sequence of steps for identify ing

excessive effort segments using the threshold method.

The steps described in Figure 4 are used for identifying

the excessive and non-excessive effort segments. Next, the

video file segments are manually classified into excessive or

non-excessive effort segments based on the specifications

described above. The excessive effort segments identified

through the software program and manual process are

verified using the five data files and their corresponding

video files. Th is step of manual classificat ion and result

verification is done in each of the experiments described in

this section.

B. Experiment-2: Applying heuristic feature selection and

K-means clustering

The evaluation process of a subset requires a long

execution time . Hence, evaluating all the possible subsets of

the feature set is prohibitively t ime consuming, we have

adopted a heuristic greedy-based feature selection method.

The following subsets have been selected: 1) Number of

fixations, 2) Number of saccades, 3) Average eye path

traversed, 4) Number o f fixations, number of saccades, and

eye path traversed, and 5) Number of fixations, number of

saccades, eye path traversed, average fixation duration and

average saccade amplitude.
Figure 5 illustrates the sequence of steps followed in

identifying excessive effort segments using exhaustive

feature selection and K-means clustering.

C. Experiment-3: Using PCA.

In this experiment, the feature set is transformed

into principal components by a MATLAB function. Only

the first principal component is considered, as it carries the

most significant information related to the feature set. The

first principal component is subjected to the threshold

method for identifying segments exhib iting excessive effort

and non-excessive effort. Figure 6 depicts the sequence of

steps applied for identifying excessive effort, the method

Figure 4. Sequence of steps for identifying excessive effort segments using the threshold method

53

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for identifying segments exh ibiting excessive effort, and

non-excessive effort.

D. Experiment-4: Applying K-means clustering on

principal components

In this experiment, K-means clustering is applied to

different combinations of principal components for

identifying segments exhib iting excessive effort and non-

excessive effort. The following constitute the feature set for

this experiment: 1) 1
st

 principal component, 2) 1
st

 and 2
nd

principal components, and 3) 1
st

, 2
nd

, and 3
rd

 principal

components.

Figure 7 includes a diagram of the sequence of steps

followed for identifying excessive effort segments using the

K-means clustering on principal components.

VI. RESULTS.

In this section, the results obtained from the

experiments are discussed. The results of each data file in

the experiments are given in [11]. A sample of these results

is presented here. For clarity, the notation used for the

feature values in the graphs is presented below:

1) # Fix – denotes the number of fixations,

2) Avg. Fix Dur. – denotes the average

 fixation duration,

3) # Sacc – denotes the number of saccades,

4) Sacc Amp. – denotes the average saccade

 amplitude,

5) Eye Path - denotes the average eye path traversed,
6) FPC - denotes the first principal component:

A. Identifying excessive effort segments using the

threshold method

In this section, we show the results obtained with data

file-1. Results with other files are availab le in [11]. Section

VII shows and analyzes the average results for all the files.

The video file corresponding to data file-1 is 6.09 minutes in

length. Figure 8 shows the results of an experiment using

the threshold method on data file-1.

When the graph in Figure 8 is ext rapolated and as seen

from the E vs. NE bars, the feature value, number of

Figure 7. Sequence of steps for identifying excessive effort through K-means clustering on the 1st principal component.

Event based
Segmentation

Heuristic
Feature

Selection

Clustering on
Selected Features

Excessive
Effort

Segments

Figure 6. Sequence of steps for identifying excessive effort segments using the threshold method on the first principal component.

Figure 5. Sequence of steps for identifying excessive effort segments using the K-means clustering.

54

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

fixations, demonstrates a small percentage of E vs. NE

segments. This shows that the number of fixations has the

least number of type-II errors. Number of saccades and

average eye path traversed follows the number of fixations

in terms of type-II errors.

Figure 9 shows the total time of segments classified as

excessive by the software program and the manual process

after the threshold method is applied on each of the

following features: 1) number o f fixations, 2) average

fixation duration, 3) number of saccades, 4) average

saccade amplitude, and 5) average eye path traversed.

The light black bars in Figure 9 represent the total video

time recorded by the eye tracker. Manual classification of

the video file , depicted by the dark black bars, shows 1.71

minutes of excessive effort. The average fixation duration

and average saccade amplitude show a relatively low value

for time of segments classified as excessive by the software

program when compared with the total video time. This is

depicted by the bright bars present in the figure. From

Figure 9, it is observed that the percentage of type-II errors

is 15.05% for average fixation duration and 12.9% for

average saccade amplitude. However, the feature value with

a reasonable type-II errors and lower percentage of time of

segments classified as excessive is average saccade

amplitude.

It should be noted that we are considering a 15% e rror

of type-II as acceptable. This is explained in section VII.

B. Identifying excessive effort segments using heuristic

feature selection and K-means clustering

In this section, we show the results obtained with data

file-2. Results with other files are available in [11]. The

Figure 8. Percent of segments of each type (file-1, experiment-1).

0

10

20

30

40

50

60

Fix Avg Fix Dur #Sacc Sacc Amp Eye Path FPC

%
 o

f S
eg

m
en

ts

Features

E Vs NE

NE Vs E

E Vs E

NE Vs NE

Figure 9. Total time of excessive effort segments (file-1, experiment-1).

55

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

video file corresponding to data file-2 is 3.27 minutes in

length. Figure 10 shows the results of an experiment using

the K-means clustering on data file-2.

When the graph in Figure 10 is ext rapolated and as seen

from the E vs. NE bars, feature subset-1 (defined above)

demonstrates a small percentage of E vs. NE segments. This

shows that the subset-1 has the least number of type-II

errors. Subset-2 follows subset-1 in terms of type-II errors.

Figure 11 shows the total time of segments classified as

excessive by the software program and the manual process

for the above defined five feature subsets.

The light dark bars in Figure 11 represent the total time

of video recorded by the eye t racker. Manual classification

of the video file, depicted by the brightest bars, shows 0.36

minutes of excessive effort. Subset-3 shows a relatively low

value for time of segments classified as excessive by the

software program when compared with the total video time.

This is depicted by the dark bars in the graph. From Figure

11 it is observed that the percentage of type-II erro rs is 8.5%

for subset-3. Therefore, the feature value with an acceptable

error of type-II and lower percentage of time of segments

classified as excessive is subset-3.

C. Identifying excessive effort segments using PCA

The results of all the data files are consolidated into a

single graph. Figure 12 shows the percentage of segments of

each type when applying the threshold method on the first

principal component for all five data files.

From the graph in Figure 12, it is clear that using the

threshold method on the first principal components

produces a small percentage of E vs. NE segments. This

means a lower type-II of errors as seen from the respective

bars in the graph.

Figure 11. Total time of excessive effort segments (file 2, experiment-2).

Figure 10. Percent of segments of each type (file 2, experiment-2).

0

10

20

30

40

50

60

70

80

#fix #sacc eye path #fix,#sacc,eye path #fix,#sacc,eye
path,avg fix dur,avg

sacc amp

%
 o

f S
eg

m
en

ts

Combination of Features

E vs E

NE vs NE

E vs NE

NE v E

56

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Figure 13 shows the total time of segments classified

as excessive by the software program and the manual

process for the first principal component. The results of all

five data files are plotted in a single graph.

The “light dark” bars in Figure 13 represent the total

video time recorded by the eye tracker for each of the five

data files. Manual classification of the video files is depicted

by the dark bars. The bright bars represent the total time of

video classified as excessive by the software program. The

percentage of time of segments classified as excessive is

relatively high when applying thresholding on the first

principal component.

D. Identifying excessive effort segments using K-means

clustering on principal components

In this section, we show the results obtained with data

file 3. Results with other files are available in [11]. The

video file corresponding to data file 3 is 3.8 minutes in

length. Figure 14 shows the percentage of E vs. E, E vs. NE,

NE vs. NE, and NE vs. E segments for the features

mentioned in the experiment description.

From the graph in Figure 14, it is clear that all three

features have same percentage of E vs. E, E vs. NE, NE vs.

NE and NE vs. E segments. This signifies that most of the

informat ion is concentrated in the first principal component

Figure 12. Percent of segments of each type (experiment-3).

Figure 13. Total time of segments classified as excessive (Experiment-3).

57

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and all the feature values have the same percentage of type-I

and type-II errors.

 Figure 15 shows the total time of segments classified

as excessive by the software program and the manual

process for the three features.

The “light dark” bars in Figure 15 represent the total

video time recorded by the eye tracker. Manual

classification of the video file, depicted by the dark bars,

shows 0.92 minutes of excessive effort. The automatic

classification of the video file for all three features shows

1.95 minutes of excessive effort time, which is depicted by

the light bars in Figure 15. A ll the features have an

acceptable value of type-II errors at 8.57%.

The entire set of experiments including all the data files

is detailed in [11].

VII. RESULT EVALUATION

In this section, we evaluate and discuss the results of

the experiments conducted in this work. Our criteria for

success are based on 1) the number of type-II errors and 2)

the minimal time to investigate the usability issues with an

acceptable level of type-II errors. Based on discussions with

several engineers in the company sponsoring this work and

other companies, we are assuming that 15% of error of type-

II is the upper bound for being considered as acceptable.

This is also consistent with a two-step approach where after

a first pinpoint analysis stage, which allows for h igh rate of

errors but provides significant reduction in evaluation t ime,

the errors identified are fixed, leading to a more rigorous

pinpoint analysis with lower erro r bound. The results are

evaluated based on the performance of each pattern

recognition method on individual features. In addition, the

Figure 15. Total time of excessive effort segments (file 3, experiment-4).

0

0.5

1

1.5

2

2.5

3

3.5

4

1st Principal Component 1,2 Principal Components 1,2,3 Principal Components

Ti
m

e
in

 M
in

ut
es

Features

Manual

Automatic

Total Time

Figure 14. Graph of percentage of segments of each type (file 3, experiment-4).

0

10

20

30

40

50

60

70

1st Principal Component 1,2 Principal Components 1,2,3 Principal Components

%
 o

f S
eg

m
en

ts

Features

E Vs NE

NE Vs E

E Vs E

NE Vs NE

58

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

overall performance of each pattern recognition method is

evaluated.

Tables I to IV summarize the results of the experiments.

An additional set of tables, which contains the entire results ,

can be found in [11].

A. Applying the threshold method

The following observations are derived from Table I:

1. The results of Table I show that the threshold

method on the feature value, number of fixations,

gives good results in terms of type-II errors but, the

average inspection time is relat ively h igh when

compared to other feature values. The average

value of type-II erro rs for the number of fixations is

3.3%. The average saccade amplitude and the

average eye path traversed follow the number of

fixations in terms of type-II errors.

2. A threshold on the average fixation duration

performs well in terms of min imal inspection time

with an acceptable value of 9.8% for type-II errors.

3. A feature value with minimum number of total

errors is average eye path traversed. This feature

value is a good choice when inspection time is not

a crucial factor.

4. The inspection time is not completely correlated to

type-I errors. In the case of average fixation

duration, the inspection time is 1.67 minutes with

29.4% of type-I errors. On the other hand, the

average saccade amplitude with almost the same

percentage of type-I errors has higher inspection

time than average fixation duration.

5. The values of the average number of excessive

effort segments for all features are in close

proximity to each other. However, the percentage

of type-I and type-II errors differs invariably.

Indicating that the segments classified as excessive

are different for each feature value.

6. Despite the fact that the percentages of total errors

for each feature value are in close proximity to

each other, the inspection time varies. This

delineates that the segments classified as excessive

are different for each feature value.

B. Applying heuristic feature selection and K-means

clustering.

The following observations are derived from Table II:

1. The results of Table II show that the K-means

clustering on the feature subset - number of

fixations, number of saccades, average eye path

traversed, average fixation duration, and average

saccade amplitude, gives good results in terms of

type-II errors with an average value of 5.4%.

TABLE I. AVERAGE VALUES OF EXPERIMENT -1 RESULTS.

Feature value

avg. # of
excessive effort

segments

avg. total no.

of segments

avg. % type- I

errors

avg. %
type-

II

errors

avg. % of

total errors

avg.
Inspection

time

(minutes)

avg. Inspection
time as a % of total

time

Fix 17.2 95 28.4 3.3 31.7 2.7 62.1

Avg. Fix Dur. 18.2 95 29.5 9.9 39.4 1.6 37.4

#Sacc 32 95 21.8 10.5 32.2 2.9 64.1

Sacc Amp. 17.6 95 29.1 4.6 33.7 2.5 56.4

Eye Path 17.8 95 25.7 5.1 30.8 2.6 57.7

TABLE II . AVERAGE VALUES OF EXPERIMENT -2 RESULTS

Feature value

avg. # of
excessive

effort
segments

avg. total
no. of

segments

avg. %
type -I
errors

avg. %
type -II
errors

avg. % of total
errors

avg.
Inspection

time (minutes)
avg. Inspection time
as a % of total time

#fix 29.1 95 27.2 6.6 33.9 2.4 56.2

#sacc 23.5 95 17.8 8.9 26.7 2.0 45.1

eye path 19.7 95 18.0 10.1 28.1 1.6 37.5

#fix, #sacc, eye

path
23.2 95 18.3 8.6 26.9 1.9 44.5

#fix, #sacc, eye

path, avg. fix dur.,
avg. sacc amp.

29.2 95 32.6 5.4 38.0 2.5 56.3

59

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

However, the average inspection time is relatively

high when compared to other feature values. The

number of fixations follows the above identified

feature value in terms of type-II errors.

2. Clustering using the average eye path traversed

performs well in terms of min imal inspection time

with an acceptable value of 10.1% for type-II

errors.

3. A feature value with minimum number of total

errors is the number of fixations. This feature value

is a good choice when the inspection time is not a

crucial factor.

4. The average number of excessive effort segments

for the number of fixations and the feature subset

with the following features: number of saccades,

average eye path traversed, average fixation

duration, average saccade amplitude are the same.

However, the inspection times vary. Indicating that

the segments classified as excessive are different

for each feature value.

5. Unlike the results of the threshold method, the

percentages of total errors for each feature value

vary by a wide marg in when applying the K-means

clustering on different feature subsets.

C. Using PCA

The results summarized in Table III are compared with

the results obtained from Experiment-1 to compare the

performance of the threshold method on the first principal

component with the performance of thresholding on all the

other features including the number of fixations, the average

fixation duration, etc. Experiment-1 result evaluation shows

that the feature value, number of fixations, gives good

results in terms of type-II errors. The average percentage of

type-II errors for the number o f fixations is 3.3%, whereas it

is 4.1% for the first principal component. Initially, the

average saccade amplitude and the average eye path

traversed succeeded the number of fixations in terms of

performance. However, the new results place the threshold

on the first principal component right after the number of

fixations with respect to type-II errors.

The inspection times for the first principal component

and for the average fixation duration are 2.7 and 1.6

minutes, respectively. A threshold on the average fixation

duration performs better than the first principal component

in terms of lower inspection time and an acceptable 9.8%

for type-II errors.

D. Applying K-means clustering on principal components.

Table IV shows the average values of all the features

used in Experiment-4 over the five data files. The average

type-II erro r is very high when using the K-means on the

principal components. The average inspection time is only

1.96%. When taking type-II errors also into consideration,

this method is not suitable to identify excessive effort

segments.

Of all the pattern recognition methods used, a threshold

on number of fixations yields the best results in terms of

type-II errors with a reduction of more than 40% in manual

inspection time and is followed by a threshold on the first

principal component. The K-means clustering on the feature

subset with the features: 1) number of fixations, 2) number

of saccades, 3) average saccade amplitude, 4) average

fixation duration, and 5) average eye path traversed ranks

third.

The K-means clustering on the number of saccades

yields the best results and precedes the threshold method on

average fixation duration in performance.

.

TABLE III. AVERAGE VALUES OF EXPERIMENT -3 RESULTS

Feature value
avg. # of excessive effort

segments

avg. total

no. of
segments

avg. %

type -I
errors

avg. %

type- II
errors

avg. % of

total
errors

avg.
Inspection

time
(minutes)

avg. Inspection

time as a % of
total time

1st principal
components

16.6 95 27.5 4.1 31.6 2.7 61.2

TABLE IV. AVERAGE VALUES OF EXPERIMENT -4 RESULTS

Feature value
avg. # of excessive
effort segments

avg. total no.
of segments

avg. %
type- I
errors

avg. %
type- II
errors

avg. % of
total errors

avg.

Inspection
time

(minutes)
avg. Inspection time
as a % of total time

1st, 2nd & 3rd
principal

components

28.6 95 24.4 12.6 37.0 2.0 43.6

.

60

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. CONCLUSIONS AND FUTURE RESEARCH

The framework presented in this research enables

software developers to efficiently identify usability issues

and deficiencies in numerous types of applications thereby

optimizing the time spent on software-usability testing and

validation.

Excessive effort segments, which typically relate to

usability issues, are identified by applying pattern

recognition techniques, such as K-means clustering

algorithm, thresholding, PCA, and feature selection. The

analysis of the experiments conducted in this paper shows

that the time taken for software usability testing can be

reduced by 40% or more.

In this research, the time between two consecutive

keyboard/mouse clicks by a user is considered as a segment

and serves as the basic pattern for the pattern recognition

techniques. Equal time slicing of user’s software interaction

session can be used instead and the performance results can

be analyzed and compared with the results from this

research.

Further refinement of pattern recognition techniques can

be pursued to min imize errors and inspection time. Also,

more focus can be placed on the criteria for manual

classification of v ideo segments thus allowing excessive

effort segments to be identified more accurately in the first

place.

Another direction for future research is to automate

some of the manual steps in this process. This can include

software that automatically logs the data from users'

interaction session, manipulates the data, and without

human intervention, identifies the excessive effort segments.

This can significantly reduce time taken fo r the usability

testing.

In this work, we have concentrated on pattern

recognition techniques that do not rely on human

intelligence. Hence, the results are generated using non-

supervised learning procedures. A surrogate approach can

use supervised learning procedures. This involves

conducting experiments using training data sets to manually

arrive at an archetype that can be applied on any data set to

generate the output.

Finally, we plan to investigate the utility of dynamic

UI, which adapts to the user experience. For example,

widget placement might change based on usage patterns.

Pinpoint analysis is expected to be a crucial tool for

evaluating the effectiveness of the dynamic interface

approach for identifying related deficiencies.

ACKNOWLEDGMENT

 Th is research was funded in part by Emerson Process

Management [24], an Emerson business .

REFERENCES

[1] D. K. V. Dasari, D. E. Tamir, O. V. Komogortsev, G. R.
LaKomski, and Carl J. Mueller, “Pinpoint analysis of

software usability ,” ICCGI 2013, The Eighth International

Multi-Conference on Computing in the Global Information

Technology, Nice, France - July, 2013, pp. 66-71.

[2] J. S. Dumas and J. C. Redish, "A Practical Guide to

Usability Testing," OR, USA, Intellect Books., 1999.

[3] J. Nielsen, Usability Engineering, San Francisco, Boston,

Academic Press, 1993.

[4] J. Rubin and D. Chisnell, Handbook of Usability Testing:

How to Plan, Design, and Conduct Effective Tests,

Indianapolis, Wiley Publishing, Inc., 2008.

[5] D. E. Tamir, C. J. Mueller, O. V. Komogortsev, “A learning-
based framework for evaluating software usability ,” the

ARPN Journal of Systems and Software, June 2013, pp. 65-

77.

[6] C. J. Mueller, D. E. Tamir, O. C. Komogortsev, and L.

Feldman, "Using designer’s effort for user interface

evaluation," IEEE International Conference on Systems,

Man, and Cybernetics, Texas, USA, October 11, 2009, pp.

480-485.

[7] ISO/IEC 9126-1: 2001, Software Engineering-Product

Quality, Part-1, Quality Model, Geneva, Switzerland:

International Standards Organization, 2001.

[8] ISO/IEC 9126-1: 2001, Software Engineering-Product

Quality, Part-2, External Metrics, Geneva, Switzerland:

International Standards Organization, 2001.

[9] D. E. Tamir, O. V. Komogortsev, and C. J. Mueller. "An

effort and time based measure of usability ," 6th Workshop
on Software Quality, 30th International Conference on

Software Engineering, Leipzig, Germany, 2008, pp. 35-41

[10] D. E. Tamir, et al. "Detection of software usability

deficiencies," International Conference on Human Computer

Interaction, FL, 2011, pp. 528-536.

[11] D. K. V. Dasari, Pinpoint analysis of software usability,

Thesis Report, Texas State University, Computer Science,

December 2012.

[12] C. Holland, O. V. Komogortsev, D. Tamir. “Identifying

usability issues via algorithmic detection of excessive visual
search,” Proceedings of the ACM Conference on Human

Factors in Computing Systems (CHI), Austin, TX, 2012, pp.

1-10.

[13] A. Poole and L. J. Ball, Eye Tracking in Human-Computer

Interaction and Usability Research: Current Status and

Future Prospects, Encyclopedia of Human Computer

Interaction: Idea Group, 2004.

[14] M. A. Just and P. A. Carpenter, "Eye fixation and cognitive

processes," Cognitive Psychology, vol. 8, 1976, pp. 441-480.

[15] J. T. Tou and R. C. Gonzalez, Pattern Recognition

Principles, Reading, MA: Addison-Wesley Publishing, Inc.,

1974.

[16] R. O. Duda, P. E. Hart, and D. G. Stock, Pattern
Classification, 2nd Ed., Indianapolis, Willey International,

2001.

[17] D. E. Tamir and A. Kandel, "The pyramid fuzzy c-means

algorithm," International Journal of Computational

Intelligence in Control, 2 (2), 2012 pp. 65-77.

[18] H. Ebbinghaus, Memory: A Contribution to Experimental

61

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Psychology, 1885,

http://psychclassics.yorku.ca/Ebbinghaus/memory3.htm,

retrieved June 2014.

[19] Anonymous, “MATLAB Product Help,” MATLAB, 2013,

http://www.mathworks.com/help/, retrieved June 2014.

[20] E. T. Hvannberg and C. L. Lai, "Classification of usability

problems (CUP) scheme," Nordic conference on Human-

computer Interaction, Oslo, Norway, 2006, pp. 655-662.

[21] N. Nakamichi, S. Makoto, and S. Kazuyuki, "detecting low

usability web pages using quantitative data of users’
behavior," Proceedings of the 28th international conference

on Software engineering, New York, NY, 2006, pp. 569-

576.

[22] S. Makoto, N. Noboru, H. Jian, S. Kazuyuki, and N.

Nakamichi. "Webtracer: A new integrated environment for

web usability testing," 10th Int'l Conference on Human -
Computer Interaction. Crete, Greece, June 2003, pp. 289-

290.

[23] Anonymous, “Tobii X60 & X120 Eye Trackers: User

Manual,” Tobii, 2013,

http://www.tobii.com/Global/Analysis/Downloads/User_Ma

nuals_and_Guides/Tobii_X60_X120_UserManual.pdf,

retrieved June 2014.

[24] Anonymous, “Emerson Process Management,” Emerson,

2014, http://www.emersonprocess.com, retrieved June 2014.

62

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Detailed Description of the EC2M Project:
Exploiting Ontologies for the Automatic and Manual

Documents Classification in Industrial Enterprise
Content Management Systems

Daniela Briola
DIBRIS, Genoa University

Via Dodecaneso 35, 16146 Genoa, Italy
daniela.briola@unige.it

Alessandro Amicone
GFT Italia S.r.l.

Via Cesarea, 2/45, 16121 Genoa, Italy
alessandro.amicone@gft.com

Abstract—Enterprise Content Management (ECM) systems rep-
resent a crucial aspect in the efficient and effective management of
large-scale enterprises, in particular for those made up of several
sites distributed all over the world. The increasing number of
documents to be managed, the problems related to the sharing
of private information between commercial partners, the need
for semantically describing the contents of shared documents
have pushed researchers to find new techniques and solutions
to deal with these challenges. We already presented the high
level description of a joint project of the Department of Infor-
matics, Bioengineering, Robotics and System Engineering of the
University of Genoa, Italy, and two companies, Nacon (member
of Sempla Group, now part of the GFT Group) and Nis, to create
an improved ECM system (named EC2M) exploiting ontologies to
better classify, retrieve and share documentation among different
sites of the involved companies: in this paper, we give a more
detailed description of the project, with respect to its modules
and to the underlying ontology used to classify documents. We
present the automatic documents classification algorithm too,
with an example of its execution. The developed system, which
was born from a real industrial need, is currently used by GFT
Italy to manage and share its documents among more than 600
users distributed in many different geographical locations and,
thanks to the ontology, the semantic tagging process and the
automatic documents forwarding have been successfully achieved.
This joint project proves how a more formal representation of the
documents domain can effectively improve the standard way of
classifying and retrieving documents in real industrial scenarios,
representing a winning collaboration between university and
industry.

Keywords– Ontologies, Semantic Classification, Knowledge Rep-
resentation, Industrial Application, Automatic Documents Classifi-
cation.

I. INTRODUCTION

This paper presents in detail the “Enterprise Cloud Content
Management (EC2M)” system, that was previously described
in [1]: it is an “Enterprise Content Management” system
deployed over a cloud platform, improved with the capability
of semantically tagging the documents using an ontology and
exploiting context information from mobile devices. This paper
is an extended version of the previous one, and presents new
information about the architecture and the implementation

of the system modules, about the underlying ontology and
about the classification algorithm used to automatically tag
documents. Figures and results have been updated too, to
reflect the actual running system.

The international Association for Information and Image
Management (AIIM), the worldwide association for enterprise
content management, defined the term “Enterprise Content
Management” in 2000, but it has been updated many times
to adhere to the continuous new market needs. The more
recent definition is: Enterprise Content Management (ECM)
is the strategies, methods and tools used to capture, manage,
store, preserve, and deliver content and documents related
to organizational processes. ECM covers the management of
information within the entire scope of an enterprise whether
that information is in the form of a paper document, an
electronic file, a database print stream, or even an email [2].
ECM is an “umbrella term” covering document management,
web content management, information search, collaboration,
records management and many other tasks, but it is primarily
aimed at managing the life-cycle of information, from initial
publication or creation to its disposal, to preserve a company’s
internal (often unstructured) information, in all of its forms.

Therefore, most ECM solutions focus on Business-to-
Employee (B2E) systems, but nowadays, thanks to the im-
provement of the IT capabilities and because of the increasing
users’ need to classify documents according to their meaning,
these systems have grown in complexity and often integrate
modules to exploit more structured information, taxonomies,
dictionaries and so on.

This trend is identified both in the industrial area ([3],
[4]), where the focus is usually on improving already exist-
ing products and on increasing their usability, efficiency and
functionalities, both in the academic field, where the focus is
more on studying new knowledge representation formats and
their exploitation in automatic data analysis, classification and
storage for automatic reasoning or user centric services (see
next Section).

Many vendors are offering products in this area, start-
ing from the commercial ones (Microsoft, IBM and Oracle)
moving to many powerful open source solutions (for example

63

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Alfresco [5], Plone [6] and SenseNet [7]). The new trend in this
field is to create ECM systems that can automatically extract
information from documents to classify them or add a semantic
layer to tag documents in a more structured and interesting
way: this is the area where the EC2M project is located.

The problem of classifying, retrieving and sharing docu-
ments among users and companies pertains to the research field
of knowledge sharing, whereas the problem of semantically
tagging documents pertains to that of the knowledge repre-
sentation. Both fields are relevant both from an academic and
an industrial viewpoint, and this motivates the joint academic-
industry EC2M project. In EC2M, we used ontologies as a
way to structure information describing documents and their
content.

Many similar studies and projects have been conducted in
this area: an example of a commercial ECM system seman-
tically enriched is SmartLogic [8], which offers an automatic
classification, based on an automatically-extracted taxonomy
of documents. Many open source systems have been developed
to integrate semantic services in the document/information
management, among which H-DOSE [9], OPEN-CALAIS [10]
and APACHE STANBOL [11]. Even if they are not ECM
systems according to the standard definition, they deal with
very similar problems.

We decided to exploit for our system some of these
open-source systems (as described later), to be able to freely
combine them to get an improved ECM system. None of the
available systems offered a complete solution to our problem,
so we adopted a mesh-up approach, based on open source
softwares, and we then integrated in it an ad hoc ontology,
shared among the different nodes of the network, to model the
documents types and their content.

The system offers a publish/subscribe service and is based
on a cloud platform. It also takes exploits contextual in-
formation on the location and device used by the user to
implement context-awareness. In this way, the resulting system
takes advantage of well known and high quality open source
softwares and of a powerful cloud platform, and enriches the
available solutions with new techniques not used in standard
ECM systems.

EC2M is thus a concrete industrial-academic example of
how these technologies can be composed and improved to
create a new powerful system, which can be actually used
by enterprises.

The rest of the paper is organized in six sections: Section II
presents the state of the art regarding similar academic systems,
Section III describes the EC2M system, Section IV presents the
ontology, Section V shows the actual implemented system,
Section VI describes the automatic classification algorithm
used in the system and, finally, Section VII concludes the
paper.

II. STATE OF THE ART

If we look at academic research, many studies underline
how a semantic and structured representation of the domain
(with ontologies or similar techniques) can improve systems
like CMSs, where documents and data must be stored and

classified, manually or automatically, so that users can easily
find what they are looking for.

For example we can cite [12], describing the Rhizomer
CMS, which tags its items using semantic metadata semi-
automatically extracted from multimedia sources, or [13],
which proposes a framework to manage and share written
information contents using an ad-hoc knowledge model for
an industrial research center, or [14], which presents an
open architecture framework based on the open-source CMS
OpenCMS and a Java-based web management system for
learning objects, which were derived from the instructional
materials used in several postgraduate courses.

More recently, many other analyses and examples have
been realized.

In [15], a set of tools have been developed to semi-
automatically explicate the semantics of a content repository
into a knowledge-base and to establish semantic bridges be-
tween this knowledge-base and the content repository (the
tools set is complemented with a search engine that makes use
of the explicated semantics). In [16], a semantic-based content
abstraction and annotation approach is proposed: based on this
approach, a semantic-driven content management environment
has been developed to deliver the right content to the right
user at the right time. According to the authors of [17],
dealing with problems and possible architectural solutions in
managing heterogeneous oceanographic data are reported, a
careful employment of ECM systems may be beneficial in that
setting, with no need to adopt complex ad hoc solutions that
are difficult to maintain by personnel not specifically skilled
in data-handling techniques. A data model to support the
storage of refined data in structured repositories is developed
and presented in that paper as well. In [18], the described
approach is to model context (the public documents of a Public
Administration) in an ontology and to use that ontology to infer
content-related metadata to be associated to the documents,
avoiding to do this operation manually.

Our project is mainly focused on the knowledge represen-
tation and sharing research areas, but it takes into account
software design problematics too, like those found in user-
centric and context aware systems development: many aca-
demic research works dealing with these topics exist, propos-
ing different solutions and approaches.

For example, in [19] the Multiagent paradigm is used
as underlying architecture to develop distributed intelligent
ubiquitous systems where applications and services can com-
municate in a distributed way with intelligent agents, even from
mobile devices, while in [20] the authors present a framework
to develop context-aware dialogue systems that dynamically
incorporate user specific requirements and preferences as well
as characteristics about the interaction environment, in order
to improve and personalize web information and services. In
[21], a distributed architecture called inContexto, which uses
mobile phones, is used to infer physical actions performed by
users starting from user context information. Starting from the
assumption that the human context within which a software
system will operate is fundamental for its requirements, in
[22] a framework based on the socio-psychological Activity
Theory and its analysis of human contexts is presented.

64

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We also found systems that exploit ontologies to im-
prove knowledge sharing, but dealing with domains that are
completely different from ours (for example [23], which is
a semantic television content management system based on
ontologies) or relying on different architectures (for example
[24], where an Ontology Server (OS) component is created
to be used in a distributed content management grid system):
even if the domains or the proposed solutions are different,
the underling problem still remains the same, proving that it
is still open and studied.

III. THE EC2M SYSTEM ARCHITECTURE

The Enterprise Cloud Content Management (EC2M) sys-
tem was born from the collaboration among the Department of
Informatics, Bioengineering, Robotics and System Engineering
of the University of Genoa and two outstanding IT Italian
enterprises, namely Nacon (member of the Sempla Group,
now GFT Italy, specialized in the design and implementation
of complex systems, ECMs, and process management) and
Network Integration & Solutions (Nis), specialized in the
design and development of network products and services for
businesses, public administration and end-users.

The developed system is a Content Management System
that aims to automatically classify documents with respect
to an ontology defining the possible predefined tags (and,
at the same time, to help users in semantically tagging
documents that they are manually inserting in the system):
these documents will be then shared among different partners
(called “Nodes of the EC2M network”, which are companies or
companies’ sites, which need to collaborate and agree on using
the common ontology to tag documents), located in various
physical locations, in an automatic way.

The types of documents and their possible contents are
modeled using an ontology that formally describes them; the
ontology instances are used to tag the documents with semantic
information. Every user in the system is able to subscribe to a
set of “interests” (chosen from the instances in the ontology)
so that when a new document is inserted in the EC2M network
and tagged (manually or automatically) with terms from the
ontology, those users that are interested in those terms are pro-
actively informed that a new document is available.

The routing process, which in our case is the process
of informing the Nodes in the EC2M network about the
existence of new documents and of consequently sharing them,
is demanded to a Central Router Node.

A software module manages the context (location and
device) where the user is acting, to give the user a subset of
the information he needs considering the device he is working
on.

The system is deployed over the Cloud Amazon Web
Services (AWS) platform (using it as an “Infrastructure as a
Service”), which is a good compromise between cost and per-
formances. This solution allows to simply scale the number of
nodes in the EC2M network or to scale the physical resources
used to manage the network, to get better performances, and at
the same time grants a reliable Central Router implementation,
avoiding the standard “single point of failure” problem related
to the centralized routing architecture.

Anyway, the EC2M system has been designed to run on a
private physical network too.

The EC2M system offers “internal services” to individual
nodes (corresponding to an enterprise site) and “external
services” to let nodes interact. Looking at individual nodes,
the so called “semantic publish/subscribe” service allows every
user to declare the arguments he is interested in, chosen from
those described in the ontology, and then makes available
(globally on the network and locally to the node) the docu-
ments matching the subscribed interests.

Looking at the complete network, that is, at the services
connecting different nodes, the aim of the system is to allow
users from different nodes to be informed of documents, on
other nodes, which are interesting for them. This is where the
ontology comes into play: sharing interesting documents across
nodes is in fact possible because the nodes share a common
ontology (or a subpart of it).

Every node in the network may have privacy policies,
because not every document of a node should be read by all the
other nodes: maybe only some information as title, abstracts,
etc. can be shared. These policies are managed by the Nodes.
Issues related to policy management are out of scope of this
paper and are not described here.

Every document is characterized by a set of standard
attributes (or tags), like its Name, Creation date, Abstract and
so on, whereas the document type is chosen from the ontology:
then the user can add other tags in a manual or semi-automatic
way (see more details in Section V), selecting the values from
the instances of the ontology and driven by their relationships.

The EC2M system can be “instantiated” many times, to
be useful for different groups of enterprises (that is, for new
enterprises’ networks): a new ontology, describing types of
documents and their possible contents must be created, but
the overall structure and behavior remain the same. In this
sense, EC2M is “parametric” in the used ontology.

The core portion of the functional requirements (services)
specification of EC2M system has been created using the
method proposed in [25], and consisted of: (1) an UML Use
Case Diagram, (2) the Use Case descriptions, (3) a glossary,
and (4) the screen mockups (sketches of the future GUIs).
During the project meetings, the industrial partners found the
screen mockups (and the glossary) very effective in improving
the comprehensibility of the use cases and useful to identify
early ambiguities in the requirements specification.

We do not list here the Use Cases, but the services of the
system are presented in the next Sections, with information
about their implementation and coordination.

The main services are those related to the documents
management, and are associated to the GUIs described later.
The algorithm for automatically tagging a new document is
explained in Section VI. The manual insertion of a new
document is described with a concrete example in Section V.
Lastly, the system offers services reserved to the administrator
of the Node, for example those regarding the approval of
the automatically tagged documents, the management of the
ontology, users and of the rules for distributing documents over
the network: those are cited while describing the Modules that
use them.

65

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. The high level architecture of the EC2M system.

Looking at the system architecture from a high level point
of view, the system is divided into different modules (see
Figure 1):

• Graphical User Interface (GUI): front end of the
system, where users can log in from a local terminal
and can insert/retrieve/manage documents (based on
the ontology);

• Soap and Rest Services: used by the GUIs and by the
mobile application which, exploiting context informa-
tion, lets the user access the system from a remote
device;

• Crawler: software that explores predefined hard disk
sectors to find documents that are sent to the Loader;

• Loader (or Classifier): module that automatically ex-
tracts from the documents tags corresponding to those
in the ontology and that enriches the documents with
tags related to those already manually associated with
the document, using the instances in the ontology and
their relationships;

• Ontology Manager: module that queries and manages
the ontology;

• Content Manager: module that stores the documents
and manages their sharing and retrieval;

• (Local) Router: module that manages the sharing of
documents between nodes;

• Rules manager: module that the Router uses in order
to define, and dynamically create, routing rules.

On the right side of Figure 1, the arrow points to the EC2M
Central Router, reported in Figure 2. In Figure 3, the reader
can see which (existing or new) software modules have been
used to implement the EC2M system: in the next subsections
we give more details on the functionalities and implementation
of the different modules.

On each Node Apache ServiceMix is installed: the Crawler,
the Classifier and the Router Modules exploit many of its
services to implement their functionalities, as described later.

Figure 2. The software architecture of the Central Router.

Figure 3. The software architecture of the EC2M system.

A. Graphical User Interface (GUI)

At design time, we decided to create GUIs simply change-
able with respect to the user desires, so that any user can
adapt its interfaces. To achieve this goal, we adopted Liferay
[26], which is a well known Portal Server. With this platform,
the GUIs are portlets that can be plugged into any pre-existing
portal. To develop these portlets we used AJAX Vaadin, which
is already integrated in the version 6 of Liferay.

Starting from the Use Cases describing the services that
must be provided by the system, many GUIs (portlets) have
been implemented. The main ones are:

• UploadPortlet: this GUI lets the user insert a new
document. As shown later in Section V, from this
GUI the user can manually associate tags, selected
from the ontology, to the document. Furthermore, as
last step before confirming the insertion, the system
will suggest the user some more tags to be related to
the document;

• SearchPortlet: this GUI lets the user search for docu-
ments. This GUI helps the user specifying the search
criteria, which will be based on the ontology and on
standard document properties (author, creation date
and so on);

66

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• ApprovePortlet: users can also put documents in a
shared folder and let the Classifier automatically clas-
sify them (that is, adding tags from the ontology).
These documents must be analyzed by a super user
before they are really inserted into the system and
shared among users. From this GUI the super user
can analyze the automatically associated tags (with the
algorithm shown in Section VI), can modify them and
lastly can move on with the insertion of the documents
in the system;

• SubscribePortlet: from this GUI the user can subscribe
to a set of arguments that he is interested in. These
arguments are chosen from those in the shared ontol-
ogy, so that when a new document tagged with one
of these arguments is inserted in the network, the user
can be automatically informed by the Router Module.

Other GUIs exist to manage the administrative data, such as
the users list, the current used ontology, the users permissions
and so on.

GUIs exploit the SOAP/REST interfaces, described later,
to invoke the services offered by the system.

B. The Crawler and the Classifier Modules

Apache ServiceMix offers many services and components:
some of them help polling the file system, also using the FTP
protocol. The Crawler Module is a plugin of the local instance
of ServiceMix and exploits these services to cyclically search
for new documents in predefined shared folders, where users
can put documents.

These documents are then sent to the Classifier, which is
again a plugin of ServiceMix (but is installed on the cloud):
for each document received from the Crawler, it automatically
selects related tags (as shown in Section VI) from the ontology
and associates them to the document. Then these documents
can be analyzed by the superuser to be definitively inserted
into the Content Manager.

C. Ontology Manager

To create and manage the ontology we adopted the Web
Ontology Language (OWL [27]) and Protégé [28]. The on-
tology is not subject to frequent changes: if it needs to be
modified, this is done using Protégé and then the new version
is again made available to the framework for queries.

D. SOAP/REST service

To let different clients interact with the system (from
outside of the local Node or from the Node itself), we created
a SOAP and a REST interfaces for the main services:

• uploadDocument: it is invoked to add a new document,
with its tags, to the content manager;

• search: it lets the invoker searching for a document,
specifying as input a list of tags;

• getDocument: it returns the document with the iden-
tification number given in input;

• getOntology: it returns the ontology used in the sys-
tem;

• updatePosition: it is used to send the current position
of a mobile device to the Node;

• getTicket: it takes as inputs a username and a password
and returns an “authorization token” to let the user be
identified in the system;

• subscribeUserFeed: it stores the user interests, given
as input;

• retrieveUserFeed: it returns the list of user interests.

E. Content Manager

To physically manage the documents, we adopted Alfresco,
a well known open source Java Content Management System:
this system allowed us to exploit all the facilities of a high
performances business platform with the good property of
being an open source software. Furthermore, Alfresco takes
advantage of many other well known open source systems like
Spring, Hibernate, Lucene and MyFaces, helping developers in
creating high quality software in a cost and time limited way.

F. Router

The Router Module is a plugin of ServiceMix, and manages
the distribution of the documents in and out of the Node.
There is a Router Module on each Node: this module is in
charge of informing the node’ users of the presence of new
documents (local documents or on other nodes) and then of
informing the other nodes (thank to the Central Router) of
the existence of new documents. The local Router knows
the users interested in the new documents (considering the
subscribed interests of each user) and, thanks to the Rules
Manager Module (described later), can inform them of their
existence. Furthermore, it knows the documents exchange rules
so it will also distribute the document (or only some parts,
for example the title and abstract) to the Central Router (that
will spread it to the other interested nodes). The local Router
receives the documents from the Central Router too: then it
sends these new documents to its Classifier so that they can
be inserted into the local CMS.

G. Rules manager

Drools [29] is a well known open source system to create
and manage business policies. Being this tool really stable,
powerful and already integrated into ServiceMix, we decided
to exploit it instead of developing a new module from scratch.
The Drools rules are created thanks to an Eclipse plugin and
then are read by the Router Module.

For example these are some of the rules regulating the
documents notification to users:

• A Notification regarding a new document is sent only
to users that subscribed to a topic that appears among
the document tags.

• If a requested document is bigger than 1MB, only a
link to the document is sent to the Mobile Users (not
physically present in the Node), while the complete
document is sent if it is smaller than 1MB.

67

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• When a new document is inserted on a Node, only
a link to it is to be sent to all the interested local
standard (not-mobile) users (because they can directly
download it from the local repository).

H. The central Router

The central Route, described in Figure 2, is developed ex-
ploiting again Apache ServiceMix as platform, whit the same
plugin used for the Router Module, since their functionality is
quite the same. As for the other modules, Drools is used to
manage the routing rules and Jena is used to interface with the
ontology. This Node manages the interaction among the Nodes
in the network, distributing the new documents with respects
to the subscribed interests of the Nodes. It owns the list of the
Nodes in the network, and knows for each Node which are the
topics, chosen from the common ontology, they are interested
in (that are those the users of that Node are interested in): in
this way the Central Router is able to correctly forward new
documents among Nodes, avoiding flooding them with useless
documents.

Its availability is assured by the cloud platform where it is
deployed, reducing the risk of a single point of failure and of
low performances.

I. Context Awareness

A mobile application for smartphones was developed for
the system: it is able to identify the location of a user currently
away from its company node and to act consequently, to let
the user be informed of new documents or to let him search
for documents in the system from a mobile device.

A “Fingerprint” (a set of information characterizing the
Node) was calculated once for each Node and saved in the
mobile application, so that it is able to identify when the
user is near to its company Node and to move on with the
automatic check-in (precondition to use the system). This
context awareness algorithm for automatic check-in is called
LRACI and is described in details in [30]: its performances
are device independent, it is based on GPS/HPS information
and is able to exploit Wi-Fi access points in an opportunistic
way.

Thanks to this module, that interacts with the system using
to the REST/SOAP interfaces developed for it, users can
exploit the EC2M system services from mobile devices in a
transparent and automatic way.

IV. THE ONTOLOGY

The EC2M system was designed to work with any ontology
describing the documents to be shared and their contents. To
start with a concrete example, we decided to design, implement
and use an ontology modeling the Sempla’s business proposal.
With respect to [1], the ontology structure has been changed a
little, while some more instances have been created. Further-
more, we added many labels that are used in the automatic
classification algorithm and in the GUIs, as described in the
next Sections.

Sempla, as a brand, was founded in 2009 and operates
in System Integration and Information Technology consulting.
It has nearly three decades of experience with the most
important Italian groups from the Financial, Production and
Public sectors. Now Sempla has been transformed into GFT
Italy, member of the GFT Group: we will anyway refer in the
paper to Sempla, to keep consistence with [1].

This domain was chosen because Sempla is a very large
enterprise, covering different business areas, so its documenta-
tion presents many types of documents and a large set of terms
that are of interest for different users. These terms and types of
documents are quite common in this business area, so modeling
the Sempla domain is the best choice because the emerging
ontology is correct also for Nacon (that now is member of
the Sempla Group) and for Nis (that often collaborates with
Nacon so can easily adhere to the ontology), which are the
other Nodes in the system.

A. The Ontology Design

To model the domain with an ontology (as defined in [31]),
we adopted the Noy and McGuinness methodology [32], which
being an agile method is very suitable for collaborating with
industrial partners. This methodology foresees these stages:

1) determine the domain and scope of the ontology;
2) consider reusing existing ontologies;
3) enumerate important terms in the ontology;
4) define the classes and the class hierarchy;
5) define the properties of classes-slots;
6) define the facets of the slots;
7) create instances.

The first step was quite simple to follow: the domain of the
ontology was the Sempla’s business proposal. It is translated
into a complex organization of the logic concepts that describe
what Sempla offers to its costumers, in terms of products and
high technical and management consultancy.

Documents must be tagged to describe, with instances
found in the ontology, their structure (some type of documents
can have many attachments) and above all their technical
and business items: for every business market Sempla has a
“portofolio” of products and consultancy services that is well
organized and defined.

We searched for similar ontologies, but we were not able to
find one that was useful for modeling our domain. Maybe other
companies own a similar ontology, but they are not public. We
also considered existing ontologies, for example Bibo ontology
[33], but we did not use them because they share only very few
terms with those used in our domain. We could use the already
exiting Sempla’s documentation, which offered us an already
well-defined set of terms describing the domain, although in
natural language and not structured in any standard format.

The third step was conducted with the collaboration of the
domain experts, which were the scientists from Sempla, Nacon
and Nis. The majority of the terms was collected analyzing
the brochures describing Sempla’s business proposal (one is
summarized in Table I) as well as a large set of documents
selected as example from the real ones and a list of terms
created by the “users-to-be” of the system, which listed the

68

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. THE SEMPLA BUSINESS PROPOSAL (BUSINESS ITEMS) FOR THE “FINANCIAL SERVICES” MARKET, GROUPED BY BUSINESS AREAS.

Business IT Consulting Digital Marketing &
Design

Business Solution IT Solutions IT Services BPO

BPR;
Studi di fattibilitá;
Enterprise
architecture planning;
Program management
consulting;
Organizzazione
processi IT;
Project portfolio
management.

Web & Content
Design;
User Experience;
Community
management;
Digital Advertising;
Augmented
Experience.

Credit & Risk
Management;
Credito Lab;
Credito al consumo;
Filiale a CRM;
Contact center;
Pagamenti, Monetica,
ATM/POS;
Finance & Wealth
Planning;
Controlli e
compliance;
Sicurezza e
Antifrode;
Tesoreria;
Human Resources;
Reporting & Business
Intelligence;
Leasing & Factoring;
Banca Virtuale;
Project Portfolio;
General ledger.

System Integration
Framework;
Application
Frameworks;
Metodologie di
Delivery;
Multicanalitá;
Enterprise Content
Management;
DB Administrator.

Application
Management;
Application
Modernization;
IT Infrastructure
Management;
ITIL Implementation.

Contact Centre;
Back Office;
Fiscalitá Locale;
Postalizzazione;
Business travel
management;
Formazione, RollOut,
Help Desk.

terms (corresponding to logic concepts used in their work)
that they would like to use to classify a document.

To define the classes and their structure, we asked the
domain experts to describe in details the types of documents
they use, the most relevant information characterizing them
and how they model the different business markets. We also
took inspiration from the file system where documents were
stored: the directories were partially organized as the business
areas, and this organization reflected the way Sempla divides
its business proposal.

The definition of the properties was done following a
similar process.

As a last step, we manually inserted the instances in the
ontology: the instances are named using some of the terms
listed before, and the properties join them to completely
describe the domain. It should be noted that in this process,
stating what had to become a class and what an instance
was a complex task, because some logical concepts of the
domain may be mapped into a class (if we foresee a possible
future extension) or into an instance as well (because they are
something already stable and with different properties values),
for example for Market instances. In these cases, we must
consider that only instances will be used to tag documents, so
it was an obliged decision to model those terms as instances.

Since the ontology is aimed at being used by Italian users,
it was created in Italian but some terms (in particular the
instances’ names) are in English, to maintain a link with
the existing documentation and Sempla’s internal standards:
we are aware that having an ontology with both Italian and
English terms was not a perfect solution, but since Classes
and Instances should be used as tags for many already ex-
isting documents, and considering that their names should be
searched inside the text of the documents, we adopted anyway
this solution.

B. The ontology details

The Sempla business proposal is organized considering
different business markets, to propose ad hoc solutions for
each area. Each high level business market is called Mercato
(Market), and each Mercato is characterized by some distinct
Settore (Sectors) (see Figure 4). To give and explanation of
what we assume to be a market, consider that its instances are
“Product”, “Financial Services” and “Insurance”, describing
the main activities of the costumers operating in each market.
Starting from this macro division of areas, all the other classes
are related and organized considering these three sectors. For
example, each costumer (class Cliente o Prospect) refers to
one sector, so that his market is uniquely identified.

The Sempla business proposal is created combining
different items, identified with the class Business Item,
which are divided into different types (subclasses) and that
refer to six different Business Areas (as shown in Table I),
modeled with the class Area Business, with instances: “Busi-
ness IT consulting”, “Business project outsourcing (BPO)”,
“Digital Marketing And Design”, “Business Solution”,
“IT services”, “IT solutions”.

Figure 4. Class Mercato (Market) and its main relationships.

69

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Class Business Item and its main relationships.

Every Business Item can be associated with only one
Area business but can be offered to different Markets. A busi-
ness item that is offered in many markets is called “cross mar-
ket”. The class that groups these items is defined with a neces-
sary and sufficient condition, and is called BI Cross Mercato.
In a similar way, the class AB cross mercato is defined with
the necessary and sufficient condition that it collects the
business areas offering at least one “cross market” item.

The business items are divided into four disjoint subclasses:
Prodotto (Product), which can be developed by a Partner,
Soluzione (Solution), Servizio (Service), Attivitá professionale
(Professional Activity). These classes are related with class
Ambito Tecnico (Technical Area) describing at high level the
IT area they refer to (for example “Client Server Application”,
“Mobile Application” and so on).

The relationships between the classes described above are
shown in Figure 5.

The documents that must be classified are divided into
different types, modeled with the classes (subclasses of Do-
cumento (Document)):

• Proposal (class Documento offerta), which describes
a business proposal to a costumer;

• Technical attachment (class Allegato tecnico offerta),
which is a technical attachment describing at least one
Business item and one Ambito Funzionale;

• Presentation (class Presentazione), that describes the
Sempla business proposal to a specific Market, and
that must be related to at least one Business item.

Class Ambito Funzionale, with its three subclasses, repre-
sents a further classification of the business services from a
commercial viewpoint. With respect to [1], the subclasses of
Documento have been slightly simplified.

In Figure 6, a detailed view of the relationships among
Proposal and the other classes is shown: class Proposal has one
string property (“Id Proposal”) not shown in Figure 6, which
uniquely identifies the proposal. In Figure 7, an overview of
the relationships among the different types of documents is
reported.

Class Partners represents a list of possible third parties
companies involved in the proposal.

We only show Object properties in figures and do not report
instances of every class. In Section V, the reader can find some
of these instances shown in figures and tables, while they are
used by the EC2M interface to help user tagging a document.

C. Exploiting the ontology

As described before, the main goal of the ontology is to
formally model the domain and to store the common informa-
tion needed to tag documents, using the ontology instances, in
the system.

But the ontology has been also used to store other infor-
mation related to Classes and Instances that will be used by
the GUIs and by the automatic classification module.

Regarding the exploitation of the ontology by the GUIs,
please consider that the EC2M system was created to help dif-
ferent users, from different companies, to share documents. It
is possible that users speak different languages: consequently,
the GUIs should adapt to the desired language. Similarly, some
classes or instances names suffer of a formalism that is due to
OWL, but that could create confusion to the end users. Since
GUIs read from the ontology the possible tags and have to
show the users them plus the ontology class the tags refer

Figure 6. Class Documento offerta (Proposal) and its main relationships.

70

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Relationships among classes starting from Documento (Document) and its subclasses.

to, we added to ontology classes some rdfs:labels to store the
value that must be visualized in the GUIs. For example, as
shown in Section V and Section VI, to Italian users the class
Business Item is shown with the name “Elemento d’offerta”,
read from the label associated to that class.

Regarding the exploitation of the ontology by the automatic
classification module, we improved the information stored in
the ontology by adding more synonyms, acronyms, equivalent
definitions and generic information to classes and instances,
storing them into rdfs:labels: these terms are the elements of
the “synsets” that will be read and used by the automatic
classification module, as shown in Section VI.

V. THE RUNNING SYSTEM

A first prototype of the EC2M system has been developed
at the end of 2012, based on the ontology described in Section
IV of [1], and has been tested concretely by Nacon, Nis
and Sempla to manage the documents created in 2012 (3200
documents), with 31 users. Now the system is completely
updated and running (using the new version of the ontology
presented in this paper), serving more than 600 users, and
manages a documents set that grows each year approximatively
of 3000 new items.

Some images of the GUIs are reported to give an example
of usage. The GUI form in Figure 8 is the one where the
user can add a new document, specifying: what kind of
document he is inserting (a “Presentazione”), the market (in
this case “Insurance”) and the business items the document
is about (selecting these values using drop down lists that

Figure 8. First GUI form for inserting a new document with some first tags.
Screen shot.

group the business item instances in their subclasses). In the
example, the user chooses the instances “User Experience”,
“Web development” and “Digital media strategy” from class
Attivitá professionale (instances of class Attivitá professionale
are shown in Table II). Finally, the user chooses the language
(“Italiano”).

In Figure 9, the system presents to the user the list of
the current tags that he selected plus the tags that have
been automatically added: in this case only the tag “Digi-
tal Marketing Design” from class Business Area, because all
the selected business items refer to this area, as shown in Table
III.

Note that in the ontology, labels have been added to classes
to store the term to be shown in the GUIs, because sometime
the class names are not “good to be visualized” (for example
they contain the “ ” character, or are in a different language
from the GUI one). For example, in Figure 9 the tags from
class Business Item are called “Elemento d’offerta” instead of
the standard class name.

Then, the system asks the user if he wants to add some
more tags, choosing from those connected to the already se-
lected ones. In the example, the user chooses to add more tags
starting from the business area “Digital Marketing Design”.
So the system shows the user the possible tags, choosing from
the instances related to “Digital Marketing Design” (conside-
ring the properties with domain Business Area) in the ontology
(Figure 10). The user can add some of those tags and then
saves the document.

TABLE II. INSTANCES OF THE Attivitá professionale CLASS (SUBCLASS
OF Business Item).

User Experience Web development Digital media
strategy

ADV Campaign

Program
management
consulting

IT infrastructure
management

Project
portfolio
management

Enterprise archi-
tecture planning

ITIL Implementa-
tion

Business driven
development

Delivery
Methodologies

IT Processes Or-
ganization

Application Mod-
ernization

Digital
Marketing

Feasibility Study Visual Graphic
Design

BPR Brand Identity Time Material Movie Design

71

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. List of a manually selected tags plus those automatically added.
Screen shot.

TABLE III. Business Item INSTANCES ASSOCIATED TO THE
“DIGITAL MARKETING DESIGN” BUSINESS AREA.

User experience Movie Design ADV Campaign Brand Identity
Digital Media
Strategy

Visual Graphic
Design

Digital
Marketing

Web
Development

Figure 10. Possible new tags (left) and already associated tags (right). Screen
shot.

VI. THE AUTOMATIC CLASSIFICATION ALGORITHM

The EC2M system is equipped with the Loader/Classifier
module, able to automatically classify a document given as
input: it is based on Lucene [34] (to interact with Alfresco for
getting the indexes and to analyze the documents, searching for
terms) and on Jena [35] (to read the ontology classes, instances
and labels). It follows an algorithm based on [36], and is used
to automatically identify the type of the input document and
the possible related tags (chosen from the ontology). These
automatically associated tags are then presented to the user
who can confirm or change them.

The UML activity diagram in Figure 11 (created following
the methodology described in [37], as for that in Figure 12)
shows the Classifier’s algorithm devoted to the identification
of the document type:

• It asks the Ontology Manager (that uses Jena) the list
of Document Types (that are the subclasses of the
ontology class Documento (Document)) with their re-
lated synsets (that are the sets of rdfs:labels associated
to each class);

• For each document type, it:
◦ searches in the document title the terms in the

document type synset;
◦ searches in the document body the terms in the

document type synset;
◦ If at least one correspondence is found, the

type is considered in the list of possible can-
didates, and a score is calculated based on the

frequency of the synset terms found in the
previous steps. If the term is found in the title,
it is multiplied for a predefined “boost value”.

• At the end of the loop, the document type with the
highest score (that is, the uniquely found document
type or that with a score exceeding of a predefined
value, called “DELTA”, those of the other document
types) is associated to the document. If there are many
types with similar scores, none type is associated to
the document.

The algorithm that automatically extracts the semantic tags
is described with an activity diagram in Figure 12:

• It asks the Ontology Manager (that uses Jena) the
properties list of the document type chosen in the
previous phase of the algorithm (if any);

• For each datatype property, it calculates the possible
value analyzing with Lucene the document, searching
for the property name (or for the terms in its synset,
stored again as rdfs:labels related to the property)
followed by a value of the correct property type. This
couple is added to the set of indexes related to the
document (indexes are “not semantic” standard tags
that can be related to a document in a CMS: they
are managed directly by Alfresco apart those created
in this step, which are automatically calculated as
described and added to this set);

• For each Object Property, it asks the Ontology Man-
ager the instances of that Class with their related
synsets (that are the sets of rdfs:labels associated to
each instance) and for each instance:

◦ searches in the document title the terms in the
synset;

◦ searches in the document body the terms in the
synset;

◦ If at least one correspondence is found, the
instance is considered in the list of possible
candidates, and a score is calculated based on
the frequency of the synset terms found in the
previous steps. If the term is found in the title,
it is multiplied for a predefined “boost value”;

• At the end of the loop, if the property has sin-
gle cardinality, the instance with the highest score
(that is, the uniquely found instance or the instance
with a score exceeding of a predefined value, called
“DELTA”, those of the other instances) is associated
to the document while, if it has multiple cardinality,
all the instances with a score higher than a predefined
“threshold” are associated to the document;

• Lastly, considering each instance associated to the
document in the previous steps, its data properties with
a value are added as indexes, and other instances (if
any) related by object properties are added as tags to
the document too.

The “boost value” is a parameter used to give some more
importance (that, in this case, is an higher score) to a term
if it has been found in the title of a document. Its value may
range between 1 and 2. After many tests to identify the most

72

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Activity Diagram describing the algorithm to identify the document type.

correct value for this parameter, we now use it with value 1.5.
In general, if you have a domain with documents with relevant
titles, an higher value of this parameter is recommended.

The “DELTA” parameter, as explained before, is used to
select only the instance with a score really higher then that
of the other candidates, and again has been tuned during the
tests: its value may range between 0 and 1, and we use it set
to 0.2.

Lastly, the “threshold” parameter is used to select only
a subset of the identified candidates to be proposed to the
user: at the end of the algorithm we have a list of candidates
with a score, which ranges from 0.1 (the lowest value) to 1
(the highest one), reflecting the confidence that the candidate
is really associable to the document. We use the “threshold”
parameter to choose, between them, only those with a reliable
score. Its value may range between 0 and 1, and currently this
value is set to 0.3 (as explained later in this Section).

An example is reported in Figure 13: the document in
input, “06-Portale del Credito-CR2 - Revisione PDC GOR -
MS.pptx”, is automatically correctly identified as a Presen-
tazione (Presentation).

This class has two properties, as shown in Figure 7:
“Scritto In (Written In)” (single, with range Lingua (Lan-

guage)), and “Descrive Business Item (visualized as “De-
scribe” in Figure 13)” (multiple, with range Business Item).
The algorithm correctly identifies the language (instance “Ital-
ian”) and selects three related Business Item for the property
“Describe” (“Credito al consumo”, “Credito lab”, “Credit and
risk management”).

As last step, considering that all the three Business Items
are related to the “Business Solution” instance of Busi-
ness Area class (see Table I) thanks to the property
”Item appartiene ad areaB” (see Figure 5), the tag “Business
Solution” is associated to the document.

The first tests, presented in [1], gave already promising
results: considering the automatic tags extraction, those with
a threshold higher than 0.3 were correctly associated with the
document in the 95% of the executed tests. In the following
months the system has been tuned to achieve better results:
the algorithm was not modified, while the ontology has been
changed to create more complete synsets (in fact many wrong
tags associations were due to poor synsets). Now that the
ontology has been updated and revised, the percentage of
correct tags is 100% with threshold higher than 0.5, and 97%
with threshold between 0.3 and 0.5.

73

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Activity Diagram describing the algorithm to identify the document tags.

Figure 13. Automatically identified tags (highlighted rows) in the document used for example.

74

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. CONCLUSION AND FUTURE WORK

The solution that we adopted is based on a mesh-up of
many different technologies and softwares, where an ad hoc
ontology is integrated into an open-source CMS and then
deployed over a cloud platform, following the new trends
in different research areas. As shown in Sections I and II,
many solutions exist that are in some way similar to ours
(considering the adoption of a formal representation of the
domain, or for the similar overall structure) but are really
far for other aspects (different domain, different semantic
representation and expressiveness, or simply being only a
study, not a real and applied tool). It is impossible to make a
precise comparison with the other mentioned systems, because
they are commercial or not available to the community, or
because a completely new system, using the other approaches
or technologies, should be developed to be tested and com-
pared, and this solution is not feasible. As far as we were
able to do, we adopted the open-source softwares recognized
by the users and by the research community as very reliable
and efficient ones (for example Lucene and Alfresco), while
our industrial partner chose the cloud platform making again
a detailed analysis of the available platforms (Eucalyptus and
Amazon Web Services by Amazon, OpenStack by Rackspace,
AppScale by Google), to adopt the best one for our project.
To develop our ontology, considering that it was the core of
the system, we adopted OWL, since it is one of the most
expressive language for developing ontology and that some
well working libraries to interface and manipulate it from an
external program exist (like Jena).

The EC2M project has been fully tested in 2012 and 2013,
and showed very good results with respect to a standard
ECM system: it really helped users from different companies
better collaborate, exploiting a semantic classification of their
documentation and consequently offering a simpler searching
phase and a better support in sharing information, which was
impossible to obtain without a similar system.

The ontology is now complete and models all the document
types and contents. It has been equipped with labels to store
both “visualization information” (that are the labels that must
be visualized in the GUIs) both “synsets”. This solution was
definitely good for our system because:

• it lets the system administrators simply modify some
parts of the GUIs only modifying the ontology, re-
ducing the chance of an misalignment between the
terminology and the GUIs, and reducing the time-to-
market too

• it lets simply modify the instances and their synsets, so
that the automatic classification algorithm can conse-
quently improve its results thanks to a more complete
ontology

keeping the independence between the domain representation,
the GUIs and the automatic classification algorithm itself.

The notification of new documents to subscribed users
is done in quasi real time, as requested by these types of
applications, for the remote and mobile users too. Furthermore,
with the deployment over the cloud platform, the performances
can be enhanced with a new purchase of cloud services: with

this architecture and deployment solution the system is really
scalable.

The system has been adopted by GFT (previously Sempla),
and related companies, as their new content management
system, since it showed very good performances (thanks to the
cloud architecture), great accessibility (thanks to the mobile
access and context awareness module), high reliability in
the automatic tagging process, and high adaptability (thanks
to the adoption of the ontology as an independent domain
representation). So, it is not only a prototype, but a real and
running system that shows how these solutions coming from
the research fields (ontologies, context awareness, cloud and
CMS composed together) can actually and effectively work in
real industrial scenarios.

Furthermore, the adoption of open source technologies and
the chance of exploiting the system as a service over the cloud
platform (with a pay-per-use solution) allowed a reasonable
initial budget and a high scalability in the overall architecture,
which from the industrial viewpoint is a good “Return Of
Investment”: that is another evidence of the applicability of
these technologies in industrial systems.

As last future work, we will investigate how dealing with
the scenarios where the nodes in the EC2M network use
different ontologies to describe and tag their documentation: in
this case, the common ontology must be anyway chosen and
defined, but ontology matching techniques may be adopted to
align the common and private ontologies before tagging and
when receiving notifications from the other nodes, to let them
keep on using their private ontology but also being able to
share documents with common tags.

ACKNOWLEDGMENT

The research described in this paper has been funded by
the “EC2M system (Enterprise Cloud Content Management)”
Programma Operativo Regionale (POR) project.

The authors would like to thank Maurizio Ferraris from
Nacon and Viviana Mascardi and Gianna Reggio from DIBRIS
that led the industrial and the DIBRIS academic components,
respectively, involved in the EC2M project. Thanks also to
Maurizio Leotta for the activity Diagrams shown in this article.

A special thanks goes to Dante Laudisa, from Sempla,
who actively participated in the domain explanation and in
the ontology definition.

REFERENCES

[1] D. Briola, A. Amicone, and D. Laudisa, “Ontologies in Industrial En-
terprise Content Management Systems: the EC2M Project,” in COGNI-
TIVE 2013, The Fifth International Conference on Advanced Cognitive
Technologies and Applications, 2013, pp. 153–160.

[2] Association for Information and Image Management, “What is Enter-
prise Content Management (ECM)?” 2010, URL: http://www.aiim.org/
what-is-ecm-enterprise-content-management.

[3] A. P. Sheth and C. Ramakrishnan, “Semantic (Web) Technology In
Action: Ontology Driven Information Systems for Search, Integration
and Analysis,” IEEE Data Eng. Bull., vol. 26, no. 4, 2003, pp.
40–48. [Online]. Available: http://dblp.uni-trier.de/db/journals/debu/
debu26.html#ShethR03

[4] R. Andersen, “The Rhetoric of Enterprise Content Management (ECM):
Confronting the Assumptions Driving ECM Adoption and Transform-
ing Technical Communication,” Technical Communication Quarterly,
vol. 17, no. 1, 2008, pp. 61–87.

75

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] “The Alfresco Homepage,” 2014, URL: http://www.alfresco.com/ [ac-
cessed: 2014-03-01].

[6] “The Plone Homepage,” 2014, URL: http://plone.org/ [accessed: 2014-
03-01].

[7] “The Sensenet Homepage,” 2014, URL: http://www.sensenet.com/ [ac-
cessed: 2014-03-01].

[8] “The smartlogic Homepage,” 2014, URL: http://www.smartlogic.com
[accessed: 2014-03-01].

[9] “The H-Dose Homepage,” 2014, URL: http://dose.sourceforge.net/ [ac-
cessed: 2014-03-01].

[10] “The OpenCalais Homepage,” 2014, URL: http://www.opencalais.com/
[accessed: 2014-03-01].

[11] “The Apache Stanbol Homepage,” 2014, URL: http://stanbol.apache.
org/ [accessed: 2014-03-01].

[12] R. Garcı́a, J. M. Gimeno, F. Perdrix, R. Gil, and M. Oliva,
“The Rhizomer Semantic Content Management System,” in WSKS
(1), ser. Lecture Notes in Computer Science, M. D. Lytras,
J. M. Carroll, E. Damiani, and R. D. Tennyson, Eds., vol.
5288. Springer, 2008, pp. 385–394. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/wsks/wsks2008.html#GarciaGPGO08

[13] C. Frank and M. Gardoni, “Information Content Management with
Shared Ontologies-at Corporate Research Centre of EADS,” Int. J.
Inf. Manag., vol. 25, no. 1, Feb. 2005, pp. 55–70. [Online]. Available:
http://dx.doi.org/10.1016/j.ijinfomgt.2004.10.009

[14] D. M. Le and L. M. S. Lau, “An Open Architecture for
Ontology-Enabled Content Management Systems: A Case Study
in Managing Learning Objects,” in OTM Conferences (1), ser.
Lecture Notes in Computer Science, R. Meersman and Z. Tari,
Eds., vol. 4275. Springer, 2006, pp. 772–790. [Online]. Available:
http://dblp.uni-trier.de/db/conf/otm/otm2006-1.html#LeL06

[15] G. Laleci, G. Aluc, A. Dogac, A. Sinaci, O. Kilic, and F. Tuncer, “A
Semantic Backend for Content Management Systems,” Knowl.-Based
Syst., vol. 23, no. 8, 2010, pp. 832–843. [Online]. Available:
http://dblp.uni-trier.de/db/journals/kbs/kbs23.html#LaleciADSKT10

[16] H.-C. Chu, M.-Y. Chen, and Y.-M. Chen, “A Semantic-based Approach
to Content Abstraction and Annotation for Content Management,”
Expert Syst. Appl., vol. 36, no. 2, Mar. 2009, pp. 2360–2376. [Online].
Available: http://dx.doi.org/10.1016/j.eswa.2007.12.067

[17] A. Bechini and A. Vetrano, “Management and Storage of in
Situ Oceanographic Data: An ECM-based Approach,” Inf. Syst.,
vol. 38, no. 3, May 2013, pp. 351–368. [Online]. Available:
http://dx.doi.org/10.1016/j.is.2012.10.004

[18] B. Thönssen, “An Enterprise Ontology Building the Bases for
Automatic Metadata Generation,” in MTSR, ser. Communications in
Computer and Information Science, S. S. Alonso and I. N. Athanasiadis,
Eds., vol. 108. Springer, 2010, pp. 195–210. [Online]. Available:
http://dblp.uni-trier.de/db/conf/mtsr/mtsr2010.html#Thonssen10

[19] J. Corchado, D. Tapia, and J. Bajo, “A Multi-Agent Architecture
for Distributed Services and Applications,” Computational Intelligence,
vol. 24, 2008, pp. 77–107.

[20] D. Griol, J. M. Molina, and Z. Callejas, “Providing Personalized
Internet Services by means of Context-Aware Spoken Dialogue
Systems,” JAISE, vol. 5, no. 1, 2013, pp. 23–45. [Online]. Available:
http://dblp.uni-trier.de/db/journals/jaise/jaise5.html#GriolMC13

[21] G. Blázquez, A. Berlanga, and J. M. Molina, “inContexto: Mobile
Phone Multi-Sensor Architecture to Obtain People Context,” Journal
of Ambient Intelligence and Smart Environments, vol. 5, 2013, pp. 23–
45.

[22] R. Fuentes-Fernández, J. Gómez-Sanz, and J. Pavón, “Understanding
the Human Context in Requirements Elicitation,” Requirements
Engineering, vol. 15, no. 3, 2010, pp. 267–283. [Online]. Available:
http://dx.doi.org/10.1007/s00766-009-0087-7

[23] J. L. R. Garcı́a and A. L. Tello, “Ontotv: an Ontology-Based System
for the Management of Information about Television Contents,” Int.
J. Semantic Computing, vol. 6, no. 1, 2012, pp. 111–. [Online].
Available: http://dblp.uni-trier.de/db/journals/ijsc/ijsc6.html#GarciaT12

[24] A. Aiello, M. M. Furnari, A. Massarotti, S. Brandi, V. Caputo, and
V. Barone, “An Experimental Ontology Server for an Information
Grid Environment,” International Journal of Parallel Programming,

vol. 34, no. 6, 2006, pp. 489–508. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/ijpp/ijpp34.html#AielloFMBCB06

[25] G. Reggio, F. Ricca, and M. Leotta, “Improving the Quality and the
Comprehension of Requirements: Disciplined Use Cases and Mock-
ups,” in Proceedings of the 40th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA 2014). IEEE, 2014.

[26] “The Liferay Homepage,” 2014, URL: http://www.liferay.com/ [ac-
cessed: 2014-03-01].

[27] “The OWL Language Overview Homepage,” 2014, URL: http://www.
w3.org/TR/owl-features/ [accessed: 2014-03-01].

[28] “The Protégé Homepage,” 2014, URL: http://protege.stanford.edu/ [ac-
cessed: 2014-03-01].

[29] “The Drools Homepage,” 2014, URL: https://www.jboss.org/drools/
[accessed: 2014-03-01].

[30] I. Bisio, F. Lavagetto, M. Marchese, and A. Sciarrone, “GPS/HPS-
and Wi-Fi Fingerprint-Based Location Recognition for Check-In Ap-
plications Over Smartphones in Cloud-Based LBSs,” Multimedia, IEEE
Transactions on, vol. 15, no. 4, June 2013, pp. 858–869.

[31] T. R. Gruber, “A Translation Approach to Portable Ontology
Specifications,” Knowl. Acquis., vol. 5, no. 2, Jun. 1993, pp. 199–220.
[Online]. Available: http://dx.doi.org/10.1006/knac.1993.1008

[32] N. F. Noy and D. L. Mcguinness, “Ontology Development 101: A Guide
to Creating Your First Ontology,” Tech. Rep., 2001.

[33] “The Bibliographic Ontology Homepage,” 2014, URL: http://
bibliontology.com/specification [accessed: 2014-03-01].

[34] “The Apache Lucene Homepage,” 2014, URL: https://lucene.apache.
org/ [accessed: 2014-03-01].

[35] “The Jena Homepage,” 2014, URL: https://jena.apache.org/index.html
[accessed: 2014-03-01].

[36] K. S. Jones, “A Statistical Interpretation of Term Specificity and its
Application in Retrieval,” Journal of Documentation, vol. 28, 1972, pp.
11–21.

[37] G. Reggio, M. Leotta, F. Ricca, and E. Astesiano, “Business Process
Modelling: Five Styles and a Method to Choose the Most Suitable One,”
in Proceedings of the Second Edition of the International Workshop
on Experiences and Empirical Studies in Software Modelling, ser.
EESSMod ’12. New York, NY, USA: ACM, 2012, pp. 8:1–8:6.
[Online]. Available: http://doi.acm.org/10.1145/2424563.2424574

76

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Supporting Ambient Assisting Living by using
Executable Context-Adaptive Task Models

Estefanı́a Serral
Department of Decision Sciences and Information Management

KU Leuven, Belgium
Email:estefania.serralasensio@kuleuven.be

Pedro Valderas and Vicente Pelechano
ProS Research Center

Universitat Politècnica de València
Email:{pvalderas, pele}@pros.upv.es

Abstract—The amount of elderly people with chronic diseases
is constantly increasing, and current health systems are not able
to provide a proper supervision. Ambient Assisted Living (AAL)
is a new research area that stands for the use of pervasive
and mobile technologies in order to increase the quality of life,
wellbeing and safety of elderly people. In this work, we present
a tool-supported methodology to facilitate the creation of AAL
systems through the use of executable models. AAL services are
specified by executable context-adaptive task models by using
concepts of a high level of abstraction, which facilitate the
participation of medical professionals in the AAL specification.
The task models are then interpreted and executed at runtime
by a software infrastructure that automates the AAL services
as specified. Thus, task models are the only implementation
of the services, making it easy their further evolution after
system deployment. In order to demonstrate the feasibility of
our methodology, we have evaluated it in the development of an
AAL system for assisting the patients of a nursing home.

Index Terms—Ambient Assisting Living, smart environments,
models at runtime, context adaptation;

I. INTRODUCTION

This paper introduces an evolution of the software infras-
tructure presented in [1] in order to support the development
of Ambient Assisting Living (AAL) environments [2]. The
ageing of population is making that the number of citizens
with chronic diseases is increasing, especially among elderly
people. These people require a constant control and super-
vision that traditional public health systems are not able to
provide in a satisfactory way. The advances in the Internet
of Things (IoT), and the progress of mobile devices (smart
phones, tablets, etc.) and wearables (Google glasses, smart
watches, sensors in clothes and body, etc.) allow creating
systems that sense patients’ context in order to take decisions
that adapt system behaviour according to the patients’ needs.

This is the main goal of AAL practices, which stand for the
use of electronic processes and communication as well as mo-
bile technologies in order to support the practice of medicine
and public health. AAL applications include services, products
and concepts to increase the quality of life, wellbeing and
safety of elderly people. The main goal of AAL is to achieve
benefits for the individual (increasing safety and well-being),
the economy (higher effectiveness of limited resources) and
the society (better living standards) [3]. A clear evidence of
the current interest in these topics is the European Ambient

Assisted Living joint Program and all the submitted projects
[4].

AAL environments require self-adaptive systems to auto-
mate AAL services that assist patients when is required in a
non-intrusive way. These systems also need to consider the
patients and medical staff (which will be the end-users of the
system), in the system design in order to properly support
medical guidelines and patients demands. Several works such
as [5][6][7][8] have worked on the automation of tasks and
system adaptation. However, these solutions focus on the
technical challenge of adapting a system by analyzing user
behavior and environment conditions at runtime, paying little
attention to the involvement of end-users from early stages of
development, which is crucial on AAL environments.

To improve these challenges, we evolve the software infras-
tructure presented in [1] to be applied in AAL environments.
This infrastructure was proposed for automating tasks in smart
homes. This paper extends it to successfully automate assisting
services. In addition, we propose a methodology for using
this infrastructure in order to support the development of
these services from the requirement elicitation until their
execution. In order to properly identify the assisting services
required by the end-users, we use User Centered Design
(UCD) techniques such as Personas and scenarios [9]. The
identified services are then described in context-adaptive task
models. Task models facilitate the participation of patients and
medical professionals in their definition and allow describing
the assisting services in a very intuitive manner by using high-
level concepts close to the problem domain.

The tasks models are directly interpreted by a software in-
frastructure at runtime, which executes the described assisting
services in the appropriate context. This allows automating
the services from the very moment in which task models
are defined. Moreover, this facilitates the further evolution
of the services if health conditions of patients change: by
only updating the models, the services are evolved. With this
infrastructure, we can provide patients with a high quality of
assistance. In addition, assisting services can be performed in a
convenient way for patients since they are analyzed by medical
professionals before they are automated by using the task
model. Moreover, assistance is self-adaptive according to con-
text, i.e., the software infrastructure reacts and autonomously
adapts patient assistance according to each context. In order

77

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to evaluate our approach we have used it to develop an AAL
system that assists the patients of a Nursing Home.

The rest of the paper is organized as follows: Section II
presents the related work. Section III introduce the proposed
methodology to support assisting services from their require-
ments to their execution. Section IV presents the process to
capture the assisting service requirements. Section V describes
the models proposed to specify the needed assisting services.
Section VI presents the software infrastructure that automates
assisting services in a context adaptive way and allows their
evolution after system deployment. Section VII validates the
approach using a case study based evaluation. Section VIII
concludes the paper and proposes further work.

II. RELATED WORK

An AAL scenario is characterized by being connected,
context-adaptive and anticipative. In order to confront the
creation of these environments, AAL systems are usually
structured in three levels [10]: Hardware (sensing, wireless
networks), Middleware (data capture, data safety, IT integra-
tion) and Services (biosignal processing, application-orientated
processes, community services).

A lot of research work has been done in all three levels.
An overview on assisting hardware technology is given in
[11]. It addresses video-monitoring, remote health monitor-
ing, electronic sensors, and equipment such as fall detectors
and door monitors. This technology alone is not enough to
coordinate hardware components in order to provide complex
assisting services. Thus, only panic buttons-based solutions
can be provided.

To enable increased safety and wellbeing in a specific
environment, it has to become intelligent with the help of
pervasive devices, which are capable to register changes in the
physical environment and thus actively interact in a process. In
addition, a system that coordinates these devices is required.
In this context, there are a number of research projects focus-
ing on the development of AAL middlewares. For example,
the PERSONA project [12] proposes a middleware platform
for the implementation of semantic assisting services. The
Aware Home [13] project built up a living lab, in which
they tested the users acceptance of technology, building up
a bridging framework for universal device interoperability in
pervasive systems. The mission of I-Living [14] is developing
an assisted-living supportive software infrastructure that allows
disparate technologies, software components, and wireless
devices to work together. Tasks provided in I-Living are such
as activity reminding, health monitoring, personal belonging
localization, emergency detection, and so on. However, the
available services provided by these three projects are closed
and still limited, and they do not provide tools that facilitate
end-users to participate in the definitions of these services.

According to [15], there are three types of assisting ser-
vices: (a) Emergency treatment, which faces situations such
as sudden falls, heard attacks, strokes, panics, etc.; (b) Au-
tonomy enhancement, which allows replacing medical and
social care personnel by appropriate system support such as

a cooking assistance system for people with visual defects;
and (c) Comfort, which covers all areas that do not fall into
the categories (a) and (b) such as social contact assistance,
infotainment assistance, logistic assistance, etc.

Independently from their type, AAL services imply the
execution of a set of tasks in a coordinated way. For instance,
a service that treats a fall may require analyze patient’s
location and state, and people surround them, and alert doctors
or caregivers if a fall emergency is detected; a service for
improving autonomy may require to check the fridge for
essential products and decide to make a shopping order if
needed according to the diet of the users; and a service that
manages comfort may require to graduate the light intensity
and the temperature, close or open blinds and windows, and
play certain music according to the users’ taste.

Note that the above presented AAL approaches provide
little support to define this type of coordination, where tasks
are executed in a specific order depending on environment
conditions, users’ state, or the outputs of previous tasks. The
research fields of task automation and context-awareness play
key roles in order to support these three types of services.
Machine-learning approaches have attempted to deal with the
automation of user routines by automatically inferring them
from past user actions [5][6]. These approaches have done
excellent work by automatically learning from user behavior;
however, assisting services need to be available from the
very beginning deployment of the system and a learning
process is not acceptable [16]. In addition, these approaches
may be intrusive for users because the repeated execution
of an action does not imply that the patients or caregivers
wants this automation. Also, they reproduce the actions that
users have frequently executed in the past and in the same
manner that they were executed. This prevents user tasks from
being carried out in a more efficient and convenient way, i.e.,
including medical professional guidelines, and does not allow
tasks that users did not perform before to be automated.

Context-aware rule-based approaches have made great ad-
vances in introducing context into software systems. To auto-
mate user tasks, they program rules that trigger the sequential
execution of actions when a certain context event is produced
[7][8]. However, these techniques are only appropriate for
automating relatively simple tasks [17]; hence, they usually
require large numbers of rules. If we also consider that these
rules have to be manually programmed [17], the understanding
and maintenance of the system may become very difficult.

In this work, we propose a solution based on executable
task models. The concept of task is intuitive enough to
be understandable by medical professionals and persons re-
sposible of the patients, facilitating their involvement in the
development process; they provide rich expressiveness that
allows us to precisely describe the assisting services that the
system must support to face specific situations; and they can
be automatically interpreted by a software infrastructure from
the initial deployment of the system. Historically, task-oriented
computing uses task modelling to facilitate the interaction
of users with the system. These systems have proven that

78

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

task modelling is effective in several fields such as user
interface modelling [18], assisting end-users in the execution
of tasks [19], etc. These works show the growing usage of
task modelling and its remarkable results and possibilities to
model system behavior. However, none of these works attempt
to describe AAL services. Hence, they provide neither enough
expressiveness to specify them nor enough accuracy to allow
their subsequent automation.

Finally, note that, unlike the above works, our approach
makes a step further for providing an integrated approach, cov-
ering all stages of the development process from requirement
elicitation to service execution. We concretely exploit knowl-
edge gathered by UCD techniques to derive the executable
models that represent the AAL services.

III. METHODOLOGY TO SUPPORT AAL

To achieve the automation of AAL services, we propose
a model-driven development methodology that supports their
development from requirements elicitation to their execution.
The methodology is proposed considering the following main
aspects:

• AAL services must be automated according to specific
medical guidelines and to the requirements provided by
medical professionals and patient responsible persons.
This is essential so that the tasks that are automated
can assist to the patients and medical staff (end-users
of the system) in the best way. If this information is
not taken into account, the AAL services could be very
intrusive for the end-users of the system, bothering them,
interfering in their goals, or even being dangerous. For
instance, according to medical guidelines, a softer room
illumination and relaxing music playing may help to
make patients more relaxed. If these guidelines are not
considered, medical or security staff would be needed
every time an aggressive behaviour is detected. Due to
the medical context, and the imprecise and ambiguous
nature of patient behaviour, it is very difficult for a
system to sense or infer this information [20]. Therefore,
the participation of the corresponding end-users is
absolutely necessary for supporting AAL.

• The AAL services must be context-adaptive. Context
information is essential to be able to execute the assiting
tasks in the opportune situation. Therefore, AAL services
must be described in a context-adaptive way. For instance,
if a health anomaly is detected in a patient when s/he
has fallen, the appropriate nurses or doctors should be
inmediately notified; however, if the patient health is
not in risk, it is enough to notify the nearest available
caregivers.

• The evolution of the AAL services must be facilitated
after system deployment. Some AAL services might
never change; however, most of them will. Patients’
behaviour and health may change over time and the
automated services to support them need to be adapted to
these changes. Otherwise, the system may become useless

and intrusive. Since these types of changes cannot be an-
ticipated at design time, the automation of AAL services
must be performed in such a way that their evolution after
system deployment is facilitated at runtime.

In order to deal with these aspects, the methodology we
propose consists on the following steps (see Figure 1):

• Requirements Elicitation: AAL Service Identification. In
order to capture of medical guidelines and to properly
capture the end-users requirements, we use UCD tec-
niques to facilite the participation of the specific end-
users. We use UCD techniques because they give exten-
sive attention to needs, wants, and limitations of users at
each stage of the development process, which is crucial
in the design of AAL systems. This methodology step
will be further explained in Section IV.

• AAL Service Modelling. This activity consists of mod-
elling the AAL services that must be automated by
the system. An AAL service is a set of tasks that are
habitually performed in a certain context for assisting
patients and medical staff. The following steps must be
followed to specify the identified AAL services:

– Context modelling. Analysts specify the context
properties on which the AAL services depend, create
the necessary rules to infer properties values, and
set the property values that need to be manually
introduced.

– AAL service modelling. Using the context-adaptive
task model, the analysts specify the AAL services
to be automated according to the context previously
specified. Each AAL service consitutes a coordina-
tion of tasks and is specified as a task hierarchy in
which the service represents the highest task in the
hierarchy. Each service needs to be progressively
broken down into simpler tasks until they can be
automatically executed by a pervasive device.

– Modelling validation. The AAL services’ modelling
is validated with the end-users to ensure that the
tasks will be automated according to patients’ needs
and medical guidelines. Thus, following an iterative
process, the service modelling (and if needed the
context modelling), must be refined with the end-
users participation until they agree with the specified
AAL services. It is important to note that, in this
way, the modelling is complemented by both the
knowledge of the system analysts, which contributes
to improving the performance of the identified AAL
services; and the knowledge of the medical pro-
fessionals and persons responsible of the patients’,
which contributes to taking into account the needs
and demands of the end-users. After validating the
service modelling with the end-users, analysts also
validate that the models are correctly formed and
without inconsistencies.

– Device linkage: once the modelling has been vali-
dated, the analysts link each leaf task with a perva-

79

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 1. Methodology for supporting AAL Services

sive device that can carry it out. Pervasive devices
can control the objects in the environment (e.g.,
switching lights on, activating the security alarm,
etc.) and sense context information (e.g., detection of
presence, measurement of temperature, etc.). Specif-
ically, we consider a pervasive device to be an
entity that provides a coherent set of functionality
which is described in terms of atomic operations
(or methods). Thus, the linkage between leaf tasks
and the corresponding pervasive device is made in
the task model by indicating the name of the cor-
responding pervasive device and its operation. The
implementation of these devices is out of the scope
of this paper; an approach such as PervML [21][22]
could be used for developing them.

Since the used context-adaptive task models are exe-
cutable models [23], this step finishes the AAL service
development. This also allows that the specified AAL
services can be validated by using prototypes. This would
require that the automation of the specified AAL services
is done in a simulation mode. This mode should allow
analysts to cause context changes and to easily observe
the execution of the services according to context.
This methodology step will be further explained in Sec-
tion III.

• AAL Service Automation. To enable the automation of
the specified AAL services in the opportune context, the
following two steps must be performed:

– Deployment of the system in the target platform. To
deploy the system, analysts install each component
of the software infrastructure in an OSGi server.
We use an OSGi server [24] because it provides
numerous benefits and facilities to make dynamic
updates, to easily reuse components, or to deploy the
system. In addition, the context model and the task
model where the AAL services are specified must be
saved in the folder where OSGi is installed.

– Running the system. To run the system, analysts
start the components installed in OSGi. From this
moment, the context is continuously monitored and
the specified AAL services are automated in the
appropriate context. It is important to note that, since
the models are directly interpreted, they are the only
representation of the AAL services to be automated.
This facilitates their understanding, maintenance and
evolution.

This methodology step will be further explained in Sec-
tion VI.

• Evolution of the AAL services if needed. Medical staff and
patient behaviour as well as patients’ health may change
over time and the AAL services that are automated
may become obsolete or useless. If this happens, the
automated AAL services can be evolved according to
the new requirements. To allow this evolution, evolution
mechanisms are provided. This methodology step will be
further explained in Section VI.

In the next sections we explain how these steps are sup-
ported.

IV. AAL SERVICE REQUIREMENT’ ELICITATION

In order to capture the requirements for automated services,
we use UCD techniques. AAL services can be defined for
specific patients that suffer from very concrete disabilities or
for a group of patients that share a same profile. Therefore,
the elicitation process is based on the description of personas
and technological scenarios. Their conjunct use increases the
ability to identify problems and exceptional cases [25] and to
envisage the system to be [26].

Personas are descriptive models of system-to-be users based
on behavioural data, derived from patterns observed during
interviews, with the aim of representing the diversity of
observed motivations, behaviours, and mental models [27].
Examples can be found in Figure 2.

In the context of AAL, a Persona may represent a single
patient with specific needs, a group of patients that share same
needs, or a medical profile (a doctor, a nurse, a caregiver, etc.).
In the case of being either a group of patients or a medical
profile, they are personified through a fictitious character that
represent them. For the former, the character has the needs that
are shared by all of them; for the latter, the character represents
the professional skills that are shared by all the people of
this profile. This facilitates a shared understanding of who the
patients and medical professionals are, and what they need or
can provide in order to make decisions about AAL services. In
addition, Personas provide a powerful tool for communicating
between computer analyst and medical professionals in order
to develop and evaluate AAL services. Figure 2 shows two
examples of Persona. The first one, Maria, represent a patient
with senile dementia; the second one, Sabrina, represent an
experienced caregiver.

Personas are complemented with technological scenarios
that illustrate how they interact with the system. Technological

80

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

MariaM·MSenileMDementiaMPatient

78MyearsMold
Description

SheMhasMbeenMinMtheMnursingMhomeMforMthreeMmonth
andMisMaffectedMbyMsenileMdementiaGM
SheMhasMproblemsMwithMmemoryMandMdisorientationGM
SheMisMnotMunderMspecificMmonitoringMbecauseMsheMhaveM
neverMtriedMtoMescapeGMSheMcanMwalkMthoughMtheMrecent
assessmentMmadeMbyMtheMphysiotherapistMgivesMsome
balanceMproblemsGMSheMmovesMbyMtheMsustainMofMthe
handrailsMorMbyMusingMtheMstickGWishes

MariaMwantsMtoMremainMindependentMevenMifMsheMisMinMtheMnursing
homeGMSheMwouldMlikeMtoMbeMableMtoMmoveMinMtheMcentreMwithout
theMhelpMofMoperatorsKMseeMherMfamilyMmoreMoftenMandMdoMmore
recreationalMactivitiesG

SabrinaM·MExperiencedMCaregiver
4FMyearsMold Description

SheMMhasMbeenMworkingMasMaMcaregiverMinMtheMnursingMhome
forM5MyearsMassistingMtheMguestsMinMallMtheirMdailyMactivitiesG

Wishes

SheMwouldMlikeMtoMhaveMmoreMtimeMforMknowingMbetterMherMguestsGM
SheMwouldMworkMinMaMmoreMfriendlyMstructureKMinMwhichMguests
areMfreeMtoMmoveMinMandMoutG

Problems
SheMlikesMtheMsocialMsideMofMherMworkGMSheMcomplaintsMshe
hasMnotMtimeMforMestablishingMgoodMrelationshipsMandMto
knowMguestsGMTheMnightMturnMisMtheMmostMdifficultMsinceMsheM
isMaloneMforM8MhoursMwithM36MguestsGMSheMthinksMtheM
computerMisMtooMdifficultMtoMuseG

Technical Scenario:
MariaMisMleavingMtheMrestorationMroomMandMgoesMupstairsMinMorderMto
reachMherMprivateMroomMbutMwhenMsheMisMonMtheMstaircaseKMsheMfallsG
TheMcameraMidentifiesMtheMeventMandMsendsMwarningMsignalsMto
caregiversMindicatingMthatMsomeoneMhasMfallenMdownMinMtheMstaircaseM
betweenMtheMsecondMandMthirdMfloorsGMSabrinaMisMavailableMandMcloseM
toMtheMfallMlocationKMthereforeKMsheMreceivesMthisMnotificationMandM
notifiesMthatMsheMisMtakingMtheMeventMinMaccountGMSabrinaMreachesMMariaM
andMevaluatesMherMstateGMMariaMisMactiveMandMsheMtalksMandMreasonsM
perfectlyKMsheMisMafraidMbutMsheMisMnotMinMpainMforMtheMhitGMSabrinaM
rapidlyMunderstandsMthatMallMisMOKMandMsheMindicatesMthatMtheM
emergencyMisMoffGMMariaMisMhelpedMtoMstandMandMtoMreturnMinMherMroomGM
AtMtheMendMofMtheirMturnKMMSabrinaMandMGiannaMhaveMtoMwriteMtheMreportM
forMtheMnextMturnMcolleaguesGMTheyMturnMonMtheirMcomputerMandMfindManM
automaticMreportMwithMallMdataMrelativeMtoMtheMeventGMCamerasKMaudioM
andMRFIDMsensorsMhaveMcollaboratedMtoMcollectMdataMandMtoMcompileM

Fig. 2. Example of personas en technical scenario

Scenarios are short narrative stories that represent Personas
in their context, supported by the envisaged technology (see
Figure 2). Many techniques can be profitable for envisioning
system functionalities and services; examples are: internal
meetings, brainstorming, focus groups and scenarios. The
output of these techniques are the technological scenarios that
concretely describe the behaviour of services as experienced
by specific, though fictional, users. Stories help the design
teams in negotiating a shared representation of the domain
and hence a more effective collaborative elicitation of re-
quirements. In this work, scenarios describe how the system
interact with patients and medical professionals when specific
situations occur. For instance, the scenario presented in the

bottom side of Figure 2 explain how the system must act when
a patient fall is detected.

V. AAL SERVICE MODELLING

Once personas and scenarios are defined, the AAL services
to be automated must be identified and modelled from the
obtained requirements. According to the complexity of the
system, the modelling can be done manually by directly
analysing the requirements, or it could be done by using some
type of transformation technique such as the one presented in
[28], which is based on the definition of intermediate goals.

The modelling of the AAL services is performed by specify-
ing two models: a context model (which specifies the context
on which the services to be automated depend), and a context-
adaptive task model (which describes the tasks that must be
carried out for each service according to the context described
in the context model).

The context model represents the context relevant for the
AAL services so they can be executed in a non-intrusive
way. Specifically, the model represents information regarding
Patients, Medical Staff, Locations, Environment Properties,
Policies, Temporal Properties, Services and Events. The model
is specified in the Ontology Web Language (OWL)[29], which
is an ontology markup language W3C standard that greatly fa-
cilitates knowledge automated reasoning and inference. Thus,
the classes of the ontology are defined as OWL classes,
their relationships as OWL object properties, their attritutes as
datatype properties, and the context specific to the system is
defined as OWL individuals. For specifying the context model,
we use Protégé [30], which is a free open source ontology
editor. A context model example created using Protege is
shown in Figure 3. From left to right, this model shows some
context classes (such as Patient, Caregiver, Location, Environ-
mentProperty. etc.), some relationships among these classes
(such as locatedIn and isRelatedWith), some data properties of
the classes (such as email and id), and some individuals (such
as RestorationRoom and RestorationRoom NoiseLevel). This
model contains the following types of context information:

• Manually introduced, such as the personal information of
the patients and caregivers. This information is introduced
by the analysts.

• Automatically captured, such as locations and health
parameters of patients. This information is captured by
the context manager that will be explained in the next
section.

• Automatically inferred, such as healthAnomaly, which is
set to true when a health parameter is outside the normal
values. This information is automatically set by inference
rules created in the ontology.

Using the context model, the task model describes context-
adaptive AAL services precisely and at a high level of abstrac-
tion. As an example, Figure 4 shows the modelling of the AAL
service that supports the scenario of patient falls. The root
task of the hierarchy represents the service and is associated
to a context situation, which indicates the context conditions

81

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 3. Context Model Example

Fig. 4. Service modelling using the context-adaptive task model: dealing with a fall AAL service

82

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

whose fulfilment starts the execution of the service (PA-
TIENT.situation=alone AND PATIENT.falldown=true). The
root task is broken down into simpler tasks (Capture current
state, Active emergency, Measure health indicator, Alert staff,
Report the incidence). An intermediate task must be broken
down until the leaf tasks can be executed by an available
pervasive device. Each leaf task must be related to a per-
vasive device that can carry out the task. For instance, the
active emergency task is associated to a pervasive device that
interacts with the emergency system to turn it on. This relation
is established by simply indicating the device identifier.

If the tasks of the same parent are related to each other, they
are carried out in a sequential order according to the indicated
temporal relationships. These relationships may depend on
context. Thus, in the example, the current state is captured at
the same time (which is indicated by the temporal relationship
|=|) that the emergency is activated and the health indicator
are measured; after that (temporal relationship >>) the staff
is alerted; and finally, the incident is reported when the
emergency is deactivated (temporal relationship with a context
condition indicated between brackets >>[]>>).

In addition, a task can have a context precondition (repre-
sented between brackets before its name), which defines the
context conditions that must be fulfilled so that the task is
performed (e.g., the notify nurses and doctors task is only
executed if HealthAnomaly is true). If the tasks of the same
parent are not related to each other, only the first task whose
context precondition is satisfied is executed. For instance, if the
Notify nurses and doctors is executed its sibling tasks Notify
caregivers is not.

For user-intensive systems, ontology classes can be used in
the context conditions instead of individuals. The condition
is satisfied when it is satisfied for one of the individuals of
the used class. For instance, the Dealing with a fall AAL
service has to be executed for every patient. As shown in
Figure 4, instead of specifying the same AAL service for each
patient, we specified the service once and used the situation
and falldown context properties of the PATIENT class in its
context situation, indicating by using capital letters that it is
an ontology class and not an individual. Thus, the context
condition has to be checked for every individual of the Patient
class and is activated if any patient fulfils the condition.

For facilitating the specification of the task model, we
developed a graphical editor using the Eclipse platform, and
the EMF and GMF plugins. By using this editor, the model can
be graphically edited as shown in Figure 4. These descriptions
are stored in XMI (XML Metadata Interchange), which is
machine-interpretable at runtime.

More details about the context model, and the task model
and its editor can be found in [23].

VI. AAL SERVICE AUTOMATION AND EVOLUTION

In order to automate the AAL services as specified in the
models and facilitate service evolution after system deploy-
ment, we have used the software infrastructure presented in
[1]. This infrastructure, which is shown in Figure 5, directly

interprets the context model and the task model at runtime to
automate the AAL services as described. This infrastructure
is built on top of the pervasive devices used to sense context
changes and to perform the leaf tasks of the AAL services
specified in the models.

The software infrastructure is composed by the following
components (see Figure 5): mechanisms for managing the
models at runtime, a context manager, and an automation
engine.

Mechanisms for managing the models at runtime.
In order to manage the context model and the task
model at runtime, we have designed and implemented
Ontology-based Context model management mechanisms
(OCean) and Model-based User Task management mecha-
nisms (MUTate). These mechanisms can be downloaded from
http://www.pros.upv.es/art/.

• OCean: The context on which the behaviour patterns
depend is specified in the context model as OWL individ-
uals. Thus, in order to manage these individuals, a set of
Ontology-based Context model management mechanisms
(OCean) is needed. OCean allows, for instance, updating
the individuals of the context model, creating a new
individual (e.g., the idealTemperature individual of the
Preference ontology class), and reading its properties or
modifying them when needed. We have extended OCean
to support the checking of context conditions in user-
intensive services. In this way, when an ontology class
(represented in capital letters) is used in a condition, the
condition is considered as satisfied when it is satisfied for
one of the individuals of the class.

• MUTate: In order to support the management of the task
model, a set of Model-Based User Task management
mechanisms (MUTate) is needed. MUTate allows, for
instance, searching for an AAL service that have to be
executed, obtaining its related context situation, adding
new tasks to an AAL service, and creating an AAL
service.

OCean and MUTate provide access to the models by using
the same vocabulary defined in the context ontology and
the task model, respectively. It is important to note that, in
this way, they provide high-level abstraction mechanisms that
facilitate the interaction with the models without the need to
stop the system. Both, OCean and MUTate are needed in order
to achieve the automation and evolution of the specified AAL
services.

The context manager monitors the pervasive sensors install
in the environment to detect and process context changes. The
context manager also updates the context model according
to the detected context changes. The context manager uses
OCean to perform this update at runtime.

The automation engine, named MAtE (Model-based Au-
tomation Engine), is in charge of automating the AAL services
in the opportune context by interpreting the models at runtime
using MUTate. To automate an AAL service, MAtE executes
its system tasks by taking into account the current context,

83

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Automation
Engine

Lamp Blind
Actuator

Movement
Detector

User
Location

Alarm Lighting

DoorControl
Window
Control Devices

Sensors and

Actuators

Task Model

Calendar

Personal
data

Context Model

Context
Manager

BlindControl

Window
Actuator

Alarm

Interpret Interpret
Update

Monitor Execute

Inform

1.1.

1.2.

1.3.

2.

3.

Door

OCean MUTate

Fig. 5. Runtime infrastructure

their relationships and their refinements. Each system task is
executed by MAtE using the pervasive service related to it.

A. The Software Infrastructure in Execution

The software infrastructure executes the AAL services as
described in the task model by performing the following steps
(see Figure 5):

1) Detect context changes: A context change is physically
detected by a sensor. The context manager monitors
all the sensors to check context changes (step 1.1 in
Figure 5). For instance, the context manager monitors
periodically the location of patients and whether or not
a fall is detected. When a change is detected (e.g., a
patient has fallen down) the context manager updates the
context model using OCean (step 1.2 in Figure 5) and
notifies the automation engine about the context change
(step 1.3 in Figure 5).

2) Interpret context situations: After receiving the noti-
fication of a context change, the engine analyzes the
context situations of the AAL services specified in the
task model to check if any of them depend on the context
change. Then, by making use of the context manager,
the engine checks if any of those context situations are
fulfilled. For instance, when the context manager notifies
the engine that a user has fallen down, the engine gets
the context situation that depends on this aspect, such
as the one shown in Figure 4. If the fallen user is also
alone, then the context situation of this AAL service is
satisfied.

3) Execute the AAL services: The engine executes the
AAL services whose context situation is satisfied. The
engine uses the context manager to check the context
conditions. To execute each AAL service, the engine

executes its leaf tasks according to their refinements,
their context conditions in the current context, and their
temporal relationships. For instance, when the context
situation of the AAL service focused on detecting falls
(see Figure 4) is satisfied, the engine captures the current
state, activates the emergency, and measures the health
indicators by using the corresponding pervasive devices.
Next, the rest of tasks are executed according to the task
plan defined in the task model (see Figure 4).

If the requirements of the AAL services change over time,
OCean and MUTate can be used to modify the models
at runtime to perform the required evolutions. Using these
mechanims, the services can be evolved by using concepts
of high-level of abstraction such as user tasks, patient, or
context situations. For instance, in order to make sure that
an automated service executes one task instead of another,
analysts just need to replace the corresponding task; in order
to change the order in which tasks must be executed, analysts
just need to modify temporal relationships; in order to change
the situations in which services must be executed, analysts just
need to change a context condition.

In addition, models are decoupled from the implementation
of pervasive devices since the models just use identifiers to
reference these services. This also facilitates the evolution of
the assisting services since they are independent of pervasive
technologies and internal implementation aspects.

B. Implementation Details

The context manager and the automation engine are im-
plemented in Java/OSGi technology and are run in an OSGi
server together with the pervasive devices.

Using OSGi, the context manager can listen to the changes
produced in the services to detect context changes and can
also inform the engine when a change is detected. To execute
a task, the engine searches for the pervasive device associated
to the task in the OSGi server by using its service registry.
Then, the engine executes the corresponding device method
by using the Java Reflection capabilities.

To manage the task model at runtime, MUTate uses the
EMF Model Query plugin that allows a system to work with
any model by querying its structure at runtime. To manage
the context repository at runtime, OCean uses the OWL API
2.1.1, which provides facilities for creating, examining, and
modifying an OWL model; and the Pellet reasoner 1.5.2.,
which allows the OWL model to be queried. More technical
details can be found in [31].

VII. VALIDATION OF THE PROPOSAL

Following the guidelines provided in [32], we have devel-
oped a case-study based evaluation where the automations
needed for the ACube research project were created. ACube is
a project founded by the local government of the Autonomous
Province of Trento in Italy. ACube aims at designing an
automated user intensive system to be deployed in nursing
homes as a support to medical and assistance staff.

84

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Using the proposed methodology, we designed and devel-
oped an automated system for a specific nursing home subject
of study in the ACube project. The main goal of the system
was to automate AAL services that were usually performed
by medical and assistance staff is to help them to make their
work more efficiently in order to enhance their quality of
work and the quality of life of their patients. By automating
AAL services, the tasks of medical and assistance staff can
be greatly reduced freeing them so that they can spend more
time with their patients. In addition, the tasks that medical and
assistance staff perform can be improved to be more efficient
because the tasks can be previously analysed and also can be
carry out even when none caregiver is present.

According to the methodology requirements (see Section
III), we evaluated the following research questions:

1) Does the approach facilitate end-users participation in
the AAL service design to take into account medical
professional guidelines and the specific requirements
from medical professionals and patients?

2) Does the approach correctly automate the specified AAL
services in a context-adaptive way?

3) Does the approach allow the automated AAL services
to be evolved after system deployment?

We now summarize the results of this evaluation. More
details can be found in [31].

A. Evaluating End-Users’ Participation

Our approach makes use of design models at runtime. It
provides a task model that describes the AAL services by
using concepts of a high-level of abstraction that are close to
the domain and to end-users’ knowledge (concepts such as
task, preference, location, patient, etc.). This helps end-users
to participate in the service description since it allows them to
focus on the main concepts (the abstractions) without being
confused by low-level details [33].

The ACube consortium had a multidisciplinary nature, in-
volving software engineers, sociologists and analysts, and it
is characterized by the presence of professionals representing
end-users directly engaged in design activities. For developing
the case study, we interact with some of these professionals
which were responsible of analysing the requirements for the
AAL services.

After describing the personas and their scenarios, we anal-
ysed them and designed the AAL services that the system
should automate for supporting each one of the scenarios.

We then discussed the designed task models with the
professionals in charged to include medical guidelines and
validate the tasks with them. To deal with these discussions, we
briefly explained the main concepts of the task model and the
behaviour of two AAL services. Then, we checked the model
comprehension using a short oral questionnaire that asked
questions such as: how many tasks will be executed in this
service?; when will this service be activated?; which is the next
task that will be executed?. These questions make the users
reason about the model, which is a recommended technique
to evaluate the understanding of a model [34]. We found that

the task model is very useful in discussing and validating the
AAL services to be automated since it was very intuitive for
them after explaining a couple of examples. If something was
not specified the way the professionals considered suitable, we
refined the model to fulfil their requirements. We repeated this
process until the professionals agreed with the specification.
This allowed us to describe the AAL services by taking into
account the medical guidelines and requirements provided by
the professionals.

Figure 4 shows the final specification of the AAL service to
support patient falls. These tasks can be described as follows:
the service is activated when it is detected that a patient falls
and none of the caregivers or medical staff is around. When
this happens, the system captures the current context state,
activates the emergency state and measures the health of the
patient. Then, the system alerts either the medical staff if the
patient health is critical or the nearest caregivers if the patient
is fine. Finally, when the emergency is under control, a report
about the incidence is created and sent to the involved staff
so that they can validate it.

B. Evaluating AAL Service Automation in a Context Adapta-
tive way

To execute the described AAL services in a context-
adaptive way, the task model describes each AAL service
as a coordination of tasks that are performed in the opportune
context, i.e., in a context-adaptive way. In addition, in order
to be aware of the current context and to be able to automate
the AAL services accordingly, the software infrastructure pro-
vides a context manager. It dynamically manages the context
changes produced at runtime by using the context repository.

To validate the context adaptation, we put the system into
operation to automate the described AAL services after the
task models were validated with the end-users. We used a
device simulator and an Equinox distribution (which is the
OSGi implementation of Eclipse) running in the PC. To
support the functionality needed to execute the described
AAL services, we developed the required simulated pervasive
devices (a total of 17 different pervasive devices). See [31] for
more details about these devices.

We then evaluated the feasibility of our software infras-
tructure. Using the running system, we passed the JUnit tests
developed to check that the specified AAL services were
correctly automated as specified in the models. Since the
automation of the AAL services are triggered as a response to
context changes, we caused these context changes by changing
the state of the sensors using the simulator. We changed the
state of the sensors simulating the scenarios of the requirement
elicitation phase. For instance, to enable the Dealing with a
Fall AAL service, we simulate that a patient fell down when
she was alone. This makes the context situation of the AAL
service fulfil (see Figure 4).

In the same way, we simulated the rest of the scenarios of
the case study and executed the prepared JUnit tests. For all
of them, we checked that they were executed as specified in
the models.

85

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

PATIENT.falldown=true Dealing
withCaCfall

>>[EmergencyCdeactivated]>>Capture
currentCstate

AlertCstaff

NotifyCnursesCor
doctors

ReportCthe
incidence

Create
report

I=I

>>

>>

MeasureChealth
indicators

>>

Send
report

[HealthAnomaly=true]
NotifyCnursesCandCdoctors

[HealthAnomaly=false]
NotifyCcaregivers

FindCtheCbestCnursesCor
doctorsCforCtheCpatient

Activate
emergency

I=I

FindCavailableCcaregivers
closerCtoCtheCpatient

>> Notify
caregivers

[MEDICALSTAFF.location=
PATIENT.location]

NotifyCmedicalCstaff

GetCdoctorsCorCnursesCthat
areCinCtheCpatientClocation

>> InformCthemCabout
patientCstate

Changed Context Situation

Added Task

Fig. 6. Example of a AAL services’ evolution

Furthermore, we evaluated the system performance. Models
are manipulated at runtime by OCean and MUTate. Therefore,
these operations have to be efficient enough so that the
system response is not drastically affected. In order to measure
the system response, we quantified the temporal cost of the
operation done with randomly generated large models. We
used a laptop intel core i7-4600U, 2.70GHz and 8GB of
RAM, with Windows 8.1 end Eclipse Modelling Kepler 32
bits. We used the context model presented in Section V and
an empty task model to be randomly populated by means of
an iterative process. The context model was populated with
100 new context individuals in each iteration, while the task
model was populated with one new AAL service whose task
structure formed a binary tree, varying the depth and width of
the first level of the tree each iteration.

For each iteration, we tested all the model operations 20
times and calculated the average temporal cost of each one. As
an example, the operation of OCean with the highest temporal
cost was the operation to get a specific context individual,
which took less than 0.2 milliseconds for 6000 individuals.
The temporal cost of the MUTate model operations with
the highest cost are the operations for getting, updating, and
deleting a task. These costs are very similar since all of them
run the same query to obtain the corresponding task. Even with
a model population of 45612 tasks, these model operations
provided a fast response (less than 8 milliseconds). Therefore,
the results show that the response time is not drastically
affected when models with a high number of instances are
used.

C. Evaluating AAL Service Evolution after System Deploy-
ment

To automate the described AAL services in such a way that
their evolution after system deployment is facilitated, the
automation engine directly interprets the task model at run-
time. The model is machine-processable and precise enough
to be executed. Therefore, when a context change is detected
by the context manager, it informs the engine. The engine
then reads the AAL service information from the task model
and executes the corresponding pervasive services according
to context. With this strategy, the task model is the only

representation of the AAL services to be automated. This
allows them to be adapted by simply updating the model. As
soon as it is changed to evolve the AAL services, the changes
are also taken into account by the engine.

To validate this runtime evolution, we changed the task
model using OCean and MUTate to perform the following
types of updates: add, delete and modify tasks; modify context
situations, task order, context preconditions, temporal relation-
ships, etc.

After each update, we simulated the fulfilment of the context
situations of the AAL services and applied the JUnit tests
again to check that the tasks were correctly executed according
to the performed evolution. For instance, Figure 6 shows an
example of these evolutions. It shows how the Dealing with a
Fall AAL service has been modified to be executed regardless
if the patient is alone or not. In addition, it has been added
the Notify medical staff task that is executed when there is
medical staff in the same location of the patient; if so, the
doctors or nurses are notified about the patient state since they
can look after the patient straightaway. If there is not medical
staff in the same location, then the system follows the same
plan that was specified in the previous version (if any health
anomaly is detected, then the appropriate doctors or nurses are
notified; otherwise, the closer available caregivers are notified).
For each performed evolution, we applied again the JUnit tests
checking that all the AAL services were correctly executed.

VIII. CONCLUSIONS AND FURTHER WORK

In this work, we have presented and evaluated a model-
driven approach that achieves the automation of services
for improving AAL. These AAL services are represented
in high-level abstraction context-adaptive task models that
are executable, i.e., they are directly executed by a software
infrastructure that automates the AAL services as specified in
the models. This considerably facilitates the further evolution
of the AAL services by directly changing the models (i.e.,
at the modelling level) at runtime, which is one of the top
challenges in software evolution research [35]. As soon as the
models are changed to evolve the AAL services, the changes
are also taken into account by the automation engine.

86

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As further work, we plan to develop an end-user tool that al-
lows medical professionals to create and evolve AAL services
by their own. This tool will provide medical professionals with
intuitive user interfaces that let them describe assisting services
by using their own knowledge and concepts. Then, a model-
to-model transformation will be applied in order to generate
context-adaptive task models. As a previous experience in the
development of this type of tools we developed an end-user
tool [36] focused on the adaptation of smart home systems.
This tool allows home inhabitants to create and evolve the
routine tasks that they want to have automated. Our goal is
to reuse all this experience to create a similar tool focused on
AAL environments.

ACKNOWLEDGMENT

This work has funded by the Research Fund KU Leuven.

REFERENCES

[1] E. Serral, P. Valderas, and V. Pelechano, “A software infrastructure for
executing adaptive daily routines in smart automation environments,” in
ADAPTIVE 2013, The Fifth International Conference on Adaptive and
Self-Adaptive Systems and Applications, 2013, pp. 30–35.

[2] H. Steg, H. Strese et al., “Ambient assisted living–european overview
report,” 2005.

[3] B. Takács and D. Hanák, “A mobile system for assisted living with
ambient facial interfaces,” International Journal on Computer Science
and Information System, vol. 2, pp. 33–50, 2007.

[4] A. Association. (2014) Ambient assisted living (aal) joint programme.
[Online]. Available: http://www.aal-europe.eu/

[5] H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish,
and H. Duman, “Creating an ambient-intelligence environment using
embedded agents,” IEEE Intelligent Systems, vol. 19, no. 6, pp. 12–20,
2004.

[6] P. Rashidi and D. J. Cook, “Keeping the intelligent environment resident
in the loop,” in IE 08, 2008, pp. 1–9.

[7] K. Henricksen, J. Indulska, and A. Rakotonirainy, “Using context and
preferences to implement self-adapting pervasive computing applica-
tions,” Software: Practice and Experience, vol. 36, no. 11-12, pp. 1307–
1330, 2006.

[8] M. Garcı́a-Herranz, P. Haya, and X. Alamán, “Towards a ubiquitous
end-user programming system for smart spaces,” Journal of Universal
Computer Science, vol. 16, no. 12, pp. 1633–1649, 2010.

[9] A. Cooper, R. Reimann, and D. Cronin, About face 3: the essentials of
interaction design. John Wiley & Sons, 2012.

[10] A. Dohr, R. Modre-Opsrian, M. Drobics, D. Hayn, and G. Schreier, “The
internet of things for ambient assisted living,” in Information Technol-
ogy: New Generations (ITNG), 2010 Seventh International Conference
on. Ieee, 2010, pp. 804–809.

[11] F. G. Miskelly, “Assistive technology in elderly care,” Age and ageing,
vol. 30, no. 6, pp. 455–458, 2001.

[12] P. P. Portal. (2014) Persona project portal. [Online]. Available:
http://www.aal-persona.org

[13] J. A. Kientz, S. N. Patel, B. Jones, E. Price, E. D. Mynatt, and G. D.
Abowd, “The georgia tech aware home,” in CHI’08 Extended Abstracts
on Human Factors in Computing Systems. ACM, 2008, pp. 3675–3680.

[14] U. of Illinois at Urbana-Champaign. (2014) I-living: Assisted living
project. [Online]. Available: http://lion.cs.uiuc.edu/assistedliving

[15] J. Nehmer, M. Becker, A. Karshmer, and R. Lamm, “Living assistance
systems: an ambient intelligence approach,” in Proceedings of the 28th
international conference on Software engineering. ACM, 2006, pp.
43–50.

[16] E. Serral, P. Valderas, and V. Pelechano, “Improving the cold-start
problem in user task automation by using models at runtime,” in
Information Systems Development. Springer, 2011, pp. 671–683.

[17] D. Cook and S. Das, Smart environments: Technology, protocols and
applications. Wiley-Interscience, 2004, vol. 43.

[18] C. Pribeanu, Q. Limbourg, and J. Vanderdonckt, “Task modelling for
context-sensitive user interfaces,” Interactive Systems: Design, Specifi-
cation, and Verification, pp. 49–68, 2001.

[19] R. Huang, Q. Cao, J. Zhou, D. Sun, and Q. Su, “Context-aware active
task discovery for pervasive computing,” in International Conference on
Computer Science and Software Engineering, 2008, pp. 463–466.

[20] F. M. Reyes, “Issues of sensor-based information systems to support
parenting in pervasive settings: A case study,” Emerging Pervasive
and Ubiquitous Aspects of Information Systems: Cross-Disciplinary
Advancements, p. 261, 2011.

[21] J. Muñoz, E. Serral, C. Cetina, and V. Pelechano, “Applying a model-
driven method to the development of a pervasive meeting room,” in
ERCIM News, April 2006, pp. 44–45.

[22] E. Serral, P. Valderas, and V. Pelechano, “Towards the model driven
development of context-aware pervasive systems,” Special Issue on
Context Modelling, Reasoning and Management of the Pervasive and
Mobile Computing (PMC) Journal, 2010.

[23] E. Serral, P. Valderas, and V.Pelechano, “Context-adaptive coordination
of pervasive services by interpreting models during runtime,” The
Computer Journal, vol. 56, no. 1, pp. 87–114, 2013.

[24] (2014) Osgi. http://www.osgi.org/.
[25] A. Sutcliffe, N. Maiden, S. Minocha, and D. Manuel, “Supporting

scenario-based requirements engineering,” IEEE Trans. on Soft. Eng.,
pp. 1072–1088, 1998.

[26] C. Rolland and C. Salinesi, “Supporting Requirements Elicitation
through Goal/Scenario Coupling,” in Conceptual Modeling: Foundations
and Applications. Springer, 2009, p. 416.

[27] A. Cooper, R. Reimann, and D. Cronin, About face 3: the essentials of
interaction design. Wiley India Pvt. Ltd., 2007.

[28] E. Serral, L. Sabatucci, C. Leonardi, P. Valderas, A. Susi, M. Zancanaro,
and V. Pelechano, “Incorporating users into ami system design: From
requirements toward automation,” in Information Systems Development,
R. Pooley, J. Coady, C. Schneider, H. Linger, C. Barry, and M. Lang,
Eds. Springer New York, 2013, pp. 499–511.

[29] Smith, Welty, and McGuinness, “Owl web ontology language guide,”
2004.

[30] N. F. Noy, M. Crubézy, R. W. Fergerson, H. Knublauch, S. W. Tu,
J. Vendetti, M. A. Musen et al., “Protege-2000: an open-source ontology-
development and knowledge-acquisition environment,” in AMIA Annu
Symp Proc, vol. 953, 2003, p. 953.

[31] E. Serral, “Automating routine tasks in smart environments. a context-
aware model-driven approach,” Ph.D. dissertation, Technical University
of Valencia, DSIC, 2011.

[32] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[33] F. Paternò, “From model-based to natural development,” HCI Interna-
tional, pp. 592–596, 2003.

[34] A. Gemino and Y. Wand, “Evaluating modeling techniques based on
models of learning,” Communications of the ACM, vol. 46, no. 10,
October 2003, modeling comprehensibility.

[35] T. Mens, “The ercim working group on software evolution: the past and
the future,” in IWPSE-Evol workshops. ACM, 2009, pp. 1–4.

[36] E. Serral, F. Pérez, P. Valderas, and V. Pelechano, “An end-user tool for
adapting home automation to user behaviour at runtime,” UCAmI’10,
pp. 201–210, 2010.

87

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Testing Self-Adaptive Software:
Requirement Analysis and Solution Scheme

Georg Püschel, Sebastian Götz, Claas Wilke, Christian Piechnick, and Uwe Aßmann
Software Technology Group, Technische Universität Dresden

Email: {georg.pueschel, sebastian.goetz1, claas.wilke, christian.piechnick, uwe.assmann}@tu-dresden.de

Abstract—Self-adaptive software reconfigures automatically at
run-time in order to react to environmental changes and fulfill
its specified goals. Thereby, the system runs in a feedback loop
which includes monitoring, analysis, adaptation planning, and
execution. To assure functional correctness and non-functional
adequacy, verification and validation is required. Hence, the
feedback loop’s tasks have to be examined as well as the adapted
system behavior that spans a much more complex decision space
than traditional software. To reduce the complexity for testers,
models can be employed and later be used to generate test
cases automatically—an approach called Model-based Testing.
Alternatively, the models can be executed directly for which
simulation-based validation can be employed. For both methods,
an engineer has to specify validation models expressing the
system’s externally perceivable behavior as well as expectations
derived from requirements. In this paper, we perform a Failure
Mode and Effects Analysis on a generic perspective on self-
adaptive software in order to derive additional requirements to
be coped within test modeling. Besides functional requirements,
we discuss non-functional requirements in particular. From these
requirements, a reference solution scheme is derived that can
be used to construct and evaluate validation methods for self-
adaptive software. For illustration, we provide an example from
the home robotics domain.

Keywords—Self-adaptive Software; Model-based Testing; Simu-
lation; Failure Modes and Effects Analysis.

I. INTRODUCTION

In our original work [1], we studied requirements that have
to be coped with in testing self-adaptive software (SAS, [2]).
This certain kind of system reconfigures automatically at run-
time according to sensed context changes. Thus, it is able
to effectively and efficiently fulfill its specified goals under
changing conditions. For instance, a beneficial application
area of SAS are Cyber-physical Systems (CPS, [3]). CPS
reflect physical objects, software, and their interplay in order
to reason about them. Due to the SAS’s ability to automatically
adapt to changes in such a context, a CPS may operate
autonomously without the requirement of a strictly controlled
factory environment. Thus, the development of sophisticated
methods and technologies for developing SAS may help to
make systems like autonomous cars and home robotic systems
become reality.

The user of an SAS can delegate tasks to the system at
run-time. Such tasks do not have to be known to the system
in advance. Several systems support descriptive formats like
goal models or rules for this purpose. Furthermore, there may
be unanticipated events in the environment that have to be
considered in the SAS’s decision process as well as external
adaptation mechanisms that change the system structure in an
unforeseen manner. In consequence, an SAS engineer has to
be aware of several unpredictable behaviors that may impact
design decisions.

However, the manufacturer of a system has to give promises
to customers about its correctness (e.g., in form of a certificate).

Therefore, at least a subset of the SAS capabilities have to
be verified or validated before delivery. As each step of the
development life cycle is equipped with a limited budget, it is
difficult or even impossible to examine the system’s correctness
completely. Thus, a more scenario-based examination of the
SAS is preferable. Additionally, self-testing [4] or even self-
verification [5] mechanisms can be built in the system and
triggered at the point in time when the system is adapted.

Another problem is that SAS engineers face additional
complexity. During each test scenarios’ workflow, the test steps
can be adapted to changing context situations. In consequence,
in the worst case, the state space of the system is combina-
torial between adaptation state and workflow state [6, p. 17].
Furthermore, it has to be considered that a context change, that
causes an adaptation, has to be taken into account in order to
reproduce specific adaptation states. Due to all these complexity
factors, the difficulty of applying verification methods like
model checking increases enormously. Hence, in our work, we
instead focus on determining validation techniques that provide
appropriate abstraction means for SAS’ state spaces.

The most abstract view on a system can be taken, if it
is considered a black box. That is the system’s internals are
invisible to the tester, except for service interfaces which allow
to interact with the black box. These interfaces provide a set of
methods that may accept or produce messages and can be used
according to a protocol. Instead of examining the internal state
of the system, only the observable external state, which is given
by the service protocol, is examined [7]. To validate the system,
it has to be checked whether the expectations on the interface
interaction hold. This can be achieved, e.g., by running test
cases. In order to face the SAS’s behavioral complexity, these
test cases do not have to be designed manually. The state space
can automatically be searched for appropriate test cases, if the
protocol is represented as a formal model. Test case generation
from models is typically called Model-based Testing (MBT, [8])
and has been subject to recent research.

In general, a test case is a sequence of actions of two
different types. Firstly, there are actions that produce certain
messages to the system under test (SUT) in order to enforce (i.e.,
reproduce) a certain state of the protocol. Secondly, assertions
retrieve messages from the system in order to verify their data
against the expected values. Hence, this data has to be computed
by a so-called test oracle, which is a mapping function from
input to output data. Both, the values to be enforced and
assertions to be validated, are central entities of a test model.

Before the test run, the environment of the SUT has to be
properly set up. In order to validate SAS, changes have to be
applied to this test environment such that self-adaptation is
triggered. However, some of the environment’s properties are
not always controllable with acceptable effort. For instance,
changing the weather in outdoor scenarios may only be feasible

88

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

by mocking sensor data. A related problem constitutes when
the test model is not precise enough to predict exact reactions
of the SUT. For instance, a robot that is controlled by an SAS
does not drive very precisely to a predicted place. The decision
logic of the SAS under test may recognize the drift and react
properly, but the test oracle does not take the drift into account
as it is based on the incomplete formal model. In summary,
some validation steps may depend on information that is only
available at test run-time and has to be gathered using sensors.
For such situations, the validation mechanism has to keep a
decision model in memory in order to adjust the validation
process accordingly. In consequence, the test model is executed
and adjusted at run-time, which is identical to simulation-based
validation. The model is taken as a simulation input and its
state is validated against the real system during execution.

Both methods, MBT and simulation, are based on a model
that has to reflect the black box’s external behavior. Like in SAS
design, the test metamodel should be expressive enough for
defining concise test models with a minimal effort. In [1], we
have already investigated which properties of SAS are relevant
for SAS testing. In order to provide model properties that hold
for arbitrary SAS, we derived a general notion of such systems
based on the concept of feedback loops that are commonly
accepted in research as the central concept of all SAS [2]. In
our original work, we extracted three different types of artifacts
from this concept:

1) Failure scenarios, that can be employed for estimating
the effort and progress of system validation.

2) Properties of failures for identifying meaningful ver-
dicts (i.e, semantics of test results).

3) Potential error propagations and their causal chains.

The investigation process was based on Failure Mode and
Effects Analysis (FMEA, [9]), a safety engineering method. By
applying this sophisticated tool set, the analysis was founded on
a solid methodology. In this paper, we extend the contributions
of our original work as follows:

1) Example: In order to improve the understanding of
the analysis process, we provide a domestic home
robot application and illustrate the single analysis
steps based on this example.

2) Non-functional properties: In our original work, pri-
marily functional criteria were considered. In this pa-
per, we additionally discuss the challenges originating
non-functional criteria.

3) Abstract reference solution scheme: Based on the
identified requirements, we propose methods and a
reference solution scheme of interconnected artifacts
that separate the minimal requirements of imaginable
solution metamodels.

Besides these new contributions, we enrich our explanations
with additional details.

The remainder of this paper is structured as follows: We
start with related work in Section II. In Section III, we present
the example SAS. In Section IV, we recite and extend our
FMEA-based investigation for SAS by non-functional criteria
and in Section V, we state the resulting modeling requirements.
In Section VI, we propose the solution scheme. Finally, in
Section VII, we outline future work.

II. RELATED WORK

In literature, related approaches concerning testing adaptive
systems have been discussed in two different research directions.
Firstly, in context-aware and context-adaptive system research,
model-driven test approaches were found that derive test
data from context models. Secondly, several research groups
developed methods around SAS engineering.

The most advanced approach concerning context adaptivity
is, w.r.t. our knowledge, the work of Wang et al. [10]. The au-
thors propose to construct an abstract control flow graph (CFG)
directly from code artifacts by searching for access instructions
on data that was delivered from a context middleware. Thus,
a grey box perspective is taken, where at least the points of
interest that rely on context data are identified throughout the
source code. The CFG is an operational test model consisting
of transitions and nodes (so-called context-aware program
points, capps) that point to program locations. From the CFG,
sequences of capps are generated. A context manipulator
component generates sequences of context manipulations that
are applied to the real system. In advance, the system code has
been instrumented with feedback instructions that let the context
manipulator monitor whether it triggers a certain capp. The
sequences of context manipulations are optimized in order to
trigger new states in the generated capp sequences. If they do so,
a new test case can be assembled from the context manipulating
actions. Using Wang et al.’s methodology, relevant operational
orders of context manipulations can be automatically derived.
Furthermore, their impact on the system can be identified such
that a causal link between environment data and adaptation
can be defined. However, the rest of the adaptation remains
unconsidered. There are no means to validate whether any
adaptation outcome is correct.

In SAS research, the earliest statements on the necessity
of testing were published by Cheng et al. in [6]. The authors
proposed to focus on adaptive requirements engineering and
run-time validation to assure SAS’s quality. However, they also
constructed an abstract model of adaptive software’s states
consisting of an inner system state plus an adaptation mode
or phase. The latter one describes in which variant a system
works. Each transition, concerning either mode or state, changes
the overall configuration of the system and has to maintain
certain local or global properties. It is also discussed that a
steady model as behavioral specification is insufficient for a
behavior specification of SAS. While the authors’ proposals are
general enough to abstract from specific self-adaptive systems,
several problems remain. Due to the enormous complexity in
the behavioral space of adaptive software, an exact limitation
of possible transitions to those which are correct and relevant
for testing is a very hard task. In consequence, a much more
expressive and usable model should be applied in test modeling.

A concrete research project on self-adaptivity is DiVA
(Dynamic Variability in complex Adaptive systems). Despite
comprehensive findings on engineering SAS, it includes a
methodology for testing [11][12]. DiVA’s validation process
is split into two phases: (1) The early validation is based on
design time models (adaptation logic and context model) and
executed as a simulation. A main focus in DiVA’s test method is
to generate reasonable context instances and associate ”partial”
solutions, which can be used to find a set of valid configurations.
(2) Additionally, an operational validation method is proposed
that also deals with context changes/transitions. Therefore,

89

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

DiVA uses Multi-dimensional Covering Arrays (MDCA) in-
cluding a temporal dimension. These arrays describe multiple
context instances that are scheduled as test sequences and
provide means for defining coverage criteria on sequences
of adaptations. There are also fitness functions that help to
minimize the test cases while preserving a good coverage. A
drawback of this approach is that the test oracle is manual and
does not depend on the previous configuration of the tested
SAS. The latter point makes it impossible to examine stateful
adaptations where not every system variant can be reached in
arbitrary situations.

In context of DiVA, Munoz and Baudry presented in [13]
an extended approach that bases on the same workflow. The
authors formalize context and variant models and generate
sequences of context instances by using Artificial Shaking Table
Testing (ASTT). In order to measure the similarity between
two context instances, a difference function is defined. Using
the means of statistical distribution, context sequences are then
generated, which are optimized towards a specific distribution
of differences throughout the sequences. The theory behind this
work states that sequences with at least one violent peek of
difference between three following context instances would be
best for testing the SAS. The theory was examined by showing
an improved number of found failures in comparison to “non-
violent” sequences. The ASTT approach is more powerful than
the original DiVA test method as the oracle is defined formally
and its predicted system variants also depend on the previous
system configuration. However, the drawback of both DiVA
test concepts is the lack of a method to validate behavioral
adaptation.

Remedy to this lack give Abeywickrama et al. with
their State Of The Affairs (SOTA) modeling and simulation
platform [14]. They propose to model the complete behavior of
SAS by specifying feedback loops as first class entities in form
of activity diagrams. The feedback loops may communicate by
hierarchy, shared components, or events such that different
aspects of the system can be separated properly. Despite
its modeling capabilities, a simulator, called SimSOTA, was
developed that allows the live execution of SOTA models and
their inspection during this execution. While the approach
allows the definition of parametrical adaptation (using variable
assignments) and behavioral adaptation, there are no means
to predefine environment change. Thus, no system state can
be automatically reproduced and the tester relies on external
mechanisms for this purpose. In consequence, SimSOTA is
more appropriate to be used in debugging a system in order to
observe inconsistent states.

Another promising early-state work has been proposed by
Nehring and Liggesmeyer in [15]. The approach enables an
SAS engineer to inspect the system’s state space exploratory.
The authors assume that the system is component-based and
the adaptation is a reconfiguration of this component structure.
Along six examination iterations, transactional reconfigurations
are investigated with a grey-box knowledge on the components
and their interconnections. During the first iteration, a system
model is constructed and workloads are defined to stress the
system to examine its reaction to different situations. In the
second iteration, the structural changes are checked. A third
iteration is run in order to analyze whether data integrity is
violated when different workloads are applied. During the fourth
iteration, correctness of state transfers between exchanged
components is examined. In order to evaluate the correctness

Stereo
Camera

Drive

Basket
CabinetInhabitant

!
Emergency

Illumination System

Home Station

Fig. 1: The HomeTurtle application.

of transactions that are caused by adaptations, a fifth iteration
is run. The sixth and last iteration has the purpose of checking
identity relations of components before and after adaptation. As
SOTA, this approach can be seen as a special form of debugging
without means for environment situation enforcement.

In summary, existing approaches either lack the consid-
eration of behavioral adaptation or they are not capable of
enforcing a certain environment or adaptation state, which
would be necessary for a systematic validation. Furthermore,
non of the proposals has explicit means for tackling non-
functional properties. However, any potentially complete test
approach for SAS should be able to deal with non-functional
requirements as well.

III. EXAMPLE APPLICATION

In order to illustrate the analysis and solution scheme
in the remainder of this paper, we sketch an example SAS
in the following. We built the domestic home robot system
HomeTurtle, which supports a disabled person at home. An
example scenario is depicted in Figure 1. The service aims
to deliver requested items to the inhabitant from a software-
controlled storage cabinet. The scenario involves three active
elements:

• Transport Robot: An extension of the TurtleBot plat-
form (http://www.turtlebot.com) operates as
transportation system. On top of the mobile robot, a
basket is mounted where items can be put in. The
system includes an autonomic computing unit and a
stereo camera such that it is able to locate itself.

• Storage Cabinet: The cabinet is controlled by a WiFI-
connected embedded device. This device is capable of
triggering magnetically hold flaps, which lock boxes
each containing an item. After opening a flap, the item
drops out and falls through the cabinet’s base into the
robot’s basket. The robot’s battery is charged when it
parks on the its home station.

• Illumination System: If the natural illumination is
insufficient for the robot to locate itself, a lamp can
be switched on automatically. For this purpose, the
Philips Hue is used (http://www.meethue.com).
The bulb contains a WiFi-connected embedded control
device as well.

90

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In order to start the interaction, the inhabitant requests a
specific desired item (by speech input) and the robot starts
driving automatically. It plans its way through the room and
avoids obstacles that are recognized by using its stereo camera.
After finding the cabinet, the robot parks thereunder. By WiFi
connection the cabinet’s embedded device is signaled to drop
the requested item. Then, the robot drives back to the inhabitant
for delivery. In a final step, the robot drives on its home station
where its battery is charged as long as no request is being
operated.

All decisions are made autonomously by an SAS. The
computations take place on the computation unit hosted on the
robot. By adding several self-adaptive capabilities, this software
allows the robot to work in different situations effectively.
Firstly, the correct recognition of walls and obstacles relies
on appropriate room illumination. When the natural brightness
(through the windows) is insufficient, the system automatically
switches on the illumination system to improve the quality
of obstacle detection. Secondly, the inhabitant can use an
emergency switch. If this switch is triggered, the robot is
expected to immediately cancel its current action and navigate
to an emergency location as labeled in the figure. The purpose
of this operation is to avoid the robot being an obstacle while
human emergency responders are in the room. Thereby, the
moving robot would be a danger itself.

We implemented the HomeTurtle system to experiment
with our adaptive software framework Smart Application
Grids (SMAGs) [16]. Applications that are built using SMAGs
are able to adapt their component-based architecture. For exam-
ple, component implementations are exchanged or components
are automatically connected by generated adapters at run-time.
Based on these features, we have built the above described
home robot system. As the decision logic of the HomeTurtle
bases on the reflection of physical objects and actuators, the
system can be categorized as CPS. In the remainder of this
paper, the capabilities of the HomeTurtle are used to illustrate
our analysis process as well as the solution scheme proposal.

IV. FAILURE ANALYSIS

In this section, we analyze relevant failure characteristics
and scenarios of SAS. For this purpose, we apply FMEA [9][17].
FMEA is used in engineering of safety-critical systems to
find relevant failure sources. The method was first applied for
electrical and mechanical systems and later extended for the
usage in software engineering [18][19].

According to [7], a failure is an event of service deviation
from an expectation. The expectation is defined in a specifica-
tion document, e.g., in form of requirements. An error is the
inconsistent part of the total system state (internal state plus
perceivable external state) which may propagate the failure.
The cause that activates an error is a fault that is active. There
may also be dormant faults, which do not cause errors. A
failure may trigger a new fault in another component as well.
This interaction is called causation.

Based on the FMEA process, our analysis is separated into
three steps:

1) Identification of SAS-specific failure dimensions and
properties (presented as Failure Domain Model).

2) Investigation of SAS-specific failure scenarios.
3) Visualization of error propagation among the found

scenarios as Fault Dependency Graph.

Monitor Execute
Knowledge

Analyze Plan

Change
Request

Change PlanSymptom

Fig. 2: The MAPE-K feedback loop (cf. [2]).

Step (3) is not an actual part of FMEA. Usually, a Fault Tree
Analysis (FTA) [20] is performed to visualize the scenarios’
dependencies and to enable engineers to trace which faults may
have caused a certain failure. The result of FTA is a Fault Tree
Set (FTS) comprising multiple trees that represent how a fault
may be propagated through the system. Because SAS run a
feedback loop, error propagation in SAS cannot be described
in the form of a tree in general. Hence, we customize the
analysis process in this step by constructing a directed graph
with logical gates instead.

A. A Common Process of Self-Adaptation: MAPE-K

Before starting the analysis, the level of detail has to be
specified in order to set up a fixed abstraction perspective
on SAS including a well-defined system boundary. FMEA is
designed to be ran against an existing technical architecture,
which we cannot generally assume to be widely similar in all
existing or future developed SAS. Hence, we discard the strict
understanding of FMEA by analyzing a general conceptional
architecture that comprises minimal necessary components
and data flows in between. As seen in the previous section,
there are several intersecting research directions coping with
self-adaptivity. They have in common, that the process of
information gathering and utilization relies on the feedback loop
principle of autonomous systems. The steps that are performed
during the execution of this loop are (1) Monitoring of sensor
values, (2) Analyzing whether adaptation is required, (3)
Planning the adaptation and (4) Executing the plan. During these
phases, internal or external Knowledge sources can be used to
retrieve or store information relevant to the decision mechanism.
This process concept is called the MAPE-K feedback loop [2].

As illustrated in Figure 2, the phases of MAPE-K exchange
multiple information entities. The system monitors a set of data
sources such as sensors for external entities or system interfaces
for internal properties. In our HomeTurtle SAS, the monitored
data encompasses a brightness value (detected by the stereo
camera) as well as a WiFi-retrieved temperature signal. The set
of environment and system states is the relevant computation
base for all later decisions–it assembles the context of the
SAS. The captured information is then inferred to symbolic
situation specifications, called symptoms. The HomeTurtle
software maps the concrete brightness values to symbolic values
like Illuminated/Too_Dark and produces a symptom
Emergency, if the temperature exceeds a certain level. The
symptoms are forwarded to the analysis phase where the
system reasons about the necessity of adaptation. Therefore,
the conditions of adaptation policies are compared with the
symptoms of the current situation. The HomeTurtle’s policies
are based on Event-Condition-Action (ECA) rules. For instance,

91

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Component
Mgmt

Context
Mgr

Adap-
tation
Mgr

Configu-
rator

Core

PlannerContext
Sensor

Context Listener

Context
Access Iteration

Configuration

Instance
Mgmt

Resource
Mgmt

<<Monitor>>

<<Plan>>

<<Execute>><<Analyze>>

Fig. 3: Example SAS architecture according to [21].

there is a rule that is triggered by the emergency signal and
commands the robot to perform an emergency adaptation.

Up to this point, the system has determined if an adaption
should be performed, which is signaled by a change request.
During the subsequent plan phase, a change plan is generated.
This plan comprises an operational definition of adaptation
actions. An action defines how components of the SAS are
changed in detail (e.g., by setting new parameter values or
by re-composing the system from modules). In case of the
HomeTurtle, the action is to cancel the current process and to
redirect the robot to the emergency position using the navigation
components. Subsequently, during the execute phase, the plan is
applied. This may also involve effectors manipulating external
entities of the environment. The whole feedback loop is re-ran
from this point periodically such that a self-adaptive system
always has the intended state (e.g., according to the supposed
utility function or goal, and available knowledge) to fulfill its
task.

Any SAS architecture adheres to variants of this feedback
loop. For instance, Hallsteinsen et al. proposed in [21] a
platform based on dynamic product line techniques as depicted
in Figure 3. The Context Manager component can directly
be associated with the monitor phase as it collects and reasons
about information that were gathered from resources, the
environment (by sensors), or humans. The Adaptation
Manager then decides whether an adaptation is required based
on the context changes and, thus, implements the analyze
phase. The Planner is responsible of generating a plan for
reconfiguring several variation points. Based on this plan, the
Configurator applies the reconfigurations with the help of
the core’s instance management interface.

Another example is the DiVA [22] project, whose architec-
ture is depicted in Figure 4. On the lowest Business Layer
the architectural model of the managed applications is hosted. It
contains probes that generate run-time events. These events are
consumed by a Complex Event Processing component
on the Proxy Layer. The events are monitored, interpreted,
formatted and a context model is updated monitor phase. This
context model is input to the Goal-based Reasoning

Buisness Application Components Business Layer

Proxy LayerComplex Event
Processing Configuration Manager

Goal-based
Reasoning

Invariant Checker

Aspect Model Weaver
Reasoning/
Validation/
Derivation Layer

<<Monitor>>

<<Plan>>

<<Execute>>

<<Analyze>>

Fig. 4: Example SAS architecture of DiVA according to [22].

component on the upper level which decides whether adaptation
is required (analyze phase). As the adaptive capability of the
DiVA approach is based on Aspect Weaving, the respective
component plans the adaptation. During the plan phase, an
Invariant Checker determines if the result of weaving
fulfills a set of given constraints. Finally, the weaving plan is
directed to the Configuration Manager that applies the
changes to the business application (execute phase).

As the approaches of Hallsteinsen et al. and DiVA, com-
ponents of arbitrary SAS can be mapped to the feedback loop
principle. MAPE-K encompasses the adaptation according to
environment changes such as context, user input and system
utilization. The sources of processed information can be
abstracted by leaving out the concrete objects, which are
observed or controlled by sensors and effectors respectively. In
the following analysis, we use MAPE-K as common viewpoint
on SAS architectures. We assume engineers, who are in charge
of validating the adaptation capabilities of the system, are
equipped with the required tooling to observe the data exchange
between the loop’s phases.

B. Step 1) Failure Domain Model (FDM)

In the following, we provide a set of generic failure
properties for SAS. As there are several classes of SAS [23],
we cannot assume that each property is reasonable in every
concrete system. Instead, the proposed properties are a superset
of properties that can occur in MAPE-K-based systems on the
discussed abstraction level. Furthermore, we exclude failures
that originate in sensors and effectors to create a fixed boundary
around the software’s scope.

As briefly discussed, each component of an SAS provides
services through its interface. In the system’s requirement
specification the expected behavior of these services is de-
fined. Notably, the specification comprises functional and non-
functional requirements. Thus, besides concrete features, which
have to be supported by the SAS, the quality of how the features
work is constrained. In the HomeTurtle example, a functional
requirement is the ability of the robot to navigate through the
room without colliding with any obstacles. Associated non-
functional requirements are, for example, a lower bound for the
precision of the obstacle detection (i.e., percentage of correctly
detected obstacles) and upper bounds for the total time required
by the robot to navigate from the inhabitant to the cabinet and
back.

Basically, the definition of faults, errors and failures [7]

92

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

holds for arbitrary systems. However, in self-adaptive appli-
cations, the boundary between faults and errors can become
blurry. Consider, for example, a system that uses models at run-
time [24], where the current system state is kept and abstracted
in a model to specify the adaptation logic as decision rules
against this model. This system is, in principle, able to adapt
these rules such that the adaptation logic of the system changes.
If this adaptation has not been performed correctly, a new fault
is introduced that was not created at design time but at run-
time. In other words, due to the ability to dynamically change
the system specification, failures can create new faults at run-
time. Thus, for adaptive systems which are able to manipulate
their own decision logic, faults and errors may not always be
distinguishable.

In [7], for each fault, error, and failure a comprehensive
list of property dimensions is given. However, as we already
defined the level of abstraction and only consider elements that
are generic to arbitrary implementations of the feedback loop,
this list can be filtered. For instance, it includes properties that
specify severity, the cause why, or the life cycle phase when
a fault was created. In black box testing against requirements,
these information cannot be evaluated as they can neither
be observed nor deduced. Concerning failures, for instance,
detectability is not relevant in black box testing as non-
detectable failures can never be found due to the lacking
knowledge on dormant faults. Furthermore, when comparing
different notions of FMEA (e.g., [7] and [18]) the FDMs (that
are assumed to be generic) differ. In consequence to these issues,
we designed our own FDM that only proposes properties that
are relevant to SAS in particular.

The resulting FDM for SAS is depicted in Figure 5.
Concerning faults, the only property that can be deduced from
observed behavior is their persistence which may either be
permanent or transient. Detecting permanent faults is usually
less challenging than detecting transient faults. For instance,
the HomeTurtle aggregates the last hundred temperature values
in order to compute their average and to decide whether a fire
alert has to be signaled. If the collected values are not deleted
after an appropriate time period, the system may run into a
memory overflow and stops working permanently. In contrast,
when only an outlier value distorts the current value queue,
this fault vanishes after a certain time period and is transient
to an observer.

Regarding errors, we propose the dimensions type and
localization. In our black box abstraction, the engineer is able to
observe whether a false state establishes in the inner knowledge
model of the system or in the computational process. For the
first type, two deviations are possible: either the model does
not correctly reflect its subject (e.g., the stored location of
the transport robot is not correct) or its inner constraints are
incorrect (e.g., more brightness values are stored than expected).
The HomeTurtle may also have process-related errors, for
instance, when the emergency symptom is erroneously produced
and the system runs an unnecessary adaptation. Furthermore,
errors can localize either locally or globally in the potentially
distributed SAS. In our example, the set-up of items in the
cabinet could not reflect its real contents. This error would be
shared between all technical elements over the WiFI network.

Concerning failures, the authors of [7] distinguish between
content and timing (early/late) correctness. In contrast, an SAS’s
goal definition may aim on other non-functional properties like
energy-usage. Thus, we alter the original distinction to non-

Fault

Error

Failure

ca
us

at
io

n

ac
tiv

at
io

n
pr

op
ag

at
io

n

Persistence

Type

Location

Type

Manifestation

Appearance

transient

permanent

inner model

process-related

local

global

non-functional

functional

internal

external

false-positive

false-negative

semantical

property dimensions property values

Fig. 5: The SAS Failure Domain Model.

functional (i.e., the service performs not with the expected
quality) or functional (i.e., incorrect service behavior). In
our example, we can distinguish between failures where the
robot does not deliver an item within a required time or
completely fails in delivering it. Furthermore, failures in SAS
can either manifest internally (e.g., in an inconsistent model)
or externally (e.g., when the robot heavily collides with an
obstacle). Concerning, the Appearance dimension, sensed and
analyzed information may lead to un-intentional (false-positive),
missed (false-negative), or semantically wrong sensor events,
change request, or adaptation actions. The HomeTurtle, for
instance, may start driving to the emergency position without
cause, it may miss the emergency signal or mis-interpret it.

This FDM is a valuable source for classifying faults,
errors, and failures in concrete SAS. It describes their abstract
properties that can be instantiated for real world systems.
Verdicts (i.e., the classification of test results, for instance
Pass, Fail or Inconclusive), can be parametrized by
these information.

C. Step 2) Failure Scenarios

In this section, we identify scenarios of failure occurrence
in SAS. In contrast to other FMEA applications, we cannot give
a general method of prioritizing these scenarios as this strongly
depends on domain-specific conditions. The only applicable,
general evaluation standard is criticality. In this case, according
to [23], each adaptation operation can be either harmless,
mission-critical, or safety-critical. When the HomeTurtle robot
drives along an non-optimal path, this failure is harmless. In
contrast, not delivering an item would be mission-critical. If the
robot collides heavily with a human being, the failure can even
be safety-critical. However, other SAS may have completely
different requirements such that statements about the severity
of failure scenarios cannot be generalized.

93

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<<Monitor Phase>> <<Plan Phase>>

Scheduler

Configuration
Planner

(Planner)

Adaptation
Logic Execution

(Analyzer)

Event Monitoring
& Processing

(Monitor)

<<Analyse Phase>>

Action Queue

Change Request

Actions

PRE

PLAN

SCHED

Sensors Effectors

SENS

EFFECT

ADAPT

<<Execute Phase>>

TRIG

EVENT

Models
(Knowledge, Adaptation Policies, System Structures)

POST

System Control
RECONF

Executor

Fig. 6: Conceptional architecture of SAS.

TABLE I: SAS failure scenarios.

FID CID Fault in... Error in... Failure in... Propagation

SENS Monitor sensor interpretation environment reflection produced symptoms TRIG
� transient or permanent � process-related � functional or non-functional

� local or global � internal
� false-positive, false-negative or semantical

TRIG Analyzer symptom interpretation adaptation decision change request PRE/ADAPT
� transient or permanent � process-related � functional or non-functional

� local or global � internal
� false-positive, false-negative or semantical

PRE Analyzer model interpretation adaptation decision change request TRIG/ADAPT
� transient or permanent � process-related � functional or non-functional

� local or global � internal
� false-positive, false-negative or semantical

ADAPT Analyzer reasoning algorithm adaptation decision change request PLAN
� transient or permanent � process-related � functional or non-functional

� local or global � internal
� false-positive, false-negative or semantical

PLAN Planer planning algorithm planning decisions change plan SCHED
� transient or permanent � process-related � functional or non-functional

� local or global � internal
� semantical

SCHED Scheduler scheduling algorithm scheduling decisions wrong order of actions POST/EVENT/
� transient or permanent � process-related � functional or non-functional EFFECT/RECONF

� local or global � internal
� semantical

POST Executor model manipulation model model inconsistent PRE/PLAN
� transient or permanent � inner model � functional or non-functional

� local or global � internal
� semantical

RECONF Executor reconfiguration system configuration system reflection –
� transient or permanent � inner model � functional or non-functional

� local or global � internal
� semantical

EVENT Monitor system event monitoring system reflection system events TRIG
� transient or permanent � process-related � functional or non-functional

� local or global � internal
� false-positive, false-negative or semantical

EFFECT Executor actual control erroneous actuator commands environment state (SENS)
� transient or permanent � process-related � functional or non-functional

� global � external
� false-positive, false-negative or semantical

94

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The scenario identification relies on the feedback loop’s
conceptional structure, which is depicted in Figure 6. Hence, we
decompose the MAPE-K loop in five components: Monitor,
Analyzer, Planner, Scheduler, and Executor. The
latter two are separated, to enable the consideration of in-
teraction between adaptation and running processes. After
the Analyzer detected that the system has to be adapted,
the Planner decides how the adaptation is processed. The
Scheduler has the task to fill an Action Queue (however,
it may be implemented in concrete systems) by arranging
system process actions with adaptation actions. An adap-
tive system designer has to be aware of how he maintains
consistency either through an actual implemented scheduler
component or a transaction-like behavior. This issue also breaks
the straight MAPE-K data flow because a scheduler requires
information about the current system actions (retrieved from
the Executor) and composes them with adaptation intents.
In the HomeTurtle system, this feature plays an important role
as well. For instance, when an emergency is signaled, the
delivery process is expected to cancel immediately. In contrast,
an adaptation concerning illumination conditions would make
no sense while the robot is parked under the cabinet. In this case,
the scheduling implementation is expected to first atomically
execute the waiting operation and run the adaptation afterwards.

All components are considered as black boxes and are con-
nected by data flow edges (blue arrows). Additionally, the pro-
cess contains Sensors, Effectors, System Control,
and the central knowledge Models. The latter one contain
information about the system structure, adaptation logic, and
further knowledge relevant to adaptation decisions. Sensors
and Effectors communicate with the external world (e.g.,
other systems or the physical reality). System Control
provides an interface for system reconfiguration actions that
are controlled by the Executor.

Based on this structure, we derive failure scenarios by
investigating potential wrong processing of input data by a
certain component. As there may be multiple outputs of a
component, each component can produce multiple failures. We
list our found failure scenarios in a worksheet as presented in
Table I. A scenario represents the possible occurrence of a fault
and its related causality chain. The description of each scenario
comprises Failure Identifier (FID), Component Identifier (CID),
Fault, Error, Failure, and a Propagation column. All FIDs
can be found in the architecture visualization in Figure 6.
In the following, each scenario is described in detail. As an
extension to our original work, we add examples and discuss
non-functional aspects as well.

SENS: The first scenario comprises test input received from
the Sensors and misinterpreted by the Monitor component.
During the interpretation, values are mapped, aggregated and
inferred. It might also be the case, that a history of values
is maintained in order to infer over them. Such a fault can
activate an error that comprises an incorrect reflection of the
environment such that the produced symptoms are incorrect.

Example: The HomeTurtle’s monitoring component collects
brightness values over the last ten minutes but fails to discretize
them correctly. The symptom that indicates a low illumination
is not being produced as expected.

Non-functional aspects: This scenario comprises test input
received too late from the Sensors. Faults of this kind activate
errors comprised of the reflection about outdated observations of
the environment such that the produced symptoms are incorrect.

Example: The HomeTurtle’s monitoring component collects
brightness values only every minute. Thus, in the worst case,
the HomeTurtle will not adjust itself to a changed illumination
for almost a minute, which is not the expected behavior. A
higher sampling rate has to be used.

TRIG: A symptom produced by the Monitor does not
or unintentionally trigger a corresponding change request or a
wrong one.

Example: The HomeTurtle’s analysis components fails
matching the symptom description with an adaptation policy’s
condition. Thus, the expected adaptation is not being performed
as expected.

Non-functional aspects: A symptom produced by
Monitor triggers a corresponding adaptation too late.

Example: The HomeTurtle observes its own remaining
battery capacity. If a user requests the HomeTurtle to deliver
an item from the cabinet, the HomeTurtle checks whether
its remaining energy suffices to fulfill the request and will
incorporate a stop at the charging station if the remaining
capacity is too low. If the analysis’ result reflecting whether
the capacity suffices or not is send too late to the Planner,
an erroneous plan is generated, which does not include the
stop at the charging station.

PRE: The SAS knowledge resources contain information
that may constitute pre-conditions to an adaptation decision. If
these information are misinterpreted, the adaptation decision
can differ from the designer’s expectation.

Example: According to the HomeTurtle adaptation policies,
the illumination system has to be switched on as soon as the
obstacle recognition precision deceeds a certain level. Thus,
the current precision is inferred using the empirical metrics
on the stereo camera’s precision that is parameterized with
the currently detected brightness value. If the empirical model
is corrupt, the adaptation of the illumination system is not
performed in the relevant situations.

Both TRIG and PRE scenarios may interact, because we
did not decompose the analyzer in more detailed components.
Hence, these scenarios have to be tested together as both data
sources are required for each test case and just a probabilistic
estimation can be stated which one is actually defective.

ADAPT: Depending on the deduced adaptation decision, the
system is in charge to produce and correctly interpret the change
request. In cases where this output is corrupt, adaptations are
not performed as expected.

Example: After the brightness value was found too low, the
respective change request was derived but is not forwarded to
the planner due to an exception. Thus, the adaptation initiation
is lost.

PLAN: The Analyzer determines if an adaptation is
required but not how to perform it. This task is operated in
the planning phase. A Planner reasons over the variability
and the current system state. Its output has to be a correct
adaptation plan that can be applied in the system and leads to
a consistent state. The PLAN scenario encompasses that the
compiled plan is incorrect.

Example: In the emergency case, in the constructed adap-
tation plan the canceling of the current delivery task and is
queued after the actions necessary for driving to the emergency
position. Thus, the robot first delivers the item and approaches
the emergency position subsequently, which was not intended.

Non-functional aspects: Often, the Planner reasons over
non-functional properties like response time or energy con-

95

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sumption. But, the planning task itself effects these properties
by utilizing the same resources. In consequence, the resulting
decision of the Planner is infringed, because the assumptions
taken by the Planner are violated.

Example: The HomeTurtle shall drive to its charging station
if the battery capacity falls below 10%. To reach the charging
station, the HomeTurtle consumes energy. But, executing the
planner, to decide whether to drive to the charging station or
not, consumes energy, too. Thus, by executing the planner, the
maximum distance of the HomeTurtle to its charging station
is decreased. If the planner does not consider this decreased
distance, the decision to go for charging, will be made too late.

SCHED: Reconfiguration actions potentially interact with
the system’s control flow. Such problems arise because
variability cannot be completely orthogonal to the system’s
task execution. The expectations of the designer may even
encompass that certain actions may be transactional. Differing
from these expectations activate errors in the scheduling process
and are observable as wrongly ordered actions.

Example: Due to a wrongly designed scheduling component,
new adaptations actions are enqueued behind all previously
initiated system actions. Thus, for instance, the illumination
adaptation is being deduced while driving to a certain position
but performed after the driving process. Then it may be too
late to avoid a collision.

The Executor is a complex interpretation engine that
produces multiple outputs and thus, has multiple potential
failure scenarios. All Executor-related scenarios may also
be the outcome of a propagated SCHED failure.

RECONF: The reconfiguration may run into a failure
itself. If any reconfiguration mechanism fails without being
recognized, the actual system structure is out of synchronization
with its model representation.

Example: The driver for the control of the robot’s wheels
is implemented as a blocking service such that the emergency
adaptation cannot be performed immediately. Instead, the
designer expects the system to cancel the operation.

POST: The Model’s part that represents the reconfigured
systems may be inconsistent after the execution because a model
manipulation was performed erroneously by the Executor.
Thus, the reflected system state may differ from its real
configuration. This deviation may harm future adaptation
decisions in form of wrong preconditions (PRE). The failure
can be observed in the model’s state.

Example: The illumination adaptation is correctly per-
formed but due to an exception this change is not reflected in
the model. During the next adaptation loop, the decisions that
depend on this information will be erroneous.

EFFECT: Another output of the Executor can be
actions that have to be performed by external systems using
the Effectors. If actions are not generated correctly and
forwarded to the effectors (e.g., due to corrupt drivers), the
representation of these externals loose synchronization with
potential internal model representations. As the Sensors may
perceive data from the manipulated system, a SENS scenario
may be caused indirectly.

Example: The signal to the illumination system may be
misinterpreted and the Hue bulb is not switched. While the
physical condition remains unchanged, the SAS now assumes
the environment to be altered as it reflects its own actions in
the knowledge model.

EVENT: The last failure scenario is related to events that

are produced in the software system and are propagated to the
Monitor component which makes them part of the context
representation. In the related failure scenario, the generated
events are erroneous.

Example: In order to avoid concurrent adaptations, the
HomeTurtle is expected only to obtain new sensor data when
all adaptation actions are finished. Afterwards, a respective
event is produced by software that causes a re-start of the
feedback loop. Loosing this trigger event constitutes a failure.

Properties of faults, errors, and failures as proposed in our
FDM can depend on the concrete architecture of the system.
Based on the assumption that the system was built as our
abstract feedback loop suggests, some property values can be
neglected. In our scenarios worksheet, the remaining ranges
are denoted. Regarding faults such a restriction cannot be
deduced from the general feedback loop. Thus, arbitrary SAS
can include transient or permanent faults in each of the proposed
components.

Concerning errors, only the Executor is expected to
directly manipulate the model. Thus, the inner-model error
type only occurs in this component when reality is no longer
correctly reflected in the system’s knowledge base. All other
faults impact to process-related state of the system. Depending
on whether the SAS is distributed or not, each component
may propagate its potentially erroneous outputs through the
complete infrastructure. However, effects that propagate out
of the system always have to be considered global, as all
monitoring components may detect external changes.

The appearance of a failure depends on the content of a
component’s output. In cases of decisions (symptoms, change
requests, system events, effector actions), they may be missed
(false-negative), unintentionally performed (false-positive) or
semantical wrong. In cases of adaptation plans and model
manipulations, which are always expected to be produced, the
potential errors impact their contents only. All components may
produce such functional failures. Despite the non-functional
aspects which were discussed in context of the SENS, TRIG,
and PLAN scenario, each computation can be limited in its
budget usage in general. Thus, we propose to consider non-
functional failures in all scenarios.

D. Step 3) Fault Dependency Graph

As final artifact, we construct a faullt dependency graph as
depicted in Figure 7. The nodes of the graph identify each a
certain failure scenario or a logical or gate. Connections reflect
the causations as listed in respective column of Table I. The
visualization illustrates the potential cyclic failure propagation
through inner system events, model manipulation, or physical
sensors or effectors correlations (the latter one is visualized by
the dashed edge). Furthermore the PRE and TRIG scenarios
may influence each other in both directions, which makes them
hard to test in isolation.

The graph can be used by engineers to identify potential
sources of observed failures. Furthermore, quality assurance
can be steered using the graph by measuring or estimating
each scenario’s probability of occurrence. Thus, it can even be
deduced how probable a certain causal chain or how severe its
a fault’s impact is.

V. REQUIREMENTS TO MODELS FOR SAS TESTING

All following requirements for self-adaptation test methods
are based on a selection of the presented failure scenarios. In the

96

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ADAPT

TRIG

PRE

SENS EVENT

PLAN

SCHED

POSTEFFECT RECONF

OR

OR

OR

OR

Fig. 7: Fault Dependency Graph.

following, we list these mapped requirements and name each
of them for later reference. The requirements are formulated as
assurance tasks that have to be fulfilled by employing validation
methods.

A. Functional Requirements in SAS Testing

F1) Correct sensor interpretation: Assure that the sen-
sor data is correctly interpreted and transformed into
system events. Potential sensor data has to be specified
together with context identifications. (7→SENS)

F2) Correct adaptation initiation: Assure that events
initiate the correct adaptation if all preconditions
in the model hold. Events, conditions, and adapta-
tion decisions have to be associated in the models.
(7→TRIG/PRE/ADAPT)

F3) Correct adaptation planning: Assure that the genera-
ted adaptation plan is consistent w.r.t. target configura-
tion and action order. Build a model to map adaptation
goals to possible plans.(7→PLAN)

F4) Consistent interaction between adaptation and sys-
tem behavior: Assure that the generated adaptation
plan is correctly scheduled with the system’s control
flow. A model is required to define which adaptation
is allowed in which state of application control.

(7→SCHED)
F5) Consistent adaptation execution: Assure that (1) the

generated adaptation schedule is applied to system
structure and (2) the synchronization between the
running system and the models is consistent after
adaptation. (7→POST/RECONF)

F6) Correct system behavior: Assure that the system
correctly commits events or actions to the effectors. As
in the previous requirement, here we need to specify
events to be observed in the system when running any
operation. (7→EVENT/EFFECT)

B. Non-functional Requirements in SAS Testing

Whereas the requirements to SAS testing in the last
subsection focused on assurance of the SAS’s functionality,
a second type of requirements to SAS testing exists: non-
functional requirements. The central concept for non-functional
testing of SAS is the budget, which covers a boundary for
a selected non-functional property. For example, the limited
capacity of a battery sets a hard budget in terms of energy,
which must not be exceeded. The following aspects of SAS
require the consideration of non-functional requirements:

NF1) In-budget sensor interpretation: A failure due to
incorrect sensor interpretation has a non-functional
dimension in that, e.g., the timing behavior of the
sensor interpretation is faulty. In other words, sensor
interpretation has non-functional requirements, which
must not be violated. These requirements include the
ability to handle imprecise sensor data (precision),
timing constraints on when and how long sensor data
is valid and resource budget constraints, if the sensors
are power by a battery, which is characterized by a
limited energy capacity. (7→SENS)

NF2) In-budget adaptation initiation: In addition to the
assurance of the correct adaptation to be initiated,
it is important to ensure that this adaptation is
initiated in time. If an adaptation is initiated too late,
multiple qualities are potentially infringed. Imagine,
for example, a self-adaptive system optimizing for
energy efficiency. The later an adaptation to save
energy is initiated, the more energy is consumed in
the meantime, which infringes the goal of the self-
adaptive system. (7→TRIG)

NF3) In-budget adaptation planning and execution: Also
for planning, non-functional requirements have to
be fulfilled besides correctness. Again, budgets of
non-functional properties must not be exceeded. A
particular problem in this regard is the assessment
of the planning step itself in terms of various non-
functional properties. For example, the runtime of an
optimizer using integer linear programming is double
exponential in the worst case, but almost linear in
the average case [25]. In addition, the determination
of the size of the respective budgets is a highly
complex task. This is because often the goal of the
self-adaptive systems is to optimize for selected non-
functional properties, but performing optimization
(and adaptation) effects these non-functional prop-
erties. (7→PLAN)

97

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Required Test Adequacy Criteria and Coverage Metrics

Additionally, in testing, adequacy criteria are required to
restrict the tested behavioral space and, nevertheless, have a
reasonable and meaningful test result. Furthermore, coverage
metrics are used to compute in which degree the state space
is covered by the generated or performed test cases. For less
complex systems, many criteria for test adequacy and coverage
metrics were found. Mostly, they refer to a graph representation
like a state machine. Known criteria are statement, branch or
path coverage. However, as we have seen, there is a complex
set of requirements and aspects to be tested in the context of
SAS. In consequence, we have to use multiple models which
are more expressive then state machines (as assumed in the
mentioned coverage criteria) to represent all testable aspects.
In consequence, the known criteria cannot be applied directly.
Hence, the last requirement is to find a set of proper adequacy
criteria and coverage metrics for SAS which can be composed:

C) Adequacy criteria and coverage metrics for
SAS: Find constructive adequacy criteria metamod-
els/languages to describe which, when (in relation
to system behavior), and in which order adaptation
scenarios have to be tested and analytic coverage
metrics for measuring a test suite or its execution.

VI. REFERENCE SOLUTION SCHEME

In order to help testers facing the challenges stated above,
we propose a scheme consisting of methods of fault detection
and representation artifacts.

A. Considerable Methods

In black box testing, the SUT is represented by well-defined
interfaces without defining its internal behavior. In our analysis,
we based on the most abstract definition of an SAS, namely
the MAPE-K feedback loop. We have derived five crucial
components that are black boxes and provide interfaces where
data can be sent to or received from. Despite the assumed
informational entities defined by the knowledge element of the
feedback loop, the components’ internal state may effect the
outcome of their computations. Thus, the black box interface
can have a stateful protocol as well.

In order to validate the correct outputs of each component,
several input data scenarios have to be specified and the output
has to be predicted. Such test cases enforce a certain state of
the interface protocol that is relevant during the prediction. In
testing, the prediction task is solved by oracles. An oracle has
to be specified according to the requirements of the SUT. In
order to automate the validation process as far as possible, a
specification is most useful in a formal representation such
as a model. Models can be employed either for generating
test cases or by executing them directly. The latter method is
identical to simulation-based validation. Hence, the simulation
model is executed in parallel to the SUT and the simulation’s
propositions are frequently validated against the SUT.

Both generation and simulation have several pros and
cons. In Figure 8, the relation between the two methods is
depicted. The first artifact, which is assembled during the
system’s development process, is the requirement specification.
Based on this specification, the design is derived during the
system’s development process. The design models are refined
in incremental steps until the code level is reached, which is the
final representation. The refinement process may be be manual

Design
Model

Require-
ments

Validation
Model

Test Cases Reports

Generation

Execution

Simulation

or

Environ‐
mentSUT

against

against
/in-the-loop

Test Interface

Fig. 8: Validation Methods.

or partially model-driven (i.e., Model-Driven Architecture).
When the design model is specified, misinterpretations and
mistakes in the design itself will create faults that later have to
be uncovered by validation. Despite these fault sources, during
the refinement the loss of information between two levels
of abstraction may have effect on the system’s correctness.
Furthermore, due to the change of requirements during the
whole process, inconsistencies of already implemented artifacts
may arise. In the end, validation is responsible to examine how
far the implementation still matches the requirements. Therefore,
an engineer has to define a validation model according the
initial requirements. The model should be independent of
the system’s design in order to avoid the re-implementation
of erroneous interpretations. The validation model specifies
inputs and assertion actions against the interface of the SUT.
Additionally, it has to specify environment changes in order
to trigger and validate the self-adaptation. Therefore, the
environment’s properties and the change of their values over
time has to included by appropriate model representations.

The automatic generation of test cases from this model is
called Model-based Testing (MBT) [8]. The generation process
is controlled by an adequacy criterion, that specifies which
entities of the model (i.e., states, transitions, data elements)
have to be covered before the production of test cases terminates.
A generated test case specifies a strict sequence of test actions
that are applied against the SUT. All test cases are generated
only a single time, as long the requirements stay fix as well.
They are saved in a test suite and can be replayed over multiple
regressions when the implementation has changed. During
the test case execution, inputs are sent to a test interface
and the resulting outputs are checked against the predicted
data using assertions. The test interface provides appropriate
access to system functions and environment control as well
monitoring capabilities. For each run, it can be reported whether
it completely succeeded or in which execution step a failure
occurred. The MBT approach has two advantages. Firstly, all
test cases are assumed to be strictly reproducible as their
execution solely depends on the action that are sent to the
SUT. Secondly, a coverage can be measured, e.g., by counting

98

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the number of executed test cases in the relation to the complete
test suite.

In contrast, simulation directly executes the model. Decision
points during the model interpretation have to be made randomly
or they have to be controlled by a user or a heuristic (similar to
an adequacy criterion). During the simulation, failures can be
observed in form of deviations from the real system’s behavior.
Each derivation can be stored in a report. During the simulation,
data from SUT and environment can be queried and used to
determine decisions. This principle is called “in-the-loop” and
states the main advantage of simulation in comparison to MBT.

The decision between MBT and simulation depends on the
existence of uncertainty-establishing artifacts that have to be
involved in the loop. Both methods rely on a validation model,
which has to implement the requirements stated in our previous
analysis. Each of the defined requirements is a concern to this
model. In the following section, we propose a conceptional
concern-separated structure for such a validation model.

B. Counter Feedback Loop

The SAS deduce adaptations from monitored context
changes. In contrast, a validation mechanism has to work exactly
vice versa. In our work, we call this principle Counter Feedback
Loop as depicted in Figure 9. The context has to be actively
changed in order to trigger the SAS to adapt and enforce
a certain adaptation state, whose effects can be examined.
Hence, the test model has to include a Change specification
containing a set of scenarios. Executing such scenarios allows
to check whether sensor data is correctly obtained and inferred.
(requirement (F1)). In case the monitoring or processing of this
data involves performance requirements (requirement (NF1)),
budgets have to be defined in this artifact.

Afterwards, the reaction of the system has to be ob-
served. Hence, a Causal Connection between sequences
of change and adaptation initiation have to be specified
(requirement (F2)). Sensor data on objects that are observed
using an in-the-loop mechanisms cannot be predicted but
queried whether a certain value is matched. From this, an
adaptation decision can be predicted and examined as well.
The specification of causal connections can be obtained by
defining which symptoms and in which change requests are
expected to be produced in a certain context state. To support
this inference it can be beneficial to capture the Environment
Structure. Thus, the effects of past changes can be stored
as configuration states during the simulation or generation state
an can be taken into account when symptoms are derived. If
their are time restrictions on adaptation initiation, budgets have
to be specified again (requirement (NF2)).

In the next step, it has to be specified which symptoms end
up in which Adaptation Plans (requirement (F3)). The
respective model maps symptoms to a certain operational set
of changes, that are going to be applied against the SAS. In an
additional artifact, the system’s externally observable behavior
has to be modeled in form of a Service Specification.
This informational artifact captures how the observable interface
protocol of the SAS changes in a certain adaptation mode
(requirement (F5)). Thus, it involves also propositions on the
interaction between the produced adaptation plans and the run-
ning processes (requirement (F4)). Finally, the system action’s
impact on the environment can be examined by predicting these
actions in the behavioral system model (cf. requirement (F6)).
All qualitative expectations concerning the specified service

Adequacy Criterion / Scenarios

Change Adaptation
Plans

Environment
Structure

Causal
Connection

Service
Specification

In-the-Loop
Entity

Fig. 9: The Counter Feedback Loop principle.

and its behavior after the adaptation’s execution can be taken
into account by budget values (requirement (NF3)). As the
selection of test sequences through the modeled scenarios is
indeterminstic, an adequacy criterion or simulation heuristic
has to be specified (requirement (C)).

In summary, the validation model consists of relevant
scenarios that stress the system, and oracles that map the
scenarios’ inputs to the intermediate or final outcomes of each
feedback loop component. The different requirements establish
a set of concerns that have to be contained in a model and
specifiable by its metamodel. By separating these concerns, as
proposed by our Counter Feedback Loop principle, different
aspects of validation can be decoupled.

VII. CONCLUSION AND FUTURE WORK

In this paper, we extended our original work [1] where
we applied a customized Failure Mode and Effects Analy-
sis (FMEA) to a conceptional SAS based on the minimal
structural assumptions of MAPE-K. We derived a Failure
Domain Model in order to provide a system in which faults,
errors and failures can be classified. Subsequently, we derived
ten distinct failure scenarios that may occur in the process of
adaptation. By building a fault dependency graph, we visualized
potential cyclic propagation of failures in such systems. In
consequence, a set of founded modeling requirements were
stated that all can be mapped to one or more of the described
failure scenarios. Based on these foundations a systematic
analysis of SAS is possible comprising failure properties,
occurrence, and propagation. A well-designed MBT framework
is comprehensive if all presented requirements are fulfilled and
the respective assurances are considered.

The extensions of this paper are threefold. Firstly, we
exemplified the analysis with our HomeTurtle system in order
to clarify the complete process. Secondly, we improved the
consideration of non-functional properties that have to be
dealt with in validation. Thirdly, we propose to use either
Model-based Testing or Simulation for examining SAS against
their requirements. Both methods are based on models, whose
necessary information have proposed in this paper as well.
Based on this premises, test engineers are equipped with
indicators when building appropriate generation or simulation
frameworks.

For further investigation, it is necessary to instantiate the
identified requirements for real-world SAS systems. If imple-
mentations can be mapped to several adaptivity frameworks
and express the majority of necessary test cases, our approach
can be attested substantial and generic.

99

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENTS

This research has received funding within the
project #100084131 by the European Social Fund (ESF)
and the German Federal State of Saxony, by Deutsche
Forschungsgemeinschaft (DFG) within Collaborative Research
Center 912 (HAEC) and the ”Center for Advancing Electronics
Dresden” (cfaed) as well as T-Systems Multimedia Solutions.

REFERENCES

[1] G. Püschel, S. Götz, C. Wilke, and U. Aßmann, “Towards
systematic model-based testing of self-adaptive software,” in
ADAPTIVE 2013, The Fifth International Conference on
Adaptive and Self-Adaptive Systems and Applications, 2013,
pp. 65–70.

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” Computer, vol. 36, no. 1, Jan. 2003, pp. 41–50.

[3] M. Broy, M. V. Cengarle, and E. Geisberger, “Cyber-physical
systems: Immanent challenges,” in Large-Scale Complex IT
Systems. Development, Operation and Management. Springer,
2012, pp. 1–28.

[4] T. M. King, D. Babich, J. Alava, P. J. Clarke, and R. Stevens,
“Towards self-testing in autonomic computing systems,” in Pro-
ceedings of the Eighth International Symposium on Autonomous
Decentralized Systems, ser. ISADS ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 51–58.

[5] S. S. Kulkarni and K. N. Biyani, “Component-based software
engineering.” Springer, 2004, ch. Correctness of Component-
based Adaptation, pp. 48–58.

[6] B. H. C. Cheng, D. Lemos, H. Giese, P. Inverardi, and J. M.
et al., “Software engineering for self-adaptive systems: A
research roadmap,” in Dagstuhl Seminar 08031 on Software
Engineering for Self-Adaptive Systems, 2008.

[7] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,”
IEEE Transactions on Dependable and Secure Computing, vol. 1,
no. 1, 2004, pp. 11–33.

[8] M. Utting, Practical Model-based Testing: A Tools Approach.
Morgan Kaufmann, 2007.

[9] H. E. Roland and B. Moriarty, System safety engineering and
management 2nd edn. John Wiley & Sons, Chichester, 1990,
ch. Failure mode and effect analysis.

[10] Z. Wang, S. Elbaum, and D. S. Rosenblum, “Automated gener-
ation of context-aware tests,” 29th International Conference on
Software Engineering (ICSE), 2007, pp. 406–415.

[11] V. Dehlen and A. Solberg, “DiVA Methodology (DiVA Deliv-
erable D2.3),” https://sites.google.com/site/divawebsite, visited
02/01/2014, 2010.

[12] A. Maaß, D. Beucho, and A. Solberg, “Adaptation Model and
Validation Framework – Final Version (DiVA Deliverable D4.3),”
https://sites.google.com/site/divawebsite, visited 02/01/2014,
2010.

[13] F. Munoz and B. Baudry, “Artificial table testing dynamically
adaptive systems,” arXiv preprint arXiv:0903.0914, 2009.

[14] D. B. Abeywickrama, N. Hoch, and F. Zambonelli, “Simsota:
Engineering and simulating feedback loops for self-adaptive
systems,” in Proceedings of the International C* Conference
on Computer Science and Software Engineering, ser. C3S2E
’13. ACM, 2013, pp. 67–76.

[15] K. Nehring and P. Niggesmeyer, “Testing the rconfiguration
of adaptive systems,” in ADAPTIVE 2013, The Fifth Interna-
tional Conference on Adaptive and Self-Adaptive Systems and
Applications, 2013, pp. 14–19.

[16] C. Piechnick, S. Richly, S. Götz, C. Wilke, and U. Aßmann,
“Using role-based composition to support unanticipated, dy-
namic adaptation – smart application grids,” in Proceedings
of ADAPTIVE 2012, The Fourth International Conference on
Adaptive and Self-adaptive Systems and Applications, 2012,
pp. 93–102.

[17] “MIL-STD-1629A (1980),” Procedures for performing a failure
mode, effect and criticality analysis. Department of Defense,
USA.

[18] H. Sozer, B. Tekinerdogan, and M. Aksit, Archtitecting De-
pendable Systems IV. Springer, 2007, ch. Extending Failure
Model and Effects Analysis Approach for Reliability Analysis
at the Software Architecture Design Devel.

[19] B. Tekinerdogan, H. Sozer, and M. Aksit, “Software architecture
reliability analysis using failure scenarios,” Journal of Systems
and Software, vol. 81 (4), 2008, pp. 558–575.

[20] J. Dugan, Handbook on Software Reliability Engineering.
McGraw-Hill, New York, 1996, ch. 15. Software System
Analysis Using Fault Trees, pp. 615–659.

[21] S. Hallsteinsen, E. Stav, A. Solberg, and F. J., “Using product
line techniques to build adaptive systems,” in 10th International
Software Product Line Conference, 2006.

[22] B. Morin and A. Solberg, “Reference architecture (DiVA
– deliverable D3.3),” https://sites.google.com/site/divawebsite,
visited 02/01/2014, 2010.

[23] J. Anderson, R. Lemos, S. Malek, and D. Weyns, “Software
engineering for self-adaptive systems,” B. H. Cheng, R. Lemos,
H. Giese, P. Inverardi, and J. Magee, Eds. Berlin, Heidelberg:
Springer-Verlag, 2009, ch. Modeling Dimensions of Self-
Adaptive Software Systems, pp. 27–47.

[24] G. Blair, N. Bencomo, and R. B. France, “Models@run.time,”
Computer, vol. 42, no. 10, 2009, pp. 22–27.

[25] G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial
optimization. Wiley Interscience, 1999.

100

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Runtime Variability in Online Software Products: A
Comparison of Four Patterns

Jaap Kabbedijk, Slinger Jansen, and Thomas Salfischberger
Department of Information and Computing Sciences

Utrecht University, The Netherlands
Princetonplein 5, 3584 CC, Utrecht

J.Kabbedijk@uu.nl, Slinger.Jansen@uu.nl, Tomas@salfischberger.nl

Abstract—Business software is increasingly moving towards
the cloud. Because of this, variability of software in order to fit
requirements of specific customers becomes more complex. This
can no longer be done by directly modifying the application for
each client, because of the fact that a single application serves
multiple customers in the Software-as-a-Service paradigm. A new
set of software patterns and approaches are required to design
software that supports runtime variability. This paper presents
two patterns to solve the problem of dynamically adapting
functionality of an online software product; the Component
Interceptor Pattern and the Event Distribution Pattern. Addi-
tionally, it presents two patterns to dynamically extent the data
model; the Datasource Router Pattern and the Custom Property
Object Pattern. The patterns originate from case studies of
current software systems and are reviewed by domain experts. An
evaluation of the patterns is performed in terms of security, per-
formance, scalability, maintainability and implementation effort,
leading to the conclusion that the Component Interceptor Pattern
and Custom Property Object Pattern are best suited for small
projects, making the Event Distribution Pattern and Datasource
Router Pattern best for large projects.

Keywords—architectural patterns, quality attributes, software
architecture, variability.

I. INTRODUCTION

This research has previously been published as conference
paper [1] and is extended with a pattern description method
and presentation and comparison of two dynamic datamodel
extension patterns.

Software as a Service (SaaS) is a rapidly growing deploy-
ment model with a clear set of advantages to software vendors
and their customers. SaaS allows vendors to deploy changes to
applications more rapidly, which increases product innovations
while reducing support-costs as only a single version is to be
supported concurrently [2]. In the SaaS deployment model, a
single application serves a large number of customers. These
customers are called tenants, which can be a single user or an
organisation with hundreds of users. Because all tenants use
the same application, the cost of development and setup of the
application can be amortized over all contracts.

The multi-tenant deployment model requires the appli-
cation to be aware of different tenants and their users, for
example in separating the data visible to different groups of
users. We define multi-tenancy as: “the property of a system
where multiple varying customers and their end-users share
the system’s services, applications, databases, or hardware
resources, with the aim of lowering costs”. Database designs

for multi-tenant aware software require specialized architecture
principles to accommodate multiple tenants [3]. One of the
challenges in multi-tenant application architectures is the im-
plementation of tenant-specific requirements [4]. Variability of
software to fit requirements of specific customers can no longer
be done by directly modifying the application for each client or
product group, as is customary in Software Product Lines [5].
Because a single application serves multiple customers, only
one instance of a product exists, making SPL approaches
unusable.

Runtime variability in online software products needs to be
enables by a degree of configurability. A new set of software
patterns and approaches are required to design software that
supports runtime variability. The patterns vary in impact on
the technical properties of the software like performance and
maintainability, impact on the cost-drivers of the SaaS business
model, and the requirements they can fulfil. New patterns
are needed for both the data level and instance level of the
application. We propose two dynamic functionality adaptation
patterns to implement variability at instance level and two
dynamic datamodel extension patterns to enable variability at
data level. All patterns are evaluated and compared in terms
of situational suitability.

The concepts of variability and quality attributes are ex-
plained in Section II, after which the expert evaluation used
is explained in Section III. Section IV explains how patterns
are described in this paper, i.e., functional, system and imple-
mentation level. The COMPONENT INTERCEPTOR PATTERN
and the EVENT DISTRIBUTION PATTERN, two patterns both
solving the problem of dynamically adapting functionality
of online business software, are presented in Section V.
Section VI presents the DATASOURCE ROUTER PATTERN
and CUSTOM PROPERTY OBJECT PATTERN, which introduce
variability in the datamodel of online software products. All
patterns are compared in terms of security, performance, scala-
bility, maintainability and implementation effort. A concluding
overview, presenting the best suitability for all patterns van be
found in Section VII.

Please note; in the text we set pattern names in SMALL
CAPS according to the convention by Alexander et al. [6].

II. RELATED WORK

Software Patterns - Object oriented design patterns were
first introduced by Gamma, Helm, Johnson and Vlissides [7]
who define design patterns as recurring patterns of classes

101

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and communicating objects in many object-oriented systems.
They state “each design pattern systematically names, explains,
and evaluates an important and recurring design in object-
oriented systems”. We distinguish the patterns described in this
research from the original object oriented design patterns by
using the name software design patterns. We intend to describe
software design patterns for variability techniques in a multi-
tenant context in a similar manner to the object oriented design
patterns described by Gamma et al. [7].

Others have, based on the first set of design patterns,
researched the best methods for describing and communicating
design patterns for later reuse. Evits and Hinchcliffe [8], for
example, apply UML to design patterns and proposes a mod-
eling technique based on UML-modeling. The same approach
is taken by Mapelsden, Hosking and Grundy [9] in their
proposal for the Design Pattern Modeling Language (DPML).
DPML provides a method for the specification of design
patterns as well as a notation linking the elements of design
patterns in DPML to UML model elements. They consider
three forms, the pattern specification, the pattern instantiation
and the final UML object model of the instantiation. In a
later publication, Mapelsden et al. present tool-support for the
DPML to automatically transform a pattern specification into
a pattern instantiation and to maintain consistency between
pattern specification, pattern instantiation and the UML object
model [10].

[11] discuss the need of a more formal design pattern
description language to support Computer Aided Software
Engineering (CASE) tools. They describe previous pattern de-
scription languages based on generic UML diagrams annotated
with natural language constraints as a problem for CASE
tools. However, their main concern is the fact that previous
pattern description approaches tend to describe a single im-
plementation of the pattern where the true meaning of the
pattern is lost to a description of implementation details. The
running example is the Abstract Factory Pattern as described
by Gamma et al. [7]. The proposed solution is to apply three
separate layers of modeling, the role-model, type-model and
class-model. At the highest level of modeling the role-model
only describes the parts of a design pattern and their relative
roles and interaction. The type-model is a refinement of the
role-model where details like implemented methods are added.
The type-model should according to Lauder and Kent [11] be
supplemented by a textual description of the motivation, trade-
offs and known uses. The final refinement of the type-model is
the class-model, where a concrete implementation is described
as is the case in previous pattern description languages.

Variability - The field of software variability has been
the subject of research from both the modeling perspective
as well as the technical perspective [12]. The application of
variability modeling as used in product line variability [13]
to software as a service environments has been described by
Mietzner, Unger, Titze and Leymann [14]. Variability modeling
as discussed in the aforementioned works contributes to the
understanding of where the application architecture needs to
be able to accommodate change or extension. Patterns play an
important role in modeling and solving variability in software
products [15].

Svahnberg, van Gurp and Bosch [16] propose feature
diagrams as a modeling technique to describe the different

variants of feature in a software product. They use their feature
diagrams as the basis for a method to identify variability
in a product, constrain this variability, pick a method of
implementation for the variability and further manage this
variability point in the application lifecycle. The main differ-
ence from the objectives of our research is that Svahnberg
et al. describe implementation techniques for variability per
installation instance of the software, whereas we focus on
runtime variability in a multi-tenant context.

Quality Attributes - Benlian and Hess [17] identify se-
curity as one of the most important risk-factors perceived,
followed by performance risks. To assess security risks, SaaS
vendors need to include security as a quality attribute in their
design of the architecture. This leads to security as the first
desired quality attribute for business SaaS. Performance as
an important factor to SaaS users is closely related to the
most important factor, i.e., cost [17]. When performance is
insufficient, clients are lost, when the system uses too many
resources to gain an acceptable level of performance, cost
is increased. A SaaS vendor must thus assess the possible
performance impact of changes to the software. To control
cost in business SaaS, the SaaS vendor needs to utilize its
opportunities for scalability to decrease the cost of hardware
or hosting fees (e.g., using scalable software to make optimal
use of cloud-hosting).

Another cost driver in SaaS is the cost of development
and maintenance of the software product. Maintenance cost is
generally decreased by having to maintain only a single version
instead of multiple previous releases. On the other hand, this
maintainability cost-saving must not be lost while implement-
ing runtime variability. Thus, scalability and maintainability
are also desired quality attributes for business SaaS. Another
way the implementation of runtime variability will influence
product cost is through implementation-cost. Development is a
cost-driver for SaaS, thus if one or more specialized developers
are required to implement a certain pattern this will influence
the final product cost.

