

The International Journal on Advances in Software is published by IARIA.

ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Software, issn 1942-2628

vol. 6, no. 1 & 2, year 2013, http://www.iariajournals.org/software/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Software, issn 1942-2628

vol. 6, no. 1 & 2, year 2013,<start page>:<end page> , http://www.iariajournals.org/software/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2013 IARIA

International Journal on Advances in Software

Volume 6, Number 1 & 2, 2013

Editor-in-Chief

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Editorial Advisory Board

Hermann Kaindl, TU-Wien, Austria
Herwig Mannaert, University of Antwerp, Belgium

Editorial Board

Witold Abramowicz, The Poznan University of Economics, Poland

Abdelkader Adla, University of Oran, Algeria

Syed Nadeem Ahsan, Technical University Graz, Austria / Iqra University, Pakistan

Marc Aiguier, École Centrale Paris, France

Rajendra Akerkar, Western Norway Research Institute, Norway

Zaher Al Aghbari, University of Sharjah, UAE

Riccardo Albertoni, Istituto per la Matematica Applicata e Tecnologie Informatiche “Enrico Magenes” Consiglio

Nazionale delle Ricerche, (IMATI-CNR), Italy / Universidad Politécnica de Madrid, Spain

Ahmed Al-Moayed, Hochschule Furtwangen University, Germany

Giner Alor Hernández, Instituto Tecnológico de Orizaba, México

Zakarya Alzamil, King Saud University, Saudi Arabia

Frederic Amblard, IRIT - Université Toulouse 1, France

Vincenzo Ambriola , Università di Pisa, Italy

Renato Amorim, University of London, UK

Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus

Annalisa Appice, Università degli Studi di Bari Aldo Moro, Italy

Philip Azariadis, University of the Aegean, Greece

Thierry Badard, Université Laval, Canada

Muneera Bano, International Islamic University - Islamabad, Pakistan

Fabian Barbato, Technology University ORT, Montevideo, Uruguay

Barbara Rita Barricelli, Università degli Studi di Milano, Italy

Peter Baumann, Jacobs University Bremen / Rasdaman GmbH Bremen, Germany

Gabriele Bavota, University of Salerno, Italy

Grigorios N. Beligiannis, University of Western Greece, Greece

Noureddine Belkhatir, University of Grenoble, France

Imen Ben Lahmar, Institut Telecom SudParis, France

Jorge Bernardino, ISEC - Institute Polytechnic of Coimbra, Portugal

Rudolf Berrendorf, Bonn-Rhein-Sieg University of Applied Sciences - Sankt Augustin, Germany

Ateet Bhalla, Oriental Institute of Science & Technology, Bhopal, India

Ling Bian, University at Buffalo, USA

Kenneth Duncan Boness, University of Reading, England

Fernando Boronat Seguí, Universidad Politecnica de Valencia, Spain

Pierre Borne, Ecole Centrale de Lille, France

Farid Bourennani, University of Ontario Institute of Technology (UOIT), Canada

Narhimene Boustia, Saad Dahlab University - Blida, Algeria

Hongyu Pei Breivold, ABB Corporate Research, Sweden

Carsten Brockmann, Universität Potsdam, Germany

Mikey Browne, IBM, USA

Antonio Bucchiarone, Fondazione Bruno Kessler, Italy

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

Dumitru Burdescu, University of Craiova, Romania

Martine Cadot, University of Nancy / LORIA, France

Isabel Candal-Vicente, Universidad del Este, Puerto Rico

Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain

Jose Carlos Metrolho, Polytechnic Institute of Castelo Branco, Portugal

Alain Casali, Aix-Marseille University, France

Alexandra Suzana Cernian, University POLITEHNICA of Bucharest, Romania

Yaser Chaaban, Leibniz University of Hanover, Germany

Savvas A. Chatzichristofis, Democritus University of Thrace, Greece

Antonin Chazalet, Orange, France

Jiann-Liang Chen, National Dong Hwa University, China

Shiping Chen, CSIRO ICT Centre, Australia

Wen-Shiung Chen, National Chi Nan University, Taiwan

Zhe Chen, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China

PR

Po-Hsun Cheng, National Kaohsiung Normal University, Taiwan

Yoonsik Cheon, The University of Texas at El Paso, USA

Lau Cheuk Lung, INE/UFSC, Brazil

Robert Chew, Lien Centre for Social Innovation, Singapore

Andrew Connor, Auckland University of Technology, New Zealand

Rebeca Cortázar, University of Deusto, Spain

Noël Crespi, Institut Telecom, Telecom SudParis, France

Carlos E. Cuesta, Rey Juan Carlos University, Spain

Duilio Curcio, University of Calabria, Italy

Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania

Paulo Asterio de Castro Guerra, Tapijara Programação de Sistemas Ltda. - Lambari, Brazil

Cláudio de Souza Baptista, University of Campina Grande, Brazil

Maria del Pilar Angeles, Universidad Nacional Autonónoma de México, México

Rafael del Vado Vírseda, Universidad Complutense de Madrid, Spain

Giovanni Denaro, University of Milano-Bicocca, Italy

Hepu Deng, RMIT University, Australia

Nirmit Desai, IBM Research, India

Vincenzo Deufemia, Università di Salerno, Italy

Leandro Dias da Silva, Universidade Federal de Alagoas, Brazil

Javier Diaz, Rutgers University, USA

Nicholas John Dingle, University of Manchester, UK

Roland Dodd, CQUniversity, Australia

Aijuan Dong, Hood College, USA

Suzana Dragicevic, Simon Fraser University- Burnaby, Canada

Cédric du Mouza, CNAM, France

Ann Dunkin, Palo Alto Unified School District, USA

Jana Dvorakova, Comenius University, Slovakia

Lars Ebrecht, German Aerospace Center (DLR), Germany

Hans-Dieter Ehrich, Technische Universität Braunschweig, Germany

Jorge Ejarque, Barcelona Supercomputing Center, Spain

Atilla Elçi, Süleyman Demirel University, Turkey

Khaled El-Fakih, American University of Sharjah, UAE

Gledson Elias, Federal University of Paraíba, Brazil

Sameh Elnikety, Microsoft Research, USA

Fausto Fasano, University of Molise, Italy

Michael Felderer, University of Innsbruck, Austria

João M. Fernandes, Universidade de Minho, Portugal

Luis Fernandez-Sanz, University of de Alcala, Spain

Felipe Ferraz, C.E.S.A.R, Brazil

Adina Magda Florea, University "Politehnica" of Bucharest, Romania

Wolfgang Fohl, Hamburg Universiy, Germany

Simon Fong, University of Macau, Macau SAR

Gianluca Franchino, Scuola Superiore Sant'Anna, Pisa, Italy

Naoki Fukuta, Shizuoka University, Japan

Martin Gaedke, Chemnitz University of Technology, Germany

Félix J. García Clemente, University of Murcia, Spain

José García-Fanjul, University of Oviedo, Spain

Felipe Garcia-Sanchez, Universidad Politecnica de Cartagena (UPCT), Spain

Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany

Tejas R. Gandhi, Virtua Health-Marlton, USA

Andrea Giachetti, Università degli Studi di Verona, Italy

Robert L. Glass, Griffith University, Australia

Afzal Godil, National Institute of Standards and Technology, USA

Luis Gomes, Universidade Nova Lisboa, Portugal

Diego Gonzalez Aguilera, University of Salamanca - Avila, Spain

Pascual Gonzalez, University of Castilla-La Mancha, Spain

Björn Gottfried, University of Bremen, Germany

Victor Govindaswamy, Texas A&M University, USA

Gregor Grambow, University of Ulm, Germany

Carlos Granell, European Commission / Joint Research Centre, Italy

Daniela Grigori, Université de Versailles, France

Christoph Grimm. TU Wien, Austria

Michael Grottke, University of Erlangen-Nuernberg, Germany

Vic Grout, Glyndwr University, UK

Ensar Gul, Marmara University, Turkey

Richard Gunstone, Bournemouth University, UK

Zhensheng Guo, Siemens AG, Germany

Phuong H. Ha, University of Tromso, Norway

Ismail Hababeh, German Jordanian University, Jordan

Shahliza Abd Halim, Lecturer in Universiti Teknologi Malaysia, Malaysia

Herman Hartmann, University of Groningen, The Netherlands

Jameleddine Hassine, King Fahd University of Petroleum & Mineral (KFUPM), Saudi Arabia

Tzung-Pei Hong, National University of Kaohsiung, Taiwan

Peizhao Hu, NICTA, Australia

Chih-Cheng Hung, Southern Polytechnic State University, USA

Edward Hung, Hong Kong Polytechnic University, Hong Kong

Noraini Ibrahim, Universiti Teknologi Malaysia, Malaysia

Anca Daniela Ionita, University "POLITEHNICA" of Bucharest, Romania

Chris Ireland, Open University, UK

Kyoko Iwasawa, Takushoku University - Tokyo, Japan

Mehrshid Javanbakht, Azad University - Tehran, Iran

Wassim Jaziri, ISIM Sfax, Tunisia

Dayang Norhayati Abang Jawawi, Universiti Teknologi Malaysia (UTM), Malaysia

Jinyuan Jia, Tongji University. Shanghai, China

Maria Joao Ferreira, Universidade Portucalense, Portugal

Ahmed Kamel, Concordia College, Moorhead, Minnesota, USA

Teemu Kanstrén, VTT Technical Research Centre of Finland, Finland

Nittaya Kerdprasop, Suranaree University of Technology, Thailand

Ayad ali Keshlaf, Newcastle University, UK

Nhien An Le Khac, University College Dublin, Ireland

Sadegh Kharazmi, RMIT University - Melbourne, Australia

Kyoung-Sook Kim, National Institute of Information and Communications Technology, Japan

