International/Journal on

Advances/in Software

IR m
/77 TTTANNNN
/7Irrrrvyny
rrrrrrrry
rrCOrce

e Y IR R

2013 vol. 6 nr. 1&2

The International Journal on Advances in Software is published by IARIA.
ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,
staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the
content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,
providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Software, issn 1942-2628
vol. 6, no. 1 & 2, year 2013, http://www.iariajournals.org/software/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors
or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and
must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”
International Journal on Advances in Software, issn 1942-2628
vol. 6, no. 1 & 2, year 2013,<start page>:<end page>, http://www.iariajournals.org/software/

IARIA journals are made available for free, proving the appropriate references are made when their
content is used.

Sponsored by IARIA
www.iaria.org

Copyright © 2013 IARIA

International Journal on Advances in Software
Volume 6, Number 1 & 2, 2013

Editor-in-Chief
Luigi Lavazza, Universita dell'lnsubria - Varese, Italy
Editorial Advisory Board

Hermann Kaindl, TU-Wien, Austria
Herwig Mannaert, University of Antwerp, Belgium

Editorial Board

Witold Abramowicz, The Poznan University of Economics, Poland

Abdelkader Adla, University of Oran, Algeria

Syed Nadeem Ahsan, Technical University Graz, Austria / Igra University, Pakistan
Marc Aiguier, Ecole Centrale Paris, France

Rajendra Akerkar, Western Norway Research Institute, Norway

Zaher Al Aghbari, University of Sharjah, UAE

Riccardo Albertoni, Istituto per la Matematica Applicata e Tecnologie Informatiche “Enrico Magenes” Consiglio
Nazionale delle Ricerche, (IMATI-CNR), Italy / Universidad Politécnica de Madrid, Spain
Ahmed Al-Moayed, Hochschule Furtwangen University, Germany

Giner Alor Hernandez, Instituto Tecnoldgico de Orizaba, México

Zakarya Alzamil, King Saud University, Saudi Arabia

Frederic Amblard, IRIT - Université Toulouse 1, France

Vincenzo Ambriola , Universita di Pisa, Italy

Renato Amorim, University of London, UK

Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus

Annalisa Appice, Universita degli Studi di Bari Aldo Moro, Italy

Philip Azariadis, University of the Aegean, Greece

Thierry Badard, Université Laval, Canada

Muneera Bano, International Islamic University - Islamabad, Pakistan

Fabian Barbato, Technology University ORT, Montevideo, Uruguay

Barbara Rita Barricelli, Universita degli Studi di Milano, Italy

Peter Baumann, Jacobs University Bremen / Rasdaman GmbH Bremen, Germany
Gabriele Bavota, University of Salerno, Italy

Grigorios N. Beligiannis, University of Western Greece, Greece

Noureddine Belkhatir, University of Grenoble, France

Imen Ben Lahmar, Institut Telecom SudParis, France

Jorge Bernardino, ISEC - Institute Polytechnic of Coimbra, Portugal

Rudolf Berrendorf, Bonn-Rhein-Sieg University of Applied Sciences - Sankt Augustin, Germany
Ateet Bhalla, Oriental Institute of Science & Technology, Bhopal, India

Ling Bian, University at Buffalo, USA

Kenneth Duncan Boness, University of Reading, England

Fernando Boronat Segui, Universidad Politecnica de Valencia, Spain

Pierre Borne, Ecole Centrale de Lille, France

Farid Bourennani, University of Ontario Institute of Technology (UOIT), Canada
Narhimene Boustia, Saad Dahlab University - Blida, Algeria

Hongyu Pei Breivold, ABB Corporate Research, Sweden

Carsten Brockmann, Universitat Potsdam, Germany

Mikey Browne, IBM, USA

Antonio Bucchiarone, Fondazione Bruno Kessler, Italy

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria
Dumitru Burdescu, University of Craiova, Romania

Martine Cadot, University of Nancy / LORIA, France

Isabel Candal-Vicente, Universidad del Este, Puerto Rico

Juan-Vicente Capella-Hernandez, Universitat Politécnica de Valencia, Spain
Jose Carlos Metrolho, Polytechnic Institute of Castelo Branco, Portugal
Alain Casali, Aix-Marseille University, France

Alexandra Suzana Cernian, University POLITEHNICA of Bucharest, Romania
Yaser Chaaban, Leibniz University of Hanover, Germany

Savvas A. Chatzichristofis, Democritus University of Thrace, Greece
Antonin Chazalet, Orange, France

Jiann-Liang Chen, National Dong Hwa University, China

Shiping Chen, CSIRO ICT Centre, Australia

Wen-Shiung Chen, National Chi Nan University, Taiwan

Zhe Chen, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China
PR

Po-Hsun Cheng, National Kaohsiung Normal University, Taiwan

Yoonsik Cheon, The University of Texas at El Paso, USA

Lau Cheuk Lung, INE/UFSC, Brazil

Robert Chew, Lien Centre for Social Innovation, Singapore

Andrew Connor, Auckland University of Technology, New Zealand

Rebeca Cortazar, University of Deusto, Spain

Noél Crespi, Institut Telecom, Telecom SudParis, France

Carlos E. Cuesta, Rey Juan Carlos University, Spain

Duilio Curcio, University of Calabria, Italy

Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania
Paulo Asterio de Castro Guerra, Tapijara Programacao de Sistemas Ltda. - Lambari, Brazil
Claudio de Souza Baptista, University of Campina Grande, Brazil

Maria del Pilar Angeles, Universidad Nacional Autonénoma de México, México
Rafael del Vado Virseda, Universidad Complutense de Madrid, Spain
Giovanni Denaro, University of Milano-Bicocca, Italy

Hepu Deng, RMIT University, Australia

Nirmit Desai, IBM Research, India

Vincenzo Deufemia, Universita di Salerno, Italy

Leandro Dias da Silva, Universidade Federal de Alagoas, Brazil

Javier Diaz, Rutgers University, USA

Nicholas John Dingle, University of Manchester, UK

Roland Dodd, CQUniversity, Australia

Aijuan Dong, Hood College, USA

Suzana Dragicevic, Simon Fraser University- Burnaby, Canada
Cédric du Mouza, CNAM, France

Ann Dunkin, Palo Alto Unified School District, USA

Jana Dvorakova, Comenius University, Slovakia

Lars Ebrecht, German Aerospace Center (DLR), Germany
Hans-Dieter Ehrich, Technische Universitdt Braunschweig, Germany
Jorge Ejarque, Barcelona Supercomputing Center, Spain

Atilla Elgi, Sileyman Demirel University, Turkey

Khaled El-Fakih, American University of Sharjah, UAE

Gledson Elias, Federal University of Paraiba, Brazil

Sameh Elnikety, Microsoft Research, USA

Fausto Fasano, University of Molise, Italy

Michael Felderer, University of Innsbruck, Austria

Jodo M. Fernandes, Universidade de Minho, Portugal

Luis Fernandez-Sanz, University of de Alcala, Spain

Felipe Ferraz, C.E.S.A.R, Bratzil

Adina Magda Florea, University "Politehnica" of Bucharest, Romania
Wolfgang Fohl, Hamburg Universiy, Germany

Simon Fong, University of Macau, Macau SAR

Gianluca Franchino, Scuola Superiore Sant'Anna, Pisa, ltaly
Naoki Fukuta, Shizuoka University, Japan

Martin Gaedke, Chemnitz University of Technology, Germany
Félix J. Garcia Clemente, University of Murcia, Spain

José Garcia-Fanjul, University of Oviedo, Spain

Felipe Garcia-Sanchez, Universidad Politecnica de Cartagena (UPCT), Spain
Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany
Tejas R. Gandhi, Virtua Health-Marlton, USA

Andrea Giachetti, Universita degli Studi di Verona, ltaly

Robert L. Glass, Griffith University, Australia

Afzal Godil, National Institute of Standards and Technology, USA
Luis Gomes, Universidade Nova Lisboa, Portugal

Diego Gonzalez Aguilera, University of Salamanca - Avila, Spain
Pascual Gonzalez, University of Castilla-La Mancha, Spain

Bjorn Gottfried, University of Bremen, Germany

Victor Govindaswamy, Texas A&M University, USA

Gregor Grambow, University of Ulm, Germany

Carlos Granell, European Commission / Joint Research Centre, Italy
Daniela Grigori, Université de Versailles, France

Christoph Grimm. TU Wien, Austria

Michael Grottke, University of Erlangen-Nuernberg, Germany
Vic Grout, Glyndwr University, UK

Ensar Gul, Marmara University, Turkey

Richard Gunstone, Bournemouth University, UK

Zhensheng Guo, Siemens AG, Germany

Phuong H. Ha, University of Tromso, Norway

Ismail Hababeh, German Jordanian University, Jordan

Shahliza Abd Halim, Lecturer in Universiti Teknologi Malaysia, Malaysia
Herman Hartmann, University of Groningen, The Netherlands
Jameleddine Hassine, King Fahd University of Petroleum & Mineral (KFUPM), Saudi Arabia
Tzung-Pei Hong, National University of Kaohsiung, Taiwan

Peizhao Hu, NICTA, Australia

Chih-Cheng Hung, Southern Polytechnic State University, USA

Edward Hung, Hong Kong Polytechnic University, Hong Kong

Noraini Ibrahim, Universiti Teknologi Malaysia, Malaysia

Anca Daniela lonita, University "POLITEHNICA" of Bucharest, Romania
Chris Ireland, Open University, UK

Kyoko Iwasawa, Takushoku University - Tokyo, Japan

Mehrshid Javanbakht, Azad University - Tehran, Iran

Wassim Jaziri, ISIM Sfax, Tunisia

Dayang Norhayati Abang Jawawi, Universiti Teknologi Malaysia (UTM), Malaysia
Jinyuan Jia, Tongji University. Shanghai, China

Maria Joao Ferreira, Universidade Portucalense, Portugal

Ahmed Kamel, Concordia College, Moorhead, Minnesota, USA
Teemu Kanstrén, VTT Technical Research Centre of Finland, Finland
Nittaya Kerdprasop, Suranaree University of Technology, Thailand
Ayad ali Keshlaf, Newcastle University, UK

Nhien An Le Khac, University College Dublin, Ireland

Sadegh Kharazmi, RMIT University - Melbourne, Australia
Kyoung-Sook Kim, National Institute of Information and Communications Technology, Japan
Youngjae Kim, Oak Ridge National Laboratory, USA

Roger "Buzz" King, University of Colorado at Boulder, USA

Cornel Klein, Siemens AG, Germany

Alexander Knapp, University of Augsburg, Germany

Radek Koci, Brno University of Technology, Czech Republic

Christian Kop, University of Klagenfurt, Austria

Michal Kratky, VSB - Technical University of Ostrava, Czech Republic
Narayanan Kulathuramaiyer, Universiti Malaysia Sarawak, Malaysia
Satoshi Kurihara, Osaka University, Japan

Eugenijus Kurilovas, Vilnius University, Lithuania

Philippe Lahire, Université de Nice Sophia-Antipolis, France

Alla Lake, Linfo Systems, LLC, USA

Fritz Laux, Reutlingen University, Germany

Luigi Lavazza, Universita dell'Insubria, Italy

Fabio Luiz Leite Junior, Universidade Estadual da Paraiba,Brazil

Alain Lelu, University of Franche-Comté / LORIA, France

Cynthia Y. Lester, Georgia Perimeter College, USA

Clement Leung, Hong Kong Baptist University, Hong Kong

Weidong Li, University of Connecticut, USA

Corrado Loglisci, University of Bari, Italy

Francesco Longo, University of Calabria, Italy

Sérgio F. Lopes, University of Minho, Portugal

Pericles Loucopoulos, Loughborough University, UK

Alen Lovrencic, University of Zagreb, Croatia

Qifeng Lu, MacroSys, LLC, USA

Xun Luo, Qualcomm Inc., USA

Shuai Ma, Beihang University, China

Stephane Maag, Telecom SudParis, France

Ricardo J. Machado, University of Minho, Portugal

Maryam Tayefeh Mahmoudi, Research Institute for ICT, Iran

Nicos Malevris, Athens University of Economics and Business, Greece
Herwig Mannaert, University of Antwerp, Belgium

José Manuel Molina Lépez, Universidad Carlos Il de Madrid, Spain
Francesco Marcelloni, University of Pisa, Italy

Eda Marchetti, Consiglio Nazionale delle Ricerche (CNR), Italy
Leonardo Mariani, University of Milano Bicocca, Italy

Gerasimos Marketos, University of Piraeus, Greece

Abel Marrero, Bombardier Transportation, Germany

Adriana Martin, Universidad Nacional de la Patagonia Austral / Universidad Nacional del Comahue, Argentina
Goran Martinovic, J.J. Strossmayer University of Osijek, Croatia
Paulo Martins, University of Tras-os-Montes e Alto Douro (UTAD), Portugal
Stephan Mas, Technical University of Dresden, Germany
Constandinos Mavromoustakis, University of Nicosia, Cyprus

Jose Merseguer, Universidad de Zaragoza, Spain

Seyedeh Leili Mirtaheri, Iran University of Science & Technology, Iran
Lars Moench, University of Hagen, Germany

Yasuhiko Morimoto, Hiroshima University, Japan

Muhanna A Muhanna, University of Nevada - Reno, USA

Antonio Navarro Martin, Universidad Complutense de Madrid, Spain
Filippo Neri, University of Naples, Italy

Toan Nguyén, INRIA Grenobel Rhone-Alpes/ Montbonnot, France
Muaz A. Niazi, Bahria University, Islamabad, Pakistan

Natalja Nikitina, KTH Royal Institute of Technology, Sweden
Marecellin Julius Nkenlifack, Université de Dschang, Cameroun
Michael North, Argonne National Laboratory, USA

Roy Oberhauser, Aalen University, Germany

Pablo Oliveira Antonino, Fraunhofer IESE, Germany

Rocco Oliveto, University of Molise, Italy

Sascha Opletal, Universitat Stuttgart, Germany

Flavio Oquendo, European University of Brittany/IRISA-UBS, France
Claus Pahl, Dublin City University, Ireland

Marcos Palacios, University of Oviedo, Spain

Constantin Paleologu, University Politehnica of Bucharest, Romania
Kai Pan, UNC Charlotte, USA

Yiannis Papadopoulos, University of Hull, UK

Andreas Papasalouros, University of the Aegean, Greece

Rodrigo Paredes, Universidad de Talca, Chile

P&ivi Parviainen, VTT Technical Research Centre, Finland

Jodo Pascoal Faria, Faculty of Engineering of University of Porto / INESC TEC, Portugal
Fabrizio Pastore, University of Milano - Bicocca, Italy

Kunal Patel, Ingenuity Systems, USA

Oscar Pereira, Instituto de Telecomunicacoes - University of Aveiro, Portugal
Willy Picard, Poznan University of Economics, Poland

Jose R. Pires Manso, University of Beira Interior, Portugal

Soren Pirk, Universitdt Konstanz, Germany

Meikel Poess, Oracle Corporation, USA

Thomas E. Potok, Oak Ridge National Laboratory, USA

Dilip K. Prasad, Nanyang Technological University, Singapore

Christian Prehofer, Fraunhofer-Einrichtung fiir Systeme der Kommunikationstechnik ESK, Germany
Ela Pustutka-Hunt, Bundesamt fir Statistik, Neuchatel, Switzerland

Mengyu Qiao, South Dakota School of Mines and Technology, USA

Kornelije Rabuzin, University of Zagreb, Croatia

J. Javier Rainer Granados, Universidad Politécnica de Madrid, Spain

Muthu Ramachandran, Leeds Metropolitan University, UK

Thurasamy Ramayah, Universiti Sains Malaysia, Malaysia

Prakash Ranganathan, University of North Dakota, USA

José Raul Romero, University of Cordoba, Spain

Henrique Rebélo, Federal University of Pernambuco, Brazil

Bernd Resch, Massachusetts Institute of Technology, USA

Hassan Reza, UND Aerospace, USA

Elvinia Riccobene, Universita degli Studi di Milano, Italy

Daniel Riesco, Universidad Nacional de San Luis, Argentina

Mathieu Roche, LIRMM / CNRS / Univ. Montpellier 2, France

Aitor Rodriguez-Alsina, University Autonoma of Barcelona, Spain

José Rouillard, University of Lille, France

Siegfried Rouvrais, TELECOM Bretagne, France

Claus-Peter Riickemann, Leibniz Universitat Hannover / Westfalische Wilhelms-Universitat Minster / North-
German Supercomputing Alliance, Germany

Djamel Sadok, Universidade Federal de Pernambuco, Brazil

Arun Saha, Fujitsu, USA

Ismael Sanz, Universitat Jaume I, Spain

M. Saravanan, Ericsson India Pvt. Ltd -Tamil Nadu, India

Idrissa Sarr, University of Cheikh Anta Diop, Dakar, Senegal / University of Quebec, Canada
Patrizia Scandurra, University of Bergamo, Italy

Giuseppe Scanniello, Universita degli Studi della Basilicata, Italy

Daniel Schall, Vienna University of Technology, Austria

Rainer Schmidt, Austrian Institute of Technology, Austria

Cristina Seceleanu, Malardalen University, Sweden

Sebastian Senge, TU Dortmund, Germany

Isabel Seruca, Universidade Portucalense - Porto, Portugal

Kewei Sha, Oklahoma City University, USA

Simeon Simoff, University of Western Sydney, Australia

Jacques Simonin, Institut Telecom / Telecom Bretagne, France

Cosmin Stoica Spahiu, University of Craiova, Romania

George Spanoudakis, City University London, UK

Alin Stefanescu, University of Pitesti, Romania

Lena Strombaéack, SMHI, Sweden

Kenji Suzuki, The University of Chicago, USA

Osamu Takaki, Japan Advanced Institute of Science and Technology, Japan
Antonio J. Tallén-Ballesteros, University of Seville, Spain

Wasif Tanveer, University of Engineering & Technology - Lahore, Pakistan
Ergin Tari, Istanbul Technical University, Turkey

Steffen Thiel, Furtwangen University of Applied Sciences, Germany
Jean-Claude Thill, Univ. of North Carolina at Charlotte, USA

Pierre Tiako, Langston University, USA

loan Toma, STI, Austria

BoZo Tomas, HT Mostar, Bosnia and Herzegovina

Davide Tosi, Universita degli Studi dell'Insubria, Italy

Peter Trapp, Ingolstadt, Germany

Guglielmo Trentin, National Research Council, Italy

Dragos Truscan, Abo Akademi University, Finland

Chrisa Tsinaraki, Technical University of Crete, Greece

Roland Ukor, FirstLing Limited, UK

Torsten Ullrich, Fraunhofer Austria Research GmbH, Austria

José Valente de Oliveira, Universidade do Algarve, Portugal

Dieter Van Nuffel, University of Antwerp, Belgium

Shirshu Varma, Indian Institute of Information Technology, Allahabad, India
Konstantina Vassilopoulou, Harokopio University of Athens, Greece
Miroslav Velev, Aries Design Automation, USA

Tanja E. J. Vos, Universidad Politécnica de Valencia, Spain

Krzysztof Walczak, Poznan University of Economics, Poland

Jianwu Wang, San Diego Supercomputer Center / University of California, San Diego, USA
Yandong Wang, Wuhan University, China

Rainer Weinreich, Johannes Kepler University Linz, Austria

Stefan Wesarg, Fraunhofer IGD, Germany

Sebastian Wieczorek, SAP Research Center Darmstadt, Germany

Wojciech Wiza, Poznan University of Economics, Poland

Martin Wojtczyk, Technische Universitat Minchen, Germany

Hao Wu, School of Information Science and Engineering, Yunnan University, China
Mudasser F. Wyne, National University, USA

Zhengchuan Xu, Fudan University, P.R.China

Yiping Yao, National University of Defense Technology, Changsha, Hunan, China
Stoyan Yordanov Garbatov, Instituto de Engenharia de Sistemas e Computadores - Investigacao e
Desenvolvimento, INESC-ID, Portugal

Weihai Yu, University of Tromsg, Norway

Wenbing Zhao, Cleveland State University, USA

Hong Zhu, Oxford Brookes University, UK

Qiang Zhu, The University of Michigan - Dearborn, USA

International Journal on Advances in Software
Volume 6, Numbers 1 & 2, 2013

CONTENTS

pages: 1-13

An Empirical Evaluation of Simplified Function Point Measurement Processes
Luigi Lavazza, Universita degli Studi dell’Insubria, Italy

Geng Liu, Universita degli Studi dell’Insubria, Italy

pages: 14 - 24

Basic Building Blocks for Column-Stores

Andreas Schmidt, Karlsruhe Institut of Technology/Karlsruhe University of Applied Sciences, Germany
Daniel Kimmig, Karlsruhe Institut of Technology, Germany

Reimar Hofmann, Karlsruhe University of Applied Sciences, Germany

pages: 25 - 44

Theoretical and Practical Implications of User Interface Patterns Applied for the Development of
Graphical User Interfaces

Stefan Wendler, IImenau University of Technology, Germany

Danny Ammon, limenau University of Technology, Germany

Teodora Kikova, llmenau University of Technology, Germany

llka Philippow, IImenau University of Technology, Germany

Detlef Streitferdt, Ilmenau University of Technology, Germany

pages: 45 - 55

Message-Passing Interface for Java Applications: Practical Aspects of Leveraging High Performance
Computing to Speed and Scale Up the Semantic Web

Alexey Cheptsov, High Performance Computing Center Stuttgart, Germany

Bastian Koller, High Performance Computing Center Stuttgart, Germany

pages: 56 - 68

A QoS-Aware BPEL Framework for Service Selection and Composition Using QoS Properties
Chiaen Lin, University of North Texas, USA

Krishna Kavi, University of North Texas, USA

pages: 69 - 79

Supporting Test Code Generation with an Easy to Understand Business Rule Language

Christian Bacherler, Software Technology Research Lab, DeMontfort University, Leicester, UK

Ben Moszkowski, Software Technology Research Lab, DeMontfort University, Leicester, UK

Christian Facchi, Institute of Applied Research, Ingolstadt University of Applied Sciences, Ingolstadt, Germany

pages: 80 - 91
Design and Classification of Mutation Operators for Abstract State Machines
Jameleddine Hassine, KFUPM, KSA

pages: 92 - 103
Transformational Implementation of Business Processes in SOA

Krzysztof Sacha, Warsaw University of Technology, Poland
Andrzej Ratkowski, Warsaw University of Technology, Poland

pages: 104 - 118

Automated Tailoring of Application Lifecycle Management Systems to Existing Development Processes
Matthias Biehl, Royal Institute of Technology, Sweden

Jad El-khoury, Royal Institute of Technology, Sweden

Martin Térngren, Royal Institute of Technology, Sweden

pages: 119 - 130

Towards an Approach for Analysing the Strategic Alignment of Software Requirements using
Quantified Goal Graphs

Richard Ellis-Braithwaite, Loughborough University, United Kingdom

Russell Lock, Loughborough University, United Kingdom

Ray Dawson, Loughborough University, United Kingdom

Badr Haque, Rolls-Royce Plc., United Kingdom

pages: 131 - 141

Towards the Standardization of Industrial Scientific and Engineering Workflows with QVT
Transformations

Corina Abdelahad, Universidad Nacional de San Luis, Argentina

Daniel Riesco, Universidad Nacional de San Luis, Argentina

Alessandro Carrara, ESTECO SPA, Italy

Carlo Comin, ESTECO SPA, Italy

Carlos Kavka, ESTECO SPA, Italy

pages: 142 - 154

GUI Failures of In-Vehicle Infotainment: Analysis, Classification, Challenges, and Capabilities
Daniel Mauser, Daimler AG, Germany

Alexander Klaus, Fraunhofer IESE, Germany

Konstantin Holl, Fraunhofer IESE, Germany

Ran Zhang, Robert Bosch GmbH, Germany

pages: 155 - 169

Linear Constraints and Guarded Predicates as a Modeling Language for Discrete Time Hybrid Systems
Federico Mari, Sapienza University of Rome, Italy

Igor Melatti, Sapienza University of Rome, Italy

Ivano Salvo, Sapienza University of Rome, Italy

Enrico Tronci, Sapienza University of Rome, Italy

pages: 170 - 180

Derivation of Web Service Implementation Artifacts from Service Designs Based on SoaML
Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany

Jaouad Bouras, ISB AG, Germany

pages: 181 - 195

Incorporating Design Knowledge into the Software Development Process using Normalized Systems
Theory

Peter De Bruyn, University of Antwerp, Belgium

Philip Huysmans, University of Antwerp, Belgium

Gilles Oorts, University of Antwerp, Belgium

Dieter Van Nuffel, University of Antwerp, Belgium

Herwig Mannaert, University of Antwerp, Belgium

Jan Verelst, University of Antwerp, Belgium

Arco Oost, Normalized Systems eXpanders factory, Belgium

pages: 196 - 212
Enhancing the Performance of J2EE Applications through Entity Consolidation Design Patterns
Reinhard Klemm, Avaya Labs Research, USA

pages: 213 - 224

Automated Software Engineering Process Assessment: Supporting Diverse Models using an Ontology
Gregor Grambow, Computer Science Dept., Aalen University, Germany

Roy Oberhauser, Computer Science Dept., Aalen University, Germany

Manfred Reichert, Institute for Databases and Information Systems, Ulm University, Germany

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

An Empirical Evaluation of Simplified Function Point
Measurement Processes

Luigi Lavazza

Geng Liu

Dipartimento di Scienze Teoriche e Applicate
Universita degli Studi dell’Insubria
Varese, Italy
luigi.lavazza @uninsubria.it, giulio.liu@gmail.com

Abstract— Function Point Analysis is widely used, especially to
quantify the size of applications in the early stages of
development, when effort estimates are needed. However, the
measurement process is often too long or too expensive, or it
requires more knowledge than available when development effort
estimates are due. To overcome these problems, simplified
methods have been proposed to measure Function Points. We
used simplified methods for sizing both “traditional” and Real-
Time applications, with the aim of evaluating the accuracy of the
sizing with respect to full-fledged Function Point Analysis. To
this end, a set of projects, which had already been measured by
means of Function Point Analysis, have been measured using a
few simplified processes, including those proposed by NESMA,
the Early&Quick Function Points, the ISBSG average weights,
and others; the resulting size measures were then compared. We
also derived simplified size models by analyzing the dataset used
for experimentations. In general, all the methods that provide
predefined weights for all the transaction and data types
identified in Function Point Analysis provided similar results,
characterized by acceptable accuracy. On the contrary, methods
that rely on just one of the elements that contribute to size tend to
be quite inaccurate. In general, different methods show different
accuracy for Real-Time and non Real-Time applications. The
results of the analysis reported here show that in general it is
possible to size software via simplified measurement processes
with an acceptable accuracy. In particular, the simplification of
the measurement process allows the measurer to skip the
function weighting phases, which are usually expensive, since
they require a thorough analysis of the details of both data and
operations. Deriving our own models from the project datasets
proved possible, and yielded results that are similar to those
obtained via the methods proposed in the literature.