The identified quality attributes are the following:
Security - The ability to isolate tenants from each other and
the possible impact of security breaches in custom components
on other parts of the system.
Performance - The utilization of computing, storage and
network resources by the application at a certain level of usage
by clients.
Scalability - The relative increase in capacity achieved by the
addition of computing, storage and network resources to the
system as well as the flexibility with which these resources
could be added to the system.
Maintainability - The ease with which the system can be
extended and potential problems can be solved.
Implementation Effort - The effort required to implement and
deploy a specific system.

III. RESEARCH APPROACH

In order to gather the patterns in this research, a design
science approach [18] was used in which the initial solutions
are observed in case studies in which one of the authors took
part as a consultant. The solutions are implemented in current
commercial software products. The architecture description

102

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and source code off the software products is examined and
checked if runtime variability in functionality or datamodel
is supported. Whenever this is the case, the solution used is
documented and the consequences of the solution analyzed.
Solutions observed in at least three products are presented as
patterns and are evaluated by two domain experts to ensure
correctness and usefulness. The evaluation of the cases by
experts enhances the validity of the cases [19]. During each
evaluation session, patterns are discussed with an expert, in a
semi-structured way. Standard questions related to the quality
attributes are asked, after which issues are freely discussed per
quality attribute.

The first expert selected is a senior software architect in
an international software consulting firm specialized in large
scale development of Enterprise Java applications. His role is
to investigate technologies and methodologies to help design
better architectures resulting in faster development and more
extensible software. A recent project includes a multi-tenant
administrative application storing security sensitive data for
multiple organizations. The second expert is a technology
director and lead architect for an application used in distributed
statistics processing of marketing data, previously working in
software performance consulting for web-scale systems. His
experience lies in the field of high-performance distributed
computing. The application his company works on focuses
of low-latency coordinated processing of large volumes of
data to calculate metrics used for marketing. Performance and
scalability are important areas of expertise for their product.

IV. PATTERN DESCRIPTION METHOD

The use of patterns in order to describe multi-tenant
systems is different from the way object oriented design pattern
are commonly applied. An object oriented design pattern
describes common solutions to problems in object oriented
software design. The most important difference between ob-
ject oriented software design and the design of multi-tenant
systems is that the problem scope in multi-tenant systems is
not limited to only the objects in object oriented software.
The software system is considered not only to be a set of
source files, but to include supporting systems like databases,
message-bus and infrastructure.

The needs for a description language for the discussed de-
sign patterns thus includes the need to describe any necessary

Workflow

+ Name

Step

+ Order

VariableStep

+ SituationDescription

DefaultStep

+ Description

Fig. 1: Example UML class diagram

Fig. 2: Example UML Deployment Diagram

characteristics of the supporting systems and auxiliary materi-
als. When considering design patterns for software systems we
propose a combination of description techniques at different
levels similar to Lauder and Kent [11]. Instead of modelling
different levels of detail and abstraction within only object
oriented design, different levels of the software architecture
including supporting systems have to be modelled. The levels
we propose to describe online systems are:

1) Functional level
2) System level
3) Implementation level

Functional level - This level describes the functional in-
tention of the pattern in a technical context. Multiple different
patterns can share the same model at functional level, because
several patterns can be designed to reach the same functional
effect with, for example, different performance and scalability
characteristics. For the graphical modelling of the functional
level, UML class diagrams are used as shown in Figure 1.
This diagram captures the functional situation resulting from
application of the pattern without considering implementation
of pattern instantiation details.

System level - This level models the overview of the
software including supporting systems after the application of
the pattern. Interaction among different components within and
between systems as a result of the implemented pattern are

Fig. 3: Example Sequence Diagram

103

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

StandardComponent

+ Name

+ Function ExtensionComponent

+ Name

+ Function

+ Behaviour

ExtensionPoint

Fig. 4: Functional Model for adapting functionality

shown. A UML deployment diagrams [20] is used to describe
this level (see Figure 2 for an example).

Implementation level - The third level describes the
potential implementation of the pattern. These diagram depicts
a specific implementation of the components of the pattern.
The implementation diagram is closely related to the system
model, but depicts the method of application of the components
in the system model on a more detailed level. Within this
research we use a sequence diagram as shown in Figure 3
to illustrate the implementation. This description level should
be regarded as a possible way to implement the pattern, but it
does not prescribe a specific implementation.

V. DYNAMIC FUNCTIONALITY ADAPTATION PATTERNS

A. Problem Statement

Software product vendors not only need to offer a data
model that fits an organisation’s requirements, software func-
tionality also has to meet an organisation’s processes [21].
When tailor-made software is developed, it is possible to set
the requirements to exactly match the processes of a specific
organisation. For standard online software products this is not
possible and differences between requirements of organisation
have to be addressed at runtime.

A requirement for the ERP system of a manufacturing
company could be to send a notification to the department
responsible for transportation if tomorrow’s batch will be larger
than a certain size. If this requirement is not met by the
software product selected, the company could either decide
to select another software product or develop a tailor-made
application that does meet their requirements.

To allow for the addition of extra functionality in the ap-
plication, a solution that allows to configure this functionality
is needed. This functional situation is modeled in Figure 4, the
envisioned functional situation. The StandardComponent is a
normal component of the software with default functionality,
this component has a set of ExtensionPoints. An Extension-
Point is a location within the normal workflow where there is
a possibility to add or change functionality. This functionality
is specified in an ExtensionComponent, which contains the
actual functionality that is to be executed at the specified
ExtensionPoint.

Two different patterns are identified, both offering a solu-
tion to dynamically adding functionality to a software product.

Fig. 5: Component Interceptor Pattern: System Model

B. Component Interceptor Pattern

The COMPONENT INTERCEPTOR PATTERN as depicted in
Figure 5 consists of only a single application server. Inter-
ceptors are tightly integrated with the application, because
they run in-line with normal application code. Before the
StandardComponent is called the interceptors are allowed to
inspect and possibly modify the set of arguments and data
passed to the standard component. To do this the interceptor
has to be able to access all arguments, modify them or pass
them along in the original form. Running interceptors outside
of the application requires marshalling of the arguments and
data to a format suitable for transport, then unmarshalling by
the interceptor component and again marshalling the possibly
modified arguments to be passed on to the standard component
that was being intercepted. This is impractical and involves a
performance penalty [22].

Running the extension components inside the application-
server while supporting runtime variability requires support
for adding and changing interceptors at runtime. The system
model depicts this requirement in the form of a reloadable
container. In some implementations this could be as simple
as changing a source file, because the programming platform
used will interpret source code on the fly. Other platforms
require special provisions for reloading code, such as OSGi
for the Java platform or Managed Extensibility Framework for
the .NET platform.

Figure 6 depicts the interaction with interceptors involved.
Interaction with standard components that can be extended
goes through the interceptor registry. This registry is needed

Fig. 6: Component Interceptor Pattern: Sequence Diagram

104

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to keep track of all interceptors that are interested in each
interaction. Without the registry the calling code would have
to be aware of all possible interceptors. As depicted, multiple
interceptors can be active per component. It is up to the
interceptor registry to determine the order in which interceptors
will be called. An example strategy would be to call the first
registered interceptor first or to register an explicit order when
registering the interceptors.

Each interceptor has the ability to change the data that is
passed to the standard component, modify the result returned
by the standard component, execute actions before or after
passing on the call or even skip the invocation of the next
step all together and immediately return. Immediately returning
would for example be used when the interceptor implements
certain extra validation steps and refuses the request based on
the outcome of the validation. As a result of these possibilities
the interceptors must be invoked in-line with the standard com-
ponent, the application cannot continue until all interceptors
have finished executing.

C. Event Distribution Pattern

In the event distribution pattern the application generates
events at extension points, which are distributed by a broker. At
each extension point the standard component is programmed to
send an event indicating the point and appropriate contextual
data (e.g., which record is being edited) to a broker. For exam-
ple in a CRM system the standard component for editing client-
records sends a ClientUpdated event with the ID of the client
that was edited. Extension components listen for these events
and take appropriate actions based on the events received. In
the example of a ClientUpdated event, an extension component
could be developed that sends a notification to an external
system to update the client details there.

The system model in Figure 7 depicts the distributed nature
of the EVENT DISTRIBUTION PATTERN. Standard components
run in the application server, sending events to a central broker,
which can be run outside of the application. Extension com-
ponents are isolated and can be on a separate physical server
or run as separate processes on the same server depending
on capacity and scale of the application. Components are
loosely coupled, sharing only the predefined set of events.
The standard components are unaware of which extension

components listen for their events, execution of extension com-
ponents is decoupled from the standard components. Executing
the extension components separately allows for independent
scalability of these components. Depending on system load
and the volume of events each component listens for, it is
possible to allocate the appropriate amount of resources to each
component. Because there is no interaction between listeners,
it is possible to execute all listeners in parallel if appropriate
for the execution environment.

Standard components publish events to the broker as de-
picted in the sequence diagram in Figure 8. The activation
of the standard component not necessarily overlaps with its
listeners. After publishing the event, a standard component is
free to continue execution. Depending on the fault tolerance
and nature of the events it is up to the standard component
to make a trade-off between guaranteed delivery at a higher
latency by waiting on the broker system to acknowledge
reception of the event or continue without waiting for such
an acknowledgement. If, for example, an event is only meant
to prime a cache for extra performance the loss of such a
message would not impact critical functionality of the system
while waiting for the message might mitigate any performance
gains. On the other hand, if an event is used for updating an
external system for which no other synchronization method
is available the system needs guaranteed delivery to function
correctly. At design time this decision can be made on an event
by event basis depending on the capabilities of the messaging
system used.

Because of the one-way nature of events and decoupled
execution of extension components it is not possible for
an ExtensionComponent to stop standard functionality from
happening. In the observed system this was solved by allowing
ExtensionComponents to execute a compensating action in
their listener. The compensating action is sent from the listener
component back to the system independently of the original
action that caused the event. An example of such a compen-
sating action is an extension component that monitors changes
to certain records and reverts the change in case special
conditions are met. This approach has the added benefit that
any changes made by extension components are clearly visible
in audit logs, which simplifies tracing possibly unexpected
system behaviour back to an ExtensionComponent.

Fig. 7: Event Distribution Pattern: System Model

105

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 8: Event Distribution Pattern: Sequence Diagram

D. Pattern Comparison

This section presents an analysis of both patterns on the
five presented quality attributes.

1) Security: When adapting functionality of an application,
there is always the possibility of introducing new security
vulnerabilities. This is an inherent risk of extending an ap-
plication. The variability patterns do, however, influence how
much larger the attack surface becomes and how well a breach
in one of the components is isolated from other components. In
the COMPONENT INTERCEPTOR PATTERN, the code handling
the new functionality becomes part of the application and will
have the ability to execute arbitrary code within the context of
the main application as depicted in Figure 5. It will also have
full access to any parameters passed to intercepted functions
as well as any returned values. A security breach in the ex-
tension components (interceptors) is not isolated to only those
components, unless extra security measures are implemented
to separate the components from the main application. Adding
extra security measures, however, does have an impact on the
performance efficiency of the application.

The EVENT DISTRIBUTION PATTERN isolates the extension
components from the application by executing them in a
separate context based on incoming events as depicted in
Figure 6. This execution in a separate context allows for
more isolation between extension components and the main
application components. The components also have far more
limited access to standard functionality, because any change
the component wants to make has to go through explicitly
exported APIs or messages. Combined with event-sourcing,
any change to data as a result of custom functionality is fully
traceable including the original values [23].

2) Performance: The COMPONENT INTERCEPTOR PAT-
TERN executes interceptors within the context of the appli-
cation. This results in little overhead when executing the
extension components, because data does not need to be mar-
shalled, unmarshalled and transferred between applications.
However, for security reasons it could be necessary to separate
the interceptors from the main application as described in
the previous section. This removes one of the performance
advantages of the component interceptor pattern because data
must be transferred between the different contexts.

Applications implementing the EVENT DISTRIBUTION PAT-

TERN require the setup of a message broker that handles
all events coming from the application and going into the
extension components. This requires extra processing and
network resources and in the case of durable message delivery
mechanisms also storage resources reading and writing the
messages. To transfer the events from the application via a
message broker to the extension components the events must
be marshalled into a format suitable for transferring over a
network and unmarshalled upon reception by the extension
component, these steps add non-trivial cost to the operations.

3) Scalability: Applications using the COMPONENT IN-
TERCEPTOR PATTERN will execute interceptors within the
context of the application. This has performance advantages
described in the previous section, however, the interceptors
cannot be scaled independently of the application. When a high
number of interceptors exists requiring significant resources
the application as a whole needs more application servers to
execute. The interceptors must be available to all application
servers in that case.

On the other hand, the EVENT DISTRIBUTION PATTERN
decouples the execution of the event handlers from the applica-
tion by running them on a logically separate application server.
Because events are handled outside the execution flow of the
standard components they can also be distributed to multiple
systems. Adding extra application servers subscribing to the
same events in the message broker the processing capacity of
events could increase linearly. For the EVENT DISTRIBUTION
PATTERN this requires a message broker system that is able
to handle the increasing numbers of messages. Those systems
are available off the shelf from open source projects like Fuse
Message Broker, JBoss Messaging, RabbitMQ and commercial
offerings like Microsoft BizTalk, Oracle Message Broker or
Cloverleaf.

4) Maintainability: When adapting the functionality of an
application, maintainability is also affected by the necessity to
make sure future extensions and modifications are compatible
with any custom functionality implemented for tenants. This
is a trade-off between the flexibility and depth with which
ExtensionComponents can affect the application and the impact
that changes to the application will have on the Extension-
Components. As an example of the aforementioned trade-off,
a simple system with only a single ExtensionPoint will have a
much lower impact on maintainability than a complex system
with a very high number of ExtensionPoints. This however
affects both patterns equally.

The way the patterns decouple ExtensionComponents from
StandardComponents is however a differentiating factor. In the
COMPONENT INTERCEPTOR PATTERN the ExtensionCompo-
nent is more tightly integrated with the StandardComponent
because calls to a StandardComponent at an ExtensionPoint
go through the interceptor providing all parameters and re-
turn values of the call. When changing calls by adding or
removing parameters this will directly affect the input of
each ExtensionComponent registered from that ExtensionPoint.
When applying the event distribution pattern the integration
is more decoupled because calls to StandardComponents are
not directly affected by the ExtensionComponents. Instead the
ExtensionComponent receives a standardized event-message
and uses a provided API to send any changes or other
actions back to the application. This allows for changes to

106

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the StandardComponent without changing the event-messages
going to the ExtensionComponent. At the same time the API
used by ExtensionComponents to influence the application
can be kept stable for small changes or versioned to support
future compatibility using methods like the one described by
Weinreich, Ziebermayr, and Draheim [24].

5) Implementation Effort: When implementing a pattern
for adding functionality to an application we distinguish two
factors determining the implementation effort. The first factor
is the direct effort required to implement the pattern in the
system, e.g., adding ExtensionPoints to the StandardCom-
ponents of the application. The second factor is the effort
necessary to implement ExtensionComponents. Later changes
to the components might also require development effort, this
is however excluded from implementation effort because it
is covered under maintainability. Both patterns require the
definition and implementation of ExtensionPoints, the way
these points are implemented differs per pattern. When im-
plementing the COMPONENT INTERCEPTOR PATTERN it is
necessary to setup an Interceptor Registry and modify calls to
StandardComponents to go through the Interceptor Registry.

In the EVENT DISTRIBUTION PATTERN, a message broker
system must be setup to handle the event-messages flowing
from StandardComponents to ExtensionComponents. The ap-
plication still has to be modified at the ExtensionPoints to
send the event-messages belonging to that ExtensionPoint. A
larger difference between the two patterns emerges in the
way they influence the system. Using component interceptor
pattern each interceptor has full access to the application
because it executes within the same context. Communication
with StandardComponents from within ExtensionComponents
could use normal function-calls just like any other part of the
system. This differs from the event distribution pattern where
the ExtensionComponents execute in a separate environment
outside the context of the StandardComponents. Any interac-
tion between ExtensionComponents and StandardComponents
needs to go through an external interface. Depending on
the type of system and the requirements for interaction this
requires the development of some sort of (webservice-)API
for the ExtensionComponents to use.

The second factor of implementation effort, the effort
required to implement ExtensionComponents, affects both
patterns. In the COMPONENT INTERCEPTOR PATTERN the
implementation requires the development of an interceptor,
which executes the correct behaviour when certain conditions
are met. The EVENT DISTRIBUTION PATTERN requires the
development of ExtensionComponents, which listen for the
right messages and execute the correct functionality when
certain conditions are met.

Please see Table I for an overview of the evaluation of both
patterns. Plus and minus signs are used to indicate whether a
characteristic is positive or negative. Keep in mind all scores
are relative scores compared to the other pattern.

VI. DYNAMIC DATA MODEL EXTENSION PATTERNS

A. Problem Statement

Organisations within the same or different market all strive
to differentiate themselves, which results in numerous different

working processes each with specific requirements for the
supporting software systems. Additionally, across markets and
jurisdictions differences exist in regulations and standards
which require the storage and reporting of different data for
each organisation. Organisations will thus set varying require-
ments to store data specific to their needs. These requirements
could be met by software specifically designed for the market
in which this organisation operates or even software tailored to
the needs of one specific organisation. Specializing software of
a small market or even single organisation decreases the num-
ber of possible clients for the software vendor and increases
the cost per client. A software product that provides enough
variability on the data model to meet organisation specific
requirements will decrease cost and attract clients that cannot
currently be serviced by software products unable to meet their
specific requirements. Extension of the data model by creating
additional fields to store data that are specific to an organisation
or their working processes is a common requirement [25].

DynamicProperty

+ Name

+ Type

+ Entity

DynamicPropertyValue

+ Property

+ Value

Entity

+ ID

+ Collection of properties

Fig. 9: Functional Model for datamodel extension

In case of standardized software, where this requirement
is not met by the default installation of the software, an
extension of the existing data model is required. Figure 9
depicts the envisioned functional situation, storing custom
properties of entities in the domain model. The depicted Entity
is the original entity in the application domain model which
contains a DynamicPropertyValue and has a relation to a
DynamicProperty. This property is configured for a specific
tenant and holds settings like for example a name and expected
data-type.

B. Datasource Router Pattern

In this pattern, the application uses a different database
instance (or schema) for each tenant. Custom properties are
then added to the database as normal fields. Each component in
the application accesses this database through the Datasource
Router. The Datasource Router component determines which
database is to be used (based on the tenant the current
user belongs to) and routes all access to the right database
automatically. The other components can thus work without
being aware of the fact that the application is actually serving
multiple tenants using different databases.

The system model, which is shown in Figure 10, describes
the overview of the system when implementing the DATA-
SOURCE ROUTER PATTERN. As shown, the application uses

107

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I: OVERVIEW OF BOTH DYNAMIC FUNCTIONALITY ADAPTION PATTERNS

Component Interceptor Pattern Event Distribution Pattern

Security - Extension components execute within application scope + Isolation of extension components and full traceability of actions by
extension components

Performance + Direct execution of extension components - Network overhead for calling extension components
- The broker system requires extra resources

Scalability - No independent scaling of extension components + Independent scaling of extension components
- Does not scale to high number of extension components + Extension components cannot delay standard components

- Requires scalable message-broker system

Maintainability - Tight coupling of extension components + Loose coupling of extension components

Implementation Effort + Direct communication with standard components - Requires the setup of a message broker system
+ Access to all data by design. - Requires a separate mechanism to communicate with the application

Fig. 10: Datasource Router Pattern: System Model

multiple separate databases (i.e., Database 1 and Database 2 in
the figure) to store data for different tenants. Each component
accesses the database through a Datasource Router, which
determines to which database the queries are sent. Due to
this isolation the components that access the database never
encounter data for multiple tenants at once, since a query will
always return results for one and only one tenant, because it is
sent to a database that contains only data for a single tenant.
This means the components do not need to be multi-tenancy
aware in querying the data.

Fig. 11: Datasource Router Pattern: Sequence Diagram

The interaction between tenant-unaware components and
the database goes through the Datasource Router. The se-
quence diagram in Figure 11 depicts the interaction from com-
ponent through Datasource Router to the actual database. First,
the user interacts with a component, this component requires
access to data, which is done through the Datasource Router.
The Datasource Router is then responsible for determining
which tenant the current user belongs to, this responsibility is
delegated to the User Context. It is implementation dependant

how this User Context is implemented, the only requirement is
that it is able to tell the Datasource Router, which tenant is to
be used in the context of the current request. After determining
which tenant is active the Datasource Router executes the
query on the right database (selected based on the active
tenant), the results are then returned to the component, which
originally needed access to the data. In this sequence, it is
clear that from the perspective of a component requesting data
it does not matter how multi-tenancy is implemented in deeper
layers. The component is isolated from these choices and the
possible complexity involved in selecting the right datasource
to use for the current user.

C. Custom Property Object Pattern

When implementing the CUSTOM PROPERTY OBJECT PAT-
TERN, data from all tenants is stored in a single database with
a single schema. Any additional data like custom properties is
modeled in the design of the application as separate custom
property objects, which are stored in the existing static schema.
Because all data is stored in a single database components
using that data need to be aware of multi-tenancy and explicitly
query for data of a specific tenant.

Fig. 12: Custom Property Object Pattern: System Model

This pattern prescribes the storage of all data in a single
database, which is accessed by components that are aware of
how to filter data for each tenant. In the system model, as
depicted in Figure 13, components are aware of multi-tenancy
and directly access a single database to query for the data
necessary to complete requests. When querying the data it is
the responsibility of each component to only query data related
to the requested tenant or filter data while processing, to get
results only for the current tenant.

As a result of using a single database for all tenants, the
other components need to be aware of the context in which

108

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 13: Custom Property Object Pattern:Sequence Diagram

they operate. When retrieving data the components need to
filter the results to only show data for the current tenant. The
resulting interaction from component to database is depicted
in Figure 13. The component first determines which tenant is
currently active, this is done by using the User Context. It is
implementation dependant how this User Context determines
this, the only requirement is that it is able to tell a component
which tenant is to be used in the context of the current request.
The component then generates a query that is specific to
the current tenant and sends this to the database. It is the
responsibility of the component to ensure that the generated
query only accesses data for the current tenant and to avoid
retrieving data outside of tenant boundaries.

D. Pattern Comparison

1) Security: Comparing the different data storage structures
of the DATASOURCE ROUTER PATTERN and the CUSTOM
PROPERTY OBJECT PATTERN shows that the DATASOURCE
ROUTER PATTERN separates data from each tenant in a sepa-
rate schema or database. This separation also guarantees that
when a query is executed it will only return data for a single
tenant without extra efforts from the developer. Because the
datasource router component is the only component involved
in selecting the datasource for a query, the changes of acciden-
tally mixing data from multiple tenants due to programming
errors are low. Failing to select a datasource would simply
crash the application instead of mixing data from other tenants.

On the other hand, the CUSTOM PROPERTY OBJECTS
PATTERN relies on the developers to write queries to only
return data from the appropriate tenant. When no precautions
are taken in the development and testing process the possibility
of accidentally mixing data from multiple tenants is higher than
when the DATASOURCE ROUTER PATTERN is used. When a
correct filter is not applied in this pattern, users will receiving
data from other tenants that should never be visible to them.
When implementing this pattern it is critical to implement a
strong test and quality assurance system as well as methods for
automatically detecting queries that fail to filter data correctly.

At the system level the DATASOURCE ROUTER PATTERN
requires a separate database or schema per tenant, these
separate instances must all be monitored, updated and secured
separately. Automation of security related system administra-
tion tasks is important, to ensure that all instances are always

in the required state. Failing to implement proper procedures
might result in tenant instances being in different states of
updates and security related configuration settings. Security
procedures for the custom property objects pattern can be
simpler, because only a single database needs to be monitored
and secured. This single database system is however a more
high value target from a security perspective because data from
all tenants is stored in a single place.

2) Performance: The CUSTOM PROPERTY OBJECTS PAT-
TERN uses only a single large database or schema, which
allows the database server to allocate all resources to one
entity. The DATASOURCE ROUTER PATTERN requires a sep-
arate database or schema for each tenant, which, depending
on the database system used, can result in partitioning of
available resources like memory and caches and requiring more
network resources to connect to all databases separately. Query
efficiency in the custom property objects pattern is dependent
upon the design of the database schema.

If the schema is generic, storing all data in field types
without type information, the database engine will not be able
to apply optimizations for specific datatypes. For example,
storing fixed length integers in a variable length BLOB-
field does not allow the database engine to make use of the
known length of the field for faster searching through the
storage structures. Designing the schema to partition data by
tenant allows the database to limit the amount of data that
is necessary to retrieve when executing a query for a single
tenant. This limitation comes naturally for the DATASOURCE
ROUTER PATTERN, because the data for each tenant is stored
separately.

3) Scalability: Two types of scalability exist; vertical scal-
ability and horizontal scalability. In vertical scalability we con-
sider the amount of added capacity available when increasing
the resources of a single system, e.g., adding more memory,
more storage or more processing power to a single server.
This is naturally limited by the available hardware options and
associated costs of those components. Horizontal scalability
concerns the scalability of adding more instances instead of
increasing capacity in a single system. Horizontal scalability
does not have the implied limits of available hardware that exist
in vertical scalability, however, achieving perfect horizontal
scalability has several challenges in coordination of nodes in a
system. In practice this coordination costs resources, which
makes it hard to achieve linear scalability in systems that
require coordination of their workload.

By applying the CUSTOM PROPERTY OBJECTS PATTERN
the application will only use a single database system. This
impacts scalability in the application that requires a database
system that is able to scale by itself to achieve scalability
of the system as a whole. For example, a database system
that supports clustering is appropriate to support scalability
of the custom property objects pattern. In the DATASOURCE
ROUTER PATTERN adding additional sources by moving part
of the databases to separate servers is possible and does not
require a database system capable of clustering.

The DATASOURCE ROUTER PATTERN is easier to scale
out when the amount of tenants increases. An example case
is a system currently using two database systems. In this
example system, new tenants subscribe to the service and the

109

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II: OVERVIEW OF BOTH DYNAMIC DATAMODEL EXTENSION PATTERNS

Datasource Router Pattern Custom Property Object Pattern

Security + Natural separation of datasets + Only a single datasource to secure and maintain
+ Single point of selecting correct datasource - Risk of losing data separation with programming errors
- More datasources to secure and maintain

Performance + Correct data-types allow for optimizations + Full resource utilization across all schemas
- Resource partitioning across separate schemas - Loss of optimizations due to lack of type information

Scalability + Natural scalability due to separate schemas - No inherent scalability in pattern structure
+ No need for scalability support in database - Requires database system capable of scaling

Maintainability - Large number of possible database schemas must be tested + Single static database schema
- Problem solving requires schema variants to be included + Custom properties can be handled with generic shared code

Implementation Effort + Central component to handle all data-access - Requires adaption of data-access in all components
- Custom properties must be handled in all components - Custom properties must be handled in all components

capacity becomes insufficient to service all tenants. Horizontal
scalability is possible by adding two more database systems,
effectively doubling the database capacity by allowing the data
for new tenants to be stored on the new systems. There is
virtually no overhead involved in this addition, because no
extra coordination is required between the database systems
servicing data for separate tenants.

The CUSTOM PROPERTY OBJECTS PATTERN requires a
database system that is able to store all data for all tenants. The
database system must in that case support vertical scalability
by increasing the capacity of a single system instead of
horizontal scalability. The application of a database system
that provides a scalability capability is necessary for large
deployments of this pattern. The results are dependant upon
the effectiveness with which the database system deals with
scalability challenges.

4) Maintainability: When extending the application with
new functionality both patterns require that the new function-
ality is aware of any customized objects. For the DATASOURCE
ROUTER PATTERN this involves creating a solution able of de-
termining all database schema variations and correctly copying
these values. The code involved can be complex because of the
need to support various database modifications supported by
the underlying database system. In the CUSTOM PROPERTY
OBJECTS PATTERN, the extra properties are stored as prede-
fined database objects, which can be handled the same as any
other object stored in the database of the application. This
means the code to handle the custom properties can be much
simpler. A generic system could always handle the custom
properties in the same way agnostic of their contents because
they are abstracted as normal database objects. For problem
solving a similar difference exists.

A problem affecting a single tenant in an application
using the DATASOURCE ROUTER PATTERN can be harder to
reproduce because of the various schema changes that could
be done to the schema for that specific tenant. Because the
changes, it is harder to isolate the root-cause of the problem.
The CUSTOM PROPERTY OBJECTS PATTERN deals with a fully
standardized database schema where the possible types of
custom properties are explicitly visible in the design of the
system. Because of this it is easier to create correct test-
cases for the CUSTOM PROPERTY OBJECTS PATTERN, whereas
the DATASOURCE ROUTER PATTERN has much more potential
schema-variations, which must be explicitly handled correctly

and tested.

5) Implementation Effort: For the DATASOURCE ROUTER
PATTERN the initial implementation requires the development
of the router component as well as systems to manage and
automatically deploy new database instances for new tenants.
The other components can however be left unchanged because
awareness of the multi-tenant environment is not required. Us-
ing the CUSTOM PROPERTY OBJECTS PATTERN, on the other
hand, does not require the development of new components or
management systems. For this pattern the existing components
need to be adapted to query the right data and use appropriate
filtering methods. Both patterns require the implementation of
code handling the existence of custom properties for entities
in the applications data model. This is equal for both patterns
and thus of no influence in a comparison on implementation
effort.

VII. CONCLUSION

Within this paper two problem domains related to imple-
menting runtime variability in online business software are
discussed. Also a pattern description method is proposed,
suggestion the use of the following description levels: 1) Func-
tional level, 2) System level and 3) Implementation level.

First, two dynamic functionality adaptation patterns, which
are the COMPONENT INTERCEPTOR PATTERN and the EVENT
DISTRIBUTION PATTERN are compared in terms of security,
performance, scalability, maintainability and implementation
effort. Both patterns offer a solution for dynamically adapting
functionality of an online software product, but do so in
different ways. The COMPONENT INTERCEPTOR PATTERN
performs less in terms of scalability, because the interceptors
can not scale independently of the application. When scaling
up in terms of number of servers, the interceptors need to be
available to all servers. Related to this issue, the maintain-
ability of the COMPONENT INTERCEPTOR PATTERN is also
less than that of the EVENT DISTRIBUTION PATTERN. This is
caused by the fact the interceptors can not be decoupled from
the rest of the system, creating a software product that will
be difficult to maintain. The EVENT DISTRIBUTION PATTERN
offers more isolation in terms of security than the other
pattern, but requires more processing and network resources
in terms of performance. Related to implementation effort, the
COMPONENT INTERCEPTOR PATTERN is easier to implement,
because no message broker or related services are required.

110

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In general, the COMPONENT INTERCEPTOR PATTERN serves
best for adapting functionality of small projects, where the
EVENT DISTRIBUTION PATTERN is better for large projects,
considering the quality attributes described in this paper.

Second, two dynamic data model extension patterns, being
the DATASOURCE ROUTER PATTERN and CUSTOM PROPERTY
OBJECT PATTERN are presented and evaluated. We conclude
that the DATASOURCE ROUTER PATTERN has advantages on
security by naturally isolating the data for all tenants, scal-
ability by allowing for the distribution of tenants across
datasources and implementation by not requiring all queries
and components to be adapted but providing a single router
component instead. The custom property objects pattern holds
an advantage on performance by allowing better resource
utilization, however, extra care is necessary to design an ap-
propriate database schema. The CUSTOM PROPERTY OBJECTS
PATTERN also scores better on maintainability by allowing
standardized handling of the dynamic properties and using
a static data model avoiding the need to test every possible
variation when adapting the software.

For future work we are currently setting up larger evalua-
tion sessions in which different patterns will be evaluated using
experts. The evaluation of patterns is particularly difficult,
because you should evaluate an abstract solution instead of
a specific implementation. We are working on a structured
method for comparing sets of patterns and making use of
the implicit knowledge of experts. By doing this, we aim at
evaluating the solution, instead of just an implementation.

ACKNOWLEDGMENT

The authors would like to thank Allard Buijze and Koen
Bos for helping in reviewing the results of the research.

REFERENCES

[1] J. Kabbedijk, T. Salfischberger, and S. Jansen, “Comparing two architec-
tural patterns for dynamically adapting functionality in online software
products - best paper award,” in Proceedings of the 5th International
Conferences on Pervasive Patterns and Applications (PATTERNS 2013),
2013, pp. 20–25.

[2] A. Dubey and D. Wagle, “Delivering software as a service,” The
McKinsey Quarterly, vol. 6, pp. 1–12, 2007.

[3] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger, “Multi-
tenant databases for software as a service: schema-mapping techniques,”
in Proceedings of the 2008 ACM SIGMOD international conference on
Management of data. ACM, 2008, pp. 1195–1206.

[4] S. Jansen, G. Houben, and S. Brinkkemper, “Customization realization
in multi-tenant web applications: case studies from the library sector,”
Web Engineering, pp. 445–459, 2010.

[5] K. Pohl, G. Böckle, and F. van der Linden, Software product line
engineering: foundations, principles, and techniques. Springer-Verlag,
New York, 2005.

[6] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-
King, and S. Angel, A pattern language. Oxford University Press,
1977.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: el-
ements of reusable object-oriented software. Addison-wesley Reading,
MA, 1995, vol. 206.

[8] P. Evitts and D. Hinchcliffe, A UML pattern language. Macmillan
Technical Publishing, 2000, vol. 201.

[9] D. Mapelsden, J. Hosking, and J. Grundy, “Design pattern modelling
and instantiation using dpml,” in Proceedings of the 40th International
Conference on Tools Pacific: Objects for internet, mobile and embedded
applications. Australian Computer Society, Inc., 2002, pp. 3–11.

[10] D. Maplesden, J. G. Hosking, and J. C. Grundy, “A visual language
for design pattern modelling and instantiation.” in Design Pattern
Formalization Techniques, 2007, pp. 338–339.

[11] A. Lauder and S. Kent, “Precise visual specification of design patterns,”
in ECOOP98Object-Oriented Programming. Springer, 1998, pp. 114–
134.

[12] M. Jaring and J. Bosch, “Representing variability in software product
lines: A case study,” Software Product Lines, pp. 219–245, 2002.

[13] J. Bayer, . Gerard, O. Haugen, J. Mansell, B. Møller-Pedersen, J. Old-
evik, P. Tessier, J. Thibault, and T. Widen, “Consolidated product line
variability modeling,” in Software Product Lines. Springer, 2006, pp.
195–241.

[14] R. Mietzner, T. Unger, R. Titze, and F. Leymann, “Combining Different
Multi-tenancy Patterns in Service-Oriented Applications,” in Proceed-
ings of the IEEE International Enterprise Distributed Object Computing
Conference, 2009, pp. 131–140.

[15] J. Kabbedijk and S. Jansen, “The role of variability patterns in multi-
tenant business software,” in Proceedings of the WICSA/ECSA 2012
Companion Volume. ACM, 2012, pp. 143–146.

[16] M. Svahnberg, J. van Gurp, and J. Bosch, “A taxonomy of variability
realization techniques,” Software: Practice and Experience, vol. 35,
no. 8, pp. 705–754, 2005.

[17] A. Benlian and T. Hess, “Opportunities and risks of software-as-a-
service: Findings from a survey of it executives,” Decision Support
Systems, vol. 52, no. 1, pp. 232–246, 2011.

[18] A. Hevner and S. Chatterjee, Design research in information systems:
theory and practice. Springer, 2010, vol. 22.

[19] P. Runeson and M. H’́ost, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Software En-
gineering, vol. 14, no. 2, pp. 131–164, 2009.

[20] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language
Reference Manual, The. Pearson Higher Education, 2004.

[21] W. Van der Aalst, A. ter Hofstede, and M. Weske, “Business process
management: A survey,” Business Process Management, pp. 1019–
1019, 2003.

[22] B. Carpenter, G. Fox, S. Ko, and S. Lim, “Object serialization for
marshalling data in a java interface to mpi,” in Proceedings of the ACM
1999 conference on Java Grande. ACM, 1999, pp. 66–71.

[23] M. Fowler, Patterns of enterprise application architecture. Addison-
Wesley Professional, 2003.

[24] R. Weinreich, T. Ziebermayr, and D. Draheim, “A versioning model for
enterprise services,” in Advanced Information Networking and Applica-
tions Workshops, 2007, AINAW’07. 21st International Conference on,
vol. 2. IEEE, 2007, pp. 570–575.

[25] W. Sun, X. Zhang, C. Guo, P. Sun, and H. Su, “Software as a service:
Configuration and customization perspectives,” in Congress on Services
Part II. IEEE, 2008, pp. 18–25.

111

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Advanced Preprocessing of Binary Executable Files

and its Usage in Retargetable Decompilation

Jakub Křoustek, Peter Matula, Dušan Kolář, and Milan Zavoral
Faculty of Information Technology, IT4Innovations Centre of Excellence

Brno University of Technology
Brno, Czech Republic

{ikroustek, imatula, kolar}@fit.vutbr.cz, xzavor02@stud.fit.vutbr.cz

Abstract—Retargetable machine-code decompilation is used for
a platform-independent transformation of executable files into a
high level language (HLL) representation (e.g., C language). It is
a complex task that must deal with a lot of different platform-
specific features and missing information. Accurate preprocessing
of input executable files is one of the necessary prerequisites
in order to achieve the best results. Furthermore, we can use
gathered information to achieve higher quality of decompila-
tion. This paper presents an extended version of our previous
system for an accurate code preprocessing. It is implemented
as a generic preprocessing system that consists of a precise
compiler and packer detector, plugin-based unpacker, converter
into an internal platform-independent file format, and debugging
information gathering library. We also describe an utilization of
the collected information in a problem of automatic data-type
reconstruction. This system has been adopted and tested in an
existing retargetable decompiler. According to our experimental
results, the proposed retargetable solution is fully competitive
with existing platform-dependent tools.

Keywords–reverse engineering, decompilation, packer detection,
unpacking, executable file, Lissom.

I. INTRODUCTION

This article is closely related to the paper [1]. We extend
this previous paper by presenting several new methods of
packer and compiler detection (e.g., heuristics-based detection,
signatures for ELF file format) and by describing our novel
approach of preprocessing in type-recovery phase of decom-
pilation (e.g. exploitation of debugging information, known
library function calls). We also present re-evaluation of all
experimental tests.

Reverse engineering is used often as an initial phase of
a reengineering process. As an example we can mention
reengineering of legacy software to operate on new computing
platforms. One of the typical reverse-engineering tools is a
machine-code decompiler, which reversely translates binary
executable files back into an HLL representation, see [2],
[3] for more details. This tool can be used for binary code
migration, malware analysis, source code reconstruction, etc.

More attention is paid to retargetable decompilation in
recent years. The goal is to create a tool capable to decom-
pile applications independent of their origin into a uniform
code representation. Therefore, it must handle different target
architectures, operating systems, programming languages, and
their compilers. Moreover, applications can be also packed or
protected by so-called packers or protectors. This is a typical
case of malware. Therefore, such input must be unpacked

before it is further analyzed; otherwise, its decompilation will
be inaccurate or impossible at all. Note: in the following text,
we use the term packing for all the techniques of executable
file creation, such as compilation, compression, protection, etc.

In order to achieve retargetable decompilation, its pre-
processing phase is crucial because it eliminates most of
the platform-specific differences. For example, this phase is
responsible for a precise analysis of an input application (e.g.,
detection of a target platform). Whenever a presence of a
packed code is detected, such application has to be unpacked.

Furthermore, the platform-dependent object file format
(OFF) is converted into an internal uniform code represen-
tation. The final task of preprocessing is an information
gathering, such as detection of originally used programming
language, compiler, its version, or detection and processing of
debugging information. This information is valuable during the
following phases of decompilation because different languages
and compilers use different features and generate unique
code constructions; therefore, such knowledge implies more
accurate decompilation.

In this paper, we present several platform-independent pre-
processing methods, such as language and compiler detection,
executable file unpacking, conversion, and format-independent
debugging information processing. We also demonstrate a
utilization of this information on example of the data-type
recovery analysis. These methods were successfully intercon-
nected, implemented, and tested in a preprocessing phase of an
existing retargetable decompiler developed within the Lissom
project [4].

The paper is organized as follows. Section II discusses the
related work of executable file preprocessing. Then, we briefly
describe the retargetable decompiler developed within the Lis-
som project in Section III. In Section IV, we give a motivation
for a compiler and packer detection within decompilation.
Afterwards, our own methods used in the preprocessing phase
are presented in Section V. Section VI shows how the data-
type recovery analysis uses previously gathered information.
Experimental results are given in Section VII. Section VIII
closes the paper by discussing future research.

II. RELATED WORK

There are several studies and tools focused on binary
executable file analysis and transformation. Most of them are
not focused directly on decompilation but some of these ideas

112

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

can be applied in this field. Their major limitation for such
usage is their bounding to one particular target platform.

In this section, we briefly mention several existing tools
used for packer detection, unpacking, OFF conversion and
debugging information gathering.

A. Compiler and Packer Detection

The knowledge of the originally used tool (e.g., compiler,
linker, packer) for executable creation is useful in several
security-oriented areas, such as anti-virus or forensics soft-
ware [5]. Overwhelming majority of existing tools are limited
to the Windows Portable Executable (WinPE) format on the
Intel x86 architecture and they use signature-based detection.
Almost all of these tools are freeware but not open source.

Formats of signatures used by these tools for pattern
matching usually contain a hexadecimal representation of the
first few machine-code instructions on the application’s entry
point (EP). EP is an address of the first executed instruction
within the application. A sequence of these first few instruc-
tions creates a so-called start-up or runtime routine, which
is quite unique for each compiler or packer and it can be
used as its footprint. Accuracy of detection depends on the
signature format, their quality, and used scanning algorithm.
Identification of sophisticated packers may need more than one
signature.

Databases with signatures are either internal (i.e., pre-
compiled in code of a detector), or stored in external files
as a plain text. The second ones are more readable and users
can easily add new signatures. However, detection based on
external signatures is slower because they must be parsed at
first. Some detection tools are distributed together with large,
third-party external databases.

B. Unpacking

Binary executable file packing is done for one of these
reasons—code compression, code protection, or their combi-
nation. The idea of code compression is to minimize the size of
distributed files. Roughly speaking, it is done by compressing
the file’s content (i.e., code, data, symbol tables) and its
decompression into memory or into a temporal file during
execution.

Code protection can be done by a wide range of tech-
niques (e.g., anti-debugging, anti-dumping, insertion of self-
modifying code, interpretation of code in internal virtual
machine). It is primarily used on MS Windows but support
of other platforms is on arise in the last years (e.g., gzexe and
Elfcrypt for Linux, VMProtect for Mac OS X, multi-platform
UPX and HASP).

Packers are proclaimed to be used for securing commercial
code from cracking; however, they are massively abused by
malware authors to avoid anti-virus detection. Decompilation
of compressed or protected code is practically impossible,
mainly because it is “just” a static code analysis and unpacking
is done during the runtime. Therefore, it is crucial to solve this
issue in order to support decompilation of this kind of code.

UPX is a rare case of packers because it also supports
unpacking itself. Unpacking is a very popular discipline of

reverse engineering and we can find tools for unpacking many
versions of all popular packers (e.g., ASPackDie, tEunlock,
UnArmadillo). We can also find unpacking scripts for popular
debuggers, like OllyDbg, which do the same job.

Currently, about 80% to 90% of malware is packed [6] and
about 10 to 15 new packers are created from existing ones
every month [7], more and more often by using polymorhic
code generators [8]. In past, there were several attempts to
create generic unpackers (e.g., ProcDump, GUW32), but their
results were less accurate than packer-specific tools. However,
creation of single-purpose unpackers from scratch is a time
consuming task. Once again, these unpacking techniques are
developed primarily for MS Windows and other platforms are
not covered.

C. Object-File-Format Conversion

This part is responsible for converting platform-dependent
file formats into an internal representation. We can find several
existing projects focused on this task. They are used mostly for
OFF migration between two particular platforms and they were
hand-coded by their authors just for this purpose. Therefore,
they cannot be used for retargetable computing.

A typical example is the MAE project [9], which supports
execution of Apple Macintosh applications on UNIX. Sun
Microsystems Wabi [10] allows conversion of executables from
Windows 3.x to Solaris. AT&T’s FreePort Express is another
binary translator of SunOS executables into the Digital UNIX
format. More examples can be found in [11].

D. Debugging Information Gathering

Debugging information is generated by compilers and tra-
ditionally used by debuggers to find and fix software bugs [12].
Since it represents relationship between the machine code
and the original source code, it may as well be exploited
in decompilation, or any other executable file analysis. The
typical use in reverse engineering is to evaluate accuracy of
the analysis by comparing inferred results with those from the
debugging information.

This approach was used in [13] where the readelf utility
was used to extract the debugging data, or in [14] and [15] by
using the libdwarf library. It is however not clear whether
any of these tools is capable to incorporate such information to
its algorithm and produce more accurate output because of it.
Since most of the executable-analysis applications are linked
to a particular architecture and platform it is also unlikely that
they are able to process different debugging formats.

Despite the fact malware rarely contains such additional
data, it would be foolish not to capitalize on them if they
are actually present. This also opens new areas of decompiler
applications. For example in binary verification of critical
programs, which may be intentionally compiled with the
debugging information to make analysis easier.

For this reasons, we have already created the debugging
information preprocessing libraries for the two most widely
used formats (DWARF, Microsoft PDB), and used them for
recovery of variables, functions, and arguments [16]. In the
original paper [1], we used an untyped Python-like language
and we did not exploit the full potential. In this paper we

113

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

show how to incorporate precise data types obtained from
the debugging information to our type recovery algorithm and
propagate them throughout the whole program.

III. LISSOM PROJECT’S RETARGETABLE DECOMPILER

The Lissom project’s [4] retargetable decompiler aims to
be independent on any particular target architecture, operating
system, or OFF. It consists of two main parts—the preprocess-
ing part and the decompilation core, see Figure 1. Its detailed
description can be found in [17], [18].

target
architecture

 models

DECOMPILER

COFF

B A C K - E N D

M I D D L E - E N D

F R O N T - E N D

G
E
N
E
R
A
T
O
R

MIPS

x86

ARM

...

input
application

C Python’ ...

Preprocessing

...ELF WinPE

additional
information

Figure 1. The concept of the Lissom project’s retargetable decompiler.

The preprocessing part is described in the following sec-
tion. Basically, it unpacks and unifies examined platform-
dependent applications into an internal Common-Object-File-
Format (COFF)-based representation.

Afterwards, such COFF-files are processed in the decom-
pilation core, which is partially automatically generated based
on the description of target architecture. This decompilation
phase is responsible for decoding of machine-code instructions,
their static analysis, recovery of HLL constructions (e.g., loops,
functions), and generation of the target HLL code. Currently,
the C language and a Python-like language are used for this
purpose and the decompiler supports decompilation of MIPS,
ARM, and x86 executables.

IV. MOTIVATION

The information about the originally used compiler is
valuable during the decompilation process because each com-
piler generates different code in some cases; therefore, such
knowledge may increase a quality of the decompilation results.
One of such cases is a usage of so-called instruction idioms.
Instruction idiom represents an easy-to-read statement of the
HLL code that is transformed by a compiler into one or more
machine-code instructions, which behavior is not obvious at
the first sight. See [19] for an exhausting list of the existing
idioms.

We illustrate this situation on an example depicted as a
C language code in Figure 2. This program uses an arithmetical
expression “-(a >= 0)”, which is evaluated as 0 whenever
the variable a is smaller than zero; otherwise, the result is
evaluated as -1. Note: the following examples are independent

on the used optimization level within the presented compilers.
All compilers generate 32-bit Linux ELF executable files for
Intel x86 architecture [20] and the assembly code listings were
retrieved via objdump utility.

#include <stdio.h>

int main(int argc, char **argv)
{

int a;

scanf("%d", &a);
// Prints - "0" if the input is smaller than 0
// - "-1" otherwise
printf("%d\n", -(a >= 0));

return 0;
}

Figure 2. Source code in C.

Several compilers substitute code described in Figure 2 by
instruction idioms. Moreover, different compilers generate dif-
ferent idioms. Therefore, it is necessary to distinguish between
them. For example, code generated by the GNU compiler GCC
version 4.0.4 [21] is depicted in Figure 3. As we can see, the
used idiom is non-trivial and its readability is far from the
original expression.

; Address Hex dump Intel x86 instruction
;--
; scanf
; Variable ’a’ is stored in %eax

80483e2: f7 d0 not %eax
80483e4: c1 e8 1f shr $31,%eax
80483e7: f7 d8 neg %eax

; Print result stored in %eax
; printf

Figure 3. Assembly code generated by gcc 4.0.4.

The Clang compiler is developed within the LLVM
project [22], [23]. Output of this compiler is illustrated in
Figure 4. As we can see, Clang uses idiom, which is twice as
long as the previous one and it is assembled by the different
set of instructions. Therefore, it is not possible to implement
one generic decompilation analysis. Such solution will be
inaccurate and slow (i.e., detection of all existing idioms no
matter on the originally used compiler).

; Address Hex dump Intel x86 instruction
;--
; scanf
; Variable ’a’ is stored on stack at -16(%ebp)

8013bf: 83 7d f0 00 cmpl $0,-16(%ebp)
8013c3: 0f 9d c2 setge %dl
8013c6: 80 e2 01 and $1,%dl
8013c9: 0f b6 f2 movzbl %dl,%esi
8013cc: bf 00 00 00 00 mov $0,%edi
8013d1: 29 f7 sub %esi,%edi
8013d3: ;...
8013d6: 89 7c 24 04 mov %edi,4(%esp)

; Print result stored on stack at 4(%esp)
; printf

Figure 4. Assembly code generated by clang 3.1.

114

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Decompilation of instruction idioms (or other similar con-
structions) produces a correct code; however, without any
compiler-specific analysis, this code is hard to read by a human
because it is more similar to a machine-code representation
than to the original HLL code. Compiler-specific analyses are
focused on these issues (e.g., they detect and transform idioms
back to a well-readable representation), but the knowledge of
the originally used compiler and its version is mandatory.

Figure 5 depicts decompilation results for the gcc compiled
code listed in Figure 3 (i.e., code generated by gcc 4.0.4). The
Lissom retargetable decompiler was used for this task. As we
can see, the expression contains bitwise shift and xor operators
instead of the originally used comparison operator. This makes
the decompiled code hard to read.

#include <stdint.h>
#include <stdio.h>

int main(int argc, char **argv)
{

int apple;
apple = 0;
scanf("%d", &apple);
printf("%d\n", -(apple >> 31 ^ 1));
return 0;

}

Figure 5. Decompiled source code from program listed in Figure 3. In this
case, the decompiler lacks any compiler-specific analysis and the result is hard
to read.

Furthermore, it is important to detect compiler version too.
In Figure 6, we illustrate that the different versions of the same
compiler generate different code for the same expression. We
use gcc version 3.4.6 and the C code from the Figure 2.

; Address Hex dump Intel x86 instruction
;---
; scanf
; Variable ’a’ is stored on stack at -4(%ebp)
80483f3: 83 7d fc 00 cmpl $0,-4(%ebp)
80483f7: 78 09 js 8048402
80483f9: c7 45 f8 ff ff... movl $-1,-8(%ebp)
8048400: eb 07 jmp 8048409
8048402: c7 45 f8 00 00... movl $0,-8(%ebp)
8048409:

; Print result stored on stack at -8(%ebp)
; printf

Figure 6. Assembly code generated by gcc 3.4.6.

In this assembly code snippet, we can see that no instruc-
tion idiom was used. The code simply compares the value of
a variable with zero and sets the result in a human-readable
form. It is clear that the difference between the code generated
by the older (Figure 6) and the newer version (Figure 3) of
this compiler is significant. Therefore, we can close this section
stating that information about the used compiler and its version
is important for decompilation.

V. PREPROCESSING PHASE OF THE RETARGETABLE
DECOMPILER

In this section, we present a design of the preprocessing
phase within the Lissom project retargetable decompiler. The

complete overview is depicted in Figure 7. The concept
consists of the following parts.

Figure 7. The concept of the preprocessing phase.

At first, the input executable file is analyzed and the used
OFF is detected. All common formats are supported (e.g.,
WinPE, UNIX ELF, Mach-O). Information about the target
processor architecture is extracted from the OFF header (e.g.,
e_machine entry in ELF OFF) and it is used together with
other essential information in further steps.

The next part of this step is a detection of a tool used
for executable creation. This is done by using a signature-
based detection of start-up code as described in Section II.
Example of such a start-up code can be seen in Fig-
ure 8. Signature for this code snippet is “5589E583EC18C
7042401000000FF15--------E8”, where each charac-
ter represents a nibble of instruction’s encoding. All variable
parts must be skipped during matching by a wild-card character
“-”, e.g., a target address in the call instruction. This
signature format is quite similar to formats used by other
detectors listed in Section VII.

; Address Hex dump Intel x86 instruction
; --
0040126c: 55 push %ebp
0040126d: 89e5 mov %esp, %ebp
0040126f: 83ec18 sub $0x18, %esp
00401272: c7042401000000 movl $0x1, (%esp)
00401279: ff1500000000 call *0x0
0040127f: e8 ...

Figure 8. Start-up code for MinGW gcc v4.6 on x86 (crt2.o) generated
by objdump -d.

115

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Our signature format also supports two new features—
description of nibble sequences with zero or more occurrences
and description of unconditional short jumps. Example of
the former one is “(90)”, denoting an optional sequence of
nop instructions for x86 architecture. Example for the second
one is “#EB”, denoting an unconditional short jump for the
same architecture, which size is specified in the next byte;
everything between the jump and its destination is skipped.
In Figure 9, we can find a code snippet covered by signature
“#EB(90)40”.

; Address Hex dump Intel x86 instruction
;--
00401000: eb 02 jmp short <00401004>
00401002: xx xx ; don’t care
00401004: 90 nop
00401005: 90 nop
00401006: 40 inc %eax

Figure 9. Example of advanced signature format.

These features come handy especially for polymorphic
packers [8] producing a large number of different start-up
codes (e.g., Obsidium packer). Describing one version of such
packer usually needs dozens of classical signatures. However,
this number can be significantly reduced by using the above-
mentioned features.

Signatures within our internal database were created with
focus on the detection of the packer’s version. This information
is valuable for decompilation because two different versions of
the same packer may produce diverse code constructions. The
database also contains signatures for non-WinPE platforms;
therefore, it is not limited like most of other tools. Finally,
new signatures can be automatically created whenever the user
can provide at least two files generated by the same version
of packer. Presence of multiple files is mandatory in order to
find all variable nibbles in the start-up code.

Unfortunately, some polymorphic packers (e.g., Morphine
encryptor) cannot be described via extended format of signa-
tures. These packers generate entirely different start-up routine
for each packed file. For instance, there is an example of
three different start-up routines generated by the Morphine
encryptor:
1C1C26083EB00F6DFF6DF535BFC7C03C1EC005
7408525566C1C4105D5A51510AC95959F9FC60
510FB6C9770525FFFFFFFFF8E2F35983FA2D8B

If we use these samples to create signature, we get the
following result:

As we can see, resulting signature contains only wild-card
characters, which is useless for detection. Therefore, in order
to support a precise detection, we support concept of additional
heuristics that are focused on polymorphic packers. These
heuristics are analysing several properties of the executable
file (e.g., attributes of sections, information stored within file
header, offset of EP in executable file) and they perform
the detection based on a packer-specific behavior. Example
of such heuristic is illustrated in Figure 10—it takes into
account file format, target architecture, offset of EP in file, and

information about file sections. Heuristic is written in C++-like
pseudocode.

if(file_format == WIN_PE &&
target_architecture == INTEL_X86 &&
EP_file_offset >= 0x400 &&
EP_file_offset <= 0x1400 &&
sections[0].name == ".text" &&
sections[1].name == ".data" &&
sections[2].name == ".idata" &&
sections[2].size == 0x200)

{
return "Morphine 1.2";

}

Figure 10. Heuristic for Morphine encryptor v1.2.

Except of heuristics for precise detection of polymorphic
packers, we also support simpler heuristics, which are focused
only on a name, number, and order of sections. Such heuristics
cannot detect exact version of used packer, but they are useful
if signature database does not contain entry for related tool.
Their overview is depicted in Table I.

Whenever a usage of packer is detected in the first phase,
the unpacking part is invoked. Unpacking is done by our own
generic unpacker, which consists of a common unpacking li-
brary and several plugins implementing unpacking of particular
packers. The common library contains the necessary functions
for rapid unpacker creation, such as detection of the original
entry point (OEP), dump of memory, fixing import tables, etc.
Therefore, a plugin itself is very tiny and contains only code
specific to a particular packer.

A plugin can be created in two different ways: either it can
reverse all the techniques used by the packer and produce the
original file, or the plugin can execute the packed file, wait
for its decompression, and dump its unprotected version from
memory to file. The first one is hard to create because it takes
a lot of time to analyze all the used protection techniques.
Its advantage is that unpacking can be done on any platform
because the file is not being executed. That is the main
disadvantage of the second approach. Such a plugin can be
created quickly; however, it must be executed on the same
target platform. In present, we support unpacking of several
popular packers like Armadillo, UPX (Linux and Windows),
NoodleCrypt and others in the second way. See Section VIII
for its future research.

After unpacking, the re-generated executable file is once
more analyzed. In rare cases, second packer was used and we
need to unpack this file once more. Otherwise, the analysis will
try to detect the used compiler and its version, and generate
a configuration file, which is used by other decompilation
tools. This configuration file also contains information about
the target architecture, endianness, bitwidth, address of OEP,
etc.

Afterwards, the platform-specific unpacked executable file
is converted into an internal COFF-based representation. The
converter is also implemented in a plugin-based way and each
plugin converts one particular OFF. Currently, we support ELF,
WinPE, Mach-O, and several others OFF. See [11] for more
details about this tool.

116

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. OVERVIEW OF HEURISTICS FOCUSED ON THE NAME AND
ORDER OF SECTIONS.

packer heuristic
Upack sections[0].name == ".Upack"
PE-PACK sections[last].name == ".PEPACK!!"
WWPack32 sections[last].name == ".WWP32"
yoda’s Crypter sections[last].name == "yC"
LameCrypt sections[last].name == "lamecryp"

ASPack
sections[last - 1].name == ".aspack"
&&
sections[last].name == ".adata"

PEBundle
sections[last - 1].name == "pebundle"
&&
sections[last].name == "pebundle"

UPX

numberOfSections == 3
&&
sections[0].name == "UPX0"
&&
sections[1].name == "UPX1"
&&
(sections[2].name == "UPX2" ||

sections[2].name == ".rsrc")

Petite
numberOfSectionsWithName(".petite")

== 1

PKLite
numberOfSectionsWithName(".pklstb")

== 1

Krypton

numberOfSectionsWithName(".krypton")
== 1

&&
numberOfSectionsWithName("YADO") >= 1

NFO
numberOfSectionsWithName("NFO")

== numberOfSections

PELock NT

numberOfSectionsWithName("PELOCKnt")
> 0

&&
(numberOfSectionsWithName("PELOCKnt")

>= numberOfSections - 2 ||
numberOfSections == 1)

PELock v1.x

numberOfSectionsWithName(".pelock")
> 0

&&
numberOfSectionsWithName(".pelock")

>= numberOfSections - 1

MEW v10

numberOfSections == 2
&&
section[0].name == ".data"
&&
section[1].name == ".decode"

MEW v11 SE 1.x
numberOfSections == 2
&&
section[0].name.containString("MEW")

NsPack v2.x
for(i = 0; i < numberOfSections; ++i)

sections[i].name ==
string("nsp" + numToStr(i))

NsPack v3.x
for(i = 0; i < numberOfSections; ++i)

sections[i].name ==
string(".nsp" + numToStr(i))

Using the information about the target architecture in the
configuration file, the instruction decoder is automatically
created by the generator tool [18]. Instruction decoder is
the first part of the decompiler’s front-end, which translates
machine code instructions into a semantics description of their
behavior.

The last step before the actual decompilation is processing
of debugging information (if present). Currently we sup-
port two major debugging formats, architecture independent
DWARF and Microsoft PDB. Each of them is handled by a
separate specialized library that loads their contents to the in-
ternal representation and provides convenient access methods.

Thanks to the previous steps, it is possible to determine input’s
platform and check for the presence of the DWARF sections
in the COFF file.

Since the PDB debugging information is distributed in
a separate file, checking object file would be pointless and
it is necessary to provide such file whenever an additional
information has to be used. DWARF format is preprocessed by
the mid-layer library called dwarfapi. It uses another library
named libdwarf to parse low-level debugging information,
upon which it builds high-level, object-oriented data structures.

Because there is no available PDB toolkit that would
suit our needs, we created our own parser library called
pdbparser. Basic principles behind both of these tools were
described in [16]. Since then, we further extended them to
support all data types present in the C programming language.
Adding object-oriented features used in the C++ and other
similar languages is planned in the near future.

Finally, the COFF executable file is processed in the gener-
ated decompiler according to the configuration file. Using the
provided information about used compiler, the decompiler can
selectively enable compiler-specific analyses (e.g., detection
of instruction idioms, recovery of functions). One of the first
steps is to check for the debugging information presence and
load it to the internal canonical representation using already
described libraries. This way, any further analysis can access
this information in an unified manner no matter the format of
an underlying source.

VI. PREPROCESSING IN THE TYPE RECOVERY ANALYSIS

The goal of a type recovery analysis is to associate each
piece of data with a high-level data type as close to the original
source code type as possible. We presented the design of a
data-flow based type recovery algorithm used by our retar-
getable decompiler in [24]. Simplified overview is depicted in
Figure 11.

Reconstruction can be divided into the three main phases:
(1) Object (registers, global/local variables, function argu-
ments, etc.) initialization, where each occurrence gets an initial
type, and these types are interconnected by the propagation
equations. (2) Simple and composite analysis run over the set
of objects and equations. Objects’ types are inferred based
on their initial types and the semantics of the operations
they occurred in. Analysis ends once the system’s fixpoint
is reached. (3) Reconstructed types are used in the output
intermediate representation (IR). The original paper focused
solely on the core of the analysis – simple data-type inference
based on the semantics of the individual instructions.

This approach can be applied to any input without ad-
ditional conditions. The disadvantage is its lower accuracy
compared to the other potential type information sources. This
section presents utilization of two highly accurate data-type
sources use of which is enabled by the extensive preprocessing.

A. Data-Type Debugging Information

Debugging information contains exact types of all objects
existing in the original source code. By the time of the type
recovery analysis run, they have already been preprocessed
and are easily accessible. All that needs to be done is to apply

117

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Data-type recovery analysis scheme. Taken from [24].

them in an initialization phase instead of inferring initial types
from the nature of object’s occurrence. This may look simple
enough, but we have to make sure that the type will be assigned
to the correct object. If the debugging information is present,
functions and their arguments are reconstructed precisely and
it is trivial to link them with their true types.

#include <stdlib.h>
#include <stdio.h>

struct s { int i; char c; float f; };
struct s global;

int main()
{

FILE *pFile;
pFile = fopen("some.file", "w+");

float local = rand();
fprintf(pFile, "%f", local);

fscanf(pFile, "%d %c %f",
global.i, global.c, global.f);

printf("%d %c %f",
global.i, global.c, global.f);

return 0;
}

Figure 12. Example of the original source code used for demonstration of
the type recovery.

For global variables, things gets slightly complicated. Vari-
able analysis detected all the global memory accesses, whose
addresses can be statically determined. Then it created simple
global variables for these addresses and used their names
in the access instructions. For example, variable global in
Figure 12 was recognized from three different accesses to its
elements as three separate variables. The first one at address
X , the second at X + 4 and the third at X + 8.

As is displayed in Figure 13 (showing relevant fragment
of the DWARF data), debugging information contains entry
only for the entire composite object. Fortunately, it is not
complicated to link the computed address X with the address
from the debug data (0x0891daa4 in this case) and assign

the true type to the first simple variable.

DW_TAG_subprogram
DW_AT_name "main"
DW_AT_frame_base <loclist with 3 entries follows>

[0]<lowpc=0x0000><highpc=0x0004> DW_OP_reg29
[1]<lowpc=0x0004><highpc=0x0010> DW_OP_breg29+24
[2]<lowpc=0x0010><highpc=0x0104> DW_OP_breg30+24

DW_TAG_variable
DW_AT_name "local"
DW_AT_location DW_OP_fbreg -24

DW_TAG_variable
DW_AT_name "global"
DW_AT_location DW_OP_addr 0x0891daa4

Figure 13. Relevant fragment of the DWARF debugging information
generated for the code in Figure 12.

Based on the known type size, the algorithm can merge
all subsequent simple variables into one composite object.
To achieve the code quality similar to the original source,
all instructions accessing simple globals must be changed to
operations reading or writing the corresponding composite
elements. Using this method, we are able to assign the true
types even to the objects accessed by addresses, whose values
cannot be statically computed (e.g., accessing global array in
a cycle using an iterator). However, creating correct access
instructions with iterators demands usage of the composite type
recovery analysis, which is beyond the scope of this article.

The same principles used for the globals can be applied to
the stack (local) objects as well. However, linking types to the
related objects gets much more complicated in this case.

Looking at the same examples as before, we can see that
stack object local is located at DW_OP_fbreg -24. This
means that it is at offset of -24 from the current frame base.
The frame base is determined by the actual program counter
and the corresponding expression in the function’s location
list. For example, if program counter is between 0x0010 and
0x0104, then frame base is equal to DW_OP_breg30 +
24, where DW_OP_breg30 represents current value of the
register labeled by DWARF with the number 30.

118

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To successfully use this information, we need to make sure
our stack analysis computes the same stack variable offsets
as would be calculated by the debugger using the debugging
data. Furthermore, we need to be able to repeat computation
of the DW_AT_location. To do so, mapping between the
DWARF register numbers and real architecture registers must
be known. If stack offsets were computed correctly, it is
possible to link them with the DW_AT_location results
and find corresponding DWARF entries for the detected stack
variables. Finally, it is trivial to apply true types and perform
the same kind of aggregation and instruction replacement as
for the global variables.

Note: Exploitation of the PDB debugging information is
similar or sometimes even easier to the presented DWARF
usage.

B. Known Library Function Calls

Calls of the known library functions are another highly
accurate data-type source whose optimal usage is enabled by
the extensive input preprocessing. It is providing types of the
same quality as the debugging data without the need of any
additional information in the executable. However, decompiler
must be able to detect linked function calls and have the
database of functions’ prototypes containing information about
the types they use. Generic signature based function code
detection and library type information (LTI) file creation is
described in [25]. In this paper, we deal with its application in
the type recovery algorithm and the advantages gained from
the preprocessing.

%struct.struct_drand48_data =
type { [3 x i16], [3 x i16], i16, i16, i64 }

FILE * fopen (const char *name, const char *mode)
fopen %struct.struct__IO_FILE* 2 i8*, i8*

int fscanf (FILE *stream, const char *form, ...)
fscanf i32 3 %struct.struct__IO_FILE*, i8*, ...

void * malloc (size_t size)
malloc void* 1 i32

double strtod (const char *str, char **ptr)
strtod double 2 i8*, OUT REF i8**

Figure 14. Examples of the library type information entries from stdlib.lti
and stdio.lti files.

Separate LTI file containing the function prototypes and
the definitions of used composite types is generated for each
known standard library. Figure 14 depicts few real examples
from the stdio.h and stdlib.h. Lines starting with the symbol
are comments, other lines are actual entries written in the
LLVM IR syntax. The first record is an example of a structure
definition containing two arrays and three simple members.
Other lines show prototypes of some well-known functions.

Function name is always the first, followed by the func-
tion’s return type, number of arguments and finally arguments’
types. If the function is variadic, its parameter list ends with the
... token. Arguments may be also flagged to express some
additional information about their typical use. For example,
OUT signals that something is returned through the parameter,

REF means that argument is typically passed by the reference.
This makes it possible to decide, which of the different call
variants of strtod() depicted in Figure 15 is more likely to
be used.

Thanks to the input preprocessing, it is possible to pick
the optimal set of LTI files matching program’s architecture,
operating system, and compiler. These LTI files are used to
assign the true data-types to argument and return objects
each time known function call is detected. Subsequent type
propagation will spread the information between other object
occurrences and to all objects in its equivalence class (defined
by the relation: to have the same data type).

char in[] = "365.24 29.53";

// Variant #1:
char* pEnd;
double d = strtod (in, &pEnd);

// Variant #2:
char** pEnd;
double d = strtod (in, pEnd);

Figure 15. Several possible variants how to call strtod().

C. Analysis Modification

Beside the original source code objects, decompiler’s out-
put usually contains other variables arising from the use of
registers or auxiliary local/global variables. Types of such
objects are not present in a potential debugging information;
therefore, they cannot be set directly. Data types recovered
from the function calls are initially set only to the immediate
objects used by the call. For this reasons, no matter the type
sources quality, decompiler always performs full data-flow type
propagation. The only difference is, that some initial object
types set in the analysis initialization are more precise than
others.

The analysis core presented in [24] infers types by repeated
application of the propagation rules and the join function. For
each object, the greatest lower bound of all its occurrences
is found. Algorithm described in the article takes all initial
type estimates as equal and may refine them in order to
unify all object’s occurrences. Since types obtained from the
sources shown in this paper are already precise, this behavior
is undesired for their propagation.

The solution is to tag each type with the identification of
its origin. More precise the origin, greater the priority during
propagation between object’s occurrences and other objects in
the equivalence class. Types with high enough tags are also
saved from any modifications, so that already correct types
are not broken in the process.

Origin tags in an ascending order of precision are: (1) De-
fault type, 32-bit signed integer. (2) Type inferred from the
instruction semantics. (3) Non-default type that was set by
some previous analysis. (4) Type from the dynamic analysis.
(5) Type from the known function call. (6) Type from the
debugging information. Only the last two are saved from any
modifications. It is however possible, in some special cases, to
further enhance the final outcome. Allocation related functions
are the typical example. As we can see in Figure 14, return type

119

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the malloc() function is pointer to void. However, this
cannot be the type of the variable where the result is stored.
In this case, analysis puts together types from two sources of
different precision to get one final data type.

VII. EXPERIMENTAL RESULTS

This section contains an evaluation of the previously de-
scribed methods of packer detection. The accuracy of our tool
(labeled as “Lissom”) is compared with the latest versions
of existing detectors. Their short overview is depicted in
Table II. Detectors are compared in three test sets, see below:
(A) WinPE packers, (B) WinPE polymorphic packers, (C) ELF
packers and compilers. This section also contains discussion
about accuracy of type recovery analysis (D).

TABLE II. OVERVIEW OF EXISTING COMPILER/PACKER DETECTION
TOOLS.

tool signatures
name version internal external total

Lissom 1.5 2282 0 2282
RDG Packer Detector [26] 0.7.2 ? 10 ?
ProtectionID (PID) [27] 0.6.5.5 543 0 543
Exeinfo PE [28] 0.0.3.4 718 7076 7794
Detect It Easy (DiE) [29] 0.81 ? 2100 ?
NtCore PE Detective [30] 1.2.1.1 0 2806 2806
FastScanner [31] 3.0 1605 1832 3437
PEiD 0.95 672 1774 2446

All of these detection tools use the same approach as
our solution—detection using signature matching. As we can
see in Table II, most of them use a combination of pre-
compiled internal signatures and a large external database
created by the user community. The competitive solutions
(except of tool DiE) are limited to WinPE OFF and a number
of their signatures varies between hundreds and thousands. The
number of internal signatures is not always absolutely precise
because some authors do not specify this number, like RDG or
FastScanner. Therefore, we had to analyze such applications
and try to find their databases manually (e.g., using reverse
engineering). We were unable to find it in the RDG and DiE
detectors. Our solution consists of 2282 internal signatures for
all supported OFFs and we also support the concept of external
signatures.

By using reverse engineering, we also figured out that
several tools (e.g., PEiD, RDG) use additional heuristic tech-
nique for packer detection. These techniques are similar to our
solution descripted in Section V. Using this heuristic analysis,
PEiD and RDG detectors are able to detect polymorphic pack-
ers like Morphine encryptor. However, our solution achieved
more accurate results in tests focused on polymorphic packers.

A. WinPE Packers

In total, 40 WinPE packers (e.g., ASPack, FSG, UPX,
PECompact, EXEStealth, MEW) and several their versions
(107 different tools in total) were used for comparison of
previously mentioned detectors. We used these packers for
packing several compiler-generated executables—with differ-
ent size (50kB to 5MB), used compiler, compilation options,
and packer options. The purpose is that some packers create
different start-up code based on the file size and characteristics
(data-section size, PE header flags, etc.). The test set consists
of 5317 executable files in total. We prepared three test cases
for the evaluation of the proposed solution.

At first, we evaluated the detection of packer’s name. This
type of detection is the most common and also the easiest to
implement because generic signatures can be applied (i.e., sig-
natures with only few fixed nibbles describing complete packer
family). On the other hand, this information is critical for
the complete decompilation process because if we are unable
to detect usage of executable-file protector, the decompilation
results will be highly inaccurate. The results of detection are
compared in Figure 16.

0

20

40

60

80

100

Lissom RDG PID ExeinfoPE DiE PEDetectiveFastScan PEiD

A
c
c
u
ra
c
y
(%
)

Detection of packer’s name (e.g., UPX)

Figure 16. Summary of packer detection (packer names).

According to the results, our tool has the best ratio of
packer’s name detection (over 99%), while the RDG [26]
detector was second with ratio 98%. All other solutions
achieved comparable results—between 80% and 91%. We
can also notice that larger signature databases do not imply
better results in this cathegory (e.g., Exeinfo PE). Such large
databases are hard to maintain and they can produce several
false-positive results because of too much generic signatures.

Afterwards, we tested the accuracy of tool’s major version
detection. In other words, this test case was focused on tool’s
ability to distinguish between two generations of the same
tool (e.g., UPX v2 and UPX v3). This feature comes handy
in the front-end phase during compiler-specific analysis. For
example, the compiler may use in its newer versions more
aggressive optimizations that have a very specific meaning
and they need a special attention by the decompiler (e.g.,
instruction idioms, loops transformation, jump tables), see
Section IV for details. The results are depicted in Figure 17.

0

20

40

60

80

100

Lissom RDG PID ExeinfoPE DiE PEDetectiveFastScan PEiD

A
c
c
u
ra
c
y
(%
)

Detection of packer’s major version (e.g., UPX 1.xx)

Figure 17. Summary of packer detection (packer versions).

Within this test case, our solution and RDG once again
achieved the best results (Lissom scored 99%, RDG scored
93%). None of the programs has exceeded the limit of 80%.
Only ExeinfoPE and ProtectionID exceeded 60% success ratio
from the others.

Finally, we tested the ratio of precise packer’s version
detection. This task is the most challenging because it is

120

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

necessary to create one signature for each particular version
of each particular packer. This information is crucial for the
unpacker because the unpacking algorithms are usually created
for one particular packer version and their incorrect usage may
lead to a decompilation failure.

0

20

40

60

80

100

Lissom RDG PID ExeinfoPE DiE PEDetectiveFastScan PEiD

A
c
c
u
ra
c
y
(%
)

Detection of packer’s precise version (e.g., UPX 1.23)

Figure 18. Summary of packer detection (detailed detection).

Based on the results depicted in Figure 18, our detector
achieved the best results in this category with 98% accuracy.
The results of other solutions were much lower (50% at most).
This is mainly because we focus primarily on detecting the
precise version and we also support search in the entire PE
file and its overlay and not just on its entry point.

B. WinPE Polymorphic Packers

Second test suite is focused on WinPE polymorphic packer
labelled as Morphine encryptor. We used two versions of this
tool (v1.2 and v2.7). The test set consist of 339 executable files
in total and we used the same testing methodology as in the
previous case. Only three detectors (Lissom, RDG, and PEiD)
are able to detect this packer. Therefore, other detectors were
excluded from the results. The results are depicted in Table III.

TABLE III. RESULTS FROM TESTING OF DETECTION OF MORPHINE
ENCRYPTOR.

tool type of detection test
name name major version detailed version

Lissom 100% 100% 100%
RDG 94.69% 27.73% 27.73%
PEiD 59.88% 59.88% 35.10%

As we can see, our heuristics detection is the most suc-
cessful (with ratio 100% in all cases). RDG detector exceeded
90% success ratio in detection of packer name, but in other
cases its results are poor. Not even PEiD has achieved good
results.

C. ELF Packers and Compilers

Last test suite for compiler/packer detectors is focused
on detection of ELF compilers (e.g., GCC) and packers
(ELFCrypt, UPX)—we used 18 tools and 197 files in total.
Only two detectors (Lissom and DiE) supports processing of
ELF OFF files. Thus, only these detectors were tested. The
results are compared in Table IV.

Even in this test suite, our tool had the most accurate results
in all cases. Poor performance of DiE detector in two from
three test categories is probably caused by a small number of
signatures for ELF OFF.

TABLE IV. RESULTS FROM TESTING OF DETECTION OF ELF
COMPILERS AND PACKERS.

tool type of detection test
name name major version detailed version

Lissom 98.98% 98.98% 87.31%
DiE 69.04% 4.57% 4.57%

D. Accuracy of type recovery analysis

Figure 19 shows the comparison of the data-type detection
accuracy with and without usage of library function call
prototypes. Graph does not contain column with the debugging
information precision since it is used as reference for other
two type sources and it would always be 100% accurate. The
set of 26 real world programs written in the C programming
language was compiled by the gcc compiler for four architec-
tures (MIPS, x86, ARM, Thumb) and four optimization levels
(O0 through O3). Debugging information generation was also
enabled.

0

20

40

60

80

100

MIPS + LTI MIPS x86 + LTI x86 ARM + LTI ARM Thumb + LTI Thumb

A
c
c
u

ra
c
y
 (

%
)

Accuracy of type detection on different architectures.

Figure 19. Summary of data-type detection.

All the resulting binaries were subsequently decompiled
three times. Data-type recovery was allowed to use different
type sources each time (dynamic analysis was not considered
or used): (1) Any type source including debugging information.
Results served as reference. (2) Enabled library function usage,
but no debugging information. First column for each architec-
ture. (3) Only type inference from the instruction semantics or
as a result of some previous analysis. Second column for each
architecture.

Conservative metric as described in [24] was used to
determine data-type accuracy. Average precision rate for each
architecture was computed from all combinations of input files
and optimizations. We can see that the exploitation of library
type information significantly improves type accuracy across
all platforms. The improvement is all the more important given
that it often provides exact reconstruction of complex well-
known structures, which would never be possible just by the
static type inference.

VIII. CONCLUSION

This paper was aimed on architecture-independent prepro-
cessing methods used within the existing retargetable decom-
piler. We introduced methods of packer detection, unpack-
ing, OFF conversion, and debugging information processing.
Moreover, we have shown their benefits on precise data-type
recovery. Up to now, this concept has been successfully tested
on the MIPS, ARM, and x86 architectures within the Lissom
project’s [4] retargetable decompiler.

121

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We made several tests focused on accuracy of our solution
and according to the experimental results, it can be seen that
our concept is fully competitive with other existing tools. Our
solution achieved more than 98% accuracy in all test cases
focused on packer and compiler detection, which was the best
result of all examined tools.

We close the paper by proposing three areas for future
research. (1) The unpacking phase can be enhanced by using
retargetable simulators [32]. Such tools can emulate the target
host system and, therefore, it will not be necessary to unpack
executables on the same system as its origin. (2) We can further
increase decompilation results by creation of new signatures,
heuristics, and compiler-specific analyses (e.g., better loop
statement recovery, detecting different types of function calls).
The process of heuristics creation can be also based on a
machine-learning approach. (3) The decompilation results can
be increased by extending support on C++ object-oriented
debugging information and creation of new function type
libraries.

ACKNOWLEDGMENTS

This work was supported by the BUT FIT grant FIT-
S-14-2299, and by the European Regional Development
Fund in the IT4Innovations Centre of Excellence project
(CZ.1.05/1.1.00/02.0070).

REFERENCES

[1] J. Křoustek and D. Kolář, “Preprocessing of binary executable
files towards retargetable decompilation,” in 8th International Multi-
Conference on Computing in the Global Information Technology (IC-
CGI’13). Nice, FR: International Academy, Research, and Industry
Association (IARIA), 2013, pp. 259–264.

[2] C. Cifuentes, “Reverse compilation techniques,” Ph.D. dissertation,
School of Computing Science, Queensland University of Technology,
Brisbane, QLD, AU, 1994.

[3] M. J. V. Emmerik, “Static single assignment for decompilation,” Ph.D.
dissertation, University of Queensland, Brisbane, QLD, AU, 2007.

[4] Lissom, http://www.fit.vutbr.cz/research/groups/lissom/, 2013.
[5] G. Taha, “Counterattacking the packers,” in Anti-Virus Asia Researchers

Conference (AVAR’07), 2007.
[6] T. Brosch and M. Morgenstern, “Runtime packers: The hidden prob-

lem?” in Black Hat, 2006.
[7] K. Babar and F. Khalid, “Generic unpacking techniques,” in 2nd

International Conference on Computer, Control and Communication,
2009, pp. 1–6.

[8] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and S. J.
Stolfo, “On the infeasibility of modeling polymorphic shellcode,” in
14th ACM Conference on Computer and Communications Security
(CCS’07). ACM, 2007, pp. 541–551.

[9] Apple Inc., “Macintosh application environment,” http://www.mae.
apple.com, 1994.

[10] P. Hohensee, M. Myszewski, and D. Reese, “Wabi cpu emulation,” Hot
Chips VIII, 1996.

[11] J. Křoustek, P. Matula, and L. Ďurfina, “Generic plugin-based convertor
of executable file formats and its usage in retargetable decompilation,”
in 6th International Scientific and Technical Conference (CSIT’11).
Ministry of Education, Science, Youth and Sports of Ukraine, Lviv
Polytechnic National University, Institute of Computer Science and
Information Technologies, 2011, pp. 127–130.

[12] J. Rosenberg, How Debuggers Work: Algorithms, Data Structures, and
Architecture. New York, US-NY: John Wiley, 1996.

[13] E. N. Troshina and A. V. Chernov, “Using information obtained in
the course of program execution for improving the quality of data
type reconstruction in decompilation,” Programming and Computer
Software, 2010, pp. 343–362.

[14] J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse
engineering of types in binary programs.” in NDSS. The Internet
Society, 2011. [Online]. Available: http://dblp.uni-trier.de/db/conf/ndss/
ndss2011.html#LeeAB11

[15] K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua,
“Scalable variable and data type detection in a binary rewriter,”
SIGPLAN Not., vol. 48, no. 6, Jun. 2013, pp. 51–60. [Online].
Available: http://doi.acm.org/10.1145/2499370.2462165

[16] J. Křoustek, P. Matula, J. Končický, and D. Kolář, “Accurate retargetable
decompilation using additional debugging information,” in 6th Inter-
national Conference on Emerging Security Information, Systems and
Technologies (SECURWARE’12). International Academy, Research,
and Industry Association (IARIA), 2012, pp. 79–84.

[17] L. Ďurfina, J. Křoustek, P. Zemek, D. Kolář, T. Hruška, K. Masařík, and
A. Meduna, “Design of a retargetable decompiler for a static platform-
independent malware analysis,” International Journal of Security and
Its Applications (IJSIA), vol. 5, no. 4, 2011, pp. 91–106.

[18] L. Ďurfina, J. Křoustek, P. Zemek, and B. Kábele, “Detection and
recovery of functions and their arguments in a retargetable decompiler,”
in 19th Working Conference on Reverse Engineering (WCRE’12).
Kingston, ON, CA: IEEE Computer Society, 2012, pp. 51–60.

[19] H. Warren, Hacker’s Delight. Boston, US-MA: Addison-Wesley, 2003.
[20] Intel Corporation, “Intel 64 and IA-32 architectures software devel-

oper’s manual volume 1: Basic architecture,” 2013, http://download.
intel.com/products/processor/manual/253665.pdf.

[21] GCC: the GNU Compiler Collection, http://gcc.gnu.org/, 2014.
[22] Clang: A C Language Family Frontend for LLVM, http://clang.llvm.

org/, 2013.
[23] The LLVM Compiler Infrastructure, http://llvm.org/, 2013.
[24] P. Matula and D. Kolář, “Reconstruction of simple data types in

decompilation,” in 4th International Masaryk Conference for Ph.D.
Students and Young Researchers (MMK 2013), 2013, pp. 1–10.
[Online]. Available: http://www.fit.vutbr.cz/research/view_pub.php?id=
10486

[25] L. Ďurfina and D. Kolář, “Generic detection of the statically linked
code,” in Proceedings of the Twelfth International Conference on
Informatics INFORMATICS 2013. Faculty of Electrical Engineering
and Informatics, University of Technology Košice, 2013, pp. 157–161.
[Online]. Available: http://www.fit.vutbr.cz/research/view_pub.php?id=
10461

[26] RDG Packer Detector, http://www.rdgsoft.net/, 2014.
[27] ProtectionID, http://pid.gamecopyworld.com/, 2014.
[28] ExeinfoPE, http://exeinfo.atwebpages.com/, 2014.
[29] DiE, http://www.ntinfo.biz/index.php/detect-it-easy/, 2014.
[30] NtCore PE Detective, http://www.ntcore.com/, 2014.
[31] FastScanner, http://www.at4re.com/, 2014.
[32] Z. Přikryl, “Advanced methods of microprocessor simulation,” Ph.D.

dissertation, Brno University of Technology, Faculty of Information
Technology, 2011.

122

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Towards High Quality Mobile Applications:

Android Passive MVC Architecture

Karina Sokolova∗†, Marc Lemercier∗

∗University of Technology of Troyes
Troyes, France

{karina.sokolova, marc.lemercier}@utt.fr

Ludovic Garcia†

†EUTECH SSII
La Chapelle Saint Luc, France

{k.sokolova, l.garcia}@eutech-ssii.com

Abstract—Nowadays, the demand for mobile application devel-
opment is high. To be competitive, a mobile application should
be cost-effective and should be of good quality. The architecture
choice is important to ensure the quality of the application over
time and to reduce development time. Two main leaders are
very represented on the mobile market: Apple (iOS) and Google
(Android). The iOS development is based on the Model-View-
Controller design pattern and is well structured. The Android
system does not require any model: the architecture choice
and the application quality highly depends on the developer
experience. Heterogeneous solutions slow down the developer,
while the one known design pattern could not only boost
development time, but improve the maintainability, extensibility
and performance of the application. In this work, we investigate
widely used architectural design patterns and propose a unified
architecture model adapted to Android development. We provide
implementation examples and test the efficiency of the proposed
architecture by implementing it on real applications.

Keywords–Smart mobile devices (smartphones, tablets); de-
sign patterns; Model-View-Controller; Android architecture model;
Fragments; Android passive MVC.

I. INTRODUCTION

This paper is an extended version of the conference pro-
ceedings [1].

The mobile market has grown rapidly in recent years. Many
enterprises feel the need to be present on mobile markets and
propose their services with mobile applications. Compared to
computer programs, mobile applications often have limited
functionalities, shorter shelf life and lower price. New applica-
tions should be developed fast to be cost-effective and updated
often to keep users interested. The quality of the application
should not be neglected, as mobile users are very pernickety
and competition is stiff. Architecture choice remains important
for mobile applications to ensure quality: mobile applications,
as well as other systems, could be complex and evolve over
time.

The demand for smartphone application development is
high especially for the two market leaders: Apple (iOS) and
Google (Android). Cross-platform solutions, such as Phone-
Gap, Rhodes Rhomobile and Titanium Appcelerator reduce
development time, as one application is developed for several
platforms [2], but have limited possibilities – often requiring
native plug-ins. Cross-platform solutions also add complex-
ity to the native code (e.g., web layer) that decreases the

performance of the application. The support of non-native
solutions could be abandoned. Moreover, the cross-platform
solution forces having the same user interface for all platforms,
while users of different platforms have different habits from
native elements. The final application interface that is not
common to the platform could be rejected by the user. Native
solutions enable use of all the platformÕs options with better
performance and lighter code enabling the creation of an
application adapted to the platform, therefore developers often
choose native software development kits (SDK).

The iOS SDK imposes the Model-View-Controller (MVC)
design pattern for the iOS application development [3]. An-
droid requires no particular architecture [4] – developers
choose a suitable architecture for their applications that is
especially difficult for less experienced developers. Complex
applications that do not follow any architecture can end as a
’big ball of mud’ code: incomprehensible and unmaintainable
[5]. Suitable architecture can improve three non-functional
requirements of software structural quality: extensibility, main-
tainability and performance. A defined architecture could ad-
ditionally reduce the complexity of the code, simplify the
documentation and facilitate collaboration work [6].

Android development books and tutorials are mostly fo-
cused on Android SDK technical details and user interface
design. Only a few works have been dedicated to the Android
application architecture, while the Android community identi-
fies an architecture as an important part of successful system
design and development. Developers open many discussions
about suitable Android architecture on forums, blogs and
groups.

In this work, we provide an overview of some widely used
architectural patterns and propose an MVC-based architecture
particularly adapted to the Android system. Android Passive
MVC simplifies the development work giving the guidelines
and solutions for common Android tasks enabling the creation
of less complex, high-performance, extendable and maintain-
able applications.

We provide the detailed pattern description with possible
implementations. We introduce several usage scenarios and
propose an example of a social networking mobile application
’Tweetle’ developed with our pattern. We also discuss the
applicability of other presented patterns on Android develop-
ment, special cases that are relevant to and the difference with

123

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Android Passive MVC implementation.

We evaluate Android Passive MVC regarding the main-
tainability, extensibility and reusability with scenario-based
software architecture evaluation method using the two im-
plementations of ’Tweetle’. We also compare two implemen-
tations of ’TaskProjectManager’ Android application made
for a client by an experienced developer: Android Passive
MVC implementation and an old implementation having no
defined architecture. We conduct an experiment of long time
pattern usage for real Android applications development: two
developers applied Android Passive MVC for 10 months on
their everyday Android projects and gave their feedback.

The remainder of the paper is organised as follows: the
second section presents architectural patterns used in software
development. Section 3 presents briefly the architecture used in
iOS application development. Section 4 presents the Android
SDK and existing difficulties in adapting one known architec-
ture to Android. In Section 5, we propose a design pattern
adapted to the Android environment - Android Passive MVC.
Section 6 provides some typical cases that may arise while
developing an Android application and the corresponding An-
droid Passive MVC implementation. Section 7 describes a con-
crete example of a social networking application implemented
using Android Passive MVC. In Section 8, we go further
and provide an architecture for the core of an application.
Section 9 evaluates the Android Passive MVC. Sections 10
and 11 discuss the applicability of other architecture presented
in Section 2. Section 12 presents works related to mobile
applications architecture and Section 13 concludes this work
and presents some perspectives.

II. ARCHITECTURAL DESIGN PATTERNS

We present five architectural design patterns in historical
sequence. These patterns are widely used in desktop and web
applications development. If mobile development assimilates
similar design, developers moving from other systems could
take advantage of their knowledge. Different components and
existing variants of models are included in the description.

A. Model-View-Controller (MVC)

Presented in 1978, Model-View-Controller is the oldest
design pattern and has been successfully applied for many
systems since its creation [7][8][9].

The goal of this model is to separate business logic from
presentation logic. The business logic modifications should not
affect the presentation logic and vice versa [7]. MVC consists
of three main components: Model, View and Controller. The
Model represents data to be displayed on the screen. More
generally, Model is a Domain model that contains the business
logic, data to be manipulated and data access objects. The View
is a visual component on the screen, such as a button. The
Controller handles events from user actions and communicates
with the Model. The Controller also communicates with the
View directly if the Model does not need to be changed (e.g.,
scrolling action). The View and the Controller depend on the
Model, but the Model is completely independent. The design
pattern states that all Views should have a single Controller,
but one Controller can be shared by several Views.

Figure 1. a) Classic MVC, b) Application Model MVC

MVC model has three varieties: Classic MVC, Passive
Model MVC and Application Model MVC (AM-MVC). The
scheme of Classic MVC and Application Model MVC is
shown in Figure 1. The Classic MVC is shown on the left
(a) and the AM-MVC is shown on the right (b). The scheme
of Passive Model MVC (c) is shown in Figure 2.

In Classic MVC and Passive Model MVC, Controller
handles events and communicates directly with a Model that
is indicated by a black arrow. On the Classic MVC the
Model processes data and notifies the View. The View handles
messages from the Model and updates the screen using the data
received from the Model. This behaviour is implemented using
the Observer pattern (grey arrow in Figure 1). Conversely, the
communication between the Model and the View in Passive
Model MVC is done exclusively via the Controller. The Model
notifies Controller which then notifies View and finally the
View makes changes on the screen [10].

The AM-MVC is an improved Classic MVC with an
additional component. The Application Model component was
added for the presentation logic (e.g., change the screen colour
if the value is greater than 4) that was often added to View or
Controller previously and makes a bridge between the Model
and the View-Controller couples.

B. Presentation-Abstraction-Control (PAC)

The PAC architecture was introduced in 1987 [11]. This
architecture aims to improve the modularity of the system that
is limited with MVC. PAC propose to decompose the system
functionalities into hierarchically organised cooperating agents

Figure 2. Passive Model MVC

124

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. PAC architecture

each responsible for a particular task. Each agent manages the
part of the user interface and maintains its data and state. Some
agents could also exist without any particular user interface
but coordinating other agents. The system can be extended by
additional agents, the modification of one agent should not
affect other agents.

Each agent of the PAC system consists of three com-
ponents: Presentation, Abstraction and Control. Presentation
component contains the presentation logic. Abstraction com-
ponent contains the functionality of the agent and the data
it maintains. Control component links the Presentation and
the Control acting as an adapter and allows communication
between agents. One can see that PAC agent is organised
as Passive MVC with the difference that the user events are
intercepted by the Presentation component [12]. Figure 3
depicts the architecture.

Agents are organised in the hierarchy where lower level
agents depend on their parents. High-level agents contains the
core functionalities, manage the database and main interface.
Low-level agents maintain particular functionalities, particular
interfaces, the information about the interface and expose
actions to the user. Lower level agents could, for example,
manage different sensors. Intermediate-level agents combine,
maintain and coordinate low-level agents.

The actions intercepted by the low-level agents can be
redirected to the upper agents to access their functionalities,
the outgoing events such as an error event is also transferred
to the particular ’error manager’ agent via parental Control
components. The changes in high-level agent’s data are also
transferred to collaborators agents.

This architecture allows a very modular system to be
made with communicating agents but the system can become
very complex with the fast growing number of agents. The
organisation or communication between agents could also
become complex.

C. Model-View-Presenter (MVP)

The Model-View-Presenter was introduced in 1996 as an
MVC adaptation for the modern needs of event-driven systems
[13]. The model consists of three components: Model, View
and Presenter. In this model, the View represents a full screen

Figure 4. Supervising controller and Passive view

and it handles events from the user actions. The Presenter is
responsible of the presentation logic. The Model is a Domain
model.

There are two types of MVP: Supervising controller and
Passive view. Both models are shown in Figure 4. The Super-
vising controller uses the Observer pattern for the communica-
tion between Model and View. The View can interact directly
with the Model to save the data if there is no change to be
made on the screen. Otherwise, the communication between
the View and the Model is made via the Presenter. Interaction
between View and Model of the Passive View MVP is done
exclusively via Presenter [13].

D. Hierarchical-Model-View-Controller (HMVC)

The Hierarchical-Model-View-Controller was first intro-
duced in 2000 and is similar to PAC architecture. HMVC is
presented as a Classic MVC adaptation for Java programming
[14]. This model takes into account the hierarchical nature
of Java graphical interface components: the main window
frame contains panes that contain components. The authors
propose to create layered architecture for the screen with
Classic MVC triads for each layer communicating with each
other by Controllers. The HMVC model is shown in Figure 5.

Thereby the child Controller intercepts methods from its
View. If a View of the upper hierarchy (parent View) needs to be
changed, the child component informs the parent Controller,
which makes the changes. The communication between layers
is made exclusively via Controllers. Unlike PAC, the Con-
trollers of HMVC have direct access to the Model and to core
components without interacting with the high-level triad.

E. Model-View-ViewModel (MVVM)

Model-View-ViewModel is another model to separate the
presentation and business logic. The ViewModel is a linking
component between View and Model. This design pattern is
mainly used in Microsoft systems [15]. The realization of this

Figure 5. Hierarchical-Model-View-Controller

125

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

model is done with binding between components [16]. The
binding is not supported in Android by default but could be im-
plemented using the very recent Android-binding framework.
As stated in [17], a good basic model should not use any
additional framework and should be easily implemented with
original components, therefore this model is not dealt with in
the paper.

III. IOS APPLICATION
DEVELOPMENT

The iOS mobile development has already adopted an
architecture. We want to take advantage of iOS experience and
knowledge in making the Android architecture. In this section
we present the main principles of the architecture used in iOS
development.

iOS is a OS X based system adapted to mobile devices.
iOS developers use specific language called Objective C to
create mobile applications.

The base architecture for mobile iOS application is an
adapted Passive MVC. Like the original Passive MVC, the iOS
architecture is based on three components: View, Model and
Controller. Models and Views are independent and communi-
cate with each other only via Controllers. The communication
between Controllers and Model is organised via an Observer-
Observable pattern.

Views and Models are highly reusable. Multiple Views are
already provided by Apple: SplitView, TableView, ImageView,
PageView, CellView, WebView, MapView, TextView, Button-
View, etc. Controllers are less reusable, they link Views with
Models, set up the Views (contain presentation logic), and
intercept actions made on View to call methods from the
Model. Many controllers are already predefined in iOS: View-
Controller, SplitViewController, TableViewsController, etc.

A main controller for each screen or a group of screens ex-
ists in iOS applications. For example TabBar represents a menu
and there are as many screens as tabs in this menu. All screens
are managed by the same controller - TabBarController. Each
screen can embed other Views that can have a corresponding
Controller or can be managed by the parent Controller.

One can see the logic of iOS applications is similar to
Android applications; knowledge of iOS architecture is helpful
to adapt an Android architecture.

IV. ANDROID APPLICATION
DEVELOPMENT

A. Background

Android is a Linux-based open source operation system
designed for mobile devices. Android was first presented by
Google in 2007 and in spite of huge competition from Apple
has been the leading smartphone platform since 2010. Google
continues to work on the system systematically integrating
new features and correcting bugs. Many manufacturers of
smartphones and tablets adopted this open-source solution; the
National Security Agency (NSA) and National Aeronautics
and Space Administration (NASA) also choose Android for
their projects.

Android applications are mainly written in Java using the
Android SDK [18]. The code is compiled to be executed on
the Dalvic virtual machine on a smartphone. Additionally,
developers can use the Native Development Kit (NDK) to add
a C or C++ written code referred to as native. NDK allows
more advanced features and better performance, however, the
complexity of the code increases with the quantity of native
code [19] – Google suggested minimizing the use of this kit.

Four principal components of Android SDK are used in
Android application development: Activity, Service, Content
provider and Broadcast receiver. Developers use predefined
extendable classes to implement those components.

Activity is a main mandatory component of Android appli-
cations created when the application is opened. The simplest
Android application can contain the only class implementing
the Activity. Activity is also the entry point to the application:
to start the application the system must launch the Activity
component. Applications can make the Activity public to share
the functionality it proposes.

Many Activities can exist in the application but only one
is active at a time. The Activities history is saved: the system
automatically maintains the stack of Activities and opens the
previous Activity with its last state when the button ’back’ is
pressed. The oldest Activities are deleted from the stack for
other memory usage.

The Service works on the background of an application
permitting an execution of long tasks (e.g., file download)
without freezing the screen. When the application is closed,
unlike Activity, the work of the Service is not interrupted.
Services can communicate directly with the Activity it is
attached to.

The Content provider component gives access to the local
data stored in SQLite databases. Content provider is aimed to
be used for the data sharing between applications but can also
be used internally.

The Broadcast receiver is a messaging system that enables
communication inside the application and between multiple
Android applications installed on the phone.

In 2010, Google introduces a new component into the An-
droid systems called Fragment. Fragment is a new extendable
class available in the Android SDK. Visible interface elements
can now be controlled by Fragments instead of Activity, which
permits the elaboration of more flexible interfaces. Therefore,
part of the interface can be changed by treplacing one Frag-
ment with another Fragment. Each Fragment is attached to the
Activity and maintains access to the Activity.

Fragments main intention was to simplify the adaptability
of an application between smartphones and tablets where two
screens on a smartphone can become a single screen on a tablet
due to the size difference. Fragments increase the modularity
of the Android applications.

An exhaustive description of Android development envi-
ronment and modules can be found in [20].

B. Experience

Activity causes major difficulties in implementing the
known architecture: is it a View, a Controller, a Presenter or

126

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Activity as ’View-Presenter’ of MVP or a ’Controller’ of MVC

none of them?

One can observe that Android SDK already integrates many
simple Views such as Button, TextView, ImageView, EditText
and also more complex Views such as ListView, AdapterView,
etc. One can also find several Controllers such as ViewFlipper,
ViewSwitcher, etc. Views can be combined together on the
screen by layout.xml and even embeds other Views, defining
the appearance.

The most common way to develop Android application is
to create one Activity per screen. Naturally, Activity initialize
Views and intercepts actions made on Views by the user
(methods corresponding to actions could be directly defined in
layout.xml, Activity should implement the defined methods).
Presentation logic of the full screen and a communication with
the core of an application is often situated in the Activity
making it very heavy and complex [21]. Thereby Activity
managing actions and the presentation logic of the full screen
behaves as a View-Presenter couple of MVP or a big Controller
of MVC. The simple schema is shown in Figure 6.

We also found examples where a single Activity manages
an entire application: all possible actions of an application and
the full presentation logic is managed by only one class -
Activity.

The View-Presenter or thick Controller implementation
leads to multiple problems: reutilization, maintenance, exten-
sibility, code clarity, team development and even performance.
Parts of code integrated into single Activity cannot be reused,
methods can only be copied to another Activity making the
redundant code. Any additional View and action complicates
the Activity. A modification of one action repeating on sev-
eral screens requires modification in all related Activities
(assuming one Activity per screen). Activity can contain the
implementation of very different actions non related to each
other, this can make the Activity very complex, unreadable
and incomprehensible. Activity is kept in memory while the
application is running, thereby a very big Activity affects
performance. Finally, the modification in the user interface and
application logic can lead to the need of full redevelopment of
all Activities.

Some developers improve the architecture placing the Ac-
tivity as a MVP View and put the presentation logic to the
Presenter component. It makes Activity lighter as it manages
only actions available on one screen, but reutilization and

maintenance problems remain the same as explained above.
The simple schema is shown in Figure 7.

Another MVC implementation place Activity instead of
View and creates the Controller separately. Activity cannot
be implemented as a View due to the particularity of the
component, but Activity can initiate and regroup all Views
on the screen. Thereby we obtain very thin Activity and
thick Controller handling all screen events and managing the
presentation logic. The simple schema is shown on Figure 8.

Even if Controllers could be reused by other Activities the
full object is needed to reuse methods related to one View
from the previous screen; the structure of application becomes
unclear due to the reutilization. Problems of extensibility and
maintenance persist.

This solution works for simple applications where one
Activity represents one visual block, while Activity usually
manages several Views: main screen, menu, dialogue box, lists,
forms, etc. In complex visual applications Controllers becomes
heavy.

Assuming the Activity cannot be a View, as Views are
already available and extensible on Android, few developers
replace the MVP Presenter with Activity. The simple schema
is shown in Figure 9.

This solution makes View intercept event of all visual
components available in the screen; presentation logic moves
to Activity, but similar problems appear: reusability, extensibil-
ity, code clarity, etc. Presentation logic cannot be reused, but
should be copied to another Activity if needed. The complexity
of a single View increases with the number of events. This is
suitable only for very simple applications with very simple
screens.

The appearance of Fragments could have solved the archi-
tecture ambiguity, but Google proposes new components with-
out suitable documentation about the utilisation of Fragments,
thereby creating new ambiguity instead of solving the problem.
Now developers ask themselves in what cases they should use
the Fragments and not the simple Activity, what component
should handle actions and presentation logic, where to place
the Fragment management code, etc. We find previously ex-
plained MVC/MVP solutions, where the component that is
not implemented as Activity becomes a Fragment (e.g., MVP
implementation where Presenter is implemented as Activity
and View is implemented as Fragment).

Figure 7. Activity as ’View’ of MVP with additional Presenter component

127

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Activity as ’View’ of MVC with additional Controller component.

Nowadays more and more developers use Fragments, often
as Controllers of MVC, but questions about presentation logic,
communication between components, the actual purpose of
components and its logic remains unanswered.

The full code organisation needs to be clarified: what
existing component should be used and for what purpose,
what type of code can be placed in those components and
when and for what purpose should additional components
be created? We find many applications where the part of
core logic of an application is placed in the Activity or in
the Controller/Presenter making them even more complex.
Developers are often unsure about the decomposition of an
application to Activities and Fragments and have problems in
core organisation.

We did not find any Android application example devel-
oped using HMVC or PAC architectures. The implementations
of MVVM requires additional libraries, therefore we do not
take them into account.

V. ANDROID PASSIVE MVC :
PRESENTATION

Even if MVC and MVP architectures seem suitable for
Android developments they are not intuitive to implement.
The main defined problem is an Activity component that is
hardly reusable. We aim to define a new architecture that can
be easily implemented with Android-specific components, such
as Activity and Fragments. The implementation of the model
should improve the application and code quality: reduce the

Figure 9. Activity as ’Presenter’ of MVP with additional View component.

Figure 10. Activity as an intermediate component between Views and
Controllers.

complexity of an application, clarify the code and improve
extensibility. The coupling between components should be
weak to avoid the modification of other components if one
is modified. Modules should be reusable [17][22]. A mobile
phone has a limited memory, therefore the creation of un-
necessary objects should be avoided. Objects remaining in
the memory should be lightweight [19]. Modification in user
interface or in navigation logic should involve the minimum
modification of the application.

In this section we present in details our proposition: the
architecture for Android application development we named
Android Passive MVC.

We have decided to base our architecture on the MVC
model, as MVC is well-known and widely used in desktop and
web systems as well as in iOS mobile development. Developers
coming from other systems would be able to easily appropriate
the Android development architecture.

Activity is an inevitable component of the Android appli-
cation. Previous experience of the Android community shows
Activity does not fit well on the MVC model, while it seems
to be well adapted to developers’ needs. Many View com-
ponents are already available on Android but Activity cannot
be a Controller or a Model. From the previously described
development experiences one can see that the screen cannot
be represented entirely by one or two components. It becomes
trivial that the screen should be decomposed into many logical
parts and each part should have the related components. For
the new architecture we decided to create MVC triads around
Activity making the Activity the fourth component.

We can think of Activity as a main screen (parent) con-
troller in HMVC model. The simple schema is shown in Figure
10.

An observer-observable pattern is relevant for multi-screen
systems but only one screen is active at a time in Android
applications. This pattern implies keeping in memory Views
and Models that appear heavy for the mobile environment,
therefore we chose the Passive Model MVC as a basis for our
architecture.

In our model, Activity becomes an intermediate component
between the Views and the Controllers. The Activity represents
a screen controller or, in some cases, a main controller for a
group of logically conjoint screens.

128

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Controllers take the event handling responsibility and the
presentation logic making the Activity lightweight. Controllers
are also lightweight because one Activity can interact with
many small reusable Controllers. Controller handles events and
presentation logic only for a small number of views logically
linked together. Controllers should not contain any code related
to the core application functionalities.

The Views are the interface components, such as a form,
a menu or a list of elements. View components contain
methods that allow the setting or obtaining of data from
the user interface on Controller demand, the setting of event
listeners on visual components and the modification of visual
components (set errors, change colours, etc.). Views are created
if necessary extending Android predefined Views, otherwise
the Android predefined Views fit to the architecture. Views
are independent and do not communicate. Views should not
contain any application logic or data.

The Model in our architecture is a Domain Model contain-
ing the application core logic and data. The simple scheme of
the Android Passive MVC architecture with all components is
shown in Figure 11.

The starting Activity creates a link between a View and a
corresponding Controller to make them communicate directly.
Controller set up the View it is responsible of: visual presen-
tation and the data. The Controller handles events from the
user action (e.g., button click), calls necessary methods from
the Model and then updates the View on Model response.

Simple hierarchy of Activity and Controllers depending on
this Activity will be suitable for many simple applications,
although Android interface is a modular interface similar
to Java. We propose to organise View-Controller couples in
Hierarchy as HMVC and PAC architectures. The actions of
interface modules controlling another interface module will be
organised as parent-child controllers.

We define two type of controller: Mediate Controller and
Coordinating Controllers. We borrowed names from iOS ar-
chitecture also having two types of controllers.

Coordinating Controller is a simple Controller for an
independent part of the screen coordinating the presentation
logic and events of its Views. This Controller can call the
Model, modify its View visualisation, show dialogues, call
Activities but does not exchange Controllers. The Coordinating
Controllers do not have any child controllers. Coordinating
Controllers are very reusable and make an application very
modular. Coordinating controllers can be perceived as low-
level PAC agents.

Mediate Controller often corresponds to the part of the
interface modifying or exchanging Coordinating Controllers
(part of the interface). Menus in the interface would often

Figure 11. Android Passive MVC

Figure 12. Communication between Controllers

correspond to the Mediate Controller. Mediate controllers can
also initialise child Mediate Controllers (e.g., for a submenu).
Activity Mediate Controller manages Activity replacement.
Mediate controllers are similar to the Intermediate-level PAC
agents with the difference that they have direct access to the
Domain Model (application core).

Mediate Controllers are not very reusable as they need
all their children to function, although Mediate Controllers
show the presentation logic of the application; the logic of
the interface can be modified by updating or changing the
Mediator controller.

To keep components loosely coupled it is recommended to
ensure communication between Controllers and Activity via
interfaces. The communication schema is shown in Figure 12.

Android Passive MVC makes Activity lightweight by mov-
ing all event handlers and presentation logic to Controllers and
interface management to Views. Views and Controllers created
on demand avoid unnecessary objects, saving memory. An-
droid predefined View fits the model and new developer Views
are reusable in future applications. Coordinating controllers are
very reusable and makes the application very modular. Mediate
Controllers are less reusable but enable easy modification of
the logic of the application only by modifying the Mediate
Controllers.

Developers can easily modify or remove application com-
ponents by only updating or deleting the corresponding View-
Controller couple. Application can be extended with View-
Controller couples. The Model is independent from the View,
the Controller and the Activity. The user interface could be
replaced without any impact on Model, therefore the main-
tainability of the application is high.

VI. ANDROID PASSIVE MVC:
IMPLEMENTATION

This section presents some examples of Android Passive
MVC implementation. We introduce more details and special
cases of architecture usage. Controllers of AP-MVC can be
implemented with simple Java classes or with the Android
Fragment component.

Both implementations are suitable for the new manually
created Activities. Some predefined Activities, especially from
third-party libraries, will possibly not fit the implementation.

129

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Android Passive MVC implementation

A. Java classes implementation

Controllers can be implemented as simple Java classes, the
same as Views. Controller should be linked to the Activity,
therefore the Activity should implement a Controller listener
interface and pass it to the Controller to establish the com-
munication. The components communicating via listeners are
loosely coupled and the communication of Android compo-
nents via interfaces is presented in [23].

As the Activity would initialise the Controller, it can
communicate with Controller directly, but the communication
via interface is preferable. Activity should also retrieve the
View and pass this View to the Controller to establish a direct
communication. We propose to establish the communication
between the Controller and the Model via listeners (interfaces).

Figure 13 shows the Android Passive MVC implementation
diagram. Listeners increase the performance of the application
and create a weak coupling between components that improve
maintainability.

For the example showing the implementation without Frag-
ments we created a login screen with a classic login form to
enter the login and password; if the login is successful the
user goes to the welcome page, otherwise an error message
appears.

The example contains two Activities: Login Activity
managing the login page and Welcome Activity for the wel-
come page. The login form is managed by Login View and
Login Controller. Login Activity implements the LoginCon-
trollerListener interface to be able to receive calls from the
Login Controller. The schema is shown in Figure 14.

Login View contains methods for obtaining login and pass-
word (getters), methods to set button listener and methods to
set errors. Login Controller handles events from the login form
implementing the onClickListener; while the button is pressed,
Controller calls the model that launches simple verifications.
If login is successful, Controller opens a welcome screen. If
login fails Controller sets up an error message.

Figure 14. Login implementation example

Figure 15. AP-MVC impose the creation of Fragment event if the only one
is currently used within Activity

B. Fragments implementation

Fragments is an Activity-like component that can represent
and control a part of the interface. Fragments can be used to
implement Controllers in Android Passive MVC. Since the
introduction of Fragments, Google insists on the high usage
and integration of Fragments into Android applications and
deprecates Activity-based functionalities.

Fragments propose multiple advantages in Android Con-
troller implementation versus simple Java classes:

• Fragments are native Android components automati-
cally linked to the Activity via layout.xml having the
native possibility to communicate with the Activity.

• Fragments have their life cycle linked to the Activity.

• Fragments are automatically linked to Views via lay-
out.xml and can retrieve Views to communicate di-
rectly.

• Android integrates the Fragment manager: Fragments
can be easily replaced, deleted or added to the Activ-
ity.

• Activity has access to all attached Fragments.

• Fragments integrate the back button gesture: option of
saving the Fragment with its state in the back stack
and retrieving it on back button press. We can also
choose to retrieve the existing Fragment with its state
or create a new Fragment with the default state.

• Fragments can manage other Fragments.

A Fragment is created for each piece of an interface having
an action or several logically linked actions. We propose to
distribute all actions between Fragments and do not add user
actions directly to the Activity. Even for only one simple form
(e.g., login form) the Android Passive MVC imposes the use of
the Controller (Fragment) along with the Activity. This makes
the application more modular and improves maintainability, the
same independent Fragment can be easily reused in the future.
Figure 15 shows a single Activity with a single Fragment and
a single Activity with two independent fragments.

Fragment is linked to corresponding Views via the lay-
out.xml. Fragment should not retrieve other Views available
in the Activity to stay independent.

Fragment can play the role of Mediate Controllers and
manage other Fragments or change Activity. One Fragment
cannot exchange itself with another Fragment therefore it

130

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

needs a parent Fragment (Mediate Controller) to perform the
transaction. Figure 16 illustrates an example.

Android gives the option of adding a Fragment that is
not directly linked to the interface, permitting the creation
of Mediate Controllers without visual components. In some
cases, actions from different screens and different Activities
can be combined in one single Mediate Controller if those
screens are logically linked. For example, a form can have
several pages (screens) with ’next’ button or ’go to first page’
button; the appearance of the screen changes on click event
interception. In this case, rather than adding an action to each
fragment separately, making them dependent, the developer
should create a Mediate Controller combining those actions
in one place. Figure 17 illustrates this example. Therefore, in
the case of user interface reorganisation (e.g., add new screen
in the middle of the chain) only the Mediate Controller needs
to be modified. The same should be done for a bundle of
dependent fragments within a single Activity.

Fragment initialises itself with default data or the data
recovered from the bundle (Android mechanism to pass the
data between Activities), therefore Fragments stay maximally
independent from other Fragments. Some Fragments can be
initialised by an Activity or parent Fragment (Mediate Con-
troller) to increase reusability. The possible communication
between Fragments and Activities is shown on Figure 18 with
two Mediate Controllers and one (the upper right) Coordi-
nating Controller. Fragments should rarely have a callback
to parent Fragments but if necessary the callback can be
implemented with interfaces.

Developer should avoid high hierarchy between Fragments
within a single Activity as parent Fragment is linked to the
child Fragments. Activities make components more indepen-
dent and simplifies the Fragment management.

In some cases, Fragments depend on each other (cannot be
a parent-child, but should initialise each other), we observe the
circular dependency between Fragments. Figure 19 shows an
example: a list of folders and a file path to the parent folder.
By clicking on the folder in the file path, the folder list should
be updated; by clicking on the folder in the list, the file path
should be updated. Another example is a mobile tablet with
a large screen that contains the statistics data represented in
different Views: tables or graphs. Changes in any of the Views
should affect all other Views.

This is also a typical case where the Classic MVC is very
pertinent where the Observer-Observable pattern can be used

Figure 16. Mediate Fragment corresponding to the possible menu that
exchange 2 Fragments depending on intercepted action

Figure 17. A chain of dependent Fragments or Activities. a) Direct calls make
dependent Fragments b) Mediate Controller makes components independent

instead of Mediate Controller: several Views represent the data
using the same Model, Controllers can modify the Model and
all Views should be updated. Although Mediate Controller
keeps components more independent.

It is possible in Android to retrieve one Fragment from
another Fragment and to call the initialisation method.
Although this makes very tight coupled components. A better
way is to make those Fragments communicate via listeners
implemented by a parent component: a Fragment playing the
role of Mediating Controller.

VII. CONCRETE APPLICATION WITH
ANDROID PASSIVE MVC:

’TWEETLE’

To illustrate the implementation mechanism we take an
example of a Twitter client (microblogging social network)
with three buttons (main menu); one screen has an additional

Figure 18. Communication between Fragments and Activity

131

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 19. Circular dependency between Fragments a) Direct calls, dependent
Fragments b) Mediator Controller makes Fragments independent

submenu. The user can see the Twitter timeline, send tweets
with and visualise the list of tweets of his followers and
followees. The bar with the copyright button showing the
application authorÕs name appears permanently on the up of
the screen. bar with the copyright button showing author’s
name of the application appears permanently on the up of the
screen. The interface of ’Tweetle’ is depicted in Figure 20.

One can see that all three screens are logically linked
together by the main menu; one screen is divided into two
logically linked parts by the submenu. Main actions are clicks
on the main menu and clicks on the submenu. Additionally,
by clicking on any of the list, a user can retweet the message.
Finally, the button sending the tweet is presented on the last
screen.

One can notice that we need two Mediate Controllers for
the main menu and a submenu and at least two Coordinating
Controllers for the copyright bar and the list of tweets.

Application can be implemented in two ways. We present

Figure 20. ’Tweetle’ application user interface with followers/followees
messages active tab

both implementations and discuss advantages and disadvan-
tages of each.

1) First implementation: each different screen interface is
manages by a separate Activity. This possibility is similar to
”before fragments appears” implementation solutions. In our
example, the main menu imposes three Activities with three
buttons. One can also suppose to create one Activity by sub-
menu or to keep the single Activity for both submenu actions
as we did in our implementation example as modifications on
the screen are minimal.

The screen can be decomposed into four Fragments:
mostly repetitive elements on the screen. Fragment should only
contain the presentation logic and actions that are logically
linked together. Different actions like ”retweet” and ”onMenu-
Pressed” need different Fragments.

The bar containing the copyright button corresponds to a
copyright Coordinating Controller (Fragment). This controller
is highly reusable even for different applications of the same
developer. The bar and the button can be personalised with
an layout.xml, but the Controller containing copyright action
calling the dialog or a new Activity can be reused exactly in
the same way in another application.

The second Fragment is a main menu Mediating Controller.
This controller will change the screen (Activity) depending on
the button pressed. Controller also manages the presentation
of the main menu: active and non-active buttons.

The third Fragment is a list Fragment: retweet Coordinating
Controller. We can reuse the same Fragment for all lists as the
user action is the same for all lists of the application and there
is no presentation logic.

The fourth Fragment corresponds to the submenu Mediat-
ing Controller and manages the changes in the data of the
list (reinitialise the data or change the Fragment) and the
presentation logic of active and non-active buttons.

Last Fragment corresponds to the form permitting to send
the tweet - tweet Coordinating Controller.

Activity plays the role of an initialiser of child Controllers
or a main Mediating Controller. Mediating Controllers can
also initialise themselves using the data from the bundle to
be more independent. Copyright Fragment is attached only by
the layout.xml and do not need any additional initialisation.
Activity initialise the main menu: call the Fragment method to
set up active button and event listeners. Activity also initialises
the list of tweets of the first screen: Activity as a main
Controller can call the Model to retrieve the data and to
set it to the list Coordinating Controller. List Coordinating
Controller (Fragment) can retrieve the data itself either. For the
Followers/Followees screen the submenu Mediate Controller
(Fragment) with its default state is attached automatically to
the Activity. Submenu Fragment initialises the list of tweets.
Initialisation calls are depicted in Figure 21.

2) Second implementation: create an Activity for a group
of logically linked screen. In our example we only have one
Activity. Fragments remains the same: one submenu Fragment,
one list Fragment and ’send message form’ Fragment.

Menu actions can be implemented either in the Activity
or a Mediator Controller (Fragment). We suggest to keep the

132

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 21. Activity by screen initialisation calls

main menu independent in the Fragment instead of adding it
to the Activity directly to enforce maintainability. Main menu
Fragment manages clicks on buttons, apply visual modifica-
tions on buttons and exchanges other visible Fragments. The
submenu Fragment have an child list fragment to manage: the
information shown by the list depends on the action made on
the submenu. Initialisation call schema is depicted in Figure
22.

3) Both implementations: are very similar but have advan-
tages and disadvantages.

The first implementation is easy to set up and keeps the
structure clear. Activities are nearly empty thereby the only ac-
tive fragments take place in memory, the number of fragments
is also limited and easy to manage. ’Back’ button is manages
automatically. Android integrates a bundle mechanism allow-
ing information to pass between Activities; Fragments could
initialise themselves retrieving the information from the bundle
while the Activity is changed. Otherwise, this implementation
is only suitable for lightweight interfaces as all Fragments
are reinitialised for each screen. The time response increases
significantly if heavy images appear on the interface.

The second implementation has a clear structure but could
be trickier to manage. This solution permits to reinitialise
only necessary fragments, therefore can be used with more
heavy static images, for example with the background image.
Although, developer should assure to keep in memory only
visible fragments. A large number of Fragments managed by
a single Activity can be complicated and heavy if all Fragments
are kept in memory. Fragment should be manually added
to the back stack to manage the ’back’ button. The second
implementation is also useful for Activities aimed at being
shared and at returning messages to other applications: this
type of functionality should be implemented within a single
Activity that another application could call for result.

VIII. ANDROID DOMAIN MODEL

The clear separation of presentation and business logic
cannot ensure the application of good quality alone. The

Figure 22. Activity as Main Menu

core of the application should also be implemented through
patterns and gold architectures. Android application business
logic structure is similar to any Java application core logic,
therefore all patterns that can be applied to Java could also be
applicable to the Android Domain Model, although we observe
difficulties in Android Domain Model organisation.

In this section we go further and give some guidelines of
the business logic of the application – the Model. Android
applications have similar needs: internal database management
and access, web service access and reusable components use.
Clear main architecture of business logic is necessary to obtain
the application of quality.

The Model of Android Passive MVC is a Domain
Model containing business methods, web service call methods,
database access objects, reusable methods and data model
objects.

A Domain Model architecture should include components
that are usual for Android applications, such as Database
manager, Web services manager and Business logic. Those
components should be independent, as the architecture should
be adaptable. Reusable components should be also separated.
The basic model architecture is shown in Figure 23.

The architecture of Domain Model proposed in this doc-
ument is inspired by 3-tier architecture that separates the
presentation, the business and the data access layers [24].

The business layer of our model regroups objects and meth-
ods that use web services, business services and reusable tools.
Business services contain business logic. If an application
works via Internet as well as locally, all necessary verifications
are done in Business services, which calls corresponding
methods. The communication between a presentation and a
domain model layer are made via Business services.

The data layer contains Models, Data Access Objects
(DAO) and Database Manager. DAO and Model are the imple-
mentation of the Data Access Object pattern. Model contains
data being persisted in the database or retrieved by web
services calls. Model is a simple Plain Old Java Object (POJO)
that contains only variables and their getter and setter methods.
To avoid transcription of the Android Native Cursor object
to Model objects, Model can encapsulate the Cursor object
proposing getters and setters for a concrete value type available
in Cursor. Data is manipulated and transferred through the

Figure 23. Domain Model Architecture

133

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

application using those lightweight objects that are often called
Data Transfer Object (DTO).

Persistence methods are organized in DAOs. DAO contains
methods that enable the data in a database to be saved, deleted,
updated and retrieved. Even if Android proposes an abstraction
on the data access level with Content Provider, DAO simplifies
the code of the application. The DAO design pattern creates a
weak coupling between components and uses a Model object
instead of an Android Cursor object in the application. DAO
can also be used for the data stored in XML or text files.
Good practice is to make DAO accessible via interfaces. It
allows DAO modification (for example the change of SQLite
to XML storage) without any change in Business services,
which increases maintainability.

Database manager is in charge of database creation.
Database manager exists only if SQlite database is used by
the application. It stores the name of the database, and of its
tables and methods to be able to create, drop, open and close
the database.

This architecture regroups logically similar methods to-
gether, increasing cohesion. High cohesion facilitates the main-
tainability of the software. The final code of the application
could be organized in packages by architectural component:
Activities, Views, Controllers, Business Services, Tools, Web
Services, Model, DAOs and Database. It gives the clear
structure of an application and limits the package number.
Additional packages could be created for interfaces, parsers
(e.g., XML, JSON) and constants.

IX. ARCHITECTURE EVALUATION

We evaluate the architecture in two steps. First, we ensure
that the architecture fits the lists of code quality criteria pro-
posed by [17][19]. Second, we propose modification scenarios
that can be applied to the ’Tweetle’ and discuss the impact
of each scenario on the implementation. Third, we ask an
experienced Android developer to rewrite one of his latest
applications using Android Passive MVC, compare results and
give feedback regarding the model. Finally, we proposed to two
developers that they use the architecture for 10 months in their
real life projects and obtained their feedback.

A. Code quality

The evaluation of our architecture is based on the following
three code quality evaluation criteria: maintainability, extensi-
bility and reusability.

1) Maintainability: option of modifying the system.
2) Extensibility: option of adding new functionalities to

the system.
3) Reusability: option of reusing the same components

in different functionalities of the system or in differ-
ent systems.

The use of standard platform techniques is important for
the model: the support of third-party functionalities could be
interrupted making implementation of the model impossible.
The Android Passive MVC could be implemented using An-
droid SDK without any additional libraries.

A high-quality application has high maintainability and
extensibility: codes have weak coupling between components,
easy code suppression possibility and high testability. The
Passive MVC architecture ensures high maintainability. Clear
separation between presentation and business logic simplifies
testability of components. Weak coupling between all layers is
carried out via listeners. One component (ex. interface, DAO,
web service) could be replaced or modified without changes
in others. The extension or modification of the user interface
itself is done by simply adding, deleting or modifying the view-
controller couples.

The reusability of components make the code clearer
and boost development time. The view-controller components
of the Android MVC model could be reused through the
application and could be easily embedded in other Android
applications made with Android Passive MVC.

Good performance is especially important in mobile en-
vironments: resource utilization should be limited as mobile
devices have little memory. Short response time is essential
for modern users. The Android MVC architecture makes a
very lightweight Activity component. Controllers, View and
Model objects are also small and kept in memory only if used,
which minimizes resource utilization. The use of listeners also
slightly increases response speed.

B. Scenario-based evaluation

We chose the scenario-based software architecture evalua-
tion method to validate Android Passive MVC; the overview of
such methods can be found in [25]. Scenarios enable evaluation
of the architecture of a specific system and comparison of
several architectures of the same system regarding modifiabil-
ity. We apply scenario-base evaluation to previously described
implementations of Android Passive MVC to show the benefits
of this architecture. Most scenario-based methods involve
shareholders, software designers and an evaluation team for
the real project to define possible modification scenarios and
the ability of the architecture to support those modifications.
Our example is an illustration of the architecture, we define
the most likely modification scenarios for the implementation.
The two architectures of ’Tweetle’ are described in Section 7.

1) Adapt the phone version to the tablet
2) Add new tab to the main menu
3) Move the main menu to the separate independent

screen
4) Modify the appearance of the list
5) Add a bar containing the name of the active tab

We analyse and explain the impact of each scenario on the
both implementations if different.

Table I presents the quality criteria evaluated for each
scenario.

1) Scenario 1: Adapt the phone version to the tablet

’Tweetle’ is an application dedicated to the smartphone
usage, but can be adapted to smart tablet. Tablets in landscape
mode have enough space to keep all three screens visible at
one time, therefore the main menu becomes just an indicative

134

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

name menu to define each list without any action. Tablet in
portrait mode will have a mobile application behaviour.

The adaptation can be easily achieved with Android Passive
MVC. Application should only be adapted for the tablet
landscape mode. The developer should define a new layout.xml
for the new tablet appearance: the new layout mainly consists
of combining the existing layouts into one. Developers do not
need to define a Controller (Fragment) for the main menu as
there is neither action nor presentation logic needed. Other
Controllers remain the same. Developers should add to the
Activity a verification of whether the tablet landscape mode is
active or not and set the corresponding layout. All Controllers
defined in the layout.xml will be attached automatically. One
can see that a very few modifications are needed to make the
adaptable interface. This scenario shows the high maintainabil-
ity and reusability allowed by the Android Passive MVC.

2) Scenario 2: Add new tab to the main menu

It is very probable to add new tab to the existing menu. For
example, ’Tweetle’ need an extension with a map showing the
newest geolocated tweets nearby. For both implementations,
the developer should create a new map Fragment generating
the map and Controlling actions on the map. Then, the devel-
oper can modify the main menu Fragment (controller) to add
an action to the new button. For the first implementation the
developer should also add a new activity-initialising fragment
and an active button. Domain Model would be enriched with
several new components as a new web service recovering
geolocated tweets or a new DAO method recovering geolocated
tweets from existing database have to be used.

One can see that only one Controller should be modified
for this extension and several independent components are
created. The modification of existing components is very light
in Domain Model too.

3) Scenario 3: Move the main menu to the separate screen

The client wants to change the style of the mobile ap-
plication creating a Windows 8-style menu screen with big
square buttons and icons taking up the full screen. For the first
implementation, the developer should create a new layout for
the main menu and attach it to the new activity with the exact
same Controller. The developer needs to check other Activities
corresponding to the menu tabs to delete the initialisation of
the active button, as it is not used any more if the initialisation
was made in Activity.

The second implementation requires greater modifications:
Activity can take a Mediator Controller role and replace the
main menu with another Fragment, as the Fragment cannot
replace itself. The developer could also pass to the first

TABLE I
EVALUATION CRITERIA BY SCENARIO

Scenario # Maintanability Reusability Extensibility
1 x x
2 x x
3 x
4 x
5 x

implementation modifying entirely the main menu Controller
and creating additional Activities reusing all other fragments.

This example shows that for maintenance reasons the
developer should preferably choose different Activities for the
independent screens, as in the first implementation. In spite
of the common menu, all tabs are completely independent
and could be arranged differently in the interface while the
application evolves. Fragment Mediate Controllers are less
reusable but as they are very small they can be reimplemented
easily. This example shows that the architecture resists exten-
sive visual modifications and most Controllers remain reusable.

4) Scenario 4: Modify the appearance of the list

It is possible to improve the visualisation of messages: to
add an avatar, nickname, and make different colours for dif-
ferent lists. This can be done easily for both implementations.
The developer should create an adapter to adapt the Tweet
object from the Domain Model to the new visualisation in
the list. The developer should only modify the adapter in the
list Controller to modify the visualisation of all Controllers.
If different visualisations are needed for different lists, the
developer can create different Controllers or different Adapters
and set up the visualisation in parent controllers.

This example also shows the maintainability of an applica-
tion made with Android Passive MVC and the reusability of
components.

5) Scenario 5: Add a bar containing the name of the active
tab

We assume we should add a new name bar to the initial
’Tweetle’ application. The visual appearance of this bar is the
same for all tabs; the name corresponds to the tab name. For
the first implementation, the easiest way is to add this bar
directly into the layout.xml without any modification in the
code. This is not possible for the second implementation. If
the developer adds the modification of the view of the name
bar to the main menu, two interfaces becomes dependent and
cannot be used separately. Main menu could also notify the
Activity to set up the name bar, but in this case the bar is not
reusable in other Activities. The most reusable way to carry
out the second implementation is to create a Fragment for the
name bar. The main menu could pass the data to initialise the
name bar as it initialises the lists instead of manipulating the
view directly.

This example shows how the first implementation has
maintainability advantages over the second implementation
as the parent Fragments implementing Fragment transactions
could be trickier to manage in case of the interface mod-
ification, but child Fragments can always be reused. This
example also shows that Fragments have advantages even for
the interface having no action but presentation logic.

C. Architecture application

We asked an Android developer with three years’ experi-
ence to test the Android Passive MVC in real life projects.
He chose to redevelop one of his latest applications which
had become complex and hard to maintain, extend and test.
The application is called ’TaskProjectManager’ and it enables
tasks to be assigned to different employees and to view the full

135

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II
TASKPROJECTMANAGER STATISTICS

Original Android MVC % Gain
Packages 25 17 32
Classes 393 275 30

Functions 2186 1683 23
Avg CCN 2,30 1,87 19
Max CCN 110 30 73

calendar of tasks on the screen by day, week and month. The
application also generates reports according to parameters.

We choose to compare the old version and the novel version
developed using the Android Passive MVC without Fragments.
In spite of the fact that developers produce slightly better
code while redeveloping the same application due to greater
experience, our measurements show the impact of Android
Passive MVC on the redevelopment.

Measurements of both versions of the application are made
with JavaNCSS, a source measurement suite for Java, and the
results are shown in Table II. Android Passive MVC reduces
all code parameters.

For each comparison feature denoted i, the gain is cal-
culated as the difference between the original and the An-
droid Passive MVC applications scores (resp. Originali and
AndroidMV Ci) divided by the original application score (i.e.,
Originali).

Gaini =
Originali −AndroidMV Ci

Originali
(1)

where:
Originali - measurement of feature i taken on the originally
implemented application
AndroidMV Ci - measurement of feature i taken on the
Android Passive MVC implementation
i - the comparison feature

The Android Passive MVC helps with organizing classes
in packages. The original version of the application had many
packages created partly using the MVP model, partly the
application logic, and partly the Android components names.
The limited number of packages of the Android Passive MVC
version gives the application a clear structure deciding the
Domain Model from the interface management.

The full code became smaller: both the number of classes
and the number of functions were reduced. We observed the
application had a main menu appearing while the calendar was
visible. Calendar had different modes of functionality man-
aged by different activities with a huge presentation method
managing the appearance of different activities. Menu actions
were found multiplied in those activities. The Android Passive
MVC enables high reusability of components and structuration
of presentation logic.

The code complexity is evaluated using Cyclomatic Com-
plexity Number (CCN). ‘Cyclomatic complexity measures
the number of linearly independent paths through a program
module’ [6]. Normal method complexity without any risks is

1-10 CCN, with 11-20 CCN the complexity is moderate, with
21-50 CCN the complexity is very high and with CCNs greater
than 50 the program is untestable. Table II shows that the
average complexity of the application has decreased slightly.
The maximum CCN dropped significantly: an original version
has methods with CCNs of 40, 50 and even 100 and 110 mostly
for Activities handling a huge number of events, while the new
version has the only JSON parser with a CCN of 30 and several
methods with a CCN of 10 to 15 in the application core.

The developer’s feedback explained that the Android Pas-
sive MVC model is easy to understand and to follow. The
final application was visibly more reactive: the response time
became almost nil, while the users of the original version
complained about a very long response time for each screen.
The Android Passive MVC version is open to extensions and
easily modifiable. The developer said that he had already added
more functionalities to the new application before transmitting
the code for the CCN analysis. Application components are
not only reusable in the application, but could also be reused
in future Android development.

The same developer and his colleague continued to use
the Android Passive MVC in their everyday job of Android
application development for clients. They have tested the
version with Fragments and consider it even easier due to the
many predefined Android actions.

We obtained a new feedback after 10 months of testing.
The developers recognise the improvement of development
process since the architecture was introduced: they were able
to test both types of Fragment implementations but mostly the
first one. The software design state became shorter. They were
able to reuse components from one application in another with
slight controller modification: photo gallery, search views, 3D
and PDF visualizers, horizontal scroll view, etc. They reported
the shorter development time due to the clear structure defined
by the architecture and easier group work. The division of
projects on tasks became simpler and conflicts in code merges
became less frequent.

They also noted that they were able to integrate updates
rapidly while some old projects without the architecture were
redeveloped entirely because of updates demanded by the
client.

The developers also discovered that the architecture helps
students in practical training to do better and gives them
more autonomy. In older project, students without experience
needed continual supervision and without it produced little
maintainable code. Student, having a short practical training
during the experimental Android Passive MVC usage, showed
better results while having the same background as previous
students involved into Android development.

The developers also noted that the architecture simplified
the work with a colleague’s code if he is absent, thanks to the
common logic, naming and structure.

X. ANDROID AND MVP

In the MVP, the View and the Presenter correspond to a full
screen interface. It is not suitable for Android, as visual block
embedded into one View could be reused on several screens.
Although architecture similar to MVP can be implemented

136

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

on Android around the Activity making triads for each visual
piece (such as Android Passive MVC).

The Presenter manages the presentation logic of the View
and communicates with the model. The difference between the
implementation of both architectures is the event handling.

Events in MVP are handled by Views and the action is
transmitted to the Presenter. Unlike the Android Passive MVC,
in MVP View listens to the events and only calls corresponding
methods in Presenter instead of letting the Controller listen
to events directly. This implies the creation of additional
classes for each View (visual component) implementing event
listeners.

The code of Controller/Presenter remains the same. The
only difference is that instead of one method handling an event
(e.g., click event) Presenter uses many methods corresponding
to the action to be carried out on one particular event (e.g.,
click on search button). This slightly reduces the Controller
complexity and allows easier testing. The initial event handling
method is placed in the View and remains very simple and does
not need any tests.

We did not take the MVP implementation as a base
architecture: the implementation of two models is very similar.
The existence of Controller having a very complex event
handlers can justify the use of MVP instead of Android Passive
MVC but we assume it is a rare case. We assume the MVP
implementation is the extension of Android Passive MVC for
the exceptional particular use.

XI. ANDROID AND AM-MVC

The AM-MVC adds the Application Model (AM) compo-
nent to triads moving the presentation logic to this component.
We assume this component can be used in Android Passive
MVC in some cases where the action of visual component
remains the same but the visual presentation changes. This
kind of situation is visible on ’Tweetle’ implementation with
reusable lists. Instead of unambiguity as to whether the pop-
ulation of the list should be done in the Controller or in the
parent Controller, different AM components could be created
for each list then, depending on the screen, Controller can
initialise the necessary AM object.

We did not find this situation very common and the
improvement sufficient to include this case directly into the
Android Passive MVC. Similar to the MVP, we consider the
AM component as a possible extension for the exceptional use.

XII. RELATED WORKS

The question of mobile architecture and mobile develop-
ment process was investigated since the first mobile devices,
such as mobile phones and Personal Digital Assistants (PDA),
appeared.

Several works were conducted on high-level (methodology)
aspects studying the appropriateness of Agile methodology and
proposing new methodologies for mobile application develop-
ment: A Hybrid Method Engineering Approach [26], MobileD
[27], etc. Among other aspects, the reusability of components
was noted as a very important one.

Many projects are concentrated on web service-based mo-
bile applications. [28] proposes the Balances MVC architecture
to partition optimally the core of the application between
client and server for different types of application. [29] studies
the gap in mobile service-oriented application and propose a
mediator layer between the mobile device and the server to fill
the gap. Those authors do not include any concrete client-side
architecture.

Other works were conducted on the low-level (architecture)
issues. [6] conducted an experiment on the possibility of ap-
plying the Agile development on mobile systems using design
patterns and proved that rapid development only benefits from
defined architectures and patterns. [30] analysed the possible
cases in application of MVC and PAC architectures in mobile
J2ME and Symbian development and concluded that PAC is
slightly more suitable due to the modularity of the interface.
Authors such as [31] propose some guidelines for designing
and developing mobile applications based on a single concrete
implementation example.

Concerning Android systems, authors mostly concentrated
on security and privacy problems rather than on application
architecture. We only found the work of [23] proposing to
perform a communication between all Android components
via interfaces. We aimed to fill in the gap of the client-side
architecture for modern Android system.

XIII. CONCLUSION AND FUTURE WORK

The architecture plays an important role in the development
of good quality applications. We identified the gap in the
Android development, which was missing unified defined
architecture.

We have analysed some well-known architectural design
patterns and proposed an Android architecture solution based
on an MVC and PAC/HMVC design pattern. We have also
proposed the Domain Model organization for the Android
application that helps to structure the core functionalities. We
have provided implementation examples for several common
cases in Android development and a concrete implementation
of a Twitter client mobile application - ’Tweetle’.

The architecture defined can simplify the work of novice
and experienced developers alike and enable the creation of
less complex and well-structured applications.

The architecture was evaluated in several ways: scenario-
based evaluation showed the high maintainability of the ex-
ample implemented with Android Passive MVC. One existing
Android application was reimplemented using Android Passive
MVC, resulting in better maintainability, extensibility and
performance. The complexity of the new implementation was
considerably lower. We also involved two developers in long-
term testing of the architecture on real projects and collected
positive feedback on Android Passive MVC. We provided
architecture explanation online to reach a larger population
and to collect more feedback.

We aim to create a plug-in for Android development
environments such as Eclipse or Android Studio to generate
common structure, components and classes for an application.
For example, the model and database classes can be generated
using the database structure.

137

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It is important to note, that Android Passive MVC could
also be applied to other systems similar to HMVC and PAC
architectures. It requires the main component (main Controller)
implemented as Activity in Android but can be represented
otherwise in another system.

REFERENCES

[1] K. Sokolova, M. Lemercier, and L. Garcia, “Android Passive MVC: a
Novel Architecture Model for the Android Application Development,”
in Patterns 2013, IARIA, Ed., 2013, pp. 7–12.

[2] S. Allen, V. Graupera, and L. Lundrigan, Pro Smartphone Cross-
Platform Development: IPhone, Blackberry, Windows Mobile and An-
droid Development and Distribution, 1st ed. Berkely: Apress, Sep.
2010.

[3] D. Mark and J. LaMarche, More IPhone 3 Development, ser. Tackling
Iphone Sdk 3. Berkely: Apress, Jan. 2010.

[4] J. Steele, N. To, S. Conder, and L. Darcey, The Android Developer’s
Collection. Addison-Wesley Professional, Dec. 2011.

[5] B. Foote and J. Yoder, “Big Ball of Mud,” in Pattern Languages of
Program Design. Addison-Wesley, 1997, pp. 653–692.

[6] T. Ihme and P. Abrahamsson, “The Use of Architectural Patterns in the
Agile Software Development of Mobile Applications,” in ICAM 2005
Internation Conference on Agility, Aug. 2005, pp. 155–162.

[7] G. Krasner and S. Pope, “A description of the model-view-controller
user interface paradigm in the smalltalk-80 system,” Journal of object
oriented programming, vol. 1, 1988, pp. 26–49.

[8] P. Sauter, G. Vögler, G. Specht, and T. Flor, “A Model–View–Controller
extension for pervasive multi-client user interfaces,” Personal and Ubiq-
uitous Computing, vol. 9, no. 2, Mar. 2005, pp. 100–107.

[9] M. Veit and S. Herrmann, “Model-view-controller and object teams:
a perfect match of paradigms,” in AOSD ’03: Proceedings of the
2nd international conference on Aspect-oriented software development.
ACM Request Permissions, Mar. 2003, pp. 140–149.

[10] S. Burbeck. Applications Programming in Smalltalk-80TM: How
to use Model-View-Controller MVC. [Online]. Available: http://st-
www.cs.illinois.edu/users/smarch/st-docs/mvc.html (1997)

[11] J. Coutaz, “PAC,” ACM SIGCHI Bulletin, vol. 19, no. 2, Oct. 1987,
pp. 37–41.

[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture, Volume 1: A System of Pat-
terns. Chichester, UK: Wiley, 1996.

[13] M. Potel, “MVP: Model-View-Presenter the taligent programming
model for C++ and Java,” Taligent Inc, 1996.

[14] J. Cai, R. Kapila, and G. Pal. HMVC: The layered
pattern for developing strong client tiers. [Online]. Avail-
able: http://www.javaworld.com/article/2076128/design-patterns/hmvc–
the-layered-pattern-for-developing-strong-client-tiers.html (2000)

[15] J. Smith, “Wpf apps with the model-view-viewmodel design pattern,”
MSDN magazine, Feb. 2009.

[16] R. Garofalo, Building Enterprise Applications with Windows Presenta-
tion Foundation and the Model View ViewModel Pattern. Microsoft
Press, Mar. 2011.

[17] S. McConnell, Tout sur le code : Pour concevoir du logiciel de qualité
(Everything about code: make software of quality), 2nd ed. Dunod,
Feb. 2005.

[18] R. Meier, Professional Android 4 Application Development (Wrox
Professional Guides), 3rd ed. Birmingham: Wrox Press Ltd., May
2012.

[19] I. Salmre, Writing Mobile Code: Essential Software Engineering for
Building Mobile Applications. Addison-Wesley Professional, Feb.
2005.

[20] S. Brahler, “Analysis of the android architecture,” Karlsruher Institute
of Technology, Tech. Rep., 2010.

[21] F. Garin, Android - Concevoir et développer des applications mobiles
et tactiles (Android - Comprehend and develop mobile and tactile
applications), 2nd ed. Dunod, Mar. 2011.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, 1st ed. Addison-
Wesley Professional, Nov. 1994.

[23] W.-Y. Kim and S.-G. Park, “The 4-tier design pattern for the develop-
ment of an android application,” Lecture Notes in Computer Science,
vol. 7105, Dec. 2011, pp. 196–203.

[24] P. D. Sheriff, Fundamentals of N-Tier Architecture, pdsa inc. ed. PDSA
Inc., May 2006.

[25] M. T. Ionita, D. K. Hammer, and H. Obbink, “Scenario-based software
architecture evaluation methods: An overview,” in Workshop on Meth-
ods and Techniques for Software Architecture Review and Assessment
at the International Conference on Software Engineering, 2002.

[26] V. Rahimian and R. Ramsin, “Designing an agile methodology for
mobile software development: A hybrid method engineering approach,”
in Research Challenges in Information Science, 2008. RCIS 2008.,
2008, pp. 337–342.

[27] P. Abrahamsson et al., “Mobile-D: an agile approach for mobile
application development,” in OOPSLA ’04: Companion to the 19th
annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, Oct. 2004, pp. 174–175.

[28] H. J. La and S. D. Kim, “Balanced MVC Architecture for Devel-
oping Service-Based Mobile Applications,” in e-Business Engineering
(ICEBE), 2010 IEEE 7th International Conference on, 2010, pp. 292–
299.

[29] A. Papageorgiou, B. Leferink, J. Eckert, N. Repp, and R. Steinmetz,
“Bridging the gaps towards structured mobile SOA,” in MoMM ’09:
Proceedings of the 7th International Conference on Advances in Mobile
Computing and Multimedia, Dec. 2009, pp. 288–294.

[30] D. Plakalovic and D. Simic, “Applying MVC and PAC patterns in
mobile applications,” Journal of Computing, vol. 2, no. 1, Jan. 2010,
pp. 65–72.

[31] D. Zissis, D. Lekkas, and P. Koutsabasis, “Design and Development
Guidelines for Real-Time, Geospatial Mobile Applications: Lessons
from ‘MarineTraffic’,” in Mobile Web and Information Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 107–120.

138

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Time-based Visualization of Large Data-Sets
An Example in the Context of Automotive

Engineering

Werner Sturm, René Berndt, Andreas Halm,
Torsten Ullrich, Eva Eggeling

Fraunhofer Austria Research GmbH
Visual Computing, Graz, Austria

&
Institute of ComputerGraphics and KnowledgeVisualization,

Graz University of Technology, Austria

Email: {rene.berndt, andreas.halm
torsten.ullrich, eva.eggeling}@fraunhofer.at,

werner.sturm@student.tugraz.at

Dieter W. Fellner

Institute of ComputerGraphics and KnowledgeVisualization,
Graz University of Technology, Austria

&
Fraunhofer IGD and TU Darmstadt

Darmstadt, Germany

Email: d.fellner@igd.fraunhofer.de

Abstract—Automotive systems can be very complex when using
multiple forms of energy. To achieve better energy efficiency,
engineers require specialized tools to cope with that complexity
and to comprehend how energy is spread and consumed. This
is especially essential to develop hybrid systems, which gener-
ate electricity by various available forms of energy. Therefore,
highly specialized visualizations of multiple measured energies
are needed. This paper examines several three-dimensional glyph-
based visualization techniques for spatial multivariate data. Be-
sides animated glyphs, two-dimensional visualization techniques
for temporal data to allow detailed trend analysis are considered
as well. Investigations revealed that Scaled Data-Driven Spheres
are best suited for a detailed 3D exploration of measured data.
To gain a better overview of the spatial data, Cumulative Glyphs
are introduced. For trend analysis, Theme River and Stacked
Area Graphs are used. All these visualization techniques are
implemented as a web-based prototype without the need of
additional web browser plugins using X3DOM and Data-Driven
Documents.

Keywords–scientific visualization; spatio-temporal multivariate;
glyph based; trend analysis; web-based.

I. INTRODUCTION

Scientific visualization is a growing field of research in
computer graphics. Recent visualization techniques have been
presented, among others, at the International Conference on
Creative Content Technologies (CONTENT), where the foun-
dation of this article has been discussed [1].

To make fast decisions based on the data, scientists and
engineers need to interpret valuable information efficiently.
The complexity of data constantly increases and therefore
highly specialized and individual visualization methods are
needed [2].

Especially automotive engineering encounters the need to
develop more efficient energy saving systems to provide longer
duration with a given amount of energy. Thus, automotive

engineers require specialized tools that support them to achieve
this goal. An increasing research field of automotive engi-
neering are hybrid vehicles (e.g., combination of combustion
engine and electric propulsion system). As electricity is used
for propulsion, several forms of energy can be used to generate
electricity [3] (e.g., heat, kinetic energy or sun light). A
hybrid vehicle that uses multiple forms of energy can be a
very complex system. Every single component that outputs or
consumes energy must be considered to ensure high efficiency.
To cope with such complex systems, engineers need to be able
to understand the global behavior of such hybrid systems.

Measured values of several forms of energy can be visu-
alized to get a better understanding how energy is consumed
and emitted. A measurement might be a recording of a specific
scenario (e.g., start the engine and driving up the hill at
40oC temperature), thus engineers are interested in the energy
trend as well. Considering that, the visualization should also
represent the systems behavior over time.

In this article, several multivariate visualization tech-
niques (two- and three dimensional) are evaluated. In ad-
dition to that, a prototypal implementation using X3DOM
[4] and Data-Driven Documents (D3) [5] technology is dis-
cussed. This interactive prototype demonstrates two glyph-
based three-dimensional (3D) visualization methods including
Scaled Data-Driven Spheres (SDDS) and three different two-
dimensional (2D) visualization methods called ThemeRiver
[6], Stacked Area Graph and Stacked Cumulative Percent Plots
[7].

II. RELATED WORK

There exist many visualization techniques for multivariate
data like Geometric Projection, Pixel-Oriented Techniques and
Hierarchical Display [8]. The given data model is not only
a general multivariate data set, but it also has temporal and
spatial components, which play an important role.

139

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Temporal or so-called time-oriented data have become a
separate research field. There are various visualization tech-
niques for temporal data and different purposes (e.g., The-
meRiver, TimeWheel) [9]. Generally, they have in common
the depiction of the change over time.

On the other side, previous research also found multiple
visualization methods for spatial-multivariate data, which are
mostly used for scientific visualizations. These techniques
include surface based rendering, direct volume rendering and
glyph based techniques [10]. A large field of application for
visualization methods for spatial-multivariate data are medical
data visualizations (e.g., data from Nuclear Magnetic Reso-
nance (NMR)). In the next Section, several related visualiza-
tion techniques are presented, which have been considered for
visualizing various forms of energy for automotive engineer-
ing.

A. Quantitative Texton Sequences

Quantitative Texton Sequences (QTonS) is a bivariate visu-
alization technique. It maps one dimension to a spectrum color
sequence and the other to a QTonS sequence (see Figure 2).
These two corresponding dimensions are distributed over an
2D area. A Quantitative Texton Sequence is a set of textures
(textons) as illustrated in Figure 1.

Figure 1. Example of a Quantitive Texton Sequence.

“A texton is here defined as a small texture element that
when presented in a dense field forms a texture.” [11].

(a) QToS with only negative values (b) QToS with both negative and
positive values

Figure 2. Illustration of a Quantitive Texton Sequence visualization (QToS).
Color spectrum represents the first variable and textons, placed at the same
position, represent the corresponding additional variable.

Fundamentally, values are mapped to individual Textons.
The higher the absolute value is, the bigger the Textons surface
will be. This means, that an area covered by Textons densily
represents an area of high absolute values. To differentiate
negative and positive values, black and white Textons are
used. In this case, black Textons represent negative values (see
Figure 2).

B. Superquadric Glyphs

Superquadrics are a category of geometrical shapes, which
basically are derived from ellipsoids and quadrics. Their ap-

pearance can be changed by changing their parameters (e.g.,
roundness of corners, size, color, etc.). This property can be
exploited to map values to the glyphs appearance.

(a) Cornered and round supertorus.

(b) Supertorus of various thickness.

Figure 3. Glyph-based visualization using superquadrics. Cornered supertorus
represent negative values, round ones represent positive values (a). Absolute
values are mapped to thickness of glyph (b).

Generally, this method is called glyph-based visualization
and it enables a wide range of possibilities for displaying
spatial multivariate data. A supertorus can be manipulated by
its size (major radius), thickness (minor radius), roundness and
color (as illustrated in Figure 3b and 3a). Thus, Superquadric
Glyphs can be used to visualize up to four dimensions in
addition to the glyphs position.

C. Scaled Data-Driven Spheres

Scaled Data-Driven Spheres is another glyph based vi-
sualization technique, which extends the 2D Data-Driven
Spots [12] to 3D. SDDS use spheres as glyphs and it im-
plies the properties of superquadrics like color and size. In
addition to that, they are easier to interpret due to their simple
shape and viewing angle independence. A previous user based
evaluation of superquadrics and SDDS revealed that SDDS
result to a lower error rate in value estimation and relationship
identification [13].

Basically, SDDS use the spheres size to represent the
value (see Figure 4). Scaled Data-Driven Spheres can visualize

Figure 4. Glyph based visualization using Scaled Data-Driven Spheres
(SDDS). Linear mapping of values to SDDS’ size.

two additional dimensions (beside its position) using their
properties color and size:

r = rmax
v − vmin

vmax − vmin
, (1)

whereas r is the resulting radius of the sphere based on same
input value v ∈ [vmin, vmax].

140

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Theme River

Theme River is a two-dimensional visualization technique
designed for trend analysis over a serial dimension (e.g., time)
[6], [14]. Theme River enables users to compare different
identities, which occur parallel. Every identity is represented
by a colored current within the river (see Figure 5).

Figure 5. Illustration of Theme River with three currents. The width of
current represents the corresponding value. It is primarily used to identify
trends. Thus, labels indicating the exact value are not essential.

The higher a value is, the wider the corresponding current
will be. If a value changes along the serial dimension, the
currents width will proportionally change to it. Hence, abrupt
changes and long term trends can be recognized easily. If a
value equals zero, the appropriate current will disappear until
it changes its value again.

E. Stacked Area Graph

Stacked Area Graph represents serial values as areas. The
x-axis represents a serial dimension and the y-axis represents
the corresponding value. When values change over a serial
dimension, the height of the corresponding area will change as
well. If multiple values are depicted, areas are not overlapping.
They are arranged as a stack. Thus, the total sum of all depicted
values is represented by the total hight of the stack (see Figure
6).

Figure 6. Illustration of Stacked Area Graph with three elements. The height
of stack element expresses the corresponding value.

This enables the user to recognize the total amount easily.
Like Theme River - if a value changes to zero, the correspond-
ing area will disappear. If the value changes again, the area
will appear at the same stack level where it disappeared before.

F. Stacked Cumulative Percent Plot

Stacked Cumulative Percent Plot (SCPP) is another graph-
ical method for visualizing trends [7]. In contrast to Theme

Rivers and Stacked Area Graphs, SCPP depicts the percentage
instead of the value as stacked areas.

Figure 7. Illustration of Stacked Cumulative Percent Plot with three elements.
The height of stack element represents the values percentage of total sum.

The total graph is always stacked up to 100% (as in Figure
7). When values are normalized, it enables the user to identify
how much a single component contributes to the total amount.

G. X3DOM

As these visualization techniques have to be implemented
with the aid of current web technologies, X3DOM is used
to render the 3D visualization. Generally, X3DOM is a new
approach to enable web browsers to render 3D content without
the need of further plugins [4]. The current HTML5 standard
defines X3D (derived from VRML97) to be used to provide 3D
content, but it does not define how this 3D content has to be
handled. For that, X3DOM has been approached to connect the
web browsers Document Object Model (DOM) containing the
X3D data, with the internal X3D runtime. The X3D runtime
does all 3D tasks, which are needed to render the scene defined
by the X3D data. X3DOM enables web developers to create
3D content in a declarative way as used for creating SVG and
common HTML elements. Thus, there is no need to struggle
with low-level graphics interfaces like OpenGL provided by
WebGL [15]. Due to its observer architecture, it also supports
dynamic DOM changes, which effect an analogous update of
the X3DOM runtime content. X3DOM has not been declared
as a web standard, but like XML3D [16], it runs for it.

H. JQuery

JQuery is a JavaScript framework, which simplifies the
development of dynamic web pages [17]. It provides function-
alities to modify the web browsers DOM and to invoke remote
procedures via AJAX. It’s selector enables programmers to
select DOM elements by their CSS attributes and update them
via implicit iterations. JQuery has become a first choice for
web developers.

I. Data-Driven Documents

Data-Driven Documents (D3) is a JavaScript library for
manipulating the DOM based on data (data-driven) [5]. It
is designed to cope with large data sets and it allows to
bind data to the DOM combined with dynamic properties for

141

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

animations and user interactions. It uses several well known
web technologies like SVG, CSS3 and HTML5 to generate
a representation of the defined data. Therefore, no further
libraries or plugins are needed. Moreover, it uses similar
methods called selectors as JQuery does.

III. PRECONDITIONS

A. Data model

Problem-specific visualizations are tailored for specific
data. Thus, it is important to know the underlying data
structure. In our case, we have spatio-temporal multivariate
data. The data consist of the energy type, the 3D position
where the data were collected, the data acquisition time
and the measured value itself. The value can be positive
or negative. A single measurement represents a period and
consists of various value sequences. As illustrated in Figure 8,

time

sensor
(position, energy)

value

Figure 8. Representation of the data model. Dimension sensor combines 3D
position and form of energy.

a single value sequence represents the recording of a single
sensor (measuring point). All values are measured parallel and
it can be assumed that all sensors have been synchronized.
Hence, the nth value of every value array represents the same
time.

The multivariate data have six dimensions:

• form of energy

• value

• time

• 3D position (one scalar for each dimension)

B. Visualization

The visualization must be capable to display five distinct
forms of energy and an arbitrary number of sensors in an
explorable way. These forms of energy should be easy to
interpret, to distinguish and to compare. In addition, the
trend over time must be easy to investigate to satisfy the
requirements of automotive engineers. To achieve that, both
2D and 3D visualization techniques will be considered.

Summing up, an optimal visualization fulfills these require-
ments:

• displaying at least five distinct forms of energy mea-
sured by several hundred sensors

• easy exploration of data, especially considering spatial
and temporal dimensions

• opportunities to compare measuring points and differ-
ent forms of energy

• gives a global overview about the data

• opportunities for detailed trend analysis

IV. EXAMINATION

Basically, the human’s perception capabilities are limited
to a 3-dimensional spatial sense plus a perception of time. This
results to a 4D world, in which we live in. This limitation also
narrows the possibilities of beneficial visualization methods,
while the perception of time can only be used via animations.
Thus, a single image can not exploit the perception of time.
Regarding this fact, properties of geometrical shapes (glyphs)
(e.g., color, size, roundness, pattern and orientation) can be
used to gain the feasibility to visualize even more dimensions.
This is needed to display multi-dimensional data.

An investigation of existing techniques revealed that a
combination of 2D- and 3D visualization techniques lead to
a better global insight into the measuring data. Moreover, this
allows the user to investigate the data from different points of
interest.

A. 3D visualization

If the data set has a spatial component and it is important
to know its location, it is common to use a visualization
technique that retains this spatial information. The drawback
of this decision is, that every visualized dimension consumes
a single dimension in the visualization space. For our prob-
lem, all three dimensions of the spatial variable are used
because the cognition of the energy’s location is essential.
Therefore, no spatial dimension for visualizing time is left.
Three-dimensional visualizations also allow more freedom to
explore the spatial data in a natural way.

1) Quantitative Texton Sequences: QTonS are considered
to be used as a render mode of the three-dimensional space
to represent the two dimensions value and form of energy.
While exploring the 3D-space, the view is updated by the
QTonS technique to represent the amount of energy in the
viewed region. The mapped colors represent the form of energy
and the texons represent the value of the data (see Figure 2).
The color of textons indicates the sign of its value. White
textons represent positive values and black textons represent
negative values. This combination of 3D and QTons visualizes
all needed information of the measurement at a single point of
time. Therefore, a control to navigate through the measuring
period is needed.

The drawback of this approach is that the location of the
visualized energies is not clearly evident. The user can only
perceive how much energy occurred in a specific direction

142

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

calculated from the viewpoint. Therefore, it is not possible
to investigate a single location. This results to an ineffective
explorable visualization. Moreover, it is rather suitable for data
sets of high spatial density. Such a high density might be
reached by some measurements but this is not the common
case. It is assumed that common measurements have up to
several hundred measuring points distributed over the vehicle.

2) Superquadric Glyphs: Here, the approach called torus-
based Superquadric Glpyh (supertorus) is examined, which
is discussed in [18]. Compared to QTonS’, this technique
is more meaningful for displaying 3D-spatial data, because
glyphs represent the spatial information by their 3D-position
implicitly. The dimension form of energy is mapped to the
glyphs color and the corresponding absolute value is mapped
to its thickness as shown in Figure 3b. To indicate if a value is
either positive or negative the roundness is used therefore (see
Figure 3a). A round supertorus represents a positive value.

Superquadric Glyphs scale very well from few data sets to
several hundred. The user can easily identify regions with high
occurrences of a specific form of energy. If a scale is provided,
the user can estimate the value of a single glyph. Therefore,
glyphs can also be compared to understand relationships of
different energies. To preserve the size of glyphs perspective-
independent, an orthogonal projection is used. Contrasting
colors should be chosen as discussed in [19] and [20] to be
distinguishable easily.

A serious disadvantage of superquadrics is that users can
not easily interpret the glyphs roundness and thickness when
glyphs are placed densely. In addition to that, superquadrics
are not viewing angle independent. According to the user study
[13], Superquadric Glyphs are not as effective as Scaled Data-
Driven Spheres (SDDS). The next Section will discuss SDDS
in detail.

3) Scaled Data-Driven Spheres: In contrast to Su-
perquadric Glyphs, Scaled Data-Driven Spheres are viewing
angle-independent. To distinguish different types of spheres,
contrasting colors are used. According to [20], humans per-
ception struggles to differentiate more than 12 color values.
Therefore, up to 11 (plus one for background) colors can be
used to represent different glyphs. In this case, up to 5 different
forms of energy are needed to be displayed. This allows to use
2 colors for each form of energy to distinguish positive and
negative values (10 colors). To clarify that these two colors
belong to the same form of energy they should have the same
ground color (e.g., light red and dark red). Therefore, light
colored spheres represent positive values and negative values
are represented by dark colored spheres (as in Figure 9). The
contrasting base colors of all five forms of energy are green,
yellow, red, blue and magenta.

The remaining free color value can be used to display the
outline of a car as a semitransparent model. This assists the
user to interpret 3D positions easier. The car model should not
disturb the perception of the visualized measuring data. Thus,
light gray is used since gray is not a signaling color. As a
result, all dimensions of the data at a specific moment can be
visualized in a comprehensible way.

However, SDDS underly several side effects of the 3D
rendering process. To achieve a three-dimensional impression,
objects have to be shaded, which effects a distortion of

Figure 9. Illustration of cluttered Scaled Data-Driven Spheres (SDDS) using
contrasting colors. Each base color represents a distinct form of energy.

the objects original color. When using a semitransparent car
model, the color of the car model also distorts the color of
SDDS that are located behind the model. This can result to an
unclear color identification and should be considered.

To illustrate the trend over time, a key frame animation
showing the change of measuring values is used. Every key
frame equals one measuring time, which is calculated by
mapping values to the corresponding spheres’ size. The glyphs
size and color (when value is changing its sign) has to be
interpolated between each frame. Consequently, when key
frames are shown in sequence, an animation depicting growing
and shrinking spheres will be the result.

Due to the ease of interpreting SDDS, their low error rate
in value estimation and relationship identification, SDDS are
the most suitable visualization technique to display detailed
measuring data spatially.

B. Cumulative Glyph

In some cases, engineers do not want to get a detailed
insight in the data instantly. They might want to get a more
general overview of the data to spot interesting regions to
investigate more in detail afterwards. Cumulative Glyph (CG)
is an approach for this demand. A CG is a representative of a
specific spatial region (e.g., single wheel, engine, etc.) of the
data. In a single region, there might be plenty of sensors. To
understand the overall incidence of energy in this region, it
still can be difficult to estimate when using SDDS. Therefore,
all values of the same form of energy within this region
will be cumulated to a single value. This cumulated value
represents the total occurrence, which can be compared with
other cumulated values of other regions.

Figure 10. Color scale used for color mapping. Green indicates high
occurrence of energy. Red indicates low energy.

143

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ratio =
v − vmin

vmax − vmin

red =

0.4 + v−vmin

1
4
(vmax−vmin)

· 0.6 if 0 ≤ ratio ≤ 0.25

1 if 0.25 < ratio ≤ 0.5

1− v− 1
2
(vmax+vmin)

1
4
(vmax−vmin)

if 0.5 < ratio ≤ 0.75

0 if 0.75 < ratio

green =

0 if 0 ≤ ratio ≤ 0.25
v− 1

4
vmax+ 3

4
vmin

1
4
(vmax−vmin)

if 0.25 < ratio ≤ 0.5

1 if 0.5 < ratio ≤ 0.75

1− v− 3
4
vmax− 1

4
vmin

1
4
(vmax−vmin)

· 0.6 if 0.75 < ratio

blue = 0
(2)

To visualize cumulated values, color mapping is used. As
illustrated in Figure 10, colors as green, yellow and red are
used to depict the amount of energy. Green represents a high,
yellow an average and red a low (negative) amount of energy.

Despite the fact, that many color values, which are close
to each other on this color scale, can not be compared easily
(subjective colors), this representation has enough potential to
offer the user an overview to know where high occurrences of
energy exist. This color scale is chosen because the rainbow
color map is commonly accepted by users. Of course, other
color scales can be used that are considered to be easier to
differentiate. This topic is discussed in [21], [22], [23], [24].
Every CG consists of n (where n is the number of different
energies) discs, which are arranged circularly. Every disc
represents a single form of energy. In this case, a CG consists
of five discs. Every disc is colored by the mapping rule as
Equation 2 depicts. If a form of energy has not been measured
in this region, the corresponding disc will be gray and represent
no value. In addition to that, the overall amount of energy

(a) QToS with only
negative values

(b) QToS with both
negative and positive
values

(c) QToS with both
negative and positive
values

Figure 11. Illustration of Cumulative Glyph (CG) representing cumulative
values of regions within the data space. CG of high overall cumulative value
(a). CG representing a region of average cumulative value (b). CG of low
energy value (c).

within a region is mapped to the CG’s size. This allows the user
to identify if a region involves a high occurrence of energy.
Like SDDS, Cumulative Glyphs can be animated to show the
energy trend over time as well. Colors of discs and the glyphs
size have to be interpolated between every key frame. In this
way, the user is able to get an idea how energy behaves in
several locations over time.

Due to the Cumulative Glyphs shape, CG’s should have
a camera-relative orientation to be view-independent. As de-

picted in Figure 11, it is difficult to recognize what form of
energy is represented by a disc. For that, it is recommended to
use icons to label discs to improve the ease of interpretation
or at least, a legend should be provided.

C. 2D visualization

1) Theme River: Due to Theme River’s properties, it is
suitable to depict the trend of measured values. While the serial
dimension is the time component of a measurement, every
sensor is represented by one current within the river. Currents
that represent sensors measuring the same form of energy are
of the same basic color and are placed side by side. As a result,
these sensors together generate a wide current representing the
total amount of one form of energy. Additionally, the total
width of the river describes the total amount of energy. This
allows users to compare trends of different forms of energies
and various sensors at once.

A drawback of Theme River is the difficulty of estimating
values. Without any labels, users can hardly guess what value
is represented by a given width. Moreover, Theme River works
only with positive values. Thus, either absolute values should
be used (where negative values are represented by darker
colors) or two graphs, one for positive and the other one
for negative values might be a solution. The latter solution
should be preferred, because the former one treats positive
and negative equally, which leads to a wrong representation of
the total energy occurrence.

2) Stacked Area Graph: Stacked Area Graphs can also be
used to examine the energies trend over time. Every measuring
point is represented by an area. As implemented in Theme
River, measuring points representing the same form of energy
are placed next to each other. In addition, they are of the
same base color to represent the overall occurrence of that
specific form of energy as a cumulated area. This enables
users to investigate the trend and to identify the entire amount
of energy in an area (e.g., engine or front wheel). Negative
values are represented by stacks below the x-axis. To navigate
through time, controls for setting the displayed interval should
be provided. Possibilities to set start time and end time
independently allows users to zoom within the dimension of
time.

3) Stacked Cumulative Percent Plot: Stacked Cumulative
Percent Plots are very similar to Stacked Area Graphs. Due to
the depiction of percentages instead of values, users can easily
recognize which energy contributes the most. To compare
different forms of energy based on meaningful percentages,
values are normalized. Furthermore, absolute values are used
to handle negative values. To identify that an area represents
negative values, darker colors are used (as used for SDDS).

V. PROTOTYPE

The aim of this prototype is to test all chosen visualization
techniques and proofing that these techniques can be imple-
mented as a web-enabled application using X3DOM of version
1.3 and Data-Driven Documents (version 2.9.6).

A. Architecture

As depicted in Figure 12, the main parts of the prototype
are the database, the web server and the client, which is a web

144

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Measuring data

Web Server

DatabasePreprocessing data

X3D car model

Web Browser

RESTful Web Service

HTML5
CSS

JavaScript
X3DOM

AJAX
DOM manipulation

Figure 12. General architecture of prototypal implementation. Original and
reduced approximated values are stored in database. Web server provides
HTML content and data to the client. Client performs complete visualization
using X3DOM and Data-Driven Documents.

browser supporting 3D within web sites. The major part of
the applications logic is run within the clients web browser to
provide dynamic visualizations, which respond quickly to user
interactions. The web browser requests needed measuring data
from the web server via RESTful web services and maps it into
a data format that can be visualized by X3DOM or D3. Hence,
the web server primary has to provide the requested data and
further visualization-specific calculations are performed client-
side.

1) Data Preprocessing: Transferring all data to the client
would be very time-consuming. Thus, the data are prepro-
cessed to reduce the amount of data. Generally, a measurement
with n measuring points and t value acquisitions results to
a data complexity of S(n, t) = O(n · t). As the amount of
measuring data can be massive, the Douglas-Peucker algorithm
is used to to reduce the number of values [25]. This algorithm
has an expected complexity of Θ(nt · log(nt)); worst case
is O((nt)2). This works because the sequence of measured
values can be interpreted as a curve representing the trend
(see Figure 8). After applying this geometric algorithm, an
approximation of the original curve with less points, which still
preserves the overall structure of the curve will be the result.
In other words, this algorithm filters all non-distinctive values.
Consequently, the less data the server has to find and transfer to
the client, the faster the system responds to the user. Moreover,
users want to navigate through the data using different time-
zoom levels. For that, different degrees of approximations are
needed, which are stored in the servers database after the
preprocessing task.

2) Web Server: Basically, the web server provides HTML
content including the static 3D car model in X3D format,
which can be understood by X3DOM. However, the servers
main task is to provide measuring data to the client. For
that, it offers several RESTful web services, which provide
the data formatted using JavaScript Object Notation (JSON).
Of course, clients do not receive all data at once. For both
3D visualizations (SDDS and Cumulative Glyph) the client

commonly requests only data of a single moment. But all
time-oriented two-dimensional visualizations and animations
of SDDS and Cumulative Glyphs, used for depicting the trend
over time, need a data set of the desired time span. Users
might select a long period (or even the complete period),
which would cause a huge amount of data to be transfered
to the client. Considering that, the web server limits the
maximum amount of values to be transfered and selects the
best approximation of the data (as discussed in Section V-A1),
which does not contain more values as limited. This allows the
client to request any time span without overloading.

3) Client: As already mentioned, the most of the applica-
tions logic is performed client-side by JavaScript. Users should
be able to explore data in an interactive way. It uses several
libraries to handle these tasks. JQuery is used for user interface
interactions, performing Asynchronous JavaScript and XML
(AJAX) calls and DOM manipulations. X3DOM is applied to
visualize 3D content. The 3D scene is manipulated via DOM
manipulations and D3 provides all functionalities to draw 2D
graphs.

B. 3D using X3DOM

The observer architecture of X3DOM, which connects the
web browsers DOM with the internal X3D runtime, allows
to modify the 3D scene via the DOM itself. Moreover, X3D
predefines simple objects like box, sphere, cone and cylinder.
Therefore, a SDDS can be created easily by using a sphere
object (see Listing 1). Resulting X3D tags are depicted in
Listing 2.
function showSDDS(x, y, z, size, color, id) {
//
// create tag <transform>
// and append it to scene tag
//
$(’<transform></transform>’, {

id: ’sdds’ + id,
’class’: ’sdds’,
translation: x + " " + y + " " + z,
scale: size + " " + size + " " + " " + size

}).appendTo("#scene");
//
// create tag <sphere>
// and append it to tag <shape>
//
$(’<sphere></sphere>’, {

’class’: ’sphere’
}).appendTo(
// create tag <shape>
// and append it to tag <transform>
$(’<shape></shape>’, {

id: ’sphere’ + id
}).appendTo("#sdds" + id)

);
//
// create tag <material>
// and append it to tag <appearance>
//
$(’<material></material>’, {

id: ’material’ + id,
transparency: 0.2,
diffuseColor: color

}).appendTo(
// create tag <appearance>
// and append it to tag <shape>
$(’<appearance></appearance>’)
.appendTo("#sphere" + id)

);
}

Listing 1. JavaScript code to create a sphere with X3DOM representing a
Scaled Data-Driven Sphere. All X3D state changes are performed via DOM
manipulations using JQuery.

145

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<X3D xmlns="http://www.web3d.org/specifications/x3d-
namespace" id="x3d_element" showStat="true" showLog="
false">

<scene id="scene" pickMode="box">
...
<transform id="sdds1" class="sdds"

translation="0 0 0"
scale="10 10 10">

<shape id="sphere1">
<sphere class="sphere"></sphere>
<appearance>

<material id="material1"
transparency="0.2"
diffusecolor="#FF6666">

</material>
</appearance>

</shape>
</transform>

...
</scene>

</X3D>

Listing 2. X3D tags defining a Scaled Data-Driven Sphere.

Cumulative Glyphs can be created analogously using cylin-
ders arranged circularly as depicted in Figure 13. To include
a static car model provided as a file, the inline function can
be used as shown in Listing 3.

<transform rotation="0 1 0 1.57">
<appearance>

<material transparency=".8"></material>
</appearance>
<inline id="carModel" nameSpaceName="carmodel"

DEF="carModel" url="data/x3d/carModel.x3d"></inline>
</transform>

Listing 3. Include X3D car model via inline tag.

To animate glyphs to depict the values change over time,
X3DOM implements TimeSensors, Interpolators and Routes
defined by the X3D standard. TimeSensors provide a timer
to trigger steady events within a defined period. PositionIn-
terpolators are connected to TimeSensors via Routes, which
provide a 3D vector interpolated between two defined vectors
depending on the timers progress. These output vectors are
passed to the spheres attribute scale (which expects a 3D
vector) resulting a smooth animation showing a growing or
shrinking sphere. Colors of glyphs also have to be changed
during an animation. For that, X3D offers ColorInterpolators,
which work analogously. This concept also supports long lists
of key frames and therefore, any animation can be defined (see
Listing 4).

1) Compatibility Issues: Nevertheless, there have been
some issues with X3DOM. As mentioned in Section IV-A2,
when using glyphs, an orthogonal projection should be used.
Unfortunately, X3DOM does not implement OrthoViewpoint
(defined by X3D). Thus, a perspective viewpoint is used
instead. As depicted in Figures 14 and 13, transparency is
applied to the car model and most glyphs are located within
it, which led to several rendering problems. Many glyphs have
not been rendered at all. To solve this problem, a work-around
that reverses the rendering order in a way that glyphs are
rendered at last is used. In addition to that, it was not possible
to trigger mouse events of glyphs because there is no way to
click through the transparent car model. Another problem was
to orientate Cumulative Glyphs relatively to the camera. For
that, X3D defines a ProximitySensor but X3DOM does not
support it (yet).

<X3D xmlns="http://www.web3d.org/specifications/x3d-
namespace"
id="x3d_element" showStat="true" showLog="false">

<scene id="scene" pickMode="box">
...

<timesensor id="Timer" loop="loop"
cycleinterval="3" enabled="true"/>

<positioninterpolator id="PosInterpolator"
key="0 0.5 1" keyvalue="5 15 5"/>

<route fromnode="Timer" fromfield="fraction_changed"
tonode="PosInterpolator" tofield="set_fraction"/>

<route fromnode="PosInterpolator" fromfield="
value_changed"

tonode="sdds1" tofield="set_scale"/>
<colorinterpolator id="ColorInterpolator"
key="0 0.5 1"
keyvalue="1 1 1 0 0 0 1 1 1"/>

<route fromnode="Timer" fromfield="fraction_changed"
tonode="ColorInterpolator" tofield="set_fraction"/>

<route fromnode="ColorInterpolator" fromfield="
value_changed"

tonode="material1" tofield="diffuseColor"/>
...
</scene>

</X3D>

Listing 4. Example of an animation with three key frames defined in X3D.

Regarding web browser compatibility, WebKit-based web
browsers such as Google Chrome (version 23.0.1271.95) and
Firefox (version 17.0.1) perform well with X3DOM. They also
implement WebGL natively. Despite that X3DOM implements
a fallback model in case that the web browser does not support
3D natively or via X3D/SAI plugin, as a last resort it tries to
use Adobe’s Flash plugin to render the scene. For example, this
happens when using Microsoft’s Internet Explorer (version 9)
with no other plugins installed. Besides performance issues,
the result was not acceptable because there have been to many
rendering problems. This is a little insight into web browser
compatibility when using X3DOM besides that evaluating
compatibilities is not a goal of this paper.

C. 2D using Data-Driven Documents

An investigation of multiple graphing libraries such as
Grafico [26], which is based on Raphaël and Prototype.js
revealed that D3 performs very well even with bigger data
sets (e.g., 1000 data points).

$(’#chart’).append(’<svg/>’);
nv.addGraph(function () {

var chart = nv.models.stackedAreaChart()
.x(function (d) { return d[0] })
.y(function (d) { return d[1] })
.clipEdge(true);

chart.xAxis
.tickFormat(function (d) { return d });

chart.yAxis
.tickFormat(d3.format(’,.2f’));

d3.select(’#chart svg’)
.datum(data)
.transition().duration(500).call(chart);

nv.utils.windowResize(chart.update);
return chart;

});

Listing 5. JavaScript code to create a Stacked Area Graph using Data-Driven
Documents.

146

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

MeasuringPoints

RadHintenRechtsForce1

Animation

Start

End

Speed

Energies

Temperature

Voltage

Light

Force

Kinetic energy

View

detail

glyph

flat mode

Transparency

Glyph

Energy Balance

Timeline

by Werner Sturm (2012)

2D plot

60

10 30 60 80 100

80%

0 25 50 75 100

reset v iew

0

0 6919 13838 20757 27676 34595 41514 48433 55352 62271 69192

30.30 fps
anim: 0
traverse: 3
sort: 3
render: 13
#Tris: 84339
#Pnts: 244547

Figure 13. Screenshot of prototype displaying an overview of the data using Cumulative Glyphs.

MeasuringPoints

RadHintenRechtsForce1

Animation

Start

End

Speed

Energies

Temperature

Voltage

Light

Force

Kinetic energy

View

detail

glyph

flat mode

Transparency

Energy Balance

Timeline

by Werner Sturm (2012)

2D plot

60

10 30 60 80 100

animate

80%

0 25 50 75 100

reset v iew

0

0 6919 13838 20757 27676 34595 41514 48433 55352 62271 69192

142.86 fps
anim: 1
traverse: 0
sort: 1
render: 4
#Tris: 114559
#Pnts: 258747

(a)

(b)

(c)

(d)

(e)

Figure 14. Screenshot of prototype displaying detailed data using Scaled Data-Driven Spheres. Real time 3D window provided by X3DOM (a). Timeline
to navigate through time (b). Possibility to switch between detailed mode (SDDS) and overview mode using Cumulative Glyphs (c). Animated glyphs within
specified period for three-dimensional trend analysis (d). 2D plot of values measured by selected measuring points for detailed trend analysis (e).

147

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Moreover, D3 can handle non-equidistant data points,
which are needed to depict approximated data (as discussed
in Section V-A1) without interpolating these explicitly. In
addition to that, D3 provides all required graph types (Theme
River, Stacked Area Graph, Stacked Cumulative Percent Plot),
which allows developers to draw graphs without the need of
graph specific implementations (see Listing 5).

VI. CONCLUSION

This paper investigates two- and three-dimensional visu-
alization techniques to be used to visualize consumed and
emitted energies, which have been measured within a vehicle,
to support automotive engineers. In addition to that, a web-
based prototypal implementation of chosen visualization tech-
niques based on Data-Driven Documents for 2D and X3DOM
to perform real-time 3D client-side is introduced.

Besides the measured value and its type of energy, the
multivariate data include spatial and temporal components. It
revealed that Scaled Data-Driven Spheres are most suitable for
a detailed 3D visualization of energy. This contributes to this
research field that SDDS are also suitable for other scientific
visualizations than medical visualizations. In addition to that,
Cumulative Glyphs are presented to provide a better overview
of the detailed data.

Both 3D-based techniques only visualize a single moment
of the measurement period at once. Despite animations can
represent the change over time, engineers want to analyze the
trend in a more convenient way. Therefore, two-dimensional
visualizations for time-oriented data are investigated in de-
tail. Depending on the engineers requirement, Theme Rivers,
Stacked Area Graphs and Stacked Cumulative Percentage
Graphs support engineers to get a better understanding of the
trend (see Figure 15).

A successful implementation of a prototype shows, that all
techniques can be implemented as a web-enabled application
without the need of installing third-party browser plugins.
It revealed some issues with X3DOM like web browser
incompatibilities, but most of them exist because X3DOM
does not implement all specified functionalities defined by
X3D standard. Despite that fact, web developers benefit from
both X3DOM and Data-Driven Documents, which enable them
to implement interactive visualization applications without
the need to struggle with low-level graphics operations like
OpenGL or drawing single lines for 2D graphs. This certainly
leads to lower development costs as well.

ACKNOWLEDGMENT

We would like to thank the Austrian Bundesministerium für
Verkehr, Innovation und Technologie (bmvit) for its generous
support within the FEMTech project MueGen. Furthermore,
we would like to thank the Institute of Automotive Engineering
Graz (FTG), which provided this interesting use case and
corresponding measurement data.

REFERENCES

[1] W. Sturm, R. Berndt, A. Halm, T. Ullrich, E. Eggeling, and D. W.
Fellner, “Energy Balance: A web-based visualization of energy for
automotive engineering using X3DOM,” Proceeding of the International
Conference on Creative Content Technologies (CONTENT), 2013, pp.
1–10.

[2] R. Borgo, J. Kehrer, D. H. S. Chung, E. Maguire, R. S. Laramee,
H. Hauser, M. Ward, and M. Chen, “Glyph-based visualization: Foun-
dations, design guidelines, techniques and applications,” M. Sbert and
L. Szirmay-Kalos, Eds. Eurographics Association, pp. 39–63.

[3] G. M. Fields and R. G. Metzner, “Hybrid car with electric and heat
engine,” 1982, US Patent 4,351,405.

[4] J. Behr, P. Eschler, Y. Jung, and M. Zöllner, “X3DOM: a DOM-
based HTML5/X3D integration model,” in Proceedings of the 14th
International Conference on 3D Web Technology, 2009, pp. 127–135.

[5] M. Bostock, V. Ogievetsky, and J. Heer, “D3; data-driven documents,”
IEEE Transactions on Visualization and Computer Graphics, 2011, pp.
2301–2309.

[6] S. Havre, B. Hetzler, and L. Nowell, “ThemeRiver: visualizing theme
changes over time,” in IEEE Symposium on Information Visualization,
2000, pp. 115–123.

[7] T. Gilligan, Stacked Cumulative Percent Plots. PharmaSUG, 2009.

[8] W. Chan, “A survey on multivariate data visualization,” Technical
Report – Department of Computer Science and Engineering, Hong Kong
University of Science and Technology, 2006.

[9] W. Aigner, S. Miksch, W. Muller, H. Schumann, and C. Tominski,
“Visualizing time-oriented data–A systematic view,” Computers &
Graphics, no. 3, 2007, pp. 401–409.

[10] T. Ropinski, S. Oeltze, and B. Preim, “Survey of glyph-based visual-
ization techniques for spatial multivariate medical data,” Computers &
Graphics, 2011, pp. 392 – 401.

[11] C. Ware, “Quantitative texton sequences for legible bivariate maps,”
IEEE Transactions on Visualization and Computer Graphics, 2009, pp.
1523–1530.

[12] A. A. Bokinsky, Multivariate data visualization with data-driven spots.
The University of North Carolina at Chapel Hill, 2003.

[13] D. Feng, Y. Lee, L. Kwock, and R. M. Taylor, “Evaluation of glyph-
based multivariate scalar volume visualization techniques,” in Proceed-
ings of the 6th Symposium on Applied Perception in Graphics and
Visualization (APGV), 2009, pp. 61–68.

[14] L. Byron and M. Wattenberg, “Stacked graphs, geometry and aesthet-
ics,” IEEE Transactions on Visualization and Computer Graphics, 2008,
pp. 1245–1252.

[15] Khronos, “WebGL,” last accessed: June 2014, http://www.khronos.org/
webgl/.

[16] K. Sons, F. Klein, D. Rubinstein, S. Byelozyorov, and P. Slusallek,
“XML3D: interactive 3D graphics for the web,” in Proceedings of the
15th International Conference on Web 3D Technology, 2010, pp. 175–
184.

[17] jQuery Board, “JQuery,” last accessed: June 2014, http://jquery.org/.

[18] T. Ropinski, M. Specht, J. Meyer-Spradow, K. Hinrichs, and B. Preim,
“Surface glyphs for visualizing multimodal volume data,” Proceedings
of the Vision, Modeling and Visualization Workshop (VMV), 2007, pp.
3–12.

[19] M. Stone, “Choosing colors for data visualization,” last accessed: June
2014, http://www.perceptualedge.com.

[20] C. G. Healey, “Choosing effective colours for data visualization,”
Proceedings of Visualization ’96, 1996, pp. 263–270.

[21] H. Levkowitz and G. T. Herman, “Color scales for image data,” IEEE
Computer Graphics and Applications, 1992.

[22] B. E. Rogowitz, L. A. Treinish, and S. Bryson, “How not to lie with
visualization,” Computers in Physics, 1996, pp. 268–273.

[23] M. Stone, A field guide to digital color. AK Peters, Ltd., 2003.

[24] D. Borland and R. M. Taylor II, “Rainbow color map (still) considered
harmful,” IEEE Computer Graphics and Applications, 2007, pp. 14–17.

[25] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line for its caricature,”
Cartographica: The International Journal for Geographic Information
and Geovisualization, 1973, pp. 112–122.

[26] K. Valkhof, “Grafico javascript charting library,” last accessed: June
2014, http://grafico.kilianvalkhof.com/.

148

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

MeasuringPoints

Values

Seperate

Cumulative

Sample count

Energy Balance

10000 20000 30000 40000 50000 600000 69190

−1,000.00

0.00

1,000.00

2,000.00

3,000.00

4,000.00

5,000.00

6,000.00

7,000.00

8,000.00

9,000.00

−2,016.00

9,927.00

RadVLTemp1 RadHRVolt1 DachLicht2Stacked Stream Expanded

Timeline

by Werner Sturm (2012)

back

750

50 300 500 750 1000

0 69,190

0 6919 13838 20757 27676 34595 41514 48433 55352 62271 69192

(c)

(a)

(b)

(d)
(e)

Figure 15. Screenshot of prototype showing a 2D representation of the data using Stacked Area Graphs. Graph is created using Data-Driven Documents library.
Plot area for displaying the graph (a). Timeline to select a period to plot (b). Option to switch between Stacked Area Graphs (selected), Streamgraph (very
similar to ThemeRiver) and Stacked Cumulative Percentage Graph (c). Possibility to select if measuring point is included in current graph (d). Switch between
seperate and cumulative mode (d).

149

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Towards Secure Mobile Computing:

Employing Power-Consumption Information to Detect Malware on Mobile Devices

Thomas Zefferer, Peter Teufl,
David Derler, Klaus Potzmader, Alexander Oprisnik, Hubert Gasparitz, and Andrea Höller

Institute for Applied Information Processing and Communications
Graz University of Technology

Inffeldgasse 16a, 8010 Graz, Austria
Email: {thomas.zefferer|peter.teufl}@iaik.tugraz.at,

{dderler|klaus.potzmader|oprisnik|hubert.gasparitz|ahoeller}@student.tugraz.at

Abstract—Smartphones and related mobile end-user devices rep-
resent key components of mobile computing based solutions and
enable end users to conveniently access services and information
virtually everywhere and any time. Due to their continuously
growing importance and popularity, mobile devices have recently
become a common target for malware. Unfortunately, capabilities
of malware-detection applications on smartphones are limited,
as integrated security features of smartphone platforms such as
sandboxing or fine-grained permission models restrict capabilities
of third-party applications. These restrictions prevent malware-
detection applications from accessing required information for
the identification of malware. This renders the implementation
of reliable malware-detection solutions on smartphones difficult.
To overcome this problem, we propose an alternative malware-
detection method for smartphones that relies on the smartphone’s
measured power consumption. We show that information con-
tained in the measured power consumption of smartphones can in
principle be used to identify certain kinds of malware by means of
simple threshold-based approaches. We also propose two different
machine-learning techniques that allow for a classification of
applications according to their power consumption in situations,
where disturbing influences prevent an application of simple
threshold-based approaches. The capabilities of all proposed
techniques have been assessed by means of an evaluation with
real-world applications running on physical smartphones. The
results of this evaluation process demonstrate the applicability of
power consumption based classification and malware-detection
approaches in general and of the two proposed machine-learning
techniques in particular.