Youngjae Kim, Oak Ridge National Laboratory, USA

Roger "Buzz" King, University of Colorado at Boulder, USA

Cornel Klein, Siemens AG, Germany

Alexander Knapp, University of Augsburg, Germany

Radek Koci, Brno University of Technology, Czech Republic

Christian Kop, University of Klagenfurt, Austria

Michal Krátký, VŠB - Technical University of Ostrava, Czech Republic

Narayanan Kulathuramaiyer, Universiti Malaysia Sarawak, Malaysia

Satoshi Kurihara, Osaka University, Japan

Eugenijus Kurilovas, Vilnius University, Lithuania

Philippe Lahire, Université de Nice Sophia-Antipolis, France

Alla Lake, Linfo Systems, LLC, USA

Fritz Laux, Reutlingen University, Germany

Luigi Lavazza, Università dell'Insubria, Italy

Fábio Luiz Leite Júnior, Universidade Estadual da Paraiba,Brazil

Alain Lelu, University of Franche-Comté / LORIA, France

Cynthia Y. Lester, Georgia Perimeter College, USA

Clement Leung, Hong Kong Baptist University, Hong Kong

Weidong Li, University of Connecticut, USA

Corrado Loglisci, University of Bari, Italy

Francesco Longo, University of Calabria, Italy

Sérgio F. Lopes, University of Minho, Portugal

Pericles Loucopoulos, Loughborough University, UK

Alen Lovrencic, University of Zagreb, Croatia

Qifeng Lu, MacroSys, LLC, USA

Xun Luo, Qualcomm Inc., USA

Shuai Ma, Beihang University, China

Stephane Maag, Telecom SudParis, France

Ricardo J. Machado, University of Minho, Portugal

Maryam Tayefeh Mahmoudi, Research Institute for ICT, Iran

Nicos Malevris, Athens University of Economics and Business, Greece

Herwig Mannaert, University of Antwerp, Belgium

José Manuel Molina López, Universidad Carlos III de Madrid, Spain

Francesco Marcelloni, University of Pisa, Italy

Eda Marchetti, Consiglio Nazionale delle Ricerche (CNR), Italy

Leonardo Mariani, University of Milano Bicocca, Italy

Gerasimos Marketos, University of Piraeus, Greece

Abel Marrero, Bombardier Transportation, Germany

Adriana Martin, Universidad Nacional de la Patagonia Austral / Universidad Nacional del Comahue, Argentina

Goran Martinovic, J.J. Strossmayer University of Osijek, Croatia

Paulo Martins, University of Trás-os-Montes e Alto Douro (UTAD), Portugal

Stephan Mäs, Technical University of Dresden, Germany

Constandinos Mavromoustakis, University of Nicosia, Cyprus

Jose Merseguer, Universidad de Zaragoza, Spain

Seyedeh Leili Mirtaheri, Iran University of Science & Technology, Iran

Lars Moench, University of Hagen, Germany

Yasuhiko Morimoto, Hiroshima University, Japan

Muhanna A Muhanna, University of Nevada - Reno, USA

Antonio Navarro Martín, Universidad Complutense de Madrid, Spain

Filippo Neri, University of Naples, Italy

Toàn Nguyên, INRIA Grenobel Rhone-Alpes/ Montbonnot, France

Muaz A. Niazi, Bahria University, Islamabad, Pakistan

Natalja Nikitina, KTH Royal Institute of Technology, Sweden

Marcellin Julius Nkenlifack, Université de Dschang, Cameroun

Michael North, Argonne National Laboratory, USA

Roy Oberhauser, Aalen University, Germany

Pablo Oliveira Antonino, Fraunhofer IESE, Germany

Rocco Oliveto, University of Molise, Italy

Sascha Opletal, Universität Stuttgart, Germany

Flavio Oquendo, European University of Brittany/IRISA-UBS, France

Claus Pahl, Dublin City University, Ireland

Marcos Palacios, University of Oviedo, Spain

Constantin Paleologu, University Politehnica of Bucharest, Romania

Kai Pan, UNC Charlotte, USA

Yiannis Papadopoulos, University of Hull, UK

Andreas Papasalouros, University of the Aegean, Greece

Rodrigo Paredes, Universidad de Talca, Chile

Päivi Parviainen, VTT Technical Research Centre, Finland

João Pascoal Faria, Faculty of Engineering of University of Porto / INESC TEC, Portugal

Fabrizio Pastore, University of Milano - Bicocca, Italy

Kunal Patel, Ingenuity Systems, USA

Óscar Pereira, Instituto de Telecomunicacoes - University of Aveiro, Portugal

Willy Picard, Poznań University of Economics, Poland

Jose R. Pires Manso, University of Beira Interior, Portugal

Sören Pirk, Universität Konstanz, Germany

Meikel Poess, Oracle Corporation, USA

Thomas E. Potok, Oak Ridge National Laboratory, USA

Dilip K. Prasad, Nanyang Technological University, Singapore

Christian Prehofer, Fraunhofer-Einrichtung für Systeme der Kommunikationstechnik ESK, Germany

Ela Pustułka-Hunt, Bundesamt für Statistik, Neuchâtel, Switzerland

Mengyu Qiao, South Dakota School of Mines and Technology, USA

Kornelije Rabuzin, University of Zagreb, Croatia

J. Javier Rainer Granados, Universidad Politécnica de Madrid, Spain

Muthu Ramachandran, Leeds Metropolitan University, UK

Thurasamy Ramayah, Universiti Sains Malaysia, Malaysia

Prakash Ranganathan, University of North Dakota, USA

José Raúl Romero, University of Córdoba, Spain

Henrique Rebêlo, Federal University of Pernambuco, Brazil

Bernd Resch, Massachusetts Institute of Technology, USA

Hassan Reza, UND Aerospace, USA

Elvinia Riccobene, Università degli Studi di Milano, Italy

Daniel Riesco, Universidad Nacional de San Luis, Argentina

Mathieu Roche, LIRMM / CNRS / Univ. Montpellier 2, France

Aitor Rodríguez-Alsina, University Autonoma of Barcelona, Spain

José Rouillard, University of Lille, France

Siegfried Rouvrais, TELECOM Bretagne, France

Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster / North-

German Supercomputing Alliance, Germany

Djamel Sadok, Universidade Federal de Pernambuco, Brazil

Arun Saha, Fujitsu, USA

Ismael Sanz, Universitat Jaume I, Spain

M. Saravanan, Ericsson India Pvt. Ltd -Tamil Nadu, India

Idrissa Sarr, University of Cheikh Anta Diop, Dakar, Senegal / University of Quebec, Canada

Patrizia Scandurra, University of Bergamo, Italy

Giuseppe Scanniello, Università degli Studi della Basilicata, Italy

Daniel Schall, Vienna University of Technology, Austria

Rainer Schmidt, Austrian Institute of Technology, Austria

Cristina Seceleanu, Mälardalen University, Sweden

Sebastian Senge, TU Dortmund, Germany

Isabel Seruca, Universidade Portucalense - Porto, Portugal

Kewei Sha, Oklahoma City University, USA

Simeon Simoff, University of Western Sydney, Australia

Jacques Simonin, Institut Telecom / Telecom Bretagne, France

Cosmin Stoica Spahiu, University of Craiova, Romania

George Spanoudakis, City University London, UK

Alin Stefanescu, University of Pitesti, Romania

Lena Strömbäck, SMHI, Sweden

Kenji Suzuki, The University of Chicago, USA

Osamu Takaki, Japan Advanced Institute of Science and Technology, Japan

Antonio J. Tallón-Ballesteros, University of Seville, Spain

Wasif Tanveer, University of Engineering & Technology - Lahore, Pakistan

Ergin Tari, Istanbul Technical University, Turkey

Steffen Thiel, Furtwangen University of Applied Sciences, Germany

Jean-Claude Thill, Univ. of North Carolina at Charlotte, USA

Pierre Tiako, Langston University, USA

Ioan Toma, STI, Austria

Božo Tomas, HT Mostar, Bosnia and Herzegovina

Davide Tosi, Università degli Studi dell'Insubria, Italy

Peter Trapp, Ingolstadt, Germany

Guglielmo Trentin, National Research Council, Italy

Dragos Truscan, Åbo Akademi University, Finland

Chrisa Tsinaraki, Technical University of Crete, Greece

Roland Ukor, FirstLinq Limited, UK

Torsten Ullrich, Fraunhofer Austria Research GmbH, Austria

José Valente de Oliveira, Universidade do Algarve, Portugal

Dieter Van Nuffel, University of Antwerp, Belgium

Shirshu Varma, Indian Institute of Information Technology, Allahabad, India

Konstantina Vassilopoulou, Harokopio University of Athens, Greece

Miroslav Velev, Aries Design Automation, USA

Tanja E. J. Vos, Universidad Politécnica de Valencia, Spain

Krzysztof Walczak, Poznan University of Economics, Poland

Jianwu Wang, San Diego Supercomputer Center / University of California, San Diego, USA

Yandong Wang, Wuhan University, China

Rainer Weinreich, Johannes Kepler University Linz, Austria

Stefan Wesarg, Fraunhofer IGD, Germany

Sebastian Wieczorek, SAP Research Center Darmstadt, Germany

Wojciech Wiza, Poznan University of Economics, Poland

Martin Wojtczyk, Technische Universität München, Germany

Hao Wu, School of Information Science and Engineering, Yunnan University, China

Mudasser F. Wyne, National University, USA

Zhengchuan Xu, Fudan University, P.R.China

Yiping Yao, National University of Defense Technology, Changsha, Hunan, China

Stoyan Yordanov Garbatov, Instituto de Engenharia de Sistemas e Computadores - Investigação e