Keywords-Functional Size Measures; Function Points;
Simplified measurement processes; Early&Quick Function Points
(EQFP); NESMA estimated; NESMA indicative.

L INTRODUCTION

The empirical evaluation of simplified Function Points
processes [1] is motivated by the popularity of Function Points.
In fact, Function Point Analysis (FPA) [2][3][4][5] is widely
used. Among the reasons for the success of FPA is that it can
provide measures of size in the early stages of software
development, when they are most needed for cost estimation.

However, FPA performed by a certified function point
consultant proceeds at a relatively slow pace: between 400 and

600 function points (FP) per day, according to Capers Jones
[6], between 200 and 300 function points per day according to
experts from Total Metrics [7]. Consequently, measuring the
size of a moderately large application can take too long, if cost
estimation is needed urgently. Also the cost of measurement
can be often considered excessive by software developers. In
addition, cost estimates may be needed when requirements
have not yet been specified in detail and completely.

To overcome the aforementioned problems, simplified FP
measurement processes have been proposed. A quite
comprehensive list of such methods is given in [8]. Among
these are the NESMA (NEtherland Software Metrics
Association) indicative and estimated methods, and the Early
& Quick Function Points method. Other methods were also
proposed, including the Tichenor ILF Model [9] and models
featuring fixed weights for the computation of size measures.
These models are briefly described in Section II. The proposers
of these methods claim that they allow measurers to compute
good approximations of functional size measures with little
effort and in a fairly short time.

The goal of the work reported here is to test the application
of several simplified functional size measurement processes to
real projects in both the “traditional” and Real-Time domains.
Function Points are often reported as not suited for measuring
the functional size of embedded applications, since FP —
conceived by Albrecht when the programs to be sized were
mostly Electronic Data Processing applications— capture well
the functional size of data storage and movement operations,
but are ill-suited for representing the complexity of control and
elaboration that are typical of embedded and Real-Time
software. However, it has been shown that a careful
interpretation of FP counting rules makes it possible to apply
FPA to embedded software as well [10].

In this paper, we apply the International Function Points
User Group (IFPUG) measurement rules [4] to size a set of non
Real-Time programs, and we apply the guidelines given in [11]
(which are as IFPUG-compliant as possible) to measure a set of
embedded Real-Time avionic applications. All these measures
are used to test the accuracy of simplified functional size
measurement processes. In fact, there is little doubt that the
simplified Functional Size Measurement (FSM) methods
actually allow for early and quick sizing; the real point is to
evaluate to what extent the savings in time and costs are paid in
terms of inaccurate size estimates. So, we concentrate on the
assessment of the accuracy of size estimates, for both Real-

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Time and embedded applications, as well as “traditional”
business applications. Throughout the paper, by “accuracy” we
mean the closeness of a size estimate to the real size measure,
i.e., the size measured according to IFPUG rules by an
experienced measurer.

In this paper, we enhance the work reported in [1] by using
an extended dataset, and by testing the usage of additional
simplified FSM techniques, not used in [1]. However, in the
paper we do not just evaluate existing proposals for simplifying
the functional size measurement process; instead, we produce
our own simplified models for estimating the functional size of
software applications. This is done using the same approaches
already used to produce the existing simplified methods: in
fact, we obtained models that are structurally similar to the
existing ones, but featuring different parameters (e.g., weights
for basic functional components).

All the methods —i.e., both those proposed in the literature
and ours— are tested on a set of projects and the results are
compared.

We also analyze the differences between Real-Time and
non Real-Time applications, and derive a few considerations
on what models are best suited to estimate the size of each
class of applications.

The results of the measurements and analyses reported in
the paper are expected to provide two types of benefits: on the
one hand, they contribute to enhancing our understanding of
functional size measurement processes and their suitability; on
the other hand, we provide useful information and suggestions
to the practitioners that have to decide whether to use
simplified FSM methods, and which one to choose.

The paper is organized as follows: Section II briefly
introduces the simplified FSM processes used in the paper.
Section III describes the projects being measured and gives
their sizes measured according to the full-fledged, canonical
FPA process. Section IV illustrates the sizes obtained via
simplified functional size measurement processes. Section V
discusses the accuracy of the measures obtained via the
simplified methods used and outlines the lessons that can be
learned from the reported experiment. In Section VI, the
dataset described in Section III is analyzed, in order to get
simplified FSM models that are similar to those presented in
Section II, but which rely on the measures of the considered
projects. Section VII accounts for related work. Section VIII
discusses the threats to the validity of the study. Finally,
Section IX draws some conclusions and outlines future work.

Throughout the paper, we assume that the reader is familiar
with the concepts of FPA and the IFPUG rules. Readers that
need explanations and details about FP counting can refer to
official documentation and manuals [4][5].

Throughout the paper, we refer exclusively to unadjusted
function points (UFP), even when we talk generically of
“Function Points” or “FP”.

II. A BRIEF INTRODUCTION TO SIMPLIFIED SIZE
MEASUREMENT PROCESSES

The FP measurement process involves (among others) the
following activities:

— Identifying logic data;

— Identifying elementary processes;

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

— Classifying logic data as internal logic files (ILF) or

external interface files (EIF);

— Classifying elementary processes as external inputs

(EI), outputs (EO), or queries (EQ);

— Weighting data functions;

— Weighting transaction functions.

Simplified measurement processes allow measurers to skip
—possibly in part— one or more of the aforementioned activities,
thus making the measurement process faster and cheaper.
Table III provides a quick overview of the activities required
by FP measurement and estimation methods. Of course, the
IFPUG method requires all the activities listed in Table III,
while simplified methods require a subset of such activities.

A. Early & Quick Function Points

The most well-known approach for simplifying the process
of FP counting is probably the Early & Quick Function Points
(EQFP) method [12]. EQFP descends from the consideration
that estimates are sometimes needed before requirements
analysis is completed, when the information on the software to
be measured is incomplete or not sufficiently detailed.

Since several details for performing a correct measurement
following the rules of the FP manual [4] are not used in EQFP,
the result is a less accurate measure. The trade-off between
reduced measurement time and costs is also a reason for
adopting the EQFP method even when full specifications are
available, but there is the need for completing the measurement
in a short time, or at a lower cost. An advantage of the method
is that different parts of the system can be measured at different
detail levels: for instance, a part of the system can be measured
following the IFPUG manual rules [4][5], while other parts can
be measured on the basis of coarser-grained information. In
fact, the EQFP method is based on the classification of the
processes and data of an application according to a hierarchy

(see Fig. 1 [12]).
Application to
be measured
I | | |
Macro General
process data group
[General] [General] Data
process process
Transactional Transactional Data
BFC BFC

BFC
Transactional Data
BFC BFC

Figure 1. Functional hierarchy in the Early & Quick FP technique

Transactional
BFC

Transactional BFC (Base Functional Components) and
Data BFC correspond to IFPUG’s elementary processes and
LogicData, while the other elements are aggregations of
processes or data groups. The idea is that if you have enough
information at the most detailed level you count FP according
to IFPUG rules; otherwise, you can estimate the size of larger
elements (e.g., General or Macro processes) either on the basis
of analogy (e.g., a given General process is “similar” to a
known one) or according to the structured aggregation (e.g., a
General process is composed of 3 Transactional BFC). By
considering elements that are coarser-grained than the FPA

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

BFC, the EQFP measurement process leads to an approximate
measure of size in IFPUG FP.

Tables taking into account the previous experiences with
the usage of EQFP are provided to facilitate the task of
assigning a minimum, maximum and most likely quantitative
size to each component. For instance, Table I provides
minimum, maximum and most likely weight values for generic
(i.e., not weighted) functions as given in [12]. The time and
effort required by the weighting phases are thus saved. Such
saving can be relevant, since weighting a data or transaction
function requires analyzing it in detail.

TABLE L EQFP: FUNCTION TYPE WEIGHTS FOR GENERIC FUNCTIONS
Function type Weight
Low Likely High
Generic ILF 7.4 7.7 8.1
Generic EIF 5.2 54 5.7
Generic EI 4 42 44
Generic EO 49 52 5.4
Generic EQ 3.7 3.9 4.1

The size of unspecified generic processes (i.e., transactions
that have not been yet classified as inputs, outputs or queries)
and unspecified generic data groups (i.e., logical files that have
not been yet classified as ILF or EIF) as given in [12] are
illustrated in Table II. When using this method, only the
identification of logical data and elementary processes needs to
be done: both the classification of data and transaction
functions and their weighting are skipped. Consequently, sizing
based on unspecified generic processes and data groups is even
more convenient —in terms of time and effort spent— than sizing
based on generic (i.e., non weighted) functions.

TABLE IL EQFP: FUNCTION TYPE WEIGHTS FOR UNSPECIFIED GENERIC
PROCESSES AND DATA GROUPS
. Weight
Function type - :
Low Likely High
Unspefied Generic Processes 43 4.6 4.8
Unspefied Generic Data Group 6.4 7.0 7.8

B. NESMA indicative and estimated methods

The Indicative NESMA method [13] simplifies the process
by only requiring the identification of LogicData from a
conceptual data model. The Function Point size is then
computed by applying the following formulae —where #ILF is
the number of ILF and #EIF is the number of EIF- whose
parameters depend on whether the data model is normalized in
3" normal form:

Non normalized model: FP = # ILF x 35 + # EIF x 15
Normalized model: FP = # ILF x 25 + # EIF x 10

The process of applying the NESMA indicative method
involves only identifying logic data and classifying them as
ILF or EIF. Accordingly, it requires less time and effort than
the EQFP methods described above, in general. However, the
Indicative NESMA method is quite rough in its computation:

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

the official NESMA counting manual specifies that errors in
functional size with this approach can be up to 50%.

The Estimated NESMA method requires the identification
and classification of all data and transaction functions, but does
not require the assessment of the complexity of each function:
Data Functions (ILF and EIF) are all assumed to be of low
complexity, while Transactions Functions (EI, EQ and EO) are
all assumed to be of average complexity:

UFP =#EI x4 + #EO x5 + #EQ x 4 + #ILF x 7 + #EIF x 5

C. Other simplified FSM process proposals

1) Tichenor method
The Tichenor ILF Model [9] bases the estimation of the
size on the number of ILF via the following formula for
transactional system (for batch systems, Tichenor proposes a
smaller multiplier):

UFP =#ILF x 14.93

This model assumes a distribution of BFC with respect to
ILF as follows: E/ILF = 0.33, EO/ILF = 0.39, EQ/ILF = 0.01,
EIF/ILF = 0.1. If the considered application features a different
distribution, the estimation can be inaccurate.

The fact that a method based only on ILF requires a given
distribution for the other BFC is not surprising. In fact, the size
of the application depends on how many transactions are
needed to elaborate those data, and the number of transaction
cannot be guessed only on the basis of the number of ILF, as it
depend on the number of ILF just very loosely. Instead of
allowing the user to specify the number of transactions that are
needed, the Tichenor method practically imposes that the
number of transactions complies with the distribution given
above.

2) ISBSG distribution model

The analysis of the ISBSG dataset yielded the following

distribution of BFC contributions to the size in FP:

ILF 22.3%, EIF 3.8%, E1 37.2%, EO 23.5%, EQ 13.2%

The analysis of the ISBSG dataset also shows that the
average size of ILF is 7.4 UFP. It is thus possible to compute
the estimated size on the basis of the number of ILF as follows:

UFP = (#ILF x 7.4) x 100/ 22.3

The same considerations reported above for the Tichenor
model apply. If the application to be measured does not fit the
distribution assumed by the ISBSG distribution model, it is
likely that the estimation will be inaccurate.

3) Simplified FP

The simplified FP (sFP) approach assumes that all BFC are

of average complexity [14], thus:

UFP =#EI x4 + #E0 x 5 + #EQ x4 + #ILF x 10 + #EIF x 7

4) ISBSG average weights
This model is based on the average weights for each BFC,
as resulting from the analysis of the ISBSG dataset [15], which
contains data from a few thousand projects. Accordingly, the
ISBSG average weights model suggests that that the average
function complexity is used for each BFC, thus

UFP =#EI x 43 + #E0 x 5.4 + #EQ x 3.8 + #ILF x 7.4 +
#EIF x 5.5.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

TABLE IIL ACTIVITIES REQUIRED BY DIFFERENT SIMPLIFIED MEASUREMENT PROCESSES
Measurement activities IFPUG N.E SMA NES.MA (igfgc Iiggei Tichenor ILF . ISBSG. sFP ;‘ng‘ige
indic. estim. func. neric func. Model distribution eioht
generic func weights
Identifying logic data 4 4 v v 4 4 4 4 4
Identifying elementary processes 4 v v 4 4 v
Classifying logic data as ILF or EIF v v v v v v v v
Classifying elementary processes as EI, EO, v v v v v
or EQ
Weighting data functions 4
Weighting transaction functions 4
III. THE CASE STUDY TABLEIV. REAL-TIME PROJECTS’ SIZES (IFPUG METHOD)
A. Real-Time projects Prl‘ge“ ILF | EIF | EI EO EQ UFP
Most of the Real-Time projects measured are from a i 164 5 90 8 22 289
European organization that develops avionic applications, and (€39) @ @ 2 ®
other types of embedded and Real-Time applications. All the 2 56 0 21 18 6 101
measured projects concerned typical Real-Time applications (783) (8) (162) (437) (i)
for avionics or electro-optical projects, and involved 3))) ®)) 136
algorithms, interface management, process control and 130 15 44 0 6
graphical visualization. 4 (15) 3) (11) (0) 1) 195
The projects’ FUR were modeled using UML as described 5 39 0 28 39 0 106
in [11], and then were measured according to IFPUG) ©) ® ®) ()
measurement rules [4]. When the Real-Time nature of the 6 71 5 8 139 0 223
software made IFPUG guidelines inapplicable, we adopted ad- (3) ((1)) (? (258) (8)
hoc counting criteria, using common sense and striving to 7) o)))) 15
preserve the principles of FPA, as described in [10]. The same 21 0 4] 0
projects were then sized using the simplified functional size 8 3 (0 €)) ®) 0 33
measurement processes mentioned in Section II, using the data 9 21 0 7 16 0 44
that were already available as a result of the IFPUG @ | O) @) ©
measurement. ,
Table IV reports the size in UFP of the measured projects, TABLE V. NON REAL-TIME PROJECTS’ SIZES (IFPUG METHOD)
together with the BFC and —in parentheses— the number of Project
unweighted BFC. For instance, project 1 involved 18 Internal ID. ILF | BIF E Eo EQ UEP
Logic Files, having a size of 164 FP. 1 45 7 34 6 0 9
© @ a0y @ ©
B. Non Real-Time projects) 248 %40 37 ? 4 o4
The considered non Real-Time projects are mostly (21) (5) (297) (8) (118)
programs that allow users to play board or card games vs. 3 3)) o)) ©) 9
remote players via the internet; a few ones are typical business 4 31 0 49 13 3 96
information systems. (C) © a6) 3 @
The projects were measured —as the Real-Time ones— in 5 24 0 45 21 0 90
two steps: the UML model of each product was built along the €) © a4) 6) ©
NOIRT . . R . . 49 0 36 0 6
guidelines described in [16]; then, the function points were 6 7 ©))) @ 91
counted, on the basis of the model, according to IFPUG rules. ol 0 31 14 14
Table V reports the size in UFP of the measured projects, 7 3) 0)) 3)) 80
together with the BFC and —in parentheses— the number of g 42 5 35 17 10 109
unweighted BFC. © @ ©) 3) @)
9 21 0 38 15 8 82
3 © an () @

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. RESULTS OF SIMPLIFIED MEASUREMENT

Simplified measurement processes were applied following
their definitions, which require data that can be easily derived
from the tables above. So, for instance, the data required for
Real-Time project 1 are the following:

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

applied to the number of ILF, EIF, EI, EO, and EQ that had
been identified during the IFPUG function point counting
process. The results are given in Table VI for Real-Time
projects and in Table VII for non Real-Time projects.

— The NESMA indicative method requires the numbers of TABLEVIL SizEs oF I&%ﬁ‘ﬁfﬁﬂ%@‘;“f}‘aﬂs OBTAINED VIATHE
ILF and EIF. Table I shows that the number of ILF is 18,
and the number of EIF is 1. Project | 1o [NESMA [NESMA NESMA
.. . UG indicative indicative X
— Similarly, the Tichenor ILF model and the ISBSG D non normalized | normalized | ¢Stimated
distribution models just require the ILF number. | 0 25 160 90
— The NESMA estimated method, the EQFP generic
functions method, the sFP method and the ISBSG average 2 94 200 140 93
weights method require the numbers of ILF, EIF, EI, EO, 3 79 120 85 38
and EQ. Table I shows that the numbers of ILF, EIF, EI,
EO, and EQ are, respectively, 18, 1, 21, 2, and 5. 4 96 140 100 111
— The EQFP unspecified generic functions method requires 5 90 105 75 102
the numbers of data groups (that is, the number of ILF plus 6 o1 245 175 03
the number of EIF) and the number of transactions (that is,
the sum of the numbers of EI, EO, and EQ). Table I shows 7 80 105 75 88
that the number Qf da.ta groups is 18+1 = 19, and the 109 25 160 106
number of transactions is 21+2+5 = 28.
9 82 105 75 98
TABLE VI SIZES OF REAL-TIME PROJECTS OBTAINED VIA THE NESMA
METHODS C. Applying EQFP
NESMA As described in Figure 1., the EQFP method can be applied
. S NESMA . .
Project | 1rouic indicative indicative NESMA at different levels. Since we had the necessary data, we adopted
D non normalized | €stimated the BFC aggregation level. At this level it is possible to use the
normalized data functions and transaction functions without weighting
1 289 645 460 245 them or even without classifying transactions into EI, EO, and
2 101 280 200 99 EQ and logic data into ILF and EIF. In the former case (generic
functions) the weights given in Table I are used, while in the
3 136 245 175 101 latter case (unspecified generic functions) the weights given in
4 195 570 405 168 Table II are used.
s 106 110 100 100 The results qf the application o.f EQFP are given in Table
VIII for Real-Time projects, and in Table IX for non Real-
6 223 330 235 216 Time projects.
! 15 35 2 16 TABLE VIII. MEASURES OF REAL-TIME PROJECTS OBTAINED VIA THE
8 33 105 75 35 EQFP METHOD
9 44 105 75 49 EQFP - unspecified EQFP —generic
Project ID IFPUG | generic processes and transactions and
A. Applying NESMA indicative data groups data files
The applications to be measured were modeled according ! 2% 262 262
to the guidelines described in [16]. The logic data files — 2 101 102 106
modeled as UML classes— provide a data model that cannot be 3 136 100 108
easily recognized as normalized or not normalized. Therefore,
we applied both the formulae for the normalized and not 4 195 181 182
normalized models. S 5 106 102 106
The formulae of the NESMA indicative method were
applied to the number of ILF and EIF that had been identified 6 223 208 229
during the IFPUG function point counting process. The results 7 15 16 17
are given in Table VI for Real-Time projects and in Table VII
for non Real-Time projects. 8 33 35 38
B. Applying NESMA estimated 9 44 49 52

The formulae of the NESMA indicative method were

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

TABLE IX. MEASURES OF NON REAL-TIME PROJECTS OBTAINED VIA THE
EQFP METHOD
EQFP - unspecified EQFP —generic
Project ID IFPUG | generic processes and transactions and
data groups data files
1 92 100 99
2 94 107 99
3 79 97 92
4 96 120 118
5 90 108 108
6 91 100 100
7 80 95 92
8 109 113 113
9 82 104 103
TABLE X. MEASURES OF NON REAL-TIME PROJECTS OBTAINED VIA THE
TICHENOR ILF MODEL, ISBSG DEISTRIBUTION, SFP AND ISBSG AVERAGE
WEIGHTS METHODS.
. ISBSG
. Tichenor ISBSG
Project ID IFPUG ILF model distrib. sFP average
weights
1 92 90 199 112 98
2 94 60 133 113 100
3 79 45 100 99 91
4 96 60 133 123 118
5 90 45 100 111 109
6 91 105 232 114 98
7 80 45 100 97 92
8 109 90 199 126 112
9 82 45 100 107 104
TABLE XI. MEASURES OF REAL-TIME PROJECTS OBTAINED VIA THE
TICHENOR ILF MODEL, ISBSG DEISTRIBUTION, SFP AND ISBSG AVERAGE
WEIGHTS METHODS.
. ISBSG
. Tichenor ISBSG
Project ID IFPUG ILF model distrib. sFP average
weights
1 289 269 597 301 259
2 101 119 265 123 105
3 136 105 232 122 107
4 195 224 498 219 179
5 106 60 133 112 107
6 223 134 299 245 232
7 15 15 33 19 17
8 33 45 100 44 37
9 44 45 100 58 52

D. Applying Tichenor ILF Model

In order to apply the model we just had to multiply the
number of ILF of each of our projects for the constant 14.93
suggested by Tichenor. The obtained results are illustrated in
Table X and Table XI for non Real-Time and Real-Time
projects, respectively.

When applying this method, it should be remembered that
the results are likely to be incorrect if the distribution of BFC
in the estimated application does not match the distribution
observed by Tichenor. Accordingly, when applying the
method, one should also check the distribution of BFC.
Unfortunately, this implies making more work, namely, one
should count the number of EIF, EI, EO, and EQ in addition to
ILF. Even worse, one could discover that the distribution of
his/her application is different from the distribution assumed by
Tichenor, so that the estimated size is not reliable.

In our case, the projects do not appear to fit well in the
distribution assumed by Tichenor: the differences between the
measured ratios and the ratios expected by Tichenor are the
following:

— For Real-Time projects: 14.3% for EI/ILF, 43.7% for

EO/ILF, 3.9% for EQ/ILF, 7.9% for EIF/ILF.

— For non Real-Time projects: 96.7% for EI/ILF, 22.2% for

EO/ILF, 27.3% for EQ/ILF, 14.7% for EIF/ILF.

In practice, our projects have a very different distribution of
BFC sizes with respect to Tichenor expectations (for instance,
in non Real-Time projects EI had often a larger size than ILF,
while it is expected that the size of EI is about one third of the
size of ILF). So, we must expect a quite poor accuracy from
Tichenor estimates. This is actually confirmed by the data in
Table XIV, Table XV and Table XVI.