Keywords–Android; power consumption; application classifica-
tion; malware detection; machine learning.

I. INTRODUCTION

With the growing popularity of mobile end-user devices
such as smartphones or tablet computers, also malware for
these devices has become an issue. The special architecture
and characteristics of modern mobile end-user devices raise
the demand for appropriate methods to detect such malware.
Innovative approaches to detect malware on mobile end-user
devices based on power-consumption measurements have been
proposed by the authors in [1]. In this article, we further
elaborate on the proposed techniques and on its underlying
concepts.

During the past years, powerful mobile end-user devices

have become part of our daily life and have significantly
changed the way we access information, communicate, and in-
teract with each other. During the past few years, smartphones
and tablet computers have gradually replaced traditional end-
user devices such as desktop PCs and laptops as preferred
consumer devices. Considering current sales and usage statis-
tics [2], it can be expected that mobile computing in general
and smartphone-based solutions in particular will continue to
play a major role in future.

The recent success of popular smartphone platforms such
as Apple iOS [3] or Google Android [4] has unfortunately
turned these platforms into attractive targets for attackers.
This is especially problematic, as mobile end-user device
typically store and process an increasing amount of security
and privacy-sensitive data. In this context, malware tailored
to the special characteristics of smartphone platforms has
turned out to be a potential threat during the past few years.
Recent reports [5] show that smartphone malware must be
expected to evolve to a major issue in mobile computing in
the future. By exploiting specific functionality provided by
the infected smartphone platform, smartphone malware can
cause financial losses, e.g., by calling premium-rate numbers
or by compromising smartphone-based authentication schemes
of e-banking solutions. During the past years, especially the
Android platform has been frequently targeted by smartphone
malware. A recent example is a malware called Eurograbber. In
2012, Eurograbber has been used to steal 47 million USD from
European bank accounts by intercepting SMS-based authenti-
cation processes of e-banking portals [6]. Android seems to
be especially prone to malware due to the platform’s support
of alternative application sources that usually lack extensive
malware checks, and due to the broad functionality offered by
Android’s public APIs. This is advantageous for application
developers and users, as it allows for mobile applications with
increased functionality. At the same time, it also gives attackers
the opportunity to implement more powerful malware. For
instance, the Android APIs grant application developers as
well as attackers full access to incoming and outgoing SMS
messages, or facilitate the execution of arbitrary background
tasks. While this enables the development of mobile apps
that can make use of SMS functionality, it also facilitates the
development of malware that intercepts or spies on incoming

150

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

messages.

The factual vulnerability of the Android platform against
malware raises the need for reliable methods to distinguish
benign apps from malicious ones and to detect unwanted
behavior on smartphones. On classical end-user devices such
as desktop computers or laptops, this functionality is typically
implemented by anti-virus software, which is able to detect
malicious software at runtime. Unfortunately, the deployment
of anti-virus software on smartphone platforms in general,
and on Android in particular is difficult. This is mainly
due to the fact that Android (as well as other smartphone
platforms) implements several security features on operating-
system level, which limit access rights and capabilities of third-
party applications. For instance, all smartphone applications
are executed in a so-called sandbox and are, thus, unable
to access resources of other applications being installed and
executed on the same device. This way, application-specific
data remains protected from unauthorized access by other
applications. While implemented security features definitely
improve the system’s basic security, they also render the im-
plementation of supplementary security software difficult. For
instance, the implemented sandbox feature prevents anti-virus
software on Android smartphones from collecting information
that is required to reliably detect smartphone malware at
runtime.

Integrated security features that limit the capabilities of
classical malware-detection methods can theoretically be by-
passed by rooting the smartphone’s operating system. Rooting
has become common practice in the power-user community,
as it gives users more control over the device and allows
for additional functionality. However, rooting is not really
an option to increase the capabilities of anti-virus software,
as it significantly decreases the smartphone’s overall security
and enables additional attack vectors. Furthermore, non-rooted
device still represent the majority of all mobile end-user
devices. For these reasons, we focus on the class of non-rooted
devices only.

The reliable detection of malware on non-rooted smart-
phones is still an unsolved problem that definitely needs to be
addressed to assure the security of future mobile computing. To
overcome this problem, we propose a new technique to detect
malware on mobile end-user devices. The proposed technique
compensates the lack of required information about running
applications by making use of side-channel information being
available on non-rooted Android smartphones. This way, this
work answers two basic research questions. First, this work
evaluates if and to what extend power-consumption informa-
tion available on smartphones can be used to classify running
mobile applications and to identify malware. Second, this work
investigates capabilities of different machine-learning tech-
niques to analyze available power-consumption information.

The results presented in this article extent first results that
have been presented in 2013 [1]. The obtained results show
that alternative approaches to identify malware on mobile end-
user devices can be successful. Furthermore, obtained results
indicate that the application of machine-learning techniques
can improve the classification of applications according to
their power consumption. Even though the described work
is basically a first proof of concept, the obtained results are
promising and open new possibilities for malware detection

on mobile end-user devices. This way, this work contributes
to the security of future mobile-computing applications.

The remainder of this paper is structured as follows. In
Section II, existing malware-detection approaches for smart-
phones are briefly surveyed and limitations of these approaches
are identified. Subsequently, Section III introduces the tool
PowerTutor [7] and explains our approach to measure the
power consumption of applications on smartphones. In Sec-
tion IV, we show that measured power-consumption traces
can indeed be used to enhance the security of critical ap-
plications on smartphones by means of a simple detection
mechanism for SMS-based malware. In Section V, we focus
on more sophisticated methods to analyze collected power-
consumption information and propose two methods to an-
alyze collected power-consumption measurements based on
approved machine-learning techniques. We evaluate the capa-
bilities of the proposed methods to classify applications and to
distinguish benign applications from malicious ones in Section
VI. Finally, conclusions are drawn in Section VII.

II. RELATED WORK

During the past years, several approaches to detect and
analyze malware on mobile platforms have been introduced.
Basically, existing approaches can be classified into static
and dynamic analysis methods. Static analysis refers to the
inspection of an application’s source code or binary package
without running it, whereas dynamic analysis involves running
the application to capture additional information.

Dynamic analysis includes techniques such as Information
Flow Analysis, where private data is labeled and prevented
from leaving the device. TaintDroid [8] is an Android kernel
extension that follows this approach and allows for dynamic
taint tracking. Dynamic approaches, which apply machine-
learning techniques to distinguish benign applications from
malicious ones, include [9] by Shabtai et al. and [10] by
Burguera et al. Both references include extensive listings of re-
lated Android-based malware-detection systems. Most of these
approaches run candidate applications in a sandbox to derive
measurements, such as system-call intervals and networking
usage. Our technique presented in this paper follows a similar
approach. Similar to related work, we make use of side-channel
information to classify smartphone applications. However, in
contrast to other related work, we rely on power-consumption
measurements for this purpose.

A comprehensive overview of dynamic malware-analysis
techniques is also provided by Egele et al. in [11]. Many of
these methods are highly advanced in detecting and analyzing
malware. However, these methods usually require complex
external analysis frameworks and can hardly be deployed on
non-rooted end-user devices, due to their requirement to deeply
integrate into the smartphone’s operating system. Thus, these
methods are usually less useful for detecting malware on
typical end-user devices at runtime.

The technique presented in this paper addresses this
problem and facilitates dynamic malware detection directly
on non-rooted Android phones by analyzing the devices’
power consumption. A related approach to analyze the power-
consumption in order to detect malware has been followed
by Jacoby and Davis [12], who have proposed an intrusion

151

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

detection system that correlates various attack scenarios to
typical power consumptions. Additional work has been pub-
lished by Buennemeyer et al. [13] [14], who propose systems,
which use power profiles of phones to detect malware targeting
battery drainage. Our technique follows a similar approach but
extracts more detailed information from the collected power-
consumption measurements in order to classify applications
and to detect malware.

Employing the power consumption to reveal additional
information on an IT system is actually not a new idea.
For instance, approaches to extract secret information stored
on smart cards by means of measuring and analyzing their
power consumption have already been proposed in 1999 by
Kocher et al. [23]. Based on this work, various techniques to
reveal secret data and information from IT systems have been
proposed during the past few decades. Most of these techniques
however require an elaborate measurement equipment and the
application of complex analysis methods. This renders a real-
time application of these approaches on current mobile end-
user devices difficult. The techniques proposed in this paper
follow a slightly different approach and rely on methods that
basically allow for real-time application.

For the proposed techniques, the collection of accurate
power-consumption measurements on smartphones is a key
aspect and mandatory enabler of our technique. We discuss
details of this aspect in the next section.

III. MEASURING THE POWER CONSUMPTION OF
SMARTPHONES

Measurements of a smartphone’s power consumption build
the basis of the proposed classification and malware detec-
tion techniques. To collect the required power-consumption
measurements, we rely on the tool PowerTutor by Zhang et
al. [7]. Another tool that would allow for the acquirement
of this kind of information is Trepn [15]. In contrast to
PowerTutor, Trepn uses hardware sensors and thus promises
more exact measurements. However, Trepn is limited to the
Snapdragon mobile development platform [16] and can hence
not be applied on typical Android based end-user devices.
Heading for a solution that is applicable on real end-user
devices, PowerTutor has therefore been our tool of choice.

The tool PowerTutor is basically a smartphone application
that measures the power consumption of all applications run-
ning on the same smartphone. For each application, the power
consumption of six smartphone components is measured. In
particular, the power consumption of the components CPU,
Audio, Display, Wi-Fi, 3G and GPS is measured separately.
Figure 1 shows the mean per-component power consumption
of six different applications. All information shown in Figure
1 has been directly derived from measurements created by
the tool PowerTutor. The graphically prepared measurements
shown in Figure 1 clearly indicate that there are significant
differences between power-consumption measurements of dif-
ferent applications. Furthermore, Figure 1 shows that there are
also differences in the power consumption of different com-
ponents. Unsurprising, the smartphone display and the mobile
network (3G) are responsible for most of the measured power

consumption - at least for the six measured applications1.

Figure 1: Comparison of mean power usage per component
using six different applications

Figure 1 shows that power measurements provided by
the tool PowerTutor indeed contain valuable information that
might allow for a classification of running applications and
for an on-the-fly identification of malicious apps at runtime.
To improve efficiency and to appropriately cope with limited
processing power on mobile end-user devices, we have decided
to focus on measurements of one component only in a first
step. Analysis of power-consumption measurements of several
applications have shown that the smartphone CPU is actually
the best suited component for profiling running applications
by means of its power consumption. This is also illustrated by
Figure 2. This figure shows the stacked power consumptions
of the six measured components while running the app HTC
Music Player. This figure shows that the CPU is basically
the only component that shows a significant change in power
consumption over time. Similar results have also been obtained
for other applications, which justifies our decision to focus on
the power consumption of the CPU only. At this point, it has to
be noted that ignoring all other components of course reduces
the amount of available information. However, considering all
available power-consumption information from all components
significantly increases complexity and is hence considered as
future work.

Figure 3 shows the measured power consumption of the
CPU component caused by the smartphone game Angry Birds,
the Android Browser, the Idle process, and the security appli-
cation Lookout Mobile Security. These measurements show

1GPS is also know to consume significant amounts of power. However,
none of the six measured applications used GPS functionality during the
measurements.

152

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2: Power usage of HTC Music Player stacked per
component.

that there are obvious differences in the measured power con-
sumption of different applications running on the same device.
Obviously, the application Angry Birds and the Web browser
consume significantly more power than the Idle process or the
application Lookout Mobile Security. The first question that
arises from these observations is whether and to what extend
these differences in the power consumption can be used to
identify applications and suspicious behavior. We show in the
next section that this question can be positively answered and
that differences in measured power consumptions can in some
cases be directly used to identify applications with suspicious
behavior on smartphones at runtime.

IV. DETECTION OF SMS-CONTROLLED SPYWARE

SMS-controlled spyware has evolved to a serious threat
on the Android smartphone platform. This kind of malware
spies on private user data (e.g., position information, data
received and sent via SMS, etc.) and is able to receive hidden
control commands via SMS. These messages contain control
commands and are sent to the victim’s smartphone unnoticed
by the legitimate user. Apart from spyware, capturing and
processing SMS messages is also handled by malware (e.g.,
Eurograbber), which attacks two-factor authentication systems
that are usually employed by online-banking systems. Spy-
ware and malware related to SMS functionality are typically
implemented for the Android platform, due to the availability
of public APIs for accessing low-level SMS functionality.
This is in contrast to iOS and Windows Phone, where this
functionality is only handled by the operating system and
cannot be used via public APIs.

In general, spyware and malware, which access SMS-
related APIs can be assigned to two different categories
according to the implemented functionality.

• SMS Sniffers: SMS sniffers, which are mostly rele-
vant for spyware, only capture the information in the
received SMS messages, and process and optionally
forward this information.

• SMS Catchers: SMS catchers also suppress the SMS
forwarding mechanism of the operating system, which
would deliver the message to the default SMS client.
Therefore, the user will not receive a notification
on the newly arrived messages. This functionality is
often required by malware that attacks online banking
systems, because the received TAN must not be shown
to the user, who would otherwise be alarmed by
receiving a TAN without executing an actual transac-
tion. The problem of SMS catchers has recently been
addressed by Android 4.4., which requires definition
of a default SMS application that always receives
incoming messages without the possibility to suppress
the notification of the user. However, the market share
of Android 4.4. is still very limited and the principle
problem of reading SMS messages remains.

To assess the general potential of power consumption
based malware-detection approaches, we show how to identify
suspicious SMS processing activities by analyzing the power
consumption of an Android smartphone. For this purpose, we
have developed the following two smartphone applications for
the Android platform:

• Malware Simulator: This application simulates SMS-
controlled spyware and is able to intercept incoming
SMS messages as well as to silently forward copies
of received SMS messages to arbitrary recipients.
Furthermore, this application is able to determine the
smartphone’s current location either by reading out
the last known position from the Android system, or
by determining the current position using available
position sensors. The determined position information
can be forwarded to an attacker by SMS. This way, the
developed malware simulator implements all typical
features of SMS-controlled spyware, which receives
commands via SMS, spies on the user’s current lo-
cation, forwards determined location information, and
silently forwards copies of SMS messages to a remote
attacker.

• Malware Detector: This application detects anoma-
lies of local SMS processing activities by measuring
and analyzing power-consumption information pro-
vided by PowerTutor. Thus, the basic goal of this
application is to successfully identify the implemented
malware simulator as spyware.

To evaluate the general capabilities of power consumption
based malware detection approaches, we carried out the fol-
lowing steps: First, the malware detector has measured the
power consumption for three seconds each time an SMS mes-
sage has been received by and processed on the device. Second,
from the obtained measurements, an appropriate model has
been extracted. According to this model, all measured power
traces have been classified into four categories depending
on the SMS processing operation that has been taking place
during the measurements. Finally, the extracted model has been
integrated into the developed malware detector. With the help
of this model, the malware detector has then been used to
identify suspicious activities during SMS processing operations
in real time.

Following this approach, both the malware simulator and

153

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 50 100 150 200 240
0

200

400

600

Time [250ms]

E
ne

rg
y

co
ns

um
pt

io
n

[m
W

]
CPU consumption over one minute

CPU

(a) Angry Birds

0 50 100 150 200 240

200

400

600

Time [250ms]

CPU consumption over one minute

CPU

(b) Browsing

0 50 100 150 200 240
0

200

400

600

Time [250ms]

E
ne

rg
y

co
ns

um
pt

io
n

[m
W

]

CPU consumption over one minute

CPU

(c) Idle (i.e., no app active in foreground)

0 50 100 150 200 240

200

400

600

Time [250ms]

CPU consumption over one minute

CPU

(d) Lookout Mobile Security

Figure 3: One minute plots of CPU energy consumption

the malware detector have been deployed on a Samsung
Galaxy S2 smartphone running the Android 2.3 operating
system. The device’s power consumption has been measured
during execution of the following SMS processing steps carried
out by the malware simulator:

• Step A – Normal SMS receive: An incoming SMS
message is received and forwarded to Android’s de-
fault SMS application without any further action.

• Step B – Pos. Command 1: An incoming command
SMS message is intercepted and an SMS message is
returned that includes the last known location.

• Step C – Pos. Command 2: An incoming command
SMS message is intercepted and an SMS message
is returned that includes the currently determined

location.

• Step D – Forward SMS: An incoming SMS is
forwarded to Android’s default SMS application and
additionally forwarded to a given number.

The power consumption of each processing step has been
measured for ten times. Figure 4 shows the average power
consumption of the four different SMS processing steps.
Obviously, there are significant differences in the power con-
sumption depending on the executed processing step. If the
SMS is forwarded to Android’s default SMS application for
further processing (Step A and Step D), more energy is
consumed compared to processing steps, in which an incoming
SMS message is intercepted and another SMS message is
sent unnoticed by the user (Step B and Step C). Due to the

154

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

significant differences in the measured power consumptions,
an appropriate model for the detection of suspicious activities
can be extracted by simply considering the average value of
the power measurements. In the present case, an average power
consumption of 150 has been chosen to define the lower bound
of an SMS that is processed by Android’s SMS application.
If the average value is beneath this bound, it is likely that an
incoming SMS message has been intercepted and hidden from
the user.

The reliability of this rather simple model has been eval-
uated by sending 10 normal SMS messages that have simply
been forwarded to Android’s SMS application. Additionally,
we have sent ten SMS messages, that have been intercepted by
our malware simulator and discarded afterwards. By measuring
the power consumption during execution of the SMS process-
ing steps and by applying our simple model to the obtained
measurements, the implemented malware detector was able
to successfully distinguish between discarded messages and
messages forwarded to Android’s SMS application. This way,
we have shown that it is basically possible to detect in real time
whether an SMS message is received normally or whether it
is intercepted by a third party application. This validates the
postulated assumption that information contained in power-
consumption measurements can indeed be used to identify
malicious applications on smartphones and hence positively
answers the first research question of this work.

V. ENHANCED CLASSIFICATION TECHNIQUES

The successful realization of a malware detector that is
able to identify suspicious SMS processing activities at run-
time confirms the capabilities of application-classification and
malware-detection techniques based on power-consumption in-
formation. However, even though there are obvious differences
in the power consumption of these two applications (Figure 3),
an immediate identification and classification of applications
based on such measurements is often not possible. This is due
to the fact that the measured power consumption is not only
influenced by the application itself, but also by other effects,
such as varying user inputs, the processed data, different
screen orientations, the deployment of hardware acceleration
techniques, or 3G or WiFi signal reception. This is illustrated
in Figure 5, which shows two different measurements of one
and the same application. Although stemming from the same
application, the two measured power-consumption traces are
quite different.

Disturbing influences render the determination of a simple
and unique power-consumption signature for a given appli-
cation or smartphone state impossible. Unambiguous results,
such as the ones obtained for the implemented malware
detector for identification of SMS-controlled spyware, are
usually hard to achieve in practice. To overcome this problem,
we propose two analysis techniques that rely on approved
machine-learning approaches. The proposed techniques can
be used to classify smartphone applications according to their
power consumption, even if there are only minor differences
in collected power measurements due to disturbing influences.

During the past years, different machine-learning tech-
niques for the classification of data have been proposed.
For the given scenario, i.e., the classification of smartphone

applications based on their power consumption, two techniques
have been chosen and adapted to the given requirements. Both
techniques consist of a learning phase and a classification
phase. During the learning phase, well-known input data is
used to train a model. In the subsequent classification phase,
the trained model is used to classify unknown input data. The
two techniques are discussed in more detail in the following
subsections.

A. Power-Consumption Histograms

This technique is rather simple and counts how often a
specific application is on a certain power-consumption level.
In order to model this, we have computed power histograms
by dividing the interval between 0% power consumption and
100% power consumption into 15 disjoint and equal-sized
intervals. A histogram is then created by simply assigning
each data point to exactly one interval and counting the data
points in each interval. In order to cope with differences
in the absolute power consumption, the values have been
normalized appropriately. During the learning phase, the av-
erage histograms have been created by measuring the power
consumption of well-know applications. Figure 6 shows some
examples of average histograms for different applications that
have been obtained during the training phase.

In the classification phase, the histograms of applications to
be classified are compared with the trained average histograms
by applying distance-measures such as cosine similarity. To
assess the capabilities of this approach, this technique has been
evaluated in a real-world scenario. Results of this evaluation
process are presented and discussed in Section VI.

B. MFC Coefficients and Gaussian Mixture Models

This technique makes use of Mel Frequency Cepstral
Coefficients (MFCC) to classify smartphone applications based
on their power consumption. This technique has originally
been introduced for speaker-recognition systems [17][18] and
is also frequently used for music similarity finders [19][20].
In such systems, MFC coefficients and their distribution are
extracted from recorded voice or music using complex trans-
formations as implemented by the melcepst function [21].
The distributions of the extracted MFCC are then used to
create a Gaussian Mixture Model (GMM) for each MFCC. The
resulting GMM define a unique representation of the recorded
voice or music. Later recordings of voice or music can be
compared to existing representations in order to implement
voice-recognition and music-similarity finders.

Our intention behind using a speaker recognition approach
was to map the problem of matching voice recordings to a
person to the problem of matching power measurements to
an application. Spoken voice recordings vary in pitch and
frequency and are very unlikely to be equal between two
recordings. This, naively speaking, resembles the problem we
face with power-consumption measurements.

Our implementations bases on an existing speaker-
recognition implementation by Anil Alexander [22]. This
implementation relies on GMM and MFCC and can be cus-
tomized with a number of parameters including the number
of Gaussians and the number of MFCC to use. Experiments
have shown that for our purposes best results can be achieved

155

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

300 600 900 1200 1500 1800 2100 2400 2700 3000
0

50

100

150

200

250

300

350

400

Time [ms]

C
PU

 P
ow

er

normal SMS receive pos. command1 pos. command2 forward SMS

Figure 4: Average CPU power profile after receiving an SMS

0 50 100 150 200 240
0

200

400

600

Time [250ms]

Po
w

er
co

ns
um

pt
io

n
[m

W
]

CPU

(a) Angry Birds - Run 1

0 50 100 150 200 240
0

200

400

600

Time [250ms]

Po
w

er
co

ns
um

pt
io

n
[m

W
]

CPU

(b) Angry Birds - Run 2

Figure 5: One minute plots of CPU energy consumption

with three Gaussians and twelve MFCC. Hence, during the
learning phase the distributions of twelve MFCC are computed
from power-consumption measurements for each class of ap-
plication. The computed distributions of the twelve MFCC are
then approximated using a GMM with three Gaussians. The
resulting GMM finally represents the result of the learning
phase. Figure 7 illustrates the distribution of twelve different
MFCC and the resulting GMM.

During the classification phase, MFCC are derived from
power-consumption measurements of the application to be
classified. For each derived MFCC, the best matching GMM
is selected out of all GMM that have been obtained during the
learning phase. By combining the classification results of all
twelve MFCC, the best matching application class is finally
determined.

VI. EVALUATION

We have evaluated the reliability and efficiency of the
proposed feature extraction techniques by testing prototype
implementations of the two techniques in a real-world scenario.
Required power-consumption measurements have been ac-
quired using the tool PowerTutor. For convenience reasons, the
classification itself has been performed off the mobile device,
as the learning phase (especially for the speaker recognition
based approach) is rather slow. This subsection describes the
model that has been used to classify applications, discusses
details of the dataset creation, and presents results that have
been obtained by applying the two classification techniques
introduced in Section V.

156

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 20 40 60 80 100

0

50

100

150

200

Power consumption in percent

A
m

ou
nt

of
sa

m
pl

es

(a) Angry Birds

0 20 40 60 80 100

0

50

100

150

200

Power consumption in percent

A
m

ou
nt

of
sa

m
pl

es

(b) Browsing

0 20 40 60 80 100

0

50

100

150

200

Power consumption in percent

A
m

ou
nt

of
sa

m
pl

es

(c) Idle

0 20 40 60 80 100

0

50

100

150

200

Power consumption in percent

A
m

ou
nt

of
sa

m
pl

es

(d) Lookout Mobile Security

0 20 40 60 80 100

0

50

100

150

200

Power consumption in percent

A
m

ou
nt

of
sa

m
pl

es

(e) Music

0 20 40 60 80 100

0

50

100

Power consumption in percent

A
m

ou
nt

of
sa

m
pl

es

(f) YouTube

Figure 6: Average histograms of different applications

A. Classification Model

Applications with the same or almost the same purpose are
expected to cause similar power consumptions. Therefore, we
have roughly grouped applications into distinct sets according
to their purpose. The resulting list of groups is no comprehen-
sive classification scheme of all available applications. It is
merely a logical grouping of the power-consumption measure-
ments we gathered in this experiment and does raise no claim
to completeness. Based on the gathered measurements, the
following six groups of applications have been defined: Games,
Internet, Idle, Malware, Music, and Multimedia. Note that
malware and security software have been assigned to the same
group. Both malware and security software usually remain idle
in the background until being activated by a certain event (e.g.,
reception of a command message via SMS). This comparable
behavior leads to a comparable power consumption too and
justifies a common classification of these both types of applica-
tion. Of course, also other malware with different behavior and
hence a different power-consumption profile exists. However,
for a first proof of concept only malware with the above-
described behavior has been considered. Consideration of other
types of malware is regarded as future work.

B. Dataset Creation

PowerTutor provides specific measurements for each run-
ning application. However, in practice these application spe-
cific measurements have turned out to be not as reliable
and accurate as desired. Therefore, we have refrained from
using application specific measurements and have relied on

system-wide power-consumption measurements provided by
PowerTutor instead.

We have further limited subsequent analysis steps to
the measured power consumption of the smartphone’s CPU.
Although PowerTutor also provides measurements for other
smartphone components such as the display or the GPS re-
ceiver, measurements of these components have been omitted
in order to reduce computation costs when learning and due
to the fact that these components often lack activity.

To evaluate the proposed classification techniques, we
finally created 96 system-wide power-consumption measure-
ments (CPU) using a customized instance of PowerTutor. To
facilitate a subsequent analysis, we have adapted PowerTutor
such that beside the measurement values themselves also the
device model, the capture date, and the sample rate have been
stored. The 96 captured measurements (sixteen measurements
per application group) have been limited to the length of about
one minute, with a total of 247 data points per measurement.
We have cut off the trace length after about one minute, as this
is a realistic time-frame for real-world scenarios. Analysis of
longer measurements is considered as future work. Similarly,
increasing the number of analyzed applications is also con-
sidered as future work. For a first proof of concept, the used
number of applications and the chosen time interval is however
sufficient. In total, six devices have been used to collect
the measurements (three Samsung Galaxy S2 smartphones
and three HTC Desire devices). To reduce noise, only the
application to be measured and PowerTutor have been active
during the measurements.

157

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7: Gaussian Mixture Models of twelve MFCC derived from power-consumption measurements

C. Results

The 96 captured measurements have been used to evaluate
the efficiency and reliability of the proposed classification
techniques. As quality indicators, the positive predictive value
(PPV, also referred to as precision), the true positive rate (TPR,
also referred to as recall or sensitivity), the true negative rate
(TNR, also referred to as specifity), the accuracy, and the area
under the receiver operating characteristic (AUC) have been
used. According to its definition, PPV refers to the correct
positive classification in relation to all positive classifications.
Accordingly, TPR refers to true positives given all real pos-
itives. TNR denotes true negatives (TN) given all negatives.
Accuracy is the relation between correctly classified samples
given all samples. The receiver operating characteristic is a
graphical representation of the trade-off between TPR and FPR
(1-TNR). AUC (also sometimes denoted as AUROC) refers to
the area below this resulting curve.

In order to appropriately divide the available measurements
in training and test data, we have folded the available dataset
using 10-fold cross validation. To enhance the robustness of the
obtained results, average values over 100 runs are presented.

TABLE I: HISTOGRAM BASED APPROACH: CONFUSION MA-
TRIX FOR CATEGORIES GAMES (G), INTERNET (IN), IDLE
(ID), MALWARE (MW), MUSIC (MU), AND MULTIMEDIA
(MM)

G IN ID MW MU MM

G 13.98 1 0 1.02 0 0
IN 1 13.14 0 0 0 1.86
ID 0 0 12 4 0 0

MW 0 0 3.97 10.07 1.96 0
MU 0 0 0 2 9.24 4.76
MM 0.27 0.75 0 0 0 14.98

For our performance evaluation, a confusion matrix for the six
predefined application categories has been created, which can
be interpreted in the following way: Values in the diagonal of
the matrix have been classified correctly (true positives), values
within a row not in the diagonal represent false negatives and
values within a column not in the diagonal represent false
positives. Other values are considered true negatives.

Obtained results of the histogram based approach are

158

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II: CLASSIFICATION RESULTS (HISTOGRAM BASED
APPROACH)

Category PPV TPR TNR Accuracy AUC

Games 0.87 0.92 0.98 0.97 0.95
Internet 0.82 0.88 0.98 0.95 0.93
Idle 0.75 0.75 0.95 0.92 0.85
Malware 0.63 0.59 0.91 0.87 0.75
Music 0.58 0.83 0.98 0.91 0.90
Multimedia 0.94 0.69 0.92 0.92 0.80

TABLE III: MFCC AND GMM BASED APPROACH: CON-
FUSION MATRIX FOR CATEGORIES GAMES (G), INTERNET
(IN), IDLE (ID), MALWARE (MW), MUSIC (MU), AND
MULTIMEDIA (MM)

G IN ID MW MU MM

G 10.40 3.46 0.01 0 0.55 1.58
IN 2.07 12.67 0 0 0.26 1
ID 0.39 0 11.65 3.6 0.18 0.18

MW 0.07 0.01 2.56 13.15 0 0.21
MU 0.22 0.81 0 0.97 9.39 4.61
MM 0.96 2.97 0.01 0.03 1.20 10.83

shown in Table I and Table II. In case of the MFCC based
approach, best results have been achieved with 3 Gaussians
and twelve MFCC. The performance evaluation results of the
MFCC based approach are outlined in Table III and Table IV.

D. Discussion

From these results, various findings can be derived. Mobile
security applications and malware running in the background
can generally be distinguished from application being active at
the moment (with the exception of system services). Games,
Internet, music and multimedia applications are distinguishable
as well. Music and multimedia applications are more difficult
to distinguish correctly, due to their similar power-consumption
profile. However, given their related purposes this is plausible.
Streaming a YouTube video with sound is not too different
from listening to music while reading related information
displayed by the music player.

The obtained results have also revealed that the MFCC
based approach works better for the distinction between the
categories Idle and Malware. Therefore, this approach seems to
be more suitable for malware-detection purposes. On the other
hand, the histogram approach constitutes a fast classification
method, suitable for mobile devices with limited computational
power.

It has to be noted that the obtained results basically repre-
sent a first proof of concept only. The number of measured
applications and also the time period, in which the power
consumption of applications has been measured, has been
intentionally kept rather low for the sake of simplicity and
both, an analysis regarding a larger dataset and an analysis
regarding a larger number of applications is left open for future
work.

Although the number of applications and also the length
of measurements has been fixed to a relatively small value,
obtained results are still useful due to using 10-fold cross
validation, and, thus, answer the second research question of

TABLE IV: CLASSIFICATION RESULTS (GMM BASED AP-
PROACH)

Category PPV TPR TNR Accuracy AUC

Games 0.65 0.74 0.95 0.90 0.85
Internet 0.79 0.64 0.91 0.89 0.78
Idle 0.73 0.82 0.97 0.93 0.90
Malware 0.82 0.75 0.94 0.92 0.85
Music 0.59 0.82 0.97 0.91 0.90
Multimedia 0.68 0.59 0.91 0.87 0.75

this work. Concretely, obtained results show that machine-
learning techniques are suitable to analyze power-consumption
measurements of smartphone applications for classification and
malware-detection purposes.

VII. CONCLUSION

Smartphones and related mobile end-user devices are fre-
quently used to store and process security and privacy-critical
data. Malware on smartphones is a growing threat for these
data and hence a major challenge for future mobile computing
solutions. To overcome this challenge, new and innovative
methods to detect malware on smartphones and related mobile
end-user devices are needed. In this paper, we have tested
the hypothesis that the power consumption of smartphones
correlates with the kind of applications being executed on the
smartphone and that this correlation allows for a classification
of applications and a detection of malicious software. To
test this hypothesis, we have proposed a simple threshold-
based method and two machine-learning techniques that can
be used to classify unknown applications according to their
power consumption. We have further assessed the validity of
the general hypothesis and the capabilities of the proposed
machine-learning techniques by means of a concrete proto-
type implementation and a succeeding evaluation in a real-
world scenario. The conducted assessment has corroborated
the constructed hypothesis and has shown the capabilities
of the proposed techniques to correctly classify smartphone
applications according to their power consumptions.

Although first results are promising, this work mainly
represents a proof of concept and a solid basis for future
work. In a next step, we plan to port the entire classification
onto a smartphone in order to render external classification
frameworks unnecessary. Power measurements can already
be collected directly on the smartphone using tools such as
PowerTutor. The development of a purely smartphone based
application classification and malware detection solution that
relies on the techniques presented in this paper is hence mainly
a matter of computing resources available on smartphones.
Since information on the smartphone’s power consumption
is publicly available on Android smartphones, our solution
does not require root access to the operating system and is
hence applicable on virtually all end-user devices. We are also
planning to refine the proposed techniques and to enhance
the current prototype in order to achieve even more accurate
results and to be able to classify multiple applications running
simultaneously on a smartphone.

REFERENCES

[1] T. Zefferer, P. Teufl, D. Derler, K. Potzmader, A. Oprisnik, H. Gasparitz
and A. Hoeller, “Power consumption-based application classification

159

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and malware detection on Android using machine-learning techniques,”
Future Computing, 2013. Proceedings from the fifth international confer-
ence on future computational technologies and applications, pp. 26–31,
May-June 2013.

[2] Go-Gulf, “Smartphone Users Around the World - Statistics and Facts,”
http://www.go-gulf.com/blog/smartphone/, 2013.

[3] Apple, “Apple iOS 6,” http://www.apple.com/ios/, 2013.
[4] Google, “Android,” http://www.android.com/, 2013.
[5] Lookout Mobile Security, “2011 Mobile Threat Report,”

https://www.mylookout.com/mobile-threat-report, 2011.
[6] InformationWeekSecurity, “Zeus Botnet Eurograbber Steals $47

Million,” http://www.informationweek.com/security/attacks/zeus-botnet-
eurograbber-steals-47-millio/240143837, 2012.

[7] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang, “Accurate online power estimation and automatic battery behav-
ior based power model generation for smartphones,” in Proceedings of the
eighth IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, ser. CODES/ISSS ’10. New York, NY,
USA: ACM, 2010, pp. 105–114.

[8] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
1–6.

[9] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “”Andro-
maly”: a behavioral malware detection framework for android devices,”
J. Intell. Inf. Syst., vol. 38, no. 1, pp. 161–190, Feb. 2012.

[10] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-
based malware detection system for Android,” in Proceedings of the
1st ACM workshop on Security and privacy in smartphones and mobile
devices, ser. SPSM ’11. New York, NY, USA: ACM, 2011, pp. 15–26.

[11] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” ACM Comput. Surv.,
vol. 44, no. 2, pp. 6:1–6:42, Mar. 2008.

[12] G. A. Jacoby, R. Marchany, and N. J. Davis, “Battery-based Intrusion
Detection: A First Line of Defense,” Information Assurance Workshop,
2004. Proceedings from the Fifth Annual IEEE SMC, pp. 272–279, Jun.
2005.

[13] T. K. Buennemeyer, T. M. Nelson, L. M. Clagett, J. P. Dunning,
R. C. Marchany, and J. G. Tront, “Mobile device profiling and intrusion
detection using smart batteries,” in Proceedings of the Proceedings of
the 41st Annual Hawaii International Conference on System Sciences,
2008, p. 296.

[14] H. Kim, J. Smith, and K. G. Shin, “Detecting energy-greedy anomalies
and mobile malware variants,” in Proceedings of the 6th international
conference on Mobile systems, applications, and services, ser. MobiSys
’08. New York, NY, USA: ACM, 2008, pp. 239–252.

[15] Ben-Zur, Liat, “Developer Tool Spotlight - Using Trepn Profiler for
Power-Efficient Apps,” https://developer.qualcomm.com/blog/developer-
tool-spotlight-using-trepn-profiler-power-efficient-apps, October 2011.

[16] Bsquare, “Snapdragon Based Products and Services,”
http://www.bsquare.com/products/snapdragon-based-products-and-
services, 2013.

[17] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker Verification
Using Adapted Gaussian Mixture Models,” Digital Signal Processing,
vol. 10, no. 1-3, pp. 19–41, 2000.

[18] Kumar, G Suvarna and Raju, K.A. Prasad and Rao, Mohan and
Satheesh, P, “Speaker Recognition using GMM,” International Journal
of Engineering Science, vol. 2, no. 6, pp. 2428–2436, 2010.

[19] B. Logan and A. Salomon, “A music similarity function based on signal
analysis,” in ICME, 2001.

[20] K. C. West and P. Lamere, “A model-based approach to constructing
music similarity functions,” EURASIP J. Adv. Sig. Proc., vol. 2007, 2007.

[21] M. Brookes, “VOICEBOX: Speech Processing Toolbox for MATLAB,”
Web page, 2005.

[22] A. Alexander, “Automatic Speaker Recognition: A Simple Demonstra-
tion using Matlab,” http://www.anilalexander.org/publications/, 2004.

[23] P. Kocher and J. Jaffe and B. Jun, “Differential power analysis,”
Advances in Cryptology - CRYPTO, pp. 388–397, 1999.

160

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VizMIR: A Cross-media Music Retrieval System Supporting Bidirectional
Transformation between Mood-based Color Changes and Tonal Changes in Music

Shuichi Kurabayashi and Yoshiyuki Kato
Faculty of Environment and Information Studies, Keio University

5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
{kurabaya, t10247yk }@sfc.keio.ac.jp

Abstract—VizMIR is a music retrieval system that provides an
intuitive user interface to search for music based on the
sentiment that it evokes. The unique feature of this system is a
cross-media retrieval mechanism that accepts a sequence of
images to describe user requirements for mood transitions
within a musical composition. VizMIR has a hybrid metric
space for converting color change in images to continuous
tonal changes in music, and vice versa. When a user enters a
sequence of images as a query specifying the desired changes of
mood in music, VizMIR measures the color distance in the
image sequence, converts the calculated distance into the
distance of the movement of musical tonality, and finds music
that has the same or similar tonality movement. To support
this bidirectional conversion of distance, we design two metric
spaces as topologically equivalent structures, and provide a
bridge function that maps a distance measured in the color
metric space into one in the tonality metric space. This system
enables users to search music by subtly manipulating queries
through trial and error, and this is easy to use because images
are suited to interactive manipulation. This method is useful in
searching for music unknown to the user that evinces a mood
satisfying the user’s preferences.

Keywords – Cross-Media Retrieval, Emotion-Aware Search,
User Interface.

I. INTRODUCTION
In this paper, we describe the VizMIR system [1] and its

implementation framework using modern web technologies.
Our system provides an intuitive user interface to formulate
mood-based queries to find music suited to the user’s
disposition at the time. This system provides a “bridge”
between music and images to enable users to search for their
preferred songs by using a sequence of images representing
the mood expressed by the desired music. Such cross-media
retrieval methods are considered very important for
designing user-centered music retrieval systems [2].

With the rapid progress of computing technologies, ever
more songs are being digitized and stored in online libraries
and on personal devices. Due to their proliferation, portable
and personal devices, such as tablet computers and
smartphones, are commonly used to listen to music. Such
proliferation and diversity of digital media increases the
demand for an effective music retrieval system [3]. However,
it is difficult to find music satisfying our preferences at any
given time because the sentiment expressed by a piece of

music varies with its progression. Musical data consists of
non-verbal elements that proceed along the timeline of the
musical composition. The context and temporal transitions of
music deeply effect listeners’ emotions. In order to find a
musical composition the progression of which corresponds to
changes in mood desired by the user, the user typically needs
to listen to several parts of a piece of music in repositories,
such as online music stores and personal music players.
Owing to the temporal nature of music, it is difficult to
develop an effective music search environment where users
can retrieve specific music samples by using intuitive queries.
This is because an effective search through a temporal
structure requires that the system recognize the changing
features of the content in a context-dependent manner.

To retrieve music intuitively, the concept of the
“impression” that a musical composition makes on the
listener is of great importance. This is because studies have
shown that many users consider their feelings and moods to
be among the most significant factors motivating them to
listen to music. However, in spite of the fact that young users
tend to select music according to their disposition, they are
frustrated in their attempts to find and retrieve their desired
music in a given mood. This is on account of the absence of
technology that allows users to enter visual queries to specify
the mood of the desired music and the impression that the
user wishes for it to create. In particular, in order to find
recently released music, or music that may be unknown to
the user that is nonetheless appropriate for his/her mood at a
given time, a method to effectively communicate the user’s
desire for music according to a particular disposition is
required [3]. Users need a toolkit that assists them to form
their own queries using trial and error. Thus, an intuitive user
interface (UI) to effectively communicate the demands of
users for music is desirable.

With this objective in mind, we propose an impression-
aware music retrieval method that offers a cross-media query
model using image files as a medium to describe user
demands for mood-based music. It is important to develop a
stream-oriented query construction method for music
because the content of music as well as the impression it
creates on the listener change with time. Our query model
interprets the effects of temporal changes in media features,
such as tonality in music and color in images. This paper
presents a prototype system that carries out web-based music

161

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

retrieval by considering changes in the mood evinced by the
musical composition at hand.

Our design principle for this system is to make it possible
for a user to search musical content invisible to him/her by
using visible image content. In recent research on
synesthesia in psychology, it has become clear that a
significant correlation exists between color sense and
musical elements [4]. Thus, we think that it is reasonable and
beneficial to represent the impression created by musical
compositions as sequences of colors in order to design and
implement an intuitive user interface for music database
systems. This concept is well suited to web-based music
retrieval because the web is a visual medium. Thus, a crucial
aspect of this system is a cross-media query interpretation
method that recognizes how media changes with time by
using two metric spaces to calculate the distance between the
current and the previous states of the media content in
question. For music, we implement a tonality-based metric
space. In this tonality space, a song can be modeled as a
trajectory in three dimensions. Our system extracts the
temporal transition of tonality in a song to analyze emotive
transitions occurring with time because tonality is one of the
most important factors in determining the overall mood of a
musical composition [5][6]. Corresponding to the tonality
metric space, we have developed a metric space to compute
color distance using the hue, saturation, and value (HSV) [7]
color space. HSV is a widely adopted space in image and
video retrieval because it describes perceptual and scalable
color relationships.

The system transforms invisible changes in the
impressions created by music into visible changes in color,
and vice versa. Our approach converts a “delta value,” which
represents distance in each space, between two spaces rather
than a feature value itself because the system focuses on how
changes of mood in music effect human perception. The
most important feature of the two metric spaces is their
configuration as topologically equivalent structures (Figure
1). Each axis in the music space has a corresponding axis in
the color space. Specifically, tonality is associated with hue,
pitch with value, and major/minor with saturation. Thus, a
specific distance in music space can be converted into the
same distance in color space.

We implement a prototype of our system using HTML5
technologies. The implemented prototype assumes
application to online music stores as a front-end user
interface. The advantage of this system is an intuitive method
for users to edit a query using trial and error depending on
their evaluation of the results. The method makes it possible
for users to describe changes in impressions created by

music, which are difficult to represent directly, as a sequence
of images through a visually enhanced user interface,
wherein the order of the images represents a change of
impression. Thus, our system provides a fundamental
framework for implementing the UI of an online music
database system.

The remainder of this paper is structured as follows.
Section II presents the motivating example of our query
processing. Section III briefly summarizes related work in
the area. Section IV describes the fundamental concept and
the system architecture, whereas we detail our prototype
system implementation in Section V. Section VI discusses
our feasibility studies, and we offer concluding thoughts in
Section VII.

II. MOTIVATING EXAMPLES
In this section, we present two examples motivating our

stream-oriented cross-media music retrieval. The first
example situation assumes that a user has a lot of music in
his/her portable music player and wants to listen to music
suited to his/her mood, but does not have an idea of the title
and the artist of the type of music in question. In this case,
the VizMIR system enables the user to retrieve the desired
music by describing moods represented by it using a
sequence of images in a trial-and-error method. The user
chooses several images from his/her collection of pictures in
portable device, and the system find music that creates
impressions similar to those created by the selected image
sequence.

The second example situation assumes that the user is an
illustrator, and wants to make a slideshow of his/her own
pieces of illustration in order to seek background music for it.
The user has candidates for the slideshow but has no clear
idea about the exact composition of the slideshow or the
musical piece to serve as background for it. In this case, the
user can retrieve music related to changes in the slideshow
by revising the order of the candidates, not only for the
slideshow but also for forming a query.

III. RELATED WORKS
Conventional music database systems available on

Internet use metadata, such as genre and artist name, as
indexing keys. As such, fundamental metadata are not
sufficient to retrieve music without detailed knowledge of
the target data. The music information retrieval (MIR)
system is a well-known means of helping users find music
by using several intuitive queries [1][8]. However, such
approaches cannot be applied to find music that is unknown
to the user. Thus, there is a need for a retrieval mechanism
for music that users have not heard before [9].

In content-based MIR methods, the system analyzes and
extracts several significant features from a musical
composition in order to identify equivalent or highly similar
music samples in a database. There are several choices of
input, such as the user profile-based approach [10], the
chord-based approach [11], and the query-by-humming
[12][13][14]. Content-based methods are advantageous with
regard to ease of input and the ability to generate a large
amount of information reflecting the musical content. As

Figure 1. An overview of cross-media retrieval using the delta equation
on each media data.

162

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

content-based technologies are very effective in retrieving
musical equivalents to queries, they are widely used for
copyright protection in online music sharing services.

Music visualization systems partially help users find new
and unknown music. There are several music visualization
systems that utilize the cross-media relationship between
color and tonality proposed in [15][16][17][18][19]. An
impression-based music visualization method that utilizes
the result of a synesthesia study [4] was proposed in [20].
This uses a color sense of tonality to view the harmonic
structure of and relationships between important regions in a
musical composition. Pampalk et al. [21] proposed an
interface for discovering artists by using a ring-like
structured visual UI, and Knees et al. [22] developed a
method of visually summarizing the contents of music
repositories. Stober et al. [23] proposed an interface that can
conduct music searches based on ambiguous demands.
Research in [24] presents “GlobalMusic2One,” a portal site
for visualizing songs using a two-dimensional similarity map
for explorative browsing and target-oriented finding. Cross-
modal media analysis and retrieval methods are proposed in
[25][26]. These systems implement user-centered music
retrieval by considering user preferences.

It is difficult to create a metric space that can measure
temporal changes in heterogeneous media data. In order to
design and implement a cross-media retrieval system that
considers changes of moods in images and music, it is
necessary to develop a new method that transmits feature
value bidirectionally between images and music, instead of a
knowledge base of music and colors referring to synesthesia.

The most significant difference between conventional
approaches and ours is that our system focuses on the
development of a method for mood-based cross-media
retrieval. Conventional cross-media retrieval methods do not
have the capability to detect an impression and a mood in
temporal music stream. Our system analyses emotional
transitions by capturing the progression of tonality as a

function of “how the music sounds.” Further, our system
allows users to describe their music demands by using an
image sequence. Our system is unique in supporting such a
cross-media query interpreting mechanism for continuous
multimedia data.

IV. SYSTEM ARCHITECTURE
Figure 2 shows the fundamental system architecture of

VizMIR. The core components of VizMIR constitute four
data structures and three functions. The system models the
concept of “change in sentiment” by measuring the distance
between successive temporal transitions in the media data.
Our method succeeds in cross-media retrieval by comparing
the results of continual sentiment analysis of music and
images. This system provides two delta functions to analyze
temporal changes in the media data and to generate
sequential values representing changes of mood in them. The
system calculates the sentiment-oriented relevance score of
music and images by comparing the calculated delta values.

We show an example query in Figure 3. This query
represents changes in impression as follows: the brightness
(value in the HSV color model) gradually increases and then
decreases; the hue (type of color) gradually changes from
blue to red; and the saturation (vividness of colors)
drastically increases in the middle of the query. The system
translates these features of the query into musical features as
follows: the pitch gradually increases and then decreases, the
tonality gradually changes, and the major/minor changes
drastically. The system retrieves music by calculating the
relevance score of the query translated into music.

A. Architectural Overview
As shown in Figure 2, the system consists of three main

components: 1) a query editor, 2) a feature conversion
module, and 3) a retrieval engine.

The query editor is the front-end module of the system.
This module provides a set of operations to prepare and

Figure 2. VizMIR system architecture that realizes a visual query construction for retrieving music by converting color changes into tonal changes.

User

Music
Database

・ Value and Pitch

Converted Query

User inputs several pictures representing
the desired “story” in music.

Image Feature Extraction

Query Editing Feature Conversion Music Retrieval

Timeline

Database consists
of matching
musical score data
for analyzing and
musical wave data
for playing music

Momentum Calculation

Music 1

q1 q
2

q3 q4

Music 2

Δq1 Δq2 Δq3

・
・
・
・

Timeline

Music n

・・・・

・・・・

・・・・

Δs1 Δs2 Δs3Measuring
correlation
between music
transition and
query transition

s1 s2 s3 s4

Feature
transition of
music section

Feature
transition of
image query

Inputted Query

・ Hue and Tonality

・ Saturation and Major/Minor

Musical ScoreGray Scale

Δθ

Circle of fifth

Δθ

Hue Circle

Saturation Scale
Minor

Major

Frequency of
Major/Minor

Sentiment Context Recognition ♩

♩

・・・・

・・・・

・・・・ ・・・・

Extracted
feature data
of music

Extracted
feature data
of image file

163

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

modify image files as a query. For example, the system
implements an image-editing operator equipped with several
color filters to change the overall impression of the image.

The feature conversion module provides fundamental
data conversion functions applied to musical instrument
digital interface (MIDI) data and bitmap image data. The
feature conversion module generates metadata vectors from
the image and MIDI files.

The retrieval engine calculates how the media data
change with time by applying distance functions to the
generated metadata. The system provides a bridging
mechanism between the musical tonality metric space and
the HSV color metric space. The bridge converts a distance
calculated in the music space into a distance in the image
space in order to retain the impression factor from one
medium to the other. For example, in the distance conversion
mechanism, hue, which is a type of color, corresponds to
tonality, which is a type of musical structure. By converting
distances between heterogeneous metric spaces, the system
realizes cross-media retrieval for stream media such as music.
Finally, the retrieval engine compares the set of distance
values to calculate the relevance of the music to the image
query. In the following sections, we describe in detail the
fundamental data structures and functions involved.

B. Image Sequence as a Query
VizMIR accepts an image sequence as a query that

represents how the media data changes in mood with time.
An image sequence object Q is defined as follows:

𝑄𝑄 ≔ 〈〈ℎ1, 𝑠𝑠1, 𝑣𝑣1〉… 〈ℎ𝑖𝑖 , 𝑠𝑠𝑖𝑖 , 𝑣𝑣𝑖𝑖〉〉 (1)

where hi is the hue data, si is the saturation data, and vi is
brightness data in the i-th image of the query. The system
converts RGB color values of each image into HSV triples at
the pixel level. We adopt the following well-known RGB-to-
HSV conversion equation.

V = max(R, G, B) (2)

S = 255 ×
max(R, G, B) − min(R, G, B)

max(R, G, B) (3)

H =

⎩
⎪⎪
⎨

⎪⎪
⎧ 60

𝐵𝐵 − 𝐺𝐺
max(R, G, B) − min(R, G, B)

𝑅𝑅 == max(R, G, B)

60 �2 +
𝑅𝑅 − 𝐵𝐵

max(R, G, B) − min(R, G, B)
� 𝐺𝐺 == max(R, G, B)

60 �4 +
𝐺𝐺 − 𝑅𝑅

max(R, G, B) − min(R, G, B)
� 𝐵𝐵 == max(R, G, B)

 (4)

We define the metric space of images as the HSV color

metric space with three axes: hue, saturation, and value.
These three elements are significant factors affecting the
impression of the image. Hue represents the differences of
color phases, such as red, yellow, green, and blue. In the
HSV cone of images, the hue is represented by an angle. The
system converts the extracted hue angle in the HSV cone of
images into a hue scalar h, which is a value between 0 and 1.
Saturation is the vividness of color. In our system, saturation
is an average value of the vividness in an image. The system

processes this vividness value of an image into a saturation
scalar s, which is a value between 0 and 1. Here, 0 and 1
represent the lowest and the highest value, respectively.
Value is the brightness of color. Our system calculates the
value (brightness) as an average value of color brightness in
an image, processes the brightness value of an image into a
brightness scalar v, which is also between 0 and 1.

C. MIDI Song Data
Our system uses standardized MIDI data format as the

primary data format for storing music. MIDI stores note-on
signals and corresponding note-off signals sequentially
because it was developed in order to automate keyboard
instruments. The system represents a MIDI file F:={n1(t, p,
d), n2, …, nk}, where ni represents the i-th note whose
attributes are 1) t: the start time of the note, 2) p: the pitch of
the note, and 3) d: the duration of the note. F is a sequential
set of k-tuple data.

Our system provides a matrix structure that represents the
continuous variation in and distribution of pitch in the target
music data. We call the data structure a music pitch matrix.
The pitch matrix is a 128 × n matrix, which is given as the
data matrix. MIDI specifications define the domain of pitch
value between 0 and 127. A musical composition is
expressed as a set of m timelines. Each timeline is
characterized by a note on information for 0 to 127 pitch
level. When the 12th note is on the m-th section, c[12,m] is 1.
The pitch matrix P is defined as follows:

P ≔ �
𝑐𝑐[0,0] ⋯ 𝑐𝑐[0,𝑛𝑛]
⋮ ⋱ ⋮

𝑐𝑐[𝑚𝑚,0] ⋯ 𝑐𝑐[𝑚𝑚,𝑛𝑛]

� (5)

Figure 3. An example impression query consisting of four images

Figure 4. A visualization of tonality change in one music item. The
tonality changes with time.

164

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where c[i,j] denotes the j-th pitch status at the i-th time

duration. We have implemented the MIDI analysis modules
for converting MIDI into a musical score-like data structures
by using our MediaMatrix system [27], a stream-oriented
database management system.

D. Music Data
When VizMIR receives a query consisting of several

images, the system divides every song in its database into
sections, such that the number of sections is equal to the
number of images entered as image query. A music object M
is defined as follows:

𝑀𝑀 ≔ 〈〈𝑡𝑡1,𝑑𝑑1, 𝑝𝑝1〉… 〈𝑡𝑡𝑖𝑖,𝑑𝑑𝑖𝑖 , 𝑝𝑝𝑖𝑖〉〉 (6)

where ti is the tonality data, di is the deviation data, and pi is
the pitch data, in the i-th section of the music. We define the
metric space of the music using three axes: tonality, pitch,
and major/minor. These three elements are significant factors
effecting the impression of music.

Tonality is the structure of music and is composed of
sequential musical notes. There are 24 tones consisting of 12
major and 12 minor tones. As shown in Figure 3, tonality in
music changes with time and this causes changes in the
impression of the music. Figure 3 shows movements of 24
types of tonality in a song using our tonality analysis
function implemented in [27]. In musical theory, a circle of
fifths defines the difference or similarity between each pair
of the 24 tonalities [5][6]. Each tonality can be represented
by an angular value on the circle of fifths. The system
processes this angular value into a tonality scalar t, which is
a value between 0 and 1. Thus, the system converts the
distance measured as the angle of the hue of the image into a
scalar quantity representing the angle of the tonality.

Major/minor refers to the deviation of tonality within a
music section. The system calculates the deviation of tonality
in a music section, and converts the deviation value into a
major/minor scalar d. This has a value between 0 and 1,
representing the maximum minor deviation and the
maximum major deviation, respectively.

Pitch is a value of pitch in a musical score. The system
calculates the average of the pitches in a music section, and
converts each of the average values into a scalar quantity p.
Values of p also fall between 0 and 1, which quantities
represent the lowest and the highest pitch, respectively.

E. Image Distance Calculation Function
We design the following three functions in order to

calculate a distance in an image sequence query Q:
 The distance in hue between the i-th image and the

(i+1)-th image is ∆ℎ𝑖𝑖 ∶= |ℎ𝑖𝑖 − ℎ𝑖𝑖+1|, where h is the
hue angle in the HSV cone.

 The distance in saturation between the i-th image and
the (i+1)-th image is ∆𝑠𝑠𝑖𝑖 ∶= |𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖+1|, where s is the
saturation coordinate in the HSV cone.

 The distance in value between the i-th image and the
(i+1)-th image is ∆𝑣𝑣𝑖𝑖 ∶= |𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1| , where v is the
value coordinate in the HSV cone.

Figure 5. An example screen for editing a query, which is shown in the
black area at the top, by utilizing photo stocks shown at the bottom.

Figure 6. A user can control the “story of an impression” by reordering
images. In this case, the impression in the blue rectangle is moved to the
head of the story.

Figure 7. A user can directly apply color filters to images for controlling
the impression in a fine-grained way.

165

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

F. Tonality Distance Calculation Function
We design the following three functions in order to

calculate a distance in a music object M:
 The distance in tonality between the i-th section and

the (i+1)-th section is ∆𝑡𝑡𝑖𝑖 ∶= |𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖+1|, where t is the
tonality angle in the circle of fifths.

 The distance in tonality deviation between the i-th
section and the (i+1)-th section is ∆𝑑𝑑𝑖𝑖 ∶= |𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖+1|,
where d is the deviation in tonality.

 The distance in pitch between the i-th section and the
(i+1)-th section is ∆𝑝𝑝𝑖𝑖 ∶= |𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖+1|, where p is the
pitch.

G. Cross-Media Relevance Calculation Function
The system provides a function to calculate the relevance

of the music to the query. The function is defined as follows:
𝑓𝑓(𝑎𝑎, 𝑏𝑏) → 1 − |𝑎𝑎 − 𝑏𝑏| , where a and b form a pair of
distance changes according to the dual-metrics relation. The
system calculates a correlation value for each pair of metrics
using this function. The relevance of the music to the image
query is represented as follows:

𝛾𝛾(∆𝑞𝑞,∆𝑚𝑚)

≔
∑ 𝑠𝑠(∆ℎ𝑖𝑖 ,∆𝑡𝑡𝑖𝑖) + 𝑠𝑠(∆ℎ𝑖𝑖 ,∆𝑡𝑡𝑖𝑖) + 𝑠𝑠(∆ℎ𝑖𝑖 ,∆𝑡𝑡𝑖𝑖)

3
𝑛𝑛
𝑖𝑖=1

𝑛𝑛

(7)

where n is the number of images entered as part of the image
sequence object M, as well as the number of divided music
sections.

V. PROTOTYPE SYSTEM IMPLEMENTATION
We have implemented a prototype of the proposed

system. The screenshots of the prototype, which uses
HTML5 Canvas and JavaScript, are shown in Figure 5 –
Figure 8. The system implemented consists of three modules:
the query editor, the feature conversion module, and the
music retrieval engine.

The query editor is the main user interface shown in
Figure 5. Users can form a query by selecting four images
and by revising the appearance of the query. In Figure 5, a
user has selected four images as elements of a query. The
system provides two ways for the user to edit the query:
 The first manner is to edit the entire impression of the

query by revising the order of the images as shown in
Figure 6. The system allows the user to intuitively
perform this using a drag-and-drop operation.

 The second manner is to edit the partial impression of
the query by changing the color of an image, as shown
in Figure 7. The system allows the user to do this by
moving the three sliders associated with each of the
HSV values.

When the user finishes editing the query, he/she submits the
images for the music search. The feature conversion module
extracts the semantic color movement of the submitted
images and generates a query consisting of a virtual musical
feature in order to retrieve music. Finally, the music retrieval
engine calculates the relevance of the candidate music with

the generated query, and shows indexed music as a result
according to the calculated relevance score, as shown in
Figure 8. If the result does not satisfy the preferences of the
user, the user revises the query using the query editor. By
repeating the above process, the user searches music through
trial and error.

The system has a backend MIDI analyzer. When a user
enters a query, the system invokes the MIDI file analyzer
with a section number parameter. The system analyzes the
MIDI files in an on-the-fly manner in order to extract the
tonality transition according to the section number parameter
passed as a component of a query. We have implemented the
MIDI file analyzer using HTML5 FileReader object and
ArrayBuffer object. When finished with the analysis process,
the MIDI file analyzer encodes the analysis result into
JavaScript Object Notation (JSON) format and passes it to
the distance calculation module. This procedure allows our
system to share the JSON-encoded figure among multiple
web workers to parallelize the distance calculation.

The relevance calculation module compares the queries
and the database contents. This retrieval process is
parallelized by the web workers application programming
interface (API), and the retrieved songs are presented to the
user through the search result visualization engine. This
system spawns real operating system (OS)-level threads from
the web workers API to parallelize the retrieval process.
Modern HTML5 technologies enable us to implement
complex processes in web browsers. Figure 8 shows a
screenshot of an example of the result set and its preview
screen. When a user clicks an item in the retrieval results, the
system opens a video playback screen and plays a video
corresponding to the selected MIDI data. In this case, our
system assumes that the MIDI data is a fundamental
metadata for a song. Thus, our system stores both a MIDI

Figure 8. A screenshot of the result set view. When a user clicks an item
in the result set, the system opens a video playback screen and plays a
video corresponding to the selected MIDI data.

Figure 9. Examples of query components.

166

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

file and a corresponding raw media file, such as a video file
and an audio file.

VI. EXPERIMENTAL STUDIES
This section details several experiments to evaluate the

effectiveness of our VizMIR system when applied to existing
100 western classic music. We prepared for our subjects nine
music search tasks that are categorized into three difficulty
levels: EASY, NORMAL, and HARD. Each level contains
three tasks. The tasks are shown in Figure 9. Table I shows
the details of the impression transition of each task in
increasing order of difficulty. As can be seen, task 4 is more

difficult than task 1, and task 9 is more difficult than task 4.
The tasks represent the required impression from the desired
music using a combination of 10 kinds of feature words
associated with tonality. Subjects form queries by selecting
four images according to the requirements of the task and
situation at hand. Task 1 requires that the subjects find music
that consists of “soft” impressions followed by “gorgeous”
impressions. “Soft(C, Db)” means that the impression “soft”
corresponds to tonalities “C” and “Db”. In this table, “b”
denotes “flat”, and “m” denotes minor tonality.

We asked 24 subjects (13 female and 11 male) to search
for music through our system by using the following types of
queries:

Figure 10. NDCG scores calculated by summing up all subjects, including novices and experts. Simple queries such as mono-color and tri-color images are
suitable for simple tasks, and complex queries such as penta-color images and natural images have achieved better results in complex tasks.

Figure 11. NDCG scores of nine tasks performed by novices. Novices achieved better scores when they used simple queries, such as ones involving mono-
color and tri-color images.

167

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 “image” query: the subjects construct a query by using
full-color pictures.

 “penta” query: the subjects construct a query by using
five-color images.

 “tri” query: the subjects construct a query by using
three-color images.

 “mono” query: the subjects construct a query by using a
single color image.

TABLE I. THREE-LEVEL SEARCH TASKS

Level ID Impression Transition

EASY

1 Soft(C, Db) Gorgeous(D, Eb)
2 Mysterious(F#m, Gm) Solitary(Abm, Am,

Abm)
3 Calm(G, Ab, A) Plaintive(Bm, Cm)

NORMAL

4 Calm(G, Ab, A) Powerful(C, Db)
Gorgeous(D, Eb)

5 Solitary(Abm, Am, Abm) Sorrowful(Em,
Fm) Weird(Dbm, Dm, Ebm)

6 Mysterious(F#m, Gm) Calm(G, Ab, A)
Fresh(B, Bb)

HARD

7 Fresh(B, Bb) Powerful(C, Db)
Gorgeous(D, Eb) Soft(C, Db)

8 Plaintive(Bm, Cm) Solitary(Abm, Am,
Abm) Sorrowful(Em, Fm) Plaintive(Bm,
Cm)

9 Soft(C, Db) Solitary(Abm, Am, Abm)
Calm(G, Ab, A) Mysterious(F#m, Gm)

Example images used in this experiment are shown in Figure
9. Thus, the subjects translate search tasks into image
sequences while satisfying the above constraints.

To evaluate this experiment, we computed the
normalized discounted cumulative gain (NDCG) as follows:

𝐷𝐷𝐷𝐷𝐺𝐺 = �
𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑟𝑟𝑙𝑙𝑙𝑙2𝑖𝑖

5

𝑖𝑖=1

 (8)

𝐼𝐼𝐷𝐷𝐷𝐷𝐺𝐺 = �
𝑟𝑟𝑟𝑟𝑟𝑟′𝑖𝑖
𝑟𝑟𝑙𝑙𝑙𝑙2𝑖𝑖

5

𝑖𝑖=1

 (9)

𝑁𝑁𝐷𝐷𝐷𝐷𝐺𝐺 =
𝐷𝐷𝐷𝐷𝐺𝐺
𝐼𝐼𝐷𝐷𝐷𝐷𝐺𝐺 (10)

where reli is the average of survey scores from the test
subjects in order of calculated distance, and rel'i represents
the average of the scores in descending order. We have
created the correct set by comparing the tonality description
in Table I with the automatically extracted tonality metadata
from the data set containing 100 music items. Figure 10,
Figure 11, and Figure 12 show the NDCG of our system
when applied to tasks 1–9. A higher score implies a better
retrieval precision. We divided the results according to the
musical background of the subjects: novices who have never
played music, and experts skilled at playing music.

Figure 10 shows the NDCG of all results of music
retrieval for the nine tasks. Overall, simple queries such as
those involving mono-color and tri-color images are suitable
for simple tasks, and complex queries such as those
involving penta-color images and natural images achieved
better results in complex tasks. Figure 11 shows the NDCG
of music retrieval by novices. It appears that novices
achieved better scores when they used simple queries, such
as ones using mono-color and tri-color images. Figure 12
shows the NDCG of music retrieval by experts. For these
users, full color images and penta-color queries are more
effective when applied to more complex tasks. The most
important result is the difference in distribution of NDCG
scores between the novices and the experts. Novices
retrieved music effectively by using three-color images,
regardless of the complexity of the task. On the other hand,
as shown in Figure 12, experts retrieved music effectively by
using full color images when the complexity of a task was

Figure 12. NDCG scores of nine tasks performed by experts. In the case of expert users, queries using full color and penta-color images are more effective
when applied to more complex tasks.

168

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

high (e.g., single color images are suitable for a simple task
such as task 3, and full color images are suitable for a
complex task such as task 9).

These results imply that skill at playing music effects
cross-modal sensibility for images and music. Experts can
use their musical sensibilities to form queries by using
images, and novices find it difficult to detect musical
impressions as images.

VII. CONCLUSION
In this paper, we proposed the VizMIR system, a cross-

media retrieval system for music that can provide an intuitive
visual retrieval method. The unique feature of this system
lies in its construction of image-based queries to represent
the transition in mood within a musical composition.
VizMIR has a hybrid metric space for converting color
change of images to continuous tonal change of music, and
vice versa. We implemented the prototype system by
utilizing HTML5 technologies. This implementation system
supports the on-the-fly image uploading and configuring in
order to create a query. We performed an evaluation of our
system using a database of classical music. Experimental
results showed that our visually-enriched query model
performs well in practice. In the future, we plan to develop a
personalized query interpretation and a social-network-based
query recommendation system by building on this approach.

REFERENCES
[1] Kato, Y., and Kurabayashi, S., “Cross-media retrieval for

music by analyzing changes of mood with delta function for
detecting impressive behaviours,” In Proceedings of the
Eighth International Conference on Internet and Web
Applications and Services (ICIW 2013), pp. 236-239, 2013.

[2] Liem, C., Esk, D., and Tzanetskis, G., “The need for music
information retrieval with user-centered and multimodal
strategies,” In Proc. Of the 1st International ACM Workshop
on Music Information Retrieval with User-Centered and
Multimodal Strategies (MIRUM), pp. 1-6, 2011.

[3] Goto, M., and Hirata, K., “Recent studies on music
information processing,” Acoust. Sci. Technol., vol. 25, no. 6,
pp. 419-425, 2004.

[4] Peacock, K., “Synesthetic perception: alexander scriabin’s
color hearing,” Music Percep. vol. 2, no. 4, pp. 483–506, 1985.

[5] Temperley, D., “Music and probability,” Cambridge, MA:
MIT Press, 2007.

[6] Krumhansl, C. L., “Cognitive foundations of musical pitch,”
New York, NY: Oxford Univ. Press, 1990.

[7] Smith, A. R., “Color gamut transform pairs,” In Proc. of the
5th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH '78), pp.12-19, 1978.

[8] Typke, R., Wiering, F., and Veltkamp, R., “A survey of music
information retrieval systems,” In Proc. the 6th International
Conference on Music Information Retrieval (ISMIR 2005),
Univ. of London, 2005, pp. 153-160.

[9] Kuo, F. F. and Shan, M. K., “Looking for new, not known
music only: music retrieval by melody style,” In Proc. Of the
4th ACM/IEEE-CS Joint Conf. Digital Libraries, (JCDL ’04),
ACM Press, 2004, pp. 243-251.

[10] Hijikata, Y., Iwahama, K., and Nishida, S., “Content-based
music filtering system with editable user profile,” In Proc. of
the 2006 ACM Symposium on Applied Computing, pp. 1050-
1057, 2006.

[11] Bello, J.P., “Audio-based cover song retrieval using
approximate chord sequences: testing shifts, gaps, swaps and
beats,” In Proc. the 8th International Conference on Music
Information Retrieval (ISMIR 2007), pp. 239-244, 2007.

[12] Ghias, A., Logan, J., Chamberlin, D., and Smith, B.C.,
“Query by humming: musical information retrieval in an
audio database,” In Proc. ACM Multimedia 95, pp. 231–236,
1995.

[13] Dannenberg, R.B., Birmingham, W.P., Tzanetakis, G., Meek,
C., Hu, N., and Pardo, B., “The MUSART Testbed for Query-
by-Humming Evaluation,” In Proc. of the 4th international
conference on music information retrieval (ISMIR 2003), pp.
34-48, 2003.

[14] Shifrin, J., Pardo, B., Meek, C., and Birmingham, W.,
“HMM-based musical query retrieval,” In Proc. of the 2nd
ACM/IEEE-CS joint conference on digital libraries (JCDL
2002), pp. 295- 300, 2002.

[15] Craig, S., “Harmonic visualizations of tonal music,” In Proc.
of the International Computer Music Conference (ICMC
2001), MPublishing, University of Michigan Library, pp. 423-
430, 2001.

[16] Gómez, E. and Bonada, J., “Tonality visualization of
polyphonic audio,” In Proc. of the International Computer
Music Conference (ICMC 2005), MPublishing, University of
Michigan Library, 2005.

[17] Mardirossian, A. and Chew, E., “Visualizing music: tonal
progressions and distributions,” In Proc. of the 8th
International Conference on Music Information Retrieval
(ISMIR2007), pp. 189-194, 2007.

[18] Ciuha, P., Klemenc, B., and Solina, F., “Visualization of
concurrent tones in music with colours”, n Proc. of the 18th
International Conference on Multimedia 2010 (MM ’10), pp.
1677- 1680, ACM, 2010.

[19] Cooper, M., Foote, J., Pampalk, E., Tzanetakis, G.,
“Visualization in audio-based music information retrieval,”
Computer Music Journal, Vol. 30, No. 2, pp. 42-62, MIT
Press, 2006.

[20] Imai, S., Kurabayashi, S., and Kiyoki, Y., “A music database
System with Content analysis and visualization mechanisms,”
In Proc. of the IASTED International Symposium on
Distributed and Intelligent Multimedia Systems, ACTA Press,
pp. 455-460, 2008.

[21] Pampalk, E. and Goto, M., “Musicrainbow: a new user
interface to discover artists using audio-based similarity and
web-based labeling,” In Proc. of the 7th International
Conference on Music Information Retrieval (ISMIR 2006), pp.
367-370, 2006.

[22] Knees, P., Schedl, M., Pohle, T., and Widmer, G., “An
innovative three-dimensional user interface for exploring
music collections enriched with meta-information from the
web”, In Proc. of the 14th ACM International Conference on
Multimedia (MM ‘06), pp. 17-24, 2006.

[23] Stober, S. and Nürnberger, A., “MusicGalaxy: A multi-focus
zoomable interface for multi-facet exploration of music
collections”, In Proc. of the 7th International Symposium on
Computer Music Modeling and Retrieval (CMMR 2010), pp.
259–272, Springer, 2010.

[24] Dittmar, C., Großmann, H., Cano, E., Grollmisch, S.,
Lukashevich, H., and Abeßer, J., “Songs2See and
GlobalMusic2One: two applied research projects in music
information retrieval at Fraunhofer IDMT,” In Proc. of the 7th
International Symposium on Computer Music Modeling and
Retrieval (CMMR 2010), pp. 259–272, Springer, 2010.

[25] Mao, X. and Lin, B., “Parallel field alignment for cross media
retrieval categories and subject descriptors,” In Proc. of the
21st ACM Conference on Multimedia (MM ’13), pp. 897-906,
ACM Press, 2013.

169

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[26] Zhang, H., Zhuang, Y., and Wu, F., “Cross-modal correlation
learning for clustering on image-audio dataset,” In Proc. of
the 15th ACM Conference on Multimedia (MM ’07), pp. 273-
276, 2007.

[27] Kurabayashi, S. and Kiyoki, Y., “MediaMatrix: a video
stream retrieval system with mechanisms for mining contexts
of query examples”, In Proc. of the 15th International
Conference on Database Systems for Advanced Applications
(DASFAA2010), pp. 452-455, 2010.

170

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Data Checking Engine: Complex Rules for Data
Quality Monitoring

Felix Heine, Carsten Kleiner, Arne Koschel
University of Applied Sciences & Arts Hannover

Faculty IV, Department of Computer Science, Hannover, Germany
Email: firstname.lastname@hs-hannover.de

Jörg Westermayer
SHS Viveon

Germany
Email: joerg.westermayer@shs-viveon.de

Abstract—In the context of data warehousing and business
intelligence, data quality is of utmost importance. However, many
mid-size data warehouse (DWH) projects do not implement a
proper data quality process due to huge up-front investments.
Nevertheless, assessing and monitoring data quality is necessary
to establish confidence in the DWH data. In this paper, we
describe a data quality monitoring system: The “Data Checking
Engine” (DCE). The goal of the system is to provide DWH
projects with an easy and quickly deployable solution to as-
sess data quality while still providing highest flexibility in the
definition of the assessment rules. It allows to express complex
quality rules and implements a two-staged template mechanism to
facilitate the deployment of large numbers of similar rules. While
the rules themselves are SQL statements the tool guides the data
quality manager through the process of creating rule templates
and rules so that it is rather easy for him to create large sets of
quality rules. The rule definition language is illustrated in this
paper and we also demonstrate the very flexible capabilities of
the DCE by presenting examples of advanced data quality rules
and how they can be implemented in the DCE. The usefulness
of the DCE has been proven in practical implementations at
different clients of SHS Viveon. An impression of the actual
implementations of the system is given in terms of the system
architecture and GUI screenshots in this paper.

Keywords—Data Quality, Quality Rules, Data Analysis, Data
Quality Monitoring, Data Warehouses

I. INTRODUCTION

Data quality (DQ) is of utmost importance for a successful
data warehouse project. In this context, continuous monitoring
is an integral part of any DQ initiative. In this paper, we de-
scribe a data quality monitoring system called Data Checking
Engine (DCE) developed collaboratively at the University of
Applied Sciences & Arts Hannover and SHS Viveon. The main
goal is to provide a flexible, yet simple tool to monitor data
quality in DWH projects, which can also be used during the
DWH development to test its Extract Transform Load (ETL)
process. Implementations of the system have already been used
at some key pilot customers of SHS Viveon and continuous
improvements of the technical as well as the conceptual parts
of the system are based on feedback from those customers
gathered during daily usage of the system.

Data rules are used in order to constantly monitor the
quality of data of a database. For the definition of these rules, a
flexible language is necessary. Quality rules are either derived
from business rules or found via profiling or data mining. They
are executed either in regular intervals or based on specific
events like the completion of an ETL job. The results of

checking the rules are recorded in a result repository, which
also keeps historical data so that users can evaluate the quality
of data over time. As rules will evolve over time, it is necessary
to keep a history of rule definitions so that historic results can
be related to the correct version of the rule’s definition.

We believe that the ability to express complex rules is
crucial. A set of hard-coded rule types found in some data
quality tools is typically only suitable to detect rather simple
quality problems on the attribute or single tuple level. However,
there are more complex data quality problems, which cannot
be detected using such rules. As an example, consider an error
located in the logic of an ETL process. Due to this error, the
process fails to reference the correct product group for some of
the records of a sales fact cube. The bug is subtle and does not
show up very often. At the attribute level all sales records are
correct. However, the trend of the time series showing the sales
sum with respect to individual product groups will indicate a
quality problem. Other advanced data quality problems and
according check rules will be explained in sec. IV, which is
also one of the major extensions of this article in comparison
to [1].

It requires skilled users to write such rules, but larger sets
of rules will look similar in structure. They differ only in the
tables and attributes they are applied to. Therefore, a template
mechanism is useful to help users define such rules. The idea
is that only the template creator has to cope with the full
complexity; template users can then apply these templates to
their tables and attributes.

To avoid discontinuity of the reporting environment for
DWH users, re-using existing Business Intelligence (BI) tools
is superior over building a specialized quality reporting GUI.
Still, it is sufficient to export rule results to a quality data
mart, which can then be accessed by any standard BI tool.
However, the plain rule results have to be aggregated to more
comprehensive quality metrics in a flexible and user defined
way.

Furthermore, the rules themselves have to be tested in
the development environment before deployment. Thus, an
automated transfer and synchronization with the production
system is necessary.

In a nutshell, we target the following requirements:

• Express complex rules
• Reduce complexity of rules for end users (by utilizing

a template mechanism)

171

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Execute the rules regularly or upon specific events
• Keep a history of rule definitions and execution results
• Store this history in a quality data mart persistently
• Aggregate the rule results to quality metrics
• Provide export/import mechanism for rule meta data

This paper is an extended version of the paper [1]. The
example section has been included to describe new quality
rule types and to underline the flexibility of our approach,
and the related work section has been revised and extended
significantly as well.

The remainder of this paper is organized as follows:
In the following section, we give an overview of related
work. Section III focuses on the definition of quality rules
and explains our template mechanism in general, whereas
Section IV illustrates the rule definition language in detail
by discussing how to implement frequently occurring sample
rules. This section is the major extension of this article in
comparison to the earlier version [1]. Section V describes the
DCE architecture and in the subsequent section we briefly
elaborate on quality metrics. Finally, Section VII (which is
also an addition in comparison to [1]) illustrates the DCE
concept and GUI in more detail, before we summarize our
achievements and give an outlook to our future plans in the
final section.

II. RELATED WORK

Over the last decade, much research in the data quality
domain has been conducted, see for example [2], [3], [4], or
[5]. Research areas related to data quality are outlier detection,
data deduplication, data quality monitoring, data cleansing,
and data mining to detect quality rules. We are specifically
interested in monitoring and reporting data quality, and in
algorithms to detect quality rules automatically from existing
data. In general, we follow the approach of Kimball [6] who
outlines an approach to DQ assessment in DWH systems.

For our work, ideas and formalisms to describe quality
rules are highly relevant. Many types of quality rules stem
from the field of database constraints, as described by Bertossi
and Bravo in their survey [7]. As classical constraints are
not very flexible, numerous new kinds of constraints have
been proposed in the literature. In [3], Fan describes multiple
formalisms that target specific quality problems. Conditional
functional dependencies are used to express more complex
rules spanning multiple tuples of a relation (see also [8], [9]),
while conditional inclusion dependencies are generalizations
of referential integrity checks. The classical edit rules of
Fellegi and Holt are concerned with the integrity of individual
records [10]. In [11], Fan defines editing rules to match
records with master data. Further rule types include differen-
tial dependencies [12], multidimensional conditional function
dependencies [13], and probabilistic, approximate constraints
[14]. From our point of view, these are examples of specific
types of rules. We aim to provide a framework that is able
to express any of these rules. As all these approaches can be
reformulated to SQL, the DCE is able to execute these rules.
However, this leads to rather complicated rule definitions. To
make life easier for the end users, we further provide a template
approach. With this approach, we can define a template for
each of the rule types, so that rules can be instantiated in an
easy way.

In the domain of data deduplication (also called record
linkage), rules are important to describe matching criteria.
As an example, the IntelliClean [15] system uses rules like
<if> condition <then> action with probability p to match
duplicates. Fan et al. [16] introduce matching dependencies to
describe criteria that are used to identify duplicate records. For
a survey of duplicate record detection, see [17].

Another approach is to extend SQL to incorporate data
quality features. An example is the FraQL [18] language that
specifies pivoting features and allows to integrate user defined
grouping and aggregate functions that allow to analyze data
more comfortably. The drawback is that a special execution
engine is required. Thus, the features of existing relational
optimizers are not available or have to be reproduced.

Furthermore, many prototypic research systems and com-
mercial tools are present. For an overview, see [19]. Most
existing tools focus on dimension data only and thus stress
single record problems and deduplication. The profiling com-
ponent of existing data quality tools currently provides only
basic algorithms to detect quality rules, see [20]. We think that
more advanced profiling techniques are necessary to detect
quality rules automatically. Basic approaches are found in
the domains of data mining and outlier detection, also called
anomaly detection. An overview can be found in [21] as well
as in the recent book of Aggarwal [22]. We plan to integrate
these concepts in a later version of the DCE. For this, we
are especially interested in finding outliers in time series (see,
e.g., [23], [24]) and algorithms to analyze multidimensional
data (see, e.g., [25], [26], or [27]). However, to the best of our
knowledge, no tool provides a similar mechanism that allows
to build complex rule templates, which can, for example, be
used to test indicator values against time series models.

III. RULE DEFINITION LANGUAGE

A central issue is the language to define the quality rules.
On the one hand, it has to be expressive to allow complex rules
like time series tests. On the other hand, fast definitions of
simple rules like NULL value checks has to be possible. Also,
the rule execution is typically critical with respect to execution
time and resource consumption. As large datasets have to be
checked, an efficient rule execution engine is needed.

Thus, we decided to rely on the native SQL executor of the
DBMS. This means, the core of each rule is an SQL statement,
which collects the required information from the underlying
tables. This statement is written by the DCE user, allowing
even vendor-specific optimizations like optimizer hints.

DCE defines a standard attribute set for the result tuples.
The rule statements have to adhere to this standard. Each
statement computes a result value, which is the basis for the
rule check. For a NULL rule, the result value might be the
percentage of NULL values of the checked values. There might
either be a single result value or multiple values, broken down
by dimensional hierarchies. The latter case might for example
yield a percentage of NULL values for each product group in
each region. Furthermore, two base values can be returned.
They can provide additional information for the rule outcome.
This might be helpful when interpreting the rule results.

For each rule, multiple bounds can be defined, specifying
valid ranges for the observed values. The bounds can be

172

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 1. Instantiating a template

activated or deactivated with respect to all values contained in
the result tuple, including both base values and the dimension
values. In this way, the bound for NULL values can be
normally defined to be 5 percent, however, for specific product
groups it might be higher. A specific application for this feature
is to change bounds for business metrics, e.g., according to
the week day. Typically, the revenue sum for traditional stores
might be zero on Sundays.

A severity can be assigned to each rule bound, and multiple
bounds with different severity can be defined for a rule. The
severity information of failed rules is returned to the scheduler.
Based on this information, the scheduler might, e.g., decide to
interrupt an ETL process or to alert the DWH team.

Each rule’s SQL statement can have multiple parameters,
which are set at execution time. These parameters can for
example be used to determine the range of data to be checked.
In this way, a quality rule running after an ETL job might be
limited to check only the new records in a fact table.

A. Sample rule

In the following, we show how a rule that checks NULL-
values does look like. The target is to check the number of
NULL value in the middle name in the customer records. As
the typical percentage of people that have a middle name varies
from country to country, we calculate the values per country.
Thus, the country code is used as a dimension value and one
result record per country is generated. The two base value

fields are used to count the overall number of customers in each
country and the number of customers without middle name,
respectively. The result value is the percentage of customers
in each country without middle name.

SELECT
trunc(sysdate, ’dd’) Result_date,
countrycode dimValues,
sum(1) baseValue1,
sum(case when middlename is null

then 1
else 0 end) baseValue2,

round(sum(case when middlename is null
then 1 else 0 end) /

sum(1) * 100) resultValue
FROM customer
WHERE created >

to_date($date$, ’YYYY-MM-DD’)
GROUP BY countrycode

Fig. 2. Sample rule code

The SQL for this check is shown in Fig. 2. The result value
is then checked against different bounds that are defined on a
per-country basis. The rule uses a parameter $date$ that is
used to narrow the check to customers which have been created
after the specified date.

173

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SELECT
trunc(sysdate, ’dd’) Result_date,
§reftable1_refdimension1§ dimValues,
sum(1) baseValue1,
sum(case when §reftable1_refattribute1§

is null then 1
else 0 end) baseValue2,

round(
sum(case when §reftable1_refattribute1§

is null then 1
else 0 end) /

sum(1) * 100) resultValue
FROM §reftable1§
WHERE §reftable1_refattribute2§ >

to_date($date$, ’YYYY-MM-DD’)
GROUP BY §reftable1_refdimension1§

Fig. 3. Sample template code

B. Templating

In typical environments, there is often a need to define
a number of equivalent rules over a large number of tables
and attributes. To accommodate for this requirement, we
implemented a template concept.

A template looks quite similar to a normal rule. It con-
tains an SQL statement producing the same set of standard
columns, and it might also contain bound definitions. However,
instead of the target table and attribute names, the template’s
SQL statement contains special markers. For attributes, these
markers declare the purpose of the attribute within the rule.
Once the user has defined a template, she can instantiate it for
multiple sets of tables and attributes. During this process, she
either defines new bounds or uses the predefined bounds from
the template for the generated rules. The engine forwards rule
parameters defined within the template to the generated rules.

C. Example continued

The sample statement is a good candidate for a template.
In the template, there is another type of parameters called tem-
plate parameters that are replaced at template instantiation (i.e.,
rule creation time). These are used to define placeholders for
the table and attribute names, like §reftable1§ (cf. Fig. 3).

A GUI assists unexperienced users with defining the tem-
plate parameters, as shown in Fig. 1. In this dialog, the GUI
reads the database catalog and lets the user map the template
parameters to catalog objects. E.g., §reftable1§ is replaced
with sales_fact. Note though that in the current version
of the system data type integrity between catalog objects
and template parameters is not automatically enforced by the
system. I. e. the expert assigning catalog objects to template
parameters has to take care that the data types are compatible.
If they are not, the execution of the rule will fail with a
corresponding SQL error message that will be recorded as a
rule execution result in the result repository (cf. Section V).
This issue never caused problems in the actual implementations
of the system so far, but is a candidate for a future extension,
e. g. by providing the opportunity for the template developer
to place hints on the expected data type in the template that

can assist the person actually creating the rules in the selection
process.

IV. RULE EXAMPLES

In this section, we illustrate how the rule definition lan-
guage introduced in the previous section can be used for
advanced quality checks. In order to do so, we give examples
for quality rules and show how they can be defined within
the Data Checking Engine. The section has two purposes:
On the one hand, we want to demonstrate that the DCE
supports well-known rule types from the data quality literature.
On the other hand, we want to introduce new rule types
whose capabilities to detect possible quality problems are more
sophisticated compared with the well-known rules. We use
the AdventureWorks2008DW (in short AWDW) database from
Microsoft [28] for our examples.

Data rules are found either by profiling and mining existing
data, or by looking at business rules. The mining approach
assumes that you either have a data set that is a-priori known
to be correct, or you have to do outlier detection and data
cleansing on the way. Currently, mining is out of scope for
the DCE. This means that we performed the rule mining using
external tools (in our case the GNU R tool). However, we plan
to integrate this step further with the DCE system in the future,
cf. Section VIII.

In general, we distinguish two kinds of rules. Hard rules
are those that can clearly identify wrong data. As an example,
the violation of a pattern for product codes confirms that the
given product code is apparently incorrect. In the same sense,
testing a foreign key relationship is a hard constraint. However,
there are many quality problems that cannot be detected using
hard rules. For this, we need another kind of rule, which we
call value rules, according to Jack Olsen [5]:

There are additional tests you can construct that point to
the presence of inaccurate data that are not as precise in
establishing a clear boundary between right and wrong. These
are called value rules.

We are going to present some examples of this kind of
rules in the last subsections. However, we start with examples
for simpler rules that are hard constraints.

A. Pattern for customer alternate key

SELECT
trunc(sysdate, ’dd’) Result_date,
§reftable1_refdimension1§ dimValues,
0 baseValue1,
0 baseValue2,
CASE WHEN
regexp_like(§reftable1_refattribute1§,

’$regexp$’)
THEN 1 ELSE 0 END resultValue

FROM §reftable1§

Fig. 4. Template for regular expression checking

In AWDW, each customer has an attribute
CUSTOMERALTERNATEKEY that contains the business

174

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

key consisting of the letters ‘A’ and ‘W’ followed by 8 digits.
Such a pattern can be validated using a regular expression.

The template shown in Fig. 4 is used for all rules that check
regular expressions. To check the alternate key, we instantiate
this template using the dim_customer table and set the
$regexp$-parameter to ˆAW[0-9]{8}$.

B. Consistency of translated attributes

SELECT
trunc(sysdate, ’dd’) Result_date,
t1.§reftable1_refdimension1§ dimValues,
0 baseValue1,
0 baseValue2,
count(t2.§reftable1_refdimension1§)

resultValue
FROM §reftable1§ t1
LEFT JOIN §reftable1§ t2

ON t1.§reftable1_refattribute1§ =
t2.§reftable1_refattribute1§

AND t1.§reftable1_refattribute2§ !=
t2.§reftable1_refattribute2§

GROUP BY t1.§reftable1_refdimension1§

Fig. 5. Template for functional dependency checking

In the AWDW dimension tables, some descriptions are
present in multiple languages. As the same English text is
expected to have always the same translation, a functional
dependency (FD) is present. To check FDs, we have written
a template (see Fig. 5). The template searches for tuple
combinations that agree upon the first attribute’s value and
disagree upon the second attribute. For each tuple, the number
of tuples that have a different value in the second attribute is
counted.

We instantiated the template, e.g., for the attributes
ENGLISHEDUCATION and SPANISHEDUCATION in the
dim_customer-table. For each tuple in the table, the
rule counts the number of tuples that match the current
tuple with respect to ENGLISHEDUCATION but disagree
in SPANISHEDUCATION. We have modified the text for
SPANISHEDUCATION in a single tuple. As there are 5099
tuples that share the same text in ENGLISHEDUCATION, each
of these tuples gets a resultValue of 1, while the modified tuple
gets a value of 5098. Although the probability is high that the
translation is correct for 5099 tuples and it is wrong for only
a single tuple, the rule cannot make this distinction. Thus,
the bound for the rule is zero, meaning each of the tuples is
regarded to be a potential quality error.

C. Sales count of clothing and accessories

Now we start with examples for value rules. First, we are
going to check whether the sales count (items per day) of the
two product categories clothing and accessories is reasonable.
A scatter plot of the counts per day in Fig. 6 indicates that
there is a correlation between the two variables. Indeed, the
correlation coefficient is 0.7469.

We are going to exploit this to build a quality rule. The
idea is to estimate a bivariate normal distribution from the data

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●● ●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

50
10

0
15

0

Clothing (count)

A
cc

es
so

rie
s

(c
ou

nt
)

Fig. 6. Item sales per day in two categories

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●● ●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

50
10

0
15

0

Clothing (count)

A
cc

es
so

rie
s

(c
ou

nt
)

 1e−04

 2e−04

 3e−04

 4e−04

 5e−04

 6e−04

 7e−04

 8e−04

 9
e−

04

m=16
m=8
m=0

Fig. 7. Estimated distribution and distance

and to use the squared Mahalanobis distance from the center
of the distribution as an outlier score for each data point. The
estimation uses the variance-covariance matrix S of the data
as an estimate for the covariance and the sample mean of the
data x̄ as the mean of the distribution. The contour lines of the
density of the resulting distribution are displayed in Fig. 7.

The squared Mahalanobis distance is calculated using the
following equation (see [29, p. 662]). Note that we assume

175

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that x is a column vector.

m2 = (x− x̄)TS−1(x− x̄) (1)

The distance values are shown in the figure using a grey scale.
An important property of the Mahalanobis distance is that it
takes the correlation between the attributes into account. As an
example, the point (40, 153) is not an outlier, while the point
(12, 118) is an outlier although it is more close to the center in
terms of a Euclidean distance. This is because (40, 153) better
fits with the distribution of the data.

SELECT trunc(sysdate, ’dd’) Result_date,
key dimValues,
x1 baseValue1,
x2 baseValue2,
msq resultValue

FROM
(SELECT (xn1*(xn1*$si11$ + xn2*$si21$) +

xn2*(xn1*$si12$ + xn2*$si22$))
msq,
x1, x2, key

FROM
(SELECT x1-$xm1$ as xn1,

x2-$xm2$ as xn2, x1, x2, key
FROM
(SELECT §reftable1_refattribute1§ x1,

§reftable1_refattribute2§ x2,
§reftable1_refdimension1§ key

FROM §reftable1§
)
)

)

Fig. 8. Template to calculate Mahalanobis distances

The rule template in Fig. 8 calculates the squared Maha-
lanobis distance. It is based on a view c34 that aggregates
the sales count in both categories on a daily basis. The entries
of S−1 are provided as parameters $si11$, etc. and x̄ is
provided using the parameters $xm1$ and $xm2$.

We instantiated the template and used a bound of 9 on the
distance. So each data point with a distance greater than 9
is declared to be suspicious. The corresponding points which
are detected as errors by the rule are marked with a plus in
Fig. 7. Please note that these errors have to be interpreted
differently compared to the previous errors. Errors reported
by value rules are unusual values that have to be investigated
further by domain experts but do not immediately mean that
a data quality issue has been detected.

D. Age distribution of customers

As another example for a value rule, we want to check
whether the ages of our customers are reasonable. We assume
that the current age distribution is correct and use it as
a reference distribution. Our goal is to develop a quality
rule that generates a warning when the distribution changes
significantly. To achieve this, we start by creating a view
that displays the current age distribution. The view is called
customer_age. The distribution initially looks as shown
in Fig. 9 (light gray bars labeled “original”). Note that in
fact the distribution shows that AdventureWork’s customers

98−

88−97

78−87

68−77

58−67

48−57

38−47

28−37

original
1st test
2nd test

0 1000 2000 3000 4000 5000 6000

Fig. 9. Original age distribution and test modifications

SELECT trunc(sysdate, ’dd’) result_date,
1 dimValues,
0 baseValue1,
0 baseValue2,
sum((N1-E1)*(N1-E1)/E1 +

(N2-E2)*(N2-E2)/E2) resultValue
FROM (
SELECT nvl(N1, 0) N1, nvl(N2, 0) N2,

N1SUM * (nvl(N1, 0) + nvl(N2, 0))
/ (N1SUM+N2SUM) E1,

N2SUM * (nvl(N1, 0) + nvl(N2, 0))
/ (N1SUM+N2SUM) E2

FROM
(SELECT §reftable1_refattribute1§ key,

§reftable1_refattribute2§ N1
FROM §reftable1§) D1
FULL OUTER JOIN
(SELECT §reftable2_refattribute1§ key,

§reftable2_refattribute2§ N2
FROM §reftable2§) D2
ON (D1.key = D2.key),
(SELECT sum(§reftable1_refattribute2§)

N1SUM FROM §reftable1§) N1,
(SELECT sum(§reftable2_refattribute2§)

N2SUM FROM §reftable2§) N2
)

Fig. 10. Template for χ2 homogeneity test

are quite old, which might already indicate a data quality
problem. However, we ignore this for the sake of the example
and assume that the initial distribution is correct.

We now store a snapshot of the view in the table
customer_age_ref. This table will serve as a reference for
the current age distribution. Now we can use a χ2 homogeneity
test to see whether the current customer’s ages are similarly

176

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

distributed. The test statistic is defined as follows:

χ2 =

k∑
j=1

m∑
i=1

(nij − Eij)
2

Eij
(2)

In this formula, k is the number of samples to be compared.
As we have two samples (the reference age distribution vs. the
current distribution), we have k = 2. Furthermore, m is the
number of groups, in our case m = 8 as we have eight age
groups. nij is the number of customers in sample j belonging
to age group i. Eij is the expected number of customers in
sample j in age group i. It is calculated using the margins:

Eij =
ni·n·j
n

(3)

Here, ni· is the overall number of items in group i in both
samples and n·j is the size of sample j.

Again, we define a rule template to calculate the statistic.
It is shown in Fig. 10.

The result of this statement is the test statistic for the χ2

test. Its value has to be compared with an appropriate quantile
of the χ2 distribution: χ2

(k−1)(m−1);0.95 = χ2
7;0.95 = 14.067.

We use this value as an upper bound. All values above this
one will generate a quality error.

When we initially run the rule, the output is (as expected) 0.
This is due to the fact that we compare two identical samples.
To test the rule, we first insert 20 customers of age 59. They are
in age group 58-67, which already has nearly 2600 customers.
The rule now yields a value of 0.066, which is way below
our bound, as expected. Now we start to insert more unusual
customers of age 99. As we insert 5 of them, the value already
becomes 2.33. With 15 more customers of this age, we reach
15.418, which generates a quality error.

2006 2007 2008

0
20

60
10

0

whole time series

re
ve

nu
e

(T
$)

2006 2007

0
20

60
10

0

subseries used for modeling

re
ve

nu
e

(T
$)

Fig. 11. Daily internet revenue

E. Check the revenue time series

In our final example, we check the overall daily Internet
revenue of the AdventureWorks company. It can be calculated
by aggregating the facts in fact_internet_sales. Again,
the underlying idea of the rule is to define a model for the data
and to check that the new data does not contradict the model
significantly. For this example, we use the data up to the end
of 2006 to define the model and then check the data from 2007
on against the model. Fig. 11 shows the complete time series
and an enlarged plot of the part used for modelling.

In this case, a time series model is appropriate and we
use the ARIMA family of models [30]. These are stochastic
models that are composed of an auto-regessive part (AR), an
integration part (I), and a moving average part (MA). When the
integration part is present, the differenced time series is used
instead of the original one. The basis for the series is a series
of random components. They are assumed to be independent
and normally distributed. The AR part captures dependencies
between the current value and the preceding values, while the
MA part is used to model a moving average of the past random
components.

A first look at the plots indicates that the series is non-
stationary, as there seems to be a trend, at least from mid-
2007 on. The variance looks fairly large and there is no sign
of seasonality.

We use the auto.arima function of R to select an
appropriate ARIMA model and to estimate the parameters. The
result is an ARIMA(0,1,2) model. This means that no AR part
is present, the original series is differentiated once, and the
MA part averages over the past two random components. The
following coefficients are estimated:

yt − yt−1 = et +−1.0012et−1 + 0.0626et−2 (4)

The random components are denoted by et. We can see
that the negative last random value has a huge influence on
the current observation (coefficient -1.0012). The estimated
standard deviation is ŝ = 7951.597. The AIC value is rather
large (11407).

The basic idea of the rule is to use the model to calculate
each day a one step forecast and to check whether the newly
observed value is within the forecast interval. If it is outside,
then we generate an error, as the value is rather unlikely. For
the forecast, we use equation (4) and set et = 0, as we know
nothing about the current random component. The past two
values et−1 and et−2 are estimated using the past residuals
(i.e., the differences between the past forecasts and observed
values). We denote the residuals with êt−1 and êt−2. This
yields the following equation for the point forecast ŷt:

ŷt = yt−1 +−1.0012êt−1 + 0.0626êt−2 (5)

The 95% forecast interval can be computed as ŷt ± ŝ ∗ 1.96.

In order to build a DCE rule using this model we have
to store the past residuals so that we can access them during
the current rule execution. We use the DCE repository’s rule
outcome table for this task. In this way, each day’s run stores
the current residual in the repository. We have to bootstrap the
rule by feeding at least two residuals in the results table so
that the rule can start to calculate the next forecasts. These

177

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

past residuals are included in the R object generated by the
auto.arima function. Currently, we have to store them in
the repository by hand. Later, we plan to automate this task in
a profiling phase.

SELECT
trunc(sysdate, ’dd’) Result_date,
datekey dimValues,
extendedamount baseValue1,
0 baseValue2,
get_residual(’$checkdate$’) resultValue

FROM daily_revenue
WHERE fulldatealternatekey =

to_date(’$checkdate$’, ’YYYY-MM-DD’)

Fig. 12. Rule to check a time series

We implemented the forecast equation (5) as a stored
function get_residual within the database. The function
only returns the residual, as this is all we need to check
the rule bounds and to prepare for the next run of the rule.
Using this stored function, the rule’s SQL is quite simple, as
shown in Fig. 12. The view daily_revenue calculates daily
aggregates of the internet sales revenue.

The rule uses a parameter $checkdate$ that specifies
the target date. Each rule run checks a single day. As the rule
depends on the past two runs we have to ensure that the rule
runs every day without omissions.

2007 2008

20
40

60
80

10
0

date

re
ve

nu
e

(T
$)

●
●●

●

●●●

●●

●
●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●
●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

Fig. 13. Prediction intervals and warned values

Fig. 13 shows the second part of the time series and the
forecast intervals calculated from the above formula for 95%
(dashed) and 99% (dotted). Circles indicate data points that
are outside the 95%; filled circles indicate those that are also
outside the 99% interval. Depending on the bounds specified
in the rule, the DCE reports these values.

V. ARCHITECTURE

In this section, we will illustrate the system architecture of
the current DCE implementation, which is capable of checking
the previously explained data quality rules. We also show how
the DCE fits into a typical enterprise DWH implementation.
Fig. 14 shows an overview of the DCE overall architecture. The
DCE itself is organized as a classical three-tier application. It
interacts with the enterprise data warehouse system in order
to compute quality indicators. Also, results of the data quality
checks may be propagated into another external database
system, the data quality data mart. This database in itself is
also organized as a data mart and provides long term storage
of computed data quality indicators in order to be used for
long term analysis of enterprise wide data quality. In a sense
it is a meta-data warehouse for data quality. There is also
an external scheduling component (typically standard system
scheduling capabilities), which triggers computation of data
quality indicators at previously defined points in time.

Fig. 14. Data checking engine architecture overview

Within the DCE itself the main entry point for data quality
managers is the GUI of the DCE web application (shown at
the bottom of Fig. 14). The GUI is used to manage users of the
DCE application, to manage data quality rules, and to manage
data rule executions. As typically the execution of data quality
checks is not triggered manually, there is also a command-line
client library for the rule execution engine that is triggered by
an external scheduler. The schedule to be used is managed in
the web application as well.

The main data checking business logic can be found in
the middle tier. This logic is used by the web application

178

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as described above. Note that there is a strict separation
between user management, rule management and rule exe-
cution management in the middle tier as well. Whereas the
user administration component provides standard functionality,
note that the rule management component contains advanced
features. For instance the template mechanism described in the
previous section is implemented here.

The execution engine is also managed by the web appli-
cation: on the one hand, rules can be manually executed from
the web application, on the other hand, scheduled execution
can be defined here.

During rule execution, the engine replaces the parameters
in the rule’s SQL statement with their current values and then
runs the statement using the target database. Thus, moving
large amounts of data into the DCE engine is avoided. The
result of the SQL statement is then further processed. This
includes checking the currently applicable bounds and testing
their severity.

In the execution engine, it is also defined, which rules
are executed on what data warehouse database under whose
privileges. Note that multiple different data warehouses (or
database systems) may be used as source, because the connec-
tion information is also managed by the web application.

Note that the performance of the engine itself is not
critical. All rules are finally translated to SQL and executed
on the target database. Compared to the execution time of the
SQL statement (which perhaps runs on large data sets), the
preparation phase and the interpretation of the results, which
includes bound checking, is negligible. Thus, the scalability
of the DCE depends heavily on the scalability of the target
database. In case of performance problems, typical database
tuning options like indexing or materialization of views are
used.

Finally, the database layer consists of three separate areas:

• Rule repository, which holds the data quality rules as
well as base templates

• Result repository holding results of rule execution
• User database which is used for access management

to only the DCE itself

Once results of the executed data quality rules have been
stored in the result repository they may be propagated to the
data quality data mart that aggregates the results into quality
indicators.

This data mart is not part of the DCE but located within
the standard DWH infrastructure of the company. Thus, stan-
dard interfaces such as reporting and BI tools can be used
to further present and analyze the data quality status. This
way the additional effort for data quality monitoring can be
kept minimal as access to data quality indicators follows
well established processes and uses well-known tools, which
are used for regular monitoring of enterprise performance
indicators as well. In addition, the concept of viewing data
quality indicators similar to regular performance indicators is
very fitting, as these have to be tracked accordingly in order
to ensure reliability of data in the data warehouse. Ultimately,
this is necessary to make the right entrepreneurial decisions
based on reliable information.

VI. DATA QUALITY METRICS

The result repository contains large amounts of specific
results that individually describe only a very small fraction
of the overall data quality of the DWH. In order to get a
quick overview of the quality level, a small set of metrics
that aggregate the rule results is required.

In the literature, there are various approaches to define
data quality indicators, for example [31]. Thus, we decided
to provide a flexible approach that enables the user to define
her own indicator hierarchies. The engine stores indicator
definition meta data and calculates the resulting indicator
values.

An important issue here is to take incremental checks into
account. As an example, consider a rule that checks the number
of dimension foreign keys in a fact table that reference a
dummy instead of a real dimension entry. As the fact table
is large, the daily rule just checks the new fact records loaded
in the previous ETL run. Thus, the indicator has to aggregate
over the current and past runs to provide an overall view of
the completeness of the dimension values.

VII. DCE ’LOOK AND FEEL’ IMPRESSIONS

Fig. 15. End user – Major use cases

Based on the above discussed concepts and architecture we
implemented the overall DCE system. To give an impression
how DCE actually looks like from a usage perspective, we will
illustrate in this section some selected use cases and screen
shots from the DCE GUI.

A. Use Cases

We can distinguish between two main types of users within
DCE, namely end users and administrators.

End users are the actual rule authors. Based on their domain
knowledge, they formulate DCE rules as described above.
Respectively, their main use cases (after their login to DCE) are
’show rule group’, ’input rules’ maybe based on an existing

179

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 16. User’s central menu

Fig. 17. User’s rule insert / edit screen

one, ’edit rule’, and ’show rule results’. As explained, rules
could be based on rule templates. The main use cases are
illustrated in Fig. 15.

Administrators have as their main responsibilities the man-
agement of user accounts, database connections, and general
settings.

Fig. 18. Execution results 1

Fig. 19. Execution results 2

B. Screen Shots

To give an impression of the ’look and feel’ of the DCE
GUI, we show a few screen shots here.

Fig. 16 shows the central menu options for a DCE end
user, namely rule and template management, rule execution,
execution results inspection, and edit user account.

A typical DCE end user task is the insertion of new rules.
Fig. 17 shows the corresponding screen, which allows a DCE
end user to edit new rules.

Two typical result screens from rule execution are shown in
Fig. 18 and Fig. 19. In Fig. 19 results from failed rule checks
(errors) are shown as well.

In addition, further options exist, e. g., to edit rule tem-
plates, to group rules, and options for administrators as well.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a motivation why complex
data quality rules are required in most practical enterprise
application scenarios. We have developed a rule definition
language with a two-stage templating mechanism in order to
be able to express most of these rules for SQL-based data
sources. The language along with the templating mechanism
is both powerful enough to express complex rules as well as
simple enough to be used by domain experts in practice. This
has been proven by a prototypical implementation based on the
described architecture. This tool has been validated by inter-
viewing teams of different DWH projects and building project
specific prototypical setups in a real world environment. Our
engine has been able to support their quality monitoring
requirements. Especially, the flexibility in rule definition was
appreciated. We have not only detected quality problems on
tuple level but also more complex issues, e.g., checking the
trend of indicators stored in a fact table. As expected, our
template mechanism has proven to be an important way to
simplify rule definition.

The engine keeps a comprehensive history of rule results
and rule meta data, which allows to monitor data quality over
time and to check whether quality improvement projects were
successful. This quality data is exposed to external BI tools for

180

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

reporting and further analysis. This integration of quality data
into tools for further analysis will be significantly improved
and simplified in the future. We aim to provide semi-automated
aggregation features that provide the data quality manager in
an enterprise with a set of traffic lights on a dashboard-like
portal in order to get an impression of the overall data quality
quickly and easily.

An important consequence of the flexibility of our approach
is that the DCE can also be used during DWH/ETL develop-
ment to test the result processes. The testing rules developed
during this project phase may also be used during normal
operation later on, reducing the overall cost of data quality.
Practical experiences with this kind of dual use of rules will
be gathered in the future. An advantage of this approach might
be an improved quality of the quality rules themselves as their
definition will be based on thoroughly developed concepts.

Our approach is currently working on any relational
database system. In the future, we plan to also integrate
data in other data sources such as Big Data systems like
Hadoop and other NoSQL database systems, as more and
more relevant data will be stored there. Thus, data quality
should be monitored there as well. As there is currently no
universal query language standard like SQL in the relational
sector, we will have to devise a flexible way to cope with
various rule definition languages and/or define a generic rule
definition language together with automated translations into
the languages of the source systems.

We will also work further on the process of determining
quality rules. For newly defined rules the data quality manager
faces the issue that it is difficult to determine whether there is
an actual data quality problem or an inaccuracy in the rule.
Consequently, we plan to further explore the possibility to
semi-automatically derive data quality rules by advanced data
profiling methods. These may even be enhanced by integrating
data mining processes.

Finally, there is still a need for even more advanced data
quality rules that are based on more sophisticated statistical
models (both static and dynamic) as well as multi-variate time
series data. While basic ideas for this have been presented in
Section IV, in the future we would like to extend this approach
and also reduce the manual effort by semi-automated steps.

REFERENCES

[1] F. Heine, C. Kleiner, A. Koschel, and J. Westermayer, “The data
checking engine: Monitoring data quality,” in DATA ANALYTICS 2013,
The Second International Conference on Data Analytics, 2013, pp. 7–
10.

[2] S. Sadiq, Ed., Handbook of Data Quality, 1st ed. Springer, 2013.
[3] W. Fan and F. Geerts, Foundations of Data Quality Management,

ser. Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2012.

[4] C. Batini and M. Scannapieco, Data Quality: Concepts, Methodologies
and Techniques, 1st ed. Springer, 2006.

[5] J. Olson, Data Quality. The Accuracy Dimension. Morgan Kaufmann,
2002.

[6] R. Kimball and J. Caserta, The data warehouse ETL toolkit. Wiley,
2004.

[7] L. Bertossi and L. Bravo, Handbook of Data Quality, 1st ed. Springer,
2013, ch. Generic and Declarative Approaches to Data Quality Man-
agement, pp. 181–211.

[8] P. Z. Yeh and C. A. Puri, “An efficient and robust approach for
discovering data quality rules,” in 22nd International Conference on
Tools with Artificial Intelligence, 2010.

[9] F. Chiang and R. J. Miller, “Discovering data quality rules,” in Pro-
ceedings of the VLDB 08, 2008.

[10] I. P. Fellegi and D. Holt, “A systematic approach to automatic edit and
imputation,” Journal of the American Statistical Association, vol. 71,
no. 353, pp. 17–35, 1976.

[11] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu, “Towards certain
fixes with editing rules and master data,” The VLDB Journal,
vol. 21, no. 2, pp. 213–238, Apr. 2012. [Online]. Available:
http://dx.doi.org/10.1007/s00778-011-0253-7

[12] S. Song and L. Chen, “Differential dependencies: Reasoning
and discovery,” ACM Transactions on Database Systems,
vol. 36, no. 3, pp. 16:1–16:41, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2000824.2000826

[13] S. Brüggemann, “Addressing internal consistency with multidimen-
sional conditional functional dependencies,” in International Conference
on Management of Data COMAD 2010, Nagpur, India, 2010.

[14] F. Korn, S. Muthukrishnan, and Y. Zhu, “Checks and balances: Monitor-
ing data quality problems in network traffic databases,” in Proceedings
of the 29th VLDB Conference, Berlin, 2003.

[15] M. L. Lee, T. W. Ling, and W. L. Low, “Intelliclean: A knowledge-based
intelligent data cleaner,” in ACM SIGKDD, Boston, 2000, 2000.

[16] W. Fan, H. Gao, X. Jia, J. Li, and S. Ma, “Dynamic constraints for
record matching,” The VLDB Journal, vol. 20, pp. 495–520, 2011.

[17] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate
record detection: A survey,” IEEE Transactions on Knowledge and Data
Engineering, vol. 19, 2007.

[18] K. Sattler, S. Conrad, and G. Saake, “Adding conflict resolution
features to a query language for database federations,” in Proc. 3nd
Int. Workshop on Engineering Federated Information Systems, EFIS’00,
Dublin, Ireland, June, 2000, pp. 41–52.

[19] J. Barateiro and H. Galhardas, “A survey of data quality tools,”
Datenbank-Spektrum, vol. 14, 2005.

[20] F. Naumann, “Data profiling revisited,” SIGMOD Record, 2013.
[21] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A

survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1541880.1541882

[22] C. C. Aggarwal, Outlier Analysis. Springer, 2013.
[23] K. Yamanishi and J. Takeuchi, “A unifying framework for detecting

outliers and change points from non-stationary time series data,” in
Proceedings of the Eighth ACM SIGKDD-02, 2002.

[24] C. S. Hilas, I. T. Rekanos, S. K. Goudos, P. A. Mastorocostas, and
J. N. Sahalos, “Level change detection in time series using higher
order statistics,” in 16th International Conference on Digital Signal
Processing, 2009.

[25] S. Sarawagi, R. Agrawal, and N. Megiddo, “Discovery-driven explo-
ration of olap data cubes,” in Advances in Database Technology —
EDBT’98, 1998.

[26] E. Müller, M. Schiffer, and T. Seidl, “Statistical selection of relevant
subspace projections for outlier ranking,” in 27th IEEE International
Conference on Data Engineering (ICDE), 2011.

[27] C. Ordonez and Z. Chen, “Evaluating statistical tests on olap cubes
to compare degree of disease,” IEEE Transactions on Information
Technology in Biomedicine, vol. 13, no. 5, 2009.

[28] Microsoft. (2014, Feb) Microsoft sql server database product samples.
[Online]. Available: http://msftdbprodsamples.codeplex.com

[29] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Pearson, 2006.

[30] A. C. Harvey, Time Series Models. Pearson Education, 1993.
[31] B. Heinrich, M. Kaiser, and M. Klier, “Metrics for measuring data

quality - foundations for an economic oriented management of data
quality,” in Proceedings of the 2nd International Conference on Soft-
ware and Data Technologies (ICSOFT). INSTICC/Polytechnic Institute
of Setúbal, J. Filipe, B. Shishkov, and M. Helfert, Eds., 2007.

181

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Conceptual Modelling in UML and OWL-2

Jesper Zedlitz and Norbert Luttenberger
Christian-Albrechts-Universität

Kiel, Germany
Email: {j.zedlitz, n.luttenberger}@email.uni-kiel.de

Abstract—Both OWL-2 and UML static class diagrams lend
themselves very well for conceptual modelling of complex in-
formation systems. Both languages have their advantages. In
order to benefit from the advantages and software tools of
both languages, it is usually necessary to repeat the modelling
process for each language. We have investigated whether and how
conceptual models written in one language can be automatically
transformed into models written in the other language. For this
purpose we investigated differences and similarities of various
model elements (such as element type, data types, relationship
types) in static UML data models and OWL-2 ontologies. We
provide a transformation for similar elements.

Keywords—UML; OWL; conceptual modelling; model transfor-
mation; meta modelling

I. INTRODUCTION

The Web Ontology Language (OWL) is mostly considered
as a language for knowledge representation. However, it can
also be used as a language for conceptual modelling of
complex information systems. It can be used as a language
to represent the entities of a certain domain, to express the
meaning of various, usually ambiguous terms and to identify
the relationships between them.

In this respect, OWL can be seen as a direct “competitor”
to static class diagrams from Unified Modeling Language
(UML). This kind of diagrams is often used for conceptual
modelling, for example in the ISO 191xx series of standards.
Both languages have their benefits. UML’s visual syntax is
easy to understand and there is a variety of software tools to
choose from. OWL is backed up by formal logic and logical
conclusions can be drawn on models using inference software
(a.k.a. reasoner). In order to be benefited from the advantages
and software tools of both languages, it is usually necessary
to repeat the modelling process for each language. We have
investigated whether and how conceptual models written in
one language can be automatically transformed into models
written in the other language.

In contrast to existing approaches, our transformation ab-
stracts from the concrete syntax—in most cases a serialisation
based on the Extensible Markup Language (XML)—and op-
erates on the level of UML’s and OWL’s meta-models. This
allows to show which model elements can be transformed and
which cannot—independent of individual examples.

This article is the extended version of the paper published
at SEMAPRO 2013 [1]. It is organized as follows. We start
with a general overview of our approach. The following
sections deal with certain kind of constituents: element types
(Section III), data types (Section IV), relationship types (Sec-
tion V), and constraints (Section VI). Each section describes

how the particular kinds of model element is represented in
UML and OWL and how it can be transformed from one
language into the other. Section VII deals with the question
of whether the transformation rules presented in the previous
sections are correct and—within their previously specified
limits—complete. Section VIII gives an overview of existing
approaches for transformations between UML and OWL. In
Section IX, we summarize our work and point out fields of
future work.

II. OUR APPROACH

In this section, we present the main ideas of a transforma-
tion of conceptual models on the meta model level by using a
standardized declarative model transformation language.

In order to transform between OWL and UML models,
it is necessary to find a “common third”. This common
third might be a transfer format, i.e., a common syntax. It
might also be a common meta model, which permits a syntax
independent transformation of model elements of one language
into corresponding model elements of the other language.

A fundamental difference between OWL-2 and its prede-
cessors is the fact that OWL-2 has a MOF-compliant meta
model. OWL-2 ontologies can be processed not only as
serialized XML documents, but also as MOF-based models.
Therefore, all tools that are available for model transformations
in the context of MOF can also be used to process ontologies.

A model-based transformation only operates on a syntac-
tical level. In contrast, a model transformation offers access
to both the models as well as the meta models [2, p. 28].
The transformation rules refer to the meta models only—hence
the term “processing on meta model level”. When writing
the transformation rules, it is not necessary to know which
models are going to be transformed later. Every model that is
compliant with the (input) meta model can be processed using
these transformation rules.

As a transformation language for MOF-based models, the
Object Management Group (OMG) introduced the “Meta Ob-
ject Facility (MOF) 2.0 Query/View/Transformation (QVT)”.
It is particularly well suited for our purposes. The fact that
the name of the language contains “MOF” makes the close
connection obvious. QVT includes two different language
versions. For our purposes, the declarative QVT Relations
(QVT-R) is more suitable:

• A declarative notation leads to compact transformation
rules that require less code duplication.

• The developed rules, their interaction with each other-
as well as the connection between the source and

182

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the target model, may subsequently be analysed more
effectively.

• During the execution of a QVT-R transformation so
called trace classes are generated. These are useful
for later analysis.

• QVT-R has a graphical syntax allowing a clear and
easy to understand presentation of the transformation
rules.

UML
model

UML
meta modell

OWL
meta modell

OWL
model

QVT-R
processor

transformation rules
UML → OWL

OWL
model

UML
model

transformation rules
OWL → UML

input

output

UML → OWL

OWL → UML

instance of

instance of

input

output

instance of

instance of

Fig. 1. Sketch of the transformation UML↔OWL. The upper part of the
figure is read from left to right. The lower part is read from left to right.

Figure 1 sketches the complete transformation process for
UML and OWL used in the context of this work. The upper
half shows the UML → OWL transformation, the lower half
the OWL→ UML transformation. Common for both directions
of transformation is the use of UML and OWL meta models.
Before and after the actual model-to-model transformations,
certain pre-transformations need to be done, especially when
dealing with OWL ontologies. These pre-transformations map
between concrete and abstract syntax. This can easily be done
using the OWL API [3] or an XSLT script.

III. ELEMENT TYPES

Element types are among the most important components
of a conceptual model: “Defining the entity types [. . .] is
a crucial task in conceptual modeling” [4, p. 41]. Element
types are also known as concepts and are eponymous for the
term “conceptual model”. Element types are used to group
individual objects with the same or similar characteristics.

Both UML and OWL make an equal distinction between
classes on the one side and “instances” resp. “individuals” on
the other side. Because of this similarity, a transformation from
UML classes into OWL classes is straight forward.

For the transformation from OWL to UML, one must
distinguish between named—i.e, declared—classes on the one
hand and unnamed class expressions (CE) on the other hand.
A named class is the simplest case. In this case, a UML class
is created with its name derived from the identifier of the
class. Transformations of unnamed CE will be covered in later
sections about generalization (ObjectUnionOf) and intersection
(ObjectIntersectionOf).

A. Names

For an unambiguous identification, each element type must
have a unique name within a model. The UML specification
demands that every model element must have a unique name
within its package. This ensures that each model element can
be uniquely identified by specifying its name and the position
in the package hierarchy. OWL uses Internationalized Resource
Identifier (IRI) conforming to RFC 3987 to name element types
as well as other elements of an ontology—instances of the
OWL meta class Entity. All assigned names have global
scope, regardless of the context in which they are used.

Since—unlike in UML—an OWL model element must
have a unique name not only within a package but globally,
such a globally unique name must be assigned during the trans-
formation of any model element. Therefore, corresponding
globally unique IRIs are generated during the transformation.
For the transformation OWL → UML it is sensible to use
the remaining characters of an IRI written in short form as the
name of UML elements—assuming the prefix IRI is associated
with the package. As a result the generated UML models will
be easier to read. This is possible, because names in the UML
must be unique only within a package.

B. Inheritance

A common situation in conceptual modelling is that the
population of one element type is neccessarily also the pop-
ulation of a another element type. This is referred to as an
inheritance relationship between these two element types.

Due to the very similar structure and semantics—especially
the transitivity—of Generalization elements on the one hand
and SubClassOf axioms on the other hand, a transformation
from UML to OWL is easily possible. If both of the elements
that are connected via an instance of the UML meta class
Generalization can be transformed to OWL, the transformation
of the Generalization instance is simple. An instance of the
OWL meta class SubClassOf must be created during the
transformation process. Since the newly created SubClassOf
element is an axiom, it is necessary to connect it to the
containing ontology.

For the transformation of an axiom of the form
SubClassOf(Cc Cp) in the direction OWL → UML the
following cases must be distinguished:

(a) Both sub-class Cc and super class Cp can be trans-
formed into a UML class.

(b) At least one of the element types is a CE and the
membership to that CE is described by necessary and
sufficient conditions.

(c) Al least one of the element types cannot be trans-
formed into a UML class due to other reasons (e.g.
complementing).

In case (a) in which both element types can be mapped, a
transformation is simple. Figure 2 shows an example for the
transformation of a SubClassOf axiom in this simplest case.
An instance of the UML meta class Generalization is used to
create an inheritance relationship between the two transformed
UML classes.

183

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Territory

Province

Declaration(Class(:Province))
Declaration(Class(:Territory))

SubClassOf(:Province :Territory)

Fig. 2. Example for the transformation of a SubClassOf axiom.

If in case (b) one of the two element types is a CE defined
by necessary and sufficient conditions, one has to distinguish
whether it is the sub-class Cc or super-class Cp. If it is the
sub-class Cc it is a case as shown in this example:

SubClassOf(
DataMinCardinality(1 :hasISBN)
:Book

)

The element type Cc is defined by a formula φ. Every
individual e is an instance of this element type if, and only if,
it satisfies the formula:

Cc(e)↔ φ(e)

The fact that an individual e is an instance of Cp is denoted
by Cp(e). From the inheritance relationship

Cc(e)→ Cp(e)

immediately follow (by substituting Cc(e))

φ(e)→ Cp(e)

Meeting the formula φ(e) is therefore a sufficient condition
that an object is an instance of the element type Cp. Since
UML does not support automatic classification on the basis of
sufficient conditions, this case is not transformable.

The situation in case (b) is different, if the element type
defined by necessary and sufficient conditions appears as
super-type Cp. Here is an example for this case:

SubClassOf(
:Book
DataMinCardinality(1 :hasISBN)

)

Taken alone, the element type Cp could not be transformed
into a UML class. However, the fact that the element type Cp

occurs within in SubClassOf axiom as super-type makes
the necessary condition of the CE a necessary condition of the
sub element type Cc. This is shown in the following:

The element type Cp is defined by a formula φ. Every
individual e is instance of this element type if, and only if, it
satisfies the formula:

Cp(e)↔ φ(e)

The fact that an individual e is an instance of Cc is denoted
by Cc(e). From the inheritance relationship

Cc(e)→ Cp(e)

immediately follow (by substituting Cp(e))

Cc(e)→ φ(e)

To meet the formula φ(e), it is therefore a necessary
condition that an object is an instance of the element type
Cc. The example shown in the listing above can be read as:
“Every book must have at least one ISBN.” Such necessary
conditions are in turn easily transformable into UML.

C. Abstract Elements

An element type is called abstract if it cannot be instan-
tiated. Thus, one might assume, models containing abstract
classes are by definition inconsistent. Wahler et al. provide
a solution to this apparent problem in [5]. UML allows
the definition of abstract classes that must not have direct
instances. Instantiation is only allowed for subclasses. OWL
knows no language construct to define that a class must not
contain any individual directly, and only one of its subclasses
is allowed to contain individuals.

Usually, abstract classes appear in connection to gener-
alizations. In that context, it is possible to treat them as
“normal” classes. However, the limitation remains that after
the transformation from UML to OWL, it cannot be assured
that an abstract class does not contain any direct instances.

During the transformation of instances of the OWL meta
class ObjectUnionOf in connection with inheritance rela-
tionships, abstract element types play a role. This is discussed
in the section about generalizations below.

D. Element types with fixed population

An element type with a fixed population consists of a
predefined set of objects that make up the population of this
element type. It is not possible to classify more objects as
instances of the element type. UML has no way to specify
that the population of an element type may only consist of
a fixed set of objects. For data types, it is possible to define
element types with fixed population by using an enumeration.

In OWL, elements with a fixed population can be defined
for both individuals as well as for values of data types. For a
fixed set of individuals, this is a CE. A predefined set of values
is a data range. It is not necessary that the listed individuals
are instances of the same element type. Similarly, the values
listed do not have to belong to the same data type. Since, in
UML one can only defined data types with fixed population,
a transformation of the ObjectOneOf-CE is not possible.
Both transformation directions for data types are described in
the corresponding sections about enumerations.

E. Generalization

A generalization is an extension of the inheritance concept
discussed above. Usually, more than two element types are
put into relation. It is also possible to specify whether it is a
complete and/or non-overlapping generalization.

In UML, the generalization of element types is represented
similarly to the the inheritance of element types. Also, in-
formation about whether a generalization is complete and/or
non-overlapping (disjoint) can be expressed in UML. Four

184

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

characteristics can be used for this: complete, incomplete,
disjoint, or overlapping.

In addition to simple inheritance with the help of
a SubClassOf axiom, OWL knows another axiom that
can be used to define that the element types E2 . . . En

constitute a complete, non-overlapping partition of E1:
DisjointUnion(E1, E2, . . . , En).

Because of the different possibilities in UML to specify
completeness or non-overlapping of generalization relation-
ships, different cases for the transformation UML → OWL
can be identified:

• general case

• non-overlapping generalization

• non-overlapping and complete generalization

• complete (but not non-overlapping) generalization

• generalization of data types—treated in the section on
data types

General case: The concepts of specialization and gen-
eralization in UML and OWL are very similar. If E′ is
a specialized sub-type of an element type E and i is an
instance resp. individual, E′(i) → E(i) holds true in both
cases. Therefore, the transformation is quite simple. For every
generalization relationship “E is generalization of E′ (resp. E′

is specialization of E)”, the axiom SubClassOf(E′ E)
is added to the ontology.

Non-overlapping generalization: A generalization is non-
overlapping (disjunct), if an instance of a sub-type must not
be an instance of another sub-type of the same generalization
at the same time. This restriction can be enforced by adding a
DisjointClasses axiom (instance of the OWL meta class
DisjointClasses), which contains all sub element types
of the generalization.

Class 2

Class 1

Class 3

{disjoint}

Declaration(Class(:Class1))
Declaration(Class(:Class2))
Declaration(Class(:Class3))

SubClassOf(:Class2 :Class1)
SubClassOf(:Class3 :Class1)
DisjointClasses(:Class2 :Class3)

Fig. 3. Example for the transformation of non-overlapping (but not neces-
sarily complete) generalization.

Non-overlapping and complete generalization: If a gener-
alization is non-overlapping and complete, a stronger axiom
can be used. A DisjointUnion(E E′

1 . . . E′
n) axioms–

which is actually only a shorthand notation—states that every
individual, which is an instance of element type E, is an
instance of exactly one element type Ei and every individual,
which is an instance of element type Ei, automatically belongs
to the population of E.

Complete generalization: The situation is similar when
the generalization is complete, but not overlapping. In this
case, the DisjointClasses axiom contained in the axioms
combined in the shorthand notation of a DisjointUnion
axiom is not necessary. This results in the solution shown
in Figure 5, which uses an ObjectUnionOf-CE and a
EquivalentClasses axiom.

{disjoint,complete}
Declaration(Class(:Class1))
Declaration(Class(:Class2))
Declaration(Class(:Class3))

DisjointUnion(:Class1 :Class2 :Class3)
Class 2

Class 1

Class 3

Fig. 4. Example for the transformation of a non-overlapping and complete
generalization.

Class 2

Class 1

Class 3

{complete}

Declaration(Class(:Class1))
Declaration(Class(:Class2))
Declaration(Class(:Class3))

EquivalentClasses(
 :Class1
 ObjectUnionOf(
 :Class2
 :Class3
))

Fig. 5. Example for the transformation of a complete but not non-overlapping
generalization.

1) ObjectUnionOf: An ObjectUnionOf(E1 . . . En)
defines an element type with a population consisting of those
individuals that are instance of one or more element types
E1 . . . En. If E1 . . . En can be transformed into UML classes
C1 . . . Cn, the ObjectUnionOf can be represented as ab-
stract class.

Between the abstract class and each member of the union
C1 . . . Cn generalization relations (instances of the UML meta
class Generalization) must be created during the transforma-
tion process. The generalizations are combined into an instance
of the UML meta class GeneralizationSet. It is marked as
complete. This is possible, because in UML the definition of
a union of element types E1 . . . En is semantically equivalent
to an abstract element type and the specification of subtypes.

Person

LegalPersonNaturalPerson

UnionOf_NaturalPerson_LegalPerson

{complete}

SubClassOf(
 :Person
 ObjectUnionOf (
 :NaturalPerson
 :LegalPerson
))

Fig. 6. Example for the transformation of an instance of the OWL meta
class ObjectUnionOf into an abstract class (instance of the UML meta
class Class) and inheritance relationships with GeneralizationSet.

DisjointUnion: The DisjointUnion axiom is a syn-
tactical shortcut. The axiom DisjointUnion(A B1 . . .
Bn) is semantically equivalent to the three axioms

SubClassOf(A ObjectUnionOf(B1 . . . Bn))
SubClassOf(ObjectUnionOf(B1 . . . Bn) A)
DisjointClasses(B1 . . . Bn)

In this particular case, the above mentioned problems of
SubClassOf axioms and sufficient conditions for class mem-
bership can be circumvented and the semantics of the expres-
sion can be transformed. The long notation of a Disjoint-
Union axiom contains a ObjectUnionOf(B1 . . . Bn)
CE. As described above, this CE is transformed into n + 1
UML classes, n generalization relations and an instance of

185

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the UML meta class GeneralizationSet which is marked as
complete. However, in this case the superclass is not abstract.
A name is assigned to this class that corresponds with the
IRI of the OWL class. Additionally, the instance of the UML
meta class GeneralizationSet is marked disjoint to reflect the
disjointness of the classes B1 . . . Bn.

F. Intersection

An element type can be defined by the intersection of other
element types. An object is an instance of that element type if
it is an instance of a set of other element types.

Since UML has no model element similar to General-
izationSet for specializations, the semantic of this construct
cannot be expressed completely. If it is possible to transform
the element types E1 . . . En that are part of the ObjectIn-
tersectionOf-CE into UML classes C1 . . . Cn, it is only
possible to define an abstract class, which is a subclass of the
classes C1 . . . Cn. Since UML does not allow an automatic
classification by sufficient conditions, it is not possible to
enforce that an object, which is a instance of all classes
C1 . . . Cn, is also an instance of the abstract subclass.

IV. DATA TYPES

In general, a datatype consists of three components: the
value space, the lexical space, and a well-defined mapping
from the lexical into the value space. The value space is the—
possible infinite—set of values that can be represented by
the datatype. The lexical space describes the syntax of the
datatype’s values. The mapping is used to map syntactically
correct values to elements of the value spaces. It is possible
that many, even infinite many, syntactically different values are
mapped to the same element of the values space.

Primitive datatypes do not have an internal structure.
Examples of primitive types are character strings, logical
values, and numbers.

Enumerations are a special kind of datatypes with no
internal structure. In contrast to general primitive types the
lexical space and the value space of an enumeration are equal-
sized, well-defined finite sets. The mapping from lexical to
value space is a one-to-one mapping. An example for an
enumeration datatype are the English names of the days of
the week which consist of seven possible values.

In contrast to primitive data types, complex data types
have an internal structure. The following are examples for
complex data types:

• a person’s name consisting of a given name and a
family name

• a physical measurement consisting of value and unit
of measurement

• an address consisting of street name, house number,
postal code and city name

Generalization of datatypes can be defined similarly to
the generalization of element types. If a datatype A generalizes
a datatype B each date that is instance of B (i.e., its lexical
representation belongs to the lexical space of B and its value
belongs to the value space of B) is also instance of datatype

A. For example the integers generalize natural numbers. Each
natural number is also an integer.

A. Representation in UML

Apart from a few pre-defined primitive types UML allows
the definition of additional datatypes in class diagrams. These
can be primitive types, complex datatypes, and enumerations.
In UML, datatypes—similar to classes—can have owned at-
tributes (as well as operations which are not discussed here).
Therefore, they can be used to describe structures. Figure 7
shows examples for the three kind of datatypes.

Weekday
«enumeration»

Monday
Tuesday
Wednesday

Date
«primitive»Name

«datatype»

firstname : String
lastname : String

Fig. 7. Examples for datatypes in UML. Left: user-defined datatype with
two components. Center: user-defined primitive datatype. Right: Enumeration
with three allowed values.

In contrast to instances of classes, “any instances of that
data type with the same value are considered to be equal
instances.”[6, p. 63] Although the graphical representations
of datatypes in general (instances of DataType) as well as
primitive types (instances of PrimitiveType and enumerations
(instances of Enumeration) in particular look similar to the
representation of classes (instances of Class), they are different
elements of the meta model as shown in Figure 8.

DataType

Classifier

Enumeration Class

EncapsulatedClassifier BehavioredClassifier

StructuredClassifier

PrimitiveType

Fig. 8. Extract from the UML meta model, showing the difference between
classes and datatypes.

In UML, generalizations are defined for Classifier and
therefore also for DataType. Thus, inheritance/generalization
relations between datatypes can be defined in a UML class
diagram.

B. Representation in OWL-2

In OWL-2, three different kinds of datatypes can be dis-
tinguished:

1) rdfs:Literal as base datatype
2) datatypes of the OWL-2 datatype map, which is

basically a subset of the XML Schema datatypes [7].
3) datatypes that have been defined within an ontology

using DatatypeDefinition

The value space of the base datatype rdfs:Literal
is the union of the value spaces of all other datatypes.
The OWL-2 datatype map adopts the value space, lexical
space, and the restrictions for user-defined datatypes from

186

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the XML Schema specification. Sets of values (instances of
datatypes)—so called Data Ranges—can be defined by com-
bining datatypes via common set-theoretic operations. A set
of values consisting exactly of one pre-defined list can be de-
scribed by using DataOneOf. A DatatypeRestriction
allows to define a set of values by restricting the value space of
a datatype with constraining facets. The OWL-2 datatype map
defines which restrictions are allowed. For example a number
datatype can be restricted by: less equal, greater equal, equal,
and greater.

An OWL-2 datatype is defined by assigning an Inter-
nationalized Resource Identifier (IRI) to a DataRange us-
ing a DatatypeDefinition axiom. According to the
OWL-2 DL specification this IRI must have been declared to
be the name of a datatype.

Declaration

Axiom

1

Datatype

DatatypeDefinition

DataRange

datatype

entity

Entity
dataRange1 1

Fig. 9. Extract relevant for datatypes from the OWL-2 meta model.

The abstract syntax (see Figure 9) shows that a datatype
is linked indirectly (via an instance of DatatypeDefi-
nition) to its value space (an instance of a subclass of
DataRange. Therefore, it is possible to use a datatype with
no assigned value space. By definition this datatype has the
value space of rdfs:Literal.

Subclasses of DataRange (e.g., DataUnionOf), which
are used for the definition of value sets (and therefore
datatypes), have references to DataRange. Datatype is a
subclass of DataRange, too. Thus, arbitrarily nested con-
structions of datatype-defining elements are possible.

C. Primitive Types

Three cases have to be considered for the UML→ OWL-2
transformation of primitive types:

1) The datatype is one of the four pre-defined datatypes
“Boolean”, “Integer”, “String”, or “UnlimitedNatu-
ral”.

2) The datatype is one of the XML Schema datatypes.
3) The definition of the (user-defined) datatype is part

of the UML-model.

Since OWL-2 uses the datatype-definitions from XML
Schema, a datatype in case (1) can be transformed into its
corresponding datatype from XML Schema. Primitive types
can be recognized by the fact that they are contained in a
package “UMLPrimitiveTypes”.

The transformation in case (2) is even more obvious
because a datatype is used that is also present in OWL-2. The
name of the package containing the primitive types depends

on the UML type library used. A common package name is
“XMLPrimitiveTypes”. This name can be used to recognize
primitive types that fall under case (2). The XML Schema
datatype can be referenced in the ontology by adding the XSD
namespace to the type’s name.

For user-defined datatypes in case (3), a new datatype is
defined in the ontology by using a Datatype axiom. OWL-2
datatypes—like all OWL-2 model elements—are identified by
unique IRIs. Therefore, an appropriate IRI must be gener-
ated during the transformation. In UML, elements (including
datatypes) are uniquely identified by their name and package
hierarchy. Therefore, a combination of package and datatype
name can be used for the IRI.

For the transformation OWL-2→ UML, primitive types are
difficult. OWL-2 offers a variety of possibilities to define new
datatypes. However, some primitive types—and probably the
most common ones—can be transformed. The primitive types
of OWL-2 derive from the XML Schema datatypes. There are
established UML-libraries for the XML datatypes. Therefore,
it is sufficient to include such a library into the transformation
process. An instance of a primitive type contained in the library
can be looked up by the IRI of the OWL-2-datatype and
references as necessary.

D. Enumerations

As mentioned in Section VIII, several authors have already
discussed how to transform enumerations. In OWL-2 the
data range DataOneOf is suitable to define a datatype with
a fixed pre-defined value space. Each lexical value of the
DataOneOf data range is transformed into an Enumera-
tionLiteral instance and vice-versa. OWL-2 as well as UML
support the specification of datatypes for the elements of
an enumeration: An OWL-2 Literal instance has a datatype
attribute, an UML EnumerationLiteral instance has a classifier
attribute referencing the datatype.

Declaration(DataType(:Weekday))

DatatypeDefinition(
 :Weekday
 DataOneOf("Monday" "Tuesday" "Wednesday")
)

Weekday
«enumeration»

Monday
Tuesday
Wednesday

Fig. 10. Example for the transformation of an enumeration.

For the transformation OWL-2→ UML one has to consider
the fact that in OWL-2 the data range DataOneOf can be used
without a DatatypeDefinition which assigns a name to
it. Since an UML Enumeration necessarily needs a name, it
can be generated based on the literals contained in the data
range.

E. Complex Data Types

OWL-2 datatypes consist of exactly one literal and are
therefore not further structured. Since OWL-2 is built upon the
Resource Description Framework (RDF), there is the theoret-
ical possibility to use a blank node and the RDF-instruction
parseType="Resource" to implement complex data as
shown in this listing:

<rdf:RDF xml:base="http://example.com/persons/"

187

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

xmlns="http://example.com/persons/"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<owl:Ontology rdf:about="http://example.com/persons/"/>

<owl:Class rdf:about="Person" />

<owl:NamedIndividual rdf:about="Timmi">
<rdf:type rdf:resource="Person"/>
<hasName rdf:parseType="Resource">

<first>Timmi</first>
<last>Tester</last>

</hasName>
</owl:NamedIndividual>

</rdf:RDF>

However, neither the OWL-1 nor the OWL-2 specification
mention parseType="Resource". Therefore, it is proba-
bly not a valid construct for OWL-2. Even if this notation was
valid for OWL-2 and an element type could be assigned to such
an anonymous individual, the definition of the element type
would be indistinguishable from the definition of a “normal”
element type.

The UML→ OWL-2 transformation of complex datatypes,
i.e., datatypes with owned attributes, is similar to the transfor-
mation of UML classes with owned attributes into OWL-2
classes and properties. There are two characteristics of UML
datatypes that have to be considered:

1) Values do not have an identity.
2) Every value exists only once.

Since the transformation is similar to the transformation of
classes the instances of the resulting element in the ontology
will be individuals. In OWL-2, every (typed) individual must
have a name. Therefore, the semantics for characteristic (1)
is changed: in UML, the instance of the datatype does not
have an identity. The corresponding individual in OWL-2 is
assigned with an IRI by which it can be referenced (and also
identified).

Characteristic (2) requiring that every value must exist not
more than once, can be ensured by using HasKey axioms.
For every UML datatype D with owned attributes a1 . . . an
that is transformed into a OWL-2 class C with data property
dp1 . . . dpn, the following axiom is added to the ontology:

HasKey(C () (dp1 . . . dpn))

This axiom ensures that every occurrence of an individual with
the same values for dp1 . . . dpn is one and the same individual.

Declaration(Class(:Name))

Declaration(DataProperty(:Name_firstname))
DataPropertyDomain(:Name_firstname :Name)
DataPropertyRange(:Name_firstname xsd:string)

Declaration(DataProperty(:Name_lastname))
DataPropertyDomain(:Name_lastname :Name)
DataPropertyRange(:Name_lastname xsd:string)

HasKey(:Name () (:Name_firstname :Name_lastname))

Name

firstname : String
lastname: String

«datatype»

Fig. 11. Example for the transformation of a complex datatype.

F. Generalization of datatypes

In general, the transformation of a datatype generalization
in a UML class diagram is not possible, since OWL-2 has

no support for inheritance/generalization of datatypes. In the
special case of a complete generalization of datatypes with
no internal strcuture (e.g., enumerations), a transformation
is possible: While the generalization of UML classes can
be transformed into an OWL-2 ObjectUnionOf class ex-
pression, this is not possible for datatypes. As the name
suggest, an ObjectUnionOf can only be used for classes.
Instead, an instance of DataUnionOf is used. The sub-
datatypes combined in the DataUnionOf constitute a new
data range. By using a DatatypeDefinition axiom a
name is assigned to this set of datatypes. This name is the
name of the super-datatype from UML. Figure 12 shows an
example for such a transformation.

Declaration(Datatype(:Weekday))
Declaration(Datatype(:WeekdayDE))
Declaration(Datatype(:WeekdayEN))

DatatypeDefinition(:WeekdayDE
 DataOneOf("Montag" "Dienstag" "Mittwoch" ...)
)

DatatypeDefinition(:WeekdayEN
 DataOneOf("Monday" "Tuesday" "Wednesday" ...)
)

DatatypeDefinition(
 :Weekday
 DataUnionOf(:WeekdayDE :WeekdayEN)
)

WeekdayDE

Montag
Dienstag
Mittwoch
…

«enumeration»
WeekdayEN

Monday
Tuesday
Wednesday
…

«enumeration»

Weekday
«datatype»

{complete}

Fig. 12. Example for the transformation of a generalization relation between
datatypes.

V. RELATIONSHIP TYPES

In a software system one can typically find a variety
of relations between instances of the element types. The
characteristics of these relations are described by means of
relationship types. Instead of the term “relationship type”
the term “relation” is often used. This is not quite correct,
as a relation refers to a concrete instance of a relationship
type between instances of element types. A relationship type
describes which characteristics apply to all of its relations in
general.

A relation includes participants (=participating instances
of an element type) that play a certain role. Applied to
relationship types, these participants are element types that
play a certain role within the relationship type. It is possible to
omit the indication of roles for a relation and the relationship
type, respectively.

A relationship type with two members is called binary
relationship type. Corresponding relations are called binary
relations, accordingly. Since arbitrary n-ary relations can be
transformed into binary relations [4, Chap. 6][8], only binary
relationship types are considered in the following.

In UML, binary relationship types can be presented in
two different ways—as associations or as class-dependent
attributes. Associations are depicted by lines between element
types. The name of the relationship type can be written close
to the line, maybe with an arrow indicating the direction.
Class-dependent attributes are listed in the middle section
of an element type. Although the concrete graphical syntax
of associations and attributes differs significantly from each
other, both are represented in the abstract syntax by the same
UML meta class Property. Because of this similarity, it is

188

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

useful to consider the transformation of associations and class-
dependent attributes together, since they differ only within a
few aspects.

OWL knows two different constructs to connect elements:

• Object Properties – for relations between instances of
classes

• DataProperties – for relations between an instance of
a class and an instance of a datatype.

At the declaration of an OWL property—i.e., an indication
that a property with this name exists—initially no information
on the related element types E1 and E2 is made. Therefore,
an instance of such a relationship type can be used for the
connection of arbitrary objects. Only by the use of further
axioms statements about the domain and the range of the
property are made. Thus, the element types E1 and E2 are
determined.

Since the UML meta class Association that represents an
association is a sub-type of Classifier, all associations are
direct components of a UML package. The OWL concept most
similar to an association is an object property. Via its declara-
tion it is also a component of the ontology. The transformation
of class-dependent attributes is a bit more complicated because
there is no obvious corresponding concept to them in OWL.
The main issue is that in OWL classes do not contain any
other model elements—as it is the case in UML. But again,
the connection can be mapped to an object property or a data
property. In both cases, the decision on whether an instance of
the UML meta class Property is mapped to an object property
or a data property depends on the kind of element type the
Property instance points to. If it is an instance of the UML
meta class Class or a complex datatype—i.e., an instance of
the UML meta class DataType with dependent attributes—an
object property will be used. If however, it is an instance of a
simple data type—i.e., an instance of the UML meta classes
PrimitiveDataType or Enumeration—, a data property will be
used.

In contrast to UML, where the types of an association
(domain and range) are always specified, it is optional to
specify domain and range for properties in OWL. Per defini-
tion, the domain and range of such properties is owl:Thing
(respectively owl:Literal for the range of a data property).
Such properties can be used to connect instances of arbitrary
element types. In order to restrict the properties like in an UML
model, it is necessary to add appropriate axioms that specify
the allowed classes and datatypes for domain and range of the
property. The range of an instance of the UML meta class
Property can be determined as follows: it is the element type
that is connected to the Property instance via an instance of the
UML meta class Type appearing in the role type. To determine
the domain one has to distinguish between associations and
class-dependent attributes.

• In case of a class-dependent attribute a connection
exists between the Property instance and a instance
of Class in role class. The element type represented
by this Class instance is the wanted type.

• If the Property instance is part of an association (i.e.,
a connection to an instance of Association where the

role association exists), the type of the other member-
end of the association has to be chosen.

Figure 13 illustrates this selection of domain and range.

:Type

:Association

:Property :Property

association association

memberEnd memberEnd
type type

other end-
point of the
association

domain
connection
is present

range

:Type

Fig. 13. Selection of the domain and range in case of an association. The
focus is on the thicker bordered Property instance.

In order to avoid that two OWL properties that are the
transformation result of different instance of the UML meta
class Property are interpreted as a single property, all those
properties that are not in an inheritance relationship will be
marked as disjoint. For this purpose, DisjointObject-
Properties and DisjointDataProperties axioms
are added to the ontology.

As described above, OWL distinguishes between data prop-
erties connecting classes with datatypes, and object properties
connecting classes with classes. Data properties are mapped
onto class-dependent attributes in UML. With a few exceptions
object properties are also transformed into class-dependent at-
tributes. Object properties to which there is an inverse relation
within the ontology are treated seperately. Such an inverse rela-
tion may be specified in several ways: by explicit specification
using an InverseObjectProperties axiom, by using
an anonymous inverse InverseObjectProperty or by
marking an object property as symmetric or inverse-functional.

It must be expected that more than one class is specified
as domain or range of a property. UML does not allow this
notation. In such cases, a helper class is added, which inherits
from all classes in the domain or range. Figure 14 illustrates
such a construction. At those places where the affected object
property is used, the new auxiliary class will be used in the
UML model, accordingly.

Person Author

Range_hasAuthor

ObjectPropertyRange(:hasAuthor :Person)
ObjectPropertyRange(:hasAuthor :Author)

Fig. 14. Example for the transformation of multiple axioms indicating the
range of an object property into UML classes with inheritance relations.

One possibility to transform object properties with
owl:Thing as domain and/or range is to define a single
base class Csuper within the UML model. Csuper is defined
as super-class of all other classes in the model and thus
corresponds to owl:Thing. In this particular case of a single
base class, an object property without definition of domain and
range can be mapped to an instance of the UML meta type
Association with two member ends of type Csuper.

A. Inheritance

Sometimes it is necessary that from one relationship be-
tween two objects, another relationship follows automatically.

189

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In other words, the population of a relationship type R2

includes the population of another relationship type R1. All
instances of R2 are automatically also instances of R1.

In UML, the inheritance of relationship types is realized
similarly to the inheritances between element types. If both
relationship types are represented by an association, a gener-
alization between these two associations can be created. In the
case of class-dependent attributes, a subsetted attribute can be
specified. Also, OWL allows to express that two relationship
types are in an inheritance relationship. For this purpose, the
axioms SubObjectPropertyOf and SubDataProper-
tyOf exist. An example of such a transformation is shown in
Figure 15.

An inheritance relationship (instance of the UML meta
class Generalization) between two instances of the UML meta
class Association can be transformed into OWL by using
instances of the OWL meta classes SubPropertyOf. Since a
bidirectional association is transformed into two object proper-
ties, the generalization between two bidirectional associations
must be transformed into two instances of the OWL meta class
SubPropertyOf as well.

C1

C3

C2

C4

A21 A12

A43 A34

SubClassOf(:C3 :C1)
SubClassOf(:C4 :C2)

[…]

SubPropertyOf(:A34 :A21)
SubPropertyOf(:A43 :A12)

Fig. 15. Example for the transformation of generalized associations.

For the transformation of a SubObjectPropertyOf
axiom the class-dependent attribute subsettedProperty of the
UML meta class Property can be used. It specifies the parent
Property instance.

B. Cardinality Constraints

Cardinality constraints are one of the most important types
of restrictions for conceptual modelling. They allow a technical
limitation of the quantity of relations that an object can have
with other objects. In UML, cardinality constraints are called
multiplicities and can be specified for both associations as well
as class-dependent attributes.

OWL also knows constructs to describe cardinalities. Class
expressions (CE) are used to describe certain sets of individ-
uals. In the following, a binary relation R(x, y) between two
individuals x and y is considered.

The CE ObjectMinCardinality(n R) describes
the set of individuals that are in a relation R to more than n
individuals: {x : |{y : R(x, y)}| ≥ n}. Corresponding CEs
exist for sets of individuals that are linked with less than n
individuals (ObjectMaxCardinality) or exactly n indi-
viduals (ObjectExactCardinality). If y is a datatype,
the CEs DataMinCardinality, DataMaxCardinatl-
ity, or DataExactCardinatliy are used.

ExactCardinality is only a shortcut for a pair of
MinCardinality and MaxCardinality elements. How-
ever, using this shortcut improves the readability of the ontol-
ogy. Therefore, a UML cardinality constraint with the value

for upper and lower bound is tranformed into an instance of
the UML meta class ExactCardinality with a equivalent
value.

If the value of the upper bound is 1, an additional instance
of the OWL meta class FunctionalObjectProperty or
FunctionalDataProperty is created. Again, although
this is only a abbreviating notation, the additional axiom
improves the comprehensiveness of the ontology, because the
type of property is easier to recognize.

However, it is not possible and sufficient to add the
corresponding CE for the cardinality constraints directly to
the ontology. On the one hand, CEs are not axioms and
can therefore not be added to the ontology directly. On the
other hand, in UML, cardinality constraints of class-dependent
attributes and associations always refer to a specific class.
In OWL properties are not directly contained in classes (see
above). Therefore, cardinality constraints defined for properties
as CE do not affect classes.

These difficulties can be solved by adding an instance of
the OWL meta class SubClassOf to the ontology for every
cardinality constraint. The sub-type is defined as the OWL
class that corresponds to the UML class for which the rela-
tionship type and its cardinality constraint were defined. The
super-type is the CE that represents the cardinality constraint.
Thus, the cardinality constraints of the CE are inherited by the
class that is related to the association or the class-dependent
attribute.

Class 1

attrA : Class2 [0..2]
attrB : string [1]

Class 2

Declaration(Class(:Class1))
Declaration(Class(:Class2))
DisjointClasses(:Class1 :Class2)

Declaration(ObjectProperty(:Class1_attrA))
ObjectPropertyDomain(:Class1_attrA :Class1)
ObjectPropertyRange(:Class1_attrA :Class2)
SubClassOf(
 :Class1
 ObjectMinCardinality(0 :Class1_attrA :Class2))
SubClassOf(
 :Class1
 ObjectMaxCardinality(2 :Class1_attrA :Class2))

Declaration(DataProperty(:Class1_attrB))
DataPropertyDomain(:Class1_attrB :Class1))
DataPropertyRange(:Class1_attrB xsd:string)
SubClassOf(
 :Class1
 DataExactCardinality(1 :Class1_attrB xsd:string))

Fig. 16. Example for the transformation of klass-dependent attributes and
associations with cardinality constraints.

For the direction OWL → UML it has to be considered
that the CE ObjectMinCardinality and ObjectMax-
Cardinality—and those for data properties, respectively—
define anonymous element types that specify restrictions on
the occurrence of a property. If an anonymous element type,
defined by such cardinality constraints is used as superclass
Cp within an SubClassOf(Cc Cp) axiom, the cardinality
constraints become constraints of the class-dependent attributes
of the subclass Cc. Figure 17 illustrates this case.

OWL offers two axioms to characterize properties as
functional. However, both axioms are only syntactic shortcuts
for a subclass axiom and a cardinality CE. Therefore, they
can be transformed into cardinality constrains 0..1 of the
corresponding instance of the UML meta class Property. The
InverseFunctionalObjectProperty axiom to char-

190

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Book
author : Person [1..5]
title : string [1]

Declaration(Class(:Book))
Declaration(Class(:Person))
Declaration(ObjectProperty(:author))
Declaration(DataProperty(:title))

SubClassOf(:Book
 ObjectMinCardinality(1 :author :Person))
SubClassOf(:Book
 ObjectMaxCardinality(5 :author :Person))
SubClassOf(:Book
 DataExactCardinatliy(1 :title xsd:string))

Fig. 17. Example for the transformation of various cardinality restricting
axioms into cardinality constrains of class-dependent attributes.

acterize an object property as inverse-functional is also a
syntactic shortcut. However, the problems with SubClassOf
axioms and sufficient conditions for class membership men-
tioned above prevent a similar transformation. The restriction
can be preserved by mapping the OWL property onto one
member-end of an instance of the UML meta class Association
and by setting a cardinality constraint 0..1 for the other
member-end of that association.

C. Value constraints

In case of a value restriction, the second participant of
a relationship type is set to exactly one value or an object.
In UML, it can be defined that a class-dependent attribute
is pre-set to a fixed value during the instantiation. In order
to prevent the change of this value even during dynamic
use, this value can also be marked as immutable. For both,
object properties as well as data properties, OWL offers the
possibility to set the second participant to a fixed value. The
value constraint can also be achieved by defining a one-element
element type and a corresponding cardinality axiom. However,
with ObjectHasValue and DataHasValue, OWL offers
shortcuts, which make the semantics clearer to a human reader.

Similar to the transformation of class-dependent attributes
with cardinality constraints into SubClassOf axioms of the
containing class, as a value constraint is transformed into a
SubClassOf axiom as well. The super-type will be an in-
stance of the OWL meta class DataHasValue (a data range).
Within that data range, the fixed value and the data property
generated from the class-dependent attribute are defined.

In the transformation OWL → UML, one can use the fact
that if an element type defined by a DataHasValue CE is
used as super-type Cp within SubClassOf(Cc Cp) axiom
the fixed value becomes a necessary condition for instances
of the class Cc. Every single instance of that class will have
exactly this fixed value. In a UML model, this value can be
defined for an instance of the UM meta class Property by
setting the class-dependent attribute default.

Book
title : string [1]
printed : boolean = true

Declaration(Class(:Book))
Declaration(DataProperty(:title))
Declaration(DataProperty(:printed))

SubClassOf(:Book
 DataExactCardinatliy(1 :title xsd:string))
SubClassOf(:Book
 DataHasValue(:printed "true"^^xsd:boolean))

Fig. 18. Example for the transformation of an axiom for a value constraint
into a value constraint of a class-dependent attribute.

D. Part-Whole-Relationships

Part-whole relations (also known as composition and ag-
gregation) are a special kind of relationship types. They play
an important role in modelling [4, p. 137]. They can be used to
express a certain semantic of the relationship. Additionally, fur-
ther restrictions can be imposed on the respective relationship
type. A part-whole relation is antisymmetric—i.e., if T is part
of G, G can not be part of T . There is disagreement on whether
part-whole relations are transitive or not [4, p. 142]. Since a
part-whole relation is a binary relationship type, the previously
made statements and observations for general relationship
types also apply to this kind of relationship types.

UML knows two kinds of part-whole relations: aggregation
and composition. They differ in both, (graphical) syntax and
their semantics. An aggregation is anti-symmetric and transi-
tive. Objects linked by it form an acyclic graph [9, p. 171].
It is allowed that a “part” is part of more than one “whole”.
Composition is a stronger form of aggregation. In addition to
anti-symmetry and transitivity, a “part” may—at a time—be
only part of a single ‘’whole”. Futhermore, the existence of a
“part” depends on the existence of the “whole”. It can not exist
without something it is part of. OWL has no special constructs
to identify part-whole relationships.

Like other associations between two classes, part-whole
relation types are transformed into object properties. Moreover,
the additional restrictions mentioned above are taken into
account:

a) aggregations are antisymmetric

b) an object must not be in an aggregation relation to
itself—that would be a contradiction to the antisym-
metry,

c) an object must not be part of more than one compo-
sition,

d) an instance of a class that is part of a composition
must not exist alone.

The asymmetry can be achieved by adding an Asymmet-
ricObjectProperty axiom to the object property that has
been transformed from the association with aggregation or
composition characteristic.

Restriction (b) can be transformed to OWL by adding an
IrreflexiveObjectProperty to the ontology for each
association with aggregation or composition characteristic.
This axiom prohibits the use of the corresponding object
property to connect an individual with itself.

Restriction (c) can be achieved by adding a Function-
alObjectProperty or an InverseFunctionalOb-
jectProperty axiom. If the association with composition
characteristic is bidirectionally navigable, it makes no differ-
ence what type of axiom is used. However, if the association
is only navigable from one direction the following distinction
has to be made. If the association is navigable from “part”
to “whole”, a FunctionalObjectProperty is used. A
connection between an individual of the “part”-class to more
than one individual of the “whole”-class would make the
ontology inconsistent. An InverseFunctionalObject-
Property axiom is used if the association is navigable from
“whole” to “part”.

191

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The enforcement of a constraint of the form (d) is not
possible, since the open world assumption is used for OWL.
The individual in question could be part of a composition that
is not explicitly listed in the ontology.

E. Inverse

If a conceptual model contains an relationship type
R(E1, E2) with two participating element types E1 and E2,
a common wish is to have the choice to use instances of
both element types as first or second participant. To make
this possible, one can define an inverse relationship type
Rinv(E1, E2).

For example, consider a book containing chapters. The
relationship type contains(Book,Chapter) is defined for the
element type Book and Chapter. Instances of type Book must
always appear as the first participant of such a relationship. If
a relationship type isContainedIn(Chapter,Book) that is
inverse to contains is defined, statements equvialent to those
with contains can be made with an instance of type Chapter
as first participant.

Although UML provides no possibility to explicitly mark
two arbitrary associations as inverses of each other, the two
ends of a binary bidirectional association can be seen as two
inverse relations.

The definition of inverse relationship types is only possible
for object property, not for data properties. A value (an instance
of a datatype) must not contain properties itself. OWL offers
three possibilities to use inverse relationship types:

1) An InverseObjectProperties is used to de-
clare two previously defined object properties as
inverses of each other..

2) The inverse of an object property can be used directly
by using the object property expression ObjectIn-
verseOf without assigning a name to it.

3) An object property is marked as inverse-functional.

It should be noted that for two individuals a and b the
inverse object property opinv(b, a) is automatically part of the
ontology if op(a, b) is contained in the ontology.

During the transformation UML → OWL bi-directional
associations are transformed into two—initially independent—
object properties. However, such associations are equivalent to
two directed mutually inverse associations. [9, p. 165] There-
fore, an instance of the OWL meta class InverseObject-
Properties is created and linked with the corresponding
instances of ObjectProperty.

Author

Book

hasAuthor

wrote

0..*

0..*

hasAuthor_wrote

Declaration(ObjectProperty(:hasAuthor))
ObjectPropertyDomain(:hasAuthor :Book)
ObjectPropertyRange(:hasAuthor :Author)

Declaration(ObjectProperty(:wrote))

InverseObjectProperties(:hasAuthor :wrote)

Fig. 19. Example for the transformation of an inverse object property into
an instance of the UML meta class Association.

When transforming inverse object properties in OWL on-
tologies into UML no class-dependent attributes are used—in

contrast to the generic case described above. Otherwise, the
connection between the two links could not be seen. Instead,
an instance of the UML meta class Association is used as
transformation target. The two instance of the UML meta class
Property occurring as member-ends are mutually set as the
value of the opposite attribute.

VI. CONSTRAINTS

Some very common constraints have been discussed in
the previous sections, such as cardinality constraints or non-
overlapping generalizations. In this section, further restrictions
on element types and relationship types will be discussed,
namely keys for element types and “conditional relationship
types” that work on a combination of element and relationship
types.

A. Key Constraints

Key constraints can be used to enforce that there are no two
different instances of an element type for which all relations
specified in the key have an identical value, or point to the
same object. There are simple keys that are based on only one
relationship, as well as composite keys, which are based on
multiple relations.

UML offers the possibility to define a single key per
element type. Class-dependent attributes (instances of the meta
class Property) can be marked that are part of this key. These
marked attributes can be used to identify an instance of the
element type.

OWL offers the HasKey axiom to define composite keys.
Such a key can not only be defined for named element type but
also for any CE. The relationship types to be considered are
divided into two sets, the object properties and the data proper-
ties. With the axioms FunctionalObjectProperty and
FunctionalDataProperty OWL provides yet another
way to define especially strong simple keys. An identity is
defined independently of the element type of the object, on
the basis of the relationship alone.

To transform a UML class with a key, i.e., some of its
class-dependent attributes are marked with isID=true, a
corresponding instance of the OWL meta class HasKey is
added to the ontology.

Town

name : String
latitude : double {ID}
lontigude : double {ID}

Declaration(Class(:Town))
Declaration(DataProperty(:name))
Declaration(DataProperty(:latitude))
Declaration(DataProperty(:longitude))

HasKey(:Town () (:latitude :longitude)

Fig. 20. Transformation of a composite key constraint.

The information that the properties appearing within
HasKey axioms of an OWL ontology form a key can be
transformed into an UML model by setting the value of the
class-dependent attribute isID for the instances of the UML
meta class Property that have been generated from those
properties. The transformation of functional object and data
properties has already been discussed above.

192

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Conditional relationship types

A conditional relationship type consists of a set of rela-
tionship types. An object must not appear more than once as
a member of an instance of these relationship types. As an
example, consider an address which might include either a
visiting address or a postbox, but not both.

UML does not provide a special construct to defined such
conditional relationship types. However, the ISO 19100 “UML
profile” defines a new meta class Union with the desired
semantics. Only one of a Union’s properties must be used.
In an UML diagram an instance of a Union is depicted by
adding the stereotype «Union» to a class symbol. However,
this is not a “real” UML stereotype, as the semantics of the
model element is changed. The set of the Union’s properties
is defined by the set of class-dependent attributes.

Two different mappings have been developed to transform
an instance of the meta class Union into OWL. The first
mapping is only valid if the types of all class-dependent
attribute are ether datatypes or classes— but not a mixture
of both. In that case the attribute are transformed into object
properties or data properties. By contrast, the second mapping
also allows the transformation of a mixture of classes and
datatypes. However, a larger number of axioms is required
to reproduce the semantics.

Mapping 1: Let C be a class representing an instance
of Union. Let p1 . . . pn be its properties. It must be ensured
that only a single property px ∈ p1 . . . pn is specified for
an individual. To achieve this, a helper property pUnion with
domain C and the axioms pi v pUnion∀i ∈ 1..n are added to
the ontology.

A DataExactCardinality axiom is used to restrict
the number of pUnion properties for each individual of class
C to exactly one. This prevents the setting of two or more
different properties. Due to OWL’s OWA it cannot be guaran-
teed that a property has been specified explicitly at all. This
problem has been discussed above in the section on cardinality
constraints.

Class1

name : String
uri: anyURI

«Union»

Declaration(Class(:Class1))

Declaration(DataProperty(:name))
DataPropertyDomain(:name :Class1)
DataPropertyRange(:name xsd:string)
SubDataPropertyOf(:name :Class1_UnionProperty)

Declaration(DataProperty(:uri))
DataPropertyDomain(:uri :Class1)
DataPropertyRange(:uri xsd:anyURI)
SubDataPropertyOf(:uri :Class1_UnionProperty)

Declaration(DataProperty(:Class1_UnionProperty))
DataPropertyDomain(:Class1_UnionProperty :Class1)

SubClassOf(
 :Class1
 DataExactCardinality(1 :Class1_UnionProperty))

Fig. 21. First approach for a transformation of an ISO 19100 Union.

Mapping 2: For each property pi ∈ p1 . . . pn of the Union
an OWL helper class Ci is defined. By using a Disjoint-
Classes axiom, it is stated that these n classes are disjoint in
pairs. For each class, it is additionally stated that it is equivalent
to the set of those individuals that are connected to exactly one
individual or literal via pi:

EquivalentClasses(Ci

DataExactCardinality(1 pi)) bzw.
EquivalentClasses(Ci

ObjectExactCardinality(1 pi))

By using the first mapping only (n+3) per UML property
will be added to the ontology. The second mapping requires
(2n+1) additional axioms per property. Therefore, it is smart
to use the first option if an instance of the meta class Union
is composed exclusively of data types or classes, and to use
the second option only when a mixture of both is present.

Class1

name : String
resource : Class2

«Union»

Declaration(Class(:Class1))
Declaration(Class(:Class2))

Declaration(DataProperty(:name))
DataPropertyDomain(:name :Class1)
DataPropertyRange(:name xsd:string)

Declaration(ObjectProperty(:resource))
ObjectPropertyDomain(:resource :Class1)
ObjectPropertyRange(:resource :Class2)

Declaration(Class(:Union_Class1_name))
EquivalentClasses(
 :Union_Class1_name
 DataExactCardinality(1 :name))

Declaration(Class(:Union_Class1_resource))
EquivalentClasses(
 :Union_Class1_resource
 ObjectExactCardinality(1 :resource :Class2))

DisjointClasses(:Union_Class1_name
 :Union_Class1_resource)

Fig. 22. Second approach for a transformation of an ISO 19100 Union.

VII. EVALUATION

This section deals with the question of whether the trans-
formation rules presented in the previous sections are correct
and—within their previously specified limits—complete. For
this purpose, three different kind of analysis were conducted:

1) Coverage of the meta models
2) Analysis of individual transformation rules
3) Check the transformations automatically

Due to space limitations, only the third analysis is pre-
sented in detail.

One advantage of using QVT-R for the transformation is
the generation of so-called “trace classes” and their instances
during the execution of the transformation rules. Instances of
the trace classes depend on the input models. In contrast, the
trace classes itself are independent of the processed models.
They are determined only by the transformation rules and the
meta models. These recordings are used for tests 1) and 2).

Test 1 deals with the coverage of the meta models. It
shows which part of the UML and OWL meta models is
captured by the transformations at all. Further investigations
are necessary, as an examination of the coverage of the meta-
models is not sufficient for the evaluation of transformations.
Even a complete coverage of the meta models cannot guaran-
tee semantically preserving transformations. Such a complete
coverage could actually be achieved by trivial and meaningless
transformations. Consider the following example: all element
types of the meta model M1 are mapped to a single element
type B of the target meta model M2. Thus, a complete cov-
erage is achieved for M1. To also achieve complete coverage

193

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for the element types of M2, a second transformation rule is
needed. For each instance of the element type A in meta model
M1 it creates an instance of every element type in meta model
M2. As a result a complete coverage of of M2 is also achieved.

Therefore, it is necessary to investigate the transformation
rules further. For this purpose, individual, mutually inverse
transformation rules with their mutual dependencies and the
dependencies to the meta element types are analysed in test 2.
Rules that only artificially increase the coverage of the meta
models would be detected by this test. Such a rule would attract
attention because

• it is connected to instances of unusual many element
types or

• it creates instances of unusual many element types.

Due to the complexity of a manual analysis of the trans-
formation rules and the risk to overlook errors, an automatic
verification of transformations is desirable. Such a verification
is presented by test 3.

tra
nsf

orm
ati

on transformation

check semantic
equivalence

UML
model

OWL-2
model

OWL-2
model

Fig. 23. Procedure for checking the correctness of the transformations.

Figure 23 shows a sketch of how to show the correctness
of the transformation rules for certain parts of the meta model.
The transformation rules are executed in both directions. After
that input model and output model are compared appropriately.

It is advantageous to use an OWL ontology as input
model (and thus also as output model). During the following
comparison, available software tools such as reasoners can be
used. The following shows how an “ appropriate” comparison
might look like.

Set U be the UML meta model, O the OWL meta model,
u a model conforming to U , and o a model conforming the
O. Let ~TUO and ~TOU be the transformations UML → OWL
respective OWL → UML described above. Ideally, the con-
secutive execution of the transformations o2 = ~TUO(~TOU (o1))
should create an ontology such that o1 and o2 are semantically
equivalent.

What does semantically equivalent mean? It can be ob-
served that there are models M1 and M2 with a different
structure, for which each instance m that conforms to M1

also conforms to M2. Thus, the models describe the same
(static) semantics. Similarly, models can be found that have
the same informational content and differ only by the names
of the elements. With a simple renaming, any instance that
conforms to the first model, can be be transferred to an instance

conforming to the second model. Overall, the checking for
semantic equivalence can be cut down to the question of
whether a Total Ontology Mapping [10] exists between both
ontologies.

An ontology is a pair O = (S,A) with S being the
signature of the ontology and A its set of axioms. The signature
describes the vocabulary used within the ontology. The set of
axioms describes how the elements of S are put into relation.

A Total Ontology Mapping between an ontology O1 =
(S1, A1) and an ontology O2 = (S2, A2) is a morphism
f : S1 → S2 that maps both signatures of the ontology in
a way such that A2 |= f(A1). All interpretations that satisfy
the axioms of O2 also satisfy the renamed axioms of O1.

A. Computation of a Total Ontology Mapping for OWL-2

In OWL, the signature of the ontology is formed by
the instances of the meta class Entity. The elements of
the signature are divided into disjoint sets Class, Ob-
jectProperty, DataProperty, AnnotationProp-
erty, Datatype, NamedIndividual. Thus, the signature
has the formS = (SC , SOP , SDP , SDT , SI). Annotations are
ignored as they do not carry any semantic information. Since
the sets are disjoint, the search for renaming can be restricted
to one set. That significantly reduces the complexity of the
search.

For simplicity, it is assumed that S1 only contains elements
that are used in A1 and S2 only contains elements that are
used in A2. Otherwise, unused items can be deleted without
changing the statement of the axioms.

It is further assumed that the components of the signatures
of the two ontologies have the same size: |SX1| = |SX2|, X ∈
{C,OP,DP,DT, I}. If this is not the case, an appropriate
amount of previously unused elements is added to the smaller
set.

In order to maintain a clear notation, only the subsets SC1

and SC2for the classes are considered in details. The other
four subsets SOP , SDP ,SDT , and SI are handled similarly.

The algorithm works as follows. Put the elements of SC1

and SC2 into an arbitrary order. The result are two ordered
lists SC1 = (c1, . . . , cn) and SC2 = (d1, . . . , dn). For all
possible permutations σC : N → N , N = {1, . . . n} check
if every axiom a ∈ f(A1) can be inferred from A2 with
f : (SC1, . . .)→ (SC2, . . .) and σC(ci) = di ∀i ∈ {1, . . . n}.
If such a permutation can be found, a Total Ontology Mapping
between the ontologies O1 and O2 exists.

The procedure described in the previous paragraphs:

1) Apply the transformation ~TOU to the input ontology
o. The result is m = ~TOU (o).

2) Apply the transformation ~TUO to the UML model m.
The result is o′ = ~TUO(m).

3) Use the algorithm to test if a Total Ontology Mapping
between o and o′ exists.

4) Use the algorithm to test if a Total Ontology Mapping
between o′ and o exists.

can be applied in instances of single meta classes or an
arbitrary combination of meta class elements.

194

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. RELATED WORK

Two fundamentally different approaches for a transfor-
mation between UML and OWL-2 can be identified: XML-
based transformations and transformations that are not based
on XML.

A. Transformations based on XML

All XML-based approaches have a number of disadvan-
tages in common. When working with documents containing
a serialization of a model in concrete syntax only one model
level is visible. Usually, only the names of meta models
elements are available. The internal structure of the meta
model and internal connections are inaccessible. XML-based
transformations that use XML Metadata Interchange (XMI)
documents and/or ontologies written in XML-based syntaxes
of OWL and RDF lead to further problems. For example, the
sequence of XML elements in two different serialization of
one model can be almost completely different. It is easy to see
that this leads to unnecessarily complex transformation rules.
Besides others, [11][12] point out these problems as well.

Cranefield has addressed the connection between UML
and ontologies in two articles: Cranefield and Purvis have
examined how the UML and the Object Constraint Language
(OCL) can be used to model ontologies [13] in general. The
objective in this early work was not the transformation from
UML to OWL, but rather the use of UML as an ontology mod-
elling language. A transformation from UML class diagrams
into Java code as well as into RDF-Schema is presented by
Cranefield in a later article [14].

Falkovych presents a transformation of UML models into
DAML + OIL (a predecessor of OWL) and RDFS using XSLT
[15].

Gaševi Djuri et al. describe the transformation of a UML
class diagram into an OWL ontology by using XSLT [16].
In the creation of the class model, a special UML profile
"Ontology UML Profile"—defined by Djurić et al. in [17]—
must be used.

Leinhos describes two variants for the transformation of
UML models into OWL ontologies [18]. The UML models are
serialized as XMI files. For the OWL ontologies the RDF/XML
syntax is used. In one variant, specially constructed UML class
diagrams are transformed into OWL ontologies. In the other
variant, elements are added to the ontology that are not present
in the original UML model and that do not match the semantics
of the UML model.

B. Transformations not based on XML

Milanovic, Gasevic et al. describe the transformation of
OCL rules into Semantic Web Rule Language (SWRL) rules,
using the Atlas Transformation Language (ATL) [12][19].
It should be noted, that their approach is built upon meta
models for OCL and SWRL. As the focus of our paper is
on the transformation UML models and OWL-2 ontologies
we consider the meta models for UML and OWL-2.

Hart et al. identify three groups of features. First, features
that are more or less present in both languages. Second,
features that are only available in UML and third, features

only offered by OWL [20]. With respect to common features,
examples are used to demonstrate how these examples would
appear in both languages. This collection has been incorpo-
rated in some modified form as Chapter 16 of OMG’s Ontology
Definition Metamodel (ODM) specification [21]. However,
only part of the model elements have been considered.

Höglund et al. use MOFScript to perform a transformation
from UML to OWL-2 [22]. The aim of the work is the
validation of meta models. Their transformation is a model-
to-text transformation. Therefore, the OWL-2 meta model is
not part of the transformation.

The idea of a model transformation between UML and
OWL-2 was presented by the authors in [23] und [24]. How-
ever, these publications only present the idea and cover very
few selected modelling elements. Very important to us is a
very careful evaluation of the transformation rules which we
presented in Section VII of this article.

IX. CONCLUSION AND FUTURE WORK

In this paper, a systematic approach for an automatic trans-
formation of conceptual models between the Model-Driven
Architecture Technology Space and the Ontology Engineering
Space Technology is presented. In contrast to previous works,
an approach was chosen which abstracts from the concrete
syntax or XML serialization and works on the level of the
meta models of UML and OWL. As a result, it was possible
to show independently of individual sample models, which
model elements can be transformed and which can not be
transformed.

It has been found that data models written in UML can be
represented as OWL Ontologies quite well. Especially when
certain restrictive rules—for example those the ISO 19100
family of standards specifies— are observed, the semantics
of the data model will translate well. To be mentioned as
problematic are: UML’s possibility to restrict the visibility
of model elements, abstract classes, certain kinds of gener-
alization (non-overlapping but not complete), aggregation and
composition (which can with minor exceptions be treated as
ordinary relationship types), and the extension by stereotypes.

The different extent of the meta-models clearly suggests
that OWL provides much more complex means of modelling
already. The transformation of general ontologies in UML
data models is not always possible. Particularly problematic is
the definition of element types using nested class expressions
as well as sufficient conditions. But even in these cases a
transformation is often possible—e.g., cardinality constraints
that appear as super-types. OWL constructs such as comple-
mentation and global properties can not be transformed in
general. Only under the special condition that a single element
type was defined as a super-type of all other element types, a
transformation is still possible.

We applied the transformation technology presented in this
article to improve the quality of historic statistical data, namely
the so-called "Digital Reich Statistics" (1873-1883) of the
German National Library of Economics. After digitization of
the original data the library established a UML model for some
economic data. The transformation of this model into an OWL-
2 ontology allowed us to check the consistency of the UML
model and the data.

195

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In many cases modelling concepts can be implemented in
UML data models by the use of Object Constraint Language
(OCL) expressions. For example, OWL constructs such as the
definition of element types via sufficient conditions can be
realized using OCL expressions. As a MOF-compliant abstract
syntax exists for OCL, that transformation could be carried out
on meta model level—like the transformations described in this
article. However, the additional use of OCL results in some
difficulties, such as the question of whether even all atomic
OCL expressions can be represented with OWL. It might be
necessary to use rule languages, e.g., the Semantic Web Rule
Language (SWRL) with its built-ins. However, this would
make the transformation OWL → UML more complicated.
OCL is a very rich language. By nesting expressions, arbitrar-
ily complex OCL expressions can be generated. On the one
hand, the transformation of these nested expressions becomes
very complex. On the other hand, it is unclear whether these
complex expressions can be expressed in an OWL ontology.

In the field of comprehensibility, UML is currently supe-
rior. If there was a corresponding intuitive graphical syntax
for OWL with a selection of software tools for dealing with
this syntax, it would certainly contribute to increase the use of
OWL in the creation of conceptual models.

REFERENCES

[1] J. Zedlitz and N. Luttenberger, “Data types in UML and OWL-2,” in
SEMAPRO 2013, The Seventh International Conference on Advances
in Semantic Processing, 2013, pp. 32–35.

[2] C. Eisenhut and T. Kutzner, Vergleichende Untersuchungen zur Model-
lierung und Modelltransformation in der Region Bodensee im Kontext
von INSPIRE, München, 2010.

[3] M. Horridge and S. Bechhofer, “The OWL API: A Java API
for OWL Ontologies,” in Proceedings of the 6th International
Workshop on OWL: Experiences and Directions (OWLED 2009),
R. Hoekstra and P. Patel-Schneider, Eds., 2009. [Online]. Available:
http://ceur-ws.org/Vol-529/owled2009_submission_29.pdf

[4] A. Olivé, Conceptual Modeling of Information Systems,
Berlin/Heidelberg/New York, 2007.

[5] M. Wahler, D. Basin, A. D. Brucker, and J. Koehler, “Efficient analysis
of pattern-based constraint specifications,” Software and Systems
Modeling, vol. 9/2„ pp. S. 225–255, Heidelberg 2010. [Online].
Available: http://dx.doi.org/10.1007/s10270-009-0123-6

[6] OMG, “Unified Modeling Language, Superstructure Version 2.4,” 2011.
[Online]. Available: http://www.omg.org/spec/UML/2.4/Superstructure

[7] XMLSchema-2, “XML Schema Part 2: Datatypes,” 2004. [Online].
Available: http://www.w3.org/TR/xmlschema-2/

[8] W. Hesse and H. Mayr, “Modellierung in der softwaretechnik: eine
bestandsaufnahme,” Informatik-Spektrum, vol. 31/5„ pp. S. 377–393,
Berlin/Heidelberg 2008.

[9] H. Balzert, Lehrbuch der Softwaretechnik: Basiskonzepte und Require-
ments Engineering, Heidelberg„ 3. Auflage 2009, vol. 1.

[10] Y. Kalfoglou and M. Schorlemmer, “Ontology Mapping:
The State of the Art” in The Knowledge Engineering
Review, vol. 18/1, pp. S. 1–31, 2003. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2005/40

[11] K. Falkovych, M. Sabou, and H. Stuckenschmidt, “UML for the Se-
mantic Web: Transformation-based Approaches,” in Knowledge Trans-
formation for the Semantic Web, vol. 95„ pp. S. 92–107, 2003.

[12] M. Milanović, D. Gašević, A. Guirca, G. Wagner, and V. Devedžić, “On
Interchanging Between OWL/SWRL and UML/OCL,” in Proceedings
of 6th Workshop on OCL for (Meta-) Models in Multiple Application
Domains (OCLApps), 2006, pp. S. 81–95.

[13] S. Cranefield and M. Purvis, “UML as an Ontology Modelling Lan-
guage,” in The Information Science Discussion Paper Series, vol. 99/01,
Dunedin 1999.

[14] S. Cranefield, “Networked Knowledge Representation and Exchange
using UML and RDF,” in Journal of Digital information, vol. 1/8,
Austin 2001.

[15] K. Falkovych, “Ontology Extraction from UML Diagram,”, Amsterdam,
2002.

[16] D. Gašević, D. Djuric, V. Devedzic, and V. Damjanovi, “Converting
UML to OWL Ontologies,” in Proceedings of the 13th international
World Wide Web conference on Alternate track papers & posters. New
York: ACM, 2004, pp. S. 488–489.

[17] D. Djurić, D. Gašević, V. Devedžić, and V. Damjanović, “A
UML Profile for OWL Ontologies,” in Model Driven Architecture.
European MDA Workshops: Foundations and Applications, MDAFA
2003 and MDAFA 2004, Twente, The Netherlands, June 26-27,
2003 and Linköping, Sweden, June 10-11, 2004. Revised Selected
Papers, Berlin/Heidelberg, 2005, pp. S. 204–219. [Online]. Available:
http://www.springerlink.com/content/49yb6365gymtryfg/

[18] S. Leinhos, “OWL Ontologieextraktion und -modellierung auf der
Basis von UML Klassendiagrammen,” Diplomarbeit, Universität der
Bundeswehr München, München, 2006.

[19] M. Milanović, D. Gašević, A. Giurca, G. Wagner, and V. Devedžić,
“Towards Sharing Rules Between OWL/SWRL and UML/OCL,” in
Electronic Communications of the EASST Volume 5,, 2006.

[20] L. Hart, P. Emery, B. Colomb, K. Raymond, S. Taraporewall a,
D. Chang, Y. Ye, E. Kendall, and M. Dutra, “OWL
Full and UML 2.0 Compared,” 2004. [Online]. Available:
http://www.omg.org/docs/ontology/04-03-01.pdf

[21] OMG, “Ontology Definition Metamodel,” Object Management Group,
2009. [Online]. Available: http://www.omg.org/spec/ODM/1.0/

[22] S. Höglund, A. Khan, Y. Liu, and I. Porres, “Representing and
Validating Metamodels using the Web Ontology Language OWL 2.
TUCS Technical Report No. 973,” Turku 2010. [Online]. Available:
http://tucs.fi/publications/attachment.php?fname=TR973.full.pdf

[23] J. Zedlitz, J. Jörke, and N. Luttenberger, “From UML to OWL 2,” in
Proceedings of Knowledge Technology Week 2011, D. Lukose, A. R.
Ahmad, and A. Suliman, Eds., Berlin/Heidelberg, 2012, pp. p. 154–163.

[24] J. Zedlitz and N. Luttenberger, “Transforming Between UML
Conceptual Models and OWL 2 Ontologies,” in Proceedings of
the Terra Cognita Workshop on Foundations, Technologies and
Applications of the Geospatial Web, in conjunction with the 11th
International Semantic Web Conference (ISWC 2012), D. Kolas,
M. Perry, R. Grütter, and M. Koubarakis, Eds., 2012, pp. p. 15–26.
[Online]. Available: http://ceur-ws.org/Vol-901/paper2.pdf

196

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Technique to Avoid Atomic Operations

on Large Shared Memory Parallel Systems

Rudolf Berrendorf

Computer Science Department

Bonn-Rhein-Sieg University

Sankt Augustin, Germany

e-mail: rudolf.berrendorf@h-brs.de

Abstract—Updating a shared data structure in a parallel
program is usually done with some sort of high-level synchro-
nization operation to ensure correctness and consistency. The
realization of such high-level synchronization operations is done
with appropriate low-level atomic synchronization instructions
that the target processor architecture provides. These instructions
are costly and often limited in their scalability on larger multi-
core / multi-processor systems. In this paper, a technique is
discussed that replaces atomic updates of a shared data structure
with ordinary and cheaper read/write operations. The necessary
conditions are specified that must be fulfilled to ensure overall
correctness of the program despite missing synchronization. The
advantage of this technique is the reduction of access costs
as well as more scalability due to elided atomic operations.
But on the other side, possibly more work has to be done
caused by missing synchronization. Therefore, additional work is
traded against costly atomic operations. A practical application
is shown with level-synchronous parallel Breadth-First Search on
an undirected graph where two vertex frontiers are accessed in
parallel. This application scenario is also used for an evaluation
of the technique. Tests were done on four different large parallel
systems with up to 64-way parallelism. It will be shown that
for the graph application examined the amount of additional
work caused by missing synchronization is neglectible and the
performance is almost always better than the approach with
atomic operations.

Index Terms—atomic operation, CAS, scalability, shared mem-
ory, redundant work, parallel work queue, parallel Breadth-First
Search

I. INTRODUCTION

Updating a shared data structure in a parallel program as

for example the state check/update whether a vertex in a

graph is visited or not [1] is usually done on an application

level with some sort of high-level atomic update operation.

In OpenMP [2] this could be realized lock-protected, in a

critical section, or if syntax allows with an atomic pragma

construct. Pthread-related API’s (Application Programming

Interface) [3] [4] [5] can use for example a mutex variable to

protect access to a shared data structure and to ensure mutual

exclusion of parallel threads. A general discussion on using

different synchronization constructs in parallel and concurrent

programming can be found in [6] and [7].

The implementation of such a high-level synchronization

operation itself is done by the compiler or inside a runtime

system often with one or even more atomic instructions

(Compare-And-Swap, Atomic-Add, Fetch-And−Φ, Test-And-

Set, etc.) of the underlying processor architecture [8] [9]

[10]. The general problem with atomic instructions of type

read-modify-write is that these are rather costly compared to

ordinary memory accesses and not really scalable on larger

systems [11] [12] (see also Section IV for investigations

on that). The time for one such atomic operation increases

significantly under contention as the number of cores in a

multi-core / multi-processor system gets larger. Therefore,

frequently accessing shared data structures with atomic op-

erations imposes a severe performance problem, especially on

large parallel systems.

The use of such synchronized updates on shared data

guarantees correct operations on the data when using multiple

threads. But this strict enforcement is often not really nec-

essary. An example is a work queue, where working threads

insert new work items and idle threads remove such items to be

worked on. But for certain algorithmic scenarios (e.g., within

a certain program phase), a work item may be inserted even

multiple times without violating the overall correctness of the

algorithm, but only causing additional redundant work to be

done as the same work item may exist multiple times in a

queue. In such cases, the costly synchronized access could

be completely removed and replaced with cheaper non-atomic

accesses, but eventually introducing additional work to be done

if work items get inserted multiple times.

An example for such a scenario is a Breadth First Search

(BFS) for undirected graphs (see Section III for details).

Many of the published parallel BFS algorithms iterate over a

vertex frontier where the vertices of the current vertex frontier

determine, which unvisited vertices are part of the following

vertex frontier. In this scenario, adding a vertex twice in such

a frontier generates more work to be done in the next level

iteration but does not influence the correctness of the algorithm

(see Section V for details). Another, more general scenario is

the development of asynchronous algorithms [13] [14].

In this paper, a general optimization strategy is introduced

that replaces costly atomic modifiers with cheaper read/write

accesses. Necessary conditions are defined that need to be met

to apply the technique. The motivation for this optimization

technique and the evaluation is done using a concrete parallel

BFS algorithm on large shared memory multi-core multi-

processor systems with up to 64 cores. Factors are discussed

that influence the amount of potential additional work and

whether this additional work without any synchronized access

trades off against the traditional synchronized access to a work

197

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

queue doing exactly the amount of work that is necessary.