Desenvolvimento, INESC-ID, Portugal

Weihai Yu, University of Tromsø, Norway

Wenbing Zhao, Cleveland State University, USA

Hong Zhu, Oxford Brookes University, UK

Qiang Zhu, The University of Michigan - Dearborn, USA

International Journal on Advances in Software

Volume 6, Numbers 1 & 2, 2013

CONTENTS

pages: 1 - 13
An Empirical Evaluation of Simplified Function Point Measurement Processes
Luigi Lavazza, Università degli Studi dell’Insubria, Italy
Geng Liu, Università degli Studi dell’Insubria, Italy

pages: 14 - 24
Basic Building Blocks for Column-Stores
Andreas Schmidt, Karlsruhe Institut of Technology/Karlsruhe University of Applied Sciences, Germany
Daniel Kimmig, Karlsruhe Institut of Technology, Germany
Reimar Hofmann, Karlsruhe University of Applied Sciences, Germany

pages: 25 - 44
Theoretical and Practical Implications of User Interface Patterns Applied for the Development of
Graphical User Interfaces
Stefan Wendler, Ilmenau University of Technology, Germany
Danny Ammon, Ilmenau University of Technology, Germany
Teodora Kikova, Ilmenau University of Technology, Germany
Ilka Philippow, Ilmenau University of Technology, Germany
Detlef Streitferdt, Ilmenau University of Technology, Germany

pages: 45 - 55
Message-Passing Interface for Java Applications: Practical Aspects of Leveraging High Performance
Computing to Speed and Scale Up the Semantic Web
Alexey Cheptsov, High Performance Computing Center Stuttgart, Germany
Bastian Koller, High Performance Computing Center Stuttgart, Germany

pages: 56 - 68
A QoS-Aware BPEL Framework for Service Selection and Composition Using QoS Properties
Chiaen Lin, University of North Texas, USA
Krishna Kavi, University of North Texas, USA

pages: 69 - 79
Supporting Test Code Generation with an Easy to Understand Business Rule Language
Christian Bacherler, Software Technology Research Lab, DeMontfort University, Leicester, UK
Ben Moszkowski, Software Technology Research Lab, DeMontfort University, Leicester, UK
Christian Facchi, Institute of Applied Research, Ingolstadt University of Applied Sciences, Ingolstadt, Germany

pages: 80 - 91
Design and Classification of Mutation Operators for Abstract State Machines
Jameleddine Hassine, KFUPM, KSA

pages: 92 - 103
Transformational Implementation of Business Processes in SOA

Krzysztof Sacha, Warsaw University of Technology, Poland
Andrzej Ratkowski, Warsaw University of Technology, Poland

pages: 104 - 118
Automated Tailoring of Application Lifecycle Management Systems to Existing Development Processes
Matthias Biehl, Royal Institute of Technology, Sweden
Jad El-khoury, Royal Institute of Technology, Sweden
Martin Törngren, Royal Institute of Technology, Sweden

pages: 119 - 130
Towards an Approach for Analysing the Strategic Alignment of Software Requirements using
Quantified Goal Graphs
Richard Ellis-Braithwaite, Loughborough University, United Kingdom
Russell Lock, Loughborough University, United Kingdom
Ray Dawson, Loughborough University, United Kingdom
Badr Haque, Rolls-Royce Plc., United Kingdom

pages: 131 - 141
Towards the Standardization of Industrial Scientific and Engineering Workflows with QVT
Transformations
Corina Abdelahad, Universidad Nacional de San Luis, Argentina
Daniel Riesco, Universidad Nacional de San Luis, Argentina
Alessandro Carrara, ESTECO SPA, Italy
Carlo Comin, ESTECO SPA, Italy
Carlos Kavka, ESTECO SPA, Italy

pages: 142 - 154
GUI Failures of In-Vehicle Infotainment: Analysis, Classification, Challenges, and Capabilities
Daniel Mauser, Daimler AG, Germany
Alexander Klaus, Fraunhofer IESE, Germany
Konstantin Holl, Fraunhofer IESE, Germany
Ran Zhang, Robert Bosch GmbH, Germany

pages: 155 - 169
Linear Constraints and Guarded Predicates as a Modeling Language for Discrete Time Hybrid Systems
Federico Mari, Sapienza University of Rome, Italy
Igor Melatti, Sapienza University of Rome, Italy
Ivano Salvo, Sapienza University of Rome, Italy
Enrico Tronci, Sapienza University of Rome, Italy

pages: 170 - 180
Derivation of Web Service Implementation Artifacts from Service Designs Based on SoaML
Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany
Jaouad Bouras, ISB AG, Germany

pages: 181 - 195
Incorporating Design Knowledge into the Software Development Process using Normalized Systems
Theory
Peter De Bruyn, University of Antwerp, Belgium
Philip Huysmans, University of Antwerp, Belgium

Gilles Oorts, University of Antwerp, Belgium
Dieter Van Nuffel, University of Antwerp, Belgium
Herwig Mannaert, University of Antwerp, Belgium
Jan Verelst, University of Antwerp, Belgium
Arco Oost, Normalized Systems eXpanders factory, Belgium

pages: 196 - 212
Enhancing the Performance of J2EE Applications through Entity Consolidation Design Patterns
Reinhard Klemm, Avaya Labs Research, USA

pages: 213 - 224
Automated Software Engineering Process Assessment: Supporting Diverse Models using an Ontology
Gregor Grambow, Computer Science Dept., Aalen University, Germany
Roy Oberhauser, Computer Science Dept., Aalen University, Germany
Manfred Reichert, Institute for Databases and Information Systems, Ulm University, Germany

1

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Empirical Evaluation of Simplified Function Point

Measurement Processes

Luigi Lavazza Geng Liu

Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria

Varese, Italy

luigi.lavazza@uninsubria.it, giulio.liu@gmail.com

Abstract— Function Point Analysis is widely used, especially to

quantify the size of applications in the early stages of

development, when effort estimates are needed. However, the

measurement process is often too long or too expensive, or it

requires more knowledge than available when development effort

estimates are due. To overcome these problems, simplified

methods have been proposed to measure Function Points. We

used simplified methods for sizing both “traditional” and Real-

Time applications, with the aim of evaluating the accuracy of the

sizing with respect to full-fledged Function Point Analysis. To

this end, a set of projects, which had already been measured by

means of Function Point Analysis, have been measured using a

few simplified processes, including those proposed by NESMA,

the Early&Quick Function Points, the ISBSG average weights,

and others; the resulting size measures were then compared. We

also derived simplified size models by analyzing the dataset used

for experimentations. In general, all the methods that provide

predefined weights for all the transaction and data types

identified in Function Point Analysis provided similar results,

characterized by acceptable accuracy. On the contrary, methods

that rely on just one of the elements that contribute to size tend to

be quite inaccurate. In general, different methods show different

accuracy for Real-Time and non Real-Time applications. The

results of the analysis reported here show that in general it is

possible to size software via simplified measurement processes

with an acceptable accuracy. In particular, the simplification of

the measurement process allows the measurer to skip the

function weighting phases, which are usually expensive, since

they require a thorough analysis of the details of both data and

operations. Deriving our own models from the project datasets

proved possible, and yielded results that are similar to those

obtained via the methods proposed in the literature.

Keywords-Functional Size Measures; Function Points;

Simplified measurement processes; Early&Quick Function Points

(EQFP); NESMA estimated; NESMA indicative.

I. INTRODUCTION

The empirical evaluation of simplified Function Points
processes [1] is motivated by the popularity of Function Points.
In fact, Function Point Analysis (FPA) [2][3][4][5] is widely
used. Among the reasons for the success of FPA is that it can
provide measures of size in the early stages of software
development, when they are most needed for cost estimation.

However, FPA performed by a certified function point
consultant proceeds at a relatively slow pace: between 400 and

600 function points (FP) per day, according to Capers Jones
[6], between 200 and 300 function points per day according to
experts from Total Metrics [7]. Consequently, measuring the
size of a moderately large application can take too long, if cost
estimation is needed urgently. Also the cost of measurement
can be often considered excessive by software developers. In
addition, cost estimates may be needed when requirements
have not yet been specified in detail and completely.

To overcome the aforementioned problems, simplified FP
measurement processes have been proposed. A quite
comprehensive list of such methods is given in [8]. Among
these are the NESMA (NEtherland Software Metrics
Association) indicative and estimated methods, and the Early
& Quick Function Points method. Other methods were also
proposed, including the Tichenor ILF Model [9] and models
featuring fixed weights for the computation of size measures.
These models are briefly described in Section II. The proposers
of these methods claim that they allow measurers to compute
good approximations of functional size measures with little
effort and in a fairly short time.

The goal of the work reported here is to test the application
of several simplified functional size measurement processes to
real projects in both the “traditional” and Real-Time domains.
Function Points are often reported as not suited for measuring
the functional size of embedded applications, since FP –
conceived by Albrecht when the programs to be sized were
mostly Electronic Data Processing applications– capture well
the functional size of data storage and movement operations,
but are ill-suited for representing the complexity of control and
elaboration that are typical of embedded and Real-Time
software. However, it has been shown that a careful
interpretation of FP counting rules makes it possible to apply
FPA to embedded software as well [10].

In this paper, we apply the International Function Points
User Group (IFPUG) measurement rules [4] to size a set of non
Real-Time programs, and we apply the guidelines given in [11]
(which are as IFPUG-compliant as possible) to measure a set of
embedded Real-Time avionic applications. All these measures
are used to test the accuracy of simplified functional size
measurement processes. In fact, there is little doubt that the
simplified Functional Size Measurement (FSM) methods
actually allow for early and quick sizing; the real point is to
evaluate to what extent the savings in time and costs are paid in
terms of inaccurate size estimates. So, we concentrate on the
assessment of the accuracy of size estimates, for both Real-

2

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Time and embedded applications, as well as “traditional”
business applications. Throughout the paper, by “accuracy” we
mean the closeness of a size estimate to the real size measure,
i.e., the size measured according to IFPUG rules by an
experienced measurer.