E. Applying the ISBSG distribution model

We applied the formula UFP = (#ILF x 7.4) x 100 / 22.3
prescribed by the method. Then, we evaluated the differences
between the measured percentage contribution of BFC and the
ISBSG averages. The differences we found were relatively
small:
For Real-Time projects: 28.7% for ILF, 3.4% for EIF,
19.3% for EI, 21.3% for EO, 13.2% for EQ.

— For non Real-Time projects: 12% for ILF, 4.8% for EIF,
5.6% for EI, 15.4% for EO, 13.2% for EQ.

Accordingly, we expect that the ISBSG distribution model
applies reasonably well to our dataset, especially as non Real-
Time projects are involved.

The obtained size estimates are illustrated in Table X and
Table XI for non Real-Time and Real-Time projects,
respectively.

F. Applying the sFP and ISBSG average weights

The application of the sFP and ISBSG average weights
methods was extremely similar to the application of the
NESMA estimated and EQFP generic methods, only the values
of weights being different.

The obtained results are illustrated in Table X and Table XI
for non Real-Time and Real-Time projects, respectively.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

V. SUMMARY AND LESSONS LEARNED A. Applying the sFP and ISBSG average weights
In this section, the results of our empirical analysis are To ease comparisons, all the size measures of RT projects
reports. First we discuss the quantitative results, then we are reported in Table XII and those of non RT projects are
analyze the results from a more theoretical point of view. reported in Table XIII.

TABLE XIIL MEASURES OF REAL-TIME PROJECTS OBTAINED VIA THE VARIOUS METHODS

Proj | buc | NESMA | NESMA | NESMA | EQFP | EQFP | Tichenor | ISBSG | .o :ffrg‘g}e
ID ind. non norm. | ind. norm. estim. unspec. | generic | ILF model | distrib. weights
1 289 645 460 245 262 262 269 597 301 259
2 101 280 200 99 102 106 119 265 123 105
3 136 245 175 101 100 108 105 232 122 107
4 195 570 405 168 181 182 224 498 219 179
5 106 140 100 100 102 106 60 133 112 107
6 223 330 235 216 208 229 134 299 245 232
7 15 35 25 16 16 17 15 33 19 17
8 33 105 75 35 35 38 45 100 44 37
9 44 105 75 49 49 52 45 100 58 52
TABLE XIII. MEASURES OF NON REAL-TIME PROJECTS OBTAINED VIA THE VARIOUS METHODS
P | rpuG inﬂ:ﬁ\;ﬁm ul:iiEil(\)ﬁ NESMA lﬁglil: . gligf;i T IOBSG | srp :‘S/g:ge
model weights
1 92 225 160 92 100 99 90 199 112 98
2 94 200 140 93 107 99 60 133 113 100
3 79 120 85 88 97 92 45 100 99 91
4 96 140 100 111 120 118 60 133 123 118
5 90 105 75 102 108 108 45 100 111 109
6 91 245 175 93 100 100 105 232 114 98
7 80 105 75 88 95 92 45 100 97 92
8 109 225 160 106 113 113 90 199 126 112
9 82 105 75 98 104 103 45 100 107 104
TABLE XIV. RELATIVE MEASUREMENT ERRORS (REAL-TIME PROJECTS)
POl | Nomnorm. | ind.norm. | NESMA | BQPP | EQP | TGS ISBSG | g
: : model : weights
1 123% 59% -15% -9% -9% -7% 107% 4% -10%
2 177% 98% 2% 1% 5% 18% 162% 22% 4%
3 80% 29% -26% -26% 21% -23% 71% -10% -21%
4 192% 108% -14% -7% -7% 15% 155% 12% -8%
5 32% -6% -6% -4% 0% -43% 25% 6% 1%
6 48% 5% -3% -7% 3% -40% 34% 10% 4%
7 133% 67% 7% 7% 13% 0% 120% 27% 13%
8 218% 127% 6% 6% 15% 36% 203% 33% 12%
9 139% 70% 11% 11% 18% 2% 127% 32% 18%

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

TABLE XV. RELATIVE MEASUREMENT ERRORS (NON REAL-TIME PROJECTS)
Proj | NESMAind. | NESMA | wpoma | more | more | TGN msBsG | spsG
ID non norm. nd. norm. estim. unspec. | generic distrib. rag
model weights
1 145% 74% 0% 9% 8% 2% 116% 22% 7%
2 113% 49% -1% 14% 5% -36% 41% 20% 6%
3 52% 8% 11% 23% 16% -43% 27% 25% 15%
4 46% 4% 16% 25% 23% -38% 39% 28% 23%
5 17% -17% 13% 20% 20% -50% 11% 23% 21%
6 169% 92% 2% 10% 10% 15% 155% 25% 8%
7 31% -6% 10% 19% 15% -44% 25% 21% 15%
106% 47% -3% 4% 4% -17% 83% 16% 3%
9 28% -9% 20% 27% 26% -45% 22% 30% 27%
TABLE XVI. MEAN AND STDEV OF ABSOLUTE RELATIVE ERRORS
NI?SMA . NESMA NESMA | EQFP EQFP Tichenor ISBSG ISBSG
ind. ind. norm. . . I sFP average
estim. unspec. generic ILF model distrib. .
non norm. weights
(Rl}dii‘iy) 127% 63% 10% 9% 10% 20% 112% 17% 10%
Stdev
(RT only) 64% 44% 7% 7% 7% 16% 59% 11% 7%
Mean
(non RT) 79% 34% 8% 17% 14% 32% 58% 23% 14%
(nifg],r) 56% 33% 7% 8% 8% 17% 50% 4% 8%
Mean
(all) 103% 49% 9% 13% 12% 26% 85% 20% 12%
S(‘ﬁf)v 63% 40% 7% 8% 8% 17% 60% 9% 8%

The relative measurement errors are given in Table XIV
and Table XV.

The obtained results show that we can divide the simplified
FSM methods in two classes: those which base the size
estimation exclusively on some measure of the data (like the
NESMA indicative, the Tichenor and ISBSG distribution
methods) and those which propose fixed weights for all the
BFC of FPA.

The former methods yield the largest errors. Although it
was expected that estimates based on less information are
generally less accurate than estimates based on more
information, the really important finding of our experimental
evaluation is that the size estimates based on data measures
feature quite often intolerably large errors, i.e., errors that are
likely to cause troubles, if development plans were based on
such estimates. For instance, let us consider the Tichenor
method (which appears the best of those based on data
measures) and assume that only size estimation errors not
larger than 20% are acceptable: 10 estimates out of 18 would
be unacceptable.

On the contrary, the methods that take into consideration all
BFC and provide fixed weights for them yield size estimates
that are close to the actual size. Among these methods sFP is
an exception, since it regularly overestimates the size of
projects, often by over 20%. This seems to indicate that

“average” projects are characterized by data and/or transactions
whose actual complexity is smaller than the complexity
expected by the sFP method.

The accuracy of the used methods is summarized in Table
XVI, where the mean and standard deviation of the absolute
relative errors are given for Real-Time projects, for non Real-
Time projects, and for the entire set of projects. The mean
value of absolute relative errors is a quite popular statistic,
often termed MMRE (Mean Magnitude of Relative Errors).

Table XVI shows that the NEMSA estimated, the two
EQFP methods and the ISBSG average weights methods
provide essentially equivalent accuracy. This is not surprising,
given that these methods propose very similar weight values.
The NESMA estimated method appears the best, but for Real-
Time projects the EQFP methods perform similarly, often even
better.

For Real-Time projects, EQFP (either in the unspecified or
generic flavor) tends to provide the most accurate results, while
the NESMA estimated method provides quite reasonable
estimates.

It is worthwhile noticing that EQFP is more accurate than
NESMA for Real-Time applications because it uses bigger
weights, which suite better Real-Time application, which are
more complex than non Real-Time applications.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Theoretical analysis

As mentioned in Section II, simplified FSM methods are
based on skipping one or more phases of the standards
Function Point measurement process (see Table III). It is
reasonable to assume that the accuracy of the measure is
inversely proportional to the number of phases not performed,
hence to the amount of data not retrieved from the functional
user requirements of the software to be measured.

To confirm such hypothesis, we have enhanced the
information reported in Table III with the data concerning
mean errors and error standard deviations: the result is given in
Table XVII. The direct comparison of accuracy data with the
information used for measurement makes the following
observations possible.

Any simplified method that does not involve the weighting
appears to be bound to a 10-15% mean absolute error.

It does not appear true that the more you measure, the best
accuracy you get. For instance, EQFP considering unspecified

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

generic functions appear more accurate than sFP, even though
the former method does not involve classifying function types.

Among methods that use the same type and amount of data,
there are relatively large differences in accuracy: for instance,
the Tichenor ILF model appears more precise than both the
NESMA indicative (with normalized data) and the ISBSG
distribution.

The last two observations suggest that exploiting the
knowledge provided by statistical analysis can be decisive for
achieving accurate measures via simplified processes. For
instance, the EQFP method considering unspecified generic
functions is quite accurate because the likely complexity of
data and transactions assumed by the method (see Table II)
were derived via accurate statistical analysis. On the contrary,
the complexity values assumed by the sFP method were chosen
on the basis of expectations, not on rigorous statistical analysis.

The exploitation of statistical data is the base for the new
methods described in the next section.

TABLE XVII. MEASUREMENT PROCESSES: REQUIRED DATA VS. ACCURACY
NESMA | \psma | FQFP g QFP Unspec.| Tichenor ILF | ISBSG ISBSG average
IFPUG| indic. . Generic . e sFP .
estim. generic func. Model distribution| weights
Norm. func.
Identifying logic data v v v v v v v v v
Identifying elementary processes 4 v 4 v (@) *) 4 v
Classifying logic data as ILF or EIF 4 4 v 4 v v 4
Classifying elementary processes as EI v % % v
EO, or EQ v *) v
Weighting data functions v
Weighting transaction functions 4
Mean error - 49% 9% 13% 12% 26% 85% 20% 12%
Error stdev - 40% 7% 8% 17% 60% 9% 8%

(*) required to verify applicability

VI. NEW SIMPLIFIED FSM MODELS

In this section, we derive simplified FSM models similar to
those described in Section II, but based on the measures of our
own applications (as reported in Table IV and Table V).

In Table XVIII we give the average weights of the BFC
computed over all the measured applications. Note that the
given averages are computed as the mean —at the dataset level—
of the mean values computed for each application. In the table,
the mean weights derived from our dataset are shown together
with the weights proposed by other simplified FSM methods,
for comparison. The fact that our EI and EO means are smaller
than the values proposed by other methods, while the ILF and
EIF means are very close to those proposed by other methods
probably means that our applications were simpler than those
considered in the definition of other methods.

TABLE XVIII. AVERAGE FUNCTION TYPE WEIGHTS FOR OUR DATASET

: Our

ape | goneric | Estm. | average | SFP | datase
yp! g J S (all proj.)
ILF 7.7 7 7.4 7 74
EIF 5.4 5 55 5 53
El 42 4 43 3 3.7
EO 52 5 5.4 4 4.6
EQ 39 4 3.8 3 4

In Table XIX we give the average values of weights
derived from our dataset, distinguishing Real-Time and non
Real-Time applications. We also give the average value of the

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ratio between the number of ILF and the size in UFP. It is
possible to note that the average number of UFP per ILF we
found is quite larger than that found by Tichenor. This suggests
that models based just on ILF can be hardly generalized.

Note that we computed also the weights for transaction
functions (TF) and data functions (DF). These weights can be
used in simplified measurement processes like the EQFP
unspecified generic method.

TABLE XIX. MEAN AND MDEIAN WEIGHTS FOR THE PROJECTS IN OUR

DATASET
Mean (median) weight

Dataset | ILF | EIF | EI | EO | EQ | TF | pr | UF¥/

atas #ILF
Allnon |01 ss | 35 | 44 | 34 | 70 | 37 | 227
RT proj
AIRT o | 50 | 40 | 48 | 51 | 81 | 44 | 170

proj
Allproj | 74 | 53 | 37 | 46 | 40 | 76 | 41 | 199

The values in Table XIX suggest that transactions were
generally more complex in Real-Time applications than in non
Real-Time applications. The latter are probably responsible for
relatively smaller weights of transaction (EI, EO, and EQ) in
Table XVIII.

Using the values in Table XIX it was possible to derive
models that are similar to those described in Section II: they are
described in Table XX and Table XXI.

TABLE XX. MODELS FOR NON RT PROJECTS.

Average weights | UFP = 6.6 #ILF+ 5.5 #EIF + 3.5 #EI + 4.4 #EO + 3.4
(all BFC) #EQ

Average weights _
(DF and TF) UFP = 7.0 #TF + 3.7 #DF

ILF based model |UFP = 22.7 #ILF

TABLE XXI. MODELS FOR RT PROJECTS.

Average weights
(all BFC)
Average weights
(DF and TF)

ILF based model |UFP = 17 #ILF

UFP = 8.2 #ILF+ 5 #EIF + 4 #EI + 4.8 #EO + 5.1 #EQ

UFP = 8.1 #TF + 4.4 #DF

We used such models to estimate the size of the projects in
our dataset. The results of the estimations are reported in Table
XXII and Table XXIII for Real-Time and non Real-Time
projects, respectively.

Table XXII and Table XXIII show a rather poor accuracy
of the estimation based on ILF, with error greater than 20% for
several projects.

On the contrary, the estimations based on average weights
are reasonably accurate; the obtained results are particularly
good for non Real-Time projects, with all the estimates
featuring errors not greater than 10%.

The average values of the absolute relative errors are
reported in Table XXIV together with the average values of the
absolute relative errors obtained with the best among the other
methods, for comparison.

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

10

It is easy to see that the estimates obtained using the
average weights of the projects being estimated feature
practically the same accuracy as the other methods.

TABLE XXII. ESTIMATES OF RT PROJECTS BASED ON MODELS USING THE
PARAMETERS GIVEN IN TABLE XIX.

Average Average ILF based
Proi weights weights model
J- (all BFC) (DF and TF)
ID
Actual Est. Est. Est.
. N % err N % err N % err
size size size size
1 289 273 -6% 277 -4% 306 6%
2 101 110 9% 109 8% 136 35%
3 136 109 -20% 105 -23% 119 -13%
4 195 187 -4% 198 2% 255 31%
5 106 104 2% 103 -3% 68 -36%
6 223 223 0% 213 -4% 153 -31%
7 15 17 13% 17 13% 17 13%
8 33 39 18% 37 12% 51 55%
9 44 52 18% 51 16% 51 16%

TABLE XXIII. ESTIMATES OF NON RT PROJECTS BASED ON MODELS USING
THE PARAMETERS GIVEN IN TABLE XIX.

o | e e

D BFC) and TF)

Acfual ESt' % err E.St' % err E.St' % err

size size size size

1 92 85 -8% 90 -2% 136 48%
2 94 87 -71% 97 3% 91 -3%
3 79 81 3% 84 6% 68 -14%
4 96 98 2% 102 6% 91 -5%
5 90 91 1% 92 2% 68 -24%
6 91 85 -1% 90 -1% 159 75%
7 80 79 -1% 79 -1% 68 -15%
8 109 98 -10% 101 -71% 136 25%
9 82 88 7% 88 7% 68 -17%

It is a bit surprising that in the literature a few models of
type UFP =k x #ILF were proposed, while model of type UFP
= k x #EP (where #EP is the number of elementary processes,
i.e., #EI + #EO + #EQ) received hardly any attention. We
computed the ratio UFPAEP for each application, and used the
average value k in models UFP = k x #EP, to estimate the size
of the applications in our dataset. The obtained estimates were
characterized by errors quite similar to those of ILF-based
models (the average absolute error was 25% for Real-Time
projects and 27% for non Real-Time projects). Accordingly, it
seems that models of type UFP = k x #EP are not likely to
provide good estimates.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

11

TABLE XXIV. MEAN AND STDEV OF ABSOLUTE RELATIVE ERRORS

Average weights, | Average weights, Average NESMA EQFP EQFP | ISBSG average
all BFC DF & TF UFP / #ILF estim. unspec. generic weights
Mean (RT only) 10% 9% 26% 10% 9% 10% 10%
Stdev (RT only) 8% 10% 29% 7% 7% 7% 7%
Mean (non RT) 5% 4% 25% 8% 17% 14% 14%
Stdev (non RT) 3% 4% 22% 7% 8% 8% 8%
Mean (all) 8% 10% 31% 9% 13% 12% 12%
Stdev (all) 6% 6% 19% 7% 8% 8% 8%
VII. RELATED WORK VIII. THREATS TO VALIDITY

Meli and Santillo were among the first to recognize the
need for comparing the various functional size methods
proposed in the literature [17]. To this end, they also provided a
benchmarking model.

In [18], van Heeringen et al. report the results of measuring
42 projects with the full-fledged, indicative and estimated
NESMA methods. They found a 1.5% mean error of NESMA
estimated method and a 16.5% mean error of NESMA
indicative method.

Using a database of about 100 applications, NESMA did
some research on the accuracy of the estimated and indicative
function point counts. They got very good results
(http://www.nesma.nl/section/fpa/earlyfpa.htm), although no
statistics (e.g., mean relative error) are given.

In [19], Vogelezang summarized the two techniques to
simplified measuring given in the COSMIC measurement
manual: the approximate technique and the refined
approximate technique. In the approximate technique, the
average size of a functional process is multiplied with the
number of functional processes the software should provide.
The refined approximate technique uses the average sizes of
small, medium, large and very large functional processes. The
accuracy of the COSMIC-FFP approximate technique is good
enough with less than 10% deviation on a portfolio and less
than 15% on a project within a specified environment [19].

Popovi¢ and Boji¢ compared different functional size
measures —including NESMA indicative and estimated— by
evaluating their accuracy in effort estimation in various phases
of the development lifecycle [20]. Not surprisingly, they found
that the NESMA indicative method provided the best accuracy
at the beginning of the project. With respect to Popovi¢ and
Boji¢, we made two quite different choices: the accuracy of the
method is evaluated against the actual size of the software
product and —consistently— all the information needed to
perform measurement is available to all processes.

There is no indication that Real-Time projects were among
those measured by van Heeringen et al. or by NESMA.

In [8], Santillo suggested probabilistic approaches, where
the measurer can indicate the minimum, medium and
maximum weight of each BFC, together with the expected
probability that the weight is actually minimum, medium or
maximum. This leads to estimate not only the size, but also the
probability that the actual size is equal to the estimate.

A first possible threat to the internal validity of the study is
due to the relatively small datasets.

Another possible issue concerns the size and complexity of
the applications. As far as the Real-Time applications are
concerned, we measured real industrial projects. Accordingly,
we are fairly sure that they represent a good benchmark for the
considered simplified FSM methods. On the contrary, our non
Real-Time projects are fairly small. However, the really
important point for testing the adequacy of simplified FSM
methods is not the size of the benchmark applications, but their
complexity. It is possible that our non Real-Time projects are
slightly less complex than average applications: this would
explain why most simplified FSM methods overestimate them
(see Table XV).

The fact that our datasets are not very homogeneous is
actually not a problem; rather it is useful to challenge the
proposed simplified FSM methods with different types of
software applications.

IX. CONCLUSION

Sometimes, FPA is too slow or too expensive for practical
usage. Moreover, FPA requires a knowledge of requirements
that may not be available when the measures of size are
required, i.e., at the very first stages of development, when
development costs have to be estimated. To overcome these
problems, simplified measurement processes have been
proposed.

In this paper, we applied simplified functional size
measurement processes to both traditional software
applications and Real-Time applications.

The obtained results make it possible to draw a few relevant
conclusions:

1. Some of the simplified FSM methods we experimented
with seem to provide fairly good accuracy. In particular,
NESMA estimated, EQFP, and ISBSG average weights
yielded average absolute relative errors close to 10%. This
level of error is a very good trade off, if you consider that
it can be achieved without going through the expensive
phase of weighting data and transactions.

2. Organizations that have historical data concerning
previous projects can build their own models. We showed
that with a relatively small number of projects it is
possible to build models that provide a level of accuracy

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

very close to that of methods like NESMA estimated and

EQFP.

3. The simplified FSM methods are generally based on
average values of ratios among the elements of FP
measurement. Accordingly, projects that have unusual
characteristics tend to be ill suited for simplified size
estimation. For instance, project 3 in our set of Real-Time
projects is more complex than the other projects in the set,
having most EI and EO characterized by high complexity.
This causes most method to underestimate the size of the
project by over 20%. Therefore, before applying a
simplified FSM method to a given application, it is a good
idea to verify that this application is not too much (or too
less) complex with respect to “average” applications. Our
Real-Time project 3 was characterized by the need to store
or communicate many data at a time: this situation could
have suggested that using average values for an early
measurement leads to a rather large underestimation.

EQFP methods proved more accurate in estimating the size
of Real-Time applications, while the NESMA estimated
method proved fairly good in estimating both Real-Time and
non Real-Time applications. However, the relatively small
number of projects involved in the analysis does not allow
generalizing these results.

Even considering the relatively small dataset, it is however
probably not casual that the NESMA estimated method
happened to underestimate all projects. Probably NESMA
should consider reviewing the weights used in the estimated
method, in the sense of increasing them.

When considering the results of our analysis from a
practical viewpoint, a very interesting question is ‘“what
simplified method is the best one for my application(s)?”.
Table XIV and Table XV show that the methods that are better
on average are not necessarily the best ones for a given project.
To answer the question above it would be useful to characterize
the projects according to properties not considered in FSM, and
look for correlations with the measures provided by different
simplified methods. This would allow selecting the simplified
measurement method that provided the best accuracy for
applications of the same type as the one to be sized.
Unfortunately, it was not possible to analyze the possibly
relevant features of the dataset described in Section III (we had
no access to the code of Real-Time projects), thus this analysis
is among future activities.

As already mentioned, the results presented here are based
on datasets in which the largest project has size of 289 FP:
further work for verifying the accuracy of simplified
measurement methods when dealing with larger project is
needed.

Among the future work is also the experimentation of
simplified measurement processes in conjunction with
measurement-oriented UML modeling [16], as described in
[21].

The models described in Section II are generally derived in
a rather naive way, i.e., simply computing averages of some
elements that are involved in the measurement: e.g., the
average ration between the measure of BFC and their number.
Simplified measurement models should be better derived via
regression analysis. Unfortunately, the relatively little number
of applications in our datasets does not support this type of

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

12

analysis, especially if multiple independent variables are
involved, as in models of type UFP = f(EI, EO, EQ, ILF, EIF)
or UFP = f(TF, DF). Performing this type of analysis is among
our goal for future activities, provided that we can get enough
data points.

ACKNOWLEDGMENT

The research presented in this paper has been partially
supported by the project “Metodi, tecniche e strumenti per
I’analisi, l'implementazione e la valutazione di sistemi
software” funded by the Universita degli Studi dell’Insubria.

REFERENCES

[1] L. Lavazza and G. Liu, “A Report on Using Simplified Function Point
Measurement Processes”, Int. Conf. on Software Engineering Advances,
(ICSEA 2012), Nov. 2012, pp. 18-25.

[2] A.J. Albrecht, “Measuring Application Development Productivity”,
Joint SHARE/ GUIDE/IBM Application Development Symposium,
1979.

[3] A.J. Albrecht and J.E. Gaffney, “Software function, lines of code and
development effort prediction: a software science validation”, IEEE
Transactions on Software Engineering, vol. 9, 1983.

[4] International Function Point Users Group, “Function Point Counting
Practices Manual - Release 4.3.17, 2010.

[5] ISO/IEC 20926: 2003, “Software engineering — IFPUG 4.1 Unadjusted
functional size measurement method — Counting Practices Manual”,
1SO, Geneva, 2003.

[6] C. Jones, “A new business model for function point metrics”,
http://www.itmpi.org/assets/base/images/itmpi/privaterooms/capersjones
/FunctPtBusModel2008.pdf, 2008

[7] “Methods for Software Sizing — How to Decide which Method to Use”,
Total Metrics, www.totalmetrics.com/function-point-
resources/downloads/R185_Why-use-Function-Points.pdf, August 2007.

[8] L. Santillo, “Easy Function Points — ‘Smart’ Approximation Technique
for the IFPUG and COSMIC Methods”, Joint Conf. of the 22" Int.
Workshop on Software Measurement and the 7" Int. Conf. on Software
Process and Product Measurement, Oct. 2012.

[9] C. Tichenor, “The IRS Development and Application of the Internal
Logical File Model to Estimate Function Point Counts”, IFPUG Fall
Conference of Use (ESCOM-ENCRESS 1998), May 1998.

[10] L. Lavazza and C. Garavaglia, “Using Function Points to Measure and
Estimate Real-Time and Embedded Software: Experiences and
Guidelines”, 3 Int. Symp. on Empirical SW Engineering and
Measurement (ESEM 2009), Oct. 2009.