The paper is organized as follows. After the introduction,

the paper starts with an overview of related work. After this,

a brief overview is given on parallel BFS algorithms; level

synchronous BFS is an example where the new approach

can be applied and will also be used in the evaluation of

the new technique. In Section IV, evidence is given that

certain atomic operations including Compare-And-Swap have

scalability problems on larger systems. In Section V, the

new approach is introduced first for a special scenario, a

generalization of the technique follows in Section VI. After

that, the experimental setup is pointed out, and then the

new approach is evaluated in detail. The paper ends with a

summary.

II. RELATED WORK

There are several papers on certain aspects on the opti-

mization of synchronization constructs in a wider sense. This

includes, amongst others, reducing the number of consec-

utive mutex locks/unlocks [15] in a program and compiler

optimizations for read/write barriers [16]. Furthermore, there

are advanced synchronization techniques trying to minimize

synchronization costs including RCU (Read-Copy-Update)

[17], special monitors [18] and read-writer optimizations [19].

An interesting general approach to handle possible con-

current accesses to shared data structures is the concept

of transactional memory (original concept paper [20]). This

approach has some similarities with the approach introduced

in this paper as both are optimistic: do a read-modify-write

operation without a critical section and react only is something

went wrong. The idea with transactional memory as well as in

the new approach discussed later in this paper is that the bad

thing happens rather seldom. Transactional memory detects the

problem and, depending on the Application Program Interface

(API) in use, rolls back the whole transaction and restarts the

operation. The technique proposed in this paper instead ignores

the problem (and does not even detect the problem) and has

more work to do in the remaining execution of the algorithm.

Transactional memory is implemented on a hardware level in

recent processors (IBM processors PowerPC for BlueGene/Q

[21] and System z [22]; Intel Haswell [23]).

Lock-free and wait-free data structures are often proposed

as a way to reduce/avoid synchronization problems (priority

inversion, deadlock) that may occur using mutual exclusion

or other blocking synchronization constructs. Starting with

the fundamental idea by Leslie Lamport [24], many papers

followed on certain aspects, e.g., [25] [26] [27] [28] [29] [30]

[31] [32] [33] [34]; see [35] for a comprehensive view. As

lock- and wait-free data structures are internally often realized

with (as will be shown, non-scalable) atomic Compare-And-

Swap operations, similar ideas as presented in this paper might

be interesting in that area, too.

In [36], a parallel graph algorithm for the construction

of a spanning tree is discussed using mutual exclusion and

lock-free data structures. The authors discuss the problem of

overlapping work and how to ensure that every work item

(newly visited vertex of the graph) is handled by one thread

only using atomic Test-And-Set operations. In our paper, it

is proposed the other way to allow that a work item may be

handled by more than one thread and avoiding even a test-

and-set operation that is still necessary in [36].

Reference [6] gives an overview of different aspects on

related topics. [37] shows a similar benign race as ours in

a parallel BFS algorithm, but without analyzing the influence

of that in detail.

III. PARALLEL ALGORITHMS FOR BFS

Parallel level-synchronous BFS algorithms will be used as

a motivating application as well as in the evaluation of the

new idea that is introduced later in detail. Therefore, a short

introduction to parallel BFS follows. Breadth-First Search is a

visiting strategy for all vertices of a graph. BFS is most often

used as a building block for many other graph algorithms, in-

cluding single-source shortest paths, minimum spanning tree,

connected components, bipartite graphs, maximum flow, and

others [38] [39]. Additionally, BFS is used in many application

areas where certain application aspects are modeled by a graph

that needs to be traversed according to the BFS visiting pattern.

Amongst others, exploring state space in model checking,

image processing, investigations of social and semantic graphs,

machine learning are such application areas [40].

In the application scenario used for the examination, undi-

rected graphs G = (V,E) are of interest, where V = {v1, ...,vn}
is a set of vertices and E = {e1, ...,em} is a set of edges. An

edge e is given by an unordered pair e= (vi,v j) with vi,v j ∈V .

The number of vertices of a graph will be denoted by |V |= n

and the number of edges is |E|= m.

Assume a connected graph and a source vertex v0 ∈V . For

each vertex u ∈V define depth(u) as the number of edges on

the shortest path from v0 to u, i.e., the edge distance from v0.

With depth(G,v0) the depth of a graph G is denoted defined

as the maximum depth of any vertex in the graph relative

to the given source vertex v0. Please be aware, that this may

be different to the diameter of a graph, the largest distance

between any two vertices.

The problem of Breadth First Search for a given graph

G = (V,E) and a source vertex v0 ∈V is to visit each vertex in

a way such that a vertex v1 must be visited before any vertex

v2 with depth(v1)< depth(v2). As a result of a BFS traversal,

either the level of each vertex is determined or a (non-unique)

BFS spanning tree with a father-linkage of each vertex is

created. Both variants can be handled by BFS algorithms with

small modifications and without extra computational effort.

The problem can be easily extended and handled with directed

or unconnected graphs. A sequential solution to the problem

can be found in textbooks, based on a queue where all non-

visited adjacent vertices of a visited vertex are enqueued [38]

[39]. The computational complexity is O(|V + |E|).
If one tries to design a parallel BFS algorithm, different

challenges might be encountered. As the computational density

of BFS is rather low, BFS is bandwidth limited for large

graphs and therefore memory bandwidth has to be handled

198

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with care. For a similar reason in cache coherent NUMA

systems (Non-Uniform Memory Access [41]), data layout and

memory access should respect processor locality. In multicore

multiprocessor systems, things get even more complicated,

as several cores share higher level caches and NUMA-node

memory, but have private lower-level caches.

1: function BFS(graph g, vertex source)

2: var

3: d, distance vector of size |V |. Initial values: ∞

4: current,next, vertex container. Initially empty

5: end var

6: d[source]← 0

7: current.insert(source)
8: while current is not empty do

9: for all v in current do

10: for all neighbours w of v do

11: old =CompareAndSwap(d[w],∞,d[v]+1)
12: if old == ∞ then

13: next.insert(w)
14: end if

15: end for

16: end for

17: Barrier

18: swap current with next

19: end while

20: return d

21: end function

Fig. 1: Parallel BFS with an atomic Compare-And-Swap-operation

In BFS algorithms housekeeping has to be done on visited

/ unvisited vertices with several possibilities how to do that.

Some of them are based on special container structures for ver-

tex frontiers where information has to be inserted and deleted.

Scalability and administrative overhead of these containers are

of interest. Generally speaking, these approaches deploy two

identical containers (current frontier, next frontier) whose roles

are swapped at the end of each level iteration. Fig. 1 shows

this in a rather straightforward formulation with an atomic

Compare-And-Swap (CAS) operation in an inner loop (line

11) to detect and update unvisited vertex neighbors. In this

atomic operation, a vertex w is checked whether it is visited

already (d[w] 6= ∞), and if not, marks the vertex as visited.

Based on this knowledge, only an unvisited vertex gets inserted

into the next vertex frontier. After all vertices in the current

container are visited, all threads wait at a barrier before work

on the next container / frontier gets started (level iteration).

This version can be further optimized using chunked lists

for every thread. The insert operation of a new vertex into a

thread-local chunk can be done in a non-atomic way. But the

construction of a global list from thread-local chunks (i.e., the

insertion of each chunk into a global list) must still be done

in a synchronized way. But as this is done only if a chunk

gets full, this is not the critical operation of this algorithm

but the detection of whether a vertex is visited or not in line

11. Container centric approaches are eligible for dynamic load

TABLE I: PROCESSORS AND SYSTEMS USED

name Intel-IB Intel-SB AMD-IL AMD-MC

processor:

manufacturer Intel Intel AMD AMD
CPU name E5-2697 E5-2670 Opteron 6272 Opteron 6168
architecture Ivy Bridge Sandy Bridge Interlagos Magny Cours
frequ.[GHz] 2.7 2.6 2.1 1.9

system:

memory [GB] 256 128 128 32
CPU sockets 2 2 4 4
n-way parallel 48 32 64 48

balancing but are sensible to data locality on NUMA systems.

Container centric approaches for BFS can be found in some

parallel graph libraries [42] [43]. Reference [44] contains an

overview and evaluation of several parallel BFS algorithms.

For level synchronized approaches, a simple list is a suf-

ficient container. There are approaches in which each thread

manages two private lists to store the vertex frontiers and uses

additional lists as buffers for communication [45] [46]. This

approach deploys a static one dimensional partitioning of the

graph’s vertices and therefore supports data locality.

Level synchronous algorithms are quite easy to understand

and often to realize, too. With certain additional optimizations

performance is often very good [44]. This type of BFS

algorithm is used as an instance of the problem scenario

where the newly proposed technique can be applied. It should

be mentioned, that for certain classes of graphs (e.g., high

diameter graphs) parallel algorithms exist that perform better

than the level synchronous approach [47] [48] [49] [50].

IV. PERFORMANCE PROBLEM OF ATOMIC

READ-MODIFY-WRITE OPERATIONS ON LARGE PARALLEL

SYSTEMS

Atomic operations in a higher level parallel API for shared

memory systems as mutual exclusion, atomic update, locks,

Compare-And-Swap etc. [6] [7] [51] [52] are usually mapped

on shared memory systems to atomic instructions that the un-

derlying processor architecture provides [8] [9] [10]. Some of

these atomic instructions are by itself rather costly compared

to a simple memory access if no contention exists. For exampe,

embedded in a function call and executed by one thread on an

Intel E5-2697 CPU, an atomic CAS operation on a 64 bit data

type takes 7 ns compared to 3 ns that a compound non-atomic

read-test-write operation takes. Table I describes in detail and

names the systems used in the following.

But under contention, if multiple threads concurrently ac-

cess a shared state with such instructions, the cost per oper-

ation increases significantly for certain types of atomic oper-

ations. This is especially true for read-test/modify-write type

operations like Compare-And-Swap and Fetch-And-Add. And

the contention penalty gets higher the more CPU sockets a sys-

tem has [11] [12]. Fig. 2 shows the cost for one 64-bit atomic

Compare-And-Swap operation (of type read-modify/test-write)

on different shared memory systems dependend on the number

of threads utilised. The number of threads used does not

exceed the degree of hardware parallelism a system under

199

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 1000

 2000

 3000

 4000

 5000

 6000

 10 20 30 40 50 60

ns
ec

 p
er

 C
A

S
 o

pe
ra

tio
n

number of threads

Intel-IB
Intel-SB

AMD-IL
AMD-MC

Fig. 2: Cost per Compare-And-Swap operation on different parallel systems.

consideration has. Therefore, every thread is mapped (in an

operating system specific manner) to a different core of the

system and is always runnable (ignoring operating system

effects like interrupt handling). In this test, p threads do

in parallel in a loop n = 1,000,000 atomic CAS operations

each. The test was executed on parallel systems of different

generations of processors, processor manufacturers, degree of

parallelism, and number of processor sockets. Similar results

can be seen for other atomic read-test/modify-write operations,

too, e.g., atomic Fetch-And-Add. As can be easily seen from

the results, the overhead on larger systems with four sockets

(the AMD-based systems used) is significantly higher than

on smaller systems with two sockets (the Intel-based systems

used). The minimum time for a CAS operation is between 7

and 22 ns without contention on the systems used, the time

gets as high as approx. 1,000 ns per operation on the two

socket systems and up to approx. 6,000 ns on the four socket

systems under heavy contention. This means that performance

problems with atomic operations hurt on larger systems with

more sockets even more than on smaller systems.

V. ALTERNATIVE TO ATOMIC ACCESSES

In this section, a technique is proposed to replace the

costly and non-scalable atomic accesses with cheaper non-

atomic accesses. First, the technique will be motivated on

the concrete BFS application introduced in Fig. 1. It will be

shown, that under certain conditions atomic operations can

be traded against additional work and therefore traded against

additional overhead. Then a discussion follows, what factors

influence this possible overhead. And finally, in Section VI, a

generalization is given under what circumstances the technique

can be applied generally.

A. Optimizing BFS

Looking at the formulation of the parallel BFS algorithm in

Fig.1, an atomic CAS-Operation is used in line 11 to check

whether the neighbour vertex w is unvisited (d[w] = ∞), and

if so, replace the depth-value of w with the depth value of

the current vertex v incremented by one. And if the neighbour

vertex w was unvisited, additionally insert w into the next

vertex frontier. The replacement of the value ∞ by a non-

∞ value (the depth value) marks the vertex as visited. The

CAS operation guarantees, that every vertex is inserted exactly

once into a vertex frontier (detection and mark of visitedness).

Without the atomic operation, a race condition [53] exists on

d[w]. Replacing the critical operation with a non-atomic code

results in Fig. 3 (only relevant parts are shown here).

1: for all neighbours w of v do

2: if d[w] = ∞ then

3: d[w] = d[v]+1

4: next.insert(w)
5: end if

6: end for

Fig. 3: Parallel non-atomic BFS (relevant part)

The code of interest is in lines 2 and 3, that was previously

guarded by the CAS-operation. There are two possibilities

when executing this code in parallel:

1) Between the read access d[w] in line 2 and the com-

pletion of the write access in line 3 no other thread

accesses d[w]. In this case, there is no problem with this

version, the vertex w is inserted exactly once in a vertex

frontier as before. But see additionally the discussion of

the appropriate memory model below.

2) More than one thread detects for a certain vertex wx that

wx is unvisited (i.e., d[wx] = ∞) before any of the other

threads can change the d[wx] to some visited value. In

this case, the vertex wx gets inserted twice or even more

into the next vertex frontier.

The insert operation in line 4 has to be done with care as

this might be done concurrently by multiple threads. As this

has to be handled in all version similar and is not really critical

in all versions of discussion, this is not further discussed here.

It is important to state that even the second case produces no

wrong results as any thread that detects that d[wx] is unvisited,

writes into d[wx] in the next step the value d[v]+1 that is the

same value for all threads in one level iteration. Therefore,

correctness is guaranteed in our scenario even if multiple

threads concurrently detect that the same vertex is unvisited.

But, as stated above, in such a case the vertex wx is inserted

twice or even more into the next vertex frontier and due to

200

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that, generates more and redundant work in the next level

iteration. Working later on a vertex multiple times is again no

correctness problem. The resulting depth values for all vertices

are the same in a level-synchronous algorithm, independend

on how many times a vertex gets worked on.

Inspecting the generated assembler code for lines 2 and 3

of the code given in Fig. 3, the read access to d[w] in line 2

(i.e., a load instruction) and the write access to d[w] in line

3 (i.e., a store instruction) are nearby instructions in the code

sequence. These inspections were done for different compilers

(GNU gcc, Intel icc, PGI pgcc) and it was found that this

observation is more or less invariant of the compiler used

for the given code sequence (and it would be curious if this

observation would not hold for this code example). With an

assumption, that a thread is not suspended during execution,

the time window between the two instructions is therefore

rather small (few cycles in practice). This assumption will be

mostly true for many real scenarios where parallel programs

get executed, e.g., running OpenMP programs on a dedicated

system with not more threads than processor cores available.

Another aspect in this discussion is the memory consis-

tency model in use [54] [55] [56] [57]. In a strict memory

consistency model, it is guaranteed, that a read operation

always retuns the value of the last write operation to that

memory location. But todays, all memory consistency models

in practical use (e.g., [5] [4] [2] [58]) are rather relaxed and the

compiler may buffer the value of d[w] in a register, a processor

core may buffer that value in write buffers, or the new value

is not propagated between different processors soon, etc.

This can enlarge the time window for problems substantially

even under the assumption made above that a thread is not

suspended. A programmer may insert an appropriate flush

operation before line 2 and after line 3 such that all threads

/ processors are forced to read / write d[w] to / from main

memory in the corresponding operation. But dependend on

the implementation of such a flush-operation, this could lead

to substantial additional overhead as this is for example done

inside an inner loop iteration in the application example given.

B. Factors Influencing Additional Work

The question of interest is now, whether the relaxation using

non-atomic modifications to d[w] as given in Fig. 3 (which

surely is faster than a CAS-operation as explained in Section

IV) pays off. Due to the fact that without an atomic CAS

operation a vertex might get inserted multiple times into the

next vertex frontier, the question is whether the amount of

work to be done might be increased substantially. The amount

of additional work to be done will be influenced generally

speaking by:

1) the problem time window in relation to the time threads

spend in non-critical code. This is influenced by the

generated code sequence and implemented consistency

model as discussed above.

2) the number of threads in use, i.e., the number of con-

current parties.

3) the problem data influencing access collisions, i.e., in

our case the topology of the graph (vertex degrees,

shared neighbours)

The larger the time window is that another thread may see

the vertex in question as unvisited, and the more threads are

participating, and the more vertices have connections to the

unvisited vertex, the higher the probability that additional work

is generated.

VI. GENERALIZATION OF THE TECHNIQUE

Although the motivation of the technique was given here in

the context of a parallel BFS algorithm, the technique itself

is not specific to BFS and can be generalized. Therefore,

the suggestion is to replace costly atomic operations with

cheaper simple load/store operations without influencing the

correctness of the algorithm but probably doing more / redun-

dant work. The hypothesis is that especially on large shared

memory systems with many concurrent threads this technique

pays off.

Looking in a more abstract way on the suggested technique,

there is predicate p : X →{true, f alse} for some set X . If the

result of the predicate is true, there is a state-change operation

c : X → X for the same x ∈ X that the predicate was applied

to, followed by some operation f : Y →Y for some set Y . The

generalized application scenario is therefore given in Fig. 4.

1: if p(x) then

2: c(x)
3: f (y)
4: end if

Fig. 4: Generalized Scenario

As multiple threads might execute the predicate p, multiple

threads might detect the same true condition and therefore

execute c(x) and f (y) subsequently and also redundantly. As

a consequence, the operation c and f must be both idempotent

to ensure that executing the state-change function f multiple

times does not influence the correctness. A function g : A→ A

is called idempotent if g◦g = g, i.e., ∀a ∈ A : g(g(a)) = g(a).
For the BFS example, the p-Operation is the test d[w] = ∞

and the c-operation changes the state of d[w] to the same

value if executed multiple times for the same vertex. The f -

operation is the insertion of the vertex into the next vertex

front. The c-operation as well as the f -operation meet the

requirements for the two operations, respectively. As d[w] is

assigned the same value, this is an idemponent operation.

And the multiple insertion of a vertex into the next vertex

frontier is also (semantically) a idemtpotent operation, because

the result of working on the next vertex frontier will be the

same, independent how many times a vertex gets inserted into

a frontier.

VII. EXPERIMENTAL SETUP

In this section, the technique introduced in Section V is

systematically examined with the concrete scenario of parallel

BFS. Three factors were identified that may influence the

201

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performance of an application using the new technique due

to additionally generated work. All factors are examined in

detail.

A. Algorithm Versions

The general algorithmic approach for parallel BFS chosen

for this discussion was already given in Fig. 1 in an easy to

formulate version. The concrete realization to handle vertex

fronts was done for this evaluation with chunked array based

lists where each thread inserts a new vertex unprotected into

a thread-private chunk of size 128. If such a chunk gets filled,

the chunk is inserted into a global list in a protected way. The

insertion of a whole chunk into the global list is done in all

algorithm versions examined with one atomic operation. But

the influence of that atomic operation is rather small as only

whole chunks get inserted and not single vertices.

In the first version named atomicBFS1 (see Fig. 5), every

thread uses a CAS operation as described in Fig. 1 to detect un-

visited vertices and updates them accordingly. This guarantees,

that every vertex is inserted exactly once in a vertex frontier.

But on the other side, every check is done atomically even on

vertices that were visited already, even in any previous level

iteration. This is a save but somewhat naı̈ve implementation.

This last aspect can be optimized for many program kernels

easily with a standard optimization technique for parallel

programs in prefixing the expensive CAS-operation with a

normal read operation followed by the CAS-operation only, if

the test was successful, i.e., a test-and-test-and-set operation

(see Fig. 6). This technique has significant advantages if

vertices get visited many times (e.g., graphs with high vertex

degrees). Then, only the first visit must be atomic, all other

accesses would detect that the vertex is visited already. This

optimization technique is also used in the OpenMP reference

implementation of the Graph500 benchmark [42] for BFS.

This optimized version is named atomicBFS2. In this version,

all vertices already visited are no longer handled with a CAS

operation. The discussion of the performance effect of this

optimization is given later in detail.

The third approach named nonatomicBFS does not use

atomic operations for the detection of unvisitedness, but rather

uses the technique proposed (see Fig. 7). Therefore, a vertex

may be inserted more than once in the next vertex frontier.

The main difference to the other two versions is therefore

that the detection of an unvisited vertex and the subsequent

update to a visited state is no longer done atomically but

rather with simple read/write accesses including the possibility

of multiple insertions of a vertex as multiple threads may

see concurrently a vertex as unvisited. Further algorithmic

optimizations different to that discussed here and a general

overview of parallel BFS algorithms can be found in another

paper [44]. There is also shown, that there are better but more

complex algorithms for the parallel BFS problem for large

shared memory systems. In this paper, only the discussion

atomic operations vs. redundant work is of interest, and there-

fore the relative comparism of the introduced three versions

is sufficient for that.

To filter out unrelated effects, all test runs were repeated 5

times and the best result out of these 5 results was taken as

the final result of a test.

1: for all neighbours w of v do

2: old =CompareAndSwap(d[w],∞,d[v]+1)
3: if old == ∞ then

4: next.insert(w)
5: end if

6: end for

Fig. 5: Kernel for atomicBFS1

1: for all neighbours w of v do

2: if d[w] 6= ∞ then

3: old =CompareAndSwap(d[w],∞,d[v]+1)
4: if old == ∞ then

5: next.insert(w)
6: end if

7: end if

8: end for

Fig. 6: Kernel for atomicBFS2

1: for all neighbours w of v do

2: if d[w] == ∞ then

3: d[w] = d[v]+1

4: next.insert(w)
5: end if

6: end for

Fig. 7: Kernel for nonatomicBFS

B. Factors Influencing Overhead

As discussed already in Section V, the first factor influenc-

ing the probability of multiple insertions is the time window

related to the time spent in non-critical code. Although the

BFS algorithm has only few instructions between the read and

write operation on the critical data, there is not much work to

do in the non-critical part (just the insert operation) executing

the critical part with high frequence and therefore increasing

the probability for collisions. Therefore, BFS is an example

for a rather problematic algorithm in this sense.

The second factor influencing the probability of double in-

sertion is the degree of parallelism. Different parallel systems

were used in the tests as described already in Table I. The

largest one is a 64-way AMD-6272 Interlagos based system

with 128 GB shared memory organised in 4 NUMA nodes

(i.e., 4 CPU sockets). A second AMD-based systems has also

four sockets, while the remaining two systems are two-socket

systems (see Table I for details and names to refer to a specific

system).

The third factor influencing additional work is the probabil-

ity of a data collision, i.e., in the given application the proba-

bility that two vertices with the same depth share a common

unvisited neighbor in the graph. Only unvisited neighbours

leed to an atomic operation in version atomicBFS2 and to

202

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600 1800

fr
on

tie
r

si
ze

level

(a) Frontiers for delaunay

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250

fr
on

tie
r

si
ze

level

(b) Frontiers for nlpkkt240

 1

 10

 100

 1000

 10000

 100000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

fr
on

tie
r

si
ze

level

(c) Frontiers for road-europe

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 5 10 15 20 25

fr
on

tie
r

si
ze

level

(d) Frontiers for friendster

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300 350 400

fr
on

tie
r

si
ze

level

(e) Frontiers for R-1M-10M-57

Fig. 8: Vertex and edge frontier sizes of selected graphs (part 1). Upper curve
is edge frontier, lower curve is vertex frontier.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50 60 70 80 90

fr
on

tie
r

si
ze

level

(a) Frontiers for R-1M-100M-57

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30

fr
on

tie
r

si
ze

level

(b) Frontiers for R-1M-1G-57

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 2 4 6 8 10 12 14 16

fr
on

tie
r

si
ze

level

(c) Frontiers for R-100M-2G-30

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 5 10 15 20 25 30

fr
on

tie
r

si
ze

level

(d) Frontiers for R-100M-2G-45

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

fr
on

tie
r

si
ze

level

(e) Frontiers for R-100M-2G-57

Fig. 9: Vertex and edge frontier sizes for selected graphs(part 2). Upper curve
is edge frontier, lower curve is vertex frontier.

203

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II: CHARACTERISTICS FOR USED GRAPHS

degree graph

graph name |V |×106 |E|×106 avg. max. depth

delaunay [59] 16.7 100.6 6 26 1650

nlpkkt240 [60] 27.9 802.4 28.6 29 242

road-europe [59] 50.9 108.1 2.1 13 17345

friendster [61] 65.6 3612 55 5214 22

R-1M-10M-30 1 10 10 107 11
R-1M-10M-45 1 10 10 4726 16
R-1M-10M-57 1 10 10 43178 400
R-1M-100M-30 1 100 100 1390 9
R-1M-100M-45 1 100 100 58797 8
R-1M-100M-57 1 100 100 530504 91
R-1M-1G-30 1 1000 1000 13959 8
R-1M-1G-45 1 1000 1000 599399 8
R-1M-1G-57 1 1000 1000 5406970 27

R-100M-1G-30 100 1000 10 181 19
R-100M-1G-45 100 1000 10 37935 41
R-100M-1G-57 100 1000 10 636217 3328
R-100M-2G-30 100 2000 20 418 16
R-100M-2G-45 100 2000 20 85494 31
R-100M-2G-57 100 2000 20 1431295 1932
R-100M-4G-30 100 4000 40 894 15
R-100M-4G-45 100 4000 40 180694 31
R-100M-4G-57 100 4000 40 3024348 1506

a possible double-insertion in version nonatomicBFS. This

factor is mainly influenced in the given scenario by the graph

topology / degree distribution. To examine this influence, sev-

eral large graphs were used from different application domains

including real graphs from social networks, road networks,

optimization problems, and triangulation graphs. The graph

instances were taken from then DIMACS-10 challenge [59],

the Florida Sparse Matrix Collection [60], and the Stanford

Large Dataset Collection [61]. The graph friendster and

larger RMAT-graphs could not be used on all systems due

to memory requirements. Additionally, synthetically gener-

ated pseudo-random graphs were used that guarantee certain

topological properties. R-MAT [62] is such a graph generator

with parameters a,b,c influencing the topology and clustering

properties of the generated graph (see [62] for details). R-MAT

graphs are mostly used to model scale-free graphs. For the

evaluation tests, graphs of the following classes werde used:

• Graphs with a very low average and maximum vertex

degree resulting in a rather high graph depth and limited

vertex fronts. A representative for this class is the road

network road-europe.

• Graphs with a moderate average and maximum vertex

degree. For this class, Delaunay graphs representing De-

launay triangulations of random points (delaunay) and

a graph for a 3D PDE-constraint optimization problem

(nlpkkt240) are used.

• Graphs with a large variation of degrees including few

very large vertex degrees. Related to the graph size, they

have a smaller graph depth. For this class of graphs,

a real social network (friendster), and synthetically

generated Kronecker R-MAT graphs are used, the later

with different vertex and edge counts and three R-MAT

parameter sets. The first parameter set named 30 is

a = 0.3,b = 0.25,c = 0.25, the second parameter set 45 is

a = 0.45,b = 0.25,c = 0.15, and the third parameter set

named 57 is a = 0.57,b = 0.19,c = 0.19.

All test graphs are connected, for R-MAT graphs guaranteed

with n−1 artificial edges connecting vertex i with vertex i+1.

Some important graph properties for the graphs used are given

in Table II. For a general discussion on degree distributions

of R-MAT graphs see [63].

C. Factors Influencing Performance and Scalabilty

To interpret results in the following section, frontier sizes

during the level-synchronous execution of the BFS algorithm

will be given in relation to the level number as an additional

information (see Figs. 8 and 9). The edge frontier size gives

the number of outgoing edges from vertices in the current

frontier, i.e., the number of vertex candidates that have to be

checked for inclusion into the next frontier. On the other side,

the vertex frontier size gives the number of unique vertices that

get inserted into the next vertex frontier, i.e., the vertex was

checked, found unvisited, and then sucessfully inserted. The

edge frontier size is therefore the amount of checks to be done

(in algorithm version atomicBFS1 with a CAS operation, in

the other versions by a simple read operation), and the vertex

frontier size is the amount of actual insertions into the next

frontier (in version atomicBFS2 as part of the CAS, in version

nonatomicBFS with a simple write). The edge frontier size

is always at least as large as the vertex frontier size. In the

figures, the edge frontier size is always the upper curve.

Setting this frontier information in relation to the perfor-

mance numbers, a large difference between edge frontier size

and vertex frontier size in a level iteration means that many

atomic checks were made in version atomicBFS1 that did not

lead to an unvisited neighbor vertex / insert operation. On the

other side, if the difference between vertex and edge frontier

size is small, the difference between the two atomic algorithm

versions should be less as most of the atomic operations are

executed in both atomic versions.

Figs. 8 and 9 show frontier sizes during each level. Please

be aware that the y-axis has a logarithmic scale. The higher

a number for the vertex frontier is, the more parallel work is

available. A frontier size of 1,000 or even less on a parallel

system with 64 threads all working in parallel on this problem

means a severe performance limitation.

All BFS algorithms introduced here are limited for large

graphs by memory bandwidth demands, especially when using

many threads. This means that for many large graphs and

using many threads, the effects under discussion here may be

hidden by memory bandwidth restrictions [44]. Additionally, if

there is not enough parallelism available (small vertex frontier

at any level iteration), performance is again limited in all

versions using many threads. In such situations, algorithms

atomicBFS2 and nonatomicBFS will most likely perform very

similar. In Section VIII-C, statistical filters are used to handle

this in the discussion.

204

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. EVALUATION RESULTS

In the following, performance results are discussed com-

paring the three algorithm versions on the different parallel

systems and with different input data as specified in Section

VII. Not all results can be shown here in detail. Rather, the

influence of the stated factors is discussed, results are sum-

marized where reasonable, and overall statistics are presented.

Additionally, the amount of overhead for nonatomicBFS is

discussed. Performance number for BFS will be given as a

rate Million Traversed Edges per Second (MTEPS), a usual

measure for BFS performance [42] (the higher, the better).

A. Absolute Performance Results

Figs. 10 - 13 show absolute performance results for the three

algorithm versions of investigation on the different parallel

systems using selected data sets. The performance limitation

or even degradation using many threads (especially with graph

road-europe) is caused by the limited parallelism (see Figs. 8a

and 8c for that) or memory bandwidth restrictions. More

sophisticated BFS algorithms that are out of the scope of this

paper can handle that more efficient. Details on that can be

found in [44].

For all graphs shown other than road-europe the algorithm

version performing worst is the algorithm version atomicBFS1

as with every access to d[w] in the relevant code section an

atomic CAS operation is executed. This is true on all systems

used and with nearly all thread counts. The performance

difference to the other two algorithm versions is very high, if

many of the atomic operation were done unneccesarily, i.e., a

vertex of investigation was visited already before. This is the

case if the difference between edge and vertex frontier is large.

And the performance difference is large as long as no other

effects (limited parallelism, memory bandwidth restriction)

superimpose this effect. Both other algorithm versions use

no CAS at all (nonatomicBFS) or only if a vertex has been

seen in a non-atomic pre-test as unvisited (atomicBFS2). This

behaviour clearly underpins the central message that atomic

operations should be avoided whenever possible.

B. Relative Improvements

As algorithm version atomicBFS1 has in most configura-

tions severe performance limitations, a closer look will be done

on the other two version only: atomicBFS2 using CAS only if

necessary and nonatomicBFS using the introduced technique

of avoiding atomic operations at all.

Fig. 14 shows relative performance improvements in percent

of algorithm version nonatomicBFS without atomic operations

relative to algorithm version atomicBFS2 with (already opti-

mized) atomic updates. A positive value means that the non-

atomic version performs better than atomicBFS2. The figures

show that for many threads the difference between the two

versions of discussion is rather small (and then often below

the accuracy of measurement). The reason for that was given

already: with this rather simple BFS algorithm versions, for

many threads and large graphs, memory bandwidth and/or

limited parallelism is the limiting factor, and not the atomic

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(a) delaunay

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(b) nlpkkt240

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35 40 45 50
M

T
E

P
S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(c) road-europe

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(d) friendster

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(e) R-100M-2G-45

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(f) R-100M-2G-57

Fig. 10: Performance data on system Intel-IB.

205

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30 35

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(a) delaunay

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(b) nlpkkt240

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(c) road-europe

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(d) friendster

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(e) R-100M-2G-45

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30 35

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(f) R-100M-2G-57

Fig. 11: Performance data on system Intel-SB.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(a) delaunay

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(b) nlpkkt240

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70
M

T
E

P
S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(c) road-europe

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60 70

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(d) friendster

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(e) R-100M-2G-45

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(f) R-100M-2G-57

Fig. 12: Performance data on system AMD-IL.

206

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(a) delaunay

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(b) nlpkkt240

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(c) road-europe

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(d) friendster

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(e) R-100M-2G-45

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(f) R-100M-2G-57

Fig. 13: Performance data on system AMD-MC.

accesses. But the smaller the number of threads used, the

higher is the difference between the two version in the favour

of nonatomicBFS. This is because the atomic accesses are

the main performance problem, and not memory bandwidth or

limited parallelism. Often, the single thread case has the largest

relative improvement for the non-atomic version. This is

mostly related to the additional overhead for atomic operations

(see Section IV) compared to a cheaper non-atomic read and

write operation.

On the two AMD systems with 4 CPU sockets the non-

atomic version shows more improvements than on the 2-socket

Intel systems. The reason for that is the higher overhead for

CAS operations on systems with more sockets (see Section IV

and especially Fig. 2).

C. Statistical Analysis

In Section VII, the test setup was described. Tests were

done on 4 different systems, with different thread numbers

depending on the available parallelism of a system, and

different input graphs. In total, 761 configurations were tested.

So far, selected results were presented in detail. In this section,

statistics on all results summarize the performance results.

Although all tests were repeated several times (see Section

VII for details), there are variations in runtime caused by

several and partly non-deterministic factors in a complex

parallel system. To leave these artefacts out of the discussion,

we define a difference between two results that is below 3% as

within the accuracy of measurement and therefore not related

to the discussion here.

Fig. 15 shows a statistical analysis of all 761 results. Five

classes of test results are shown, given for each system:

• < −10: where the atomic version atomicBFS2 per-

formoms significantly better (better than 10%) than

nonatomicBFS (in total 2 out of 761 instances)

• −10 <= x <−3: where the atomic version atomicBFS2

performoms better than nonatomicBFS (in total 20 in-

stances)

• −3 <= x < 3: where differences are within the accuracy

of measurement (in total 406 instances, most of them with

large threads counts)

• 3 <= x < 10: where the non-atomic version

nonatomicBFS performoms better than atomicBFS2 (in

total 220 instances)

• >= 10: where the non-atomic version nonatomicBFS

performoms significantly better than atomicBFS2 (in total

113 instances)

It can be seen that large improvements (more than 10%

performance increase) are mainly on the 4-socket systems

while the 2-socket systems show increases that mostly lie

below 10%.

Summarizing the results over all systems, in approx. 2.9%

of all test cases the new approach performs worse than

atomicBFS2, in approx. 43.8% of all test cases the new

approach performs better, and in the rest of the test cases

the two versions performed rather similar (less than 3%

difference). As can be easily seen from Figs. 10 - 13, this is

207

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

-5

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70

im
pr

ov
em

en
t [

%
]

number of threads

Intel-IB Intel-SB AMD-IL AMD-MC

(a) delaunay

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70

im
pr

ov
em

en
t [

%
]

number of threads

Intel-IB Intel-SB AMD-IL AMD-MC

(b) nlpkkt240

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70

im
pr

ov
em

en
t [

%
]

number of threads

Intel-IB Intel-SB AMD-IL AMD-MC

(c) road-europe

-10

-5

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70

im
pr

ov
em

en
t [

%
]

number of threads

Intel-IB Intel-SB AMD-IL AMD-MC

(d) friendster

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70

im
pr

ov
em

en
t [

%
]

number of threads

Intel-IB Intel-SB AMD-IL

(e) R-100M-4G-45

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70

im
pr

ov
em

en
t [

%
]

number of threads

Intel-IB Intel-SB AMD-IL

(f) R-100M-4G-57

Fig. 14: Relative improvements of non-atomic version nonatomicBFS com-
pared to optimized atomic version atomicBFS2.

 0

 20

 40

 60

 80

 100

Intel-IB

Intel-SB

AM
D-IL

AM
D-M

C

%
 o

f i
ns

ta
nc

es

<-10
-10<=x<-3

-3<=x<3
3<=x<10

>=10

Fig. 15: Classes of performance improvements between nonatomicBFS and
atomicBFS2. x > 0 are test instances, where nonatomicBFS was faster than
atomicBFS2).

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 5 10 15 20 25 30 35 40 45 50

ov
er

he
ad

 [%
 a

dd
iti

on
al

 v
er

tic
es

]

number of threads

delaunay nlpkkt240 road-europe friendster

(a) Percentage of additional vertices (non RMAT graphs)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 5 10 15 20 25 30 35 40 45 50

ov
er

he
ad

 [%
 a

dd
iti

on
al

 v
er

tic
es

]

number of threads

RMAT-1M-10M-57
RMAT-1M-100M-57

RMAT-1M-1000M-57
RMAT-1M-1000M-30

(b) Percentage of additional vertices (selected RMAT graphs)

Fig. 16: Overhead in percentage of additional vertices for selected graphs on
the system Intel-IB, shown with error bars.

often the case when using many threads, where other effects

then superimpose the discussion atomic / non-atomic.

D. Additional Overhead

The newly introduced technique avoids atomic operations

in exchange with a probability of more work to be executed.

To examine the amount of additional work, it was measured

how many vertices get inserted multiple times in version

nonatomicBFS, which is proportional to the additional and

redundant work that is generated. The general factors influ-

encing that were discussed already in Section V-B.

208

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 16 shows exemplarily for the system Intel-IB the

overhead for selected graphs including the worst case for that

system. The program was run for this test 100 times. Shown in

the figure is the average overhead in percent and the standard

deviation as an error bar, for a specific number of threads

respectively.

As can be seen, the probability increases slightly with

more threads, but still this overhead is for the scenario used

negligible. Even with 48-fold concurrency, there are very rare

situations that lead to multiple insertions. In all tests executed

– on all systems, with all number of threads, with all data

sets, with different compilers – the additional overhead was

in a neglectible range for the application used. In all tests the

overhead in percent of additional vertices to be handled was

always below 0.1 %, and most times even far less than that.

The maximum overhead seen on the system Intel-IB was

0.047 percent, or in absolute numbers, instead of 27,993,600

vertices to be inserted, with nonatomicBFS 29,314,002 ver-

tices were inserted. The difference in this worst case that

happened was therefore 13,204 additional vertices. For RMAT-

graphs, the difference was even always below 500 additional

vertices in absolute values.

IX. CONCLUSIONS

In this paper, it was proposed (in parallel programs and

within certain scenarios) to replace costly atomic update

operations on shared data structures with simple read-write

updates. If the correctness of the algorithm is not affected by

this change, this leads to an algorithm variant that does not

need atomic operations to update the shared data structure.

This program variant still works correctly, but on the other

side, it may generate more and redundant work to be done.

As an example for such a scenario, a parallel BFS algorithm

was used where the atomic detection and update of univisited

neighbour vertices was replaced with simple non-atomic read-

/write updates. The results for this application show, that the

non-atomic version has a huge performance improvement in

many situations compared to a straightforward implementation

with atomic accesses (atomicBFS1). And even compared to

an already optimized version using atomic operations only

if necessary, the proposed new technique has comparable or

many times better performance (approx. 43,9% of all test

instances). Especially larger parallel systems with more CPU

sockets benefit.

The reason for the performance boost was the avoidance of

atomic operations. The additional overhead, which the tech-

nique may introduce, was in the BFS application neglectible.

To apply the technique in general, it was shown what

requirements must be fulfilled: the test and update operations

must be idempotent.

The mainstream transactional memory hardware implemen-

tations introduced in recent processors generations (e.g., Intel

Haswell) use a different approach. But similar to the approach

introduced in this paper, this is an optimistic approach, too, as

only the conflict case has to be handled, and not every access.

It would be rather interesting to compare these two alternatives

with relevant scenarios.

ACKNOWLEDGEMENTS

The system infrastructure was partially funded by an in-

frastructure grant of the Ministry for Innovation, Science, Re-

search, and Technology of the state North-Rhine-Westphalia.

Matthias Makulla did most of the implementation work on

several parallel graph algorithms including an initial version

of the ones used in this paper.

REFERENCES

[1] R. Berrendorf, “Trading redundant work against atomic operations on
large shared memory parallel systems,” in Proc. Seventh Intl. Conference

on Advanced Engineering Computing and Applications in Sciences

(ADVCOMP), 2013, pp. 61–66.

[2] OpenMP Application Program Interface, 4th ed., OpenMP Archi-
tecture Review Board, http://www.openmp.org/, Jul. 2013, retrieved:
08.03.2014.

[3] IEEE, Posix.1c (IEEE Std 1003.1c-2008), Institute of Electrical and
Electronics Engineers, Inc., 2008.

[4] ISO/IEC 14882:2011 Programming Languages – C++, ISO, Genf,
Schweiz, 2011.

[5] ISO/IEC 9899:2011 - Programming Languages – C, ISO, Genf,
Schweiz, 2011.

[6] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.
Burlington, MA: Morgan Kaufmann, 2008.

[7] M. Ben-Ari, Principles of Concurrent and Distributed Programming,
second edition ed. Harlow, England: Pearson Eduction, 2006.

[8] Intel c©64 and IA-32 Architectures Software Developer’s Manual. Intel
Press, 2013, vol. 2: Instruction Set Reference.

[9] AMD64 Architecture Programmers Manual. Advanced Micro Devices,
2013, vol. 3: General-Purpose and System Instructions.

[10] ARM v8 Instruction Set Architecture. ARM Limited, 2013.

[11] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable graph
exploration on multicore processors,” in ACM/IEEE Intl.Conf. for High

Performance Computing, Networking, Storage and Analysis, 2010, pp.
1–11.

[12] P. E. McKenney, Synchronization and Scalability in the Macho Multicore

Era, http://www2.rdrop.com/∼paulmck/scalability/paper/ MachoMulti-
core.2010.08.09a.pdf, retrieved: 27.01.2014.

[13] G. M. Baudet, “Asynchronous iterative methods for multiprocessors,”
Journal of the ACM, vol. 25, no. 2, pp. 226–244, Apr. 1978.

[14] M. Wu, “Asynchronous algorithms for shared memory machines,” Ph.D.
dissertation, University of Illinois at Urbana-Champaign, 1992.

[15] P. Diniz and M. Rinard, “Synchronization transformations for parallel
computing,” in Proc. ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL), 1997, pp. 187–200.

[16] D. Novillo, R. Unrau, and J. Schaeffer, “Optimizing mutual exclusion
synchronization in explicitly parallel programs,” in Proc. 5th Interna-

tional Workshop on Languages, Compilers, and Run-Time Systems for

Scalable Computers, 2000, pp. 128–142.

[17] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, and
J. Walpole, “User-level implementations of read-copy update,” IEEE

Transactions on Parallel and Distributed Systems, vol. 23, no. 2, pp.
375– 382, Feb. 2012.

[18] D. Dice, “Implementing fast Java monitors with relaxed locks,” in
Proc. JavaTM Virtual Machine and Technology Symposium, Monterey,
2001, pp. 79–90.

[19] S. Haldar and K. Vidyasankar, “Constructing 1-writer multireader mul-
tivalued atomic variables from regular variables,” Journal of the ACM,
vol. 42, no. 1, pp. 186–203, 1995.

[20] M. Herlihy and J. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Proc. 20th Intl. Symposium

on Computer Architecture, 1993, pp. 289–300.

[21] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton,
R. Silbera, and M. Michael, “Evaluation of Blue Gene/Q hardware
support for transactional memories,” in Proceedings of the 21st Interna-

tional Conference on Parallel architectures and compilation techniques

(PACT’12). New York, NY: ACM, 2012, pp. 127–136.

209

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[22] C. Jacobi, T. Siegel, and D. Greiner, “Transactional memory architecture
and implementation for IBM system z,” in Proceedings of the IEEE/ACM

45th Annual Intl. Symposium on Microarchitecture, 2012, pp. 25–36.

[23] J. Reinders, Transactional Synchronization in Haswell,
http://software.intel.com/en-us/blogs/2012/02/07/ transactional-
synchronization-in-haswell, 2012, retrieved 30.01.2014.

[24] L. Lamport, “Concurrent reading and writing,” Journal of the ACM,
vol. 20, no. 11, pp. 906–811, 1977.

[25] J. Aspnes and M. Herlihy, “Wait-free dats structures in the asynchronous
PRAM model,” in Proc. 2nd Annual Symposium on Parallel Algorithms

and Architectures (SPAA-90), Crete, Greece, Jul. 1990, pp. 240–349.

[26] M. Herlihy, “Wait-free synchronization,” ACM Trans. Programming

Languages and Systems, vol. 13, no. 1, pp. 124–149, 1991.

[27] A. LaMarca, “A performance evaluation of lock-free synchronization
protocols,” in Proceedings of the 13th Annual ACM Symposium on

Principles of Distributed Computing, Los Angeles, CA, Aug. 1994, pp.
130–140.

[28] V. Lanin and D. Sasha, “Concurrent set manipulation without locking,”
in Proceedings of the 7thACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems, Austin, TX, Mar. 1988, pp. 211–220.

[29] P. Tsigas and Y. Zhang, “A simple, fast and scalable non-blocking
concurrent FIFO queue for shared memory multiprocessor systems,” in
Proceedings of the 13th Annual Symposium on Parallel Algorithms and

Architectures (SPAA-01), Crete, Greece, Sep. 2001, pp. 134–143.

[30] G. Barnes, “Wait-free algorithms for heaps,” University of Washington,
Seattle, WA, Tech. Rep. TR-94-12-07, 1994.

[31] J. Valois, “Lock-free data structures,” Ph.D. dissertation, Rensselaer
Polytechnic Institute, Troy, NY, May 1995.

[32] ——, “Lock-free linked lists using compare-and-swap,” in Proceedings

of the 14th Annual ACM Symposium on Principles of Distributed

Computing, Ottawa, Canada, 1995, pp. 214–222.

[33] H. Sundell and P. Tsigas, “Scalable and lock-free concurrent dictionar-
ies,” Chalmers University, Gteborg, Sweden, Tech. Rep. 2003-10, 2003.

[34] H. Sundell, “Efficient and practical non-blocking data stccutures,” Ph.D.
dissertation, Chalmers University, Gtebord, Sweden, 2004.

[35] K. Fraser and T. Harris, “Concurrent programming without locks,” IEEE

Trans. Computers, vol. 25, no. 2, 2007.

[36] G. Cong and D. A. Bader, “Designing irregular parallel algorithms
with mutual exclusion and lock-free protocols,” Journal of Parallel and

Distributed Computing, no. 66, pp. 854–866, 2006.

[37] C. E. Leiserson and T. B. Schardl, “A work-efficient parallel breadth-
first search algorithm (or how to cope with the nondeterminism of
reducers),” in Proc. 22nd ACM Symp. on Parallelism in Algorithms and

Architectures, 2010, pp. 303–314.

[38] R. Sedgewick, Algorithms in C++, Part 5: Graph Algorithms, 3rd ed.
Addison-Wesley Professional, 2001.

[39] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to

Algorithms, 3rd ed. The MIT Press, 2009.

[40] C. Wilson, B. Boe, A. Sala, K. Puttaswamy, and B. Zhao, “User
interactions in social networks and their implications,” in Eurosys, 2009,
pp. 205–218.

[41] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-

tative Approach, 5th ed. Morgan Kaufmann Publishers, Inc., 2012.

[42] Graph 500 Comitee, Graph 500 Benchmark Suite,
http://www.graph500.org/, retrieved: 08.03.2014.

[43] D. Bader and K. Madduri, “SNAP, small-world network analysis and
partitioning: an open-source parallel graph framework for the exploration
of large-scale networks,” in 22nd IEEE Intl. Symp. on Parallel and

Distributed Processing, 2008, pp. 1–12.

[44] R. Berrendorf and M. Makulla, “Level-synchronous parallel breadth-
first search algorithms for multicore- and multiprocessors systems,” in
submitted for publication, 2014.

[45] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson,
and U. Catalyurek, “A scalable distributed parallel breadth-first search
algorithm on BlueGene/L,” in ACM/IEEE Conf. on Supercomputing,
2005, pp. 25–44.

[46] Y. Xia and V. Prasanna, “Topologically adaptive parallel breadth-first
search on multicore processors,” in 21st Intl. Conf. on Parallel and

Distributed Computing and Systems, 2009, pp. 1–8.

[47] J. D. Ullman and M. Yannakakis, “High-probability parallel transitive
closure algorithms,” SIAM Journal Computing, vol. 20, no. 1, pp. 100–
125, 1991.

[48] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing
breadth-first search,” in Proc. Supercomputing 2012, 2012, pp. 1–10.

[49] J. Chhungani, N. Satish, C. Kim, J. Sewall, and P. Dubey, “Fast
and efficient graph traversal algorithm for CPUs: Maximizing single-
node efficiency,” in Proc. 26th Intl.Parallel and Distributed Processing

Symposium. IEEE, 2012, pp. 378–389.
[50] Y. Yasui, K. Fujusawa, and K. Goto, “NUMA-optimized parallel

breadth-first search on multicore single-node system,” in Proc. IEEE

Intl. Conference on Big Data, 2013, pp. 394–402.
[51] G. Taubenfeld, Synchronization Algorithms and Concurrent Program-

ming. Harlow, Essex: Pearson Education Limited, 2006.
[52] C. Hoare, “Monitors: An operating system structuring concept,”

Comm. ACM, vol. 17, no. 10, pp. 549–557, 1974.
[53] A. Silberschatz, J. B. Galvin, and G. Gagne, Operating System Concepts,

8th ed. John Wiley & Sons Inc, 2008.
[54] L. Lamport, “Time, clocks, and the ordering of events in a distributed

system,” Comm. ACM, vol. 21, no. 7, pp. 558 – 565, Jul. 1978.
[55] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:

A tutorial,” IEEE Computer, pp. 66–76, Dec. 1996.
[56] M. Dubois, C. Scheurich, and F. A. Briggs, “Synchronization, coherence,

and event ordering in multiprocessors,” IEEE Computer, pp. 9–21, Feb.
1988.

[57] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy, “Memory consistency and event ordering in scalable
shared-memory multiprocessors,” in Proc. 17th Intl. Symposium on

Computer Architecture. IEEE, 1990, pp. 15–26.
[58] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language

Specification, 3rd ed. Addison Wesley, 2005.
[59] DIMACS, DIMACS’10 Graph Collection,

http://www.cc.gatech.edu/dimacs10/, retrieved: 08.03.2014.
[60] T. Davis and Y. Hu, Florida Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/, retrieved: 08.03.2014.
[61] J. Leskovec, Stanford Large Network Dataset Collection,

http://snap.stanford.edu/data/index.html, retrieved: 08.03.2014.
[62] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model

for graph mining,” in SIAM International Conference on Data Mining,
2004, pp. 442 – 446.

[63] C. Groër, B. D. Sullivan, and S. Poole, “A mathematical analysis of the
R-MAT random graph generator,” Networks, vol. 58, no. 3, pp. 159–170,
Oct. 2011.

210

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Development Framework for Distributed Agile Software Development

Abdullah Saad Alqahtani, John David Moore, David K Harrison, and Bruce M Wood
School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow, United Kingdom

{abdullah.alqahtani, j.d.moore, d.harrison, b.wood} @gcu.ac.uk

Abstract—There is a growing interest in applying Agile
development methods alongside global software development
in order to reap the benefits of both approaches. With this said
however, research has shown that software companies are
encountering significant challenges when attempting this, due
to the contradiction between Agile values and the global
development environment. This paper focuses on the
challenges encountered with this kind of development, and
discusses several techniques via which these challenges can be
addressed. It proposes a framework for distributed Agile
development. Data has been collected from 85 participants
from all around the world using both a self-completed
questionnaire and face-to-face interviews. From this study it
was found that communication barriers are the biggest
development challenge. In order to ameliorate this,
development teams and product owners need to work hard to
improve the level of communication between them, by
adopting a regimented communication schedule. The co-
located development strategy “Scrum of Scrums”, where
distributed isolated teams integrate together using one of the
Agile methods, was found to be the most suitable strategy for
distributed Agile development.

Keywords—distributed Agile; development framework;
Scrum; Lean and Kanban methods.

I. INTRODUCTION
Increased globalization has led to greater competition

between software development companies around the world.
The software development industry is seeing a shift from co-
located software development to Global Software
Development (GSD), which involves multiple distributed
development teams in different locations. GSD facilitates
competitive software development prices by using teams
from countries that have an abundance of IT developers
available at relatively low cost [1]. In addition, research has
shown that software companies are interested in applying
Agile Software Development (ASD) to develop the software
by global teams, in order to have the combined advantages
of ASD and GSD [2][3]. The combination of Agile
development methods and GSD is known as Distributed
Agile Software Development (DASD). Venkatesh defines
Distributed Agile Development as “a model in which
projects execute an Agile Methodology with teams that are
distributed across multiple geographies” [4]. This
combination has shown signs of providing IT companies
with the ability to meet the critical success factors of the
software industry, such as quality, time, and cost. Sutherland
et al. [5] detail their experience of applying a distributed
Scrum approach and report several advantages, such as a
high increase in team productivity, an increase in the
transparency between team members, better building of trust,

and increased project visibility. However, although the
potential advantages of GSD are clear, research has shown
that software companies are encountering significant
challenges by applying this approach. Developers are not
always able to apply Agile practices successfully due to
challenges introduced through the global development
environment, including distance and time zone differences
[6].

This paper presents the results of a mixed methodology
study. The initial, quantitative part aims to study the impact
that the projects’ settings make to the DASD. Inferential
statistics will be used to investigate the differences between
the development challenges, which have been reported by
the study participants, with regards to the demographic
information of their projects’ settings. The second,
qualitative part involves one specific company, which
employs the DASD approach. The study focuses on the
challenges of adopting DASD and discusses some possible
techniques to address and minimize those challenges.
Finally, the results will be integrated to form a development
framework to guide users towards a better adoption of
DASD.

This paper is structured as follows: first, the related work
will be reported. Following this, the research method will be
discussed. The results and discussion will be presented in
Sections IV and V. Section VI will then address the study
validation. Section VI will report the proposed development
framework, whilst the final section will contain the summary
and conclusion.

II. RELATED WORK
Venkatesh [4] reports some results from surveys by the

DH2A Institute. Their data shows that 30% of respondents
are using distributed Agile, 40% use local Agile
development, and about 85% of them have distributed teams.
In addition, the 30% of respondents that stated they are using
distributed Agile explained their use of this approach by the
advantages and successes they achieved from this kind of
development, such as reducing the development cost,
accessing the talent pool and resources, increasing team
productivity, and decreasing the cost of having high quality
software.

However, Software companies are likely to encounter
significant challenges and large obstacles when they adopt
DASD. Developers may not be able to apply the Agile
methods and practices successfully due to the global
development environment. The lack of communication and
differences in culture and time zones could create huge
challenges for Agile methods [7], [8].

 A systematic review studied the application of Scrum
practices in global software development using 27 literature

211

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

studies, and analyzed the challenges into three categories:
communication, coordination, and control [9].

The challenges of using Agile with distributed national
teams can be categorized into three types of deficiency:
communication, trust, and control [3].

Ensuring effective communication within DASD is a
huge challenge. The reasons behind these communication
challenges could be summarized into four categories: a lack
of communication tools, time zone differences, a lack of
English language, and a lack of teamwork. These barriers
may limit and decrease communication levels in a distributed
development [10].

There is a current need for more studies to improve our
understanding of how best to adopt Agile methods within
global software development. There is a lack of theoretical
models of distributed Agile. More studies are needed to
address the literature gap by investigating the geographical,
cultural, and temporal challenges involved [11].

Previously, we conducted a systematic literature review
focusing on the challenges of applying DASD [12]. One of
the significant findings of that review was that most of the
DASD studies cover the technical perspective of the
development but lack coverage of the human perspective.
The review also reported that: “The human perspective needs
to immediately search to explore the effect of the cultural
differences on the relationship between the stakeholders and
the development process” [12]. This paper aims to address
this issue by exploring the challenges and techniques of
applying DASD from the developers’ point of view (i.e., the
human perspective). Moreover, the systematic literature
review classified the development challenges under a four-
dimensions model (Communication, Culture, Management,
and Agile). This study will provide further investigation into
this model and will aim to propose a development
framework for this development approach.

III. RESEARCH METHOD
This paper presents a mixed methodology study

including both quantitative and qualitative data. This study
has been applied to a simple random sample from the study
population. According to Kumar [13], the simple random
sample is the most popular way to ensure randomization, as
each element in the study population has an equal chance of
selection. The questionnaire was distributed online to 45
online LinkedIn Agile groups from around the world and
many IT organizations were invited to get involved in this
investigation. Further collaboration came from two Agile
conferences, who sent the questionnaire to their attendees:
Lean Agile Scotland Conference 2012 and Agile Worlds -
Distributed Agile Conference 2012. Moreover, some
software companies agreed to distribute the questionnaire to
their staff, although only one global IT development
company agreed to let one of its teams be interviewed. All
the team members have applied the distributed Agile
development and have had a good experience with this kind
of development approach.

The questionnaire was configured as a web-based online
questionnaire because of the need to gather information from
a large number of participants, from a sample study

distributed across a number of continents. In addition, the
participants were all IT professionals, meaning they were not
going to have any difficulties in completing an online
questionnaire. The participants were invited to answer the
questionnaire online. It ran for five months, from July 2012
to December 2012. Over 120 responses were collected by the
end of the data collection stage, including the self-completed
questionnaire and the face-to-face interviews; 85 of these
were eligible and reliable enough to be investigated. The
excluded responses included incomplete responses or
responses with “fake” answers (e.g. putting the same answer
for all the questionnaire points).

This section addresses the data collection and analysis
procedures. It will report the quantitative part first, and then
the qualitative one.

A. The quantitative data
The main content of the questionnaire can be classified

into two groups of items:
1) The demographic items – “Categorical variables”:

This section aims to collect information about the
background of the participants, such as the number of
developers involved and the Agile method applied. This
section will contribute to a better understanding of the
correct setting for the application of the DASD approach.

2) The development challenges – Likert scales: This
section will use the four-dimensions model, in the form of
Likert scales, to evaluate a list of challenges within each
dimension. It aims to provide a better understanding of the
level of expected issues with this development, by showing
what the participants think about the listed points.

This paper will investigate the differences between these
responses, with regards to differences between the
participants’ demographic information. Several null-
hypotheses need to be formulated which assume no
significant differences between the tested variables until the
inferential statistics can prove significant differences. In this
case, the alternative hypotheses will be accepted, otherwise
the null-hypotheses will be accepted [14]. Estler et al. [15]
used the null-hypotheses technique in similar work, in order
to study the differences between Agile and structure
development. This paper has 10 main null-hypotheses,
based on the number of the demographic variables that will
be investigated as follow:

H1: There are no significant differences between the responses of the
respondents to the development challenges scales due to the location of the
Product owner.

H2: There are no significant differences in the development challenges
scales due to differences in the Number of Developers in the development
teams.

H3: There are no significant differences in the development challenges
scales due to the Agile development method adopted.

H4: There are no significant differences in the development challenges
scales due to the Number of different time zone areas amongst development
teams.

H5: There are no significant differences in the development challenges
scales due to the Number of distributed teams.

H6: There are no significant differences in the development challenges
scales due to differences in participants’ Agile experience.

H7: There are no significant differences in the development challenges
scales due to having development participants from different cultures.

212

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

H8: There are no significant differences in the development challenges
scales due to the Number of different time zone areas that the teams are
placed into.

H9: There are no significant differences in the development challenges
scales due to differences in the participants’ Distributed Agile experience.

H10: There are no significant differences in the development challenges
scales due to differences in the applied Distributed development strategy.

Each one of these null-hypotheses has four sub null-
hypotheses for each development scale. The development
challenges scales data within this study are Likert scale data,
so they need to be treated as nonparametric data [16], [17],
[18], [19]. The Mann-Whitney U Test needs to be applied to
test the differences for the variables with two groups, and the
Kruskal Wallis Test for the variables with three groups [14].
Moreover, the median, mean rank and effect size need to be
reported to show whether the differences are significant
cases or not. Pallant [14] also reports Cohen’s criteria [20]
to describe the effect size: 0.1 is considered a small effect
size, 0.3 a medium effect size and 0.5 a large effect size.

B. The qualitative data
The qualitative data was collected through structured

interviews. The interviews were face-to-face and recorded
with a voice recorder. Also, notes of the main ideas and
answers were taken during the interviews. The data was
transcribed from verbal form to textual form. The transferred
documents were then compared to the notes from the
interviews, to ensure the reliability of the data. Following
this, a thematic analysis was applied, which is an approach to
identify the themes and patterns from the collected
qualitative data [21], [22]. In addition, the data-driven
method was selected for the thematic analysis of this study.
The data-driven method, regarding to Asnawi, can be
summarized in five steps, as follows: “(i) reducing the raw
information, (ii) identifying themes within subsamples, (iii)
comparing themes across subsamples, (iv) creating a code,
and (v) determining the reliability of the code” [23].

The interviews were carried out at a large, global IT
development company. The company has 27 offices
distributed through 11 countries around the world: Australia,
Brazil, Canada, China, Germany, India, Singapore, South
Africa, Uganda, the United Kingdom and the United States.
The company provides software design and delivery
services, as well as development consulting services. It also
produces customized software products as tools to support
distributed Agile software development, thus helping the
development teams to communicate, share information and
track progress. The company applies Agile methods in order
to develop its global software projects and has been involved
in the software industry for the past 20 years. The company
requested to remain anonymous within this study.

Three interviewees with good experience of Agile
methods and the distributed development approach agreed to
participate in this study. Participant-1 had experience
working with over 15 teams spanning the entire globe, both
East and West, including teams from countries such as India,
USA, the UK and Australia. Participant-2 had 4 years of
experience, including a special course in Agile development
during his master’s degree, as well as significant experience
when it came to working with stakeholders from different

cultures, including people from China, Europe, the UK, the
USA and the Middle East. Participant-3 acquired a vast
amount of experience before joining the company, since he
developed a project while both the product owner and
business analyst were away from the development team. He
also had experience working with customers from different
countries including New Zealand, Australia and the USA.

IV. QUANTITATIVE RESULTS AND DISCUSSION
This section presents the quantitative inferential analysis

of the study’s null-hypotheses that were reported earlier. The
following subsections present the results of each null-
hypothesis and its sub-hypotheses in detail, in those cases
where there is a significant difference.

A. Product owner location
This demographic variable explores whether the product

owner (key stakeholder) was located with one of the
development team on-site. It has two answer groups: Yes
(i.e. the product owner was located with one of the
development teams), and No (i.e. the product owner was not
located with one of the development teams).

TABLE I: THE RESULT OF THE MANN-WHITNEY U TEST WITH THE PRODUCT
OWNER VARIABLE

 Communication
scale

Culture
scale

Management
scale

Agile
scale

Mann-Whitney U 685.000 715.500 772.000 515.000
Wilcoxon W 1813.000 1796.500 1900.000 1596.000

Z -1.395 -0.781 -0.515 -2.797
Asymp. Sig. (2-

tailed)
0.163 0.435 0.606 0.005

Table I above illustrates the U test results. It shows that
the difference is highly significant within the Agile scale,
with p =0.005 (<=0.01) as a high significant level, so in this
case the null-hypothesis for this scale will be rejected and the
alternative hypothesis accepted. To investigate the
significant differences further, the median and the mean rank
are recorded in Table II. The first group has a higher mean
rank value of 48.3 while the second group has a value of
34.7. The effect size in this case is r = 0.31. This would be
considered a medium effect size, based on Choen’s criteria
[20].

TABLE II: RANKS FOR THE AGILE SCALE BASED ON THE PRODUCT OWNER

Product owner N Mean Rank Median Sum of Ranks
No 34

48.35 3 1644.00
Yes 46

34.70 3 1596.00
Total 80

Table II shows the median and the mean rank. The first

group has a higher mean rank value of 48.3 while the second
group has a value of 34.7. The effect size in this case is r =
0.31. This would be considered a medium effect size. It is
recommended that the product owner is placed onshore with
one of the development teams. Having the product owner
located on-site with one of the development teams

213

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

significantly reduces the risk of any Agile development
problems, in terms of the distributed Agile approach. This
ensures good levels of communication between the
developers and the customers, as well as enabling the
development teams to receive rapid feedback. The result
shows that having the product owner (key stakeholder)
located with one of the on-site development teams could
reduce the challenges to the Agile dimension by 31%.

B. Number of developers
This demographic variable has two answer groups: 1)

there were 15 developers or fewer within the development
team, and 2) there were more than 15 developers within the
development team. Table III illustrates the U test results. It
shows that the difference is highly significant within the
Agile scale, with p =0.006 (<=0.01) as a significant level. In
this case, the null-hypothesis for this scale will be rejected
and the alternative hypothesis accepted.

TABLE III: THE RESULT OF THE MANN-WHITNEY U TEST WITH THE
NUMBER OF DEVELOPERS VARIABLE

 Communication
scale

Culture
scale

Management
scale

Agile
scale

Mann-Whitney U 786.000 661.000 671.000 532.500
Wilcoxon W 1689.000 1441.000 1491.000 1312.500

Z -.542 -1.608 -1.706 -2.766
Asymp. Sig. (2-

tailed)
0.588 0.108 0.088 0.006

Table IV reports that the first group has a higher mean
rank value of 47 while the second group has a value of 33.6.
The effect size in this case is r = 0.30, which would be
considered a medium effect size. This indicates that having a
greater number of developers does not create more
difficulties for the Agile practices. The group with 15
developers or fewer had more Agile dimension issues. 15
members or more had fewer challenges with regard to the
Agile dimension – specifically, problems were reduced by
30%. This hypothesis shows that an increase in team
members could reduce Agile issues. In other words, a larger
number of development participants will help to improve
communication and will provide a better environment for
Agile adoption. For instance, regarding DASD challenges
such as language barriers, members could help each other to
communicate better with other team members when they
experience communication difficulties. Agile philosophies
and values support the idea of having more team members to
provide a better environment for sharing information and
collaboration as applied with XP programming practices.

TABLE IV: RANKS FOR THE AGILE SCALE BASED ON THE NUMBER OF
DEVELOPERS

Number of developers N Mean Rank Median Sum of Ranks
15 developers or less 41 47.01 3 1927.50

More than 15 developers 39 33.65 3 1312.50
Total 80

C. Agile methods
There are 7 variables representing the Agile methods,

with each variable checking one of the applied development

methods (Agile approach in general, Scrum, eXtreme
Programming (XP), Scrum/XP hybrid, Lean and Kanban,
and Feature-Driven Development (FDD)). Some of the
questionnaire participants chose more than one of the Agile
methods so this section will investigate each Agile method
separately in order to identify any significant differences
between the respondents who used or did not use that
particular Agile method. The U test results show several
significant differences regarding the adopted Agile method.
Firstly, the Scrum method has significant differences to the
management scale, with p =0.006 (<=0.05) as a significant
level. Table V shows the U test results for applying the
Scrum approach.

 TABLE V: THE RESULT OF THE MANN-WHITNEY U TEST WITH USING
SCRUM METHOD

 Communication
scale

Culture
scale

Management
scale

Agile
scale

Mann-Whitney U 625.000 655.500 516.500 671.500
Wilcoxon W 1900.000 1880.500 1791.500 1847.500

Z -1.583 -0.965 -2.734 -0.786
Asymp. Sig. (2-

tailed)
0.113 0.335 0.006 0.432

To investigate the significant differences further, the
median and the mean rank are recorded in Table VI. The first
group has a higher mean rank value of 49.3, while the second
group has a value of 35.8. The effect size in this case is r =
0.30 (medium effect size). Applying the Scrum method
within the DASD may decrease the risk of challenges
arising, with regard to the management and control
dimension, by 30%.

TABLE VI: RANKS FOR THE MANAGEMENT SCALE BASED ON USING SCRUM
METHOD

Use Scrum method N Mean Rank Median Sum of Ranks
No 31 49.34 3 1529.50
Yes 50 35.83 2 1791.50

Total 81

Secondly, the Scrum/XP hybrid method has significant
differences to the communication scale, as shown within
Table VII (with p =0.006 (<=0.05) as a significant level), and
also to the Agile scale (with p =0.03 (<=0.05) as a significant
level).

TABLE VII: THE RESULT OF THE MANN-WHITNEY U TEST WITH USING
SCRUM/XP HYBRID METHOD

 Communication
scale

Culture
scale

Management
scale

Agile
scale

Mann-Whitney U 415.500 558.000 520.500 439.000
Wilcoxon W 2245.500 2269.000 2350.500 2209.000

Z -2.770 -1.040 -1.588 -2.124
Asymp. Sig. (2-

tailed)
0.006 0.298 0.112 0.034

To investigate the significant differences further, the
median and the mean rank are recorded in Table VIII and
Table IX. The effect size with regards to the communication
scale is r = 0.30 (medium effect size), and to the Agile scale
it is r = 0.23 (small effect size).

214

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VIII: RANKS FOR THE COMMUNICATION SCALE BASED ON USING
SCRUM/XP HYBRID METHOD

Use Scrum/XP
hybrid method N Mean Rank

Median
Sum of Ranks

No 60 37.43 3 2245.50
Yes 22 52.61 3 1157.50

Total 82

The research result suggests that applying the Scrum/XP
hybrid method to DASD may increase the challenges faced,
with regard to the communication and collaboration
dimensions, by 30%. So it is therefore better not to adopt this
development method in DASD.

TABLE IX: RANKS FOR THE AGILE SCALE BASED ON USING SCRUM/XP
HYBRID METHOD

Use Scrum/XP
hybrid method N Mean Rank

Median
Sum of Ranks

No 59 37.44 3 2209.00
Yes 21 49.10 3 1031.00

Total 80

The research result shows that applying the Scrum/XP
hybrid method with DASD may increase the challenges with
regard to the Agile dimension by 23%. Applying this
methodology within DASD is not sufficient where the
setting of the distributed development is concerned, so it is
therefore better not to adopt this development method with
DASD.

Furthermore, Table X illustrates the U test results for the
use of the Lean/Kanban method. This development method
has significant differences to the culture scale (with p =0.016
(<=0.05) as a significant level), and also to the Agile scale
(with p =0.00 (<=0.05) as a significant level).

TABLE X: THE RESULT OF THE MANN-WHITNEY U TEST WITH USING
LEAN/KANBAN METHOD

 Communication
scale

Culture
scale

Management
scale

Agile
scale

Mann-Whitney U 702.000 529.500 601.500 305.500
Wilcoxon W 1108.000 935.500 1007.500 683.500

Z -0.572 -2.415 -1.644 -4.490
Asymp. Sig. (2-

tailed)
0.568 0.016 0.100 0.000

To investigate these significant differences further, the
median and the mean rank are reported in Table XI and
Table XII. The effect size with regards to the culture scale is
r = 0.26 (small effect size), and to the Agile scale it is r =
0.50 (large effect size).

TABLE XI: RANKS FOR THE CULTURE SCALE BASED ON USING
LEAN/KANBAN METHOD

Use Lean/Kanban method N Mean Rank Median Sum of Ranks
No 52 44.32 3 2304.50
Yes 28 33.41 2 935.50

Total 80

TABLE XII: RANKS FOR THE AGILE SCALE BASED ON USING LEAN/KANBAN
METHOD

Use Lean/Kanban method N Mean Rank Median Sum of Ranks
No 53 48.24 3 2556.50
Yes 27 25.31 2 683.50

Total 80

The research result would suggest the use of the
Lean/Kanban method to be highly recommended. Applying
the Lean/Kanban method within DASD may decrease the
challenges to both dimensions: the culture dimension by
26%, and the Agile dimension by 50%.

The U test results show no significant differences within
the rest of the development methods, including the Agile
approach in general, eXtreme Programming (XP), and
Feature-Driven Development (FDD).

The result indicates that there are significant differences
from the Agile methods variables for all four scales
(communication, culture, management and Agile), so the
null-hypotheses will be rejected and all of the alternative
hypotheses accepted.

D. Number of time zone areas between development teams
This demographic variable has two answer groups: 1)

there are no time zone “spaces” between teams (the “space”
[gap] here represents one time zone that has no stakeholders
placed in it), and 2) there are one or two time zone spaces
between development teams. Table XIII illustrates the U test
results. It shows that the difference is significant within the
communication scale with p =0.031 (<=0.05) as a significant
level, so in this case the null-hypothesis for this scale will be
rejected and the alternative hypothesis is accepted.

TABLE XIII: THE RESULT OF THE MANN-WHITNEY U TEST WITH THE
NUMBER OF SPACES VARIABLE

 Communication
scale

Culture
scale

Management
scale

Agile
scale

Mann-Whitney U 527.500 669.000 692.500 630.000
Wilcoxon W 2123.500 1020.000 2288.500 2170.000

Z -2.163 -0.409 -0.385 -0.642
Asymp. Sig. (2-

tailed)
0.031 0.683 0.700 0.521

To investigate the significant differences further, the

median and the mean rank need to be reported. Table XIV
shows that the first group has a lower mean rank value of
37.9 while the second group has a value of 49.2. The effect
size in this case is r = 0.23. This would be considered a small
effect size.

TABLE XIV: RANKS FOR THE COMMUNICATION SCALE BASED ON THE
NUMBER OF SPACES

Number of the space
between time zones N Mean Rank Median Sum of Ranks

No space between teams 56 37.92 3 2123.50
There is a space 1 or 2

spaces 26 49.21 3 1279.50

Total 82

Having no “space” means that there is less than 5 hours

time difference between any given development team and

215

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the next closest team, which would mean they have at least 3
overlapping working hours. Having one or two spaces could
allow time differences of between 5 and 11 hours. Teams
with these time differences could have no overlapping
working hours between them, which could bring on many
communication challenges to the development. It can
increase the challenges with regard to the communication
and collaboration dimensions by 23%. It is therefore
recommended to maintain a time zone difference of less than
5 hours.

E. Number of distributed teams
This demographic variable has two answer groups

presenting the number of distributed teams: 1) less than three
distributed teams, and 2) three distributed teams or more.

TABLE XV: THE RESULT OF THE MANN-WHITNEY U TEST WITH THE
NUMBER OF DISTRIBUTED TEAMS VARIABLE

 Communication
scale

Culture
scale

Management
scale

Agile
scale

Mann-Whitney U 832.500 728.500 749.500 745.500
Wilcoxon W 1693.500 1589.500 1610.500 1606.50

0
Z -0.080 -0.824 -0.918 -0.559

Asymp. Sig. (2-
tailed)

0.936 0.410 0.358 0.576

Table XV above illustrates the U test results. It shows
that there are no significant differences with all the four
scales (communication, culture, management and Agile), so
the null-hypothesis will be accepted.

F. Agile years of experience
This demographic variable has two answer groups

representing the years of experience with Agile: 1) four years
of experience or less, and 2) more than four years of
experience.

TABLE XVI: THE RESULT OF THE MANN-WHITNEY U TEST WITH THE
AGILE YEARS OF EXPERIENCE VARIABLE

 Communication
scale

Culture
scale

Management
scale

Agile
scale

Mann-Whitney U 662.500 686.000 674.000 639.500
Wilcoxon W 1158.500 1961.000 2000.000 1914.500

Z -1.325 -0.767 -1.212 -1.182
Asymp. Sig. (2-

tailed)
0.185 0.443 0.225 0.237

Table XVI above illustrates the U test results. It shows
that there are no significant differences with all the four
scales (communication, culture, management and Agile), so
the null-hypothesis will be accepted as below.

G. Multi cultures
This demographic variable has two answer groups: 1) the

development teams include participants from different
cultures, and 2) the development teams do not include
participants from different cultures.

TABLE XVII: THE RESULT OF THE MANN-WHITNEY U TEST WITH THE
MULTI-CULTURES VARIABLE

 Communication
scale

Culture
scale

Management
scale

Agile
scale

Mann-Whitney U 177.500 148.000 208.500 226.000
Wilcoxon W 205.500 169.000 236.500 254.000

Z -1.527 -1.631 -0.975 -0.541
Asymp. Sig. (2-

tailed)
0.127 0.103 0.330 0.589

Table XVII above illustrates the U test results. It shows
that there are no significant differences with all the four
scales (communication, culture, management and Agile), so
the null-hypothesis will be accepted.

H. Number of time zone areas that the teams are placed
into
This demographic variable has two answer groups: 1) all

the development teams are placed into one time zone, and 2)
the development teams are placed into more than one time
zone (2-4).

TABLE XVIII: THE RESULT OF THE MANN-WHITNEY U TEST WITH THE
NUMBER OF TIME ZONES VARIABLE

 Communication
scale

Culture
scale

Management
scale

Agile
scale

Mann-Whitney U 674.000 660.000 775.500 760.000
Wilcoxon W 1377.000 1695.000 1810.500 1750.000

Z -1.599 -1.492 -0.0578 -0.333
Asymp. Sig. (2-

tailed)
0.110 0.136 0.563 0.739

Table XVIII illustrates the U test results. It shows that
there are no significant differences with all the four scales
(communication, culture, management and Agile), so the
null-hypothesis will be accepted.

I. Distributed Agile experience
This demographic variable has three answer groups,

representing the level of distributed Agile experience: 1) less
than one year of experience, 2) between one and four years’
experience, and 3) more than four years of experience.

TABLE XIX: THE RESULT OF THE KRUSKAL WALLIS TEST WITH THE
DISTRIBUTED AGILE EXPERIENCE VARIABLE

 Communication
scale

Culture
scale

Management
scale

Agile
scale

Chi-Square 5.222 3.519 3.916 0.927

Df 2 2 2 2
Asymp. Sig. 0.073 0.172 0.141 0.629

Table XIX illustrates the Kruskal Wallis test results. It
shows that there are no significant differences with all the
four scales (communication, culture, management and
Agile), so the null-hypothesis will be accepted.

J. Distributed development strategies
This demographic variable has three answer groups

exploring the development strategy: isolated development
(teams are distributed geographically but are not cross-

216

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

functional), co-located development (distributed isolated
teams integrate together using one of the Agile methods),
and fully integrated development (teams are distributed
geographically and work cross-functionally, using Agile
development). Table XX illustrates the Kruskal Wallis test
results. It shows that the difference is significant within the
management scale, with p =0.038 (<=0.05) as a significant
level, so in this case the null-hypothesis for this scale will be
rejected and the alternative hypothesis accepted.

TABLE XX: THE RESULT OF THE KRUSKAL WALLIS TEST WITH THE
DEVELOPMENT STRATEGY VARIABLE

 Communication
scale

Culture
scale

Management
scale

Agile
scale

Chi-Square 0.128 2.623 6.562 0.317
Df 2 2 2 2

Asymp. Sig. 0.938 0.269 0.038 0.854

To investigate this result further, there is a need to apply
the Mann-Whitney U test as a follow-up test to identify the
differences between each pair groups. The table below shows
that the significant differences are between the first and the
second group based on the U test results.

TABLE XXI: THE RESULT OF THE MANN-WHITNEY U TEST THE
DEVELOPMENT STRATEGY VARIABLE AND THE MANAGEMENT CHALLENGES

SCALE

 Management scale
Mann-Whitney U 167.000

Wilcoxon W 728.000
Z -2.199

Asymp. Sig. (2-
tailed)

0.028

Table XXI shows that there are statistically significant
differences between the isolated development strategy and
the co-located development strategy on the management
scale, with p =0.028 (<=0.05) as a significant level which is
less than the alpha level of .05. The effect size is considered
as a medium effect, with r = 0.31 (medium effect size). Table
XXII below shows that the isolated development strategy
group has a higher mean rank value of 31, while the second
group (co-located development) has 22.

TABLE XXII: RANKS FOR THE MANAGEMENT SCALE BASED ON THE
DEVELOPMENT STRATEGY

Development strategy N Mean Rank Median Sum of Ranks
Isolated 16 31.06 3 497.00

co-located 33 22.06 2 728.00
Total 49

Having the development teams isolated and not cross-
functional may lead to a lack of management and control.
Development teams may have problems when combining
their developed functions. The study result shows that the
isolated development strategy increases the challenges faced,
with regard to the management and control dimension, by
31%. The co-located development “Scrum of Scrums” was
found to be the most suitable strategy for DASD.

V. QUALITATIVE RESULTS AND DISCUSSION
This section presents the results of the qualitative data by

investigating the challenges and the mitigation techniques
under the four dimensions model: communications, cultural
differences, management and control, and Agile skills

A. Communication and Collaboration Challenges
1) Lack of communication and losing the ability to make

immediate decisions (A1): Agile methods require
interactive, daily communication among stakeholders. This
is difficult to provide within the global environment. The
lack of communication and collaboration is a significant
issue within the DASD approach [24]. Team members were
not able to make immediate decisions, because of the
distance between the participants and the lack of
communication. As mentioned by Participant-3: “We lose
the ability to have an immediate decision. If we were here at
11am and we wanted to know something straightaway the
earliest we could hear from our product owner will be 3pm
and that's only if he's got up very early.”

2) Time zone differences (A2): The time zone
differences is one of the main reasons that cause DASD’s
communication challenges [8]. The distance and time zone
differences among stakeholders could reduce the available
overlap of working hours of distributed teams. Participant-3
reported the issue of having no overlap of working hours by:
“I think if you had two teams where their working days
didn't overlap at all, so if you had the UK and the East
Coast of Australia where there's something like a 10 hour
difference, I don't think that would work”.

3) The lack of English language skills (A3): In most
cases, the English language is not the mother tongue of the
offshore team members. The lack of proficiency in English
could pose a major challenge for the development teams.
The different levels of English among the stakeholders
could create misunderstandings [25], in the event of people
trying to express or indicate meaning by a hint and
expecting the others to understand them. Participant-3
reported that: “If you're having a discussion and there’s a
thing that you don't say and you assume the other person
knows and it's implied, that's where you get the chance for
errors”.
Participant-2, who is not a native English Language speaker,
described his experience with communication with people
with different level of English as hard. Participant-2 stated
that: “The other thing which might be hard is that different
people have different levels of English knowledge.”. Also,
Participant-2 mentioned some difficulties with
understanding native speakers who are speaking with a
difficult accent or speaking in a fast way: “Sometimes it's
hard to understand people who are speaking English as
their mother language, as well”.

217

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Communication and Collaboration Techniques
1) Find a time and a way for synchronised

communication (B1): It is important to create an overlap of
working hours among the distributed teams. The overlap
hours will be used as available time for synchronised
communication. Participant-3 reported there should be at
least 2 hours of overlapping: “If you have two teams in
different time zones their working days have to have some
overlap and if they don't have some overlap and if they don't
have some overlap then you need to change the working
hours of one of those teams so there is an overlap. I think
there needs to be, I would say, at least two hours overlap
between those two teams so they can talk face-to-face”.
With some cases that require staying late, the project
manager and the business analyst could stay late to
communicate with the other stakeholders. Participant-1
stated that: “PM or BA or whoever needs to showcase
something to the client, they need to stay for a while.”.

2) Flexibility regarding working from home (B2):
Working hours should be flexible; therefore, the team
members should be able to work from home when
necessary. This flexibility could help to create overlapping
hours among teams. Participant-1 reported that: “Yeah so
the company gives you the opportunity and flexibility to
work from home. They also provided the broadband. ”.
Participant-2 stated as well: “The people are free to do and
people are getting flexible times to do work from home or
work from somewhere else when they are away from the
office”.

3) The communication schedule should be regimented
(B3): The development stakeholders should have a daily,
regimented communication schedule (i.e., Communication
Road Map CRM). Such a schedule would help to increase
the communication level. Participant-3 reported that: “I
think you need to do what we're doing here at this company
and have a very regimented communication schedule”. The
product owner should make himself available to
communicate with the development team as Participant-3
said: “I'd say from our product owner's point of view he's
got to make sure that he's very involved and he keeps
himself aware with what we're up to”. Communication, as
reported earlier, is the main issue with the DASD
development, so it is necessary to increase the level of
communication among the distributed teams. Participant-3
summarised that by: “You've got to make sure that you
communicate well with the stakeholders”.

4) Ask people to speak clearly and be explicit (B4):
Regarding the different levels of English skills among the
stakeholders, there is a need to speak clearly and to be
explicit about what is wanted. Participant-3 mentioned that:
“It's much better to be explicit and to really make clear what
you want”.

5) Apply multi-channels for communication (B5): There
is a need to have multi-channels for communication. There

should be a choice of method and use of the one best suited,
such as phone calls, video Skype calls, voice over IP and
texting. Participant-2 reported that: “We are using voice
over IPs and the video services. We use Skype, we use
GoToMeeting, we have an internal voice over IP device
here”, and reported as well: “we use our own internal
service for chatting”. In addition, software to share the
screen and knowledge helps teams to share information and
increase the visibility of the development. Participant-2
mentioned that: “So, I can say, tools are really important in
distributed systems”.

Fig. 1 Communication with DASD challenges and techniques

Fig. 1 illustrates the recommended techniques to address
communication and collaboration challenges. It links the
challenges with the techniques in order to provide better
understanding of them. For example, to address challenge
A1, techniques B3 and B5 can be employed. Finally, the
CRM must identify a main communication channel that
should be selected, based on the project setting and
infrastructure. The communication costs with the selected
channel need to be considered. The plan should report
synchronous and asynchronous channels with an explanation
of how to use them.

C. Cultural Differences Challenge
The cultural differences of the stakeholders could create

certain misunderstandings [25]. Participant-2 reported that:
“There are a lot of different things in a culture. Like, in
some countries, people really like to talk about politics”.
Cultural differences could limit the communication between
development participants in order to avoid any
misuderstandings. Participant-2 stated: “I feel I know, if
somebody from a different culture joins our team, how to
behave and then how to find the limits on paid
programming, how to speak to people, what sort of
questions to ask, what sort of questions not to ask. So, these
are the things which we learn”.

D. Techniques to Address the Cultural Differences
1) Creating an open culture within the development

teams (D1): There is need to promote an open culture
among the project’s stakeholders, encouraging people to be
free, flexible and liberal. Team members should accept
other cultures and try to understand them. Participant-1

A1

A2

A3

B1

B2

B3

B4

B5

B- Techniques
A- Communication

Challenges

218

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

mentioned that: “our culture rules are very liberal, free,
there is no dress code. The people are free to do and people
are getting flexible times to do work from home or work
from somewhere else when are they away from the office. So
this flexibility provides a lot of appreciation to the
developers and all the people”. Participant-2 also stated that
there is need to be flexible within the people from different
cultures: “people who are working in a distributed team, I
guess should be more flexible than people who are working
on a one - centralised process”.

2) Move the developers between the teams (D2):
Providing the team members with the opportunity to move
between global offices could help them to discover and
explore other cultures. Participant-1 mentioned that by:
“there is a global assignment program which runs every
year and it gives a chance to people to work round in any
office in the world. So it's a very diverse culture in the
company”.

3) A training course for new members (D3): New team
members should have a special training course to provide
them with the required Agile skills and make them aware of
other cultures. The investigated company has a multi-
cultural training centre in Bangalore, India. This could help
new members to understand different cultures as reported by
Participant-1: “Once you hire anyone, if it's a fresh then he's
a graduate. We send them to a university. There is a
university which runs in India, in the Bangalore office”.
And Participant-1 mentioned as well: “All the students
around the world gather with a different culture in India.
They do works together on the same project for three
months. After that we send them across different global
assignments”.

4) Choose people who fit in with the distributed
development culture (D4): Before hiring new people, they
should be interviewed to ensure that they fit in with the
open culture of the DASD. Participant-1 stated that:
“Always choose the people who actually fit with the culture.
We don't choose people who don't fit with the culture”.

In addition, new members should have a qualifying
period of a few months, to make sure they fit in with the
development culture and environment as reported by
Participant-1: “Even after that, there is a probation of three
months, okay. So in the three months itself it is enough time
to know the person's attitude and whether - how he is
behaving in all the steps. So if he doesn't fit in the culture
then we don't extend their assignment”.

5) Flexible working hours and places (D5): This
practice was mentioned when addressing communication
issues and could also help to increase trust between the
company and its employees, one of the cultural issues
within the DASD. Participant-1 stated that: “They do - they
know all right that the company the flexibilities providing to
them it come with a trust. So the company's putting trust on

them so they, of course, need to do the work properly and
they also need to put the trust in the company”.

Fig. 2 Cultural differences with DASD challenges and techniques

Fig. 2 illustrates the recommended techniques to address
the cultural differences challenges. Techniques D1 to D5
have been applied by the company to minimize the impact of
the cultural differences to the development. The cultural
differences could reduce the communication as reported
early within this section and limit the collaboration between
the team members.

E. Management and Control Challenges
1) Updating the developed story on the online wall (E1):

Development participants with the DASD approach usually
apply an online story wall to track progress. In some cases,
they have issues with not updating the developed story on
the online wall. This could lead to duplication when
developing the required functions/stories. Participant-2
declared that: “So, sometimes, you - when you get into a
story and then it finishes the phase and you start another
story, you may forget to move it on the electronic wall”.

2) Estimation difficulties (E2): The second management
challenge is with estimation. Large teams could have
difficulties with estimating their stories. Participant-2
explained this issue by: “Estimation for example is one
thing that it's hard. So when you have 20 people online and
you have 20 people here and you want to estimate stories!!”.

F. Management and Control Techniques
1) Increase communication (F1): There is a need to

increase the level of communication in order to manage the
work and to resolve any misunderstandings. Participant-3
mentioned that the communication is required to better
apply DASD: “If we do a lot of communication then we can
apply all the practice of Agile globally”. Participant-2
reported that as well: “There should be a lot of
communications between the teams as well”. In addition,
Participant-1 stated the same thing to manage the distributed
Agile development: “Any company you go there would be
the challenge to manage such a vast distributed work, right?
It requires a lot of communications; it requires a lot of co-
ordinations between all the offices to work together right”.

C- Cultural
differences
challenges

D1

D2

D3

D4

D5

D- Techniques

219

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Use software management tools (F2): Using software
management tools is required to apply different Agile
practices within the distributed development environment.
Those tools support the development, make it more visible
and easier to track. The tools usually have an online wall for
the development stories, which is required to keep it
coordinated with the normal story wall. Participant-3
declared that: “So we have story wall, but that's all
replicated in an online tool and we make sure that we keep
those two in sync so that the product owner at any time can
look at our entire story wall and see what's in progress”.
And Participant-2 mentioned the same as well: “is really
important and there are not - and you should be able to first
of all, be responsible for updating the electronic wall”.

3) Split large teams (F3): Having a large number of
participants could make it difficult to apply some Agile
practices, such as estimation. Therefore, splitting large
teams could be a solution. However, this requires a lot of
communication and coordination between the divided
teams. Participant-2 agreed with that by: “You split the
team, you have two PM, you split the number of developers,
you will add a new BA. But there should be a lot of
communications between the teams as well”.

4) Estimation cards (F4): This practice aims to address
the estimation issue. The participants would have a card to
estimate each story and they would then show their cards
and discuss issues. Participant-2 mentioned that technique
by: “we talk about the story and we count to three and
everybody should show a card, or show their hands”.

Fig. 3 Managment with DASD challenges and techniques

Fig. 3 links the management challenges with the
recommended techniques in order to provide better
understanding of them.

G. Agile Level Challenges
1) Lack of a close relationship (G1): The distributed

development could result in losing the main aspect of Agile,
which is the close relationship between the development
participants. Participant-3 mentioned that by: “I think the
main problem with global is - with Agile it's very important
to maintain a close relationship to your customers”.

2) Working with traditional organisations/ customers
(G2): Traditional organisations/customers may not accept
the Agile way of development. They may be used to

traditional development approaches, such as the waterfall
model [5]. This could decrease the Agility level of the
development. For instance, traditional organisations may
take their time to allow the developers access to their
database or to the necessary information. Participant-2
reported that: “We speak a lot with tech team, with
manager's team, with anyone who can - but they are
traditional companies. They have a lot of paperwork for
just getting one server, access to one server, or access to a
database. But, in an agile company you just ask for
something. In our company if you need to access
anything…we just ask and we get it as soon as we can. But
it's sometimes in other, in client side, in the companies
which we are working for they have their own database
team which we - a manager should give you permission”.
And Participant-2 stated that as well: “There have been
problems with those things. Like database is the obvious
one that we can say, you don't get the access to them. You
need to go through their process”.

3) Difficulty in applying some Agile practices (G3): The
global development setting could make it difficult to apply
some Agile practices [22]. For example, the stand up daily
meeting is difficult within the distributed Agile
development, because of the large number of participants
and the lack of visibility among the meeting attendees.
Participant-2 reported that by: “I guess the whole point of
stand up is visibility so that you can see somebody and you
can ask a question”, and by: “So imagine if 100 people want
to talk for one minute each, it would be a bout two hours
while people are standing”.

Furthermore, applying the retrospective practice with the
distributed development is difficult as well. Participant-2
stated that: “Retrospectives are getting affected. Because
retrospectives in an agile team are, I guess I feel it's the most
physical thing happens because what we do is that we
practice different type of RETROS. So what we do is that
every iteration that we have RETROS we change them. So
we try a lot - because we don't want to make it boring”

H. Techniques for the Agility Level
1) Use software tools to enable some Agile practices

(H1): Usually, development teams adopt various software
tools to help them to apply Agile practices. Participant-3
reported that: “We've done some remote pair programming
with him. We use tmux which is a UNIX tool for sharing
terminals and we used a VNC client called Chicken and we
also use Skype and SSH to set up the connection. So with a
combination of those we can have a live pair programming
session and that worked quite well”. In addition, Participant-
2 stated that as well: “Tools are really important,, learning
how to work with tools are taking time. You may need more
efforts”.

2) Dealing with the issues of traditional organisations
(H2): Sometimes, IT development companies avoid
working with a traditional product owner who is not able to

E1

E2

F1

F2

F3

F4

F- Techniques
E-Management

Challenges

220

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

understand Agile values. Sometimes, they try to provide the
traditional product owner with some training about the
Agile approach before the project begins. Participant-2
mentioned that: “So the way that we work is that we try not
to accept projects in our company that clients don't give us
the chance of working in a way that we want. But some
projects it happens that we try - so in some projects when
the clients accept that we work for them, but they are not
working in agile way. So usually we try to teach, teach the
team which we are going to work with them. We
communicate a lot, we talk a lot, we have lots of meetings in
our team. So we try to settle these things before accepting a
project”.

3) Practice for the stand up daily meeting (H3): Practice
includes throwing a ball during the meeting. The member
who has the ball is the one who is allowed to speak. This
practice aims to manage the meeting by allowing one person
to speak at a time. In addition, they hold computer tablets,
such as iPads, during the meeting to see the distributed
members. This practice reported by Participant-2 as: “we
use iPad and we ask them to be online and they talk about
it. So we have a ball as a token. We throw it to each other
when someone is going to talk.”.

4) Apply simple documentation (H4): One of the
techniques in the DASD approach is doing simple reports to
share information from the meetings with participants who
were not able to attend. Participant-2 declared that by:
“Usually one person writes a simplify - a very simple report
that this happens, this decision has been made. This is the
reason that we make this decision. So we just read that
email every night for example and we get updated about
what's happening. If we don't like it, we can state it the day
after, or we can send an email and discuss it”.

Fig. 4 Agile challenges and techniques with DASD

Fig. 4 reports the Agile challenges and links them with
the recommended techniques to award better apply for Agile
methods with the distributed development.

VI. VALIDATION
This section addresses the study validation, which could

be classified into two categories: the validation of the
qualitative data, and the validation of the quantitative data.

A. Validation of the qualitative data
To ensure the validity and the reliability of the study’s

qualitative analysis and to identify any elements of bias from
the researcher, two procedures were applied. Firstly, after the
final code was developed, it was tested by other researchers,
who applied it to the raw data to ensure that the code and
theme analyses were correct. The second procedure was to
have the transcripts rigorously checked by other researchers,
comparing them to the verbal records and the notes that had
been taken. The aim of this was to identify any transcription
errors or mistakes [23].

B. Validation of the quantitative data
To ensure the validity of the quantitative data, the

questionnaire has been piloted by experts in the field of
Agile software development. The aim of this was to check
whether the questions are measuring what they aim to
measure in an appropriate way. In addition, with multiple-
item scales such as the Likert Scale, variables of internal
reliability need to be tested. One robust method of achieving
that is to apply Cronbach's alpha coefficient. This shows the
correlation among all items in the scale. The ideal
Cronbach's alpha level is above 0.7 [14]. Table XXIII shows
the Cronbach's alpha values for the study scales.

TABLE XXIII: CRONBACH'S ALPHA FOR THE QUESTIONER SCALES

 Scale Reliability N of
Items

1 The level of communication and
collaboration barriers with Distributed
Agile Software Development (DASD)

0.888 10

2 The cultural differences (organizational
and region culture) barriers with

Distributed Agile Software Development
(DASD)

0.875 6

3 The lack of management and control
within Distributed Agile Software

Development (DASD)

0.700 5

4 The lack of Agile with skills within
Distributed Agile Software Development

(DASD)

0. 748 5

5 Total for the challenges scales 0.765 26

Table XXIII shows the Cronbach's alpha values for each
scale. The first four scales represent the challenges scales.
The Cronbach's alpha values for those scales are all above
0.7. In addition, the alpha value for the all challenge scales is
0.765. That means the scales and their items are internally
consistent.

VII. DEVELOPMENT FRAMEWORK FOR DASD
This section integrates the development strategy of the

company under investigation with the study findings in order
to provide a standard development framework for DASD.
Fig. 5 and Fig. 6 illustrate the proposed framework and it can
be organize into four development phases.

The earliest phase is the startup phase, which aims to
ensure readiness for the DASD on the development teams’
side, and on the product owner’s side as well. The
communication between product owner and development

G1

G2

G3

H1

H2

H3

H4

 H- Techniques

G- Agile Challenges

221

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

teams will be established during this phase. A training course
for new members is recommended, as reported within D3.
D4 and H2 are also recommended techniques for this phase.

The next stage is the design phase, which includes the
gathering of all participants in one place for a few days, to
finalize the requirements and estimate the deadline of the
project. One of the main techniques that need to be identified
within this stage is the design of the CRM. The mitigation
techniques for this stage include B1, B3 and B5

Fig. 5 Startup and Design phases of the development framework

The next phase is the inspection and analysis phase,
which aims to break the requirement and development tasks
into small development stories. These stories will then be
organized and linked to each other. Applying an estimation
card can help within this stage, as reported earlier.

Fig. 6 Inspection and Development phases of the development
framework

 The final stage is the development phase. Most of the
mitigation techniques and study recommendations are linked
to this phase, including: D2, F1, F2, F3, F4, H1, H2, and H4.

Firstly, teams should have a daily meeting and weekly
iteration to increase the level of communication. It is
recommended that the product owner be located within one
of the development teams. Teams need to have a local
meeting and then Scrum of Scrum practice should be
applied, to link teams together. In other words, the co-located
strategy should be adopted to manage the development
teams. In addition, it is recommended to use Scrum or Lean/
Kanban practices as an Agile development method to reduce
the development challenges. To reduce the challenges
presented by time zone differences, it is not recommended
that teams have more than a 5-hour time difference between
them and their next closest development team.

Other techniques, such as B2, B4, D1, and D5, are
recommended during all the development phases.

VIII. SUMMARY AND CONCLUSION
This paper has presented a mixed methodology study. It

has explored the significant differences between the
demographic variables and the development challenges
scales. The Kruskal Wallis test and the Mann-Whitney U test
have been applied as inferential statistics to investigate 10
null-hypotheses. Five of these were rejected and their
alternative hypotheses were accepted.

The reported results suggest that communication barriers
are the biggest challenge faced when employing the DASD
approach. A number of techniques were reported by the
participants to address the known communication issues
affecting this approach. Most of the issues related to the lack
of communication between stakeholders. The development
teams and product owners need to work hard to increase the
level of the communication between them.

The other main issue encountered was the lack of Agile
skills and knowledge from the developers and the product
owners. A global setting makes this issue all the more
pronounced, because of the distance between the
stakeholders. In these cases, there is a need to improve
knowledge of Agile by providing training courses and Agile
coaching, to ensure the sufficient application of Agile
practices.

The management issues are also related to the distance
and the size of the development teams. Improving the
communication level and Agile skills could reduce these
management difficulties. Splitting teams may be with a
solution for teams with a large number of developers.

The issue of cultural differences is the least important
problem because most of the stakeholders are aware of each
other’s cultures and have the ability to work with different
people. However, some misunderstanding could arise,
particularly through a lack of communication. Thus, it is
essential that the development participants are clear, flexible,
and open with those from other cultures. The experience
with DASD from the investigated company helped develop a
clearer understanding of the challenges of cultural
differences. The application of techniques such as training
courses can help to minimize these cultural differences
issues. Moving the team members between the various
development teams throughout the world will also help them

222

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to better understand other cultures and could address this
issue.

In conclusion, this case study has highlighted some of the
major challenges of applying DASD. It has also proposed a
development framework that outlined several development
practices to achieve a more effective application of this
development approach. The discussion has shown that the
study findings are in agreement with existing literature on
most of the investigated points.

 Future work will involve further investigation into the
proposed framework in order to understand its impact on the
DASD approach.

IX. ACKNOWLEDGMENT
This work is supported by the University of Dammam,

the Ministry of Higher Education, Kingdom of Saudi Arabia,
(PhD scholarship).

REFERENCES
[1] A.S. Alqahtani, J. Moore, D. Harrison, and B. Wood,

“Distributed Agile software development challenges and
mitigation techniques: A Case Study,” ICSEA 2013, The
Eighth International Conference on Software Engineering
Advances, 2013, pp. 352-358.

[2] M. Nisat and T. Hameed, “Agile methods handling offshore
software development issues,” 8th International: Multitopic
Conference, Proceedings of INMIC, 2004, pp. 417-422.

[3] A. Szőke, "Optimized feature distribution in distributed agile
environments," Product-focused software process
improvement, 2010, pp. 62-76.

[4] U. Venkatesh, Distributed Agile: DH2A - The proven Agile
software development approach and toolkit for geographically
dispersed teams. New Jersey: Technics publications LLC.,
2011.

[5] J. Sutherland, G. Schoonheim, N. Kumar, V. Pandey, and S.
Vishal, "Fully distributed scrum: Linear scalability of
production between San Francisco and India," Agile
conference, IEEE, 2009, pp. 277-344.

[6] E. Hossain, M. Babar, and H. Paik, “Using Scrum in global
software development: A systematic literature review,”
Fourth IEEE International Conference on Global Software
Engineering, 2009, pp.175-184.

[7] S. Modi, and P. Abbott, "Understanding Collaborative
Practices in Distributed Agile Development: Research
Proposal," 8th International Conference Global Software
Engineering Workshops (ICGSEW), IEEE, 2013, pp. 74-77.

[8] S. Jalali, and C. Wohlin, “Global Software Engineering and
Agile Practices: A systematic review,” Journal of Software
Maintenance and Evolution: Research and Practice. 2011, pp.
643–659.

[9] E. Hossain, P. Bannerman, and D. Jeffery, "Scrum practices
in global software development: A research framework,"
Product-focused software process improvement, pp. 88-102.,
2011.

[10] S. Dorairaj, J. Noble, and P. Malik, “Bridging cultural
differences: A grounded theory perspective,” Proceedings of
the 4th India Software Engineering Conference, ACM, 2011,
pp. 3-10.

[11] D. Smite, N.B. Moe, and P.J. Agerfalk, "Agility Across Time
and Space: Summing up and Planning for the Future," Agility
Across Time and Space. Springer Berlin Heidelberg, 2010,
pp. 333-337.

[12] A.S. Alqahtani, J. Moore, D. Harrison, and B. Wood, “The
challenges of applying distributed Agile software
development: A systematic review,” International Journal of
Advances in Engineering & Technology, Vol. 5, Issue 2,
2013, pp. 23-36.

[13] R. Kumar, Research methodology: A step-by-step guide for
beginners. 4th ed. SAGE publications, 1 Olive’s Yard, 55
City Road, London. 2014.

[14] J. Pallant, The SPSS survival manual: A step by step guide to
data analysis using IBM SPSS. Open University Press
McGraw-Hill Education, England, 2013.

[15] H. Estler, M. Nordio, C.A. Furia, B. Meyer, and J. Schneider,
"Agile vs. structured distributed software development: A
case study", Global Software Engineering (ICGSE), IEEE
Seventh International Conference, 2012, pp. 11-20.

[16] A. Garth, Analysing data using SPSS: A practical guide for
those unfortunate enough to have to actually do it, Sheffield
Hallam University. 2008.

[17] S. Jamieson, "Likert scales: how to (ab) use them", Medical
education, vol. 38, no. 12, 2004, pp. 1217-1218.

[18] D. Bertram, "Likert scales", Matematicki fakultet, University
of Beogradu, 2007.

[19] J.R. Boone, and D.A. Boone, "Analyzing Likert Data",
Journal of Extension, vol. 50, no. 2. 2012.

[20] J.W. Cohen, Statistical power analysis for the behavioral
sciences. Hillsdale, NJ: Lawrence Erlbaum Associates, 1988.

[21] R. Boyatzis, Transforming qualitative information: Thematic
analysis and code development. SAGE publications
incorporated. 1998.

[22] C. Dawson, Introduction to research methods: A practical
guide for anyone undertaking a research project. Oxford: How
To Books Ltd. 2009.

[23] A. Asnawi, A. Gravell, and G. Wills, “Emergence of Agile
methods: Perceptions from software practitioners in
Malaysia,” AGILE India, 2012, pp. 30-39.

[24] M. Paasivaara and C. Lassenius, “Using Scrum Practices in
GSD Projects,” Agility Across Time and Space. Springer
Berlin Heidelberg, 2010. pp. 259-278.

[25] M. Kajko-Mattsson, G. Azizyan, and M.K. Magarian,
“Classes of distributed agile development problems,”
The Agile 2010 Conference, IEEE, 2010, pp. 51-58.

223

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CREATE: A Co-Modeling Approach for Scenario-based Requirements and
Component-based Architectures - A Detailed View

Björn Schindler, Marcel Ibe, Martin Vogel, and Andreas Rausch
Technische Universität Clausthal

Clausthal-Zellerfeld, Germany
{bjoern.schindler, marcel.ibe, m.vogel, andreas.rausch}@tu-clausthal.de

Abstract—Requirements engineering and architectural design are
key activities for successful development of software-intensive
systems and are strongly interrelated. Particularly, in early
development stages requirements and architecture decisions are
frequently changing. The fundamental problem addressed in
this paper is the development of inconsistencies at the itera-
tive evolution of requirements and architectures. Inconsistencies
between requirements and architectures lead to an incorrect
consideration of requirements by the system under development
and consequently to unfulfilled requirements. Thus, advanced
systematic approaches are needed, which could minimize the
risks of wrong early decisions during the iterative evolution of
requirements and architectures. Our model-based approach sup-
ports the iterative evolution of requirements and architectures by
defining a concrete description technique. It provides simplified
scenario-based models for a precise description of requirements,
which are suitable for validation by stakeholders. Furthermore,
the approach provides a component-based model for a precise
and entire description of architectures. Strict interrelations be-
tween scenario-based and component-based models support the
consistence maintenance. These interrelations enable even an
automation of this task. In this paper, the model-based approach
CREATE is described in all details. For example, all interrelations
are introduced completely.

Keywords-requirements; architecture; evolution; consistency.

I. INTRODUCTION

Requirements Engineering (RE) and Architectural Design
(AD) are essential for successfully developing high-quality
software-intensive systems [1]. RE and AD activities are
intertwined and iteratively performed [2]. The architecture of
a software system must satisfy its requirements. In practice,
architectural constraints frequently prohibit an entire realiza-
tion of all requirements. This might imply a change to the
initial requirements or the selection of a different appropriate
architecture. Further, additional requirements might be dis-
covered during the development process, leading to changes
in the architecture. Design decisions that are made early in
this iterative process are the most crucial ones, because they
are very hard and costly to change later in the development
process.

In classical development processes (e.g., the waterfall model
[3]), artifacts like, for instance, the requirements specification
or the architecture are developed sequentially. This is also
the case at iterative process models like the spiral life cycle
model of Böhm [4]. The iterative, concurrent evolution of
requirements and architectures demands that the development

Level

of

detail

Technology Dependence

low

high

highlow

architecturerequirements

Intermediate

CBSP model

Figure 1. Intermediate model within the twin peaks [5]

of an architecture is based on incomplete requirements. Also,
certain requirements can only be understood after modeling or
even partially implementing the system architecture. Nuseibeh
[2] describes an advanced approach, which adapts the spiral
life cycle model and aims at overcoming the often artificial
separation of requirements specification and design by inter-
twining these activities in an iterative evolutionary software
development process. This approach is called the twin peaks
model. To map requirements onto architectures and maintain
the consistency and traceability between the two Grünbacher
et al. [5] introduces an intermediate model called Component
Bus System Property (CBSP) (see Fig. 1). This model maps
requirements to architecture elements by the CBSP model,
which allows a systematic way to reconcile requirements with
stakeholders.

Nevertheless, the advanced twin peaks model is kept very
general. For instance, it does not specify the level of detail of
requirements in relation to the architecture [6]. Due to the fact
that there is no concrete advanced approach supporting the
iterative evolution of requirements and architecture we were
commissioned by the german armed forces and the german
government to undertake a research project [1]. In order to
be able to consider all required aspects, we made an expert
survey. Therefore, we interviewed staff and leaders of three
medium to big sized development projects with up to 30
project participants on customers and contractors side about
their problems in the field of RE and AD.

224

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A general mentioned problem was that the developed sys-
tems did not fulfill all requirements of the customers. The
result of the survey was a list of the following reasons and
derived guidelines:

• For the contractor the requirements were too informal,
imprecise and incomplete. Requirements had to be re-
peatedly elicited and specified during architecture de-
sign. Hence, requirements on a software system should
be complete and precise.

• At the elicitation process, the reconcilement of more
precise and formal descriptions was too costly. The
reason was the need of a detailed explanation by the
contractor. For an improved reconcilement requirements
descriptions should be precise as well as comprehensi-
ble. These guidelines are also mentioned by Nuseibeh
[7]. Furthermore, the complexity of the models have to
be manageable for validation by stakeholders.

• The most serious problem was caused by frequently
changing requirements during architecture design. These
changes cause inconsistencies between requirements and
architectures. Thus, many requirements were not fulfilled
by the developed systems. In consequence, an architec-
ture should not only describe the system by a definition
of its structure and behavior. It should also describe
precisely how the system under development fulfills
the given requirements. Consistency constraints between
requirements and architectures should be defined, which
support the consistency maintenance.

Starting from this initial situation the target of the project
was the development of a domain specific model-based ap-
proach, which fulfills the mentioned guidelines. The result of
the project was the model-based approach CREATE [1]. The
main goal of CREATE is to provide a concrete description
technique for requirements and architectures, which supports
the iterative evolution in the sense of twin peaks. Requirements
descriptions have to be precise and comprehensible. This
necessitates a well-balanced trade-off between expressiveness
and manageability of models for the description of require-
ments. This trade-off is achieved by providing simplified
scenario-based requirements models. Furthermore, CREATE
provides a component-based architecture model for a precise
desciption of how the system under development fulfills the
given requirements. A definition of strict interrelations sup-
port the iterative evolution of requirements and architectures.
Complex interrelations between requirements and architectures
cause a high complexity for consistence maintenance. Thus,
CREATE proposes interrelations between requirements and
architecture models, which concretize a well-balanced trade-
off between expressiveness and manageability.

In this paper, the CREATE approach is described in all
details. Furthermore, the experiences at the application in
practice are described. The presented approach is domain-
specific, since it is developed for information systems like web-
based systems and modern communication systems. In Section
II, existing model-based approaches for the iterative evolution
of requirements and architectures are considered. In Section
III, the overall approach is introduced and in Section IV the
description technique is described in detail at an example. The

support of the consistency maintenance is described in Section
V. Section VI contains a description of our experiences at
the development and application of the approach in practice.
Section VII includes a discussion of the results and pending
points for future work.

II. RELATED WORK

Existing model-based development approaches for require-
ments and architectures can be categorized into model-based
approaches for requirements engineering, model-based ap-
proaches for architecture design and combined approaches.

Representative model-based approaches for requirements
engineering are described in [8]–[10]. In [8], requirements
are described by Unified Modeling Language (UML) [11]
activity diagrams. A formal operational semantics enables
execution of activity diagram specifications. The executed
activity diagram specification serves as prototype for visu-
alization of requirements. In the approach illustrated in [9],
UML collaboration diagrams are enriched by user interface
information in order to specify elicited requirements. These
diagrams are transformed into complete dynamic specifica-
tions of user interface objects represented by state diagrams.
These state diagrams are used for generation of prototypes. In
[10], use case and user interface information are recorded at
stakeholder interviews. Therefore, use case steps are enriched
by scribbled dialog mockups. Prototypes are created, which
visualize dialog mockups of use case steps in sequence for fast
feedback of stakeholders. In general, these approaches have a
well elaborated model structure for requirements engineering
and improve the validation of requirements by stakeholders.
On the other side, the mapping to the architecture is not
precisely enough defined at these approaches to support a
iterative evolution of requirements and architectures.

Representative approaches defining models for architectural
design are described in [12] and [13]. Model-Driven Archi-
tecture (MDA) [12] is a framework for software development.
In MDA, the Computation Independent Model (CIM) can be
used to describe business processes. The Platform Independent
Model (PIM) may describe the structure and behavior of
the software system. Component models like KobrA [13] are
concrete model-based approaches based on MDA. In general,
these approaches have a well elaborated model structure for
architecture design and enable a detailed description of the
structure and behavior of the software system. On the other
side, these approaches do not support an iterative evolution
of requirements and architectures. The mapping between re-
quirements and architectures is not precisely enough defined
for this field of application.

Representative combined modeling approaches for require-
ments and architectures are described in [14], [5], and [15].
In [14], a Requirements Definition Language (RDL) is used,
which allows a structured definition of requirements. Meta
model elements of the RDL are mapped to corresponding
meta model elements of the Architecture Description Language
(ADL). The approach described in [5] uses the intermediate
model CBSP to map requirements to architecture elements.
Different subtypes of CBSP elements allow classification of

225

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

requirements. Requirements exhibit overlapping CBSP prop-
erties can be split and refined until no stakeholder conflicts
exist. The Software Architecture Analysis Method (SAAM)
[15] describes a method for a scenario-based analysis of
software architectures. SAAM defines also the activities of the
scenario-based analysis. In SAAM, scenarios and architecture
descriptions are developed iteratively [15]. For each scenario
it is determined whether a change of the architecture is
required for execution. Based on the importance and conflicts
of required changes an overall ranking of the developed sce-
narios is determined. An advantage of these approaches is the
combination of techniques for the description of requirements
and architectures. On the other side, these approaches are very
abstract and do not specify concrete models and mappings,
which fulfill the conditions defined in the introduction for an
adequate description of requirements and architectures.

Besides the stated existing approaches further approaches
are conceivable, which are based on synthesis approaches [16]
of complete state-based models from scenario-based models.
Scenario-based and state-based models can potentially be
used for the description of requirements and architectures.
Consistency is, for instance, a subject of the approaches
described in [17] and [18]. Unfortunately, these approaches
are generally maintaining a complete consistency by means of
a bijection. Architectures need to describe more details about
the software system. These details have to be well separated
from the requirements. Hence, an alternating correction of
inconsistencies and not a bijection is required for the support
of a iterative evolution of requirements and architectures.

Other approaches are focusing on the consistence mainte-
nance of models. Representative approaches of this kind are
described in [21], [22]. In [22] an approach for the automatic
consistence check of behavioral requirements and design mod-
els is described. The approach introduced in [21] allows an
automatic consistence check of general UML models. These
approaches focus on the consistence maintenance and not on
the provision of a concrete description technique for require-
ments and architectures. In consequence, these approaches do
not provide a complete set of concrete models and mappings,
which fulfill the conditions defined in the introduction for an
adequate description of requirements and architectures.

The main goal of CREATE is to provide a concrete de-
scription technique for requirements and architectures, which
supports the iterative evolution by fulfilling all guidelines
mentioned in the introduction. It defines a complete set of
concrete models for the description of requirements and ar-
chitectures. Further, it defines concrete interrelations between
these models, which support the consistence maintenance.

III. OVERALL APPROACH

Our domain specific model-based approach supports con-
current development of requirements and architectures. An
appropriate process for concurrent development is described
by the twin peaks model [2]. In this model, requirements and
architectures have an equal status and are evolved iteratively.
This is illustrated by twin peaks (see Fig. 2).

Our domain specific model-based approach concretizes twin
peaks by defining a concrete description technique. Diagrams

Level

of

detail

Technology Dependence

low

high

highlow

requirements

architecture

structure
be

ha
vi
or

inter-

relations

structure be
ha

vi
or

DSD

SD

ID

HRL

DD

ASD

ABD

OD

Figure 2. CREATE approach within twin peaks

are used for a precise description of requirements and ar-
chitectures. These diagrams are illustrated within diamonds
in the twin peaks model (see Fig. 2). The process flow
of our approach begins with a formal description of inital
requirements. Afterwards, the architecture is developed and
consistency to the requirements is maintained continuously.
Inconsistencies are resolved by changing requirements or the
architecture.

The main contribution of CREATE is the concrete descrip-
tion technique with defined interrelations between require-
ments and architecture descriptions. It is well known that
scenarios help to elicit and validate requirements [16]. A
precise description of elicited requirements can be achieved
by scenario-based models [16]. The co-modeling approach
provides simplified scenario-based models for the description
of requirements. Furthermore, the description is reduced to rep-
resentative and concrete scenarios. Hence, the complexity of
these models is manageable for the validation by stakeholders.
The validation is improved by combining these models with
models enabling visualization of requirements by user interface
mockups [10]. An architecture specified by CREATE describes
the behavior and the resulting structure of the software system
precisely. This description is supported by a component-
model. Component-Based Software Engineering (CBSE) [19]
has been continuously improved and successfully applied over
the past years. Systems are composed by existing software
’parts’ called software components. Component models enable
a precise description of component-based architectures [20].

In our domain specific model-based approach, diagrams are
used to model structural or behavioral aspects of require-
ments and architectures. The domain structure (e.g., business
structure) defines important requirements on the system. In
CREATE, it can be described by a Domain Structure Dia-
gram (DSD), which is assigned to the structure part of the
requirements diamond (see Fig. 2). Elicitation and specification
of processes at the domain (e.g., business processes) is an
important aspect at requirements engineering. In our approach,
these processes can be described by a Scenario Diagram (SD)

226

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in combination with an Interaction Mockup Diagram (ID). The
SD and ID are assigned to the behavior part of the requirements
diamond. Additional text-based requirements can be captured
in the Hierarchical Requirements List (HRL). These texts can
describe structural as well as behavioral aspects. CREATE
diagrams have not to be developed in a strict order. Typically,
rough text-based requirements are captured first. The DSD
as well as the SD and ID are, in general, evolved iterativly
beginning with a rough first scenario. At the architecture
design, the definition of the system boundary and the provided
functions is crucial. These aspects of the architecture can be
described precisely by the System Overview Diagram (OD)
of the CREATE architecture (see Fig. 2). The process of a
function is described by the Architectural Behavior Diagram
(ABD). Data objects used in these processes are defined in
the Data Diagram (DD). A suitable structure of the system
can be derived from the process descriptions. This structure is
described by the Architectural Structure Diagram (ASD). The
diagrams of the CREATE architecture are iteratively developed
as well. Typically, a small set of system functions are described
by the OD, ABD and DD first. Afterwards, the ASD is
derived, and finally, additional system functions are described.
During the development of the architecture, consistency to the
requirements is maintained continuously. In Section IV, the
description technique is described in all details.

Existing languages, such as UML [11], include among
others structural and behavioral diagrams for the modeling of
systems. In this paper, CREATE uses exemplarily a subset
of UML diagrams and their available model elements to
formally describe requirements and architectures. Additional
diagrams are used to enable a visualization of requirements by
user interface mockups. Interrelations between these diagrams
are precisely defined. Consistency maintenance during the
development of requirements and architectures is supported
by defined interrelations between scenario-based requirements
models and component-based architecture models (see Fig.
2). Interrelations are also defined within these models. One
interrelation between requirements and architectures is, for
instance, that the system boundary of the OD represents a part
of the domain structure in the DSD. An examplary interrelation
within the requirements description is that every object used in
a scenario has to be a part in the domain structure. In Section
V, all interrelations are described in detail. Interrelations are
defined by constraints. The definition of these constraints
support the consistency maintenance, because they can easily
be checked. Furthermore, they enable an automatization of the
consistency maintenance [24].

IV. DESCRIPTION TECHNIQUE

In this section, details of the description technique are
described by a case study. The subject of this study is the devel-
opment of a library system. Requirements on the library system
are described by the scenario-based model of CREATE, which
is suitable for the validation by stakeholders. The architecture
of the library system is described by the CREATE component
model. This component model allows the description of the
behavior of the system under development and the resulting

internal structure. In the following, initial requirements on
the library system are described by the provided diagrams.
Afterwards, the architecture of the system is described. Based
on the requirements and the architecture of the library system
the description technique of CREATE is explained in detail.

A. Requirements Description
In CREATE, requirements on a system are precisely de-

scribed by a scenario-based model. The scenario-based model
of CREATE consists of the provided SD, ID and DSD, which
are the core diagrams of the requirements description. The
domain structure like the business structure defines important
requirements on the system. In CREATE, it can be described
by the DSD. Processes on this domain like business processes
are described by the SD in combination with ID. Since require-
ments are frequently mentioned text-based (e.g., in protocols or
meetings) the HRL is provided. The HRL allows the capturing
of text-based requirements. A strict order for the development
of the CREATE diagrams is not prescribed. In practice, rough
text-based requirements are elicited initially. Afterwards, the
scenario-based model is developed. A rough first scenario is
refined by an iterative development of the DSD, the SD and
the ID. In the following, the HRL is explained by exemplary
text-based requirements on the library system. Afterwards,
the scenario-based model is explained in all details. For this
detailed explanation the DSD, the SD and the ID are used for
the definition of precise requirements on the library system.

1) HRL: Requirements are frequently mentioned text-based
(e.g., in protocols or meetings). The HRL allows the capturing
of text-based requirements. In a requriements specification,
several HRLs can be introduced in ordner to distinguish
between different classes of requirements. In our case study,
we introduce two HRLs for the capturing of functional and
non-functional requirements (see Fig. 3). Contents of the HRL
can be structured hierarchical. In this way, it is possible
to refine one requirement by several other requirements. In
our example, the HRL functional requirements contains, for
instance, the requirement 2. This requirement demands that
the system must be able to process requests for book orders
of users. This is refined by requirement 2.1, which demands
that a user should be able to send a book order request to the
manager by the library system.

2) DSD: In general, the system under development has to
be integrated in a domain structure (e.g., a business structure).
The domain structure defines important requirements on the
system. The DSD allows a precise description of the domain
structure and is based on the UML Composition Structure
Diagram [11]. The most important modelling elements of the
DSD are parts and connectors [11]. Parts are used to describe
the system under development, external systems, persons and
entities of the domain. Every part must have a type. In return,
one type can be used for several parts. In our example, the
parts LibrarySystem and Printer represent systems (see Fig. 4).
The multiplicity defines the minimal and maximal number of
objects in this part. According to the DSD, the library domain
contains, for instance, exactly one library system. The box that
represents the part LibrarySystem is filled gray to mark it as

227

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

HRL Functional Requirements on the Library System

1) The library system must provide the option to show

 statistics about books to the manger.

2) The libary system must be able to handle requests for

 book orders by a user.

2.1) Users must be able to send a request to the

 manager.

2.2) ...

4) The Manager must be able to accept or deny a request

 for book orders.

5) ...

HRL Non-Functional Requirements on the Library System

1) A training concept for using the system has to be

 provided

2) At least 95% of all requests have to be delivered to

 the manager in less than 1 seconds.

3) All functions of the system has to be reachable in at

 maximum 3 steps.

4) ...

Figure 3. Hierarchical Requirements List of the Library System

manager: Staff [1] employee: Staff [1..*]

:User [1..*]

GUI

GUI

:Book [1..*]

DSD Library System

:Printer[1]

Speech
Paper

TCP/IP
:LibrarySystem [1]

:Shelf [1..*]

Figure 4. Domain Structure Diagram of the Library System

the system under development. Three parts in the domain are
representing persons: User, Manager and Employee. Manager
and Employee are both of the type Staff. The parts Book and
Shelf describe typical domain entities. Connectors describe
the ability of two connected parts to interact with each other.
A connection between two parts means that every object of
one part can interact with all objects of the other part. It is
also possible, to define the type of the connector. This type
describes the kind of the interaction in more detail. The domain
structure of the library system describes several connectors
between parts, which specify the kind of interaction. For
example, users can interact with the library system by the
graphical user interface (GUI). The printer interacts via TCP/IP
with the library system. Interaction between external systems
and persons can also be modelled, e.g., the manager and an
employee can communicate via speech.

3) SD and ID: Elicitation and specification of processes at
the domain (e.g., business processes) is an important aspect at
requirements engineering. In our approach, these processes can

ID Request Order

Request Book OrderRequest Book Order

Title Authors Year

Moby Dick H. Melville 1851

Ok

Step 1:

Step 2:

Confirm RequestConfirm Request

Book Order

Request forwarded Ok

Show RequestShow Request

Title

Moby Dick

Ok

Step 3:

...

...

Show RequestShow Request

Title

Moby Dick

Ok

...

...

SD Request Order

u / : User

/ : LibrarySystem

{1} Request
{2} Confirm

m / manager : Staff

{2, 3} Show request

Figure 5. Scenario - Request Book Order

be described by a SD in combination with an ID. SD is based
on scenario-based UML Communication Diagrams [11] and
describes representative scenarios at the domain, which have
to be supported by the system under development. The most
important elements of an SD are lifelines and interactions.
Lifelines represent instances of systems, persons and entities
of the domain structure. The interactions are described by
messages of the UML communication diagram and represent
the interaction between the instances during a specific scenario.
They are visualized by an arrow between two lifelines. The SD
Request Order and SD Process Request describe scenarios in
the library domain (see Fig. 5 and Fig. 6).

The SD Request Order describes the interactions between
a user, the library system and the manager in the case of a
request for a book order. An ID visualizes and describes one
SD in more detail. The ID describes a set of scenario steps.
The scenario Request Order has, for instance, the scenario
steps 1, 2 and 3. Every interaction of an SD can be active
at a set of scenario steps. The interaction request of the SD
Request Order of the user with the system is, for instance,
active at scenario step 1 and is labeled with this number.
An active interaction is described by an interaction mockup
in the corresponding ID, which is visualized by a dialog.
The interaction request is, for instance, visualized by the
interaction mockup Request Book Order in scenario step 1. The
visualization of the ID is suitable for the validation of scenarios
by stakeholders, since the used interaction mockups give a
representative view on the exchanged data. In a transition
to a next scenario step, interactions can be activated and
deactivated. The begin of a scenario, the end of a scenario, and
a completion of an interaction can be the trigger of a transition.
The completion of the interaction Request visualized by the

228

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

interaction mockup Request Book Order is, for instance, the
trigger of the transition to scenario step 2.

Several interactions can be active concurrently in one sce-
nario step [25]. In this case, one scenario step of the ID con-
tains two interaction mockups. The scenario step 2 contains,
for instance, the interaction mockups Confirm Request and
Show Request. These mockups are visualizing the interactions
Confirm and Show Request of the system to the user resp. the
manager. Both interactions are labeled with the number 2 of
the corresponding scenario step. In the case of concurrency,
an interaction might be active at several scenario steps. Con-
sequently, several sequenced scenario steps can contain the
same interaction mockup [25]. The interaction Show Request
is active in the scenario steps 2 and 3. Hence, the visualizing
interaction mockup is contained in these steps. The interaction
is labeled with the numbers 2 and 3.

An SD and ID can also be used to describe alternative
scenario sequences [25]. The SD and ID Process Request
describes, for instance, a scenario with two alternative scenario
sequences for the processing of a request for a book order
(see Fig. 6). In the first alternative, the book is not ordered.
In the second, alternative the book is ordered by forwarding
the request to the employee and printing the book data. These
alternatives are described by the scenario steps 3a and 3b,
which can follow scenario step 2. If the book is not ordered,
the manager returns to the overview of all books after showing
the books statistic and exits the overview. The interaction of
exiting the overview is, for instance, described by the message
Exit in the SD. Since this interaction is active in scenario
step 3a, it is labeled by this number. If the book is ordered,
the request is forwarded to an employee and the book data
is printed in parallel. The printing of the book data is, for
instance, described by the interaction Print Book, which is
active in the scenario steps 3b and 4.

B. Architecture Description
The architecture of the library system is described by the

CREATE component model. This component model allows the
description of the behavior of the system under development
and the resulting internal structure. The component model
consists of the provided OD, ABD, DD and ASD. At the
architecture design, the definition of the system boundary and
the provided functions is crucial. The system boundary and the
provided functions can be described by the OD of CREATE.
The process of a function is described by the ABD. Data
objects used in these processes are defined in the DD. A
suitable structure of the system can be derived from the process
descriptions. This structure is described by the ASD. The
diagrams of the CREATE architecture have not to be developed
in a fixed order. Typically, a small set of system functions
are described by the OD, ABD and DD first. Afterwards,
the ASD is derived, and finally, additional system functions
are described. During the development of the architecture,
consistency to the requirements is maintained continuously.
In the following, all diagrams of the CREATE architecture are
explained in detail by an exemplary architecture design of the
library system.

ID Process Request

Step 1:

Step 2:

SD Process Request

m / manager: Staff

/ : LibrarySystem

{1} Statistic
{2} Overview

e / employee : Staff

{3b} Ordered

 / : Printer

{3a} Exit

{3b, 4} Printed

Book Overall ViewBook Overall View

Title Authors Year

Moby Dick H. Melville 1851

It S. King 1986

Statistic Exit

Book StatisticBook Statistic

Overview

Title Status

It borrowed

count

56

...

...

Exit

Print

Order RequestOrder Request

Title

It

Ordered

...

...

...

Step 3b:

Print Book Print Book

Title

It

Printed

...

...

Print Book Print Book

Title

It

Printed

...

...

Step 4:

Step 3a:

...

...

Book Overall ...

Figure 6. Scenario - Process Request

1) OD: A crucial step in the architecture design is the
definition of the system boundary and the privided functions
of the system under development. The system boundary and
the provided functions can be described precisely by the
OD, which is based on the UML Use Case Diagram [11].
It describes the most abstract structure and behavior of the
system and its context by the system boundary and the
associated use cases, which are called functions. The OD of the
library system describes the system with the provided functions
ShowBooksStatistic and PrintBookStatistic (see Fig. 7).

The OD describes additionally all actors, which are directly
involved in functions of the system under development. An
actor can be a person, an external system or a hardware
device. The OD of the library system describes, for instance,
the actors User, Staff and Printer. These actors are involved
in at least one function of the library system. The actor
Staff is, for instance, using the function ShowBooksStatic and
PrintBooksStatistic. The printer is used by the system at the
function PrintBooksStatistic. The process for each function is
described by an Architectural Behavior Diagram.

229

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

LibrarySystem

OD

Staff

User

Printer

<<Function>>

ShowBooksStatistic

<<Function>>

PrintBooksStatistic

Figure 7. OD of the library system

ABD ShowBooksStatistic

<<Variable>>

books: Book[]

<<ServiceAction>>

GetAllBooks

<<InterfaceAction>>

ShowBookWindow

<<InterfaceAction>>

ShowBooksStatistics

Statistic

Overview

Exit

books
books

: PrintBooksStatistic

<<Variable>>

selectedBook: Book

selectedBook

selectedBook

ABD PrintBooksStatistic

<<InterfaceAction>>

PrintBook

<<InputVariable>>

book: Book

Overview

book

<<Variable>>

selectedShelf: Shelf

selectedShelf

selectedShelf

<<InputVariable>>

shelf: Shelf

shelf

print

Figure 8. ABDs of the functions ShowBookStatistic and PrintBookStatistic

2) ABD: The ABD defines the behavior of the software
system by describing the processes of the functions defined
in OD completely. It is based on the UML Activity Diagram
[11] including data flow. An activity of an ABD describes
a process. In this process actions can be perfomed. The
process can be described by control nodes. Control nodes
allow, among others, a description of parallel and alternative
execution sequences [11]. The function ShowBooksStatistic is,
for instance, described by the ABD ShowBookStatistic (see
Fig. 8).

DD

title: String

Book

id : String

Shelf
<<Sequence>>

Figure 9. DD of the library system

Within the ABD, different action types like InterfaceAction
and ServiceAction are used. An InterfaceAction describes an
interaction of the system with its environment. The action
ShowBookWindow describes, for instance, an interaction with
the user by showing a dialog (see Fig. 8). A ServiceAction is
performed by the system (e.g., a database call). The action
GetAllBooks reads all books from the data base. An ABD
supports the usage of call behavior actions [11], which describe
the execution of a called activity within the execution of
another activity. The action :PrintBooksStatistic describes the
call of the ABD PrintBooksStatistic.

The ABD uses variables for the description of the data flow
of processes [25]. In the description of the function ShowBook-
Statistic, the variables books, selectedBook and selectedShelf
are used. Variables can have different data types and can hold
a set of objects. The variable books holds, for instance, a set of
objects of the type Book (see Fig. 8). Reading and writing of
variables by actions can be described by input pins and output
pins. The action GetAllBooks writes, for instance, all selected
book objects into the variable books. This variable is read by
the action ShowBookWindow, which shows, among others, an
overview about the selected books.

At a call of another ABD parameters can be passed. For the
passing of parameters a copy semantics is used. The action
:PrintBooksStatistic of the ABD ShowBooksStatistic describes,
for instance, a call of the ABD PrintBooksStatistic. The ABD
PrintBooksStatistic has the input variables book of the type
Book and shelf of the Type Shelf (see Fig. 8). The action
:PrintBooksStatistic has two input pins, which are referring
to the variables selectedBook and selectedShelf. At a call,
the objects in the referred variables are copied to the input
variables of the called ABD. At a return, the objects of the
output variables are copied to the referred variables of the
output pins of the call behavior action.

3) DD: At a function, described by ABD, data objects can
be used by the system. The DD is based on UML Class Dia-
grams [11] and describes the data types of each data object. For
example, the DD of the library system describes a type Book
and Shelf, which are types of the ABD ShowBooksStatistic
variables (see Fig. 9).

Data types described in the DD can have attributes similar to
classes in the UML class diagramm. Due to the copy semantics
of the ABD and the complexity of copying object networks,
attributes can only have a primitive type in the DD. Relations
to other data types are only described by sequences and
generalisations. A sequence is a special composite aggregation
[11], which allows no cylces and no membership of one object
to more than one other object. In the DD of the library system

230

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ASD

<<component>>

LibrarySystem

<<component>>

Client

<<component>>

BookManager

Figure 10. ASD of the library system

the data type Shelf has a sequence of objects of the type Book.
The meaning of a generalization of data types is equal to the
generalization of classes in the UML class diagram [11].

4) ASD: The ASD is based on UML Component Diagrams
[11] and describes the internal components of the system under
development and their offered interface as a black-box view.
Subsequently, the components are further decomposed to refine
their internal structure. The ASD LibrarySystem describes, for
instance, the internal structure of LibrarySystem of the OD (see
Fig. 10). The internal structure is derived from the actions of
the ABD. Hence, each component must be associated with at
least one action of an ABD. The component LibrarySystem is,
for example, refined by a component BookManager, which is
associated with the action GetAllBooks of the ABD.

V. CONSISTENCY CONSTRAINTS

In CREATE, consistency between requirements and archi-
tectures is maintained continuously during the architecture
design. Consistency maintenance is supported by defined in-
terrelations between scenario-based requirements models and
component-based architecture models. Interrelations are de-
fined by constraints. The definition of these constraints sup-
port the consistency maintenance, because they can easily be
checked. Furthermore, they enable an automation of the con-
sistency maintenance [24]. In this section, these interrelations
are explained in detail based on the library system example
described in Section IV. A summary of these interrelations is
given in Fig 11. We distinguish three kinds of interrelations:

1) Interrelations within requirements (see gray dotted lines
between the requirements diagrams in Fig. 11, e.g.,
between HRL and SD).

2) Interrelations within architecture (see gray dotted lines
between the architecture diagrams in Fig. 11, e.g.,
between OD and ASD).

3) Interrelations between requirements and architecture
(see red dotted lines between diagrams of the require-
ments and diagrams of the architecture in Fig. 11, e.g.,
between the DSD and the OD).

One interrelation between requirements and architectures is,
for instance, that the system boundary of the OD represents
a part of the domain structure in the DSD. In the following,
the interrelations within requirements, the interrelations within
architectures and the interrelations between requirements and
architectures are explained completely and in detail. The
interrelations are explained by the example of the requirements
model and architecture model of the library system.

A. Constraints within requirements

CREATE defines strict interrelations between the require-
ments models. These interrelations are defined by consis-
tency constraints. An inconsistency means a violation of these
constraints. Within requirements the following consistency
constraints are defined:

1) Every lifeline in a SD must have a corresponding part
with the same type in the DSD.

2) If an interaction in a SD takes place between two
lifelines, a connector has to exist between the corre-
sponding parts in the DSD.

3) In a scenario described by an SD the number of
instances have to comply with the multiplicity of the
corresponding parts in the DSD.

4) Every interaction of the SD is described by exactly
one interaction mockup of the ID and every interaction
mockup describes exactly one interaction.

5) Every text-based requirement on the system of the HRL
is described by at least one SD.

6) Marked subjects in the HRL are described in the DSD.
7) Every marked subject in the HRL must be used in the

SD, which describes this text-based requirement.
The requirements model of the library system example

comply with all of these constraints. For instance, the lifeline
manager of the SD Process Request has a corresponding
part with the same type Staff in the DSD (see Fig. 11).
A connection exists between the part manager and the part
of the library system. In this way, the interaction Statistic
between the manager and the library system complies to the
constraint 2. Further, exactly one library system is used in the
SD ProcessRequest. This complies with the constraint 3. The
constraint 3 is fulfilled for every scenario of the library system
described by an SD.

In the following, typical changes of requirements are intro-
duced in order to show the inconsistency detection and solving
of the CREATE approach. A typical change during the devel-
opment of a software system is the addition of a new scenario.
In a new scenario of the library system example, the employee
has a look at the book statistics. This scenario is described by
a new ID ShowBookStatistic and a new SD ShowBookStatistic
(see Fig. 12). Furthermore, the text-based requirement 1 in the
HRL is changed, which states that employees and managers
need to have a look at book statistics. During the development
of this scenario, it is discovered that employees should not
be able to see all book information like the manager. Hence,
the lifeline of the employee in the SD is not of the type
Staff, but of the type Employee (see Fig. 12). Employee is
not defined in the initial DSD (see Fig. 4). In consequence, the
consistency constraint 1 is violated. This inconsistency is fixed
by introducing the types Employee and Manager in the DSD
and assigning these types to the parts employee resp. manager.
This leads to another inconsistency with the SD Process
Request. The lifeline manager and employee are of the type
Staff in the initial version of the SD. But this type is not defined
in the DSD anymore. This inconsistency is fixed by changing
the type of the part employee from Staff to Employee and
the type of the manager from Staff to Manager. Furthermore,

231

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ArchitectureRequirements
Legend

RE-AD interrelations

other interrelations

all other lines UML conform

transition to next
scenario step

manager: Staff [1] employee: Staff [1..*]

:User [1..*]

GUI

GUI

DSD Library System

:Printer[1]

Speech
Paper

TCP/IP
:LibrarySystem [1]

DD

title: String

Book

id : String

Shelf
<<Sequence>>

LibrarySystem

OD

Staff

User

Printer

<<Function>>
ShowBooksStatistic

<<Function>>
PrintBooksStatistic

ASD

<<component>>

LibrarySystem

<<component>>

Client

<<component>>

BookManager

SD Process Request

m / manager: Staff

/ : LibrarySystem

e / employee : Staff

{3b} Ordered

 / : Printer

ID Process Request

Step 1:
Book Overall View

Title Authors Year

Moby Dick H. Melville 1851

It S. King 1986

Statistic Exit

Book Statistic

Overview

Title Status

It borrowed

count

56

...

...

Print...

...

... ...

ABD ShowBooksStatistic

<<Variable>>

books: Book[]

<<ServiceAction>>

GetAllBooks

<<InterfaceAction>>

ShowBookWindow

<<InterfaceAction>>

ShowBooksStatistics

Statistic

Overview

Exit

books
books

selectedBookselectedShelf

...

...

:Book [1..*] :Shelf [1..*]

Step 2:

HRL Functional Requirements on the Library System

1) The library system must provide the option to show statistics about books to the

 manger.

2) The libary system must be able to handle requests for book orders by a user.

...

Figure 11. Requirements models, architecture models and interrelations

the consistency constraint 2 is initially violated by introducing
the SD ShowBookStatistic. The employee interacts with the
library system, but a connector is not existing between the
corresponding parts of the DSD. To solve this inconsistency
a new connector has to be added between the parts for the
employees and the library system.

B. Constraints within architectures

In CREATE, strict interrelations between architectures di-
agrams are defined. These interrelations are also defined by
consistency constraints. A violation of a consistency constraint
points out an inconsistency. Within architectures the following
consistency constraints are defined:

1) Every system function has to be described by one ABD.
2) Every type of a variable in an ABD has to be primitive

or must be defined in the DD.
3) Every input pin and output pin of a call behavior action

must have a corresponding input variable resp. output
variable of the called ABD and vice versa.

4) The types of the pins of a call behavior action must
match the types of the corresponding variables of the
called ABD.

5) The system boundary of the OD has to be decomposed
by the ASD.

6) Every action described in one ABD has to be realized
by exactly one component of the ASD.

7) Every component of the ASD has to realize at least one
action of one ABD.

8) An actor has to be involved in a system function.

The architecture model of the library system example
comply with all of these constraints. For instance, the func-
tion ShowBookStatistic of the OD is described by the ABD
ShowBookStatistic (see Fig. 11). The type Book is defined
in the DD and the input pin of the call behavior action
:PrintBookStatistic referring to the variable selectedBook is,
for instance, corresponding to the input variable book of the
called ABD PrintBookStatistic. Further, the library system is
decomposed in the ASD. The action ShowBookStatistic is, for
instance, realized by the component Client in the DSD.

232

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ID ShowBookStatistic

Step 1:

Step 2:

SD ShowBookStatistic

e / employee:

Employee

/ : LibrarySystem

{1} Statistic

{2} Overview

{3} Exit

Book Overall ViewBook Overall View

Title Authors Year

Moby Dick H. Melville 1851

It S. King 1986

Statistic Exit

Book StatisticBook Statistic

Overview

Title Status

It borrowed

...

...

Book Overall ViewBook Overall View

Title Authors Year

Moby Dick H. Melville 1851

It S. King 1986

Statistic Exit

Step 3:

...

manager: Manager [1] employee: Employee [1..*]

:User [1..*]

GUI GUI

GUI

DSD Library System

:Printer[1]

Speech

Paper

TCP/IP
:LibrarySystem [1]

Date

14.04.2013

SD Process Request

m / manager:

Manager

/ : LibrarySystem

{1} Statistic
{2} Overview

e / employee :

Employee

{3b} Ordered

 / : Printer

{3a} Exit

{3b, 4} Printed

:Book [1..*] :Shelf [1..*]

HRL Functional Requirements on the Library System

1) The library system must provide the option to show

 statistics about books to the manger and the employees.

2) The libary system must be able to handle requests for

 book orders by a user.

2.1) Users must be able to send a request to the manager.

2.2) ...

4) The Manager must be able to accept or deny a request

 for book orders.

5) ...

Figure 12. Change within requirements

ABD ShowBooksStatistic

<<Variable>>

books: Book[]

<<ServiceAction>>

GetAllBooks

<<InterfaceAction>>

ShowBookWindow

<<InterfaceAction>>

ShowBooksStatistics

Statistic

Overview

Exit

books
books

: PrintMediaStatistic

print

<<Variable>>

selectedBook: Media

selectedBook

selectedBook

<<Variable>>

selectedShelf: Shelf

selectedShelf

selectedShelf

DD

title: String

Media

id : String

Shelf
<<Sequence>>

ABD PrintMediaStatistic

<<InterfaceAction>>

PrintMedia

<<InputVariable>>

media: Media

Overview

media

<<InputVariable>>

shelf: Shelf

shelf

LibrarySystem

OD

Staff

User

Printer

<<Function>>

ShowBooksStatistic

<<Function>>

PrintMediaStatistic

Book Magazine

ASD

<<component>>

LibrarySystem

<<component>>

Client

<<component>>

BookManager

<<component>>

PrintServer

Figure 13. Change within architecture

233

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In the following, typical changes of architectures are in-
troduced in order to show the inconsistency detection and
solving of the CREATE approach. A typical change during
the development of an architecture is that the function can
be reused in another context. In the library system example,
the function PrintBookStatistic can only print the statistics of
books. This function is changed to be able to print all data
about media in general. Especially the library system should
be able to handle also magazines. The ABD PrintBookStatistic
is changed to PrintMediaStatistic (see Fig. 13). Due to this
change, the type of the input variable is changed from Book
to Media. The type Media is not defined in the initial DD
(see Fig. 9). In consequence, the consistency constraint 2 is
violated. This inconsistency is fixed by introducing this type
in the DD. Further, the condition 4 is violated. The input
pin of the call behavior action :PrintBookStatistic is, initially,
referring to the variable selectedBook of the type Book (see
Fig. 10) and the corresponding input variable of the called
ABD PrintBookStatistic is of the type Media (see Fig. 13).
One way to fix this inconsistency is to change the type of
the passed variable selectedBook to Media. In order to allow
the printing of book data by the function PrintMediaStatistic,
the generalization between the type Book and the new type
Media in the DD is introduced. Further, a new type Magazin
is added, which is also generalized by the type Media. The
action PrintMedia of the ABD PrintMedaStatistic is realized
by a new component PrintServer of the ASD.

C. Constraints between requirements and architectures
Finally, CREATE defines strict interrelations between re-

quirements and architectures. These interrelations are again
defined by consistency constraints. An inconsistency means
a violation of these constraints. Within architectures the fol-
lowing consistency constraints are defined:

1) The system boundary of the OD has to represent one
type of the parts in the DSD.

2) Every actor of the OD has to represent one type of the
parts in the DSD.

3) The existence of a type in DSD whose part is directly
connected with the part of the system to build implies
the existence of a corresponding actor in the OD.

4) The existence of an entity in the DD implies the
existence of a corresponding type in the DSD.

5) The existence of a relation between two entities in the
DD implies the existence of a connection between parts
of the corresponding types in the DSD.

6) Every interaction mockup in the ID visualizing an
interaction with the system must be realized by exactly
one InterfaceAction in an ABD.

7) A system function of the OD realizes a set of interac-
tions described in at least one SD.

8) A type in the DSD can either be represented by an actor
of the OD or by an entity of the DD.

The initial requirements model and the initial architecture
model of the library system example comply with all of these
constraints. For instance, the system boundary of the library
system in OD represents the type LibrarySystem of the DSD

(see Fig. 11). The actor Manager represents, for instance, the
type Staff. In this way, the connection between the parts of
the library system and the part manager is valid. Between
the entities Book and Shelf exists, for instance, a sequence
relation and between the parts of the corresponding types in the
DSD exists a connection. Every interaction mockup described
in the IDs is realized by one interface action. For instance,
the interaction mockup Book Overall View is realized by the
interface action ShowBookWindow (see Fig. 11).

In the following, the changes of the requirements and the
architecture of the library system in the previous sections are
considered in order to show the inconsistency detection and
solving of the CREATE approach. Due to the changes in the
requirements specification the type Employee is introduced in
the DSD. The part employee of this type is connected with the
system in the DSD. Since no corresponding actor is described
in the OD, the consistency constraint 2 is violated (see Fig.
14). The new data types Media and Magazin are added to the
architecture during the further development of the architecture
design according to the previous sections. In the DSD no part
of these types is defined (see Fig. 14). As a result of this, the
consistency constraint 4 is violated. Further, in our example
the new interaction mockup Book Statistic is introduced in
the new scenario described in the ID ShowBookStatistic. This
interaction mockup is not realized by an interface action of an
ABD in the architecture (see Fig. 14). Hence, the consistency
constraint 6 is violated.

To correct these inconsistencies, a few further changes have
to be made. It is necessary to add the entities Media and
Magazine to the DSD. After this consistency condition 4 holds
again (see Fig. 15). To comply with the consistency constraint
2, a new actor for the employee has to be introduced into
the OD (see Fig. 15). Finally, a mapping from the added
interaction mockup to an interface action is missing. One could
map the new interaction mockup to an existing interface action
or extend the ABD by a new interface action. By extending
the ABD by the interface action EmployeeStats the interaction
mockup can be mapped on it (see Fig. 15). In this way, every
interaction mockup is realized by one interface action and the
model complies with the constraint 6.

As shown above, the defined consistency conditions help
at the consistency maintenance. The conditions can easily
be checked. In this way, inconsistencies can be detected
and solved. Furthermore, these consistency conditions enable
an automatic support of the consistency maintenance [24].
An automatic consistency maintenance can, for instance, be
realized by permitting changes to a next version not until all
inconsistencies are solved.

VI. EVALUATION

The development of CREATE took place at research projects
in cooperation with a public institution over a period of four
years. At these research projects, we gave advice and supported
to system development projects in order to test our results
in practice. The goal of the overall approach is to support
consistency maintenance of requirements and architectures in
early development phases. In these early phases, requirements

234

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ArchitectureRequirements

ID ShowBookStatistic

Step 1:

Step 2:

Book Overall View

Statistic Exit

Book Statistic

Overview

Title Status

It borrowed

...

...

Date

14.04.2013

manager: Manager [1] employee: Employee [1..*]

:User [1..*]

GUI GUI

GUI

DSD Library System

:Printer[1]

Speech

Paper

TCP/IP
:LibrarySystem [1]

:Book [1..*] :Shelf [1..*]

LibrarySystem

OD

Staff

User

Printer

<<Function>>
ShowBooksStatistic

<<Function>>
PrintMediaStatistic

DD

title: String

Media

id : String

Shelf
<<Sequence>>

title: String

Book

title: String

Magazine

ABD ShowBooksStatistic

<<Variable>>

books: Book[]

<<ServiceAction>>

GetAllBooks

<<InterfaceAction>>

ShowBookWindow

<<InterfaceAction>>

ShowBooksStatistics

Statistic

Overview

Exit

...

...

Legend
RE-AD interrelations
check

all other lines UML conform

(..)

transition to next
scenario step

...

Figure 14. Changes at the requirements and architecture model

Architecture LegendRequirements

all other lines UML conform

(..)

transition to next
scenario step

ID ShowBookStatistic

Step 1:

Step 2:

Book Overall View

Statistic Exit

Book Statistic

Overview

Title Status

It borrowed

...

...

Date

14.04.2013

manager: Manager [1]

:User [1..*]

GUI GUI

GUI

DSD Library System

Speech

Paper

TCP/IP
:LibrarySystem [1]

:Media [1..*] :Shelf [1..*]

LibrarySystem

OD

Manager

User

Printer

<<Function>>
ShowBooksStatistic

<<Function>>
PrintMediaStatistic

DD

title: String

Media

id : String

Shelf
<<Sequence>>

title: String

Book

title: String

Magazine

:Magazin [1..*]:Book [1..*]

Employee

ABD ShowBooksStatistic

<<Variable>>

books: Book[]

<<ServiceAction>>

GetAllBooks

<<InterfaceAction>>

ShowBookWindow

Statistic

Exit

...

...

<<InterfaceAction>>

ShowBooksStatistics

<<InterfaceAction>>

EmployeeStats

Overview Overview

RE-AD interrelations
check

...

employee: Employee [1..*]

:Printer[1]

Figure 15. Changes to solve the inconsistencies

235

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and architecture decisions are frequently changing. Further,
feedback of stakeholders is crucial since the requirements on
the system have still to be understood more clearly. The goal
of the evaluation was to test the usability and the inconsistency
prevention of our approach.

In a first step, we developed the component-based archi-
tecture model for a precise description of the architecture.
For reconcilement with stakeholders we developed a prototype
generator, which is able to interpret the developed models.
The stakeholders should validate the architecture and the
consistency to their requirements with the aid of the pro-
totypes. This approach was tested at a system development
project over a period of one year. The subject of this project
was a communication system. At this project, a model of
the complete system was developed comprising 20 system
functions, 253 activity nodes and 35 data types. The models
were developed in the sparx enterprise architect tool [26].
Conclusive, it revealed that the usability of the approach has to
be improved. The number of possible states described by the
component-based architecture leads to less comprehensibility
to stakeholders. They were not able to agree to the developed
specifications. Furthermore, the impact of changes was not
readily understandable to stakeholders. Consequently, the con-
sistency maintenance of requirements and architectures could
not be supported by this approach.

Based on the results of this practice test we extended
the approach by scenario-based models. This extended co-
modeling approach was the model-based approach CREATE,
which is described in detail in this paper. It was tested in
practice at a further system development project with a similar
subject over a period of one year. Besides the sparx enterprise
architect we used balsamiq mockups tool for the description
of the interaction mockups. In this period, the usability was
significantly better. The required resource demand for creating
and maintaining the models was still high with round about
4 person month. But stakeholders were able to agree to the
visualized and scenario-based requirements. Furthermore, they
were able to give helpful feedback, which leads to a big
number of changes. We measured at three milestones the num-
ber of changes, the detected errors and especially remaining
inconsistencies. Between these milestones we documented 500
changes and 67 errors. 8 of these errors were inconsistencies.
The rate of inconsistencies to changes is low. For an indication,
at a study described in [23], change data of requirements
documents are analyzed. In this study, 88 changes, 79 er-
rors, and 16 inconsistencies were detected. Furthermore, the
resource demand for consistence maintenance was low. Only 8
inconsistencies had to be resolved. Parts of the the consistence
checks could even be checked automatically.

VII. CONCLUSION AND FUTURE WORK

The fundamental problem addressed in this paper was
the development of inconsistencies between requirements and
architectures at the advanced approaches for the iterative
evolution. In this paper, the model-based approach CREATE
[1] was described in all details, which supports the iterative
evolution of requirements and architectures. The approach uses

a scenario-based model for a precise description of require-
ments and a component-based model for the description of
architectures. The architecture of CREATE describes precisely
how requirements are fulfilled by the system under develop-
ment. Requirements and architectural decisions lead frequently
to inconsistencies between requirements and architectures.
CREATE supports the consistency maintenance during the
development of requirements and architectures by defined
interrelations between scenario-based requirements models and
component-based architecture models. The definition of these
constraints support the consistency maintenance, because they
can easily be checked. Furthermore, they enable an automation
of the consistency maintenance [24]. This addresses the impor-
tant concern of the scalability of the method when it is applied
in complex industrial systems. During the development of such
a system a large variety of requirements and architectural
decisions have to be made. Since the consistence maintenance
can be automated the approaches scales well with the size of
the project.

A frequently stated argument is the entailment of high costs
for the development of precise requirements and architecture
models at a software project. This can be countered by the
fact that an incorrect consideration of requirements not uncom-
monly leads to complete project failures. Thus, maintaining
the consistency at the iterative evolution of requirements and
architectures is important. Supporting this task by models
enabling an automatic consistency maintenance reduces the
risk of a project failure and costs for consistency maintenance.
Furthermore, the developed models can be reused for auto-
matic generation of code, test cases and documents like, for
instance, requirements specifications. Nevertheless, the usage
of formal models at a development project should, among
others, be made conditional on the size of the project. At
the beginning of a development project, the advantages and
disadvantages of using formal models have to be weighed.

As future work, a further evaluation is planned to compare
the effectivity of CREATE to other model-based approaches
for requirements and architectures. Furthermore, it is planned
to develop a tool for the automatic consistency maintenance.

REFERENCES

[1] M. Ibe, M. Vogel, B. Schindler, and A. Rausch, ”CREATE: A co-
modeling approach for scenario-based requierements and component-
based architectures,” in Proceedings of the International Conference on
Software Engineering Advances (ICSEA), IARIA XPS Press, 2013, pp.
220-227.

[2] B. Nuseibeh, ”Weaving together requirements and architectures,” IEEE
Computer Society Press, vol. 34, March 2001, pp. 115–117.

[3] W. W. Royce, ”Managing the development of large software systems:
concepts and techniques,” in Proceedings of the 9th International Con-
ference on Software Engineering, IEEE Computer Society Press, 1970,
pp. 1–9.

[4] B.W. Böhm, ”A spiral model of software development and enhancement,”
IEEE Computer Society Press, vol. 21, May 1988, pp. 61–72.

[5] P. Grünbacher, A. Egyed, E. Egyed, and N. Medvidovic, ”Reconciling
software requirements and architectures with intermediate models,” in
Software and Systems Modeling. Springer, 2003, pp. 202–211.

[6] R. Ferrari and N. H. Madhavji, ”The impact of requirements knowledge
and experience on software architecting: an empirical study,” in Working
IEEE/IFIP Conference on Software Architecture, 2007, pp. 44–54.

236

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] B. Nuseibeh and S. Easterbrook, ”Requirements engineering: a roadmap,”
in Proceedings of the Conference on The Future of Software Engineering,
ACM Press, 2000, pp. 35–46.

[8] C. Knieke and U. Goltz, ”An executable semantics for UML 2 activity
diagrams,” in Proceedings of the International Workshop on Formaliza-
tion of Modeling Languages, ACM Press, 2010, pp. 3:1–3:5.

[9] M. Elkoutbi, ”Automated prototyping of user interfaces based on UML
scenarios,” in Journal of Automated Software Engineering, vol. 13,
Kluwer Academic Publishers, 2006, pp. 5–40.

[10] K. Schneider, ”Generating fast feedback in requirements elicitation,”
in Proceedings of the 13th international working conference on Re-
quirements engineering: foundation for software quality, Springer-Verlag,
2007, pp. 160–174.

[11] OMG, ”UML, version 2.2. OMG specification superstructure and in-
frastructure,” 2009.

[12] A. G. Kleppe, J. Warmer, and W. Bast, ”MDA explained: the model
driven architecture: practice and promise,” Addison-Wesley Longman
Publishing Co. Inc., 2007

[13] C. Atkinson, J. Bayer, and D. Muthig, ”Component-based product
line development: the KobrA approach,” in Software Product Line
Conference, Denver, Kluwer Academic Publishers, 2000, pp. 289-309.

[14] R. Chitchyan, M. Pinto, A. Rashid, and L. Fuentes, ”COMPASS:
composition-centric mapping of aspectual requirements to architecture,”
in Transactions on AspectOriented Software Development, 2007, pp. 3–
53.

[15] R. Kazman, G. Abowd, L. Bass, and P. Clements, ”Scenario-based
analysis of software architecture,” in IEEE Software, vol. 13, IEEE
Computer Society Press, Nov. 1996, pp. 47–55.

[16] H. Liang, J. Dingel, and Z. Diskin, ”A comparative survey of scenario-
based to state-based model synthesis approaches,” in Proceedings of the
2006 international workshop on Scenarios and state machines: models,
algorithms, and tools, ACM Press, 2006, pp. 5–12.

[17] Y. Bontemps, P. Schobbens, and C. Löding, ”Synthesis of open reactive
systems from scenario-based specifications,” in Proceedings of Applica-
tion of Concurrency to System Design, 2003, pp. 41–50.

[18] V. Garousi, L. Briand, C. Lionel, and Y. Labiche, ”Control flow
analysis of UML 2.0 sequence diagrams,” in Model Driven Architecture
Foundations and Applications, 2005, pp. 160–174.

[19] C. Szyperski, ”Component software: beyond object-oriented program-
ming,” Addison-Wesley Longman Publishing Co. Inc., 2002.

[20] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, ”The common
component modeling example: comparing software component models,”
ser. Springer Lecture Notes in Computer Science, vol. 5153, 2008.

[21] A. Egyed, E. Letier, and A. Finkelstein, ”Fixing inconsistencies in UML
design models,” in Proceedings of the 23rd IEEE/ACM International
Conference on Automated Software Engineering, 2008, pp. 99–108.

[22] Y. Aoki, H. Okuda, S. Matsuura, and S. Ogata, ”Data lifecycle veri-
fication method for requirements specifications using a model checking
technique,” in Proceedings of the International Conference on Software
Engineering Advances (ICSEA), IARIA XPS Press, 2013, pp. 194–200.

[23] V. R. Basili and D. M. Weiss, ”Evaluation of a software requirements
document by analysis of change data,” in Proceedings of the 5th
International Conference on Software Engineering, IEEE Press, 1981,
pp. 314–323.

[24] B. Schindler, and A. Rausch, ”Automatic consistence maintenance
of requirements and architectures,” in Proceedings of the IASTED
International Conference on Software Engineering, ACTA Press, 2014,
pp. 15–22.

[25] B. Schindler, ”Konsistenzsicherung von Anforderungen und Architek-
turen,” Technische Universität Clausthal, 2014.

[26] D. Steinpichler, ”Project management with UML and Enterprise Archi-
tect,” SparxSystems Eigenverlag, 2011

237

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

When May the Accuracy of Expert Estimation Be Improved by Using Historical

Data?

Gabriela Robiolo

Universidad Austral

Av. Juan de Garay 125

Buenos Aires, Argentina

grobiolo@austral.edu.ar

Silvana Santos
Universidad Nacional de La Plata

Calle 50 y 20

La Plata, Argentina

silvanasantos@gmail.com

Bibiana Rossi
Univ. Argentina de la Empresa

Lima 717

Buenos Aires, Argentina

birossi@uade.edu.ar

Abstract— As expert estimation is the estimation strategy most

frequently applied to software projects today, it is important to

focus the research on effort estimation methods on it. This is

the estimation method used in Agile contexts so we are

interested in deeply understanding the value of historical data

in this context, in particular when the project domains and the

technological environments are new to the team, and when the

teams -with little experience in Agile contexts- have recently

been created. We designed an empirical study in order to find

out when the accuracy of expert estimation made in a context

of agile software development may be improved by using

historical data. Our empirical study has shown that the use of

historical data may improve the intuitive expert estimation

method under the following circumstances: when the work

experience, the experience in the technologies to be used to

develop the application, and the experience in a given domain

is low, as well as when the team velocity is unknown.

 Keywords—Expert, Expert Estimation, Effort Estimation,

Empirical Study, Historical Data.

I. INTRODUCTION

Expert estimation is the estimation strategy which is
most frequently applied today to estimate the effort involved
in the development of software projects. However, the
estimations thus obtained are far from being as accurate as
desirable. If we expect to improve estimation accuracy,
further research should be carried out in order to understand
how the estimation process works. At present, we are
particularly interested in expert estimation in Agile contexts,
so we would like to learn if historical data may bring any
improvement to expert estimation. To pursue this objective,
we are now extending a paper we wrote last year [1], which
was presented at ICSEA 2013, in order to add more
evidence in favor of using expert estimation. This new paper
will also confirm the evidence reported by other authors in
[2].

 Having decided on our goal, we found out that the
compilation of information about cost estimation made by
Jørgensen and Shepperd [3] in 2007 was extremely
valuable, since they systematically reviewed papers on cost
estimation studies and they provided recommendations for
future research. They found out that there are few
researchers working in this field and that there is no
adequate framework to develop high quality research
projects that may lead to conclusive evidence.

Consequently, they suggested the following
improvements in the field of research:

 Deepen the study of the basic aspects of software
estimation. Jørgensen and Shepperd focused on
two basic aspects: the evaluation of the accuracy
of an estimation method and the appropriate
selection of an estimation method.

 Widen the research on the current, most
commonly used estimation methods in the
software industry. The leading estimation method
today is that based on expert opinion (ranging
from analogies to experiences and intuition), but
research on expert estimation is still scarce.

 Perform studies which support the estimation
method based on expert judgment, instead of
replacing it with other estimation methods. Given
the fact that expert judgment is the most widely
used method in the software industry today, it
would be convenient to improve such judgment
by supporting it with the use of formal estimation
methods.

 Apply cost estimation methods to real situations.
There are few studies in which the estimation
methods are evaluated in real situations, since
most of such methods are applied to laboratory,
non realistic contexts.

 In Agile contexts, in particular, there is another critical
aspect to be dealt with: not knowing the velocity at which
the developing team works. Actually, Cohn [4] suggested
that one of the challenges when planning a release is
estimating the velocity of the team. He mentioned three
possible ways to estimate velocity. Firstly, estimators may
use historical averages, if available. However, before using
historical averages, they should consider whether there have
been significant changes in the team, the nature of the
present project, the technology to be used, and so on.
Secondly, estimators may choose to delay estimating
velocity until they have run a few iterations. Cohn thinks
that this is usually the best option. Thirdly, estimators may
forecast velocity by breaking a few stories into tasks and
calculating how many stories will fit into the iteration.

 Bearing in mind the present working conditions, as
described in the two previous paragraphs, and in order to
deepen our knowledge about expert estimation, as

238

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

recommended by Jørgensen and Shepperd [3], we decided
to research on the importance of historical data when
performing expert estimations in agile contexts in which the
project domains and the technological environments are new
to the team, and the teams -with little experience in Agile
contexts- have recently been created, so the team velocity is
unknown.

It is important to note that this study does not take into
consideration the effect of non-functional user requirements
on effort; hence it will not address the estimation of effort
which is necessary to satisfy non-functional requirements.

In this scenario, we have tried to answer the following
research question: when may the accuracy of an expert
estimation made in a context of agile software development
be improved by using historical data? The results we
obtained through our empirical study, both those in [1] and
the ones in this new paper, in which we have included a
different way of applying one of the estimation methods
reported in [1] and more detailed results, have led us to
conclude that historical data may improve the accuracy of
an intuitive estimation made by an expert when the
estimator has limited experience in the job to be performed,
the technologies to be used and the domain to be dealt with,
and when the team velocity is unknown.

In the following Section, we will investigate related
work to see if there is any other evidence of improvement in
expert estimation accuracy when using historical data. In
Section III, we will introduce three estimation methods:
Expert Estimation (ExE), Analogy-Based Method (AbM),
and Historical Productivity (HP). In Section IV, we will
describe an empirical study and in Section V we will
analyze the results obtained. Moreover, the threats to
validity will be discussed in Section VI and finally, in
Section VII, we will draw conclusions about the evidence
which shows the benefits of using historical data.

II. RELATED WORK

Apparently, this has been the first article to have been
written about whether using historical data in an agile
context improves expert estimation. However, if we
consider expert estimation in general, there are some authors
that have already reported evidence about the importance of
the developers’ level of maturity when evaluating the
accuracy of estimations, which is in line with the
conclusions of our study. For example, SCRUM pioneers
believe it is acceptable to have an average error rate of 20%
in their results when using the Planning Poker estimation
technique, but they have admitted that this percentage
depends on the level of maturity of the developers [5].
Another study [6] agrees with this statement, as it indicates
that the optimism bias which is caused by the group
discussion diminishes, or even disappears, as the expertise
of the people involved in the group estimation process
increases.

 On the other hand, another study [7] has already
examined the impact of the lack of experience of the
estimators in the domain problem, as well as that in the

technologies used in a software development project. In
fact, what was studied was the accuracy with which the
effort of a given task was estimated. Such estimation was
performed by a single expert by comparing the estimated
and the actual efforts. The reason for researching on this
aspect is that sometimes organizations do not have in their
staff experts that have relevant prior experience in some
business or technology related aspect of the project they are
working on. This research investigates the impact of such
incomplete expertise on the reliability of estimates.

It is important to note that Jorgensen [2] has both
defined a list of twelve “best practices”, that is to say,
empirically validated expert estimation principles, and also
suggested how to implement these guidelines in
organizations. One of the best practices he proposed is to
use documented data from previous development tasks and
another one is to employ estimation experts with a relevant
domain background and good estimation records. Actually,
our article goes in the same direction; we have focused on
historical data and analyzed the impact of the difference in
experts’ skills.

An aspect that should be taken into account when
performing expert estimations is excessive optimism, as it is
one of the negative effects that influences the most when a
software project fails. Jørgensen and Halkjelsvik [8] have
made a discovery that seems to be important to understand
what may be leading estimators to excessive optimism: the
format used to word the question that asks about effort
estimation. The usual way to ask about effort estimation
would be: “How many hours will be used to complete task
X?”. However, there are people who would say: “How
many tasks could be completed in Y hours?”. Theoretically,
the same results should be obtained by using any of the two
formats. Nevertheless, according to Jørgensen and
Gruschke [9], when the second option is used, the
estimations which are thus obtained are much lower than
those obtained when the traditional format is used, that is to
say, the time to fulfill a task will be shorter, and
consequently, the estimation will be much more optimistic.
Thus, in our study, the expert estimations were made using
the usual question. In fact, the final recommendation of this
study is that the traditional format should always be used, as
this does not contain any deviation imposed by the clients
who ask the developers for more than they can pay for.

Besides the papers mentioned above, Jorgensen has
written several studies that include other aspects that may
affect expert estimations. Although such aspects were not
taken into account in this study, we believe they may enrich
our conclusions. These aspects are:

a. high degree of inconsistency and an improper
weighting of variables [2], he believes that if these negative
aspects could be reduced, the accuracy of the estimations
would be much better.

b. the level of interdependence (focusing on relations,
social context and interconnections) introduces a deviation
in the estimation process [9], according to Jørgensen, the
estimations performed by software developers are also

239

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

affected by human relationships. Besides, he points out that
such deviations take place under every circumstance.

III. ESTIMATION METHODS

This section will describe the three estimation methods
used in our empirical study: ExE, AbM and HP. However,
before doing so, it is important to focus on the definition of
certain expressions used to define such methods. For
example, when defining expert, Jorgensen [2] used a broad
definition of the phrase, as he included estimation strategies
that ranged from unaided intuition (“gut feeling”) to expert
judgment supported by historical data, process guidelines,
and checklists (“structured estimation”). In his view, for an
estimation strategy to be included under the expert
estimation category, it had to meet the following conditions:
firstly, the estimation work must be conducted by a person
who is considered an expert in the task, and secondly, a
significant part of the estimation process must be based on a
non-explicit and non-recoverable reasoning process, i.e.,
“intuition”. In our study, however, a narrower definition of
the concept of expert was used: that which refers only to
intuition. This way, we made a difference between intuitive
ExE, and the methods that involve the use of historical data:
AbM and HP. It is important to note that in our study, when
we used Planning Poker –an ExE method-, no historical data
was taken into account.

To further clarify the terms used, we must say that by
AbM we meant the estimation performed by an expert, who
is aided by a database containing information about finished
projects [11]. As regards HP, which is another way of using
historical data, it is worth mentioning that in our empirical
study we focused on the size characteristic of the products,
as suggested by one of the authors that inspired this article
[10].

A. Expert Estimation Method (ExE)

 When estimating the effort of a software development
task, an expert estimation may be obtained either by a single
expert, whose intuitive prediction will be considered an
expert judgment, or by a group of experts, whose estimation
will combine several experts’ judgments.

A very frequently used way to obtain group expert
judgment is called Planning Poker -a technique that
combines expert opinion, analogy, and disaggregation-,
which is a variation of the Delphi method. Planning Poker
is based on the consensus that is reached by the group of
experts who are performing an estimation; in fact, it is
considered a manageable approach that produces fast and
reliable estimations [4][11][12]. This method was first
described by James Greening [14] and it was then
popularized by Mike Cohn through his book “Agile
Estimating and Planning” [4]. It is mainly used in agile
software development, especially in Extreme Programming
[13]. To apply Planning Poker, the estimation team should
be made up of, ideally, all the developers within the team,
that is, programmers, testers, analysts, designers, DBAs, etc.
It is important to bear in mind that, as this will happen in
Agile contexts, the teams will not exceed ten people [4]. In

fact, Planning Poker becomes especially useful when
estimations are taking too long and part of the team is not
willing to get involved in the estimation process [14]. The
basic steps of this technique, according to how Grenning
described it, are:

“The client reads a story and there is a discussion in
which the story is presented as necessary. Then, each
programmer writes his estimation on a card, without
discussing his estimation with anyone else. Once every
programmer has written down his estimation, all the cards
are flipped over. If all estimates are equal, there is no need
for discussion; the estimate is registered and the next story
is dealt with. If the estimates are different, the team
members will discuss their estimates and try to come to an
agreement” [14].

Mike Cohn further developed this technique. He added a
pack of cards especially designed to apply it. Each pack has
to be prepared before the Planning Poker meeting and it will
contain cards with numbers written on them. Such numbers
should be big enough to be read from the other side of a
table. Those numbers represent a valid estimation, such as 0,
1, 2, 3, 5, 8, 13, 20, 40, and 100. There is a raison d’être for
such an estimation scale: there are studies which have
demonstrated that we are better at estimating things which
fall within one order of magnitude [15][16]. Planning Poker
as has been here defined was used in the empirical study
reported in this article. It should be noted that no historical
data was used when Planning Poker was employed in our
study.

B. Analogy-Based Method (AbM)

The idea of using analogy as a basis to estimate effort in
software projects is not new: in fact, Boehm [17] suggested
the informal use of analogies as a possible technique thirty
years ago. In 1988, Cowderoy and Jenkins [18] also
worked with analogies, but they did not find a formal
mechanism to select the analogies. According to Shepperd
and Schofield [19], the principle is based on the depicting of
projects in terms of their characteristics, such as the number
of interfaces, the development methodology, or the size of
the functional requirements. There is a base of finished
projects which is used to search for those that best resemble
the project to be estimated.

So, when estimating by analogy, there are p projects or
cases, each of which has to be characterized in terms of a set
of n characteristics. There is a historical database of projects
that have already been finished. The new Project, the one to
be estimated, is called “target”. Such target is characterized
in terms of the previously mentioned n dimensions. This
means that the set of characteristics will be restricted to
include only those whose values will be known at the time
of performing the prediction. The next step consists of
measuring similarities between the “target” and the other
cases in the n-dimensional space [19].

 Such similarities may be defined in different ways, but
most of the researchers define the measuring of similarities
the way Shepperd & Schofield [19] and Kadoda, Cartwright,

240

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Chen & Shepperd [20] do: it is the Euclidean distance in an
n-dimensional space, where n is the number of
characteristics of the project. Each dimension is
standardized so that all the dimensions may have the same
weight. The known effort values of the case closest to the
new project are then used as the basis for the prediction.

In our empirical study, we estimated effort by applying
AbM in two distinct ways: our first approach was to take
into account the characteristics of each user story in a
general manner (AbM-1), and our second approach was to
use only one characteristic of the n characteristics which
could be used. In this case in particular, such characteristic
was size (AbM-2s).

When using AbM-1 the participants compared the user
stories of two projects: one considered “historical” and the
other one “target”. The Estimated Effort (EE) of the user
story of the target project was, in fact, the Actual Effort
(AE) of the “most similar” user story of the historical
project.

When using AbM-2s, the project characteristic which
was taken into account was the size of the project measured
using COSMIC [21]. The EE of the user story of the target
project was the AE of the closest historical user story –i.e.,
the user story whose size distance was the smallest
(|UserStorySizet – UserStorySizeh|). When multiple user
stories were at the minimum distance, the participants
calculated the mean of the AE of these user stories.

C. Historical Productivity

Jørgensen, Indahl, and Sjøberg [10] defined
Productivity as the quotient of Actual Effort (AE) and Size,
and the EE as the product of Size and Productivity. In this
empirical study, COSMIC [21] was used as a measure of
Size, and EE was calculated as the product of Size and
Historical Productivity (HP). HP was the productivity of the
project which was used as historical project, that is, the
quotient of the AE and the Size of the historical project.

To measure size, COSMIC was selected because it is an
international standard [22] that is widely recognized in the
software industry, and also because there is a previous study
that used it in an Agile context [23]. With the COSMIC
software method, Functional User Requirements -possibly
represented via user stories- can be mapped into unique
functional processes. Each functional process consists of
sub-processes that involve data movements. A data
movement concerns a single data group, i.e., a unique set of
data attributes that describe a single object of interest. There
are four types of data movements:

 Entry moves a data group from a functional user into
the software

 Exit moves a data group out of the software to a
functional user

 Read moves a data group from persistent storage to
the software

 Write moves a data group from the software to
persistent storage.

In the COSMIC approach, the term “persistent storage”
denotes data (including variables stored in central memory)
whose value is preserved between two activations of a
functional process. Moreover, the size of a software
application is given by the sum of the sizes of its functional
processes, and the size of the functional processes is given
by the sum of Entries, Exits, Reads and Writes, where each
term in the sum indicates the number of corresponding data
movements, expressed in CFP. So, the concept of
“weighting” a data movement does not exist in COSMIC; in
other words, all data movements weigh the same.

IV. DEFINITION AND PLANNING OF OUR EMPIRICAL STUDY

 Our empirical study is described in this section,
considering its conception and how it was planned.

A. Definition

This empirical study was designed in order to establish
when the accuracy of an expert estimation made in an agile
development context, under the circumstances that will be
described below, may be improved by using historical data.
Such circumstances are: the project domain and the
technological environment must be new to the estimator,
and the team would have recently been created, so that the
team velocity will be unknown.

The development steps of this empirical study may be
summarized as follows:

 The study was developed in the context of graduate
education for IT practitioners from different educational and
work backgrounds. The participants attended a workshop
which had two objectives, one oriented to the subjects and
another one oriented to the development of this empirical
study. The workshop gave the participants the opportunity
to: a. understand both how a historical database is built, and
under which circumstances such database will give value to
the estimation process, b. estimate using three methods and
c. compare their results with other participants’ results.
Later on, the same workshop was conducted for
undergraduate students.

The workshop participants were asked to re-estimate the
first sprint of an application –the “target” application, i.e.,
P2- which had been previously developed by a group of
undergraduate students who did not participate in the
workshop. Both the development language and the
application domain were unfamiliar to participants. Initially,
participants had no idea of the developing team's velocity.

The re-estimations were performed by using four
different estimation methods: ExE, based on the
participants’ intuition, and three other methods which use
historical data. The historical data was obtained from an
application which was similar to the target application,
which had been developed by a third undergraduate group –
a group that had neither developed the original application
nor participated in our empirical study-. Such application,
P1, will be called “historical application”.

241

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To guarantee the best results, we developed this
empirical study following the recommendations of Juristo
and Moreno [24] and Wohlin et al. [25]. To report it, we
took into account Jedlitschka, Ciolkowoski and Pfahl’s
guidelines for reporting empirical research in software
engineering [26].

As previously stated, the objective of this empirical
study was to analyze when the accuracy of an estimation
made by an expert, a role played by undergraduate students
and practitioners in this study, may be improved by using
historical data. This objective was achieved by comparing
the errors the experts obtained by estimating with a method
based on “pure” intuition (ExE) to those they obtained by
estimating with three different methods: AbM-1, AbM-2s
and HP.

Figure 1 summarizes this definition.

The hypotheses to be tested were:

H0: The mean value of the MRE calculated with the ExE
method is equal to the mean value of the MRE obtained
when calculating with AbM-1, AbM-2s or HP.

H1: The mean value of the MRE calculated with the ExE
method is lower than the mean value of the MRE obtained
when calculating with AbM-1, AbM-2s or HP.

B. Planning

The experimental subjects were IT graduate students and
undergraduate advanced students of Informatics
Engineering. In fact, all of the graduate students were
practitioners. So, in this paper, when we say “participants”
we mean both the graduate and undergraduate students, and
by “practitioners” we refer only to the graduate students.

Fig. 1 Summary of the empirical study.

The participants were asked to give some information

about themselves regarding the following aspects:

 If graduate or undergraduate student

 Professional experience (they had to state the
number of years they had worked in software
development)

 Experience with COSMIC

 Experience with user stories (they had to inform the
number of user stories that they had written/read
(fewer than 20, 20-100, more than 100)

 Experience with Ruby [27] language.

 Experience in Database development

 Experience in working in Agile development
contexts.

 Level of prior knowledge about the productivity of
the teams that developed the experimental objects
(high, medium, low)

 Level of experience in the technologies used to
develop the experimental objects (high, medium,
low)

 Level of experience in the domain of the
experimental objects (high, medium, low)

The experimental objects were two similar applications
(P1 and P2), namely social networks, which had been
developed by two groups of students before the empirical
study was designed. For the sake of clarity we will say that
P2 was developed by the “developing team” and P1 by the
“historical team”, as shown in Figure 1. It is important to
note that these two groups did not participate in our
empirical study; in fact, they were undergraduate students
from a university different from the one where the
undergraduate participants of the study were studying. P1
and P2 were developed to fulfill an assignment in a certain
course. Both teams used Agile methodology to do so. They
were instructed to register the hours worked per user story
using the Scrumy tool [28]. Two professors supervised all of
these tasks.

Application P1 is a system through which users may
conduct surveys. The system classifies users into several
categories, builds different groups and instantly surveys
those users who fall within the right categories.

Application P2, which we have identified as the “target”
project, is a network where different types of events may be
published. For example, an event may be a party, a meeting
or a football game. Events are the core elements in this
application, not people. It works with event and friend
suggestion algorithms and gives the option of buying a
ticket for an event online.

The data corresponding to the experimental objects are
displayed below. Table I shows the user stories of P1 and
the Actual Effort (AE) of each user story measured in
person hours. As some user stories were not functional
processes, they were discarded. Table II shows the user
stories and the AE of P2. This empirical study used the
actual effort of P1 and P2. These are the user stories of only
the first sprint, as it was the only sprint for which effort was
estimated.

242

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 The aspects of the development process that were
controlled to facilitate such comparison were:

 Similarity: Two similar applications that had been

developed in Agile contexts were selected as

experimental objects. They had been developed in an

academic context by advanced undergraduate

students, who had been requested to develop an

application for an assignment in which a company

environment was simulated.

 Experience in team velocity: Since in Agile contexts

developers learn from previous estimations, and in

this case the estimators were expected to have no

previous experience, only the first sprint of the target

application could be estimated in order to be

compared to the actual effort estimation of P2, as it

was only for the first sprint that the original P2

estimators did not have experience in team velocity.

 Language experience: Participants with experience in

Ruby language, in Agile contexts, and / or COSMIC

were equally distributed.

In order to obtain comparable results in this study,
person-hours had to be used to unify the unit of
measurement of effort, since the historical values had been
previously measured in person-hours, instead of in story
points or ideal hours, which are the measures usually used to
make effort estimations with Planning Poker in Agile
contexts [4].

The workshop was run following these steps:

1) The participants were given a set of materials that

included: Brief Vision Documents [29] of P1 and P2, the

professor’s slides explaining the empirical study, and an

Excel file where each sheet was a step of the empirical

study.

2) Each one of the empirical study steps was explained

to the participants. The participants were trained to perform

each activity. Also, two examples of COSMIC measurement

were included.

It is important to note that the participants worked with
an Excel file that was designed to facilitate the
understanding of the activities, and the sequence in which
they had to do them. The following are the activities
presented sequentially in each one of the sheets in the file:

a) Perform the expert estimation. Based on their
intuition, they estimated the person-hours to be worked on
the target application (P2). Based on the Vision Document
of P2, the participants estimated the EE of each user story
described in Table II.

b) Build the historical database. Each team created its
own historical dataset by measuring the size of the user
stories of the historical application (P1), using COSMIC, as
shown in Table I.

TABLE I. USER STORIES OF THE HISTORICAL APPLICATION (P1)

User stories Actual Effort

[person-hours]

Create survey 18

Sign up 15

See user’s profile 9

Answer survey 9

Log in/Log out 6

Comment on survey 12

Search for survey 9

Eliminate user 3

Edit personal data 6

Search for user 9

Generate and publish statistics 30

Follow user 30

Select user segment 18

Sort the content according to date 18

Upload pictures 21

UPR (User Popularity Ranking) 36

TABLE II. USER STORIES OF THE TARGET APPLICATION (P2)

User stories

First Sprint

Actual Effort

 [person-hours]

Create, Modify and Eliminate User 8

Log in (Log out) 18

Create event 6

Search for event 3

Total 35

The Excel sheet automatically calculated the Historical

Productivity (HP) of P1 as the quotient of AEP1 and SizeP1,
where AEP1 is equal to the sum of the AE of each user story
of P1, and SizeP1 is equal to the sum of the Size of each user
story of P1. So, the HPP1 is calculated at application level,
which will be used to automatically calculate the EEP2.

The data movements of P1 were indentified for each
user story, based on: the information included in the Vision
Report, the name of the user story, and the explanation
given by the leader of the workshop when asked for it. The
measurement of the user stories, using COSMIC, was
performed in a way similar to that of [23].

c) Measure the size of the target application (P2), by
using COSMIC to measure the size of the user stories. These
size values were automatically used to calculate EEP2, which
was calculated as the product of SizeP2 and Historical
Productivity (HPP1), which had been obtained in the
previous step.

d) Estimate the effort for the target application (P2)
using AbM in two different ways: AbM-1 and AbM-2s. For
AbM-1, the participants had to select for each one of the
user stories in P2 the most similar user story from the set of
user stories in P1 -though based on the stories’ general

243

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

characteristics, not on their size or on any other specific
characteristic- and then assign to the EE of each user story
in P2 the AE of the similar user story in P1. For AbM-2s,
the participants had to use the sizes which had been
previously calculated for each one of the user stories in P2,
as described in c) above, and the sizes which had been
calculated for P1, described in b) above. They had to
compare the size of each user story in P2 to the size of all
the user stories in P1 in order to find the smallest distance
between |UserStorySizeP2 – UserStorySizeP1|. Once the
smallest distance had been found, the AE of the user story in
P1 which was the closest to P2 was assigned to the EE of
such user story in P2. In those cases in which the
participants found that the smallest distance was repeated,
they assigned as EE of P2 the mean value of AE of the user
stories in P1 which shared the same distance values.

e) Individually compare and analyze the EE values
obtained using ExE, AbM-1, AbM-2s and HP methods. The
Excel sheet automatically presents a table that displays the
four EE values –those obtained by applying the four
different estimation methods- for each user story in P2.

3) The participants estimated the effort of the target

application following the steps listed above, and completed
the worksheets.

4) The data was collected and the results were analyzed
with the participants. A rich discussion about the
comparison of the MRE obtained by applying the four
estimation methods (ExE, HP, AbM-1 and AbM-2s) was
conducted by the leader of the empirical study.

Figure 2 summarizes the steps of the empirical study.

C. Execution

Forty nine undergraduate students, who were distributed
in fourteen groups of 3-4 students, participated in the two
workshops. The median work experience of the students
was three years. No one had experience using COSMIC, and
they had little experience with user stories. All of them had
attended the course “Database” and passed the exam and
only 8 had experience in working in an Agile context, that is
to say, a small proportion of them. The Level of experience
of the development teams in the technologies to be used and
in the domain of the experimental objects was low.

The characteristics of the participants are described in
Table III.

We noticed that there were three aspects that affected the
intuitive expert estimation: the work experience, the level of
experience in the technologies used to develop the
experimental objects, and the level of experience in the
domain of the experimental objects. The undergraduate
participants’ work experience measured in years varied from
0 to 13, with a median of 3. This shows that the “experts”
had little experience in estimations and also, that the level of
experience in the technologies used and in the domain was
low.

Fig. 2 Steps of the empirical study.

In one of the workshops, there were fourteen
practitioners worked on their own and their median work
experience was fourteen years. No one had experience in
using COSMIC, and five of them had experience with user
stories. Their median work experience with databases was
ten years and only three of them had experience in working
in an Agile context, which is a small proportion. The Level
of experience in the technologies and in the domain of the
experimental objects was medium-low, that is, not definitely
low, but it could not be classified as fully medium.

When compared to the undergraduate participants, the
most significant difference was their work experience:
measured in years, it varied from 4 to 36, with a median of
14. Ten practitioners were project leaders or managers, three
were senior developers and only one was a junior developer.
This shows that these “experts” had experience in project
management and, of course, in estimations.

V. RESULTS

Before answering the research question posed above, it
is important to understand the circumstances under which

244

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. WORKSHOP PARTICIPANTS

the use of historical data may improve expert estimation
accuracy. To do so, this section will first describe the results
obtained by the two types of participants -undergraduates
and practitioners- and then analyze them. Afterwards, the
statistical significance of such results will be dealt with, and
later on, the research question will be answered. Finally, this
analysis will be completed with the discussion of aspects
omitted in the previous sections.

1) Description and analysis
Table IV shows the effort estimation values calculated

for the target project, obtained by the two groups applying
the four estimations methods: ExE, HP, AbM-1 and AbM-
2s. Moreover, the AE of the target application (P2), which
was developed by the undergraduate group was 35 person-
hours.

Figure 3 shows the boxplots of the residuals and Figure
4 the boxplots of the MRE for the target project.

To obtain the MRE, the actual value registered for the
first sprint of P2 by the group that actually developed the
project was used as AE. Also, Table V shows the statistical
functions of residuals and the MRE.

The boxsplots show the different results obtained by
each group of participants. The undergraduate participants
obtained better estimation results when applying the AbM-1
or AbM-2s, rather than the ExE or HP methods. Figure 4
shows the median values, but it must be noted that a more
significant difference was observed when comparing the
values obtained for the mean MRE in the undergraduate
group: AbM-1: 0.70, AbM-2s: 0.71, ExE:1.51 and HP:1.75.
On the other hand, the practitioners’ group obtained the best
results when applying ExE, instead of HP or AbM, as
shown by the boxplots. Also, their mean values were ExE:
0.38, HP: 2.05, AbM-1: 0.87 and AbM-2s: 0.60.

The best result of the undergraduate group was obtained
when using AbM: the MRE median of AbM-1 was 0.63
within the [0.37-1.83] range and AbM-2s was 0.62 within
[0.13-1.14]. The lack of experience, in this case, was
compensated for by the historical data. By using HP, the
MRE dispersion was increased: the MRE values ranged
from [0.99-2.72]. The MRE of the 14 groups had a median
of 1.89 and a standard deviation of 0.54. Moreover, by using
ExE we obtained a higher dispersion: MRE values ranged
from [0.03-4.91], with a median of 0.90 and a standard
deviation of 1.55.