In this paper, we enhance the work reported in [1] by using
an extended dataset, and by testing the usage of additional
simplified FSM techniques, not used in [1]. However, in the
paper we do not just evaluate existing proposals for simplifying
the functional size measurement process; instead, we produce
our own simplified models for estimating the functional size of
software applications. This is done using the same approaches
already used to produce the existing simplified methods: in
fact, we obtained models that are structurally similar to the
existing ones, but featuring different parameters (e.g., weights
for basic functional components).

All the methods –i.e., both those proposed in the literature
and ours– are tested on a set of projects and the results are
compared.

We also analyze the differences between Real-Time and
non Real-Time applications, and derive a few considerations
on what models are best suited to estimate the size of each
class of applications.

The results of the measurements and analyses reported in
the paper are expected to provide two types of benefits: on the
one hand, they contribute to enhancing our understanding of
functional size measurement processes and their suitability; on
the other hand, we provide useful information and suggestions
to the practitioners that have to decide whether to use
simplified FSM methods, and which one to choose.

The paper is organized as follows: Section II briefly
introduces the simplified FSM processes used in the paper.
Section III describes the projects being measured and gives
their sizes measured according to the full-fledged, canonical
FPA process. Section IV illustrates the sizes obtained via
simplified functional size measurement processes. Section V
discusses the accuracy of the measures obtained via the
simplified methods used and outlines the lessons that can be
learned from the reported experiment. In Section VI, the
dataset described in Section III is analyzed, in order to get
simplified FSM models that are similar to those presented in
Section II, but which rely on the measures of the considered
projects. Section VII accounts for related work. Section VIII
discusses the threats to the validity of the study. Finally,
Section IX draws some conclusions and outlines future work.

Throughout the paper, we assume that the reader is familiar
with the concepts of FPA and the IFPUG rules. Readers that
need explanations and details about FP counting can refer to
official documentation and manuals [4][5].

Throughout the paper, we refer exclusively to unadjusted
function points (UFP), even when we talk generically of
“Function Points” or “FP”.

II. A BRIEF INTRODUCTION TO SIMPLIFIED SIZE

MEASUREMENT PROCESSES

The FP measurement process involves (among others) the
following activities:

− Identifying logic data;

− Identifying elementary processes;

− Classifying logic data as internal logic files (ILF) or
external interface files (EIF);

− Classifying elementary processes as external inputs
(EI), outputs (EO), or queries (EQ);

− Weighting data functions;

− Weighting transaction functions.
Simplified measurement processes allow measurers to skip

–possibly in part– one or more of the aforementioned activities,
thus making the measurement process faster and cheaper.
Table III provides a quick overview of the activities required
by FP measurement and estimation methods. Of course, the
IFPUG method requires all the activities listed in Table III,
while simplified methods require a subset of such activities.

A. Early & Quick Function Points

The most well-known approach for simplifying the process
of FP counting is probably the Early & Quick Function Points
(EQFP) method [12]. EQFP descends from the consideration
that estimates are sometimes needed before requirements
analysis is completed, when the information on the software to
be measured is incomplete or not sufficiently detailed.

Since several details for performing a correct measurement
following the rules of the FP manual [4] are not used in EQFP,
the result is a less accurate measure. The trade-off between
reduced measurement time and costs is also a reason for
adopting the EQFP method even when full specifications are
available, but there is the need for completing the measurement
in a short time, or at a lower cost. An advantage of the method
is that different parts of the system can be measured at different
detail levels: for instance, a part of the system can be measured
following the IFPUG manual rules [4][5], while other parts can
be measured on the basis of coarser-grained information. In
fact, the EQFP method is based on the classification of the
processes and data of an application according to a hierarchy
(see Fig. 1 [12]).

Application to

be measured

Macro

process

General

data group

General

process

General

process

Transactional

BFC

Transactional

BFC

Transactional

BFC

Transactional

BFC

Data

BFC

Data

BFC

Data

BFC

……

Figure 1. Functional hierarchy in the Early & Quick FP technique

Transactional BFC (Base Functional Components) and
Data BFC correspond to IFPUG’s elementary processes and
LogicData, while the other elements are aggregations of
processes or data groups. The idea is that if you have enough
information at the most detailed level you count FP according
to IFPUG rules; otherwise, you can estimate the size of larger
elements (e.g., General or Macro processes) either on the basis
of analogy (e.g., a given General process is “similar” to a
known one) or according to the structured aggregation (e.g., a
General process is composed of 3 Transactional BFC). By
considering elements that are coarser-grained than the FPA

3

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

BFC, the EQFP measurement process leads to an approximate
measure of size in IFPUG FP.

Tables taking into account the previous experiences with
the usage of EQFP are provided to facilitate the task of
assigning a minimum, maximum and most likely quantitative
size to each component. For instance, Table I provides
minimum, maximum and most likely weight values for generic
(i.e., not weighted) functions as given in [12]. The time and
effort required by the weighting phases are thus saved. Such
saving can be relevant, since weighting a data or transaction
function requires analyzing it in detail.

TABLE I. EQFP: FUNCTION TYPE WEIGHTS FOR GENERIC FUNCTIONS

Function type
Weight

Low Likely High

Generic ILF 7.4 7.7 8.1

Generic EIF 5.2 5.4 5.7

Generic EI 4 4.2 4.4

Generic EO 4.9 5.2 5.4

Generic EQ 3.7 3.9 4.1

The size of unspecified generic processes (i.e., transactions

that have not been yet classified as inputs, outputs or queries)
and unspecified generic data groups (i.e., logical files that have
not been yet classified as ILF or EIF) as given in [12] are
illustrated in Table II. When using this method, only the
identification of logical data and elementary processes needs to
be done: both the classification of data and transaction
functions and their weighting are skipped. Consequently, sizing
based on unspecified generic processes and data groups is even
more convenient –in terms of time and effort spent– than sizing
based on generic (i.e., non weighted) functions.

TABLE II. EQFP: FUNCTION TYPE WEIGHTS FOR UNSPECIFIED GENERIC

PROCESSES AND DATA GROUPS

Function type
Weight

Low Likely High

Unspefied Generic Processes 4.3 4.6 4.8

Unspefied Generic Data Group 6.4 7.0 7.8

B. NESMA indicative and estimated methods

The Indicative NESMA method [13] simplifies the process
by only requiring the identification of LogicData from a
conceptual data model. The Function Point size is then
computed by applying the following formulae –where #ILF is
the number of ILF and #EIF is the number of EIF– whose
parameters depend on whether the data model is normalized in
3

rd
 normal form:

Non normalized model: FP = # ILF × 35 + # EIF × 15

Normalized model: FP = # ILF × 25 + # EIF × 10

The process of applying the NESMA indicative method
involves only identifying logic data and classifying them as
ILF or EIF. Accordingly, it requires less time and effort than
the EQFP methods described above, in general. However, the
Indicative NESMA method is quite rough in its computation:

the official NESMA counting manual specifies that errors in
functional size with this approach can be up to 50%.

The Estimated NESMA method requires the identification
and classification of all data and transaction functions, but does
not require the assessment of the complexity of each function:
Data Functions (ILF and EIF) are all assumed to be of low
complexity, while Transactions Functions (EI, EQ and EO) are
all assumed to be of average complexity:

UFP = #EI × 4 + #EO × 5 + #EQ × 4 + #ILF × 7 + #EIF × 5

C. Other simplified FSM process proposals

1) Tichenor method
The Tichenor ILF Model [9] bases the estimation of the

size on the number of ILF via the following formula for
transactional system (for batch systems, Tichenor proposes a
smaller multiplier):

UFP = #ILF × 14.93

This model assumes a distribution of BFC with respect to
ILF as follows: EI/ILF = 0.33, EO/ILF = 0.39, EQ/ILF = 0.01,
EIF/ILF = 0.1. If the considered application features a different
distribution, the estimation can be inaccurate.

The fact that a method based only on ILF requires a given
distribution for the other BFC is not surprising. In fact, the size
of the application depends on how many transactions are
needed to elaborate those data, and the number of transaction
cannot be guessed only on the basis of the number of ILF, as it
depend on the number of ILF just very loosely. Instead of
allowing the user to specify the number of transactions that are
needed, the Tichenor method practically imposes that the
number of transactions complies with the distribution given
above.

2) ISBSG distribution model
 The analysis of the ISBSG dataset yielded the following

distribution of BFC contributions to the size in FP:

ILF 22.3%, EIF 3.8%, EI 37.2%, EO 23.5%, EQ 13.2%

The analysis of the ISBSG dataset also shows that the
average size of ILF is 7.4 UFP. It is thus possible to compute
the estimated size on the basis of the number of ILF as follows:

UFP = (#ILF × 7.4) × 100 / 22.3

The same considerations reported above for the Tichenor
model apply. If the application to be measured does not fit the
distribution assumed by the ISBSG distribution model, it is
likely that the estimation will be inaccurate.

3) Simplified FP
The simplified FP (sFP) approach assumes that all BFC are

of average complexity [14], thus:

UFP = #EI × 4 + #EO × 5 + #EQ × 4 + #ILF × 10 + #EIF × 7

4) ISBSG average weights
This model is based on the average weights for each BFC,

as resulting from the analysis of the ISBSG dataset [15], which
contains data from a few thousand projects. Accordingly, the
ISBSG average weights model suggests that that the average
function complexity is used for each BFC, thus

UFP = #EI × 4.3 + #EO × 5.4 + #EQ × 3.8 + #ILF × 7.4 +
#EIF × 5.5.

4

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. ACTIVITIES REQUIRED BY DIFFERENT SIMPLIFIED MEASUREMENT PROCESSES

Measurement activities IFPUG
NESMA

indic.
NESMA

estim.

EQFP
Generic

func.

EQFP
Unspec.

generic func.