[11] L. Lavazza and C. Garavaglia, “Using Function Point in the Estimation
of Real-Time Software: an Experience”, Software Measurement
European Forum (SMEF 2008), May 2008.

[12] “Early & Quick Function Points for IFPUG methods v. 3.1 Reference
Manual 1.1, April 2012.

[13] ISO, Iec 24570: 2004, “Software Engineering-NESMA Functional Size
Measurement Method version 2.1 - Definitions and Counting Guidelines
for the Application of Function Point Analysis. International
Organization for Standardization”, Geneva, 2004.

[14] L. Bernstein and C. M. Yuhas, “Trustworthy Systems Through
Quantitative Software Engineering”, John Wiley & Sons, 2005.

[15] International Software Benchmarking Standards Group, “Worldwide
Software Development: The Benchmark, release 117, 2009.

[16] L. Lavazza, V. del Bianco, C. Garavaglia, “Model-based Functional Size
Measurement”, 2" International Symposium on Empirical Software
Engineering and Measurement (ESEM 2008), Oct. 2008.

[17] R. Meli and L. Santillo, “Function point estimation methods: a
comparative overview”, Software Measurement European Forum
(FESMA 1999), Oct. 1999.

[18] H. van Heeringen, E. van Gorp, and T. Prins, “Functional size
measurement - Accuracy versus costs - Is it really worth it?”, Software
Measurement European Forum (SMEF 2009), May 2009.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

13
[19] F.W. Vogelezang, “COSMIC Full Function Points, the Next [21] V. del Bianco, L. Lavazza, and S. Morasca, “A Proposal for Simplified
Generation”, in Measure! Knowledge! Action! — The NESMA Model-Based Cost Estimation Models”, 13" Int. Conf. on Product-
anniversary book, NESMA, 2004. Focused Software Development and Process Improvement (PROFES
[20] J. Popovi¢ and D. Boji¢, “A Comparative Evaluation of Effort 2012), June 2012.

Estimation Methods in the Software Life Cycle”, Computer Science and
Information Systems, vol. 9, Jan. 2012.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

14

Basic Building Blocks for Column-Stores

Andreas Schmidt*t, Daniel KimmigT, and Reimar Hofmann™*
* Department of Computer Science and Business Information Systems,

Karlsruhe University of Applied Sciences

Karlsruhe, Germany
Email: {andreas.schmidt, reimar.hofmann} @hs-karlsruhe.de
T Institute for Applied Computer Science
Karlsruhe Institute of Technology
Karlsruhe, Germany
Email: {andreas.schmidt, daniel. kimmig}@Xkit.edu

Abstract—A constantly increasing CPU-memory gap as well
as steady growth of main memory capacities have increased
interest in column store systems due to potential performance
gains within the realm of database solutions. In the past, several
monolithic systems have reached maturity in the commercial and
academic spaces. However, a framework of low-level and modular
components for rapidly building column store based applications
has yet to emerge. A possible field of application is the rapid
development of high-performance components in various data-
intensive areas such as text-retrieval systems and recommenda-
tion systems. The main contribution of this paper is a column-
store-tool-kit, a basic building block of low-level components for
constructing applications based on column store principles. We
present a minimal amount of necessary structural elements and
associated operations required for building applications based on
our column-store-kit. The eligibility of our toolkit is demonstrated
subsequently in using the components of our toolkit for building
different query execution plans. This part of work is a first step
in our effort for the construction of a pure colmun-store based
query optimizer.

Keywords—Column store; basic components; framework; rapid
prototyping; TPC-H benchmark; query-optimizer; query-execution
plan.

I. INTRODUCTION

Within database systems, values of a dataset are usually
stored in a physically connected manner. A row store stores all
column values of each single row consecutively (see Figure 1,
bottom left). In contrast to that, within a column store, all
values of each single column are stored one after another
(see Figure 1, bottom right). In column stores, the relation-
ship between individual column values and their originating
datasets are established via Tuple IDentifiers (TID). The main
advantage of column stores during query processing is the fact
that only data from columns which are of relevance to a query
have to be loaded. To answer the same query in a row store,
all columns of a dataset have to be loaded, despite the fact,
that only a small portion of them are actually of interest to the
processing. On the other side, the column store architecture is
disadvantageous for frequent changes (in particular insertions)
to datasets. As the values are stored by column, they are
distributed at various locations, which leads to a higher number
of required write operations exceeding those within a row store
to perform the same changes. This characteristic makes this
type of storage interesting especially for applications with very

high data volume and few sporadic changes only (preferably
as bulk upload), as it is the case in, e.g., data warehouses,
business intelligence systems or text retrieval systems.

In our previous work [1], we identified the basic building
blocks of our Column Store ToolKit (CSTK) and its interfaces
with respect to providing a toolkit for building column store-
based applications. In this paper, we extend our formulated
ideas with a number of experiments which demonstrate the
suitability of our toolkit with regard to building a query
optimizer for column stores and the general suitability for
scientific questions in the field of column store research.

Interest in column store systems has recently been re-
inforced by steady growth of main memory capacities that
meanwhile allow for main memory-based database solutions
and, additionally, by the constantly increasing CPU-memory
gap [2]. Today’s processors can process data much quicker than
it can be loaded from main memory into the processor cache.
Consequently, modern processors for database applications
spend a major part of their time waiting for the required
data. Column stores and special cache-conscious [3] algorithms
are attempts to avoid this “waste of time”. A number of
commercial and academic column store systems have been
developed in the past. In the research area, MonetDB [4] and
C-Store [5] are widely known. Open Source and commercial
systems include Sybase IQ, Infobright, Vertica, LucidDB, and
Ingres. All these systems are more or less complete database
systems with an SQL interface and a query optimizer.

As column stores are a young field of research, numerous
aspects remain to be examined. For example, separation of
datasets into individual columns result in a series of addi-
tional degrees of freedom when processing a query. Abadi
et al. [6] developed several strategies as to when a result
is to be “materialized”, i.e., at which point in time result
tuples shall be composed. Depending on the type of query
and selectivity of predicates, an early or late materialization
may be reasonable. Interesting studies were published about
compression methods [7], various index types as well as the
execution of join operations, e.g., Radix-Join [2], Invisible
Join [8] or LZ-Join [9]. In addition to that, there are attempts at
creating hybrid approaches that try to combine the advantages
of column and row stores. The main objective of this paper is to
present a number of low-level building blocks for constructing
applications based on column store systems. Instead of copy-

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

15
| D| Name Fi rst nane |[dat e-of -bi rth| sex
31 [Waits Tom 1949-12- 07
45 | Beni gni Robert o 1952- 10- 27
65 [Jarnmusch |Jim 1953-01-22
77 |Ryder W nona 1971-10- 29
81 |Row ands | CGena 1930- 06- 19
82 |Perez Rosa 1964-09- 06
< e
=©
eoW
[s1]wits [Tom [r949-12-07 -
[45 Benigni |Roberto [1952-10 27 - pro— - =T
[T65 Joarmsch [aim foss-01-22 [m | Beni gni Roberto | [19852-10-27
p Jar musch Jim 1953-01-22
[77 Tryder [wnona [1971-10-29 - e —— 030
| 81 [Row ands [cena [1930- 06- 19 - Rowl ands Gena 1930-06- 19
Rosa 1964-09- 06
[2]Perez [Rosa [to64-09-06 [F | Perez
Fig. 1. Comparison of the layouts of a row store and a column store

ing the low-level constructs of existing sophisticated column
stores, our research work is focused on identifying components
and operations that allow for building specialized column store
based applications in a rapid prototyping fashion. As our
components can be composed in a “plug and compute”-style,
our contribution is a column-store-tool-kit, which is a building
block for experimental and prototypical setup of applications
within the field of column stores. A possible field of applica-
tion is the rapid development of high-performance components
in various data-intensive areas such as text-retrieval systems.

This paper is structured as follows. In the next section,
related work is mentioned. Then, in Section III, some basic
considerations about column stores will be outlined. After-
wards, in Section IV and V the identified components and
corresponding operations will be explained on a logical level.
On this basis, various implementations of logical components
and operations will be presented in Section VI. Finally, results
will be summarized and an outlook will be given on future
research activities.

II. RELATED WORK

In the field of database systems, there are a number of
related approaches. For example the C++-fastbit-library [10]
provides a number of searching functions based on compressed
bitmap indexes. Beside the low-level bitmap components,
also a SQL interface exists in this library. The approach is
comparable to the bitmap index in some relational database
systems (i.e., Oracle, PostgreSQL). In contrast to these in-
dexes, the fastbit bitmaps are compressed and therefore also
usable for high cardinality attributes. The CSTK described in
this paper can benefit from the compressed bitmap classes
when implementing the PositionLists (see Section IV). Weather
this implementation variant is advantageous depends on a
number of factors. For details see [11]. In the field of query
optimization there are a number of different tools, i.e., the
Volcano project [12], developed by Goetz Graefe. Volcano
is a optimizer generator, which means, that the source code

of the optimizer is generated, based on a model specification
which consists of algebraic expressions. The library itself con-
tains modules for a file-system, buffer management, sorting,
duplicate elimination, B-+-trees, aggregation, different join
implementations, set operations, and aggregation functions.
Based on the experiences gained with Volcano, the Cascades
framework [13] was started, which later forms the base for the
SQL Server 7.0 query optimizer [14].

III. COLUMN STORE PRINCIPLES

Nowadays, modern processors utilize one or more cache
hierarchies to accelerate access to main memory. A cache is a
small and fast memory that resides between main memory and
the CPU. In case the CPU requests data from main memory, it
is first checked, whether it already resides within the cache. In
this case, the item is sent directly from the cache to the CPU,
without accessing the much slower main memory. If the item
is not yet in the cache, it is first copied from the main memory
to the cache and then further sent to the CPU. However, not
only the requested data item, but a whole cache line, which
is between 8 and 128 bytes long, is copied into the cache.
This prefetching of data has the advantage, that requests to
subsequent items are much faster, because they already reside
within the cache. Meanwhile, the speed gain when accessing a
dataset in the first-level cache is up to two orders of magnitude
compared to regular main memory access [15]. Column stores
take advantage of this prefetching behavior, because values
of individual columns are physically connected together and,
therefore, often already reside in the cache when requested,
as the execution of complex queries is processed column by
column rather than dataset by dataset. This also means that
the decision whether a dataset fulfills a complex condition is
generally delayed until the last column is processed. Conse-
quently, additional data structures are required to administrate
the status of a dataset in a query. These data structures are
referred to as Position Lists. A PositionList stores the TIDs
of matching datasets. Execution of a complex query generates

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a PositionList with entries of the qualified datasets for every
simple predicate. Then, the PositionLists are linked by and/or
semantics. As an example, Figure 2 shows a possible execution
plan for the following query:

select birthday,
from person

where birthdate < 71960-01-01"
and sex="F’

name

First, the predicates birthdate <’1960-01-01" and
sex ="F’ must be evaluated against the correponding columns
(birthdate and sex), which results in the PositionLists PLI
and PL2. These two evaluations could also be done in par-
allel. Next, an and-operation must be performed on these
two PositionLists, resulting in the PositionList PL3. As we
are interested in the birthdate and name of the persons that
fulfil the query conditions, we have to perform another two
operations (extract), which finally returns the entries for the
TIDs, specified by the PositionList PL3.

bi rt hdat e Sex name
1949-12-07 Waits
1952-10-27 Begnini
1953-01-22 Jarmusch
1971-10-29 Ryder
1930-06-19 Rowlands
1964-09-06 Perez

Cbirthdate <'1960-01-01'

D)
Y Y

PL1 pL2
1 4

SN
Q)
N

PL3
5
\ \i
bi rt hdat e nane

1930-06-19 Rowlands

TNE

v

bi rthdate nane
1930-06-19 Rowlands

Fig. 2. Processing of a query with PositionLists

IV. CONCEPT

The main focus of our components is to model the individ-
ual columns, which can occur both in the secondary store as
well as main memory. Their types of representation may vary.
To store all values of a column, for example, it is not necessary
to explicitly store the TID for each value, because it can be de-
termined by its position (dense storage). To handle the results

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

16

of a filter operation however, the TIDs must be stored explicitly
with the value (sparse storage). Another important component
is the PositionList already mentioned in Section III. Just like
columns, two different representation forms are available for
main and secondary storage. To generate results or to handle
intermediate results consisting of attributes of several columns,
data structures are required for storing several values (so-called
multi columns). These may also be used for the development
of hybrid systems as well as for comparing the performance of
row and column store systems. The operations mainly focus
on writing, reading, merging, splitting, sorting, projecting, and
filtering data. Predicates and/or PositionLists are applied as
filtering arguments. Figure 3 illustrates a high level overview
of the most important operations and transformations between
the components. In Section V, they will be described in detail.
Moreover, the components are to be developed for use on both
secondary store and main memory as well as designed for
maximum performance. This particularly implies the use of
cache-conscious algorithms and structures.

V. PRESENTATION OF LOGICAL COMPONENTS

In the following sections, the aforementioned components
will be presented together with their structure and their cor-
responding operations. Section VI will then outline potential
implementations to reach highest possible performance.

A. Structure

1) ColumnFile: The ColumnFile serves to represent a col-
umn on the secondary storage. Supported primitive data types
are: uint, int, char, date und float. Moreover, the composite type
SimpleStruct (see V-A2) is supported, which may consist of
a runtime definable list of the previously mentioned primitive
data types. As a standard, the TID of a value in the ColumnFile
is given implicitly by the position of the value in the file. If
this is not the case, a SimpleStruct is used, which explicitly
contains the TID in the first column.

2) SimpleStruct: SimpleStruct is a dynamic, runtime defin-
able data structure. It is used within ColumnFile as well as
within ColumnArrays (see below). The SimpleStruct plays a
role in the following cases:

e Result of a filter query, in which the TIDs of the
original datasets are also given.

e Combination of results consisting of several columns.

e Setup of hybrid systems having characteristics of both
column and row stores. For example, it may be advan-
tageous to store several attributes in a SimpleStruct
that are frequently requested together.

e Representation of sorted columns, where TIDs are
required. This is particularly reasonable for Join op-
erators or a run-length-encoded compression on their
basis.

3) ColumnArray and MultiColumnArray: A ColumnArray
represents a column in main memory, which consists of a
flexible number of lines. The data types correspond to those of
the previously defined ColumnkFile. If the data type is a Sim-
pleStruct, it is referred to as MultiColumnArray. In addition to
the actual column values, the TIDs of the first and last dataset

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

filter/split/sort

filter{sort

Dense ColumnArray

f/]/@r

ColumnFile

Sfore

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

17

split/sort/(project)

k A
filter

=

merge/materlallze PositionList

Dfilter/split/sort/(project)

and/or

=

PositionListFile

store

load

filter

Sparse ColumnArray

Fig. 3. Components and Operations

and the number of datasets stored are given in the header
of the (Multi)ColumnArray. Two types of representations are
distinguished:

e Dense: The type of representation is dense, if no gaps
can be found in the datasets, i.e., if the TIDs are
consecutive. In this case, the TID is given virtually
by the TID of the first data set and the position in the
array and does not have to be stored explicitly (see
Figure 4, left side). This type of representation is par-
ticularly suited for main memory-based applications,
in which all datasets (or a continuous section of them)
are located in main memory.

e Sparse: This type of representation explicitly stores
the TIDs of the datasets (see Figure 4, right). The pri-
mary purpose of a sparse ColumnArray is the storage
of (intermediate) results. As will be outlined in more
detail in Section V, it may be chosen between two
physical implementations depending on the concrete

purpose.

4) ColumnBlocks and MultiColumnBlocks: Apart from the
(Multi)ColumnArrays of flexible size, (Multi)ColumnBlocks
exist, which possess a arbitrary, but fixed size. They are
mainly used to implement ColumnArrays with their flexible
size. In addition, they may be applied in the implementation
of an custom buffer management as a transfer unit between
secondary and main memory and as a unit that can be indexed.

5) PositionList: A PositionList is nothing else than a
ColumnArray with the data type uint(4) as far as structure
is concerned. However, it has a different semantics. The Posi-
tionList stores TIDs. A PositionList is the result of a query via
predicate(s) on a ColumnkFile or a (Multi)ColumnArray, where
the actual values are of no interest, but rather the information
about the qualified data sets. Position Lists store the TIDs in
ascending order without duplicates. This makes the typical
and/or operations very fast, as the cost for both operations
is O(|Ply|+|Plz|). As will be outlined in Section VI, various
types of implementations may be applied. Analogously to the
(Multi)ColumnArray, there is a representation of the Position-
List for the secondary store, which is called PositionFile.

Dense Spar se
Start Pos: 1024 StartPos: 1024 StartPos : 1024 |StartPos : 1024
EndPos : 2047 EndPos : 2047 EndPos : 2047| |EndPos 12047
name sex Entries : 351 Entries : 351
11 name | sex
21 11
45 21,
51 45
B 51,
03 89
93
Col utmAr r ay Mul ti Col utmAr ray Col ummAr r ay Ml ti Col umArray

Fig. 4. Types of ColumnArrays

B. Operations

1) Transformations on ColumnkFiles: Several operations
are defined on ColumnFiles. A filter operation (via predicate
and/or PositionList) can be performed on a ColumnFile and
the result can be written to another ColumnFile (with or
without explicit TIDs). Other operations are the splitting of
a ColumnFile as well as sorting among different criterias (see
Section V-B6) with and without explicitly storing the TID.

2) Transformations between ColumnFile and (Multi)-
Column-Array: ColumnFiles and (Multi)ColumnArrays are
different types of representation of one or more logical
columns. Physically, ColumnFiles are located in the secondary
storage, while ColumnArrays are located in main memory.
Consequently, both types of representations can also be trans-
formed into each other using the corresponding operators.

A ColumnkFile can be transformed completely or partially
into a dense (Multi)ColumnArray. If not all, but only certain
datasets that match special predicates or PositionLists are to be
loaded into a (Multi)ColumnArray, this can be achieved using
filter operations that generate a sparse (Multi)ColumnArray.
A sparse (Multi)ColumnArray may also be transformed into
a ColumnkFile. In this case, the TIDs are stored explicitly in
combination with the values. Other operations refer to the
insertion of new values and the deletion of values. An outline
of the most important operations of ColumnFiles is given in
Table L.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

TABLE 1. OUTLINE OF OPERATIONS ON COLUMNFILES
[Operation [Result type
read(ColumnFile) ColumnArray (dense)

read(ColumnFile, start, length)

ColumnArray (dense)

filter(ColumnFile, predicate)

ColumnArray (sparse)

filter(ColumnFile, predicate-list)

ColumnArray (sparse)

filter(ColumnFile, positionlist)

ColumnArray (sparse)

filter(ColumnFile, positionlist-list)

ColumnArray (sparse)

filter(ColumnFile, predicate-list,
positionlist-list)

ColumnArray (sparse)

fileFilter(ColumnFile, predicate)

ColumnFile (explicit TIDs)

fileFilter(ColumnFile, predicate-list)

ColumnFile (explicit TIDs)

fileFilter(ColumnFile, positionlist)

ColumnFile (explicit TIDs)

fileFilter(ColumnFile, positionlist-list)

ColumnFile (explicit TIDs)

fileFilter(ColumnFile, predicate-list,
positionlist-list)

ColumnFile (explicit TIDs)

split(ColumnFile, predicate)

ColumnFile, ColumnFile

split(ColumnFile, position)

ColumnFile, ColumnFile

merge(ColumnFile-list, predicate-list)

MultiColumnArray (sparse),

sort(ColumnFile, column(s), direction)

ColumnFile

sort(ColumnFile, Orderlist)

ColumnFile

mapSort(ColumnFile)

ColumnFile, Orderlist

mapSort(ColumnFile)

ColumnArray, Orderlist

insert(ColumnFile, value)

Tupel-ID

insert(MultiColumnFile, value, ...) Tupel-ID
delete(ColumnFile, Tupel-ID) boolean
delete(ColumnFile, Positionlist) integer
delete(ColumnFile, predicate) integer
delete(ColumnFile, predicate-list) integer

TABLE II.

OUTLINE OF OPERATIONS ON ColumnArrays

Operation

Result type

filter(ColumnArray, predicate)

ColumnArray (sparse)

filter(ColumnArray, predicate-list)

ColumnArray (sparse)

filter(ColumnArray, positionlist)

ColumnArray (sparse)

filter(ColumnArray, positionlist-list)

ColumnArray (sparse)

filter(ColumnArray, predicate-list,
positionlist-list)

ColumnArray (sparse)

filter(ColumnArray, predicate) PositionList
filter(ColumnArray, predicate-list) PositionList
filter(ColumnArray, positionlist) PositionList
filter(ColumnArray, positionlist-list) PositionList
filter(ColumnArray, predicate-list, PositionList
positionlist-list)

and(ColumnArray, ColumnArray) ColumnArray
or(ColumnArray, ColumnArray) ColumnArray
and(ColumnArray, ColumnArray) PositionList
or(ColumnArray, ColumnArray) PositionList
project(MultiColumnArray, columns) (Multi)ColumnArray
asPositionList(ColumnArray, column) PositionList

split(ColumnArray, predicate)

ColumnArray (sparse)
ColumnArray (sparse)

sort(ColumnArray) ColumnArray
sort(ColumnArray, Orderlist) ColumnArray
mapSort(ColumnArray) ColumnArray, Orderlist

split(ColumnArray(dense), position)
ColumnArray (dense)

ColumnArray (dense)

split(ColumnArray (sparse), position)
ColumnArray (sparse)

ColumnArray (sparse)

18

3) Operations on ColumnArrays: Filter operations can
be executed on (Multi)ColumnArrays using predicates and/or
PositionLists. This may result in a sparse (Multi)ColumnArray
or a PositionList. Furthermore, ColumnArrays may also
be linked with each other by and/or semantics. If the
(Multi)ColumnArrays have the same structure, the result also
possesses this structure. The results correspond to the in-
tersection or union of the original datasets. The result is a
sparse (Multi)ColumnArray. If (Multi)ColumnArrays of dif-
fering structure are to be combined, only the and operation
is defined. The result is a (Multi)ColumnArray that contains
a union of all columns of the involved (Multi)ColumnArrays
and returns the values for the datasets having identical TIDs.
If the (Multi)ColumnArrays used as input are dense and if they
have the same TID interval, the resulting MultiColumnArray
is also dense. An outline of the most important operations of
ColumnArrays is given in Table II. ColumnArray may also
refer to a MultiColumnArray. A MultiColumnArray, however,
only refers to the version having several columns.

4) Transformation from PositionList to ColumnArray: If
the column values of the stored TIDs inside a PositionList
are needed, an extract operation must be performed. Input
to this operation is a PositionList as well as a dense (multi)
ColumnArray. The result is a sparse (Multi) ColumnArray.

5) Operations between PositionLists: Several PositionLists
may be combined by and, or semantics, with the result
being a PositionList. The result list is sorted in ascending
order corresponding to the TIDs. In addition, operations exist
to load and store PositionLists. An outline of operations of
PositionLists can be found in Table III.

6) Sorting: One basic operation on (Multi) ColumnArrays
as well as ColumnFiles is sorting. Beside the obvious task to
bring the result of a query in a specific order, sorting also
plays an important role regarding performance considerations.
For the elimination of duplicates, for join operations and for
compression using run-length encoding, previous sorting can

merge(ColumnArray-list (sparse), predicate-list)
store(ColumnArray (dense))
store(ColumnArray (sparse))

MultiColumnArray (sparse)
ColumnFile
ColumnFile (explicit TIDs)

TABLE III. OUTLINE OF OPERATIONS ON PositionListS
[Operation [Result type
load(ColumnFile) PositionList
store(PositionList) ColumnFile
and(PositionList, PositionList) PositionList
or(PositionList, PositionList) PositionList
materialize(PositionList, ColumnArray, ColumnArray
)
materialize(PositionList, ~ColumnFile, ColumnArray
)
read(PositionListFile) PositionList
store(PositionList) PositionListFile

dramatically improve performance. As a consequence of sort-
ing, the natural order is lost. This is critical for dense columns
with implicit TIDs, because the relation to the other column
values is lost. The problem can be solved by an additional data
structure, similar to a PositionList that contains the mapping
information to the original order of the datasets. Figure 5 gives
an example of this situation. The Multi ColumnArray on the
left side is to be sorted according to the column ‘“name”.
Additionally to the sorting of the MultiColumn (top right), a
list is generated which holds the information about the original
positions (down right). The list can then be reused by applying
it as a sorting criterion to other columns later, as shown in
Figure 6.