Both the practitioners’ level of experience in the
technologies used to develop the experimental objects and
their level of experience in the domain of the experimental
objects were medium-low. These characteristics justify the
results obtained when using ExE: the median of the MRE
was 0.29 in a [0.14-0.83] range of values.

During the study, three of the practitioners assigned to
the expert estimation the same value they had assigned to
the AbM-1 estimation. This may have been a coincidence,
or they may not have felt confident to perform an estimation
based on their intuition.

Eleven out of fourteen practitioners obtained MRE less
than 0.25 via ExE. The estimation by AbM-1 had a MRE
median of 0.70 in a range result of [0.09-2.00] and that by
AbM-2s obtained 0.51 in a range of [0.06-1.37], which are
results similar to those obtained by the undergraduates.
Moreover, the subtle differences between the MRE medians
and the standard deviations of AbM-1 and AbM-2s may be
justified by the fact that AbM-1 is based on subjective
criteria, while AbM-2s is based on the concept of size. In
fact, the practitioners had worked in very different contexts,
which naturally affected their subjective comparisons.

Type Number Work

Expe-

rience

(Years)

Number

of people

familiar

with

COSMIC

Number of

User Stories

[<20,

20<US<100,

>100]

Work

experience

with

Database

Number of

people

familiar

with Ruby

Language

Number

of people

familiar

with

Agile

context

Experience in
the

technologies

Expe-
rience
in the

domain

Under

graduate

49

(14
groups)

[0-13]

Median:
3

No one <20: 44

20<US<100: 3
>100: 2

All of them

had
attended

the course

“Database”
and passed

the exam

No one Only 8 Low: 47

Average: 2
High: 0

Low: 43

Average
: 4

High: 2

Practi-
tioners

14 [4-36]
Median:

14

No one <20: 9
20<US<100: 3

>100: 2

Database
experience

measured

in years
[0-36]

Median:10

Only one Only 3 Low: 9
Average: 5

High: 0

Low: 11
Average

: 3

High: 0

245

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. EE OF THE TARGET PROJECT

Participants Number of

estimations

Id

Participants

ExE

HP

AbM-1 AbM-2s

Undergraduates 14

(made by

groups of 3-4

undergraduate

students)

1 161.00 110.00 57.00 -

2 61.00 74.70 57.00 48.75

3 34.00 76.30 60.00 75.00

4 65.00 69.72 48.00 -

5 207.00 84.12 48.00 -

6 85.00 106.13 55.00 63.17

7 173.00 90.21 66.00 52.03

8 68.00 102.84 57.00 52.50

9 79.00 101.15 57.00 56.79

10 56.00 101.44 51.00 51.40

11 51.00 72.00 57.00 72.00

12 32.00 130.15 57.00 39.60

13 105.00 108.93 99.00 73.83

 14 23 120.05 63 71.50

Practitioners 14 15 11.00 108.94 11.00 59.60

16 30.00 173.22 24.00 45.00

17 21.00 84.77 20.00 51.30

18 30.00 122.15 60.00 60.73

19 9.00 90.55 9.00 47.67

20 64.00 85.96 39.00 57.00

21 30.00 120.61 105.00 38.00

22 29.00 111.87 86.00 82.80

23 16.00 72.88 32.00 68.00

24 30.00 105.05 95.00 52.75

25 40.00 88.93 57.00 73.88

26 40.00 97.07 94.00 52.50

27 49.00 92.37 70.00 -

28 57.00 140.94 57.00 37.00

246

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE V. STATISTICAL FUNCTIONS OF RESIDUALS AND MRE

Participants

Statistical

Functions

Residuals MRE

 ExE HP AbM-1 AbM-2s ExE HP AbM-1 AbM-2s

Undergraduate

Mean
-50.71 -61.27 -24.43 -24.69 1.51 1.75 0.70 0.71

Median
-31.50 -66.30 -22.00 -21.79 0.90 1.89 0.63 0.62

Standard

deviation 56.40 18.80 12.43 12.03 1.55 0.54 0.36 0.34

Practitioners

Mean
2.43 -71.81 -19.21 -20.86 0.38 2.05 0.87 0.60

Median
5.00 -66.06 -22.00 -17.75 0.29 1.89 0.70 0.51

Standard

deviation 16.25 26.30 32.65 13.35 0.26 0.75 0.61 0.38

Fig. 3. Boxplots of the residuals of the target project.

Fig. 4 Boxplots of the MRE of the target project.

247

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

By using HP, the MRE dispersion was increased: [1.08-
3.85]. The MRE of the 14 practitioners had a median of 1.89
-similar to that of the undergraduate value-and a big
standard deviation of 0.75, which may have been caused by
the difference in productivity between P1 and P2.

2) Statistical significance
In order to test the hypotheses presented in Section III,

the Wilcoxon rank test, at a significance level of 0.05, was
used to analyze the statistical significance of our results.
This non-parametric test was selected because the
distributions of the variables were not normal. It was
applied to test the accuracy of ExE versus that of HP, AbM-
1 or AbM-2s, according to the results obtained by each
group (practitioners and undergraduate participants). The
MRE and the absolute residuals were used. Table VI shows
the p-value of each subset, when using the MRE. The results
obtained when using the absolute residuals are not shown
because they presented no significant difference. When
analyzing the MRE obtained by:

 the practitioners, when comparing ExE to HP, it was
possible to reject H0 in favor of H1.

 the practitioners, when comparing ExE to AbM-1,
once again, it was possible to reject H0 in favor of
H1.

 the practitioners, when comparing the ExE method to
AbM-2s, it was not possible to reject H0 in favor of
H1.

 the undergraduates, when comparing the ExE method
to HP, it was not possible to reject H0 in favor of H1.

 the undergraduates, when comparing the ExE method
to AbM-1 and AbM-2s, it was not possible to reject
H0 in favor of H1.

TABLE VI. STATISTICAL SIGNIFICANCE

Groups ExE vs: p-value

Undergraduate

HP 0.162

AbM-1 0.948

 AbM-2s 0.793

Practitioners

HP 0.000

AbM-1 0.022

 AbM-2s 0.083

The statistical significances obtained by the practitioners

using AbM-1 and AbM-2s are similar, but it was not
possible to reject H0 in favor of AbM-2s, although we did
reject it for AbM-1. The main reason is the differences in
the distributions between AbM-2s and AbM-1, as shown in
Figure 4. Besides, the calculation may have been affected by
the lower number of available instances.

It should be noticed that the EE values reported by the
three practitioners who presented the same values when
using ExE and AbM-1 were also included in the table.
However, later on, when the Wilcoxon rank test was run, we

only considered the values reported by the other eleven
practitioners, and the results did not vary.

Now we can answer the research question: When may
the accuracy of an expert estimation made in a context of
Agile software development be improved by using historical
data?

These results show that the expert estimation was not
improved by the use of historical data when the expert had
some work experience, and his level of experience in the
technologies used to develop the application together with
his level of experience in its domain were medium-low.

However, we have found out that historical data may
improve expert estimation when the estimator’s work
experience, his level of experience in the technologies used
to develop the application, and his level of experience in the
domain of the application to be developed is low.

1) Discussion
There are some aspects that have not been mentioned

yet, but we believe they are worth being discussed at this
point. One of them is the little experience in Agile
development contexts that the two groups had. We think
that this fact did not affect the results obtained because,
although the work experience of the undergraduate group
was limited, so was their experience in Agile contexts. On
the other hand, the fact that practitioners were experienced
in project management and estimations compensated for
their little experience in Agile contexts. Furthermore, as the
empirical study was designed to only use the first sprint of a
software product development, no estimations were made
for the rest of the sprints -which would be usually done
when using an Agile method- so their little experience in
Agile contexts had no impact on our study.

Another interesting aspect is that most of the effort
calculations proved to be underestimated, which may be
seen in Figure 3. This could be explained by the fact that
almost all the participants did not have previous experience
with the Ruby language.

One question that may arise is: how would the
participants be able to make meaningfully expert
estimations if they did not have any knowledge about the
developers? This condition was part of the scenario that we
were simulating; as stated in the introduction of this paper,
the team velocity would be unknown.

Figure 4 shows that the medians obtained by the two
groups when estimating with HP were similar, but their
standard deviations were not: the standard deviation of the
MRE for the undergraduate group was 0.54 and 0.75 for the
practitioners. The estimation was affected by the
subjectivity of the measurement which may be explained by
the differences between means and median, for the two
groups: a. undergraduate: mean: 62, median:62 and b.
practitioners: mean:56, median:53. In Table VII and VIII
the measurements made by each group of participants are
reported. It is important to note that the standard deviations
are quite similar: 12.25 and 11.97.

248

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VII. MEASUREMENTS MADE BY UNDERGRADUATES USING COSMIC

Id

User

Story

2 3 6 7 8 9 10 11 12 13 14

1 10 4 6 5 4 4 5 6 3 7 4

2 7 5 4 5 3 4 4 5 3 4 5

3 2 3 2 3 2 3 3 3 2 3 2

4 11 3 4 6 4 4 4 5 3 3 3

5 3 4 3 5 4 5 5 5 3 3 4

6 5 3 4 4 2 3 4 4 2 3 3

7 3 4 3 4 3 4 3 5 3 4 4

8 8 5 4 5 2 5 3 4 3 3 4

9 4 5 4 5 4 6 4 6 4 3 4

10 3 4 3 4 3 3 3 3 3 4 4

11 7 6 5 5 3 6 4 11 3 8 3

12 4 4 4 5 2 4 3 5 2 3 5

13 4 4 4 4 3 4 2 3 2 3 3

14 3 1 3 3 3 2 3 5 3 3 3

15 4 5 4 4 2 4 2 5 3 4 3

16 2 2 4 2 2 3 2 8 2 6 2

TABLE VIII. MEASUREMENTS MADE BY PRACTITIONERS USING COSMIC

Id

User
Story

14 15 16 17 18 19 20 21 22 23 24 25 26 28

1 4 3 8 3 3 2 8 4 4 3 4 4 3 2

2 5 3 1 3 3 2 4 4 3 2 4 4 4 3

3 2 3 2 3 3 2 4 3 3 3 3 3 3 3

4 3 2 2 2 4 2 5 5 5 3 6 3 5 4

5 4 4 4 5 3 5 6 5 5 2 5 4 3 5

6 3 2 2 2 3 2 7 5 4 2 5 2 4 4

7 4 3 3 3 3 3 5 3 4 2 3 3 3 2

8 4 4 4 2 3 2 7 5 4 2 5 3 5 4

9 4 3 2 4 6 3 4 5 5 3 5 4 5 4

10 4 3 2 3 3 3 3 4 4 3 4 3 4 3

11 3 3 2 3 3 3 9 3 6 3 3 8 3 3

12 5 4 2 2 3 3 4 4 4 2 4 4 4 4

13 3 3 3 3 3 3 5 4 5 3 4 3 3 3

14 3 3 3 3 3 3 3 3 5 3 3 3 3 3

15 3 2 3 3 3 3 6 5 4 2 4 2 5 4

16 2 3 3 3 4 3 4 2 4 3 2 3 2 2

249

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Some of the measurements (1, 4, 5, 27) are not reported
because they are not available.

Figure 4 shows that the MRE medians obtained when
the two groups used the AbM-1 method were similar but
their standard deviations of MRE were quite different. The
practitioners’ standard deviation was bigger than the
undergraduates’ standard deviation. This may be a
consequence of the variety of persons that made up the
practitioners’ group: when they had to select the “most
similar” user story, they applied their own criteria, based on
their different work experiences, which were definitely
subjective.

On the other hand, the undergraduates and practitioners
got similar distributions with AbM-2s. The reason may be
that the two groups used an objective measure of size:
COSMIC.

It was not surprising that the results obtained with HP
were clearly worse than those obtained with AbM. This was
expected, since HP is a method that estimates at application
level, while AbM estimates at user story level.

The estimation results obtained with the AbM and HP
methods would have been better if the historical data had
been obtained from a similar project –one developed using
Ruby on Rails-, but unfortunately, there was none available.
Besides, the fact that the user stories that were not
functional processes were discarded may have also
influenced the results. In addition, another interesting factor
that may have been considered is team size.

In our study, the empirical objects were two similar
applications, but what would have happened if they had not
been similar? Obviously, the results of the undergraduate
group would have been affected, as their best results were
obtained using AbM. The reason is that such method is
based on analogy, so if the degree of similarity between the
application from where the historical data was to be
obtained and that of the target application had been low, the
accuracy of the estimation would have been poor too.

Moreover, although we only used the estimates of the
first sprint of the target application this time, we believe the
estimates of the following sprints could be used in future
replications to evaluate if (and to what extent) expert
estimations improve while participants gain knowledge of
the projects (while AbM and HP are expected to yield
constant accuracy throughout the sprints).

Finally, we may wonder about the participants’
characteristics included in Table III and the reason why
other characteristics were not included. To begin with,
database experience is related to work experience, so it was
necessary to check it because the COSMIC measurement
would have been affected if experience in database had been
small. In fact, the experience in using COSMIC was defined
as a controlled variable. Moreover, the number of user
stories the participants had written/read was included
because it is related to their work experience in Agile
contexts: in fact, there was a correlation between the

number of user stories read/written and their experience in
Agile contexts, which proved the consistency of the
information. In addition, the level of experience with Rugby
language and the level of experience in the technologies to
be used had to be tested in order to verify if the participants
fit our empirical study. Furthermore, the impact of the level
of experience in the application domain was previously
analyzed by [31]. We think that these characteristics have
made the main differences between the two groups clear.

VI.THREATS TO VALIDITY

The difference in the background of the experimental
subjects is the major weakness of this empirical study.
However, this drawback may be transformed into a strength
if we consider that in this empirical study the experience of
the expert is stressed, showing that the accuracy of an expert
estimation depends on the estimator’s expertise, which is
measured by his work experience, his level of experience in
the technologies used to develop the experimental objects
and his level of experience in the domain of the
experimental objects.

The productivity rate of academic developments is
usually quite different from the one of professional settings.
This fact has obviously affected the results obtained, but as
it is reflected in the error values, it does not invalidate the
empirical study.

Another threat is that the expert estimations were made
in two different manners: either alone or in groups. The
practitioners worked alone and the undergraduate students
formed groups of three or four persons and used Planning
Poker to obtain the expert values. In spite of this difference,
we think that combining expert methods, that is, using
Planning Poker or not, did not introduce bias in this study,
in accordance with what was reported in [30].

Unfortunately, only a brief explanation about COSMIC
was given to the undergraduate students since there was not
enough time to give an extensive explanation (the whole
workshop was three hours long). Thus, the little available
time was devoted to those COSMIC characteristics that
were necessary for them to know in order to make a correct
measurement. However, this did not seem to be a serious
problem, as the concept of data movement was quite
intuitive for all the participants and the medians of the errors
shown in both Figure 3 and 4 for the HP method are similar.

Also, the use of examples and previous training in
Function Points made it easier for the participants to
understand how to use this measuring method. On the other
hand, the practitioners had been previously trained in
COSMIC, so they presented no difficulty. Besides, if
anybody had any doubts, the person who led the empirical
study gave them further explanations.

The order in which the estimations were performed may
have introduced bias in the result, so it would have been
more convenient if the participants had not performed the
estimations in the same order, except for ExE, which must
always be performed in the first place.

250

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

When building a historical database, the selection of an
application similar to the one to be estimated is clearly an
advantage in order to obtain a better estimation. In this
empirical study, we used as historical application one that
had not been developed in the same language the application
to be estimated had been. Obviously, this circumstance may
have enlarged the estimation error of the method that used
historical data. At the same time, as the context defined for
this empirical study was one in which the project domains
and the technological environments were new to the team,
we interpreted that the application used as historical was
well selected.

The accuracy of AE registered by the students that
developed P2 was controlled by two professors. In fact, the
students registered in a web application the user stories and
the tasks done, the EE and the AE of each user story and the
EE and AE of each task assigned to each user story. This
detailed registration facilitated the control for accuracy.

The experimental subjects were identified either as
undergraduates or practitioners. However, it may be argued
that more categories would have been necessary, as some of
the practitioners had more experience in the domain or in
the technologies than some others. Consequently, to obtain
more evidence of the benefit of using historical data, it is
necessary to have a bigger number of estimators, which
would allow us to identify different levels of expertise, for
example, three expertise levels for practitioners and three
for undergraduates.

To conclude, as the experimental objects used in the
empirical study came from only one particular environment
and the experts’ experience did not cover the big spectrum
of expertise that exists, general conclusions cannot be drawn
because there may be different estimation problems in
different environments and experts’ performances.

VII. CONCLUSION AND FUTURE WORK

This paper specifically focuses on an agile context in
which the project domain and the technological
environments are new to the estimators, the teams have
recently been created, and the team velocity is unknown. In
our study the estimations performed by two different groups
–undergraduate participants and practitioners- which first
used intuitive expert estimations (ExE) and then three
different estimation methods which use historical data (HP,
AbM-1 and AbM-2s) were compared in order to find out
whether there is any advantage in using historical data under
these circumstances.

We may conclude that historical data seems to be
valuable when the work experience, the level of experience
in the technologies to be used to develop an application, and
the level of experience in the domain of the application to be
developed are low.

Consequently, for estimators who have the restrictions
described above, and who have no option but to work with
them, we may suggest the following:

 Use intuitive expert estimations when your work
experience, your level of experience in the
technologies to be used to develop the application,
and your level of experience in the domain of the
application to be developed are not low.

 Use historical data when your work experience, your
level of experience in the technologies to be used to
develop the application, and your level of experience
in the domain of the application to be developed are
low.

As historical data is not frequently available [32], we
expect the results of this empirical study may motivate
novice developers to give importance to collecting such data
in their daily work.

In order to generalize this conclusion, a replication of
this empirical study is recommended, especially if different
software life cycle models [33], application domains, expert
profiles, and levels of performance are included. Also,
different estimation methods, such us linear regression may
be used. Finally, in order to enrich this empirical study, it
would also be convenient to compare an estimation
performed by an expert who has deep knowledge of this
domain, and also knows the team velocity, to the
estimations obtained by the participants of our study.

AKNOWLEDGMENTS

Our thanks to the Research Fund of Austral University,
which made this study possible, and to Luigi Lavazza for his
opportune comments.

REFERENCES

[1] G. Robiolo, S. Santos, and B. Rossi, “Expert estimation and historical
data: an empirical study,” in Proceedings of The Eighth International
Conference on Software Engineering Advances, ICSEA 2013,
October 2013, pp. 336-345.

[2] M. Jorgensen, “A review of studies on Expert estimation of software
development effort,” Journal on System and Software, vol. 70, no. 1-
2, 2004, pp. 37-60.

 [3] M. Jorgensen and M. Shepperd, “A systematic review of software
development cost estimation studies,” IEEE Transactions on Software
Engineering, vol. 33, no. 1, January 2007, pp. 3-53.

 [4] M. Cohn, Agile Estimating and Planning. Addison-Wesley, 2005.

 [5]O. Ktata and G. Lévesque, “Designing and implementing a
measurement program for Scrum teams: what do agile developers
really need and want?,” in Proceedings of the Third C* Conference on
Computer Science and Software Engineering (C3S2E '10), ACM,
2010, pp. 101-107.

[6] V. Mahnič and T. Hovelja, “On using planning poker for estimating
user stories,” J. Syst. Softw., vol. 85, no. 9, September 2012, pp.
2086-2095.

[7] S. Halstead, R. Ortiz, M. Córdova, and M. Seguí, “The impact of lack
in domain or technology experience on the accuracy of Expert effort
estimates in software projects,” in Proceedings of the 13th
international conference on Product-Focused Software Process
Improvement (PROFES'12), Springer-Verlag, 2012, pp. 248-259.

 [8] M. Jorgensen, and T. Halkjelsvik, “The effects of request formats on
judgment-based effort estimation,” Journal of Systems and Software,
vol. 83, no.1, 2010, pp. 29-36.

[9] M. Jorgensen and M. Gruschke, “The Impact of lessons-learned
sessions on effort estimation and uncertainty assessments,” Software

251

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Engineering, IEEE Transactions on, vol. 35, no. 3, 2009, pp. 368 -
383.

 [10] M. Jørgensen, U. Indahl, and D. Sjøberg, “Software effort estimation
by analogy and regression toward the mean,” Journal of Systems and
Software, vol. 68, no. 3, 2003, pp. 253-262.

 [11] T.J.Bang, “An Agile approach to requirement specification,” Agile
Processes in Software Engineering and Extreme Programming,
Springer Berlin Heidelberg, 2007, pp. 193-197.

[12] J. Choudhari and U. Suman, “Phase wise effort estimation for software
maintenance: an extended SMEEM model,” in Proceedings of the
CUBE International Information Technology Conference, ACM,
2012, pp. 397-402,

[13] N.C. Haugen, “An empirical study of using Planning Poker for user
story estimation,” Proceedings of AGILE 2006 Conference,
Computer Society, IEEE, 2006, 9 pp. – 34.

[14] J. Grenning, “Planning Poker or how to avoid analysis paralysis while
release planning,” 2002, doi: http://sewiki.iai.uni-
bonn.de/_media/teaching/labs/xp/2005a/doc.planningpoker-v1.pdf:
May, 2014.

[15] E. Miranda, “Improving Subjective estimates using paired
comparisons,” IEEE Software, vol. 18, no.1, 2001, pp. 87–91.

[16] T. Saaty, Multicriteria decision making: the Analytic Hierarchy
Process. RWS Publications, 1996.

[17] B. Boehm, Software Engineering Economics. Prentice Hall, 1981.

[18] A.J.C. Cowderoy and J.O. Jenkins, “Cost estimation by analogy as a
good management practice,” in Proc. Software Engineering 88,
Second IEE/BCS Conference, 1988, pp. 80-84,

[19] M. Shepperd and C. Schofield, “Estimating software project effort
using analogies,” IEEE Trans. on Software Eng., vol. 23, no. 11,
1997, pp. 736-743.

[20] G. Kadoda, M. Cartwright, L. Chen, and M. Shepperd, “Experiences
using Case-Based Reasoning to predict software project effort,”
Proceedings of the EASE conference keele, UK., 2000.

[21] COSMIC – Common Software Measurement International
Consortium, The COSMIC Functional Size Measurement Method -
version 3.0. Measurement Manual (The COSMIC Implementation
Guide for ISO/IEC 19761: 2003), 2007

[22] ISO, IEC19761:2011, Software Engineering -- COSMICFFP– A
Functional Size Measurement Method, ISO and IEC, 2011.

[23] J. Desharnais, L. Buglione, and B. Kocatürk, “Using the COSMIC
method to estimate Agile user stories,” in Proceedings of the 12th
International Conference on Product Focused Software Development
and Process Improvement, ACM, 2011, pp. 68-73.

[24] N. Juristo and A.M. Moreno, Basics of Software Engineering
Experimentation. Kluwer Academic Publishers, 2001.

[25] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A.
Wesslen, Experimentation in Software Engineering: an Introduction.
Kluwer Academic Publisher, 2000.

 [26] A. Jedlitschka, M. Ciolkowoski, and D. Pfahl, “Reporting
experiments in Software Engineering,” in Guide to Advanced
Empirical Software Engineering, Section II, 2008, pp. 201-228.

[27] Ruby on Rails, doi: http://rubyonrails.org/: May, 2014.

[28] Scrumy, doi: http://www.scrumy.com: May, 2014.

[29] K. Bittener and I. Spence, Use case Modeling. Addison Wesley, 2003.

 [30] K. Molokken-Ostvold, N.C. Haugen, and H.C. Benestad, “Using
planning poker for combining Expert estimates in software projects,”
Journal of Systems and Software, vol.81, no.12, 2008, pp. 2106-2117.

 [31] M. Jorgensen, “Selection of strategies in judgment-based effort
estimation,” Journal of Systems and Software, vol. 83, no. 6, 2010,
pp.1039-1050.

[32] C. Mair , M. Shepperd, and M. Jørgensen, "An analysis of data sets
used to train and validate cost prediction systems," ACM SIGSOFT
Software Engineering Notes, ACM, vol. 30, no. 4, 2005, pp.1-6.

 [33] A. M Davis, E. H. Bersoff and E. R. Comer, “A strategy for
comparing alternative software development life cycle models”,
Software Engineering, IEEE Transactions on, vol. 14, no.10, 1988,
pp. 1453 – 1461.

252

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Ontology-Driven Personalization Approach for Data Warehouse Exploitation

Lama El Sarraj
LSIS UMR 7296

Aix-Marseille University

Marseille, France

lama.elsarraj@lsis.org

Bernard Espinasse

LSIS UMR 7296

Aix-Marseille University

Marseille, France

bernard.espinasse@lsis.org

Thérèse Libourel
Espace-Dev UMR 228

Montpellier 2 University

Montpellier, France

therese.libourel@univ-montp2.fr

Abstract— Data Warehouses (DW) resources are shared by

users’ from different backgrounds (e.g., domain, culture,

education, profession). Those resources (e.g., OLAP queries,

Excel files) are interpreted differently from a user to

another. Unfortunately, misinterpreting data could induce

serious problems and conflicts. To guarantee relevant

interpretation of resources, additional semantic description

of resources concepts is necessary. In this context, we

present an Ontology-driven Personalization System (OPS)

based on three connected ontologies: domain ontology, DW

ontology and resources ontology. OPS return a set of

personalized resources search based on users’ domain and

his recurring interests. In addition, resources are enhanced

with a semantic description provided by the ontologies. This

paper focuses on the methodology used to develop connected

ontologies used by OPS.

Keywords-data warehouse, ontology, personalization,

decision support systems, decision making, healthcare

institution management.

I. INTRODUCTION

Decision Support Systems (DSS) enables users to

analyze and synthesize data according to different

perspectives. Big companies need efficient DSS and seek

to expand the number of their users. In fact, companies

need to have flexible decision tools that include users’

requirements and resources (e.g., Excel files, graphs,

tables). Resources are shared by users’ from different

backgrounds (e.g., domain, culture, education,

profession). Thus, resources interpretation depends on

user backgrounds. We proposed in El Sarraj et al. [1] to

use an ontology-driven personalization approach to

facilitate the exploitation of Data Warehouse (DW)

resources.

Generally a DSS uses a collection of Business

Intelligence (BI) tools and applications to analyze, query

and visualize a big volume of data from heterogeneous

sources and domains stored in a DW. DW is the core of

most DSS, it is “a subject oriented, nonvolatile,

integrated, time variant collection of data in support of

management's decisions” [2]. DW uses a

multidimensional model that represents facts and their

measurements, related to different dimensions, which are

the axes of analysis. To facilitate the task of DW analysis

and treatment, a subset of the DW is created, called Data

Mart (DM). A DM is oriented to a specific business need

or a particular user requirement. Most of the times, data

mart are organized in a multidimensional structure [3].

Data are represented as a point in a multidimensional

space, visualized like a data cube [4]. They give users the

possibility to synthetize and analyze data from three (or

more) dimensional arrays of values and various

granularity levels. Based on this multidimensional model

On Line Analytical Processing (OLAP) cubes enable the

manipulation of data provided by the DW. In this paper,

only the multidimensional table resource is considered.

In the DW field, taking user requirements into account

is crucial for the success or the failure of the DW [5],

especially when users belong to different domains. The

exploitation level of DW, as well as the preliminary

conception level, is mainly based and adapted to user

requirements [6]. Most research works devoted on DW

focuses on the design approach [7], [8], [9]. Even if these

approaches are successful at the conceptual level

knowledge about the DW resources is still needed. It is

important that users understand the semantic of the

information they analyze and have a visibility about other

resources that could help them make efficient analysis.

Ontologies have already proved their utility to resolve

semantic problems in DW domain. Ontologies are widely

used in the DSS domain. First, they were used for DW

design to facilitate the integration of data from

heterogeneous sources. Indeed, DW are considered as

data integration systems [10]. Then, researchers in this

domain have widely used ontologies in different phases of

the DSS, at the conceptual level [11], [12], at the Extract-

Transform-Load (ETL) level [13], OLAP cube model [14]

and OLAP queries [15].

The goal of this work is to develop an ontology-driven

system for DW personalization to support users of various

profiles to efficiently exploit a DW using existing DW

resources. This paper focuses on the knowledge base

component of such a personalization system. This

knowledge base is composed of three ontologies: the first

one is the domain ontology, the second one presents the

schema of an existing DW, and the last one describes

existing DW resources of a related DW.

This research concerns an existing DW used in the

context of the “Program of Medicalization of Information

Systems (PMSI)” to analyze healthcare institutions

253

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

activity. The PMSI is part of the reform of the French

health system. The PMSI is a device that enables

quantifying and standardizing the data about the

healthcare institutions activity. PMSI data are used to

finance healthcare institutions according to their activity.

This research has been financed by the public hospitals of

Marseilles - Assistance Publique des Hôpitaux de

Marseille (APHM).

The paper is organized as follows. Section II presents

related works about DW personalization and introduces

some elements about ontologies. Section III presents the

problematic. First, it introduces the context of this

research with a case study from healthcare domain. Then,

it presents the aim of this research. Section IV presents

the general architecture of the “ontology-driven

personalization system” and the uses-cases supported by

this system. Section V presents the methodology used to

develop the knowledge base of the personalization

system. Also, it presents in details the knowledge base

component, the type of knowledge concerned, the models

in UML and OWL of the three ontologies: Domain

Ontology (OD), Data Warehouse ontology (ODW) and

existing resources ontology (OR). Section VI presents the

mapping between knowledge base ontologies. Finally, we

conclude and present some perspectives to this work.

II. RELATED WORK

This section presents different researches related to

DW personalization approaches, which are mainly based

on users’ profiles and recommendation techniques. This

section also introduces some elements related to

ontologies and their use in software development.

A. DW personalization based on user profiles

Researches works, based on user profiles, are usually

associated to the "personalization" of DWs. After

introducing and defining the concept of personalization in

the context of DW, we present various existing

approaches related to DW personalization. Then we

compare and evaluate their relevance to our problem with

the use of a DW.

Personalization is a customized and individualized

description of a user or a group of users. Personalization

system relies on users’ need, preferences and

characteristics [16], and usually on a defined users

profiles [17]. Although no consensus exists for the

definition of a user profile, but a profile generally

includes a set of features that is used to configure or adapt

the system to the user. Thereby, the system provides

personalized and efficient results [18] adapted to a user

profile.

The authors in [19] developed a state of the art about

user modeling based on system requirements. Other

researches configure or adapt the personalization system

to users’ preferences defined in their profiles [20], [6],

[21]. These preferences may be related to their contexts

defining application frameworks, as proposed in some

researches in the DW domain [21], [22].

Bentayeb et al. [23], characterize the personalization

of a DW based on user's profile from two perspectives,

the definition of users profiles, which can be explicit or

implicit, and the exploitation of these profiles to

personalize the DW treatments:

 Explicit implication of the user at the profile
definition level mainly needs to set parameters
related to the recommendation process.

 Implicit implication of the user creates
automatically a group of users profile based on a
learning method and leads to an automatic
transformation of the system.

The explicit definition is related to the configuration

(customization, user modeling) and the implicit definition

is related to adaptation (user profiling). In both cases, the

profile may be operated by recommendation or by

transformation, with automatic processes.

Jerbi et al. [24] distinguish three main objectives from

DW personalization researches:

 Customizing data sources schema [22], [23],
adapting the data structures to a specific needs of
users.

 Customizing queries visualization [20], or
representation [6], [21], [25].

 Recommendation of OLAP queries [26], [27] to
assist in the exploration of the DW.

The first two objectives seem to affect data-centric

personalization, in the first case by customizing the

schema and in the second case by representing

customized queries results. The third objective concerns

the recommendation of a new method to treat data,

queries.

B. DW personalization by recommendation or

transformation

The personalization of the DW by recommendation is

treated by various works such as [23], [26], [27], [28],

[29], [30], [31], [32]. In these works we can distinguish

two categories of recommendation methods: methods

based on the content and methods based on collaborative

filtering. The methods based on contents recommend

similar objects. This recommendation is based on

previous user actions while the methods based on

collaborative filtering recommends items based on the

interest and similar user.

The personalization of the DW by transformation, is

mentioned by the authors in [20] that treats personalized

visualization of OLAP queries. The authors in [33]

propose a solution to evolve the DW schema according to

user requirements. This method is based on “if-then”

rules. The research work in [34] propose a solution to

expand the DW architecture with event/condition/action

rules. Finally, the authors in [21] propose customized

254

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

OLAP tables, based on users preferences and on analysis

context.

To the best of our knowledge, no research uses

ontologies to facilitate the exploitation of a DW.

However, in our approach, we propose an ontology-

driven personalization approach to facilitate the DW

exploitation. The aim of our research is presented in

details in Section III.

C. Ontologies

Ontologies have been used in the domain of

knowledge engineering to facilitate requirements

expression and detect incoherencies and semantic

ambiguities between users [35]. Description Logic (DL) is

a formalism used to build ontologies [36]. In this section,

we define and propose a formalization based on DL for

ontologies.
The first goal in the expected ontology is to provide

resources to achieve automatic process, whether for
machines interaction and interoperation with each other or
with humans. Ontologies are used in several domains to
resolve syntactic and semantic heterogeneity problems. In
the software engineering field, ontology had been used
first in the field of artificial intelligence systems and
knowledge base systems, and then adapted to the problems
of information retrieval. The use of ontologies in software
engineering adds a wealth of knowledge to the systems.

Ontologies design requires the establishment of
processes to extract the knowledge connected to a domain
and make it suitable for both information systems and
humans. In this context, several definitions of ontologies
have been proposed in the field of software engineering.
Gruber [37] defines ontology as a specification of a
conceptualization “[...] A conceptualization is an abstract,
simplified view of the world that we want to represent”.
This definition was extended by [38], which focuses on the
formal characteristic of an ontology.

In our work, we consider the definition proposed by
Jean et al. [39] a definition that characterizes an ontology
as a referencing formal representation and consensus of all
shared concepts. In this definition, the most important
terms are:

 Formal: the ontology is interpretable by
machines.

 Explicit: all concepts and properties of ontology
are explicitly specified independently of any
particular point of view or implicit context.

 Referenceable: any concepts described in the
ontology can be referenced in a unique way from
any context, in order to clarify the semantics of
the referenced item.

 Consensual: the ontology is recognized and
accepted by all the members of a community.

D. Formalization of the ontology

There’s different existing languages to define

ontologies. Ontology Web Language (OWL) is the

standard language for representing ontologies [40], [41].

W3C consortium recommends OWL to define ontologies.

The OMG [41] define the OWL meta-model.

DL language present the formalism underlying OWL

language [36]. In DL, structured knowledge is described

using concepts and roles. Concepts represent sets of

individuals, and roles represent binary relationships

between individuals.

A knowledge base described with DL is composed of

two components: the Terminological Box (TBox), and the

Assertion Box (ABox). The TBox specifies the intentional

knowledge of the modeled domain.

In general, terminological axioms have the form of

inclusions (C ⊑ D) or equivalence (C ≡ D) such as (C, D

denote concepts or roles).

Based on this definition, the ontology is formalized as

5-uplet [42] as follows:

O: <C, P, ClassPropt, ClassAssoc, Formal> such as:

 C represents the classes of the ontological model.

 P represents the properties of the ontological

model, and P is partitioned into:

 Pvalue: represents the characteristics

properties.

 Pfct: represents domain dependent properties.

 ClassPropt: C 2P relates each class to its

property.

 ClassAssoc: C (Opr, Expr (C)) is an

expression that associate to each class an

operator (inclusion or exclusion) and an

expression to other classes.

 Formal: is the formalism followed by the

ontology model (e.g., RDF, OWL).

To facilitate the creation and the visualization of

ontologies there are OWL ontology editors, such as

Protégé [43] that manipulates ontologies (e.g., edit, load,

define taxonomies). Protégé provides a detailed view for

each concept in ontology. There are also visualization

tools of ontologies, the most common ones are IsaViz

[42], OWLViz [10], Growl [44], Welkin [39].

UML is a standard used to model information systems

and software engineering. UML is a semi-formal

formalism. UML is a graphical language for visualizing,

specifying and building tool components. UML provides

different diagrams (e.g., class diagrams). However, UML

is not suitable to represent complex reasoning and

inferences [46]. One of the major advantages of UML is

that it is widely used in the academic environment and

even by non-professionals. UML notations facilitate the

knowledge visualization, especially of ontologies. Most

informatics designers use UML to describe their diagram.

Several studies propose to model ontologies with

UML [45], [46], [47], [48]. There are many

commonalities between the formal languages of

ontologies and UML. A comparison UML/OWL is

studied [46], but the only drawback is the lack of

semantics in UML. For those reasons, we can consider

255

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

UML as an adequate formal model for the representation

of ontologies.

The process to create an ontology can be

accomplished by: (i) modeling the ontology with UML to

have a consensus between different users’ experts, (ii)

transforming UML model into an OWL model, to reason

on the ontology.

E. Conclusion

Even if the personalization of DW is a recent field of

research, various studies propose methods to treat this

problem. In their study, the authors in [24] compare

different works of DW personalization domain, they take

in consideration three main aspects: (i) personalization

objectives, customized schema or queries (the result or

the visualization), (ii) user model type, that has been

selected to define the user (rules, scores, preferences,

annotations) and his contextualization, (iii) the algorithms

implemented for DW personalization. These approaches

do not seem totally adapted to our problematic. Indeed,

the specificities of data exploited by a big number of

users’ from different backgrounds, require additional

semantic to describe resources provided by DWs. We

present in the next section the context and the aim of this

work.

III. PROBLEMATIC

This section presents the context of our research

introduced by a case study presenting a DW schema.

Then we present the aim of our research.

A. Context

The application context of our research concerns the

healthcare management applied specifically in the

Program of Medicalization of Information Systems

(PMSI) supported by the French government. In fact,

PMSI is a French adoption of the concept created by the

Professor R. Fetter (Yale university, United States of

America) to finance hospitals. PMSI specifies the cost of

sojourn based on the Diagnosis Related Groups (DRG)

that classifies the hospitalization in homogeneous and

coherent medico-economic groups. Today, this

classification technique is used in France to finance

healthcare institutions according to their activity.

To analyze PMSI data, specific DSS have been

developed. DSS is mainly dependent on DW, and is used

by different profiles of users. We identified two types of

users profiles, the first type is related to a medical domain

(e.g., doctors, pharmacists, biologists), while the second

one does not (e.g., financial affaire managers, computer

scientists, human resources).

In this context, in order to illustrate our problematic

we consider the DW star schema presented in Fig. 1. This

DW contains data concerning “PMSI activity”. This DW

schema is composed of a fact table, dimensions, and

measures:

 Fact table = {F_Activity}

 Dimensions = {D_Time, D_Hospital_Structure,
D_International_Classification_Of_Diseases,
D_Exit_Mode, D_Diagnosis_Related_Groups
D_Age}

 Measures = {Number of patient, Number of beds}
Note that a pole of activity dimension “Pole” is a set of
medical services units. A hospital structure dimension
“D_Hospital_Structure” is a set of “Poles”.

Figure 1: PMSI activity, DW Schema.

In this paper, we take the example of a

Multidimensional Table (MT) (MT is defined in Section

V.B) is denoted MT = (M, D), where M is the set of

measure and D is the set of dimensions. We take an

example of a multidimensional pivot table, presented in

Fig. 2. For confidentiality issues this table is presented

with fictive data:

 D1 = D_Hospital_Structure (dimension level
“Pôle”).

 D2 = D_Diagnosis_Related_Groups (attributes:
DRG, TYPE DRG TITLE).

 M1 = number of patients (calculated measures:
total of M1 per “Diagnosis Related Groups”, total
of M1 per pole, total of M1 for all Diagnosis
Related Groups (i.e., DRG) and poles.

Figure 2: Example of a MT.

The DW presented in Fig. 1, offers several indicators

to respond to users’ needs (users from different profiles).

In the context of the PMSI, we consider the following

indicators:

256

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) Offer indicators: these indicators present the resources

according to different dimension levels of a structure

“structure”, for instance:

 The beds number of type “Medicine-Surgery-
Obstetrics” to indicate the capacity to receive
patients.

 The main specialties by pole, to identify the
types of diseases the hospital is able to treat.

2) Needs and patient flow indicator (care consumption):

these indicators are mainly based either on the patient

age or exit mode, for instance:

 Describes the sojourn, analyze sojourns
according to the group of diseases.

 The main specialties of a pole.

 Identify the population susceptible to be
treated.

3) Patient flow indicators: these indicators presents the

cause of the hospitalization and patient destination:

 Where do the mothers come from?

 What is the destination of the mother after the
childbirth?

Various resources have been developed, to compute

indicators from data, to analyze, visualize and aggregate

data, elaborate dashboards and so forth. These existing

exploitation resources are often numerous and of different

type: formulas, OLAP requests, excel tables, and so on.

B. Aim of our research

Users have different profiles. In our context, for

example, they belong either to the medical domain or to

other domains. DW resources are numerous and complex,

it is not easy for users from different domains to find

relevant resources. In addition, existing resources do not

have the same significance for these users from different

profiles. In this context, we noticed many difficulties. We

identify a semantic lack related to DW concepts:

dimensions definition, measurements calculation methods

and resources sources. Because of this semantic lack, the

users cannot understand the usage of the DW resources

that may respond to their needs. On the other hand, there

is vocabulary heterogeneity in query expression: users do

not belong to the same domain. They do not have the

same vocabulary background. They do not express their

need with the same terms (e.g., number of sojourn could

be expressed as number of venue). Finally, concerning

analysis needs, most of the time, users need to analyze

many resources to make a decision. In big institutions,

like the APHM, big numbers of resources make this task

complicated. Thus, users need to have a global vision

about resources responding to his requirements (e.g.,

calculation date, sources, criteria considered to calculate

an indicator).

Consequently, to find, understand and choose relevant

resources is a difficult task for users. Our challenge is to

support users from heterogeneous domains in the

exploitation of the existing resources. To this purpose, we

propose to develop a personalization system supporting

the users to exploit DW resources. We should note that

our proposal is not limited to the healthcare domain. It

can be used in other business contexts where users are

from heterogeneous domains. In general, this is the case

in big institutions.

The Ontology-driven Personalization System (OPS) is

dedicated to support users from heterogeneous domains to

exploit existing DW resources. This support is based on a

knowledge base describing the domain (in this paper, we

consider PMSI domain), the DW schema and the

resources description. The following section presents the

architecture of OPS and three scenarios of user support

possibilities.

IV. AN ONTOLOGY-DRIVEN APPROACH FOR DW

PERSONALIZATION

The OPS supports users from heterogeneous domains

to exploit existing DW resources. This support is based on

a knowledge base that takes in consideration user domain,

the DW schema and resources description. In order to

provide such a personalization system, we developed an

ontology-driven approach. In this section, we present first

the general architecture of our ontology-driven

personalization system, and then we present some uses-

cases supported by OPS system.

A. General architecture

The general architecture of our OPS is illustrated in

Fig. 3. OPS take in consideration information’s collected

from different DW construction levels. For example, at

the conceptual level stores the DW schema.

Figure 3: Ontology-driven Personalization System Architecture.

Cube 2

Internal

Data

External

Data

DW

DM1

DM2

DM3

Cube 1

OLAP
Queries

ETL ETL

Operational
Data Sources

Data Warehouse

Data Marts

Exploitation
Resources

Excel files

Specific
programs

Various users

Resources
Ontology

Domain
Ontology

DW
Ontology

Personali
-zation
Engine

Needs

Explaination
Recommandation

Ontology-driven Personalization System (OPS)

257

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The two main components of our OPS are:

 Knowledge base: is an OWL database based on
three related ontologies described in order:
Domain (Hospital management - PMSI), DW
schema (conceptual model), and existing DW
resources.

 Personalization Engine (PE): is the sub-system
that personalizes users’ interactions; the user
expresses his needs to the OPS and the system
provides semantic explanations or DW resources
recommendations. This issue is based on the
reasoning of the three ontologies.

B. Use cases of the Ontology-driven

Personalization System

Several scenarios of user support functionality of OPS

have been defined to develop and test the OPS. Each

scenario corresponds to a user need expressed by a

request addressed to the OPS (input). The OPS responds

to the user with an explanation or a recommendation

(output) depending on the nature of the expressed need.

Examples of use-cases or expressed needs include:

1) Use-case 1:

Entry: DW concept.

Output:

 Domain concepts - What are the existing measures
to analyze a domain concept?

 DW schema concepts - What is the DW related
concepts, measures: What are the different
measures related to an analysis axe? What are the
different analysis axes related to a measure? What
are the measures that could be analyzed over a
dimension?

 Resources concept - What are the existing
resources to analyze a measure?

2) Use-case 2:

Entry: Resources concept.

Output:

 DW schema concepts - What is the DW that
provides a resource?

 Domain concepts - What are the existing resources
to analyze a domain concept?

 Resources concept - What are the existing
resources to analyze a measure?

3) Use-case 3:

Entry: Domain concept.

Output:

 Domain concepts - What are the related domain
concepts?

 DW schema – What are the domain concepts
related to DW concepts?

 Resources concept - What are the resources related
to a domain concept?

These use-cases are treated in the OPS by the PE

reasoning on one or more ontologies. Fig. 4 illustrates the

connection between ontologies and the users.

Resources
Ontology

Domain
Ontology

DW
Ontology

Define
and use

Heterogeneous end users
exploiting the DW

DW Managers

Knowledge Base

Define

ODW

OR

OD

Figure 4: On the use of ontologies.

We distinguish two types of users:

 The DW manager user: he is in charge of the DW
management and exploitation. He is mainly
interested about the ODW and the operational
resources of the OR.

 The end-users: they are heterogeneous; they
search for resources that respond to their need.
They expect resources and recommendations from
the OPS to exploit the DW. These end-users
express their needs using concepts belonging to
the OD and the conceptual resources, part of the
OR.

In this paper, we focus on the methodology used to

develop the knowledge base composed of three

ontologies: OD, ODW and OR.

V. KNOWLEDGE BASE COMPONENTS

This section presents the Knowledge base of our OPS.

This knowledge base is composed of three ontologies: OD,

ODW and OR. We present each of these three ontologies,

the knowledge concerned, the methodology used to

develop it and the models obtained in UML or in OWL.

To elaborate these ontologies, we use the ontology

editor OWLGrEd. OWLGrEd uses a textual syntax OWL

Manchester to create, edit and view an ontology [51].

OWLGrEd provides a comprehensive overview of OWL

ontology with UML. OWLGrEd visualizes OWL classes

as UML classes, data properties as attributes of classes,

object properties as associations, individuals as objects

and cardinality restrictions, associations between domain

classes as UML cardinalities. To visualize other

constructors of OWL, OWLGrEd enriched the UML class

diagram with new notations [50], [51].

A. Domain ontology (OD)

This sub-section present the description, the

elaboration method and some exploitation results of the

OD.

1) Description:

The OD gathers and streamlines the vocabulary related

to a domain. Domain concepts are semantically related

and defined in the ontology.

2) Elaboration methodology:

There are two solutions to obtain OD. We can extract a

part of existing OD or create a new one manually. In the

258

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

first case, the ontology can be extracted from the existing

ontology using ProSé plugin available with Protégé

editor, it ensures the completeness of the extracted

ontology [52]. As no OD exists concerning “PMSI

domain” we develop a new one.

To develop this OD we decided to use UML, because

this language is more user friendly for domain experts,

and makes the validation process of the ontology easier.

The methodology used to elaborate this ontology is

illustrated in Fig. 5.

UML
Domain

Ontology
Domain Experts

Validation

OWL
Domain
Ontology

OWLGred

Figure 5: Domain Ontology Development.

Fig. 6 presents the OD schema with UML. This

schema is inspired from the model studied and presented

in [53].

Figure 6: OD schema presented with OWLGred.

This model is enriched and validated by domain

experts. This ontology is presented here with the

OWLGred tool.

3) Results:

The schema in Fig. 6 is used to validate the OD with

domain experts. Then, the UML schema is exported to

OWL via the OWLGred tool. The OD in OWL is

visualized with Protégé in Fig. 7.

Figure 7: OD presented with Protégé/OntoGraf.

This OD is connected to other ontologies with semantic

relations. OD describes existing domains. OPS gives the

possibility to visualize ontology concepts and relations

between them, either they belong to the same ontology or

not.

B. DW ontology (ODW)

This sub-section present the description, the

elaboration method and some exploitation results of the

ODW.

1) Description:

Multidimensional model associated to the DW organizes

data into facts and dimension. The ODW concerns the DW

conceptual schema. Facts represent the subject of analysis

and dimensions represent the axes of analysis. Fact table

is the center of the multidimensional model. It stores

elementary indicators, called measures. Dimensions can

form hierarchies, structured in different granularity levels.

2) Elaboration methodology:

To construct the ODW we use a specific process. The

first step of the process starts with the creation/extraction

of the ROLAP structure of the DW (metabase) based on

the SQL script of the relational data base of the DW. Then

we annotate the tables with the multidimensional concepts

(e.g., fact, dimension).

The atomization of this transformation from the

conceptual model of the DW (the script SQL of the create

table) to OWL is based on the research work of Prat et al.

[54], Fig. 8 presents the ODW development process. The

research work of Prat et al. [54] defines a

multidimensional meta-model, the concepts of OWL-DL,

and transformation rules for mapping a multidimensional

model into OWL-DL ontology.

Figure 8: ODW development process.

259

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To generate the ODW in OWL, the transformation rules

proposed by Prat et al. [54] are adapted to our

problematic. To validate and extend the model with DW

manager the ontology is presented in UML. OWLGred

tool translate the ontology from OWL script to UML.

This process is illustrated in Fig. 8.

3) Results:

For the transformation of the ODW from OWL intto

UML we used OWLGred tool. Let’s take the example of

the DW schema Fig. 1, in the ODW the dimension:

D_Time is presented as a concept A_Time_Dimension.

This concept have different dimension level Day, week,

month and year. Those concept are presented with

OWLGred (Fig. 9).

Figure 9: Dimension “D_Time” schema presented with OWLGred.

After the transformation of concepts from UML to

OWL, OD are visualized with Prtoégé/OntoGraf in Fig.

10.

Figure 10: Dimension “D_Time’ presented with Protégé/OntoGraf.

The ODW is connected to other ontologies with

semantic relations. This ontology presents the DW

structure. It is mainly used by the DW manager.

C. Resources Ontology (OR)

This sub-section present the description, the

elaboration method and some exploitation results of the

OR.

1) Description:

Even if the multidimensional model is based on the

metaphor of the cube or hypercube, the most common

structure of the visualization is the MT presented in Fig.

2, which provides data presented in two axes of analysis

[55], [3] enabling the visualization of a slice of the cube.

Note that, other visualization possibilities exist to present

the DW data (e.g., histograms, graphs).

Resources are related to the DW and are defined by

the DW managers. To understand a resources components

a user needs to have description information (e.g.,

calculation method, unit of measure, calculation period,

date of creation, date of update, date of validity, objective,

definition and the relation with the DW). We identified

two types of DW resources:

 Operational resources: they concern the direct
exploitation of DW, the resources requires an
execution before being used for analysis (e.g.,
OLAP queries). They are used by the DW
manager.

 Conceptual resources: they are user-oriented, they
are resources used by the end-users (e.g., Excel
files).

2) Elaboration methodology:

To develop OR, as for OD, we use UML for the same

reasons. The conceptual resources (user-oriented

resources) are validated by domain experts/users, and the

DW managers validate the operational resources. The

methodology used to elaborate this ontology is illustrated

in Fig. 11.

UML
Resources
Ontology

DW Managers
Validation OWL

Resources
Ontology

OWLGred

Domain Experts
Validation

Operational
Ressources

Conceptual
Ressources

Figure 11: OD development process.

Once the OR expressed in UML class diagram, is

validated with domain experts, it is transformed it into

OWL with OWLGred tool (Fig. 12).

260

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12: Extract of OR schema, presented with OWLGRED.

3) Results:

The ontology OR in OWL is visualized with Protégé

tool in Fig. 13.

Figure 13: OR presented with Protégé/OntoGraf .

This OR is connected to other ontologies with

semantic relations. This ontology enhances resources with

descriptions. This ontology is mainly used by end-users.

VI. MAPPING ONTOLOGIES

The knowledge base of OPS is composed of three

ontologies: OD, ODW and OR. We formalize our ontology

by the quadruple < ODW, OR, OD, Map> where:

 OD is the OD that provides a schema about the domain.

 ODW is a DW schema that describes DW schema.

 OR is a resources ontology that describes the resources
related to the DW.

 Map is the mapping between ODW, OR and OD that
establishes the connection between domain concepts,
the DW and the resources components.
These mapped ontologies can be used for many

purposes with OPS. On the one hand, to give a vision

about the relation between DW resources and domain

concepts, and on the other hand, to propose to users other

related resources to make analysis based on reasoning

technologies.

In this section, we focus on the mapping of these

ontologies permitting this reasoning. We describe the

mapping process. Then, we define the mappings between

the three ontologies.

A. On the Mapping process

Considering two ontologies OS and OT, a mapping M

between OS and OT, is a (declarative) specification of the

semantic overlap between OS and OT at the concept level

(Tbox). This mapping can be one-way (injective) or two-

way (bijective). In an injective mapping, we specify how

to express terms in OS using terms from OT in a way that

is not easily invertible. A bijective mapping works both

ways, i.e., a term in OT is expressed using terms of OS and

the other way around. In ontology engineering, the

following processes are pre-defined [56]:

1) Ontology Merging concerns creation of one new

ontology from two or more ontologies. In this case,

the new ontology unifies and replaces the original

ontologies. This often requires considerable

adaptation and extension of the ontology.

2) Ontology Aligning brings the ontologies into mutual

agreement. The ontologies are kept separate, but at

least one of the original ontologies is adapted, such

as the conceptualization and the vocabulary match in

overlapping parts of ontologies.

3) Ontology Mapping (or relating ontology) specifies

how the concepts in different ontologies are related in

a logical sense. This means that the original

ontologies had not changed, but that additional

axioms describe the connection between the

concepts. Leaving the original ontologies unchanged

often implies only a part of the integration, because

major differences may require adaptation of the

ontologies.

As each of these ontologies can evolve, we do not

choose the merging strategy to limit the impact of

evolution changes. We prefer to keep three separate

ontologies to limit the changes only to the connection

(mapping) between them if necessary. Consequently, in

our case, we have opt for Ontology Aligning or Ontology

Mapping processes as defined before.

B. Concerned mappings

In our case, we considered three different mappings

connecting these three ontologies two by two, depending

on the connection between users and ontologies (Fig. 14).

261

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ODW

Resources
Ontology

Domain
Ontology

DW
Ontology

Define
and use

Heterogeneous end users
exploiting the DW

DW Managers

Define

Mapping 2 Mapping 3

Mapping 1

Conceptual
Resources

Operational
Resources

OD

OR

Figure 14: Different mappings between the three ontologies.

Mapping the three ontologies is necessary to facilitate

the navigation between them. The Mapping 1 supports the

connection between ODW and OD, Mapping 2 supports the

connection between ODW and the operational resources of

the OR, and, finally, Mapping 3 supports the connection

between OD and the conceptual DW resources of the OR.

Ontology Aligning or Mapping processes related to

these three mappings concerns: first searching similarities

between ontologies, and then specifying mappings

between ontologies. In our case, these two tasks are

performed in a manual manner using Protégé.

1) Mapping 1: ODW – OD

This mapping is the first mapping to consider, because

it is closely related to the DW design: a concept of the

ODW can be related to one or more concept(s) of the OD,

and one concept of the OD can be related to one or more

concept(s) of the ODW.

2) Mapping 2: ODW – OR

This mapping can be considered as an extension of the

ODW towards operational resources of OR: a concept of

operational resource can be related to one or more

concept(s) of ODW (e.g., OLAP Query concept can be

related to fact and dimension concepts). On the other side,

a concept of the DW schema can be related to one or

more concepts(s) of operational resources. For example, a

measure can be implied in OLAP Query and Excel file.

The ODW concepts and OR concepts concerned by this

mapping are the lower classes of the respective ontology.

3) Mapping 3: OD – OR

Mapping 3 is deduced. The relation between OD and

OR is identified through a process of deduction based on

the transitive relation between OD and ODW. We present in

Table I an example with OWL-DL.

TABLE I. CONCEPTS AND INFERRED CONCEPTS WITH OWL-DL.

Ontology Concept

ODW A_Hospital_Structure_Dimension ⊆ A_Dimension

OD Structure

OR Resources1

ODW - OD A_Hospital_Structure_Dimension ≡Structure

ODW - OR Resources1ToDimension_Structure

T ⊆ ∀Resources1ToDimension_Structure.Structure

T ⊆

∀Resources1ToDimension_Structure−.Resources1

This example presents the ontologies and their

concepts “ODW concepts”, “OD concept”, “ODW and OD

related concepts”, “OR concept” and finally “reasoning

result concepts between OD–OR”.

VII. VALIDATION EXAMPLE

To illustrate our proposal we suggest to respond to

“Use-case 3” questions, we’ll use OntoGraf [57] to

visualize the ontologies’ concepts. Fig. 15 shows the

results of the search done on the mapped ontologies.

To show the definition and the concepts related of

“DRG”. The user enters “DRG”.

Entry: Domain concept “DRG”.

Output:

 Domain concepts (from OD): the concept defining
the ‘Diagnosis related groups’ (the user can access
to the concept definition).

 DW schema element (from ODW): the concept
presenting a dimension ‘D_DRG’, note that
D_DRG is a subclass of Dimension (Dimension ⊆
D_DRG).

 Resources concept (from OR): the concept
identifying a resource
‘Resource_Activity_Pole_DRG’, this concept
describes a multidimensional table representing
data about PMSI activity per DRG and per Pole).

The benefits of a connected ontology is the

information that it provides to describe a resource. The

returned information is not only from OR, it is also about

connected concepts from OD, and ODW.

This section, presented preliminary test done by DW

manager to define and validate the ontologies. However,

end-user uses OPS system to search for resources that

respond to his needs. OPS is based on OD, ODW and OR

connected ontologies to visualize the description of each

resource.

Figure 15: Example, retrieve “DRG” concept from the ontology

Protégé/OntoGraf.

Thus, in the real application, OPS returns a resource

with a set of information’s form ontologies concepts

describing the resource. For example, the resource

262

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

presented in Fig. 2 will be visualized with a set of

descriptions, presented in Fig. 16.

Figure 16: Example, resource with description from the three

ontologies.

OPS have a user-friendly interfaces that offers several

functionalities to end-users, for example, resources

description or personalized resources retrieval.

VIII. CONCLUSION AND FUTURE WORK

Ontologies are used in several domains to resolve

syntactic and semantic heterogeneity problems. They

facilitate the management of data, clarify and give a sense

to ambiguous concepts. In a healthcare management

context based on PMSI, numerous existing DW resources

are provided to exploit a DW, they are shared by users

from heterogeneous domains. These resources can be

interpreted differently from a user to another. In addition,

the personalization of specific and relevant resources to

user is the aim of this research.

In this recent research field various studies propose

different approaches to treat personalization problems, but

they appear to be not adapted to our problematic. Indeed,

the specificities of data related to healthcare management

require semantic resources, in particular to tackle the

heterogeneity of the users' profiles and domain

complexity.

We have proposed an ontology-driven approach for a

DW personalization system, in order to support

heterogeneous users to explain or personalize

(recommend) some existing DW resources adapted to

their needs. This approach is based on a personalization

engine using a knowledge base composed of three

specific and related ontologies: OD, ODW and OR.

In this paper, in progress of our proposition presented

in [1], we focused on the elaboration of OPS knowledge

base. We introduced the methodology used to develop

each of the knowledge base ontologies, and presented the

three ontologies models obtained in UML and in OWL

languages. Then we have presented the mappings between

these ontologies. To illustrate the use of this knowledge

base to provide some resources explanations or

recommendations to users, we have simulated the

personalization engine using Protégé editor. We also

queried and visualized ontologies with OntoGraf. We

validated our approach by testing it on a simple user-case

related to the healthcare domain, characterized by users’

heterogeneity and domains complexity. We should note

that our approach is not restricted to this domain; it can be

applied in others domains.

This work leads to many other tasks. Future works on

this research concern first the development of a user-

friendly personalization engine of OPS, giving the user a

friendly environment to query, provides resource

explanation and resource personalization

(recommendation). Then a validation process of the OPS

has to be performed in a larger context, with DW

managers’ and end-users. Finally, we expect to study the

impact of ontology evolution on OPS.

ACKNOWLEDGMENT

The authors wish to thank Sophie Rodier, Laetitia

Malavolti, Bernard Guisiano, Jean-Francois Mirreti,

Ghislaine Morvillez and Hélène Lherbet from Assistance

Publique des Hôpitaux de Marseille (APHM), for their

valuable contribution to this research.

REFERENCE

[1] L. EL Sarraj, B. Espinasse, T. Libourel, and S. Rodier,
“Towards ontology-driven approach for data warehouse
analysis. Case study: healthcare domain,” The Eighth
International Conference on Software Engineering
Advances (ICSEA 2013) IARIA, Oct. 2013, pp. 426-431,
ISSN: 2308-4235, ISBN: 978-1-61208-304-9

[2] W. H. Inmon, Building The Data Warehouse, John Wiley
& Sons, 1992.

[3] W. Lehner, “Modelling large scale OLAP scenarios,”
Advances in Database Technology (EDBT), 1998, pp. 153-
167.

[4] A. Bosworth, J. Gray, A. Layman, and H. Pirahesh, “Data
cube: a relational aggregation operator generalizing group-
by, cross-tab, and sub-total,” Data Min. Knowl. Discov.,
pp. 152-159, 1995.

[5] S. Rizzi, A. Abello, J. Lechtenborger, and J. Trujillo,
“Research in data warehouse modeling and design: dead or
alive?,” The 9th International Workshop on Data
warehousing and OLAP (DOLAP 2006) ACM, pp. 3-10.

[6] M. Golfarelli, “From user requirements to conceptual
design in data warehouse design – a survey,” Data
Warehousing Design and Advanced Engineering
Applications: Methods for Complex Construction, IGI
Global, 2010.

[7] R. Kimball, and M. Ross, The Data Warehousing Toolkit,
John Wiley&Sons, 1996.

[8] N. Prat, and J. Akoka, “From UML to ROLAP
multidimensional databases using a pivot model,” The 8th
Journées Bases de Données Avancées, 2002, pp. 24.

[9] A. Tsois, N. Karayannidis, and T. K. Sellis, “Mac:
Conceptual data modeling for OLAP,” The 3rd
International Workshop on Design and Management of
Data Warehouses (DMDW 2001), Theodoratos 2001, pp.
2001.

[10] L. Bellatreche, D. Nguyen Xuan, G. Pierra and H.
Dehainsala, “Contribution of ontology-based data modeling
to automatic integration of electronic catalogues within

263

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

engineering databases,” Computers in Industry Journal
Elsevier, vol. 57, no. 8-9, pp. 711-724, 2006.

[11] L. Bellatreche, S. Khouri, I. Boukhari, and R. Bouchakri,
“Using ontologies and requirements for constructing and
optimizing data warehouses,” Proc. of the 35th
International Convention (MIPRO 2012), pp.1568-1573,
May 2012.

[12] N. Prat, I. Megdiche, and J. Akoka, “Multidimensional
models meet the semantic web: defining and reasoning on
OWL-DL ontologies for OLAP,” The 15th International
Workshop on Data Warehousing and OLAP (DOLAP
2012) ACM, pp. 17-24, doi: 10.1145/2390045.2390049.

[13] S. Khouri, L. Bellatreche, and N. Berkani, “MODETL: a
complete modeling and etl method for designing data
warehouses from semantic databases,” The International
Conference on Management of Data (COMAD 2012), pp.
113.

[14] T. Niemi, and M. Niinimäki, “Ontologies and
summarizability in OLAP,” The 2010 ACM Symposium on
Applied Computing (SAC 2010), pp. 1349-1353,
doi:10.1145/1774088.1774378
http://doi.acm.org/10.1145/1774088.1774378.

[15] B. Neumayr, S. Anderlik, and M. Schrefl, “Towards
ontology-based OLAP: datalog-based reasoning over
multidimensional ontologies,” The 15th International
Workshop on Data warehousing and OLAP (DOLAP
2012), pp. 41-48, doi: 10.1145/2390045.2390053.

[16] Y. Ioannidis, and G. Koutrika, “Personalized systems:
models and methods from an ir and db perspective,” The
31st conference in the series of the Very Large Data Bases
conferences (VLDB 2005), pp. 1365–1365.

[17] R. R. Korfhage, Information Storage And Retrieval, John
Wiley & Sons, 1997.

[18] C. Domshlak, and T. Joachims, “Efficient and non-
parametric reasoning over user preferences,” User
Modeling and User-Adapted Interaction, vol. 17, no. 1-2,
pp. 41-69, 2007.

[19] A. Kobsa, “Generic user modeling systems,” User
Modeling and User-Adapted Interaction archive, Kluwer
Academic Publishers Hingham, vol. 11, The Adaptive
Web, pp. 49-63, 2001.

[20] L. Bellatreche, A. Giacometti, P. Marcel, H. Mouloudi, and
D. Laurent, “A personalization framework for OLAP
queries,” The Eighth International Workshop on Data
Warehousing and OLAP (DOLAP 2005), 2005, pp. 9-18.

[21] H. Jerbi, F. Ravat, O. Teste, and G. Zurfluh, “Management
of context-aware preferences in multidimensional
databases. ,” the Third International Conference on Digital
Information Management (ICDIM 2008), pp. 669-675.

[22] I. Garrigos, J. Pardillo, J.-N. Mazon, and J. Trujillo, “A
conceptual modeling approach for OLAP personalization,”
in Conceptual Modeling-ER Verlag Berlin Heidelberg,
2009, pp. 401-414.

[23] F. Bentayeb, O. Boussaid, C. Favre, F. Ravat, and O. Teste,
“Personnalisation dans les entrepôts de données: bilan et
perspectives,” The Fifth Journées sur les Entrepôt de
Données et Analyse en ligne (EDA 2009), 2009, pp. 7-22.

[24] H. Jerbi, G. Pujolle, F. Ravat, and O. Teste,
“Recommandation de requêtes dans les bases de données
multidimensionnelles annotées,” Revue des Sciences et
Technologies de l'Information, Ingénierie des Systèmes
d'Information, vol. 16, no. 1, pp. 133-138, 2011.

[25] D. Xin, J. Han, H. Cheng, and X. Li, A, “Answering top-k
queries with multi-dimensional selections: The ranking
cube approach,” in VLDB, 2006, pp. 463-475.

[26] A. Giacometti, P. Marcel, and E. Negre, “A framework for
recommending OLAP queries,” Proc. The eleventh

international workshop on Data warehousing and OLAP
(DOLAP 2008) ACM, Pages 73-80, doi:
10.1145/1458432.1458446.

[27] A. Giacometti, P. Marcel, and E. Negre, “Recommending
multidimensional queries,” The 16th International
Conference on Data Warehousing and Knowledge
Discovery (DaWaK 2009), 2009, pp. 453-466.

[28] C. Sapia, “On modeling and predicting query behavior in
OLAP systems,” Proc. Workshop on Design and
Management of Data Warehouses (DMDW), 1999, pp. 2.1-
2.10.

[29] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis, “Query
recommendations for interactive database exploration,” The
21st International Conference on Scientific and Statistical
Database Management (SSDBM 2009), 2009, pp. 3-18.

[30] H. Jerbi, F. Ravat, O. Teste, and G. Zurfluh, “Applying
recommendation technology in OLAP systems,” The 11th
International Conference on Enterprise Information
Systems (ICEIS 2009), 2009, pp. 220-233.

[31] A. Giacometti, P. Marcel, E. Negre, and A. Soulet, “Query
recommendations for OLAP discovery driven analysis,”
The 12th International Workshop on Data Warehousing
and OLAP (DOLAP 2009) ACM, 2009, pp. 81-88, ISBN:
978-1-60558-801-8.

[32] E. Negre, Exploration Collaborative De Cubes De
Données, François Rabelais Tours, France, 2009.

[33] C. Favre, F. Bentayeb, and O. Boussaid, “Evolution et
personnalisation des analyses dans les entrepôts de
données. Une approche orientée utilisateur,” The 25th
Informatique des Organisations et Systèmes d'Information
et de Décision (INFORSID 2007), 2007, pp. 308-323.

[34] T. Thalhammer, M. Schrefl, and M. Mohania, “Active data
warehouses: complementing OLAP with analysis rules,”
Data & Knowledge Engineering, vol. 39, pp. 241-269,
2001.

[35] A. Aybuke, and W. Claes, “Engineering and managing
software requirements,” Springer, 2005.

[36] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and
P. F. Patel-Schneider, “The Description logic handbook:
theory, implementation, and applications,” Cambridge
University Press, 2003, ISBN:0-521-78176-0

[37] T. Gruber, “A translation approach to portable ontology
specification,” Knowledge Acquisition, vol. 5, no. 2, pp.
199-220, 1993.

[38] N. Guarino, and P. Giaretta, “Ontologies and knowledge
bases, towards a terminological clarification,” IOS Press,
Amsterdam, pp. 25-32, 1995.

[39] S. Jean, G. Pierra, and Y. Ait-Ameur, “Domain ontologies:
a database-oriented analysis,” Springer, vol. 1, pp. 238-254,
2007.

[40] G. Antoniou, and F. V. Harmelen, “Web ontology
language: OWL,” Handbook on ontologies, 2009.

[41] Object Management Group, “OMG formal,”
http://www.omg.org/spec/, Retrieved 2014.

[42] N. Berkani, S. Khouri, and L. Bellatreche, “Generic
methodology for semantic data warehouse design: From
schema definition to etl,” in the Intelligent Networking and
Collaborative Systems (INCoS2012), Sept. 2012, pp. 404-
411, ISBN: 978-1-4673-2279-9

[43] "Fact++," http://owl.man.ac.uk/factplusplus/, Retrieved
2014.

[44] F. Arvidsson, and A. Flycht-Eriksson, “Ontologies I,”
2008.

[45] G. Pierra, “Chapter context representation in domain
ontologies and its use for semantic integration of data,”

264

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Journal on Data Semantics X, vol. 4900, pp. 174–211,
2008.

[46] P. Coret, J. Richard, E. Talavet, and T. Trofimoya,
Introduction A OWL, Langage XML D’Ontologies,
Technical report, 2006.

[47] S. Khouri, L. EL Sarraj, L. Bellatreche, B. Espinasse, N.
Berkani, S. Rodier, and T. Libourel, “CiDHouse:
contextual semantic data warehouses,” The 24th Database
and Expert Systems Applications (DEXA 2013), Springer
Berlin Heidelberg, 2013, pp. 458-465.

[48] F. Pinet, C. Roussey, T. Brun, and F. Vigier, “The use of
UML as a tool for the formalisation of standards and the
design of ontologies in agriculture,” Advances in Modeling
Agricultural Systems, vol. 25, pp. 131-147, 2009.

[49] R. Liepins, K. Cerans, and A. Sprogis, “Visualizing and
editing ontology fragments with OWLGrEd,” Proc. CEUR
Workshop Proceedings, vol. 932, pp. 22-25, 2012.

[50] J. Barzdins, G. Barzdins, K. Cerans, R. Liepins, and A.
Sprogis, “OWLGrEd: a UML style graphical notation and
editor for OWL 2,” Proc. CEUR Workshop Proceedings
vol. 614, 2010.

[51] J. Barzdins, K. Cerans, R. Liepins, and A. Sprogis, “UML
style graphical notation and editor for OWL 2,”
Perspectives in Business Informatics Research, Springer
Berlin Heidelberg, vol. 64, pp. 102-113, ISBN:978-3-642-
16100-1

[52] B. C. Grau, I. Horrocks, and Y. K. yevgeny, “Modular
reuse of ontologies: theory and practice,” Journal of
Artificial Intelligence Research, 2008.

[53] GMSIH, “Tarification à l’activité (T2A) - Guide à l’usage
des établissements de santé,” Appui santé et médico-social
(ANAP), 2005.

[54] N. Prat, J. Akoka, and I. Comyn-Wattiau, “Transforming
multidimensional models into OWL-DL ontologies,” The
IEEE 8th International Conference on Research Challenges
in Information Science (RCIS 2011) IEEE, 2011.

[55] M. Gyssens, and L. V. S. Lakshmanan, “A foundation for
multi-dimensional databases,” Proceeding the 23rd
International Conference on Very Large Data Bases
(VLDB 1997), pp. 106–115.

[56] J. D. Bruijn, F. Martın-Recuerda, D. Manov, and M. Ehrig,
“D4.2.1 State-of-the-art survey on ontology merging and
aligning V1,” Semantically Enabled Knowledge
Technologies (SEKT 2003), 2003.

[57] S. Falconer, “OntoGraf,” In Protégé Wiki, from
http://protegewiki.stanford.edu/wiki/OntoGraf, Retrieved
2014.

265

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Formal Models in Software Development and

Deployment: A Case Study

Radek Kočı́∗ and Vladimı́r Janoušek†

Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic
∗koci@fit.vutbr.cz

†janousek@fit.vutbr.cz

Abstract—Modeling, implementation, and testing are integral
parts of system development process. Models usually serve
for description of system architecture and behavior and are
automatically or manually transformed into executable models
or code in a programming language. Tests can be performed
on implemented code or executable models; it depends on used
design methodology. Although models can be transformed, the
designer has to usually adapt resulted code manually. It can result
in an inconsistency among design models and their realization
and the further development, testing and debugging by means
of prime models is impossible. This work summarizes the design
methodology based on the formalism of Object Oriented Petri
Nets combined with Discrete Event System Specification and
demonstrates its usage in the system development and deployment
on the simple robotic system case study. The goal is to use
the same formalisms for system modeling as well as for system
implementation, so that to keep designed models in the deployed
system.

Keywords–Object Oriented Petri Nets, Discrete Event System
Specification, multi-paradigm modeling, model deployment.

I. INTRODUCTION

This work is based on the paper [1], which is extended of
detailed explanation of the design methodology and its usage
for system development and deployment. It is demonstrated on
simple, but fully described, case study.

Modeling, implementation, and testing are integral parts
of system development process. Various models are used in
analysis and design phases and usually serve as a system
documentation rather than real models of the system under de-
velopment. The system is then implemented according to these
models, whereas the code is either generated from models
or is implemented manually. Unfortunately, implementations
often differ from the models because of debugging or system
improvement. Consequently, models become out of date and
useless.

To solve a problem with manual implementation and im-
possibility to test designed system using models, the method-
ologies and approaches commonly known as Model-Driven
Software Development are investigated and developed for
many years [2], [3] These methods use executable models, e.g.,
Executable UML [4] in Model Driven Architecture methodol-
ogy [5], which allows to test systems using models. Models are
transformed into another models and, finally, to code. Never-
theless, the resulted code has to often be finalized manually and

the problem with semantic mistakes or imprecision between
models and transformed code remains unchanged.

The approach to system development, which is presented
in the paper, uses formal models as a means for system
description as well as system implementation. The basic idea
is to have a framework allowing to execute models in different
modes, whereas each mode is advisable for another kind
of usage—design, testing, and deployment. The system is
developed using different kinds of models (from formal models
to direct code in a programming language) in simulation, i.e., it
is possible to test systems in any state in any time. The design
method, which is taken into account in the papers [6], [7], does
not require model transformations and assumes that models
serve for system description as well as system implementation.
The formalism of Object-Oriented Petri Nets (OOPN) [8], [9]
and Discrete Event System Specification (DEVS) are basic
modeling means.

The paper is organized as follows. First, we will attend to
related work in Section II. The formalism of OOPN will be
briefly introduced in Section III. Basic principles of modeling
methodology will be described in Section IV, different mod-
eling means will be compared in Section V, the approach to
model system behavior will be presented in Section VI, and
Section VII pays an attention to the architecture modeling. Fi-
nally, possibilities to deploy models into product environment
will be discussed in Section VIII and Section IX concludes
the paper and describes a future work.

II. RELATED WORK

Combination of formal models, simulation, and model
deployment is applicable mainly in control software. The use
of high-level languages, especially Petri Nets, allows to build
and maintain control systems in a quite fast and intuitive
way. To control robot application, hierarchical binary Petri
nets are used for middleware implementation in a RoboGraph
framework [10]. To develop control software for embedded
systems, the work that uses Timed Petri Nets for the synthesis
of control software by generating C-code [11], the work based
on Sequential Function Charts [12], or the work based on the
formalism of nets-within-nets (NwN) [13], [14], [15] can be
mentioned.

These tools and works allow to model systems using a
combination of different formalisms, but do not allow to
use formal models in system implementation. The proposed

266

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

approach allows to use formal models as a basic design, anal-
ysis and programming means combining simulated and real
components. The main advantages; there is no need for code
generation, and for further investigation of deployed systems,
using the same formal models and methods is possible.

III. FORMALISM OF OBJECT ORIENTED PETRI NETS

We will briefly introduce the formalisms of Object-
Oriented Petri Nets. Object orientation of Object-Oriented
Petri nets (OOPN) [16] is based on the well-known class-
based approach. All objects are instances of classes, every
computation is realized by message sending, and variables
contain references to objects. This kind of object-orientation
is enriched by concurrency. OOPN objects offer reentrant ser-
vices to other objects and, at the same time, they can perform
their own independent activities. The services provided by the
objects as well as the autonomous activities of the objects
are described by means of high-level Petri nets—services by
method nets, object activities by object nets.

The formalism of OOPN contains important elements al-
lowing for testing object state (predicates) and manipulation
with object state with no need to instantiate nets (synchronous
ports). Object state testing can be negative (negative predi-
cates) or positive (synchronous ports).

An example illustrating the important elements of the
OOPN formalism is shown in Figure 1. There are depicted two
classes C0 and C1. The object net of the class C0 consists of
places p1 and p2 and one transition t1. The object net of
the class C1 is empty. The class C0 has a method init:, a
synchronous port get:, and a negative predicate empty. The
class C1 has a method doFor:.

o

o := Rand next

t1

p2

p1

#e

C0 is_a PN

init: x
x

x

t1

x

return

x‘#e

o

get: o

o

C1 is_a PN

doFor: x

return

x

c := C0 new.

c init: x.

x t1

t2

c

c get: n

s := s + n
c empty

t3

c

s

c

ss
s

p1

p20

empty

Figure 1. An OOPN example.

The OOPN dynamics is based on high-level Petri net
dynamics, but the semantics of a transition is little bit modified.
A transition is fireable for some binding of variables, which
are present in the arc expressions of its input arcs and in its
guard expression, if there are enough tokens in the input places
with respect to the values of input arc expressions and if the
guard expression for the given binding evaluates to true.

Synchronous ports are special (virtual) transitions, which
cannot fire alone but only dynamically fused to some other
transitions, which activate them from their guards via message
sending. Every synchronous port embodies a set of conditions,
preconditions, and postconditions over places of the appropri-
ate object net, and further a guard, and a set of parameters.

Parameters of an activated port sync can be bound to constants
or unified with variables defined on the level of the transition
or port that activated the port sync. An example is shown
in Figure 1—the port get: (class C0) having one formal
parameter o is called from the transition t2 (class C1) with
free variable n—it means that the variable n will be unified
with the content of the place p2 (class C0).

Negative predicates are special variants of synchronous
ports. Its semantics is inverted—the calling transition is fire-
able if the negative predicate is not fireable. The passed
variable cannot be unbound (the unification is impossible) and
the predicate cannot have a side effect. An example is shown
in Figure 1, the predicate empty (class C0). This predicate
is called from the transition t3 (class C1)—it means that the
transition t3 will be fireable if the place p2 (class C0) is be
empty.

Let us investigate what happens after calling the method
doFor: with a value 3 on an instance of the class C1 (the
instance will be denoted by objC1). First, the transition t1

is fired with following actions: the instance of the class C0
is created (the instance will be denoted by objC0 and the
reference to this object is assigned to the variable c) and
initialized by the method net init:. It puts the symbol #e to
the place p1 of the object net objC0 three times. The transition
t1 of the object net objC0 generates three random numbers
and puts them into the place p2. Second, the transition t2 of
the object net objC1 tests if there is any object (a value) in
the object net objC0 by testing the synchronous port get:.
If its evaluation is true, the transition t2 is firable. If the
transition t2 fires, the synchronous port get: fires too. Since
the variable n is free, the variable n is unified with a random
number from the place p2 of the object net objC0. The
transition t2 of the object net objC1 then adds this value to
the sum (the variable s). Otherwise, the the transition t3 of
the object net objC1 tests if there is no value in the object
net objC0—then the negative predicate empty is firable. If
the transition t3 fires, it places the sum (the variable s) to
the return place as a method result. So, an invocation of the
method doFor: leads to random generation of x numbers
and to return of their sum.

IV. MODELING METHODOLOGY PRINCIPLES

This section introduces modeling methodology, which has
been presented by Kočı́ and Janoušek [17], and simple case
study. Only basic principles of methodology will be shown
here; details and the complex model of proposed case study
will be being developed in Sections VI and VII.

A. Modeling Process

The modeling process is split up into three basic phases—
identification of model elements, modeling the system archi-
tecture, and modeling the system behavior. Different modeling
means are used in different steps, nevertheless, theses means
are linked together. Brief description of basic phases and used
modeling means follows:

• Basic model elements are users of the system, their
roles, and activities of the system. To identify them,
the use case diagram from UML can be used. Roles

267

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are modeled by means of actors and activities by
means of use cases.

• System architecture is modeled by means of class
diagrams from UML. Modeled classes are linked to
elements of use case diagrams as follows:

◦ roles are represented by a group of classes
modeling logic view at roles behavior,

◦ activities are represented by a group of classes
modeling functionality of the system,

◦ users are represented by a group of classes
modeling data of roles and accessing poten-
tially present communication channels.

• System behavior. Behavior of roles and activities
is modeled by means of Object oriented Petri nets
formalism. It can also be modeled by any other
formalism allowing to define workflow scenarios and
offering an interface for workflows synchronization,
e.g., statecharts, activity diagrams, or other kind of
Petri nets. The comparison of chosen formalisms is
done in Section V.

B. Layered Architecture of the Modeling Process

First, the relationship between user and role has to be
explained. The role defines a work context the user can act in.
For instance, the user working with a conference system can
act as an author, a reviewer, a chair, or a combination of these
roles. Thus, users act through their roles in the system and each
user can have more roles. Nevertheless, the system can have
other objects than users, that have the same or similar meaning,
that is to represent data base, either for some of present roles
or for data needed to be stored in the system. We denote such
objects by a notion subjects.

Figure 2. Design Method – Layers in the model.

Figure 2 shows model elements and their relationships in
the design process. The design method distiguishes following
model elements:

• Subjects represent a base for data storage or accessing
communication channels.

• Role nets are derived from actors modeled in use case
diagrams. Role nets model logic view at roles in the

system and offer the communication protocol to the
subject depending on the role intention.

• Activity nets are derived from use cases and model
system functionality. The model is based on workflow
definition and uses roles and subjects.

Model elements are organized in layers. Relationshisps are
depicted by arrows—the solid arrow from sender to receiver
represents a relationship a sender uses a receiver. For instance,
activity nets can use roles nets, subjects, but also other activity
nets. The dashed arrow from sender to receiver represents a
relationship a sender creates a receiver. For instance, activity
nets are created by role nets.

C. Simple Case Study

We will demonstrate basic principles of the design method
on the example (simple case study) of a robot control system.
We have a system with robots, where a motion of each robot
is controlled by the same scenario, which is described by the
following algoritm: (1) the robot is walking; (2) if the robot
comes upon to an obstacle, it stops, turns right and tries to
walk; (3) if the robot cannot walk, it turns round and tries to
walk; (4) if the robot cannot walk, it stops. User can start and
stop this scenario anytime.

V. UML AND OOPN IN THE DESIGN PROCESS

As it was mentioned, the different formalisms or means
can be used to describe system behavior. The comparison
of using chosed UML models and formalism of OOPN will
be presented in this section. It will be demonstrated on the
previously instroduced case study.

First of all, the designer would identify model elements
using use case diagrams. After analysing the case study spec-
ification, we can model use cases as shown in Figure 3. There
we can find an actor User and a use case Execute Scenario
representing the control algorithm.

Figure 3. First Use case diagram of designed system.

A. UML in the Design Method

In UML, the use case specification is usually described
informally by means of pure text or semi-structured text
displayed in a table. Figure 4 shows such a table, which
specify a behavior of the use case Execute Scenario. The table
describes an algorithm in an informal way using keywords for
text structuring, e.g., IF–ELSE branching, REPEAT a step, etc.

268

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Name Execute Scenario

Sequence of steps

1. The scenario starts by user’s stimulus
2. IF there is a clear road
2.1. the robot goes straight
2.1. repeat step 2

3. ELSE
3.1. the robot turns right
3.2. IF there is not clear road
3.2.1. the robot turns round
3.2.2. IF there is a clear road
3.2.2.1. REPEAT step 2

Alternative sequence of steps

1. User can stop this scenario anytime

Figure 4. Specification of the Use Case Execute Scenario.

Another way to describe use case specifications is to use
digrams from UML such as activity diagram or statecharts.
Their usage allows for more precise description of behavior,
which is based on predefined elements with clear semantics.

Figure 5. Statechart of the use case Execute Scenario.

The statechart modeling the use case Execute Scenario is
shown in Figure 5. Four different states of modeled activity
have been identified:

• walking means the robot walks

• turnRight means the robot turns right for the first time
it came at an obstacle

• turnRound means the robot turns round for the second
time it cannot go on

• stopped means the robot cannot go on

Each state containts commands that are executed in the
state—go instructs the robot to go straight, stop instructs the
robot to stop, and turnRight instructs the robot to turn right. If

the command turnRight is sent twice, it means that the robot
turns round.

Transitions between states are modeled by means of arcs
whereas each transition can be conditioned. In the example,
there are two conditions for transitions:

• isCloseToObstacle means the robot came at an obsta-
cle and cannot go on

• isClearRoad means the robot can go on

B. Object Oriented Petri Nets in the Design Method

Methods that have been presented in Section V-A allow for
use case description but their validation can be problematic
because of impossibility to check models either by formal
means or by simulation. Of course, there are tools and meth-
ods [4], [5] that allow to simulate modified UML diagrams.
Nevertheless, there is still a strict border between design and
implementation. On the other hand, if the formalisms allowing
to design as well as to implement the system is used, we
needn’t care about borders and problems that can arise during
a transition from design to implementation, and vice versa.
One of such formalisms, which can be used to model use case
(activity) behavior is the formalism of Object-Oriented Petri
Nets (OOPN).

Let us continue in the example of Execute Scenario. The
activity net ExecuteScenario of the use case Execute Scenario,
which is described using OOPN, is shown in Figure 6.

walking

r isCloseToObstacle.

t1

r stop.

r turnRight.

r

r

turnRight

r isCloseToObstacle.

t2

r turnRight.

r turnRight.

r

r isClearRoad.

t11

r

r isCloseToObstacle.

t3 stopped

r isClearRoad.

t12 r

r

r go.

r go.

r

turnRound

r

r

r

Figure 6. Activity Net ExecuteScenario.

The activity net contains elements similar to the statechart
model shown in Figure 5. States are modeled by places
walking, turnRight, turnRound, and stopped with
the same meaning. Nevertheless, states turnRight and
turnRound are only temporal and the activity goes through
these ones to the one of stable states walking or stopped.

The control algorithm is represented by a sequence of
transitions whereas each transition is conditioned by an event
representing a change on robot’s state. For instance, the
transition t1 has a condition isCloseToObstacle testing if

269

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the robot is close to obstacle. If this condition is evaluated
true, the transition t1 is fired and appropriate commands are
performed—stop and turnRight the robot. This, the transition
t1 models a behavior described in point 3.1 in Figure 4.

A short remark to OOPN notation. To record a sequence of
transitions (i.e., events that happened in one scenario), we will
type <tName1,tName2,...>. For instance, <t1,t2,t3>
means, that the robot came at an obstacle and there is no
possibility to go—the robot stops.

VI. SYSTEM BEHAVIOR MODELING

As it was mentioned in Section IV, the modeling process
is split up into three basic phases of identification of model
elements, modeling the system architecture, and modeling
the system behavior. The system behavior modeling will be
presented in this section. It will be demonstrated on the
previously instroduced case study.

A. Modeling phases cohesion

The important feature is the modeling phases cohesion.
Phases are not separated but should be being provided si-
multaneously. It means, that model elements are finding and
improving continuously.

If we analyze the activity net ExecuteScenario shown in
Figure 6, we can see, that isCloseToObstacle, isClearRoad,
stop, go, and turnRight are commands. Of course, these
commands have to have their receiver communicating with
a real (or simulated) robot—so, by specification of use case
behavior, we have identified a new role in the system—the
Robot. It also implies that the activity has to be linked to a
role in the system—this role is stored in places and serves
even as a state token. In our example, the role supplies an
information about the robot and allows to send commands to
it.

Figure 7. Use Cases of designed system.

So far, we did not take a care about two parts of the
scenario—start and stop the robot (see points 1 of basic
sequence and point 1 of alternative sequence in Figure 4).

Because the robot behavior is an autonomous activity, and use
cases we can make a decision to model start and stop as two
separated activities. The updated model of use cases are shown
in Figure 7. It introduces new role Robot and new use cases
Start Scenario and Stop Scenario.

B. Activity Nets

We have presented the activity net ExecuteScenario (see
Figure 6). The robot can be in two stable states—walking or
stopped (there is no possibility to walk). Each such a state
is represented by appropriate place, i.e., places walking

and stopped. We have to be able to test activity states,
therefore the predicates are generated for each such a place—
the synchronous port isStopped and the negative predicate
isNotStopped for the state stopped and similar pred-
icates for the state walking. Test predicates are shown in
Figure 8.

walking

stopped

isStopped isNotStoppedr r

isWalking r isNotWalkingr

Figure 8. Activity Net Scenario – predicates.

Uses cases Start Scenario and Stop Scenario have to be
modeled too. These use cases can be modeled in two ways—
in a special activity net or in a method of existing activity
net. Because these use cases work only with the activity
net ExecuteScenario, how deduced from use case diagram in
Figure 7, we can model them as methods. So, we have two
activities that are using onother activity what is consistent with
the layered architecture (Figure 2).

start

p1

return

self isWalking r go.

false true

stopped

walking

r

r

Figure 9. Activity Net ExecuteScenario – a method net start.

The use case Start Scenario is modeled by method net
start shown in Figure 9. A decision what has to be done
is based on the activity state—if the state is walking (tested
by synchronous port isWalking), the method does nothing;
if the state is stopped, it starts the robot’s walk, i.e., sends a
message go and moves the state token role from the place
stopped to the place walking. The state stopped is not
tested by a predicate, but the transition is directly conditioned
by the place stopped because it will process the state token
role in the case of success.

270

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

stop

p1

return

self isStopped r stop.

false true

stopped

walking

r

r

Figure 10. Activity Net ExecuteScenario – a method net stop.

The use case Stop Scenario is modeled by method net
stop shown in Figure 10. It is similar to the method start
having following differences. If the state is stopped, it does
nothing. If the state is walking, it sends a message go and
moves the state token role from the place walking to the
place stopped.

constructor forRole: r

r

r

self

return

r role

stoppedr

Figure 11. Activity Net Scenario – the constructor.

Each activity net is instantiated for just one role, so that the
role is initialized by means of constructor as shown in Figure
11. The constructor has one parameter—the role the activity
net is assigned to. So each activity has a place storing the
role object; the presented constructor has the same structure
for every activity nets. In addition, the constructor initializes
activity—in our example, it puts a state token role to the place
stopped. After initialization, the robot is in the state stopped
(the robot stops).

C. Role Nets

A possible model of the role Robot is shown in Figure
12. The role checks actual distance of robot to an obstacle
each 10 time units (the transition t1) and offers information
about robot’s position by means of predicates isClearRoad and
isCloseToObstacle. To get information about the distance, the
role asks its subject by sending a message getDistance (the
transition t2).

Much like for the activity nets, each role net is initialized
by means of the constructor having one parameter—the subject
the role net is assigned to. Each activity has a place subject
storing the subject. The constructor is shown in Figure 13
including the method turnRight—it only delegates the
message to the subject. Other methods (go and stop) are
modeled in similar way and are not shown.

Each role has its own set of activities it can participate
in. The activity nets should be created by asking roles, not

subject

self delay: 10

d := s getDistance.

100

isCloseToObstacle

distanceToObstacle

d <= 10.
d

d

isClearRoad

d > 10.

s

d

oldD

p1

p2

t1

t2

Figure 12. Object net of the role Robot.

constructor forSubject: s

s

s

self

return

s

subject

s turnRight.

turnRight

return

self

s

Figure 13. Methods of the role Robot.

directly. For instance, the role Robot has only one activity net
ExecuteScenario, so that there is the method createActivity,
which creates a new instance of activity net ExecuteScenario.
The method is shown in Figure 14.

a := ExecuteScenario forRole: self.

createActivity

return

a

Figure 14. Activity creation of the role Robot.

D. Subject Models

Each role needs to have its subject, i.e., the object defining
information about a subject, which can have different roles in
the system. The subject is usually modeled as an object con-
taining efficient data directly or as an interface to a database,
another system or remote object. The subject can access the
real system or can simulate the real system for the testing
reason. The subject can be described by the same formalism as
activity nets (i.e., by OOPN) or implemented in any language
present in the product environment.

It this section, we will demonstrate usign OOPN for
subject modeling. The subject for the role Robot is named
RobotDevice and is shown in Figure 15. It represents simulated
interface to the real robot in the system. The current distance to

271

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(1,100) (2,40)

 (3,0) (4,40)

 (5,200) (6,0)

d > 2

nd := d - 2.

(i,d)

(i,nd)

#g

self hold: 1.#s

(1,20)
i <= 6

ni := i + 1.

i > 6

(i, d)

(i,old)

(ni,d)

i

turnRight

d <= 2

d

p1

state

distance

return

t1

t2

t3 p2

listDistances

Figure 15. The subject RobotDevice – implementation with OOPN.

an obstacle is stored in the place distance. If the robot is
instructed to go (i.e., the symbol #g is stored in the place
state), the distance is decreased each one time clock (a
sequence <t1,t2>). If the distance is less than 2 (it simulates
the robot is by an obstacle), the distance does not change (a
sequence <t1,t3>).

20

100

200
40

Figure 16. Labyrinth simulated by the subject RobotDevice.

The simulated labyrinth the robot is moving in is shown in
Figure 16. Simulated robot device contains a list of distances
to obstacles (the place listDistances), which are subsequently
set if the method turnRight is performed. First distance is 20,
then it subsequently changes to following values:

• 100 – an item (1,100); the robot turns right, there
is a free road 100 units long

• 40 – an item (2,40); the robot turns right, there is
a free road 40 units long

• 0 – an item (3,0); the robot turns right, there is an
obstacle (a wall)

• 40 – an item (4,40); the robot turns right, there
is a road the robot went through (40 units long); in
fact, this particular information will not be taken into
account, because the previous distance was 0 and the
activity net ExecuteScenario performs an operation
turn round, which is implemented by calling turnRight
twice—the item (4,40) will be skipped (see the
activity net ExecuteScenario in Section V-B)

• 200 – an item (5,200); the robot turns right, there
is a free road 200 units long

• 0 – an item (6,0); the robot turns right, there is an
obstacle; any other actions invoke no changes

#s

(1,20)
(i,d)

getDistance

state

distance

return

go #g

old

#s

old

return

stop

d

return

Figure 17. The subject RobotDevice – implementation with OOPN.

Methods go, stop, and getDistance is shown in
Figure 17. The method go, respectively stop, puts a sym-
bol #g, respectively #s, to the place state. The method
getDistance gets a value from the place distance.

VII. ARCHITECTURE MODELING

The way how to model system elements influences the
system architecture. Basic architecture is based on pure ob-
ject oriented approach consisting of classes and relationships
between classes. DEVS architecture is based on components
that are connected using the formalism of DEVS.

A. Basic Architecture Modeling

Figure 18 shows the classes of basic architecture of our
example. Classes from different levels are identified with
appropriate stereotypes—Activity Net, Role, and Subject. Each
class can be modeled in different formalism, therefore the
stereotypes of model formalism are introduced too. In this
example, classes are modeled only using Petri nets, so that
the stereotype PN is used.

Figure 18. Basic architecture of the case study.

The example architecture consists of the subject Robot-
Device, its role Robot and its activity Scenario, that have

272

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

been modeled by OOPN (see the stereotype PN). RobotDevice
represents an interface to the simulated robot and Robot
represents a role, which the robot has in the system. Each
method is labeled with one of stereotypes C (constructor), Act
(activity), and T (testing) determining a realization of methods
(it was introduced in [18]).

B. Combination of Formalisms of DEVS and OOPN

Discrete Event System Specification (DEVS) [19] is a
formalism, which can represent any system whose input/output
behavior can be described as sequence of events. The atomic
DEVS model is specified as a structure M containing sets
of states S, input and output event values X and Y , internal
transition function δint, external transition function δext, output
function λ, and time advance function ta. These functions
describe behavior of the component.

This way we can describe atomic models. Atomic models
can be coupled together to form a coupled model CM . The
later model can itself be employed as a component of a larger
model. This way the DEVS formalism brings a hierarchical
component architecture. Sets S, X , Y are obviously specified
as structured sets. It allows to use multiple variables for
specification of a state; we can use a concept of input and
output ports for input and output events specification, as well
as for coupling specification. Let us have the structured set
X = (VX , X1 × · · · × Xn), where VX is an ordered set of
n variables and X1 × · · · × Xn denotes a value for each
member from the set VX . We can write the structured set
as X = {(vx

1
, . . . , vxn)|v

x
1
∈ X1, . . . , v

x
n ∈ Xn)}. Members

vx
1
, . . . , vxn are called input ports, resp. output ports for the

set of output events Y . VX(vx
1
), resp. VY (v

y
1
), then denotes

a value of the input port vx
1
, resp. output port v

y
1
. In another

words, components are connected by means of ports and event
values are carried via these ports.

Figure 19. DEVS architecture of the case study – the model DEVSRobot.

DEVS components can be described by any formalisms
with respecting DEVS functions. Thus, DEVS component can
wrap another kind of formalism, so that each such a formalism
is interpreted by its simulator and simulators communicate
each other by means of a compatible interface. Let MPN =
(M,Π,mapinp,mapout) be a DEVS component M , which
wraps an OOPN model Π. The model Π defines an initial class
c0, which is instantiated immediately the component MPN is
created. Functions mapinp and mapout map ports and places

of the object net of the initial class c0. The mapped places
then serve as input or output ports of the component.

C. DEVS Architecture Modeling

The model can be split up into components in accordance
to their responsibility. For instance, the system of our case
study has two basic parts (i.e., components)—the model of
behavior (activity nets and roles) and the model of real robot
(subjects; the subject can provide a communication channel
to a real robot or can simulate it). Components can be
modeled using means of UML, i.e., packages. In that case, the
component interface is provided by classes themselves, so that
the replacement of components is complicated. Formalisms
such as DEVS define a stable interface allowing to exchange
components in a very simple way, because components are
connected only by means of ports. It is one of reasons we
have made a decision to use DEVS formalism to describe the
system architecture.

answer

self delay: 10

100

isCloseToObstacle

distanceToObstacle

d <= 10.
d

d

isClearRoad

d > 10.

(#distance, d)

d

oldD

#getDistance

request

p1

t1

t2

Figure 20. The role Robot – implementation for DEVS architecture.

The DEVS architecture of presented case study contains
two components Behavior and RobotDevice as shown in Figure
19. The component Behavior describes the system behavior,
as presented in a case of basic architecture. The component
RobotDevice describes the robot subject and can be modeled
by OOPN, programming language, or any other supported
formalism. Components are connected via ports request and
answer. Both components are coupled the model called DE-
VSRobot.

answer

request

r := self go.

t2

r := self getDistance.

t1

#getDistance

(#distance,r)

#go

(#go,r)

...

Figure 21. Extension of the subject model RobotDevice for the DEVS
architecture reason.

273

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Because the architecture changes, we have to modify
classes describing system behavior in the component Behavior.
This component encapsulates OOPN model and the initial class
has to be defined. Because the interface between components
serves for communication to the subject of robot, and subjects
can communicate to roles, the Robot class will be the initial
one. It means, that ports request and answer are mapped
to places of the Robot object net. This modified object net
is shown in Figure 20. Place named request, resp. answer,
corresponds to output port request, resp. input port answer.

variables : r← nil

d← 20

dists[]← array of (100, 40, 0, 40, 200, 0)

i← 0

go← false

getDist() : return (#distance, d)

turnR() : i < 6 : i← i+ 1

d← dists[i]

go() : go← true

stop() : go← false

Figure 22. Internal data and functions of the component RobotDevice.

The component RobotDevice can be described by OOPN.
The posible model results from the class RobotDevice shown
in Figures 15 and 17. This class is an initial class of the
component and adds model elements to the object net as
shown in Figure 21. It gets a request string from its input
port request, asks itself for answer, and puts the answer to its
output port answer.

Another way is to describe the component RobotDevices
as an atomic DEVS. First, the internal data and functions
are defined as shown in Figure 22. They correspond to the
methods and data stored in places of basic model of the subject
RobotDevice shown in Figures 15 and 17.

DEVS functions are defined as shown in Figure 23. They
use internal data and functions. If an external event occurs,
the function δext is performed; it puts a value from input port
request to the variable r. Time advance function ta is defined
as follows: if there is a request (r 6= nil), then internal and
output functions will be called immediatelly (ta← 0); if there
is no request and the variable go is true, then internal and
output functions will be called in 1 time unit (ta ← 1); if
there is no request and the variable go is false, then nothing
happen (ta ← ∞). Output function λ calls internal functions
depending on the request r. If called functions return any value
a, this value a is put to the output port answer. If the internal
transition function δint is called and there is no request, it
decrease the distance to an obstacle (d← d− 2). In any case,
it destroys an information about processed request (r ← nil).

VIII. SOFTWARE DEPLOYMENT WITH MODELS

This section will demonstrate possibilities of keeping mod-
els in the deployed system. The goal is to use the same

δext : r ← VX(request)

λ : r = #getDistance : a← getDist()

r = #turnRight : a← turnR()

r = #go : a← go()

r = #stop : a← stop()

a 6= nil : VY (answer)← a

δint : r = nil & d > 2 : d← d− 2

r ← nil

ta :

0, r 6= nil

1, go & r = nil

∞, not go & r = nil

Figure 23. DEVS functions of the component RobotDevice.

formalism for system modeling as well as for system im-
plementation and deployment. It is based on the application
framework allowing to interoperability of models and product
environment.

A. Application Framework

The application framework has to fulfil two basic require-
ments. First, to link models and product environment. Second,
to work with models in simulations.

First, the models described by means of OOPN can co-
operate with objects of the product environment (product
objects). Since the developed framework [20] is implemented
in Smalltalk [21], OOPN objects can send messages to
Smalltalk objects, and OOPN objects can be directly available
in Smalltalk. There are different levels at which the prod-
uct objects can send messages to OOPN objects—domain,
predicate, and synchronous port levels. Domain level allows
Smalltalk objects to send messages OOPN objects as though
they were Smalltalk objects. Predicate level allows to test
predicates and port level allows to perform synchronous ports.
Each OOPN object offers special meta-protocol allowing to
work at presented levels (it will be shown in the text, later
on).

Second, the framework allows to execute models in differ-
ent simulation modes—simulation in model time, simulation in
real time, and simulation in combined time. Each simulation
mode is advisable for another kind of usage. Model time is
intended for basic design, testing, and analysis of system under
development and assumes all components are described by
formal models. Combined time assumes that the system is
descibed by formal models as well as implemented in product
environment, i.e., selected simulated components are replaced
by their real implementation, whereas simulated components
work in model time and real components work in real time.
This mode allows to experiment with simulation models in
real conditions. Real time assumes that all components (sim-
ulated as well as real) work in real time and is intended for
hardware/software-in-the-loop simulation and system deploy-
ment.

274

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Implementation with Basic Architecture

We can exchange the simulated subject by an interface to
the real robot. It is very simple—we only create instances
of appropriate classes and do not care about used formalism.
Figure 24 of Smalltalk code shows creating a subject as an
instance of a Smalltalk class. This subject cooperates with a
role and an activity modeled by OOPN. The object Repos
represents the storage of all classes and simulations using
OOPN or DEVS formalisms.

cAct := Repos componentNamed:

’ExecuteScenario’.

cRole := Repos componentNamed: ’Robot’.

subj := RobotDevice new.

role := cRole forSubject: subjR.

actS := role createActivity.

actS start.

Figure 24. Accessing OOPN objects from Smalltalk.

Now, we demonstrate an accessing OOPN objects from
product environment of Smalltalk. We send a command go

to start walking—the message passing is provided in the
standard form. To test an object state, the predicates should be
used. Since they are not ordinary methods, we have to access
them in a special way. We obtain a special meta-protocol by
sending a message asPredicate and then call synchronous
port or negative predicate in the standard form of message
passing. The result represents a state of a called port/predicate,
which has been tested. In our example, we test the predicate
isCloseToObstacle and if the result is true, then we stop
robot’s walking by sending a message stop. The example is
shown in Figure 25.

role go.

r := role asPredicate isCloseToObstacle.

r ifTrue: [role stop].

Figure 25. Message passing and predicate testing.

Of course, proposed solution is not sufficient for our case,
because we need to test this condition until it becomes true.
Therefore, we can use one of following ways—to use waiting
for specified condition or to define a listener. The first way
is shown in Figure 26. We simply use a message waitFor:
from the meta-protocol, which blocks until the specified con-
dition becomes true, i.e., the port isCloseToObstacle
becomes fireable.

role go.

role asPredicate waitFor: #isCloseToObstacle.

role stop.

Figure 26. Waiting for a condition.

Second way is shown in Figure 27. It uses a message
listener:for: from meta-protocol to define a listener,
which is activated if the condition becomes true, i.e., the port
becomes fireable.

role go.

role asPredicate

listener: self

for: #isCloseToObstacle.

Figure 27. Setting a listener.

The activation of listener means that the special message
conditionSatisfied: is sent to object, which is speci-
fied as a first argument. The example of its implementation is
shown in Figure 28.

method conditionSatisfied: aCond

(aCond == #isCloseToObstacle)

ifTrue: [role stop].

Figure 28. Listener implementation.

C. Implementation with DEVS Architecture

The example of accessing DEVS components and their
object interface is shown in Figure 29. First, we get the DEVS
model named DEVSRobot, which is based on architecture from
Figure 19. Second, we obtain DEVS component Behavior,
which is able to communicate through its ports. Since this
component is described by OOPN, it is possible to use object
interface of its initial object (an instance of the class Robot)
too. To get the object interface, we send a special message
objectInterface from the component meta-object proto-
col.

s1 := Repos componentNamed: ’DEVSRobot’.

cB := c1 componentNamed: ’Behavior’.

role := cB objectInterface.

Figure 29. Obtaining object interface to the inital object.

The variable role referees an instance of initial class
Robot of the component Behavior. The other manipulation is
the same as in the case of the basic architecture. For instance,
to wait for the condition isCloseToObstacle a sequence of
messages shown in Figure 26 can be used. It blocks until the
port isCloseToObstacle becomes fireable and then stops
the robot.

IX. CONCLUSION AND FUTURE WORK

The paper dealt with an approach to system development
and deployment using formal models as a basic design, anal-
ysis and programming means combining simulated and real
components. Combination of two formalisms has been taken
into account—Object Oriented Petri Nets (OOPN) for behavior
description and Discrete Event System Specification (DEVS),
which can be used for architecture description as well as
behavior description. The main advantage of that approach
is no need for code generation and further investigation of
deployed systems using the same formal models. The process
of such an development was demonstrated on the case study
of simple robotic system.

The proposed approach has one main disadvantage—usage
of application framework, which interprets formal models di-
rectly demands of increased requirements on memory size and
system performance. The future research will aim at efficient
representation of choosed formal models and interoperability
with another product environment. The application framework
will be adapted to new conditions having lesser requirement
for resources.

275

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENT

This work has been supported by the European Regional
Development Fund in the IT4Innovations Centre of Excellence
project (CZ.1.05/1.1.00/02.0070), by BUT FIT grant FIT-S-11-
1, and by the Ministry of Education, Youth and Sports under
the contract MSM 0021630528.

REFERENCES

[1] R. Kočı́ and V. Janoušek, “Object oriented Petri nets in software devel-
opment and deployment,” in ICSEA 2013, The Eighth International
Conference on Software Engineering Advances. Xpert Publishing
Services, 2013, pp. 485–490.

[2] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software Develop-
ment. Springer-Verlag, 2005.

[3] M. Broy, J. Gruenbauer, D. Harel, and T. Hoare, Eds., Engineering
Theories of Software Intensive Systems: Proceedings of the NATO
Advanced Study Institute. Kluwer Academic Publishers, 2005.

[4] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie, Model
Driven Architecture with Executable UML. Cambridge University
Press, 2004.

[5] D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise
Computing, ser. 17 (MS-17). John Wiley & Sons, 2003.

[6] R. Kočı́ and V. Janoušek, “System design with Object oriented Petri
nets formalism,” in The Third International Conference on Software
Engineering Advances Proceedings ICSEA 2008. IEEE Computer
Society, 2008, pp. 421–426.

[7] R. Kočı́ and V. Janoušek, “OOPN and DEVS formalisms for system
specification and analysis,” in The Fifth International Conference on
Software Engineering Advances. IEEE Computer Society, 2010, pp.
305–310.

[8] M. Češka, V. Janoušek, and T. Vojnar, PNtalk — a computerized tool
for Object oriented Petri nets modelling, ser. Lecture Notes in Computer
Science. Springer Verlag, 1997, vol. 1333, pp. 591–610.

[9] R. Kočı́ and V. Janoušek, Simulation Based Design of Control Systems
Using DEVS and Petri Nets, ser. Lecture Notes in Computer Science.
Springer Verlag, 2009, vol. 5717, pp. 849–856.

[10] J. L. Fernandez, R. Sanz, E. Paz, and C. Alonso, “Using hierarchical
binary Petri nets to build robust mobile robot applications: RoboGraph,”
in IEEE International Conference on Robotics and Automation, 2008,
pp. 1372–1377.

[11] C. Rust, F. Stappert, and R. Kunnemeyer, “From Timed Petri nets to
interrupt-driven embedded control software,” in International Confer-
ence on Computer, Communication and Control Technologies (CCCT
2003), 2003.

[12] O. Bayo-Puxan, J. Rafecas-Sabate, O. Gomis-Bellmunt, and J. Bergas-
Jane, “A GRAFCET-compiler methodology for C-programmed micro-
controllers, In Assembly Automation,” Assembly Automation, vol. 28,
no. 1, 2008, pp. 55–60.

[13] R. Valk, “Petri nets as token objects: an introduction to Elementary
object nets.” in Jorg Desel, Manuel Silva (eds.): Application and Theory
of Petri Nets; Lecture Notes in Computer Science, vol. 120. Springer-
Verlag, 1998.

[14] D. Moldt, “OOA and Petri nets for system specification,” in Object-
Oriented Programming and Models of Concurrency. Italy, 1995.

[15] L. Cabac, M. Duvigneau, D. Moldt, and H. Rölke, “Modeling dynamic
architectures using nets-within-nets,” in Applications and Theory of
Petri Nets 2005. 26th International Conference, ICATPN 2005, Miami,
USA, 2005, pp. 148–167.

[16] V. Janoušek and R. Kočı́, “PNtalk: concurrent language with MOP,”
in Proceedings of the CS&P’2003 Workshop. Warsaw University,
Warsawa, PL, 2003.

[17] R. Kočı́ and V. Janoušek, “Modeling and simulation-based design
using Object-oriented Petri nets: a case study,” in Proceeding of the
International Workshop on Petri Nets and Software Engineering 2012,
vol. 851. CEUR, 2012, pp. 253–266.

[18] R. Kočı́ and V. Janoušek, “Specification of UML classes by Object ori-
ented Petri nets,” in ICSEA 2012, The Seventh International Conference
on Software Engineering Advances. Xpert Publishing Services, 2012,
pp. 361–366.

[19] B. Zeigler, T. Kim, and H. Praehofer, Theory of Modeling and Simu-
lation. Academic Press, Inc., London, 2000.

[20] R. Kočı́, “PNtalk system,” http://perchta.fit.vutbr.cz/pntalk2k, 2004.
[Online]. Available: http://perchta.fit.vutbr.cz/pntalk2k

[21] A. GoldBerk and D. Robson, Smalltalk 80: The Language. Addison-
Wesley, 1989.

276

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Localizing Software Bugs using the Edit Distance of Call Traces

Themistoklis Diamantopoulos and Andreas Symeonidis
Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki
Information Technologies Institute, Centre for Research and Technology Hellas

Thessaloniki, Greece
Email: {thdiaman,asymeon}@issel.ee.auth.gr

Abstract—Automating the localization of software bugs that do
not lead to crashes is a difficult task that has drawn the attention
of several researchers. Several popular methods follow the same
approach; function call traces are collected and represented as
graphs, which are subsequently mined using subgraph mining
algorithms in order to provide a ranking of potentially buggy
functions-nodes. Recent work has indicated that the scalability of
state-of-the-art methods can be improved by reducing the graph
dataset using tree edit distance algorithms. The call traces that
are closer to each other, but belong to different sets, are the
ones that are most significant in localizing bugs. In this work, we
further explore the task of selecting the most significant traces, by
proposing different call trace selection techniques, based on the
Stable Marriage problem, and testing their effectiveness against
current solutions. Upon evaluating our methods on a real-world
dataset, we prove that our methodology is scalable and effective
enough to be applied on dynamic bug detection scenarios.

Keywords-automated debugging, dynamic bug detection, frequent
subgraph mining, tree edit distance, Stable Marriage problem.

I. INTRODUCTION

During the latest few decades, software reliability has grown
to be a major concern for both academia and the industry.
Software bugs can lead to faulty software and dissatisfied
customers, since testing and debugging are quite costly even
compared to the software development phase. As software
grows more and more complex, though, identifying and elim-
inating software bugs has become a challenging task.

There are two types of software bugs: crashing bugs and
non-crashing bugs. The former, as their name implies, lead
to program crashes, thus they are easier to locate by tracing
the call stack at the time of the crash. The latter, however, are
logic errors that do not lead to crashes. The problem of locating
non-crashing bugs is quite difficult, since no stack trace of the
failure is available. Thus, finding a bug would usually involve
careful examination of the source code, thorough testing, even
pure intuition as to where the bug might reside. An interesting
line of research aims towards automating the bug locating
procedure by applying Data Mining (DM) techniques on call
traces of correct and incorrect program executions. Hence,
since dynamic analysis is performed to detect such bugs, the
field is known as dynamic bug detection.

As noted in [1], dynamic bug detection techniques may be
broadly classified according to the granularity of the source
code instrumentation approach. Highly granular approaches

involve inserting checks in different source code positions,
either in the form of counters or boolean predicates. Indica-
tively, Liblit et al. [2] heuristically eliminate counters and
apply logistic regression (or statistics as in [3]) to identify
the attributes that affect the class (bug vs no bug). On the
other hand, Liu et al. [4] employ boolean predicate statistics
on correct and incorrect executions to localize bugs.

A more coarse-grained approach concerns inserting checks
at block level, where blocks are fragments of code between
branches. Renieris and Reiss [5] follow this approach and per-
form nearest neighbor queries to identify incorrect execution
traces that are close to correct ones and compare these couples
to detect potentially buggy blocks of code.

Counter-level and block-level approaches are quite precise
in localizing bugs. However, the rise of Object Oriented
and Functional Programming has led to preference for small
comprehensive functions, indicating that instrumenting func-
tions can also be effective. Mining traces at function level,
and thus identifying potentially buggy functions is generally
fine-grained enough for localizing a bug, as long as proper
programming paradigms are employed. Approaches in this
category employ Graph Mining techniques to call traces to
identify which subgraphs are more frequent in incorrect than
in correct runs [6]–[8]. Current approaches include also ef-
forts towards improving the Graph Mining procedure [9], or
using different representations such as N-grams (subsequences
of length N) [10], or even reformulating the problem as a
search/optimization problem [11]. Although these approaches
are effective, their scalability is arguable.

The procedure of bug localization is similar for all ap-
proaches. The generated call traces constitute a dataset that
has to be mined in order to detect bugs; and this is where
the problems start. Even at function-level, datasets are usually
huge. For a small application, with, e.g., 150 functions, there
may be couples of thousands of transitions among them. In this
context, creating an effective, yet also scalable, solution is a
challenging problem. And, though it has been broadly studied,
most literature approaches focus on reducing the size of each
trace, without reducing the number of traces in the dataset.

Previous work [1] on reducing the size of the dataset
has indicated considerable improvement on both scalability
and effectiveness. We extend this work by reformulating the
problem and providing different methodologies that focus on
achieving effectiveness without compromising scalability. As
in [1], the methodology involves performing Graph Mining

277

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

techniques to a subset of the dataset, thus the main focus lies
on determining that subset. The similarity between any two
call traces of the dataset can be defined as their edit distance,
i.e., the cost of turning the one trace to the other. Given the
distances between all combinations of traces, the problem is
reduced to designing a call trace selector algorithm that suc-
cessfully determines the most “useful” traces, i.e., the ones that
successfully isolate the bug. In this paper, we further explore
the effect of the call trace selector algorithm, by proposing two
new algorithms, and comparing the different methodologies
with respect to scalability and effectiveness. Furthermore, we
benchmark our methods against known function-level dynamic
bug detection techniques in order to discuss their applicability
in real applications and evaluate their effectiveness against the
current state-of-the-art.

Section II of the paper reviews current literature on function-
level dynamic bug detection, illustrating the general procedure
followed to mine the traces and identify the Graph Mining
problems. Section III provides insight for reducing the call
trace dataset and explores the tasks of comparing call traces
and selecting the most “useful” subset of the call trace dataset.
The construction of a realistic dataset that illustrates our
contribution is explained in Section IV. Finally, our implemen-
tation is evaluated in terms of efficiency and effectiveness in
Section V, while Section VI concludes the paper and provides
insight for further research.

II. FUNCTION-LEVEL DYNAMIC BUG DETECTION

In this section, we discuss the basic steps followed in
function-level bug localization techniques, while denoting the
different approaches. The following subsections correspond
to the main phases of constructing a graph dataset, reducing
the graphs to improve scalability, and applying Graph Mining
techniques to provide the final ranking of possibly buggy
functions.

A. Graph Dataset Construction
Assuming there is a set of test cases, program functions

are instrumented and the test cases are executed to produce a
set of call traces (or scenarios) S. A call trace is initially a
rooted ordered tree, with the main function as its root. Two
more sets, Scorrect and Sincorrect are defined, corresponding
to correct and incorrect program executions. The correctness of
an execution can be determined by the developer. In generated
datasets such as the one used in this paper, one can also
determine it automatically by comparing the output of the
erroneous versions of the program with the correct version.
Thus, upon collecting the execution traces, the graph dataset1
is constructed.

B. Graph Reduction
At this point, the graphs of the dataset are quite large, with

thousands of nodes and respective edges. Applying a Graph

1Any tree is obviously also a graph. The terms are used interchangeably
concerning the class of techniques that may be applied to the dataset.

Mining algorithm to such a dataset would be highly inefficient.
Thus, graph reduction is performed on each graph in order to
keep only useful information while discarding all redundant
data, to reduce its size. Figure 1 depicts several state-of-the-
art graph reduction techniques.

A

B C

B B B

(a)

A

C

B

(b)

A

B C

B B

(c)

A

B C

B

1
1

3

(d)

A

B C

B

(e)

Figure 1. An example call graph (a) and four different reduced graphs with
respect to the reduction techniques, including (b) total reduction, (c) one-two-
many reduction, (d) subtree reduction and (e) simple tree reduction.

The first technique, known as total reduction, is presented by
Liu et al. [6]. The authors create a graph using each edge of the
initial call graph once and discard any structural information
(i.e., tree levels). Total reduction, shown in Figure 1b, is the
most efficient reduction method since it actually preserves
minimum information.

However, total reduction fails to capture the structure of
the call graph, thus different alternatives have been applied to
preserve more information, while keeping the graph as small
as possible. A straightforward solution is the one proposed
by Di Fatta et al. [7]; the authors perform one-two-many
reduction, preserving tree structure by keeping exactly two
child nodes whenever the children of a node are more than
two (see Figure 1c).

Eichinger et al. [8] claim that total reduction and one-
two-many reduction are not sufficient, since they discard call
frequency information. According to the authors, the number
of times (i.e., frequency) that a function calls another function
is crucial since it can capture bugs that may occur in, e.g., the
third or fourth time the function is called. Thus, they propose
subtree reduction, a technique that preserves both the structure
of the tree and the frequency of function calls (see Figure 1d).

As one might observe, the reduction techniques are based
on a compromise between information loss and scalability.
Although subtree reduction maintains most information, it is
quite inefficient since it immediately adds a weight parameter
to the graph. Since the scope of this work lies in scalability,
we decided to use a reduction technique called simple tree
reduction, shown in Figure 1e, which was originally introduced
in [1]. Reducing a graph using simple tree reduction involves
traversing all the nodes once and deleting any duplicates as
long as they are on the same level. The reduced graph is a
satisfactory representation of the original one since large part
of its structure is preserved.

C. Graph Mining
Upon reduction, the problem lies in determining the nodes

(functions) that are frequent in the incorrect set Sincorrect and
infrequent in the correct set Scorrect. Intuitively, if a function
is called every time the result is incorrect, it is highly possible

278

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to have a bug. However, having more than one function with
the same frequency is also possible. Thus, the Graph Mining
algorithm should find the closed frequent subgraphs, i.e., the
subgraphs for which no supergraph has greater support in
Sincorrect.

Finding frequent subgraphs in a graph dataset is a well-
known problem, defined as Frequent Subgraph Mining (FSM).
State-of-the-art algorithms include gSpan [12] and Gaston [13].
Furthermore, since these graphs are actually trees, several Fre-
quent Subtree Mining (FTM) algorithms, such as FreeTreeM-
iner [14], may be used as well. Although those algorithms
are applicable to the problem, there is strong preference for
CloseGraph [15], an algorithm that is highly scalable since
it prunes unnecessary input and outputs only closed frequent
subgraphs.

D. Ranking
The output of the CloseGraph algorithm is a set of frequent

subgraphs, along with their support in the correct and the incor-
rect set. Hence, the question is how can a ranking of possibly
buggy functions be created by such a set. It is typical to use
DM techniques based on support and confidence to determine
which subgraphs are actually interesting. For instance, Di Fatta
et al. [7] suggest ranking the functions according to their
support in the failing set. According to Eichinger et al. [8],
this type of ranking can be called structural. The structural
ranking for each function f is defined as:

Ps(f) = support(f, Sincorrect) (1)

The support of each function in the failing set Sincorrect

provides a fairly effective ranking. However, the scoring de-
fined in equation (1) is not sufficient, since it does not take
confidence into account. Furthermore, finding the support only
on incorrect executions yields skewed results, since a function
with large support in both Scorrect and Sincorrect would be
ranked high, even though it may be insignificant with respect
to the bug.

Several variations of the structural ranking have emerged
in order to overcome the aforementioned issues [4][7]. In this
paper, we use an entropy-based ranking technique proposed by
Eichinger et al. [8] since it is proven to outperform the other
techniques. The main intuition behind this ranking technique is
to identify the edges that are most significant to discriminate
between correct and incorrect call traces. A table is created
with columns corresponding to subgraph edges and rows
corresponding to graphs. The table holds the support of each
edge in every graph. Consider the example of Table I.

TABLE I. ENTROPY-BASED RANKING EXAMPLE

Graph f1 → f2 f1 → f3 f2 → f4 . . . Class
G1 4 7 2 . . . correct
G2 9 5 8 . . . incorrect
G3 6 3 1 . . . correct
.

In Table I, F = f1, f2, . . . is the set of functions and
G = G1, G2, . . . is the set of graphs. The table is constructed
given the support of each subgraph in the graphs. Thus,

supposing subgraph SG1 appears 4 times in graph G1 and
edge f1 → f2 ∈ SG1, the support of the edge in graph G1

is 4. If, e.g, both SG2 and SG3 contain the edge f1 → f2
and they appear 5 and 4 times respectively in graph G2, then
the support of this edge in graph G1 is 9. As one might
observe, the problem is actually a feature selection problem,
i.e., defining the features (edges) that discriminate between
the values of the class feature (correct, incorrect). Thus,
any feature selection algorithm may be used to determine the
most significant features. Eichinger et al. [8] calculate the
information gain for each feature, and interpret the result for
each feature (ranging from 0 to 1) as the probability of it being
responsible for a bug. The respective probability Pe(f) for a
node (function) is determined by the maximum probability of
all the edges it is connected to.

Finally, one can calculate the combined ranking for a
function f by averaging over its structural ranking Ps(f) and
its entropy-based ranking Pe(f). However, since Ps(f) and
Pe(f) may have different maximum values, it is necessary
that their values are normalized by dividing each ranking
by its maximum value. Thus, the combined ranking P (f) is
calculated as follows:

P (f) =
1

2
·

 Pe(f)

max
f∈F

Pe(f)
+

Ps(f)

max
f∈F

Ps(f)

 (2)

where the maximum values at the denominators are used in
order to normalize the weighting of each ranking. Finally,P (f)
provides the probability that a function f contains a bug in the
range [0, 1].

III. REDUCING THE GRAPH DATASET

The steps defined in Section II are common for all function-
level bug detection algorithms. Several researchers have in-
dicated the need for scalable solutions, which is generally
accomplished by reducing the graphs (see Subsection II-B).
Ideally, graph reduction captures the most important informa-
tion of the graph while minimizing its size. However, even
upon reduction, the number of graphs in the dataset is quite
large, thus making the mining step quite inefficient.

When a dataset of several graphs is given, not all of them are
equally useful in locating the bug. Consider a simple scenario
for the grep program. Assume the program has a bug that
results in faulty executions when the ? character is used in
a Regular Expression (RE), such that the appropriate words
are not returned, if the preceding element appears 0 times.
Normally, if a symbol is succeeded by the ? character, then it
may be found 0 or 1 times exactly. Consider running the grep
program for one word at a time for the following phrase:

there once was a cat that ate a rat
and then it sat on a yellow mat

In this text, the RE [a-z]*c?at should match the words in
the set Smatched = {cat, that, rat, sat, mat}, i.e., all
words having any letter from a to z 0 or more times, followed
by the letter c 0 or 1 times exactly, and followed by letters a
and t. Instead it only matches the word cat. Consider also

279

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the set of words that are not matched Sunmatched = {there,
once, was, a(1), ate, a(2), and, then, it, on, a(3),
yellow}. Assuming that all the possible traces are created,
several of them, such as the ones created from the Smatched

set, are actually much more significant in identifying the bug,
since it actually resides only on the Smatched set. Thus, traces
of cat and rat should be more similar than traces of cat and
yellow. In fact, when executing the cat and rat scenarios,
many function calls coincide. However, this is also true for the
traces of was and it. Intuitively, determining which traces
are highly indicative of the bug can be based on the similarity
between them as well as whether they are correct or incorrect.
Thus, correct executions that are similar to the incorrect ones
(e.g., rat may be close to cat) should isolate more easily
the buggy functions. On the other hand, when two correct (or
incorrect) executions are quite close to each other (e.g., the
traces from was and it could be quite similar), then one of
them should provide all necessary information.

The above example is formed such that it is easy to under-
stand. One could ask why not select test cases by hand, so that
they are discriminating. However, this is usually impossible
since real scenarios are much more complex, e.g., for the grep
case there may be passages instead of words. In addition,
certain executions may seem similar, yet be significantly
different with respect to the call traces. Thus, at first, there
is the need for a similarity metric between two traces. Having
such a metric, one can apply an algorithm to select the most
discriminating call traces based on the aforementioned intuitive
remarks. Similarly to [1], the metric used to compare the
similarity between two trees is the edit distance between them.
Subsection III-A provides different alternatives for computing
this metric, while Subsection III-B illustrates our proposed
algorithms for using it to reduce the size of the dataset.

A. The Tree Edit Distance Problem
A metric widely used to represent the similarity between

two strings is the String Edit Distance (SED) between them.
SED is defined as the number of edit operations required
to transform one string to the other. SED operations usually
contain insertion or deletion of characters. Concerning trees,
such as the ones of our dataset, Tree Edit Distance (TED)
algorithms can be used to calculate the distance between two
of them. The following paragraphs provide a definition of the
TED problem as well as two well known algorithms of current
literature in finding TED.

The TED problem was originally posed by Tai [16] in 1979.
The possible edit operations are defined in Figure 2.

A

B C

D E

(a)

A

B F

D E

(b)

A

B

D E

(c)

A

B C

D EF

(d)

Figure 2. An example tree (a) and three different edit operations: (b) node
relabeling, (c) node deletion, and (d) node insertion.

The first operation, node relabeling, concerns simply changing
the label of a node (see Figure 2b). Node deletion is performed
by deleting a node of the tree and reassigning any children it
had so that they become children of the deleted node’s parent.
For example, in Figure 2c, the children of deleted node C are
reassigned to C’s parent A. Finally, node insertion concerns
inserting a new node in a position in the tree, such as inserting
node F in Figure 2d. Assuming a cost function is defined for
each edit operation, an edit script between two trees T1, T2
is a sequence of operations required to turn T1 into T2, and
its cost is the aggregate cost of these operations. Thus, the
TED problem is defined as determining the optimal edit script,
i.e., the one with the minimum cost.

1) Zhang-Shasha Algorithm: One of the most well known
TED algorithms is the Zhang-Shasha algorithm, which was
named after its authors, K. Zhang and D. Shasha [17]. Let
δ(T1, T2) be the edit distance between trees T1 and T2, and
γ(l1 → l2) be the cost of the edit operation from l1 to l2.
A simple recursive algorithm for computing TED is defined
using the following equations:

δ(θ, θ) = 0 (3)
δ(T1, θ) = δ(T1 − u, θ) + γ(u→ λ) (4)
δ(θ, T2) = δ(θ, T2 − v) + γ(λ→ v) (5)

δ(T1, T2) = min

δ(T1 − u, T2) + γ(u→ λ)

δ(T1, T2 − v) + γ(λ→ v)

δ(T1(u), T2(v)) + δ(T1 − T1(u),
(6)

T2 − T2(v)) + γ(λ→ v)

where T − u denotes tree T without node u and T − T (u)
denotes tree T without u or any of each children. Parameter λ
is the performed edit operation. The Zhang-Shasha algorithm
uses Dynamic Programming (DP) in order to compute the
TED. The keyroots of a tree T are defined as:

keyroots(T) = {root(T)}∪ {u ∈ T : u has left siblings} (7)

Given (7), the relevant subtrees of T are defined as:

relevant subtrees(T) =
⋃
u

{T (u)}, ∀u ∈ keyroots(T) (8)

Thus, the algorithm recursively computes the TED by finding
the relevant subtrees and applying equations (3)–(6).

2) pq-Grams Algorithm: Several algorithms solve the TED
problem effectively. However, even the most efficient ones lack
scalability, since the polynomial order of the problem is high.
A promising way of reducing the complexity of the problem
and improving efficiency is by approximating the TED instead
of computing its exact value. Approximate TED algorithms can
generally be effective enough when results do not need to be
exact. In the call trace scenario, the TED is a value denoting
the similarity of two trees, thus, even if it is approximate,
it shall be sufficient for the call trace selector algorithms of
Subsection III-B.

Such an approximate TED algorithm is the pq-Grams based
algorithm proposed by Augsten et al. [18]. The authors de-
fine pq-Grams as a port of known string q-grams to trees.
An example tree and its pq-Grams are shown in Figure 3.

280

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A

B C

D E

(a)

∗

A

∗ ∗ B C ∗ ∗

∗ ∗ ∗ ∗ ∗ D E ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

(b)

∗

A

∗ ∗ B

∗

A

∗ B C

∗

A

B C ∗

∗

A

C ∗ ∗

A

B

∗ ∗ ∗

A

C

∗ ∗ D

A

C

∗ D E

A

C

D E ∗

A

C

E ∗ ∗

C

D

∗ ∗ ∗

C

E

∗ ∗ ∗

(c)

Figure 3. A pq-Grams example for p = 2 and q = 3, containing (a) an
example tree, (b) its extended form for p = 2 and q = 3, and (c) its pq-Grams.

Parameters p and q define the stem and the base of the pq-
Gram, respectively. Let p = 2 and q = 3, the stem of the
first pq-Gram of Figure 3c is {∗, A} and its base is {∗, ∗, B}.
Since the pq-Grams for the tree of Figure 3a cannot be directly
created, an intermediate step of extending the tree with dummy
nodes is shown in Figure 3b. Finally, The pq-Gram profile is
the set of all pq-Grams of a tree (see Figure 3c), while the
pq-Gram index of the tree is defined as the bag of all label
tuples for the tree. For example, the pq-Gram index for the
tree of Figure 3 is defined as:

I(T) = {∗A∗∗B, ∗A∗BC, ∗ABC∗, ∗AC∗∗, AB∗∗∗,
AC∗∗D,AC∗DE,ACDE∗, ACE∗∗, CD∗∗∗, CE∗∗∗} (9)

According to Augsten et al. [18], the TED between two
trees is effectively approximated by the distance between their
pq-Gram indexes. Let I(T) be the pq-Gram index of tree T ,
the pq-Gram distance between trees T1 and T2 is defined as:

δ(T1, T2) = |I(T1) ∪ I(T2)| − 2|I(T1) ∩ I(T2)| (10)

Equation (10) provides a fast way of approximating the TED
between any pair of trees of the dataset.

B. The Call Trace Selection Problem
In the previous subsection, we provided two different meth-

ods for defining and computing the similarity between two
call traces. Assuming that the similarity between all correct-
incorrect pairs of the dataset is computed, the problem lies

in using this information to determine which call traces can
successfully isolate the bug. Formally, assuming that our
input consists of the correct and incorrect sets, Scorrect and
Sincorrect, we must design an algorithm that shall output
two new sets S′correct and S′incorrect. Let n be the size of
each of the new sets, where set S′correct contains the n most
important correct graphs and set S′incorrect contains the n
most important incorrect graphs. The following paragraphs
describe three different call trace selector algorithms that we
implemented to solve the problem.

1) The SimpleSelector algorithm: The first algorithm imple-
mented is the SimpleSelector algorithm, which was originally
described in [1]. The application of the algorithm is shown in
Figure 4.

Input: n, Scorrect, Sincorrect

Output: S′
correct, S′

incorrect

D = {(gc, gi) ∀gc ∈ Scorrect, gi ∈ Sincorrect}
sort(D, key=similarity(gc, gi))

S′
correct =First(n, {gc : gc ∈ d ∈ D})

S′
incorrect =First(n, {gi : gi ∈ d ∈ D})

Figure 4. The SimpleSelector algorithm that sorts the pairs of (correct,
incorrect) traces and outputs the first n correct and the first n incorrect traces.

As shown in the figure, the algorithm requires as input the
correct and incorrect sets, Scorrect and Sincorrect, along with
parameter n, which controls how many graphs are going to be
retained per set. Initially, the set D, which contains all correct-
incorrect pairs of graphs, is sorted according to the similarity
of each pair. The set S′correct contains the first n correct unique
graphs that are found in the sorted set D, i.e., the n correct
graphs that belong to the most similar pairs d of D. The set
S′incorrect contains the first n incorrect unique graphs that are
found in the sorted set D. For example, given n = 2 and
D = {d1, d2, d3} = {(g1, g3), (g1, g4), (g2, g5)} so that the
similarity of pair d1 is larger than that of d2 and the similarity
of d2 is larger than that of d3, the sets S′correct and S′incorrect
are {g1, g2} and {g3, g4} respectively. Function sort sorts the
set according to the key. Finally, function similarity can
be easily determined using either of the two methods presented
in Subsection III-A.

Previous work [1] has indicated that the SimpleSelector
algorithm is adequate in terms of effectiveness. Intuitively,
since the algorithm selects the most similar pairs of traces, it
certainly captures some of the most important traces. However,
the algorithm does not account for similar graphs of the same
set. In specific, given the above example, graphs g3 and g4
could potentially be quite similar to each other. Assuming g3
and g4 have identical similarity metrics with g1, keeping both
of them on the final set could produce redundant information.
Thus, the second call trace selector algorithm was implemented
in order to eliminate this redundancy.

2) The StableMarriage algorithm: The second algorithm
implemented is based on the stable marriage (or stable match-
ing) problem. The problem, first introduced by D. Gale and
L. S. Shapley [19] in 1962, has many variants (see [20] for an

281

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

extensive survey) since it has numerous applications to real-
life problems. According to its original definition, there are
N men and N women, and every person ranks the members
of the opposite sex in a strict order of preference, i.e., with
no equal preference for any member of the opposite sex. The
problem is to find a matching between men and women so that
there are no two people of opposite sex who would both rather
be matched to each other than their current partners. If there
are no such people, the matching (marriage) is considered to
be stable.

The call trace selection problem can be formulated as a
stable marriage problem. In this case, the two sexes are the
traces of the correct and the traces of the incorrect set. For any
trace, given its similarity with the traces of the opposite set,
a ranked preference list is formed. Given that the probability
two pairs having the same similarity value is too low, we can
safely assume that the lists are strictly ordered. Upon forming
all the preference lists, the Gale-Shapley algorithm [19] can
be applied to our problem. The application of the algorithm is
shown in Figure 5.

Input: n, Scorrect, Sincorrect

Output: S′
correct, S′

incorrect

Find preference list ∀g ∈ {Scorrect ∪ Sincorrect}
Set all gc ∈ Scorrect and gi ∈ Sincorrect to unmatched

while ∃ free gc that has a gi to try to match

gi = gc’s highest ranked incorrect trace

that gc has not yet tried to match

if gi is unmatched

(gc, gi) are matched together

else there is a matching (g′c, gi)

if gi prefers gc to g′c
(gc, gi) are matched together

g′c becomes unmatched

D = {all pairs (gc, gi) of stable matching}
sort(D, key=similarity(gc, gi))

S′
correct =First(n, {gc : gc ∈ d ∈ D})

S′
incorrect =First(n, {gi : gi ∈ d ∈ D})

Figure 5. The StableMarriage algorithm that finds the stable matching among
the traces of the correct and the incorrect sets, and outputs the traces of the
first n (correct, incorrect) pairs.

Functions sort and similarity work similarly to the
SimpleSelector algorithm. The algorithm of Figure 5 initially
creates the preference lists for each graph of the sets Scorrect

and Sincorrect. Note that this step can be reduced to minimum
complexity using suitable data structures. At the beginning
of the algorithm, all graphs of both sets are unmatched. The
algorithm iterates over all correct graphs and tries to match
each correct graph gc to its most preferred incorrect graph gi
for which there was not yet an attempt to match. Any incorrect
graph accepts a proposal to match if it is unmatched or if the
proposed matching is preferable to its current matching. Given
sets Scorrect = {g1, g2, g3} and Sincorrect = {g4, g5, g6}
and the similarity between all correct-incorrect pairs one can

construct the ranked preference lists of Figure 6.

g1 : g5 > g4 > g6
g2 : g5 > g6 > g4
g3 : g6 > g4 > g5

(a)

g4 : g2 > g1 > g3
g5 : g1 > g2 > g3
g6 : g2 > g3 > g1

(b)

Figure 6. Example preference lists for the graphs of (a) the correct set
Scorrect = {g1, g2, g3} and (b) the incorrect set Sincorrect = {g4, g5, g6}.

Iterating over the correct graphs, g1 initially is matched to
g5 since it is in the top of its preference list. After that, g2
tries also to match with g5, and since the g5 preference list
indicates preference for g2 over g1, the new pair is (g2, g5)
and g1 becomes unmatched. After that, g3 gets matched
with g6. Since there is still an unmatched graph g1, and it
already tried to match with its first choice it tries to match
with its second choice g4, which is accepted since g4 is
unmatched. Thus, the final pairs that form the set D are
sorted according to their similarity, for example resulting in
D = {(g1, g4), (g3, g6), (g2, g5)}. Given, e.g., that the number
of retained graphs per set is n = 2, the sets S′correct and
S′incorrect are {g1, g3} and {g4, g6} respectively.

The Gale-Shapley algorithm is proven to converge to a male-
optimal solution [19], indicating in our case that there is no
better matching for the correct graphs of the set. Furthermore,
since the final list of the algorithm has no duplicates, any
redundant data, i.e., graphs that belong to the same set, are
discarded. Although the StableMarriage algorithm seems well
adapted to the problem, the algorithm disregards the fact
that the pairs are not only ranked but also weighted. Thus,
StableMarriage can actually provide a sub-optimal solution
to the problem. As a result, we have implemented another
algorithm that accounts for the weights and is better suited to
the problem at hand.

3) The MaxLinkMax algorithm: The third algorithm that
we implemented was initially proposed as a solution to an
extension of the stable marriage problem, based on the concept
of defining a different form of stability for the problem [21].
One can define different notions of stability for a stable
matching problem with weighted preferences (see [21] for an
extensive definition of several alternatives). In our case, we
used the link-max stability as a criterion denoting whether the
matching is stable. Returning to the marriage metaphor, given
a man and a woman, their link-max strength is the maximum
between the preference value that the man gives to the woman
and the preference value that the woman gives to the man.
Given a stable marriage problem with weights, a matching is
said to be link-max stable if there are no two people of the
opposite sex of which the marriage would have larger link-
max strength than either of the current matchings that each
partner has. Formally, let lm(m,w) be the link-max strength
of a man m and a woman w, a link-max stable marriage does
not contain any pair (m,w) such that:

lm(m,w) > lm(m′, w) (11)
lm(m,w) > lm(m,w′) (12)

where m′ is the current partner of w and w′ is the current
partner of m.

282

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The call trace selection problem can be formulated as a link-
max stable matching problem, where the weighted preferences
are the similarity values that were determined in Subsec-
tion III-A. Thus, one can easily calculate the link-max strength
for any pair of (correct, incorrect) graphs, in our case defined as
the similarity of the pair. After that, the problem can be solved
similarly to the Max-link-max algorithm, which was introduced
in [21] as a solution to link-max stable marriage problems. The
application of the algorithm is shown in Figure 7.

Input: n, Scorrect, Sincorrect

Output: S′
correct, S′

incorrect

Find preference list ∀g ∈ {Scorrect ∪ Sincorrect}
D = ∅
M = {(gc, gi) ∀gc ∈ Scorrect, gi ∈ Sincorrect}
while M 6= ∅

(gc, gi) = arg max
(gc,gi)∈M

lm((gc, gi))

D = D ∪ (gc, gi)

M = M \ {(gc, g′i), (g′c, gi) ∀g′c ∈ Scorrect, g
′
i ∈ Sincorrect}

S′
correct =First(n, {gc : gc ∈ d ∈ D})

S′
incorrect =First(n, {gi : gi ∈ d ∈ D})

Figure 7. The MaxLinkMax algorithm that finds the link-max stable matching
among the traces of the correct and the incorrect sets, and outputs the traces
of the first n (correct, incorrect) pairs.

The first step of the algorithm shown in Figure 7 is to create
a weighted preference list for each graph in the dataset. After
that, two sets are defined: the initial set M , which contains
all possible correct-incorrect pairs of graphs and the set D,
which is initially empty. The algorithm iterates until the set
M is empty. For each iteration, the correct-incorrect pair with
the maximum link-max strength is found and added to set
D. Let (gc, gi) be the selected pair, all the pairs of set M
that contain either gc or gi are removed from graph M . After
all the iterations are over, i.e., the set M is empty, the set
D contains the final matching. By contrast with the other
algorithms, the pairs are already sorted, thus the final sets
S′correct and S′incorrect are immediately defined as the first
n correct graphs and the first n incorrect graphs that belong
to the first n pairs of D.

The MaxLinkMax algorithm is rather more complex than
the other two, since it requires not only a ranking but also
the weighted preference for each pair of graphs in the dataset.
In line with the remarks of [21], one can find the pair with
the maximum link-max strength by saving only the maximum
weight for every correct and for every incorrect graph in the
dataset. This indicates that the complexity of the algorithm is
no higher than that of the two previous algorithms that we
implemented. For example, given the graphs of Figure 6, and
the weights of the pairs (g1, g5), (g2, g5), (g3, g6), (g4, g2),
(g5, g1) (which is equal to (g1, g5)), and (g6, g2), one requires
to compare only these six values in order to find the pair
with the maximum link-max strength. Assuming this pair
is the (g1, g5), the new pairs are immediately reduced to
(g2, g6), (g3, g6), (g4, g2), and (g6, g2) (which is equal to

(g2, g6)). Let lm(g2, g6) > lm(g3, g6) > lm(g4, g2), the
pairs are reduced to the minimum (g3, g4) and (g4, g3) which
are equal, directly providing with the final sorted set D =
{(g1, g5), (g2, g6), (g3, g4)}.

In terms of the computational complexity of the algorithms,
one could argue that it is quite satisfactory. However, since the
expected number of call traces is usually small (e.g., usually
less than a hundred), the main scope of these approaches lies
in improving effectiveness rather than performance.

IV. DATASET

The bug detection techniques analyzed in Section II are
quite effective for bug localization in small applications. For
example, Eichinger et al. [8] evaluate their method against
two known literature bug localization techniques ([6] and [7])
using a small dataset, generated using a diff implementation
in Java. Although the effectiveness of the techniques is
irrefutable, their efficiency is not thoroughly tested since the
dataset is too small to resemble a real application. Indicatively,
the size of the program is almost 2 pages of code, leading to
call graphs of roughly 20 nodes after the reduction step.

A much more realistic dataset was used in [1]. The dataset
was generated using the source code of daisydiff [22],
a Java application that compares html files. daisydiff
provides a more suitable benchmark since it has almost 70
files with 9500 lines of code. Thus, concerning scalability in
a real application, that dataset is certainly sufficient. In this
work, we have further extended the daisydiff dataset to
test more thoroughly the scalability and the effectiveness of our
methodology. We have planted 6 different bugs in the code of
the 1.2 version of daisydiff, which are shown in Table II.

TABLE II. PLANTED BUGS

Bugs Description # Functions

1 Wrong limit conditions (Forgot +1) 637
2 Missing AND condition (Forgot a < check) 737
3 Wrong condition (> instead of <) 777
4 Missing OR condition (Forgot a != check) 723
5 Missing 1 of 3 AND conditions (Forgot a == check) 756
6 Missing 1 of 2 AND conditions (Forgot a == check) 638

The table contains the description of each bug as well as
the average number of unique functions that are called in
the respective runs. The dataset covers common types of
bugs, such as missing boolean conditions, wrong conditions
and wrong limit conditions. As mentioned above, the aim of
these bugs is twofold. Experiments on different bug cases
shall provide insight on the effectiveness of our algorithms,
while the scalability of our methodology will be evaluated on
different scenarios. The initial bug-free version of the program
and the six buggy versions were all run 100 times given
different inputs. The dataset can be found online in [23].

V. EVALUATION

This section presents the results of applying the algorithms
to the dataset described in Section IV. Upon creating the traces,
the executions were crosschecked against the correct versions
of the traces to provide the correct and incorrect sets.

283

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. ELAPSED TIME (IN SECONDS) FOR THE DIFFERENT PHASES OF THE ALGORITHMS FOR THE SIMPLESELECTOR APPROACH

pq-Grams ZhangShasha

5 10 15 20 25 30 35
NoTED

5 10 15 20 25 30 35

Graph Parsing 16.71 6.57 6.45 6.38 6.35 6.34 6.86 8.94 6.86 6.39 6.40 6.46 6.42 6.48 6.41
Graph Reduction 3.43 3.20 3.21 3.18 3.19 3.17 3.18 4.15 3.18 3.18 3.14 3.29 3.15 3.24 3.23

Dataset Reduction 70.84 70.49 70.53 70.03 69.72 69.64 69.74 0.00 162.50 162.31 161.54 162.38 162.00 162.78 160.75
Subgraph Mining 19.24 45.64 178.63 538.78 1391.44 1675.24 1973.72 24296.94 22.95 85.56 94.87 447.33 1319.32 714.84 1974.36

Ranking Calculation 0.51 1.75 6.87 17.75 42.61 75.08 97.47 2003.99 0.48 2.08 7.79 23.37 50.05 71.84 113.04
Total 110.73 127.65 265.69 636.12 1513.31 1829.47 2150.97 26314.02 195.97 259.52 273.74 642.83 1540.94 959.18 2257.79

TABLE IV. ELAPSED TIME (IN SECONDS) FOR THE DIFFERENT PHASES OF THE ALGORITHMS FOR THE STABLEMARRIAGE APPROACH

pq-Grams ZhangShasha

5 10 15 20 25 30 35
NoTED

5 10 15 20 25 30 35

Graph Parsing 6.78 6.40 6.33 6.28 6.27 6.38 6.29 8.94 6.38 6.46 6.32 6.45 6.36 6.38 6.39
Graph Reduction 3.19 3.23 3.17 3.14 3.17 3.18 3.24 4.15 3.14 3.19 3.17 3.16 3.15 3.15 3.21

Dataset Reduction 69.33 70.05 69.88 69.93 69.65 69.27 69.62 0.00 161.10 161.22 161.28 160.78 161.15 160.74 163.28
Subgraph Mining 35.51 111.15 334.84 322.36 884.47 998.60 827.78 24296.94 21.81 154.33 376.75 630.86 822.89 678.92 917.49

Ranking Calculation 0.57 3.63 12.07 21.77 32.34 38.72 42.68 2003.99 0.60 4.05 15.16 28.29 40.79 45.99 54.72
Total 115.38 194.46 426.29 423.48 995.90 1116.15 949.61 26314.02 193.03 329.25 562.68 829.54 1034.34 895.18 1145.09

TABLE V. ELAPSED TIME (IN SECONDS) FOR THE DIFFERENT PHASES OF THE ALGORITHMS FOR THE MAXLINKMAX APPROACH

pq-Grams ZhangShasha

5 10 15 20 25 30 35
NoTED

5 10 15 20 25 30 35

Graph Parsing 6.64 6.45 6.46 6.38 6.60 6.48 6.86 8.94 6.86 6.49 6.44 6.55 6.48 7.51 7.15
Graph Reduction 3.21 3.18 3.21 3.18 3.35 3.29 3.39 4.15 3.28 3.27 3.28 3.27 3.32 3.30 3.37

Dataset Reduction 70.79 70.66 71.66 70.85 74.41 74.35 74.79 0.00 169.19 168.89 168.29 168.24 168.29 168.56 168.53
Subgraph Mining 15.43 42.54 162.40 386.40 514.70 742.17 798.19 24296.94 19.13 226.84 379.05 412.76 844.61 1345.54 1439.16

Ranking Calculation 0.53 2.24 9.66 31.33 42.29 51.66 50.89 2003.99 0.54 3.07 12.95 28.67 55.16 75.43 74.60
Total 96.60 125.07 253.39 498.14 641.35 877.95 934.12 26314.02 199.00 408.56 570.01 619.49 1077.86 1600.34 1692.81

A. Experimental Setup
Several methods were implemented in order to test the

validity of our dataset reduction hypothesis. An initial test was
performed by applying the algorithm by Eichinger et al. [8]
as discussed in Section II. However, due to performance lim-
itations, subtree reduction (see Subsection II-B) could not be
applied in such a large dataset. Thus, simple tree reduction is
used in its place (refer to [1] for more details). In the conducted
tests, the graph mining step is performed through the Parallel
and Sequential Mining Suite (ParSeMiS) [24] implementation
of CloseGraph, while the InfoGain algorithm of the ranking
step was implemented using the Waikato Environment for
Knowledge Analysis (WEKA) [25].

We implemented six more algorithms, accounting for all
possible combinations of similarity metrics: ZhangShasha
and pq-Grams implementations combined with all three call
trace selection algorithms (SimpleSelector, StableMarriage and
MaxLinkMax). For comparison reasons, all algorithms were
implemented using the same libraries stated above. The ex-
periments were conducted using 7 different values for the n
parameter (5, 10, 15, 20, 25, 30, and 35) in order to explore its
effect on performance and effectiveness. Concerning efficiency,
the selection of these values for n is reasonable; the algorithms
would be inefficient if they took into account more than 35
traces per set, i.e., 70 traces overall when the total number
of traces is 100. In contrast, smaller values of n would
compromise effectiveness. When few traces are retained per
set, the bugs may not be distinguishable between these traces.

All experiments were performed using an 8-core i7 pro-
cessor with 8 GBs of memory. The graph reduction, dataset
reduction and subgraph mining steps were performed in par-
allel. Graph reduction was performed on 8 threads, where
each thread performed simple tree reduction to a fragment
of the dataset. The TED algorithms were applied in parallel
using 4 threads (using more threads was impossible due to
memory limitations) that calculated the TED for each correct-
incorrect pair of the dataset. The call trace selection algorithms
were executed sequentially. Finally, CloseGraph was executed
using 8 threads, while the trace parsing and ranking steps were
sequential.

B. Experimental Results

The algorithms are evaluated both in terms of effectiveness
and performance. Concerning certain parameters, p and q of
the pq-Grams approach were given the values 2 and 3 respec-
tively, having little impact on performance and effectiveness,
and CloseGraph was run with a 20% support threshold.

The performance results for all edit distance methods are
shown in Tables III, IV and V for the SimpleSelector, Sta-
bleMarriage and MaxLinkMax approaches respectively. These
tables contain the average measurements for all six bugs of
the dataset. Although the elapsed time required to localize a
bug can be significantly different for two different bugs (e.g.,
bug 3 required 5 times more time than bug 1), the trend for
all bugs is similar. Each table contains measurements for the

284

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VI. RANKING POSITION AND PERCENTAGE OF FUNCTIONS TO BE EXAMINED TO FIND THE BUGS

pq-Grams ZhangShasha

5 10 15 20 25 30 35
NoTED

5 10 15 20 25 30 35

SS 7 (1.1%) 9 (1.4%) 31 (4.9%) 9 (1.4%) 8 (1.3%) 8 (1.3%) 8 (1.3%) 5 (0.8%) 7 (1.1%) 8 (1.3%) 9 (1.4%) 8 (1.3%) 9 (1.4%) 8 (1.3%) 8 (1.3%)
SM 6 (0.9%) 8 (1.3%) 10 (1.6%) 8 (1.3%) 8 (1.3%) 8 (1.3%) 8 (1.3%) 5 (0.8%) 6 (0.9%) 8 (1.3%) 13 (2.0%) 12 (1.9%) 12 (1.9%) 12 (1.9%) 12 (1.9%)

B
ug

1

MLM 6 (0.9%) 8 (1.3%) 9 (1.4%) 8 (1.3%) 8 (1.3%) 8 (1.3%) 8 (1.3%) 5 (0.8%) 6 (0.9%) 8 (1.3%) 10 (1.6%) 8 (1.3%) 8 (1.3%) 8 (1.3%) 8 (1.3%)

SS 5 (0.7%) 5 (0.7%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 5 (0.7%) 5 (0.7%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%)
SM 5 (0.7%) 5 (0.7%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 5 (0.7%) 5 (0.7%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%)

B
ug

2

MLM 5 (0.7%) 5 (0.7%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 5 (0.7%) 5 (0.7%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%)

SS 254 (32%) 252 (32%) 342 (44%) 27 (3.5%) 3 (0.4%) 1 (0.1%) 16 (2.1%) 17 (2.2%) 259 (33%) 253 (32%) 346 (44%) 355 (45%) 1 (0.1%) 1 (0.1%) 2 (0.3%)
SM 168 (21%) 336 (43%) 341 (43%) 215 (27%) 3 (0.4%) 2 (0.3%) 16 (2.1%) 17 (2.2%) 246 (31%) 261 (33%) 353 (45%) 360 (46%) 9 (1.2%) 2 (0.3%) 4 (0.5%)

B
ug

3

MLM 256 (32%) 336 (43%) 6 (0.8%) 2 (0.3%) 1 (0.1%) 1 (0.1%) 1 (0.1%) 17 (2.2%) 256 (32%) 251 (32%) 3 (0.4%) 2 (0.3%) 2 (0.3%) 1 (0.1%) 1 (0.1%)

SS 270 (37%) 371 (51%) 18 (2.5%) 24 (3.3%) 29 (4.0%) 23 (3.2%) 51 (7.1%) 65 (9.0%) 268 (37%) 363 (50%) 27 (3.7%) 28 (3.9%) 35 (4.8%) 43 (5.9%) 29 (4.0%)
SM 223 (30%) 391 (54%) 23 (3.2%) 23 (3.2%) 25 (3.5%) 24 (3.3%) 41 (5.7%) 65 (9.0%) 47 (6.5%) 399 (55%) 41 (5.7%) 17 (2.4%) 30 (4.1%) 35 (4.8%) 35 (4.8%)

B
ug

4

MLM 270 (37%) 35 (4.8%) 25 (3.5%) 25 (3.5%) 25 (3.5%) 25 (3.5%) 25 (3.5%) 65 (9.0%) 269 (37%) 33 (4.6%) 20 (2.8%) 20 (2.8%) 20 (2.8%) 20 (2.8%) 20 (2.8%)

SS 12 (1.6%) 6 (0.8%) 6 (0.8%) 6 (0.8%) 5 (0.7%) 5 (0.7%) 5 (0.7%) 5 (0.7%) 12 (1.6%) 6 (0.8%) 6 (0.8%) 6 (0.8%) 6 (0.8%) 6 (0.8%) 5 (0.7%)
SM 19 (2.5%) 7 (0.9%) 6 (0.8%) 6 (0.8%) 6 (0.8%) 6 (0.8%) 6 (0.8%) 5 (0.7%) 19 (2.5%) 13 (1.7%) 7 (0.9%) 6 (0.8%) 6 (0.8%) 6 (0.8%) 6 (0.8%)

B
ug

5

MLM 12 (1.6%) 6 (0.8%) 6 (0.8%) 5 (0.7%) 5 (0.7%) 5 (0.7%) 5 (0.7%) 5 (0.7%) 12 (1.6%) 6 (0.8%) 6 (0.8%) 5 (0.7%) 5 (0.7%) 5 (0.7%) 5 (0.7%)

SS 6 (0.9%) 3 (0.5%) 4 (0.6%) 11 (1.7%) 9 (1.4%) 18 (2.8%) 15 (2.4%) 15 (2.4%) 22 (3.4%) 3 (0.5%) 3 (0.5%) 18 (2.8%) 9 (1.4%) 17 (2.7%) 15 (2.4%)
SM 3 (0.5%) 3 (0.5%) 17 (2.7%) 18 (2.8%) 18 (2.8%) 18 (2.8%) 18 (2.8%) 15 (2.4%) 17 (2.7%) 3 (0.5%) 17 (2.7%) 15 (2.4%) 15 (2.4%) 15 (2.4%) 15 (2.4%)

B
ug

6

MLM 3 (0.5%) 3 (0.5%) 3 (0.5%) 18 (2.8%) 18 (2.8%) 18 (2.8%) 18 (2.8%) 15 (2.4%) 17 (2.7%) 17 (2.7%) 3 (0.5%) 15 (2.4%) 15 (2.4%) 15 (2.4%) 15 (2.4%)

∗SS: SimpleSelector, SM: StableMarriage, MLM: MaxLinkMax

different values of n for each of the two similarity algorithms,
pq-Grams and ZhangShasha, as well as the NoTED approach,
which is the one not using any TED algorithm to reduce the
size of the dataset.

In terms of total execution time, the proposed implementa-
tions clearly outperform the NoTED approach. In particular,
even when n equals 35, the pq-Grams and ZhangShasha ap-
proaches require roughly 30 minutes using the SimpleSelector
call trace selection algorithm. For the StableMarriage and
MaxLinkMax algorithms, the respective value is even below 25
minutes. By contrast, the NoTED approach requires more than
7 hours in order to provide the final ranked list of functions.
In relative terms, the proposed approaches are approximately
15 times faster than the NoTED approach.

Concerning all approaches, the mining step is indeed the
most inefficient. Although ranking might also seem inefficient,
its elapsed time depends mainly on the output of the min-
ing step. Concerning the graph reduction step, simple tree
reduction performs quite efficiently. The difference between
the execution times of the tree edit distance algorithms pq-
Grams and ZhangShasha is quite significant since the former
is twice as faster as the latter. However, their contribution to the
total execution time is rather insignificant with respect to the
mining step. Using either of the proposed TED techniques, the
choice of a call trace selection algorithm seems also irrelevant
to the performance of the different implementations. Note,
however, that since graph mining algorithms depend highly on
the graphs that are given to them, dataset reduction could affect
the measurement. Finally, although graph reduction techniques
deviate from the scope of this paper, note that subtree reduction
required many hours to reduce the graphs.

Table VI provides effectiveness measurements for locating
the six bugs, for all different algorithms. The value inside each
each cell of the table indicates how many functions should the
developer examine in order to locate the bug. This metric is

created using the final ranking of the functions and identifying
the position of the “buggy” function. Using the total number
of functions, which is shown in Table II for each bug, the
percentage of the program’s functions that should be examined
to locate the bug is also provided. This is given inside a
parenthesis in the value of each cell.

Our approaches seem to perform not only closely, but also
even more effectively than the NoTED approach. In particular,
our approaches provide a better ranking for bugs 2, 3, 4, and
6. The effectiveness metrics for bugs 3, 4, and 6 are very
promising; these bugs seem to be the most “difficult” to locate.
They are localized ineffectively by the NoTED approach,
requiring 17, 65, and 15 functions respectively to be examined
in order to find them. Our approaches outperform these results
for bugs 3 and 4, as long as n is large enough. Concerning
the sixth bug, the localization is even more satisfactory; our
algorithms manage to localize the bug even when the values
of n are small. This is also true for bugs 1 and 2, where the
bug is localized either almost as good as the NoTED approach
(for bug 1) or even better (for bug 2). Finally, the results for
the fifth bug are also quite encouraging since our algorithms
perform no worse than the NoTED one.

Since the nature of each bug is complex, no safe assumption
can be made concerning the effectiveness of any algorithm
with respect to the type of each bug or the number of function
calls. In other words, the effectiveness is highly dependent on
the selected dataset. Removing or switching certain boolean
conditions can lead to bugs that are very difficult to locate,
such as bugs 3, 4, and 6, or to easier cases, such as bugs 2
and 5. This is expected since the structure of the call traces
can be considerably altered by any bug. Notice, for instance,
how bugs 5 and 6, though similar, result to traces with 756
and 638 (unique) function calls respectively. In any case, the
planted bugs are quite indicative of those arising in realistic
scenarios.

285

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

n=
5

n=
10

n=
15

n=
20

n=
25

n=
30

n=
35

N
oT

ED
n=

5
n=

10
n=

15
n=

20
n=

25
n=

30
n=

35
pq-Grams ZhangShasha

0
100

101

102

103

104

105

106

107

108

E
la

p
se

d
 t

im
e
 (

se
co

n
d
s)

Ranking Calculation

Subgraph Mining

Dataset Reduction

Graph Reduction

Graph Parsing

(a)

n=
5

n=
10

n=
15

n=
20

n=
25

n=
30

n=
35

N
oT

ED
n=

5
n=

10
n=

15
n=

20
n=

25
n=

30
n=

35

pq-Grams ZhangShasha

0
100

101

102

103

104

105

106

107

108

E
la

p
se

d
 t

im
e
 (

se
co

n
d
s)

Ranking Calculation

Subgraph Mining

Dataset Reduction

Graph Reduction

Graph Parsing

(b)

n=
5

n=
10

n=
15

n=
20

n=
25

n=
30

n=
35

N
oT

ED
n=

5
n=

10
n=

15
n=

20
n=

25
n=

30
n=

35

pq-Grams ZhangShasha

0
100

101

102

103

104

105

106

107

108

E
la

p
se

d
 t

im
e
 (

se
co

n
d
s)

Ranking Calculation

Subgraph Mining

Dataset Reduction

Graph Reduction

Graph Parsing

(c)

5 10 15 20 25 30 35

n

0

500

1000

1500

2000

2500

3000

3500

4000

E
la

p
se

d
 t

im
e
 (

se
co

n
d
s)

ZhangShasha MaxLinkMax

pq-Grams MaxLinkMax

ZhangShasha StableMarriage

pq-Grams StableMarriage

ZhangShasha SimpleSelector

pq-Grams SimpleSelector

(d)

5 10 15 20 25 30 35

n

0

5

10

15

20
P
e
rc

e
n
ta

g
e
 o

f
fu

n
ct

io
n
s

(%
) SimpleSelector

StableMarriage

MaxLinkMax

NoTED

(e)

5 10 15 20 25 30 35

n

0

5

10

15

20

P
e
rc

e
n
ta

g
e
 o

f
fu

n
ct

io
n
s

(%
) SimpleSelector

StableMarriage

MaxLinkMax

NoTED

(f)

Figure 8. Average performance and effectiveness diagrams for the bugs of the dataset. Diagrams (a), (b) and (c) illustrate the performance for each phase of
the algorithms in logarithmic scale versus the value of n (which denotes the number of traces retained from each of the two sets, correct and incorrect). The
three diagrams correspond to the SimpleSelector, StableMarriage and MaxLinkMax algorithms. Diagram (d) depicts the total elapsed time of all combinations
of the TED approaches, pq-Grams and ZhangShasha, with the call trace selection approaches, SimpleSelector, StableMarriage and MaxLinkMax. Diagrams (e)
and (f) illustrate the percentage of functions to be examined in order to detect the bug versus n, for the pq-Grams and ZhangShasha approaches respectively.

Our conclusions regarding both effectiveness and perfor-
mance are also confirmed by plotting the results, as in Fig-
ure 8. Figures 8a, 8b, and 8c illustrate the performance of
our methodology for the SimpleSelector, StableMarriage and
MaxLinkMax approaches respectively. Note that the vertical
axis in these figures is in logarithmic scale in order to
sufficiently illustrate the steps of the algorithms. As expected,
performance is largely affected by the number of graphs taken
into account, i.e., the n parameter. The impact of the number
of graphs is better depicted in Figure 8d; the execution time
of all approaches is high-order-polynomial with respect to
consecutive values of n. This is expected since subgraph
mining algorithms, such as CloseGraph, are largely affected
by the size of the graphs and the size of the dataset.

Further analyzing Figure 8d, pq-Grams seems to execute
faster than ZhangShasha for most values of n, regardless of
which call trace selection algorithm is used. Peaks such as the
one of the ZhangShasha with SimpleSelector approach are not
totally unexpected since the performance of subgraph mining
algorithms may be affected by numerous properties, such as
the structure of the graph. In any case, useful conclusions can
also be drawn for the performance of the three different call

trace selection approaches. MaxLinkMax is both efficient and
stable, indicating that it is robust and fits the problem better
than the other two algorithms.

Concerning effectiveness, the impact of n is illustrated in
Figures 8e and 8f, which depict the percentage of functions
required to be examined versus n for the three call trace
selection algorithms, and the NoTED approach. These figures
correspond to the pq-Grams and the ZhangShasha approaches
respectively. As shown in this figures, the effectiveness of our
algorithms is indeed significant for large enough values of n.
In specific, these average values indicate that our algorithms
outperform the NoTED approach as long as n is larger than
or equal to 15, while the MaxLinkMax approach outperforms
it even for values larger than 10.

Given that n is the number of traces retained from the
two sets (correct and incorrect), its impact on effectiveness
is rather expected. In specific, when few traces are kept from
each set (e.g., for n values lower than 15), the algorithms
may not effectively isolate the bug since it may not be clearly
distinguishable between these few traces. On the other hand,
large values of n ensure that at least some of the retained
traces will be highly relevant for isolating the bug. However,

286

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

since larger n values result also in larger execution times, it is
preferable to select values near 25 or 30 where the algorithms
exhibit high effectiveness while also being efficient.

Figures 8e and 8f illustrate the relative effectiveness of the
call trace selection techniques. In particular, the MaxLinkMax
approach outperforms the other techniques in terms of both
effectiveness and stability. The algorithm seems to converge
to satisfactory values faster than its opposing techniques. In
Figure 8e, the percentage of functions to be examined for
the MaxLinkMax approach drops below 2% for all n values
that are lower than or equal to 15. The SimpleSelector and
StableMarriage approaches require values lower than or equal
to 20 and 25, respectively, to exhibit similar effectiveness.
The results for the ZhangShasha algorithm are even more
characteristic, with the SimpleSelector and StableMarriage
requiring both at least 25 call traces per set in order to approach
the effectiveness achieved by MaxLinkMax when the number
of kept call traces is at least 15.

As a result of the above analysis, the effect of the call trace
selection algorithm on localizing the bugs is quite significant.
The MaxLinkMax algorithm was actually expected to prevail
since it is the most well adapted algorithm to the problem
at hand; intuitively, determining the unique graph pairs with
the maximum pair weights should provide satisfactory results.
Allowing duplicates and disregarding weights, as done by
SimpleSelector and StableMarriage respectively, can be seen
as drawbacks, therefore, leading to suboptimal solutions. As
expected, however, these algorithms perform satisfactorily for
large n values, since useful trace information is then retained.

The relative effectiveness among the approaches using pq-
Grams and the three ones using ZhangShasha may seem
slightly surprising. The approximate pq-Grams implementa-
tions seem more stable and more effective than their exact
ZhangShasha counterparts. However, the difference between
the MaxLinkMax approaches is not significant, and the ef-
fectiveness for the other two call trace selection algorithms
differs only for small values of n. This indicates that both pq-
Grams and ZhangShasha provide satisfactory results, as long
as the call trace selection algorithm properly utilizes the weight
values provided by them.

VI. CONCLUSION AND FUTURE WORK

Current approaches in the field of dynamic bug detection
suffer from scalability issues. In this paper, we have expanded
on previous work [1], further testing the effect of reducing
the size of the call trace dataset on both performance and
effectiveness. With support from the experimental results of
Subsection V-B, we argue that our approaches exhibit consid-
erable improvement on the current state-of-the-art, even more
so since they are tested on a realistic dataset.

Concerning the dataset reduction step, both TED algorithms
are effective in terms of finding relative edit distances between
graphs. Thus, the main scope of this work focused on exploring
different possibilities for selecting the most useful call traces.
We provided three call trace selection algorithms and explored
how they affect the effectiveness of our methodology. The
third algorithm we proposed, MaxLinkMax, proved to be

the most stable and effective, since it outperformed all other
implementations, while also being highly efficient.

Although the field of locating non-crashing bugs is far from
exhausted, we argue that our methodology provides an interest-
ing perspective on the problem. In specific, this work indicates
that analyzing the call trace dataset to isolate useful traces
yields quite promising results. Hence, future research includes
further exploring the applicability and effectiveness of our
techniques on different datasets. Furthermore, the parameters
of our techniques (mainly the number of retained traces) could
be optimized or automatically derived for each dataset. Finally,
further analysis of the newly defined problem of call trace
selection with respect also to the subgraph mining step could
lead to more effective solutions.

REFERENCES

[1] T. Diamantopoulos and A. Symeonidis, “Towards Scalable Bug Lo-
calization using the Edit Distance of Call Traces,” in Proceedings of
the Eighth International Conference on Software Engineering Advances
(ICSEA), Oct 2013, pp. 45–50.

[2] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug Isolation
via Remote Program Sampling,” SIGPLAN, vol. 38, no. 5, 2003, pp.
141–154.

[3] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
Statistical Bug Isolation,” SIGPLAN, vol. 40, no. 6, 2005, pp. 15–26.

[4] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “SOBER: Statistical
Model-based Bug Localization,” SIGSOFT Softw. Eng. Notes, vol. 30,
no. 5, Sep. 2005, pp. 286–295.

[5] M. Renieris and S. Reiss, “Fault Localization with Nearest Neighbor
Queries,” in Proceedings of the 18th IEEE International Conference on
Automated Software Engineering (ASE), 2003, pp. 30–39.

[6] C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu, “Mining Behavior Graphs
for “Backtrace” of Noncrashing Bugs,” in Proceedings of the 2005
SIAM International Conference on Data Mining, 2005, pp. 286–297.

[7] G. Di Fatta, S. Leue, and E. Stegantova, “Discriminative Pattern Mining
in Software Fault Detection,” in Proceedings of the 3rd International
Workshop on Software quality assurance (SOQUA), 2006, pp. 62–69.

[8] F. Eichinger, K. Böhm, and M. Huber, “Mining Edge-Weighted Call
Graphs to Localise Software Bugs,” in Proceedings of the 2008 Euro-
pean Conference on Machine Learning and Knowledge Discovery in
Databases - Part I, 2008, pp. 333–348.

[9] F. Eichinger, C. Oßner, and K. Böhm, “Scalable Software-Defect Locali-
sation by Hierarchical Mining of Dynamic Call Graphs,” in Proceedings
of the 2011 SIAM International Conference on Data Mining, 2011, pp.
723–734.

[10] S. Nessa, M. Abedin, W. E. Wong, L. Khan, and Y. Qi, “Software
Fault Localization Using N-gram Analysis,” in Proceedings of the
Third International Conference on Wireless Algorithms, Systems, and
Applications. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 548–559.

[11] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan, “Identifying Bug
Signatures Using Discriminative Graph Mining,” in Proceedings of the
Eighteenth International Symposium on Software Testing and Analysis.
New York, NY, USA: ACM, 2009, pp. 141–152.

[12] X. Yan and J. Han, “gSpan: Graph-Based Substructure Pattern Mining,”
in Proceedings of the 2002 IEEE International Conference on Data
Mining (ICDM), 2002, pp. 721–724.

[13] S. Nijssen and J. N. Kok, “A Quickstart in Frequent Structure Mining
Can Make a Difference,” in Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
New York, NY, USA: ACM, 2004, pp. 647–652.

[14] Y. Chi, Y. Yang, and R. R. Muntz, “Indexing and Mining Free Trees,”
in Proceedings of the Third IEEE International Conference on Data
Mining (ICDM), 2003, pp. 509–512.

287

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[15] X. Yan and J. Han, “CloseGraph: Mining Closed Frequent Graph
Patterns,” in Proc. of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2003, pp. 286–295.

[16] K.-C. Tai, “The Tree-to-Tree Correction Problem,” Journal of the ACM,
vol. 26, no. 3, Jul. 1979, pp. 422–433.

[17] K. Zhang and D. Shasha, “Simple Fast Algorithms for the Editing
Distance Between Trees and Related Problems,” SIAM J. Comput.,
vol. 18, no. 6, Dec 1989, pp. 1245–1262.

[18] N. Augsten, M. Böhlen, and J. Gamper, “Approximate Matching of
Hierarchical Data Using pq-Grams,” in Proceedings of the 31st Inter-
national Conference on Very Large Data Bases, 2005, pp. 301–312.

[19] D. Gale and L. S. Shapley, “College Admissions and the Stability of
Marriage,” American Math. Monthly, vol. 69, no. 1, 1962, pp. 9–15.

[20] D. Gusfield and R. W. Irving, The Stable Marriage Problem: Structure
and Algorithms. Cambridge, MA, USA: MIT Press, 1989.

[21] M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh, “Stability, Optimality
and Manipulation in Matching Problems with Weighted Preferences,”
Algorithms, vol. 6, no. 4, 2013, pp. 782–804.

[22] “daisydiff: A Java Library to Compare HTML Files,” [retrieved May,
2014]. [Online]. Available: http://code.google.com/p/daisydiff/

[23] “Software & Algorithms, ISSEL,” [retrieved May, 2014]. [Online].
Available: http://issel.ee.auth.gr/software-algorithms/

[24] “ParSeMiS: The Parallel and Sequential Graph Mining Suite,”
[retrieved May, 2014]. [Online]. Available: https://www2.cs.fau.de/EN/
research/zold/ParSeMiS/

[25] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA Data Mining Software: An Update,” SIGKDD
Explor. Newsl., vol. 11, no. 1, Nov 2009, pp. 10–18.

288

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 On Exploiting Passing and Failing Test Cases in

Debugging Hardware Description Languages

Bernhard Peischl

Softnet Austria

Graz, Austria

bernhard.peischl@soft-net.at

Naveed Riaz

College of Comp. Science and IT

University of Dammam,

Dammam, Saudi Arabia

nrmohammed@ud.edu.sa

Franz Wotawa

Institute for Software Technology

Graz University of Technology

Graz, Austria

franz.wotawa@ist.tuGraz.at

Abstract - In this manuscript, we outline how to use test suites

for software debugging of hardware description languages. We

propose an algorithmic improvement for dealing with numerous

failing test cases and show how to exploit passing test cases in

terms of a technique called filtering. We report on results

obtained on a well-known benchmark suite. The results clearly

show that both passing and failing tests are capable of increasing

the diagnoses accuracy in the field of software debugging.

Model-based debugging; software debugging; debugging of

hardware description languages; fault isolation.

I. INTRODUCTION

This article is an extension to previous research work [1]
and reports on recent results in software debugging of Verilog
designs. In contrast to the Very High Speed Integrated
Hardware Description Language (VHDL) [2], Verilog [3] has
a formal semantics and thus is amendable to research in
verification and debugging, e.g., its synthesis semantics is
formally specified in Gordon [4]. Whereas VHDL is a
strongly and richly typed language, Verilog is a weakly and
limited typed language [5].

Most of the research in verification deals with the detec-
tion of faults and does not address the fact that debugging
involves locating and correcting the fault. In detecting faults
(software/hardware testing), we make use of numerous test
cases. In the recent past, numerous test cases have been
employed for localizing faults, e.g., in terms of employing
spectrum-based diagnosis [6, 7, 8, 9, 10].

Spectrum-based techniques, however, allow for logical
reasoning at the level of dependencies and do not consider the
semantics of the language in terms of value-level models [11,
12]. Our work exploits synthesis semantics and makes use of
test suites. This article shows that there is solid empirical
evidence that taking into account test suites improves the fault
localization in HDLs considerably.

Over the last 25 years, the Artificial Intelligence (AI) com-
munity has developed a framework for system diagnosis
called model-based diagnosis (MBD). This framework covers
a broad range of capabilities including the isolation of faulty
components and the handling of multiple fault locations [13,
14]. A specific problem solving system is automatically
generated by applying task-specific, but domain-independent
problem solving algorithms (e.g., Greiner et al.’s algorithm
[15]) to the system model. Harnessing these techniques in
software engineering tools may help to master the

development of complex circuits and software-enabled
systems. The state of the art in this field can be characterized
by prototypes that are starting to become part of industrial
applications.

In this article, we extend previous work [1, 11, 12] in the
field of debugging Hardware Description Languages (HDLs)
by (1) introducing an iterative version of Greiner et al.’s
hitting set algorithm and (2) presenting an empirical
evaluation of the impact of passing test cases. Both aspects
contribute to further establish AI-based techniques in the
software engineering field.

Figure 1: Design process with HDLs.

289

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. SIMULATION, TEST AND DEBUGGING

Figure 1 outlines an overview of the hardware design cycle

employing the Verilog HDL. The designer starts with an
initial specification that primarily captures the functional
requirements for the circuit being designed. Usually, this is
followed by a detailed design on the register transfer level
(RTL). Both designs are executable and thus are amenable to
automated verification. In general, the RTL design is verified
very thoroughly in terms of testing and various other analysis
techniques, e.g., hazard analysis. Since there is a fixed
window for start of production, these verification steps
typically are conducted under time pressure and thus the time
for debugging – detecting, localizing, and repairing the
misbehavior – becomes a key performance indicator.

Typically, the design process iterates through several
steps: design and programming is followed by a simulation of
the circuit. The outcome of the simulation is compared to the
specification, that is, it is checked whether the waveform
traces on a higher abstraction level (the specification) deviate
from the waveforms obtained from the test run on the RTL
level. Previous research work, carried out in the VHDL
domain, gives an intuitive understanding on how to leverage
model-based diagnosis for fault localization in HDL designs
(see www.ist.tugraz.at/staff/peischl/HDLDebugging.wmv).

Moreover, to reduce costs and the time to market, it is of
utmost importance to detect the faults as early as possible.
Thus, as testing is a viable economical technique to assure
functional correctness, testing is also subject of numerous
research and innovation projects. However, in order to resolve
a bug, it is equally important to localize and finally remove
the fault. In terms of process maturity this is captured by the
defect backlog metrics (which counts the number of removed
bugs) rather than the defect arrival curve that captures solely
the detection rate of faults [16]. In today’s software/hardware
engineering processes such key performance indicators often
are made available by extracting data from the underlying
development tools [17, 18] thus offering the potential to
quantify the effect of introducing fault isolation tools.

According to a study conducted at IBM Haifa, 50 to 80
percent of the overall development is attributed to verification
activities including localization and correction [19]. Thus,
particularly under local or temporal separation of the design
and the test team, the automation of fault localization (and
correction) is a sustainable topic for ongoing and future R&D
work as it contributes to make the development process more
efficient.

III. DEBUGGING SEQUENTIAL VERILOG DESIGNS

In contrast to our previous research dealing with VHDL
[12, 20, 21, 22] the semantics of Verilog has been analyzed
rigorously, and thus provides the necessary theoretical
underpinning in language semantics and circuit synthesis.
Gordon [4] provides a formal description of various semantic
interpretations of Verilog like event-semantics and trace-
semantics. In event-semantics (which is the semantics
employed for fine-grained simulations) the change of a

variable necessitates the recalculation of depending
procedures.

In contrast to that, the trace semantics of Verilog computes
solely the quiescent values at the end of a simulation cycle.
That is, trace semantics abstracts over transient states and
computes the steady values at the end of the simulation cycle.
For computing these quiescent values, each procedure is
evaluated only once per cycle [4]. Procedures are evaluated in
a certain order such that a procedure is not evaluated until all
its driving procedures have been evaluated. In other words, a
procedure’s outputs are computed only when all its inputs are
known (or can be computed). So we build up our
representation of the design by starting with processes solely
dependent on known inputs and variables (e.g., the primary
inputs, including clock). Afterwards, the outputs of these
processes are attached to the list of already known inputs and
variables. This process continues until all the procedures in
the design are levelized [22]. In this way, we build up a chain
of procedures and their inputs and outputs, thus allowing one
for an evaluation of all the variables used in the design at the
end of the simulation cycle.

Synchronous sequential circuits change their states and
output values at discrete instants of time, which are specified
by the rising and falling edge of a clock signal. In electrical
engineering, sequential circuits are often viewed as a sequence
of connected combinational circuits. This can be done by
selecting specific connections (e.g., one can use minimal-cut
set computation [23] for identifying these connections) and
splitting them in two separated connections. The output of a
stage of a specific cycle is connected to the corresponding
input of the next cycle. We have adopted the same idea for
providing an appropriate debugging model for sequential
designs. Our representation can be broken into two phases,
one in which latches change state, and one in which all the
combinational blocks are evaluated. We effectively break the
design at latches by treating the outputs of the latches as they
were inputs and inputs of the latches as they were outputs.

In our representation, we first identify variables that we
have to synthesize into latches. By splitting these variables
and treating them as additional inputs and outputs, we ensure
that our representation remains acyclic. Then we levelize the
graph according to the levelization strategy discussed above.
Thus, we receive a sequence of procedures depicting the data
flow from the given primary inputs to the primary outputs.
Our next step is to unroll the sequential circuits to incorporate

Figure 2: Illustration of a simple diagnosis problem.

290

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

multiple cycles (input sequence length). We assume that we
know the number of unrollings to be performed in advance.
After the levelization of all the procedures, we create the
debugging model which represents our model at level 1 (cycle
number 1). For every component C, we attach a timestamp i
during the creation of the model to ensure a unique
identification, where Ci represents the instance of component
C at cycle i. Thus, we make n copies of every component
involved, where n is the total number of cycles or unrollings.
In this way, we create n number of instances for each
component.

Diagnosis problem: A diagnosis problem considering circuit

unrolling over n cycles is a triple (SD, COMP,OBS) where

1.
ni

iSDSD
..1

 where SDi is the system description for

cycle i

2.
ni

iCCOMP
..1

 where Ci are the components in cycle

i, and

3.
ni

iOBSOBS
..1

 and OBSi denote the observations in

cycle i.

For every component of our model that is associated with
the source code, we add an assumption ¬AB(C). From a
semantics point of view, this assumption denotes that the
component C is assumed to work corretly. In other words this
means it is assumed to be not abnormal. If we set this
assumption to false, this means that the component is
erroneous.

Example: Consider the digital circuit in Figure 2, which
comprises five digital NAND gates, N1 to N5 and only a single
cycle. We further assume that we have observed the following
values on the digital circuit’s inputs and outputs: a=0, b=1,
c=0, g=1, and h=0. These values correspond to the
observations OBS. The system description SD corresponds to
the syntax and the semantics of the circuit (e.g., a constraint
model, or horn-clause encoding of the circuit). Obviously, SD
and OBS are contradictory. We can prove this by computing
the values for every gate’s outputs (and inputs). From a=0 and
b=0, we conclude that the output of gate N2 becomes 1. From
c=0 follows that the second input of gate N3 must be 1. This
value together with b=1 leads to f=0. Consequently, h=1
contradicts the observed value for h. So, we know that
something must be wrong and that the assumption that all
components are working correct can no longer be valid.

The above given definition captures a diagnosis model for
a single test case (of length n). Given this definition the
diagnosis problem considering a test suite is given as follows,
where we refer to the predicate AB(C) to denote abnormality
of component C (correspondingly)(CAB refers to a

correctly functioning component).

Diagnosis problem, test suite: Given a test suite comprising

the test cases TC1, TC2, …, TCk. Let the system description

SDj be the system description considering test case TCj and

let
j

iC be the instance of component C at cycle i in test case

number j. Correspondingly j

iOBS denote the observations in

cycle i of test case TCj. The diagnosis problem (SD*, COMP*,

OBS*) considering this test suite is given as follows:

1.
kj

j

n

jj

j CABCABCABSDSD
..1

10

*)}(...)()({

2.
nikj

j

iCCOMP
..0,..1

*

3.
nikj

j

iOBSOBS
..1,..1

*

IV. ITERATIVE COMPUTATION OF DIAGNOSES

In computing the diagnosis candidates we determine all
inconsistent sub models (i.e., parts of the given design causing
discrepancies). In the terminology of model-based diagnosis
(MBD) these sub-models are referred to as conflicts. Since the
assumption that all components of a conflict behave correctly
causes the discrepancy, at least one of these components must
be responsible for the misbehavior. Thus, once we have
obtained all inconsistent sub models, for every component, we
have to check, whether assuming this component to be
abnormal allows one for getting rid of the given discrepancy
in every sub model. We collect those assumption(s) that allow
one for removing the given discrepancies and report the
associated components as diagnosis candidates.

Recalling the previous definitions, the computation of
diagnosis candidates is a consistency check for first-order
sentences. In theory, one can compute diagnoses by
generating all subsets Δ of COMP in increasing order of
cardinality and checking whether

is consistent.
Central to this algorithm is the concept of a contradictory sub
model referred to as conflict in the classical MBD literature.
A conflict for a diagnosis problem (SD, COMP, OBS) is a set

COMPCO such that }|)({ COCCABOBSSD

is contradictory. A conflict set is minimal iff no proper subset
of it is a conflict set for (SD, COMP, OBS). A set of conflicts
is referred to as conflict-set F={CO1, CO2, …, COn}.
A conflict CO = {C1, C2, C3, …, Ck} says that the assumption
that all components are correct – that is,
 AB(C1) ^ AB(C2) ^ AB(C3) ^ … ^ AB(Cn) is true –
is inconsistent with SD and OBS. However, SD together with
OBS is consistent. Thus, the correctness assumptions
 AB(Ci) are responsible for the contradiction and must be
altered to eliminate the conflict. This means that we must
invert at least one of the AB(Ci) assumptions. If we now
have more than one conflict, we must invert at least one (not
necessarily different) assumption from every conflict. These
inverted assumptions are a diagnosis because they resolve all

}\|)({ COMPCCABOBSSD

291

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

conflicts. So, a diagnosis is a set of components that, when
assumed to behave incorrectly, leads to a consistent system
state.

Continuing our example, we obtain two minimal conflicts.
Figure 3 depicts them together with the computation of the
contradiction values. There are two conflicts: A, whose
components are N1, N3 and N5, and B, whose components are
N2, N4, and N5. From this follows immediately that {N5} is a
single-fault diagnosis candidate because AB(N5) resolves both
conflicts A and B [12].

However, this rather inefficient brute-force approach does
not work for debugging, as the number of components
becomes huge. Reiter et al. [14] provide an algorithm for
finding a set of minimal diagnoses and Greiner et al. [15]
provide a correction to Reiter’s proposal. Reiter et al. [14] and
Greiner et al. [15] show how to efficiently compute diagnoses
given a single conflict-set in terms of the hitting set algorithm.

The classical MBD literature is primarily focused on how
to compute the diagnoses from a single conflict-set. However,
in model-based software debugging, every failing test case
results in one or several conflicts, i.e., a conflict-set. When
considering several test cases TC1, TC2, TC3, …, TCk, we
obtain a conflict-set for every test case. The resulting set C of
conflict-sets therefore is C = {F1, F2, F3, …, Fk}.

In theory we therefore can compute diagnoses by
computing all minimal hitting sets for the union of the

conflict-sets ⋃ 𝐹𝑖
𝑘
0 . However, in debugging HDLs, conflicts

appear iteratively, e.g., first we execute test cases TC1
(resulting in conflict-set F1) and afterwards (when conflict-set
F2 becomes available) we execute a second test case TC2
(resulting in conflict-set F2). Following the classical literature,
one can compute the diagnoses resulting from conflict-set F1

and afterwards compute the diagnoses for the conflict-set F1

∪ F2. This results in building up the hitting set dag for the
conflict-set F1 twice as this dag needs to be built for test case
TC1 (conflict-set F1) and for both test cases TC1 and TC2
(conflict-set F1 ∪ F2).

In developing our automated debugging tool we managed
to overcome this challenge by using an iterative variant of the
original algorithm from Greiner et. al [15]. This algorithm
answers the research question how to efficiently compute
diagnoses in an iterative manner. Our algorithm consists of
four main parts.