Tichenor ILF
Model

ISBSG
distribution

sFP
ISBSG
average
weights

Identifying logic data � � � � � � � � �

Identifying elementary processes �

� � � � �

Classifying logic data as ILF or EIF � � � �

� � � �

Classifying elementary processes as EI, EO,
or EQ

�

� �

 � �

Weighting data functions �

Weighting transaction functions �

III. THE CASE STUDY

A. Real-Time projects

Most of the Real-Time projects measured are from a
European organization that develops avionic applications, and
other types of embedded and Real-Time applications. All the
measured projects concerned typical Real-Time applications
for avionics or electro-optical projects, and involved
algorithms, interface management, process control and
graphical visualization.

The projects’ FUR were modeled using UML as described
in [11], and then were measured according to IFPUG
measurement rules [4]. When the Real-Time nature of the
software made IFPUG guidelines inapplicable, we adopted ad-
hoc counting criteria, using common sense and striving to
preserve the principles of FPA, as described in [10]. The same
projects were then sized using the simplified functional size
measurement processes mentioned in Section II, using the data
that were already available as a result of the IFPUG
measurement.

Table IV reports the size in UFP of the measured projects,
together with the BFC and –in parentheses– the number of
unweighted BFC. For instance, project 1 involved 18 Internal
Logic Files, having a size of 164 FP.

B. Non Real-Time projects

The considered non Real-Time projects are mostly
programs that allow users to play board or card games vs.
remote players via the internet; a few ones are typical business
information systems.

The projects were measured –as the Real-Time ones– in
two steps: the UML model of each product was built along the
guidelines described in [16]; then, the function points were
counted, on the basis of the model, according to IFPUG rules.

Table V reports the size in UFP of the measured projects,
together with the BFC and –in parentheses– the number of
unweighted BFC.

TABLE IV. REAL-TIME PROJECTS’ SIZES (IFPUG METHOD)

Project

ID.
ILF EIF EI EO EQ UFP

1
164

(18)

5

(1)

90

(21)

8

(2)

22

(5)
289

2
56

(8)

0

(0)

21

(6)

18

(3)

6

(1)
101

3
73

(7)

0

(0)

12

(2)

47

(8)

4

(1)
136

4
130

(15)

15

(3)

44

(11)

0

(0)

6

(1)
195

5
39

(4)

0

(0)

28

(8)

39

(8)

0

(0)
106

6
71

(9)

5

(1)

8

(2)

139

(28)

0

(0)
223

7
7

(1)

0

(0)

3

(1)

5

(1)

0

(0)
15

8
21

(3)

0

(0)

4

(1)

8

(2)

0

(0)
33

9
21

(3)

0

(0)

7

(2)

16

(4)

0

(0)
44

TABLE V. NON REAL-TIME PROJECTS’ SIZES (IFPUG METHOD)

Project

ID.
ILF EIF EI EO EQ UFP

1
45

(6)

7

(1)

34

(10)

6

(1)

0

(0)
92

2
28

(4)

20

(4)

37

(9)

5

(1)

4

(1)
94

3
21

(3)

5

(1)

27

(7)

8

(2)

18

(6)
79

4
31

(4)

0

(0)

49

(16)

13

(3)

3

(1)
96

5
24

(3)

0

(0)

45

(14)

21

(5)

0

(0)
90

6
49

(7)

0

(0)

36

(9)

0

(0)

6

(2)
91

7
21

(3)

0

(0)

31

(9)

14

(3)

14

(4)
80

8
42

(6)

5

(1)

35

(9)

17

(3)

10

(2)
109

9
21

(3)

0

(0)

38

(11)

15

(5)

8

(2)
82

5

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. RESULTS OF SIMPLIFIED MEASUREMENT

Simplified measurement processes were applied following
their definitions, which require data that can be easily derived
from the tables above. So, for instance, the data required for
Real-Time project 1 are the following:

− The NESMA indicative method requires the numbers of
ILF and EIF. Table I shows that the number of ILF is 18,
and the number of EIF is 1.

− Similarly, the Tichenor ILF model and the ISBSG
distribution models just require the ILF number.

− The NESMA estimated method, the EQFP generic
functions method, the sFP method and the ISBSG average
weights method require the numbers of ILF, EIF, EI, EO,
and EQ. Table I shows that the numbers of ILF, EIF, EI,
EO, and EQ are, respectively, 18, 1, 21, 2, and 5.

− The EQFP unspecified generic functions method requires
the numbers of data groups (that is, the number of ILF plus
the number of EIF) and the number of transactions (that is,
the sum of the numbers of EI, EO, and EQ). Table I shows
that the number of data groups is 18+1 = 19, and the
number of transactions is 21+2+5 = 28.

TABLE VI. SIZES OF REAL-TIME PROJECTS OBTAINED VIA THE NESMA

METHODS

Project

ID
IFPUG

NESMA

indicative

non

normalized

NESMA

indicative

normalized

NESMA

estimated

1 289 645 460 245

2 101 280 200 99

3 136 245 175 101

4 195 570 405 168

5 106 140 100 100

6 223 330 235 216

7 15 35 25 16

8 33 105 75 35

9 44 105 75 49

A. Applying NESMA indicative

The applications to be measured were modeled according
to the guidelines described in [16]. The logic data files –
modeled as UML classes– provide a data model that cannot be
easily recognized as normalized or not normalized. Therefore,
we applied both the formulae for the normalized and not
normalized models.

The formulae of the NESMA indicative method were
applied to the number of ILF and EIF that had been identified
during the IFPUG function point counting process. The results
are given in Table VI for Real-Time projects and in Table VII
for non Real-Time projects.

B. Applying NESMA estimated

The formulae of the NESMA indicative method were

applied to the number of ILF, EIF, EI, EO, and EQ that had
been identified during the IFPUG function point counting
process. The results are given in Table VI for Real-Time
projects and in Table VII for non Real-Time projects.

TABLE VII. SIZES OF NON REAL-TIME PROJECTS OBTAINED VIA THE

NESMA METHODS

Project

ID
IFPUG

NESMA

indicative

non normalized

NESMA

indicative

normalized

NESMA

estimated

1 92 225 160 92

2 94 200 140 93

3 79 120 85 88

4 96 140 100 111

5 90 105 75 102

6 91 245 175 93

7 80 105 75 88

8 109 225 160 106

9 82 105 75 98

C. Applying EQFP

As described in Figure 1. , the EQFP method can be applied
at different levels. Since we had the necessary data, we adopted
the BFC aggregation level. At this level it is possible to use the
data functions and transaction functions without weighting
them or even without classifying transactions into EI, EO, and
EQ and logic data into ILF and EIF. In the former case (generic
functions) the weights given in Table I are used, while in the
latter case (unspecified generic functions) the weights given in
Table II are used.

The results of the application of EQFP are given in Table
VIII for Real-Time projects, and in Table IX for non Real-
Time projects.

TABLE VIII. MEASURES OF REAL-TIME PROJECTS OBTAINED VIA THE

EQFP METHOD

Project ID IFPUG

EQFP – unspecified

generic processes and

data groups

EQFP –generic

transactions and

data files

1 289 262 262

2 101 102 106

3 136 100 108

4 195 181 182

5 106 102 106

6 223 208 229

7 15 16 17

8 33 35 38

9 44 49 52

6

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IX. MEASURES OF NON REAL-TIME PROJECTS OBTAINED VIA THE

EQFP METHOD

Project ID IFPUG

EQFP – unspecified

generic processes and

data groups

EQFP –generic

transactions and

data files

1 92 100 99

2 94 107 99

3 79 97 92

4 96 120 118

5 90 108 108

6 91 100 100

7 80 95 92

8 109 113 113

9 82 104 103

TABLE X. MEASURES OF NON REAL-TIME PROJECTS OBTAINED VIA THE

TICHENOR ILF MODEL, ISBSG DEISTRIBUTION, SFP AND ISBSG AVERAGE

WEIGHTS METHODS.

Project ID IFPUG
Tichenor

ILF model
ISBSG
distrib.

sFP
ISBSG
average
weights

1 92 90 199 112 98

2 94 60 133 113 100

3 79 45 100 99 91

4 96 60 133 123 118

5 90 45 100 111 109

6 91 105 232 114 98

7 80 45 100 97 92

8 109 90 199 126 112

9 82 45 100 107 104

TABLE XI. MEASURES OF REAL-TIME PROJECTS OBTAINED VIA THE

TICHENOR ILF MODEL, ISBSG DEISTRIBUTION, SFP AND ISBSG AVERAGE

WEIGHTS METHODS.

Project ID IFPUG
Tichenor

ILF model
ISBSG
distrib.

sFP
ISBSG
average
weights

1 289 269 597 301 259

2 101 119 265 123 105

3 136 105 232 122 107

4 195 224 498 219 179

5 106 60 133 112 107

6 223 134 299 245 232

7 15 15 33 19 17

8 33 45 100 44 37

9 44 45 100 58 52

D. Applying Tichenor ILF Model

In order to apply the model we just had to multiply the
number of ILF of each of our projects for the constant 14.93
suggested by Tichenor. The obtained results are illustrated in
Table X and Table XI for non Real-Time and Real-Time
projects, respectively.

When applying this method, it should be remembered that
the results are likely to be incorrect if the distribution of BFC
in the estimated application does not match the distribution
observed by Tichenor. Accordingly, when applying the
method, one should also check the distribution of BFC.
Unfortunately, this implies making more work, namely, one
should count the number of EIF, EI, EO, and EQ in addition to
ILF. Even worse, one could discover that the distribution of
his/her application is different from the distribution assumed by
Tichenor, so that the estimated size is not reliable.

In our case, the projects do not appear to fit well in the
distribution assumed by Tichenor: the differences between the
measured ratios and the ratios expected by Tichenor are the
following:

− For Real-Time projects: 14.3% for EI/ILF, 43.7% for
EO/ILF, 3.9% for EQ/ILF, 7.9% for EIF/ILF.

− For non Real-Time projects: 96.7% for EI/ILF, 22.2% for
EO/ILF, 27.3% for EQ/ILF, 14.7% for EIF/ILF.