7) Compression: Compression plays an important role in
column stores [7], as it reduces the data volume that needs to
be loaded. Nevertheless, we decided not to include compres-
sion in the first prototype and to concentrate on the interfaces
of the components. To a certain extent, this constraint can be
compensated by the use of dictionary-based compression [16],
which will be implemented above the basic components. In
later versions, various compression methods will be integrated,
so first of all run-length encoding (RLE) [17].

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Start Pos: 1024
EndPos : 1029
nane sex
Begni ni M
StartPos: 1024 Jarmusch | M
EndPos : 1029 Per ez F
name sex Rowl ands F
Wi ts M Ryder F
Begni ni M @ Wi ts M
Jarnusch| M
Ryder F 1025
Rowl ands F 1026
Perez F 1029
1028
1027
1024
Fig. 5. Sorting with explicit generation of an additional mapping list
1025
1026
StartPos: 1024 1029 StartPos: 1024
EndPos : 1029 1028 EndPos : 1029
bi rt hdat e 1027 bi r t hdat e
1949- 12- 07 1024 1952- 10- 27
1952- 10- 27 1953-01- 22
1953-01- 22 * 1964- 09- 06
1971-10-29 1930- 06- 19
1930- 06- 19 @—> 1971-10- 29
1964- 09- 06 1949-12- 07
Fig. 6. Sorting with explicit given sort-order

VI. IMPLEMENTATION-SPECIFIC CONSIDERATIONS

After presenting the logical structure and the required
operations, this section will now focus on considerations for
achieving a performance-oriented implementation. Due to the
constantly increasing CPU-memory gap, cache-conscious pro-
gramming is indispensable. For this reason, the implementation
was made in C/C++. All time-critical parts were implemented
in pure C using pointer arithmetics. The uncritical parts
were implemented using C++ classes. The ColumnBlock was
established as a basic component of the implementation. It is
the basic unit for data storage. Its size is defined at creation
time and it contains the actual data as well as information on
its structure and the number of datasets. The structurization
options correspond to those of the (Multi)ColumnArray. The
ColumnBlock also handles all queries by predicates and/or
PositionLists. A (Multi)ColumnArray consists of n Column-
Block instances. All operations on a (Multi)ColumnArray are
transferred to the underlying ColumnBlocks.

PositionLists play a central role in column store applica-
tions. One important point is the size of a PositionList. If the
PositionLists are short (i.e., if they contain a few TIDs only),
representation as ColumnArray is ideal. Four bytes are required
per selected entry. If the lists are very large, however, memory
of 400 MB is required for ten million entries, for instance.
In this case, a bit vector is recommended for representation.
This bit vector uses for each dataset a bit at a fixed position
to indicate whether a dataset belongs to the set of results or
not. If, for example, 10 million data sets exist for a table,
only 1.25 MB are required to represent the PositionList for

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

19

certain selectivities. Moreover, the two important operations
and and or can be mapped on the respective primitive proces-
sor commands, which makes the operations extremely fast. If
PositionLists are sparse, bit vectors can be compressed very
well using run-length encoding (RLE) (e.g., to a few KB
in case of 0.1% selectivity). The necessary operations can
be performed very efficiently on the compressed lists, which
further increases the performance. An implementation based
on the word-aligned hybrid algorithm [18] with satisfactory
compression for medium-sparse representations was developed
within the framework of the activities reported here [19], [20].

Figure 7 gives an overview of the memory consumption for
different implementations of a PositionList. Here, we compare
the behavior of a dynamic array containing 4-byte TIDs with
a plain uncompressed bitvector and different implementa-
tions (32, 64 bit) of the Word Aligned Hybrid (WAH) algo-
rithm [18], both compressed and uncompressed. As we can see
in the figure, the behavior of the dynamic array implementation
is quite good for very small selectivities, but changes for the
worse for medium and high densities. Uncompressed bitmaps
(plain bitvector or WAH uncompressed) behave independently
for all densities. Their size is determined by the number
of tuples in a table only. Compressed bitmaps show a very
good behavior for all densities. If selectivities become low,
they behave like uncompressed bitmaps (compared to a pure
uncompressed implementation of a bitvector, there will be a
slight overhead of 1/32. resp. 1/64.). From a selectivity of
about 3%, the array has a higher memory consumption than
the uncompressed bitvector. Beside the memory consumption,
also the runtime behavior of the different implementation
variants plays a very important role. In [21], an elaborate
analysis of the memory consumption and runtime behavior of
different implementation variants (array, bitvector, compressed
bitvector) for positionlists can be found. The bottom line of
this paper is that the choice of the right implementation variant
is not a trivial task and depends heavily on the selectivity of
the predicates. The differences in the runtime behavior are over
two orders of magnitude for typical PositionList operations.

2e+07 T T T T

T
Plain Bitvector, 64 bit
WAH-Bitvector, compressed, 32 bit —<—
WAH-Bitvector, uncompressed, 32-bit —#—
WAH-Bitvector, compressed, 64 bit
WAH-Bitvector, uncgmpressed, 64-bit
dynamic array —e—

1.5e+07 -

1le+07 B

memory (bytes)

5e+06 [B

L L L L
0.005 0.01 005 0.1 0.5
density (selectivity)

0
0.0001 0.0005 0.001

Fig. 7. Comparison of the memory consumption for different implementation
variants of PositionLists

MultiColumnArrays may exist in two different physical
layouts. In the first version, the n values are written in a
physically successive manner and correspond to the classical
n-ary storage model (NSM). This type of representation is

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

particularly suited, if further queries are to be performed
on this MultiColumnArray with predicates on the respective
attributes. The individual values of a dataset are stored together
in the cache and all attribute values are checked simultaneously
rather than successively with the help of additional Position-
Lists (see Figure 8, left). The second type of representation
corresponds to the PAX format [22]. Here, every column is
stored in a separate ColumnArray. In addition, a PositionList
is stored, which identifies the datasets (see Figure 8, right).
This type of representation is recommended, for instance, for
collecting values for subsequent aggregation functions. Several
(Multi)ColumnArrays may share a single PositionList.

Start Pos: 1024 Start Pos: 1024 E» |
EndPos : 2047 EndPos : 2047 7
Entries: 351 Entries: 351 n
name | sex Posi tionList: - 37
Col'urm[nane] : all
1 Col umn| sex]: —/ﬁ
21] L 41
e]
51, 167]
89
93
Fig. 8. Comparison of storage formats for ColumnArrays

VII. USE CASES

In this section, we want to deal with the usage of the
CSTK-components. We will present the general mechanism for
building complex queries from the components, demonstrate
the suitability of our components for scientific questions in the
field of column store research and present an execution plan
and the runtime behavior for a typical data warehouse query
from the TPC-H [23] benchmark. The aim of this experiment is
to gain further insight into the costs of the different operations
and to derive rules for a query optimizer for column stores [24].

A. Usability of the Components

1) Materialization: In [6], Abadi et al. propose different
strategies to construct the final result sets from the interme-
diate PositionLists. This step is called “materialization”. One
strategy is to keep the PositionList values as long as possible
and to only materialize the attribute values in a very last
step. This is called “late materialization”. On the other hand,
“early materialization” means that the values should already
be extracted in every selection step. The quintessence of the
paper is that the superiority of any strategy depends on the
characteristic of the query.

In the paper, Abadi et al. identified four different datasource
operators (DS1, .., DS4) from which data could be read from
disk or main memory. Additionally, they identified the AND
operator for PositionLists and two more tuple construction
operators, MERGE and SPC (Scan, Predicate, and Construct)
for the construction of result tuples.

Based on these operators, they formed different query plans
to implement early and late materialization strategies. Figure 9
shows the different execution plans for the following query,
implementing an early materialization strategy (a, b) or a late
materialization strategy (c, d).

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

20

SELECT 1_shipdate,
FROM lineitem
WHERE 1_shipdate < Cl1

AND 1 _linenum < C2

1 linenum

{(Val1, Val2)}

I

_>\ /m

{(val1, Val2)}

-~
<
=
]

=

[0

Linemum Predicate Predicate
airy {(Pos:|Vai) valty Vaiz)
SpetiNy
Shipdate Predicate Shipdate Linenum
(a) (b)
A {(val1, Va2)} A {(val1,vai2)
{Val1}/(~ {Vaiz} al)
(vait} \074 {val2} 053]

vai)
; {val 1}Pred/|;te {vai2}
Shipdate {Pos} Linenum DS T
DS 1 DS 1 Pos}
51 [BsilN \ L
Predicate Predicate | |Shipdate ‘ Predicate|

(©)
Fig. 9. Different query-plans from [6]

Using the components from the CSTK, these query plans
can easily be rebuilt, using the operations from Tables I, II,
and III. This is shown in Figure 10. In contrast to the original
execution plans, which do not distinguish between file and
main memory representation in each case, this is done with
the execution plans built with the CSTK.

2) Complex Queries: In the following, a step-by-step
explanation of a join operation is performed based on an
example. The underlying dataset is from TPC-H benchmark
(lineitem and partkey table).

The SQL query is the following:

SELECT p_name,
FROM part
JOIN lineitem

ON p_partkey = 1_partkey
WHERE 1_orderkey = 34

1_quantity

Figure 11 shows the corresponding operations on the
required columns. First, the WHERE-clause on the [_orderkey
column is executed (1) to get the corresponding TIDs (1_TID)
from the lineitem table. The extracted TIDs (5,6,7) are then
used to read the corresponding values (883, 894, 169) from
the I_partkey column of the lineitem table (2). Next, the
(I_TID, |_partkey tuples are sorted based on their I_partkey

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A

: merge :

¥

a
lineitem_ E @
linenum_file { ‘
:B Predicate:
I_linenum < C2
: I_ship <c1
lineitem -
i o_fi ineitem
shipdate_file = ile.
B Predicate: ()
Lshi <c1 b
lineitem_ Predicate:
shipdate_file I_linenum < C2

(a)

Predicate:
I_linenum < C2

ol
LA

lineitem_
Predicate:
(c) I_shipdate < C1

lineitem

shipdate_file (d)

A

Predicate:

I_linenum < C2 ___B

hipdate < C1

4
—N

-0

lineitem_
linenum_file

lineitem_
shipdate_file

Fig. 10.
componems

Different materialization strategies from [6] using the CSTK

values (3). The resorted tuples can then be merged with the
sorted p_partkey column of the partkey table (5), which has
to be sorted priorly (4) and enriched with the p_TID column,
which was implicitly given by the position of the values in the
unsorted p_partkey column.

The result of the merge operation are tuples of the form
(I_TID, p_TID). They represent the result of the join operation

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

21

LTD [|_orderkey LTID [I_partkey
1 33 1 613
2 33 2 605
3 33 predi cate 3 137
4 33 o 4 339
5 34 5 5 883
6 2 =P o= © 94
7 34 7 7 169
— sy
8 35 @ @ 8 450
9 35 9 161
10 35 10 120
11 35 11 851
12 35 12 119
13 35 13 307

sort

p_partkey| p_TID p_partkey| p_TID
119 9 450 1
120 10 307 2
137 11 339 3
161 12 605 a
sort
169 13 | 613 5
307 2 851 6
339 3 @ 883 7
450 1 894 8
605 4 119 9
613 5 120 10
851 6 137 11
‘ 883 7 161 12
894 F I 169 13

@ p_TID [p_name

1 sky lace green pale lime

| quantity | 1LTID 2 linen puff firebrick antique dodger
31 1 3 green azure almond khaki hot
32 2 | TID b TID 4 violet magenta ivory dim hot
5 3 7 13 5 pink snow navy powder chartreuse
41 4 /4 5 7 6] I
22 6 f \ - 8 indian blush chocolate floral peru
6 7 9 purple almond blush blue hot

\
\ 10 [khaki dark tan lemon olive
@ ‘ 11 [steel royal frosted peru sienna

13 gblack hot white lawn salmon
—

I_quantity [p_name
13 [ivory dodger thistle royal olive
22 |indian blush chocolate floral peru
6|black hot white lawn salmon

Fig. 11. Join-Operation with the Column-Store-Tool-Kit

between the lineitem and partkey table on the partkey column.
In the last step, the materialization (6) takes place. The I_TID
and p_TID values are replaced by their corresponding values
from the p_name and p_quantity columns.

After demonstration of a CSTK-Join on a concrete ex-
ample, the principle data flows, based on the operations on
Tables I, II, and III are shown. Figure 12 shows an execution
plan performing the following SQL query:

SELECT =«
FROM orders o
JOIN lineitem 1
ON 1_orderkey=o_orderkey

In the current execution plan, a sort-merge join is per-
formed. As a first step, the entries in the two column files
orders_orderkey_file and lineitem_orderkey_file must be sorted
(remember: in the files, the TIDs are implicit given by the

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

position of the values in the file). This is done with the
mapSort-operation. The mapSort operation sorts the column
values and provides an additional data structure pl_o and pl_I,
which contains the TIDs for each sorted value. The structure
is similar to a PositionList, but the TIDs are no longer sorted.

After the preparatory sorting step, the values in the columns
are compared position by position (operation cmp). For each
matching value from the two columns, the corresponding
entries in the previously generated PositionList pl_o and pl_I
are taken and written into the joined PositionList (pl_o’,pl_I’).
In a final step (not shown in Figure 12), the joined PositionList
is materialized.

(pl_o’, pL_I") E:/

» L

L
) | resortorder
a

joined position list

sorted column

A

I

/
/
Eﬁ;// -
E ome
L |
pl_o pl_I

Grapso) ~ (manson)

Column Files

AN > / (implicit position ID)

orders_orderkey_file

lineitem_orderkey_file

Fig. 12. Join-Operation with the Column-Store-Tool-Kit
An additional WHERE clause (see below) leads to the
execution plan in Figure 13.

SELECT «
FROM orders o
JOIN lineitem 1
ON 1_orderkey=o_orderkey
WHERE o_orderdate= 71992-01-13"

The evaluation of the condition on the or-
ders_orderdate_file generates a PositionList (pl_o), which
acts as a filter criterion for the orders_orderkey_file. After
filtering, the PositionList also represents the TIDs for the
orders_orderkey column. In the subsequent mapSort operation,
the orders_orderkey column is resorted along its values and
the corresponding TIDs in the PositionList pl_o get resorted,
respectively (pl_o’). The rest of the join operation is similar
to that already described in Figure 12.

B. Performance Tests

To complete our case study concerning our toolkit, we
present a more complex query from the TPC-H repository
(Query 3). We model an execution plan using our components
and run some performance tests, which we compare with
MySQL and Infobright.

The SQL query we use is the following:

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

22

(pl_o”, pL_I')
\ /
<\ Z
Lomp)
pl_o’ L}
pl_I

AN

lineitem_orderkey_file

E»@
/ \ orders_orderkey_file
(o_orderdate ='1992-01-13’)

orders_orderdate_file

Fig. 13. Join-Operation with the Column-Store-Tool-Kit

select 1_orderkey,
sum (1_extendedpricex* (1-1_discount))
as revenue,
o_orderdate,
o_shippriority
from customer,
orders,
lineitem
where c_mktsegment = ’'BUILDING’
and c_custkey = o_custkey
and 1_orderkey = o_orderkey
and o_orderdate < date ’71995-03-15"
and 1_shipdate > date ’71995-03-15"
group by 1_orderkey,
o_orderdate,
o_shippriority
order by revenue desc,
o_orderdate

A possible corresponding execution plan for this query
using late materialization is shown in Figure 14. Beside the
used operations and the intermediate results. shown. The input
consists of about 6 million lineitem tuples, 727 thousand orders
and over 30 thousand customers from the TPC-H benchmark
dataset. The machine settings are the following: Intel® Core™
i7-3520M CPU, 2.9 GHz processor with 2 physical cores,
8 GB main memory, running Windows 7 Enterprise, 64 bit.
The cache sizes are: First level cache: 128KB, second-level
cache: 512KB, third-level cache: 4MB.

The operation mainly consists of a join over the three tables
and a subsequent grouping according to three columns. The
overall execution time is about 1.107 sec. About 20% of the
overall time is spent reading the needed columns from file and
performing the selections based on predicates or PositionLists.
The most expensive operations are the mapSort-operations,
which take about 25% of the execution time. The subsequent
sorting of the corresponding PositionLists takes another 15%.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sort

I_orderkey_file group

I_extendeprice_file

-) materialize
I_discount_file

o_orderdate_file

o_shippriority_file

cmp, cmp

o_custkey_col I_corderkey_col’

sort sort (sort sort
sortMap sortMap

mapSort mapSort mapSort mapSort

c_custkey_col o_custkey_col o_orderkey_col |_orderkey_co!

pl_c g 7 o pn
pl_o pl_|

o 7
c_custkey_file o_custkey_file o_orderkey_file |_orderkey_file

c_mktsegment_file o_orderdate_file I_shipdate_file

Fig. 14. TPC-H Query 3, execution plan and time behavior with CSTK
components

Currently, we use a standard quicksort implementation without
any optimizations. By exchanging the sorting algorithm with a
more sophisticated version, we expect a further improvement
of the runtime behavior. After sorting of the columns, we
can use a merge-join implementation, which performs its task
in about 0.03 seconds for an input cardinality of over 3.2
million tuples (lineitem datasets) and 727 thousand tuples
(order datasets).

About one third of the complete execution time is spent
accessing files on disk. Using a main-memory implementation
could further reduce the overall execution time significantly.
In comparison, the execution time of the same query using
MySQL (with indexes on all foreign keys as well as on the
columns which are predicated) takes about 116 seconds (cold
start) with empty cache and about 13 seconds for repeated
executions. Infobright [25], a column store-based version of
MySQL, takes about 3 seconds to execute the query.

VIII. CONCLUSION

This paper presented a collection of basic components to
build column store applications. The components are semanti-

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

23

cally located below those of the existing column store database
implementations and are suited for building experimental (dis-
tributed) systems in the field of column store databases.

As a proof of concept, we used these components to
retrace the materialization experiments carried out by Abadi
et al. [6]. Additionally, we show that typical operations like
joining tables and grouping results can be carried out. Finally,
we construct an execution plan from the TPC-H benchmark
and point out that the performance is quite good, compared
to existing column store databases. It is planned to use these
components to obtain further scientific findings in the area of
column stores and to develop data-intensive applications.

IX. FUTURE WORK

A first version of the column store tool kit is available
without support for compression. The next steps planned are
the integration of compression and the use in concrete areas,
such as text retrieval systems. A future activity will be the
implementation of a scripting language interface for the com-
ponents. With the help of this interface, it will be possible to
assemble the developed components more easily without losing
the performance of the underlying C/C++ implementation.
In this case, the scripting language act as glue between the
components, allowing the developer to build up complex high
performance applications with very little effort [26]. As an al-
ternative, a custom domain-specific language (DSL) [27] may
be used for building column store applications. A bachelor’s
thesis [28] focused on the extent to which various degrees of
flexibility regarding the structure of MultiColumnArrays and
expression of the predicates affect the performance. According
to the thesis, the structural definition at compilation time is
of significant advantage compared to the structural definition
at runtime. If the implemented flexibility of the SimpleStruct
is not required at runtime, an alternative implementation may
be used. It may be realized by defining a language extension
for C/C++, for example. Thus, the respective structures and
operations can be defined using a simple syntax. With a
number of macros of the C++ preprocessor or a separate inline
code expander [29], these could then be transformed into valid
C/C++ code.

REFERENCES

[1] A. Schmidt and D. Kimmig, “Basic components for building column
store-based applications,” in DBKDA’12: Procceedings of the The Forth
International Conference on Advances in Databases, Knowledge, and
Data Applications. iaria, 2012, pp. 140-146.

[2] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing database ar-
chitecture for the new bottleneck: memory access,” The VLDB Journal,
vol. 9, no. 3, pp. 231-246, 2000.

[3] T. M. Chilimbi, B. Davidson, and J. R. Larus, “Cache-conscious
structure definition,” in PLDI '99: Proceedings of the ACM SIGPLAN
1999 conference on Programming language design and implementation.
New York, NY, USA: ACM, 1999, pp. 13-24.

[4] P. A. Boncz, M. L. Kersten, and S. Manegold, “Breaking the memory
wall in monetdb,” Commun. ACM, vol. 51, no. 12, pp. 77-85, 2008.

[5] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin,
N. Tran, and S. Zdonik, “C-store: a column-oriented dbms,” in VLDB
’05: Proceedings of the 3l1st international conference on Very large
data bases. VLDB Endowment, 2005, pp. 553-564.

[6] D.J. Abadi, D. S. Myers, D. J. Dewitt, and S. R. Madden, ‘“Materi-
alization strategies in a column-oriented dbms,” in In Proc. of ICDE,
2007.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

D. J. Abadi, S. R. Madden, and M. Ferreira, “Integrating compression
and execution in column-oriented database systems,” in SIGMOD,
Chicago, IL, USA, 2006, pp. 671-682.

D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores vs. row-
stores: How different are they really,” in In SIGMOD, 2008.

L. Gan, R. Li, Y. Jia, and X. Jin, “Join directly on heavy-weight
compressed data in column-oriented database,” in WAIM, 2010, pp.
357-362.

K. Wu, “Fastbit reference manual,” Scientific Data Management
Lawrence Berkeley National Lab, Tech. Rep. LBNL/PUB-3192, august
2007. [Online]. Available: http://1bl.gov/%7Ekwu/ps/PUB-3192.pdf

A. Schmidt and D. Kimmig, “Considerations about implementation
variants for position lists,” in DBKDA’13: Procceedings of the The Fifth
International Conference on Advances in Databases, Knowledge, and
Data Applications. 1iaria, 2013, pp. 108-115.

G. Graefe and W. J. McKenna, “The volcano optimizer generator:
Extensibility and efficient search,” in Proceedings of the Ninth Inter-
national Conference on Data Engineering, April 19-23, 1993, Vienna,
Austria. 1EEE Computer Society, 1993, pp. 209-218.

G. Graefe, “The cascades framework for query optimization,” IEEE
Data Eng. Bull., vol. 18, no. 3, pp. 19-29, 1995.

B. Nevarez, Inside the SQL Server Query Optimizer. United Kingdom:
Red gate books, 2011.

P. A. Boncz, M. Zukowski, and N. Nes, “Monetdb/x100: Hyper-
pipelining query execution,” in CIDR, 2005, pp. 225-237.

C. Binnig, S. Hildenbrand, and F. Firber, “Dictionary-based order-
preserving string compression for main memory column stores,” in SI/G-
MOD °09: Proceedings of the 35th SIGMOD international conference
on Management of data. New York, NY, USA: ACM, 2009, pp. 283—
296.

S. Smith, The scientist and engineer&s guide to digital signal process-
ing. California Technical Publishing, 1997.

K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap indices with
efficient compression,” ACM Trans. Database Syst., vol. 31, no. 1, pp.
1-38, 2006.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

24

A. Schmidt and M. Beine, “A concept for a compression scheme of
medium-sparse bitmaps,” in DBKDA’11: Procceedings of the The Third
International Conference on Advances in Databases, Knowledge, and
Data Applications. iaria, 2011, pp. 192-195.

M. Beine, “Implementation and Evaluation of an Efficient Compression
Method for Medium-Sparse Bitmap Indexes,” Bachelor Thesis, De-
partment of Informatics and Business Information Systems, Karlsruhe
University of Applied Sciences, Karlsruhe, Germany, 2011.

A. Schmidt and D. Kimmig, “Considerations about implementation
variants for position-lists,” in DBKDA’I13: Proceedings of the Fifth
International Conference on Advances in Databases, Knowledge, and
Data Applications, 2013.

A. Ailamaki, D. J. DeWitt, and M. D. Hill, “Data page layouts for
relational databases on deep memory hierarchies,” The VLDB Journal,
vol. 11, no. 3, pp. 198-215, 2002.

“TPC Benchmark H Standard Specification, Revision 2.1.0,” Transac-
tion Processing Performance Council, Tech. Rep., 2002.

A. Schmidt, D. Kimmig, and R. Hofmann, “A first step towards a
query optimizer for column-stores,” Poster presentation at the Forth
International Conference on Advances in Databases, Knowledge, and
Data Applications, DBKDA’12, Saint Gilles, Reunion, 2012.

D. Slezak and V. Eastwood, “Data warehouse technology by infobright,”
in Proceedings of the 2009 ACM SIGMOD International Conference on
Management of data, ser. SIGMOD ’09. New York, NY, USA: ACM,
2009, pp. 841-846.

J. K. Ousterhout, “Scripting: Higher-Level Programming for the 21st
Century,” IEEE Computer, vol. 31, no. 3, pp. 23-30, 1998.

M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4, pp.
316-344, 2005.

M. Herda, “Entwicklung eines Baukastens zur Erstellung von Column-
Store basierten Anwendungen Bachelor’s thesis, Department of Infor-
matics, Heilbronn University of Applied Sciences, Germany,” Jun. 2011.