The procedure Iterative_HS(C) takes a set of conflict-sets
C={F1, F2, .., Fn} and returns a dag. By collecting the edge
labels H(n) at all nodes labeled with √ we can retrieve all
(subset-minimal) diagnoses in increasing order of cardinality,
i.e., all single-diagnoses can be retrieved prior to computing
dual-fault diagnosis. For example, by retrieving all edge labels
H(n) up to level three of the graph, we obtain all single- and
dual-fault diagnoses. Note that the order in which the conflict-
sets appear is determined by the availability of the test cases
and the specific decision procedure for computing conflicts
(e.g., the procedure given in [21]). Two different orderings of
the same conflict-sets will result in different dags, however,
from both dags we retrieve the same set of diagnoses.

The procedure HSDAG(D, N, F) is a modified version of
the algorithm proposed in Geiner et. al. It differs from the
original algorithm as it not only operates on the dag D and the
conflict-set F but relies on an ordered set of nodes N. We use
these nodes to control which nodes need to be modified in the
case that the already existing dag (e.g., dag resulting from
conflict-set F1) becomes inconsistent with the new conflict
being added (e.g., dag resulting from conflict-set F1 is
inconsistent with respect to conflict-set F1 and F2).

In order to determine these nodes, we use two further
procedures. The procedure Check_√ (D, F) checks whether
there are nodes marked with √ in the dag D, that according to
the given conflict-set F are no longer valid. To establish the
invariant of the algorithm, we need to label these nodes with
the first set ∑ from F and store these nodes for later processing
within HSDAG. The second procedure Check_× (D, F) checks
whether there are closed nodes that need to be re-opened due
to adding the conflict F. In this case, the respective node is re-
opened and either labeled with the first set from F or marked
with √. Again, we store this node for later processing as it
might be subject of further pruning according to Greiner’s
algorithm.

 Iterative_HS (C)

1. Let DAG represent the growing dag. Let H(n) be the

 set of edge labels on the path in DAG from the root

 down to node n.

2. Generate a DAG0 with root node n0 with

)(0nlabel , where ∑ is the first set in conflict-set

 F1 and 𝐻(𝑛0) = 𝜙.

3. Let N0 be the nodes from DAG0 in breath-first order

4. DAG = DAG0; N=N0.

5. For i=1 to |C|-1

6. DAG=HSDAG (DAG, N, Fi)

Figure 3: Example illustrating the computation of conflicts.

292

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

7. N=Check_√ (DAG, Fi+1)

 Check_× (DAG, Fi+1)

8. Return HSDAG(DAG, N, Fi+1)

Comments:

1. Definition DAG, H(n) denotes the set of edge labels

2. The initial dag DAG0 contains the root node n0

labeled with the first element from conflict-set F1,

and two children

3. N0 is the ordered set of nodes in DAG0

4. Creation of the initial DAG

5. Iteration through all conflict-sets

6. Invoke Check_√ and Check_× to retrieve those

nodes from the DAG that need to be modified in

order to be consistent with the passed conflict set Fi

7. For each conflict-set we invoke HSDAG explicitly

given the set of nodes N that need to be modified

8. Finally, invoke HSDAG to return the pruned DAG

Check_√ (D, F)

1. R= 𝜙

2. For all nodes Dn where label (n)= √ in

 breath-first order do

3. If there is xnHFx)(, then

4. 𝑙𝑎𝑏𝑒𝑙(𝑛) = ∑ where ∑ is the first element

 from F for which)(nH

5. R=R {n}

6. Return R

Comments:

1. Initially, the set of nodes to be processed is void

2. Traverse nodes labeled with √ in breath-first order

3. Check if node needs to be re-labeled

4. Label node n with the first element in F which is not

in H(n)

5. Store node for further processing in HSDAG

Check_× (D, F)

1. R= 𝜙

2. For all nodes Dn where label (n) = ×

 in breath-first order do

3. If there is a node 𝑛′𝐷 which is labeled by √

 and 𝐻(𝑛′) ⊂ 𝐻(𝑛) then

4. If for all 𝑥 ∈ 𝐹, 𝑥 ∩ 𝐻(𝑛) ≠ ∅ then label(n)= √

5. Otherwise, 𝑙𝑎𝑏𝑒𝑙(𝑛) = ∑ where ∑ is the first

 element from F for which)(nH

6. R=R {n}

7. Return R

Comments:

1. Initially, the set of nodes to be processed is void

2. Traverse nodes labeled with × in breath-first order

3. Check if node needs to be re-opened

4. Re-label node with √

5. Re-label node with the first element in F which is

not in H(n)

6. Store node for further processing in HSDAG

HSDAG (D, N, F)

1. For all nodes Nn do

2. if for all 𝑥 ∈ 𝐹, 𝑥 ∩ 𝐻(𝑛) ≠ ∅ then label(n)= √

3. Otherwise, 𝑙𝑎𝑏𝑒𝑙(𝑛) = ∑ where ∑ is the first

 element from F for which)(nH

4. If n is labeled by a set ∑ , for each ,

 generate a new arc with)(nlabel . This arc

 leads to a new node m with

 𝐻(𝑚) = 𝐻(𝑛) ∪ {𝜎}. The new node 𝑚 in D will

 be processed after all nodes in the same

 generation as n have been processed.

5. [REUSE]

a. If there exists a node n’ with

 H(n’)=H(n) { 𝜎 } then generate a

 directed arc from n to n’. Hence n’ will have

 more than one parent.

b. Otherwise, generate a new node m at the end

 of this 𝜎-arc

6. [CLOSING]

 If there exists a node n’ labeled with √

 where 𝐻(𝑛′) ⊂ 𝐻(𝑛) , then set label(n’) to ×

 for closing n. A label is not computed for 𝑛 nor

any successor nodes generated.

7. [PRUNING]

 If the set is to label a node and it has not

 been used previously then attempt to prune D

 as follows:

 a. If there exists a node 𝑛′ which has been

 labeled by a set 𝑆𝐹 𝑤ℎ𝑒𝑟𝑒 ∑ ⊂ 𝑆′ , then

 relabel n’ with ∑. For any α in 𝑆′\∑ the α-

 arc under n’ is no longer allowed. The node

 connected by this edge and all of its

 descendants are removed, except for those

 with another ancestor which is not being

 removed.

 b. Interchange 𝑙𝑎𝑏𝑒𝑙(𝑛) and 𝑙𝑎𝑏𝑒𝑙(𝑛′)

 8. Return D

293

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Comments:

1.-8. HSDAG computation according to Greiner [15].

The authors of [15] in detail describe strategies for

closing, pruning and reuse of nodes.

The functions Check_√ (D, F) and Check_× (D, F) return

those nodes in the dag that are not consistent with the new
conflict-set F. Instead of applying the HSDAG procedure to
the set F1 ∪ F2, we apply it to conflict-set F1 and identify those
nodes that are not consistent with the new set F1 ∪ F2.
Afterwards, we alter, respectively, extend the dag obtained
from conflict-set F1 by applying the HSDAG procedure only
for the identified nodes. Within HSDAG, the strategies for
pruning, closing and re-using nodes are the same as proposed
in Greiner et al. [15].

Example: Let F1={{1,2,3}, {1,3}, {1,4}} and F2={{1,4,5},

{3,4}, {1,2}} be conflict sets obtained from two test cases.
Figure 4 represents the hitting set dag for F1 and Figure 5
represents the corresponding hitting set graph for F1 ∪ F2. In
the following, we assume the existence of an ordered
collection of conflict-set Fi for every test case TCi and show
how to obtain the hitting set dag for the conflict-set F1 ∪ F2.

Note that it is not necessary to compute all the conflicts for
a given test case in advance, rather the algorithm allows one
for computing the conflicts on demand. Furthermore, the
algorithm allows one for computing the hitting sets in order of
increasing cardinality. Thus, we can stop the computation of
diagnoses once a specified depth has been reached (e.g., we
retrieve solely single and dual-fault diagnosis by stopping
computation at depth level 3). In the following, we illustrate
the iterative variant of Greiner’s hitting set algorithm that
takes the set of conflict sets as an argument.

According to our algorithm, we have to build up the hitting
set DAG0. This initial dag consists of a node n0 with two edges
and H(n0)=ϕ. We continue with the computation of the hitting
set dag HSDAGF1 for conflict-set F1 by invoking

HSDAG(DAG0, N0, F1), where the collection N0 represents the
nodes from DAG0 in breath first order.

 This step corresponds to applying the algorithm as
proposed by Greiner et al. [15].

As specified in the algorithm, in line 7, we determine those
nodes in HSDAGF1 that need to be recalculated as their
labeling in no longer consistent with the extended conflict
F1 ∪ F2. As illustrated in Figure 2 (we used circular arcs to

denote pruning of node n2) the nodes n1, n5 (Check_√) and

node n4 (Check_×) are the potential candidates for re-labeling

or re-opening. After having executed Check_√ and Check_

× we invoke HSDAG (DAG1, N1, F2) to finally obtain

HSDAGF1UF2. This dag is consistent with the conflict-set F1 ∪
F2. Figure 5 illustrates the final dag from which we retrieve
the hitting sets {1,3}, {1,4} and {2,3,4} as the set of diagnoses.

V. EXPLOITING PASSING TEST CASES

Since passing test cases do not cause a logical
contradiction, we do not obtain conflicts from passing test
cases. However, passing test cases contribute in isolating
faults in two ways.

First, we need passing test cases to bring the program into
a state, in which another (failing) test case can reveal a
misbehavior. In general, to exhibit misbehavior, sequential
designs need to traverse a chain of intermediate states. In each
of these states, the circuit does not exhibit erroneous behavior,
and thus passing test cases contribute to finally reach a state
in that the circuit exhibits misbehavior.

Second, as the different instances of our components
behave independently, as we create an independent
component for every unfolding of the circuit. We can use
passing test cases to incorporate the notion of deterministic
components into our debugging model. To illustrate the
potential of using passing test cases to locate the root cause
for detected misbehavior we continue with a simple example.

Figure 5: Hitting set for the union of the set F1∪F2

Figure 4: Hitting set dag HSDAGF1 for the conflict-set F1

294

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I: ASSUMPTIONS, AND TEST CASES FOR OUR RUNNING EXAMPLE.

assumption in1 in2 out inter verdict

AB(not), AB(exor) 1 0 1 0 fail

AB(not), AB(exor) 0 0 1 1 pass

Figure 6: Part of a circuit as our running example.

As a part of a circuit, Figure 6 illustrates an exclusive or
and a not gate together with a passing and failing test case for
this circuit. We further assume that the circuit is faulty, that is,
our test suite has identified misbehavior and we obtain both
components (the EXOR and the NOT gate) as possible
diagnosis candidates.

Suppose we have the test cases given in Table I.
Considering the first (failing) test case in the first line, and
assuming the NOT gate to be abnormal but the EXOR gate
correct, we can deduce that variable inter becomes 0.
However, under the same assumption, the passing test case in
line 2, forces variable inter to become 1. We immediately see
that the NOT gate is required to map the variable inter to 0 and
to 1 for the same input value in2=0. Obviously, no
deterministic component can fulfill this requirement. Thus,
the NOT gate can no longer be considered as a valid diagnosis
candidate. To our best knowledge, the authors of [24] were the
first who used this idea for discriminating diagnosis
candidates. Unfortunately, the article gives no further insights
whether the technique can be employed in practice as the
authors do not provide an empirical evaluation to evaluate
scalability and the improvement potential with respect to
accuracy.

In the following, we propose an extension to that which –
under absence of structural faults – allows one for taking
advantage of passing test cases. As passing test cases do not
yield to additional conflicts, we capture their specific
information about diagnoses in terms of Ackermann
constraints [25]. By adding these consistency constraints we
incorporate the fact that the same combination of input values
applied to a deterministic component C produces the same
output for every instance of C. This allows one for exploiting
the many test cases that do not reveal a fault. The system
description with Ackermann constraints SDA is given as
follows:

System description with Ackermann constraints: Let TC

be a set of test cases form a test suite TC, let in(Ci) ={ 1

Cii ,…,

m

Cii } denote the inputs of component Ci, let out(Ci)={ 1

Cio ,…,

n

Cio } denote the outputs and let SD* denote the system

description of a diagnosis problem considering a test suite.

The system description with Ackermann constraints SDA is
given by,

where, i≠j and i,j denote indices of the test cases.

As we will show in the next section, Ackermann
constraints increase the complexity of the model considerably.
Therefore, we used a post processing technique proposed by
the authors of [26]. As shown at the end of this section filtering
allows one for iteratively applying the Ackermann constraints
to the obtained diagnoses. Instead of compiling the constraints
into the debugging model, we apply the constraints in terms
of a dedicated post-processing phase.
Filtering refers to discarding certain diagnoses by taking

advantage of further test cases TCi. A diagnosis Δ states that

}\|)({ COMPCCABTCSD i
is

consistent. This implies that there is a replacement, that is,

there exists a function replace(C) for every component

C that allows one for repairing the program for the

given test case. The function replace(C) allows one for

producing the correct output values for the considered test

case. However, considering a test suite such a replacement

does not exist for all test cases in the test suite TC necessarily.

Since all components COMP \ Δ are assumed to behave

correctly, we can compute the input values in(C) and out(C)

for every component C from Δ (employing forward

propagation). According to this computed input/output

relation, the component C may be required to map the same

input- to different output values. This corresponds to an

inconsistency and the specific diagnoses AB(C) is not

repairable wrt. the specific test case. As there is no function

replace(C) as stated previously, the component C can be

removed from the set of diagnosis candidates. In this vein, we

evaluate the Ackermann constraints in an iterative way by

checking for different input values for a certain output value.

Algorithm 1 (Filtering): Let Δ denote a set of diagnosis

candidates and let TS be a test suite.

1. For all D Δ do

2. For all test cases TCi TC do

a. Let iDi denote the input values and let oDj denote

the output values of component D by assuming

}\|)({)(DCOMPCCABDAB

b. If there exits i,j, i≠j, such that

then remove D from Δ

3. Return Δ

Claim: Algorithm 1 applies the Ackermann constraints

CONA to a set of single-diagnosis candidates.

After applying Algorithm 1 to the set of single-fault diagnosis

candidates, there is no component D at which we obtain

different input values for a certain output value. Thus, we

DjDiDjDi ooii

p

cj

p

ci

n

p

l

cj

l

ci

m

liA

AA

ooiiCABCON

CONSDSD

 11

*

)(

,

295

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

conclude, that

Thus, Algorithm 1 imposes the Ackermann constraints on

the set of single-fault diagnosis candidates. For our evaluation
of the approach we therefore took advantage of the filtering
algorithm previously presented.

VI. PRACTICAL EXPERIENCES AND EVALUATION

Our evaluation and practical experiences answer two
research questions. First, we strive to quantify the impact of
exploiting passing test cases for debugging. This is done by
referring to a former experiment [11] and comparing these
results with our novel results considering passing test cases.
Second, we evaluated the running times of the algorithm
proposed herein. For both research questions, we rely on the
ISCAS’89 benchmark suite [27].

We conducted our experiments on a Dell Power Edge
1950 II - 2x Quad Core with 2.0 GHz and 10GB of RAM. For
computing diagnoses we relied on the extension of Reiter’s
algorithm described herein. Note that, for the efficient
computation of diagnoses, we convert the rules given in the
previous sections into a specific Horn-like encoding [21]. As
the computation of conflict sets is a time critical issue, the
(minimal) conflict sets are computed according to the
procedure explained in [21]. The diagnosis engine and the
proposed extension are implemented in the Java programming
language.

Our debugging tool parses the Verilog code, builds up the
model as described in this article and converts a test suite to
the logical representation. Afterwards, the tool computes
diagnosis candidates in increasing order of cardinality and
visualizes the results by highlighting the corresponding
statements, expressions or operators.

A. Time Complexity of Computing Diagnoses

For our empirical evaluation we use a Horn-like encoding
of the rules presented herein. By relying on this encoding we
make use of an efficient procedure to compute all minimal
conflicts [21]. From the obtained conflicts we retrieve
diagnoses by computing the minimal hitting sets in increasing
order, where for practical purposes, primarily single- and
dual-fault diagnoses are of interest. In general, searching for
all diagnoses has a worst time complexity of the order
O(|MODES|*|COMP|s), where |MODES| is the number of
fault modes, |COMP| is the number of components and s is
the maximal size of the diagnoses [23]. Since we use two fault
modes (AB(C) and AB(C)) and search for single and double
fault diagnoses, our worst time complexity is of the order
O(|COMP|2). Note that we consider the components in every
cycle as independent and thus the number of components
increases with the length of the test case. However, the
average running time complexity is much better because
diagnoses with smaller cardinality (particularly single-fault

diagnoses) are more likely than higher order diagnoses. For
example, finding all single diagnoses is of order O(|COMP|)
assuming the decision procedure can be executed in unit time.

B. Generation of Test Suites

We obtained the test suite by injecting a single-fault
(respectively a dual-fault for the second series of experiments)
into the RTL design. Afterwards, we identified the faults in
terms of running a simulation until we obtained five test cases
revealing the introduced fault. The faults are introduced in a
random way by picking a statement from every circuit and
replacing this statement by another statement. That is, for
every circuit, we replaced an arbitrary statement with a
structurally equivalent statement (same no. of input
parameters). For example, in a specific circuit we randomly
selected a NOR statement and replaced it by an AND
statement. Further, we implicitly removed/added negations as
we substituted a logical statement by the negated counterpart
(e.g., NAND by AND or vice versa). These error types are not
necessarily complete w.r.t. functional errors, but as they are
believed to be common in the design process, we capture the
most common scenarios [28]:

 Mistakenly replacing one gate/statement by another

gate/statement with the same number of inputs.

 Incorrectly adding or removing a gate/statement.

All empirical evaluations are conducted on the Verilog

RTL version of the ISCAS’89 benchmark suite [27]. Further,
the gate-level representations of the ISCAS’89 benchmarks
have been used to obtain the correct waveform traces since our
simulator allowed only for simulation of gate-level circuits.

Regarding all experiments, we verified that the injected
fault (the root cause) is among the retrieved diagnosis
candidates.

C. Empirical Evaluation

In our experimental setting, we assumed that an engineer
only knows the correct values of the primary inputs for every
simulation cycle and the outputs at the end of the final
simulation cycle. That is, specified information captures the
primary inputs vin and their corresponding values valin for
every instant of time t=1..n, (vin, valin, t), together with the
primary outputs and the corresponding value at time n, (vout,
valout, n). The observations are given in terms of the primary
input variables for every cycle and the primary output
variables at the end of the simulation cycle (i.e., at time point
n, where n is the length of the test case). Table II lists the
number of primary inputs, primary outputs, and the number of
gates and D-type flip-flops for the circuits we considered in
our experiment. The last column is not published in Brglez et
al. [27] but lists the number of lines of code in the source code
representation of the Verilog RTL design.

In our first experiment, we evaluate the discrimination
capability of the software debugger with an increasing number
of failing test cases. Figure 7 summarizes the number of
obtained single-fault diagnoses for a part of the ISCAS’89
benchmark suite.

)()(,,.1 11

p

Dj

p

Di

n

p

l

Dj

l

Di

m

l ooiijiji

)()(,,.2 11

p

Dj

p

Di

n

p

l

Dj

l

Di

m

l ooiijiji

)()(,,.3 11

p

Dj

p

Di

n

p

l

Dj

l

Di

m

l ooiijiji

296

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II: STRUCTURAL CHARACTERISTICS OF THE PROGRAMS FOR THE

EMPIRICAL EVALUATION.

circ.

name

no.

prim.

inp.

no.

prim.

outp.

no. D-

type

flip-

flops

no.

gates

no.

lines

s208 11 2 8 96 240

s349 9 11 15 161 545

s382 3 6 21 158 544

s386 7 7 6 159 508

s444 3 6 21 181 602

s510 19 7 6 211 660

s526 3 6 21 193 634

For every circuit we randomly introduced a single fault

and computed all single-fault diagnoses using the algorithm
introduced in Section IV. Regarding this experiment, the
introduced fault always was among the set of retrieved single-
fault diagnoses.

The experiment is of practical relevance as in practice,
engineers have a limited amount of failing test cases only (in
our case up to five) and numerous passing test cases. The
failing test cases relate the primary inputs to the (quiescent)
value of the primary outputs. Our experiment does not assume
any intermediate values to be known (e.g., the expected
temporal response for the primary outputs). We solely rely
instead on the input values for every cycle and the expected
value of the primary outputs at the end of the simulation.

Figure 7 underpins the findings discussed in previous
research articles as the number of single-fault diagnoses being
obtained depends on both, the concrete test case and the
structural complexity of the program. With an increasing
number of failing tests we can considerably reduce the number
of obtained single-fault diagnoses.

Afterwards, we repeated a similar experiment but in
addition applied the filtering algorithm to exploit the
numerous passing test cases for debugging. Figure 8 illustrates
the improvement we gained from applying these test cases
together with the failing test cases. In the figure, no passing
test case (0) refers to using exactly five failing test cases. In
addition, we applied the filtering procedure by using up to four

passing test cases. As in the previous experiment, the
introduced fault always is among the retrieved set of single-
fault diagnoses.

Regarding our experiments, passing test cases were able
to further reduce the number of single-fault diagnoses for
every program we considered.

Figure 9 outlines the running times for our algorithm we
obtained for computing all single-fault diagnoses including
the application of the filtering procedure. Remarkably, the
random fault introduced in circuit s510 yields to a significant
number of diagnoses and thus higher response times when
compared to the remaining circuits. It appears that, (1) the
structural complexity, (2) the random fault we introduced, and
(3) the specific test cases revealing the introduced fault results
in a (at least in relation to the other circuits) computationally
expensive problem. On average we obtained 74 single-fault
diagnoses corresponding to 44 faulty lines in the source code.
Regarding our experiments, a designer can exclude over 93
percent of the statements and expressions from being faulty.

In a second series of experiments, we randomly injected
two faults into every circuit we considered for our experiment.

Figure 7: Single-fault diagnoses with increasing number of failing test

cases.

Figure 8: Improvements due to the filtering technique.

Figure 9: Running times for computing single-fault diagnoses.

297

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Again, we generated up to five failing test cases and computed
all single- and dual-fault diagnoses by using the algorithm
introduced in Section IV. Figure 10 outlines the number of
dual-fault diagnoses we obtained with increasing number of
failing test cases.

For some circuits (e.g., s208, s349 and s386) the obtained
number of dual-fault diagnoses is not monotonically
decreasing. Unlike to computing single-fault diagnoses, this
may happen due to the fact that test cases may mask some
faults. For example, the first test case might reveal the first
fault being introduced but may mask the second fault we
introduced. As a consequence the second fault is not among
the retrieved list of diagnoses. The second test case might
reveal the second fault, therefore, after computing diagnoses,
the second fault will also appear in the list of diagnoses. As a
result, in the presence of multiple faults, when adding further
test cases, in some cases, the number of diagnoses might
increase. However, for most of the circuits in our experiment
the number of dual-fault diagnoses decreases with increasing
number of failing test cases. Again, for every circuit being
considered in the experiment, the introduced pair of faults
appeared among the computed dual-fault diagnoses

Figure 11 outlines the running times for computing dual-
fault diagnoses. Note that one usually computes diagnoses in
increasing order of cardinality. That is, we first use our
algorithm to compute single-fault diagnoses and only if the
real cause of misbehavior cannot be explained by a single-
fault we continue with computing dual-fault diagnoses.

VII. DISCUSSION AND RELATED WORK

The research work regarding fault localization is hardly
comparable due to the variety of benchmarks and different
approaches and abstraction levels being used. For this reason
we predominately discuss the work where empirical results on
the ISCAS’89 (and purely combinational ISCAS’85)
benchmark suites have been obtained.

The authors of [29] propose a method that uses the
crosstalk-induced pulse fault simulation to identify a set of
suspected faults that are consistent with the observed
responses. The authors propose two simulation-based

methods to diagnose a crosstalk-induced pulse fault which
may occur between the clock line of a flip-flop and a signal
line in the sequential circuit. The first method is a basic
method to diagnose the crosstalk-induced pulse faults. It uses
information about the first and the last timeframe at which a
crosstalk-induced pulse fault is detected. The second method
uses additional information to reduce the computational
complexity for diagnosing a crosstalk induced pulse fault. In
order to reduce computational effort, the second method uses
stored state information to calculate the primary output values
at the present timeframe.

The authors of Boppana et al. [30] introduce a state
information-based technique for supporting fault diagnosis.
Storage of faulty state data corresponding can be used to
reduce stored data. It has been demonstrated that the technique
can support fast fault diagnosis in partial scan environments,
particularly if the resulting design is acyclic. In doing so, the
simplified structure of the partial scan circuit has been
exploited. Arguably, the most important contribution of this
work is the useful storage of faulty circuit data corresponding
to flip-flops. Therefore, the circuit is no longer considered as
a black-box element at diagnosis time and hence offers
increased flexibility.

The authors of Smith et al. 2004 [31] present a SAT-based
solution to design diagnosis of (also dual) faults where
existing solvers can be utilized. The authors also examine
different implementation trade-offs and heuristics. Like our
work, experiments with dual faults demonstrate the efficiency
and practicality of the approach.

Peischl and Wotawa 2006 [22] present work on VHDL
and present results on the ISCAS’89 benchmarks regarding
single test cases. This article introduces a model based on the
MBD approach that abstracts over individual events within a
single simulation cycle and allows one for performing source
level debugging.

So far, the work on comparing the various debugging
approaches is rather limited. In Finder et al. 2010 [32], a
methodology is presented to evaluate debugging algorithms
from a qualitative perspective. Notably, the authors of [32] lift
the fault model originally defined for gate level net lists to
higher level descriptions like HDLs and conclude that some

Figure 11: Running times for computing dual-fault diagnoses

Figure 10: Dual-fault diagnoses for a part of the ISCAS’89 benchmarks

298

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

types of bugs can be handled using a simulation-based
approach, while other types of bugs cannot be handled.
Peischl and Wotawa [20] argue that simulation-based
techniques may miss faults. Thus, the comparison of MBD-
based techniques with simulation-based techniques can only
be done in terms of case studies under a given set of
assumptions (e.g., fault types) and the conclusions are
restricted to the respective benchmarks being considered.
Further, the different metrics to measure the quality or
adequacy of the fault candidates (e.g., some notions of
neighborhood, number of fault candidates, etc.) at the various
levels of granularity (statements, expressions, operators etc.)
make a generalized and meaningful comparison almost
impossible.

The authors of [33] outline the results obtained with a
fault-simulation based technique. The main differences to our
experimental settings are as follows:

 In contrast to our experiments, the results described in

[33] have been obtained on the gate level as this work

does not focus on locating the erroneous statement or

expression at the source code level.

 The fault localization is performed on optimized circuits

rather than on the original design. The optimized circuits

only comprise AND and OR gates. In contrast to that, our

work deals with RTL designs and with locating the root

cause on the source code level.

 The authors of [33] only specify the minimal length of

the test cases and only give an upper limit of the number

of failing and passing test cases.

 Most notably, and in contrast to our work, the technique

introduced in [33] requires the primary input values and

correct values for the primary output for every time

frame. To our experience, a designer does only use

limited correctness information (e.g., the expected signal

values at the end of a test case) rather than having

knowledge about all the intermediate values.

 The approach pursued in [33] fails for the circuits’ s208

and s444 due to the high complexity for long failing test

cases.

 Rather than allowing every statement, expression or

signal to be faulty, only signals are considered as

potential root cause for the observed misbehavior. This

is a major difference to our approach, as our technique

allows one for obtaining diagnosis candidates at the level

of statements, and expressions including individual

variables.

 Erroneous implementations are generated in terms of

injecting a gate type error randomly after decomposition

into AND and OR gates [33, 34].

Although the response times and the number of obtained

diagnoses can hardly be compared due to the points mentioned
above, our empirical results correspond with the results
outlined in [33] in two respects:

 The number of potential single-fault diagnoses is

reduced substantially when employing a couple of

failing test cases.

 It appears that further increasing the number of failing

test cases yields to saturation, i.e., the number of

diagnosis candidates does not appear to become

considerably smaller even when increasing the number

of failing test cases substantially. In this respect, the

decision to empirically investigate techniques that allow

one for incorporating passing as well as failing test cases

gains even more importance.

In the models used herein, we abstract over time (we use

trace semantics) and variable values (we only operate with
values 0 and 1). This kind of abstraction is particularly suited
for designs that can be synthesized. For mainstream
programming languages (for example, the Java programming
language) other abstractions like, for example, functional
dependences or abstract interpretation models can be
beneficial [35]. Finding a suitable abstraction is the key in
successfully applying model-based software debugging, as
this allows one for trading off computational complexity and
accuracy of the obtained diagnoses. Today, it is an open issue,
how to systematically find adequate abstractions and this issue
requires further research.

Recent work approaches the fault localization problem
merely from an algorithmic point of view. These articles differ
from our research in two aspects. First, none of the works
addresses source level debugging (in the sense of
automatically highlighting the potential fault candidates at the
level of expressions and statements at the HDL RTL level)
and second, the evaluation of the novel algorithms and
techniques is only performed on combinational circuits
(mostly on the ISCAS’85 benchmark suite) and does not
address sequential circuits (and thus the notion of state).

Siddiqi and Huang [36] propose a heuristic measurement
point selection that can be computed efficiently. Furthermore,
the technique introduced in [36] makes use of hierarchical
diagnosis. For the largest system, where even this approach
fails, the authors make use of specific abstractions. Unlike our
approach (HDL trace semantics is an abstraction of the finer
grained event semantics) this abstraction is not related to HDL
language semantics. Experiments with the (combinational)
ISCAS’85 benchmark suite indicate that this approach scales
to all circuits in the suite except for one.

Feldman et al. [37] combine passive monitoring, probing
and test sequencing with automated test pattern generation.
Within their framework (FRACTAL), the authors empirically
evaluate the trade-offs of three algorithms by performing
experiments on the ISCAS’85 combinational benchmark
circuits.

The same authors further propose a stochastic fault
diagnosis algorithm called SAFARI [38], which trades off
guarantees of computing minimal diagnoses for
computational efficiency. In terms of the ISCAS’85
benchmarks, the authors empirically demonstrate that
SAFARI achieves several orders of magnitude speedup over
two well-known deterministic algorithms. The authors argue

299

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that SAFARI can be of broad practical significance, as it can
compute a significant fraction of minimal cardinality
diagnoses for systems too large or too complex to be
diagnosed by existing deterministic algorithms.

Abreu and van Gemund [39] use a heuristic approach to
approximate the computation of minimal hitting sets and
present a low-cost approximate minimal hitting set algorithm
called STACCATO. The authors use a heuristic function that
is particularly tailored to MBD problems. One difference to
our work is that the candidates are not retrieved in increasing
order of cardinality. Whether STACCATO can be tailored to
software debugging (e.g., making use of STACCATO only
for large problem spaces) is an open issue and subject of future
research.

Like in this article, Bailey and Stuckey [40] present an
incremental approach to compute hitting sets and show that
circuit error diagnoses requires finding all minimal
unsatisfiable subsets to compute minimal diagnoses.
However, the proposed hitting set algorithm works in the
context of constraints whereas the proposed algorithm herein
is used in our automated debugging tool and is a variant of
Reiter’s hitting set algorithm dealing with sets of items.

VIII. CONCLUSION

In this article, we showed how to employ the well-founded
theory of model-based diagnosis to fault localization in
Verilog designs. We discussed today’s simulation driven
development lifecycle and proposed a model that can handle
test suites comprising passing and failing test cases. To exploit
passing test cases we used a technique called filtering and
related this technique to Ackerman constraints. Regarding
failing test cases, we used an iterative version of Reiter’s
hitting set algorithm.

We present an empirical evaluation of the impact of
passing test cases alongside with an analysis of the running
times of an iterative variant of Greiner et al.’s hitting set
computation in the context of our automated debugging tool
for HDLs. In this respect, we reported on exhaustive empirical
results on one of the mostly employed benchmarks in the area
of HDLs, the ISCAS’89 benchmark suite. Our results clearly
indicated that exploiting test suites (comprising passing as
well as failing test cases) considerably may improve the
accuracy of the obtained diagnoses.

REFERENCES

[1] B. Peischl, N. Riaz, and F. Wotawa, “Using filtering to
improve value-level debugging of verilog designs,” In VALID
2013, The Fifth International Conference on Advances in
System Testing and Validation Lifecycle, pp. 49–54, 2013.

[2] Z. Navabi, “VHDL: Analysis and Modeling of Digital
Systems,” McGraw-Hill, 1993.

[3] IEEE, IEEE Standard Verilog Language Reference Manual
(LRM), IEEE STD 11364-1995, 1995.

[4] M. J. C. Gordon, “Relating event and trace semantics of
hardware description languages,” The Computer Journal, vol.
45, no. 1, pp. 27–36, 2002.

[5] S. Bailey, “Comparison of VHDL, Verilog and
SystemVerilog,” Digital Simulation White Paper,

http://boydtechinc.com/btf/archive/att-1977/01-
LanguageWhitePaper.pdf (last accessed on 09.05.2014).

[6] R. Abreu, P. Zoeteweij, and A. J C Van Gemund, “On the
accuracy of spectrum-based fault localization,” In Testing:
Academic and Industrial Conference Practice and Research
Techniques - MUTATION, 2007, TAICPART-MUTATION
2007, pp. 89–98, 2007.

[7] B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites
for efficient fault localization,” In Leon J. Osterweil, H. Dieter
Rombach, and Mary Lou Soffa, editors, ICSE, pp. 82–91,
ACM, 2006.

[8] D. Hao, L. Zhang, T. Xie, Hong Mei, and J. Sun, “Interactive
fault localization using test information,” Journal of Computer
Science and Technolgy, vol. 24, no. 5, pp. 962–974, 2009.

[9] B. Liblit, M. Naik, A. X Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” ACM SIGPLAN Notices,
vol. 40, no. 6, pp. 15–26, 2005.

[10] Y. Yu, J.A. Jones, and M.J. Harrold, “An empirical study of
the effects of test-suite reduction on fault localization,” In
Software Engineering, 2008. ICSE ’08, ACM/IEEE 30th
International Conference on, pp. 201–210, 2008.

[11] B. Peischl, N. Riaz, and F. Wotawa, “Automated Debugging of
Verilog Designs,” International Journal of Software
Engineering and Knowledge Engineering, vol. 22, no. 5, pp.
695–723, 2012.

[12] B. Peischl and F. Wotawa, “Model-Based Diagnosis or
Reasoning from First Principles,” IEEE Intelligent Systems,
vol. 18, no. 3, pp. 32-37, IEEE Computer Society, May/June
2003.

[13] J. de Kleer, A. K. Mackworth, and R. Reiter, “Characterizing
diagnoses,” In AAAI , Howard E. Shrobe, Thomas G.
Dietterich, and William R. Swartout, editors, pp. 324–330,
AAAI Press / The MIT Press, 1990.

[14] R. Reiter, “A theory of diagnosis from first principles,”
Artificial Intelligence, vol. 32, no. 1, pp. 57-95, 1987.

[15] R. Greiner, B. A. Smith, and R. W. Wilkerson, “A correction
to the algorithm in Reiter’s theory of diagnosis,” Artificial
Intelligence, vol. 41, no. 1, pp. 79-88, 1989.

[16] S. H. Kan, Metrics and models in software quality engineering,
Addison-Wesley, 1995.

[17] B. Peischl, V. R. Torrents, A. Kalchauer, S. Lang, “Business
intelligence in software qualiy monitoring: Experiences and
lessons learnt from an insutrial case study,” In Proceedings of
the 6th Software Quality Days (SWQD 2014), pp. 34-47, 2014.

[18] L. Lavazza and M. Mauri, “Software process measurement in
the real world: Dealing with operating constraints,” In Lecture
Notes in Computer Science, Qing Wang, Dietmar Pfahl,
DavidM. Raffo, and Paul Wernick, editors, Software Process
Change, vol. 3966, pp. 80–87, Springer Berlin Heidelberg,
2006.

[19] B. Jobstmann, R. Bloem, A. Cimatti, G. Auerbach, and
M. Moulinn, “Prosyd: Property-based system design,
deliverable 2.1/1,” PROSYD Techical Report, FP6-IST-
507219, 2005.

[20] B. Peischl and F. Wotawa, “Error traces in model-based
debugging of hardware description languages,” In Proceedings
of the Sixth International Symposium on Automated Analysis-
driven Debugging, AADEBUG’05, pp. 43–48, New York, NY,
USA, ACM, 2005.

[21] B. Peischl and F. Wotawa, “Computing diagnosis efficiently:
A fast theorem prover for propositional horn theories,” 14th
Internaltional Workshop on Principles of Diagnosis (DX-03),
pp. 175–180, June 2003.

[22] B. Peischl and F. Wotawa, “Automated source-level error
localization in hardware designs,” IEEE Design & Test of
Computers, vol 23, no. 1, pp. 8-19, January 2006.

300

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[23] F. Wotawa, “Applying Model-Based Diagnosis to
SoftwareDebugging of Concurrent and Sequential
ImperativeProgramming Languages,” PhD thesis, Technische
Universität Wien, 1996.

[24] O. Raiman, J. de Kleer, V. A. Saraswat, and M. Shirley,
“Characterizing non-intermittent faults,” In AAAI, Thomas L.
Dean and Kathleen McKeown, editors, pp. 849–854, AAAI
Press / The MIT Press, 1991.

[25] W. Ackermann, Solvable Cases of Decision Problems, North
Holland, 1954.

[26] F. Wotawa, “Debugging hardware designs using a value-based
Model,” Applied Intelligence, vol. 16, no. 1, pp. 71-92, 2002.

[27] F. Brglez, D. Bryan, and K. Kozminski, “Combinational
profiles of sequential benchmark circuits,” In IEEE
International Symposium on Circuits and Systems, pp. 1929–
1934, 1989.

[28] D. Nayak and D. M. H. Walker, “Simulation-based design
error diagnosis and correction in combinational digital
circuits,” In VTS, pp. 70–79, IEEE Computer Society, 1999.

[29] H. Takahashi, M. Phadoongsidhi, Y. Higami, K.K. Saluja, and
Y. Takamatsu, “Simulation-based diagnosis for crosstalk faults
in sequential circuits,” In Proceedings to the 10th Asian Test
Symposium, pp. 63–68, 2001.

[30] V. Boppana, I. Hartanto, and W.K. Fuchs, “Fault diagnosis
using state information,” In Proceedings of Annual
Symposium on Fault Tolerant Computing, pp. 96–103, 1996.

[31] A. Smith, A. Veneris, and A. Viglas, “Design diagnosis using
boolean satisfiability,” In Proceedings of the 2004 Asia and
South Pacific Design Automation Conference, ASP-DAC ’04,
pp. 218–223, Piscataway, NJ, USA, 2004, IEEE Press.

[32] A. Finder and G. Fey, “Evaluating debugging algorithms from
a qualitative perspective,” In Forum on Specification Design
Languages (FDL 2010), pp. 1–6, 2010.

[33] S.-Y. Huang, K.-T. Cheng, K.-C. Chen, and J.-Y. J. Lu, “Fault-
simulation based design error diagnosis for sequential

circuits,” In Proceedings of the Design Automation
Conference, 1998, pp. 632–637, 1998.

[34] A. Kuehlmann, D. I. Cheng, A. Srinivasan, and D. P. LaPotin,
“Error diagnosis for transistor-level verification,” In
Proceedings of the 31st Annual Design Automation
Conference, DAC ’94, pp. 218–224, New York, NY, USA,
1994, ACM.

[35] W. Mayer and M. Stumptner, “Model-based debugging using
multiple abstract models,” In Fifth International Workshop on
Automated and Algorithmic Debugging, CoRR, pp. 55-70,
cs.SE/0309030, 2003.

[36] S. Siddiqi and J. Huang, “Sequential diagnosis by abstraction,”
Journal of Artificial Intelligence Research, vol. 41, no. 2, pp.
329–365, May 2011.

[37] A. Feldman, G. Provan, and A. van Gemund, “A model-based
active testing approach to sequential diagnosis,” Journal of
Artificial Intelligence Research, vol. 39, no. 1, pp. 301–334,
September 2010.

[38] A. Feldman, G. Provan, and A. Gemund, “Approximate model-
based diagnosis using greedy stochastic search,” In of Lecture
Notes in Computer Science, Abstraction, Reformulation, and
Approximation, Ian Miguel and Wheeler Ruml, editors,
volume 4612, pp. 139–154, Springer Berlin Heidelberg, 2007.

[39] R. Abreu and A. J. C. van Gemund, “A low-cost approximate
minimal hitting set algorithm and its application to model-
based diagnosis,” In SARA, Vadim Bulitko and J. Christopher
Beck, editors, AAAI, pp. 2-9, 2009.

[40] J. Bailey and P. J. Stuckey, “Discovery of minimal
unsatisfiable subsets of constraints using hitting set
dualization,” In Proceedings of the 7th International
Conference on Practical Aspects of Declarative Languages,
PADL’05, pp. 174–186, Berlin, Heidelberg, 2005, Springer-
Verlag.

301

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Long-term Sustainable Knowledge Classification with Scientific Computing:
The Multi-disciplinary View on Natural Sciences and Humanities

Claus-Peter Rückemann
Westfälische Wilhelms-Universität Münster (WWU),

Leibniz Universität Hannover,
North-German Supercomputing Alliance (HLRN), Germany

Email: ruckema@uni-muenster.de

Abstract—This paper presents the methodological and technical
results of creating long-term sustainable knowledge resources,
which can be used for documentation, classification, and struc-
turing as well as with scientific discovery and deployment of
supercomputing resources for advanced information systems. The
focus is on the multi-disciplinary knowledge view on disciplines
from natural sciences and humanities. The basic requirements
resulting from the long-years’ cases studies are long-term knowl-
edge resources providing structure and universal classification
features. The paper discusses the state-of-the-art implementation
of information structures and object representations used with
universal classification and computation algorithms for multi-
disciplinary, dynamical knowledge discovery. The combination
of universal knowledge resources and computational workflows
based on High End Computing (HEC) resources and Universal
Decimal Classification (UDC) have been successfully used for
the goal of creating efficient long-term sustainable Integrated
Information and Computing System components. The paper
presents practical implementation examples from a range of
disciplines with references to natural sciences and humanities,
e.g., geosciences, astrophysics, and archaeology. The long-term
results show that the overall sustainability principally depends
on the methodological and systematical creation of content,
structure, and classification with the knowledge resources.

Keywords–Scientific Computing; Sustainability; Knowledge
Resources; Multi-disciplinarity; Integrated Systems; Information
Systems; Classification; UDC; Natural Sciences; Humanities.

I. INTRODUCTION

This paper presents the results and development of appli-
cations from long-term sustainable knowledge classification
focussing on the multi-disciplinary aspects of natural sciences
and humanities. The work and implementation are based on
the creation of sustainable knowledge resources supporting
structure, classification, and scientific supercomputing for any
object and discipline [1]. Systematical and methodological
developments are the major sources of contributions for long-
term sustainable infrastructures. Technical developments com-
plement the sustainability efforts, contributing to short- and
medium-term success. With this context the amount of data as
well as the complexity of information keeps steadily increas-
ing. The developments of the last decades have shown that for
a continuous positive progress not only the efficiency must
increase, the more, developments must be made long-term
sustainable, too. As the knowledge gathered during generations
should be considered the most important component to the

overall success we need universal knowledge resources that
can handle documentation as well as universal classification
and structuring. As being consent with most contributing
disciplines and claimed by scientific councils, the knowl-
edge resources should not only be traditional collections as
with digital libraries [2] and isolated content [3] but, despite
any challenges be accessible with scientific supercomputing
resources in order to create advanced information systems
and implement and improve workflows and recommended
operation [4], [5].

The created features of the knowledge resources presented
for the first time in this paper contain new practical con-
cepts for information structures and object representations.
The objects and derivatives, described in this paper, can be
used with universal classification and computation algorithms
for multi-disciplinary, dynamical knowledge discovery. This
paper presents examples from archaeology and geosciences
disciplines, resulting from practical case studies on structure
and workflow modularisation, within the GEXI collaborations
[6]. These are part of a multi-disciplinary knowledge struc-
ture. Further, the implementation of the knowledge objects is
suitable to be used very flexibly with workflows on HEC re-
sources, e.g., with IICS components [7], [8]. Multi-disciplinary
knowledge resources are used to resemble and document of any
information available. The requirements for complexity can
become arbitrary high so that performant compute resources
have to be used for any more advanced applications. The
applicability for parallelisation of the contributing algorithms
with the complex knowledge trees has therefore been analysed
with the case studies. The motivation for investigating in the
efficiency and modularisation of the knowledge trees is the
increased potential for drastical improvements of the Quality
of Data (QoD) with the result matrix, which contributes to
advanced cognition within the multi-disciplinary context.

This paper is organised as follows. Sections II and III
introduce with sustainability and vitality of knowledge-based
architectures and main issues of complexity. Sections IV
and V discuss the complexity and present a practically used
classification approach to the challenges. Sections VI and VII
describe the structure and challenges. Sections VIII and IX
introduce the new concept of object carousels, the discovery
of “missing links”, workflows, references chains, and computa-
tional demands. Sections X and XI discuss the lessons learned
and summarise conclusions and future work.

302

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. PREVIOUS WORK

Knowledge creation and knowledge management [9], [10]
have been studied for more than twenty years now. Anyhow,
so far long-term and sustainability issues have not really
been considered in practice, especially in universal multi-
disciplinary knowledge context. For example, there have been
numberless approaches on knowledge management consider-
ing small isolated ranges of classical disciplines or defined
purposes but not with multi-disciplinary approaches. Knowl-
edge management (UDC:005.94 Knowledge management) is
obvious to be only one of the many aspects of knowledge
(UDC:0 Science and knowledge), from creation to organisation
and universal and long-term sustainable development and use
[11].

For all components presented in this paper, the main
information, data, and algorithms are provided by the LX
Foundation Scientific Resources [12], e.g., the volcanological
data, the meteorite crater data, and archaeological data.

Information about the following data sources has been
integrated and deployed with the knowledge resources for the
previous basic case studies and developments. So, the creation
of long-term knowledge resources decisively contributes to the
goal of a successful creation of long-term sustainable Inte-
grated Information and Computing System (IICS) components.

The referred “Leibniz” data (see the following references on
Gottfried Wilhelm Leibniz, 1646–1716) has been included into
the workflow chains, e.g., creating historical associations with
the the content of archaeology and geosciences will otherwise
not be accessible. An example is the communication regarding
volcanoes, earthquakes, and caves in manuscripts and letters
or content of pictorial realia objects, which are not available
via search engines. From the Leibniz sources there is a rich
contribution for the result matrix on volcanism, volcanology,
and geology by various historical objects, references, and
sources, especially for volcanism, Vesuvius [13], as well as
earthquake related context [14], even from concept glossaries
[15], manuscript collections and catalogues [16], [17] as, e.g.,
[18], [19], or Leibniz related copperplates [20]. For example,
the “praehistoric unicorn” reconstruction [21], as well as mate-
rial on geological context has not been referenced before from
knowledge resources’ objects and is not freely and publicly
available as a direct reference, media or verification [22].

Material in specialised collections, for example in the Eu-
ropean Cultural Heritage Online [23] would not be easily
accessible due to the type and context of the material.

Further data being publicly available can be incorporated in
any way under the premise that the data formats are accessible
and interfaces have been provided. An example is the CLIma-
tological database for the World’s OCeans (CLIWOC) [24],
a climatological database for the world’s oceans from 1750–
1850, containing digitized data from logbooks of pre 1854
voyages of English, Spanish, Dutch, and French ships.

III. SUSTAINABILITY AND VITALITY

In the context of this research, the goal for “long-term”
means > 50 years. The long-term strategy has been discussed
in detail with previous implementations [25]. Data mining is

not only an analysis step of knowledge discovery in databases
based on informatics but much more general in data pools.
It is an inter-disciplinary as well as multi-disciplinary field
of many sciences and computer science. It means discovering
patterns in data pools using methods implementing statistics,
classification, artificial intelligence, learning and many more
based on knowledge resources. The process targets to extract
information from knowledge resources and gaining content and
context, e.g., based on structure and references, in order to
prepare for further use. Sustainable long-term strategies have
to combine operation, services, and especially the knowledge
resources [26], [1]. With the available systems components,
we have Resources Oriented Architectures (ROA), Services
Oriented Architectures (SOA), and “Knowledge Oriented Ar-
chitectures” (KOA) in addition [27]. For long-term operation,
all three must be obtained from the creation and operation.
Considering the entirety of aspects necessary for a successful
long-term change management with future information tech-
nology structures. Nevertheless, the KOA is the most important
complement as it contains the highest percentage of the overall
investments for the results and the data that may even not be
reproducible later on.

IV. COMPLEX KNOWLEDGE RESOURCES CASE

Central aspects for uses cases are the definition of knowl-
edge and the features of the knowledge resources.

A. Knowledge definition
In general, we can have an understanding, where knowledge

is: Knowledge is created from a subjective combination of
different attainments as there are intuition, experience, infor-
mation, education, decision, power of persuasion and so on,
which are selected, compared and balanced against each other,
which are transformed and interpreted.

The consequences are: Authentic knowledge therefore does
not exist, it always has to be enlived again. Knowledge must
not be confused with information or data which can be stored.
Knowledge cannot be stored nor can it simply exist, neither in
the Internet, nor in computers, databases, programs or books.
Therefore, the demands for knowledge resources in support of
the knowledge creation process are complex and multifold.

There is no universal definition of the term “knowledge”,
but UDC provides a good overview of the possible facets. For
this research the classification references of UDC:0 (Science
and knowledge) define the view on universal knowledge.

B. Knowledge resources
The knowledge resources created can integrate any object.

These objects can be described with universal classification,
handled with phonetic algorithms [28], [29], and can refer to
external resources. The structure of the knowledge objects has
to support the modularisation for application scenarios where
the workflow has to allow highly efficient implementations
itself. Creating workflows based on the multi-disciplinary
knowledge matrices therefore requires highly performant re-
sources. The overall big data challenges, data intensive volume,

303

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

variability, velocity and for future scenarios especially data
vitality, meaning long-term documentation, usability, and ac-
cessibility can be handled in a scalable, modular way. Further,
the components created are considered to become objects of
sustainable knowledge resources, for long-term persistent big
data vitality of documentation, processing, analysis, and eval-
uation. The created solution for long-term use meets a number
of attributes, e.g., it should be generic, superior, adaptable,
flexible, seminal sustainable. In summary, these combined vital
features are called “eonic”.

V. KNOWLEDGE RESOURCES CLASSIFICATION SUPPORT

The operated knowledge resources, based on the LX Foun-
dation Scientific Resources [28], incorporate UDC classifica-
tion support for any discipline and purpose, e.g., for knowledge
discovery and workflows. Practical summarising excerpt sub-
sets for specific disciplines used with the case studies presented
here are given in Tables I, II, III, and IV. These subsets are
use with the knowledge resources on classification regarding
archaeology, volcanoes, impact events, and sinkholes.

Table I. ARCHAEOLOGY KNOWLEDGE RESOURCES CLASSIFICATION.

UDC Code Description

UDC:902 Archaeology
UDC:903 Prehistory. Prehistoric remains, artefacts, antiquities
UDC:904 Cultural remains of historical times
UDC:930.85 History of civilization. Cultural history
UDC:”63” Archaeological, prehistoric, protohistoric periods, ages
UDC:(23) Above sea level. Surface relief. Above ground generally.
UDC:(24) Below sea level. Underground. Subterranean
UDC:=14 Greek (Hellenic)
UDC:56 Palaeontology
UDC:55 Earth Sciences. Geological sciences
UDC:711.42 Kinds of town, locality, settlement
UDC:720.2 Architecture techniques and methods
UDC:720.31 Prehistoric architecture
UDC:720.32 Ancient architecture

Table II. VOLCANOES KNOWLEDGE RESOURCES CLASSIFICATION.

UDC Code Description

UDC:532 Fluid mechanics in general.
UDC:550.8 Applied geology and geophysics. . . .
UDC:550.93 Geochronology. Geological dating. . . .
UDC:551 General geology. Meteorology.
UDC:551.1 General structure of the Earth
UDC:551.2 Internal geodynamics (endogenous processes)
UDC:551.21 Vulcanicity. Vulcanism. Volcanoes. Eruptive phenomena.
UDC:551.23 Fumaroles. Solfataras. Geysers. Hot springs. Mofettes.
UDC:551.24 Geotectonics
UDC:551.26 Structural-formative zones and geological formations
UDC:551.4 Geomorphology. Study of the Earth’s physical forms
UDC:551.44 Speleology. Caves. Fissures. Underground waters
UDC:551.462 Submarine topography. Sea-floor features
UDC:551.5 Meteorology
UDC:551.588 Influence of environment on climate
UDC:551.7 Historical geology. Stratigraphy
UDC:551.8 Palaeogeography
UDC:552.2 General petrography. Classification of rocks
UDC:552.6 Meteorites
UDC:631 Agriculture in general
UDC:631.4 Soil science. Pedology. Soil research

Tables III and IV show the excerpts used for basic impact
events and sinkholes classification.

Table III. IMPACT EVENTS KNOWLEDGE RESOURCES CLASSIFICATION.

UDC Code Description

UDC:5 Mathematics and natural sciences
UDC:500 Natural sciences
UDC:539 Physical nature of matter
UDC:539.63 Impact effects
UDC:539.8 Other physico-mechanical effects

Table IV. SINKHOLES KNOWLEDGE RESOURCES CLASSIFICATION.

UDC Code Description

UDC:519.2 Probability. Mathematical Statistics
UDC:556.34 Groundwater flow. Well hydraulics
UDC:624 Civil and structural engineering
UDC:624.151 Foundations. Foundation bed
UDC:699 Protection of and in buildings. Emergency measures
UDC:930.85 History of civilization. Cultural history
UDC:528.9 Cartography. Mapping (textual documents)
UDC:726.6 Cathedrals. Basilicas. Domes

The small unsorted excerpts of the knowledge resources
objects only refer to main UDC-based classes, which for this
part of the publication are taken from the Multilingual Univer-
sal Decimal Classification Summary (UDCC Publication No.
088) [30] released by the UDC Consortium under the Creative
Commons Attribution Share Alike 3.0 license [31] (first release
2009, subsequent update 2012).

As one of the elementary qualities, the LX Foundation
Knowledge Resources allow to refer to any kind of references,
therefore they also allow to refer to any kind of classification.
If nothing special is mentioned then all the basic classification
codes are used in an unaltered way. If any classification refers
to a modified code then the authors of contributions have
to notice and document the modifications explicitely. The
classification sets have been referred to and used with the
presented computation. UDC [32] currently provides around
70,000 entries in about 100 top classes, whereas the UDC Sum-
mary [33] provides a selection of more than 2,000 classes. The
multi-lingual support lists translations in about fifty languages
[34], [35]. UDC classifications have been integrated with tens
of thousands of knowledge objects [29], which are a base for
each computation [34], [36], [11].

VI. STRUCTURE RELATED SUPPORT

For the components shown here, the structuring capabilities
of the the LX Foundation Scientific Resources [12] have
been deployed. Mostly any external information and types of
objects can be integrated into this structure. The figures, object
entries, and photo media samples shown in the passages of the
following case study examples are computed from the content
of the LX Foundation Scientific Resources. Figures, object
entries, and photo media samples c© C.-P. Rückemann, 2011,
2012, 2013, 2014).

Structuring information requires a hierarchical, multi-lingual
and already widely established classification implementing

304

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

faceted analysis with enumerative scheme features, allowing
to build new classes by using relations and grouping. This is
synonym to the Universal Decimal Classification (UDC) [37].
In multi-disciplinary object context a faceted classification
does provide advantages over enumerative concepts. Com-
position/decomposition and search strategies do benefit from
faceted analysis. It is comprehensive, and flexible extendable.
A classification like UDC is necessarily complex but it has
proved to be the only means being able to cope with classifying
and referring to any kind of object.

Copies of referred objects can be conserved and it enables
searchable relations, e.g., for comparable items regarding spe-
cial object item tags. The UDC enables to use references like
for object sources, may these be metadata, media, BIBTEX
sources or Digital Object Identifier (DOI) [38] as well as
for static sources. With interactive and dynamical use for
interdisciplinary research the referenced objects must be made
practically available in an generally accessible, reliable, and
persistant way. A DOI-like service with appropriate infras-
tructure for real life object services, certification, policies
and standards in Quality of Service, for reliable long-term
availability object, persistency policies should be available.

Therefore, for any complex application, these services must
be free of costs for application users It would not be sufficient
to build knowledge machines based only on time-limited
contracts with participating institutions. These requirements
include the infrastructure and operation so data availability
for this long-term purpose must not be depending on support
from data centers providing the physical data as a “single point
of storage”. Unstructured information, the data variety, is one
major complexity. For relational databases, a lot of players
providing offerings in this space go through the cycle of what
the needs are for structured data. As one can imagine, a lot of
that work is also starting for unstructured or semi-structured
data with Integrated Systems. Data access and transfer for
structured data, unstructured data, and semi structured data
may be different and may to a certain extend need different
solutions for being effective and economic [39].

The long-term objects must be able to contain the essential
knowledge, even as medium- and short-term objects cannot
be preserved or made persistent as, e.g., DOI (Digital Object
Identifier), URN (Uniform Resource Name), URL (Uniform
Resource Locator), and PURL (Persistent Uniform Resource
Locator) will vanish and context and sources may fade away
as well as OS (Operating System) features used. Therefore, we
have to distinct between the real instance of a DOI and URL or
a context situation and a descriptive reference of these objects.
These descriptive references can contain as much information
and knowledge as possible (for example DOI, URL, context
description, sources).

VII. COPING WITH THE CHALLENGES

A. Modular components for geoscientific applications
Complex geophysical exploration is an explicit big data

problem. Data locality and data movements are of essential
importance. Therefore, data handling does take longer a time
than the compute intervals. Due to the short intervals for

licensing and the high costs even the time efficiency has to be
increased. This can be supported by parallel techniques [40],
[41], [42]. In many multi-disciplinary cases, e.g., explicitely
shown with the case studies [7], [28], the more with growing
importance of evaluation processes, the task- and thread-
parallelity has to be increased both. The data in geosciences
and in associated natural sciences contains the most valuable
information because many of these natural processes change
in geological time intervals. Imaging for oil and gas is one
of the most demanding tasks in computational sciences. It
requires scale-out architectures, the processing and simulation
are computation intensive as well as data intensive. The data
provides long-term challenges on knowledge and resources to
researchers and industry because of expenses on data collection
and long-term usability.

B. Rising requirements on quantity and computation

As soon as even a selected subset of the available clas-
sification is integrated with a subset of detailed knowledge
resources, the requirements for computing and interfaces are
rising drastically. The increasing demands for advanced scien-
tific computing are resulting from the huge number of relations
within the knowledge resources as well as a consequence of
the workflows, dynamical interaction, presentation, and visu-
alisation of results. The conditions for the optimal computing
architecture are defined by the application scenario, not by the
knowledge resources themselves.

C. Quality for Quantity

For the discovery of a result matrix from a large quantity
of data, additional high quality resources can be used for
improving the quality of results deduced. The premise is that
appropriate workflows and algorithms will be applied. The
high quality knowledge resources have been used as “Quality
for Quantity” (Q4Q), in order to build any additional missing
references in the quantity data. With these HEC and discovery
processes, big data means volume regarding storage, means
variability regarding workflow processes, means velocity re-
garding instances, and vitality regarding knowledge resources.

VIII. OBJECT CAROUSELS

The organisation of the knowledge objects can be arbitrary
complex. Many cases can be described in a simplified way like
a mindmap, which has been used for introducing a new sym-
bolic representation named “object carousels”. The knowledge
objects build a kind of dynamical molecules. These molecules
have connectors and references. These connectors can connect
with other knowledge objects by computing references from
any number of directions. The process reminds of rotating
branches of trees, rings, and multi-dimensional objects for
finding pluggable connections. The creation of object carousels
does have the benefit, that knowledge discovery workflows can
be implemented very scalable, using various algorithms for
connecting trees. For example, full text references can be used
between any carousels in order to compute a result matrix.

305

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Object mapping

The mapping in Figure 1 shows an excerpt for the vol-
canology context on terrestrial volcanism calculated from the
knowledge resources. These allow to calculate relations via
flexible, user-defined algorithms.

Volcanism Volcano

Campi
Flegrei

Samples

Vesuvius Samples

La
Soufrière

Samples

Mt. Scenery Samples

Plate tectonics

Lava

1st level:
Volcano

1st level: Plate tectonics

2nd level: Mt. Scenery

3rd level:
Samples
(Realia)

Figure 1. Object carousel for terrestrial “volcanism” context with subset of
computed volcano references and examples of levels object relations.

The figure shows an excerpt of the direct relations by quality
of relations and quality of objects. The colours visualise object
groups or attributes within each figure. Any object or attribute
can dock-in at any placed defined by the workflows, not
depending on the grouping. Nevertheless, the decision within
the workflow maybe assisted by the group information. The
knowledge resources can contain objects and relations as well
as classification entries. The case study example being the base
for illustrating the different aspects in all the next sections
follows a discovery path (3D), starting discovery on object
and realia references in the volcanology dimension.

B. Information and object usage

In a non-promoted environment, a knowledge search engine
showed significant requirements with up to over 500,000
application- and several million object-requests per day. The
study on object usage from international public interest groups
done in a time interval from 1994 to 2012 [6] revealed com-
parable large numbers of accesses and complexity. The object
mapping is a basic part, whereas the algorithmic workflow
for improving the quality can be as expendable as using every
information available with each step recursively and iteratively.
The computation share can increase to hours per discovery
instance but computation can be done for any number of
carousels in parallel. The KOA opens flexible support for task
and process parallelity for using objects and object groups or
clusters.

C. Case study views

Suitable views for volcanoes are: Type (of volcano, coarse
categories), date on timeline, size (height). For craters respec-
tive views are: Type (of crater, fragmentary), date on timeline,

size (diameter). An object carousel generated for volcano
types, shows the knowledge resources groups (Figure 2).

Volcano
type Complex

volcano

Compound
volcano

Somma
volcano

Submarine
volcano

Subglacial
volcano

Unspecified
typeStrato

volcano

Shield
volcano

Explosion
crater

Caldera

Tuff cone

Scoria
cone

Pyroclastic
cone

Cinder
cone

Lava dome Volcanic
field

Hydroth.
field

Fumarole
field

Maar

Fissure
vent

Figure 2. Object carousel for volcano and type references computed for
terrestrial volcanism, providing volcano type references.

An object carousel generated for impact craters, shows the
different types present in the knowledge resources groups and
their crater categories (Figure 3).

Impact
crater type

Micro
crater

Simple
crater

Complex
crater

Elongate
crater

Multi-ring
basin

Figure 3. Object carousel computed for impact crater categories.

Criteria for impact crater classification are:
• Size of the impacting object,
• Speed of the impacting object,
• Material of the impacting object,

306

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Composition and structure of the target rock,
• Angle that the impacting object hits the target,
• Gravity of the target object respective planet,
• Porosity and other attributes of the impacting object,
• Age of the impact,
• Size of the impact,
• Structure of the crater.

Impact crater indicators, for example:
• Planar fractures in quartz,
• Shocked quartz,
• Glass fragments.

If approaching from the “catastrophe” view it has shown
that the most prominent relation is the “size”. This mostly
correlates with “diameter” and still mapping and timelining
will come natural.

A comparable object carousel for impact crater types and
geological period references is provided in Figure 4.

Object type Quarternary

Tertiary

Cretacious

Jurassic

Trias

Permian

Carbon

Devonian

Silurium

Ordovicium

Cambrium

Precambrium

Figure 4. Object carousel object type for computed period references
(terrestrial volcanoes, impact craters, and geological processes).

An evaluation of the association that users have, showed
that the criteria “date” and “location” are most prominent with
objects if the workflow approaches from the “surface (of the
earth)” view. Therefore, mapping and timelining will be the
natural result.

D. Improving quality within the workflow
The resources, workflow, and classification are essential

for a high level of usability quality of results. The elaborate
workflow process for improving the quality of results when
calculating a result matrix from a knowledge base is:

a) Calculate associator attributes and classes,
b) Compute on a base with large numbers of objects,

c) Evaluate detailed classification information,
d) Compute for a reduction of numbers of objects,
e) Create suggestions and recommendations.

The first computation block (b) is needed for considering more
objects when applying the further steps afterwards. Here, the
classification is essential for improving the quality for the
respective selection process. The second computation block
(d) is necessary for improving a selection process for the
target audience or services. The selection processes can be
significantly supported by high quality knowledge resources
(Q4Q), e.g., via the authored, classified, and audited content,
with regular expression search, and phonetical algorithms.

E. Improving coverage: Dark data
In analogy to “dark matter” and “dark energy”, there exists

“dark information” and to an uncertain extent an unknown
driving force in knowledge creation, even building “dark
service” provided via “dark resources”. Those information re-
sources are not wider accessible and it is not known where the
intention of gathering and creation. Anyway, this information
must be considered for any holistic long-term concept as it
provides an important factor for the overall knowledge and
will stay in existance despite of any development. With the
concept of long-term knowledge resources the information
has been integrated in order to extend the base for any
knowledge discovery. Considered methods for integration of
resources are, e.g., references, description or caches. This
further includes seamless updating of information, licensing
of resources, dynamical use of data as well as provisioning of
defined quality and reliability for sources and complements.

IX. DISCOVERY OF MISSING LINKS

From the disciplines of humanities and archaeology, the
directed tree spanning from settlements to used materials
will show up with a practically defined depth. On the other
hand, starting from natural sciences a directed tree spanning
to materials associated with processes will deliver a natural
sciences path. Along with the different paths, the genetic
connectors of both carousels will show up with links from
both directions. The connecting links, or short “connections”
from the directed search do open new associations that can be
used to discover the overall knowledge much deeper with new
facets and quality, which provide multi-disciplinary links that
have been missing in non-genetic discovery.

In general, any kind of tree path can be generated from
the knowledge resources using a workflow and any number
of carousels can be discovered for connections. The follow-
ing example shows a simple two-carousel case (Figure 5).
Computing the object carousels connections is shown for a
historical city carousel and an environment object carousel.
The trees show a subset of computed references computed by
the workflow within the knowledge resources. The depth of the
trees may by different for the computation. The connections are
considered as soon as they lead to a defined conformity. In that
case, defined conformity can mean comparable or identical.
The example shows two trees, one from archaeology and one

307

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

from natural sciences disciplines. For both, at a certain branch
leading to object referring to stone material, which is shown
by the highlighted red bullets.

A. Computing connections on modular objects

Figure 5 shows the principle used for computing connections
with object carousels. It depicts one fitting branch, within
archaeology and geosciences associated objects. Starting
with the objects HistoricalCity and Environment
(identified by large golden bullets) and the linking objects
“stone” the computed carousels show trees with a subset
of references. The workflow attributes have been choosen
to provide no tree depth restriction for computation. The
two fitting connection lines within the object carousels
of this example are highlighted in a three-dimensional
representation: Roman:Pompeji:Napoli:Architecture
:Volcanicstone and Volcanology:Catastrophe:
:Volcanicstone. In the sample workflow, the carousel
connections are calculated via non-explicit references of
comparable objects (red objects) from knowledge resources
within trees. In addition, the red circle does mark those
objects at the same depth level, including the fitting object
term for historical city and environment Volcanicstone.
The excerpt of associated multi-disciplinary branch level
objects are Limestone, Impactfeature, and Climate
change.The method for creation of non-explicit references
can be defined in the workflow. Here, full text mining
and evaluation (red objects) has been used. For derivated
associations additional objects can be computed and extracted
in every branch as well as on all levels.

B. Connecting knowledge

Objects can be connected by various attributes. These may
be attributes associated with content as well as with context.
For example, relations for a volcano object can be connected
and triggered by a large variety of attributes. Table V shows
an excerpt of attributes and examples.

Table V. ATTRIBUTES LINKING AND TRIGGERING VOLCANO OBJECTS
AND SELECTED EXAMPLES (EXCERPT).

Attribute Example in Archaeology / Geosciences

Time Events on timeline
Location Volcano-impact-settlement locations
Physics Earthquakes
Chemistry Volcanic SO2 ejection
Geology Earth crust, petrography
Catastrophes Volcanic eruptions, Tsunamis
Etymology Phlegra, Vesuvius
Cults, religions Volcano gods
Artefacts Archaeological objects, “Pompeji” events
Historic events Volcano, climate, economy, revolution

Relations can refer to any multi-disciplinary topic, building
results from combination of information and generation of new
objects and references, e.g., visualisations and views.

Selecting “catastrophe” categorised objects from the knowl-
edge resources results in a matrix including groups of key-
words, for example:

1) Meteorite, impact, Yucatan, Mexico,
dinosaurs, extinct, Cretaceous, CT
boundary, catastrophe.

2) Volcano, eruption, Santorini, Thera,
crete, Minoan civilisation, culture,
Mycenae, culture, fleet, volcanic
ash, vanish, rise, historical city,
catastrophe.

3) Volcano, Vesuvius, Campi Flegrei,
phlegra, scene of fire, Pompeji,
Herculaneum, volcanic ash, lapilli,
catastrophe.

4) Solfatara, volcano, Vesuvius, Campi
Flegrei, phlegra, scene of fire, Pompeji,
Herculaneum, volcanic ash, lapilli,
catastrophe.

For example, following an etymological tree leads from ‘Vesu-
vius — Campi Flegrei’ to “phlegra” greek for ‘scene of
fire’. The above keyword groups resolve to object entries, for
example

1) Chicxulub,
2) Thera, Santorini,
3) Vesuvius, Pompeji,
4) Solfatara.

. These objects refer to media samples as shown with some
examples for Vesuvius, Pompeji, and Solfatara.

The following excerpt contains some structure, UDC clas-
sification, keywords, references, and satellite image reference.
The references for the geopositioning are created via classi-
fication and can be used for any purpose. Listing 1 shows
an excerpt of an LX Resources object entry [43], “Vesuvius”
volcano.

1 Vesuvius [Volcanology, Geology, Archaeology]:
2 (lat.) Mons Vesuvius.
3 (ital.) Vesuvio.
4 (deutsch.) Vesuv.
5 Volcano, Gulf of Naples, Italy.
6 Complex volcano (compound volcano).
7 Stratovolcano, large cone (Gran Cono).
8 Volcano Type: Somma volcano,
9 VNUM: 0101-02=,

10 Summit Elevation: 1281\UD{m}.
11 The volcanic activity in the region is observed

by the Oservatorio
12 Vesuviano. The Vesuvius area has been declared a

national park on
13 \isodate{1995}{06}{05}. The most known antique

settlements at the
14 Vesuvius are Pompeji and Herculaneum.
15 Syn.: Vesaevus, Vesevus, Vesbius, Vesvius
16 s. volcano, super volcano, compound volcano
17 s. also Pompeji, Herculaneum, seismology
18 compare La Soufrière, Mt. Scenery, Soufriere
19 %%IML: UDC

:[911.2+55]:[57+930.85]:[902]"63"(4+23+24)
=12=14

20 %%IML: GoogleMapsLocation: http://maps.google.de
/maps?hl=de&gl=de&vpsrc=0&ie=UTF8&ll
=40.821961,14.428868&spn=0.018804,0.028238&t=h&
z=15

Listing 1. Knowledge resources – object entry “Vesuvius” volcano.

308

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Volcanology contexti
Non-explicit references

Full text mining and evaluation:
Classification, keywords, synonyms, phonetic algorithms,
homophones, category lists, . . .

Historical City

Greek

Antipolis Antibes

Athens Athens

. . .

Roman

Altinum

Altino

Venice

Pompeji Napoli

Pottery

Archit.

Volcanic
stone

Limestone

Geology

. . .

. . .

Environment

GeophysicsCatastrophe

Impact
feature

VolcanologyCatastropheVolcanic
stone

ClimatologyCatastrophe

Climate
change

Figure 5. Computing object carousel connections: Historical city and environment object carousels showing trees with a subset of computed references. In this
sample workflow the carousel links are calculated via non-explicit references of comparable objects (red) from knowledge resources within trees.

The example contains a reference and VNUM for the Vesu-
vius volcano, various secondary objects, UDC classification,
satellite image reference and, e.g., refers to “Soufriere”, “La
Soufrière”, and “Mt. Scenery”.

Listing 2 lists an entry excerpt for realia material associated
with the Vesuvius volcano.

1 Object: Volcanic material.
2 Object-Type: Realia object.
3 Object-Location: Vesuvius, Italy.
4 Object-FindDate: 2013-10-00
5 Object-Discoverer: Birgit Gersbeck-Schierholz, Hannover,

Germany.
6 Object-Photo: Claus-Peter Rückemann, Minden,

Germany.
7 Object-Relocation: Claus-Peter Rückemann, Minden,

Germany.
8 %%IML: media: ... img_2402.jpg
9 %%IML: media: ... img_3823.jpg

10 %%IML: media: ... img_3824.jpg
11 %%IML: UDC-Object:[551.21+55]:[911.2](37+4+23)=12
12 %%IML: UDC-Relocation:069.51+(430)+(23)
13 %%IML: cite: YES 20130000 {LXK:High End Computing;

Knowledge resources; Objects; Archaeology; Geosciences;
Vesuvius; Pompeji} {UDC:...} {PAGE:----..----} LXCITE://
Rueckemann:2013:Computing_Objects

14 %%IML: cite: YES 20140000 {LXK:Nature; History; Napoli;
Vesuvius; Pompeji} {UDC:...} {PAGE:----..----} LXCITE://
Gersbeck:2014:Vesuvius

Listing 2. Knowledge resources – Entries for Vesuvius material.

Besides the UDC object and relocation data the excerpt carries
the media references and citations and originating sources,
researchers, and relocation for the realia objects.

Figure 6 illustrates the computed objects (Topicview), here
the latest available volcanic samples for Vesuvius, after pro-
cessing showing the variety of material from the Vesuvius
volcano.

Figure 6. Topicview result matrix – Vesuvius realia objects (excerpt): Range
of volcanic ashes and lapilli (Vesuvius, 2013).

Any of these objects being part of the resulting matrix for a
request, e.g., photos for object entries as well as media data for
physically available samples, have been found via references
and UDC from the knowledge base (UDC:551.21. . .). The
realia references for the objects refer to a collection where the
samples are stored. Further analysis for the samples is available
via the knowledge resources.

Figure 7 illustrates the computed objects (Topicview) of
realia objects associated with “Vesuvius”.

Figure 7. Topicview result matrix – “Vesuvius” associated realia objects
(excerpt, from left to right): Solfatara sample (2013), Pompeji lapilli (2013),
Pompeji plaster sample (2013).

309

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The selection criteria are “archaeology, artefacts, cultural re-
mains of historical times, architecture techniques and methods,
ancient architecture” (UDC:902, UDC:903.2, UDC:904,
UDC:720.2, UDC:720.32). The associated views show a
sample from the Solfatara (sample front side and sample rear
side) near Vesuvius and a sample of a Pompeji plaster (Pompeji
style I, incrustation style).

Figure 8 illustrates a specific selection (Topicview) of “Vesu-
vius” realia objects.

Figure 8. Topicview result matrix – “Vesuvius” and associated realia objects
with measure (excerpt, from left to right): Vesuvius lapilli (2013), Solfatara
sample (2013), Pompeji plaster sample (2013).

The associated views show a sample from the Solfatara
(sample front side and sample rear side) near Vesuvius and
a sample of a Pompeji plaster (Pompeji style I, incrustation
style). The media samples shown are part of comprehensive
classified object entry descriptions and the citations refer to
[44]. Respective object entries have been shown and discussed
in detail in the context of the component implementations [25].

C. Generation and combination of knowledge
The following visualisations paradigmatically illustrate re-

sults from the compute requests based on the content of
the implemented content. An on-location attribute has been
choosen for the relations in order to compute a distribution map
for volcanological features using the lxlocation workflow.
The location attribute is suitable for referring to an unlimited
number of further multi-disciplinary information in this case.
A sample distribution of classified terrestrial volcanological
features is depicted in Figure 9.

Figure 9. Volcanomap – worldmap for classified volcanological features.

The map is computed from the related object context con-
tained in a volcanological features research database of the
knowledge resources. The volcanological features are classified
and several classification groups have been choosen for the
result. The map shows the present situation according to the
available volcanological data. The associated sample distribu-
tion of terrestrial impact features (meteorite) is depicted in
Figure 10.

Figure 10. Impactmap – worldmap for impact features (meteorite).

The map is computed from the related object context
(lxlocation workflow) contained in a meteorite impacts
features research database of the knowledge resources.

The visualisations are based on the results gathered in the
knowledge resources, several thousands of objects from re-
search and documentation, with several ten thousand attributes
and references. It is possible to combine any information, for
example, computing a map animation varying in time, showing
the development of volcanological or impact features.

D. Case lessons learned
• Impact features have been reduced by morphological

processes and are mostly only available above sea-level.
• Volcanic features are well known above and below sea-

level and are more often long-term processes.
• Known impact features show a concentration in highly

populated and industrialised areas.
• Both impact and volcanological features are related to

social and archaeological findings.
• Both impact and volcanological features are publicly

known.
• Compared with impacts and volcanological features,

archaeological sites and results are not known to the
same amount in order to protect the sites.

E. Classification groups
Inserting an additional object classification can extend the

range of objects and disciplines. Two small examples from the
context of volcanology and meteorites will show the effect on
terrestrial to extra-terrestrial result matrices.

Including non-terrestrial volcanism will further lead to spe-
cial object carousels. The references on “classification” of

310

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

volcanological features and distribution also explicitely leads
to extraterrestrial volcanism [45]. Therefore, volcanological
features on Venus from Magellan data provided from this
source holds additional objects: Shield fields, intermediate vol-
canoes, large volcanoes, calderas, coronae, arachnoids, novae,
lava floods, lava channels. Besides the above features, the
volcanological and magmatic features further create references
to: Vents, fields, intermediate volcanoes, steep-sided domes,
tadpoles, sinuous channels, lava flows, amoeboids, festoons,
and so on.

Comparable, including non-terrestrial meteorites will further
lead to special object carousels, e.g., delivering data for craters
on Moon and Mars.

F. Reference chains and historical knowledge
It is well known that publication references and citations

are important. Besides publications, why are secondary and
tertiary references on knowledge objects important? Secondary
and tertiary references are as well a reliable and stable means
of documentation and as well a dynamical means of optimising
knowledge discovery workflows.

In this context, secondary references are links and direct
references to other objects. Tertiary references are explicit or
non explicit references within sets of objects.

These references are stable because they document a certain
state within space and time. At the same time these references
have dynamical features because their content and context can
be used dynamically with workflows as well as they can refer
to dynamically handled content and context.

A practical example workflow using the information on
Gottfried Wilhelm Leibniz (1646–1716) in different context
shows how to integrate certain historical knowledge with the
knowledge resources on natural sciences in order to extend
the range of discovery. The following is not a simple ‘search
example’ but a successful integration of valuable but weakly
structured knowledge data and information into advanced
knowledge resources. The results are advanced discovery and
research facilities.

Data referring to the “Leibniz archives” [46] has been used
for extending the reference chain. The archives are a valuable
source of information, which can be used to extend workflows
based on knowledge resources in the future. The result matrix
for “Saturn” has been computed via the workflow chain
including the “Leibniz” objects including link and keyword
context for creating intermediate result matrices. This includes
references from concept glossaries [15] with transcriptions and
scans as well as the LeibnizCentral manuscript collections and
catalogues [17].

In this example, the “Saturn Rings”, Leibniz, and early
discoverers and scientists have up to now not been interlinked
by any other available knowledge resource or referenced by
any published documentation. The following methodology has
been used for creating a result matrix. Links have been created
by selecting the maximum time range of Leibniz dates and
possible research topics and searching for research topics of
other researchers in that time interval.

An algorithm supports UDC classification, building groups
of pseudonyms, translations, corrections, and phonetic support

based on computed LX Soundex codes for name selection used
in context with Leibniz.

The result matrix contains references and associations to
topics and researchers at the time of Gottfried Wilhelm Leibniz
who were involved or engaged in research on comparable or
even different topics. This allows to suggest which topics have
been present and Leibniz may have been recognised or even
which he might not have known of. Listing 3 shows an excerpt
from the keyword context data of a ‘Leibniz’-object “Saturn”.

1 ...
2 link-Context: LNK :: http://www.uni-muenster.de/Leibniz/

DatenII2/II2_B.pdf
3 keyword-Context: KYW :: planetae (Planeten), Venus
4 ...
5 link-Context: LNK :: http://www.uni-muenster.de/Leibniz/

DatenII2/II2_B.pdf
6 keyword-Context: KYW :: planetae (Planeten), Saturn
7 ...
8 link-Context: LNK :: http://www.uni-muenster.de/Leibniz/

DatenII3/II3_B.pdf
9 keyword-Context: KYW :: planetae (Planeten), Saturn

10 ...
11 link-Context: LNK :: http://www.bbaw.de/bbaw/Forschung/

Forschungsprojekte/leibniz_potsdam/bilder/IV6text.pdf
12 link-Context: LNK :: http://www.nlb-hannover.de/Leibniz/

Leibnizarchiv/Veroeffentlichungen/III7A.pdf
13 keyword-Context: KYW :: Saturn, Ring
14 ...

Listing 3. Keyword context data from ‘Leibniz’-object “Saturn” (excerpt).

The references resolve to the secondary data at the TELOTA
service [47], using the terms “Saturn” [48] and “Planet” [49].
The links to the references are provided by different institution
or respective domains [50], [51], [52]. The II3_B link fails as
this information is not available, which is true for more than
20 other links, too, referring to this resource from this request.
Even the other references from this service require additional
support as they differ essentially regarding their bibliographic
data, which is missing in some cases, as well as their scheme
is not consistent.

Anyhow, with the correction, classification, and context
support of the knowledge resources an interesting example,
which has been resolved from the LX Foundation Scientific
Resources is the discovery of the separation of the rings of
the planet Saturn, for which sources exist documenting that
the separation has been detected and recognised by Guiseppe
Campani in the year 1664, about ten years before it has been
published by Giovanni Domenico Cassini.

Listing 4 shows an excerpt of a secondary citation reference
set used with UDC classified knowledge objects.

1 Saturn [Astronomie, ...]:
2 Sixth planet from the sun, a gas

giant or Jovian planet.
3 Saturns’ most prominent feature is

the Saturn ring system.
4 Guiseppe Campani detected and

recognised the separation of the Saturn rings in the
year \isodate{1664}{}{}.

5 %%IML: cite: NO 16640000 {
LXK:Saturn; Saturn ring system; solar system; planets;
discovery} {UDC:...} {PAGE:----..----} LXCITE://
Campani:1664:Saturn

6 %%IML: cite: NO 20070000 {
LXK:Saturn; Saturn ring system; solar system; planets;
discovery} {UDC:...} {PAGE:----..----} LXCITE://
Oberschelp:2007:Campani

311

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

7 %%IML: cite: NO 20110000 {
LXK:Saturn; Saturn ring system; solar system; planets;
discovery} {UDC:...} {PAGE:----..----} LXCITE://
Oberschelp:2011:Campani

8 Giovanni Domenico Cassini later
described the separation of the Saturn rings.

9 %%IML: cite: NO 16740000 {
LXK:Saturn; Saturn ring system; solar system; planets;
description} {UDC:...} {PAGE:----..----} LXCITE://
Cassini:1674:Saturn

10 %%IML: cite: NO 20070000 {
LXK:Saturn; Saturn ring system; solar system; planets;
description} {UDC:...} {PAGE:----..----} LXCITE://
Oberschelp:2007:Campani

11 %%IML: cite: NO 20110000 {
LXK:Saturn; Saturn ring system; solar system; planets;
description} {UDC:...} {PAGE:----..----} LXCITE://
Oberschelp:2011:Campani

Listing 4. Secondary citation reference set excerpt used with the UDC
classified knowledge object “Saturn” (LX resources).

The secondary references from the knowledge resources refer
to bibliographic objects, which resolve to [53] and [54]. From
these references the tertiary references, in this case non-explicit
references, refer to the knowledge resources documentation on
Guiseppe Campani.

As shown, using the available features, e.g., the context
categorisation from the knowledge resources it is possible to
catch this information and to drastically increase the spec-
trum of gathering information and complementing the result
matrix. The workflows and algorithms presented here can be
used in order to overcome missing links in between different
information pools and complement knowledge resources and
workflows.

For a sustainable use of external “secondary” information
any localisation and references data have to be long-term or
medium-term persistent.

Currently, at least medium-term available methods have
to be provided for consistent and reliable resources. This
includes that the secondary data providers have to support at
least concepts like URN (Uniform Resource Name), PURL
(Persistent Uniform Resource Locator), DOI (Digital Object
Identifier) instead of pure URL (Uniform Resource Locator).

In addition, for enabling citations and references, biblio-
graphical data must be explicitly available as such with each
reference. For long-term use this data it must be automatable,
machine readable, and documented.

The current structure of the Leibniz archives’ resources
is explicitly not suitable for automated citation, referencing,
and reuse. The sources themselves are currently distributed at
several hosting institutions (e.g., Berlin, Hannover, Göttingen,
Münster). For cases like these, it is recommended to implement
a sustainable structure consistently over all the participated
sources and to provide persistent references. Failures on the
generated or provides references as shown above should be
avoided in any case. All these aspects are issues, which should
be seriously worked on by the Leibniz archives in order to
create a sustainable future solution.

G. Flexible support for HEC and dynamical discovery
The KOA architecture is based on a flexible documentation

and development architecture [29] and integrated with the

case study implementations based on the Collaboration house
framework for disciplines, services, and resources [28]. For
the various HEC scenarios a flexible, scalable, and dynamical
network solution, e.g., Software Defined Networks (SDN) is
highly recommendable [55]. Building the tree paths as well as
the discovery of connections in the carousels can be done in
parallel, comparable to a modelling process. This way, while
computing one tree it is possible to follow connections into
other disciplines’ branches interesting for a workflow. The task
parallel processes can be computed to look ahead, dynamically
discovering fitting relations. On the other hand, it is possible to
compute multiple trees and create intermediate result matrices,
which can be used for building multi-disciplinary results from
a large number of trees.

H. Dynamical referencing
Referring objects for publicly available information can

be integrated by dynamically building associations from the
knowledge resources as has currently been done with search
engine content, e.g., results from Google or other dynamical
sources. Table VI shows the results of a Google search [56]
done for the keywords “volcano, udc, classification”. The
results contain the UDC classification found with the request
as well as the terms associated with this in the text.

Table VI. VOLCANO RESULTS FROM PUBLICLY AVAILABLE
INFORMATION, GOOGLE SEARCH, STATUS OF JANUARY 2013 (EXCERPT).

UDC Classification In-text Terms

551.442(437.6) Volcano, phreatic
631.4 Volcano
553.405 Uranium, deposit, volcano
551.31:551.44(532) Volcano
(*764) Volcano
(*7) Volcano

Table VII shows the results of a Google search done for the
keywords “cenote, udc, classification”.

Table VII. CENOTE RESULTS FROM PUBLICLY AVAILABLE
INFORMATION, GOOGLE SEARCH, STATUS OF JANUARY 2013 (EXCERPT).

UDC Classification In-text Terms

930.85(726.6) 551.435.8:528.9 Sinkhole cenote maya
551.44 Doline, sinkhole
556.34:519.216 Sinkhole, drainage
551.435.82(234.41) Sinkhole, collapse
624.153.6:699.8:551.448 Sinkhole, collapse
551.44(450.75) Karst, sinkhole, collapse
551.44(045)=20 Groundwater, surfacewater
551.44:001.4 Grotte, Höhle
551.44(450.75) Karst, Apulia
551.44(437.2) Geology, karst

All documents found from public external sources in this
context have been identified to contain academical and sci-
entific content. Even as this example is intended to provide
a lower depth of knowledge mapping than available in spe-
cialised knowledge resources, it provides an excellent spectrum
of related information for the respective disciplines. There

312

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

should be emphasis on the fact that this kind of classification
on material in manually added to the content by the creator.
After considering material of this kind for a knowledge dis-
covery process an automated classification can be computed
from the content independently by any service. Both types of
classification can contribute in order to obtain a case-optimised
result matrix at any step within the discovery workflow.

I. Workflow and computation demands
Table VIII shows the resulting computation times (wall

clock) for straight and broadened application qualities. per
workflow instance and request. Requests are restricted to
three initial terms. Straight means calculating the result ma-
trix directly from the plain data available, including ranking.
Broadened means using full text, references, and available
secondary context information, with a wide spectrum of topics.
It is possible to flexibly support the knowledge discovery
workflow by any number and kind of algorithms and com-
munication. In this case classification, keywords, synonyms,
phonetic algorithms, homophones, and category lists have been
used.

Table VIII. STRAIGHT AND BROADENED (SERIAL) APPLICATION
QUALITIES AND COMPUTATION TIMES PER WORKFLOW INSTANCE AND

REQUEST (RESTRICTED TO THREE INITIAL TERMS).

Item Straight Broadened

Number of terms (restricted for demo.) 3 3
Comparisons ≈ 90, 000 ≈ 1, 090, 000
Selection processes 1,540 16,700
Intermediate results 420 5,100
Final results (selected top 10) 10 10
Classification evaluation time share 3 s 30 s
Keyword extraction time share 2 s 4 s
Fulltext support time share 4 s 22 s
Reference support time share 1 s 3 s
Phonetic support time share 3 s 8 s
Instance computation time 3 s 120 s

The example demonstrates the principle and tendency. Start-
ing a single workflow instance with a small number of 3 object
terms (Figure 5), this statistically results in:

a) Straight: Retrieval followed by 90,000 comparisons,
delivers 30,000 results, ranked to create a top 10.

b) Broadened: This requires an additional 1 million com-
parisons per term and some 10,000 comparisons on more
than one term as well as on subterms, it delivers 90,000
results, which are ranked to create a top 10.

In an average of terms, b) results in 3 new top terms better
reflecting the context, which means a significant improvement
of the quality of the result matrix. As Table VIII shows, when
improving the quality, the compute time increases from about
3 seconds to 2 minutes. Over the time the resource usage
increases by about a factor of 50. Due to the structure of the
compute algorithms a part of the workflow processes can be
done in parallel before the final result matrix is created. Other
advanced workflow processes, e.g., those processes where all
the intermediate results must be available before any decision

on the next step can be done, have to be chained for the
purpose of improving the quality. With parallel processing in
the above example the overall time can be reduced to about 30 s
on the same architecture if an increased number of resources
is available. Increasing the number of comparisons by adding
further sources for improving the quality of results increases
the requirements on resources more than linear referring to the
compute time. This is going ahead with a smaller amount of
numerical improvement for the top results. The knowledge re-
sources fully support this procedure. The broadened serial and
task parallel (dual-core processors) application qualities per
workflow instance and request are summarised in Table IX.

Table IX. BROADENED SERIAL AND PARALLEL APPLICATION
QUALITIES PER WORKFLOW INSTANCE AND REQUEST (AS ABOVE).

Workflow Broadened Broadened
Item Serial Parallel

Number of terms (restricted for demo.) 3 3
Parallel resources (nodes) 1 10
Instance computation time 120 s 20 s

The resulting computation times per instance can be effi-
ciently reduced exploiting parallelity of resources. Modular-
ising the knowledge resources into dynamical entity groups
of objects is very efficient for a large number of requests
and resources available. This is especially interesting for any
wider economical and practical interactive use. The higher the
complexity of the single, even non-linear, workflow is, the less
efficient are todays resources architectures.

X. EVALUATION AND DISCUSSION

The results from the work and case studies presented in
this paper have shown that for a higher understanding of the
contributions the various implementations cannot be separated
but should be considered complementary. The implemented
. . . concepts and structures correspond with the methodol-

ogy and systematics.
. . . content presents the results achieved by precise sciences

and their application.
. . . means for documentation, discovery, and computation

are done exemplarily for the knowledge resources.
. . . universal classification views and references show the

logical integration.
. . . components show the flexibility and extendability.
. . . case studies show the practical use.

The long-term multi-disciplinary focus has been sustainabil-
ity, expenses and benefits, and complementary results.

A. Sustainability
Regarding the sustainability of the knowledge resources

support it has been practical to consider three main aspects
for creating sustainable KOA architectures.

1) Scalability and efficiency: The workflow process can
be modularised and therefore can be implemented as
scalable and parallelised algorithms.

313

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Discovery and content: Big amounts of multi-
disciplinary information will always have to consider
inhomogeneous groups of information. With the de-
scribed method the barrier between the inhomogeneous
content, for example, between different disciplines can
be overcome. The knowledge resources support struc-
turing and modularising the workflows to a defined
level. Any references that might not already exist ex-
plicitely in the knowledge resources can be suggested
by a non-tree link. An example is, computing full text
comparisons between the carousels from the available
plain content of the knowledge resources.

3) Universal multi-disciplinarity: The knowledge re-
sources allow any number of dimensional space. Be-
sides that, the knowledge resources allow to use multi-
disciplinary clustering of objects, e.g., clustering of
stones for an archaeological view as well as for a
petrographical view.

These features can be used for a flexible dynamically guided
discovery. Besides the benefits of very flexible classification
support, e.g., via UDC, expenses are that the creation and
operation do require intensive work.

B. Expenses and benefits
Classification support, e.g., via UDC, does require intensive

work, is expensive, and very much profits from professional
experiences. The application of UDC with complex knowledge
needs flexibility of the resources as wells as a flexible handling
in extendability. The challenges with the distributed use of
UDC are, e.g., the use of private catalogues, like external
codes or author abbreviations. In addition, the sustainability
of knowledge objects will benefit from the use of methods
like facetted versioning, universal dates (e.g., ISO dates), and
georeferencing.

C. Complementary results
With the presented object carousels an undefined number of

practical workflows can be created on the knowledge resources.
Examples, which have been investigated for gathering com-
plementary results are regular expression and string search,
classification search (UDC), keyword search, sort support
search, references search or phonetic search (Soundex).

D. Information and classification
Text information and classification information are comple-

mentary. This is important for knowledge resources as well
a for application scenarios, e.g., search algorithms. Using
classification supported search algorithms can improve the
result drastically. The quality of results improves from below
five percent to up to over ninety percent.

XI. CONCLUSION AND FUTURE WORK

Structuring and classification with long-term knowledge re-
sources and UDC support have successfully provided efficient
and economic base for an integration of multi-disciplinary

knowledge and IICS components, supporting archaeological
and geoscientific information systems. With these, the solution
is scalable, e.g., regarding references, resolution, and view
arrangements. The concept can be transferred to numerous
applications in a very flexible way. The overall results on object
carousels and Q4Q workflows from the implementation and
case studies are:
• The quality of data can be most efficiently improved at

the knowledge resources components.
• The quantity of data can be increased by referencing and

intelligent discovery workflow algorithms.
• The quantity of compute and storage resources is both

tightly linked with the quality of data and the quantity
of data and resources requirements.

The knowledge resources can be integrated into a steadily
improving system architecture storing data for successful
creation of sustainable workflow definitions, meaning that
the result matrix of requests can be stored for future use
and evaluation. This can be done in a non-incremental way,
depending on the environment of communication, computa-
tion, and storage resources in order to provide an efficient
solution. Separate snapshots of the knowledge resources al-
low to consider developments within time. Nevertheless, for
service operation this can result in very high computational
requirements for resources.

Integration of external information resources has shown
huge benefits on the quantity of data. The quantity can be
used for creating higher quality result matrices and improve the
discovery. A number of recommendations have been given for
integrating external data into advanced knowledge resources.
Future developments of the external resources should consider
to comply with a systematic, consistent, and well structured
base for their data, interfaces, and publications.

With the presented object carousels an undefined number of
practical workflows can be created on the knowledge resources.
The object carousels concept is part of the “tooth system” for
long-term documentation and algorithms and the exploitation
of supercomputing resources for use with future IICS. Work
has been done [57], [58] in order to facilitate that future
architectures and components will support intelligent system
components and processing modelling of complex environ-
ments.

ACKNOWLEDGEMENTS

We are grateful to all national and international partners in
the GEXI cooperations for the innovative constructive work.
We thank the Science and High Performance Supercomput-
ing Centre (SHPSC) for long-term support of collaborative
research since 1997, including the GEXI developments and
case studies on archaeological and geoscientific information
systems. Special thanks go to the scientific colleagues at the
Gottfried Wilhelm Leibniz Bibliothek (GWLB) Hannover, es-
pecially Dr. Friedrich Hülsmann, for prolific discussion within
the “Knowledge in Motion” project, for inspiration, and prac-
tical case studies. Many thanks go to the scientific colleagues
at the Leibniz Universität Hannover, especially Mrs. Birgit
Gersbeck-Schierholz, to the Institute for Legal Informatics

314

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(IRI), Leibniz Universität Hannover, and to the Westfälische
Wilhelms-Universität (WWU), for discussion, support, and
sharing experiences on collaborative computing and knowledge
resources and for participating in fruitful case studies as well
as to the participants of the postgraduate European Legal
Informatics Study Programme (EULISP) for prolific discussion
of scientific, legal, and technical aspects over the last years.

REFERENCES

[1] C.-P. Rückemann, “Sustainable Knowledge Resources Supporting Sci-
entific Supercomputing for Archaeological and Geoscientific Infor-
mation Systems,” in Proceedings of The Third International Con-
ference on Advanced Communications and Computation (INFO-
COMP 2013), November 17–22, 2013, Lisbon, Portugal. XPS
Press, 2013, pp. 55–60, ISSN: 2308-3484, ISBN: 978-1-61208-310-
0, URL: http://www.thinkmind.org/download.php?articleid=infocomp
2013 3 20 10034 [accessed: 2014-01-01].

[2] “WDL, World Digital Library,” 2014, URL: http://www.wdl.org [ac-
cessed: 2014-01-12].

[3] “The Digital Archaeological Record (tDAR),” 2014, URL: http://www.
tdar.org [accessed: 2014-01-12].

[4] Wissenschaftsrat, “Übergreifende Empfehlungen zu Informationsinfra-
strukturen, (English: Spanning Recommendations for Information Infra-
structures),” Wissenschaftsrat, Deutschland, (English: Science Council,
Germany), Drs. 10466-11, Berlin, 28.01.2011, 2011, URL: http://www.
wissenschaftsrat.de/download/archiv/10466-11.pdf [accessed: 2013-08-
09].

[5] di Maio, P., “A Global Vision: Integrating Community Networks
Knowledge,” Community Wireless Symposium, European Community,
EC Infoday, Barcelona, 5th October 2012, 2012, URL: http://people.ac.
upc.edu/leandro/misc/CAPS Paola.pdf [accessed: 2014-01-12].

[6] “Geo Exploration and Information (GEXI),” 1996, 1999, 2010,
2013, 2014, URL: http://www.user.uni-hannover.de/cpr/x/rprojs/en/
index.html#GEXI [accessed: 2014-01-12].

[7] C.-P. Rückemann, Queueing Aspects of Integrated Information and
Computing Systems in Geosciences and Natural Sciences. InTech,
2011, pp. 1–26, Chapter 1, in: Advances in Data, Methods, Models
and Their Applications in Geoscience, 336 pages, ISBN-13: 978-
953-307-737-6, DOI: 10.5772/29337, OCLC: 793915638, DOI: http:
//dx.doi.org/10.5772/29337 [accessed: 2014-01-12].

[8] C.-P. Rückemann, “Implementation of Integrated Systems and Re-
sources for Information and Computing,” in Proceedings of The Inter-
national Conference on Advanced Communications and Computation
(INFOCOMP 2011), October 23–29, 2011, Barcelona, Spain, 2011,
pp. 1–7, ISBN: 978-1-61208-009-3, URL: http://www.thinkmind.org/
download.php?articleid=infocomp 2011 1 10 10002 [accessed: 2014-
01-12].

[9] I. Nonaka and H. Takeuchi, The Knowledge-Creating Company: How
Japanese Companies Create the Dynamics of Innovation. Oxford
University Press, Oxford, 1995, ISBN: 0195092694.

[10] C. W. Holsapple and K. D. Joshi, “Knowledge Management Support
of Decision Making, Organizational knowledge resources,” Decision
Support Systems, vol. 31, no. 1, May 2001, pp. 39–54, ISSN: 0167-
9236, Elsevier, URL: http://dx.doi.org/10.1016/S0167-9236(00)00118-
4 [accessed: 2013-08-10].

[11] “Universal Decimal Classification Summary (UDCS) Linked Data,”
2014, URL: http://udcdata.info [accessed: 2014-01-12].

[12] “LX-Project,” 2014, URL: http://www.user.uni-hannover.de/cpr/x/
rprojs/en/#LX (Information) [accessed: 2014-01-12].

[13] E. W. von Tschirnhaus, “Brief (Letter), Ehrenfried Walther von Tschirn-
haus an Leibniz 17.IV.1677,” pp. 59–73, 1987, Gottfried Wilhelm
Leibniz, Sämtliche Schriften und Briefe, Mathematischer, naturwis-
senschaftlicher und technischer Briefwechsel dritte Reihe, zweiter Band,
1667 – 1679, Leibniz-Archiv der Niedersächsischen Landesbibliothek

Hannover, Akademie-Verlag Berlin, 1987, herausgegeben unter Auf-
sicht der Akademie der Wissenschaften in Göttingen; Akademie der
Wissenschaften der DDR.

[14] G. F. von Franckenau, “Brief (Letter), Georg Franck von Franck-
enau an Leibniz 18. (28.) September 1697, Schloss Frederiksborg,
18. (28.) September 1697,” pp. 568–569, Gottfried Wilhelm Leibniz
Bibliothek (GWLB), Leibniz-Archiv der Niedersächsischen Landes-
bibliothek Hannover, URL: http://www.gwlb.de/Leibniz/Leibnizarchiv/
Veroeffentlichungen/III7B.pdf [accessed: 2013-05-26] .

[15] Berlin-Brandenburgische Akademie der Wissenschaften, “Leibniz
Reihe VIII,” 2014, Glossary, Concepts, BBAW, Berlin, URL:
http://leibnizviii.bbaw.de/glossary/concepts/ [accessed: 2014-01-
12] (concepts glossary), URL: http://leibnizviii.bbaw.de/Leibniz
Reihe 8/Aus+Otto+von+Guericke,+Experimenta+nova/LH035,14,
02 091v/index.html [accessed: 2014-01-12] (transcription), URL:
http://leibnizviii.bbaw.de/pdf/Aus+Otto+von+Guericke,+Experimenta+
nova/LH035.14,02 091v/LH035,14!02 091+va.png [accessed: 2014-
01-12] (scan).

[16] Gottfried Wilhelm Leibniz Bibliothek (GWLB), Niedersächsische Lan-
desbibliothek, “GWLB Handschriften,” 2014, hannover, URL: http:
//www.leibnizcentral.de [accessed: 2014-01-12].

[17] “LeibnizCentral,” 2014, URL: http://www.leibnizcentral.com/ [ac-
cessed: 2014-01-12].

[18] M. Fogel, “Brieffragmente (Letter fragments) about 16xx, Historici
Pragmatici universal, Terrae motus, Physica,” manuscript ID: 00016293,
Source: Gottfried Wilhelm Leibniz Bibliothek (GWLB), Niedersächsis-
che Landesbibliothek, GWLB Handschriften, Hannover, URL: http:
//www.leibnizcentral.de [accessed: 2014-01-12].

[19] M. Fogel, “Brieffragmente (Letter fragments) about 16xx, Terrae Motus
in Nova Francia,” manuscript ID: 00016278, Source: Gottfried Wil-
helm Leibniz Bibliothek (GWLB), Niedersächsische Landesbibliothek,
GWLB Handschriften, Hannover, URL: http://www.leibnizcentral.de
[accessed: 2014-01-12].

[20] Gottfried Wilhelm Leibniz Bibliothek Hannover, “Collection of
Copperplates,” 2014, URL: http://echo.mpiwg-berlin.mpg.de/content/
copperplates [accessed: 2014-01-12].

[21] N. Seeländer, “Dens animalis marini Tidae prope Stederburgum e colle
limoso effossi, Figura Sceleti prope Qvedlinburgum effossi,” about
1716, Copperplate, (Kupferstichplatten), printed in “Leibniz, Protogaea,
Tab. XII”, re-printed in “Leibniz, Opera omnia, studio L. Dutens,
1768 – Wallmann, Abhandlung von den schätzbaren Alterthümern zu
Quedlinburg, 1776, Tafel S. 39”, URL: http://echo.mpiwg-berlin.mpg.
de/ECHOdocuView?url=/mpiwg/online/permanent/echo/copperplates/
Leibniz cup4/pageimg&start=41&pn=73&mode=imagepath [accessed:
2013-05-26].

[22] C.-P. Rückemann and B. F. S. Gersbeck-Schierholz, “Object Security
and Verification for Integrated Information and Computing Systems,” in
Proceedings of The Fifth International Conference on Digital Society
(ICDS 2011), Proceedings of The International Conference on Technical
and Legal Aspects of the e-Society (CYBERLAWS 2011), February 23–
28, 2011, Gosier, Guadeloupe, France / DigitalWorld 2011. XPS, 2011,
pp. 1–6, ISBN: 978-1-61208-003-1, URL: http://www.thinkmind.org/
download.php?articleid=cyberlaws 2011 1 10 70008 [accessed: 2013-
05-26].

[23] Max Planck Institute for the History of Science, Max-Planck Insti-
tut für Wissenschaftsgeschichte, “European Cultural Heritage Online
(ECHO),” 2014, Berlin, URL: http://echo.mpiwg-berlin.mpg.de/ [ac-
cessed: 2014-01-12].

[24] “CLImatological database for the World’s OCeans (CLIWOC),” 2014,
Climatological Database for the World’s Oceans 1750–1850, URL: http:
//pendientedemigracion.ucm.es/info/cliwoc/ [accessed: 2014-01-01].

[25] C.-P. Rückemann, “High End Computing Using Advanced Archae-
ology and Geoscience Objects,” International Journal On Advances
in Intelligent Systems, vol. 6, no. 3&4, 2013, pages 235–255,
ISSN: 1942-2679, LCCN: 2008212456 (Library of Congress), OCLC:
826628364, URL: http://www.thinkmind.org/download.php?articleid=

315

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

intsys v6 n34 2013 7 [accessed: 2014-01-12], URL: http://lccn.loc.
gov/2008212456 (LCCN Permalink) [accessed: 2014-01-12].

[26] C.-P. Rückemann, “Integrating Information Systems and
Scientific Computing,” International Journal on Advances
in Systems and Measurements, vol. 5, no. 3&4, 2012, pp.
113–127, ISSN: 1942-261x, LCCN: 2008212470 (Library of
Congress), URL: http://www.thinkmind.org/index.php?view=
article&articleid=sysmea v5 n34 2012 3/ [accessed: 2014-01-
01], URL: http://www.iariajournals.org/systems and measurements/
sysmea v5 n34 2012 paged.pdf [accessed: 2014-01-01].

[27] “ROA, (resource-oriented architecture), (Wikipedia),” 2014, URL:
http://en.wikipedia.org/wiki/Resource-oriented architecture [accessed:
2014-01-12].

[28] C.-P. Rückemann, “Enabling Dynamical Use of Integrated Systems and
Scientific Supercomputing Resources for Archaeological Information
Systems,” in Proceedings of The International Conference on Advanced
Communications and Computation (INFOCOMP 2012), October 21–26,
2012, Venice, Italy. XPS, 2012, pp. 36–41, ISBN: 978-1-61208-226-
4, URL: http://www.thinkmind.org/download.php?articleid=infocomp
2012 3 10 10012 [accessed: 2014-01-12].

[29] C.-P. Rückemann, “Advanced Scientific Computing and Multi-
Disciplinary Documentation for Geosciences and Archaeology In-
formation,” in Proc. of The Int. Conf. on Advanced Geo-
graphic Information Systems, Applications, and Services (GEO-
Processing 2013), February 24 – March 1, 2013, Nice, France.
XPS Press, 2013, pp. 81–88, ISSN: 2308-393X, ISBN: 978-1-
61208-251-6, URL: http://www.thinkmind.org/download.php?articleid=
geoprocessing 2013 4 10 30035 [accessed: 2014-01-12].

[30] “Multilingual Universal Decimal Classification Summary,” 2012, UDC
Consortium, 2012, Web resource, v. 1.1. The Hague: UDC Consortium
(UDCC Publication No. 088), URL: http://www.udcc.org/udcsummary/
php/index.php [accessed: 2014-01-12].

[31] “Creative Commons Attribution Share Alike 3.0 license,” 2012, URL:
http://creativecommons.org/licenses/by-sa/3.0/ [accessed: 2014-01-12].

[32] “Universal Decimal Classification Consortium (UDCC),” 2014, URL:
http://www.udcc.org [accessed: 2014-01-12].

[33] “Universal Decimal Classification Summary (UDCS),” 2014, URL: http:
//www.udcc.org/udcsummary/php/index.php [accessed: 2014-01-12].

[34] “Universal Decimal Classification Summary (UDCS) Translations,”
2014, URL: http://www.udcc.org/udcsummary/translation.htm [ac-
cessed: 2014-01-12].

[35] “Universal Decimal Classification Summary (UDCS) Translations: Ger-
man,” 2014, URL: http://www.udcc.org/udcsummary/php/index.php?
lang=6 [accessed: 2014-01-12].

[36] “Universal Decimal Classification Summary (UDCS) Exports,” 2014,
URL: http://www.udcc.org/udcsummary/exports.htm [accessed: 2014-
01-12].

[37] “Universal Decimal Classification Consortium (UDCC),” 2013, URL:
http://www.udcc.org [accessed: 2013-04-07].

[38] “Digital Object Identifier (DOI) System, The International DOI Foun-
dation (IDF),” 2014, URL: http://www.doi.org (Information) [accessed:
2014-01-12].

[39] N. Hemsoth, “IBM Big Data VP Surveys Landscape,” Datanami, 2012,
March 09, 2012, URL: http://www.datanami.com/datanami/2012-03-
09/ibm big data vp surveys landscape.html [accessed: 2012-03-18].

[40] C.-P. Rückemann, “Application and High Performant Computation of
Fresnel Sections,” in Symposium on Advanced Computation and Infor-
mation in Natural and Applied Sciences, Proceedings of The 9th Inter-
national Conference on Numerical Analysis and Applied Mathematics
(ICNAAM), September 19–25, 2011, Halkidiki, Greece, Proceedings
of the American Institute of Physics (AIP), vol. 1389, no. 1, 2011,
pp. 1268–1271, ISBN: 978-0-7354-0956-9, OCLC: 767604605, URL:
http://link.aip.org/link/?APCPCS/1389/1268/1 [accessed: 2014-01-12],
URL: http://dx.doi.org/10.1063/1.3637849 (DOI) [accessed: 2014-01-
12].

[41] C.-P. Rückemann, “Supercomputing Resources Empowering Superstack
with Interactive and Integrated Systems,” in Symposium on Advanced
Computation and Information in Natural and Applied Sciences, Pro-
ceedings of The 10th International Conference on Numerical Analysis
and Applied Mathematics (ICNAAM), September 19–25, 2012, Kos,
Greece, Proceedings of the American Institute of Physics (AIP), vol.
1479, no. 1, 2012, pp. 873–876, ISBN: 978-0-7354-1091-6, OCLC:
767604605, URL: http://link.aip.org/link/apcpcs/v1479/i1/p873/s1 [ac-
cessed: 2014-01-12], URL: http://dx.doi.org/10.1063/1.3637849 (DOI)
[accessed: 2014-01-12].

[42] C.-P. Rückemann, “High End Computing for Diffraction Amplitudes,”
in Symposium on Advanced Computation and Information in Natural
and Applied Sciences, Proceedings of The 11th International Confer-
ence on Numerical Analysis and Applied Mathematics (ICNAAM),
September 21–27, 2013, Rhodes, Greece, Proceedings of the American
Institute of Physics (AIP), 2013, pp. 305–308, ISBN: 978-0-7354-1184-
5, OCLC: 861348382, ISSN: 0094-243X, DOI: 10.1063/1.4825483,
URL: http://link.aip.org/link/?APCPCS/1558/305/1 [accessed: 2014-01-
12], URL: http://dx.doi.org/10.1063/1.4825483 (DOI) [accessed: 2014-
01-12].

[43] “LX-Project,” 2013, URL: http://www.user.uni-hannover.de/cpr/x/
rprojs/en/#LX (Information) [accessed: 2013-05-26].

[44] B. F. S. Gersbeck-Schierholz, “Testimonies of Nature and History in
the Napoli and Vesuvius Region, Italy,” Media Presentation, January
2014, Hannover, Germany, 2014, URL: http://www.user.uni-hannover.
de/zzzzgers/bgs volcano.html [accessed: 2014-02-23].

[45] J. W. Head, L. S. Crumpler, J. C. Aubele, J. E. Guest, and R. S.
Saunders, “Venus Volcanism: Classification of Volcanic Features and
Structures, Associations, and Global Distribution from Magellan Data,”
JGR, vol. 97, no. E8, Aug. 1992, pp. 13 153–13 197.

[46] “Gottfried Wilhelm Leibniz Bibliothek (GWLB), Leibniz-Archiv der
Niedersächsischen Landesbibliothek Hannover,” 2014, URL: http:
//www.gwlb.de/ [accessed: 2014-01-12] .

[47] “TELOTA – The Electronic Life Of The Academy,” 2014, Berlin-
Brandenburgische Akademie der Wissenschaften, URL: http://telota.
bbaw.de/ [accessed: 2014-01-12].

[48] TELOTA, “Gottfried Wilhelm Leibniz (Sämtliche Schriften und
Briefe), Sachregister Schlagwort: Saturn,” 2014, TELOTA – The
Electronic Life Of The Academy, Berlin-Brandenburgische Akademie
der Wissenschaften, URL: http://telota.bbaw.de/leibniziv/Sachregister/
sachreg fragen.php?aktion=schlagwort&eins=saturn&band= [accessed:
2014-01-12].

[49] TELOTA, “Gottfried Wilhelm Leibniz (Sämtliche Schriften und
Briefe), Sachregister Schlagwort: Planet,” 2014, TELOTA – The Elec-
tronic Life Of The Academy, Berlin-Brandenburgische Akademie
der Wissenschaften, URL: http://telota.bbaw.de/leibniziv/Sachregister/
sachreg fragen.php?aktion=schlagwort&eins=planet&band= [accessed:
2014-01-12].

[50] G. W. Leibniz, “Sämtliche Schriften und Briefe,” 2014, sämtliche
Schriften und Briefe, Zweite Reihe, Zweiter Band, Teil 2; URL: http://
www.uni-muenster.de/Leibniz/DatenII2/II2 B.pdf [accessed: 2014-01-
12], Universitäts- und Landesbibliothek Münster, WWU, Münster,.

[51] G. W. Leibniz, “Sämtliche Schriften und Briefe,” 2014, Sämtliche
Schriften und Briefe, Vierte Reihe, Sechster Band; Rechts-
und Staatswesen, URL: http://www.bbaw.de/bbaw/Forschung/
Forschungsprojekte/leibniz potsdam/bilder/IV6text.pdf [accessed:
2014-01-12], Berlin-Brandenburgische Akademie der Wissenschaften
(BBAW), Berlin.

[52] G. W. Leibniz, “Sämtliche Schriften und Briefe,” 2014, Sämtliche
Schriften und Briefe herausgegeben von der Berlin-Brandenburgischen
Akademie der Wissenschaften und der Akademie der Wissenschaften
in Göttingen, Dritte Reihe, Mathematischer, naturwissenschaftlicher
und technischer Briefwechsel, Siebenter Band, 2011; Gottfried Wil-
helm Leibniz, Mathematischer, naturwissenschaftlicher und technischer
Briefwechsel, herausgegeben von der Leibniz-Forschungsstelle Han-
nover der Akademie der Wissenschaften zu Göttingen beim Leibniz-
Archiv der Gottfried Wilhelm Leibniz Bibliothek Hannover, Sieben-

316

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ter Band, Juli 1696 – Dezember 1698, 2011; URL: http://www.nlb-
hannover.de/Leibniz/Leibnizarchiv/Veroeffentlichungen/III7A.pdf [ac-
cessed: 2014-01-12], Niedersächsische Landesbibliothek, Hannover .

[53] R. Oberschelp, Guiseppe Campani und der Ring des Planeten Saturn,
(English: Guiseppe Campani and the Ring of the Planet Saturn).
Niemeyer, Hameln, 2011, Lesesaal: Erlesenes aus der Gottfried Wilhelm
Leibniz Bibliothek, Heft 35, ISBN: 978-3-8271-8835-9.

[54] W. Oberschelp and R. Oberschelp, Cassini, Campani und der Saturnring,
(English: Cassini, Campani, and the Saturn-Ring). Verlag Harry
Deutsch, 2007, vol. 33, in: Der Meister und die Fernrohre: Das Wech-
selspiel zwischen Astronomie und Optik in der Geschichte, Festschrift
zum 85. Geburtstag von Rolf Riekher, (English: The Master and the
Telescopes: The Interplay between Astronomy and Optics in History,
Festschrift for the 85th birthday of Rolf Riekher), Acta Historica
Astronomiae, ISBN: 9783817118045.

[55] A. Georgi, R. Budich, Y. Meeres, R. Sperber, and H. Hérenger,
“An Integrated SDN Architecture for Applications Relying on Huge,
Geographically Dispersed Datasets,” in Proceedings of The Third In-
ternational Conference on Advanced Communications and Computation
(INFOCOMP 2013), November 17–22, 2013, Lisbon, Portugal. XPS
Press, 2013, pp. 129–134, ISSN: 2308-3484, ISBN: 978-1-61208-310-
0, URL: http://www.thinkmind.org/download.php?articleid=infocomp
2013 6 20 10087 [accessed: 2014-01-12].

[56] “Google,” 2014, URL: http://www.google.de [accessed: 2014-01-12].
[57] P. Leitão, U. Inden, and C.-P. Rückemann, “Parallelising Multi-agent

Systems for High Performance Computing,” in Proceedings of The
Third International Conference on Advanced Communications and
Computation (INFOCOMP 2013), November 17–22, 2013, Lisbon,
Portugal. XPS Press, 2013, pp. 1–6, ISSN: 2308-3484, ISBN: 978-1-
61208-310-0, URL: http://www.thinkmind.org/download.php?articleid=
infocomp 2013 1 10 10055 [accessed: 2014-01-12].

[58] U. Inden, D. T. Meridou, M.-E. C. Papadopoulou, A.-C. G. Anadiotis,
and C.-P. Rückemann, “Complex Landscapes of Risk in Operations
Systems Aspects of Processing and Modelling,” in Proceedings of
The Third International Conference on Advanced Communications and
Computation (INFOCOMP 2013), November 17–22, 2013, Lisbon, Por-
tugal. XPS Press, 2013, pp. 99–104, ISSN: 2308-3484, ISBN: 978-1-
61208-310-0, URL: http://www.thinkmind.org/download.php?articleid=
infocomp 2013 5 10 10114 [accessed: 2014-01-12].

317

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Text Retrieval Approach to Recover Links among E-Mails and Source Code Classes

Giuseppe Scanniello and Licio Mazzeo
Universitá della Basilicata, Macchia Romana,
Viale Dell’Ateneo, 85100, Potenza, ITALY,

Email: giuseppe.scanniello@unibas.it, licio.mazzeo@gmail.com

Abstract—During software development and evolution, the com-
munication among stakeholders is one of the most important
activities. Stakeholders communicate to discuss various topics,
ranging from low-level concerns (e.g., refactoring) to high-level
resolutions (e.g., design rationale). To support such a commu-
nication, e-mails are widely used in both commercial and open
source software projects. Although several approaches have been
proposed to recover links among software artifacts, very few are
concerned with e-mails. Recovering links between e-mails and
software artifacts discussed in these e-mails is a non trivial task.
The main issue is related to the nature of the communication
that is scarcely structured and mostly informal. Many of the
proposed approaches are based on text search or text retrieval
and reformulate the link recovery as a document retrieval
problem. We refine and improve such solutions by leveraging
the parts of which an e-mail is composed of: header, current
message, and previous messages. The relevance of these parts is
weighted by a probabilistic approach based on text retrieval. The
results of an empirical study conducted on a public benchmark
indicate that the new approach in many cases outperforms the
baselines: text retrieval and lightweight text search approaches.
This paper is built on [1].

Keywords-Information retrieval, software maintenance; traceabil-
ity recovery; BM25F

I. INTRODUCTION

SOFTWARE maintenance is one of the most expensive,
time consuming, and challenging phase of the development

process. In contrast with software development, that typically
can last for 1-2 years, the maintenance phase typically lasts
for many years. It has been estimated that the costs needed to
perform maintenance operations range from 85% to 90% of
the total cost of a software project [2]. This is due to the fact
that maintenance starts after the delivery of the first version of
a system and lasts until that system is dismissed [3].

A software system is continuously changed and enhanced
during the maintenance phase. Maintenance operations are
carried out for several reasons [4]. Corrective, perfective, and
adaptive are typical examples [5]. Independently from the kind
of maintenance operation, the greater part of the cost and
effort to its execution is due to the comprehension of source
code [6]. Pfleeger and Atlee [7] estimated that up to 60%
of software maintenance is spent on the comprehension of
source code. There are several reasons that make the source
code comprehension even more costly and complex and range
from the size of a subject software to its overall quality.
Other reasons are related to the knowledge of a subject system

that is implicitly expressed in software artifacts (i.e., models,
documentation, source code, e-mails, and so on) [8]. This
knowledge is very difficult to retrieve and it is very often
enclosed in non-source artifacts [9].

Among non-source artifacts, free-form natural language arti-
facts (e.g., documentation, wikis, forums, e-mails) are intended
to be read by stakeholders with different experience and
knowledge (e.g., managers, developers, testers, and end-users).
This kind of artifacts often implicitly or explicitly references
to other forms of artifacts, such as source code [10]. Linking
e-mails and source code could improve the comprehension of
a system and could help to understand the justification behind
decisions taken during design and development. Then, links
between e-mails and source code could be worthwhile within
the entire software lifecycle and in software maintenance, in
particular [8], [11], [12]. However, linking free-form natural
language artifacts to source code is a critical task [9], [13].

Although several approaches have been proposed to recover
links among software artifacts (e.g., [13], [14], [15], [16]),
a very few are concerned with e-mails [17], [18]. These
approaches are based on text search or text retrieval and
reformulate the problem of recovering links among e-mails
and source code artifacts as a document retrieval problem. We
refine and improve such solutions by leveraging the parts of
which an e-mail is composed of, namely the header, the current
message (body, from here on), and the sentences from previous
messages (quote in the following). The relevance of these parts
has been weighted by means of a text retrieval probabilistic
model. In particular, we implemented our solution exploiting
the BM25F model [19], [20]. To assess the validity of our
proposal, we have conducted an empirical study on the public
benchmark presented by Bacchelli et al. [17].

The work presented here is based on the paper presented
in [1]. With respect to this paper, we provide hereafter the
following new contributions:

1) The approach has been better described;
2) Related work has been discussed and differences with

respect to our approach have been highlighted;
3) An extended data analysis to strengthen the achieved

results has been provided;
4) An extended discussion of results and of their practical

implications has been given;
5) A prototype of a supporting tool for our approach has

been described.
Structure of the paper. In Section II, we discuss related

work and motivations, while we illustrate our approach in

318

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Section III. In Section IV, we present the design of the
empirical evaluation, while we discuss the achieved results
and possible threats to validity in Section V. Final remarks
and future work conclude the paper.

II. RELATED WORK AND MOTIVATION

Many standards include traceability as a recommended
or legally required activity for software development (e.g.,
IEEE Std. 830-1998 [21]). Unfortunately, in projects where
traceability management is not initially a systematic part of the
development process, it is very difficult to establish traceability
links among software artifacts [22]. Automated traceability
recovery methods deal with these problems reducing the effort
to construct and maintain traceability links among software ar-
tifacts (e.g., requirements and test cases) and source code [23].

In the following, we first discuss methods that use infor-
mation retrieval (IR) techniques to retrieve links among any
kind of software artifact and then we focus on approaches and
methods to recover links between e-mails and source code.

A. IR-Based Traceability Recovery
IR-based traceability recovery approaches use IR techniques

to compare a set of source artifacts with a set of target artifacts.
All the possible pairs of target and source artifacts are ranked
with respect to their textual/lexical similarity that is computed
using an IR method. The pairs of software artifacts and their
similarity form a ranked list, which is in turn analyzed by
a software engineer to establish correct and false recovered
traceability links. Different IR methods can be used to compute
the similarity between two artifacts. The widely used methods
are: vector space model (VSM) [24] and latent semantic
indexing (LSI) [25]. For example, Antoniol et al. [16] apply
VSM and a probabilistic model to trace source code onto
software documentation. The first model calculates the cosine
similarity of the angle between the vectors corresponding to the
source and target artifacts. The probabilistic model computes
a ranking score based on the probability that a document is
related to a specific source code component. It is worth noting
that this model is not a text retrieval probabilistic model. The
authors compare these models on two small software systems.
The obtained results show that the two models exhibit similar
accuracy. This study is the first one in which IR methods are
applied to the problem of recovering traceability links between
software artifacts.

To recover traceability links between source code and docu-
mentation, Marcus and Maletic [26] use an extension of VSM,
namely LSI. The validity of their approach is assessed on the
same software as those in [16]. The results indicate that LSI
performs at least as well as the probabilistic model and VSM
and in some cases outperforms them.

To compute the similarity between software artifacts, Abadi
et al. [27] propose the use of the Jensen-Shannon (JS)
Divergence. The authors perform a comparison among IR
methods (including VSM, LSI, and JS). The experimental
results indicate that VSM and JS provide best results.

Capobianco et al. [28] propose an IR method based on
numerical analysis principles. Artifacts are represented with

interpolation curves. The distance between pairs of interpo-
lation curves indicates the similarity between the artifacts
represented with these curves. The authors also report an
empirical evaluation, whose results suggest that their method
outperforms VSM, LSI, and JS.

A work complementary to the ones highlighted above is pre-
sented by De Luciaet al. [29]. The authors investigate whether
the use of smoothing filters improves the performances of
existing traceability recovery techniques based on IR methods.
The results suggest that the use of these filters significantly
improves the performances of VSM and LSI.

De Lucia et al. [30] analyze incremental methods for trace-
ability recovery, namely relevance feedbacks. An empirical
evaluation is conducted to assess strengths and limitations of
relevance feedbacks within a traceability recovery process. The
achieved results suggest that even using feedbacks a part of
correct links are not retrieved. However, feedbacks mostly
improve retrieval performances and can be used within an
incremental traceability recovery process.

An approach that combines different orthogonal IR tech-
niques is proposed by Gethers et al. et al. [31]. The used
techniques are those that produce dissimilar and complemen-
tary results: VSM, JS, and Relational Topic Modeling (RTM).
An empirical study on six software systems is presented to
assess whether the new approach outperforms stand-alone IR
methods as well as any other combination of non-orthogonal
methods. The results suggest that the retrieval performances
are statistically better when using the new proposed method.

B. Recovery Links between E-Mails and Source Code
Although several approaches have been proposed to recover

links among software artifacts (e.g., [13], [15], [16]), only a
few are concerned with e-mails [17], [18], [1]. In general, these
approaches can be classified as: rule-based and IR-based.

Rule-based. All these approaches are based on text search
or text retrieval and reformulate this problem as a document
retrieval problem. To detect latent links between emails and
source code entities hand-code specific rules (i.e., sets of
regular expressions) have to be specified. These rules are in
turn triggered whenever they match with a portion of email
text (e.g., [10]). For example, if the identifiers in the source
code repository follows the CamelCase naming convention,
we basically know that each identifier is either a single or
a compound name (i.e., a sequence of unseparated single
names). In the case of class names, all the single names
start with a capital letter. Therefore, we can define a regular
expression so that every time we find a string in an e-mail of
the form Foo, FooBar, FooBarXYZ, etc., we can mark it
as a link between the source code and the e-mail. This kind
of approach is computationally lightweight for small/medium
corpora (e.g., repositories with a small number of e-mails)
and easy to implement. Conversely, they lack of flexibility
since they are strictly programming-language-dependent. Even
more, they do not provide any ranking score associated with
the discovered link (i.e., information about a link is binary: a
link is either present or not). For example, Bacchelli et al. [18]
define and evaluate various lightweight methods for recovering

319

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

links between source code and e-mails on their benchmark.
Characteristics and naming conventions of source code were
exploited. The results suggest that lightweight methods can be
successfully used.

IR-based. This kind of approaches (e.g., [1]) reformulate the
problem as a particular instance of the more general document
retrieval problem. They use IR techniques to compare a set
of source artifacts (software entities) with a set of target
artifacts (e-mails). Each source code entity (e.g., the class
name) is used as the query to retrieve the set of most relevant
e-mails. Candidate links are then devised by inspecting the
ranked list of retrieved e-mails. Relevance between any pair
of source and target artifacts (i.e., source code entity and email)
can be determined by their textual/lexical similarity, which is
computed by using a specific IR model in conjunction with a
particular term-weighting score (e.g., cosine similarity using tf-
idf vector space model) [24]. The main advantage of IR-based
approaches is that they are more flexible and associate each
discovered link with a ranking score. Nevertheless, the queries
for retrieving relevant emails mostly consist of the strings iden-
tifying package and/or class names, which are parsed directly
from source code. This leads to “semi-structured” queries,
which are used to retrieve almost “unstructured” documents
(e-mails), organized in a “quasi-unstructured” way. Inverted
indices built on top of free-text documents have proven to work
good when used to answer free-text queries as well (e.g., [13]).
Therefore, using keywords derived from structured source code
that highly likely do not appear in the email index may lead
to poor retrieval results. For example, Bacchelli et al. [17]
evaluate and compare lightweight methods based on regular
expressions with LSI and VSM. This comparison is based on
their benchmark. The effectiveness of the lightweight methods
and LSI and VSM is evaluated on the basis of the measures:
precision, recall, and F-measure. Differently from [27], the
authors observe that LSI outperforms VSM on Java systems.
The results achieved with these methods are close for software
written in C, PHP, and ActionScript. Furthermore, the authors
show that lightweight methods outperform LSI and VSM. The
interpretation of the results is that: e-mails are often referred
to by name, not synonyms, and source code is rare reported
in. One of the concerns related to lightweight methods is
that particular configurations are needed, which depend on the
system understudy. This implies that on that system is required
a specific knowledge to retrieve accurate links. For lightweight
methods, scalability issues could be also present when the
number of e-mails increases. To deal with these concerns, IR-
based link recovery should to be preferred.

III. THE APPROACH

IR-based traceability recovery approaches reformulate trace-
ability recovery as a document retrieval problem. We refine and
improve such solutions by leveraging the parts of which an e-
mail is composed of: object, body, and quote. Our approach
is composed by the following steps:

1) Creating a Corpus. A corpus is created, so that each
e-mail of a subject system will have a corresponding
document in the resulting corpus. Each document has
three fields: header, body, and quote.

2) Corpus Normalization. The corpus is normalized us-
ing a different set of techniques (e.g., stop word removal
and special token elimination).

3) Corpus Indexing. An IR engine is used to index the
corpus. Different engines work in various ways. Most
of them create a numerical index for each document in
the corpus. In our case, the total number of terms for
each field of an e-mail is determined. This information
is used in our approach. In this work, we exploited VSM
and BM25F.

4) Query Formulation. In a typical text retrieval problem,
a software engineer writes a textual query and retrieves
documents that are similar to that query (e.g., [32]).
Differently, in IR-based traceability recovery a set of
source artifacts (used as the query) are compared with
set of target artifacts (even overlapping) [16]. In this
work, software entities (i.e., source code) are used as the
query. The textual query is normalized in the same way
as the corpus and the boolean operator “AND” is used
with the individual terms of that query. The number of
queries is equal to the number of source code artifacts.

5) Ranking Documents. The index is exploited to de-
termine similarity measures between the queries and
the documents in the corpus (i.e., the e-mails). In
particular, the queries are projected into the document
space generated by the IR engine on the corpus. Then
lexical similarities between each query and the e-mails
are computed. The pairs of source and target artifacts
are ranked in descending order with respect to their
lexical similarity.

6) Examining Results. The software engineer investigates
the ranked list and classifies the pairs of source and
target artifacts as true or false links.

Although all these steps are part of a baseline IR-Based
Traceability Recovery approaches (e.g., [13]), we sensibly
change here the steps 3 and 5. In the remainder of this
section, we describe how we instantiated all the steps above.
Investigating alternative instances for these steps is the subject
of our future work.

A. Creating a Corpus

Each e-mail results in one document in the corpus. Each
document has three well defined fields: header, body, and
quote. The header field contains the subject, while the body
the sentences of the current message. All the sentences from
previous messages are within the quote field. In particular,
it includes a chain of messages (e.g., ideas, opinions, issues,
or possible solutions) exchanged among stakeholders (mostly
developers) linked in the sequence in which they espoused that
discussion. We also consider the quote because IR approaches
produce better results when a huge amount of lexical informa-
tion is available [24]. Moreover, the body and the quote fields
are separately considered since the lexical information within
the body is on the current focus of a discussion, while the quote
field includes the text that might provide useful information on
the entire discussion thread.

320

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Corpus Normalization
The corpus is normalized: (i) deleting non-textual tokens

(i.e., operators, special symbols, numbers, etc.), (ii) splitting
terms composed of two or more words (e.g., first_name
and firstName are both turned into first and name),
and (iii) eliminating all the terms within a stop word list
(including the keywords of the programming languages: Java,
C, ActionScript, and PHP) and with a length less than three
characters. We applied these normalization rules because they
have been widely applied in IR-based traceability recovery
approaches (e.g., [16]).

Splitting identifiers could produce some noises in the corpus.
For example, if the name of a class is FileBuffer, it is
possible that a software engineer talks about FileBuffer in an e-
mail rather than File and Buffer. However, if the identifiers
are not split the things could go from bad to worse: the class
name is not in the text of the e-mails (e.g., [17] and [18]), while
that name is used as the query. To deal with this issue, we apply
the same normalization process on both the corpus and the
queries. In addition, the “AND” operator is used to formulate
each query. That is, we use the “AND” operator between each
pair of words in the query (e.g., A Sample Query is seen
as A “AND” Sample “AND” Query).

Differently from the greater part of the traceability recovery
approaches (e.g., [13], [16]), we did not apply any stemming
technique [24] to reduce words to their root forms (e.g., the
words designing and designer have design as the
common radix). This is because we experimentally observed
that the use of a Porter stemmer [33] led to worse results.
Also, in [17] the stemming was not used for similar reasons.
Investigating alternative normalization techniques and possible
combinations of them is a future direction for our work.

C. Corpus Indexing
We adopt here a probabilistic IR-based model, namely

BM25F [19]. This model extends BM25 [20] to handle
semistructured documents from a corpus. The BM25 model
was originally devised to pay attention to term frequency and
document length, while not introducing a huge number of
parameters to set [34]. BM25 showed very good performances
[20] and then widely used specially in web document retrieval
applications [35], [36]. BM25F was successively proposed to
build a term weighting scheme considering the fact that doc-
uments from a corpus can be composed of fields (e.g., [35]).
Each document is in the corpus and contains information on
the contained fields. Then, the fields of a document differently
contribute to its representation. We used BM25F because it has
been successfully used on very large corpuses [36] in terms of
both scalability and quality of the retrieved documents [37].
The use of other probabilistic models (e.g., the Expectation-
Maximization algorithm [38]) could lead to different results.
This point is subject of future work.

The difference between “vector space” and “probabilistic”
IR methods is not that great. In both the cases, an information
retrieval scheme is built for considering each document as
a point in a multi-dimensional geometrical space. Therefore,
BM25F is based on the bag-of-words model, where each

document in the corpus is considered as a collection of words
disregarding all information about their order, morphology, or
syntactic structure. A word could appear in different fields
of the same document. In this case, that word is differently
considered according to the field in which it appears. Applying
BM25F, each e-mail in the corpus is represented by an array
of real numbers, where each element is associated to an item
in a dictionary of terms. BM25F does not use a predefined
vocabulary or grammar, so it can be easily applied to any kind
of corpora.

BM25F works on the occurrence of each term in the fields
of all the documents in the corpus. These occurrences are used
to build a term-by-document matrix. In the current instantiation
of this step we modified the original definition of BM25F to
better handle the problem at the hand. In the model a generic
entry of the table is computed as follows:

idf(t, d) = log(
N − df(t) + 0.5

df(t) + 0.5
+ 1) ∗ weight(t, d) (1)

where N is the total number of documents in the corpus, while
df is the number of documents where the term t appears.
The weight of the term t with respect to the document d is
computed by weight(t, d) as follows:

weight(t, d) =
∑

c in d

occursdt,c ∗ boostc
((1− bc) + bc ∗ lc

avlc
)

(2)

lc is the length of the field c in the document d; avlc is the
average length of the field c in the all documents; and bc is
a constant related to the field length; and boostc is the boost
factor applied to the field c. occursdt,c is the number of terms
t that occur in the field c of the document d. This equation is
dependent on the field and document relevance and it is similar
to a mapping probability. This is because BM25F is considered
a probabilistic IR-based model. Regarding the constants of the
equation (1), we chose 0.75 as the value for bc, while 1 is the
boost value applied to each field (i.e., header, body, and quote).
These values were experimentally chosen and are customary
in the IR field [37]. In the future, we plan to automate the
choice of the boost values using supervised machine learning
techniques [39]. For example, we could divide the benchmark
in test and training sets and then the training set could be used
to determine the best boost values.

In the original definition of BM25F [36], if a term occurs
in over half the documents in the corpus, the model gives
a negative weight to the term. This undesirable phenomena
is well established in the literature [24]. It is rare in some
applicative contexts, while it is common in others as for an
example in the recovery of links between e-mails and source
code. In such a context, in fact, e-mails quote sentences from
previous messages and then the difference among e-mails (in
the same discussion thread) is not that great with respect to
the terms contained. To deal with this concern, we modified
the computation of idf . The adopted solution is that shown in
the equation (1), which is based on that suggested in [40]. The
main difference with respect to the canonical computation of
idf is that 1 is added to the argument of the logarithm.

321

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Query Formulation

In the traceability recovery field, source artifacts are used
as the query [13]. The number of queries is then equal to
the number of source artifacts. In this work, we used source
code entities as the source artifacts and applied the following
two instantiations for Query Formulation: (i) class names
and (ii) class and package names. In both the cases, the
queries are normalized in the same way as the corpus. When
the textual query is composed of more than one term (e.g.,
ArgoStatusBar), the boolean operator “AND” is used with
the individual terms of that query (Argo, Status, and Bar).
This implies that all the individual terms have also to exist
anywhere in the text of a document.

E. Ranking Documents

For a probabilistic IR method, the similarity score between
a query with the documents in the corpus is not computed by
the cosine similarity and tf − idf in a vector space [41], but
by a different formula motivated by probability theory [24]. In
this work, we used a formula based on a non-linear saturation
to reduce the effect of term frequency. This means that the
term weights do not grow linearly with term frequency but
rather are saturated after a few occurrences:

score(q, d) =
∑

t in q

idf(t) ∗ weight(t, d)

k1 + weight(t, d)
(3)

where q is the textual query and d is a document in the corpus.
The values for idf(t) and weight(t, d) are computed as shown
in the equations (1) and (2), respectively. The parameter k1
usually assumes values in the interval [1.2, 2]. We used 2 as
the value because experiments suggested that it is a reasonable
value [24] to maximize retrieval performances.

F. Examining Results

A set of source artifacts is compared with set of target arti-
facts (even overlapping). Then, all the possible pairs (candidate
links) are reported in a ranked list (sorted in descending order).
The software engineer investigates the ranked list of candidate
links to classify them as actual or false links.

IV. EMPIRICAL EVALUATION

The presentation of the study is based on the guideline
suggested in [42].

A. Definition

Using the Goal Question Metrics (GQM) template [43], the
goal of our empirical investigation can be defined as follows:
“Analyze the adoption of our approach for the purpose of
evaluating it with respect to the links between e-mails and
source code from the point of view of the researcher in the
context of open source systems and from the point of view of
the project manager, who wants to evaluate the possibility of
adopting that approach in his/her own company.”

We have then formulated and investigated the following
research question: Does our proposal outperform baseline
approaches based on text search or text retrieval methods?

We considered the following baselines in our empirical
investigation:

1) BM25F with the “OR” operator: We apply the
BM25F model and the “OR” operator in the step
Query Formulation. The Corpus Indexing step is
executed by considering the e-mails as composed of
header, body, and quote. The only difference with
respect to our proposal is that the “OR” operator is
used against the “AND” operator;

2) BM25F considering body and quote together: We
apply the BM25F model and the operators “AND”
and “OR”. Furthermore, the Corpus Indexing step is
performed considered two fields: (i) header and (ii)
body and quote together;

3) Lucene1 with “AND” and “OR” operators: In
the Corpus Indexing step, we use Lucene. It uses
a combination of VSM and the Boolean model to
determine how relevant a document is to a query.
We here apply both the operators “AND” and “OR”.
Since Lucene is based on VSM, more times a query
term appears in a document relative to the number of
times the term appears in all the documents in the
corpus, the more relevant that document to the query is;

4) VSM: It represents the documents in the corpus as
term vectors, whose size is the number of terms present
in the vocabulary. Term vectors are aggregated and
transposed to form a term-document matrix. To take
into account the relevance of terms in each document
and in all the corpus, many weighting schema are
available. In our empirical evaluation, we employed the
tf-idf (term frequency - inverse document frequency)
weighting;

5) LSI: Even for a corpus of modest size, the term-
document matrix is likely to have several tens of
thousand of rows and columns, and a rank in the tens
of thousands as well. LSI is an extension of VSM
developed to overcome the synonymy and polysemy
problems [25]. SVD (Singular Value Decomposition)
is used to construct a low-rank approximation matrix
to the term-document matrix [44]. In LSI there is no
way to enforce Boolean conditions [24];

6) Lightweight linking technique (LLT) - case sensitive
(CS): To reference software entities from e-mails, the
names of the software entities are used as text search
queries. There exists a link between a software entity
and an e-mail, when there is a case sensitive match on
the entity name;

1lucene.apache.org

322

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

7) LLT - mixed approach (MA): In case the name
of software entities are compounded words, they are
split (e.g., ClassName becomes Class Name). The
compounded words are then used for the case sensitive
match on the entity name, otherwise it is used a regular
expression based on class and package name;

8) LLT - MA with regular expression (RE): This
approach is based on that above. A different regular
expression is used to better handle non-Java systems.
Further details about Lightweight linking techniques
can be found in [17].

The baselines from 1 to 5 are different instantiations of the
recovery process shown in Section III, while the others are
lightweight approaches based on regular expressions. In all the
IR-based baseline approaches, with the exception of the first
and second one, the corpus was indexed considering together
header, body, and quote. For the baselines from 4 to 8, we
used the results published in [17]. For these baselines, there
were available only the results, when using the class names as
the queries.

B. Planning
1) Context: Many IR-based traceability recovery approaches

depend on users’ choices: the software engineer analyzes a
subset of the ranked list to determine whether each traceability
link has been correctly retrieved. It is the software engineer
who makes the decision to conclude this process. The lower
the number of false traceability links retrieved, the better the
approach is. The best case scenario is that all the retrieved links
are correct. IR-based traceability recovery methods are far
from this desirable behavior [13]. In fact, IR-based traceability
recovery approaches might retrieve links between source and
target artifacts that do not coincide with correct ones: some are
correct and others not. To remove erroneously recovered links
from the candidate ones, a subset of top links in the ranked
list (i.e., retrieved links) should be presented to the software
engineer. This is possible by selecting a threshold to cut the
ranked list (e.g., [16], [26]).

There are methods that do not take into account the simi-
larity between source and target artifacts: Constant Cut Point,
it imposes a threshold on the number of recovered links, and
Variable Cut Point, it consists in specifying the percentage of
the links of the ranked list to be considered correctly retrieved.
Alternative possible strategies for threshold selection are based
on the similarity between source and target artifacts: Constant
Threshold, a constant threshold is chosen, Scale Threshold, a
threshold is computed as the percentage of the best similarity
value between two vectors, and Variable Threshold, all the
links among those candidate are retrieved links whether their
similarity values are in a fixed interval. In our experiment,
we used the Constant Threshold method. This is the standard
method used in the literature [13]. We applied this method
employing thresholds assuming values between 0 and 1. The
increment used was 0.01.

For each software entity, the Query Formulation step was
instantiated using either the original class name or the con-
catenation of class and package names. The order with which

class and package names were concatenated is indifferent. We
opted for these query formulations because used in [17]. Other
instantiations for the Query Formulation step are possible. This
point is subject of future work.

2) Variable selection: The traceability links retrieved by
applying both our approach and the baselines are analyzed in
terms of correctness and completeness. Correctness reflects the
fact that an approach is able to retrieve links that are correct. To
estimate the correctness, we used (as customary) the precision
measure. On the other hand, completeness reflects how much
the set of retrieved links is complete with respect to the all
actual links. The recall measure is used to estimate this aspect.
We used here the following definitions:

precision =
|TP |

|TP |+ |FP |
recall =

|TP |
|TP |+ |FN |

(4)

where TP (true positives) is the set of links correctly retrieved.
The set FN (false negatives) contains the correct links not
retrieved, while FP (false positives) the links incorrectly
presented as correct ones.

When the e-mails in the benchmark do not have any
reference to source code artifacts, the union of TP and FN is
empty (i.e., |TP |+ |FN | = 0). In all these cases, we cannot
calculate the values for the recall measure. The values for
precision could not be computed in case the approach found
no link between an e-mail and the source code. Similar to
[17], we avoided these issues calculating the average of |TP |,
|FP |, and |FN |, on the entire dataset. We then computed the
average values for precision and recall. Precision and recall
assume values in the interval [0, 1]. The higher the precision
value, the more correct the approach is. Similarly, the higher
the recall value, the better the approach is.

To get a trade-off between correctness and completeness,
we applied the balanced F-measure (F1):

F1 =
2 ∗ precision ∗ recall
precision+ recall

(5)

We applied this formula because we would like to emphasize
neither recall nor precision. F1 was used to estimate the
accuracy of the approach. This is the main criterion we
considered in the study. This measure has values in the interval
[0, 1]. When comparing two approaches, the one with higher
F1 value is considered the best, namely the most accurate.

3) Instrumentation: Regarding the baselines from 1 to 3,
we implemented the underlying instances of the process in
a prototype of a supporting software tool. This tool was
intended as an Eclipse plug-in. It can be downloaded at
www.scienzemfn.unisa.it/scanniello/LASCO/. We named that
plug-in LASCO (Linking e-mAils and Source Code). In the
following, we highlight this tool prototype. The interested
reader can find more details on LASCO in [45]. It is worth
mentioning that the baselines from 1 to 3 are different instanti-
ations of our process shown in Section III. These instantiations
have been implemented in our prototype, but they are not
available in the current distribution of LASCO.

In Table I, we report the steps needed to recover links
between e-mail and source code (steps 4.a and 4.b) with
LASCO. The steps to search e-mails that are similar to a given

323

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. USAGE STEPS OF LASCO

Usage Step Expected Output Description
1. Selecting the
e-mail repository
(steps 1 and 2 of
the approach)

The e-mail reposi-
tory is loaded.

In this step, an e-mail repository is
loaded and the corpus is created.
The corpus is also normalized.

2. Indexing the cor-
pus (step 3 of the
approach)

An index of the cor-
pus is created using
an IR engine.

Most of IR methods create a nu-
merical index for each document in
the corpus. LASCO supports both
Lucene and BM25F (two fields,
namely header, body and quote
together, and three fields, namely
header, body and quote). The cor-
pus is also normalized.

3.a Recovering the
links (steps 4 and 5
of the approach)

The ranked list for
the system/s is com-
puted.

The class name or package and
class names are are used as the
query. These names are compared
with set of target artifacts: the e-
mails. The textual query is normal-
ized in the same way as the corpus.
The user can use the boolean oper-
ators AND and “OR”. The ranked
list is then computed.

3.b Formulating a
textual query (steps
4 and 5 of the ap-
proach)

The user exploits
LASCO to write a
textual query.

The user writes a query and the
system retrieves the e-mails that
are more similar to that query.
The textual query is normalized in
the same way as the corpus. The
boolean operators AND and “OR”
can be used.

4.a The ranked list
is shown (step 6 of
the approach)

Links between e-
mails and source
code are shown.

The links between e-mails and soft-
ware entities (e.g., class names) are
reported in a ranked list. The e-
mails more similar to the software
entities are shown first.

4.b The list of e-
mails is shown (step
6 of the approach)

The e-mails similar
to the textual query
are shown.

The e-mails are reported in a
ranked list. The e-mails in that list
are in decreasing order with respect
to their similarity with the textual
query.

textual query (steps 3.b and 4.b) are reported as well. The
expected output for each step is mentioned together with its
description. We made also clear the connection between each
step of the approach shown in Section III and the usage steps
of our tool.

Figure 1 shows the top of the ranked list attained on the
system Freenet. Each link in that list is characterized by a
source artifact (i.e., the class name in this case) and the target
artifact (i.e., the e-mail). The similarity score between these
two artifact is also reported. LASCO also shows the e-mail
(i.e., header, body, and quote) associated to a link double
clicking that link in the ranked list. On the other hand, Figure
2 shows the screenshot that allows a user to specify a textual
query (step 3.b).

To estimate the correctness, the completeness, and the accu-
racy of our approach and to compare it with the baselines, we
used the benchmark proposed in [18]. To build the benchmark,
the authors manually analyzed the e-mails of six unrelated
software systems written in four different languages: Java,
ActionScript, PHP, and C. 99 versions for these systems were
considered. The systems are all open-source and both the
code and the e-mails are freely accessible on the web. The
benchmark was built on development mailing lists and consid-
ered a reliable sample set from all the e-mails in these lists.
Some information on the benchmark is shown in Table II. In
particular, the first column shows the name of the open source

Figure 1. Ranked list attained on Freenet

Figure 2. Formulating a textual query in LASCO

software system. A short summary of the functionality of the
system and the programming language used to implement it are
presented in the second and third columns, respectively. The
total number of e-mails for each system are reported in the
fourth column. Details on the sample are presented in the last
three columns. In particular, these columns shows the size of
the statistically significant sample set of e-mails, the number of
e-mails in the sample with at least one reference to a software
entity, and the total number of links from the e-mails in the
sample. Further details can be found in [18].

For each system and all the threshold values, we computed
the values of precision, recall, and F1. To this end, we have
implemented and used a tool to automatically collect TP ,
FP , and FN . To compare our approach with the baselines,
we selected the constant threshold that produced the best
accuracy. The values of precision, recall, and F1 are computed
in LASCO for our approach and the baselines from 1 to 3.

V. RESULTS AND DISCUSSION

In this section, we present and discuss the results and
some lesson learned. The section concludes presenting possible
threats that could affect the validity of the results.

TABLE II. SUMMARY INFORMATION ON THE USED BENCHMARK [18]

System Language E-mails Sample E-mails Total links
Size with a link

ArgoUML Java 29,112 355 108 290
Freenet Java 26,412 379 148 570
JMeter Java 20,554 380 207 617

Away3D Action Script 3 9,757 370 243 747
Habari PHP 5 13,095 374 135 252
Augeas C 2,219 281 140 273

324

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. BM25F RESULTS INDEXING THE CORPUS USING: (i) HEADER, (ii) BODY, AND (iii) QUOTE

Class Name + “AND” Class Name + “OR” Class and Package Names + “AND” Class and Package Names + “OR”
System Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

ArgoUML 0.32 0.53 0.40 0.05 0.55 0.10 0.41 0.72 0.52 0.04 0.48 0.07
Freenet 0.23 0.49 0.31 0.03 0.23 0.06 0.30 0.52 0.39 0.02 0.40 0.05
JMeter 0.32 0.41 0.36 0.10 0.41 0.16 0.49 0.62 0.55 0.06 0.43 0.10

Away3D 0.31 0.51 0.39 0.15 0.24 0.18 0.39 0.44 0.41 0.12 0.24 0.16
Habari 0.77 0.48 0.59 0.29 0.35 0.32 0.77 0.48 0.59 0.29 0.35 0.32
Augeas 0.12 0.27 0.16 0.04 0.32 0.08 0.12 0.26 0.16 0.04 0.32 0.08

Average value 0.35 0.45 0.37 0.11 0.35 0.15 0.41 0.51 0.44 0.10 0.37 0.13

TABLE IV. BM25F RESULTS INDEXING THE CORPUS USING: (i) HEADER AND (ii) BODY AND QUOTE TOGETHER

Class Name + “AND” Class Name + “OR” Class and Package Names + “AND” Class and Package Names + “OR”
System Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

ArgoUML 0.34 0.51 0.41 0.07 0.58 0.12 0.40 0.46 0.43 0.05 0.55 0.09
Freenet 0.22 0.54 0.31 0.08 0.45 0.14 0.29 0.62 0.40 0.07 0.5 0.13
JMeter 0.29 0.45 0.36 0.14 0.41 0.21 0.34 0.66 0.45 0.12 0.45 0.19

Away3D 0.29 0.76 0.42 0.21 0.24 0.22 0.37 0.44 0.40 0.16 0.23 0.19
Habari 0.74 0.52 0.61 0.46 0.45 0.46 0.74 0.52 0.61 0.46 0.45 0.46
Augeas 0.11 0.35 0.17 0.10 0.17 0.13 0.11 0.35 0.17 0.06 0.35 0.10

Average value 0.33 0.52 0.38 0.18 0.38 0.21 0.38 0.5 0.41 0.15 0.42 0.19

TABLE V. LUCENE RESULTS

Class Name + “AND” Class Name + “OR” Class and Package Names + “AND” Class and Package Names+ “OR”
System Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

ArgoUML 0.32 0.50 0.39 0.06 0.50 0.11 0.39 0.47 0.43 0.03 0.53 0.06
Freenet 0.20 0.59 0.30 0.07 0.47 0.11 0.27 0.64 0.38 0.05 0.56 0.10
Jmeter 0.27 0.46 0.34 0.10 0.36 0.15 0.34 0.70 0.46 0.07 0.49 0.13

Away3D 0.29 0.77 0.42 0.17 0.22 0.19 0.37 0.44 0.40 0.13 0.24 0.17
Habari 0.61 0.55 0.58 0.45 0.40 0.43 0.61 0.55 0.58 0.45 0.40 0.42
Augeas 0.10 0.27 0.15 0.05 0.21 0.08 0.10 0.27 0.15 0.05 0.20 0.08

Average value 0.30 0.52 0.36 0.15 0.36 0.18 0.35 0.51 0.40 0.13 0.40 0.16

TABLE VI. RESULTS BY BACCHELLI et al. [17]

VSM with tf − idf LSI LLT - case sensitive LLT - mixed approach LLT - mixed approach with RE
System Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

ArgoUML 0.25 0.34 0.29 0.60 0.48 0.53 0.27 0.68 0.38 0.64 0.61 0.63 0.35 0.68 0.46
Freenet 0.15 0.25 0.19 0.62 0.43 0.51 0.17 0.70 0.27 0.59 0.59 0.59 0.27 0.69 0.39
JMeter 0.21 0.34 0.26 0.52 0.40 0.45 0.15 0.73 0.25 0.59 0.65 0.62 0.30 0.72 0.42

Away3D 0.35 0.31 0.33 0.35 0.33 0.34 0.32 0.74 0.44 0.40 0.54 0.46 0.41 0.72 0.52
Habari 0.34 0.39 0.36 0.36 0.41 0.38 0.40 0.41 0.41 0.83 0.09 0.17 0.49 0.38 0.43
Augeas 0.10 0.20 0.14 0.10 0.28 0.14 0.09 0.72 0.15 0.14 0.02 0.04 0.15 0.64 0.24

Average value 0.23 0.31 0.26 0.43 0.39 0.39 0.23 0.66 0.32 0.53 0.42 0.42 0.33 0.64 0.41

A. Results
The results achieved by applying our approach are summa-

rized in Table III. The table also reports the results achieved by
applying the “OR” operator. The results are grouped according
to the two different instantiations of the step Query Formula-
tion: (i) class name and (ii) class and package names. The last
row reports the average values for each measure. Better average
accuracy was achieved using class and package names and the
“AND” operator (F1 = 0.44). With respect to each individual
system, we obtained the higher accuracy for Habari, namely
the system implemented in PHP (F1 = 0.59). On that system,
the higher value of correctness was also obtained (precision =
0.77). It is worth mentioning that the results for that system are
the same both using class name alone and class and package
names together. This is because PHP 5 did not have packages.
Namespaces (i.e., packages) where only introduced in PHP
5.3. The same held for Augeas (the C software system).

Table IV shows the results achieved by indexing the corpus
using: (i) header and (ii) body and quote together. With respect

to accuracy, better results were achieved using the operator
“AND” and class and package names. The best average accu-
racy value was 0.41. Among the analyzed software systems,
the best accuracy was obtained for Habari (F1 = 0.61). Figure
3 summarizes the accuracy results achieved by indexing the
corpus considering header, body, and quote (three fields) and
header and body and quote together (two fields). This figure
shows that: it is better to use the “AND” operator, the use of
three fields produces better results, and formulating the query
as class and package names is better.

The results achieved with Lucene are shown in Table V. The
best average accuracy value was reached using the operator
“AND” and class and package names (i.e., 0.40). The better
accuracy was achieved for Habari (F1 = 0.58).

These results are presented for each system in the bench-
mark and are grouped according to the operator used in the
Query Formulation step. The average values are reported in the
last row. As for BM25F, we obtained on average better results
by applying the “AND” operator and using class name and

325

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0	

0,1	

0,2	

0,3	

0,4	

0,5	

0,6	

0,7	

ArgoUML	 Freenet	 JMeter	 Away3D	 Habari	 Augeas	

3	 Fields	 -‐	 Class	 Name	 +	 "AND"	

3	 Fields	 -‐	 Class	 Name	 +	 "OR"	

3	 Fields	 -‐	 Class	 and	 Package	 Names	 +	 "AND"	 	

3	 Fields	 -‐	 Class	 and	 Package	 Names	 +	 "OR"	

2	 Fields	 -‐	 Class	 Name	 +	 "AND"	

2	 Fields	 -‐	 Class	 Name	 +	 "OR"	

2	 Fields	 -‐	 Class	 and	 Package	 Names	 +	 "AND"	

2	 Fields	 -‐	 Class	 and	 Package	 Names	 +	 "OR"	

Figure 3. Accuracy results achieved with the “AND” and “OR” operators and indexing the corpus using: (i) header, body and quote and (ii) header and body
and quote together

package. The comparison of these results with those achieved
with our approach suggests that the use of BM25F improves
the correctness and the accuracy of the retrieved traceability
links. The main effect of the probabilistic model used is on the
precision values. The average improvement ranges from 3%
to 5%. The improvement on the accuracy is on average 2%
with class name and the “AND” operator, while is 1% class
name and package and the “AND” operator. The use of that
model does not improve completeness. The benefit deriving
from the instantiation based on the probabilistic model are
still better, when using the “OR” operator. The retrieved links
are more precise, complete, and then accurate.

Table VI summarizes the results presented in [17], instanti-
ating Query Formulation step with class name. As mentioned
before, the results for class and package names together are not
reported for VSM and LSI because the authors observed that
better results were achieved using only class names. Table VI
also shows the results for the lightweight linking techniques.

The results indicate that our proposal is more accurate than
BM25F using two fields (header and body and quote together)
on all the Java systems with the exception of Freenet (the
F1 values were 0.39 and 0.40, respectively). On the non-Java
systems, the use of BM25F indexing the corpus with three or
two fields did not produce remarkable differences in accuracy
(see the Tables III and IV and Figure 3).

Our approach using class and package names as the queries
is more accurate than VSM. Similar results were achieved for
Lucene using both the operators and class name and class and
package names together as the queries. Indeed, our proposal
did not outperform Lucene only on Away3D when using the
“AND” operator and class name as the query. The F1 values
were 0.41 and 0.42, respectively.

As far as LSI is concerned, our approach is more accurate
on all the non-Java system and Jmeter. For ArgoUML the
difference in favor of LSI was negligible (the F1 values was
0.52 with respect to 0.53). A larger difference in accuracy was

obtained for Freenet.
Regarding the lightweight approaches, our proposal out-

performed LLT-CS in accuracy on all the systems with the
exception of Away3D (the F1 values were 0.44 and 0.41,
respectively). BM25F with three fields was on average more
accurate than LLT MA with and without RE (see the average
values of F1). With respect to LLT MA, we achieved better
F1 values results on Habari and Augeas (0.59 vs. 0.17 and
0.16 vs. 0.04, respectively). On the Java systems, LLT MA
was more accurate than our approach. For LLT MA RE, we
reached better results on the Java systems and Habari.

Regarding the correctness and completeness of the retrieved
links, we can observe an interesting pattern in the data: our
approach mostly allowed obtaining a more complete set of
retrieved links that are correct. This result is desirable when
you are interested in the recovery of links among software
artifacts (e.g., [13]).

B. Discussion
Several aspects must be taken into account before drawing

conclusions. We discuss IR-based approaches first and than
the lightweight ones. The section concludes with our overall
recommendation.

1) IR-Based recovery: For the Java systems, LSI outper-
formed other approaches based on IR techniques with respect
to the accuracy of the retrieved links. A possible reasons is that
each e-mail in the corpus quotes a large number of sentences
from previous messages. This is the best scenario for using
LSI [24]. In fact, this technique is used to disclose the latent
semantic structure of the corpus and to recognize its topics,
so dealing with synonymy and polysemy problems. Further,
each document in the corpus has a large size as compared
with the entities used as the queries. This might also represent
another possible reason for having achieved better results for
the Java systems. The considerations above and the fact that
LSI outperformed our approach in terms of accuracy only on

326

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Freenet (this difference was 0.04, while this difference was in
favor of our approach on ArgoUML and JMeter and was 0.01
and 0.1, respectively) suggest that BM25F represents a viable
alternative also when dealing with large documents in the
corpus. It is also possible that differently tuning the parameters
of our solution (e.g., the non-linear saturation) the difference
with LSI could decrease on Freenet. This represents a possible
future extension for our study.

In case the e-mails in the corpus quote a small number
of sentences from previous e-mails, our approach outper-
formed other baseline approaches based on IR techniques.
This happened for all the non-Java systems. For the Habari
system, the e-mails were very short and then BM25F made
the difference also considering the information in the body
and quote together.

For the system implemented in C (i.e., Augeas), the ap-
plication of the IR-Based approaches mostly produced worse
results in terms of correctness, completeness, and accuracy. As
also suggested in [17], a possible justification is related to the
names of the entities. However, our approach outperformed the
IR based baselines. Again, indexing the e-mails considering
two or three fields did not produce remarkable differences.

The instantiation of the Query Formulation step with class
and package names improved the correctness and completeness
when our technique was used. Then, it is possible that the
choice of the source artifact can make the difference in the
accuracy of the links recovered. This point needs future and
special conceived investigations.

The use of a stemming technique in the Normalization step
produced worse results. Then, this technique seems useless in
the recovery of links between source code and e-mails, when
using BM25F (with two and three fields) and Lucene. On these
instances, the use of the “AND” operator led to better results
in terms of accuracy and correctness of the retrieved links
with respect to the “OR” operator. This result held for all
the systems. For completeness, the results achieved with the
“AND” operator were mostly better than those achieved with
the “OR” operator. Only in four cases the use of the “OR”
operator led to better recall values.

The use of source code (program statements and/or source
code comment) as the query was also analyzed. The results re-
vealed that this kind of instantiation for the Query Formulation
step led to worse results with respect to the other two kinds of
queries considered here. This result is in line with that shown
in [17] and has the following implication: it is better to use
class name and class and package names as the queries.

We also performed an analysis to get indications on whether
BM25F might introduce scalability issues. We used a laptop
equipped by a processor Intel Core i7-2630QM with 4 GB
of RAM and Windows Seven Home Premium SP-1 64bit as
operating system. This analysis was performed on each system
and the baseline processes implemented for our experiment
(see Section IV-A). The results indicated that the time to build,
normalize, and index the e-mails of the entire benchmark was
twice when using three fields (i.e., 5033 milliseconds) with
respect to the use of two fields (i.e., 2668 milliseconds). For
Lucene, the average execution time on all the systems in the
benchmark was 2660 milliseconds. For the Query Formulation

step, nearly the same pattern was observed. Further details are
not provided for space reason.

2) Lightweight Approaches: Regarding the accuracy of the
retrieved links, LLT MA outperformed other lightweight tech-
niques and our approach on the Java systems. On the non-
Java system with the exception of Away 3D, LLT MA did not
outperform our approach and the differences in the F1 values
were significant (0.59 vs. 0.17 and 0.16 vs. 0.04, respectively).
The difference on Away3D was small (F1 values were 0.41 and
0.44, respectively). Similarly, LLT MA did not outperform LLT
MA RE on the non-Java systems. The achieved results suggest
that our approach and LLT MA RE are more independent from
the kind of documents in the corpus. Since our approach was
more accurate, we can then conclude that it is the best and can
be applied without making any assumption on the mailing list
and the programming language of the understudy system. The
same did not hold for lightweight techniques based on regular
expressions because they heavily rely on common conventions
and intrinsic syntactical characteristics of the corpus [17].

C. Lesson Learned
The accuracy of our approach increased when e-mails con-

tain a huge amount of text and the entity names are carefully
chosen and naming conventions are used. Furthermore, when
e-mails did not contain a huge amount of text, the application
of BM25F on two or three fields did not produce noteworthy
differences. Then, BM25F on header, body, and quote with the
operator “AND” is the best alternative (see Figure 3).

We experimentally observed that, in terms of accuracy, our
approach outperformed on 5 out of 6 systems the lightweight
technique that is more independent from the kind of e-mails
in the corpus (i.e., LLT MA RE) [17]. To apply our approach,
any assumption on the system understudy has to be made and
any particular configuration setting is required. Therefore, our
approach is easier to use than lightweight approaches and it is
accurate enough to be worth the costs it may introduce in the
corpus preprocessing and indexing phases. Furthermore, IR-
based approaches, such as the one we introduce here, are more
scalable. They are more efficient than lightweight techniques
when the number of e-mails in the corpus increases. Finally,
lightweight techniques return documents without any ranking:
an e-mail either matches or not a regular expression. As a
consequence, all the retrieved links have to be analyzed. To
deal with this issue, text retrieval and text search techniques
could be used in combination. This point could be the subject
of future work.

1) Pieces of evidences: We distilled the achieved findings
and lesson learned into the following pieces of evidence (PoE):

PoE1. Accuracy increases when using class and package
names as the queries;

PoE2. Applying our approach on three fields (i.e., header,
body, and quote) improves the results when the
corpus contains e-mails with a huge amount of
text and the entity names are carefully chosen by
developers;

PoE3. Using the “AND” operator leads to better results in
terms of correctness, completeness, and accuracy;

327

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

PoE4. The corpus normalization by using stemming tech-
niques reduces the accuracy of the recovered links;

PoE5. Our approach scales reasonable well also when the
number of documents in the corpus increases;

PoE6. Our approach is more independent from the mailing
list than lightweight approaches.

D. Threats to Validity
To comprehend the strengths and limitations of our study,

we present here the threats that could affect the validity of
the results and their generalizability. Although our efforts in
mitigating as many threats as possible, some threats are un-
avoidable. For example, a possible threat to the validity of the
results is related to the used benchmark. It is built on human
judgement and then links in the benchmark could be wrong. To
alleviate this threat to the construct validity, the authors of the
benchmark applied several strategies (see Section 6.1 in [17]).
Another threat related is that the researchers involved in the
creation of the benchmark were unfamiliar with the systems
and then they could have missed implicit references to software
entities that an actual developer might understand. The use of
a sample set of the entire dataset may also affect the validity
of the results.

The use of open source software represents another threat
to validity. To alleviate this threat, the benchmark was built
on 6 different systems developed from separate communities
and implemented in 4 programming languages based on two
paradigms: object-oriented and procedural. Despite this effort,
there are some differences between commercial and open
source software systems. For example, open source software
is usually developed outside companies mostly by volunteers
and the development methodologies used are different from
the ones commonly applied in the software industry. Although
many large companies are using open source software in their
own work or as a part of their marketed software, it will be
worth replicating the study on real project. These replications
will help us to confirm or contradict the achieved results.

The instantiation of the Query Formulation step represents
another threat. We used class names or class and package
names. The observed results suggest that this aspect influences
the accuracy, correctness, and completeness of the results. In
this work, we used the instantiations above to compare our
approach with those in [17]. Empirical studies are needed to
better assess how different kinds of queries affect the quality
of the retrieved links.

Further threats concern the validity of the comparison
between the results achieved with our approach and those
obtained with the baselines. In the experiment presented in this
paper, we could not perform statistical analyses because the
results presented in [17] were not provided in an adequate form
and replications were not possible (e.g., regular expressions
were not described at an adequate level of detail). Although
a comparison was possible between our approach and the
baselines from 1 to 3, at this step of our research we preferred
to propose a new approach and compare it with the lightweight
approaches proposed in [17], namely the state of the art in the
recovery of links between e-mails and source code.

VI. CONCLUSION

For software maintainers, who are unfamiliar with a soft-
ware system, the recovery of links among free-form natural
language software artifacts can be a laborious task if per-
formed manually. We proposed, implemented, and evaluated
an approach to recover links between e-mails and source code.
The approach is based on text retrieval techniques combined
with the BM25F probabilistic model. We used this model
because it showed very good performances [20], [35], [36].
The defined approach is general and can be applied to software
implemented with any programming language and to any
kind of documents (i.e., e-mails) in the corpus. To assess the
validity of our proposal, we conducted an empirical study
using a public benchmark [18]. Based on this benchmark,
we performed a comparison between our approach and 8
baselines. The results indicated that our approach in many
cases outperformed the IR-based baseline approaches and the
lightweight techniques proposed in [17].

Furthermore, our approach scales well when the number of
e-mails increases and it does not require any assumption on the
system understudy. Traditionally, probabilistic IR has had neat
ideas but the methods have never won on performance [24].
This is possibly due to the severity of the modeling assump-
tions that makes achieving good performance difficult. Things
changed when the BM25 weighting method was introduced.
Our results confirm that in a different context.

ACKNOWLEDGMENT

The authors would like to thank the Michele Lanza and
the Alberto Bacchelli for their support and for having made
available the benchmark used in this work. Special thanks are
due to the Anna Tolve and the Raffaele Branda, who developed
some of the software modules of the prototype implementing
the approach presented here.

REFERENCES

[1] R. Branda, A. Tolve, L. Mazzeo, and G. Scanniello, “Linking e-mails
and source code using bm25f,” in International Conference on Software
Engineering Advances, 2013, pp. 271–277.

[2] L. Erlikh, “Leveraging legacy system dollars for e-business,” IT Pro-
fessional, vol. 2, pp. 17–23, 2000.

[3] M. V. Zelkowitz, A. C. Shaw, and J. D. Gannon, “Principles of software
engineering and design,” 1979.

[4] M. M. Lehman, “Program evolution,” vol. 19, no. 1, pp. 19–36, 1984.
[5] E. B. Swanson, “The dimensions of maintenance,” in Proc. of Interna-

tional Conference on Software Engineering. IEEE CS Press, 1976, pp.
492–497.

[6] A. V. Mayrhauser, “Program comprehension during software mainte-
nance and evolution,” IEEE Computer, vol. 28, pp. 44–55, 1995.

[7] S. Pfleeger and J. Atlee, Software Engineering - Theory and Practice.
Pearson, 2006.

[8] A. De Lucia, F. Fasano, C. Grieco, and G. Tortora, “Recovering
design rationale from email repositories,” in Proc. of the International
Conference on Software Maintenance. IEEE, 2009, pp. 543–546.

[9] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate
link generation for requirements tracing: The study of methods,” IEEE
Trans. Software Eng., vol. 32, no. 1, pp. 4–19, 2006.

328

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10] A. Bacchelli, M. Lanza, and M. D’Ambros, “Miler: a toolset for
exploring email data,” in Proceedings of the International Conference
on Software Engineering. ACM, 2011, pp. 1025–1027.

[11] N. Bettenburg, B. Adams, A. E. Hassan, and M. Smidt, “A lightweight
approach to uncover technical artifacts in unstructured data,” Interna-
tional Conference on Program Comprehension, vol. 0, pp. 185–188,
2011.

[12] N. Bettenburg, S. W. Thomas, and A. E. Hassan, “Using code search
to link code fragments in discussions and source code,” in CSMR ’12:
Proceedings of the 16th European Conference on Software Maintenance
and Reengineering, IEEE. IEEE, 2012, pp. 319–329.

[13] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering trace-
ability links in software artifact management systems using information
retrieval methods,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 4,
2007.

[14] H. Sultanov and J. H. Hayes, “Application of swarm techniques to
requirements engineering: Requirements tracing,” in Proc. of IEEE
International Requirements Engineering Conference, ser. RE ’10. IEEE
CS Press, 2010, pp. 211–220.

[15] S. K. Sundaram, J. H. Hayes, A. Dekhtyar, and E. A. Holbrook,
“Assessing traceability of software engineering artifacts,” Requir. Eng.,
vol. 15, no. 3, pp. 313–335, 2010.

[16] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Trans. Software Eng., vol. 28, no. 10, pp. 970–983, 2002.

[17] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” in Proc. of International Conference on Software Engi-
neering. ACM, May 2010, pp. 375–384.

[18] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes, “Benchmarking
lightweight techniques to link e-mails and source code,” in Proc. of
Working Conference on Reverse Engineering. IEEE Computer Society,
2009, pp. 205–214.

[19] S. Robertson, H. Zaragoza, and M. Taylor, “Simple bm25 extension
to multiple weighted fields,” in Proc. of International Conference on
Information and Knowledge Management, ser. CIKM ’04. ACM, 2004,
pp. 42–49.

[20] S. Robertson and H. Zaragoza, “The probabilistic relevance framework:
Bm25 and beyond,” Found. Trends Inf. Retr., vol. 3, pp. 333–389,
April 2009. [Online]. Available: http://dx.doi.org/10.1561/1500000019

[21] IEEE, IEEE Recommended Practice for Software Requirements
Specifications, Std., 1998. [Online]. Available: http://ieeexplore.ieee.
org/xpls/abs\ all.jsp?arnumber=720574

[22] J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi, and E. Romanova,
“Best practices for automated traceability,” Computer, vol. 40, pp.
27–35, June 2007. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1271918.1271947

[23] G. Antoniol, G. Canfora, G. Casazza, and A. D. Lucia, “Maintaining
traceability links during object-oriented software evolution.” Softw.,
Pract. Exper., vol. 31, no. 4, pp. 331–355, 2001.

[24] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information
Retrieval. New York, NY, USA: Cambridge University Press, 2008.

[25] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society of Information Science, vol. 41, no. 6, pp. 391–407,
1990.

[26] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-
code traceability links using latent semantic indexing,” in Proc. of the
International Conference on Software Engineering. IEEE CS Press,
2003, pp. 125–137.

[27] A. Abadi, M. Nisenson, and Y. Simionovici, “A traceability technique
for specifications,” in Proc. of the International Conference on Program
Comprehension. IEEE CS Press, 2008, pp. 103–112.

[28] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, and
S. Panichella, “Traceability recovery using numerical analysis,” in Proc.

of the International Working Conference on Reverse Engineering. IEEE
CS Press, 2009, pp. 195–204.

[29] A. De Lucia, M. D. Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Improving ir-based traceability recovery using smoothing filters,” in
Proc. of the International Conference on Program Comprehension.
IEEE CS Press, 2011, pp. 21–30.

[30] A. De Lucia, R. Oliveto, and P. Sgueglia, “Incremental approach and
user feedbacks: a silver bullet for traceability recovery,” in Proc. of the
International Conference on Software Maintenance. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 299–309.

[31] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D. Lucia, “On integrat-
ing orthogonal information retrieval methods to improve traceability
recovery,” in Proceedings of the International Conference on Software
Maintenance. IEEE CS Press, 2011, pp. 133–142.

[32] V. Rajlich and N. Wilde, “The role of concepts in program comprehen-
sion,” in Proc. of the International Workshop on Program Comprehen-
sion., 2002, pp. 271–278.

[33] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[34] K. S. Jones, S. Walker, and S. E. Robertson, “A probabilistic model of
information retrieval: development and comparative experiments,” Inf.
Process. Manage., vol. 36, pp. 779–808, November 2000.

[35] K. Y. Itakura and C. L. Clarke, “A framework for bm25f-based
xml retrieval,” in Proc. of International Conference on Research and
Development in Information Retrieval. ACM, 2010, pp. 843–844.

[36] J. R. Pérez-Agüera, J. Arroyo, J. Greenberg, J. P. Iglesias, and V. Fresno,
“Using bm25f for semantic search,” in Proc. of the International
Semantic Search Workshop. ACM, 2010, pp. 2:1–2:8.

[37] J. Pérez-Iglesias, J. R. Pérez-Agüera, V. Fresno, and Y. Z.
Feinstein, “Integrating the Probabilistic Models BM25/BM25F into
Lucene,” CoRR, vol. abs/0911.5046, 2009. [Online]. Available:
http://arxiv.org/abs/0911.5046

[38] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions,
2nd ed. Wiley-Interscience, March 2008.

[39] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[Online]. Available: http://books.google.it/books?id=Clc7PwAACAAJ

[40] L. Dolamic and J. Savoy, “When stopword lists make the difference,”
J. Am. Soc. Inf. Sci. Technol., vol. 61, no. 1, pp. 200–203, Jan. 2010.
[Online]. Available: http://dx.doi.org/10.1002/asi.v61:1

[41] R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1999.

[42] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering - An Introduction.
Kluwer, 2000.

[43] V. Basili, G. Caldiera, and D. H. Rombach, The Goal Question Metric
Paradigm, Encyclopedia of Software Engineering. John Wiley and
Sons, 1994.

[44] J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large
Symmetric Eigenvalue Computations, Vol. 1. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2002.

[45] L. Mazzeo, A. Tolve, R. Branda, and G. Scanniello, “Linking e-mails
and source code with lasco,” in Proc. of the European Conference on
Software Maintenance and Reengineering. IEEE Computer Society,
2013.

329

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Using Function Point Analysis and COSMIC for Measuring the Functional Size of

Real-Time and Embedded Software: a Comparison

Luigi Lavazza Sandro Morasca Davide Tosi

Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria

Varese, Italy

{luigi.lavazza, sandro.morasca, davide.tosi}@uninsubria.it

Abstract— Function Points Analysis and the COSMIC method

are very often used for measuring the functional size of

programs. The COSMIC method was proposed to solve some

shortcomings of Function Points, including not being well

suited for representing the functionality of real-time and

embedded software. However, little evidence exists to support

the claim that COSMIC Function Points are better suited than

traditional Function Points for the measurement of real-time

and embedded applications. To help practitioner choose a

method for measuring real-time or embedded software, some

evidence of the merits and shortcomings of the two methods is

needed. Accordingly, our goal is to compare how well the two

methods can be used in the functional measurement of real-

time and embedded systems. To this end, we applied both

measurement methods to the situations that occur quite often

in real-time and embedded software and are not considered by

standard measurement practices. Our results indicate that,

overall, COSMIC Function Points are better suited than

traditional Function Points for measuring characteristic

features of real-time and embedded systems.

Keywords - Functional Size Measurement, Function Point

Analysis, COSMIC Function Points, Real-time software,

Embedded software.

I. INTRODUCTION

Several methods have been proposed to estimate the
development effort of a software product, given the
characteristics of the product itself and its development
process. Software size plays a special role in effort
estimation, as it is the main input used by the vast majority
of effort estimation models. Accordingly, measures of
functional size are used in early effort estimation models,
since other measures –like Lines of Code– are not available
in the early development phases. Functional measures
quantify the functional size of a software application, as
defined in the requirements specification documents. The
need for software development estimation and size
measurement applies to RT software as well [1].

The available functional sizing methods are evolutions of
Function Points Analysis (FPA), originally proposed by
Allan Albrecht [2]. The International Function Points User
Group (IFPUG) maintains the definition of the method and
publishes and regularly updates the official Function Point
(FP) counting manual [3][4]. Effort estimation methods have
been defined, and tools supporting them have been
developed, which require the size in FP as the main input [5].

FP are generally not considered well suited for measuring
the functional size of embedded applications. The reported
motivation is that FP –conceived by Albrecht when the
programs to be sized were mostly Electronic Data Processing
applications– capture well the functional sizes of data storage
and data movement operations, but are ill-suited for
representing the complexity of control and elaboration that
are typical of embedded and real-time software.

The COSMIC method was defined to overcome some
limitations of FPA. The COSMIC method [6] redefines
FPA’s basic principles of functional size measurement in a
way that applies equally well to traditional “business”
application and other applications, including real-time and
embedded ones. Specifically, the COSMIC method counts
the data movements (entries, exits, reads, and writes) that
involve data groups (corresponding approximately to FPA’s
logic files) in each functional process (corresponding to
FPA’s elementary processes). The result is a functional size
measure called COSMIC Function Points (CFP).

Even though it is traditionally considered not well suited
for real-time and embedded applications, FPA can be applied
to embedded software via a careful interpretation of FP
counting rules [7]. Moreover, it is known that many real-time
projects have actually been measured using FPA. On the
contrary, there is little analytic evidence of successful
applications of the COSMIC method to real-time and
embedded applications. This paper aims at providing some
evidence about the suitability of FPA and the COSMIC
method to measure real-time embedded software.

Both FPA and COSMIC methods require the
representation of user requirements according to a method-
specific model of software (e.g., the FP model includes logic
files and elementary processes, while the COSMIC model
includes functional processes and data movements).
Measurement is then based on counting the elements of these
models according to given rules. To measure real-time and
embedded software, it is of critical importance that
representative models can be correctly derived from the user
requirements. To test this ability, we consider a somewhat
extensive –though necessarily incomplete– set of typical and
representative features of real-time embedded software and
apply FPA and COSMIC to each of them. The comparison
of the two methods provides useful indications to the
developers that have to choose a functional size
measurement method.

330

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Even though both FPA and COSMIC methods aim at
measuring the size of Functional User Requirements (FUR),
there are a few reasons that suggest that the COSMIC
method may be preferable. First, CFP are defined in a simple
and sound way, while the definition of FP has been widely
criticized, e.g., because the weighting mechanism make
unclear whether FP are a measure of size or effort [8], or
because the inherent subjectivity of FPA leads even certified
measurers to provide different size measures for the same
application [9][10]. Finally, the COSMIC method, which
does not require a thorough analysis of data and allows for
analyzing transactions at coarser granularity level, is
somewhat faster and less expensive than FPA.

So, managers have a few reasons to prefer the COSMIC
method over FPA. However, evidence concerning the
suitability of the COSMIC method for measuring real-time
software is still missing. This paper aims at filling this gap.

In this paper, we enhance the work reported in [1] by
considering additional characteristics of real-time and
embedded software –namely the usage of clocks and timers–
that could make the application of functional size
measurement rules challenging. Consequently, the discussion
on the comparison of FP and CFP is extended to the newly
considered cases. In addition, the section on related work
was also extended.

This paper is of interest to researchers and practitioners
who are familiar with the usage of Function Point Analysis
and the COSMIC method for measuring traditional software
applications. Accordingly, we take for granted that the
readers are familiar with the concepts and terms of functional
size measurement in general and FPA and the COSMIC
method in particular. Readers who are not familiar with
Functional Size Measurement methods can have a look at a
concise introduction to FPA and COSMIC [29] and at a
glossary of metrics terms [30].

Throughout the paper, we refer exclusively to Unadjusted
Function Points (UFP) for FPA, because UFP are more
commonly used than adjusted Function Points and because
UFP are recognized as an ISO standard [4], while FP are not.

The paper is organized as follows: Section II accounts for
related work. Section III presents a set of modeling and
measurement problems that occur frequently in real-time and
embedded software developments. In Section IV, FPA and
COSMIC methods are applied to the cases illustrated in
Section III, while Section V draws some conclusions and
outlines future work.

II. RELATED WORK

There is a fairly large body of literature aimed at
extending the scope of functional size measurement to
software applications that do not belong to the Information
Systems domain, for which FPA was originally conceived by
Albrecht. An overview of these proposals (rather old but still
relevant) can be found in [13]. Among the notable attempts
to adapt FPA to real-time software are:
– Feature Points [14], which include an algorithmic

element and define new environmental complexity
factors.

– Mark II Function Points [15][16], which refine and
extend the traditional function point transaction model
and environmental factors.

– Asset-R [17], which extends the applicability of function
points to real-time systems by considering issues like
concurrence, synchronization, and reuse. It also accounts
for architectural, language expansion, and technology
factors to generate the size estimate.

– 3D Function Points [18], which consider three
dimensions of the application to be measured: Data,
Function, and Control. The Function measurement
considers the complexity of algorithms; and the Control
portion measures the number of major state transitions
within the application.

– Application Features [19], which aims at the early
estimation of the size of application in the process control
domain.

– Counting practices for highly constrained systems [20],
which address issues such as boundary identification and
internal processing.
Also the IFPUG published a Case Study that shows how

to apply FPA to real-time software [21].
Another set of proposed approaches to make FP

measurement applicable to real-time software took into
account the object-oriented programming paradigm.
Actually, these approaches address every type of object-
oriented program or model, including real-time and control
applications.

Object Points [22] are an object-oriented approach that
measures the external, internal, application and object size of
object-oriented systems. Objects are viewed as mini
applications where each object encapsulates data and
operations. A simple mapping is established between object
operations (services) to transactions, and object data
(attributes) to ILFs.

Class points [23] are based on the number of services
required (NSR), the number of external methods (NEM) and
the number of attributes (NOA) of classes. The complexity
of a class is evaluated on the basis of its NSR, NEM and
NOA, and then classes are weighed according to their
complexity and type. Class types are: Problem Domain,
Human Interaction, Data Management, Task Management.
The sum of the weights gives the number of class points.

Object-oriented FPs [24] are computed following the
function point counting procedure. Classes within the
application boundary correspond to ILFs, while classes
outside the application boundary (including libraries)
correspond to EIFs. Inputs, Outputs and Inquiries are all
treated in the same way: they are called generically “service
requests” and correspond to class methods. The complexity
of ILFs and EIFs depends on the number and type of
attributes and associations. The complexity of service
requests depends on the number and type of method
parameters. Several ways of considering class aggregates
and generalization hierarchies are proposed, thus the
measured size depends on the criterion used to consider class
aggregation and generalization.

Among the proposed approaches –none of which seems
to have succeeded in gaining market acceptance– Full

331

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Function Points (FFP) are quite relevant. FFP [25] take into
account the differences between traditional applications and
real-time applications by extending the FPA by means of
new data and transactional function types:
– Updated control group: a group of data –used by the

application to control, directly or indirectly, the behavior
of an application or of a mechanical device– updated by
the application being measured.

– Read-only control group: A group of control data used,
but not updated, by the application being counted.

– Entry / Exit: A sub-process that receives / sends control
data across the application's boundary.

– Read / Write: A sub-process that reads / writes a group of
control data.
Also FFP did not prove successful in dealing with the

functional size measurement of real-time software; hence,
their authors decided to thoroughly review their definition,
thus arriving at the definition of COSMIC function points
[6][26]. CFP retain the basic principles of functional size
measurement as in FPA, but they are defined in a manner
that applies equally well to traditional “business” application
and to other applications, including the real-time and
embedded ones.

Several papers have been written on the suitability of Full
Function Point and COSMIC Function Points to measure
real-time software.

Desharnais and Morris stress the possibility of
identifying and measuring different layers with the COSMIC
method, and dealing with the “cut-off” effect we discussed in
Section IV. IV.D [27].

Oligny et al. report about the applicability of FFP in
general, based on the experiences gained while measuring
seven projects (four of which real-time) [28]. The discussion
does not address any of the details reported in our paper.

In conclusion, the literature is relatively rich in proposals
for extending or adapting existing functional size
measurement methods to real-time and embedded software;
however, none of such proposals appears to be widely used
in practice (possibly with the partial exception of Mark II
Function Points [15], which were also standardized [16]).

So, the popularity of FPA and COSMIC suggested that
they are candidates for real-time and embedded software
measurement. However, nobody –to the best of our
knowledge– investigated the actual applicability of IFPUG
and COSMIC measurement rules to real-time and embedded
software.

III. CASE STUDIES FOR FUNCTIONAL SIZE

MEASUREMENT OF REAL-TIME EMBEDDED SOFTWARE

Here, we illustrate a set of typical features of real-time
and embedded software that are difficult to represent by
means of the models that underlie the definition of functional
size measurement methods. All of the cases shown here are
derived from the first author’s experience gained in
measuring seven avionics applications in a large European
company. So, the proposed set of cases is of empirical origin:
during the measurement, the cases presented here emerged as
those particularly challenging for functional size
measurement. Even though the cases considered here were

all derived from the avionic domain, they were observed in
quite different applications. Accordingly, we believe that the
cases presented here are representative of the challenging
cases that can occur when measuring real-time and
embedded software applications.

Most examples are illustrated by means of sequence
diagrams, according to the measurement-oriented modeling
methodology proposed in [11] and used in [12]. It is assumed
that the reader is familiar with UML.

A. Embedded processes having multiple purposes

In embedded software, several processes often include
both updating some data and producing some result.
Consider for instance a process that initializes and tests a
piece of hardware (Fig. 1). The initialization and test of
several hardware devices are performed by means of a single
command: the initialization command is sent to the devices
and the resulting state is sent back, so that it is possible to
check whether the device is working correctly.

In these cases, the initialization and the test are both
necessary and equally important.

Figure 1. Inizialization of devices: the “main purpose” is not evident.

B. Transactions defined at very low level

Requirements often concern very low level operations,
thus making it difficult to identify functions that match the
definition of Base Functional Components.

Figure 2. RAM clearing process.

1) Memory vs. data
In embedded software, the use of RAM as a whole

introduces new requirements. For example, a piece of
software embedded on board of a military airplane should
clear the whole RAM under given circumstances, e.g., if the

: Controller

init(params)

sd Set-up

Record(DeviceState)

Init_result

: State

DeviceState

Eval(Init_result)

: Device

set_up

: System

Clear()

: RAM

sd RAM_clear

Clear()

332

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

airplane crashes in an enemy zone (because the information
stored in memory must not be made available to enemies).
This requirement (Fig. 2) is peculiar in that it is about the
whole RAM, not about some specific user-relevant piece of
data.

2) Memory mapped I/O
In embedded systems, updating a variable and sending

data to a device can be extremely similar operations. For
instance, when I/O is memory-mapped, both mentioned
operations write registers or RAM locations (Fig. 3).

Figure 3. Memory-mapped I/O.