In practice, our projects have a very different distribution of
BFC sizes with respect to Tichenor expectations (for instance,
in non Real-Time projects EI had often a larger size than ILF,
while it is expected that the size of EI is about one third of the
size of ILF). So, we must expect a quite poor accuracy from
Tichenor estimates. This is actually confirmed by the data in
Table XIV, Table XV and Table XVI.

E. Applying the ISBSG distribution model

We applied the formula UFP = (#ILF × 7.4) × 100 / 22.3
prescribed by the method. Then, we evaluated the differences
between the measured percentage contribution of BFC and the
ISBSG averages. The differences we found were relatively
small:

− For Real-Time projects: 28.7% for ILF, 3.4% for EIF,
19.3% for EI, 21.3% for EO, 13.2% for EQ.

− For non Real-Time projects: 12% for ILF, 4.8% for EIF,
5.6% for EI, 15.4% for EO, 13.2% for EQ.

Accordingly, we expect that the ISBSG distribution model
applies reasonably well to our dataset, especially as non Real-
Time projects are involved.

The obtained size estimates are illustrated in Table X and
Table XI for non Real-Time and Real-Time projects,
respectively.

F. Applying the sFP and ISBSG average weights

The application of the sFP and ISBSG average weights
methods was extremely similar to the application of the
NESMA estimated and EQFP generic methods, only the values
of weights being different.

The obtained results are illustrated in Table X and Table XI
for non Real-Time and Real-Time projects, respectively.

7

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. SUMMARY AND LESSONS LEARNED

In this section, the results of our empirical analysis are
reports. First we discuss the quantitative results, then we
analyze the results from a more theoretical point of view.

A. Applying the sFP and ISBSG average weights

To ease comparisons, all the size measures of RT projects
are reported in Table XII and those of non RT projects are
reported in Table XIII.

TABLE XII. MEASURES OF REAL-TIME PROJECTS OBTAINED VIA THE VARIOUS METHODS

Proj

ID
IFPUG

NESMA

ind. non norm.

NESMA

ind. norm.

NESMA

estim.

EQFP

unspec.

EQFP

generic

Tichenor
ILF model

ISBSG
distrib.

sFP
ISBSG
average
weights

1 289 645 460 245 262 262 269 597 301 259

2 101 280 200 99 102 106 119 265 123 105

3 136 245 175 101 100 108 105 232 122 107

4 195 570 405 168 181 182 224 498 219 179

5 106 140 100 100 102 106 60 133 112 107

6 223 330 235 216 208 229 134 299 245 232

7 15 35 25 16 16 17 15 33 19 17

8 33 105 75 35 35 38 45 100 44 37

9 44 105 75 49 49 52 45 100 58 52

TABLE XIII. MEASURES OF NON REAL-TIME PROJECTS OBTAINED VIA THE VARIOUS METHODS

Proj

ID
IFPUG

NESMA

ind. non norm.

NESMA

ind. norm.
NESMA

estim.

EQFP

unspec.

EQFP

generic

Tichenor
ILF

model

ISBSG
distrib.

sFP
ISBSG
average
weights

1 92 225 160 92 100 99 90 199 112 98

2 94 200 140 93 107 99 60 133 113 100

3 79 120 85 88 97 92 45 100 99 91

4 96 140 100 111 120 118 60 133 123 118

5 90 105 75 102 108 108 45 100 111 109

6 91 245 175 93 100 100 105 232 114 98

7 80 105 75 88 95 92 45 100 97 92

8 109 225 160 106 113 113 90 199 126 112

9 82 105 75 98 104 103 45 100 107 104

TABLE XIV. RELATIVE MEASUREMENT ERRORS (REAL-TIME PROJECTS)

Proj

ID

NESMA ind.

non norm.

NESMA

ind. norm.
NESMA

estim.

EQFP

unspec.

EQFP

generic

Tichenor
ILF

model

ISBSG
distrib.

sFP
ISBSG
average
weights

1 123% 59% -15% -9% -9% -7% 107% 4% -10%

2 177% 98% -2% 1% 5% 18% 162% 22% 4%

3 80% 29% -26% -26% -21% -23% 71% -10% -21%

4 192% 108% -14% -7% -7% 15% 155% 12% -8%

5 32% -6% -6% -4% 0% -43% 25% 6% 1%

6 48% 5% -3% -7% 3% -40% 34% 10% 4%

7 133% 67% 7% 7% 13% 0% 120% 27% 13%

8 218% 127% 6% 6% 15% 36% 203% 33% 12%

9 139% 70% 11% 11% 18% 2% 127% 32% 18%

8

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XV. RELATIVE MEASUREMENT ERRORS (NON REAL-TIME PROJECTS)

Proj

ID

NESMA ind.

non norm.

NESMA

ind. norm.
NESMA

estim.

EQFP

unspec.

EQFP

generic

Tichenor
ILF

model

ISBSG
distrib.

sFP
ISBSG
average
weights

1 145% 74% 0% 9% 8% -2% 116% 22% 7%

2 113% 49% -1% 14% 5% -36% 41% 20% 6%

3 52% 8% 11% 23% 16% -43% 27% 25% 15%

4 46% 4% 16% 25% 23% -38% 39% 28% 23%

5 17% -17% 13% 20% 20% -50% 11% 23% 21%

6 169% 92% 2% 10% 10% 15% 155% 25% 8%

7 31% -6% 10% 19% 15% -44% 25% 21% 15%

8 106% 47% -3% 4% 4% -17% 83% 16% 3%

9 28% -9% 20% 27% 26% -45% 22% 30% 27%

TABLE XVI. MEAN AND STDEV OF ABSOLUTE RELATIVE ERRORS

NESMA

ind.

non norm.

NESMA

ind. norm.
NESMA

estim.

EQFP

unspec.

EQFP

generic
Tichenor

ILF model
ISBSG
distrib.

sFP
ISBSG
average
weights

Mean

(RT only)
127% 63% 10% 9% 10% 20% 112% 17% 10%

Stdev

(RT only)
64% 44% 7% 7% 7% 16% 59% 11% 7%

Mean

(non RT)
79% 34% 8% 17% 14% 32% 58% 23% 14%

Stdev

(non RT)
56% 33% 7% 8% 8% 17% 50% 4% 8%

Mean

(all)
103% 49% 9% 13% 12% 26% 85% 20% 12%

Stdev

(all)
63% 40% 7% 8% 8% 17% 60% 9% 8%

The relative measurement errors are given in Table XIV
and Table XV.

The obtained results show that we can divide the simplified
FSM methods in two classes: those which base the size
estimation exclusively on some measure of the data (like the
NESMA indicative, the Tichenor and ISBSG distribution
methods) and those which propose fixed weights for all the
BFC of FPA.

The former methods yield the largest errors. Although it
was expected that estimates based on less information are
generally less accurate than estimates based on more
information, the really important finding of our experimental
evaluation is that the size estimates based on data measures
feature quite often intolerably large errors, i.e., errors that are
likely to cause troubles, if development plans were based on
such estimates. For instance, let us consider the Tichenor
method (which appears the best of those based on data
measures) and assume that only size estimation errors not
larger than 20% are acceptable: 10 estimates out of 18 would
be unacceptable.

On the contrary, the methods that take into consideration all
BFC and provide fixed weights for them yield size estimates
that are close to the actual size. Among these methods sFP is
an exception, since it regularly overestimates the size of
projects, often by over 20%. This seems to indicate that

“average” projects are characterized by data and/or transactions
whose actual complexity is smaller than the complexity
expected by the sFP method.

The accuracy of the used methods is summarized in Table
XVI, where the mean and standard deviation of the absolute
relative errors are given for Real-Time projects, for non Real-
Time projects, and for the entire set of projects. The mean
value of absolute relative errors is a quite popular statistic,
often termed MMRE (Mean Magnitude of Relative Errors).

Table XVI shows that the NEMSA estimated, the two
EQFP methods and the ISBSG average weights methods
provide essentially equivalent accuracy. This is not surprising,
given that these methods propose very similar weight values.
The NESMA estimated method appears the best, but for Real-
Time projects the EQFP methods perform similarly, often even
better.

For Real-Time projects, EQFP (either in the unspecified or
generic flavor) tends to provide the most accurate results, while
the NESMA estimated method provides quite reasonable
estimates.

It is worthwhile noticing that EQFP is more accurate than
NESMA for Real-Time applications because it uses bigger
weights, which suite better Real-Time application, which are
more complex than non Real-Time applications.

9

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Theoretical analysis

As mentioned in Section II, simplified FSM methods are
based on skipping one or more phases of the standards
Function Point measurement process (see Table III). It is
reasonable to assume that the accuracy of the measure is
inversely proportional to the number of phases not performed,
hence to the amount of data not retrieved from the functional
user requirements of the software to be measured.

To confirm such hypothesis, we have enhanced the
information reported in Table III with the data concerning
mean errors and error standard deviations: the result is given in
Table XVII. The direct comparison of accuracy data with the
information used for measurement makes the following
observations possible.

Any simplified method that does not involve the weighting
appears to be bound to a 10-15% mean absolute error.

It does not appear true that the more you measure, the best
accuracy you get. For instance, EQFP considering unspecified

generic functions appear more accurate than sFP, even though
the former method does not involve classifying function types.

Among methods that use the same type and amount of data,
there are relatively large differences in accuracy: for instance,
the Tichenor ILF model appears more precise than both the
NESMA indicative (with normalized data) and the ISBSG
distribution.

The last two observations suggest that exploiting the
knowledge provided by statistical analysis can be decisive for
achieving accurate measures via simplified processes. For
instance, the EQFP method considering unspecified generic
functions is quite accurate because the likely complexity of
data and transactions assumed by the method (see Table II)
were derived via accurate statistical analysis. On the contrary,
the complexity values assumed by the sFP method were chosen
on the basis of expectations, not on rigorous statistical analysis.

The exploitation of statistical data is the base for the new
methods described in the next section.