J. Herrington, Code Generation in Action. Greenwich, CT, USA:

Manning Publications Co., 2003.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

Theoretical and Practical Implications of User Interface Patterns Applied for the
Development of Graphical User Interfaces

Stefan Wendler, Danny Ammon, Teodora Kikova, Ilka Philippow, and Detlef Streitferdt

Software Systems / Process Informatics Department
Ilmenau University of Technology
Ilmenau, Germany
{stefan.wendler, danny.ammon, teodora.kikova, ilka.philippow, detlef.streitferdt} @tu-ilmenau.de

Abstract — We address current research concerning patterns
dedicated to enable higher reusability during the automated
development of GUI systems. User interface patterns are
promising artifacts for improvements in this regard. Both
general models for abstractions of graphical user interfaces
and user interface pattern based concepts such as potential
notations and model-based processes are considered. On that
basis, the present limitations and potentials surrounding user
interface patterns are to be investigated. We elaborate what
theoretical implications emerge from user interface patterns
applied for reuse and automation within user interface
transformation steps. For this purpose, formal descriptions of
user interface patterns are necessary. We analyze the
capabilities of the mature XML-based user interface
description languages UIML and UsiXML to express user
interface patterns. Additionally, we experimentally investigate
and analyze strengths and weaknesses of two general
transformation approaches to derive practical implications of
user interface patterns. As a result, we develop suggestions on
how to apply positive effects of user interface patterns for the
development of pattern-based graphical user interfaces.

Keywords — graphical user interface development; model-
based software development; HCI patterns; user interface
patterns; UIML; UsiXML

L INTRODUCTION

Interactive systems. Interactive systems demand for a
fast and efficient development of their graphical user
interface (GUI), as well as its adaptation to changing
requirements throughout the software life cycle. In this
paper, E-Commerce software serves as a representative of
these interactive systems. Currently, these are a fundamental
asset of modern business models providing B2C interaction
via online-shops. In many cases, such systems are offered as
standard software, which allows several customization
options after installation. In this context, they are
differentiated into the application kernel and a GUI system.

The application kernel software architecture relies on
well-proven and, partially, self-developed software patterns.
Thus, it offers a consistent structure with defined and
differentiated types of system elements. So, the design has a

This is a revisited and substantially augmented version of “Development of
Graphical User Interfaces based on User Interface Patterns”, which
appeared in the in Proceedings of The Fourth International Conferences on
Pervasive Patterns and Applications (PATTERNS 2012) [1].

positive influence on the understanding of the modular
functional structures as well as their modification options.

Limited customizability of GUIs. Contrary to the
application kernel, the customization of the GUI is possible
only with rather high efforts. An important reason is that
software patterns do not cover all aspects needed for GUIs.
These patterns have been commonly applied for GUIs [2][3],
but in most cases they are limited to functional and control
related aspects [4]. The visual and interactive components of
the GUI are not supported by software patterns yet.
Furthermore, the reuse of GUI components, e.g., layout,
navigation structures, choice of user interface controls (UI-
Controls) and type of interaction, is only sparsely supported
by current methods and tools. For each project with its
varying context, those potentially reusable entities have to be
implemented and customized anew, leading to high efforts.

Moreover, the functional range of standard software does
not allow a comprehensive customization of its GUI system.
The GUI requirements are very customer-specific. In this
regard, the customers want to apply the functionality of the
standard software in their individual work processes along
with customized dialogs. However, due to the characteristics
of standard software, only basic variants or standard GUIs
can be offered. So far, combinations of components of the
application architecture with a GUI are too versatile for a
customizable standard product.

User interface patterns. Along with other researchers
[5]1 [6] [7] [8] [9], we propose an approach to this problem
through the deployment of User Interface Patterns (UIPs).
These patterns offer well-proven solutions for GUI designs
[10], which embody a high quality of usability [11]. So far,
UIPs usually have not been considered as source code
artifacts, in contrast to software patterns. Current UIPs and
their compilations mostly reside on an informal level of
description [5]. The research towards formal pattern
representations is still in progress.

A. Objectives

In this paper, we elaborate that formal UIPs can assist in
raising effectiveness and efficiency of the development
process of a GUI system. For a start, we present and analyze
conceptual models for the GUI development to valuate and
position UIPs as unique artifacts. In this regard, we describe,
from a theoretical point of view, how reuse and automation
within GUI transformation steps can be established by the
deployment of UIPs.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

25

Moreover, we present and review current approaches
concerning the definition, formalization, and deployment of
UIPs within model-based software development processes
dedicated to GUI-systems. On this basis, we discuss the

limitations and possibilities of transformations into
executable GUIs. For that purpose, two different
transformation approaches have been experimentally

investigated. These approaches will be assessed facing two
different GUI dialog examples. As a result, we derive
practical implications of UIPs and develop suggestions, how
the positive effects of UIPs for the development of GUIs can
be applied. Finally, influences resulting from the use of UIPs
in the development process are discussed.

B. Structure of the Paper

In Section II, selected state of the art and related work
according to general applicable models for the GUI
development are presented. The next section is dedicated to
the current state of concepts and processes already applying
UIPs as software artifacts. Both parts of related work are
assessed according to our objectives in Sections IV and VI
respectively. Subsequently, the theoretical implications of
UIPs on the development process for GUIs are elaborated in
Section V. Afterwards, Section VII presents our two
approaches for the transformation of formal UIPs into source
code. The practical implications of UIPs resulting from their
application in experimental transformations are presented in
Section VIII, which also combines the findings of Sections V
and VII for discussion. Finally, our conclusions are drawn
and future research options are outlined in Section IX.

II. RELATED WORK: GUI DEVELOPMENT PROCESSES

The development of GUI systems still remains a
challenge in our days. To discuss the activities and potentials
of UIPs independently from specific software development
processes and requirement models, we refer to generic model
concepts. In the following sub-sections, we present two
models, which describe activities and capture work products
of the GUI specification process. Additionally, an early
generation concept for GUI systems is presented.

A. GUI Specification Process and Model Transformations

A general GUI specification model. In reference [12],
Ludolph elaborates the common steps of a GUI specification
process. To master the complexity that occurs when deriving
GUI specifications from requirement models, Ludolph
proposes four model layers and corresponding
transformations built on each other. Three of them, being
relevant in our context, are depicted in Figure 1.

Essential model. By the essential model, all functional
requirements and their structures are described. This
information consists of the core specification, which is
necessary for the development of the application kernel.
Examples for respective artifacts are use cases, domain
models and the specification of tasks or functional
decompositions. These domain-specific requirements are
abstracted from the realization technology, and thus, from
the GUI system [12].

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

Essential
;/s[zd:la Relationships -3 Objects - > Tasks > Use Cases
User . [e e > .
Model Relationships Objects Operations ---- > Task Tree = User Scenarios

Models of Human
Perception and Behavior

Platform
Guidelines

Graphic
Guidelines

User

Windows --=> Views
Interface

UI-Controls ---= Interactions Layout

Figure 1. Model transformations of the GUI
development process based on [12]

Legend

Transformation Derivation

Consequently, a GUI specification must be established to
bridge the information gap between requirements and a GUI
system.

User model. A first step in the direction of GUI
specification is prepared by the user model. With this model,
the domain-specific information of the essential model is
picked up and enhanced by so-called metaphors. The latter
symbolize generic combinations of actions and suitable tools,
which represent interactions with a GUI. Examples of
metaphors would be indexes, catalogues, help wizards or
table filters. The principal action performed by these
examples is a search for objects. How this action is carried
out may differ, since the respective metaphors embody
varying functionality to be accessed by the user in order to
find objects.

The tasks of the essential model have to be refined and
structured in task trees. For each task of a certain refinement
stage, metaphors are assigned, which will guide the GUI
design for this part of the process. In the same manner, use
cases can be supplemented with these new elements in their
sequences to describe user scenarios.

User interface. This model is used for establishing the
actual GUI specification. Through the three parts rough
layout, interaction design and detailed design [12], the
appearance and behavior of the GUI system are concretized.
The aim is to set up a suitable mapping between the elements
of the user model and views, windows, as well as Ul-
Controls of the user interface. For the metaphors chosen
before, graphical representations are now to be developed.
The objects to be displayed, their attributes and the relations
between them are represented by views. Subsequently, the
views are arranged in windows according to the activities of
the user scenarios, or alternatively, to the structure of the
more detailed task trees. In these steps, there are often
alternatives, which are influenced by style guides or the used
GUI library and especially by the provided UI-Controls. At
the same time, generic interaction patterns are applied as
transformation tools, which also have an impact on the
choice of UI-Controls.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

26

B. Cameleon Reference Framework

User interface challenges. In reference [13],
Vanderdonckt presents a GUI specification and development
model, which is more concerned with handling
environmental and non-functional requirements of GUI
systems. The challenges to overcome are represented by
different user skills and cultures. In addition, a user interface
should be aware of different usage contexts and respective
user intentions as well as working environments and
individual capabilities of devices the user interface is running
on.

Need for automation. GUI development is tedious when
facing the above mentioned challenges, and thus,
Vanderdonckt states in [13] that normally, GUIs would have
to be developed for each context or device separately. A
reason is given by the difficulty to source common or shared
parts of the user interfaces. Since architectures and final code
or frameworks have a great impact on the final shape of the
certain user interfaces, the potential reuse is largely limited.
Finally, advice is given to employ model-driven software
development techniques within a GUI development
environment.

To approach a solution, which copes with both the
challenges and need for model-driven development,
Vanderdonckt proposes a methodology, which consists of
GUI modeling abstractions or steps besides a method and
tool support. The proposed four modeling steps [13],
originated from [14], are described in the following
paragraphs:

Task & Concepts (T&C). The tasks to be performed by
the user, while interacting with the GUI-system, are specified
during this step. Additionally, domain concepts relevant to
those tasks are specified as well.

Abstract UI (AUI). With the AUI, rasks are being
grouped and structured by Abstract Interaction Objects
(AIOs): Individual Components and Abstract Containers are
both sub-types of AIOs and form the main elements of an
AUI These resemble rather abstract entities serving for
definition and structuring purposes only. Thus, AIOs come
without any technical appearance or other format of
imagination, since the options to shape them are very
different during the next two modeling steps and should be
preserved for developers. Besides the structuring of AIOs, an
AUI specifies very basic interaction information such as
input, output, navigation and control [5], which is defined
independently from modality. Finally, the AUI acts as a
“canonical expression of the rendering of the domain
concepts and tasks” [13].

Concrete UI (CUI). The CUI refines the elements of an
AUI to a complete but platform-independent user interface
model. In this regard, Concrete Interaction Objects (CIOs)
refine the AIOs of the AUIL CIOs resemble a chosen set of
both Ul-Controls or containers and their respective
properties. While resembling an abstraction, the CUI
“abstracts a FUI into a UI definition that is independent of
any computing platform” [13].

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

Tasks & Tasks Domain Concepts
Concepts
(el Graph Transformations >
Abstract User
Abstract Containers Individual Components
Interface (AUI) P!
< Graph Transformations > g
=
&
Concrete User
Graphical Containers Graphical Individual Components
Interface (CUI) P P P
< Rendering el
Final User
Platform-Specific User Interface Components
Interface (FUI) P P
oo —_—
Legend Transformation ‘

Figure 2. Modeling steps of the Cameleon Reference Framework based
on [13] and implemented by UsiXML [15]

Final Ul (FUI). As the last refinement, the FUI
represents a certain device or platform specific user interface
model. So, it embodies the final user interface components
running in that specific environment.

The above described modeling steps are depicted by
Figure 2, which is focused on graphical user interface
implementations, as this is the case for its source [13].

UsiXML. To express the occurring models within these
modeling steps, the GUI specification language UsiXML
(user interface extensible markup language) [15] has been
developed. Concerning the modeling facilities for the CUI
step, UsiXML offers a specific set of CIOs sourced from
common UI toolkits or frameworks. Therefore, the available
modeling elements represent an intersection set of common
GUI element sets.

C. Generators for graphical User Interfaces

To raise efficiency in GUI development, concepts and
frameworks have been invented, which are able to generate
complete GUI applications based on a partly specification of
the application kernel or comparative model bases. Here,
Naked Objects [16] and JANUS [17] can be mentioned. Both
rely on an object-oriented domain model, which has to be a
part of the application kernel. Based on the information
provided by this model, standard dialogs are being generated
with appropriate UI-Controls for the repetitive tasks to be
carried out in conjunction with certain objects. For instance,
to generate an object editor for entities like product or
customer, certain text fields, lists or date pickers are selected
as Ul-Controls, which match the domain data types of the
selected domain object for editing.

III. RELATED WORK: USER INTERFACE PATTERNS

In this part of related work, we present definitions,
notations and concepts that address or employ patterns
specific for model-based user interface development.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

27

A. User Interface Pattern Definition and Types

Current research has been discussing Human-Computer-
Interaction (HCI) patterns [18] and especially User Interface
Patterns (UIPs) for a longer period [19] [5] now. A UIP can
be defined as a universal and reusable solution for common
interaction and visual structures of GUIs. UIPs are
distinguished by two types according to Vanderdonckt and
Simarro [5]:

Descriptive UIPs. Primarily, UIPs are provided by
means of verbal and graphical descriptions. In this context,
UIPs are commonly specified following a scheme similar to
the one used for design patterns [20]. By reference [21], a
specialized language for patterns was proposed, which is
named PLML (pattern language markup language). Details
about the language structure can be found in [22] as well as
its XML DTD in [5]. A practical application of its
descriptive capabilities for several types of patterns, which
may occur in conjunction with the Cameleon Reference
Framework, is also outlined in [5].

UIP-Libraries. UIP libraries such as [23], [24], and [25]
provide numerous examples for descriptive UIPs. Based on
the presented categories, concepts about possible UIP
hierarchies and their collaborations can be imagined.

Formal UIPs. Generative UIPs [5] are presented rarely.
In contrast to descriptive UIPs, they feature a machine-
readable form and are regarded as formal UIPs accordingly.
The format for storing such UIPs may constitute of a
graphic, e.g., UML [19] or XML based notation [26] [8] [9].
The formal UIPs are of great importance, since they can be
used within development environments, especially for
automated transformations to certain GUI-implementations.

B. Formalization of User Interface Patterns

In order to permit the processing of descriptive UIPs,
they have to be converted to formal UIPs. Possible means for
this step can be provided by formal languages applied for
specifying GUIs. These languages, however, have been
designed for the specification of certain GUIs and were not
intended for a pattern-based approach in the first place. Until
now, there is no specialized language available for
formalizing UIPs.

UsiXML and UIML. In our preparation, we conducted
an extensive investigation on formal GUI specification
languages and their applicability for UIPs. As result, two
languages with an outstanding maturity have been identified.

Intentionally, the XML-based languages UsiXML [15]
and UIML [27] were developed for specifying a GUI
independently from technology and platform specifics.
However, such languages may be applicable for UIPs. One
the one hand, UIML offers templates and associated
parameters for reusing pre-defined structures and behavior of
GUI components. On the other hand, UsiXML is designed to
implement the Cameleon Reference Framework, which
already propagated higher reuse by its abstractions of GUI
modeling steps as well as automated processing by model-
driven software development techniques. Moreover, both
indeed have been applied in model-based processes or have
been extended for that context. More information on that is
provided in Section III.C.

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

IDEALXML. To raise the efficiency of GUI
development environments, tools are necessary that facilitate
formal specifications of UIPs with regard to language
definitions and rules. A widespread tool concept for
UsiXML is presented with IDEALXML [13] [S]. By using
the various models defined by UsiXML as an information
basis, many aspects of a GUI and additionally the applied
domain model of the application kernel are included in the
GUI specification. As a result, a detailed and comprehensive
XML specification for the GUI can be created. Many aspects
of the user model from [12] are already included.

C. Model-based Processes with User Interface Pattern
Integration

The pattern conception emerged from the HCI research
has already been taken into consideration for model-based
software development of GUI-systems. Researchers have
introduced several model frameworks and notations to
express generative UIPs, and thus, enable formalization
facilities for descriptive UIPs. A common basis assumed for
all different processes is a task based user model that is
exploited to derive dialog and navigation structures of the
user interface. Yet, all approaches have not reached a
sufficient maturity level according to the available
publications. They still were drafting or enhancing their
processes, tools or notations as they had been by challenged
relevant issues surrounding generative pattern definition and
application.

Queen’s University Kingston. Zhao et al. [6] proposed
the detailed modeling of tasks in order to be able to group
them into segments, which are being transformed to dialogs
displaying the associated data or contained sub-tasks.

As challenges for future work, two main aspects
remained: the evaluation of achieved usability by the pattern
application and the extension of customization abilities of the
underlying framework to allow the definition of specific UlI-
Controls and even patterns to be integrated into the
established process were suggested in [28]. In addition, the
integration of more user interface patterns along with
guidelines for final UI design as well as an enhancement of
the task analysis to exploit more information relevant for Ul
generation were outlined in [6] as future work.

University of Rostock. Radeke et al. [29] presented a
modeling framework that would be capable of employing
patterns for all involved models (task, dialog, presentation
and layout). Since the approach was focused on task
modeling and respective patterns, the derivation of dialog
structures was a main outcome. In order to enhance their
capabilities towards pattern application for CUI models,
UsiPXML (user interface modeling pattern language) was
introduced in [26] as a notation to express all kinds of
involved patterns. Being based on UsiXML as well as
PLML, the new notation incorporated enhancements like
structure attributes and variables to allow for a context-
specific instantiation of a defined pattern.

However, future challenges were stated as follows. The
need for enhanced tool support and the definition of more
complex patterns was raised in [30]. Moreover, the pattern
representation on the CUI level with UsiXML should be

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

28

revised as well according to [31]. Lastly, the expansion of
the set of available patterns and the concept of pattern inter-
relationships were relevant considerations in [26]. For the
latter, the research question about how task and dialog
patterns would influence other patterns situated on lower
levels is left open.

University of Augsburg. An alternative modeling
framework integrating patterns on selected model stages was
suggested by Engel and Miirtin in [8]. Rooted in principles
on the structuring of pattern languages [32], the main
emphasis was laid on the hierarchy of patterns and their
notation [33], which was based on a custom XML DTD for
the generative part.

For the encountered challenges, future activities were
considered, which would enrich the implementation aspects
of pattern descriptions [34] and deliver concepts of pattern
relationships. In the focus of transformations, future work
was seen for the derivation of concrete Ul models from
abstract ones [35].

University of Kaiserslautern. Starting with criticism of
recent approaches of other researchers, Seissler et al. [9]
proposed a third modeling framework with comparative
models and patterns, but they employed different notations
and introduced a suggestion for a classification of pattern
relationships. Additionally, the need for runtime adaptation
of user interfaces was considered [36] as well as the concept
of encapsulation of UIML fragments [9] within their notation
to express user interface patterns.

They emphasized on tool support for pattern instantiation
or the adaptation of patterns to different contexts of use that
may even change at runtime [36]. Moreover, a proper tool
for pattern selection and integration as well as the refinement
of inter-model pattern relationships were stated as future
challenges in [9]. The latter was considered to reflect the
relations between pattern of different abstractions in order to
offer better modularization and provide options for patterns
that may be better suited for a specific context. Finally,
Seissler et al. recognized in [9] that their future work should
extend the pattern language for further testing of their
notation approach.

IV. MODEL CONSIDERATIONS FOR DEPLOYING USER
INTERFACE PATTERNS

This section is intended to discuss the first part of related
work presented in Section II. Before the more advanced
concepts of Section III are addressed, the transition of
traditional GUI specification and development towards a
pattern-based solution shall be attended to. In this context,
we outline the possible deployment of UIPs in development
processes referring to both conceptual models elaborated by
Ludolph and Vanderdonckt.

A. Review of the GUI Specification Model by Ludolph

Model transformations as described by Ludolph [12]
illustrate a detailed account of relevant model elements for
the GUI specification of the covered domain. However, any
transformations are carried out manually. Besides that, no
automation and only few options for reuse are mentioned.

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

However, artifact dependencies are detailed and the
transformation of essential model requirement elements to
certain user interface model elements is outlined. For the
final transformation, Ludolph suggests manual and cognitive
means of transformation, which lead to clearly defined
dependencies between user model and user interface entities.
These prerequisites are ideal to be considered in the
discussion on how UIPs influence artifacts. Particularly, it is
of interest, how a GUI specification can be developed
starting from a basis of functional requirement artifacts and
using UIPs as bridging elements for transformations.

B. Review of the Cameleon Reference Framework

Relevance. From our point of view, the Cameleon
Reference Framework as presented in [13] resembles a
valuable model foundation or mental concept for UIPs, since
it addresses the following two aspects. Firstly, GUI
development activities and related tool support to decide on
automation steps are covered. Secondly, pattern deployment
possibilities and related abstractions may be derived. In this
regard, a developer can decide on the granularity, reach and
modularization of potential patterns while having the four
segregated modeling steps on his mind. However, the latter
aspect was not met by the original source and is only
inspired.

GUI development aspect. As far as the first aspect is
addressed, the proposed model abstractions or steps resemble
UI concerns applicable to a wide range of different domains.
The model abstractions make sense as they address the
elaborated challenges in [13] by a separation of concerns.
The four steps have been introduced to handle the various
challenges or requirements by sharing or distributing them
across the abstractions. Consequently, the separation of
models enables different grades of reuse and an isolation of
particular challenges, as they are no longer bound to single
GUI models but to a set of models as proposed.

To approach the modeling steps, a strict top-down
decomposition procedure is not required. In contrast, the
entry point is variable so that one can start with an AUI or
CUI without tasks modeling at all. A user interface may be
subsequently abstracted or refined across the proposed
reification model stages.

Moreover, the steps aid both in forward and reverse
engineering, since they demand for explicitly capturing
implicit knowledge applied in both model transformation
paths: the refinement towards a FUI can be approached by
subsequent increase in detail, which is stored in segregated
models and their elemental notations. As the reification of an
AUI towards CUI is progressing, the elementary concepts
embodied by AIOs of different dialogs can be lined up to
identify reoccurring structures. In this respect, AIOs are an
abstraction and so they do share the commonalities of certain
GUI structures. Consequently, identified AIO structures offer
potentials to discover UIPs for the particular domain during
the transition to the CUL

Concerning reverse engineering, the abstraction of a
given FUI or CUI model to abstract grouped tasks embodied
by AIOs is also supported. The derived AUI may be reified
to another platforms’ CUL If an AUI was already created by

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

29

forward engineering, a modeling step could be avoided for
the migration to other platforms or devices.

For practical implementation, transformation means or
tools mentioned as in the Ludolph model are missing.
Although the models used for implementing the four steps
are closely related to the UsiXML language, the associated
metamodel as a potential implementation is still work in
progress. At usixml.org, no current version could be
consulted. Therefore, no detailed mappings like in the
Ludolph model could be depicted.

Pattern incorporation aspect. As respective
implementations of the Cameleon modeling steps, the
presented models in [13] and [5] currently do not outline the
reuse or modularization of artifacts. A proper pattern-based
view to overcome the manual “translation” [13] process
between available models still has to be invented. At last,
models or fragments of them can only be reused in their
completeness and are not abstracted further. Patterns may be
instantiated at various modeling steps (e.g., AUL CUI) as
suggested in [5], but can hardly be adapted to other contexts
without manual re-modeling. To conclude, an additional
abstraction inside modeling steps, which allows for pattern
definition and instantiation, is missing and is not provided by
the available sources.

As far as UIPs are concerned, these patterns should not
be associated to the AUI, since the latter is too abstract for
UIPs. Certain UI-Controls cannot be modeled or imagined
on the AUI level, so that a great portion of an individual
UIP’s characteristics cannot be expressed. The resulting
refinement work to “reify” [13] an AUI based UIP towards a
CUI representation would denote a considerable effort. For
instance, whenever a selection AIO is encountered inside a
UIP definition, there would be more than one possible
reification available like a combobox, listbox or a radio
group. Therefore, it could be implied that the model-to-
model transformation between AUI and CUI relied on
extensive manual configuration or intervention, as the CUI
does possess much more detail than the AUI. Otherwise,
strict rules to enable automated graph transformation may
prevent the expression of particular UIPs. Lastly, for the
particular domain addressed here, UIPs rely on the WIMP
(windows, icons, menus and pointer) paradigm, so AUI
considerations will not merit extensive reuse as this would be
permitted by a CUI model.