3) Processes that do not terminate properly
In embedded software, it is often required that a function

terminate by jumping to a given location. This situation is
illustrated in Fig. 4: the initialization function terminates by
executing the set-up function (described in Fig. 17).

Figure 4. A function that ends with a jump to another function.

C. Taking into account the devices

In traditional software applications, functions are usually
invoked by the user and end by either updating some internal
data, or outputting some information. In embedded
applications, the situation can be very different. Often it is
some hardware device (not a user) that acts as both the cause
that determines the execution of the function and the
destination of the produced data or signals.

For instance, functional processes are often initiated by
clocks and timers.

1) The Clock

Some functions are triggered periodically by clock signals.

In such cases, the clock acts as a user that invokes a

function: in fact, the resulting behavior is the same obtained

by a human user that periodically invokes the function.

This situation is illustrated in Fig. 5: in this example, an

aircraft is equipped with sensors, which collect navigation

data, and a clock periodically invokes a sensor manager that

asks navigation data from the sensors and sends the returned

data to the flight control unit.

Figure 5. An elementary function triggered by the clock.

2) Timers

In embedded systems, functions can be triggered by

timers, or they can terminate after programming a timer.

Consider the following specifications:

Spec. A (Fig. 6): “The program sends a request for data

to device X, then reads the data sent by X and stores them

for later use.”

Spec. B (Fig. 7): “The program sends a request for data

to device X, waits for 10 ms, then reads the data from X and

stores them for later use.”

Spec. C (Fig. 8): “The program sends a request for data

to device X; then, every 10 ms the program checks whether

the data from X are ready: if so it stores them for later use.”

Figure 6. Device read specifications not mentioning time.

Figure 7. Device read specifications not mentioning time delay.

: System

Output(data)

: Device space
in RAM

sd Memory_mapped_I/O

Write(data)

: Controller : State

init()

: Unit1

sd Init

Set(InitState)

Power_up()

: Unit2

init()

Set-up
ref

: Device1 : Devicen

: Clock : SensorManager : State : FlightControl

Get_state()

state

Read()

: FixedNavigData

data

sd Periodic_sensor_read

Put(state, data)

tick

: Controller

Read()

: Device_X_

command_reg

sd Read

Read()

Store(data)

: Data

data

: Device_X_

data_reg

GetData()

: Controller

Read()

: Device_X_

command_reg

sd Read

Read()

Store(data)

: Data

data

: Device_X_

data_reg

GetData()

wait_(10 ms)

333

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Device polling specifications.

All of the above specifications could be rewritten by

explicitly mentioning the use of timers. For instance, Spec. C
could be rewritten as follows:

Spec. D: “The program sends a request for data to device
X and programs a 10 ms timeout; upon receiving the
timeout signal, the program checks whether the data from X
are ready: if so it stores them for later use and disables the
timer, otherwise, a new 10 ms timeout is programmed.”

The first part of this specification is described in Fig. 9,
while the second part is described in Fig. 10

Figure 9. A transaction that programs a timer.

Figure 10. The timer triggers the conclusion of the operation.

3) Considering the role of the Operating System in I/O
Let us consider the following requirements for an I/O

functionality (described in Fig. 11): “upon request by the
controller, data are retrieved from an I/O channel, according
to the criteria stored in the I/O channel table. When all the
data have been read, they are suitably converted and sent
back to the controller.” It is often the case that the I/O
operation has to be carried out with the help of the Operating
System and the requirements can be implemented by means

of two functions, illustrated in Figs. 12 and 13. The first
function (Fig. 12) is invoked by the controller and prepares
an I/O request for the OS and a subsequent system call. The
second function (Fig. 13) is triggered by the interrupt from
the I/O device and involves reading the data from the
channel, elaborating them, and sending them back to the
controller. The execution of this “function” is done partly by
the OS (by a driver that will have to be implemented as a
part of the application development) and partly in the section
of the application devoted to I/O.

If the development also includes the construction of a
driver for the considered I/O device, taking into account the
size of the corresponding code will contribute to produce a
more accurate effort estimate. In other words, it appears
reasonable to count two functions, corresponding to the
“elementary processes” described in Figs. 12 and 13.

Figure 11. Process featuring direct access to I/O channels.

Figure 12. Process Access to I/O channels via the O.S.

Figure 13. The O.S. handles the I/O.

: Controller
: Device_X_

command_reg

sd Read

Read()

Store(data)

: Data

data

: Device_X_

data_reg

GetData()

wait_(10 ms)

Read_state()

state

loop [not state==ready]

: Controller : Timer

read()

: Device_X_

command_reg

sd Read_init

Read()

set(10 ms)

: Controller
: Device_X_

command_reg

sd Read_end

Store(data)

: Data

data

: Device_X_

data_reg

GetData()

Read_state()

state

alt [state==ready]

: Timer

timeout

set(10 ms)[else]

disable

: Controller
: I/O

component
: I/O Channel

Table
: I/O Channel

Read(ch_ID)
Get_channel_data(ch_ID)

channel_data

Get_Byte()loop

Convert_data()
data

Byte

sd Direct_read

: Controller
: I/O

component
: I/O Channel

Table
: OS

Read(ch_ID)

Get_channel_data(ch_ID)

channel_data

: I/O space
in RAM

Sys call

sd Read_req_SO

Write(I/O_request)

: I/O

channel

: I/O
component

: OS

ready_intr

: I/O space

in RAM
: Driver

Read()

: Controller

write(Byte)

data

get_Byte()

Byte

loop

Read()

data

Return from write syscall

sd SO_reads

Convert_data()

334

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4) Multi cycle operations
In real-time systems, it is not unusual that a function is

too long to fit into one execution cycle. In such cases, it is
rather common to split the function into two (or more) pieces
that are executed in consecutive execution cycles. Here are
two typical examples:

− The function transfers data via a buffer. The data to be
transferred do not fit in the buffer. The transfer is split
into n cycles: in each cycle 1/n of the data are copied
into the buffer.

− The function, triggered by the tick, takes a time longer
than the cycle duration (i.e., the time between two
consecutive ticks) to execute. Thus, the transfer is split
into multiple consecutive cycles.

An example is given in Figs. 14 and 15: an output
operation is split over two consecutive clock cycles. In the
first cycle (Fig. 14), the application outputs the data from
Data_1 and sets the State to represent that there is a pending
output operation. In the following cycle (Fig. 15), the State
indicates that the output operation must be completed, thus
data are read from Data_2 and sent to the output device.

Figure 14. Output: first cycle.

Figure 15. Output: second (final) cycle.

These cases are often described in the requirements, since
they deal with the real-time behavior of the application,
which is typically explicitly accounted for in the
requirements specification. However, requirements
specifications could not state explicitly that the function
should be split, i.e., requirements could just describe the
whole operation as in Fig. 16.

Figure 16. Output, not split.

D. Long processes

In embedded software, functions are often “service
routines” that perform rather long tasks; e.g., the
requirements specify that “the connected devices are tested,
and the result (a ‘pass’ value or the set of diagnostics) is sent
to the controller, which stores it for later use.” Fig. 17
illustrates the situation with 4 different device types.

Figure 17. A long transaction.

E. Unusual data

Embedded applications often include constant data
structures (e.g., data mapping tables or bit masks) that
require a non-negligible design effort, which we would like
to take into account. An example is shown in Fig. 12: for
each request to read an I/O channel, the I/O component reads
from the channel table how many bytes must be read from
the channel and how they should be interpreted. The channel
table is a read-only structure that describes how to manage
the I/O channels.

With respect to other elements of the system, the channel
table differs only in that it is read-only; apart from that, it
concerns information that is relevant to the user and it must
be properly designed to be effectively and efficiently read.

: Controller : State

read()

: Data_1

sd Out_init

write(data)

Output()
: Device

data
: Clock

tick

set(out_2)

: Controller

: State

read()

: Data_2

sd Out_end

write(data)

: Device

data

: Clock

tick

set(out_finished)

opt [state==out_2]

: Controller : Data_2

read()

: Data_1

sd Output

write(data1)

output()

: Device

data1

read()

data2

write(data2)

: Controller : State : Device2

poll()

: Device1

sd Set-up

: Device4: Device3

Record(DevState)

DevState

poll()

Record(DevState)

DevState

poll()

Record(DevState)

DevState

poll()

Record(DevState)

DevState

335

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

F. Complex elaborations

In real-time and embedded applications, some operations
can be complex. Consider for instance the generic flight
control operations described in Fig. 18: it is quite likely that
the computation of the flight control data is rather complex.

Figure 18. Sensor-driven flight control.

IV. APPLYING FPA AND COSMIC TO REAL-TIME

EMBEDDED SOFTWARE

This section illustrates the application of FPA and
COSMIC methods to the cases described in Section III.

A. Embedded processes having multiple purposes

According to the IFPUG counting rules [3][4], the size of
a function varies according to its type (external input, output
or query). The type is determined by the “main purpose” of
the function, according to the requirements. However, it may
be difficult to decide what the main purpose is, since both the
external input and the external output can update internal
data and report a result, as in our case. In conclusion,
measures based on FPA have some degree of subjectivity
that can be hardly avoided.

The problem described above does not apply to COSMIC
measurement, since all processes are treated in the same
way, regardless of their purpose.

B. Transactions defined at very low level

1) Memory vs. data
According to the principles of FPA, in a case like the one

described in Section III.B.1) one should count the memory
clearing function as an external input. In that case, since
every External Input (EI) manages an Internal Logical File
(ILF), we should consider the RAM an ILF. On the one
hand, counting the RAM as an ILF does not appear correct
with respect to the rules, since logic data files should
represent a homogeneous set of related data (which RAM is
not), on the other hand, not considering the RAM as an ILF
is an inconsistency, as all EI have to deal with an ILF.

There is a similar problem with the COSMIC method, as
the process writes in the RAM: accordingly, we should
consider a write data movement. However, this implies that
the RAM is classified as a data group, which does not appear
perfectly coherent with the COSMIC rules.

In the COSMIC method, there is no rule that clearly
prevents treating the RAM as the object of interest involved
in the process that clears the RAM. Accordingly, we would
have a process involving a write data movement.

2) Memory mapped I/O
When I/O is memory-mapped, an output operation can be

modeled as an External Output (EO) in FPA but also as an
EI, since the output is obtained by writing registers or RAM
locations (see Fig. 3). The choice affects the resulting
measure, since EI and EO have different weights. With the
COSMIC method, you still can model the operation as a
Write or an Exit data movement, but the choice does not
affect the final measure, since every data movement
contributes exactly one CFP.

3) Processes that do not finish properly
According to FPA, a transaction function has to be self-

contained and leave the application being counted in a
consistent state. In embedded software, it is often required
that a function terminates by jumping to a given location
(Fig. 4). In this case, the transaction is not self-contained and
does not leave the program in a consistent state. FPA does
not suggest how to deal with this type of functions. Just
ignoring them would not be a good idea, since it takes some
effort to implement these functions; hence, we want them to
contribute to the functional size of the application. Actually,
there is no other way of dealing with these cases than just
ignoring the constraints imposed by the IFPUG and counting
the functions, considering their behavior down to the final
jump. The same problem occurs when the COSMIC method
is used, since functional processes are defined as FPA
transactions, in essence.

C. Taking into account the devices

1) The Clock
In functions that are triggered periodically by clock

signals (as in Fig, 5), the clock acts as the user that invokes
the function.

From a COSMIC point-of-view, the clock is the
functional user that generates the triggering Entry (i.e., a
message that informs the software that the functional user is
initiating a functional process). The possibility that a device
acts as a functional user is explicitly stated in the COSMIC
counting manual [6]. Accordingly, the functional process
illustrated in Fig. 5 involves the following data movements:

− The entry of the clock tick;

− Reading the current state;

− The request to for navigation data (an exit);

− The entry of navigation data;

− The output of state;

− The output of navigation data.

The sensor is another functional user. For this software,
an event occurs when it is time to update the navigation data:
the clock triggers the software, by sending it a message
(triggering Entry).

The considerations reported above can be applied to FPA
as well. Thus, we shall simply consider the clock as a user
that can originate the execution of a function. The rest of the
measurement is carried out easily according to FPA rules [3].

: Clock : SensorManager
: Sensor

State
: FlightControl

Get_state()

state

Read()

: NavigData

data

sd Periodic_flight_control

Put(control_data)

tick

Compute(state, data)

control_data

336

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Timers

Let us consider Spec. A (Fig. 6): in this specification

there is no mention of the time delay between the request to

read and the retrieval of data. According to FPA, the

specification involves a single transaction (an external input,

if the main intent is storing the data retrieved from the

sensor). Similarly, it is a single COSMIC functional

process.

Specifications B (Fig. 7) and C (Fig. 8) are functionally

equivalent to Spec. A, with the only difference that they

mention time. By the way, Spec. B and C are also similar to

each other, the only difference being that, in Spec. B, we are

sure that, 10 ms after issuing the read command, the

required data are ready, while in Spec. C this is not true.

However, as with Spec. A, we have just one transition

according to FPA, or a functional process according to the

COSMIC method.
Specifications B and C (and possibly A as well) can be

implemented with or without using a timer: in fact the 10 ms
waiting could be achieved via a sort of busy loop. Of course,
the functional size (either in FP or in CFP) of the
specifications does not depend on how it will be
implemented.

The problem is that the same operation described by
Specifications B and C could be described as in Spec. D
(Fig. 9 and Fig. 10). In this case, the analyst is just specifying
delays by means of timers, which –by the way– are the most
obvious means to implement the operation. As a
consequence, we have two FPA transactions: the one that
initialized the device (described in Fig. 9) and the one that
reacts to timeout signals (Fig. 10).

In practice, specifications B and C are both low
complexity External Input transactions (under the hypothesis
that the data read from the sensor includes a small set of
DET), accounting for 3 FP.

From a COSMIC point-of-view, Spec. B involves 5 data

movements (the Entry of the triggering event, the Exit of the

Read command, the Exit of the GetData command, the

Entry of data, the Write of data), while Spec. C involves 6

data movements (the Entry of the triggering event, the Exit

of the Read_state command, the Entry of the state, the Exit

of the GetData command, the Entry of the data, the Write of

data).

Spec. D involves a low complexity External Output

transaction (Fig. 9) and a low complexity External Input

transaction (Fig. 10): therefore, it has a size of 3+4=7 FP.

From a COSMIC point-of-view, Spec. B involves a

functional processes (Fig. 9) comprising 3 data movements,

and a functional process (Fig. 10) comprising 7 data

movements: therefore, it has a size of 3+7=10 CFP.

In conclusion, the problem here is that mentioning the

timers in the specifications (which is quite natural for real-

time software analysts) causes the functional size of the

specified operations to increase substantially.

3) Considering the role of the Operating System in I/O
With both FPA and COSMIC methods, the measurement

of the process represented in Fig. 11 is quite straightforward.

The problem here occurs when the development must also
include the construction of a driver for the considered I/O
device, since taking into account the size of the
corresponding code will contribute to producing a more
accurate effort estimate. In other words, it appears reasonable
to count two functions, described in Figs. 12 and 13.

This requires a deviation from the FPA counting practice,
since FPA does not take into account the existence of
different “layers”: with FPA you can only measure
requirements at the single abstraction level corresponding to
the user’s point of view, and the user is not aware of the OS
and what happens in the OS.

With the COSMIC method, it is possible to explicitly
model and measure the layers that compose the software
application. The sum of the sizes of the layers is generally
greater than the size of the whole application corresponding
to the point of view of the user (who is not aware of the
existence of layers). So, the measure of layers is exactly what
is needed to take into account the size of the OS parts that
are being developed.

4) Multi cycle operations
The cases described in Section III.C.4) suggest that the

value of a functional size measure can depend on how
requirements are written. Let us consider the case when
requirements specifications do not state explicitly that the
function should be split (Fig. 16): if Data_1 and Data_2
account for 10 DET each, the transaction is a high
complexity EO (having 3 FTR and 21 DET), whose size is 7
FP. When requirements specifications prescribe that the
function be split (Fig. 14 and 15) we have two average
complexity EO (3 FTR and around 12 DET each), whose
size is 10 FP in total. When requirements specifications do
not state explicitly that the function should be split, the
COSMIC method identifies one functional process sized 5
CFP, since it involves 5 data movements (the Entry, the
Reads of Data_1 and Data_2, and the corresponding Exits).
When requirements specifications prescribe that the function
be split, according to the COSMIC rules we have two
functional processes, one involving 5 data movements (the
Entry that triggers the operation, the Read of Data_1, the
Entry of the clock tick, the Exit to the device, the Write of
the state), and one involving 4 data movements (the Entry of
the tick, the Read of Data_2, the Exit to the device, the Write
of the state); the total size is thus 9 CFP.

In conclusion, both methods provide measures of size
that depend on how requirements are written. This is a
characteristic of the methods that has to be taken into
account, as it affects the resulting measures.

D. Long processes

A well known problem with Function Points is the so-
called “cut-off” effect: a function cannot contribute more
than 7 FP to the functional size, regardless how many DETs
it moves and how many FTRs it involves. This is a relevant
problem, especially in embedded software, where functions
are often “service routines” that perform rather long tasks,
like in the example illustrated in Section III.D and Fig. 17.

Fig. 17 illustrates the situation with 4 different device
types. According to the IFPUG counting rules, this is a single

337

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

transaction. If the device states contain on average 5 (or
more) parameters, then the transaction is a complex one. The
problem here is that if we had 5 or more different types of
devices, the number of FP would not increase with the
number of devices: according to FPA, we would have just
one complex EI. This is a problem, because in practice the
development effort increases with the number of device
types, since each device type provides different status data,
which need to be interpreted in a specific way.

FPA hides from the estimation methods how much
bigger a function is (thus more expensive to build) than
another that classifies as complex. The COSMIC method, on
the contrary, does not suffer from the cut-off effect. In a case
like the one in Section III.D and Fig. 17, the size in CFP
takes into account all the data movement, whose number is
proportional to the number of devices.

E. Unusual data

According to FPA, data functions are either internal data
“maintained” (i.e., modified) by the application, or external
data (maintained outside the application). Constant data are
treated as “decoding data” and explicitly excluded from the
counting [3]. However, it seems that the authors of the
IFPUG manual had in mind simple “zero effort” constants
when they wrote the rules concerning the constant data.

To account for the fact that a constant data structure will
require some design effort, it is necessary to deviate from the
IFPUG rules, and count a “constant ILF.” For instance, in the
example illustrated in Fig. 12, one should count an ILF for
the channel table; consistently, a FTR for each access to the
table should be considered.

The COSMIC method does not count data directly; that
is, no fraction of the size measures accounts for data. On the

contrary, data movements are counted without considering
whether the data being moved are constant or not. In
conclusion, this case does not pose any additional difficulty
to the application of the COSMIC method.

F. Complex elaborations

Both FPA and COSMIC methods base the measurement
of size on the number of processes and the amount of data
handled. For instance, the process described in Fig. 18 is
considered as an EO (with a maximum size of 7 FP) or a
functional process accounting for 4 CFP (as it involves 4
data movements). None of the two methods considers the
complexity of the computations performed: the fact that the
“Compute” operation performed in the process is simple or
complex does not change the size of the process.

This is clearly a shortcoming of the two methods, since
the development effort is very likely proportional to the
complexity of the functions to be implemented.

V. CONCLUSIONS

The results of our analysis (summarized in Table I) show
that some situations that are typical of real-time and
embedded applications make it necessary to interpret or
“bend” the rules provided by official measurement manuals
[3][6]. However, this happens more often for IFPUG
Function Point Analysis than with the COSMIC method.

Also the resulting measures are easily affected by the
measurement choices made in FPA, while there are just a
few cases (namely, processes terminating with a jump, multi-
cycle operations, explicitly mentioned timers and complex
elaborations) that can affect the measures in CFP.

TABLE I. COMPARISON OF FSM METHODS

Case
FPA COSMIC

Easy application of rules Measure affected Easy application of rules Measure affected.

Multiple purpose processes �
a
 � � �

Memory data � � � �

Memory mapped I/O � � � �

Processes terminating with jump � � � �

Clock � � � �

Timers � �
b
 � �

b

OS involved in I/O � � � �

Multi cycle operations � �
b
 � �

b

Long processes � � � �

Unusual data � � � �

Complex elaborations �
c
 � �

 c
 �

a
 The application of the rule is subjective.

b
 The measures depend on how requirements are written.

c Elaboration complexity is just not accounted for by any rule.

338

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In conclusion, the original claims that the COSMIC
method is more suitable than FPA for measuring real-time
and embedded applications appear justified. The cases that
were used to evaluate the applicability of FPA and COSMIC
to real-time and embedded software are sort of application-
independent patterns: accordingly, the results reported here
are expected to be applicable to a wide range of real-time
and embedded software applications.

A straightforward consequence of the study reported here
is that the COSMIC method is more suited for the functional
measurement of real-time software; however, considering
that functional size measures are often used for effort
estimation, a problem could arise with the availability of
CFP-based models of real-time software development effort.
To derive such models, historical data are needed. The study
reported here could also provide hints for converting FP
measures into CFP measures, thus obtaining the datasets that
are necessary to derive effort models.

In any case, neither FPA nor the COSMIC method
account for the complexity of the required elaboration. This
may be a problem in the real-time embedded context, since
some processes can be really very complex and require a
relevant amount of development effort.

Future work involves assessing measures that represent
not only the functional size of real-time applications as done
by FPA and COSMIC methods, but can represent also the
complexity of the required elaboration.

ACKNOWLEDGMENT

The work reported here was supported by the FP7
Collaborative Project S-CASE (Grant Agreement No
610717), funded by the European Commission and by
project “Metodi, tecniche e strumenti per l’analisi,
l’implementazione e la valutazione di sistemi software,”
funded by the Università degli Studi dell’Insubria.

REFERENCES

[1] L. Lavazza and S. Morasca, “Measuring the Functional Size
of Real-Time and Embedded Software: a Comparison of
Function Point Analysis and COSMIC”, 8th Int. Conf. on
Software Engineering Advances – ICSEA 2013, October 27 -
November 1, 2013 - Venice, Italy

[2] A.J. Albrecht, Measuring Application Development
Productivity, Joint SHARE/ GUIDE/IBM Application
Development Symposium, 1979, pp. 83-92.

[3] International Function Point Users Group. Function Point
Counting Practices Manual - Release 4.3.1, January 2010.

[4] ISO/IEC 20926: 2003, Software engineering – IFPUG 4.1
Unadjusted functional size measurement method – Counting
Practices Manual, Geneva: ISO, 2003.

[5] J. E. Matson, B. E. Barrett, and J M. Mellichamp, “Software
development cost estimation using function points,”, IEEE
Transactions on Software Engineering, vol.20, no.4, Apr
1994, pp.275-287.

[6] COSMIC – Common Software Measurement International
Consortium, The COSMIC Functional Size Measurement
Method - version 3.0.1 Measurement Manual, May 2009.

[7] L. Lavazza and C. Garavaglia, “Using Function Points to
Measure and Estimate Real-Time and Embedded Software:
Experiences and Guidelines”, ESEM 2009, Lake Buena Vista,
FL, USA, October 15-16, 2009, IEEE, pp. 100-110.

[8] A. Abran and P.N. Robillard “Function points: a study of their
measurement processes and scale transformations”, Journal of
Systems and Software, vol.25,n.2, Elsevier, 1994, pp.171-184.

[9] C. Kemerer, “Reliability of Function Points Measurement: a
Field Experiment,” Comm. ACM, Vol. 36, No. 2, 1993, pp.
85-97.

[10] J.R. Jeffery, G.C. Low, and M.A Barnes, “Comparison of
Function Point Counting Techniques,” IEEE Trans. Software
Eng., Vol. 19, No. 5, 1993, pp. 529-532.

[11] L. Lavazza, V. del Bianco, and C. Garavaglia, “Model-based
Functional Size Measurement”, 2nd Int. Symp. on Empirical
Software Engineering and Measurement – ESEM 2008,
Kaiserslautern, Germany. October 9-10, 2008, pp. 100-109.

[12] L. Lavazza and V. del Bianco, “A Case Study in COSMIC
Functional Size Measurement: the Rice Cooker Revisited”,
IWSM 2009, Amsterdam, November 2009, pp. 101-121.

[13] T. Hastings, “Adapting Function Points to contemporary
software systems: A review of proposals”, 2nd Australian
Conference on Software Metrics. Australian Software Metrics
Association, 1995.

[14] C. Jones, Applied Software Measurement - Assuring
Productivity and Quality, McGraw-Hill, New York, 1991.

[15] C.R. Symons, “Function Point Analysis: Difficulties and
Improvements”, IEEE Transactions on Software Engineering,
Vol. 14, No. 1, January, 1988, pp. 2-11.

[16] ISO/IEC 20968: 2002, Software engineering Mk II Function
Point Analysis. Counting Practices Manual, International
Standardization Organization, ISO, Genève, 2002.

[17] D. J. Reifer, “Asset-R: A Function Point Sizing Tool for
Scientific and Real-Time Systems”, Journal of Systems and
Software, Vol. 11, No. 3, March 1990, pp. 159-171.

[18] S. A. Whitmire, “An Introduction to 3D Function Points”,
Software Development, Vol. 3 No.4, 1995.

[19] T. Mukhopadhyay and S. Kekre, “Software Effort Models for
Early Estimation of Process Control Applications”, IEEE
Transactions on Software Engineering, Vol. 18, No. 10,
October 1992, pp. 915-924.

[20] European Function Point Users Group, Function Point
Counting Practices for Highly Constrained Systems, 1993.

[21] IFPUG, Case Study 4: Counts Function Points for a Traffic
Control System with Real Time Components, International
Function Point Users Group – IFPUG.

[22] S. A. Whitmire, “Applying Function Points to Object
Oriented Software Models”, in Software Engineering
Productivity Handbook, J. Keyes Ed., New York,
Windcrest/McGraw-Hill, 1993.

[23] G. Costagliola, F. Ferrucci, G. Tortora, and G. Vitiello, “Class
Point: An Approach for the Size Estimation of Object-
Oriented Systems”, IEEE Transactions On Software
Engineering, Vol. 31, No. 1, pp. 52-74, January 2005.

[24] G. Antoniol, C. Lokan, G. Caldiera, and R. Fiutem, “A
Function Point-Like Measure for Object-Oriented Software”,
Empirical Software Engineering, 4 (3), September 1999.

[25] M. Maya, A. Abran, S. Oligny, D. St-Pierre, and J.-M.
Desharnais, “Measuring the Functional Size of Real-Time
Software” 9th European Software Control and Metrics
Conference and 5th Conference for the European Network of
Clubs for Reliability and Safety of Software (ESCOM-
ENCRESS-98), Rome, Italy, 1998.

[26] ISO/IEC 19761:2003, Software engineering – COSMIC-FFP
– A functional size measurement method, Geneva: ISO, 2003.

[27] J.M. Desharnais, P. Morris, “Measuring ALL the Software not
just what the Business”, IFPUG Conference, 1998.

[28] S. Oligny, J.M. Desharnais, A. Abran, “A Method for
Measuring the Functional Size of Embedded Software”, 3rd
Int. Conf. on Industrial Automation, pp. 7-9, 1999.

339

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[29] L. Lavazza, V. del Bianco, and Geng Liu. “Analytical
convertibility of functional size measures: a tool-based
approach."” Joint Conference of the 22nd Int. Workshop on
Software Measurement and the 7th Int. Conf. on Software
Process and Product Measurement. IEEE Computer Society,
2012.

[30] Total Metrics. Glossary of metrics terms. at
http://www.totalmetrics.com/resources/software-metrics-
glossary (accessed on May 16th, 2014).

340

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Confirming Design Guidelines for Evolvable Business Processes
Based on the Concept of Entropy

Peter De Bruyn, Dieter Van Nuffel, Philip Huysmans, and Herwig Mannaert

Normalized Systems Institute (NSI)
Department of Management Information Systems

University of Antwerp
Antwerp, Belgium

{peter.debruyn, dieter.vannuffel, philip.huysmans, herwig.mannaert}@uantwerp.be

Abstract—Contemporary organizations need to be agile at both
their IT systems and organizational structures (such as business
processes). Normalized Systems theory has recently proposed an
approach to build evolvable IT systems, based on the systems
theoretic concept of stability. However, its applicability to the
organizational level, including business processes, has proven to
be relevant in the past and resulted among others in a set of 25
guidelines for designing business processes. In subsequent work,
the Normalized Systems theory was confirmed and extended
based on the concept of entropy from thermodynamics. This
perspective allows for the investigation of the observability of
IT systems or —at the organizational level— business processes.
Therefore, this paper explores whether the guidelines which have
been proposed to design business processes from an evolvability
point of view can be confirmed or extended from the entropy
reasoning as well. More specifically, the validity of 25 business
process design guidelines is investigated for this purpose. While
9 of these guidelines were already analyzed in earlier work,
this paper supplements the earlier analysis by including a
discussion of the other 16 guidelines. Our results indicate that
the investigated guidelines are rather consistent among both
approaches: guidelines required to attain evolvability also enable
low entropy (i.e., high observability) and vice versa. Part of one
guideline was found to be not strictly necessary from the entropy
viewpoint. Moreover, several guidelines were able to be refined
to some extent based on our entropy reasoning or were subject
to some additional nuancing.

Keywords–Business Processes; Observability; Entropy; Stability;
Normalized Systems

I. INTRODUCTION

This is a revised and extended version of a paper which
was presented at The Eighth International Conference on
Software Engineering Advances (ICSEA) and published in its
corresponding proceedings [1].

Lack of organizational agility is often attributed to a lack
of IT agility [2] as IT systems ensure the support or even au-
tomation of business processes. Consequently, organizational
changes need to be reflected in both the business processes and
their supporting information systems. This means that, instead
of focusing solely on IT systems, attention for the design and
agility of the business processes is needed as well. The explicit
attention for the design of business processes emerged when
the implicit work practices were automated using ERP systems
[3]. It was recognized that the hard coding of the business

processes in software packages resulted in a lack of adapt-
ability of the processes [4]. As a result, the design of business
processes gained a central role in organizations, separated from
the design of information systems [3]. However, integration of
business processes and information systems still needs to be
achieved, and agility (or “evolvability”) needs to be ensured
on both levels.

Normalized Systems (NS) theory offers a theoretically
founded way to design software systems which exhibit evolv-
ability based on the systems theory’s concept of stability, by
proposing a limited set of design theorems [5], [6]. Applying
the theory’s rationale to the business process level has been
shown feasible and resulted among others in a set of 25
guidelines for designing evolvable business processes, more
specifically on the delineation of business processes and their
constituting tasks [7]. In subsequent work, NS theory was
confirmed and extended based on the concept of entropy from
thermodynamics [8]. Such perspective enables the design of
software systems having a high degree of observability (i.e.,
internal problems within the system are more easily detectable
and traceable to the task generating this problem). At the soft-
ware level, this extension resulted in additional theorems, while
confirming the existing theorems. Moreover, similar entropy
definitions were able to be defined at the business process
level as well [9], [10], [11], [12]. Therefore, it is interesting to
verify whether the guidelines which have been proposed for
business processes (in order to make them more evolvable)
can be confirmed or extended from the entropy reasoning as
well. This paper explores this research area by applying the
entropy reasoning to the considered set of business process
guidelines. While 9 of these guidelines were already analyzed
earlier work [1], this paper supplements the earlier analysis by
including analysis of the remaining 16 guidelines.

Our paper will be structured as follows. First, we provide
some theoretical background on Normalized Systems theory,
its stability and entropy perspective, and their respective appli-
cations at the business process level (Section II). Afterwards,
the analysis of the guidelines of Van Nuffel from an entropy
perspective is presented in Section III. A discussion and our
our conclusions are offered in Section IV and Section V,
respectively.

341

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. THEORETICAL BACKGROUND

NS was introduced as a theoretically founded way for
deterministically designing software architectures exhibiting
a proven amount of evolvability. For this end, the systems
theoretic concept of stability is applied [5], [6]. This implies
that a bounded input function (e.g., “add data attribute”) should
result in bounded output values, even as time T → ∞. Stated
otherwise, this means that the required implementation effort
for a particular change is only dependent on the nature of that
change itself and not on the size of the system. It has been
proven that at least four theorems (i.e., separation of concerns,
data version transparency, action version transparency and
separation of states) should be consistently applied in order to
obtain such evolvable software architecture [5], [6]. Violations
against these theorems can be observed at design time [6].

Later on, the theory has been proven to be applicable to
the design of evolvable business processes [7]. Here, business
processes are considered at their most elementary level (i.e.,
the “elementary tasks and elementary sequencing and design
of these tasks” performed on information objects). To obtain
stability, it is required that changes to individual processes or
tasks do not impact other processes or tasks [7]. In order to
achieve such Normalized Business Processes (NSBPs), a set of
25 guidelines was developed, based on the four NS theorems,
interpreted at the business process level [7].

In subsequent research, NS was extended based on the
thermodynamic concept of entropy, initially again focusing on
software architectures [8]. As entropy is generally associated
with concepts as complexity, amount of disorder or available
information, it enables the study of the observability (including
detectability and diagnostability) of a (software) system. In
statistical thermodynamics, entropy is considered proportional
to the number of microstates consistent with one macrostate
(i.e., its multiplicity) [13]. The macrostate refers to the whole
of externally observable and measurable (macroscopic) proper-
ties of a system, corresponding to visible output of a software
system (e.g., loggings). The microstate depicts the whole of
microscopic properties of the constituent parts of the system,
such as binary values representing the correct of erroneous
outcome of a task (which we propose to identify based on the
concept of “information units”, i.e., each unit of processing
of which we are interested in independent information about
whether it has been executed properly or not). The higher
the multiplicity, the more difficult it becomes to identify the
precise origin of an observed error. This approach requires a
run time view of the system, since macrostates and microstates
regard the instantiations of data structures and processing
functions [8]. To design information systems exhibiting low
entropy, two NS theorems (i.e., separation of concerns and
separation of states) have been confirmed, while two additional
theorems (i.e., action version transparency and data version
transparency) were proposed as well [8].

A similar reasoning based on the entropy definition within
statistical thermodynamics, can also be applied to business
processes [10], [9], [12]. Again, a business process is con-
sidered to be a flow (i.e., including sequences, selections and
iterations) of tasks which perform actions on one or more
information objects. Considering their execution allows us
to define macrostates and microstates on this level as well.
The union of values of, for example, the throughput time,

quality, resource consumption, quality and executing actors of
all task instantiations correspond to a microstate. Given our
observability approach, it is proposed to identify a task on
the basis of information unit in an organizational context as
well. The macrostate of a business process is the (aggregated)
information available for an observer (e.g., such as the total
throughput or cycle time regarding a process as a whole or
any combination of some of its tasks). Multiple microstate
configurations consistent with one macrostate (i.e., multiplicity
> 1), makes entropy (and the experienced complexity in terms
of detectability and diagnostability) increase, and typical man-
agement questions more difficult to answer [9]. For instance,
it might become unclear which task (or tasks) in a business
process was (were) responsible for the extremely slow (fast)
completion (of a particular instance) of a business process
in case a problematic macrostate is observed (this results in
a detectability issue). Additionally, as the possibility arises
that both problematic and non-problematic microstates result
in the same macrostate (e.g., no problem is observed), an
diagnostability issue might arise as well: while there might be
an important and relevant problem in the considered system,
it may not catch the attention of the observer. It is clear that
both the detectability issue and the diagnostability issue are
problematic from a management perspective. Therefore, it be-
comes logical that organizations can benefit from reducing the
amount of entropy present in their business process repository.

No specific guidelines on how to reduce entropy on the
level of business processes have been formulated yet. Similar
to the software level, it is hypothesized that guidelines to
achieve stable business processes will reduce entropy as well.
As a first step, we assess in this paper the entropy-reducing
capability of the guidelines as formulated by Van Nuffel [7].
More specifically, we investigate whether a violation of each
guideline increases the multiplicity (and hence, entropy) of
business processes. In case the guidelines for obtaining more
evolvable business processes would equally result in business
processes exhibiting a lower degree of entropy, the guidelines
can obviously be adopted for this latter purpose as well. Also,
to the extent that the guidelines can be confirmed from this
other theoretical perspective, this provides additional validation
of the considered artifact —the set of guidelines— as well. A
similar approach (i.e., comparing the guidelines of Van Nuffel
[7] with the theoretical framework provided by Enterprise
Ontology [14]) was already performed in earlier research ([15],
[16]) and proved to be interesting: most of the guidelines of
Van Nuffel were found to be consistent or complementary with
Enterprise Ontology and only a few of them were considered
conflicting.

III. COMPARISON OF GUIDELINES RATIONALES

In this section, we will systematically investigate the guide-
lines as proposed by the work of Van Nuffel [7]. For each
guideline, we will first provide a brief description. Next, we
explore whether not adhering to this guideline would imply an
increase in entropy as we defined it earlier. Guidelines of which
violations result in additional entropy are then considered to
be suitable for entropy control as well. To discuss and analyze
each of the guideline, we will adopt the same structure as
used in ([7], [15], [16]): first a set of general guidelines
for identifying business processes will be discussed. Next,

342

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

three additional guidelines for specific cases will be analyzed.
Finally, some task and auxiliary guidelines are considered.

A. General Business Process Guidelines

The first set of guidelines focuses on the question how to
identify a set of tasks as a separate business process.

Guideline 1, “Elementary Business Process”, requires
that a business process should be operating on one and
only one life cycle information object1 [7, p. 107]. Not
adhering to this guideline would imply a design in which
a business process could be operating on multiple life cycle
information objects. For instance, consider both invoicing and
manufacturing steps which are mixed up and interacting in
one process, and a problem with the total throughput time of
finishing invoices is present, as represented in Figure 1. At
least two situations in which multiplicity > 1 (and entropy
arises), can now occur. First, as the business process is
concerned with operations on multiple life cycle information
objects, the problematic throughput time of the invoicing
steps can be “compensated” by “normal” throughput times
of the manufacturing steps. Consequently, the problematic
total throughput time of the invoicing activities would not
necessarily raise an “alert”, even after for instance hypothesis
testing on the overall observed mean versus expected mean.
Therefore, multiplicity > 1 (and entropy increases): the status
reflected by the macrostate (e.g., no problems are reported
(“OK”)), is conform to multiple microstates (e.g., both “OK”
or “Not OK” for the throughput time of the invoicing steps).
Further, not demanding that business processes operate on a
single information object, also implies that multiple business
processes can be operating (unconsciously) on identical (not
necessarily recognized) information objects (i.e., duplication
and copy/paste of (parts of) processes might occur). Therefore,
chances that the problematic total throughput time of the
invoicing activities would raise an “alert” become even smaller,
as the information on this concern is not properly separated
or centralized. This situation correlates with our (reduced)
detectability interpretation of entropy as pointed out in Section
II. Second, in case a problem is observed (i.e., the macrostate
signals “Not OK”), multiplicity > 1 as well. The macrostate
now complies to multiple microstates: the “Not OK” result of
the total throughput time might be related to the manufacturing
steps, the invoicing steps or both. In order to diagnose the
problem unambiguously, the process owner should disentangle
all steps in the business process, determine the life cycle
information object they belong to, and analyze to which life
cycle information object the overall problem is actually related.
Further, we already noted that not demanding a business
process to operate on a single information object might result
in multiple business processes operating (unconsciously) on
identical information objects (i.e., duplication and copy/paste
might occur). If the macrostate of multiple business processes
(each implementing (duplicate) invoicing steps) goes to “Not
OK”, chances of identifying “the invoice” as the problematic
concern become even smaller, as the information on this issue

1A life cycle information object in this context is to be considered as “an
information object whose life cycle is represented by (a) business process(es)”
[7, p. 101]. An information object in this context is to be considered as “a
concrete, identifiable, self-describing entity of information” that typically has
an enterprise-wide unique identity, meaningful to a business user and can
contain meta-data that describing its data content [7, p. 100].

is not properly separated. This situation correlates with our
(reduced) diagnostability interpretation of entropy as pointed
out in Section II. Based on these two situations, we can
conclude that not adhering to this guideline implies an in-
creased amount of entropy in the business process instantiation
space. Therefore, we state that the guideline is suitable for
entropy control as well. A small refinement can be formulated
by stating that, in order to ensure instance traceability, the
specific information object instance a business process instance
is operating on, should be stored as an attribute of that business
process instance.

Additionally, we note that limiting a business process to a
task sequence related to only one life cycle information object
also enables entropy reduction in suboptimal cases when the
most fine-grained separation of concerns and states at the task
level is not performed or deemed feasible. In case the first
guideline is adhered but undesirable aggregations at the task
level are still performed, an aggregation and entropy depending
on the number of combined tasks k occurs. On the other hand,
in case multiple life cycle information objects are incorporated
into one business process, the amount of entropy becomes
dependent on i as well.

Guideline 2, “Elementary life cycle information object”,
defines a life cycle information object as an information object
not exhibiting state transparency [7, p. 114]. Combined with
guideline 1 this implies that a business process is related to
one information object not exhibiting state transparency. In this
context, an information object is considered state transparent
if it adheres to the NS Separation of States principle and
the object has no proper state transitions which should be
made explicit [7, p. 118]. Not adhering to this guideline
would imply two possible situations: (1) the identification
of an information object as a life cycle information object
when it already exhibits state transparency, or (2) not rec-
ognizing a non-state transparent information object as a life
cycle information object. Regarding the first situation, the
creation of an additional life cycle information object (and
a corresponding business process) for an information object
of which the states are already fully reflected by another life
cycle information object, does neither increase of decrease
entropy. No additional information regarding the microstate
configuration is retained or lost (the information regarding the
states of one particular life cycle information object instance
is simply duplicated) by identifying this additional life cy-
cle information object. However, as stated in the discussion
regarding the previous guidelines, duplicate process (parts)
should be avoided. Regarding the second situation however,
an information object not exhibiting state transparency which
does not get recognized as a life cycle information object, will
generate an increase in the degree of entropy (i.e., multiplicity
> 1). As in such case no state transparency regarding the
concerning information object is attained, information about
its state transitions (and hence, the microstate configuration) is
lost. Expressed differently, a multiplicity > 1 will arise during
and after execution time as the macroscopic observations
regarding this information object cannot be traced to individual
tasks represented by states (i.e., a myriad of microstates are
possible). This situation relates to both the detectability and
diagnostability issues within an entropy viewpoint as pointed
out in Section II. Consequently, we can remark this guideline
is not strictly necessary to control entropy in the context of

343

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

���
��������

�	
����

�	��������	��

������

�	��������	��

������

��	������

��	��������	��

�	���	
����

��	���	
������	��

��	����������

����

���

Figure 1. A simple business process operating on multiple life cycle information objects.

the first situation: theoretically speaking, a state transparent
information object can be identified as a life cycle information
object without increasing entropy (albeit without any thinkable
benefit). However, the second situation shows that not adhering
to this guideline can imply an increased amount of entropy in
the business process instantiation space when a non-transparent
information object is not recognized as a life cycle information
object. Therefore, we state that the guideline is largely suitable
for entropy control and advice its application for this purpose
as well. We would further like to add that this guideline
actually quite nicely illustrates the core reasoning of designing
business processes based on the entropy rationale: for every
task of which separate information is valuable (constituting
a so-called “information unit”), a separate state should be
defined and related to the information object it is operating
on. Therefore, each information object not exhibiting state
transparency should be considered as a life cycle information
object, thereby storing information of each individual task
performed on it, at its most fine-grained level.

Guideline 3, “Aggregated Business Process”, states that
in order to represent an aggregated business process, an
aggregated life cycle information object has to be introduced
(p. 121). This guideline relates to the fact that certain aggre-
gated business processes can be necessary to several reasons.
First, the orchestration of different business processes (each
operating on a single life cycle information object) by a distinct
business process might be necessary. For instance, consider an
Order-to-Cash process in which several sub-processes —such
as “order entry process”, “procurement process”, “production
process”, etcetera— are each individually and successively
called, waiting for completion, upon which the next (set of)
sub-process(es) is called, completed, etcetera. Second, different
(both internal or external) stakeholders might require differ-
ent perspectives (such as aggregations) due to, for instance,
their own functional domain. For instance, in case of very
complex business processes, one can imagine that clients or
certain actors at a higher management level might be primarily
interested in the mere “milestones” (e.g., “order received”,
“order produced”, “order shipped”) of a business process,
instead of the possible hundreds of more fine-grained states
the product might be in during its life cycle. The guideline
under consideration prescribes that such aggregated processes
may only be introduced for orchestrating purposes and in case
the business processes under consideration are not able to be
designed solely based on guidelines 1 and 2. Once more, not
adhering to this guideline would imply two possible situations:
(1) designing an aggregated business process while a redesign
based on guidelines 1 and 2 would be possible, or (2) not rec-
ognizing a business process for orchestrating purposes while
a redesign based on guidelines 1 and 2 is not possible. The
first situation would clearly imply an unnecessary combination
of two concerns and therefore a violation of guidelines 1 and
2 (as a redesign based on them is still possible). Given the
fact that both guidelines were proven to mostly result in an

increase of entropy when not adhered to, this situation would
equally result in an increase of entropy. The second situation
would lead to not recognizing a “combined concern”: while
each of the underlying concerns have their own life cycle
information object and corresponding business process, the
orchestration or “interfacing” between them can constitute a
genuine concern as well. Such orchestration would entail a
relevant information unit and is therefore necessary to keep
track of when one’s aim is to minimize entropy. Imagine an
Order-to-Cash process tracking the Order Entry Process, (pos-
sibly multiple) Procurement Processes, Production Processes,
Delivery Processes, etcetera. While each of these processes
clearly designate their own life cycle information object and
therefore, business process, the orchestration between them is
crucial to be monitored as well. Tracking interfacing issues
in this Order-to-Cash Process constitutes relevant information
(macroscopically) and in case a customer complains about
a lately delivered order (i.e., the macrostate), the specific
business process (instance) which is causing this delay (Order
Entry, Procurement, etcetera) should be identifiable (i.e., the
specific microstate). Not identifying the necessary aggregated
process would therefore lead to multiple microstates consis-
tent with one macrostate. This situation relates to both our
detectability and diagnostability issues within an entropy view-
point as pointed out in Section II. We can therefore conclude
that not adhering to this guideline implies an increased amount
of entropy in the business process instantiation space and state
that the guideline is suitable for entropy control as well.

Guideline 4, ”Aggregation Level”, requires that tasks
performed on a different aggregation level should denote a
separate business process (p. 124). An “aggregation level” in
this particular guideline is mainly to be understood as focusing
on the multiplicities of different information objects (i.e., the
different perceived aggregations). For instance, a typical Order
within a company might be conceived as being associated
with several Product processes, where this Product process
at its turn might then again be associated with multiple Part
processes. Not adhering to this guideline would imply that
it is possible for a business process to execute sequences
of tasks situated at different “aggregation levels”. Suppose
one business process performing a sequence of tasks on a
“parent” information object (e.g., “Product”) and sequences of
tasks on its “child” information objects (e.g., different “Part”
instances). As one could argue that such business process
is operating on multiple life cycle information objects, our
first two arguments are highly parallel to those of guideline
1. First, such business process design would not guarantee
that systematic problems regarding, for instance, the overall
throughput time of the sequence of tasks performed on the
“child” information object are observed. The problematic
throughput times might become “compensated” by “normal”
throughput times of the other tasks, therefore not necessarily
raising an “alert” to the observer. Hence, multiplicity > 1 (and
entropy increases): multiple microstates (“throughput times

344

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

OK” and “throughput times Not OK”) are consistent with
one macrostate (“no problems are reported”). This situation
correlates with our (reduced) detectability interpretation of
entropy as pointed out in Section II. Second, in case a problem
is observed (i.e., the macrostate signals “Not OK”), multiplic-
ity > 1 as well. The macrostate now conforms to multiple
microstates: the “Not OK” result of the overall process might
be related to the sequence of tasks performed on the “parent”
information object, the “child” information object or both.
This situation correlates with our (reduced) diagnostability
interpretation of entropy as pointed out in Section II. Third,
no instance traceability regarding the multiple processed Parts
within the single business process is feasible in such design.
Therefore, the same states regarding the “child” information
object sequence are activated several times during the exe-
cution of the business process, while in reality dealing with
other information object instances. This makes adequate state-
tracking (cf. guideline 2) impossible. As a result, the business
process owner cannot make the distinction between situations
in which the problematic throughput time might be associated
with all Part instances in general (i.e., a “systematic” recurring
problem) or with one Part instance in particular (and in such
case, which specific Product instance). Also in this third
situation, this implies multiplicity > 1: one macrostate (i.e.,
a problem is observed) is consistent with multiple microstate
(i.e., the problem is due to Part instance 1, or 2, . . . , or all
Part instances): certain parts of the microstate configuration
are simply not captured during process execution. Based on
these two situations, we can conclude that not adhering to
this guideline implies an increased amount of entropy in the
business process instantiation space. Therefore, we state that
the guideline is suitable for entropy control as well.

Guideline 5, “Value Chain Phase”, states that the follow-
up of an organizational artifact resulting from a value chain
phase should denote a different business process (p. 132). A
value chain phase refers to the rather generic, often recurring
structure and parts within aggregated business processes in
manufacturing organizations (e.g., Order Entry, Procurement,
Production, etcetera), such as for instance described by the
SCOR reference model. Not adhering to the above described
guideline could lead to the following two situations: (1) the
steps related to these value chains are incorporated into the
aggregated (i.e., orchestrating) business process, or (2) no
more grained steps related to each of these value chain phases
are discerned and no states regarding them is kept. In the
first situation, this would imply a violation of guidelines 1
as multiple life cycle information objects (e.g., Order Entry,
Procurement, Procurement) are combined into one business
process. Further, guideline 4 would be violated as well because
most often, these value chain phases have one-to-many or
many-to-many relations. A Customer Order can typically be
related to multiple Purchase Orders and/or Production Orders.
The second situation would imply violations regarding guide-
lines 2 (i.e., no life cycle information object is identified for
several non-state transparent information objects) and 3 (i.e.,
an aggregated business process is designed when there are
still some opportunities for redesign based on guidelines 1
and 2). A situation in which no relevant states regarding the
tasks constituting a value chain phase should be identified,
is rather unlikely as this would allow to model almost all
necessary activities of a typical manufacturing company within

one business process having 5 to 8 tasks. Consequently, as
we should earlier how violations regarding guidelines 1 to 4
result in multiple microstates consistent with one macrostate,
we can conclude that violating this guideline would generate a
multiplicity > 1 as well. Therefore, we state that the guideline
is suitable for entropy control as well.

Guideline 6, “Attribute Update Request”, states that a
task sequence to update an attribute of a particular life cycle
information object that is not part of its business process sce-
narios, is represented by an Attribute Update Request business
process (p. 135). This guideline is subject to two specific con-
ditions. First, it has to concern an update operation for which
one single functional task is not sufficient to complete the up-
date request, but rather a sequence (i.e., “process”) of activities
is required. Second, it concerns update requests which are not
part of a branch within the regular business process scenarios.
Consequently such procedures can be instantiated several times
and during several different “states” of the life cycle of
the information object regarding which the update request is
actually aimed at. Additionally, such process (verifying for
instance the validity of updating a certain information object
attribute with a certain new value) will typically differ for each
individual attribute. Not adhering to this guideline would imply
that tasks for handling an attribute update request, not part of
the regular business process scenario, becomes incorporated
into the flow of the life cycle information object of which the
attribute is requested to be update. Again, such situation can
be seen as a violation regarding several of the above men-
tioned guidelines. Not separating such task sequences would
lead to a business process operating on multiple life cycle
information objects and —at the same time— one concern
being dispersed over several places within one business process
(i.e., all the life cycle states in which the update request is
allowed), thereby violating guideline 1. Second, the design
would make the proper tracking of states impossible as at any
point of the business process execution for each time an update
request is initiated, the state of the regular business process
is suddenly (possibly repeatedly) changed to states regarding
this update request (thereby indirectly violating guideline 2).
Third, as attribute update requests can be performed several
times during one instance of the “parent” business process,
both concerns relate in a one-to-many multiplicity, thereby
violating guideline 4. Consequently, as we showed earlier how
violations regarding guidelines 1, 2 and 4 result in multiple
microstates consistent with one macrostate, we can conclude
that violating this guideline would generate a multiplicity > 1
as well. Therefore, we state that the guideline is suitable for
entropy control as well. From an organizational observability
(i.e., entropy) viewpoint, it clearly makes sense to separate
such sequence of tasks for future reference. For instance, the
calculation of certain measures and the solution for certain
managerial questions such as: “how often are such requests
accepted/denied and for which reason” or “can we see any
relation between the outcome of the update requests and its
input values” are only able to be solved in an efficient way
when this task sequence is properly separated in its own
business process module and not unconsciously repeated in
other places throughout the business process repository.

Guideline 7, Actor Business Process Responsibility,
states that tasks, of which the task allocation genuinely belongs
to a different business process owner, should be designed into a

345

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

separate business process (p. 139). This guideline only applies
in very stringent cases. For example, in case legislation or
internal audit rules prescribe that different owners should be
responsible for other (parts of) task sequences, this guideline
applies. Mostly, the guideline is applicable when different parts
of a task sequence are performed by different organizations.
In such cases, the respective task allocations are logically
situated at one of these different organizations as well. From
an entropy viewpoint, let us consider the case in which the
mentioned guideline is not adhered to. In such case, a business
process could consist of a combination tasks which belong to
genuinely different business process owners. Each task still
has an attribute regarding which actor is allowed or required
to perform the task. However, no information is available
regarding who is doing the task allocation (e.g., the manager
of organization who determines who is doing what). If such
information should be retained, the appropriate level is the
business process level, as it concerns a sequence of multiple
tasks. In case this information is relevant but however no
distinct business process would be designed, a multiplicity
> 1 (and hence, entropy) arises as one macrostate (e.g., a
problem regarding the overall process) complies with multiple
microstates (was the task allocation responsibility situated
at person A, B, or C?). This situation correlates with our
(reduced) diagnostability interpretation of entropy as pointed
out in Section II. Therefore, in case the information regarding
task allocation responsibility is relevant, a different business
process should be identified from an entropy viewpoint to
allow for this task allocation responsibility to be traceable.
This guideline calls to create an additional level of “process
responsibility” (i.e., who allocates tasks among different actors
and takes responsibility that they are carried out adequately), in
addition to the responsibility for one or multiple tasks. There-
fore, we state that the guideline is suitable for entropy control
as well. However, in line with the work of Van Nuffel [7] we
remark that it should be stressed that identifying additional
business processes based on this guideline should be done with
extreme precaution to avoid unnecessary additional business
processes and, hence, only in cases where a different task
allocation responsibility is relevant for observability purposes.

Guidelines 8 and 9 as proposed by Van Nuffel [7], propose
two specific business process types to be identified. Guideline
8, “Notifying Stakeholders” states that the communication of
a message to stakeholders (in the correct format, incorporating
fault handling, etcetera) constitutes a distinct business process
(p. 143). Guideline 9, “Payment” states that the payment of a
particular amount of money to a particular beneficiary should
equally constitute a distinct business process (p. 146). Not
recognizing these two concerns as distinct business processes
could again create two possible situations: (1) integrating
the tasks for the notification and payment in other business
processes or (2) not specifying their constituting tasks at all.
It is clear that the first situation would violate guideline 1
(multiple life cycle information objects operating within one
business process) and 4 (for example, multiple notifications
can be sent within the scope of one “parent” business process
instantiation). The second situation would violate guideline 2
as a non-state transparent information object is not identified
as a separate life cycle information object. Consequently, as we
showed earlier how violations regarding guidelines 1, 2 and 4
result in multiple microstates consistent with one macrostate,

we can conclude that violating this guideline would generate
a multiplicity > 1 as well. Therefore, we state that guideline
8 and 9 are suitable for entropy control as well. Designing
these task sequences as separate business processes is useful
from an organizational observability (i.e., entropy) viewpoint
as well. Both the payment of a particular amount in a particular
format to a particular beneficiary at the right time, as well as
communicating a certain message in a particular format at the
right time while maintaining integrity, are often recurring func-
tionalities within typical business processes. As a consequence,
due to their frequently occurring nature, a business process
owner would typically be interested in certain characteristics
of each of these separately recurring tasks sequences: how
long do they take to execute, how many times do they result
in an error, etcetera. Focusing on these aspects can generate
considerable efficiency gains as, for instance, improving the
quality metrics or throughput time of the payment process with
5% might entail huge organizational effects as the changes
are “expanded” throughout the whole organization. However,
these analyses and improvements can only be performed when
“payments” and “notifications” are designed into separate
business processes. Otherwise, systematic problems regarding
one of the concerns might not be noticed (cf. the detectability
issue of Section II) or might not be unambiguously traced to
the right concern (cf. the diagnostability issue of Section II).

B. Additional Business Process Guidelines

The three additional business process guidelines address
decisions on how to identify business process guidelines which
are particularly influenced by domain-specific issues.

Guideline 10, “Product Type” identifies a Product Type
as denoting a separate business process because “a different
type of product / service denotes a main concern” (p. 149). In
this context, a Product Type is considered as an organizational
artifact (product, service) sharing a collection of important
characterizing properties. Not adhering to this guideline would
imply that one business process could combine two or more
Product Types. Firstly, this would clearly generate cluttered
and poorly organized processes including a large set of
branches. However, this could also be considered harmful
from our adopted entropy perspective. Imagine a company
producing only instances of two Product Types (A and B),
but combining all the significantly differing production steps of
these two production types into one business process. Suppose
that the observed total production costs (i.e., the macrostate)
were considered by the manager as too high (i.e., reducing
profitability). If in such case the tasks and sequences of tasks to
produce both Product Types have been combined and mingled
up into one process, it would become difficult to diagnose to
which product (A, B or both) the cost problem is related. As
a consequence, multiplicity > 1 and entropy increases. This
is obviously highly problematic in the context of decisions
which need to be taken regarding the product portfolio: which
products should the company retain and which products should
the company place out of production due to too high costs?
Therefore, we state that the guideline is suitable for entropy
control as well.

Allocating costs to cost objects such as individual Product
Types and their instances is considered key in cost-accounting
methods. As an example, the Activity-Based Costing (ABC)

346

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

method was designed to more accurately assign indirect costs
to individual Product Types using a multi-stage cost allocation
procedure involving the identification of activities responsible
for the generation of costs [17]. These tasks are identified
at multiple levels such as facility, batch, product or unit
level. This reasoning is highly related to the identification
of business processes at the level of Products, their Parts,
etcetera in this paper. However, in [18] we indicated that new
ABC iterations does not exhibit the lowest possible degree
of entropy. We therefore hypothesize that cost-accounting
approaches can benefit from analyzing their proposed methods
using an entropy perspective. Additionally, the idea that the
modular structure or patterns within organizations should or
may reflect the (technical) modular structure of products is
not new. For instance, the mirroring hypothesis states that in
case of the design of complex systems (such as products), the
organizational structure (such as division of labor and division
of knowledge) will mirror one another [19]. Considering
products as a basis for modularizing cost objects is therefore
considered as logical design decision, supporting a low entropy
design.

Finally, it should be mentioned that this guideline does
not imply that potential Product Types having sequences of
tasks in common should repeat these identical sequences in all
of their respective business processes. For instance, Product
Parts should be modeled in separate business processes and
can then potentially be re-used for several other Products
(in conformance with guideline 4). Also, variants of one
product may be modeled by using gateways and branching
options within the process: in such situation the differing tasks
should clearly be separated in different tasks and the life cycle
information object object data should enable the unambiguous
tracing of the variant which was produced (and hence, the
business process path which was taken).

Guideline 11, “Stakeholder Type” states that a “stake-
holder type should principally be considered a cross-functional
concern, except for those business processes where the stake-
holder type denotes the life cycle information object, e.g.,
different HR business processes to deal with different types of
employees”. As stated in the guideline, in case each different
stakeholder type would be associated with another genuine
life cycle information object, another business process type
should be identified (in conformance with guideline 1). In
such case, the task sequences of the regarding the information
object for each stakeholder type significantly differ and distinct
information should be kept on this matter. Therefore, not
adhering to this part of the guideline would violate guideline
1 and increase entropy. However, in case the stakeholder
type merely denotes variants of the product or service to be
delivered, the stakeholder type can and should be used as an
attribute of the considered life cycle information object. In such
case, information is gathered at the level of the information
object (e.g., “credit grant”) but can be categorized according
to the stakeholder type (e.g., “golden type”, “normal type”)
based on this attribute. That way, the identical task sequences
are not dispersed throughout the business process repository,
thereby avoiding the generation of a higher amount of entropy.
In case a particular common sequence of tasks within the
business process would be related in a one-to-many or many-
to-many relationship to the business processes, this sequence
should be separated in its own business process (cf. guideline

4). Likewise, when a particular sequence would be of use
within other types of business processes (e.g., a procedure
for verifying customer details which is used both in online
and desk assisted order entry) or when the stakeholder types
are “completely differently processed” [7, p. 155], a separate
business process should be identified. Indeed, in such cases,
separate information regarding these information objects is
relevant from an entropy perspective. Therefore, we state that
this guideline is generally suitable for entropy control as well.
This reasoning is similar to our reasoning regarding guideline
10 on Product Type variants.

Guideline 12, “Access Channel” states that the access
channels typically denote “a cross-functional concern”, mean-
ing that no separate business process should be identified
(p. 159). In case of small variants within the life cycle it
is equally advised from an entropy reasoning to identify one
business process regarding, for instance, an Order, in which the
branching for the respective access channels can be performed
based on an attribute of the life cycle information object.
Under the assumption that the differing tasks are clearly
separated from the common tasks regarding each considered
access channel, this reasoning would be similar as the one
mentioned in guideline 10, allowing common task sequences
to be properly separated into one process (and therefore not
be dispersed throughout the process repository).

However, in some cases, a separate access channel can
imply a totally different process in a particular part of a value
chain. Different access channels can have different results in
terms of throughput time, costs, etcetera. Therefore, it can be
interesting to separate business processes based on this concern
in certain situations. For instance, consider the application for
a business school which can be done online (fill in resume,
submit TOEFL, recommendation letters and example paper) or
via attendance on site (interview and business game): for both
access channels, separate business processes are preferable. If
one process would mingle all steps for both access channels
(without branching based on an attribute), entropy can occur.
Suppose that a supervisor observes that the throughput time
of the applications is too lengthy. Now, there is no clear
indication whether it is due to the online application channel,
the on site application channel, or both. Consequently, multiple
microstates are consistent with one macrostate. Therefore,
in similar way as cited for guideline 12, we state that the
considered guideline is suitable for entropy control in cases
when the access channel is used for separating access channel
specific tasks among a sequence of common tasks, and for
which a selection according to the access channel can be made
based on an attribute of the information object (pointing to
the access channel used for each instance). The guideline can
be further nuanced or refined by stating that, in case totally
separate access channels are associated with totally different
task sequences (i.e., they are “completely differently processed”
[7, p. 155]), and of which separate information needs to be
available, the creation of a separate business process for each
access channel is advised.

C. Task Guidelines

These guidelines focus on the question on how to identify
individual tasks within a business process.

347

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Guideline 13, “A Single Functional Task - Overview”
identifies a task as “a functional entity of work that either
results in a single state transition of a single information
object type, or refers to an Update or Read task on a single
information object type” (p. 161). As this guideline provides
a general definition of tasks, it should inform us about the
conceptualization of “concerns” at the level of individual
tasks, regarding which we need to keep track of independent
information. This guideline is difficult to be analyzed based on
“violations” towards it as it mainly describes how a task is con-
ceptualized, i.e., being a “portion of work” resulting in a single
state transition or performing a read/update action. However,
we can notice that this conceptualization is rather similar to the
definition of a task we adopt in our entropy reasoning (here and
in previous publications), although some refinements from the
entropy perspective can be made. Remember from Section II
that the identification of tasks in an organizational context was
equally based on information units, or every part within the
life cycle of an information object of which we want to keep
independent information. Typically, this information can be
expected to be multidimensional in an organizational context:
costs, resource consumption, executing actor, consumed time,
quality, etcetera. As a consequence, from an entropy point of
view, we state that the guideline is suitable for entropy control
as well and propose to refine the considered guideline based
on these dimensions. This information should be retained in
relation to the corresponding state of the considered task. All
other guidelines in relation to the identification of tasks are
then to be considered as special cases of this guideline.

Guideline 14, “CRUD Task” states that “each of the Create
- Read/Retrieve - Update - Delete (CRUD) operations consti-
tutes a single task” (p. 164). Not adhering to this guideline
would imply that CRUD tasks are combined with non-CRUD
tasks. Suppose that an error or lacking quality within such
flow is observed (i.e., the macrostate) and the observer wants
to diagnose the reason for it. In such case, it would not be
able to distinguish between situations in which the undesired
output of the combined task is due to, for instance, information
which was faulty received (i.e., the “Read” action) or due
to the action taken based on this information. Consequently,
multiple microstates are consistent with one macrostate. From
an entropy perspective, it is also interesting to know, for
example, who adapted a particular attribute of an information
object at which time. Therefore, we state that the guideline is
suitable for entropy control as well. In order to ensure instance
traceability, we further refine the guideline by stating that the
information created, read, updated or deleted should be stored
in relation to the state of the considered task instance.

Guideline 15, “Manual Task” states that “every manual
task of which the initiation and completion has to be known,
has to be designed as a separate task” (p. 167). Suppose
that two or more manual tasks of which the initiation and
completion has to be known are combined into one task. This
means that only one state regarding this combined task is
known. Therefore, the observed macrostate (e.g., the combined
task has been completed erroneously) is consistent with a
myriad of microstates (e.g., manual task 1, manual task 2 or
a combination of both have resulted in this erroneous com-
pletion). Therefore, we state that the guideline is suitable for
entropy control as well. This guideline should be interpreted in
combination with guideline 21, requesting that a task cannot

consist of parts that are performed by different actor(s) (roles).

Guideline 16, “Managing Time Constraint Task” states
that “the management of a time constraint denotes a separate
task because it represents the individual concern of managing
a particular time constraint” (p. 169). Remember that we
proposed to refine guideline 13 by requiring that the relevant
costs, throughput time, resource consumption, quality criteria
and executing actors should be persisted in the state related to
each identified task. Since we defined the throughput time of
a particular task as a relevant part of information for defining
the microstate, this guideline needs to be adhered to from
an entropy perspective as well. Consider a particular task
for which, after it has been completed, the next task in the
sequence is only allowed to proceed in the next morning at
7AM. In case this timing constraint is not properly separated
(by a waiting condition or “timer”) from the first task, entropy
increases as it is not known how long it took to complete
the task (and hence, when the actual “waiting” started). In
such situation, when for instance trying to reduce the observed
occupation time of the production line (i.e., the macrostate), no
clear information is available regarding how long the product
was actually “occupying” the production line and how long it
was waiting for further processing (i.e., multiple microstates).
This is clearly associated with an increased amount of entropy.
Therefore, we state that the guideline is suitable for entropy
control as well.

Guideline 17, “Business Rule Task” states that “a single
business rule should be separated as a single task” (p. 171).
In this context, mainly business rules defined as “derivation
rules” or “reaction rules” are considered (i.e., deriving a
decision —mostly for branching— from other knowledge or
based on a particular business event or state). These decisions
are clearly something else than the execution of a particular
“production task” contributing to the actual product or service
(e.g., assembly) realization. Therefore, separate information is
required about the executor, time and resource consumption,
as well as the final outcome. Suppose the considered guideline
is not adhered to and a production activity and business rule
activity are combined into one task. In such case, entropy
arises due to several reasons. Firstly, unclarity about the typical
microstate information dimensions such as time and executor
might arise. For instance, “calculating the stock” and “deciding
which branch to choose” based on the available stock (e.g.,
“order” vs. “not order”) might be executed by different actor
(roles) and therefore have different relevant information. In
case this task is executed erroneously or took too long (i.e.,
the macrostate), it is not clear which actor was responsible or
which information unit caused the lengthy throughput time.
Clearly, this situation can be avoided by adhering to the some
of the other proposed guidelines (such as guidelines 13 and
21). Secondly however, not adhering to this guideline would
imply that the eventually chosen branch (i.e., again belonging
to the macrostate) is not uniquely traceable to the non-business
rule task (e.g., the calculation of the stock) or business rule task
(e.g., deciding whether or not to order based on the calculated
stock), hence being consistent with multiple microstates (and
as a consequence, generating entropy). Therefore, we state
that the guideline is suitable for entropy control as well: in
some situations, the business rule task will not be separated
automatically due to one of the other proposed guidelines,
giving the considered guideline its own right to exist.

348

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Guideline 18, “Bridge Task” states that “when a business
process instance operating on an instance of life cycle informa-
tion object type I has to create a business process instance of
another life cycle information object type L, this functionality
is designed as a bridge task that initiates the creation of the
instance of the life cycle information object L, and represents
a state transition on the instance of I” (p. 173). The actor
initiating a new instance of a life cycle information object can
be different than the actor doing the preceding or following
tasks and might send specific configuration data to the instance
being created. Therefore, based on guideline 21 (cf. infra), we
state that the guideline is suitable for entropy control as well.
Potentially, also the time needed to initiate an instance might
be time or resource consuming and might therefore require
the design of a separate task. Further, based on the need for
instance traceability, we propose a refinement of the guideline
by stating that the reference to the business process instance
operating on the instance of life cycle information object
type L should be stored in relation to the state of the bridge
task instance. Additionally, the reference to business process
instance operation on the instance of life cycle information
object type I, as well as the specific configuration data which
was used during initiation, should be stored in relation to the
instance of life cycle information object L.

Guideline 19, “Synchronization Task”, states that “when
a business process instance operating on a life cycle infor-
mation object I has to inform a business process instance of
another life cycle information object L, a synchronization task,
representing a state transition on the instance of I, alters the
state of the business process instance of L” (p. 176). Whether
a Synchronization Task is performed by a Bridge Task to a
Notification (see guideline 18) or by an Update Task regarding
the state of a particular target life cycle information object
(see guideline 14), they both can be considered to be special
cases of the respective guidelines. As both of these guidelines
have been suggested to be suitable for entropy control, also
this guideline should be. Nevertheless, we make two additional
remarks on this regard. First, the need for proper state tracking
should raise some caution regarding the second option to
implement the guideline, i.e., by simply using an update task
to alter the state of another life cycle information object. As
it should not be allowed to alter the state of a process while
another task on the same life cycle information object is been
carried out and only valid state transitions are allowed, this
implementation should only be chosen with care. Second, to
ensure diagnostability, the guideline can be refined by stating
that the reference to the business process instance operating
on life cycle information object L should be stored in relation
to the state of the synchronization task instance. Additionally,
the reference to the business process instance operating on life
cycle information object I should be stored in relation to the
altered state within the business process instance of L.

Guideline 20, “Synchronizing Task” calls for identifying
separate tasks which receive “information from another busi-
ness process’s execution, in order to continue the business
process control flow” (p. 178). Whether a Synchronizing Task
is performed actively (systematically checking the state of
another life cycle information object) or passively (waiting
until a Notification is received), this guideline denotes a special
case of a waiting condition and therefore of guideline 16.
Therefore, we state that also this guideline is suitable for

entropy control: non-adherence would imply that the infor-
mation regarding for example throughput time of other tasks
can become misrepresented, thereby generating entropy. A
refinement can be formulated by stating that the reference to
the business process instance from which the information is
received as well as the the incoming information itself, should
be stored in relation to the state of the synchronizing task
instance.

Guideline 21, “Actor Task Responsibility”, states that
“a task cannot consist of parts that are performed by differ-
ent actor(s) (roles)” (p. 180). Remember that we proposed
to refine guideline 13 by requiring that the relevant costs,
throughput time, resource consumption, quality criteria and
executing actors should be persisted in the state related to each
identified task. Therefore, as we defined the actor performing
a particular task as a relevant part of information for defining
the microstate, it makes sense to support this guideline from
an entropy perspective as well. Suppose a task is combining
parts A and B which are executed by two different actor(s)
(roles). In case a problem regarding the produced product or
delivered service is observed afterwards (i.e., the macrostate)
and the main problem is traced to the task combining these two
parts, it still remains unclear which actor is actually responsible
for the lacking quality (the actor performing part A or the
actor performing part B), and multiple microstates arise for this
single macrostate (thereby increasing entropy). As a result, we
state that the guideline is suitable for entropy control as well
and can even be refined and formulated more strictly as “A task
cannot consist of parts that are performed by different actor(s)
(roles) and the specific actor performing the task should be
persisted in its associated state” in order to ensure instance
traceability.

D. Auxiliary Guidelines

Auxiliary guidelines do not specifically focus on identi-
fying tasks or business processes, but try to formulate a set
of generally applicable guidelines to design business process
repositories.

Guideline 22, “Unique State Labeling”, states that “each
state of a life cycle information object has to be unique”
(p. 181). This guideline follows directly from the NS Sepa-
ration of Concerns and Separation of States principles. In case
this guideline would not be adhered to, multiple states could
be attributed the same identifier and would obviously defy the
benefit of introducing states in order to reduce the amount of
entropy. Consider for instance a process in which the results
of two distinct consecutive manufacturing steps (on which
separate information is relevant) are persisted in the same state.
In case for instance the quality of the resulting product is
insufficient (i.e., the observed macrostate), it is uncertain which
of the considered manufacturing steps is responsible for this
failure (i.e., meaning that at least two microstates are consistent
with the observed macrostate, thereby generating entropy).
Therefore, this guideline is consistent with efforts to reduce
the entropy generated by executed business processes. We refer
again to the refinement of guideline 13 which indicates the
different information dimensions which should be related to
such states.

Guideline 23, “Unique State Property”, states that “a
life cycle information instance can only be in a single state

349

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

at any time” (p. 182). Also this guideline follows directly
from the NS Separation of Concerns and Separation of States
principles. When business processes are conceived similarly as
“production lines” operating on life cycle information objects,
each instantiation should obviously be in one state at the time.
In case this guideline would not be adhered to, this would mean
that a business process can be in two states at one point in
time. For instance, this would allow an instance of a payment
life cycle information object to be in the state “initiated” and
“finished” at the same time. This would make any traceability
of observed macrostates in terms of microstates impossible
as, for example, no clear information can be retrieved on how
long it took to complete one particular invoice (i.e., going from
the state “initiated” to the state “finished”). Clearly, abundant
entropy would arise and the guideline should be adhered to in
order to avoid this.

Guideline 24, “Explicit Business Process End Points”,
states that “if a business process type has multiple possible
outcomes, each of these scenarios should have its dedicated
end point reflecting the respective end state of a business
process instance” (p. 183). This guideline equally follows
directly from the NS Separation of Concerns principle. In
fact, it could be considered as a special case of guideline 22.
Consider two different outcomes (e.g., due to two different
microstates by different branches) resulting in the same state
(i.e., the observed macrostate), e.g., “process finished”. In
such situation, two microstates would —by definition— be
consistent with one macrostate and entropy occurs. Also, it
would become impossible to analyze how many times, in case
of claim handling for instance, the process results in “claim
successfully handled” and “claim not successfully handled”,
or how these states have come into being. Therefore, also
this guideline is consistent with the aim of reducing entropy
generation.

Guideline 25, “Single Routing Logic”, states that “a
split/join element in a business process’s control flow should
only represent a single split or join routing expression”
(p. 184). Not adhering to this guideline would imply that mul-
tiple elements could be combined into one module, i.e., both
joint and split conditions. However, given the convention that
states can only be related to tasks (not gateways), not adhering
to this guideline could generate entropy. Combining split/joint
elements into one module would prohibit the creation of an
intermediate task between the join and split, thereby assuming
that the logic or business rule for deciding which branch to take
in the split element is incorporated in the gateway (for which
it is not intended as it will also not result in a persisted state).
Therefore, no information regarding this branching decision
(e.g., evaluate number of parts in stock) is persisted in a state.
In such situations one macrostate (the observed outcome and
chosen branch) is consistent with multiple microstates (it is
unclear who has taken this decision, based on which informa-
tion, requiring how many resources, needing which amount of
time, etcetera), thereby generating entropy. Therefore we state
that also this guideline is consistent with the aim of reducing
entropy generation during the execution of business processes.

IV. DISCUSSION, LIMITATIONS AND FUTURE RESEARCH

This paper aims to contribute to our research line on how
to prescriptively design business processes regarding certain

criteria (such as low complexity and high evolvability). In
earlier work, a set of prescriptive guidelines has been proposed
from the stability perspective [7], and the applicability of
the entropy concept to study the observability of business
processes has been reported [9], [10]. The main focus in this
paper was to verify whether the already existing guidelines to
optimize the business process design from a stability viewpoint
align with the perspective to minimize entropy. We found that
most of the investigated guidelines are rather consistent among
both approaches: guidelines required to attain evolvability
enable observability and vice versa. This is illustrated in
Table I. Regarding the general business process guidelines,
some small exceptions were noticed for guidelines 1, 2 and 7.
For guideline 1, it was stated that instance traceability required
that the specific information object instance a business process
instance is operating on, should be stored as an attribute of the
latter. For guideline 2, it was observed that —theoretically—
entropy does not increase when a state transparent information
object is identified as a life cycle information object. For
guideline 7, it was argued that the application of the specific
guideline should be performed even more thoughtfully and
exceptionally when one is adopting the entropy viewpoint
as its necessity in many situation is not really compelling.
Regarding the additional business process guidelines, we made
an additional nuance regarding the possible identification of
a separate business process based on its access channel (cf.
guideline 12). While we in general advise to follow the
guideline, we added some additional remark and clarification
on possible cases in which different access channels could still
depict another separate business process. Regarding the task
guidelines, we concluded that the guidelines of Van Nuffel
were consistent with our proposed entropy reasoning, although
we were able to propose some additional refinements of the
guidelines based on this new perspective. For guideline 13, we
stressed the multidimensional nature of the information to be
stored in relation to a state. For guidelines 14, 18, 19, 20 and
21 we proposed some small refinements each related to the
need for instance traceability. Finally, all auxiliary guidelines
were deemed consistent with our entropy reasoning.

The conclusion that the guidelines from the stability point
of view correlate with these from the entropy viewpoint is
encouraging for business process designers and researchers,
as this might indicate that a unified set of business process
design guidelines might be conceivable, optimizing multiple
important design characteristics concurrently. Nevertheless, to
a certain extent, this conclusion might come as a surprise as
well, given the different assumptions and analysis viewpoints
of both approaches. First, while both approaches do not only
take a different perspective towards business process analysis
(i.e., search for evolvability vs. observability), they take a
fundamentally different perspective for obtaining their goal as
well. The evolvability analysis focuses on the mere design time
of business processes, which means that the harmful effects
its aims to resolve (the so-called “combinatorial effects”) are
situated on this perspective: a functional change that causes
N changes in the business process design. In contrast, the
observability analysis focuses on avoiding harmful effects
during execution time: a multiplicity > 1 (which we could
coin as an “uncertainty effect”) only manifests itself when
the business processes are executed. Clearly, these effects
are caused by choices made at design time. However, as

350

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. AN OVERVIEW OF THE ANALYSIS OF THE GUIDELINES OF
VAN NUFFEL [7] FROM THE ENTROPY VIEWPOINT

Guideline C
on

tr
ad

ic
tin

g

C
om

pl
ia

nt

R
efi

ne
d

1 Elementary Business Process •
2 Elementary Life Cycle Information Object •
3 Aggregated Business Process •
4 Aggregation Level •
5 Value Chain Phase •
6 Attribute Update Request •
7 Actor Business Process Responsibility •
8 Notifying Stakeholders •
9 Payment •
10 Product Type •
11 Stakeholder Type •
12 Access Channel •
13 A Single Functional Task - Overview •
14 CRUD Task •
15 Manual Task •
16 Managing Time Constraint •
17 Business Rule Task •
18 Bridge Task •
19 Synchronization Task •
20 Synchronizing Task •
21 Actor Task Responsibility •
22 Unique State Labeling •
23 Unique State Property •
24 Explicit Business Process End Point •
25 Single Routing Logic •

the harmful effects are only visible at execution time, this
perspective has to taken into account for this particular analysis
as well. It is therefore important to note that, to the best
of our knowledge, few modeling languages in the business
process modeling domain are currently available to pursue this
goal. While many business process modeling notations (e.g.,
BPMN) allow for a design time analysis of business processes,
execution time analysis and visualization of executed business
processes in terms of the data they generate is under explored
and few starting points are available. We therefore encourage
the business process research community to elaborate further
on this issue.

Second, the criteria both approaches use to delineate and
identify the different business processes and their constituting
tasks, differ. The evolvability approach employs the concept
of “change drivers” (i.e., parts within the business process
design which are assumed to change independently) to iden-
tify and isolate concerns, whereas the complexity approach
employs the concept of “information units” (i.e., these parts
within the business process design of which independently
traceable information is assumed to be needed later on). In
our view, it makes sense to state that change drivers are
information units and vice versa. In many organizational fields,
it it generally accepted that those things you want to change
(“change drivers”), have to be measured first (i.e., in order
to detect whether a problem in fact exists, and to obtain a
reference point to evaluate afterwards whether the changes
resulted in improvements) and should hence be recognized
as “information units”. On the other hand, one could argue
that measuring parts of business processes on which you
track independently traceable information (i.e., “information
units”) only makes sense if you are able to potentially change
(hence, ameliorate) them later on (i.e., they need to be “change
drivers” as well). It is therefore hypothesized that in general,
the concerns which should be used to delineate and identify

business processes or tasks are determined by the union of
“change drivers” and “information units”. This hypothesis also
allows that, while most of the concerns are expected to be
mutual for both perspectives, some of them can actually be
derived from only one perspective, but not contradicting the
reasoning of the other one. This was for example the case for
guideline 2 which was proposed from the stability point of
view but is only necessary in a refined way from the entropy
point of view. Given the additional, more in-depth analysis
of the entropy approach by incorporating the execution time
perspective (e.g., the importance of observability), additional
concerns which do not seem necessary from the evolvability
perspective, might be potentially identified in future research.
For instance, the entropy point of reasoning at the software
level of NS, proved to suggest additional principles [8].

Notwithstanding the limitations and need for future re-
search, this paper can claim a number of contributions. First,
we further contributed to the enterprise and business process
engineering field by elaborating on the usefulness to take an
entropy perspective for studying the complexity of business
processes. Second, we validated the suitability of a set of
(already existing) business process design guidelines in this
context as a first step towards a Design Theory [20]. In
literature, it is generally acknowledged and even encouraged
that such design efforts are guided by principles from related
scientific fields (i.e., “kernel theories”) [21], such as the
concept of entropy from thermodynamics. Third, we adopted
logical reasoning as our evaluation method, which is one of the
suitable validation methods proposed within Design Science
research and adopted by several authors [22]. While one can
argue that this validation method is not necessarily the most
powerful one, we believe that many other validation methods
are less suitable for the artefact under consideration. For
instance, comparing the results of applying entropy reducing
business process design guidelines with other approaches is
difficult as few or no prescriptive guidelines for business
processes are available, certainly if one is looking for entropy
reducing methods.

In future research, we could focus on attempts to verify
whether guidelines can be found are necessary from the
entropy viewpoint, but are not required from the stability
point of view (e.g., related to detectability and diagnostability
issues at execution time). Further, although an initial case
study (i.e., simulation) has already been performed earlier to
show the relevance and applicability of the entropy viewpoint
to analyze business processes [12] and six case studies have
been documented regarding the design of business processes
from the evolvability viewpoint [7], additional cases might be
beneficial to specifically illustrate the differences between both
approaches and the grounding for their respective business
process design guidelines. Additionally, this way of work-
ing can further complement our currently adopted evaluation
method of logical reasoning. Finally, similar to NS reasoning
[6], the ultimate goal of the research stream is to look for
organizational “elements” [23], [24]: groupings or patterns
of frequently occurring, rather general business processes
exhibiting both a high degree of evolvability and observability
(i.e., high detectability and diagnostability of business process
problems and outcomes).

351

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. CONCLUSION

Contemporary organizations need to be agile regarding
both their IT systems and organizational structures (such as
business processes). Normalized Systems theory has recently
proposed an approach to build evolvable IT systems, based on
the systems theoretic concept of stability. However, its applica-
bility to the organizational level, including business processes,
has proven to be relevant in the past and resulted among
others in a set of 25 guidelines for designing business pro-
cesses. This paper investigated the validity of these guidelines
from another theoretical perspective, more specifically, entropy
as defined in statistical thermodynamics. We concluded that
most of the investigated guidelines are consistent among both
approaches: guidelines required to attain evolvability also
enable observability (i.e., low entropy) and vice versa. Part
of one guideline was found to be not strictly necessary from
an entropy viewpoint (only from the evolvability viewpoint),
but not contradicting entropy minimization either. Several
guidelines were able to be refined to some extent based on
our entropy reasoning or were subject to some additional
nuancing. Future research should be directed towards entropy
specific guidelines, additional case studies and patterns at the
organizational level.

ACKNOWLEDGMENT

P.D.B. is supported by a Research Grant of the Agency for
Innovation by Science and Technology in Flanders (IWT).

REFERENCES

[1] P. De Bruyn, D. Van Nuffel, P. Huysmans, and H. Mannaert, “Con-
firming design guidelines for evolvable business processes based on
the concept of entropy,” in Proceedings of the Eighth International
Conference on Software Engineering Advances (ICSEA), 2013, pp.
420–425.

[2] E. Overby, A. Bharadwaj, and V. Sambamurthy, “Enterprise agility
and the enabling role of information technology,” European Journal
of Information Systems, vol. 15, no. 2, 2006, pp. 120–131. [Online].
Available: http://dx.doi.org/10.1057/palgrave.ejis.3000600

[3] J. Mendling, H. A. Reijers, and W. M. P. van der Aalst,
“Seven process modeling guidelines (7pmg),” Inf. Softw. Technol.,
vol. 52, no. 2, Feb. 2010, pp. 127–136. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2009.08.004

[4] L. Brehm, A. Heinzl, and M. Markus, “Tailoring erp systems: a
spectrum of choices and their implications,” in Proceedings of the 34th
Annual Hawaii International Conference on System Sciences, 2001.

[5] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210–1222, pdf.

[6] ——, “Towards evolvable software architectures based on systems
theoretic stability,” Software: Practice and Experience, vol. 42, no. 1,
January 2012, pp. 89–116, pdf.

[7] D. Van Nuffel, “Towards designing modular and evolvable business
processes,” Ph.D. dissertation, University of Antwerp, 2011.

[8] H. Mannaert, P. De Bruyn, and J. Verelst, “Exploring entropy in
software systems : towards a precise definition and design rules,” in The
Seventh International Conference of Software Engineering Advances
(ICSEA), 2012, pp. 84–89.

[9] P. De Bruyn, P. Huysmans, G. Oorts, and H. Mannaert, “On the
applicability of the notion of entropy for business process analysis,”
in Proceedings of the Second International Symposium on Business
Modeling and Software Design (BMSD), 2012, pp. 128–137.

[10] P. De Bruyn, P. Huysmans, H. Mannaert, and J. Verelst, “Understanding
entropy generation during the execution of business process instantia-
tions: An illustration from cost accounting,” in Advances in Enterprise
Engineering VII, ser. Lecture Notes in Business Information Processing,
H. Proper, D. Aveiro, and K. Gaaloul, Eds. Springer Berlin Heidelberg,
2013, vol. 146, pp. 103–117.

[11] P. De Bruyn and H. Mannaert, “On the generalization of normalized
systems concepts to the analysis and design of modules in systems and
enterprise engineering,” International journal on advances in systems
and measurements, vol. 5, 2012, p. 3/4.

[12] P. De Bruyn, P. Huysmans, and H. Mannaert, “A case study on entropy
generation during business process execution: a monte carlo simulation
of the custom bikes case,” in Proceedings of the Third International
Symposium on Business Modeling and Software Design (BMSD), 2013.

[13] L. Boltzmann, Lectures on gas theory. Dover Publications, 1995.

[14] J. Dietz, Enterprise Ontology: Theory and Methodology. Springer-
Verlag Berlin Heidelberg, 2006.

[15] P. Huysmans, D. Van Nuffel, and P. De Bruyn, “Consistency, com-
plementalness, or conflictation of enterprise ontology and normalized
systems business process guidelines,” in Proceedings of the Third
International Symposium on Business Modeling and Software Design
(BMSD), 2013.

[16] D. Van Nuffel, P. Huysmans, and P. De Bruyn, “Engineering business
processes: comparing prescriptive guidelines from eo and nsbp,” Lecture
Notes in Business Information Processing (LNBIP), 2014, in press.

[17] C. Drury, Management and Cost Accounting. Sout-Western, 2007.

[18] P. Huysmans and P. De Bruyn, “Activity-based coscost as a design
science artifact,” in Proceedings of the 47th Hawaii International
Conference of Systems Sciences (HICSS), 2014, pp. 3667–3676.

[19] L. Colfer and C. Baldwin, “The mirroring hypothesis: Theory, evidence
and exceptions,” Harvard Business School Working Paper, 2010.

[20] S. Gregor and D. Jones, “The anatomy of a design theory,” Journal
of the Association for Information Systems, vol. 8, no. 5, 2007, pp.
312–335.

[21] J. Walls, G. Widmeyer, and O. El Saway, “Building an information
system design theory for vigilant eis,” Information Systems Research,
vol. 3, no. 1, 1992, pp. 36–59.

[22] V. Vaishnavi and W. Keuchler, Design Science Research Methods
and Patterns: Innovating Information and Communication Technology.
Auerbach Publications, 2008.

[23] P. De Bruyn, “Towards designing enterprises for evolvability based on
fundamental engineering concepts,” in On the Move to Meaningful In-
ternet Systems: OTM 2011 Workshops, ser. Lecture Notes in Computer
Science, R. Meersman, T. Dillon, and P. Herrero, Eds. Springer Berlin
Heidelberg, 2011, vol. 7046, pp. 11–20.

[24] P. De Bruyn, H. Mannaert, and J. Verelst, “Towards organizational mod-
ules and patterns based on normalized systems theory,” in Proceedings
of the Ninth International Conference on Systems (ICONS), 2014, pp.
106–115.

352

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Framework for Autonomic Software Deployment of Multiscale Systems

Raja BOUJBEL
Université de Toulouse

UPS - IRIT
118 Route de Narbonne
F-31062 Toulouse, France

Raja.Boujbel@irit.fr

Sébastien LERICHE
Université de Toulouse

ENAC
7 Avenue Édouard Belin
F-31055 Toulouse, France
Sebastien.Leriche@enac.fr

Jean-Paul ARCANGELI
Université de Toulouse

UPS - IRIT
118 Route de Narbonne

F-31062 Toulouse, France
Jean-Paul.Arcangeli@irit.fr

Abstract—Automated deployment of software systems in
pervasive and open environments is an open issue. There, the
topology of target hosts is not always known at design time
due either to unforeseen hardware limitations or failures
(network links, hosts, etc.) or to device arrival and disap-
pearance. Rather than manually building and executing a
static deployment plan, as it is usually done, our approach
promotes the specification of deployment properties (require-
ments and constraints), then their handling by a middleware
for autonomic deployment. This paper presents MuScADeL,
a new domain-specific language designed to support the
expression of properties related to multiscale and autonomic
software deployment. It also presents a chain of software
tools that participate in the deployment process and are
part of the autonomic deployment middleware, including
a system of probes for the monitoring of the host machines
and a compiler of multiscale deployment properties.

Keywords—Software deployment, multiscale distributed
systems, domain-specific language, autonomic computing,
constraint satisfaction problem.

I. INTRODUCTION

Pervasive computing, on the one hand, and cloud
computing, on the other hand, are central topics in
several recent research studies. Contributions in both do-
mains have reached a good level of maturity. Nowadays,
new research works have identified the need to make
pervasive and cloud computing systems collaborate, so
as to build systems which are distributed over several
scales, called “multiscale” systems. In multiscale sys-
tems, decentralization, autonomy and adaptiveness are
essential features.

In this context, our work focuses on software deploy-
ment and our goal is to develop a framework for sup-
porting the deployment of multiscale applications. De-
ployment aims at making and keeping software systems
available for use, in a situation of mobility, openness and
variability of the quality of the resources. Deployment
strategies should take into account the multiscale aspects
like geography, network, device, and user, as well as non
functional properties such as efficiency and privacy.

In this paper, we describe a Domain-Specific Language
(DSL) dedicated to multiscale and autonomic software
deployment, named MuScADeL (MultiScale Autonomic
Deployment Language) [1], then we present how the de-
ployment plan can be computed from the MuScADeL

specification.
In the rest of this section, the novel concept of mul-

tiscale system and the basics of software deployment
are introduced, then the problem of multiscale software
deployment is analyzed, and the requirement of a DSL
is expressed. Finally, Section I-E presents the plan of the
article.

A. Multiscale distributed systems

The term “multiscale system” is present in several re-
cent research papers [2], [3], [4]: in these works, authors
consider to make collaborate very small systems (objects
from the Internet of Things paradigm as, for example,
swarms of tiny sensors with very low computing ca-
pabilities) with very big systems (such as those found
in cloud computing). They agree that new issues arise,
mainly those related to huge heterogeneity.

The INCOME project [5] aims at designing software
solutions for context management in multiscale systems,
that is to say not only in ambient networks, but also in
the Internet of Things and the Cloud, able to operate
at different scales and to deal with the passage from a
scale to another one. Context management is a complex
service in charge of the gathering, the management
(processing and filtering), and the presentation of context
data to applications, which realization is distributed on
the different devices which compose the system. So,
context managers are open multiscale applications, and
we are interested in their deployment.

In [6], Rottenberg et al. argue that the multiscale nature
of a distributed system should be analyzed indepen-
dently in several specific viewpoints such as geography,
network, device, data, user, etc. Thus, a distributed
system can be described as multiscale when, given a
viewpoint, for at least one dimension of this viewpoint,
the elements of its projection onto this dimension are
associated with different scales. Fig. 1, extracted from [7],
shows an example of scales in the “Processing power”
dimension in the “Device” viewpoint. The dimension
“Processing power” is composed by several scales: kilo
scale, giga scale, and peta scale. A family of device can
be contained in one scale, as personal devices in the kilo

353

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 1: Scales in the “Device Processing power” dimension.

scale, or in more than one scale, as supercomputers in
giga and peta scales.

However, the concept of “multiscale system” is not
actually mature. The construction of future multiscale
distributed systems will necessitate new kinds of lan-
guages, middleware and patterns, allowing to take in
consideration the multiscale aspects of the systems.

B. Software deployment
Software deployment is a post-production process

which consists in making software available for use
and then keeping it operational. It is a complex process
that includes a number of inter-related activities such as
installation of the software into its environment (transfer
and configuration), activation, update, reconfiguration,
deactivation and deinstallation [8]. Fig. 2 represents the
sequence of the activities. Software release and software
retire are carried out on the “producer site”, while the
other activities are carried out on the “deployment site”,
some of them at application runtime.

Fig. 2: Software deployment life cycle.

Deployment design is handled by an engineer called
“deployment designer”. He has to gather information
not only about the software system to deploy and the
properties of each of its components but also about

the distributed organization of the software at runtime.
Designing deployment may consist in expressing re-
quirements and constraints. For instance, the deploy-
ment designer may express that a particular software
component should be installed on some specific devices
or on any device, even on incoming ones in case of
dynamic systems, while satisfying a set of properties.
As a concrete example, consider a software component
C which should be deployed on each smartphone which
runs Android, has the GPS function active, and is con-
nected by WiFi.

A deployment plan is a mapping between a software
system and the deployment domain, increased by data
for configuration (and about dependencies). The deploy-
ment domain is the set of networked machines or devices
which hosts the components of the deployed software
system. The ultimate purpose of deployment design is
to produce a deployment plan which complies with the
expressed properties. Usually, this task is undertaken by
a human actor.

At runtime, software must be deployed on the do-
main according to the deployment plan, this task being
possibly undertaken or controlled by an operator called
“deployment operator”. Automatization of deployment
aims at avoiding (or limiting) human handling in the
management of deployment.

Fig. 3 shows the timeline of deployment.

Fig. 3: Software deployment timeline.

C. Multiscale software deployment
In this work, we focus on deployment design, and

particularly on the ways for a deployment designer to
express multiscale deployment properties.

Software deployment in large-scale and open dis-
tributed systems (such as ubiquitous, mobile or peer-to-

354

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

peer systems) is still an open issue [9]. There, existing
tools for software deployment are reaching their limits:
they use techniques that do not suit the complexity of the
issues encountered in such infrastructures. Indeed, they
are only valid within fixed network topology and do not
take into account neither host and network variations of
quality of service nor failures of machines or links which
are typical of these environments.

Moreover, users of the deployment tools are required
to manage manually the deployment activities, which
needs a significant human involvement, possibly out of
reach of concerned end-users (for example, in case of
personal devices like smartphones): for large distributed
component-based applications with many constraints
and requirements, it is too hard and complicated to
accomplish the deployment process manually. Conse-
quently, there is a need for new infrastructures and
techniques that automate the deployment process and
allow a dynamic reconfiguration of software systems
with few or without human intervention.

Additionally, in our opinion, decentralization, open-
ness and dynamics (mobility, variations of resources
availability and quality, disconnections, failures) are
in favor of autonomy: the autonomic computing ap-
proach [10], where the system self-manages some prop-
erties (self-configuration, self-healing), may support so-
lutions which satisfy the requirements of distributed
multiscale software systems deployment. This idea lead
us to “autonomic software deployment” [9].

Instead of directly expressing a statically defined de-
ployment plan, we propose to express properties: deploy-
ment requirements and component constraints from which
the deployment plan can be computed. In this paper,
we focus on the expression of the properties, and on the
construction of the plan.

So, in order to build the plan, and moreover to allow
management of deployment at runtime, data about the
domain must be collected. Thus, a system of probes
should run and collect data ranging from the domain
properties such as free RAM to more abstract ones re-
lated to multiscale (viewpoints, dimensions, and scales).
Relations between probes and properties can be made
explicit at the same level as the deployment properties
in order to allow the specification of the system of probes
at the deployment design time.

D. Towards a DSL for autonomic software deployment of
multiscale systems

In this ongoing work, our aim is to provide a solution
for the expression of the deployment design, concerning
in particular the scales and other significant properties
of multiscale software systems (see below an example in
Section III).

Deployment is a specific operation on software. Its
design requires particular skills. Thus, we think that the

deployment designer could benefit from a dedicated lan-
guage when stating the properties. So, we propose a DSL
dedicated to the description of deployment constraints
and requirements. DSLs present several advantages: they
use idioms and abstractions of the targeted domain, so
they can be used by domain experts; they are light,
so easy to maintain, portable, and reusable; they are
most often well documented, coherent and reliable, and
optimized for the targeted domain [11], [12], [13].

E. Plan of the article

The rest of the paper is structured as follows. Section
II discusses related work on DSL-based software deploy-
ment. Section III provides an example of deployment
of a multiscale software system. The DSL MuScADeL is
presented in Section IV using the example presented in
Section III. Section V introduces the software elements
that complement MuScADeL in order to compute a
deployment plan. Section VI presents the bootstrap of
the deployment management system, its architecture,
and the interface used by the deployment operator.
Section VII explains how deployment properties are
transformed and formalized. Section VIII presents our
constraint solving library and its use through the Mu-
ScADeL specification presented in Section IV. Section IX
concludes and discusses some future works.

II. RELATED WORK ON DSL-BASED SOFTWARE
DEPLOYMENT

The need for automation in software deployment has
given to this activity a special attention both in academia
and in industry. There are a large number of tools,
procedures, techniques, and papers addressing different
aspects of the software deployment process from differ-
ent perspectives.

Existing deployment platforms propose several for-
malisms to express deployment constraints, software
dependencies, and hardware preferences of software to
deploy. Usually, the formalisms include architecture de-
scription languages (ADL), deployment descriptors (like
XML descriptor deployment), and dedicated languages
(DSL). In this section, we overview some works on
software deployment that propose the use of a DSL.

Fractal Deployment Framework (FDF) [14] is a compo-
nent based software framework to facilitate the deploy-
ment of distributed applications on networked systems.
FDF is composed of a high-level deployment description
language, a library of deployment components, and
a set of end-user tools. The high level FDF deploy-
ment description language allows end-users to describe
their deployment configurations (the list of software
to deploy and the target hosts). Finally, FDF provides
a graphical user interface allowing end-users to load
their deployment configurations, execute and manage
them. The deployment unit is an archive that contains
the software binary and the deployment descriptor. The

355

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

main limitation of this tool is the static and manual
attributes of the deployment. Although the static de-
ployment plan is eligible in a stable environment like
Grid, this deployment is not usable in an environment
characterized by a dynamic network topology such as
ubiquitous environments. Another limitation is that in
runtime this tool does not provide mechanisms for dy-
namic reconfiguration which allows the treatment of the
hosts and the network failures.

Dearle et al. [15], [16] present a framework for au-
tonomic management of deployment and configuration
of distributed applications. To facilitate the work of the
deployment designer, they define a DSL, Deladas. Using
it, a set of available resources and a set constraints are
specified. These definitions permit to generate an appli-
cable deployment plan. The constraint-based approach
avoids the deployment designer specifying precisely the
location of each component, and then rewriting all the
plan in case of problems with a resource. Deladas does
not allow to express multiscale properties and con-
straints. Openness is neither taken into account, the set
of hosts is statically defined in a file by the deployment
designer. Deployment is still autonomic: at runtime,
when the deployment middleware detects a constraint
violation (dependencies between components), it tries to
solve it by a local adaptation. The new deployment plan
is computed by a centralized management component
called MADME.

Matougui et al. [9] present a middleware framework
designed to reduce the human cost for setting up soft-
ware deployment and to deal with failure-prone and
change-prone environments. This is achieved by the use
of a high-level constraint-based language and an auto-
nomic agent-based system for establishing and maintain-
ing software deployment. In the DSL called j-ASD, some
expressions dedicated to deal with autonomic issues
are proposed. But they target large-scale or dynamic
environments such as grids or P2P systems, only within
the same network scale.

Sledviewsky et al. [17] present an approach that incor-
porates DSL for software development and deployment
on the cloud. Firstly, the developer defines a DSL in
order to describe a model of the application with it.
Secondly, the application is described using the DSL,
then it is translated into specific code and automatically
deployed on the Cloud. This approach is specific to the
deployment of a Web application on the cloud. It high-
lights the need to facilitate the work of the deployment
designer, and that using DSL is a solution for that.

Recent works around software deployment start tak-
ing into account constraints of quality of service. For
example, Malek et al. [18] present a framework (tools and
formalism) aiming at determining a ”best” deployment
plan regarding several constraints of quality of service
which can be contradictory.

Thus, existing solutions for DSL-based autonomic soft-

ware deployment does not allow deployment designers
to express properties related to multiscale concerns, or
only in a limited way concerning some scales from
the network or device viewpoints. Additionally, dynam-
ics and openness are not or little considered. Even if
MADME deals with the dynamics of the deployment
domain, the adaptation of the deployment plan is cen-
tralized. Finally, the solutions do not define a complete
workflow from the design to the fulfilment of the de-
ployment plan while taking into account the current
operational context.

III. EXAMPLE OF THE DEPLOYMENT OF A MULTISCALE
SOFTWARE SYSTEM

In this section, we present an example of the de-
ployment of a multiscale software system, in order to
illustrate our aim. Let’s consider a software system made
of different components, each of them having specific
individual runtime constraints (memory, OS, etc.). The
deployment designer may want to express not only these
constraints, but also some requirements related to the
distribution of the components. For instance, the de-
ployment designer may want that (C1. . . C6 are software
components):
• a resource-consuming component C1 runs on a

cloud,
• C2 runs on several machines in a given geographical

area, e.g., a city,
• C3 runs on the same type of device than C1,
• C4 runs on any smartphone of the domain,
• C5 runs on the same network than C4,
• C5 number of deployed instance is relative to C4

instances, i.e., for three instance of C4 on intance of
C5 is deployed,

• C4 runs on any new smartphone entering in the
domain at runtime,

• C6 runs on one machine on each city.
Moreover, some components may have constraints to

run properly, such as:
• C1 requires that the component C0 is installed and

activated locally,
• C2 must run on a Linux OS and an Arduino (single-

board micro-controller) must be connected to the
hosting device,

• C3 requires 40M of free RAM at activation time
(Freespace),

• C5 requires a 100G hard drive (HDSize).
Fig. 4 illustrates such an example.

IV. MUSCADEL: A DSL FOR MULTISCALE
AUTONOMIC DEPLOYMENT

In this section, we describe by means of an exam-
ple MuScADeL, our proposition of a DSL dedicated
to the autonomic deployment of multiscale distributed
systems. Tokens and keywords are presented further

356

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 4: Example of multiscale deployment.

and the grammar is defined in EBNF syntax (cf. Ap-
pendix A). The last version of the grammar is available
at http://anr-income.fr/T5/ebnf-muscadel.html.

A. Elements of the language

We present and explain the main elements of
MuScADeL language using as example the code for
the deployment of the multiscale distributed software
system presented in Section III.

1) Component: The keyword Component defines a
component (cf. Listing 1). The Version field is useful for
the update activity. The URL field specifies the address
where the component is reachable for download. The
DeploymentInterface field specifies the interface of
the component, necessary for the interactions with the
deployment system: the latter must interact with the
component, for configuring and starting it, for managing
it at runtime, and for stopping it. The Dependency field
lists required components: when installing the compo-
nent, the deployment system checks that whether the
required components are installed, or if not, installs
them. The Constraint field lists hardware and soft-
ware criteria (defined using the keyword BCriterion,
see Listing 3) that the component must satisfy. By de-
fault, these constraints are permanent —i.e., they must
be satisfied both when generating the deployment plan
and at runtime — so, the deployment system must check
that there is no constraint violation at runtime. For the
keyword InitOnly, see 6).

1 Component C0 {
2 Version 1
3 URL "http://test.fr/plopC0.jar"
4 }

6 Component C1 {
7 Version 1
8 URL "http://test.fr/plopC1.jar"
9 Dependency C0

10 DeploymentInterface fr.enac.plop.DIimpl
11 }

13 Component C2 {
14 Version 1
15 URL "http://test.fr/plopC2.jar"
16 DeploymentInterface fr.enac.plop.DIimpl
17 Constraint Freespace LinuxCrit ActiveArduino
18 }

20 Component C3 {
21 Version 1
22 URL "http://test.fr/plopC3.jar"
23 DeploymentInterface fr.enac.plop.DIimpl
24 InitOnly Constraint Freespace
25 }

27 Component C4 {
28 Version 1
29 URL "http://test.fr/plopC4.jar"
30 DeploymentInterface fr.enac.plop.DIimpl
31 }

33 Component C5 {
34 Version 5
35 URL "http://test.fr/plopC5.jar"
36 Constraint HDSize
37 InitOnly Constraint CpuNet
38 }

40 Component C6 {
41 Version 1
42 URL "http://test.fr/plopC6.jar"
43 }

Listing 1: Component definition in MuScADeL.

2) Probe: The keyword Probe defines a probe (cf. List-
ing 2). A probe has two fields. The first one, the Probe-
Interface, specifies the interface of the probe. This
interface is needed for interactions with the deployment
system for information retrieval. The second one, the
URL, specifies the address where the probe is reachable
for download.
1 Probe Arduino {
2 ProbeInterface fr.irit.arduino.DIimpl
3 URL "http://irit.fr/INCOME/arduinoProbe.jar"
4 }

Listing 2: Probe definition in MuScADeL.

3) BCriterion: The keyword BCriterion defines a
criterion (cf. Listing 3). A criterion is a conjunction of
conditions concerning probed values, like in CpuNet
(Listing 3, line 14). There are two kinds of conditions
concerning either the existence or liveliness of a probe,
or a specific value given by a probe. In the first case,
the condition is composed by the probe name and the
keywords Exists or Active, which are defined for any
probe interface. For example, in Listing 3, at line 2 and 3,

357

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the used probe is Arduino, and conditions use default
methods Exists and Active. In the second case, the
condition is composed by the probe name, the method to
call, a comparator, and a value. In this case, the method
is probe-specific, and defined in the probe interface. For
example, in Listing 3 at line 11, the used probe is RAM, the
information method used is freeSpace, and its value is
compared to the number 40, for 40Mb. A criterion can be
used to define both a component constraint (cf. Listing 3,
line 37) or a deployment requirement (cf. Listing 5,
line 4).

1 BCriterion ActiveArduino {
2 Arduino Exists;
3 Arduino Active;
4 }

6 BCriterion LinuxCrit {
7 OS.name = "Linux"; //OS probe
8 }

10 BCriterion Freespace {
11 RAM.freeSpace >= 40; //RAM probe
12 }

14 BCriterion CpuNet {
15 CPU.load < 80; //CPU probe
16 Network.bandWith > 1024; //Network probe
17 }

19 BCriterion HDSize {
20 HD.size > 100; //HD probe
21 }

Listing 3: BCriterion definition in MuScADeL.

4) Multiscale Probe: The keyword MultiScaleProbe
defines a multiscale probe, useful for deployment re-
quirements (cf. Listing 4). Like Probe, it has only two
fields: MultiScaleProbeInterface and URL. A spe-
cific keyword is necessary because basic and multiscale
probes are considered in a different way when generat-
ing the deployment plan. At runtime, a multiscale probe
allows to identify the scale or the scale instance of their
host device in a given viewpoint/dimension/measure.

1 MultiScaleProbe Geography {
2 MultiScaleProbeInterface
3 eu.telecom-sudparis.GeographyProbeImpl
4 URL "http://it-sudparis.eu/INCOME/GeoProbe.jar"
5 }

Listing 4: MultiScaleProbe definition in MuScADeL.

5) Deployment: The keyword Deployment defines the
deployment requirements (cf. Listing 5). The keyword
AllHosts allows to specify and delimit the deployment
domain: line 2 expresses that the deployment covers all
hosts which satisfy the basic criterion LinuxCrit. The
operator @ allows to specify deployment requirement
specific to a component. These requirements can take
several forms:
• The device hosting the component C1

must satisfy CpuNet and be on the scale
Device.StorageCapacity.Giga (line 4);

• the component C2 must be deployed on 2 to 4
devices, in the city Toulouse (line 5);

• the component C3 (line 6) must be deployed on one
device (implicit) which has the same value in the
dimension Device.Type as the device hosting C1;

• the component C4 must be deployed on all devices
of the scale Device.Type.Smartphone, i.e., on all
smartphones of the domain (line 7);

• the component C5 must be deployed on a device
which is situated in the same medium area network
(MAN) as the device hosting C4, the ratio expression
1/3 specifying that there should be one instance of
the component C5 deployed for three instances of
the component C4 (line 8);

• one instance of the component C6 must be
deployed on each scale instance of the scale
Geography.location.City (line 9).

1 Deployment {
2 AllHosts LinuxCrit;

4 C1 @ CpuNet, Device.StorageCapacity.Giga;
5 C2 @ 2..4, Geography.Location.City("Toulouse");
6 C3 @ SameValue Device.Type(C1);
7 C4 @ All, Device.Type.SmartPhone;
8 C5 @ 1/3 C4, SameValue Network.Type.MAN(C4);
9 C6 @ Each Geography.Location.City;

10 }

Listing 5: Deployment definition in MuScADeL.

The keyword DifferentValue allows to specify
the contrary of SameValue. Using these keywords, it is
possible to define a requirement related to a scale or a
scale instance.

6) Dynamics and openness: Some constructions of the
DSL are particularly well-adapted for the expression of
properties related to dynamics and openness. By default,
the properties should be satisfied during the entire appli-
cation runtime, and so must be checked dynamically. The
keyword InitOnly is used to specify that a constraint
should be satisfied initially by the generated deploy-
ment plan, but maybe not satisfied at runtime. When
specifying deployment requirements, the keyword All
allows to specify that a component should be deployed
on a subdomain which satisfies (even dynamically) a
requirement. In the example, the component C4 should
be deployed on every smartphone of the domain, in-
cluding those which enter in the domain at runtime; so,
the deployment plan evolves dynamically depending on
entering and leaving devices.

As the code can be split in several files, the keyword
Include permits to include other files. One of these file
must contain the expression of the deployment.

B. Implementation
Using Xtext and Xtend frameworks (for lexical and

syntactic analysis, translation, and generation of Java
source code) [19], we have realized an Eclipse plugin for

358

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 5: MuScADeL editor.

the edition of MuScADeL. Using Java and Eclipse makes
MuScADeL editor multi-platform compliant and easy-
to-use for the deployment designer. Moreover, it runs
alongside MuScA (Multiscale distributed systems Scale
Awareness framework), a multiscale characterization pro-
cess, allowing the deployment designer to be able within
the same engineering tool to define new multiscale
viewpoints, dimensions or scales, before using them
in MuScADeL. This binding allows MuScADeL editor
to propose an autocompletion of multiscale dimensions
and scales and a check of their use. A screenshot of the
MuScADeL plugin on Eclipse is shown in Figure 5.

V. FROM DEPLOYMENT DESIGN TO A DEPLOYMENT
PLAN

The deployment designer describes the deployment
properties using MuScADeL, and then the deployment
operator runs the generation of the deployment plan.
This generation is a complex process, done in several
steps. It is described with a SPEM-like process diagram
in Figure 6.

Firstly, the MuScADeL code is compiled, giving in
result a file containing the set of components properties,
and a file containing a list of probes. The probes are
pieces of software that can gather information about
a device, such as those described with the Bcriterion
idiom in the DSL (available memory, OS. . .). They must
be deployed on each host before the deployment, this

step being one of the pre-activation activity described in
Figure 3.

To achieve the deployment of these probes, we use
a light program called bootstrap, already installed on
each host of the deployment domain. It contains a set
of common probes (called later basic probes), and can
dynamically acquire and run any other probe specified
during this step. Then, the probes are invoked on each
device and the results are sent back to the deployment
management system.

The set of information gathered on each device is
called the domain state, representing at that time a view
of the status of each device in the deployment domain.

Finally, the constraint solver takes this domain state
and the set of properties, and compute a deployment
plan as output. Note that we are looking for the first
available solution, not to optimize in any way the de-
ployment plan. In case of the constraint solver can not
find a solution, the deployment operator is notified and
the deployment designer has to change his code.

This process, from MuScADeL edition to a gen-
erated deployment plan, is illustrated in a demon-
stration movie available at http://anr-income.fr/T5/
MuScADeL IDE Deployment Plan Generation.mkv.

The following sections will describe some of the soft-
ware elements needed to complete the deployment plan,
such as the bootstrap architecture and solving step.

359

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 6: Generation of the deployment plan.

VI. BOOTSTRAP ARCHITECTURE

In this section, we present the bootstrap, its architec-
ture, and the deployment management system interface
(GUI).

A. Bootstrap

The bootstrap of the Deployment Management Sys-
tem (DMS) is a small program available on all devices
belonging to the deployment domain. The bootstrap
is an OSGi framework containing four bundles: Main,
RabbitMQ Client, Basic Probes, and WebService DMS
(cf. Figure 7). The Main bundle is the entry point of the
bootstrap, and contains the core features of the bootstrap.
The RabbitMQ Client bundle insures the link between
a device and the deployment monitor. The deployment
monitor is a centralized component, in charge of the

initial deployment, e.g., probe sending, solving steps,
etc., and allows the deployment operator to interact
with the DMS. The RabbitMQ Client is useful for the
detection of devices appearance and disappearance. The
Basic Probes bundle is a set of basic probes, the most
common ones. The WebService DMS bundle allows the
bootstrap to communicate directly with the deployment
monitor. For specific needs, bundles are added to the
bootstrap. This extension turns the bootstrap into the
device local entity of the DMS.

Fig. 7: Bootstrap architecture.

B. Main
The main bundle is the entry point of the bootstrap. It

uses the RabbitMQ Client to offer a presence indicator
system, and it permits an asynchronous communication
system with devices over the network (through firewalls,
router, etc.). In this way, it is possible to remotely install,
activate, or stop a bundle, or ask for devices state by
activating the basic probes service.

C. Basic probes
The Basic Probes bundle contains seven probes, the

most useful ones:
• CPU: processor frequency, etc.;
• RAM: free RAM available, full capacity of the RAM,

etc.;
• hard disk: full capacity, space available, etc.;
• OS: the operating system, the version of the operat-

ing system, etc.;
• network: IP, type of the connection (e.g., Ethernet,

WiFi, 3G), etc.;
• and the locale.

Once the deployment monitor sends a request for in-
formation, this bundle sends back a packet, on JSON
format, containing the result of the probing. An example
of returned packet is shown in Listing 6.

D. Android and J2SE
There is two versions of the bootstrap, on in standard

Java (J2SE), and another for Android. They are dis-
tributed on their native format: jar for the J2SE version,
and apk for the Android version. They contain a start of
the OSGi implementation, and the control of the execu-
tion. It is the only part of the deployment framework
which is not heterogeneous.

360

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 {
2 "basicStatus": {
3 "IP_GATEWAY": "81.252.230.88",
4 "JAVA_VENDOR": "Oracle Corporation",
5 "INTERFACE_LIST": [
6 {"name": "wlan0",
7 "isUp": true,
8 "isLoop": false,
9 "ipList": [

10 "fe80:0:0:0:e206:e6ff:fecd:4b52%3",
11 "10.0.1.146"
12]},
13 {"name": "eth0",
14 "isUp": true,
15 "isLoop": false,
16 "ipList": [
17 "fe80:0:0:0:3e97:eff:fe5e:c0db%2",
18 "10.0.0.119"
19]}
20],
21 "CPU_AVAILABLE_PROC": 4,
22 "MEM_TOTAL": 115,
23 "OS_NAME": "Linux",
24 "HD_TOTALSPACE": 179949,
25 "MEM_FREE": 92,
26 "LOCALE_LANG": "francais",
27 "JAVA_NAME": "Java Platform API Specification",
28 "HD_FREESPACE": 91082,
29 "OS_ARCH": "amd64",
30 "OS_VERSION": "3.8.0-34-generic",
31 "CPU_NAME": "Intel(R) Core(TM)
32 i5-3210M CPU@2.50GHz",
33 "JAVA_VERSION": "1.7",
34 "JVM_NAME": "Java HotSpot(TM)
35 64-Bit Server VM",
36 "CPU_SPEED": 1200,
37 "LOCALE_COUNTRY": "France",
38 "CPU_LOAD": 0.08
39 }
40 }

Listing 6: Example of packet returned by Basic Probes bundle on
JSON format.

In both cases, the bootstrap uses the system to indicate
to the user that the framework is on. An icon is shown on
the bar task, or the notification bar for Android, which
allows the user to check the state of the deployment
system, stop it, etc. Figure 8 and Figure 9 show pictures
of the Android bootstrap. In Figure 8, the notification bar
shows the bootstrap icon, and in Figure 9, the bootstrap
application interface shows information about installed
bundles (full bundles and their status, 32 is for active
bundle).

E. DMSMaster

The DMSMaster is a Java software which shows the
list of reachable devices in real time, and can ask them to
send information about their state (resulting from basic
probes). It is a preliminary draft of the final deployment
software GUI.

Figure 10 shows two devices running a bootstrap: a
3G connected smartphone and a WiFi connected tablet.
The DMSMaster (red circled) lists these two devices and
retrieved information.

Fig. 8: Android bootstrap - Notification bar.

Fig. 9: Android bootstrap interface.

361

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 10: Picture of the DMSMaster.

VII. CONSTRAINTS FORMALIZATION

In this section, we present the formalization of deploy-
ment properties.

A. Data and data structure

1) Input data: Analysis of the MuScADeL code allows
to identify some properties that the system have to hold.
This analysis produces a Component × Property matrix
named Comp, defined by

• Comp(i, j) = 1 if the deployment of the compo-
nent Componenti is constrained by the property
Propertyj,

• Comp(i, j) = 0 otherwise.

Note that components that are specified to be required
for the deployment of another component are taken into
account and integrated to the matrix Comp. Only simple
properties are taken into account for the calculation of
Comp. Simple properties are basic criteria and multiscale
criteria that concern only one component.

On the other hand, independently from the MuScA-
DeL code, analysis of the deployment domain produces
a Device× Property matrix named Dom, defined by

• Dom(i, j) = 1 if the device Devicei has property
Propertyj,

• Dom(i, j) = 0 otherwise.

Basic and multiscale probes are used to produce the
matrix Dom. By and large, measures of devices that are
taken by the probes are part of the domain state. They are
supplied as an array associating devices and measures.

2) Output data: The deployment plan produced by the
solver is a Component×Device obligation matrix named
Oblig, defining the placement of each component. It is
defined by
• Oblig(i, j) = 1 if component Componenti must be

deployed on device Devicej,
• Oblig(i, j) = 0 otherwise.

B. Deployment properties
1) Constraints and requirements: A Component×Device

type possibility matrix named SatVar, is build. Each
coefficient of SatVar is a variable which can take its value
in {0, 1}.

Constraints are added on some coefficients from matri-
ces Comp and Dom. Those constraints are the assignment
of the coefficient to the value 0. This assignment corre-
spond to the impossibility for the device to host the com-
ponent. It is expressed using the following constraint1

(nb dev and nb comp respectively correspond to the
number of devices and to the number of components
involved in the deployment):

∀i ∈ {1, .., nb comp}, ∀j ∈ {1, .., nb dev}
Comp(i) · Dom(j) =~0 =⇒ SatVar(i, j) = 0 (1)

In this formula, Comp(i) and Dom(j) respectively
represent rows i and j of matrices Comp and Dom, the
operator · constructs a vector composed by the two
by two element product of the two given lines, and ~0
represents the null vector.

1By convention, indexes of row and column matrices and of arrays
begin at 1.

362

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Number of component instances:
a) Cardinality: For each component (a row of matrix

SatVar), the number of component instances is the sum
of the row’s elements. A constraint is then built for each
component depending the number of instances.

Thus, if component Ck must be deployed on nk de-
vices, it would be translated using constraint:

nb dev

∑
j=1

SatVar(k, j) = nk (2)

If component Ck must be deployed on nk to mk de-
vices, it would be translated using constraint:

nk ≤
nb dev

∑
j=1

SatVar(k, j) ≤ mk (3)

b) All: The All cardinality specifies that a compo-
nent must be deployed on all devices that can host
it. The number of these devices should be maximized.
The expression Ck @ All would be translated using
following formula:

max
j∈{1,..,nb dev}

SatVar(k,j)

(
nb dev

∑
i=1

SatVar(k, i)

)
(4)

c) Ratio: A ratio between instances of different com-
ponents can be translated using the same principle than
simple cardinality, associating several rows of SatVar.
The expression Ck @ n/m Cl would be translated using
constraint:

nb comp

∑
i=1

SatVar(k, i) = n×

nb comp

∑
i=1

SatVar(l, i)

m

 (5)

where b·c refers to floor function.
d) Dependency: When the deployment designer de-

fines a component, he can specify if a component re-
quires another one, by means of keyword Dependency.
In this case, these two components must be on the same
device. Suppose component Ck requires component Cl ,
this would be translated using following formula:

∀i ∈ {1, .., nb comp}
SatVar(k, i) = 1 =⇒ SatVar(l, i) = 1 (6)

3) Multiscale properties:
a) Dependant components: Multiscale properties ex-

pressed by means of the keywords SameValue and
DifferentValue are defined on several component.
Those properties express required conditions for the de-
ployment of components, and are directed by the values
provided by the referred multiscale probe. For example,
the expression Ck @ SameValue Some.MS.Scale(Cl)

expresses that instances of components Ck and Cl must
be on the same scale instance of Some.MS.Scale. Let
MSProbe be an array which associates for each device
the measure of the multiscale probe. It expresses that Ck
and Cl are respectively deployed on Di and Dj only if
Di and Dj have the same value on MSProbe, which is:

∀i, j ∈ {1, .., nb dev}
(SatVar(k, i) ∧ SatVar(l, j))

=⇒ (MSProbe(i) = MSProbe(j)) (7)

b) Placement by scale instance: Finally, a component
instance presence on a given scale (expressed by means
of the keyword Each) is defined by a constraint similar
to the previous. The set of available devices is limited
and identified from measured values by the referred
multiscale probe. For example, the expression Ck @
Each Some.MS.Scale expresses that one instance of
the component Ck must be deployed on each scale
instance of Some.MS.Scale. In order to do that, two
array are required: MSprobe, which associates to each
device the measure of the required multiscale probe, and
MSProbeId, which lists unique identifiers of each scale
instance. Previous expression would be translated using
the constraint (nb inst refers to the number of scale
instance):

∀i ∈ {1, .., nb inst} ∑
j∈{1,..,nb dev}

MSProbeId(i)=MSProbe(j)

SatVar(k, j)

 = 1 (8)

VIII. MUSCADEL SOLVING

In this section, we present the application of our
formalization through the MuScADeL code given in
Section IV. Thereafter we present our choice of the con-
straint solver. Finally we present our library of constraint
formalization and its use.

A. Matrices definition
Table Ia gives an exemple of the matrix Comp

built from the MuScADeL code presented in Sec-
tion IV. Table Ib gives an example of a matrix
Dom extracted from the domain state. In these ma-
trices, properties P1, P2, P3, P4, P5 et P6 respec-
tively refer to criteria CpuNet, HDSize, Freespace,
LinuxCrit, ActiveArduino, Device.Type.Smart-
phone, Device.StorageCapacity.Giga, and Geo-
graphy.Location.City("Toulouse").

Note that basic and multiscale probes are used to build
Dom matrix. Generally, probed measures from devices
are part of the domain state. They are provided as an

363

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I: Data on components and devices.

(a) Component matrix Comp.

P1 P2 P3 P4 P5 P6 P7 P8

C0 1 0 0 1 0 0 1 0

C1 1 0 0 1 0 0 1 0

C2 0 0 1 1 1 0 0 1

C3 0 0 1 1 0 0 0 0

C4 0 0 0 1 0 1 0 0

C5 1 1 0 1 0 0 0 0

C6 0 0 0 1 0 0 0 0

(b) Device matrix Dom.

P1 P2 P3 P4 P5 P6 P7 P8

D1 1 1 1 1 0 1 0 0

D2 1 1 1 1 0 1 0 0

D3 1 1 1 1 0 1 0 0

D4 1 1 1 1 0 1 0 1

D5 1 1 1 1 0 0 1 0

D6 0 1 0 1 0 0 1 0

D7 0 1 1 1 0 0 1 0

D8 1 1 1 1 1 0 0 1

D9 1 1 1 1 1 0 0 1

D10 1 1 1 1 1 0 0 1

D11 1 1 1 0 1 0 0 1

D12 1 1 1 1 0 1 0 1

TABLE II: Probed data from multiscale probes.

(a) Probed data from Device.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

Device.Type Scale Smartphone Smartphone Smartphone Smartphone Server Server Server PC PC PC PC Smartphone

(b) Probed data from MSNetwork.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

MAN betelgeuse betelgeuse betelgeuse persee orion orion orion persee persee persee persee persee

(c) Probed data from Geography.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

City Tournefeuille Tournefeuille Tournefeuille Toulouse Paris Paris Paris Toulouse Toulouse Toulouse Toulouse Toulouse

TABLE III: Obligation matrix Oblig.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

C0 0 0 0 0 1 0 0 0 0 0 0 0

C1 0 0 0 0 1 0 0 0 0 0 0 0

C2 0 0 0 0 0 0 0 1 1 1 0 0

C3 0 0 0 0 0 0 1 0 0 0 0 0

C4 1 1 1 0 0 0 0 0 0 0 0 0

C5 0 0 1 0 0 0 0 0 0 0 0 0

C6 0 0 1 0 0 0 1 0 0 0 0 1

array associating the device to the measure. For this
example, the solving needs information on device type,
network identification, and geolocation. The probing is
performed respectively by probes Device, MSNetwork,
and Geography: probe Device identifies the type of
the device using the Type dimension, probe MSNetwork
determinate in which medium area network the de-
vice belongs to using the scale Type.MAN, and probe
Geography locate in which city is the device using
the scale Location.City. They produce respectively
Tables IIa, IIb, and IIc.

Table III presents a possible obligation matrix, i.e.,
a deployment plan for the MuScADeL code given
in Section IV, probed data from multiscale probes
Device (cf. Table IIa), MSNetwork (cf. Table IIb), and
Geography (cf. Table IIc).

B. Constraint solver

For the generation of the deployment plan, a con-
straint solver is used. We had to make a choice on which
one to use. Table IV depicts a comparison of constraint
solvers. We choose for this comparison: Cream [20],
Copris [21], JaCoP [22], or-tools [23], jOpt [24], and
Choco [25]. All of them are Java compatible, either writ-
ten in Java, either can be interfaced with Java. There are
different kinds of problem that are handled by constraint
programming. Constraint solvers are specialized on sev-
eral kinds of problems, because their solving is treated
differently. In Table IV, acronyms CSP, COP, CP, and
JS are respectively constraint satisfaction problem, con-
straint optimization problem, constraint problem, and
job scheduling. We are not specialized on constraint
solving problem, and look for a constraint solver easy
to use. We compare constraint solvers according the

364

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

kinds of problem handled, if they are maintained or
deprecated, and if the documentation is up-to-date, and
helpful. We do not compare their resolution time because
the generation of deployment plan is not crucial on time.

TABLE IV: Constraint solvers comparison.

Problem Maintenance Documentation

Cream CSP deprecated
(2008) light

Copris COP,CSP,CP maintained almost
nonexistent

JaCoP CSP maintained existent

or-tools CSP maintained almost
nonexistent

jOpt CSP,JS maintained missing
Choco CSP maintained complete

As our problem is a constraint satisfaction problem,
the kind of problem is not discriminating. The most
pertinent for us is Choco. The library is simple to use,
with the most complete documentation.

C. MuScADeLSolving library
We present here the library MuScADeLSolving. It is

composed by the class MuscadelSolving (listing 8),
its interface MuscadelSolvingInter (listing 7), and
an exception class MuscadelSolvingExc.

The interface MuscadelSolvingInter contains
methods for constraint addition: simpleCardinality,
intervalCardinality, allCardinality, ratio,
sameDevice, sameValue, differentValue, and
each2. Method solving launches the solving of the
problem.
1 public interface MuscadelSolvingInter {
2 public void simpleCardinality (int cmp,
3 int card);
4 public void intervalCardinality(int cmp,
5 int min, int max);
6 public void allCardinality (int cmp);
7 public void ratio(int cmpP, int cmpS,
8 int ratioP, int ratioS);
9 public void sameDevice(int cmp, int dependsOn);

10 public void sameValue(int cmp1, int cmp2,
11 String[] probedData);
12 public void differentValue(int cmp1, int cmp2,
13 String[] probedData);
14 public void each (int cmp, String[] probedData);
15 public int[][] solving()
16 throws MuscadelSolvingExc;
17 }

Listing 7: Interface MuscadelSolvingInter.

The class MuscadelSolving contains matrices Comp
and Dom, the Choco model and the possibility ma-
trix SatVar. SatVar is built at the creation of an ob-
ject MuscadelSolving (the constructor calls method
preprocessing).
1 public class MuscadelSolving
2 implements MuscadelSolvingInter{
3 private Model model;

2In the Java code, indexes of row and column matrices and of arrays
begin at 0.

4 private IntegerVariable[][] satVar;
5 private int nb_comp, nb_app nb_prop;
6 private int[][] comp, dom;
7 private ArrayList<Integer> toMaximize;

9 public MuscadelSolving (int[][] comp, int[][] dom) {
10 assert(comp.length > 0) :
11 "MuscadelSolving: empty comp";

13 this.model = new CPModel();
14 this.nb_comp = comp.length;
15 this.nb_app = dom.length;
16 this.nb_prop = comp[0].length;
17 this.satVar = new IntegerVariable[nb_comp][nb_app];
18 this.comp = comp;
19 this.dom = dom;
20 toMaximize = new ArrayList<Integer>();

22 preprocessing();
23 }

Listing 8: Class MuscadelSolving.

Method preprocessing builds the possibility matrix
satVar and adds to it constraints related to the impossi-
bility for the device to host the component, as described
by formula (1).
1 private void preprocessing () {
2 int [] buffer = new int[nb_prop];
3 // For each variable the domain is defined
4 int[] values = {0,1};
5 for (int i = 0; i < nb_comp; i++) {
6 for (int j = 0; j < nb_app; j++) {
7 satVar[i][j] =
8 Choco.makeIntVar("var_" + i + "_" + j, values);
9 model.addVariable(satVar[i][j]);

10 }
11 }
12 for (int i = 0; i < nb_comp; i++) {
13 for (int j = 0; j < nb_app; j++) {
14 boolean cont = true;
15 for (int k = 0; k < nb_prop; k++) {
16 if (!cont) break;
17 buffer[k] = comp[i][k] * dom[j][k];
18 cont = cont & (buffer[k] == comp[i][k]);
19 }
20 if (!cont)
21 model.addConstraint(Choco.eq(0, satVar[i][j]));
22 }
23 }
24 }

Listing 9: Method MuscadelSolving.preprocessing.

Method simpleCardinality adds simple cardinal-
ity constraint, e.g., as described by the formula (2).
1 public void simpleCardinality (int cmp, int card) {
2 model.addConstraint(Choco.eq(card,
3 Choco.sum(satVar[cmp])));
4 }

Listing 10: Method MuscadelSolving.simpleCardinality.

Method intervalCardinality adds interval car-
dinality constraints –e.g., in listing 5 at line 5– as de-
scribed by the formula (3). In addition to constraints,
this method adds the row of the given component to
the list of satVar rows to maximize.
1 public void intervalCardinality(int cmp, int min, int max) {
2 model.addConstraint(Choco.leq(min,
3 Choco.sum(satVar[cmp])));
4 model.addConstraint(Choco.geq(max,
5 Choco.sum(satVar[cmp])));
6 toMaximize.add(cmp);
7 }

Listing 11: Method MuscadelSolving.intervalCardinality.

365

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Method allCardinality adds All cardinality con-
straint, as described by the formula (4). A constraint is
added to specify that at least one instance of a com-
ponent must be deployed on the deployment domain,
and the row corresponding to the component in matrix
satVar is added to the list of rows to maximize.
1 public void allCardinality (int cmp) {
2 model.addConstraint(Choco.leq(1,
3 Choco.sum(satVar[cmp])));
4 toMaximize.add(cmp);
5 }

Listing 12: Method MuscadelSolving.allCardinality.

Method ratio adds a ratio constraint between com-
ponents, as described by the formula (5). It has as
parameters the components concerned by the ratio, the
numerator and the denominator.
1 public void ratio (int cnum, int cdenom,
2 int rnum, int rdenom) {
3 Constraint ratio =
4 Choco.eq(Choco.sum(satVar[cnum]),
5 Choco.mult(rnum,
6 Choco.div(Choco.sum(satVar[cdenom]), rdenom)));
7 model.addConstraint(ratio);
8 }

Listing 13: Method MuscadelSolving.ratio.

Method sameValue and differentValue add mul-
tiscale dependant component constraints, as described
by the formula (7). They have as parameters referred
components and an array of probed data, e.g., the array
in Table IIc.
1 public void sameValue (int cmp1, int cmp2,
2 String[] probedData) {
3 checkValue(cmp1, cmp2, probedData, true);
4 }
5 public void differentValue(int cmp1, int cmp2,
6 String[] probedData) {
7 checkValue(cmp1, cmp2, probedData, false);
8 }
9 private void checkValue (int cmp1, int cmp2,

10 String[] probedData, boolean diff) {
11 assert probedData.length == nb_app :
12 "checkValue tab size problem !";

14 for (int m1 = 0; m1 < nb_app; m1++) {
15 for (int m2 = 0; m2 < nb_app; m2++) {
16 if (! (diff ˆ probedData[m1].
17 equals(probedData[m2])))
18 continue;
19 model.addConstraint(Choco.geq(1,
20 Choco.plus(satVar[cmp1][m1],
21 satVar[cmp2][m2])));
22 }
23 }
24 }

Listing 14: Methods MuscadelSolving.sameValue and
MuscadelSolving.differentValue.

Method each adds constraint related to the placement
of a component instance by scale instance, as described
by the formula (8). It has as parameter the referred
component and an array of probed data.
1 public void each (int cmp, String[] probedData) {
2 assert probedData.length == nb_app :
3 "Each tab size problem !";

5 HashMap<String, ArrayList<Integer>> id =
6 new HashMap<String,ArrayList<Integer>>();

7 // Construction of id/index map
8 for (int i = 0; i < probedData.length; i++) {
9 if (id.containsKey(probedData[i]))

10 id.get(probedData[i]).add(i);
11 else {
12 ArrayList<Integer> ids = new ArrayList<Integer>();
13 ids.add(i);
14 id.put(probedData[i], ids);
15 }
16 }
17 // Constraint addition
18 for (String str : id.keySet()) {
19 IntegerExpressionVariable add=Choco.ZERO;
20 for (Integer index : id.get(str)) {
21 add = Choco.plus(satVar[cmp][index], add);
22 }
23 Constraint check = Choco.eq(1, add);
24 model.addConstraint(check);
25 }
26 }

Listing 15: Method MuscadelSolving.each.

Method sameDevice adds constraint related to com-
ponent dependency, as described by the formula (6). This
dependency is specified at the component definition, as
shown in the listing 1 at line 9.
1 public void sameDevice (int cmp, int dependsOn) {
2 Constraint[] ors = new Constraint[nb_app];
3 for (int i = 0; i < nb_app; i++) {
4 ors[i] = Choco.eq(2,
5 Choco.plus(satVar[cmp][i], satVar[dependsOn][i]));
6 }
7 model.addConstraint(Choco.or(ors));
8 }

Listing 16: Method MuscadelSolving.sameDevice.

Method solving launches the constraint solver’s
solving. If there is no row on the matrix satVar to max-
imize, the solving is launched directly. Otherwise, max-
imization instructions are added to the Choco model,
then the solving is launched. Thereafter, the feasibility of
the problem is checked: if the problem has no solution an
exception MuscadelSolvingExc is thrown, otherwise,
the first solution is returned.
1 public int[][] solving() throws MuscadelSolvingExc {
2 Solver solver = new CPSolver();

4 if (toMaximize.size() == 0) {
5 solver.read(model);
6 solver.solve();
7 } else {
8 int up = nb_app*toMaximize.size();
9 IntegerVariable maxx = Choco.makeIntVar("max", 1, up);

10 IntegerExpressionVariable add = Choco.ZERO;
11 for (Integer all : toMaximize) {
12 add = Choco.plus(add, Choco.sum(satVar[all]));
13 }
14 model.addConstraint(Choco.eq(maxx, add));
15 solver.read(model);
16 solver.maximize(solver.getVar(maxx),true);
17 }

19 try{
20 if (solver.isFeasible()) {
21 int [][] result = new int[nb_comp][nb_app];
22 for (int i = 0; i < nb_comp; i++) {
23 for (int j = 0; j < nb_app; j++) {
24 result[i][j] =
25 solver.getVar(satVar[i][j]).getVal();
26 }
27 }
28 return result;
29 } else {
30 throw (new MuscadelSolvingExc("No solution")); }

366

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

31 } catch (NullPointerException e) {
32 throw (new MuscadelSolvingExc("No solution"));}
33 }

Listing 17: Method MuscadelSolving.solving.

D. MuScADeLSolving library use

The class IJAS (listing 18) presents the constraint
addition phase of the exemple presented in Section IV,
listing 5. It contains the main method that builds matri-
ces Comp and Dom (for the example they are given and
not generated by the MuScADeL code analysis), calls
MuScADeLSolving methods to add specific constraints,
launches the solving, and prints the resulting matrix
Oblig. The console output is shown in listing 19. This
program represents the calculation of the deployment
plan of the MuScADeL code presented in Section IV,
listing 5.
1 public class IJAS {
2 static void printOblig(int[][]oblig) { ... }
3 public static void main(String[] args) {
4 int [][] comp = {
5 { 1, 0, 0, 1, 0, 0, 1, 0 },
6 { 1, 0, 0, 1, 0, 0, 1, 0 },
7 { 0, 0, 1, 1, 1, 0, 0, 1 },
8 { 0, 0, 1, 1, 0, 0, 0, 0 },
9 { 0, 0, 0, 1, 0, 1, 0, 0 },

10 { 1, 1, 0, 1, 0, 0, 0, 0 },
11 { 0, 0, 0, 1, 0, 0, 0, 0 },
12 };
13 int[][] dom = {
14 { 1, 1, 1, 1, 0, 1, 0, 0 },
15 { 1, 1, 1, 1, 0, 1, 0, 0 },
16 { 1, 1, 1, 1, 0, 1, 0, 0 },
17 { 1, 1, 1, 1, 0, 1, 0, 1 },
18 { 1, 1, 1, 1, 0, 0, 1, 0 },
19 { 0, 1, 0, 1, 0, 0, 1, 0 },
20 { 0, 1, 1, 1, 0, 0, 1, 0 },
21 { 1, 1, 1, 1, 1, 0, 0, 1 },
22 { 1, 1, 1, 1, 1, 0, 0, 1 },
23 { 1, 1, 1, 1, 1, 0, 0, 1 },
24 { 1, 1, 1, 0, 1, 0, 0, 1 },
25 { 1, 1, 1, 1, 0, 1, 0, 1 }
26 };

28 System.out.println(
29 "\tGeneration of the deployment plan");
30 MuscadelSolving solv =
31 new MuscadelSolving(comp, dom);

33 //C1 @ CpuNet, Device.StorageCapacity.Giga;
34 solv.simpleCardinality(1, 1);

36 // CO requirements are the same than C1;
37 solv.sameDevice(1,0);
38 solv.simpleCardinality(0, 1);

40 // C2 @ 2..4, Geography.Location.City("Toulouse");
41 solv.intervalCardinality(2, 2, 4);

43 // C3 @ SameValue Device.Type(C1);
44 solv.simpleCardinality(3, 1);
45 String[] deviceType =
46 { "Smartphone", "Smartphone", "Smartphone",
47 "Smartphone", "Server", "Server", "Server",
48 "PC", "PC", "PC", "PC", "Smartphone" };
49 solv.sameValue(3, 1, deviceType);

51 // C4 @ All, Device.Type.Smartphone;
52 solv.allCardinality(4);

54 // C5 @ 1/3 C4, SameValue MSNetwork.Type.MAN(C4);
55 solv.ratio(5, 4, 1, 3);
56 String[] man =
57 { "betelgeuse", "betelgeuse", "betelgeuse",

58 "persee", "orion", "orion", "orion", "persee",
59 "persee", "persee", "persee", "persee" };
60 solv.sameValue(5, 4, man);

62 // C6 @ Each Geography.Location.City;
63 String[] cities =
64 { "Tournefeuille", "Tournefeuille", "Tournefeuille",
65 "Toulouse", "Paris", "Paris", "Paris", "Toulouse",
66 "Toulouse", "Toulouse", "Toulouse", "Toulouse" };
67 solv.each(6, cities);

69 try {
70 int[][] oblig = solv.solving();
71 printOblig(oblig);
72 } catch (MuscadelSolvingExc e) {
73 System.err.println("Problem during the solving.");
74 }
75 }
76 }

Listing 18: Main class IJAS.

1 Generation of the deployment plan
2 Oblig :
3 C0 : 0 0 0 0 1 0 0 0 0 0 0 0
4 C1 : 0 0 0 0 1 0 0 0 0 0 0 0
5 C2 : 0 0 0 0 0 0 0 1 1 1 0 0
6 C3 : 0 0 0 0 0 0 1 0 0 0 0 0
7 C4 : 1 1 1 0 0 0 0 0 0 0 0 0
8 C5 : 0 0 1 0 0 0 0 0 0 0 0 0
9 C6 : 0 0 1 0 0 0 1 0 0 0 0 1

Listing 19: Console output.

IX. CONCLUSION AND FUTURE WORK

In this paper, we firstly present MuScADeL, a DSL
for multiscale and autonomic deployment, and explain
the various elements of the language by means of an
example. Then, we present how the deployment plan
is computed, using a compiler, and a constraint solver.
MuScADeL allows to express the deployment properties
of a multiscale software system and its components.
These properties drive the computation of the deploy-
ment plan, and are used by the autonomic deployment
system do detect (and possibly repair) any property
violation at the application runtime.

Another part of our work concerns the realization
of this autonomic deployment system. We are design-
ing it as a middleware, on the same basis than first
experiments described in our previous work [9]. This
middleware will enable deployment in multiscale en-
vironments. It provides the probes needed to gather
information about the hosts.

We believe that a DSL is the best way for a deploy-
ment designer to describe deployment requirements and
constraints. A DSL has much more expressiveness than
any Markup Language (such as XML), and is more
efficient since the deployment designer expresses (and
read) directly concepts of its field of expertise. Moreover,
modern tools for making DSL allows their designers to
integrate several level of validation (not only syntactic
but also semantic).

Presently, MuScADeL targets the installation and acti-
vation activities. Other activities and features, as prop-
erty infringement at application runtime, are hard coded

367

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in the deployment management system. We plan to
move some of them at the DSL level, to increase ex-
pressiveness and flexibility when designing deployment.
For example, we can add in the grammar the keyword
on-deinstall or on-update to define actions to per-
form when deinstalling or updating a component.

Focusing on multiscale systems, we do need a sound
and extensible vocabulary to describe the dimensions
and their scales. In the INCOME project, another on-
going work aims at defining an ontology for multiscale
distributed systems. We continuously integrate these
concepts in MuScADeL.

Besides, we are currently working on a toolchain for
our DSL. Using Xtext and Xtend frameworks [19], we
have realized an Eclipse plugin for the edition of the
DSL that makes it multi-platform compliant and easy-
to-use for a deployment designer. We have also realized
a compiler and a solving algorithm to generate the
deployment plan. Using this IDE and the compiler, the
deployment designer expresses deployment properties,
and launches the generation of the deployment plan. The
DSL, the Eclipse plugin, the compiler, and the solving
algorithm are part of the deliverables of the INCOME
project.

ACKNOWLEDGMENTS

This work is part of the French National Research
Agency (ANR) project INCOME [5] (ANR-11-INFR-009,
2012-2015). The authors thank all the members of the
project that contributed directly or indirectly to this
paper.

APPENDIX

This appendix presents the EBNF syntax of MuScA-
DeL.
〈root〉 ::= 〈muscadel-element〉+

〈muscadel-element〉 ::= 〈include〉
| 〈probe〉
| 〈bcriterion〉
| 〈component〉
| 〈msprobe〉
| 〈deployment〉

〈include〉 ::= ’Include’ ’"’ 〈file-id〉 ’"’

〈probe〉 ::= ’Probe’ 〈probe-id〉 ’{’
’ProbeInterface’ 〈interface〉
(’URL’ 〈string〉)?
’}’

〈probe-id〉 ::= 〈id〉

〈interface〉 ::= 〈interface-id〉 (’.’ 〈interface-id〉)*

〈interface-id〉 ::= 〈id〉

〈bcriterion〉 ::= ’BCriterion’ 〈bcriterion-id〉 ’{’
(〈condition〉 ’;’)+
’}’

〈bcriterion-id〉 ::= 〈id〉

〈condition〉 ::= 〈probe-id〉 ’.’ 〈method-id〉 〈comp〉
〈probe-value〉

| 〈probe-id〉 ’Exists’
| 〈probe-id〉 ’Active’

〈method-id〉 ::= 〈id〉

〈probe-value〉 = 〈int〉
| 〈string〉

〈comp〉 ::= ’<’ | ’>’ | ’<=’ | ’>=’ | ’=’

〈component〉 ::= ’Component’ 〈component-id〉 ’{’
’Version’ 〈int〉
’URL’ 〈string〉
(’DeploymentInterface’ 〈interface〉)?
(’Dependency’ (〈component-id〉)+)?
(’InitOnly’? ’Constraint’ 〈bcriterion-id〉)*
’}’

〈component-id〉 ::= 〈id〉

〈msprobe〉 ::= ’MultiScaleProbe’ 〈msprobe-id〉 ’{’
’MultiScaleProbeInterface’ 〈interface〉
’URL’ 〈string〉
’}’

〈ms-probe-id〉 ::= 〈id〉

〈deployment〉 ::= ’Deployment’ ’{’
(’AllHosts’ (〈bcriterion-id〉)+ ’;’)?
(〈deployment-requirement〉 ’;’)+
’}’

〈deployment-requirement〉 ::= 〈component-id〉 ’@’
〈requirement-rhs〉 (’,’ 〈requirement-rhs〉)+
’;’

〈requirement-rhs〉 ::= ’Each’ 〈mscriterion-scale〉
| ’SameValue’ 〈mscriterion-dependency〉
| ’DifferentValue’ 〈mscriterion-dependency〉
| 〈mscriterion〉
| 〈bcriterion-id〉
| 〈ratio〉
| 〈location〉
| 〈cardinality〉

〈mscriterion-dependency〉 ::= 〈msprobe-id〉 ’.’ 〈dim-id〉 ’(’
〈component-id〉 ’)’

| 〈msprobe-id〉 ’.’ 〈dim-id〉 ’.’ 〈scale-id〉 ’(’
〈component-id〉 ’)’

368

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

〈mscriterion-scale〉 ::= 〈msprobe-id〉 ’.’ 〈dim-id〉 ’.’ 〈scale-id〉

〈mscriterion〉 ::= 〈mscriterion-scale〉
| 〈msprobe-id〉 ’.’ 〈dim-id〉 ’.’ 〈scale-id〉 ’(’
〈string〉 ’)’

〈dim-id〉 ::= 〈id〉

〈sc-id〉 ::= 〈id〉

〈ratio〉 ::= 〈int〉 ’/’ 〈int〉 〈component-id〉

〈location〉 ::= 〈int〉 ’.’ 〈int〉 ’.’ 〈int〉 ’.’ 〈int〉

〈cardinality〉 ::= 〈int〉
| 〈interval〉
| ’All’

〈interval〉 ::= 〈int〉 ’..’ 〈int〉
REFERENCES

[1] R. Boujbel, S. Leriche, and J.-P. Arcangeli, “A DSL for multi-
scale and autonomic software deployment,” in International
Conference on Software Engineering Advances (ICSEA 2013),
L. Lavazza, R. Oberhauser, A. Martin, J. Hassine, M. Gebhart,
and M. Jäntti, Eds., 2013, pp. 291–296.

[2] G. Blair and P. Grace, “Emergent middleware: Tackling the inter-
operability problem,” IEEE Internet Computing, vol. 16, no. 1, pp.
78–82, jan.-feb. 2012.

[3] M. Kessis, C. Roncancio, and A. Lefebvre, “DASIMA: A flexible
management middleware in multi-scale contexts,” in 6th Int.
Conf. on Information Technology: New Generations (ITNG ’09),
april 2009, pp. 1390–1396.

[4] M. van Steen, G. Pierre, and S. Voulgaris, “Challenges in very
large distributed systems,” Journal of Internet Services and Ap-
plications, vol. 3, no. 1, pp. 59–66, 2012.

[5] J.-P. Arcangeli, A. Bouzeghoub, V. Camps, C. M.-F. Canut,
S. Chabridon, D. Conan, T. Desprats, R. Laborde, E. Lavinal,
S. Leriche, H. Maurel, A. Péninou, C. Taconet, and P. Zaraté,
“INCOME - Multi-scale context management for the Internet of
Things,” in Ambient Intelligence, 3rd Int. Joint Conf. AmI 2012,
ser. Lecture Notes in Computer Science, F. Paternò, B. E. R. d.
Ruyter, P. Markopoulos, C. Santoro, E. v. Loenen, and K. Luyten,
Eds., vol. 7683. Springer, 2012, pp. 338–347.

[6] S. Rottenberg, S. Leriche, C. Lecocq, and C. Taconet, “Vers une
définition d’un système réparti multi-échelle,” in Journées fran-
cophones Mobilité et Ubiquité (UBIMOB). Cépaduès Editions,
2012, In French.

[7] S. Rottenberg, S. Leriche, C. Taconet, C. Lecocq, and T. Desprats,
“From Smartdust to Cloud: The emergence of multiscale dis-
tributed systems,” 2013, Unpublished Paper.

[8] A. Carzaniga, A. Fuggetta, R. S. Hall, D. Heimbigner, A. van der
Hoek, and A. L. Wolf, “A characterization framework for software
deployment technologies,” Defense Technical Information Center
(DTIC) Document, Tech. Rep., april 1998.

[9] M. E. A. Matougui and S. Leriche, “A middleware architecture
for autonomic software deployment,” in The 7th Int. Conf. on
Systems and Networks Communications (ICSNC’12). Lisbon,
Portugal: XPS, 2012, pp. 13–20, 12619 12619. [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00755352

[10] J. O. Kephart and D. M. Chess, “The vision of autonomic com-
puting,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

[11] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific lan-
guages: An annotated bibliography,” ACM Sigplan Notices,
vol. 35, no. 6, pp. 26–36, 2000.

[12] M. Strembeck and U. Zdun, “An approach for the systematic
development of domain-specific languages,” Software: Practice
and Experience, vol. 39, no. 15, pp. 1253–1292, 2009.

[13] J.-P. Tolvanen and S. Kelly, “Integrating models with domain-
specific modeling languages,” in Proceedings of the 10th
Workshop on Domain-Specific Modeling, ser. DSM ’10. New
York, NY, USA: ACM, 2010, pp. 10–1. [Online]. Available:
10.1145/2060329.2060354

[14] A. Flissi, J. Dubus, N. Dolet, and P. Merle, “Deploying on the grid
with deployware,” in CCGRID. IEEE Computer Society, 2008,
pp. 177–184.

[15] A. Dearle, G. N. C. Kirby, and A. J. McCarthy, “A framework
for constraint-based deployment and autonomic management of
distributed applications,” in International Conference on Auto-
nomic Computing (ICAC’04). IEEE Computer Society, 2004, pp.
300–301.

[16] A. Dearle, G. N. C. Kirby, and A. McCarthy, “A middleware
framework for constraint-based deployment and autonomic man-
agement of distributed applications,” CoRR, vol. abs/1006.4733,
2010.

[17] K. Sledziewski, B. Bordbar, and R. Anane, “A DSL-based ap-
proach to software development and deployment on cloud,” in
24th IEEE Int. Conf. on Advanced Information Networking and
Applications (AINA 2010). IEEE Computer Society, 2010, pp.
414–421.

[18] S. Malek, N. Medvidovic, and M. Mikic-Rakic, “An extensible
framework for improving a distributed software system’s deploy-
ment architecture,” IEEE Transactions on Software Engineering,
vol. 38, no. 1, pp. 73–100, 2012.

[19] M. Eysholdt and H. Behrens, “Xtext: implement your language
faster than the quick and dirty way,” in SPLASH/OOPSLA Com-
panion, ser. Companion to the 25th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages,
and Applications, SPLASH/OOPSLA 2010, October 17-21, 2010,
Reno/Tahoe, Nevada, USA, W. R. Cook, S. Clarke, and M. C.
Rinard, Eds. ACM, 2010, pp. 307–309.

[20] N. Tamura, “Cream: Class library for constraint programming
in Java,” last access: June 2014. [Online]. Available: http:
//bach.istc.kobe-u.ac.jp/cream

[21] ——, “Copris: Constraint Programming in Scala,” last access: June
2014. [Online]. Available: http://bach.istc.kobe-u.ac.jp/copris/

[22] K. Kuchcinski and R. Szymanek, “JaCoP - Java constraint
programming solver,” last access: June 2014. [Online]. Available:
http://jacop.osolpro.com/

[23] “or-tools, operations research tools developed at Google,” last
access: June 2014. [Online]. Available: https://code.google.com/
p/or-tools/

[24] “jOpt, Java OPL implementation,” last access: June 2014. [Online].
Available: http://jopt.sourceforge.net/opl.php

[25] C.H.O.C.O. Team, “CHOCO: an open source Java constraint
programming library,” Ecole des Mines de Nantes, Tech. Rep.
10-02-INFO, 2010, last access: June 2014. [Online]. Available:
http://www.emn.fr/z-info/choco-solver/

369

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Overall Framework for Reasoning About
UML/OCL Models Based on Constraint Logic

Programming and MDA

Beatriz Pérez
Department of Mathematics and Computer Science,

University of La Rioja,
Logroño, Spain.

Email: beatriz.perez@unirioja.es

Ivan Porres
Department of Information Technologies,

Åbo Akademi University,
Turku, Finland

Email: ivan.porres@abo.fi

Abstract—Due to the widespread adoption of the Model Driven
Engineering paradigm, models have become cornerstone compo-
nents in the software development process. This fact requires ver-
ifying such models’ correctness in order to ensure the quality of
the final product. In this context, the Unified Modeling Language
(UML) and the Object Constraint Language (OCL) constitute
two of the most commonly used modeling languages. We have
defined an overall framework to reason about UML/OCL models
based on Constraint Logic programming (CLP). In particular,
as model finding and design space exploration tool, we use
Formula. We show how to translate a UML model into a CLP
program following a Meta–Object Facility (MOF) like frame-
work. Furthermore, we enhance our proposal by identifying an
expressive fragment of OCL, which guarantees finite satisfiability
and we show its translation to Formula. We also complete
our approach by developing the CD2Formula Eclipse plug–in,
which implements, following a Model Driven Architecture (MDA)
approach, our UML model to Formula translation proposal.
The proposed framework can be used to reason, validate and
verify UML software designs by checking correctness properties
and generating model instances using the model exploration tool
Formula.

Keywords–UML, OCL, Constraint Logic Programming, reason-
ing, model verification, MDA

I. INTRODUCTION

This paper is an extension of the work presented in [1]. Due
to the widespread adoption of the Model Driven Engineering
(MDE) [2] paradigm, models have become cornerstone com-
ponents in the software development process. This fact requires
verifying not only the completeness of such models but also
their correctness in order to ensure the quality of the final
product, reducing time to market and decreasing development
costs. In this context, the Unified Modeling Language (UML)
and the Object Constraint Language (OCL) constitute two of
the most commonly used modeling languages. On the one
hand, UML [3] has been widely accepted as the de–facto
standard for building object-oriented software. OCL [4], on
the other hand, has been introduced into UML as a logic-
based sublanguage to express integrity constraints that UML
diagrams cannot convey by themselves.

Unfortunately, in some occasions, possible design errors
are not detected until the later implementation stages, thus
increasing the cost of the development process [5], [6]. This

situation requires a wide adoption of formal methods within the
software engineering community. In this line, there have been
remarkable efforts to formalize UML semantics to solve am-
biguity and under specification detected in UML’s semantics.
The formalization and analysis of the specific UML modeled
artifacts can be done by carrying out a translation to another
language that preserves its semantics [5], [6], [7], [8]. The
resulted translation can be used to reason about the software
design by checking predefined correctness properties about the
original model [6].

In this paper, we propose to use the Constraint Logic
programming (CLP) paradigm as a complementary method for
UML modeling foundations, including models’ satisfiability
and inspection. More specifically, we focus on UML class
diagrams (CD), annotated with OCL constraints, which are
considered to be the mainstay of Object-Oriented analysis
and design for representing the static structure of a system.
Considering CD/OCL models as model representation, we
propose an overall framework to reason about such models
based on CLP. In particular, as model finding and design
space exploration tool we use Formula [9], which stands
on algebraic data types (ADT) and CLP, and which has
been proved to provide several advantages, including more
expressivity, over using other tools [10], [11]. The defined
framework is two–fold. Firstly, we have conceptually defined
a proposal for the translation of CD/OCL models to Formula.
Secondly, we have used a Model Driven Development (MDA)
based approach [12] to automatically generate the Formula
specification from a class diagram. As for the first contribution,
we give a proposal for the translation of a UML model
into a Constraint Satisfaction Problem following a multilevel
Meta–Object Facility (MOF) like framework. We enhance our
proposal by identifying a fragment of OCL that guarantees
finite satisfiability, while being, at the same time, considerably
expressive. We also show how to translate such OCL fragment
to Formula, by giving, as an intermediate step, a representation
of the OCL constraints as First-Order Logic (FOL) expres-
sions. As for the second contribution, we have implemented
our class diagram to Formula translation approach by using
a model-to-text (M2T) transformation tool, obtaining a set
of transformation files defined in such a tool. Additionally,
we have integrated the resulted files into an Eclipse plug–
in, called CD2Formula plug–in, we have developed to easily

370

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and automatically transform a class diagram to Formula. The
proposed framework can be used to reason, validate and verify
UML software designs by checking correctness properties and
generating model instances using the model exploration tool
Formula.

As advanced previously, the results presented in this paper
are based on the work published by the authors of this paper
in [1]. In this paper we provide an extended version of that
work, presenting the development of our CD2Formula plug–in
as additional contribution.

The remainder of the paper proceeds as follows. In Sec-
tion II we provide a brief introduction to Formula. An overview
of our framework is presented in Section III. Section IV
presents the translation of a class diagram to Formula, while
Section V describes the chosen OCL fragment and its repre-
sentation into Formula. The automatic MDA–based translation
of a UML class diagram to Formula, together with the develop-
ment of our CD2Formula plug–in, is presented in Section VI.
Section VII summarizes the strengths and weaknesses of our
approach and discusses related work. Finally, Section VIII
presents our main conclusions and future work.

II. A BRIEF OVERVIEW OF FORMULA

In this section, we provide a general background of the
Formula language by presenting the basic Formula concepts.
In order to illustrate these basic concepts, we will lean on
Figure 1, which, as we will explain later in detail, corresponds
to an excerpt of a specific Formula domain we propose to
define for translating class diagrams to Formula, but that we
use here for explanatory purposes.

A. Formula units and design–space exploration

Formula distinguishes three units for modeling the prob-
lem: domains, models and partial models. Modeling in For-
mula always starts with specifying the problem domain and
formalizing an abstraction of the problem that can be used by
Formula to reason about the design [13]. A Formula domain
FD is the basic specification unit in Formula for an abstraction
and allows specifying ADTs and a logic program describing
properties of the abstraction. The logic programming paradigm
provides a formal and declarative approach for specifying
such abstractions [9], which in Formula are represented by
rules and queries. A Formula model FM is a finite set of
data type instances built from constructors of the associated
domain FD, and which satisfies all its constraints [9]. Formula
allows to specify individual concrete instances of the design-
space or parts thereof, in a specific Formula unit called partial
model [9]. A Formula partial model FPM is a set of instance-
specific facts placed along with some explicitly mentioned
unknowns, which correspond to the parts of the model FM
that must be solved. FPMs allow unknowns to be combined
with parts of the model that are already fixed [9].

Finally, in order to explore the design–space, Formula loads
the specification of the domains and the partial models defined
for the specific problem and executes the logic program. The
execution finds all intermediate facts that can be derived from
the given facts in the partial model, and tries to find valid
assignments for the unknowns. This step is carried out by the
Formula solver, which, in case it finds a solution that satisfies

all encoded constraints, will reconstruct a complete instance
model from this information made of known facts [10], [11].

domain extends

primitive
primitive

conforms

Figure. 1: An extract of a Formula domain.

B. Domains’ syntax

Basically, a Formula domain consists of abstract data
types, rules and queries. Firstly, abstract data types constitute
the key syntactic elements of Formula. Based on the defined
data types, a number of rules and queries are specified as logic
program expressions, ensuring the remaining constraints [9].
Roughly speaking, rules specify implications and queries
restrict the valid states by specifying forbidden states.

Abstract data types. They are defined by using the operator
::=, indicating in the right hand side their properties by means
of fields. A data type definition can be labeled with the
primitive keyword, denoting that it can be used for the
extension of other type definitions. Otherwise, the data type
results in a derived constructor. As a way of example, in line
3 of Figure 1 we define the Class data type representing
the UML Class meta–element constructor. The derived type
Classifier, on the other hand, is defined as the union of
the Class and Association types (see line 5 of Figure 1).

Around data types, Formula defines different categoriza-
tions of the structural elements as building blocks for defining
Formula expressions. These elements are mainly Formula
terms and predicates.

As it can be inferred from the Help Formula Documenta-
tion [13], Formula distinguishes different types of terms, which
could be established to be classified into two generalization
groups: (1) simple and composite terms, and (2) what they call
simply Terms (see Figure 2). On the one hand, Formula defines
simple terms and compound terms. A simple term is repre-
sented by means of a type identifier containing variables, con-
stants, or other simple terms as arguments, within parenthesis.
As a way of example, in line 7 of Figure 1 we show the simple
term Association(name1,_,_,_,_,_,_), which rep-
resents all instances of the Association term, where the first
parameter is set to the name1 property. The other fields of
this type (e.g., the srcType, srcLower, srcUpper,
dstType, dstLower and dstUpper fields) are filled
with a do not-care symbol (‘ ’), so that Formula will find
valid assignments. A compound term, on the other hand, is
represented by means of a type identifier with a list of Terms
within parenthesis. As for the other generalization group, on
the other hand, the building blocks of Terms are atoms (for

371

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

{incomplete,disjoint}

{incomplete,disjoint}

{complete,disjoint}

Figure. 2: Several of the Formula structural elements.

example the identifiers of variables and queries, explained
later), arithmetic or aggregation expressions among other
terms (sum, count, max, min, etc.), or compound terms.

All these different types of terms are, directly or indirectly,
the basis for constructing predicates, which constitute the basic
units of data, used for defining queries and rules. Among
the different kind of predicates, we can note (see Figure 2):
(1) compound terms, (2) binding terms (that is, gluing a
variable to either a type expression or a compound term)
and (3) constraints, which are defined by applying relational
operators <,>=, !=, etc. among terms. An example of a
binding term can be seen in line 7 of Figure 1, a1 is
Association(name1,_,_,_,_,_,_), where the vari-
able a1 is bound to the type expression Association. A
constraint between terms is also shown in line 7, particularly
in the expression a1 != a2.

Rules. They are specified by the operator :-, indicating, in
the left hand, a simple term and, in the right hand, the list of
predicates specifying the rule. A rule behaves like a universally
quantified implication; whenever the relations on the right
hand hold for some substitution of the variables, then the left
hand holds for that same substitution [10], [11]. The intuition
of rules is production; they create new entries in the fact-
base of Formula, populating previous defined types with facts
representing the members in the collection given in the rule.

Queries. Formula reserves a new syntax element for rules
where left–hand side is a nullary construction [10], [11].
A query behaves like a propositional variable that is true
if and only if the right hand side of the definition is true
for some substitution [10], [11]. Queries are constructed by
the operator :=, and can be also used like propositional
variables to construct other queries. In particular, Formula
defines in every domain the conforms standard query, where
all constraints come together, and which defines how a valid
instance of the domain have to look like. Based on the
existential quantification semantics of queries, the universal
quantification can be achieved by verifying the negation of a
query representing the opposite of the original predicate. For
example, in order to ensure that upper bounds of associations’
multiplicities are upper than or equal to lower bounds, we

firstly need to define a query representing the existence of
associations verifying the opposite (see the definition of the
query errorBadMultInterval in line 6 of Figure 1). With
this query, we are considering such incoherent situation as
a valid state. Thus, in order to verify that such situation is
invalid, we include the negation (‘!’) of the query in the
conforms query (line 9).

III. ENCODING UML/OCL MODELS INTO FORMULA

As we have advanced previously, our proposal follows
a MOF-like metamodeling approach, which is based on the
framework the developers of the Formula tool give in [11].
In particular, the framework provided in [11] gives a repre-
sentation in Formula of part of the key concepts defined both
at the MOF meta–level [3], representing the M2 level, and at
the instance–level [3], representing the M1 level for the object
diagram. The resulted Formula expressions are grouped in an
only Formula domain, which is used by the Formula solver
to find, if it exists, a valid set of instances of arbitrary class
diagrams at the M1 level (conforming with their MOF meta–
level representation) and its corresponding instances at the M0
level (conforming with their instance–level representation). We
remark that the authors in [10], [11] do not give a specific
approach for the translation of OCL constraints.

Based on this proposal, we have extended and modified it
giving weight to four main aspects. Firstly, we have mainly
focused on obtaining a more faithful representation of the
MOF structural distribution, specifying a richer metamodeling
framework. Our extended proposal is materialized into four
different Formula units distributed along the MOF meta levels,
which ease the application and the understandability of our
approach, while promoting units reutilization. Secondly, we
provide an approach based on the CLP paradigm for analyzing
model instances of specific class diagrams, and not arbitrary
ones as authors in [10], [11] do, which we consider not
enough when needed to reason about specific class diagrams.
Thirdly, in contrast to [10], [11], we give an approach for
translating OCL constraints to Formula by; (1) identifying a
significantly expressive fragment of OCL, and (2) providing
its translation into Formula. Finally, we have implemented part

372

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

parents
*

Person

name: String
age: Integer
gender: Gender

children * family

* Company

name: String
activity: String

Contract

salary: Real
startDate: Date

1..*

employee employer

Gender

male
female

<<enumeration>>

Figure. 3: Case study.

of our translation approach based on MDA, by means of the
development of our CD2Formula Eclipse plug–in.

Each Formula unit defined in our approach contains two
blocks of Formula expressions, related to the translation of the
UML class diagram structural aspects (see Section IV) and its
OCL constraints (see Section V), respectively. Our approach
is illustrated with the case study of Figure 3, designed for
explanation purposes covering basic aspects. In particular, this
model describes both the contractual relationship between a
“Company” and a “Person”, and the family recursive relation-
ship connecting the class “Person”.

IV. TRANSLATION OF A CLASS DIAGRAM STRUCTURAL
ELEMENTS

In this section, we present a brief introduction of the
rules we have defined to transform a class diagram (CD),
conforming with the UML metamodel [3] (M), into Formula.
Due to space reasons, in this paper we mainly focus on a set
of basic structural UML class diagram features (UML class,
attribute, association) for being frequently used for modeling
structural aspects of systems, and also provide the translation
of the UML Classifier element and Association classes. Next,
we briefly explain their translation classifying the generated
Formula instructions into the different MOF levels. For the
explanation, we lean on Table I.

A. Classes, Associations and Properties

The translation of UML Classes, Associations and Proper-
ties into Formula follows the following proposal.

Level M2. For each meta model element Class, Association
or Property ϵ M, we define a primitive Formula data type
with the same name and with specific fields (see level M2 in
Table I). For example, in the case of classes, we define the data
type Class(;) ϵ CPS, with two String fields (name and
isAbstract). The definition of these data types allows For-
mula to create Formula instances representing specific UML
classes, associations and types of properties, respectively, at the
M1 level. In the case of the Property element ϵ M, we define
a type for each build-in type, called typeNameProperty,
with specific fields (see Table I). In addition to Integer,
String and Boolean, included in [11], we also give support
to Real, LiteralNull and UnlimitedNatural types. The
data type HasProperty(;)ϵ CPS is also defined to represent
the possession of a property by a classifier.

Level M1. Two groups of expressions are defined at this level.
[M1a.] Each specific class, association and property ϵ CD,

is represented by a Formula instance of the corresponding
constructor (Class, Association or Property ϵ CPS de-
fined at level M2). By these Formula instances, we are ex-
plicitly representing, in contrast to [10], [11], not arbitrary
classes in a class diagram but specific ones. For example,
the elements ClassPerson and family defined in M1a of
Table I correspond to two Formula instances of the constructor
Class and Association, respectively, defined at M2. In par-
ticular, specific properties ϵ CD are represented by a Formula
instance of the corresponding Property constructor (e.g.,
namePersonP is StrProperty(...) in M1a of Table I),
and by an instance of the data type HasProperty ϵ CPS,
representing the property’s ownership (see Table I).

[M1b.] In order that Formula is able to generate instances of
specific class, association and property ϵ CD to explore the
concrete design–space, we need to create specific Formula data
types representing each type of instance. For their definition,
we have based on the description of the Instances package [3],
in particular, on the InstanceSpecification element, for classes
and associations, and on the Slot element, for properties. On
the one hand, the definition of the UML InstanceSpecification
element includes the classifier of the represented instance and
the associated InstanceValue [3]. Taking this into account, for
each class c ϵ CD, we define a primitive Formula data type
called Instancec.name(;)ϵ CPS, with two fields, represent-
ing the associated classifier and instance value, respectively
(see level M1b in Table I). As a way of example, see the
primitive data type InstancePerson in Table I. When the
classifier is an association, the UML instance specification
describes a link [3], so in this situations we name the created
data types with the Link prefix. Since links connect class
instances [3], for each association a ϵ CD, we define a
primitive Formula data type called Linka.name(;;;) ϵ CPS,
which includes, additionally, the instance specifications of the
associated classes (see for example LinkFamily in Table I).
So that Formula can generate property’s specific values, we
define specific data types representing the property’s slots,
based on the specifications of the Slot element [3]. Taking this
into account, for each property ϵ CD, we define a primitive
type called p.name+p.owner.nameSlot(;;) ϵ CPS (e.g.,
namePersonSlot in Table I), which registers the owner, the
property type and its value.

Level M0. Finally, in order that Formula can reason and
search for valid instances of the specific classes, associations
and properties of the source class diagram, we include the
Introduce(f,n) command (used to add n terms of the
element type f) with the corresponding Instancec.name,
Linka.name or p.name+p.owner.nameSlot data type, as f,
and a specific number as n, to indicate the number of valid
instances of such data type we want Formula to generate as part
of the resulted object class diagram. For example, we define the
[Introduce(InstancePerson,2)] command, so that For-
mula searches two valid instances of InstancePerson (see
level M0 in Table I).

B. Classifier and Association Classes

A special remark have to be made regarding the Classifier
element ϵ CD at the M2 level, and association classes ϵ CD.
On the one hand, the Classifier element is defined by means of
a derived data type ϵ Π ⊂ CPS, as the union of the Class and

373

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table. I: Excerpt of the CD to Formula mapping.

primitive Association ::= (name: String,
srcType: Class, srcLower: Natural, srcUpper: UpperBound,
dstType: Class, dstLower: Natural, dstUpper: UpperBound).

Translation pattern:

a.name is Association(“a.name”,

Class("a.memberEnd.at(1).type.name", a.memberEnd.at(1).type.isAbstract

a.memberEnd.at(1).lowerValue, a.memberEnd.at(1).upperValue,

Class("a.memberEnd.at(2).type.name", a.memberEnd.at(2).type.isAbstract

a.memberEnd.at(2).lowerValue, a.memberEnd.at(2).upperValue)

Example:

family is Association(“family”,Class(“Person”,false), 0, 2,
Class(“Person”,false), 0, star)

Translation pattern:

primitive Linka.name ::=(id: Integer, type: Association,

a.memberEnd.at(1).name: Instancea.memberEnd.at(1).type.name,
a.memberEnd.at(2).name: Instancea.memberEnd.at(2).type.name).

Example:

primitive LinkFamily::=(id:Integer,type:Association,
child:InstancePerson, parent:InstancePerson).

Formula instructions pattern:

[Introduce(Linka.name, number)]

Example:

[Introduce(LinkFamily,2)]
Example of the Formula generated instances:

LinkFamily(5,
Association(“family”,Class(“Person”,false),0,2,

Class(“Person”,false),0,star),
InstancePerson(93, Class(‘‘Person’’,false)),
InstancePerson(96, Class(‘‘Person’’,false)))

primitive Class ::= (name: String,
isAbstract: Boolean).

Translation pattern:

Classc.name is Class(“c.name”, c.isAbstract)

Example:

ClassPerson is Class(“Person”, false)

Translation pattern:

primitive Instancec.name ::= (id: Integer,

type: Class).
Example:

primitive InstancePerson::=(id: Integer,
type: Class).

Formula instructions pattern:

[Introduce(Instancec.name, number)]
Example:

[Introduce(InstancePerson,2)]
Example of the Formula generated instances:

InstancePerson(93,Class(“Person”,false))
InstancePerson(96,Class(“Person”,false))

primitive StrProperty::=(name:String, def:String,
lower:Natural, upper:UpperBound).

...
primitive LiteralNullProperty::=(name: String, def: Null,...).
primitive UnlimitedNaturalProperty::=(name:String, def: UpperBound,.)
Property::= StrProperty + ...+ userDataTypeProperties.
primitive HasProperty ::= (owner: Classifier, prop: Property).

Translation pattern:

p.name+p.owner.nameP is p.typeProperty(“p.name”,p.default,

p.lowerValue,p.upperValue)

HasProperty(Class("p.owner,.name", p.owner.isAbstract),

p.typeProperty(“p.name”,p.default, p.lowerValue,p.upperValue))

Example:

namePersonP is StrProperty(“name”,“”,1,1)
HasProperty(Class(“Person”,false),StrProperty(“name”,“”,1,1))

Translation pattern:

primitive p.name+p.owner.nameSlot ::= (owner:Element,

prop:p.typeProperty, value: valueType)

Example:

primitive namePersonSlot::= (owner: Element, prop: StrProperty, value:String).

Formula instructions pattern:

[Introduce(p.name+p.owner.nameSlot, number)]

Example:

[Introduce(namePersonSlot,2)]
Example of the Formula generated instances:

namePersonSlot(InstancePerson(93,Class(“Person”,false)),
StrProperty(“name”,“”,1,1),202)

namePersonSlot(InstancePerson(96,Class(“Person”,false)),
StrProperty(“name”,“”,1,1),201)

Level Class Association Property

M2

M1

a

b

M0

Association primitive data types so that we can generally
refer to classes and associations. On the other hand, association
classes ϵ CD are translated in the same way than associations
but with the particularity of that they can have associated
properties. In particular, since they are translate as associations,
they can register the associated classes. Additionally, in our
proposal we have defined slots in such a way that their owners
are of type Element (see M1b translation of properties). This
Element data type is defined as the union of Instance and
Link, in such a way that we allow not only classes to have
properties but also association classes.

Finally, the Formula expressions resulted from the transla-
tion of a CD are distributed into four different Formula units.
On the one hand, Formula expressions defined at the meta–
model level (M2) are included into a Formula domain called
MetaLevelFD. Since the representation of the meta–level M2
is the same whatever CD is considered, this Formula domain
is defined once and used for each CD. An excerpt of the
MetaLevelFD domain has been presented in Figure 1. On the
other hand, Formula expressions defined at the model level
(M1) are distributed into two different units; the CDModelFM

model, which is constituted by the Formula expressions defined
in M1a, conforming with the MetaLevelFD domain, and the
InstanceLevelFD domain, constituted by the expressions de-
fined in M1b. Finally, the Formula expressions at the instance
level (M0) are included in the CDInstanceFPM partial model.
Starting from these units, Formula can reason about the valid
object class diagram, represented as instances of the elements
of the InstanceLevelFD domain, conforming the given CD,
represented by means of the CDModelFM model.

V. TRANSLATION OF CLASS DIAGRAM CONSTRAINTS

OCL integrity constraints undecidability has been tackled
in the literature by defining methods that allow UML/OCL
reasoning at some level. Examples of such methods are [6],

[14]; (1) those that allow only specific kinds of constraints,
(2) those that consider restricted models, (3) methods that do
not support automatic reasoning, or (4) those that ensure only
semi–decidable models. Our approach, which would fit within
the first type, identifies a significantly expressive fragment
of OCL and provides its translation to Formula for OCL
constraints’ decidable reasoning. In this section, we show that
our OCL fragment can be formally encoded in Formula, thus,
we guarantee finite reasoning for every OCL CD’s constraint
expressed using the constructors of our OCL fragment.

Our OCL to Formula translation relies on two foundations.
Firstly, an OCL expression can be represented by means of
First-Order Logic (FOL) expressions, taking into account that
FOL, although less expressive than OCL, is commonly used
for reasoning about the world using rules of deduction (see for
example [15]). Secondly, a FOL expression can be translated
into a logic constraint program P. More specifically, as stated
in [16], each constraint logic program P can be translated in
polynomial–time into first-order logic (FOL) according to its
Clark Completion (from now on, we refer to the result of this
translation as P∗). Roughly speaking, the Clark Completion
of a program P corresponds to the completion of every atom
or predicate symbol p in P. The Clark Completion captures
the reasonable assumption that the rules for each atom or
predicate symbol cover all of the cases where the atom is
true. Taking this into account, the Clark Completion of an
atom or predicate symbol can be represented as a combination
of term expressions and rules, evaluated in variables, giving
a true result. The inverse translation, that is, from the
FOL representation of P (P∗) to P can be carried out by
applying inverse versions of the Clark Completion algorithm,
which compile specifications into the logic program it directly
specifies, such as the one given in [17].

Based on these foundations, our proposal for the translation
of OCL constraints is presented in Figure 4. Firstly, the
OCL expression is translated to an equivalent FOL formula

374

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Formula

Constraint Logic

program

Figure. 4: Our approach for translating OCL constraints

(see step label 1 in Figure 4). Secondly, the predicates and
expressions of the resulted FOL formula are rewritten in terms
of Formula elements used to represent the class diagram as
stated in our approach described in Section IV, obtaining the
Clark Completion version of the final Formula logic program
corresponding to the OCL constraint, from now on FOL* (see
step label 2 in Figure 4). Thirdly, supported by the inverse
algorithm of Clark Completion, we obtain the Formula logic
program (see step label 3 in Figure 4). Finally, we can use
the Formula automated tool for reasoning about the Formula
model with the resulted expressions. Additionally, we note
that it is not necessary to have the OCL constraint initially
represented using the elements included in our OCL fragment,
but, when possible, we can carry out a preliminary step where
such OCL expression is redefined applying OCL equivalence
rules (see step label 0 in Figure 4), resulted in other OCL
expression whose constructs fit within our OCL fragment.

Next, we introduce the chosen OCL fragment and go on
to explain our approach for translating it. More specifically, in
order that the reader can get a better idea of such translating
approach, firstly we will explain the translation of a simple
OCL constraint, to serve as a reference explanation for the
translation of the remainder elements of our OCL fragment.

A. Introduction to the Chosen OCL Fragment

Each OCL constraint is defined in the ‘context’ of a specific
instance of the corresponding UML element, reserving the
‘self’ word to refer to the instance of the classifier on which the
expression is evaluated. Taking this into account, an OCL in-
variant I has the form: context C inv: expr(self),
where C is the class ϵ CD to which the invariant is applied and
expr(self) is an OCL expression resulting in a Boolean
value for each self ϵ C. In particular, this invariant states
that, for every instance self of C existing in a system state,
the property described by expr holds for self.

An OCL expression can be defined as a combination of
navigation paths with OCL operations, which specify restric-
tions on those paths. A navigation path can be defined as a se-
quence of roles’ names in associations (such as p.children,
being p a Person instance in Figure 3), attributes’ names
(such as c.name, being c a Company instance in Figure 3),
or operations (for example, c.hireEmployee(p)). Tak-
ing this into account, in Figure 5 we represent the syntax
of our specific fragment, where OCLExpr is defined in a
recursive manner. For example, an OCLExpr can be the result
of applying relational operations to AddExpr expressions.
Additionally, an OCLExpr can be the result of applying a
boolean operation BoolOper to a Path, or a Path to
which a SelectExpr is applied. An OCLExpr can be also
constituted by boolean combinations of these OCL expres-
sions (not, and and or). A Path expression represents the
structural way of defining navigation paths, starting from a

OCLExpr RelExpr |Path BoolOper |Path SelectExpr

 not OCLExpr | OCLExpr1 and OCLExpr2

OCLExpr1 or OCLExpr2

Path PathItem | PathItem.Path

PathItem role | classAttr | operation

roleName.role | roleName.classAttr

roleName.oper | roleName.transClosuOper

RelExpr AddExpr <,<=,>,>=,=,!= AddExpr

AddExpr MulExpr | AddExpr +/- AddExpr

MulExpr Path | MulExpr * Path | MulExpr/Path

SelectExpr -> select(OCLExpr) BoolOp|

 -> select(OCLExpr) SelectExpr

BoolOper -> size()| -> forAll(OCLExpr)

Figure. 5: Syntax of the OCL fragment.

PathItem, by combining roles’ names, attributes’ names or
operations, with the dot operator. For an explanation of OCL,
we refer to [4].

B. Our Translation Approach

Formula does not have a concept similar to that of OCL
invariants but gives the possibility of defining queries, which
provide a way to represent invariant semantics. As way of
example of our approach, in this section we introduce the basic
rule for translating OCL invariants where the OCLExpr corre-
sponds to a simple relational expression RelExpr. We explain
this rule by applying it to the invariant context Person
inv: self.age >=18, which formalizes the constraint
“The people registered in the system must be older than 18
years old” (see Table II).

First–step. This step is carried out by means of an interpre-
tation function FOL(), which translates each OCL expression
expr(self) defined in an instance self ϵ C, into a First–
Order Logic (FOL) formula defined in the variable self (see
label (1) in the first step of Table II). Basis in first order logic
states that the universal quantifier corresponds to a negated
existential, so the previous expression is equivalent to the one
label (1’), where FOL(not expr(self)), corresponds to
the mapping of not expr(self) into First–Order Logic.

Second–step. As described previously, each constraint logic
program P can be translated into first-order logic (FOL)
according to its Clark Completion P∗ [16]. Roughly speaking,
the Clark Completion of an atom or predicate symbol can be
represented as a combination of term expressions and rules,
evaluated in variables, giving a true result.

Taking this into account, the second step is devoted to
represent the semantics given by the affirmative evaluation
of FOL(not expr(self)) in the collection of instances
self ∈ C, by means of Formula expressions. Since paths in
OCL are defined in terms of instances of the class diagram,
and in our approach such instances are defined by means
of the data types defined in the CDInstanceFPM partial
model, such Formula expressions are written in terms of the
InstanceclassName, LinkassociationName and/or proper-
tyName+ownerNameSlot data types. Based on this premise,
in this second step we rewrite the FOL expression FOL(not
expr(self)) in terms of Formula expressions by applying a
second function called FOL∗(). This function FOL∗() basically
represents the predicate FOL(not expr(self)) by using
the corresponding Formula terms and predicate symbols ∈
InstanceLevelFD, and Formula constraints, in such a way that

375

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table. II: Translation of an invariant and example of use.

Translation of a RelExpr invariant
OCL Invariant: context C inv: expr(self)

First–step: ∀self ∈ C FOL(expr(self)). (1)
¬(∃self ∈ C FOL(not expr(self)). (1’)

Second–step: ¬(FOL∗(C) FOL∗[FOL(not expr(self))]) (2)
Third–step: query:=CLP(FOL∗[FOL(not expr(self))])

conforms := ! query. (3)
Example of application
OCL Invariant: context Person inv: self.age >=18

First–step: ∀self ∈ Person age(self)>=18. (1)
¬(∃self ∈ Person age(self)<18). (1’)

Second–step: ¬(∃self ∈ InstancePerson(id,type)
agePersonSlot(self,def,val)
val<18).(2)

Third–step: query:=agePersonSlot(self,_,val),
val<18.
conforms := ! query. (3)

Table. III: Translation of part of our OCL fragment.

OCL expression Translation approach
E1 and E2 CLP(FOL∗(FOL(E1)))&CLP(FOL∗(FOL(E2)))
E1 or E2 CLP(FOL∗(FOL(E1)))|CLP(FOL∗(FOL(E2)))
not E CLP(FOL∗(FOL(not E)))
C-> size() count(CLP(FOL∗(FOL(C)))).
C-> query:=CLP(FOL∗(FOL(not exp(c)))).
forAll(c|exp(c) conforms:= ! query.
C-> SC,exprType::=(self:Tself,sele:Tsele)
select(c|exp(c) SC,exprType(self,sele):-

CLP(FOL∗(FOL(exp(c))))

the resulted expression is evaluated to true (see step labeled
(2) in Table II). In particular, the application of this step to our
constraint consists of representing age(self)<18 in terms
of the agePersonSlot whose val property is less than 18.

Third–step. Taking into account the semantics of queries in
Formula, the FOL expression given in the second step is finally
represented by means of the definition of a query and the
verification of its negation in the conforms query (see step
labeled (3) in Table II). This step is materialized by means of
the application of the function CLP(), which basically rewrites
the terms resulted from (2), and joins them by ‘,’.

To sum up, the translation of an invariant I is carried out
by means of the composition of the three functions, CLP ◦
FOL∗ ◦ FOL().

C. Translation Approach of More Complex OCL Expressions

Having presented our approach for the translation of a
simple OCL invariant, next we make some remarks regarding
the translation of the remainder elements in our OCL fragment.
More specifically, in Table III we present the translation rules
we define for the conjunction, disjunction and the negation
operators considered in the OCL fragment. For example, we
describe the translation of an OCL expression with the con-
junction operator E1 and E2 as: CLP(FOL∗(FOL(E1)))
& CLP(FOL∗(FOL(E2))), where each expression is trans-
lated recursively using the translation rules presented in the
rest of this paper by applying the defined functions. In

particular, if CLP(FOL∗(FOL(E1))) results in the verifi-
cation of a query !query1 in the conforms one, and
CLP(FOL∗(FOL(E2))) results in the verification of an-
other query !query2, the result of translating the conjunc-
tion is the expression !query1 & !query2 specified in
the conforms query (that is, conforms:= !query1 &
!query2). The translation of the disjunction operator, on the
other hand, results in the expression conforms:= !query1
| !query2, being !query1 and !query2 the translations
of E1 and CLP(FOL∗(FOL(E2))), respectively. Finally, the
translation of the negation operator results in the expression
conforms:= !query, being !query the translation of
not E1.

The remainder OCL expressions in our framework in-
clude operations in collections. Excluding the select and
transitive closure elements, whose translation re-
quires extra attention, we consider that the translation of the
remainder OCL elements (forAll [4](p. 29, Section 7.7.3)
and size [4] (p. 157, Sec. 11.7.1)) can be easily understood
by considering our previous explanations. Next, we briefly
describe our approach for their translation into Formula.

Select operation. Since this operation refers to obtaining a
subcollection from a set of elements ([4] pp. 27, Sec. 7.1.1),
its translation consists of defining a new Formula data type
and populate it with the facts representing the members in
the collection we want to select (see the first and second
lines, respectively, of the translation of the select op-
eration in Table III). As a way of example, if we want
to collect the female employees of a company, we define
the type: FemaleEmp::= (self: InstanceCompany,
sele:InstanceEmployee), and populate it by means of
the following rule, which gathers only female employees:

FemaleEmp(self,sele) :-
LinkContract(_,_,sele,self),
genderPersonSlot(sele,_, val),
val=female.

Transitive closure. Transitive closure is normally needed to
represent model properties which are defined in a recursively
fashion. The translation of closures is not straightforward since
they are not finitely axiomatizable in first order logic, and OCL
also does not support them natively [18]. Nevertheless, it is
possible to define the transitive closure of relations that are
known to be finite and acyclic. In particular, for its translation
we have based on both, the definition of transitive closure
provided in [18], and the representation in CLP of acyclicity
constraints provided in [11] (p. 3), and proposed a translation
based on defining Formula rules, considering the fact that CLP
exposes fixpoint operators via recursive rules. Additionally, the
translation of this operation allows us to support aggregation.