TABLE XVII. MEASUREMENT PROCESSES: REQUIRED DATA VS. ACCURACY

IFPUG

NESMA
indic.
Norm.

NESMA
estim.

EQFP
Generic

func.

EQFP Unspec.
generic func.

Tichenor ILF
Model

ISBSG
distribution

sFP
ISBSG average

weights

Identifying logic data � � � � � � � � �

Identifying elementary processes �

� � � (*) (*) � �

Classifying logic data as ILF or EIF � � � �

� � � �

Classifying elementary processes as EI,
EO, or EQ

�

� �

(*) (*) � �

Weighting data functions �

Weighting transaction functions �

Mean error - 49% 9% 13% 12% 26% 85% 20% 12%

Error stdev - 40% 7% 8% 8% 17% 60% 9% 8%

(*) required to verify applicability

VI. NEW SIMPLIFIED FSM MODELS

In this section, we derive simplified FSM models similar to
those described in Section II, but based on the measures of our
own applications (as reported in Table IV and Table V).

In Table XVIII we give the average weights of the BFC
computed over all the measured applications. Note that the
given averages are computed as the mean –at the dataset level–
of the mean values computed for each application. In the table,
the mean weights derived from our dataset are shown together
with the weights proposed by other simplified FSM methods,
for comparison. The fact that our EI and EO means are smaller
than the values proposed by other methods, while the ILF and
EIF means are very close to those proposed by other methods
probably means that our applications were simpler than those
considered in the definition of other methods.

TABLE XVIII. AVERAGE FUNCTION TYPE WEIGHTS FOR OUR DATASET

Function

type

EQFP

generic

NESMA

Estim.

ISBSG

average
sFP

Our

dataset

(all proj.)

ILF 7.7 7 7.4 7 7.4

EIF 5.4 5 5.5 5 5.3

EI 4.2 4 4.3 3 3.7

EO 5.2 5 5.4 4 4.6

EQ 3.9 4 3.8 3 4

In Table XIX we give the average values of weights

derived from our dataset, distinguishing Real-Time and non
Real-Time applications. We also give the average value of the

10

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ratio between the number of ILF and the size in UFP. It is
possible to note that the average number of UFP per ILF we
found is quite larger than that found by Tichenor. This suggests
that models based just on ILF can be hardly generalized.

Note that we computed also the weights for transaction
functions (TF) and data functions (DF). These weights can be
used in simplified measurement processes like the EQFP
unspecified generic method.

TABLE XIX. MEAN AND MDEIAN WEIGHTS FOR THE PROJECTS IN OUR

DATASET

 Mean (median) weight

Dataset ILF EIF EI EO EQ TF DF
UFP/
#ILF

All non
RT proj

6.6 5.5 3.5 4.4 3.4 7.0 3.7 22.7

All RT
proj

8.2 5.0 4.0 4.8 5.1 8.1 4.4 17.0

All proj 7.4 5.3 3.7 4.6 4.0 7.6 4.1 19.9

The values in Table XIX suggest that transactions were

generally more complex in Real-Time applications than in non
Real-Time applications. The latter are probably responsible for
relatively smaller weights of transaction (EI, EO, and EQ) in
Table XVIII.

Using the values in Table XIX it was possible to derive
models that are similar to those described in Section II: they are
described in Table XX and Table XXI.

TABLE XX. MODELS FOR NON RT PROJECTS.

Average weights

(all BFC)

UFP = 6.6 #ILF+ 5.5 #EIF + 3.5 #EI + 4.4 #EO + 3.4

#EQ

Average weights

(DF and TF)
UFP = 7.0 #TF + 3.7 #DF

ILF based model UFP = 22.7 #ILF

TABLE XXI. MODELS FOR RT PROJECTS.

Average weights

(all BFC)
UFP = 8.2 #ILF+ 5 #EIF + 4 #EI + 4.8 #EO + 5.1 #EQ

Average weights

(DF and TF)
UFP = 8.1 #TF + 4.4 #DF

ILF based model UFP = 17 #ILF

We used such models to estimate the size of the projects in

our dataset. The results of the estimations are reported in Table
XXII and Table XXIII for Real-Time and non Real-Time
projects, respectively.

Table XXII and Table XXIII show a rather poor accuracy
of the estimation based on ILF, with error greater than 20% for
several projects.

On the contrary, the estimations based on average weights
are reasonably accurate; the obtained results are particularly
good for non Real-Time projects, with all the estimates
featuring errors not greater than 10%.

The average values of the absolute relative errors are
reported in Table XXIV together with the average values of the
absolute relative errors obtained with the best among the other
methods, for comparison.

It is easy to see that the estimates obtained using the
average weights of the projects being estimated feature
practically the same accuracy as the other methods.

TABLE XXII. ESTIMATES OF RT PROJECTS BASED ON MODELS USING THE

PARAMETERS GIVEN IN TABLE XIX.

Proj.

ID

 Average

weights

(all BFC)

Average

weights

(DF and TF)

ILF based

model

Actual

size

Est.

size
% err

Est.

size
% err

Est.

size
% err

1 289 273 -6% 277 -4% 306 6%

2 101 110 9% 109 8% 136 35%

3 136 109 -20% 105 -23% 119 -13%

4 195 187 -4% 198 2% 255 31%

5 106 104 -2% 103 -3% 68 -36%

6 223 223 0% 213 -4% 153 -31%

7 15 17 13% 17 13% 17 13%

8 33 39 18% 37 12% 51 55%

9 44 52 18% 51 16% 51 16%

TABLE XXIII. ESTIMATES OF NON RT PROJECTS BASED ON MODELS USING

THE PARAMETERS GIVEN IN TABLE XIX.

Proj.

ID

 Average

weights (all

BFC)

Average

weights (DF

and TF)

ILF based

model

Actual

size

Est.

size
% err

Est.

size
% err

Est.

size
% err

1 92 85 -8% 90 -2% 136 48%

2 94 87 -7% 97 3% 91 -3%

3 79 81 3% 84 6% 68 -14%

4 96 98 2% 102 6% 91 -5%

5 90 91 1% 92 2% 68 -24%

6 91 85 -7% 90 -1% 159 75%

7 80 79 -1% 79 -1% 68 -15%

8 109 98 -10% 101 -7% 136 25%

9 82 88 7% 88 7% 68 -17%

It is a bit surprising that in the literature a few models of

type UFP = k × #ILF were proposed, while model of type UFP
= k × #EP (where #EP is the number of elementary processes,
i.e., #EI + #EO + #EQ) received hardly any attention. We
computed the ratio UFP/#EP for each application, and used the
average value k in models UFP = k × #EP, to estimate the size
of the applications in our dataset. The obtained estimates were
characterized by errors quite similar to those of ILF-based
models (the average absolute error was 25% for Real-Time
projects and 27% for non Real-Time projects). Accordingly, it
seems that models of type UFP = k × #EP are not likely to
provide good estimates.

11

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XXIV. MEAN AND STDEV OF ABSOLUTE RELATIVE ERRORS

Average weights,

all BFC

Average weights,

DF & TF

Average

UFP / #ILF

NESMA

estim.

EQFP

unspec.

EQFP

generic

ISBSG average
weights

Mean (RT only) 10% 9% 26% 10% 9% 10% 10%

Stdev (RT only) 8% 10% 29% 7% 7% 7% 7%

Mean (non RT) 5% 4% 25% 8% 17% 14% 14%

Stdev (non RT) 3% 4% 22% 7% 8% 8% 8%

Mean (all) 8% 10% 31% 9% 13% 12% 12%

Stdev (all) 6% 6% 19% 7% 8% 8% 8%

VII. RELATED WORK

Meli and Santillo were among the first to recognize the
need for comparing the various functional size methods
proposed in the literature [17]. To this end, they also provided a
benchmarking model.

In [18], van Heeringen et al. report the results of measuring
42 projects with the full-fledged, indicative and estimated
NESMA methods. They found a 1.5% mean error of NESMA
estimated method and a 16.5% mean error of NESMA
indicative method.

Using a database of about 100 applications, NESMA did
some research on the accuracy of the estimated and indicative
function point counts. They got very good results
(http://www.nesma.nl/section/fpa/earlyfpa.htm), although no
statistics (e.g., mean relative error) are given.

In [19], Vogelezang summarized the two techniques to
simplified measuring given in the COSMIC measurement
manual: the approximate technique and the refined
approximate technique. In the approximate technique, the
average size of a functional process is multiplied with the
number of functional processes the software should provide.
The refined approximate technique uses the average sizes of
small, medium, large and very large functional processes. The
accuracy of the COSMIC-FFP approximate technique is good
enough with less than 10% deviation on a portfolio and less
than 15% on a project within a specified environment [19].

Popović and Bojić compared different functional size
measures –including NESMA indicative and estimated– by
evaluating their accuracy in effort estimation in various phases
of the development lifecycle [20]. Not surprisingly, they found
that the NESMA indicative method provided the best accuracy
at the beginning of the project. With respect to Popović and
Bojić, we made two quite different choices: the accuracy of the
method is evaluated against the actual size of the software
product and –consistently– all the information needed to
perform measurement is available to all processes.

There is no indication that Real-Time projects were among
those measured by van Heeringen et al. or by NESMA.

In [8], Santillo suggested probabilistic approaches, where
the measurer can indicate the minimum, medium and
maximum weight of each BFC, together with the expected
probability that the weight is actually minimum, medium or
maximum. This leads to estimate not only the size, but also the
probability that the actual size is equal to the estimate.

VIII. THREATS TO VALIDITY

A first possible threat to the internal validity of the study is
due to the relatively small datasets.

Another possible issue concerns the size and complexity of
the applications. As far as the Real-Time applications are
concerned, we measured real industrial projects. Accordingly,
we are fairly sure that they represent a good benchmark for the
considered simplified FSM methods. On the contrary, our non
Real-Time projects are fairly small. However, the really
important point for testing the adequacy of simplified FSM
methods is not the size of the benchmark applications, but their
complexity. It is possible that our non Real-Time projects are
slightly less complex than average applications: this would
explain why most simplified FSM methods overestimate them
(see Table XV).