With respect to the CUI modeling stage, the applied
notation like UsiXML would have to reflect a chosen set of
Ul-Controls, events and containers as well as their chosen set
of properties. These sets may already limit the
expressiveness of UIPs or an issue would be the integration
of new types or properties. Due to the fact that particular
UIPs may exclusively address certain devices or platforms or
that other classifications of UIPs may restrict their reusability
to a certain domain [37], even the CUI level would be too
abstract to allow for an exact representation. If this aspect
would not pose an issue in a certain development
environment, UIPs clearly are to be settled on the CUI level,
since there are several advantages for keeping UIPs on that
particular abstraction level:

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

As mentioned in [13], a notation like UsiXML or even
UIML could be used to express UIPs on the CUI level
leading to the benefits of these languages. Firstly, for the
machine-readable XML languages no programming skills
would be needed. Secondly, with XML as a basis, the
notation would posses a standard format and vast tool
support (parsers, editors). Thirdly, ‘“cross-toolkit
development” [13] would be possible and UIP sources could
be kept independently from changing GUI platforms or
frameworks and lastly, programming languages.

C. Exertion of Ludolph and Cameleon Models

Current state of the art has proposed own specific model
frameworks as mentioned in Section III.C. These approaches
neither have achieved a truly reusable pattern-based solution
yet, nor have they positioned UIPs in relation to generally
applicable fundamentals. Since the transformations by
Ludolph or the Cameleon model have been formulated from
different perspectives, but still embody general concepts, we
take them into consideration to derive theoretical and
practical implications of UIPs.

Different focus. The model by Ludolph is focused on
particular artifacts, their transformations and related
measures. In contrast, the Cameleon Reference Model by
Vanderdonckt presents abstractions to treat environments,
devices, portability, and most notably, the software
production environment, as XML and automation or model-
driven software development are of the essence.

GUI transformations by Ludolph. The model
established by Ludolph can be considered as a refinement of
the Tasks & Concepts as well as the CUI level for graphic
user interfaces, since most artifacts can be allocated to one of
these levels. An AUI level is actually missing and only
implicitly established by the augmentation of user model
elements with metaphors. The final stage of the Ludolph
model can be defined in terms of the CUI when specification
notations like UIML or UsiXML-CUI are being used.

Cameleon. The Cameleon Reference Model is the more
abstract model as its details are to be defined by the
implementation language, especially by UsiXML, and the
particular context of use or domain. Due to the defined
modeling stages, pattern deployment and modularization
concerns can be approached more gentle rather than being
trapped in discussions of how to structure a pattern language
for certain artifacts [38].

Shared limitation. Both models do not feature a clearly
distinguished pattern dimension.

Reuse may be already addressed by Ludolph for GUI
structures within a certain project. For instance, the views
associated to certain objects may experience reuse in each
task they are handled by different operations. However,
objects tend to change in the face of different contexts,
domains, users and thus, real pattern-based reuse across
different projects is missing.

Although the pattern support for the UsiXML metamodel
was already inspired by Vanderdonckt as a “Translation”
[13] of models to different contexts and PLML-patterns in
the environment of IDEALXML [5], it has not been
implemented in the main language facilities of UsiXML yet.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

30

Exertion. The model by Ludolph is already detailed
concerning domain artifacts. Therefore, it will be used to
discuss both the theoretical and practical implications of
UIPs on artifact development stages. Nevertheless, it is not
suitable to position UIPs without the conception of a pattern
language or hierarchy. Mirtin et al. [32] [33] support a fine-
grained structure, which is clearly neglected by Seissler et al.
[9]. Furthermore, pattern relations are still to be outlined in
most model-based approaches as mentioned in Section III.C.
Assuming that a pattern language with appropriate pattern
relationships would have been elaborated, Ludolph’s model
may be customized for the particular domain, as it already
holds artifacts typical for business information systems.

The Cameleon Reference Framework will be taken into
consideration to position UIPs concerning their practical
implications. In this context, the abstraction level of UIPs
has to be discussed, i.e., how concrete UIPs should be
compared to implementation level GUI elements.
Additionally, technical considerations should be addressed
like the coupling to GUI frameworks and programming
languages. The most important fact is the positioning of UIPs
in the light of potential notations, which have been
introduced in Section III.B.

D. Limitations of GUI-Generators

In contrast to IDEALXML, which enables the extensive
modeling of the GUI, GUI-generators may generate
executable GUI code but they lack such a broad
informational basis. Therefore, GUI-generators have two
essential weaknesses:

Limited functionality. The information for generating
the GUI is restricted to a domain model and previously
determined dialog templates along with their UI-Controls.
Hence, their applicability is limited to operations and
relations of single domain objects. When multiple and
differing domain objects do play a role in complex user
scenarios [12], the generators can no longer provide suitable
dialogs for the GUI application. Moreover, extensive
interaction flows require hierarchical decisions, which have
to be realized, e.g., by using wizard dialogs. In this situation,
GUI generators cannot be applied. The connection between
dialogs and superordinate interaction design still has to be
implemented manually.

Uniform visuals. A further weakness is related to the
visual GUI design. Each dialog created by generators is
based on the same template for the GUI-design. Solely the
contents which are derived from the application kernel are
variable. Both layout and possible interactions are fixed in
order to permit the automatic generation. The uniformity and
its corresponding usability have been criticized for Naked
Objects [39]. Assuming the best case, the information for
GUI design is based on established UIPs and possesses their
accepted usability for certain tfasks. Nevertheless, the
generated dialogs look very similar and there is no option to
select or change the UIPs incorporated in the GUI design.

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

V. THEORETICAL IMPLICATIONS OF USER INTERFACE
PATTERNS

In this section, the theoretical implications of UIPs are
derived on the basis of considered models of Section IV and
the following scenario serving as a background.

A. Application Scenario: GUI Customization of Standard
Software

On the basis of the customization of GUIs for standard
software and the model transformations described in Section
II.A, the theoretical implications of UIPs are to be
considered. To present an example of standard software, we
refer to e-commerce software, which usually offers both a
front-end system for online-shopping and a back-end system
to manage orders and stock.

Common essential model. This kind of standard
software fulfils the functional requirements of a multitude of
users at the same time. Therefore, these systems share a well-
defined essential model that specifies their functional range
and has many commonalities along existing installations.
Standard software implements the essential model through
different components of the Application Kernel as shown in
Figure 3. Each installation consists of a configuration for the
Application Kernel, which includes many already available
and little custom components in most cases. In this context,
the User Interface acts as a compositional layer that
combines Core and Custom Services together with suitable
dialogs for the user.

Individual GUlIs for eShops. Concerning eShops, the
visual design of the GUI is of special relevance, since the
user interface is defined as a major product feature that
differentiates the competitors on the market. Hence, the
needs of customers and users are vitally important in order to
provide them with the suitable and individual dialogs. In this
regard, the proportions of components related to the whole
system are symbolized by their size in Figure 3.

cmp Customizing)

| User Model |

K

User Interface

g]
Core Dialogs

Custom Dialogs

B

T
'
T <
' gcally .- *. «calln
V _-° «cally .

o 0

Core Services Custom IServices

Application Kernel
g

Custom
Compo nents

Core Components

Essential Model

Figure 3. Components involved in the customization of standard software

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

31

In comparison to the Custom Components of the
Application Kernel the Custom Dialogs represent the greater
part of the User Interface and the customization accordingly.
Along with the customization of the application kernel there
is a high demand for an easy and vast adaptability of the
GUL

GUIs for custom services. The customization of the
GUI system is needed, as elements of the essential model
tend to be very specific after extensive customization or
maintenance processes. Thus, the standard user model as
well as the user interface can no longer be used for the
customized services. In this case, models have to be
developed from scratch and a corresponding solution for the
GUI has to be implemented.

Usability. The development of GUIs is caught in a field
of tension between an efficient design and an easy but
extensive customization. High budgets for the emerging
efforts have to be planned. Additional efforts are needed for
important non-functional requirements such as high usability
and uniformity in interaction concepts and low-effort
learning curve during the customization process of GUIs. For
realizing these requirements, extensive style guides and
corresponding user interface models often need to be
developed prior to the manual adaptation of the GUI. These
specifications will quickly lose their validity as soon as the
GUI-framework and essential functions of the Application
Kernel change.

B. Model Aspects of User Interface Patterns

With the aid of UIPs the time-consuming process of GUI
development and customizing can be increased in efficiency.
To prove this statement, the influences of UIPs on the
common model transformations of the Ludolph model from
Section II.A are examined in the next step. In Section V.C
potentials for improvements are derived from these
influences.

Metaphors and UIPs. Metaphors act as the sole
transformation tool between essential model and user model.
Since they lack visual appearances as well as concrete
interactions, the mapping of metaphors to the elements of the
essential model is very demanding. Metaphors will not be
visualized by GUI sketches prior to the transformation of the
user model.

Since UIPs are defined more extensively and concretely,
they can be applied as a transformation tool instead of using
metaphors. Descriptive UIPs feature a pattern-like
description scheme that, for example, is provided in the
catalogues in [23] and [24]. Thus, they offer much more
information and sometimes even assessments, which can
inspire the GUI specification. In addition, descriptive UIPs
do already possess visual designs that may be exemplary, or
in the worst-case, abstract.

With the user model, operations on objects have to be
specified. The metaphors do not provide enough information
for this step. In contrast, UIPs are definitely clearer
concerning these operations since they group UI-Controls
according to their tasks and do operationalize them in this
way. Interaction designs and appropriate visuals are
presented along with UIPs. These aspects would have to be

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

defined by on behalf of the developer using only the
metaphor.

When UIPs are used in place of metaphors for
formalization, these new entities can be integrated in the
tools for specifications. Concerning UsiXML, UIPs could
describe the CUIM. Task-Trees are already present in
UsiXML, so this concept of specification partly follows the
modeling concepts in [12] and thus may be generically
applicable.

User model and UIPs. With regard to the user model,
the numerous modeling steps no longer need to be performed
with the introduction of UIPs. Instead, it is sufficient to
derive the tasks from the use cases within the essential model
and allocate UIPs for these. Detailed task-trees no longer
have to be created, since UIPs already contain these
operations within their interaction design. Nevertheless, tasks
have to provide a certain level of detail to derive navigation
structures [29].

Interactions can already be specified in formal UIPs.
Later on, this information can directly be used for parts of
the presentation control of views or windows. As a result, an
extensive user scenario also is obsolete, as it was originally
needed for deriving the more detailed task-tree. Now it is
sufficient to lay emphasis on expressing the features of UIPs
and their connection to the tasks defined by the essential
model. The objects are also represented within the UIPs in an
abstract way. With the aid of placeholders for certain domain
data types, adaptable views for object data can already be
prepared in formal UIPs. Finally, much of the afore-
mentioned information of the user model now will be
provided by completely specified UIPs.

User interface and UIPs. UIPs provide the following
information for the user interface: Layout and interaction of
the GUI will be described by a composition of a hierarchy of
UIPs that is settled on the level of views and windows. When
creating the UIP-hierarchy, a prior categorization is helpful,
which features the distinction between relationship, object
and task related UIPs. This eases the mapping to the
corresponding model entities.

For interactions, the originally applied Models of Human
Perception and Behavior of Figure 1 are no longer explicitly
needed since they are implicitly incorporated in the
interaction designs of the UIPs. In this context, suitable types
of Ul-Controls are already determined by UIPs.
Nevertheless, a complete and concrete GUI-design will not
be provided by UIPs, since the number, ordering and
contents of UI-Controls depend on the context and have to
be specified by the developer with instance parameters
accordingly. In the same way, Platform and Graphic
Guidelines act as essential policies to adapt the UIPs to the
available GUI-framework and its available UI-Controls.

Conclusion. We explained that UIPs might cover most
parts of the user model as well as numerous aspects of the
user interface. By using UIPs in the modeling process, these
specification contents can be compiled based on the
respective context without actually performing the two
transformations from Figure 1 explicitly. Basically, the
transformation to the target platform remains as depicted in
Figure 4.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

32

Essential
Model

Relationships -------=> Objects Tasks Use Cases

Platf
f“ o.r m User Interface Patterns
Guidelines

Windows -—-=> Views

Graphic
Guidelines

User

UI-Controls ---=> Interactions
Interface

Layout

Transformation Derivation ‘

Figure 4. GUI transformations with the aid of UIPs and automation

Legend

C. Influence of User Interface Patterns on GUI-
Transformations

In this section, the potentials of UIPs related to the GUI
specification process are summarized from a theoretical
perspective.

Reuse. By means of UIPs, the transformational gap
between essential model and user interface can be bridged
more easily since reuse of many aspects will be enhanced
significantly. Thereby UIPs are not the starting point of
model transformations; they rather serve as a medium for
conducting needed information for the transformations. The
information originally included in the user model and parts
of the user interface are now extracted from the selection and
composition of UIPs.

Layout and interaction of windows as well as the
interaction paradigm of many parts of the GUI can be
determined by a single UIP configuration on a high level in
hierarchy. This superordinate GUI design can be inherited by
a number of single dialogs without the need for deciding
about these aspects for each dialog in particular.

Many interaction designs can be derived from initial
thoughts about GUI design for the most important use cases
and their corresponding tasks. When a first UIP
configuration has been created, the realization of the Graphic
and Platform Guidelines therein can be adopted for other
UIP-applications since the target platform is the same for
each dialog of a system. Especially when user scenarios
overlap, meaning they partly use the same views or windows
as well as object data, UIPs enable a high grade of reuse. UIP
assignments, already established for other fasks, can be
reused with the appropriate changes.

E-commerce software tends to use many application
components together although they are offered by different
dialogs as illustrated in Figure 3. UIPs can contribute to a
higher level of reuse in this context. Depending on the
possible mapping between Application Kernel components
and UIP-hierarchy, new dialogs can be formed by combining
the views of certain services which are determined by their
assigned UIPs.

Reuse and usability. Besides reuse, UIPs ensure that
multiple non-functional requirements will be met. As proven
solutions for GUI designs their essential function is to enable
a high usability by the application of best-practices or the
expression of design experiences. In this context, they
facilitate the adherence of style guides by means of their
hierarchical composition.

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

Technically independent essential model. It is a
common goal to keep elements of the essential model free
from technical issues. Thus, the essential model has no
reference to the GUI specification. Therefore, it is not
subject to changes related to new requirements, which the
user may incorporate for the GUI during the lifecycle of the
system. User preferences often tend to change in terms of the
visuals and interactions of the GUI. Concerning use cases,
this rule of thumb is elaborated in [40] and [41]. Technical
aspects and in particular the GUI specification are addressed
in separate models such as user model and user interface
according to [12]. After changes, these models have to be
kept consistent what results in high efforts. For instance, a
new or modified step within a use case scenario has to be
considered in the corresponding user scenario, too.

By assigning UIPs to elements of the essential model,
explicit user models and the prior checking of consistency
between these models both become obsolete. Instead, user
models will be created dynamically as well as implicitly by
an actual configuration of UIPs and essential model
mapping. The approach of Zhao et al. [6] strictly follows this
concept. A technical transformation to the source code of the
GUI that relies on the concrete appearances of the UIPs
remains as shown in Figure 4. By modeling assignments
between UIP and task or between UIP and object, the
number of UlI-Controls, the hierarchy and layout of UIPs,
sufficient and structured information on the GUI system is
provided. Subsequently, a generator will be able to compile
the GUI suited for the chosen target platform. These
theoretical influences enable an increased independence from
the technical infrastructure, since the generator can be
supplied with an appropriate configuration to instantiate the
UIPs compatible to the target platform and its specifics.

Modular structuring of windows and views. Common
to software patterns, UIPs reside on different model
hierarchies. Dialog navigation, frame and detailed layout of a
dialog can be characterized by separate UIPs. The views of a
window can be structured by different UIPs on varying
hierarchy levels. Thus, a modular structure of dialogs is
enabled. In addition, versatile combinations, adaptability and
extensibility of building blocks of a GUI will be promoted.

VI. REVIEW OF UIP NOTATIONS AND APPLICATIONS

In this section, both potential notations and applications
of UIPs are reviewed.

A. Review Criteria for XML GUI Specification Languages

Both languages are to be assessed by the following
criteria:

Pattern variability criterion. The main criterion to be
supported by a formalization language is the ability to allow
the developer to abstract certain model structures to patterns.
Each pattern embodies some points of variability to express a
solution that is applicable and adaptable to a number of
contexts. For instance, Figure 5 displays on the upper right
hand side two exemplary UIP sketches. On the lower left
hand side of Figure 5 possible UIP applications are drafted.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

33

Dialog 1 28]
Ccﬂ'@gcriesi Products -
N D « S
Name:]: Butten Bar UIP i
/
Dialog 2 LB
Product 1 " — iﬁ » Cnmpasifiayi |_||E|||><J
e || G) e R C_ 1
i -
i Property | Value
n 59921 -
| Active | ™ 5

Figure 5. Schematic UIP examples and instances used in GUI dialogs

An apparent variability point of each illustrated UIP is
the number of elements of the defined structure, e.g., how
many buttons will appear in a certain UIP instance.

Content criteria. Besides the pattern abstraction
criterion, three additional criteria are relevant for UIPs to be
formalized. Firstly, the visuals to appear in the pattern
structure have to be specified. In some cases certain Ul-
Control types make up the main impact of a certain UIP. For
instance, the patterns “Collapsible Panels”, “Carrousel”,
“Fly-out Menu” and the “Retractable Menu” sourced from
[23] require certain Ul-Controls that enable animation
effects. It is important for the formalization to express Ul-
Controls that enable the desired interaction as close as
possible while retaining a CUI level specification. Secondly,
the layout of modeled structures has to be defined. Thirdly,
stereotype behavior that is represented by the UIP has to be
expressed.

B. UsiXML User Interface Pattern Abstraction Capability

Issues. The assessment of UsiXML is not an easy task
compared to UIML. This is due to the facts that UsiXML is a
far more complex language supporting most levels of
Cameleon and it is not documented by a comprehensive
specification with integrated examples as this is the case for
UIML. At the time of writing, only older metamodels [42] of
UsiXML and the W3C submission [43] of the AUI model
[44] were available, possibly not reflecting new features.

Variability points. At its current state, whenever a
pattern is to be expressed in UsiXML CUIL the variability
points have to be avoided and specified directly. More
precisely, it is only possible to specify a certain button bar or
tab navigation instance with UsiXML. As far as we know,
there is no way to parameterize the number of desired
buttons or tabs. Thus, the described user interface structure
looses on genericity [5]. Only the generativity [5] for a
certain context and the platform- or device independence of
the pattern remains on the CUI model of UsiXML. Other
variability points for behavior and layout may be identified
and reviewed. Unfortunately, this basic variability concern is
a knock-out criterion.

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

IDEALXML. According to IDEALXML and its pattern
expression capabilities [5], it was not mentioned how UIPs
are being expressed in models such as the AUI or CUI model
as reusable artifacts. Thus, it seems the patterns being
modeled with the IDEALXML environment are always
special instances to be manually adapted to new or changing
contexts.

AUI patterns. Nevertheless, the AUI model and
IDEALXML tool still might be mighty assets for pattern
formalization. Following this thought, a developer would
have to create AIOs of desired facets to model certain
portions of a pattern, e.g., a single control facet for the button
bar UIP or a single navigation facet for the tab navigation
UIP of Figure 5. The modeling would solely be based on
abstract structuring and interaction definition, as there would
be no visual impressions of the final user interface. Later on,
the instantiation of an AUI model pattern towards a CUI
model would be prone to demand for fine-grained
information, as each AIO would have to be configured
individually to represent a specific set of CIOs and thus UlI-
Controls. In addition, language facilities would be needed to
determine if an AIO was to be instantiated once or several
times for a CUL In any case, the modeling of UIPs with the
UsiXML AUI model does not seem to be practical feasible,
since user interface engineers would have a hard time to
imagine the results. Finally, UIPs from public or corporate
libraries could not be modeled with an adequate level of
detail with respect to content criteria introduced in the
previous section.

C. UIML User Interface Pattern Abstraction Capability

Reuse by templates. The UIML language facilities may
enable the storing of UIPs. More precisely, UIML provides
templates for the integration and reuse of already defined
structures in new GUI formalizations [45]. The templates
even may be parameterized, hierarchically nested and
incorporated in the same way as ordinary <part> or
<structure> elements [45]. Additionally, UIML templates
may be used to restructure present <part> elements within a
UIML document by the mechanisms of replace, union and
cascade [45].

Sourcing of templates. UIML templates can only be
sourced by concrete UIML structures, e.g., an existing
<structure> or <part> element. The final element that
incorporates any template must define certain values per
<template-parameters> tag, which holds constants for the
parameters of sourced templates [45].

Variability points. For UIPs to be stored inside a UIML
document variability points need to be maintained.
Therefore, it would be necessary to nest templates up to the
structure root. In other words, the resulting main UIML
document would have to resemble another template itself.

In this regard, even parameterized templates do not seem
to be able to store UIPs deployable for varying contexts,
since the respective parameters would have to be provided in
the main UIML document. Unfortunately, a main UIML
specification cannot be defined as a template that
incorporates other templates and defines their variability
point parameters, which would govern the elements of child

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

34

templates. In detail, it is not allowed for <structure> to define
parameters on that root level. Neither <interface>,
<structure> or <part> tags can define own parameters to be
processed by a pattern instantiation wizard [29] or similar
tool.

Separation of instances and templates. To resolve this
issue, a separation of UIML document types could be
attempted where UIP definition and UIP instantiation are
segregated. The UIML templates stand alone as separate files
and may promise some reuse. Those templates can be
sourced from the same or other UIML files. However, there
are some restrictions as follows. As stated in the UIML 4.0
specification [45], <part> tags can only source <part>-based
templates and <structure> tags <structure>-based templates
respectively. Possible scenarios, which can be derived from
this approach, are explained in the following sub-sections.

1) Sourcing several <part>-based Templates

In this approach, several UIML documents would each
specify a certain UIP with (hierarchical) templates and
respective parameters, repeated parts and maybe
restructuring actions or behavior as additional options. A
schematic example for this kind of solution related to the tab
UIP and “Dialog 1” of Figure 5 is provided by Figure 6.

Definition of placeholders. As shown on the right hand
side of Figure 6, one major UIML document would have to
define the particular UIP instance or complete dialog
(“Dialog 17) to be rendered. Separate container elements
would have to be defined in the main UIML document
serving as placeholders to be merged with the sourced
template by either the replace, union or cascade options. In
this regard, template parameters of UIML reside on the child
node level as outlined on the right hand side of Figure 6.
This implies that concrete parameters have to be passed to

UIML tab UIP template

UIP configuration

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

included templates and consequently, the final UIML
document describing the UIP instances would have to be
created for each application or dialog separately. In this way,
the UIP instance document would be sourcing several
smaller templates as lower level hierarchy <part> elements
within their <structure>.

Separate definition of individual UIP instances.
Finally, parameters would have to be provided and kept in
the UIML UIP instance document as shown in Figure 6.
Therefore, each UIP instance would have to be specified at
root node level separately. The main UIML document would
have to define the panels or containers to include UIPs into
the hierarchy of the virtual tree. This is due to the fact that
UIML template parameters may only be applied for root and
child node level.

2) Sourcing nested <part>-based Templates

The reuse of several <part>-based templates could be
approached, but contained structures would build a strict
hierarchy. As depicted on the left hand side of Figure 6, for
<part>-based templates only one root level container would
be possible, which combines several nested <part> elements
into the same sub-tree. Hence, the incorporation of two UIPs
at the same time would result in a “virtual tree” [45] with
equally ranked or nested elements inside the same container.
The main UIML document could only source both UIPs
within this strictly defined hierarchy and thus, the developer
would replace a <part> with both UIPs at once. According to
Figure 5, the tab UIP would be directly followed by the
button UIP inside the same panel and the dialog data
contents would be situated at the bottom differing from the
actual desired layout depicted in Figure 5.

UIML instance document

layer

(Number of
buttons)

Concrete

structure layer tabs)

| <d-template- |
| parameters> |

e

<part>

Root nodes . .
main container

Child nodes |

(Number of
iterations)

<repeat>

(Number of

! <template-parameters> :

|

— 1

¢ <part> 7 <part> J
. Categories ta._ Products tab

<structure>
dialog

| <template-parameters> :
| 2 buttons

Sy

2 tabs

<part” <part>
. Cancel but, OK button

— L= — =

Abstract (/ <part> N\ 7 N
structure layer abstracttab/ ‘" Ve
-— i S

- ~ - -~ N
(<behavior>) /\ <style>)
- —_ = e

Figure 6. Schematic UIML <part>-based template and its sourcing inside a UIML document

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

35

3) Sourcing <structure>-based Templates

UIP compositions. Complex UIPs or their compositions
like in Figure 5, forming entire new UIP units of reuse, could
be specified with <structure>-based templates and
hierarchical <part> elements. Following this approach,
parameters could be applied to denote the iterators for each
<part> at root node level included in the <structure>-based
template. This variant is illustrated in Figure 7. Additionally,
the cascade merging strategy could be used to preserve
elements not to be replaced and the main UIML document
would have to maintain a similar naming for <part> elements
to be replaced by the template. In Figure 7, the <part>
elements of both the template and UIML instance document
are named equally.