Finally, the Formula model resulted from the translation of
a class diagram model annotated with OCL constraints (that
is, the 4 Formula units including the Formula translation of the
OCL constraints), is used by Formula for reasoning about it.
More specifically, the tool inspects the Formula model looking
for a valid and non–empty instantiation of the CD/OCL model
to proof its satisfiability. If the result is empty, the defined
CD/OCL model is not satisfiable. Otherwise, Formula proposes
a conforming instantiation model of the defined CD/OCL
model, according to the desired software system settings.

376

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1

3

2

Figure. 6: A snapshot of the CD2Formula plug–in.

VI. AUTOMATIC TRANSLATION

In order to manually transform a class diagram into the
Formula language, a professional with both UML and Formula
skills may be required. Additionally, such an encoding process
may entail a big effort depending on the class diagram used.
The challenge is to perform such a transformation in a viable
and cost–effective way. The complexity of some software
designed models together with their possibility of change over
time, make the manual transformation of every class diagram
representing a software model into the input language of a
model finder tool, a cumbersome and costly endeavor. To
overcome these challenges, we have based on an MDA tool-
approach to automatically carry out the translation of a class
diagram to Formula. More specifically, we have developed
an Eclipse plug–in, called CD2Formula plug–in, which gives
support for the class diagram to Formula transformation as
stated in our proposal (see in Figure 6 a snapshot of the
plug–in). The idea is that the defined plugin together with
the Formula tool, constitute the complete proposed framework
for class diagram to Formula specification. Firstly, by means
of the CD2Formula plugin we automatically generate, from a
class diagram, the Formula specification, which is taken by
the Formula model finder for reasoning about the input class
diagram model.

The core of our plug–in is that it itself uses a MDA–
based plug–in that gives support for customizable model–to–
text (M2T) transformations. Among the large amount of MDA-
based tools in the literature, we have chosen the MOFScript
Eclipse plug-in, which we have already used in previous
works [19], [20]. MOFScript is an Eclipse plug–in [21], [22]
that implements the MOFScript language, which was one of
the candidates in the OMG RFP process on MOF Model-to-
Text Transformation [23]. As input models, MOFScript can
use any model that complies with the EMF [24] metamodel.
From these input models, the tool can generate any arbitrary
text (such as Java code or XML) by using a defined set of
MOFScript transformations. Each MOFScript transformation

consists of transformation rules that are basically the same as
functions, and which define the behavior of the transformation.
The transformation rules are defined based on the metamodel
and subsequently compiled and executed on the model.

In our particular case, we use the UML 2.0 metamodel
and a class diagram that represents the software design as the
model. To create class diagram models, we can use any UML
2.0 compliant tool that can create models, as .uml extension
files, in the XMI format supported by EMF (e.g., the UML2
Eclipse plug-in [25]).

As far as the Formula program generation is concerned,
an important remark must be made. In our proposal for the
Formula representation of a UML class diagram, we need to
include specific Formula instructions to tell the Formula solver
the number of valid instances (for example, the number of class
and association instances), we would like for the final solution.
Such number of instances is set by means of the Introduce
Formula instructions, which, in our particular case, are in-
cluded in the CDInstanceFPM partial model defined for each
class diagram. Since such number of instances should be estab-
lished by the user before carrying out the transformation from
the class diagram to the Formula specification, we firstly need
to ask the user for such information, which is specific for each
class diagram. Taking this into account, we have defined two
sets of MOFScript transformations, devoted respectively to: (1)
generate a java GUI (Graphical User Interface), which ask the
user for the required information, and (2) create the Formula
specification for the class diagram (whose CDInstanceFPM

partial model is generated taking into account the values
inserted by the user by means of the previously generated
GUI interface). Both sets of MOFScript transformation files are
devoted to produce the print statements that generate the java
GUI interface and the different Formula units, respectively.

Particularly, in the definition of the MOFScript transfor-
mations, we have followed a concrete idea, which consists on
defining two kinds of transformation rules: (1) those that tra-

377

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure. 7: An extract of a Mofscript rule.

verse the model and collect the information in it and (2) those
that generate actual code (java print statements or Formula
structures, respectively). The first kind gathers data and records
them in collections (such as lists or hashtables) or other built-
in types. Finally, the code generation rules use this information
in print statements. As a way of example, an extract of one of
the defined rules is shown in Figure 7. In particular, this rule
called CDToCDModel will create the Formula expressions that
constitute the CDModelFM model (such as classPerson
is Class(’Person’, ’false’)).

Regarding the MOFScript transformation files defined
to generate the Formula units, we have created 3 files:
main.m2t, helpers.m2t, and FormulaUnits.m2t.
The transformation file main.m2t contains the main rule
that actually generates the complete Formula specification of
the class diagram by using specific rules from the rest of the
defined transformation files. The file helpers.m2t has been
defined to be used as a library, containing commonly used
rules that are required by other rules during the transformation
process. Finally, the FormulaUnits.m2t file contains the
rules devoted to finally produce the print Formula structures
that constitute the three Formula units in our approach, which
depend on the specific class diagram.

As for the generation of the GUI interface for a specific
class diagram, we have defined an only MOFScript transfor-
mation file called main.m2t. This file defines MOFScript
rules that mainly traverse the class diagram and generate the
java print statements that define the different labels and
text fields of the form, together with a button to send
the inserted data (see the GUI interface CD2Formula labeled
2 in Figure 6) to be used for the second transformation.
In particular, the second group of MOFScript files gets the
data given by the user through the GUI interface, thanks to
a specific MOFScript’s functionality. MOFScript allows the
possibility of invoking java methods from MOFScript rules and
retrieving the returned information. Taking this functionality

into account, the java GUI interface file contains a specific java
method in such a way that, when the form in the java GUI
interface is filled out, such method returns a hashtable with
the pairs (type of instance–number of instances desired). In
this way, the second group of MOFScript transformation files
takes such information to print the corresponding Introduce
Formula instructions of the final Formula specification.

We want to highlight that since the MOFScript transfor-
mation rules are defined based on our transformation rules
between a class diagram and the Formula model, and these
transformation rules are defined independently of the class
diagram used, the MOFScript transformations do not have to
be modified to translate a different class diagram.

Having defined the two sets of MOFScript transforma-
tion files, we have developed an Eclipse plug–in called
CD2Formula in such a way that it integrates such MOFScript
rules so that the transformation from a class diagram to
its Formula specification can be generated in an automatic
fashion. More specifically, the plug–in provides a menu option
available for each UML class diagram (specified as .uml
extension files), which allows the execution of the MOF-
Script transformations. The transformation process encom-
passes three steps. Firstly, the user chooses the menu option
the plug–in provides, which executes the first set of MOFScript
transformations that lead to the dynamic creation of the GUI
interface. Secondly, the plug–in refreshes the Eclipse project
so that the corresponding interface java class can be created
and instantiated. Thirdly, the second set of MOFScript trans-
formations is executed, which (1) leads to the invocation of the
java method that shows the interface, asking the user for the
required values, (2) retrieves the values inserted by the user in
the interface, and (3) generates the Formula specification (that
is, the FormulaSpecifications.4ml file), using such
values. Finally, the resulted file is used by the Formula tool
for reasoning about the class diagram.

378

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

About the usability of the proposal and the developed plug–
in, we have to say that it is only required a professional with
OCL skills in order to be able to apply our OCL to Formula
translation proposal to the OCL constraints defined in the
specific class diagram. Excluding it, no specific knowledge
would be required for managing the plug-in since its interface
has been developed so that it is simple and easy to use.

VII. DISCUSSION AND RELATED WORK

As described previously, the formalization and analysis of
UML class diagrams can be done by means of translating
the model to other language that preserves its semantics,
and finally, using the resulted translation to reason about the
design. Taking into account that there is not an only language
for materializing such translation, and that several translation
approaches can be established using a same language, a
discussion about the semantic support of the language, together
with the strengths and weaknesses of the particular translation
approach, is worthwhile. Our work bets on using Formula
for the semantics preserving translation of the models to be
verified. As for the use of Formula instead of other analyzers,
in particular, Formula authors present in [11] a comparison
with other tools, both SAT (Boolean Satisfiability) solvers and
alternatives such as ECLiPSE and UMLtoCSP, focusing mainly
on Alloy [26], for being the closest tool to Formula. Although
the Formula authors provide a careful comparison with Alloy
in [11], it is worth noting the strengths of Formula, such as a
more expressive language or its model finding problems, which
are in general undecidable.

Our approach follows a multilevel MOF-like framework
based on the one proposed in [11]. On the one hand, we
propose a more faithful representation of the basic UML
metamodel and instance domain elements [3]. We consider that
providing a translation that captures the structural distribution
of the MOF architecture can contribute to ease the application
and understandability of the representation of a CD/OCL
model into Formula. We also give support for the translation of
more metamodel elements (such as full support to generaliza-
tion, property types other than Integer, String and Boolean,
including user defined data types, property’s multiplicities,
etc.), thus providing a richer framework. Additionally, we
enhance the proposal given in [11] by identifying an expressive
fragment of OCL, which guarantees finite satisfiability and
providing a formalization of the transformations from such
OCL fragment to Formula. At this respect, several related
works can be cited, being one of the most complete proposals
the one given in [14]. In [14], the authors define a fragment
of OCL called OCL–lite, and prove the encoding of such a
fragment in the description logic ALCI, so that Description
Logic techniques and tools can be used to reason about class
diagrams annotated with OCL–lite constraints. A difference of
this approach with ours is the fact that, although the chosen
fragment is quite similar than ours, we have tried to identify
a simplest fragment so that no element included in it can be
inferred from other constructors in the fragment by applying
direct OCL equivalences (such as the implies operator). In
our particular case, there are several OCL operations and
expressions whose representation in Formula is straightforward
by applying equivalences (such as the exists [4] (p. 30, Sec.
7.7.4), isEmpty/notEmpty [4] (p. 157, Sec. 11.7.1), xor [4]
(p. 153, Sec. 11.5.4), or reject [4] (p. 27, Sec. 7.7.1)).

On the other hand, there are other elements, such as
oclIsTypeOf, which is considered in the OCL–lite fragment
but that can not be represented into formula. More specifically,
Formula does not support the translation of, for example,
the following OCL properties [4] (p. 146, Sec. 11.3); (1)
oclIsTypeOf(t : OclType), which is used to know
whether the object to which it is applied is of type t, and
(2) oclIsKindOf(t : OclType), which returns true
whether t is either the direct type of the object to which the
operation is applied or a supertype of the object. As for the
representation in Formula of the oclIsTypeOf operation,
there is no way to know the type of a variable by using the
Formula syntax, but the mismatch among variables and types
is verified by the Formula checker. The same argument is
applied to the OclIsKindOf operation. Similarly happens
with OCL operations that are state dependent (such as the op-
erations oclIsInState(t: OclType), which evaluates
whether the object is in a specific state, and oclIsNew(t:
OclType), which checks whether the object does not exist in
the previous state of the system but exists in the current state).
In both cases, a UML statemachine diagram is required, and
although representing UML statemachines in Formula could
constitute an interesting issue for future work in order to give
support to reason also about dynamic system models, it is
out of the scope of this work. Focusing on reasoning about
static class diagrams models, in spite of these operators, we
give support to other not straightforward operators, such as
transitive closure, not normally included in related works.

VIII. CONCLUSION AND FUTURE WORK

We present an overall framework to reason about
UML/OCL models based on the CLP paradigm, using For-
mula. Our framework provides a way to translate a UML
model into Formula, following a MOF-like approach. We also
identify an expressive fragment of OCL, which guarantees
finite satisfiability and we provide an approach for translating
it to Formula. We also provide an implementation of our UML
to Formula proposal by the development, following a Model
Driven Architecture (MDA) approach, of the CD2Formula
plug–in. Particularly, starting from a UML class diagram
representing the static structure of a software system, our plug–
in carries out the automatic generation of the Formula specifi-
cation corresponding to such UML model, by simply choosing
a menu option the plug–in provides. The proposed framework
can be used to reason, validate and verify UML software
designs by checking correctness properties and generating
model instances using the model exploration tool Formula.

Although we support the automatic translation from a
UML class diagram to Formula by means of our plug–in, the
automatic translation to Formula of specific class diagram’s
OCL constraints specified using our OCL fragment constitutes
a remaining work.

ACKNOWLEDGMENTS

This work has been partially supported by the Academy
of Finland, the Spanish Ministry of Science and Innovation
(project TIN2009-13584), and the University of La Rioja
(project PROFAI13/13).

379

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] B. Pérez and I. Porres, “Reasoning about UML/OCL models using
constraint logic programming and MDA,” Proceedings of the 8th In-
ternational Conference on Software Engineering Advances (ICSEA’13),
2013, pp. 228–233.

[2] J. Bézivin,“Model driven engineering: an emerging technical space,” Pro-
ceedings of the International Summer School of Generative and Transfor-
mational Techniques in Software Engineering (GTTSE’05), 2006, LNCS,
vol. 4143, pp. 36–64.

[3] OMG, UML 2.4.1 Superstructure Specification, Document formal/2011-
08-06. Available at: http://www.omg.org/. Last visited on May 2014.

[4] OMG, Object Constraint Language, Version 2.3.1, OMG
Document Number: formal/2012-01-01. Available at:
http://www.omg.org/spec/OCL/2.3.1/PDF. Last visited on May 2014.

[5] A. Calı̀, D. Calvanese, G. De Giacomo, and M. Lenzerini, “A formal
framework for reasoning on UML class diagrams,”, Proceedings of the
13th International Symposium of Foundations of Intelligent Systems
(ISMIS’02), LNCS, vol. 2366, 2002, pp. 503-513.

[6] J. Cabot, R. Clarisó, and D. Riera, “Verification of UML/OCL class
diagrams using constraint programming,” Proceedings of the 2008 IEEE
International Conference on Software Testing Verification and Validation
Workshop (ICSTW’08), IEEE Computer Society, 2008, pp. 73–80.

[7] V. Del Bianco, L. Lavazza, and M. Mauri, “Model checking UML
specifications of real time software,” Proceedings of the 8th International
Conference on Engineering of Complex Computer Systems (ICECCS
2002), IEEE Computer Society, Los Alamitos, 2002, pp.203-.

[8] V. Del Bianco, L. Lavazza, and M. Mauri, “A formalization of UML
statecharts for real-time software modeling,” The 6th Biennial World
Conference On Integrated Design Process Technology (IDPT 2002),
“Towards a rigorous UML” session, Pasadena. 2002.

[9] Formula - Modeling Foundations, Website: http://research.microsoft.com/
en-us/projects/formula. Last visited on May 2014.

[10] E. K. Jackson, T. Levendovszky, and D. Balasubramanian, “Reasoning
about metamodeling with formal specifications and automatic proofs,”
Proceedings of the 14th International Conference of Model Driven
Engineering Languages and Systems (MODELS 2011), 2011, pp. 653-
667.

[11] E. K. Jackson, T. Levendovszky, and D. Balasubramanian, “Automat-
ically reasoning about metamodeling,” Software & Systems Modeling,
February, 2013, doi:10.1007/s10270-013-0315-y.

[12] OMG, OMG Model Driven Architecture, Document omg/2003-06-01,
2003, Available at: http://www.omg.org/. Last visited on May 2014.

[13] Formula 1.3. Formula documentation (Help). Formula downloads, avail-
able at: http://research.microsoft.com/en–us/downloads/49f1072b–c0ec–
4b1e–bdd7–4661ea07b5b3/default.aspx. Last visited on May 2014.

[14] A. Queralt, A. Artale, D. Calvanese, and E. Teniente, “OCL-Lite:
A decidable (yet expressive) fragment of OCL*,” Proceedings of the
25th International Workshop on Description Logics (DL’12), Description
Logics, vol. 846, 2012, pp. 312-322.

[15] B. Beckert, U. Keller, and P. H. Schmitt,“Translating the object con-
straint language into first-order predicate logic,” Proceedings of the
Workshop at Federated Logic Conferences (FLoC02), 2002, available
at i12www.ira.uka.de/ key/doc/2002/BeckertKellerSchmitt02.ps.gz.

[16] J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey, “The semantics
of constraint logic programs,” J. Log. Program., vol. 37, 1998, pp, 1-46.

[17] A. Bundy, “Tutorial notes: reasoning about logic programs,” Pro-
ceedings of the 2nd International Logic Programming Summer School
(LPSS’92), LNCS, vol. 636, 1992, pp. 252-277.

[18] T. Baar, “The definition of transitive closure with OCL - limitations
and applications,” Proceedings of the 5th Andrei Ershov International
Conference in Perspectives of System Informatics (PSI’03), LNCS, vol.
2890, 2003, pp. 358-365.

[19] B. Pérez, “Towards decision facts management systems: the particular
case of clinical guidelines,” PhD thesis, Department of Computer Science
and Systems Engineering, University of Zaragoza, Spain, 2011.

[20] B. Pérez and I. Porres, “Authoring and verification of clinical guidelines:
a model driven approach”, Journal of Biomedical Informatics, vol. 43,
num. 4, 2010, pp. 520-536.

[21] J. Oldevik,“MOFScript eclipse plug-in: metamodel-based code genera-
tion,” Proceedings of the Eclipse Technology eXchange workshop (eTX)
at the ECOOP 2006 Conference, Nantes, France, 2006.

[22] MOFScript user guide, version 0.6 (MOFScript v 1.1.11), 2006,
Available at: http://www.modelbased.net/mofscript/docs/MOFScript-
User-Guide.pdf. Last visited on May 2014.

[23] OMG, OMG document ad/2005-11-03. MOFScript second revised sub-
mission to the MOF model to text transformation RFP (2005), Available
at: http://www.omg.org/. Last visited on May 2014.

[24] EMF development team, The eclipse modeling framework website:
http://www.eclipse.org/modeling/emf/. Last visited on May 2014.

[25] The Eclipse UML2 project, Website:
http://www.eclipse.org/modeling/mdt/?project=uml2. Last visited
on May 2014.

[26] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “UML2Alloy: a
challenging model transformation,” Proceedings of the 10th International
Conference on Model Driven Engineering Languages and Systems
(MoDELS’07), LNCS, vol. 4735, 2007, pp. 436-450.

380

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Simulation-Based Optimization for Software Dynamic Testing Processes

Mercedes Ruiz

Department of Computer Science and Engineering

University of Cádiz

Cádiz, SPAIN

e-mail: mercedes.ruiz@uca.es

Javier Tuya

Department of Computing

University of Oviedo

Gijón, SPAIN

e-mail: tuya@uniovi.es

Daniel Crespo

Department of Computer Science and Engineering

University of Cádiz

Cádiz, SPAIN

e-mail: dani.crespobernal@alum.uca.es

Abstract - Managing software development projects requires

the coordination of different processes that may be performed

by different teams, e.g., a development team and a separate

testing team. This coordination aims at optimizing the trade-

off between cost, schedule and delivered quality. Simulation

models are a powerful tool to explore what-if scenarios that

help managers to achieve this trade-off and to fine-tune

different project parameters. This paper presents a simulation

model based on a multi-paradigm approach that connects

development and testing processes. The testing process model

is based on the process model described in the ISO/IEC/IEEE

29119-2:2013 standard. The simulation model is built using

two different methods: the discrete-event approach, to simulate

the execution of the dynamic testing processes, and the agent-

based approach, to in-depth simulate defects life cycle. Results

show how the simulation model is used to explore the evolution

of a number of process metrics. Then, the simulation model is

used to determine the resource distributions in order to

optimize two relevant process metrics: the efficiency of the

testing process and the average defect life.

Keywords - software testing; multiparadigm simulation; test

management; test process optimization.

I. INTRODUCTION

This is a revised and augmented version of our previous
work, which appeared in the Proceedings of the Seventh
International Conference on Software Engineering Advances
(ICSEA 2012) [1]. Software testing is concerned with
planning, preparation and evaluation of software products
and related work products to: a) determine that they satisfy
specified requirements, b) demonstrate that they are fit for
purpose and c) detect defects [2]. In general, testing can be
viewed as a means of improving the quality of a given
product and mitigating risks due to poor quality.

Testing can be carried on using different approaches
(e.g., scripted or exploratory), at different levels (e.g., unit,
system, integration or acceptance), using different techniques
and tools and with different degrees of independency
(ranging from testing performed by the producer to third
party testing). When testing entails the execution of the
system under test, it is often referred to as dynamic testing.

Testing exists in an organizational context and is carried on a
given project or service. Therefore, the testing activities are
tightly interrelated with the development ones, and both shall
be planned, monitored and controlled. Problems of quality of
the system under test or delays in the development hamper
the testing process. Conversely, an inadequate or delayed
testing endangers the development process. If not managed
properly, both development and testing processes may
jeopardize the goals of cost, schedule and quality of a
project.

Both development and testing can be described as
processes and take advantage of the use of simulation models
for helping project and/or test managers in daily tasks of
planning, monitoring and control.

Informally, a simulation model can be considered as an
abstract view of a complex system comprised of a set of
rules that tell how to obtain the next state of the system from
the current state. Those rules can be of many different forms:
differential equations, state charts, process flowcharts,
schedules, etc. The outputs of the model are produced and
observed as the model is running.

There is much research on simulation models of the
software development process [3]. However, there is lesser
research on simulation models for the testing process,
usually at the unit level. Furthermore, when testing is
considered as part of a simulation model of the development
process, it is often over simplified. The goal of this paper is
to devise a multi-paradigm simulation model for the testing
process to gain insights in how the testing process influences
the goals of a given project. The simulation model can be
used to simulate the testing process at the system level and to
help in decision-making in the test managing processes.

Contributions of this paper extend previous work [1] and
include:

1. A multi-paradigm simulation model of the dynamic
testing processes, which combines a discrete-event
model and agent-based model.

2. The optimization of two key variables of the testing
process: process efficiency and average defect life

The main contribution of this work is a multi-paradigm
simulation model of the dynamic testing processes that

381

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

combines a discrete-event model and agent-based model.
The model can be used to simulate the testing process at the
system level and to help in decision-making in the test
managing processes.

The structure of the paper is as follows: Section II shows
the works related to our proposal; Section III introduces the
multi-layer process model proposed by the International
Standards group upon which our simulation model is based;
Section IV describes the simulation model; Section V shows
two simulation optimization scenarios. Finally, our
conclusions and further work are given in Section VI.

II. RELATED WORK

During the recent years a lot of research has been done in
the field of software testing. These studies are mainly
oriented to enhance and optimize the software testing process
improving the results obtained after the development of
software projects. Several techniques and methods have been
used to reach this goal. Knowledge Management has been a
recurrent tool due to its usefulness for revising software
testing processes [4], learning from the errors committed in
the past [5], collecting, analyzing and managing lessons
learned [6] and improving the quality of software testing [7].

Sometimes, it is interesting to study the behavior of
processes in order to detect weaknesses so that improvement
can be effectively performed. Process modeling techniques
have been widely used to address these issues. Models can
be used to estimate process outcomes such us the number of
defects remaining and the time required to detect defects
either for a subsequent optimization [8], to estimate effort,
cost and schedule [9] or to perform cost control management
[10]. Modeling also plays an important role in decision-
making support. Reference [11] presents a goal-driven
measurement model for software testing process so that
software organizations can deduce the appropriate
measurement process according to the process goals they
determine. On the other hand, reference [12] provides a
quantitative defect management model that can be improved
to be practically useful for determining which activities need
to be addressed to improve the degree of early and cost-
effective software fault detection with assured confidence.
Finally, reference [13] proposes a competence model that
could be applied to train staff in software testing activities
and to recruit the appropriate profiles improving their
performance.

Some authors have developed their own frameworks to
study software test processes. Reference [14] describes a
conceptual framework to specify and explicitly evaluate test
process quality aspects and [15] proposes a software testing
improvement framework based on the Plan–Do–Check–Act
(PDCA) method.

Some other techniques employed for software testing
process improvement include Bayesian networks for process
evaluation [16], Markov decision models to optimize
software testing by minimizing the expected cost with given
software parameters of concern [17], multi-objective feature
prioritization for testing planning and controlling [18],
system dynamics to formulate and quantify the software

testing processes [19] and even the usage of software
engineering standards to improve the testing process [20].

Although the above mentioned techniques are extremely
useful to improve the software testing processes, sometimes
it is necessary to look into the processes with more detail. In
order to effectively optimize a process the current behavior
must be examined. Furthermore, all the possible variations
suffered by the process due to the different scenarios that
may occur, should be taken into account in order to analyze
the results derived from one situation or another. Software
process simulation provides the means to accomplish this
goal in a cost effective way.

The search string “simulation” AND “software testing
process” AND “management” and others alike used in
several digital libraries and citation databases of peer-
reviewed literature retrieves only a few number of papers. In
many of the papers retrieved, the term “simulation” is
frequently used to describe experiences in which simulation
is used as a tool for the testing process. In other works, the
term “simulation” makes reference to a set of formulas that
are solved by analytical means.

As an example of the first usage, in their collection of
works, Lazić, Mastorakis and Velasěvić [21] to [25] aim at
raising awareness about the usefulness and importance of
computer-based simulation in support of software testing. In
their works, simulation is used to ease the design and
execution of the testing processes of real military and
defense systems.

Some analytical models of the software testing process
can also be found. Zhang, Zhou, and Luo [26] propose a
reward-Markov-chain-based quantitative model for
sequential iterative processes and show how to use it to
estimate the time for the software testing process. Similarly
to this, Lizhi, Weiqin, Zhou and Zhang [27] propose an
approach to model the testing process based on hierarchical
time colored Petri Nets (HTCPN). However, while Petri-nets
are good at modeling resources and parallel processing,
simulation modeling models system components and their
interactions, making it possible to conduct arbitrary time-
related performance analysis, something which is not easy
using Petri-nets.

Consequently, to overcome the problems of analytical
methods, simulation modeling can be applied in the context
of testing processes mainly because: a) it enables to find
solutions when analytical methods fail; b) it is a more
straightforward process than analytical modeling since the
structure of the simulation model naturally mimics the
structure of the real system, and c) it is scalable, flexible, and
easy to communicate since the modeling tools use visual
languages.

However, despite these advantages there is a small
number of contributions of simulation modeling in the field
of software testing processes. Saurabh [28] presents a
System Dynamics (SD) model of software development with
a special focus on the unit test phase. This work is partially
based on Collofello’s et al. work about modeling the
software testing process under the SD approach [29].

The motivation of these works is closely related to ours,
but the models are built under a different simulation

382

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

approach. System Dynamics approach operates at high
abstraction level and is mostly used for strategic modeling.
Hence, since a simulation model can only be used at the
abstraction level in which it has been created, such a highly
abstract model is not adequate for the operational and tactical
levels in which decision-making regarding the testing
processes takes place. In our case, since our main interest is
to simulate the testing processes the discrete event (DE)
modeling, with the underlying process-centric approach, has
been selected. Furthermore, we have also selected the agent-
based (AB) approach to be used together with the discrete-
event one resulting in a multi-paradigm simulation model.

Generally, each simulation approach (SD, DE, AB)
provides a set of different abstractions. If the system being
modeled is complex enough, and software development is,
then it is preferable to integrate different simulation methods
than using one single approach, since the final model will
represent the real system more realistically.

When we used the search string (“multi-paradigm” OR
“multi-method”) AND “simulation” AND “software testing
process” and others alike in the digital libraries and citation
databases, no single work was retrieved. Therefore, given the
results of the systematic literature review performed, not
fully documented here for space reasons, to the best of our
knowledge our proposal is the first one that aims at using
multi-paradigm simulation modeling to improve decision
making in software testing management.

III. MULTI-LAYER TEST PROCESS MODEL

Testing processes include a variety of management and
technical activities that are organized in a process model in
part 2 of the ISO standard for software testing:
ISO/IEC/IEEE 29119-2:2013 [30]. The purpose of this
international standard is to define a generic process model
for software testing that can be used by any organization
when performing any form of software testing. Testing is
structured in a multi-layer process model that defines the
software testing processes at (1) the organizational level, (2)
test management level and (3) dynamic test level. More
specifically, the dynamic test level describes how dynamic
testing is carried out within a particular phase of testing (e.g.,
unit, integration, system and acceptance) or type of testing
(e.g., performance testing, security testing and usability
testing). It is composed of four processes that are depicted in
Figure 1.

 Test Design & Implementation Process: Describes
how test cases and test procedures are derived; these
are normally documented in a test specification, but
may be immediately executed.

 Test Environment Set-Up & Maintenance Process:
Describes how the environment in which tests are
executed is established and maintained.

 Test Execution Process: Describes how the test
procedures generated as a result of the Test Design
& Implementation Process are run on the test
environment established by the Test Environment
Set-Up & Maintenance Process.

 Test Incident Reporting Process describes how the
reporting of test incidents is managed.

Figure 1. Dynamic Test Processes in ISO/IEC/IEEE 29119-2:2013.

The Test Execution Process is run after the tests have
been specified and the environment has been established,
which leads to a strong dependency on the previous
processes. This process may need to be performed a number
of times as all the available test procedures may not be
executed in a single iteration. Additionally, this process must
be reentered as a consequence of detected failures after the
underlying defects have been corrected (retesting).

Besides, the Test Design & Implementation Process, and
the Test Environment Set-Up & Maintenance Process may
be reentered whether additional tests are needed after
execution or some problems are detected in the testing
environment. The Test Incident Reporting Process may be
also reentered as a result of: a) the identification of test
failures, b) something unusual or unexpected occurred
during test execution, or c) retest activities.

IV. MODEL DESCRIPTION

The simulation model developed is described below in
terms of its scope, result variables, process abstraction and
input parameters. The description is organized following
Kellner’s proposal for describing simulation models [31].

A. Model Proposal and Scope

To determine a model proposal, the key questions that
the model needs to address need to be identified. Then,
model scope is set so that it is large enough to fully solve the
key questions posed. In the context of this work, model
proposal is to help in decision-making in software testing
process management. Accordingly, the scope for this model
will be a portion of the life cycle, with a short time span (i.e.,
the months in which the testing activities take place), one
software product and two teams (i.e., development and
testing teams) organizational breadth.

B. Result Variables

The result variables are the information elements needed
to answer the key questions regarding the purpose of the
model. In our model, several process metrics have been
identified to help us understand the simulated process
capability. According to this, process metrics have been
classified into effectiveness and efficiency process metrics.

Effectiveness process metrics measure the extent to
which a process produces a desired result [32].

The following result variables fall into this category:

383

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Defect Closure Period (DCP). The longer a reported
defect takes to go from discovery to resolution, the
higher the project risk associated with the underlying
defect. Unresolved defects may: a) delay testing, b)
make development less efficient or c) prevent the
delivery of the software to the final customers. DCP
measures the difference between the time required to
repair a defect and the time required to confirm the
defect is repaired.

 Defect Open Count. This measure tracks the number
of times a defect report is opened. When the report is
first submitted this count is set to one. This count is
incremented each time the same defect report is
reopened due to a failure in the confirmation test
(retest).

 FixBacklog: Shows the percentage of defects closed
per all the defects opened in a given time.

 Average Defect Life: Shows the average elapsed
time from the moment a defect is found until it is
successfully closed.

 Total Planned Test: The metric shows the evolution
of the number of planned test cases along the testing
project.

 Total Executed Tests: Shows the evolution of actual
test cases that are executed along the project.

 Total Passed Tests: Shows the actual test cases that
are executed and successfully passed (e.g., did not
find any defects).

 Total Failed Tests: Shows the actual test cases that
are executed and failed (e.g., did find defects).

Efficiency process metrics measure the extent to which a
process produces its desired results in a not wasteful way
and, ideally, minimizing the resources used [32].

Result variables in this category follow:

 Actual Test Time: Shows the total length of the
testing process.

 Total Team Size and number of people per activity:
Shows the total size of the testing team and the
number of resources allocated to each activity of the
process, respectively.

 Average Defect Cost: Shows the ratio between the
total number of defects closed and the number of
working hours invested.

 Process Efficiency: Shows the ratio of the number of
defects closed per the number of defects found.

C. Process Abstraction

When developing a simulation model, the key elements
of the process, their inter-relationships, and behavior need to
be identified. The focus should be on those aspects of the
process that are especially relevant to the purpose of the
model, and believed to affect the result variables [31].

One of the decisions that need to be made in this phase is
the simulation paradigm that it is going to be used to build
the model. A simulation paradigm is a general framework for
mapping a real world system to its model. The choice of
paradigm should be based on the system being modeled and
the purpose of the modeling. When modeling complex

systems, it is frequent that different parts of the system are
most naturally modeled using different paradigms. In this
case, a multi-paradigm model is built.

In order to build our model, the multi-paradigm approach
has been selected. First, to model and simulate the dynamic
testing processes, the paradigm selected has been the
discrete-event or process centric approach. Under this
approach, the system being modeled is considered as a
process, i.e., a sequence of operations being performed
across entities, and this makes this paradigm the most natural
and adequate to build process simulation models. The model
is specified graphically as a process flowchart, where blocks
represent the operations to be done along the process.

Although a simulation model following this approach
allows us to analyze the evolution of the testing activities,
the resource consumption and the number of defects
detected, it would be interesting to add an extra functionality
to the simulation model allowing the user to track the life of
every defect since it is found until it is closed. It is important
to notice that to achieve this aim the level of abstraction used
needs to be changed from process-centric to individual-
centric. Agent-based modeling is a simulation approach that
allows the modeler to build a model under a bottom-up
perspective, that is, describing the behavior of individuals
(e.g., agents) and, if needed, their interactions. Frequently,
the behavior of an agent is formalized by means of a state
chart-like diagram. Therefore, this approach seems to be
most natural and adequate to describe the lifecycle of defects
found during the testing phase. As a consequence, a multi-
paradigm simulation model was our choice for our modeling
problem.

In summary, the model consists of two connected
models. A description of each of these models follows:

1) Discrete event model (DE).
The discrete event model represents the Dynamic Test

Processes in ISO/IEC/IEEE 29119-2:2013 [30], previously
described in Section III.

The development process produces two main artifacts
that are the input for the testing processes:

1. The test basis, usually the software specification,
which is modeled as a set of features.

2. The executable code that is to be exercised by the
tests.

 The availability of the test basis enables the execution of
the Test Design & Implementation Process, which leads to a
number of test cases. However, test cases are not ready to be
executed until the test environment has been established
(Test Design & Implementation Process) and the executable
code released. Once the code is installed in the testing
environment, the Test Execution Process can begin. Failed
test cases are the input for the Test Incident Reporting
Process and the results communicated to the development
processes through the Agent-based model. Test execution
reenters when previously detected defects have been fixed by
development.

2) Agent-based model (AB).
During the software development process, each defect

has a lifecycle in which it reaches different states. In order to
simulate the different states that a defect reaches the agent-

384

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

based paradigm has been used. Under this approach, we
formalize the defects found as agents and their behavior as a
state chart that reflects the different states and transitions of
defect lifecycle. A description of each state in which the
agents can be follows:

 New: An agent reaches this state when a defect is
reported by the tester for the first time and is yet to
be approved.

 Analyzed: Once a defect is reported, the manager has
to analyze it in order to approve it as a genuine
defect, reject or defer it. The agent remains in this
state during the time in which this activity takes
place. When the activity is done, the information for
deciding what to do with the defect is available, and
so, the agent moves to the next state, which can be
one of the following: a) Rejected: If a defect is found
to be invalid, b) Deferred: If a defect is decided to be
fixed in upcoming releases, and c) Assigned: If a
defect is found to be valid and assigned to a member
of the development team to fix it.

 Fixed: An agent moves to this state once the
developer communicates the defect is fixed. The
defect goes to the testing team for validation by
injecting a task in the DE model to indicate that the
test case that found this defect has to be executed
again (retest). The result of this execution will
determine the next state of the agent.

 Closed. If the tester finds that the defect is indeed
fixed and is no more a cause of concern, the agent
moves to the state Closed. Otherwise, if the defect is
not fixed or partially fixed, the agent will go again to
the state Assigned in which the work of a developer
working on its fixing will be simulated again.

D. Input Parameters

The input parameters to include in the model largely
depend upon the result variables desired and the process
abstractions identified. Input parameters allow setting up
different scenarios for simulation. The input parameters of
the simulation model are the following:

 Software size: Size of the software product under
development.

 FPA per Feature: Adjusted Functional Points per
feature.

 Number of Test Cases per Feature: Number of test
cases that need to be designed and executed per
feature.

 Initial number of tasks in Environment Setup. Initial
number of tasks that need to be done for the
common and global environment setup.

 Estimated Time for Environment Setup. Time
estimated to develop each environment setup task.

 Environment Setup Resources. Number of people
allocated to the Environment Setup processes.

 Estimated Time for Test Design and
Implementation. Time estimated to develop each
task of the Test Design and Implementation
processes.

 Test Design and Implementation Resources. Number
of people allocated to the Test Design and
Implementation process.

 Estimated Time for Test Execution. Time estimated
to develop each task of the Test Execution processes.

 Test Execution Resources. Number of people
allocated to the Test Execution processes.

 Estimated Time for Test Incident Reporting. Time
estimated to develop each task of the Test Incident
Reporting processes.

 Test Incident Reporting Resources. Number of
people allocated to the Test Incident Reporting
Processes.

 Estimated time to fix a defect. Time estimated to a
fix a defect by a developer.

 Code released for Test Execution. Indicates when
the code is released for testing. This value is
provided as a percentage of delay measured
regarding the initial estimated time for the testing
project.

 Probability of finding a defect per Test Case
Execution. Probability that a Test Case finds a defect
when the test case is executed the first time.

 Probability of finding a defect per Test Case in
Retest Execution. Probability that a Test Case finds a
defect when the defect has been reported as fixed.

In order to achieve more realistic results, the model
accepts a triangular distribution for most of the above input
parameters.

V. SIMULATION OPTIMIZATION

Even though simulation runs are useful to visualize the
effect of different values of the input parameters in the
process performance, that is, to execute what-if scenarios in
managerial decision-making, a key benefit can be obtained
when we use together simulation and metaheuristic
optimization algorithms in a process called simulation
optimization. In this case, it is possible to obtain which
values need to take the input parameters in order to
maximize or minimize an output variable.

This section presents two optimization scenarios
regarding the following exploratory questions:

 RQ1: Is it possible to maximize the efficiency of the
test process by controlling the moment in which the
executable code is available for testing? The
optimization will determine the distribution of the
human resources that maximizes the Process
Efficiency.

 RQ2: Is it possible to minimize the time life span of
a defect? (time from detection to closing). The
optimization will determine the distribution of the
human resources that minimizes the Average Defect
Life.

The model implementation and the simulation runs have
been performed using Anylogic

TM
 software [33] with the

Enterprise Library. The model logic is written in Java.
Optimizations have been carried on using the optimizer
OptQuest

®
 [34] built-in Anylogic

TM
.

385

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The first step will be to configure a base scenario. Then
optimizations will be determined starting from this scenario.

A. Base Scenario Setup

In this scenario, the base simulation is run to determine
the values of the result variables and analyze the results of
the process. In order to obtain a set of reasonable parameters,
we have estimated the costs of the different activities using a
set of ratios observed in average risk profiles [35]. We
consider functional testing for a system test phase in a
project with waterfall development, experienced builders and
a structured test approach driven by risk:

 Development process ratios: Ratios of functional
design, realization and functional test are 1:2:1.

 Test process ratios: the ratios of test design &
implementation, execution, reporting and
environment set-up are 50:40:5:5, respectively.

The values of the input parameters in this scenario are
displayed in Table I.

B. Base Scenario Run

 Once the input parameters of the model have been set to
the values shown in Table I, the model is ready to simulate
the base scenario. The number of test cases in each state is
depicted in Figure 2, which shows that initially 160 test cases
were planned for the initial features. At the end of the
simulation the total of fulfilled tests is 511 with 416 passed
tests (81.41%) and 95 failed tests (18.59%).

Figure 3 depicts the number of defects in each state. At
the end of the simulation, 4 of them were rejected and 3 of
them deferred; 75 defects were closed and 9 reopened. The
Process Efficiency reached with this setting is 91.0%, which
is reasonable in practice, showing the consistency of the
model when using the above parameters.

Figure 4 and Figure 6 display the time evolution of the
number of test cases in each state and the number of defects
in each state until the end of simulation, respectively. These
figures are included later in the article to facilitate the

comparison against the optimization runs. The increasing of
the number of test cases in each states (Figure 4) is fairly
linear from the moment in which testing begins. The number
of defects in each state (Figure 6) follows a different trend,
as there is a significant delay from detection of failures to
their closing. This is related to the Average Defect Life,
which will be optimized later.

Figure 12 displays the time evolution of the Process
Efficiency, which has been defined before as the ratio
between the number of closed defects and the number of
defects found. At the beginning of the simulation the number
of defects found is zero (because test cases are still in
preparation), so that the simulator returns 100%. Just after
the first test case is available, the efficiency goes to zero as
there are not closed defects. After the first defect has been
closed, efficiency increases up and grows towards its final
value (91.0%).

C. Optimization of the Process Efficiency

To answer RQ1, we ran an optimization experiment to
determine whether it is possible to improve the efficiency of
the test process by controlling the moment in which the
executable code is available for testing. The optimization
will determine the distribution of the human resources that
maximizes test efficiency when the code is released for
testing in a range that varies from 5% to 50% from the
moment the testing process begin [1]. Table II displays the
input values for the control parameters of the experiment, the
constraints imposed and the results obtained in the optimized
process compared with the base case.

The results of the optimization experiment show that,
under the constraints imposed, it is possible to achieve 97%
of efficiency in the process allocating 7 people to the process
and having a maximum delay of the code released for testing
of 27% of the initial estimated time. This will result into a
process that is 97% efficient in closing defects but finishes
one month later than the base scenario.

TABLE I. BASE SCENARIO CONFIGURATION

Input parameter Value

Software size 800 FPA

FPA per Feature 5

Number of Test Case per Feature (0.5, 2, 4)

Initial number of tasks in Environment Setup 5 tasks

Estimated Time for Environment Setup (10, 14.4, 20) hours

Environment Setup Resources 1 person

Estimated Time for Test Design and

Implementation

(3, 4.5, 6) hours

Test Design and Implementation Resources 4 people

Estimated Time for Test Execution (1.5, 3.2, 4.5) hours

Test Execution Resources 4 people

Estimated Time for Test Incident Reporting (1.5, 3, 4.5) hours

Test Incident Reporting Resources 1 person

Estimated time to Fix a defect (3, 4.5, 6) hours

Code released for Test Execution 15%

Probability of finding a defect per Test Case

Execution

(5%, 15%, 25%)

Probability of finding a defect per Test Case in
ReTest Execution

(10%, 20%, 30%)

Figure 2. Number of test cases in each state at the end of the simulation.

Figure 3. Number of defects in each state at the end of the simulation.

386

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The conclusion drawn from this particular experiment
with regard to the base scenario is that if the project is
adequately scheduled, it is possible to reduce the total
number of test resources as well as increase the process
efficiency.

D. Optimization of the Average Defect Life

To answer RQ2 we run an optimization experiment to
determine whether it is possible to improve the time span
between fault detection and closing by controlling the
moment in which the executable code is available for testing
(in an range that varies from 5% to 50% as in previous
subsection). In this case, the optimization will minimize the
Average Defect Life. Table III displays the input values for
the control parameters of the experiment, the constraints
imposed and the results obtained in the optimized process
compared with the base case.

The results of the optimization experiment show that
under the constraints imposed, it is possible to reduce by
more than a half (down to 13.91%) the Average Defect Life
by allocating the same amount of people in a different way to
the process and having a maximum delay of the code
released for testing of 20% of the initial estimated time.

As in the previous optimization, this case also requires a
team size of 10 people allocated to the testing tasks.
However, the optimization brings new light regarding the
allocation of people to the tasks resulting in a considerable
advantage regarding the average defect life.

Now, a comparison on trends of the main variables of the
process will be provided. Figure 4 and Figure 5 display the
time evolution of the number of test cases in each state for
the base and optimized scenarios, respectively. Figure 6 and
Figure 7 display the time evolution of the number of defects

in each state until the end of simulation for the base and
optimized scenarios, respectively. In Figure 7, it can be seen
that there is a shorter delay between the moment in which
failures are detected and their closing, at the expenses of a
larger test time.

Figure 8 and Figure 9 display the values of the Average
Defect Life (base and optimized scenario, respectively). In
the optimized scenario, the variable starts growing earlier
than in the base scenario, but with a lower maximum value.
Just after reaching the maximum begins a continuous
decrease until its optimum value (13.9 working hours) is
achieved, a much lower valued than the corresponding value
for the base scenario (127.4 working hours). The Average
Defect Cost (ratio between number of defects closed and
total time spent) is displayed in Figure 10 and Figure 11,
showing similar trends and final values of 6.2 working hours
(base scenario) and 5.6 hours (optimized scenario).

To finish, a comparison of the Process Efficiency is
provided in Figure 12 and Figure 13. Process Efficiency at
the end (89.0%) is marginally lower than in the base scenario
(90.0%), since this optimization is intended to minimize the
average defect life, but it begins growing at earlier stages of
the testing project.

Other simulations can help find the best input values for
project schedule, resource allocation and quality objective
from among all that lead to the optimization of the key
process outputs. Moreover, the results of optimizations
presented in this paper have been performed separately, but
this makes room for future explorations in multi-objective
optimizations. For example, in order to balance the
maximization of variables like Process Efficiency as well as
the minimization of variables like Average Defect Life.

TABLE II. OPTIMIZATION OF THE PROCESS EFFICIENCY

COMPARED WITH BASE SCENARIO

Input parameter Control

Input

Result

(Base

scenario)

Result

(Optim.

scenario)

Initial number of tasks in

Environment Setup

3-5 tasks 5 5

Environment Setup Resources 1-4 people 1 1

Test Design and
Implementation Resources

1-4 people 4 2

Test Execution Resources 1-4 people 4 3

Test Incident Reporting

Resources

1-4 people 1 1

Code released for Test

Execution

5% - 50% 15% 27%

Constraints Value

Testing Team Size <= 7 people

Maximum Testing Time

Overrun

<= 1 month

Process Efficiency obtained (percent) 90% 97%

TABLE III. OPTIMIZATION OF THE AVERAGE DEFECT LIFE

COMPARED WITH BASE SCENARIO

Input parameter Control

Input

Result

(Base

scenario)

Result

(Optim.

scenario)

Initial number of tasks in
Environment Setup

3-5 tasks 5 5

Environment Setup Resources 1-4 people 1 1

Test Design and

Implementation Resources

1-4 people 4 2

Test Execution Resources 1-4 people 4 4

Test Incident Reporting

Resources

1-4 people 1 3

Code released for Test

Execution

5% - 50% 15% 20%

Constraints Value

Testing Team Size <= 10 people

Maximum Testing Time
Overrun

<= 1 month

Average Defect Life (working hours) 28.31 13.91

387

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Time evolution of the number of test cases in each state (base scenario).

Figure 5. Time evolution of the number of test cases in each state (optimized scenario).

Figure 6. Time evolution of the number of defects in each state (base scenario).

Figure 7. Time evolution of the number of defects in each state (optimized scenario).

388

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. CONCLUSION AND FURTHER WORK

This paper presented a simulation model for the dynamic
testing processes that allows a seamless integration between
the testing and development processes. The model is devised
as a multi-paradigm model composed by a discrete event
simulation model, to simulate the execution of the dynamic
test processes, and an agent-based simulation model, to in-
depth simulate the defects life cycle. The model has been
first used to simulate a base scenario. The results of the
simulation runs were then used to design two simulation

optimization scenarios. By merging simulation and
optimization it is possible to use the model to find the best
testing team configuration so that key process metrics are
optimized. Results show that the simulation model can be
effectively used to optimize different process metrics (Test
Process Efficiency and Average Defect Life) and then help
managers to achieve a trade-off between cost, schedule and
quality.

This work is a first step in the use of multi-paradigm
simulation models for testing management. Further work
will include, although not limited to, the consideration of
agent-based models to simulate parts of the dynamic test
processes, the integration into a more complex project
development simulation model [36], multi-objective
optimization and experimentation in different projects using
different lifecycle models and including different test levels
of testing. After calibrating and validating the model with
historical data from the industry, it will be also possible to
exploit it as an operating tool for decision-making in the
industrial domain.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Science and Technology with ERDF funds under
grants TIN2010-20057-C03-03, TIN2010-20057-C03-01,
TIN2013-46928-C3-2-R and TIN2013-46928-C3-1-R.

Figure 8. Time evolution of average defect life (base scenario).

Figure 9. Time evolution of the average defect life (optimized scenario).

Figure 10. Time evolution of the average defect cost (base scenario).

Figure 11. Time evolution of the average defect cost (optimized scenario).

Figure 12. Time evolution of the process efficiency (base scenario).

Figure 13. Time evolution of the average process efficiency (optimized

scenario).

389

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] M. Ruiz, J. Tuya, and D. Crespo, “Simulation-based management for
software dynamic testing processes,” Proceedings of the 7th
International Conference on Software Engineering Advances (ICSEA
2012), IARIA 2012, Lisbon, pp. 630-635.

[2] E. van Veenendaal (ed), Standard glossary of terms used in software
testing, Version 2.1, International Software Testing Qualifications
Board, Oct. 2010.

[3] RJ. Madachy, Software process dynamics. John Wiley & Sons, Inc.,
2008.

[4] K. Nogeste and DHT. Walker, “Using knowledge management to
revise software-testing processes,” Journal of Workplace
Learning, 2006, 18(1), pp. 6-27.

[5] R. Abdullah, ZD. Eri, and AM. Talib, “A model of knowledge
management system in managing knowledge of software testing
environment,” 5th. Malaysian Conference in Software Engineering,
(MySEC 2011), 2011, pp. 229-233.

[6] J. Andrade, J. Ares, M. Martínez, J. Pazos, S. Rodríguez, J. Romera,
and S. Suárez, “An architectural model for software testing lesson
learned systems,” Information and Software Technology, 2013, vol.
55, no. 1, pp, 18-34.

[7] X. Liu, G. Gu, Y. Liu, and J. Wu, “Research and implementation of
knowledge management methods in software testing process,” WRI
World Congress on Computer Science and Information Engineering,
(CSIE 2009), 2009, pp. 739-743.

[8] Z. Bluvband, S. Porotsky, and M. Talmor. “Advanced models for
software reliability prediction,” Proceedings - Annual Reliability and
Maintainability Symposium, 2011, pp. 1-5.

[9] L. Lazić and N. Mastorakis, “The COTECOMO: COnstractive test
effort COst Model,” N. Mastorakis and V. Mladenov (Eds)
Proceedings of the European Computing Conference, vol. 2, Series:
Lecture Notes in Electrical Engineering, 2009, vol. 27, pp. 89-110.

[10] SD. Kanawat, A. Pandey, A. Singh, and A. Maloo, “Software testing
model for quality,” Advanced Materials Research, 2001, vol. 4507,
pp. 403-408.

[11] L. Xin-Ke and Y. Xiao-Hui, “A goal-driven measurement model for
software testing process,” WRI World Congress on Software
Engineering, (WCSE 2009), 2009, vol. 4, pp. 8-12.

[12] L. Lazić, “Software testing optimization by advanced quantitative
defect management,” Computer Science and Information
Systems, 2010, 7(3), pp. 459-487.

[13] J. Saldaña-Ramos, A. Sanz-Esteban, J. García-Guzmán, and A.
Amescua, “Design of a competence model for testing teams,” IET
Software, 2012, 6(5), pp. 405-415.

[14] A. Farooq, K. Georgieva, and RR. Dumke, “A meta-measurement
approach for software test processes,” Proceedings of the 12th. IEEE
International Multitopic Conference (IEEE INMIC 2008), 2008, pp.
333-338.

[15] X. Li and W. Zhang, “The PDCA-based software testing
improvement framework,” Proceedings of the 2010 International
Conference on Apperceiving Computing and Intelligence Analysis,
(ICACIA 2010), 2010, pp. 490-494.

[16] L. Han, “Evaluation of software testing process based on bayesian
networks,” Proceedings of the 2010 International Conference on
Computer Engineering and Technology, (ICCET 2010), 2010, 7, pp.
V7361-V7365.

[17] D. Zhang, C. Nie, and B. Xu, “Cross-entropy method based on
Markov decision process for optimal software testing,” Ruan Jian
Xue Bao/Journal of Software, 2008, vol. 19, no. 10, pp. 2770-2779.

[18] Q. Li, Y. Yang, M. Li, Q. Wang, BW. Boehm, and C. Hu,
“Improving software testing process: Feature prioritization to make
winners of success-critical stakeholders,” Journal of Software:
Evolution and Process, 2012, vol. 24, no. 7, pp. 783-801.

[19] K. Cai, Z. Dong, and K. Liu, “Software testing processes as a linear
dynamic system,” Information Sciences, 2008, vol. 178, no. 6, pp.
1558-1597.

[20] HKN. Leung, “Improving the testing process based upon
standards,” Software Testing Verification and Reliability, 1997, vol.
7, no. 1, pp. 3-18

[21] L. Lazić and N. Mastorakis, “RBOSTP: Risk-based optimization of
software testing process. Part 1,” WSEAS Transactions on
Information Science and Applications, 2005, vol. 2, no. 6, pp. 695-
708.

[22] L. Lazić and N. Mastorakis, “RBOSTP: Risk-based optimization of
software testing process. Part 2,” WSEAS Transactions on
Information Science and Applications, 2005, vol. 2, no. 7, pp. 902-
916.

[23] L. Lazić and N. Mastorakis, “Integrated intelligent modeling,
simulation and design of experiments for Software Testing Process,”
Proceedings of the International Conference on Computers, 2010, vol.
1, pp. 555-567.

[24] L. Lazić and N. Mastorakis, “The use of modeling & simulation-
based analysis & optimization of software testing,” WSEAS
Transactions on Information Science and Applications, 2005, vol. 2
no. 11, pp. 1918-1933.

[25] L. Lazić and D. Velasěvić, “Applying simulation and design of
experiments to the embedded software testing process,” Software
Testing Verification and Reliability, 2004, vol. 14, no. 4, pp. 257-282.

[26] WM. Zhang, BS. Zhou, and WJ. Luo, “Modeling and simulating of
sequential iterative development processes,” Jisuanji Jicheng Zhizao
Xitong/Computer Integrated Manufacturing Systems, (CIMS 2008),
2008, vol. 14, no. 9, pp. 1696-1703.

[27] C. Lizhi, T. Weiqin, B. Zhou, and J. Zhang J, “Modeling software
testing process using HTCPN,” Fourth International Conference on
Frontier of Computer Science and Technology, (FCST 2009), 2009,
pp. 429-434.

[28] K. Saurabh, “Modeling unit testing processes: a system dynamics
approach,” Proceedings of the 10th International Conference on
Enterprise Information Systems (ICEIS 2008), 2008, vol. ISAS 1, pp.
183-186.

[29] JS. Collofello, Y. Zhen, JD. Tvedt, D. Merrill, and I. Rus, “Modeling
software testing processes,” Proceedings of the International Phoenix
Conference on Computers and Communications, 1996, pp. 289-293.

[30] ISO/IEC/IEEE 29119-2:2013 Software and Systems Engineering -
Software Testing – Part 2: Test processes. August 2013.

[31] MI. Kellner, RJ. Madachy, and DM. Raffo, “Software Process
Modeling and Simulation: Why, What, How?,” Journal of Systems
and Software, April, 1999, Vol. 46, no. 2/3.

[32] R. Black, “Managing the testing process: practical tools and
techniques for managing hardware and software testing,” Wiley
Publishing, 2002.

[33] XJ Technologies. AnylogicTM. http://www.anylogic.com/ [retrieved:
May, 2014] .

[34] OpTek Systems, Inc. OptQuest®. http:// www.opttek.com/ [retrieved:
May, 2014].

[35] T. Koomen, L. van der Aalst, B. Broekman, and M. Vroon, “TMap
Next for result-driven testing,” UTN Publishers, 2007.

[36] D. Crespo and M. Ruiz, “Decision making support in CMMI process
areas using multiparadigm simulation modeling,” 2012 Winter
Simulation Conference (WSC 2012), 2012, pp. 1-12.

390

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Implementation Variants for Position Lists

Andreas Schmidt∗†, Daniel Kimmig†, and Steffen Scholz†
∗ Department of Computer Science and Business Information Systems,

Karlsruhe University of Applied Sciences
Karlsruhe, Germany

Email: andreas.schmidt@hs-karlsruhe.de
† Institute for Applied Computer Science

Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: {andreas.schmidt, daniel.kimmig, steffen.scholz}@kit.edu

Abstract—Within “traditional” database systems (row store),
the values of a tuple are usually stored in a physically connected
manner. In a column store by contrast, all values of each single
column are stored one after another. This orthogonal storage
organization has the advantage that only data from columns
which are of relevance to a query have to be loaded during
query processing. Due to the storage organization of a row
store, all columns of a tuple are loaded, despite the fact that
only a small portion of them are of interest to processing.
The orthogonal organization has some serious implications on
query processing: While in a traditional row store, complex
predicates can be evaluated at once, this is not possible in
a column store. To evaluate complex conditions on multiple
columns, an additional data structure is required, the so-called
Position List. At first glance these Position Lists can easily be
implemented as a dynamic array. But there are a number of
situations where this is not the first choice in terms of memory
consumption and time behavior. This paper will discuss some
implementation alternatives based on (compressed) bitvectors.
A number of tests will be reported and the runtime behavior
and memory consumption of the different implementations
will be presented. We additionally extended the existing WAH
library for compressed bitvectors by a number of new methods
to be used for the purpose of implementing the functionality of
Position Lists based on (compressed) bitvectors. Finally, some
recommendation will be made as to the situations in which
the different implementation variants for Position Lists will be
suited best. Their suitability depends strongly on the selectivity
of a query or predicate.

Keywords–Column stores; PositionList implementation vari-
ants; bitvector; compression; run length encoding; performance
measure

I. INTRODUCTION

This article is an extended version of a paper entitled
Considerations about Implementation Variants for Position
Lists [1] presented at the Fourth International Conference on
Advances in Databases, Knowledge, and Data Applications
in Sevilla, Spain. Some important extensions include the
extension of the WAH library by a number of transformation
functions between different representation forms of a Posi-
tion List as well as the implementation of a special append-
based bitset function on compressed bitvectors, which allows

the usage of compressed bitvectors in the typical Position
List generation process when evaluating a single predicate.

Nowadays, modern processors utilize one or more cache
hierarchies to accelerate access to main memory. A cache
is a small and fast memory which resides between the main
memory and the CPU. In case the CPU requests data from
the main memory, it is first checked, whether these data are
already contained in the cache. In this case, the item is sent
directly from the cache to the CPU, without accessing the
much slower main memory. If the item is not yet in the
cache, it is first copied from the main memory to the cache
and then sent to the CPU. However, not only the requested
data item, but a whole cache line, which is between 8 and
128 bytes long, is copied into the cache. This prefetching
of data has the advantage of requests to subsequent items
being much faster, because they already reside within the
cache. Depending on the concrete architecture of the CPU,
the speed gain when accessing a data set in the first-level
cache is up to two orders of magnitude compared to regular
main memory access [2]. This means that when a requested
data item is already in the first-level cache, the access time is
much faster compared to the situation, when the data item
must be loaded from the main memory (this situation is
called a cache miss). The use of special data structures which
increase cache locality (the preferred access of data items
already residing in the cache) is called cache-conscious
programming.

Column stores take advantage of this prefetching behavior,
because values of individual columns are physically con-
nected. Therefore, they often already reside in the cache
when requested, as the execution of complex queries is
processed column by column rather than tuple by tuple. This
difference between a “traditional” row store and a column
store is illustrated in Figure 1. In the upper part of the figure,
a relation, consisting of six tuples, each with five columns,
is shown. The lower part of the figure shows the physical
layout of this relation on disk or in the main memory. On
the left side, the row store layout is represented. The row
store stores all values of one tuple in a physically connected

391

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ID Name Firstname date-of-birth sex

31 Waits Tom 1949-12-07 M

45 Benigni Roberto 1952-10-27 M

65 Jarmusch Jim 1953-01-22 M

77 Ryder Winona 1971-10-29 F

81 Rowlands Gena 1930-06-19 F

82 Perez Rosa 1964-09-06 F

Ro
w-
St
or
e Column-Store

31 Waits Tom 1949-12-07 M

31
45 Benigni Roberto 1952-10-27 M

65 Jarmusch Jim 1953-01-22 M

77 Ryder Winona 1971-10-29 F

81 Rowlands Gena 1930-06-19 F

82 Perez Rosa 1964-09-06 F

45

65

77

81

82

Benigni

Jarmusch

Ryder

Rowlands

Perez

1952-10-27

1953-01-22

1971-10-29

1930-06-19

1964-09-06

M

M

F

F

F

 Waits Tom 1949-12-07 M

Roberto

Jim

Winona

Gena

Rosa

Figure 1. Comparison of the layouts of a row store and a column store (from [3])

manner. In contrast to this, a column store contains all values
of each single column one after another.

This also means that the decision whether a tuple fulfills
a complex condition on more than one column is generally
delayed until the last column is processed. Consequently,
additional data structures are required to administrate the
status of a tuple in a query. These data structures are referred
to as Position Lists. A Position List stores information about
matching tuples. The information is stored in the form of a
Tuple IDentifier (TID). The TID is nothing more than the
position of a value in a column. Execution of a complex
query generates a Position List with entries of the qualified
tuples for every simple predicate.

Complex predicates on multiple columns can be evaluated
in two different ways. First, as shown in Figure 2, the pred-
icates can be evaluated separately, and in a subsequent step,
the resulting Position Lists can be merged. The advantage
of this variant is, that the evaluation of the predicates can
be done in parallel. A drawback of this solution is, that all
column values must be evaluated.

In contrast to this, the evaluation of the query can also
be done sequentially, as shown in Figure 3. In this case, a
Position List representing the result of a previously evaluated
predicate is an additional input parameter for the evaluation
of the second predicate. Not all column values have to be
evaluated, but only those for which an entry in the first
Position List exists. The drawback of this solution is the
strict sequential program flow and a slightly more complex
execution, which may probably cause more cache misses
compared to the parallel version. Which of the variants is
better suited depends on the boundary conditions of the
query.

In previous work, we developed the Column Store Toolkit
(CSTK) [3] and used it as a starting point for further research

birthdate

1949-12-07

1952-10-27

1953-01-22

1971-10-29

1930-06-19

1964-09-06

sex

 M
 M

 M

 F

 F

 F

PL2

4

6

5

PL1

1

3

5

2

sex=’F’birthdate < ’1960-01-01’

PL3

5

and

Figure 2. Isolated evaluation of predicates on their corresponding Position
Lists and subsequent merging of the resulting Position Lists (from [3])

in the field of optimizing SQL queries based on a column
store architecture [4].

The main objective of this paper is to present an in-depth
analysis of different implementation variants of Position
Lists and to demonstrate their advantages and disadvantages
in different situations in terms of runtime behavior and
memory consumption.

The paper is structured as follows. After giving an
overview over related work in the next section, we will
discuss some specific details of Position Lists. Then, the
most important components of the CSTK will be introduced.
After that, a number of experiments with respect to runtime
behavior and memory consumption will be performed in

392

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

birthdate

1949-12-07

1952-10-27

1953-01-22

1971-10-29

1930-06-19

1964-09-06

sex

 M
 M

 M

 F

 F

 F

PL1

1

3

5

2

birthdate < ’1960-01-01’

PL3

5

and sex=’F’

Figure 3. Iterative evaluation of predicates, using Position Lists as
additional parameters

the main part. Finally, results will be summarized, and an
outlook will be given on future research activities.

II. RELATED WORK

First work addressing column stores (vertical storage
orientation) is dated back into the 80th [5], [6]. During the
last decade, a number of new research prototypes, based
on a vertical partitioning of data, appeared and did show
some advantages. From these systems, C-Store [7] and
MonetDB [8] are the most notably ones. On the commercial
side, Infobright [9], SAP-Hana [10], Sybase IQ [11], and
Vertica [12] (a commercial version of C-Store), amongst
others, appeared. Today, also big players like Oracle and
Microsoft implemented columns store technologies into their
database systems [13], [14]. Various publications compare
the performance of column stores with that of row stores
for different workloads [7], [15], [16]. In contrary, [17]
examines different execution plan variants for column stores,
while [18] considers the impact of compression. Following
the work in [17], we examine different implementation
variants for the underlying data structures and algorithms
of the operations used in the execution plan of a query.

Abadi et. al. in [19] mention different implementation
variants for Position Lists, i.e., a simple array, a bitstring or a
set of ranges of positions, but did not compare these different
solutions with respect to runtime behaviour. In contrast
to the previous mentioned work, we do not use a fixed
structure for implementing the Position Lists, but compare
the runtime and memory consumption behaviour of different
implementation variants with respect to the selectivity of a
predicate.

III. POSITION LISTS

From a logical point of view, a Position List is nothing
more than an array or list with elements of the data type
unsigned integer (UINT) as far as structure is concerned.
However, it has a special semantics. The Position List stores
TIDs. A Position List is the result of a query via predicate(s)
on a Column, where the actual values are of no interest,
whereas the information about the qualified data sets is
desired. Position Lists store the TIDs in ascending order
without duplicates. In other words, a Position List stores the
information for each tuple no matter whether it belongs to
a result (so far) or not.

A. Operations on Position Lists

The fundamental logical operations on Position Lists are
appending TIDs at the end (write operation), iterating over
the list of TIDs (read operation), and performing and/or
operations on complete lists.

Further operations that are mainly based on this basic
functionality, include the materialization [17] of the corre-
sponding values from the requested columns, the storage of
the whole list or parts of it in a file, and the import from a
file.

B. Implementation Variants

Based on the logical structure and behavior discussed
above, the first intuitive implementation of a Position List
is using a dynamic array (an array of flexible size) of
unsigned integer values. The advantage of this variant is,
that the implementation is straight forward and the storage
of the TIDs is cache-conscious [20], [21] in the context of
the above-mentioned operations like iterating, storing, and
and/or operations.

As Position Lists store the TIDs in ascending order
without duplicates, typical and/or operations are very fast,
as the cost for both operations is O(|Pl1|+ |Pl2|).

One big drawback of the implementation as a dynamic
array is the fact, that the lists may be very large. This is
especially true for predicates over multiple columns, where
no predicate has a high selectivity. In this context, high
selectivity means, that only a small number of tuples qualify
the condition. A low selectivity, by contrast, means that
a lot of tuples satisfy the condition. Typical predicates of
low selectivity are the “family status” or the “gender” of a
person. Let us consider a conjunctive query consisting of
6 predicates on different columns. Each single predicate has
a selectivity of up to 50% (i.e., gender, family status, etc.).
The overall selectivity of the query is about 1.5% of the
original number of tuples, but the size of the cardinality of
the individual Position Lists is up to 50% of the original
table. Starting with the predicate of the highest selectivity
and iteratively examining the values of tuples from the sub-
sequent columns which qualified previously (see Figure 3)
can reduce this problem. However, if no or only vague

393

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

information about the selectivity of the different predicates
is available, this can be a serious problem. Figure 4 shows
the size of a Position List in megabytes with respect to the
selectivity of the predicate for a 100 million tuple table. In
the worst case, the resulting Position List can be bigger than
the original column (e.g., for columns with binary values or
a small number of possible values only).

 0

 50

 100

 150

 200

 0.0001 0.001 0.01 0.1 0.5

m
em

or
y

co
ns

um
pt

io
n

(in
 M

B
)

selectivity

Static array

Figure 4. Memory consumption of a Position List implemented as array
(logarithmic scale on x-axis)

The problem of the unpredictable size of the intermediate
Position Lists can be prevented by using a bitvector to
represent the Position List. Here, every tuple is represented
by one bit. A value of ’1’ means that the tuple belongs to
the (intermediate) result, a value of ’0’ means that the tuple
does not belong to the result.

This has the advantage of the size of a Position List being
exactly predictable, independently of the selectivity of the
predicate. The selectivity only has impact on how many bits
are set to ’1’. Moreover, the two important operations and
and or can be mapped on the respective primitive processor
commands, which makes the operations fast. If Position
Lists are sparse, bitvectors can also be compressed very well
using run length encoding (RLE) [22]. The idea behind RLE
encoding is that if only a small number of bits are one, the
’0’ bits are not stored physically, but only the number of ’0’
bits are stored.

Figure 5 presents a simple example of this principle.

000000000000000100000000000001000000010000000000000001

17 X ’0’ 1 13 X ’0’ 1 7 X ’0’ 1 15 X ’0’ 1

Figure 5. Principle of run length encoding (RLE)

The Word Aligned Hybrid algorithm (WAH) [23] uses this
principle and distinguishes between two word types: fills and

literals. The two word types are distinguished by the most
significant bit, so 31 (63) bits remain for the stored bits per
word or the length field. A literal is a word consisting of 31
(63) bits, of which at least one bit is ’1’. A 0-fill consists of
a multiple of 31 (63) ’0’ bits which are stored in one word.
The maximum number of ’0’ bits which can be stored in
one word is 31 ∗ 231 (resp. 63 ∗ 263 for the 64-bit version).

The necessary operations like iterating, and, or can be
performed on the compressed lists, thus avoiding a tempo-
rary decompression of the compressed representation. In the
context of this paper, the bitvector implementation of the
WAH algorithm and a simple plain uncompressed bitvector
implementation are used. The WAH algorithm is considered
to be one of the fastest algorithms for performing logical
and/or operations on compressed bitvectors.

IV. THE COLUMN STORE TOOLKIT

The Column Store Toolkit (CSTK) was deveolped as
a toolkit with a minimum amount of basic components
and operations required for building column store appli-
cations. These basic components were used as catalysts
for further research into column store applications and for
building data-intensive, high-performance applications with
minimum expenditure.

The main focus of our components is on modeling the
individual columns, which may occur both in the secondary
store as well as in main memory. Their types of representa-
tion may vary. To store all values of a column, for example,
it is not necessary to explicitly store the TID for each value,
because it can be determined by its position (dense storage).
To handle the results of a filter operation, however, the TIDs
must be stored explicitly with the value (sparse storage).

Another important component is the already discussed
Position List. Just like columns, two different representation
forms are available for main and secondary storage. In this
paper, it is concentrated on the main memory behavior of
the Position Lists.

To generate results or to handle intermediate results con-
sisting of attributes of several columns, data structures are
required for storing several values (so-called multi-columns).
These may also be used for the development of hybrid
systems as well as for comparing the performance of row
and column store systems.

The operations mainly focus on writing, reading, merging,
splitting, sorting, projecting, and filtering data. Predicates
and/or Position Lists are applied as filtering arguments.

Figure 6 presents an overview of the most important
operations and transformations among the components. The
arrows show the operations among the different components
(ColumnFile, Dense-/Sparse ColumnArray, PositionList, and
PositionListFile). For a detailed description of the opera-
tions, see [3].

394

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Dense ColumnArray

 ColumnFile

 PositionList

 PositionListFile

 Sparse ColumnArray

load

filter

filter/split/sort(project)

filter

 load

 store

split/sort/(project)
filter/split/sort

store

store

filter/sort

filter/extract

merge

sort

Figure 6. CSTK: Components and operations (from [3])

V. MEASUREMENTS

A. Elemental Operations

1) Experimental setup: All tests were performed on a 64-
bit laptop running Windows 7 Enterprise with an Intel(R)
Core(TM) i7-3520M CPU @ 2 x 2.90 GHZ and 8 GB of
RAM. The used C++ compiler was gcc 4.5.3.

2) Memory consumption: In a first experiment, we com-
pare the size of the different data structures with respect to
memory consumption. As shown in Figure 7, the behavior
of the array implementation is quite good for very high
selectivities (0.01 and below), but changes for the worse
at medium and low selectivities. Uncompressed bitvectors
(plain bitvector, WAH-uncompressed) behave independently
for all selectivities, their size is determined by the number
of tuples in a table only. Compressed bitvectors show a very
good behavior for all selectivities. If the selectivities get low,
they behave like uncompressed bitvectors (compared to a
pure uncompressed implementation of a bitvector, there will
be a slight overhead of 1/32 resp. 1/64.). From a selectivity
of about 3%, the array has a higher memory consumption
than the uncompressed bitvector.

 0

 5

 10

 15

 20

 0.0001 0.001 0.01 0.1 0.5

m
em

or
y

co
ns

um
pt

io
n

(in
 M

B
)

selectivity

Plain Bitvector, 64 bit
WAH-Bitvector, compressed, 32 bit

WAH-Bitvector, uncompressed, 32-bit
WAH-Bitvector, compressed, 64 bit

WAH-Bitvector, uncompressed, 64-bit
Array

Figure 7. Memory consumption of different implementation alternatives
for Position Lists

3) Iterating over TIDs: In the next experiment, we ex-
amine the runtime behavior of the two elemental operations:

• Appending TIDs on a Position List
• Iterating over the TIDs in a Position List.

These two operations are heavily used in the implementation
of the CSTK components.

We implement a simple bitvector class on our own (with-
out compression facility) and also use the well-known WAH
algorithm. The overhead of the uncompressed representation
of WAH is quite small in terms of both runtime and memory
consumption.

In contrast to the original implementation of the WAH
algorithm, we also use hardware support for special opera-
tions. The Leading Zero Count Instruction (LZCNT) is used
to find the ’1’ bits inside a processor word. This leads to
a performance advantage of a factor of 3 compared to the
orginal WAH version.

In our first experiment, we take a table of 100 million
tuples and formulate predicates with different selectivities
between 0.0001 and 0.5. The TIDs of the qualified tuples
are then stored in the different representation forms (plain
bitvector, WAH bitvector uncompressed/compressed with 32
and 64 bit word size, array). After that, we measure the time
to iterate over all the stored TIDs.

Figure 8 presents an overview of the runtime behavior for
our different implementations:

The fastest implementation for all selectivities is the
dynamic array. In contrast to this, the worst runtime behavior
is reached by the standard WAH iterator (both 32- and 64-bit
version), which therefore will not be considered any further.
More interesing values come from the iterators which use
the builtin clzl instruction from the gnu compiler family,
which is mapped on the LZCNT instruction, if available (the
plain bitvector implementation is the fastest).

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.0001 0.001 0.01 0.1 0.5

tim
e

(s
ec

.)

selectivity

WAH-uncompressed 32 bit
WAH-compressed, 32 bit

WAH-hardware support, uncompressed, 32 bit
WAH-hardware support, compressed, 32 bit

WAH-uncompressed 64 bit
WAH-compressed, 64 bit

WAH-hardware support, uncompressed, 64 bit
WAH-hardware support, compressed, 64 bit

Plain Bitvector, uncompressed 64 bit
Array

Figure 8. Measured time to iterate over 100 million data sets with different
selectivities

395

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Two more detailed graphs are given in Figure 9 and
Figure 10. Here the static array implementation and the
LZCNT-supported iterators are considered for high and low
selectivity, respectively.

While Figure 9 shows the details for selectivities between
0.0001 and 0.05, Figure 10 shows the lower selectivities
between 0.05 and 0.5. One interesting point is, that with
low selectivity (Figure 10) the hardware-supported iteration
behaves differently for the 32- and 64-bit WAH version.
While the compressed version is faster for the 32-bit version,
the opposite is true for the 64-bit version. This behavior
can be found with the better compression ratio of the 32-
bit version for lower selectivities, which leads to a smaller
amount of memory which has to be loaded into the CPU.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.0001 0.001 0.01

tim
e

(s
ec

.)

selectivity

Hardware support, uncompressed, 32 bit
Hardware support, compressed, 32 bit

WAH-hardware support, uncompressed, 64 bit
WAH-hardware support, compressed, 64 bit

Plain Bitvector, uncompressed 64 bit
Array

Figure 9. Measured time to iterate over 100 million data sets with high
selectivity

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.01 0.1 0.5

tim
e

(s
ec

.)

selectivity

WAH-hardware support, uncompressed, 32 bit
WAH-hardware support, compressed, 32 bit

WAH-hardware support, uncompressed, 64 bit
WAH-hardware support, compressed, 64 bit

Plain Bitvector, uncompressed 64 bit
Array

Figure 10. Measured time to iterate over 100 million data sets with low
selectivity

It is obvious that the time for the uncompressed bitvector
versions is the least dependent on the selectivity. This

can be explained by the dominating time for loading the
data from the main memory into the CPU. For all other
implementations the influence of the descending selectivity
is higher.

Although the static array implementation is faster by
a factor of five for some selectivities, we also have to
consider that in absolute values, the time of iterating over
a bitlist of 50 million entries (selectivity: 0.5) is between
0.08 seconds (array) and 0.26 (64-bit, hardware-supported,
uncompressed). This is not bad and probably not such a
dominating factor compared to the memory consumption of
the different implementations shown in Figure 7.

4) Writing TIDs: In our next experiment, we analyze the
time to write TIDs in the different implementation variants.
This operation is done every time, when a predicate is
evaluated against a column value and found to be “true”.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.0001 0.001 0.01 0.1 0.5

tim
e

(s
ec

.)

selectivity

Bitvector, uncompressed, 32-bit, append
Array, append/random

Bitvector, compressed, 32 bit, append
Bitvector, compressed, 32 bit, random

Bitvector, uncompressed, 32 bit, random

Figure 11. Measured time to write TIDs in different implementation
variants for Position Lists

As a basic condition we can assume that writing of TIDs
is mostly done in the append mode. The reason is that when
evaluating a predicate on a column, this is done sequentially
value by value with increasing TID values. In some complex
situations, however, TIDs must be written in random order
(i.e., after a previous sort operation on a column).

The results for this experiment are shown in Figure 11.
We assume 100 million datasets and measure the time

to set a number of TIDs for different selectivities. So for
example for a selectivity of 0.5, we have to write 50 million
TIDs.

Again, the storage as an array of UINT values is the fastest
solution for all selectivities. This is true for the append
mode and the random order mode (from the implementation
point, there is no difference between the two variants). The
uncompressed bitvector turned out to be the second best
solution. Based on the implementation, the solution in the
append mode needs about half the time as the random write
mode. This can be motivated by the fact that the number

396

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of cache misses is lower in the append mode, than in the
random mode. This characteristic increases with decreasing
selectivity (0.05 and above), because the probability of the
next TID being close enough to the previous TID and the
corresponding memory segment (the bit) being already in
the cache increases.

Compressed bitvectors behave worse. The reason for
random access is that with every insertion of a TID, the
compressed bitvector must be reorganized, which often has
an influence up to the end of the whole compressed bitvector.
This behavior occurs in the append and random modes for
the WAH implementation (the WAH implementation has no
special append mode, but only a setBit(uint pos, bool value)
method to set a bit at an arbitrary position). However, the
append mode could be implemented in a much more efficient
way. The basic concept for the algorithm is represented in
Figure 12. The idea of this implementation is that in the
append mode only the last two words (LL: Last Literal, LF:
Last Fill) must be considered: The last but one word, which
is a literal, and the last, which is a 0-fill. Either the TID sets
a bit in the last literal word, or the last fill must be split into
two fills, with a literal in between (with holds the TID).

Literal 0-Fill(n)

. . .

Literal 0-Fill(n)

Case 1: Set bit in last literal

Case 2: Split last fill and separate it with a literal

1 1 1

1 1 1 1

0-Fill(n-k) Literal 0-Fill(k-1)

 1

Literal 0-Fill(n)

. . .
1 1 1

Literal

1 1 1

LL LF

LL LF

LL LF

LL LF

LL LF

Figure 12. Appending TIDs in a compressed bitvector

To study writing of TIDs in the append mode, we
extended the WAH library by the functionality described
above. Figure 13 compares the time behavior for the un-
compressed plain bitvector, the uncompressed WAH imple-
mentation, and our append-optimized implementation of the
compressed append mode. The behavior of the append-only
optimization is quite promising. It is about 25% better than
using the uncompressed bitvector. The dynamic array still is
the fast implementation, but, as we saw in Figure 7, memory
consumption is highest, if the selectivity is low (high density
values).

5) AND operations on Position Lists: Next, we perform
an experiment to measure the time for AND operations. This
is one of the basic operations performing the “WHERE” part
of a query on a column store, where two or more Position
Lists are ANDed (same with OR).

Figure 14 shows the results for the AND operation. As
you can see, the time for AND’ing two uncompressed

 0

 0.05

 0.1

 0.15

 0.2

 0.0001 0.001 0.01 0.1 0.5

tim
e

(s
ec

.)

selectivity

Bitvector, uncompressed, 32-bit, append
Array, append/random

Bitvector, compressed, 32-bit, append-optimized

Figure 13. Comparision of appending TIDs to compressed and uncom-
pressed bitvectors

bitvectors (both the plain bitvector implementation and the
uncompressed WAH bitvector) is mostly independent of the
selectivity. This can be understood, because the length of the
vector is also independent of the selectivity and so the AND
operation consists of a constant number of and instructions
in the CPU. Comparing the uncompressed WAH bitvector
and the plain bitvector, we are a little surprised. A slight
overhead of the WAH implementation can be explained by
the more complex algorithm and the additional memory
consumption of 1/32 compared to the plain uncompressed
bitvector. But our results show a significiant difference of
more than 100% time penalty for the uncompressed WAH
bitvector.

Also interesting are the results for the compressed bitvec-
tor and the array. While the array performs best for selec-
tivities of 0.02 and higher, it degrades for lower selectivities
(0.3 sec. for a density of 0.5). This is a little surprising,
because the array implementation was one of the fastest in
the previous experiments (iterating and writing TIDs). The
degeneration can be explained by the caching strategies of
modern CPUs. In the case of low selectivities, the two arrays
grow and there is a cut-throat competition for places in the
processor cache, which is why many cache misses result.

The compressed bitvector outperforms the uncompressed
version for high selectivities (0.007 and above) because of
its more compact representation and the ability to skip all
the fill words completely. With lower selectivities, the fills
get shorter and disappear later on. Hence, there is no advan-
tage compared to the uncompressed representation. In this
situation, the more complex algorithm is another drawback
and leads to more instruction cache misses compared to the
uncompressed version.

Again, the behavior for the array implementation is the
most sensitive one. While the runtime behavior is the best
for high selectivities, it completely degrades for lower se-

397

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

lectivities (density 0.03 and more).

 0.0001

 0.001

 0.01

 0.1

 0.0001 0.001 0.01 0.1 0.5

tim
e

(s
ec

.)

selectivity

WAH-Bitvector, compressed, 32 bit
WAH-Bitvector, uncompressed, 32-bit

Plain bitvector, uncompressed
Array

Figure 14. Measured time for ANDing two Position Lists with different
implementations

6) Predicate Evaluation: In this experiment, we use
Position Lists with different implementations (compressed
bitvector, plain bitvector, array) and densities and compare
their runtime behavior in evaluating the following expres-
sion:

column_1 = <value_1>
and

column_2 = <value_2>
and

column_3 = <value_3>
and

column_4 = <value_4>

Each column contains 100 million datasets. In a first
experiment, we formulate predicates that have the same
selectivity for all four columns. In this case, the order of
the evaluation of the predicates is irrelevant. We repeat this
experiment with predicates of different selectivity. Figure 15
shows the execution time for the different implementations
with eight different densities from 0.0001 to 0.5 (consider
that the y-axis is logarithmic). The first observation is, that
for densities of 1% and above the implementation of a Posi-
tion List based on an array is about two orders of magnitude
slower compared to the bitvector implementations. Also,
it can be seen that for these densities, the uncompressed
bitvector is the best implementation.

Additionally, we can see that the uncompressed bitvector
has the same runtime behavior for all different densities. This
can be explained easily by the fact that the uncompressed
bitvectors have the same length for all densities and the same
operations to perform. Especially for low selectivities (densi-
ties between 0.5 and 0.01), this is the preferred solution (also
from the memory consumption point as shown in Figure 7).

From a selectivity of 0.1%, the two other implementations
perform better.

For selectivities greater than 1%, the compressed bitvector
has an inferior performance compared to the uncompressed
bitvector and the array implementation. This can be ex-
plained by the fact that the compression algorithm still com-
presses the bitvector, but only with a small compression ratio
compared to the uncompressed version. The additional time
results from the more complex operations while performing
the AND operation. Starting with a density of 0.1% and
lower, the compressed bitvector is the superior implemen-
tation. With a density of 0.01%, the compressed version is
one order of magnitude faster than the array implementation
and two orders of magnitude faster as compared to the
uncompressed bitvector.

 0.0001

 0.001

 0.01

 0.1

 1

 10

[0.5, 0.5, 0.5, 0.5]

[0.2, 0.2, 0.2, 0.2]

[0.1, 0.1, 0.1, 0.1]

[0.01, 0.01, 0.01, 0.01]

[0.001, 0.001, 0.001, 0.001]

[0.0001, 0.0001, 0.0001, 0.0001]

Sequential execution of 4 predicates on different columns

WAH-bitvector, compressed 32 bit
plain bitvector, uncompressed 32 bit

Array

Figure 15. Measured time for the execution of 4 predicates on different
columns using different implementaions for the Position Lists

So, as a rule of thumb, it can be said:
• If no information about the selectivity of a predicate

is given, choosing an uncompressed bitvector for the
implementation of the Position List is the best choice.

• If the density is expected to be 0.01 or higher, also use
the uncompressed bitvector implementation.

• If the density is expected to be 0.01 or lower, use the
compressed bitvector.

In the next experiment, we choose different selectivities
for the predicates of the query. Again, we run multiple tests
with different sets of selectivity. In this experiment, we vary
the order in which the Position Lists are used to evaluate the
expression. As expected, the runtime for the uncompressed
bitvector is nearly independent of the density and the order
of the Position Lists. Also expected, the runtime behavior for
low selectivity queries (high density values) is bad for the
array implementation (first two histogram groups). Arrays
are also sensitive to the order of the Position Lists. The
runtime behavior of the order [0.1, 0.2, 0.3, 0.4] is more

398

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

than twice as fast than the order [0.4, 0.3, 0.2, 0.1] (0.45
sec. vs. 1.0 sec.). This qualitative behavior holds for all
densities. Interestingly, the behavior is inverse for densities
greater than or equal to 0.1 in the case of the compressed
bit vector. The reason for this behavior can be found in the
implementation of the WAH algorithm. If no compression
can be achieved, WAH switches automatically to the uncom-
pressed representation. And as we have seen in Figure 14,
using an uncompressed version is a little bit faster than using
the compresssed version. For all lower densities, starting
with the lowest density is faster. The runtime difference
between the different orders degrades with lower densities
(high selectivity). The last two histogram blocks also show
that in the case of a first low density column, the order of
the following columns is no longer critical. Nevertheless, the
runtime behavior in these two last cases is determined by
the low selectivity of the successive Position Lists and not
by the first high selctivity Position List. If this would have
been the case, the behavior of the third block (also starting
with a density of 0.0001) should be expected.

 0.0001

 0.001

 0.01

 0.1

 1

 10

[0.1, 0.2, 0.3, 0.4]

[0.4, 0.3, 0.2, 0.1]

[0.0001, 0.0002, 0.0003, 0.0004]

[0.0004, 0.0003, 0.0002, 0.0001]

[0.000001, 0.000002, 0.000003, 0.000004]

[0.000004, 0.000003, 0.000002, 0.000001]

[0.0001, 0.4, 0.3, 0.2]

[0.0001, 0.2, 0.3, 0.4]

WAH bitvector, compressed 32 bit
plain bitvector, uncompressed 32 bit

Array

Figure 16. Measured time for the execution of 4 predicates on different
columns using different implementaions for the Position Lists

B. Transformation between Different Representation Forms

Due to the strong influence of the selectivity, different
representation forms of a Position List inside a complex
query can be beneficial. This leads to the question how
fast transformations between different representation forms
can be performed. Therefore, we implement a number of
transformation algorithms

(compressed → array, array → uncompressed,
uncompressed → array, array → compressed) and run
a number of experiments, measuring the time of a Position
List to change its internal representation. The tests are
performed with different selectivities ranging from 0.0001
to 0.5. Figure 17 shows the results of these tests.

 0.001

 0.01

 0.1

 1

 10

 1e-05 0.0001 0.001 0.01 0.1

tim
e

(s
ec

.)

density (selectivity)

compressed->uncompressed
uncompressed->compressed

uncompressed->array
array->uncompressed

array->compressed
compressed->array

Figure 17. Time to transform different representation forms for Position
Lists

Every line in the figure represents a concrete transforma-
tion. The x-axis represents the different densities and the
y-axis the time for a transformation. Each transformation is
done on a 100 million dataset Position List. One basic, but
not surprising finding is that the transformation is faster for
lower density values (high selectivity). This is based on the
fact, that less TIDs must be transformed. In this case, the
overall transformation time is determined by the memory
footprint of the Position List representation, which is much
smaller for the compressed representation (see Figure 7).
As the transformation rules are more complex for the com-
pressed representation, the growth in time with rising density
is higher compared to the uncompressed representations
(uncompressed bitvector and array). For densities greater
than 0.2, WAH typically cannot compress the bitvector,
because it needs at least 62 consecutive ’0’ values to achieve
a compression. This is the reason why the transformations
compressed →<x> and <x>→ compressed are not shown
for densities greater than 0.2. The transformation to a
compressed bitvector is implemented using the append-
optimized algorithm from Figure 12.

Based on the results shown in Figure 14, where the array
was the fastest implementation for an AND operation with
high selectivity Position Lists (density lower than 0.02),
but also the worst for densites greater than 0.035, we can
conclude:

• For small densities (< 0.005), where the array and the
compressed bitvector are the favorable implementations
with respect to runtime behavior (AND/OR operations),
the transformation from an uncompressed bitvector has
nearly constant cost for all densities and is determined
by the memory footprint of the uncompressed bitvector.
Nevertheless, the transformation time is the same as
when performing a single AND operation with two
uncompressed bitvectors.

399

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• For higher densities (> 0.01), where the cost of
performing AND operations is up to two orders of
magnitude higher when using an array implementation
compared to the uncompressed bitvector, the transfor-
mation often makes sense (transformation time between
0.001 and 0.1 sec.).

VI. CONCLUSION AND FUTURE WORK

The choice of the right data structure and algorithm
for implementing Position Lists is not an easy task. It
largely depends on the selectivity of the predicates and the
operations to perform. Especially for low selectivities, the
choice of the right solution is critical as was shown by the
experiments.

The data structure of an array of unsigned integer values
is outperformed by the uncompressed bitvector implementa-
tions by up to two orders of magnitude for low selectivities.
On the other hand, it is a very good choice at high selectiv-
ities.

Uncompressed bitvectors have a predictable behavior for
all selectivities, but are again outperformed by compressed
bitvectors and arrays for very high selectivities.

If no information about the expected selectivity is avail-
able, using an uncompressed bitvector probably is a good
choice. Depending on the selectivity and the used algorithm,
the execution time is about three orders of magnitude and
the uncompressed bitvector is of moderate performance.

Next, we will integrate the different implementations
into our Column Store Toolkit (CSTK) [3] and perform
experiments using the different implementations together
with our toolkit components to measure the time behavior of
our components with more complex queries like those from
the TPC-H [24] benchmark.

Another interesting point is the implementation of
AND/OR operations which allow Position Lists with different
datastructures (i.e., array, compressed bitvector) as input
(and output). These results can then be compared with the
execution time of the version with an explicit transformation
step before.

It has to be kept in mind that the ultimate goal is the
development of a query optimizer for a column store [4].

REFERENCES

[1] A. Schmidt and D. Kimmig, “Considerations about imple-
mentation variants for position lists,” in DBKDA’13: Proc-
ceedings of the Fourth International Conference on Advances
in Databases, Knowledge, and Data Applications. IARIA,
2013, pp. 108–115.

[2] P. A. Boncz, M. Zukowski, and N. Nes, “Monetdb/x100:
Hyper-pipelining query execution,” in CIDR, 2005, pp. 225–
237.

[3] A. Schmidt and D. Kimmig, “Basic components for building
column store-based applications,” in DBKDA’12: Procceed-
ings of the Fourth International Conference on Advances in
Databases, Knowledge, and Data Applications. IARIA,
2012, pp. 140–146.

[4] A. Schmidt, D. Kimmig, and R. Hofmann, “A first step
towards a query optimizer for column-stores,” 2012, Poster
presented at the Fourth International Conference on Advances
in Databases, Knowledge, and Data Applications.

[5] I. Karasalo and P. Svensson, “An overview of cantor - a
new system for data analysis,” in Proceedings of the Second
International Workshop on Statistical Database Management,
Los Altos, California, R. Hammond and J. L. McCarthy, Eds.
Lawrence Berkeley Laboratory, 1983, pp. 315–324.

[6] G. P. Copeland and S. N. Khoshafian, “A
decomposition storage model,” SIGMOD Rec., vol. 14,
no. 4, pp. 268–279, May 1985. [Online]. Available:
http://doi.acm.org/10.1145/971699.318923

[7] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cher-
niack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil,
P. O’Neil, A. Rasin, N. Tran, and S. Zdonik, “C-store: a
column-oriented dbms,” in VLDB ’05: Proceedings of the 31st
international conference on Very large data bases. VLDB
Endowment, 2005, pp. 553–564.

[8] P. A. Boncz, M. L. Kersten, and S. Manegold, “Breaking the
memory wall in monetdb,” Commun. ACM, vol. 51, no. 12,
pp. 77–85, 2008.

[9] J. A. Khan and A. P. Shiralkar, “Article: Infobright enterprise
edition analytic data warehouse technology ? an overview,”
IJCA Proceedings on National Conference on Innovative
Paradigms in Engineering and Technology (NCIPET 2012),
vol. ncipet, no. 15, pp. –, March 2012, published by Founda-
tion of Computer Science, New York, USA.

[10] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg,
and W. Lehner, “Sap hana database: Data management for
modern business applications,” SIGMOD Rec., vol. 40,
no. 4, pp. 45–51, Jan. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2094114.2094126

[11] R. MacNicol and B. French, “Sybase iq multiplex
- designed for analytics,” in Proceedings of the
Thirtieth International Conference on Very Large
Data Bases - Volume 30, ser. VLDB ’04. VLDB
Endowment, 2004, pp. 1227–1230. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1316689.1316798

[12] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver,
L. Doshi, and C. Bear, “The vertica analytic database:
C-store 7 years later,” Proc. VLDB Endow., vol. 5,
no. 12, pp. 1790–1801, Aug. 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2367502.2367518

[13] “Oracle Database In-Memory Option — Feature — Oracle,”
2013, [Online; accessed 5-May-2014]. [Online]. Avail-
able: http://www.oracle.com/us/corporate/features/database-
in-memory-option/index.html

400

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] “Columnstore Indexes for Fast Data Warehouse
Query Processing in SQL Server 11.0,” 2010,
[Online; accessed 5-May-2014]. [Online]. Avail-
able: download.microsoft.com/download/8/C/1/8C1CE06B-
DE2F-40D1-9C5C-3EE521C25CE9/Columnstore Indexes for
Fast DW QP SQL Server 11.pdf

[15] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores
vs. row-stores: How different are they really,” in SIGMOD,
2008.

[16] N. Bruno, “Teaching an old elephant new tricks,” in CIDR
2009, Fourth Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA. www.crdrdb.org, 2009.

[17] D. J. Abadi, D. S. Myers, D. J. Dewitt, and S. R. Madden,
“Materialization strategies in a column-oriented dbms,” in
Proc. of ICDE, 2007, pp. 466–475.

[18] D. J. Abadi, S. R. Madden, and M. Ferreira, “Integrating com-
pression and execution in column-oriented database systems,”
in SIGMOD, Chicago, IL, USA, 2006, pp. 671–682.

[19] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, and S. Mad-
den, “The design and implementation of modern column-
oriented database systems,” Foundations and Trends in
Databases, vol. 5, no. 3, pp. 197–280, 2013.

[20] T. M. Chilimbi, B. Davidson, and J. R. Larus, “Cache-
conscious structure definition,” in PLDI ’99: Proceedings
of the ACM SIGPLAN 1999 conference on Programming
language design and implementation. New York, NY, USA:
ACM, 1999, pp. 13–24.

[21] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing
database architecture for the new bottleneck: memory access,”
The VLDB Journal, vol. 9, no. 3, pp. 231–246, 2000.

[22] M. Nelson, The Data Compression Book. New York, NY,
USA: Henry Holt and Co., Inc., 1991.

[23] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap
indices with efficient compression,” ACM Trans. Database
Syst., vol. 31, no. 1, pp. 1–38, 2006.

[24] “TPC Benchmark H Standard Specification, Revision 2.1.0,”
Transaction Processing Performance Council, Tech. Rep.,
2002.

401

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Instance-Based Integration of Multidimensional Data Models

Michael Mireku Kwakye1, 2, Iluju Kiringa1, and Herna L. Viktor1

1 School of Electrical Engineering and Computer Science
University of Ottawa

Ottawa, Ontario, Canada

mmire083@uottawa.ca, {kiringa, hlviktor}@eecs.uottawa.ca

2 Faculty of Informatics
Ghana Technology University College

Accra, Greater Accra, Ghana

mmireku@gtuc.edu.gh

Abstract— Meta-model merging is the process of incorporating
data models into an integrated, consistent model, against which
accurate queries may be processed. The efficiency of such a
process is very much reliant on effective semantic
representation of chosen data models, as well as the mapping
relationships between the schema and data instance elements
of the data models. Within the data warehousing domain, the
integration of data marts is often time-consuming. Intuitively
forming an all-inclusive data warehouse presents tedious tasks
of identifying related fact and dimension table attributes.
Moreover, the ability to process queries across these disparate,
but related, data marts poses an important challenge. In this
paper, we introduce an approach for the integration of
relational star schemas, which are instances of
multidimensional data models. These instance schemas
represented as data marts are integrated into a single
consolidated data warehouse. Our methodology, which is based
on model management operations, focuses on a formulated
merge algorithm and adopts first-order Global-and-Local-As-
View (GLAV) mapping models, to deliver a polynomial time,
near-optimal solution of a single integrated enterprise-wide
data warehouse.

Keywords- Schema Merging, Data Integration, Model
Management, Mapping Modelling Constraints,
Multidimensional Merge Algorithm, Data Warehousing.

I. INTRODUCTION

The concepts of schema merging and data integration
present intricate fields in databases as both have academic
and industrial implications in the area of data processing.
Schema merging involves integrating disparate models of
related data using methods of element matching, mapping
discovery, and the consolidation of data sets [2]. Schema
merging adopts a concept from model management that
primarily involves the integration of models and their
instance schemas, and together with associated constraints.
Data integration entails the consolidation of the instance data
sets within the framework of a merged schema to deliver
efficient query solutions [3]. The end results of schema and
data integration have seen important impacts in various
scientific and industrial domains. A number of the
application areas are federated database systems, Enterprise
Information Integration, and bioinformatics data integration.

These applications continue to impact and attract attention in
the need for efficient data processing and analytics.

Traditionally, most of the procedures that involve data
integration have always been focused on identifying the
integrating data sources, and the associated mapping
correspondences of elements in the integrating data sources.
Recent studies have focused instead on emphasizing the
inference of semantic meaning of the elements of the data
sources in integration. There usually arise various forms of
problems associated with the procedural methodologies for
these concepts. These challenges are the identification of
prime meta-models, the expression of semantic
representation of the meta-models, and the formulation of
algorithms for specific meta-models and their instances. In
general, these challenges make the overall procedures of data
and schema integration very difficult. The conceptual
processes of data integration and schema merging are
derived from the fundamental operations of model
management [4] [5]. Model Management operations of
match, compose mappings, and merge offer the intuition to
address the problems of data integration and schema merging
within the context of multidimensional data models.

In this paper, we introduce an integration procedure for
both instance schema and instance data of multidimensional
data models. Our motivation is to employ the concept of
model management to address the shortcomings of merge
algorithm, conflict management, and technical merge
requirements for integration of data marts. Our key
contribution in this paper is the formulation of a novel well-
defined algorithm, which is supposed to be the end-result of
the overall integration process. This algorithm is capable of
delivering an efficiently integrated data warehouse. Our
presentation focuses on the proposition of star schema
instances in our analyses. Our work, which subsumes prior
work on generic models [2], draws on a number of their
significant propositions made, and uses it as a background
work in formalizing our intuition in a much more practical
solution for merging schema and data instances of
multidimensional data models. Additionally, this paper
presents an extended and elaborate version to an earlier
submission [1], as the assertions, methodology and evaluated
results are described in further detail.

The technical contributions are summarized as follows;

402

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 We adopt the application of a hybrid form of schema
matching, in which we use both schema and data
instance algorithms to deliver correct attribute mapping
correspondences.

 We adopt first-order Global-and-Local-As-View
mapping models in the mapping discovery procedure,
which expresses the transformation of complex
expressions between attributes of the instance schemas.

 We address the handling of functional dependency
integrity constraints in the mapping discovery and
modelling procedure.

 We identify and specify resolution measures for
frequently observed conflicts that are exposed, as a
result of integration of heterogeneous data marts.

 We define technical qualitative merge correctness
requirements, which serve to validate the formulation of
the merge algorithm.

 Most importantly, we formulate a merge algorithm that
specifically deals with the integration of schema and
instance data of the data marts.

The rest of the paper is organized as follows. In Section
II, we review the fundamental background studies regarding
data integration and schema merging. In Section III, we
discuss our integration methodology, where we address the
overview of the integration approach. In Section IV, we
describe the adopted hybrid schema matching; and further on
in Section V, we describe the mapping models discovery and
modelling. In Section VI, we present the formulated merge
algorithm; and address the proposition of the technical merge
correctness requirements, semantics of query processing, and
conflicts resolution measures in Section VII. In Section VIII,
we address the implementation and evaluation of the
integration methodology. We discuss the related work and
comparison of other approaches in Section IX; and in
Section X, we conclude, discuss open issues and the areas of
future work.

II. BACKGROUND

The need of business users to access, in a timely and
precise fashion, information originating from varied and
heterogeneous sources of data repositories has lead to the
investigation of engineered methods of efficient data
integration methods and retrieval. The processes that
comprise the generation of the final output of data
integration largely stem from the fundamental operations of
model management [4]. Models serve as data representation
and as a result, different models denote different applications
or domains and are modelled for different purposes.

Model management, in the field of databases, is a high-
level, abstract programming language designed to efficiently
manipulate schemas and mappings. It serves as the generic
approach to solving problems of heterogeneity and data
programmability, where concise and clear-cut mappings are
manipulated to deliver desired output that supports robust
operations related to certain metadata-oriented problems [4]
[6] [7]. A number of these operations are; match schemas,
compose mappings, difference schemas, merge schemas,
apply function, translate schemas into different data models,

and generate data transformations from mappings. The main
abstractions that are needed in expressing model
management operations are instance schemas and mappings.
Practically, the choice of a language to express these instance
schemas and mappings is vital. A model is described as a
formal description of a complex application artefact, such as;
database relational model, Unified Modelling Language
(UML) model, or an ontology [4] [6]. A schema is an
expression of a model that defines a set of possible instances,
whilst and a meta-model is the language needed to express
the schemas. These schemas could be relational schema,
Extensible Markup Language (XML), Web Ontology
Language (OWL), or Multidimensional Schema, amongst
others.

Model management operations, in the form of schema
matching, schema mappings, and schema merging have
generally been attempted by Bernstein et al. [6], Melnik [7],
and Gubanov et al. [8] to offer flexibility and efficiency in
meta-data processing. To efficiently integrate different data
sources, the model management operation of match,
expressed as schema matching, serves as basis to other major
operations [4]. It takes two schemas instances as input and
produces a mapping between elements of the two schema
instances that correspond semantically to each other [9].
Various surveys and studies have been conducted in the
literature [9] [10] [11] in this direction of schema matching,
of which incremental and new results have been shown to
effectively deliver better solutions in arriving at precise
mapping correspondences. Prior studies classify this
procedure into 3 main categories. These are namely; schema-
level matching, instance-level matching, and hybrid and/or
composite matching. Out of these studies and surveys
conducted, several concrete results have been developed to
produce very high precisions. Enumerations of algorithms
are Similarity Flooding (SF) [12], COMA [13], Cupid [14],
SEMINT [15], iMAP [16], and the Clio Project [17] [18]. It
will be noted that schema matching operations are enhanced
from fields, such as; Knowledge Representation [19],
Machine Learning [15] [20], and Natural Language
Processing [21], where techniques are used to deliver near-
automatic and semantically correct solutions.

Other forms of model management operations are
compose mappings and apply functions, expressed as schema
mapping discovery. These operations are normally a follow-
up on the end results of a schema matching operation.
Schema mapping is the fundamental operation that produces
a semantic relationship between the associated elements
from source and target schemas based on an earlier schema
matching [17] [22] [23]. Recent studies conducted in
generating schema mappings have shown that the strength of
mapping relationship correspondences that exist between
schema elements largely determines the degree of efficiency
of the overall data integration procedure. Further works have
shown that mapping correspondences modelled and
expressed in terms of First-Order Logic (FOL) assertions
exhibit unique characteristics, where various manipulations
on mapping elements can be expressed distinctively. The
authors in [24] define that an extensional mapping can be
expressed as Local-As-View (LAV), Global-As-View

403

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(GAV), Source-To-Target Tuple Generating Dependencies
(s-t tgds), Second-Order Tuple Generating Dependencies
(SO tgds), or other similar formalisms. More intuitively, a
hybrid approach of the LAV and GAV mappings, termed as
Global-and-Local-As-View (GLAV) mappings, which has
been formalized to merit on the strengths of both mappings
present a better mapping model for integration.

The final form of model management operation in our
line of study is the merge operation, expressed as schema
merging. Schema merging operation takes 2 meta-models
and a set of mapping models, as inputs, and produces a
merged meta-model, as an output, capable of representing all
the elements and semantics of the input meta-models. In the
generic sense, studies have been conducted and various
results are addressed in the literature [2] [5] [25]. In the area
of data warehousing, work done in the literature are
presented in [25] [26] [27]. Additionally, the authors in [28]
attempted to derive results on schema merging in relation to
relational data sources, whiles merging based on semantic
mappings have also been studied by the authors in [29]. A
typical architecture of a merge system, as denoted in [27], is
described in terms of 2 types of modules: wrappers and
mediators. In terms of algorithms for merging, a generic
approach was attempted in [30], whilst a proposition of an
algorithm for relational sources that succeeds on a Mediated
Schema Normal Form (MSNF) and Conjunctive Queries and
Mappings is investigated in [28]. As part of our study, we
draw on the significant propositions of generic merge in [2]
and use them as background work in formalizing our
algorithm in a much more practical solution for
multidimensional data models.

The study of data integration and schema merging in
relation to multidimensional data models has received
minimal research in the literature. Cabibbo and Torlone [31]
[32] [33] in their series of studies on dimension compatibility
and data integration have attempted to deliver methodologies
for fact and dimension tables and/or attributes integration.
Riazati et al. [34] have also formalized a proposition for
integration based on inferred aggregations in the hierarchies
of the dimension tables, in each of the data marts. We
expatiate on these approaches and perform a comparison of
their work in line with our methodology in Section IX.

III. INTEGRATION METHODOLOGY

Our approach for generating a single integrated data
warehouse from independent, but related, multidimensional
star schemas extends from the above-mentioned concept of
model management. The adopted star schema presents a
modelling construct, where one large central (fact) table is
referentially connected by a set of attendant (dimension)
tables of varied attribute information. The fact table contains
bulk data, without redundancy, whilst each dimension table
contains multiple representations of attribute data instances.

We present an overview of our integration methodology,
as depicted in Figure 1. The figure shows the logical and
conceptual merging of the fact and dimension tables from the
Policy and Claims data marts, to form an enterprise data

warehouse for an Insurance industry. We explain further our
motivation using Example 1 and Figure 1.

Example 1. Suppose we have 2 data marts from an
Insurance industry – Policy Transactions and Claims
Transactions – and we have to integrate these data marts
into an enterprise-wide data warehouse, as illustrated in
Figure 1. The existence of corresponding attributes will
enable the possibility of integrating the attributes of the fact
and dimension tables of these data marts. A merge algorithm
can be applied to the corresponding mappings to generate
the integrated data warehouse needed in answering queries,
as it will be posed to the integrating data marts. ∎

A. Problem Definition

In addressing our problem, we make reference to the
scenario in Example 1, where we have 2 or more data marts,
supposedly, in star schema models. It can be inferred that
though the instance schema and data values representations
in these separate data marts are different, the overlapping
sets of real-world entity representations in the dimensions of
the data marts seem to present a similarity. Hence, a
proposition of integration for the real-world entities in each
of the data marts into a single consolidated data warehouse is
not improbable.

In another instance, the need to contract a merger or
acquisition of companies of related business processes
results in the generation of a consolidated data warehouse.
This challenge in the generation of a data warehouse also
falls in the paradigm of this study where each of the
companies with disparate data marts or data warehouses are
integrated into a single enterprise repository.

B. Overview of Integration Methodology

We outline our methodology based on 3 main
streamlined procedures, namely; hybrid schema matching,
mapping models discovery, and the formulation of merge
algorithm. Figure 2 illustrates a description of our
methodology and framework architecture in a workflow
order. Here, we describe the step-wise procedures, algorithm
executions, and the generated outputs. We describe in detail
Hybrid Schema Matching (Procedure 1) in Section IV and
Mapping Models Discovery (Procedure 2) in Section V. We
also give a detailed description of the Formulated Merge
Algorithm (Procedure 3) in Section VI. We address the
methodology workflow in a manner where the results or
output from a preceding step, e.g., Procedure 1, becomes the
input for the succeeding procedure, e.g., Procedure 2. This
approach ensures consistency in data processing and in the
generation of the final integrated output of a data warehouse.

IV. HYBRID SCHEMA MATCHING

In our methodology, we adopt a hybrid form of schema
matching, which aim to deliver efficient schema attribute
correspondences. Our adoption of this hybrid approach uses
the logical properties of the multidimensional schema
structure in schema-based matching, and the instance data
and extensions in instance-based matching, to find attribute
correspondences.

404

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Logical and Conceptual Multidimensional Schema Merge

Figure 2. Workflow Framework of Integration Methodology

405

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Schema-based Matching

We adopted schema-based algorithmic techniques in the
form of Lexical Similarity and Semantic Names.

The Lexical Similarity is an algorithm technique based
on the linguistic form of schema matching, in which string
names and text are used to semantically find similar schema
elements. This algorithmic technique defines a measure of
the degree to which the word sets of 2 given strings are
similar, and discovers maximum weight subsequence of the
strings that are common to each other. The algorithm
determines similarity based on schema string names and text,
equality of names, equality of synonyms, homonyms,
abbreviations, and similarity of common substrings, amongst
others [35].

The Semantic Names, on the other hand, is an
algorithmic technique based on the semantic deduction of the
schemas and their characteristics. The algorithmic technique
is reliant on the schema structure and the properties of the
elements, and enforces on varied forms of constraints. It uses
criteria such as, type similarity and metadata in relation to
table name, attribute names, schema data types, value ranges,
precision, uniqueness, optionality, relationship types,
cardinalities, key properties, referential constraints, amongst
others, to match attributes [35].

We use Example 2 to illustrate the schema-based form of
finding mapping correspondences.

Example 2. Following up on Example 1, suppose we
want to merge the dimensions of DimPolicyHolder and
DimInsuredParty from Policy and Claims data marts,
respectively. The application of Lexical Similarity algorithm
will produce mapping correspondences, such as:

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ		.1 ݕ݁ܭݕݐݎܽܲ݀݁ݎݑݏ݊ܫ
ൎ .ݎ݈݁݀ܪݕ݈ܿ݅ܲ݉݅ܦ ݕ݁ܭݎ݈݁݀ܪݕ݈ܿ݅ܲ

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ		.2 ݈݈݁݉ܽܰݑܨ ൎ
.ݎ݈݁݀ܪݕ݈ܿ݅ܲ݉݅ܦ ,݁݉ܽܰݕ݈݅݉ܽܨ
.ݎ݈݁݀ܪݕ݈ܿ݅ܲ݉݅ܦ ,݁݉ܽܰ݊݁ݒ݅ܩ .ݎ݈݁݀ܪݕ݈ܿ݅ܲ݉݅ܦ ,݁݉ܽܰݕݐ݅ܥ
.ݎ݈݁݀ܪݕ݈ܿ݅ܲ݉݅ܦ ݁݉ܽܰݐܿ݅ݎݐݏ݅ܦ

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ		.3 ,ݏݏ݁ݎ݀݀ܣݐ݁݁ݎݐܵ
.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ ݏݏ݁ݎ݀݀ܣ݈݅ܽ݉ܧ
ൎ .ݎ݈݁݀ܪݕ݈ܿ݅ܲ݉݅ܦ ݏݏ݁ݎ݀݀ܣ

Moreover, the application of the Semantic Names algorithm
will offer an improved schema matching using the data
types, relationships types and constraints, and value ranges.
This algorithmic matching enforces on the already generated
correspondence in the Matching (1), where Int data types
and Primary Key constraints for both attributes of
DimInsuredParty.InsuredPartyKey and
DimPolicyHolder.PolicyHolderKey are used for element
relationship mapping. For Matching (2), the
DimPolicyHolder.CityName [varchar(18)] and
DimPolicyHolder.DistrictName [varchar(15)] attributes
were eliminated to deliver mapping correspondence, as in:

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ		.2 ሺ60ሻሿݎ݄ܽܿݎܽݒሾ	݈݈݁݉ܽܰݑܨ ൎ
.ݎ݈݁݀ܪݕ݈ܿ݅ܲ݉݅ܦ ,ሺ25ሻሿݎ݄ܽܿݎܽݒሾ	݁݉ܽܰݕ݈݅݉ܽܨ
.ݎ݈݁݀ܪݕ݈ܿ݅ܲ݉݅ܦ ሺ40ሻሿݎ݄ܽܿݎܽݒሾ	ݏ݁݉ܽܰ݊݁ݒ݅ܩ

The above mapping correspondence is generated as a result
of the semantic representations of data type and precision,
such as varchar(60) for DimInsuredParty.FullName to
correspondingly infer on varchar(25), varchar(40) for both
DimPolicyHolder.FamilyName and
DimPolicyHolder.GivenName, respectively. ∎

B. Instance-based Matching

The instance-based algorithms that were adopted are
Signature, Distributions, and Regular Expressions. These
algorithmic techniques are based on the instance data
contained in the schemas and infer on the characteristics,
meaning and similarity in the data values, as well as the
relationship to other data set contained in the schema. The
Signature algorithm uses the similarity in the actual data
values contained in the schemas and their signature based on
data sampling. The technique uses sampled data to find
relationships where a weighting value is assigned to certain
classes of words in the data [35]. This sampling of data is
based on the valid values of sampling size and also the rate
of the sampling. The determination of match signature is
done by clustering according to their distance measure, either
by Euclidean distance [36] or Manhattan distance [37].

The Distributions algorithm discovers mapping
correspondences based on the common values in the instance
data contained in the schemas. The algorithm also uses data
sampling to aid the discovery function to find relationships
between attribute data values, where the frequent occurrence
of most data values for a particular attribute in relation to
another attribute determines the candidacy of matching
correspondence. Prior attempts of methodologies within the
domain of machine learning that aid in the discovery of
correspondences are A-priori and Laplacian [38].

The Regular Expressions algorithm uses textual or string
searches based on regular string expressions or pattern
matching. A simple regular expression will be an exact
character match of attribute data values or of the common
substrings contained in the instance data. This algorithm also
uses data sampling to aid the discovery function of finding
relationships between attribute data values [39].

We use Example 3 to illustrate a generalized form of
instance-based algorithm.

Example 3. Following up on Example 2, we complement
the results of the initial schema-based mapping
correspondences with a generalized instance-based mapping
to produce a final semantically correct mapping
correspondence for the Matching (3), as in:

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ		.3 ݏݏ݁ݎ݀݀ܣݐ݁݁ݎݐܵ
ൎ .ݎ݈݁݀ܪݕ݈ܿ݅ܲ݉݅ܦ ݏݏ݁ݎ݀݀ܣ

This final matching was attained because of the data values
and extensions from the dimension attributes. A
representation of the instance data values contained in
DimPolicyHolder.Address are {39 Baywood Drive, 178
Flora Ave., 79 Golden Rain St.}, where as data values
contained in DimInsuredParty.StreetAddress and
DimInsuredParty.EmailAddress are {40 Roslyn St., 68
Hastings Drive, 48 Whitehall Avenue} and

406

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

{amartens@cybserv.com, drice@vipe2k.com,
jtausig@fitexes.com}, respectively. ∎

In general, the output generated from this step of
Procedure 1, is a set of mapping correspondences between
the elements of the instance schema structure and instance
data values of the heterogeneous data sources.

V. MAPPING MODELS DISCOVERY

In the second procedure of our integration methodology,
we discuss the adoption of first-order GLAV mapping
models. We also discuss the merits of the mapping model,
whilst highlighting the suitability for our integration
approach. Moreover, we discuss the handling of possible
functional dependency integrity constraints as they occur in
the mapping models. This step utilizes the output of
Procedure 1, as inputs, to aid in the discovery and
establishment of mapping models.

Definition 1. (First-Order Mapping): Let
ࣧ ൌ ሺܵ, ܶ, ݂ሻ represent a mapping model from Source, ܵ
and Target, ܶ schemas. Let ࣵ ∈ ሼܵ ∪ ܶሽ represent disjoint
variable element where ࣵ denotes ሼࣵଵ, ࣵଶ, … , ࣵሽ. The
mapping assertion, ࣧ is said to be in first-order if
݂:	ሼ∀ࣵ	൫ܵሺࣵሻ → ܶሺࣵሻ൯ሽ, where ݂ represents the logical view
from the Source to the Target. ∎

We adopt a first-order GLAV mapping model formalism
[40]. This mapping formalism is based on first-order logic
assertions, where elements are finitely mapped using the
functional relations existing between them. Our motivation is
founded on the expressiveness of the correspondences that
exist between the attributes of the schemas [3]. The GLAV
mapping model combines mapping formalisms from both the
Local-As-View (LAV) and Global-As-View (GAV)
mappings [40]. This mapping model expresses mapping
views where the extensions of the source schemas provide
subsets of tuples satisfying the corresponding view over the
global mediated schema. Moreover, an equivalent number of
attribute view definitions are expressed in both the LAV and
GAV queries [3]. One other unique feature of the GLAV
mapping modelling is the expression of multi-cardinality
mappings between mapping elements. This enables the
expression of complex transformation formulas, which is
much useful in our integration methodology [24].

Definition 2. (Equality Mapping): Let ࣧ ൌ ሺܵ, ܶ, ݂ሻ
represent a mapping for Source, ܵ and Target, ܶ schemas.
The assertion ݂:	ሼ∀ݕ∀ݔ	ሺܵሺݔ, ሻݕ → ,ݔሺܶ	ݖ∃ ሻሻሽ for disjointݖ
variable elements ݔ, ,ݕ is an Equality mapping, such that ݖ
ݕ ൌ z. ∎

Definition 3. (Similarity Mapping): Let ࣧ ൌ ሺܵ, ܶ, ݂ሻ
represent a mapping for Source, ܵ and Target, ܶ schemas.
For disjoint element variables ݔ, ,ݕ ݖ the assertion
݂:	ሼ∀ݕ∀ݔ	ሺܵሺݔ, ሻݕ → ,ݔሺܶ	ݖ∃ ሻሻሽݖ is a similarity mapping,
such that ݃ሺݕሻ ൌ where ݃ denotes or encloses a complex ݖ
transformation expression. 	∎

In this procedural step, 2 forms of mapping relationships
were adopted, namely; Equality and Similarity mapping

relationships. An equality mapping represents a one-to-one
mapping, whilst a similarity mapping also represents a one-
to-many or many-to-many mapping. The defined
classifications were based on expressive characterization of
relationship cardinality, and the attribute semantic
representation, amongst others [39]. We used these forms of
mapping relationships in a GLAV mapping model, as
explained in Example 4.

Example 4. Using the scenario described in Example 1,
suppose we want to integrate the DimPolicyHolder and
DimInsuredParty dimensions from Policy and Claims data
marts, respectively, into DimInsuredPolicyHolder
dimension. The Datalog queries for the GLAV mapping
model will be expressed as:

DimInsuredPolicyHolder (InsuredPolicyHolderKey,
InsuredPolicyHolderID, InsuredPolicyHolderName,
BirthDate, ProvinceState, Region, City, Status):-

DimPolicyHolder (PolicyHolderKey, PolicyHolderID,
PolicyHolderFamilyName, PolicyHolderGivenName,
DateOfBirth, ProvinceState, CityName, Status),

DimInsuredParty (InsuredPartyKey, InsuredPartyID,
InsuredPartyFullName, BirthDate, Province, Region, City)

In this Datalog query, the existence of corresponding
attributes in both dimensions automatically expresses an
equality representation in the merged dimension.
Additionally, a similarity relationship is established where,
for example, DimPolicyHolder.InsuredFamilyName and
DimPolicyHolder.InsuredGivenName attributes are
mapped onto the merge attribute of
DimInsuredPolicyHolder.InsuredPolicyHolderName.
Moreover, local attributes of DimPolicyHolder.Status and
DimInsuredParty.Region from Policy and Claims data
marts, respectively, are also included in the merged
dimension schema instance. ∎

A. Propositions for GLAV Mapping Models

We further summarize a number of the characteristic
features that merit the choice of the GLAV mapping model.
This mapping model represents a suitable form of
manipulation of the mapping relationships that exists
between the instance schema attributes, as well as the
instance data values, contained in the star schema data marts.
Moreover, the GLAV mapping features offer the relationship
needed for the generic application of the merge algorithm for
disparate and heterogeneous schema and data instances.

Automatic Mapping Generation. It is a mapping formalism
that facilitates the (semi-)automatic generation of schema
mappings from heterogeneous instance schemas. This is
evident in cases where mapping correspondences are
incomplete or incorrect. This characteristic feature also
offers the ability to incrementally modify mappings as
correspondences change.

Mapping Reusability. The mapping model facilitates the
composition of sequential mappings that enables the re-use
of mappings when the instance schemas are different or
change. This functionality offers the capability to

407

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

reformulate queries against one schema into queries on
another schema during data integration.

Data Translation & Exchange. The semantics of such a
mapping and its data exchange capabilities offers a data
translation from one schema to another. Moreover, the
mapping offers the transformation from one representation to
the other during data exchange based on specifications.

Runtime Functionality. The mapping formalism expresses
the capabilities for runtime executables; for example, to
generate view definitions, query answering, and generation
of XSLT transformations, amongst others.

Data Manipulation. The semantics of the GLAV mapping
model makes it easily applicable and manipulated by
mapping tools; for example, the IBM InfoSphere Data
Architect [41], Microsoft BizTalk Mapper [42], amongst
others.

Query Code Generation. The mapping formalism offers a
platform where query codes are generated based on the
mapping relationships. This is evident where efficient
queries or transformations in various languages (e.g., native
SQL) can implement the formulated mappings.

B. Functional Dependency Mapping Integrity Constraints

In our methodology, the adopted first-order GLAV
mapping modelling can be enhanced to deliver efficient
relationships between the attributes of the schema instances,
by the application of mapping integrity constraints. One form
of mapping integrity constraint is Functional Dependencies
of the dimension instance schema attributes.

Definition 4. (Functional Dependency): Suppose
ࣞ ൌ ሺࣛଵ,… ,ࣛࣿሻ, for ࣿ 2 attributes represent a
dimension instance schema. The assertion of functional
dependency, ࣠ࣞ constraint stipulates that a set of attributes
ሼࣛଵ,… ,ࣛअሽ ∈ ࣞ uniquely determines another set of
attributes ሼࣛअାଵ, … ,ࣛࣿሽ ∈ ࣞ , based on a key constraint,
say ࣛଵ, such that ࣠ࣞ:	ሼ∀ࣛଵ∀ࣛअ∀ࣛअାଵሺࣞሺࣛଵ,ࣛअሻ ∧
ࣞሺࣛଵ,ࣛअାଵሻ → ሺࣛअ ൌ ࣛअାଵሻሻሽ. ∎

From the definition above, it can be inferred that the set
of attributes ሼࣛଵ,… ,ࣛअሽ → ሼࣛअାଵ,… ,ࣛࣿሽ	 uniquely,
where the data instance tuple values in attribute set,
ሼࣛअାଵ,… ,ࣛࣿሽ are dependent on, or can be derived from the
tuple values in attribute set, ሼࣛଵ,… ,ࣛअሽ.

We use Example 5 below to illustrate the occurrence of
functional dependency integrity constraint, as part of the
mapping discovery and modelling.

Example 5. Suppose an integrity constraint exists on the
instance schema dimension DimPolicyCoveredItem in the
Policy data mart where the attribute
DimPolicyCoveredItem.PolicyCoveredItemID functionally
determines the set of attributes
DimPolicyCoveredItem.PolicyCoveredItemType and
DimPolicyCoveredItem.CoveringPeriod. Suppose a
principal mapping correspondence is established between
the Natural Key attributes of

DimPolicyCoveredItem.PolicyCoveredItemID and
DimInsuredPolicyItem.InsuredPolicyItemID. Moreover,
suppose mapping correspondences are established between
attributes DimPolicyCoveredItem.PolicyCoveredItemType,
DimPolicyCoveredItem.CoveringPeriod and
DimInsuredPolicyItem.ItemForm,
DimInsuredPolicyItem.PolicyPeriod, respectively. The
modelling of first-order GLAV mappings between the
dimensions DimPolicyCoveredItem and the
DimInsuredPolicyItem will result in an automatic instance
functional dependency constraint in DimInsuredPolicyItem
dimension. This dependency is expressed in the set of
attributes DimInsuredPolicyItem.ItemForm and
DimInsuredPolicyItem.PolicyPeriod, to functionally depend
on the DimInsuredPolicyItem.InsuredPolicyItemID
attribute. This dependency association is modelled in the
merged table and its attributes for each of the integrating
table schema instances. ∎

It will be affirmed that the dependency association
between attributes complements the derivation of the merge
schema and data instances. Moreover, the dependency
constraint enables the population of data instance tuple
values, especially in the Steps (10) and (11) in the merge
algorithm (Algorithm 1) in Section VI.A. This can be
addressed in the scenario where, if the tuple values for the set
of ࣛअ attributes are known, say ࣵअ, then the tuple values
for the set of ࣛअାଵ attributes, say ࣵअାଵ,corresponding to and
depending on ࣵअ can be determined by looking them up in
tuple values of the ࣵअ.

The output generated from Procedure 2 step, is a set of
mapping models outlining the types of Equality and
Similarity mapping relationships. The output expresses the
merge schema definitions, schema constraints, and complex
transformations for the one-to-many and/or many-to-many
relationships of the heterogeneous data source elements.

VI. FORMULATED MERGE ALGORITHM

We present and describe an elaborate merge algorithm
(Algorithm 1) for integrating the instance schema and data of
data marts fact and dimension tables. We further provide a
summary of the algorithm, and conclude the section by
presenting a computational complexity analysis of the
formulated algorithm.

A. Merge Algorithm

The merge algorithm (Algorithm 1) is formulated to generate
the single consolidated data warehouse from different related
data marts, modelled as star schemas instances.

B. Merge Algorithm Summary

The merge algorithm primarily performs 2 levels of
integration.

Firstly, the integration of the instance schema structure,
which comprises the attribute relationships and properties for
the fact and dimension tables. These procedures are
described in Steps (1) to (9). Steps (1) to (4) initialize and
generate the integrated schema tables. Steps (5) to (7)
describe the generation of attributes for the integrated tables.

408

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 1: Multidimensional Instance Schema and Data Integration
Input:
(a) A set of star schema data marts, A and B
(b) A set of first-order GLAV mapping model; ݃݊݅ܽܯ, consisting of ݂ܽܿ݃݊݅ܽܯݐ and ݀݅݉݃݊݅ܽܯ
(c) An optional designation of a data mart, A or B, as the ݐݎܽܯܽݐܽܦ݀݁ݎݎ݂݁݁ݎ;
Output:
(a) A single consolidated star schema instance data warehouse free of duplicate and redundant schema and instance data.
(b) A metadata consisting of data definition of the integrating data marts and the single consolidated data warehouse.
Procedure:

Initialization
(1) Let ݉݁ܮܮܷܰ ← ݁ݏݑ݄݁ݎܹܽܽݐܽܦ݁݃ݎ

Generate Merged Table
(2) For each ܿ݃݊݅ܽܯݐ݂ܿܽ ∋ ݁ݕܶ݃݊݅ܽܯ݃݊݅݀݊ݏ݁ݎݎ do

(a) If ܿܮܮܷܰ = ݁ݕܶ݃݊݅ܽܯ݃݊݅݀݊ݏ݁ݎݎݎ then
i. Return ݉݁ܮܮܷܰ ← ݁ݏݑ݄݁ݎܹܽܽݐܽܦ݁݃ݎ

(b) Else
i. Let ݉݁{ܤ݈ܾ݁ܽܶݐ݂ܿܽ ,ܣ݈ܾ݁ܽܶݐ݂ܿܽ} ∋ ݈ܾ݁ܽܶݐܿܽܨ݁݃ݎ݁݉ ← ݁ݏݑ݄݁ݎܹܽܽݐܽܦ݁݃ݎ

(3) Repeat Step (2) for each ݈ܾ݉݁݁ܽܶ݉݅ܦ݁݃ݎ using ݀݅݉݃݊݅ܽܯ, add {݈ܾ݊݁ܽܶ݉݅ܦ݃݊݅݀݊ݏ݁ݎݎܥ݊}
(4) Return ݉݁{{݈ܾ݁ܽܶ݉݅ܦ݃݊݅݀݊ݏ݁ݎݎܥ݊݊ ,݈ܾ݁ܽܶ݉݅ܦ݁݃ݎ݁݉} ,݈ܾ݁ܽܶݐܿܽܨ݁݃ݎ݁݉} ⊂ ݁ݏݑ݄݁ݎܹܽܽݐܽܦ݁݃ݎ

Merged Table Attribute Relationships
(5) For each ܿ݃݊݅ܽܯݐ݂ܿܽ ∋ ݁ݕܶ݃݊݅ܽܯ݃݊݅݀݊ݏ݁ݎݎ do

(a) Let ݉݁ܮܮܷܰ ← ݈ܾ݁ܽܶݐܿܽܨ݁݃ݎ
(b) If ܿ݁ݕܶ݃݊݅ܽܯ݃݊݅݀݊ݏ݁ݎݎ ൌ “Equality” then

i. Let ݉݁݁ݐݑܾ݅ݎݐݐܣ݂݀݁݊݅݁݀ ← ݁ݐݑܾ݅ݎݐݐܣݐܿܽܨ݁݃ݎ 	∈ ሼ݂ܽܿ݃݊݅ܽܯݐ ∈ ሽݐݎܽܯܽݐܽܦ݀݁ݎݎ݂݁݁ݎ
(c) Else If ܿ݁ݕܶ݃݊݅ܽܯ݃݊݅݀݊ݏ݁ݎݎ ൌ “Similarity” then

i. Let ݉݁݃݊݅ܽܯݐ݂ܿܽ ∋ ݁ݐݑܾ݅ݎݐݐܣ݂݀݁݊݅݁݀ ← ݁ݐݑܾ݅ݎݐݐܣݐܿܽܨ݁݃ݎ
(6) For each ݊{ܤ݈ܾ݁ܽܶݐ݂ܿܽ ,ܣ݈ܾ݁ܽܶݐ݂ܿܽ} ∋ ݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊ݏ݁ݎݎܥ݊ do

(a) If ݊{݁ݐݑܾ݅ݎݐݐܣ݁݃ݎ݁݉} ∌ ݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊ݏ݁ݎݎܥ݊ then
i. Let ݉݁݁ݐܾݑ݅ݎݐݐܣ݃݊݅݀݊ݏ݁ݎݎܥ݊݊ ← ݁ݐݑܾ݅ݎݐݐܣݐܿܽܨ݁݃ݎ

(b) Return ݉݁{݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊ݏ݁ݎݎܥ݊݊ ,݁ݐݑܾ݅ݎݐݐܣݐܿܽܨ݁݃ݎ݁݉} ⊂ ݈ܾ݁ܽܶݐܿܽܨ݁݃ݎ
(7) For each ܿ݃݊݅ܽܯ݉݅݀ ∋ ݁ݕܶ݃݊݅ܽܯ݃݊݅݀݊ݏ݁ݎݎ do

(a) Repeat Step (3) for each ܿ{ܤ݈ܾ݁ܽܶ݉݅݀ ,ܣ݈ܾ݁ܽܶ݉݅݀} ∋ ݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊ݏ݁ݎݎ
(b) Repeat Step (4) for each ݊{ܤ݈ܾ݁ܽܶ݉݅݀ ,ܣ݈ܾ݁ܽܶ݉݅݀} ∋ ݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊ݏ݁ݎݎܥ݊
(c) Return ݉݁{݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊ݏ݁ݎݎܥ݊݊ ,݁ݐݑܾ݅ݎݐݐܣ݉݅ܦ݁݃ݎ݁݉} ⊂ ݈ܾ݁ܽܶ݉݅ܦ݁݃ݎ

Merged Table Attribute Properties
(8) For each ݈ܾ݉݁݁ܽܶݐܿܽܨ݁݃ݎ݁݉ ∋ ݁ݐݑܾ݅ݎݐݐܣݐܿܽܨ݀݁݃ݎ do

(a) Let ݉݁݃݊݅ܽܯݐ݂ܿܽ ∋ ݁ݕܶ݁ݐݑܾ݅ݎݐݐܣ݂݀݁݊݅݁݀ ← ݁ݑ݈ܸܽ݁ݕܶ݁ݐݑܾ݅ݎݐݐܣ݁݃ݎ
(9) Repeat Step (6) for each ݈ܾ݉݁݁ܽܶ݉݅ܦ݁݃ݎ using ݀݅݉݃݊݅ܽܯ

Dimension Tables Data Population
(10) For each ݈ܾ݉݁݁ܽܶ݉݅ܦ݁݃ݎ do

(a) If (݇݁ݐ݈݂ܿ݅݊ܥݎ݂݁݅݅ݐ݊݁݀ܫݕ OR ݉݊݅ݐܽݐ݊݁ݏ݁ݎܴ݁ݕݐ݅ݐ݊ܧ݈݁݅ݐ݈ݑ) = ܴܷܶܧ then
i. Let ݁݊ݐݎܽܯܽݐܽܦ݀݁ݎݎ݂݁݁ݎ ∋ ݕ݁ܭ݁ݐܽ݃ݎݎݑݏ ← ݎ݂݁݅݅ݐ݊݁݀ܫݕ݁ܭݕݐ݅ݐ

(b) Else
i. Let ݁݊ݐݎܽܯܽݐܽܦ݀݁ݎݎ݂݁݁ݎܲ݊݊ ∋ (ݕ݁ܭݕݎܽ݉݅ݎ ≡ ݕ݁ܭ݁ݐܽ݃ݎݎݑܵݓ݁݊) ← ݎ݂݁݅݅ݐ݊݁݀ܫݕ݁ܭݕݐ݅ݐ

Fact Table Data Population
(11) For each ݈ܾ݉݁݁ܽܶݐܿܽܨ݁݃ݎ do

(a) Load fact records using ݁݊{ݕ݁ܭ݁ݐܽ݃ݎݎݑܵݓ݁݊ ,ݕ݁ܭ݁ݐܽ݃ݎݎݑݏ} ∋ ݎ݂݁݅݅ݐ݊݁݀ܫݕ݁ܭݕݐ݅ݐ
(12) Let ݉݁{{݈ܾ݁ܽܶ݉݅ܦ݃݊݅݀݊ݏ݁ݎݎܥ݊݊ ,݈ܾ݁ܽܶ݉݅ܦ݁݃ݎ݁݉} ,݈ܾ݁ܽܶݐܿܽܨ݁݃ݎ݁݉} ⊂ ݁ݏݑ݄݁ݎܹܽܽݐܽܦ݁݃ݎ
(13) Return ݉݁݁ݏݑ݄݁ݎܹܽܽݐܽܦ݁݃ݎ

Finally, Steps (8) and (9) describe the derivation of attribute
property values of the merged fact and dimension tables.

Secondly, the algorithm performs integration of the
instance data values contained in the star schema data marts.
This involves the population of these instance data from the
data marts fact and dimension tables into the merged tables
in the data warehouse. Steps (10) to (13) describe these
procedures of data population.

C. Merge Algorithm Computational Complexity

The merge algorithm presented in previous section, Sub-
section A, is projected to run with a low worst-case
complexity of a polynomial time.

The Initialization step in Step (1) requires a complexity
of 	ߍሺ݊ሻ, whiles the Step (2) takes ܱሺ݊ଶ log݉ሻ to derive a
merged fact table and dimension tables, for ݊ number of
tables and ݉ number of corresponding attributes.

The iterative processes of Step (5) and Step (6) involves a
computation running time of ܱሺ݇ ݊ଶ log݉ሻ to generate
the table attributes and their relationships, for ݊ number of
tables, ݉ number of corresponding attributes, and ݇ number
of non-corresponding attributes.

Finally, the steps from Step (8) to Step (12) require
running time of ߍሺ݇ ݉ሻ for the iterations performed. An
overall worst-case complexity of ߍሺ݊ሻ ሺ݇ߍ ݉ሻ
ܱሺ݇ ݊ଶ log݉ሻ is attained in running the merge algorithm
to generate the single consolidated data warehouse.

409

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We also give a detailed Proof of Correctness of the
merge algorithm in Appendix XI.

VII. PROPOSITIONS OF MULTIDIMENSIONAL

INSTANCE SCHEMA AND DATA INTEGRATION

In this section, we propose technical qualitative
requirements necessary for producing an efficient single
consolidated data warehouse. We also describe the semantics
of query processing on integrated instances of
multidimensional data models. We finally propose and
describe the resolution of identifiable conflicts associated
with the integration of the data marts.
A. Merge Correctness Requirements

The single consolidated data warehouse that is generated
as a result of the implementation of the merge algorithm
needs to satisfy proposed requirements, to ensure the
correctness of the data values from the queries that would be
posed to it.

Drawing on the propositions in the requirements defined
by the authors in [1] for merging generic meta-models, we
performed a gap analysis and extend on their propositions in
relation to generating a data warehouse. Hence, we formulate
and describe a set of correctness requirements in relation to
merging of multidimensional star schemas. We outline the
set of Merge Correctness Requirements (MCR) that validates
the formulated merge algorithm needed for the generation of
a single consolidated data warehouse.

Dimensionality Preservation. For each kind of dimension
table connected to any of the integrating fact tables, there is a
representation of corresponding dimension also connected to
the merged fact table.

Measure and Attribute Entity Preservation. All fact or
measure attribute values in either of the integrating fact
tables are represented in the merged fact table. Additionally,
attributes in each of the dimension tables are represented
through an equality or similarity mapping. Finally, an
automatic inclusion for non-corresponding attributes in the
merged tables, based on the condition of non-attribute
redundancy or duplication, is satisfied.

Slowly Changing Dimension Preservation (SCD). SCD is
the occurrence where an entity in a dimension exhibits
multiple instance representations, based on the varied
changes in instance data values for the key dimensional
attributes, over a time period [43]. For such dimensional
entity occurrences, the merged dimension should offer an
inclusion of all the instance data representations from each
integrating dimension. Hence, an automatic inclusion of
attributes that contribute to the dimensional change in the
merge dimension is satisfied.

Attribute Property Value Preservation. The merged
attribute should preserve the value properties of the
integrating attributes, whether the mapping correspondence
is an equality or similarity mapping. Equality mapping
should be trivially satisfied by the UNION property for all
attributes. For a similarity mapping, the transformation

expression should have the properties to be able to satisfy the
attribute property value of each integrating attribute.

Definition 5. (Surrogate Key): Let ࣞ represent a
dimension table for a multidimensional model, ࣜ such that
ࣞ ∈ ሼࣞଵ,ࣞଶ,… ,ࣞሽ for ݅ ݊. Let ࣟ represent each entity
of a dimension, ࣞ such that 	ࣟ ∈ ࣞ . The identifier, ࣥ is
said to be a Surrogate Key for ࣟ such that ࣥ ≡ ࣟ ∎

Tuple Containment Preservation. A Surrogate Key is the
dimensional attribute that uniquely identifies each instance
data value tuple of an entity representation. The single
consolidated data warehouse should offer the containment of
all unique tuples from the data marts for correctness in query
answering. This ensures the preservation of all Surrogate
Keys needed in identifying each dimensional entity.

B. Merge Algorithm Technical Requirements Summary

The integration methodology adopted by the authors
largely satisfies the technical requirements, as a proposition
for merging disparate data marts. We summarize the merge
algorithm (Algorithm 1) in fulfilment of the technical Merge
Correctness Requirements (MCRs) outlined in Section VI.A.

a) Step (2) satisfies Dimensionality Preservation:
Each fact and dimension table is iterated to form the Merged
Fact Table.

b) Steps (3), (4), (5) satisfy Measure and Attribute
Entity Preservation: All the attributes contained in the Fact
or Dimension Tables are represented in the Merged Table
(Fact or Dimension) through equality or similarity mapping.

c) Steps (6) and (7) satisfy Attribute Property Value
Preservation: Value properties of attributes are represented
for each of the Fact or Dimension Tables.

d) Step (8) satisfies Slowly Changing Dimension
Preservation and Tuple Containment Preservation: Entity
representations from the different data marts are included in
the merged dimensions.

e) Steps (9), (10) satisfy Tuple Containment
Preservation: Tuple data values from each of the data marts
are populated in the merged data warehouse.

C. Semantics of Query Processing on Integrated Instances
of Multidimensional Data Models

The type of queries that are processed on
multidimensional data models are based on Online-
Analytical Processing (OLAP). There are a few problems
that are inherent with OLAP query processing, and these are
addressed as follows. On one hand, is the problem of
incomplete data that arise from missing data values, and
imprecise data values of varying extent. In our approach, the
possibility of having missing data values, in relation to non-
corresponding merge attribute, from the star schemas is
highly probable. Moreover, the varying granularities caused
by the different degrees of precision in the data values from
the combined instance data of different star schemas,
exposes a non-uniform representation of the data values
needed for analytical reporting.

410

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Definition 6. (Dimension Hierarchy): A hierarchy,
comprising a dimension, ࣞ, is a 2-tuple ሺࣦ, ↗ሻ where ࣦ is
a collection of levels and each	ࣦ ∈ ሼࣦଵ, ࣦଶ, … , ࣦሽ, ݅ ݊,
and ↗ is a parent-child relation of two levels, say ࣦ and
ࣦ, such that a data instance element in ࣦ rolls up to a data

instance element in ࣦ , denoted by ሺࣦ ↗ ࣦሻ. This roll-up
relationship forms a partial order over the levels. ∎

Definition 7. (Strict Hierarchy): For a dimension
schema instance ࣞ, any hierarchy ∈ ࣞ, is said to be strict
if for every pair of levels ࣦ, ࣦ୨ with the partial ordering

൫ࣦ ↗∗ ࣦ൯, which are through different paths, say
ሼࣦ୧, ࣦଵ, ࣦଶ, … , ࣦ୳, ࣦሽ and ൛ࣦ୧, ࣦୟ, ࣦୠ, … , ࣦ୴, ࣦൟ, and for
every instance data element Ղ in ࣦ,	 there exist a roll-up
function composition that holds for the condition:

 ∘
ࣦభ
ࣦ

 ∘
ࣦమ
ࣦభ

… ∘ ሺՂሻ
ࣦೕ
ࣦೠ

ൌ ∘
ࣦೌ
ࣦ

 ∘
್ࣦ
ࣦೌ

… ∘ ሺՂሻ
ࣦೕ
ࣦೡ

 ∎

On the other hand, the problem of imperfections inherent
in the hierarchy levels of dimensional tables also places an
overhead impact on query processing for multidimensional
data models. Hierarchies enable drill-down and roll-up in
the aggregate data, and as a result, multiple hierarchies in a
particular dimensional entity support different aggregation
paths within the dimension. Different forms of strict and
non-strict hierarchies are exhibited in the dimensional
entities of multidimensional data models. Strict hierarchies
exhibit a phenomenon where a dimension data instance item
or child level element has only one parent level element
enforcing a constraint restriction on the data values that are
rolled-up during aggregation. Hence, strictness in
hierarchies ensures a consistency in the instance data values
that are used in roll-up functions. Non-strict hierarchies
exhibit a phenomenon where a dimension data instance item
or child level element has several elements at the parent
levels, thus allowing flexibility in the data aggregation.

Pedersen et al. [44] proposed requirements that a
multidimensional data model should satisfy in order to fully
support OLAP queries. These are outlined as; explicit
hierarchies in dimensions, multiple hierarchies, non-strict
hierarchies, handling different levels of granularity, and
handling imprecision amongst others. These requirements
give insights into how OLAP tools manage the raw data
values and how data values are expressed during analytics.

As part of our study, query processing is handled in
relation to the proposition in [44]. The adopted star schema
model offers a platform for basic SQL star-join optimization
during the processing of data values for analytical
representation. The ability of structured cube modelling for
each of the dimension elements by OLAP representations
offers the medium for the individual hierarchies in the
dimensional entities to be captured explicitly. The
hierarchies and their data manipulations are captured using
either, grouping relations and functions, dimension merging
functions, roll-up functions, level lattices, hierarchy
schemas and instances, or an explicit tree-structured
hierarchy as part of the cube.

Different forms of aggregations are computed in the
approach of query processing on the generated data
warehouses. These aggregations are made possible because
of the defined hierarchies established in the dimensional
entities. The aggregations are represented in functions such
as addition computations, average calculations, and constant
functions through an OLAP operation of summarizability.

Definition 8. (Summarizability): A hierarchy is
summarizable if for all levels ࣦ ∈ ሼࣦଵ, ࣦଶ, … , ࣦሽ , for
1 ݅ ݊ , of this hierarchy, the single-level aggregated
measure ݉ with ࣦ granularity, can be computed by
summing up data instance tuple values of a single-level
specified for measure ݉ for any ࣦ ∈ ሼࣦଵ, ࣦଶ, … , ࣦሽ, for
1 ݇ ݊ , granularity appearing along a path from the
bottom level to ࣦ. ∎

Summarizability is a conceptual property of
multidimensional data models where individual aggregate
results can be combined directly to produce new aggregate
results. In a summarizable hierarchy, the aggregated values
for a measure at a level granularity can be obtained by
aggregating the elements of any level of hierarchy, which
directly or indirectly rolls up to the desired level. This
characteristic feature guarantees the correctness of
aggregated values in the resultant data warehouse.

D. Conflicts Identification and Resolution

The integration of meta-data models is generally coupled
with different forms of conflicts in either the instance
schema or instance data. These conflicts are resolved through
different propositions from the formulated algorithm, and
based on the semantic representation of the meta-data
models and their instance schemas. In our integration
approach, we identify and propose resolution measures for
likely to occur conflicts, which are frequently encountered
during merging.

Identifier Conflicts. These conflicts arise as a result of the
same identifier for different real-world entities in the merged
dimension. These categories of conflicts are practically
exposed as a result of the possibility of different entities from
the integrating data marts having the same surrogate key
identifier in their individual dimensions. A resolution
measure for these conflicts is explained in Example 5.

Example 6. Suppose we aim to merge the employee
dimensions into a single merged dimension, using
DimPolicyEmployee and DimInsuredPolicyEmployee from
Policy and Claims data marts, respectively. In such an
integration procedure, it happens that an instance data
value, Employee P from DimPolicyEmployee and an
instance data value, Employee Q from
DimInsuredPolicyEmployee have the same identifiers of a
Surrogate Key. There is the need to resolve such a conflict,
in the algorithm, by preserving the surrogate key identifier
in the preferred data mart and re-assigning a new surrogate
key identifier for the non-preferred data mart(s). ∎

411

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Entity Representation Conflicts. These conflicts arise as a
result of the multiple representations of the same real-world
entity in the merged dimension by the different identifiers.
This occurrence is traced to different representations of
surrogate key identifiers from different dimensions for the
same real-world entity in the merged dimension. A proposed
resolution measure, outlined in the merged algorithm, will be
to perform a de-duplication of the conflicting entities. This is
achieved by preserving the entity from the preferred data
mart as the sole representation of the real-world entity in the
merged dimension.

Attribute Property Type Conflicts. These forms of
conflicts occur as a result of the existence of different
attribute property values from the integrating attributes into
a merged attribute. In reference to Example 6, in integrating
dimensions DimPolicyEmployee and
DimInsuredPolicyEmployee, a merged attribute for
DimPolicyEmployee.HireStatus and
DimInsuredPolicyEmployee.EmployeeStatus attributes will
hold a data type value of, say varchar(1), being the UNION
of integrating attribute data types for char(1) and bit data
types from DimPolicyEmployee.HireStatus and
DimInsuredPolicyEmployee.EmployeeStatus, respectively.
We resolve these conflicts by using the attribute data types
as defined in the mapping model.

VIII. IMPLEMENTATION AND EVALUATION

In this section, we discuss the implementation and
evaluation work based on the integration methodology and
formulated merge algorithm. We present our
implementation framework and the procedures, and we
discuss and analyze the evaluation results.

A. Implementation

We describe our implementation framework of various
techniques and processes needed in producing the output of
a single consolidated data warehouse. This sub-section
focuses on the experimental setup, the datasets used in the
experiments, as well as the practical procedures we
performed based, on the proposed integration methodology
addressed in Sections III, IV, V and VI.

Experimental Setup and Data Sets. We implemented our
methodology using 2 different data warehouses, from
Insurance and Transportation data sets. The Insurance data
consisted of 2 data marts. These were Policy and Claims
data marts. Their schema structure and instance data are
described. The Policy and the Claims data marts contained 7
and 10 Dimension Table schemas, respectively. These
dimensions were referentially connected to a single Fact
Table schema. Each fact table schema had a Degenerate
Dimension (DD) attribute of a Policy Number and a fact or
measure attribute of Policy Transaction Amount. The Policy
fact table schema contained instance data of 3,070 tuples of
data, whilst the Claims fact contained 1,144 tuples of data.
Both data sets had 6 corresponding entity representation in

the dimension tables, whilst the Claims data mart had 3
other non-corresponding dimensions.

The Transport data set, on the other hand, contained 3
data marts. These were Frequent Flyer, Hotel Stays, and Car
Rental data marts. All the data marts had 3 conformed
dimensions; namely, Customer, Date, and Sales Channel.
These dimensions were complemented with a number of
non-corresponding and unique dimensions in each of the
data marts. Their Fact Tables contained 7257, 2449, 2449
tuples of data for Frequent Flyer, Hotel Stays, and Car
Rental, respectively. Each of the Fact Tables also contained
7, 6, and 5 facts or measures for Frequent Flyer, Hotel
Stays, and Car Rental, respectively. All the source data
marts had their permanent repository stored in Microsoft
SQL Server DBMS [45]. Each entity representation in the
dimensions was identified by unique surrogate key and
based on clustered indexing.

Hybrid Schema Matching. The schema matching and
mapping models discovery procedural steps were
implemented using IBM Infosphere Data Architect [22] [23]
[41]. This tool incorporated the schemas of the data mart
source repositories, together with their contained instance
data. The schema matching step was implemented using the
set of algorithmic techniques incorporated in the application
software. The schema-based algorithmic techniques that
were adopted are Lexical Similarity and Semantic Names,
where as the instance-based algorithmic techniques were
Signature, Distributions and Regular Expressions. The
algorithms were configured by sequentially manipulating
the order of execution, configuration of rejection threshold,
sampling size and sampling rate. The manipulations of these
configurations for finding mapping correspondences were
based on an iterative procedure of inspection.

Figure 3 illustrates the derivation of semantically correct
matching candidates to establish mapping correspondences
between the attributes of
DimPolicyTransactionType.PolicyTransactionTypeKey,
DimPolicyTransactionType.PolicyTransactionId, and
DimPolicyTransactionType.TransactionCodeName of
DimPolicyTransactionType dimension schema to the
DimClaimTransactionType.ClaimTransactionCode attribute
of DimClaimTransactionType dimension schema. In Figure
3, the blue-coloured mapping correspondences represent the
chosen semantically correct matching candidate, where
DimPolicyTransactionType.PolicyTransactionId attribute
corresponds to the
DimClainTransactionType.ClaimTransactionCode attribute.
On the other hand, the red-coloured mappings represent the
semantically incorrect matching candidates of
DimPolicyTransactionType.PolicyTransactionTypeKey and
DimPolicyTransactionType.TransactionCodeName, which
are ignored as part of user validation by inspection.
Moreover, the yellow-coloured mappings represent the
correspondences that were generated for each of the
dimensions, as a result of the application of the schema
matching algorithms.

412

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Hybrid Schema Matching

TABLE I. SUMMARY OF PARAMETIZED CONFIGURATIONS FOR SCHEMA MATCHING ALGORITHMS

Matching Algorithm/

Configuration Option

Rejection

Threshold

Thesaurus Option Sampling Size (Rows) Sampling Rate (%)

1. Lexical Similarity 0.6 Not Applicable Not Applicable Not Applicable

2. Semantic Name 0.5 Is Applicable;

But not configured

Not Applicable Not Applicable

3. Signature 0.8 Not Applicable 150 30

4. Distributions 0.8 Not Applicable 100 20

5. Regular Expressions 0.9 Not Applicable 100 30

When generating mapping correspondences for the fact
and dimension table attributes, various configuration
manipulations of algorithms are performed on the discovery
function. The parameters used in configuring the algorithms
were Rejection Threshold, Thesaurus Option, Sampling
Size, and Sample Rate. The Rejection Threshold parameter
was configured with different adjustments for both the
schema- and instance-based algorithms. The Thesaurus
Option parameter was applicable to the Semantic Name
algorithm. The Sampling Size and Sampling Rate
parameters were applicable to the instance-based
algorithms. We summarize the parameterized configuration
of the algorithms adopted in TABLE I.

Mapping Models Discovery. In the mapping models
discovery step, the adoption of GLAV mappings enabled the
inclusion of all attributes for each mapping formulation of
fact and dimension table attributes. Moreover, complex
transformation expressions were derived for multi-
cardinality mappings.

An illustration of multi-cardinality mapping relationship
is displayed in Figure 4. In Figure 4, there is a mapping
discovery and modelling between the attributes of
DimPolicyHolder and DimInsuredParty dimensions. These
mappings are indicated by the grey lines connecting
attributes from DimPolicyHolder to DimInsuredParty
dimensions. More specifically, a selected mapping
relationship of the DimInsuredParty.FullName attribute is
modelled onto 2 other attributes; namely,
DimInsuredParty.FamilyName and
DimInsuredParty.GivenName.

We therefore, defined a complex transformation
expression, as in Equation (1), in the mapping relationship
already established between these dimension attributes.

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ	 ݈݈݁݉ܽܰݑܨ
ൌ .ݎ݈݁݀ܪݕ݈ܿ݅ܲ݉݅ܦ ݁݉ܽܰݕ݈݅݉ܽܨ
 .ݎ݈݁݀ܪݕ݈ܿ݅ܲ݉݅ܦ ሺ1ሻ														݁݉ܽܰ݊݁ݒ݅ܩ

413

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Mapping Models Discovery

Other forms of mapping properties that were defined in
the modelling are expressive characterization of relationship
cardinality, attribute semantic representation, and attribute
data type representation, amongst others. In terms of the
relationship cardinality, an equality or similarity mapping
cardinality type was defined. To express the attribute
semantic representation, a definition of the supposed
merged attribute name was specified, where possible.
Regarding attribute data type representation, a supposed
merge data type was defined and this served as a union data
type for the merging attributes. A procedural output in a
Comma Separated Values (CSV) file format was later
generated, which contained the mapping definitions based
on the tables, their attributes, and the attribute property
values from each of the data marts

Formulated Merge Algorithm. The formulated merge
algorithm was implemented with the availability of the
mapping models and the source data marts as inputs. The
implementation was programmed using Microsoft Visual
C# .Net Integrated Development Environment (IDE) with
8029 lines of code from the Entity classes, Business Logic
classes, Utility classes, and program control code. Stored
procedures were implemented in the Microsoft SQL Server
permanent repository, and these served as transaction
processing medium between the data repository and the
entity and business logic classes in the programming IDE.

Query Processing and Analyses. The analyses of the
repository data, of both the integrating source data marts

and the generated single consolidated data warehouse, were
performed using IBM Cognos Business Intelligence [46]
application software. The software enabled the possibility of
processing queries on the instance data, in the form of report
generation.

B. Evaluation

Our evaluation analyses were primarily based query
processing on the single consolidated data warehouse in
relation to the integrating data marts. We compared the
outputs of the query processing from both the data marts
and the generated data warehouse. We first ran a formulated
query the data marts, and afterwards ran the same query on
the generated data warehouse. Based on these processes, we
are able to effectively compare the results from the data
marts and the single consolidated data warehouse.

Evaluation Criteria and Analyses. We evaluate the
outcome of the experiments performed based on a set of
criteria from the guidelines proposed by Pedersen et al. [44].
We performed a gap analysis on their study and adapted
correctness of data values, dimensionality hierarchy, and
rate of query processing, as criteria.

The metrics that we used in evaluating these criteria for
query processing were recall, precision, and accuracy 0.
Recall is computed by the number of tuples retrieved from a
data mart divided by the number of tuples that should have
been retrieved from the generated data warehouse from each
original data mart. Precision is computed by the number of
tuples retrieved from a data mart divided by the number of

414

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tuples that were retrieved from the single consolidated data
warehouse, per the data mart. Accuracy is determined by the
degree of validity or exactness of the data values generated
from a query posed to the data warehouse in comparison to
the data values retrieved from a data mart.

For recall, an evaluation of 100% was trivially attained
and verified. The verification was based on the assertion
that the formulated merge algorithm fulfilled the MCRs of
Measure and Attribute Entity Preservation and Tuple
Containment Preservation.

Precision evaluation was very important, as it measured
the proportion of relevant and non-relevant tuples that were
retrieved based on a formulated query. This presents an
insight into the composition of our merged data warehouse,
in terms of the level of integration of related data from
multiple sources. Deducing from the precision values, a
higher rate was attained for all formulated queries that were
posed against the data warehouse. For cases of dimensions
that were only related to some specific data marts, a
formulated query yielded a very high precision rate. This
was as a result of the retrieval of few non-relevant tuples.
An example query was, “What insurance claimant
employment type receives the most claims processed for the
current Calendar Season”? Conversely, for queries on
dimensions that related or corresponded to all data marts, an
average precision rate was observed where a considerable
number of non-relevant tuples were retrieved in reference to
a particular data mart. An example query was, “What type of
Policy Coverage is most popular? What are the trends since
the 2nd Calendar Quarter.”

Figures 5 and 6 show the precision evaluation for
Insurance and Transportation data warehouses, respectively.
In Figure 5, an average rate of 86% was achieved for the
queries posed to dimensions related to the Claims data mart.
The precision rate increases significantly with an increase in
the tuples in these dimensions, as more relevant tuples are
generated. This is evident in queries 1 to 7. In terms of
corresponding dimensions for all data marts, processed
queries generated an average rate of 51% and 49% for
Claims and Policy data marts, respectively, as highlighted in
queries 8 to 12.

Figure 5. Precision for Insurance Data Set

Figure 6. Precision for Transportation Data Set

In Figure 6, an average precision rate of 72%, 74%, and
83% were attained for Hotel Stays, Car Rental, and Frequent
Flyer data marts, respectively, for the set of formulated
queries posed. Queries 1 and 3 for Hotel Stays, 6 for Car
Rental, and 10, 12, 13 for Frequent Flyer data marts
performed creditably well as a result of the higher
containment of tuples to the attributes being retrieved for the
formulated queries posed. Moreover, in terms of queries
posed to corresponding dimensions, an average precision
rate of 38%, 40%, and 23% was attained for Hotel Stays,
Car Rental, and Frequent Flyer data marts, respectively.
This is depicted in queries 14 to 18. It would be realized that
this average rate for the Transportation data set is quite
lower than that attained in respect to the Insurance data set.
This is based on the claim that an increase in the number of
data marts for integration is inversely proportional to the
precision rate of queries for the respective data marts. This
assertion is due to the distributive proportionality of tuples
per each dimension of the corresponding data marts.
Additionally, the attributes involved in the formulated query
for these dimensions also enforces on this assertion.

In summary, the average precision rates analyzed are
able to provide the user with details regarding the proportion
of the data in the merged data warehouse that originate from
a specific data source. This holds important practical value,
for data warehouse practitioners, who want to be able to
have statistics regarding the composition of the merged data.

In terms of accuracy, we achieved a 100% return rate of
valid and exact data values from the data warehouse, in
comparison to each individual data mart. This was affirmed
based on the merge algorithm fulfilling MCRs of Tuple
Containment Preservation and Measure and Attribute Entity
Preservation. Additionally, the adoption of GLAV mapping
model enabled the processing of exact and sound queries on
the data warehouse.

Query Processing Rate. We also analyzed the rate of
query processing to ensure that queries posed to the data
warehouse are of optimal rate. With an integration of
instance data from the data marts, a considerable volume of
expected data cannot be overemphasized in the data

415

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

warehouse. We recorded the query response time for an
average of 20 query executions for each of the data sets.
These queries were processed on a single 3.20 GHz
processor with a 4 GB of RAM.

Our evaluation of the processed queries showed that the
queries generally ran at almost the same rate or slightly
higher than when posed against the data mart sources. The
query execution durations for the data marts and data
warehouses for the Insurance and Transportation data sets
are shown in Figure 7 and 8, respectively.

In Figures 7 and 8, it can be generally deduced from
display that the data values that the query rate for the data
warehouses were appreciable taking note of the compared
values generated from the data marts. In certain cases, such
as queries 7 and 8, in Figure 7, the rates were a bit higher
due to higher level of aggregation and increased number
dimension attributes involved in data values retrieved.
Queries 6 and 11 recorded lower query rates because of the
low quantity of attributes, as well as tuple data values, in the
formulation of the answer to the query. Additionally, in
Figure 8, similar observation was realized on queries 6, 14,
and 16 where the query processing rate is a bit higher in
comparison to the others. We also observed a lower rate of
query rates for queries 4, 10, 13, and 19, which inferred a
very good composition of merged tables and attributes and
their contained data instance tuple values.

We further computed the variance of the average query
rate per data mart as it differs quantitatively from the
consolidated data warehouse. A deduction observation was
ascertained, where a lower quantity of tuples of instance
data values to be retrieved during query processing lead to
an increase in the variance, and vice versa. This is due to the
fact that an increase in the number of data marts, and
resultant increase in data instance tuples, increases the rate
of data retrieval, per data mart analysis in relation to the
single consolidated data warehouse.

Figure 7. Query Processing Rate for Insurance Data Set

Figure 8. Query Processing Rate for Transportation Data Set

TABLE II. SUMMARY OF AVERAGE QUERY RESPONSE TIME
AND VARIANCES

Data Set

Average Query Response Time and Variances

Data Mart /
Data Warehouse

Avg. Query
Response
(ms)

Variance From
Integrated Data
Warehouse (ms)

Transportation Car Rental 26.70 63.95

Transportation Hotel Stays 27.10 63.55

Transportation Frequent Flyer 70.95 19.70

Transportation DataWarehouse 90.65 0.00

Insurance Policy 29.65 19.60

Insurance Claim 13.75 35.50

Insurance DataWarehouse 49.25 0.00

An observation of the Claims data mart, in Figure 7 and
TABLE II. reveals that the variance of 35.50 was higher
because of the lower query rate of the integrating data mart.
Moreover, in Figure 8 and TABLE II. the Hotel Stays and
Car Rental data marts rather had a higher variance of 63.55
and 63.95, respectively, as their query rates were lower
because of the lower quantity of data instance tuples.

We present a summary of the variances in the average
query response time (in milliseconds) for the data marts in
comparison to their respective data warehouses in TABLE II.

IX. COMPARISON TO OTHER APPROACHES

There have been minimal studies in this area of
multidimensional data integration, in particular to the
generation of a single consolidated data warehouse. These
approaches present significant contributions with regards to
element mappings and algorithms. In comparison, our
approach addresses the integration problem from an
important concept of model management. We discuss a
number of these approaches and comparatively explain how
our methodology performs better.

416

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Dimension Compatibility and Heterogeneous
Multidimensional Integration

Cabibbo and Torlone in their series of studies [31] [32]
[33], address the problem of data integration in relation to
multidimensional databases (data marts). In their work [31]
[33], they introduce fundamental assertions of dimension
algebra and dimension compatibility. Their work highlights
different forms of heterogeneities that are existent in
dimension tables. Their attempt to address these
heterogeneities lead them to introduce a novel theoretical
concept of dimension algebra. This concept enables the
selection of relevant portions of a dimension for integration.
The dimension algebra is basically based on 3 main
operators; namely, selection, projection, aggregation.

The authors in [31] [33] also introduce the concept of
dimension compatibility. Dimension compatibility outlines
the retrieval of common dimension information based on the
characterization of general properties. These general
properties were outlined as; level equivalence, dimension
equivalence, dimension comparability, and dimension
intersection. The compatibility property of dimensions was
then used as a platform to perform drill-across queries over
the autonomous data marts, and aid in hierarchical
aggregation of instance data. As part of their study, the
authors [31] [32] [33] use the fundamental intuitions to
propose 2 different approaches to the problem of integration
of multidimensional databases; namely, loosely coupled
integration and tightly coupled integration. They introduced
concepts and algorithms, and stipulated a number of
desirable properties for dimension matching; namely,
coherence, soundness, and consistency.

B. Inferred Aggregation in Hierarchies

Riazati et al. [34] propose a solution for integration of
data marts where they infer aggregations in the hierarchies
of the dimension tables existent in the multidimensional
databases. In their work, they attempted formulating a
computation on minimal directed graph from the instance
data. These inferred hierarchies are then used to perform
roll-up relationships between levels and to ensure the
summarizability of data. They further use the assertion of
dimension compatibility introduced in [31] [32] [33] to
develop algorithms, which in turn are used for the
integration of data marts.

C. Methodology Comparisons & Evaluation

The existing approaches to multidimensional instance
schema data integration addressed in [31] [32] [33] [34]
explain important concepts that need to be discussed when
incorporating several data marts into a single consolidated
data warehouse. On the contrary, these techniques and
methodologies are inadequately enough in the handling of
more complex characteristics of the fact or dimension tables
and their attributes. We address the shortcomings of these
approaches, and highlight the enhanced ways of handling
such issues through our methodology approach using the
concept of model management.

Firstly, the approaches by the authors in [31] [32] [33]
fail to address the issue of mapping models, although
propositions of the general properties regarding the
characterization of dimension compatibility seems to handle
this concept. Our approach, however, adopts a first-order
mapping modelling formalism, which better expresses the
attribute correspondences. As a result, issues of data
exchange and transformation for dissimilar and
multicardinality attributes are expressed efficiently.

Secondly, the previous approaches do not lay out a
precise schema merge algorithm. Descriptions of algorithms
for deriving the common information between dimensions
and for merging were put forward in [32] and other
literatures so far. But these algorithms are inconclusive
enough to solve the complex representations of schema and
data instances. Our approach offers a complete formulated
algorithm for integrating multidimensional data models
based on star schema models.

Thirdly, conflict management relating to identification
and resolution are not completely addressed by the authors
in their approach. In the literature [33], the properties that
underlie and establish the dimension compatibility criteria
seem to partially solve the likely to occur conflicts that
could be encountered in the dimensions. But these
properties in their entirety fail to totally resolve such
prominent conflicts during integration. Our methodology
outlines a definite set of likely to occur conflicts and their
resolution measures in relation to the instance schema and
instance data values.

Fourthly, technical qualitative requirements, which serve
to highlight the properties that a generic integrated schema
should possess were addressed by the authors in [2][28]. A
careful study of the specific approaches for
multidimensional data integration attempted by the authors
in [31] [32] [33] [34] seem not to have specified
requirements for integration. A number of requirements
were generally attempted by the authors in [32]. They
proposed of coherence, soundness and consistency as
measures for compatible dimension matching; but these are
inconclusive in the larger scale of integrating schema and
data instances. Our methodology approach proposes a
complete set of requirements for multidimensional
integration to handle the varied properties and constraints of
multidimensional data models.

We present a comparative analysis and evaluation of the
proposed methodology in line with other approaches in
TABLE III. This tabular analysis summarizes the
discussions regarding methodology approaches presented in
the literature, and outlines the merits of our proposed
methodology over the other approaches.

X. CONCLUSION

This paper presents a methodology for the merging of
multidimensional data models using star schemas instances.
We addressed extensively the methodologies and algorithms
adopted in finding mapping correspondences between the
elements attributes of the fact and dimension tables for the
data marts.

417

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. QUALITATIVE ANALYSIS OF PROPOSED METHODOLOGY AND OTHER APPROACHES

Methodology

Approach /

Analysis Criteria

(1) Proposed Integration

Methodology

(2) Cabibbo and Torlone [31] [32] [33]

- Dimension Compatibility and

Heterogeneous Multidimensional

Integration

(3) Riazati et al. [34] –

Inferred Aggregation in

Dimension Hierarchies

Mapping Models

Discovery and

Modelling

Adopts a first-order GLAV

mapping model, which offers

effective data translation and

data exchange functions

Introduces dimension compatibility for

attribute mappings, but does not present

complete mapping modelling and the

handling of attribute relationships types

Methodology extends on the

previous notions of dimension

compatibility in (2); does not lay

out precise mapping modelling

Formulated Merge

Algorithm

Presents a complete merge

algorithm that handles varied

characteristics of both schema

and data instances from

heterogeneous data sources

Presents sets of algorithms that involves

drill-across queries between dimensions

instance schema attributes; but methods

are inconclusive for varied properties of

instances of schema attributes and data

Proposes algorithms for inferring

partial order of attributes, and for

identifying hierarchy levels and

roll-ups. These algorithms are

based on only schema instances

Conflict

Identification and

Resolution

Identifies likely to occur

conflicts and proposes complete

resolution measures in the

element attributes and their

properties

Conflict management is not clearly

addressed by the authors. Attempts of

using dimension algebra and dimension

compatibility is not sufficient to handle

frequently observed conflicts

Methodology does not precisely

outline conflict identification and

resolution measures for the

schema instances of tables and

their attributes

Technical

Qualitative

Requirements

Proposition of requirements to

handle the integration of varied

characteristics of schema and

data instances; to generate an

merged data warehouse, and for

effective query processing

Proposition of Coherence, Soundness,

and Consistency; as measures for

compatible dimension matching, but the

requirements are inconclusive to handle

varied properties of schema and data

instances

Methodology does not propose

qualitative requirements; but

adopts and extends the properties

outlined in methodology (2) to

infer attribute matchings and

aggregations in the hierarchies

Here, we adopted a hybrid schema matching
methodology for finding mapping correspondences. We also
outlined the adoption of first-order GLAV mapping models
and their attribute relationship characterization of equality
and similarity mappings. Moreover, we addressed the
handling of mapping modelling constraints in the form of
functional dependencies in the dimensions. We formulated a
merge algorithm for integrating disparate data marts into a
single consolidated star schema data warehouse.

Furthermore, we addressed the semantics of query
processing on the single consolidated data warehouse taking
cognizance of the aggregations in hierarchy and
summarizability of data instance values for the hierarchies.
We identified and outlined the resolution of frequently
observed conflicts that are encountered when merging data
marts. To this end, we outlined the satisfaction of technical
merge correctness requirements for integrating data marts
into a data warehouse.

Finally, we compared our methodology of integrating
schema and data instances as against other approaches. We
outlined the merits and suitability of our approach for

delivering an enterprise-wide single consolidated data
warehouse from a number of disparate data marts.

The analyses of our evaluation showed that the rates of
recall, precision and accuracy of the data values retrieved
from the generated data warehouse are high and noticeable.
We specifically analyzed the precision of queries in different
situations of query processing for corresponding or non-
corresponding dimensions from the integrating data marts.
We also analyzed the rate of query processing on the single
consolidated data warehouse as compared to the individual
data marts. We observed that with an increase in the number
of data marts, and more specifically, an increase in the data
instance tuples the variance of query processing for the
concerned data marts decreases considerably. Our approach,
thus, provides data warehouse researchers and practitioners
with procedures, criteria, and exact measures as to how
successful an integration process is achieved.

A number of future research directions remain. The
incorporation of data mart level integrity constraints into the
data warehouse needs to be investigated further. We also
envisage the extension of the methodology to handle
snowflake and fact-constellation multidimensional data
models.

418

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] M. Mireku Kwakye, I. Kiringa, and H. L. Viktor, “Merging
Multidimensional Data Models: A Practical Approach for
Schema and Data Instances,” In Proceedings of the 5th
International Conference on Advances in Databases,
Knowledge, and Data Applications (DBKDA), 2013, pp. 100-
107.

[2] R. A. Pottinger and P. A. Bernstein, “Merging Models Based
on Given Correspondences,” In Proceedings of the 29th
International Conference on Very Large Data Bases (VLDB),
2003, pp. 826-873.

[3] M. Lenzerini, “Data Integration: A Theoretical Perspective,”
In Proceedings of the 21st ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems
(PODS), 2002, pp. 233-246.

[4] P. A. Bernstein and S. Melnik., “Model Management 2.0:
Manipulating Richer Mappings,” In Proceedings of the ACM
SIGMOD International Conference on Management of Data
(SIGMOD), 2007, pp. 1-12.

[5] S. Melnik, “Generic Model Management: Concepts and
Algorithms,” Springer Lecture Notes in Computer Science
(LNCS), 2004, pp. 2967.

[6] P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger, “A Vision
of Management of Complex Models,” In Proceedings
Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), 2000, vol. 29, no. 4, pp.
55-63.

[7] S. Melnik, “Model Management: First Steps and Beyond,” In
Proceedings of the 11th Symposium of the GI Department,
Database Systems in Business, Technology and Web, (BTW),
2005, pp. 455-464.

[8] M. N. Gubanov, P. A. Bernstein, and A. Moshchuk, “Model
Management Engine for Data Integration with Reverse-
Engineering Support,” In Proceedings of the 24th
International Conference on Data Engineering (ICDE), 2008,
pp. 1319-1321.

[9] E. Rahm and P. A. Bernstein, “A Survey of Approaches to
Automatic Schema Matching,” Very Large Data Bases
(VLDB) Journal, 2001, vol. 10, no. 4, pp. 334-350.

[10] P. Shvaiko and J. Euzenat, “A Survey of Schema-based
Matching Approaches,” Journal of Data Semantics IV, vol.
3730, pp. 146-171, 2005, doi:10.1007/11603412_5.

[11] P. Shvaiko, “A Classification of Schema-based Matching
Approaches,” In Proceedings of the Meaning Coordination
and Negotiation Workshop at the 3rd International Semantic
Web Conference (ISWC), 2004.

[12] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity
Flooding: A Versatile Graph Matching Algorithm and Its
Application to Schema Matching,” In Proceedings of the 18th
International Conference on Data Engineering (ICDE), 2002,
pp. 117-128.

[13] H. H. Do and E. Rahm, “COMA: A System for Flexible
Combination of Schema Matching Approaches,” In
Proceedings of 28th International Conference on Very Large
Data Bases (VLDB), 2002, pp. 610-621.

[14] J. Madhavan, P. A. Bernstein, and E. Rahm, “Generic Schema
Matching with Cupid,” In Proceedings of 27th International
Conference on Very Large Data Bases (VLDB), 2001, pp. 49-
58.

[15] W-S. Li and C. Clifton, “SEMINT: A Tool For Identifying
Attribute Correspondences In Heterogeneous Databases
Using Neural Networks,” Elsevier Science. Data and

Knowledge Engineering (DKE), 2000, vol. 33, no. 1, pp. 49-
84.

[16] R. Dhamankar, Y. Lee, A. Doan, A. Y. Halevy, and P.
Domingos, “iMAP: Discovering Complex Mappings between
Database Schemas,” In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2004, pp.
383-394.

[17] M. A. Hernandez, R. J. Miller, and L. M. Haas, “Clio: A
Semi-Automatic Tool For Schema Mapping,” In Proceedings
of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), 2001, pp. 607.

[18] R. J. Miller, M. A. Hernandez, L. M. Haas, L-L. Yan, C. T. H.
Ho, R. Fagin, and L. Popa, “The Clio Project: Managing
Heterogeneity,” ACM SIGMOD Record, 2001, vol. 30, no. 1,
pp. 78-83.

[19] A. Y. Halevy and J. Madhavan, “Corpus-Based Knowledge
Representation,” In Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI), 2003, pp.
1567-1572.

[20] J. Berlin and A. Motro, “Database Schema Matching Using
Machine Learning with Feature Selection,” In Proceedings of
the 14th International Conference on Advanced Information
Systems Engineering (CAiSE), 2002, pp. 452-466.

[21] A. Islam, D. Z. Inkpen, and I. Kiringa, “Applications of
Corpus-based Semantic Similarity and Word Segmentation to
Database Schema Matching,” Very Large Data Bases
(VLDB) Journal, 2008, vol. 17, no. 5, pp. 1293-1320.

[22] M. A. Hernandez, L. Popa, C. T. H. Ho, and F. Naumann,
“Clio: A Schema Mapping Tool for Information Integration,”
In Proceedings of the 8th International Symposium on Parallel
Architectures, Algorithms, and Networks (ISPAN), 2005, pp.
11.

[23] R. Fagin, L. M. Haas, M. A. Hernandez, R. J. Miller, L. Popa,
and Y. Velegrakis, “Clio: Schema Mapping Creation and Data
Exchange,” Conceptual Modelling: Foundations and
Applications, 2009, pp. 198-236.

[24] D. Kensche, C. Quix, X. Li, Y. Li, and M. Jarke, “Generic
Schema Mappings for Composition and Query Answering,”
Elsevier Science. Data and Knowledge Engineering (DKE),
2009, vol. 68, no. 7, pp. 599-621.

[25] R. A. Pottinger, “Database Schema Integration,”
Encyclopedia of GIS, 2008, pp. 226-231.

[26] P. A. Bernstein and E. Rahm, “Data Warehouse Scenarios for
Model Management,” In Proceedings of the 19th International
Conference on Conceptual Modeling (ER), 2000, pp. 1-15.

[27] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R.
Rosati, “Data Integration in Data Warehousing,” International
Journal of Cooperative Information Systems (IJCIS), 2001,
vol. 10, no. 3, pp. 237-271.

[28] R. A. Pottinger and P. A. Bernstein, “Schema Merging and
Mapping Creation for Relational Sources,” In Proceedings of
the 11th International Conference on Extending Database
Technology (EDBT), 2008, pp. 73-84.

[29] N. Rizopoulos and P. McBrien, “Schema Merging Based on
Semantic Mappings,” In Proceedings of the 26th British
National Conference on Databases (BNCOD), 2009, pp. 193-
198.

[30] C. Quix, D. Kensche, and X. Li, “Generic Schema Merging,”
In Proceedings of the 19th International Conference on
Advanced Information Systems Engineering (CAiSE), 2007,
pp. 127-141.

419

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[31] L. Cabibbo and R. Torlone, “On the Integration of
Autonomous Data Marts,” In Proceedings of the 16th
International Conference on Scientific and Statistical
Database Management (SSDBM), 2004, pp. 223-231.

[32] L. Cabibbo and R. Torlone, “Integrating Heterogeneous
Multidimensional Databases,” In Proceedings of the 17th
International Conference on Scientific and Statistical
Database Management (SSDBM), 2005, pp. 205-214.

[33] L. Cabibbo and R. Torlone, “Dimension Compatibility for
Data Mart Integration,” In Proceedings of the 12th Italian
Symposium on Advanced Database Systems (SEBD), 2004,
pp. 6-17.

[34] D. Riazati, J. A. Thom, and X. Zhang, “Inferring Aggregation
Hierarchies for Integration of Data Marts,” In Proceedings of
the 21st International Conference on Database and Expert
Systems Applications (DEXA), 2010, pp. 96-110.

[35] IBM, IBM Infosphere Data Architect 7.5.3.0: Finding
Relationships. [Online]. Available:
http://publib.boulder.ibm.com/infocenter/idm/v2r1/index.jsp?t
opic=/com.ibm.datatools.metadata.mapping.ui.doc/topics/iiy
mdadconfiguring.html. Retrieved: 2014.05.31.

[36] E. Deza and M. M. Deza, "Euclidean Distance,” Encyclopedia
of Distances, Springer, 2009, pp. 94.

[37] S. Craw, “Manhattan Distance,” Encyclopedia of Machine
Learning, Springer, 2010, pp. 639.

[38] M. Dash and H. Liu, “Feature Selection for Classification,”
Intelligent Data Analysis, 1997, vol. 1, no. 3, pp. 131–156.

[39] B. Ten Cate and P. G. Kolaitis, “Structural Characterizations
of Schema-Mapping Languages,” In Proceedings of the 12th
International Conference on Extending Database Technology
(ICDT), 2009, pp. 63-72.

[40] M. Friedman, A. Levy, and T. Millstein, “Navigational Plans
for Data Integration”, In Proceedings of the 16th National
Conference on Artificial Intelligence and 11th Conference on
Innovative Applications of Artificial Intelligence (16. AAAI/
11. IAAI), 1999, pp. 67-73.

[41] IBM, IBM Infosphere Data Architect 7.5.3.0. [Online].
Available: http://www-01.ibm.com/software/data/optim/data-
architect. Retrieved: 2014.05.31.

[42] Microsoft, Microsoft BizTalk Mapper. [Online]. Available:
http://msdn.microsoft.com/en-
us/library/ee253382(v=bts.10).aspx. Retrieved: 2014.05.31.

[43] R. Kimball, M. Ross, W. Thornthwaite, J. Mundy, and B.
Becker, “The Data Warehouse Lifecycle Toolkit,” John Wiley
and Sons, 2nd Edition, 2008, ISBN-10: 0470149779.

[44] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson, “A
Foundation for Capturing and Querying Complex
Multidimensional Data,” Elsevier Science. Information
Systems (IS), 2001, vol. 26, no. 5, pp. 383-423.

[45] Microsoft, Microsoft SQL Server Database Management
System. [Online]. Available:
http://www.microsoft.com/en-us/sqlserver/default.aspx.
Retrieved: 2014.05.31.

[46] IBM, IBM Cognos Business Intelligence 10.2.0. [Online].
Available: http://www-
03.ibm.com/software/products/en/business-intelligence.
Retrieved: 2014.05.31.
M. Junker, A. Dengel, and R. Hoch, “On the Evaluation of
Document Analysis Components by Recall, Precision, and
Accuracy,” In Proceedings of the 5th International
Conference on Document Analysis and Recognition
(ICDAR), 1999, pp. 713-716.

XI. APPENDIX

MERGE ALGORITHM PROOF OF CORRECTNESS

A. Preliminaries

In this section, we provide an outlined proof of correctness of
the formulated merge algorithm, which establishes query
processing on the single consolidated data warehouse.

Definition 9. (Certain Query): A Query, ࣫ is said to be
Certain for all Instances, ࣣ and Properties, ࣪ of a
Multidimensional Database, ࣧࣞ iff ࣫ ⊨ ࣣ, such that ࣣ ⊆ ࣧࣞ
and 	࣫ satisfies ࣪ ∈ ࣧࣞ 	∎

Definition 10. (Certain Answer): A Tuple, ࣮ forming an
Answer to a certain query, ࣫ is said to be Certain iff ࣮ ⊨ ࣫ for all
Instances, ࣣ of Multidimensional Database, ࣧࣞ and ࣮ fulfils
ࣣ ∈ ࣧࣞ ∎

Let ࣰ ൌ ൛ ଵࣰ, ଶࣰ, … , ࣰऀ ൟ represent an expected set of ऀ tuple
variables of certain answers ranging over a set of queries, ࣫. Let
࣫ ൌ ሼ࣫ଵ, … , ࣫ऊሽ represent a set of ऊ possible and certain queries
likely to be posed to the single consolidated data warehouse. For
the tuple ࣰ proving a query ࣫ will mean the tuple ࣰ computes
certain answers to the query ࣫ posed on the single consolidated
data warehouse.

Theorem 1. (Merge Algorithm): Let ࣭ and ࣣ, respectively,
represent the schema and data instances of a Multidimensional Star
Schema Model, ࣧࣞ. Suppose ࣧࣞ is instantiated in a Fact,	࣠ and
ࣾ number of Dimensions 	ࣞࣻ, ሼ1 ࣻ ࣾሽ such that
࣠ ൌ ሼ࣭࣠, ࣣ࣠ሽ, ࣞࣻ ൌ ሼ࣭ࣞࣻ , ࣣࣞࣻሽ . Then, a merge algorithm which
accepts ࣿ Star Schema Instances, ࣧࣞ୨, for	ሼ2	 j ࣿሽ, and
Mapping Correspondences,	ࣧࣛ ࣠࣪ࣞࣻ as inputs, generates a Single
Consolidated Data Warehouse, ࣱࣞ in a worst-case polynomial
time complexity, such that ሼ࣭, ࣣሽ ∈ ࣱࣞ ⊨ ሼ࣫, ࣮ሽ ∈ ࣧࣞ୨ ∎

B. Proof of Soundness

PROOF. (SKETCH) Soundness. We want to show that, if a tuple
ࣰ can be proven or computed as a certain answer to a posed
certain query ࣫ on the single consolidated data warehouse, ࣱࣞ
then tuple ࣰ will answer the certain query ࣫.

ሺ⇒ሻ
By use of inductive definition, we assume for an arbitrary tuple ࣰ
and certain query ࣫ , such that the tuple ࣰ is computed in ࣿ
number of steps for query ࣫. Consequent to this assumption, the
tuple ࣰ will represent certain answers to the query ࣫. This will
hold for all data instances of the single consolidated data
warehouse generated from this algorithm.

For Steps (2) to (7), it can be inferred that the mapping
correspondences between the integrating instance schema table
attributes are iterated in finite steps. The single consolidated data
warehouse will then be a representation of all instance schema
table attributes.

Since instance data values are associated to each attribute of
the schema instances. Hence, certain answers for tuple, say ࣰ, is
generated for any query, say ࣫, posed to it.

For Step (5), the intuition that only 2 forms of mapping is
adopted implies all forms of mapping ambiguities for possible
intractability or a worst-case of an undecidability are not expected.
In that regard, exact certain answers are expected from a posed
query for equality mapping types. For similarity mapping, similar

420

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

certain answers for tuples are generated. Non-corresponding
attributes also help in generating tuples for local instance schema
attributes per data mart. As a result, by inductive proposition the
correctness in tuple data values is trivially preserved.

For Step (8), the tuples that are generated from schema
attributes will have properties of being the UNION of all
integrating attributes. The unified property thus asserts on all the
semantics from each of the integrating attributes. Hence, if a tuple,
say ࣰ , is generated for a query, say ࣫ , a truth validity can be
ascertained such that the tuple will represent a certain answer. This
makes the inference and inductive claims from the earlier premise
satisfy and preserve the soundness criteria for correctness. ∎

C. Proof of Completeness
The proof of completeness is trivially the converse to the proof of
soundness and affirms the validation of the intuition proposed for
soundness.

PROOF. (SKETCH) Completeness. We want to show that, if a
tuple ࣰ is a certain answer to a certain query ࣫ posed on the
single consolidated data warehouse, ࣱࣞ then the tuple ࣰ can be
proven to exist. In other words, for any query ࣫ posed we are sure
not to miss any certain answer from the tuples that can be
generated.

ሺ	⇐	ሻ
We begin the proof by the use of contraposition hypothesis to
show that: If a tuple, say ࣰ, cannot be computed or does not exist
for a query, say ࣫ , then the tuple ࣰ cannot represent a certain
answer to the query ࣫.

Let us assume the tuple ࣰ cannot be computed or generated for
the query ࣫ in the strong sense.
If the tuple ࣰ cannot be computed, then we can construct an
infinite general set, ࣰ∗	of aggregated tuples, which will still not
form computed tuples to answer the query ࣫.

Based on this construction, we can inductively generate a
categorization of all forms aggregation of tuples. We enumerate

them as ࣟ ൌ ሼࣟଵ, ࣟଶ, …ࣟँሽ . We then will inductively define a
series of different sets of tuples ࣰ ൌ ሼ ࣰ, 	 ଵࣰ, … , ࣰሽ.

We then let the first of the series of tuple sets, ࣰ represent the
arbitrary tuple ࣰ. As part of the inductive construction, if the union
of one series set of a tuple, say ࣰ, and a subsequent aggregation
categorization, say ࣟାଵ is a computed tuple to answer query ࣫,
then ࣰାଵ ൌ ࣰ, meaning we have both tuple sets having the same
answering semantics.

On the contrary, if the union of a tuple set, say ࣰ and a
subsequent aggregation categorization, say ࣟାଵ does not form a
computed tuple needed to answer query ࣫ , then ࣰାଵ ൌ ࣰ ∪
ሼࣟାଵሽ, where the new tuple, ࣰାଵ	 is definitely giving us a
different answer from the initial one, ࣰ	.

We then have the general set ࣰ∗ representing a union of all the
aggregated tuples, ࣰ likely to give an answer to the query. It can
be deduced that the general set ࣰ∗	holds our supposed tuple ࣰ.

The general set ࣰ∗	does not provide enough computed tuples
to form a certain answer to the posed certain query ࣫. Because if it
does answers the query then additional attribute tuples, as well as
other complex formula to the aggregations should make it a valid
certain answer the query.

The general set ࣰ∗ is a closure set with attribute tuples and
hierarchy aggregations in relation to our supposed tuple ࣰ to
forming certain answers to the query ࣫. Hence this closure set ࣰ∗
exhibits a satisfiability property for a canonical evaluation of being
always true, and never false.

With such a satisfiability property, we can say that there is
always a truth-like claim on ࣰ∗, where all its generated tuples are
true and anything outside it false. This will make our computed
tuple ࣰ, always true and make the posted query ࣫, false.

This assertion of the tuple ࣰ being true and the posed query ࣫
being false does not offer a claim for the computed tuple ࣰ
validating as a certain answer to the posted query ࣫.
Hence, our preceding proposition of contraposition is satisfied and
valid. 	∎

421

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO, BIOSYSCOM,
BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE,
CONTENT, PATTERNS, CLOUD COMPUTING, COMPUTATION TOOLS, ENERGY, COLLA, IMMM, INTELLI,
SMART, DATA ANALYTICS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING, MOBILITY, WEB

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM, BIOINFO,
BIOTECHNO, SOTICS, GLOBAL HEALTH

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE COMPUTATION,
VEHICULAR, INNOV

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, CLOUD
COMPUTING, COMPUTATION TOOLS, IMMM, MOBILITY, VEHICULAR, DATA ANALYTICS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL, INFOCOMP

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA, COCORA, PESARO, INNOV

issn: 1942-2601