However, these kinds of templates can only replace,
cascade or union with one main <structure> element. Finally,
this implies that only one template can be included in a
UIML document using union or cascade at once. There is no
sourcing of multiple <structure>-based templates possible.

Limitations of UIML instance documents. The current
UIML template facilities are not a suitable solution for UIPs,
since a strong tool support should define an instantiation
configuration at design-time to raise efficiency and not the
UIML document itself. With UIML as the basic
configuration document there would be no overview about
required parameters and no checking of constraints, e.g., the
minimum, maximum or optional occurrence of elements), as
there is even no definition of them inside the UIML
document. UIML offers no visual aids in defining a UIP-
instance. To conclude, reuse would still be limited to certain
portions and GUI specification as well as configuration
would pose high efforts.

Moreover, the above discussed strategies for applying
UIML templates have another considerable drawback. The

UIML composite UIP template

UIP configuration
layer

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

<d-template-parameters> definitions only allow for flat
parameter structures. According to the presented examples,
only the number of occurrences of child elements can be
specified in the template and thus, configured in the UIML
instance document. We cannot think of a way how to
configure <style> information such as the label names for the
given UIPs.

Summary. To draw a conclusion, UIML offers rich
facilities like templates and restructuring mechanisms to
manipulate a “virtual tree” structure [45] of a CUI model.
Nevertheless, these capabilities are only valid for structure
elements enumerated and defined concretely. There is no
sufficient solution for the usage of a template, <repeat> or
<restructure> for abstract elements with variable
occurrences.

Currently, it seems that primitive UIPs may be defined
via <part>-based templates, but the template has to be
incorporated into a full UIML document and thus, variables
have to be defined concretely. In addition, the limitations of
parameter definition have to be taken into account.

In the following we provide a summary of current UIML
shortcomings.

4) Current UIML Limitations

No meta-parameters for UIML documents. UIML
provides no means to parameterize templates or UIML
documents even further; meaning the introduction of meta-
templates is not possible. UIML documents do not allow
variables to govern nested templates. A higher level UIP
configuration layer is missing, as indicated on the upper right
hand side of in Figure 6. Such a layer could compensate for
missing pattern support and allow nested parameterization
for the final UIML document.

UIML instance document

Concrete
structure layer

| <d-template- || //<structure>\.-~ r—
Root nodes .
| parameters> | main root

T

‘E (button
{ iteratior

| <template-parameters> |

| 2tabs,2 buttons |
PR ——— |

<structure>
dialog

- - =
Abstract 7 Zparts\ 7 Zparts\
structure layer (abstract) abstract)
_tab /£ _button ¢
~ 2 [

—_—= - -

o 4
~——

-~ ~ N
(<behavior>) /\ <style>
~, —_ = I

Figure 7. Schematic UIML <structure>-based template and its sourcing inside a UIML document

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

36

<!ELEMENT template (behavior| d-class| d-
component | constant| content| interface| logic|
part| layout| peers| presentation]

property| restructurel| rule| script| structure]|
style| variable| d-template-parameters)>

Figure 8. UIML 4.0 DTD [45] template tag definition

This way, the number of embedded template elements or
respective sub-ordinate UIP instance could be governed.
Currently, there is no reuse possible concerning root node
structure elements with UIML, since the root elements are
defined by the UIML UIP instance document itself. A
developer would need to use UIML for defining final dialogs
in detail this way.

Referencing abstract elements. Structure elements that
are sourced from templates need to be referenced explicitly
as this is needed for <style> and <behavior> sections for
example. Therefore, a developer cannot specify the
<behavior> or <style> of abstract elements or those yet to
appear or being instantiated at design- or run-time inside a
UIML document.

UIML DTD. Concerning the current UIML 4.0 XML
DTD [45] as listed in Figure 8, the definition of templates
may be faulty, since only one child element is currently
allowed.

For instance, that means either <structure>, <part> or <d-
template-parameters> are allowed as the solely child.
Restrictions limit reuse to certain UIP combinations: Either
one <structure>-based template in union or cascade as well
as multiple <part>-based templates inside separately defined
container elements are allowed. So a developer cannot
specify how many template instances would be needed.
Meta-parameters that would govern the individual template-
specific parameters are not yet supported.

UIPs already instantiated. In the end, UIML itself is not
capable of expressing complex UIPs. Only concrete template
instances can be used, as they are configured concretely per
<template-parameters> tag.

D. Review of Content Criteria

UI-Control types of UsiXML. According to UI-
Controls, UsiXML defines precisely which types of Ul-
Controls are available and what properties they can possess.
An additional mapping model would have to be created in
order to assign these elements to the entities of the target
platform.

UI-Control types of UIML. In comparison to UsiXML,
UIML offers a more flexible definition of UI-Controls, since
custom Ul-Controls as well as their properties can be
declared freely in the structure- or respective style-sections
[45] without the need to define them beforehand. To map
these structure parts to technical counterparts of the
implementation, UIML offers a peer-section. This separate
section can be used to specify a mapping between the parts
defined within the structure and any target platform GUI
component. The mapping to the GUI-framework can be
altered afterwards without the need for changing the already
defined UIPs. In addition, standard mappings can be defined
and reused for a certain platform. However, the type safety

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

like in UsiXML is not given. Thus, a homogenous usage of
types and their pairing with properties has to be ensured by
the developer and is not backed by the language specification
like this is the case for UsiXML.

Layout definition of UsiXML. Concerning layout,
UsiXML uses special language elements to set up a
GridBagLayout.

Layout definition of UIML. UIML offers two variants
for layout definition: Firstly, it is possible to use containers
as structuring elements along with their properties. The
containers have information attached that governs the
arrangement of their constituent parts. Secondly, UIML
provides special tags used for the layout definition. In
comparison to UsiXML, UIML has a more flexible solution
by defining layouts with containers that can be nested
arbitrarily.

Behavior definition. Related to behavior, both languages
define own constructs. Nevertheless, complex behavior is
difficult to master without clear guidelines for both.

E. Summary of XML GUI Specification Languages Review

Besides the considered criteria for review, the two
languages differ in indirect, supportive categories like
framework and tool support or documentation. Additional
comparison criteria and results of our evaluation are
presented by TABLE 1.

UsiXML and UIML may express structures similar to
UIPs to some extent, but these resemble already instantiated
patterns or their fragments. In fact, UIML may even express
assorted UIPs through its template facilities. Nevertheless,
these features are not sufficient for most UIP applications. In
sum, both languages are missing the capability to specify
UIPs properly.

F. Valuation of model-based Processes

Referring to the related work in Section III.C, promising
solutions that enable higher reuse through the selection and
instantiation of UIPs during specification and development
of GUI systems are in reach. However, the presented
approaches partly face the same challenges:

Common challenges. On the conceptual level, they need
to review pattern relationships, enhance notations or probe
the expression of more complex patterns or extend the set of
supported patterns. For public evaluation, working examples
of UIP instantiated to a certain context should be provided.
Concerning tool support, researchers have to develop or
enhance tools that aid in selection of appropriate patterns
under consideration of possible relations among them.
Moreover, tools are needed to guide the instantiation or
configuration of selected patterns for a given context.
Therefore, a solution finally adequate to fulfill each
individual project’s goals seems to be ahead of elaborate
work in the future.

Common issues. In sum, we see some issues relevant to
limit the effectiveness of further progress as follows.

Firstly, no detailed requirements or project goals have
been communicated along with the presentation of concepts.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

37

TABLE L. UIML AND USIXML IN COMPARISON
UIML UsiXML
language base XML XML

device-, modality- and

platform-independent platform-independent

application user interface .
P user interface
specification P
specification
by templates with
reuse of code parts y temp no
assigned parameters
more than one user
interface structure in yes no

one document

through behavioral
rules and replacement
mechanisms of code
parts

manipulation of
interface structures

no, only method calls
can be described

dynamic creation of
interface structures

referenced through
the use of variables

no, only static
description

2012: relative short,
meta model described
by class diagrams and

extensive, with
detailed language

language. specification 4.0 [45] short descriptions, no
documentation supplemented by))
descriptions and examples
03/2013: no updated
examples

meta model available

yes, implementation
of Cameleon
Reference Model
(Task, Domain, AUI,

corresponding
specification method
and modeling

no, focused on
implementation and

prototyping CUI models),
framework IDEALXML both as
method and tool
vast selection of tools
tool support GUI designer only (GUI designer,

renderer, modeling
framework, ...)

XSL transformation,
rendering tools
(XHTML, XUL,
Java)

XSL transformation,
or compilation by
own development

rendering

This hinders the evaluation of given approaches, and thus,
their own justification and comparison to other approaches is
hampered. More precisely, the UIPs defined as generative
patterns and their capabilities remain a vague concept.
Another considerable set-back is due to the fact that no
detailed code examples or notation details have been
presented yet.

Secondly, the general modeling framework and approach
have been outlined as main assets, but no detailed
architecture or transformations to code or final artifacts to be
interpreted have been discussed so far. Up to now, the
readiness of the approaches for practice or even their
invented notations has to be questioned. For a more precise
analysis of considered model-based processes reference [46]
may be consulted.

VII. EXPERIMENTAL APPLICATION OF UIPs IN GUI-
MODEL-TRANSFORMATIONS

Up to now, there have been no reports about experiences
in the practical application of formal UIPs. The particular
steps to be performed for a model-to-code-transformation

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

and the shape as well as the outline of a formalization of
UIPs are analyzed in the following sections.

A. Approach

To gain further insights about the practical implications
of UIPs, they have been experimentally applied by two
different prototypes. Similar to the probing of software
patterns, selected UIPs were instantiated for simple example
dialogs. These are illustrated in Figure 9.

Sketched examples. On the one hand, the examples

consisted of a view fixed in shape that contained the UIP
,,Main Navigation* [23] on the upper part. On the other hand,
the lower part shows two variants for a view whose visuals
are dependent on the input of the user.
Thereby, the UIP ,,Advanced Search* [23] was applied. This
UIP demands for a complex presentation control and is
characteristic for E-commerce applications. Depending on
the choice of the user, the view and interactions are altered.
The search criteria can be changed, deleted and added as
depicted in Figure 9 by two possible states. Both example
dialogs should have been realized by formalized UIPs and
one prototype.

Influences. Based on the current state-of-the-art
concerning potential UIP notations, model-based processes
employing generative patterns and the chosen example, we
opted for two considerable different approaches and
architectures.

Firstly, the potential GUI specification languages turned
out not being capable of storing UIPs in a satisfactory
manner. Only UIML was able to specify selected UIPs at
design-time.

Secondly, the available sources of existing approaches
provide no details about practical considerations and
architectures related to UIP instantiation. In addition, they
are affected by missing requirements for a definition and
vagueness concerning the notation format of UIPs.

Lastly, the chosen dialog examples pointed out, that
certain CUI models statically exists at specification time and
others are due to change at runtime. Thus, a dynamic
reconfiguration of a CUI model has to be considered.

Main Navigation - X

Catalogs I Prodnctsl Stockl Sitesl Searchl

Product Search Product Search

Attributes Search Criteria Add/Remove

ot = [El
[pice =] From |75 |- |

To [uos | -
[status x| [speciat offer | ﬂ

Search |

Attributes Search Criteria Add/Remove

INa.me j I Pzero® ;‘
IAssigned v| W Is Assigned J

Search |

Figure 9. Example dialogs used for prototypes

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

38

Seissler et al. [36] also have outlined this aspect, but have
not provided details yet. Finally, XML language capabilities
will not be sufficient to provide proper formalization for
dynamic user interfaces, as static user interfaces are already
restricted.

Generation at design time. To test the formalization of
simple UIPs and the generation of code for the examples, a
solution, which generates the GUI dialogs at design time,
was chosen. In general, the possibility to generate an
executable GUI with the aid of UIPs had to be proven. The
UIPs had to be completely defined at design time. Testing of
the prototype had to be conducted after the GUI system was
fully generated.

Choice of UIP notation. Regarding the structure of a
GUI-specification, UsiXML proposes numerous models in
order to separate the different information concerns domain
objects, tasks and user interface as required by the
underlying Cameleon Reference Framework. Not all the
models were mandatory in terms of the example, since no
explicit essential model was given. On the contrary, UIML
operates with few sections within one XML-document. This
is because the UIML format was easier to handle and learn
with respect to the simple example. With UIML we could
focus on the CUI to FUI transformation only.

In addition, on the basis of our review in Section VI
UIML proved to be better suited for the specification of
UIPs. Firstly, UIML is more compact in structure and
enables a higher flexibility for shaping the formalization.
Secondly, many of the language elements and models from
UsiXML were not actually needed for the UIP ,Main
Navigation®. Thirdly, even the ,,Advanced Search* example
could not profit from the vast language range of UsiXML,
since all possible variants for search criteria could not have
been formalized or even enumerated. At least UIML offered
the possibility to rely on templates in order to define all
possible lines of search criteria composed of simple UIPs.
UsiXML turned out to be too complex for these simple UIPs.
Due to the limitations in documentation and the metamodel,
it was not clear whether UsiXML permits the reuse of
already specified UIPs at the time of our experiments. So we
decided to apply UIML for the example dialogs.

Generation at runtime. The dynamic dialog Advanced
Search could not be realized by the first approach. Thus, a
solution had to be found that enables the instantiation of
UIPs at runtime. Thereby, it was of importance to keep the
platform independency of the UIML or respective CUI level
specification. The formal UIPs had to be processed directly
during runtime without binding them to a certain GUI-
framework.

In the following analysis, we mainly concentrate on the
latter approach where the instantiation of UIPs is executed at
runtime. In contrast, the generation at design time is an often
applied variant with respect to available approaches outlined
in Section III.C. This particular approach strongly relies on
the employed formalization language for UIPs. In fact, this
major asset is still challenged as seen in Section VLF.
Therefore, we can not provide further advances by practical
application.

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

B. Generation at Design Time

Foremost, the simple UIP Main Navigation was realized.
This informally specified UIP was formalized using the
chosen XML language. By means of a self-developed
generator, a model-to-code-transformation was performed to
create an executable dialog. Subsequently, the complete GUI
system was started without any manual adaptations to the
code.

Realization of ,,Main Navigation“. Java Swing was
chosen as target platform. For the UIML <peer> section we
decided to map the elements of ,Main Navigation“ to
horizontal JButtons instead of tabs.

In the formalization, the mandatory parameters for
number, order and naming of UI-Controls were specified. As
result, the UIP was described as an instance. The architecture
was structured following the MVC-pattern [1]. The sections
of UIML were assigned to components like this is illustrated
by Figure 10.

<Structure> and <style> were processed within the object
declarations (UI-Controls) of the View and its constructor.
Based on the <behavior> section, EventListeners were
generated acting as presentation controllers. For the Model
the <content> section was assigned. Hence, the UIP “Main
Navigation” formalized with UIML was transformed to
source code.

Realization of ,,Advanced Search*. Even by using the
UIML templates, this complex dialog could not be realized
by a generation at design time. It was not possible to
instantiate the formalized UIPs that were depending on the
choice of attributes at runtime.

Results. The prototype primarily was intended to prove
feasibility. This is because we chose a simple architecture
and did not incorporate a Dialog Controller for controlling
the flow of dialogs. The control was restricted to the scope of
the Ul-Controls of the respective UIP. Thus, the behavior
only covered simple actions like the deactivation of Ul-
Controls or changing the text of a label. Complex decisions
during the interaction process like the further processing of
input data and the navigation control amongst dialogs could
not be implemented.

cmp Generator architecture)

Generator Tool

GUI-System

fJ=-------—1 Java Code
wuse» Generator

Parser

Dialog Controller

' .
wusen « iven i
\ derive View

[
<structure> [~ """~ 7 1T
«tracen
<style> |je=------- R
«racen

~~~~~~~

«tracen
> e g
«racen Model

Figure 10. Architecture applied for code generation

UIML Document
UI-Controls

Constructor

EventListener

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

39



A corresponding superordinate control could have been
realized through a UIP-hierarchy in combination with
appropriate guidelines for the formalization of control
information. Despite the simplicity of the prototype, the
following insights could be gathered:

Informal UIPs could be converted to formal UIP
instances by using UIML as a formal language. Certain
guidelines needed to be defined for this initial step. The
layout of the example was specified by using containers for
the main window and their properties. As a result, the Ul-
Controls were arranged according to these presets.

Nested containers and complex layouts have not yet been
used for the experiment in this way. The <style> also was
described concretely within the UIML document as well as
the number and order of UI-Controls. The mapping of a
formal UIP to a software pattern was described according to
the scheme in Figure 10. Concerning the example Advanced
Search, only fixed variants or a default choice of criteria
could have been formalized. The generator could have
created static GUIs accordingly without realizing the actual
dynamics of this particular UIP.

C. Generation at Runtime

Since the Advanced Search UIP was very versatile and
could not be formalized with all its variants with a single
CUI model, the layout of the dialogs was fragmented.

By the means of a superordinate UIP the framing layout
of the view was specified in a fixed manner at design time. In
detail, the headline, labels and the three-column structure of
the view appropriate to a table with the rows of search
criteria were defined.

The mandatory but unknown parameters that determine
the current choice of criteria and UIPs had to be processed at
runtime. Accordingly, a software pattern had to be chosen
that is able to instantiate UIP representations along with their
behavior. This pattern had to act similarly to the builder
design pattern [20], which enables the creation and
configuration of complex aggregates. In [47] a suitable
software pattern was discovered, which is explained shortly
in the following paragraph and depicted in Figure 11:

Quasar VUI. The Virtual User Interface (VUI) is an
early concept included in Quasar (quality software
architecture) [48]. The VUI pattern follows the intention of
programming dialogs in a generic way. This means that the
dialog and its events are implemented via the technical
independent, abstract interfaces WidgetBuilder and
EventListener rather than using certain interfaces and objects
of a GUI-framework directly. By means of this concept, the
GUI-framework is interchangeable without affecting existing
dialog implementations. Solely the component Virtual User
Interface (VUI) depends on technological changes. Upon
such changes, its interfaces would have to be re-
implemented.

We are inclined that the VUI pattern implements some
aspects symbolized by the CUI Cameleon step. Rather than
specifying a certain CUI at design time and statically storing
this as a source, the VUI creates a Dialog in an imperative
way based on CUI level interface operation sequences.

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

cmp VUI )

Application
Kernel «cally

«sen

GUI
LI BT «use? | Framework

Dialo;
g WidgetBuilder

«calln

EventListener

Figure 11. Virtual user interface architecture derived from [47]

By wusing the interface WidgetBuilder, a dialog
dynamically can adapt its view at runtime. For instance, the
Dialog delegates the VUI to create and configure a new
window containing certain Ul-Controls.

The VUI notifies the Dialog via the interface
EventListener when events have been induced by UI-
Controls. Both interfaces have to be standardized for a GUI
system of a certain domain. This is essential to enable the
reuse of reoccurring functionality such as the building of
views and association of UI-Controls with events without
regarding the certain technology or platform specifics being
used. In short, an abstraction comparative to the CUI level
and its advantages are enforced.

VUI for UIPs. The concept, the VUI is based on, can be
adapted to the requirements of the UIP Advanced Search.
The idea is to instantiate complete view components with
UIP definitions besides simple UI-Controls. The Dialog is
implemented by using generic interfaces, which enable the
instantiation of UIPs, changing their layout and their
association with events. In Figure 12 our refinement of the
original VUI is presented.

To enable the implementation of UIP fragments, the VUI
for UIPs is based on our previously described generator
solution. Each possible variation of Ul-Controls matching
the attributes of the domain objects for Advanced Search has
been formalized before. Hence, the search criteria rows of
the dialog were visualized by different UIP fragments.
Concerning the formal UlIPs, the proper implementations for
the chosen GUI-framework were generated as stated in
Section VILB. The previously mentioned generator was
integrated in the component UIP Implementations. These
implementations of UIPs located within VUI are based on the
interfaces and objects of the GUI-framework. In analogy to
the UI-Controls already implemented in the GUI-framework,
the available UIP instances were provided via the interface
UIPBuilder and could be positioned with certain parameters.

VUI at runtime. The VUI builds the view or a complete
window as requested by the Logical View. Furthermore, the
VUI provides information about the current composition and
the layout of the Dialog. This information can be used by the
Logical View for parameters to adapt the current view by
delegating the VUI respectively. The Dialog coordinates the
structuring of the view with the component Logical View and
implements the application specific control in the Dialog
Controller as well as dialog data in the Model.

Initially, events are reported to the VUI via API-Events.
The VUI only forwards relevant events to the Logical View.
When the respective event is solely related to properties of a
Ul-Control or a UIP instance, it is directly processed by the
Logical View which delegates the VUI when necessary.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

40



cmp VUI UIPs ]
g
Applicati Dialog
Kernel

]
Virtual User GUI
Interface Framework

| Observer

: O walb | : 77777

3 Technical API-Events

| e O T ...

! scalb N vrpBuilder | [N 1" (O
walbr[| ! é I «use>’><f wsent ' UI-Creation|

View Data

| )| ‘wsen

Ul piaeg ] O !

i |_Controller StyleDefinition b

: wsen |
| DialogData |
1 5 UIP O !
- Implementations

dtracen!

Formal UIPs

Figure 12. Virtual user interface architecture for UIPs

If the Logical View cannot process the particular event on
its own, it will be forwarded to the Dialog Controller. For
instance, this occurs when the user presses the button Search
and a new view with the search results has to be loaded. The
Dialog Controller collects the search criteria via the interface
ViewData and sends an appropriate query to the Application
Kernel. The result of the query will be stored as dialog data
in the Model.

Results. For realizing Advanced Search with UIPs, a
complex architecture had to be developed. Details like the
connection of UIP instances to the Dialog data model as well
as the automation potentials of the Dialog Controller could
not yet be analyzed.

The UIPs had to be specified in a concrete manner like in
Section VIL.B. The prototype was not mature enough to
handle abstract UIP specifications. The style of the UlI-
Controls was also described concretely, so the control of
style by a component of the VUI, as depicted in Figure 12,
has not yet been realized.

Through the VUI, the versatile combinations of Advanced
Search could be realized according to the example at
runtime. The VUI constitutes of a component-oriented
structure related to the software categories of Quasar [48].
Accordingly, it possesses its virtues like the division of
application and technology, separation of concerns therein
and encapsulation by interfaces. Despite its challenging
complexity, a flexible and maintainable architecture for
dynamic GUI systems has been created. Finally, the
formalized UIP fragments could be maintained at CUI level.

VIII. PRACTICAL IMPLICATIONS OF USER INTERFACE

PATTERNS

The reflection of both the theoretical implications of
UIPs on GUI transformations and the results of our
experiments led us to the following findings.

A.  Formalization of UIPs

Reflection of results. By experimentally evaluating the
model-to-code-transformation of formal UIPs, we came to
the conclusion that the generation of a GUI is not the
complicated part of the process. Instead, the formalization

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/software/

and the occurring options in this step lead to the main
problem. Primarily, the preconditions to benefit from the
positive influences of the UIPs on the GUI development
process have to be established by the formalization.

The generator solution was well suited for stereotype and
statically defined UIML contents. In this context, layout,
number and order as well as style of UIPs have been
specified concretely. This led us to a static solution that can
be applied at design time. But the UIP Advanced Search
could not be realized by following this approach.

Parameters for UIPs. In order to overcome this static
solution, a parameterization of formal UIPs has to be
considered. Via parameters the number, order, ID, layout and
style of Ul-Controls within UIPs specifications have to be
determined to provide a more flexible solution. Especially
the number and order of Ul-Controls have to be abstractly
specified in the first place. In this way, UIPs can be applied
in varying contexts. In place of a concrete declaration of
style for each UIP, a global style template has to be kept in
mind. By using this template, dialogs could be created with
uniform visuals and deviations are avoided. For this purpose,
the VUI incorporated the Style Data component. It is
intended to configure the visuals of UIP instances and Ul-
Controls globally. The configuration is used for the
instantiation of these entities by the Technical View.
Consequently, style information from single UIP
specifications could be avoided and the UIPs would receive a
more universal format.

The model-based processes have already approached the
formalization issues. In fact, they have detailed the
parameterization of presented XML languages UsiXML and
UIML for their custom modeling frameworks. However, we
could not rely on their findings, as both detailed information
was missing and considerable future work in the line of
improvements was outlined. Yet, a more sophisticated
solution has still to be invented. This conclusion is backed by
our subsequent work to derive detailed requirements on 