The fact that our datasets are not very homogeneous is
actually not a problem; rather it is useful to challenge the
proposed simplified FSM methods with different types of
software applications.

IX. CONCLUSION

Sometimes, FPA is too slow or too expensive for practical
usage. Moreover, FPA requires a knowledge of requirements
that may not be available when the measures of size are
required, i.e., at the very first stages of development, when
development costs have to be estimated. To overcome these
problems, simplified measurement processes have been
proposed.

In this paper, we applied simplified functional size
measurement processes to both traditional software
applications and Real-Time applications.

The obtained results make it possible to draw a few relevant
conclusions:
1. Some of the simplified FSM methods we experimented

with seem to provide fairly good accuracy. In particular,
NESMA estimated, EQFP, and ISBSG average weights
yielded average absolute relative errors close to 10%. This
level of error is a very good trade off, if you consider that
it can be achieved without going through the expensive
phase of weighting data and transactions.

2. Organizations that have historical data concerning
previous projects can build their own models. We showed
that with a relatively small number of projects it is
possible to build models that provide a level of accuracy

12

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

very close to that of methods like NESMA estimated and
EQFP.

3. The simplified FSM methods are generally based on
average values of ratios among the elements of FP
measurement. Accordingly, projects that have unusual
characteristics tend to be ill suited for simplified size
estimation. For instance, project 3 in our set of Real-Time
projects is more complex than the other projects in the set,
having most EI and EO characterized by high complexity.
This causes most method to underestimate the size of the
project by over 20%. Therefore, before applying a
simplified FSM method to a given application, it is a good
idea to verify that this application is not too much (or too
less) complex with respect to “average” applications. Our
Real-Time project 3 was characterized by the need to store
or communicate many data at a time: this situation could
have suggested that using average values for an early
measurement leads to a rather large underestimation.

EQFP methods proved more accurate in estimating the size
of Real-Time applications, while the NESMA estimated
method proved fairly good in estimating both Real-Time and
non Real-Time applications. However, the relatively small
number of projects involved in the analysis does not allow
generalizing these results.

Even considering the relatively small dataset, it is however
probably not casual that the NESMA estimated method
happened to underestimate all projects. Probably NESMA
should consider reviewing the weights used in the estimated
method, in the sense of increasing them.

When considering the results of our analysis from a
practical viewpoint, a very interesting question is “what
simplified method is the best one for my application(s)?”.
Table XIV and Table XV show that the methods that are better
on average are not necessarily the best ones for a given project.
To answer the question above it would be useful to characterize
the projects according to properties not considered in FSM, and
look for correlations with the measures provided by different
simplified methods. This would allow selecting the simplified
measurement method that provided the best accuracy for
applications of the same type as the one to be sized.
Unfortunately, it was not possible to analyze the possibly
relevant features of the dataset described in Section III (we had
no access to the code of Real-Time projects), thus this analysis
is among future activities.

As already mentioned, the results presented here are based
on datasets in which the largest project has size of 289 FP:
further work for verifying the accuracy of simplified
measurement methods when dealing with larger project is
needed.

 Among the future work is also the experimentation of
simplified measurement processes in conjunction with
measurement-oriented UML modeling [16], as described in
[21].

The models described in Section II are generally derived in
a rather naive way, i.e., simply computing averages of some
elements that are involved in the measurement: e.g., the
average ration between the measure of BFC and their number.
Simplified measurement models should be better derived via
regression analysis. Unfortunately, the relatively little number
of applications in our datasets does not support this type of

analysis, especially if multiple independent variables are
involved, as in models of type UFP = f(EI, EO, EQ, ILF, EIF)
or UFP = f(TF, DF). Performing this type of analysis is among
our goal for future activities, provided that we can get enough
data points.

ACKNOWLEDGMENT

The research presented in this paper has been partially
supported by the project “Metodi, tecniche e strumenti per
l’analisi, l’implementazione e la valutazione di sistemi
software” funded by the Università degli Studi dell’Insubria.

REFERENCES

[1] L. Lavazza and G. Liu, “A Report on Using Simplified Function Point
Measurement Processes”, Int. Conf. on Software Engineering Advances,
(ICSEA 2012), Nov. 2012, pp. 18-25.

[2] A.J. Albrecht, “Measuring Application Development Productivity”,
Joint SHARE/ GUIDE/IBM Application Development Symposium,
1979.

[3] A.J. Albrecht and J.E. Gaffney, “Software function, lines of code and
development effort prediction: a software science validation”, IEEE
Transactions on Software Engineering, vol. 9, 1983.

[4] International Function Point Users Group, “Function Point Counting
Practices Manual - Release 4.3.1”, 2010.

[5] ISO/IEC 20926: 2003, “Software engineering – IFPUG 4.1 Unadjusted
functional size measurement method – Counting Practices Manual”,
ISO, Geneva, 2003.

[6] C. Jones, “A new business model for function point metrics”,
http://www.itmpi.org/assets/base/images/itmpi/privaterooms/capersjones
/FunctPtBusModel2008.pdf, 2008

[7] “Methods for Software Sizing – How to Decide which Method to Use”,
Total Metrics, www.totalmetrics.com/function-point-
resources/downloads/R185_Why-use-Function-Points.pdf, August 2007.

[8] L. Santillo, “Easy Function Points – ‘Smart’ Approximation Technique
for the IFPUG and COSMIC Methods”, Joint Conf. of the 22nd Int.
Workshop on Software Measurement and the 7th Int. Conf. on Software
Process and Product Measurement, Oct. 2012.

[9] C. Tichenor, “The IRS Development and Application of the Internal
Logical File Model to Estimate Function Point Counts”, IFPUG Fall
Conference of Use (ESCOM-ENCRESS 1998), May 1998.

[10] L. Lavazza and C. Garavaglia, “Using Function Points to Measure and
Estimate Real-Time and Embedded Software: Experiences and
Guidelines”, 3rd Int. Symp. on Empirical SW Engineering and
Measurement (ESEM 2009), Oct. 2009.

[11] L. Lavazza and C. Garavaglia, “Using Function Point in the Estimation
of Real-Time Software: an Experience”, Software Measurement
European Forum (SMEF 2008), May 2008.

[12] “Early & Quick Function Points for IFPUG methods v. 3.1 Reference
Manual 1.1”, April 2012.

[13] ISO, Iec 24570: 2004, “Software Engineering-NESMA Functional Size
Measurement Method version 2.1 - Definitions and Counting Guidelines
for the Application of Function Point Analysis. International
Organization for Standardization”, Geneva, 2004.

[14] L. Bernstein and C. M. Yuhas, “Trustworthy Systems Through
Quantitative Software Engineering”, John Wiley & Sons, 2005.

[15] International Software Benchmarking Standards Group, “Worldwide
Software Development: The Benchmark, release 11”, 2009.

[16] L. Lavazza, V. del Bianco, C. Garavaglia, “Model-based Functional Size
Measurement”, 2nd International Symposium on Empirical Software
Engineering and Measurement (ESEM 2008), Oct. 2008.

[17] R. Meli and L. Santillo, “Function point estimation methods: a
comparative overview”, Software Measurement European Forum
(FESMA 1999), Oct. 1999.

[18] H. van Heeringen, E. van Gorp, and T. Prins, “Functional size
measurement - Accuracy versus costs - Is it really worth it?”, Software
Measurement European Forum (SMEF 2009), May 2009.

13

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[19] F.W. Vogelezang, “COSMIC Full Function Points, the Next
Generation”, in Measure! Knowledge! Action! – The NESMA
anniversary book, NESMA, 2004.

[20] J. Popović and D. Bojić, “A Comparative Evaluation of Effort
Estimation Methods in the Software Life Cycle”, Computer Science and
Information Systems, vol. 9, Jan. 2012.

[21] V. del Bianco, L. Lavazza, and S. Morasca, “A Proposal for Simplified
Model-Based Cost Estimation Models”, 13th Int. Conf. on Product-
Focused Software Development and Process Improvement (PROFES
2012), June 2012.

14

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Basic Building Blocks for Column-Stores

Andreas Schmidt∗†, Daniel Kimmig†, and Reimar Hofmann∗
∗ Department of Computer Science and Business Information Systems,

Karlsruhe University of Applied Sciences
Karlsruhe, Germany

Email: {andreas.schmidt, reimar.hofmann}@hs-karlsruhe.de
† Institute for Applied Computer Science

Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: {andreas.schmidt, daniel.kimmig}@kit.edu

Abstract—A constantly increasing CPU-memory gap as well
as steady growth of main memory capacities have increased
interest in column store systems due to potential performance
gains within the realm of database solutions. In the past, several
monolithic systems have reached maturity in the commercial and
academic spaces. However, a framework of low-level and modular
components for rapidly building column store based applications
has yet to emerge. A possible field of application is the rapid
development of high-performance components in various data-
intensive areas such as text-retrieval systems and recommenda-
tion systems. The main contribution of this paper is a column-
store-tool-kit, a basic building block of low-level components for
constructing applications based on column store principles. We
present a minimal amount of necessary structural elements and
associated operations required for building applications based on
our column-store-kit. The eligibility of our toolkit is demonstrated
subsequently in using the components of our toolkit for building
different query execution plans. This part of work is a first step
in our effort for the construction of a pure colmun-store based
query optimizer.

Keywords—Column store; basic components; framework; rapid
prototyping; TPC-H benchmark; query-optimizer; query-execution
plan.

I. INTRODUCTION

Within database systems, values of a dataset are usually
stored in a physically connected manner. A row store stores all
column values of each single row consecutively (see Figure 1,
bottom left). In contrast to that, within a column store, all
values of each single column are stored one after another
(see Figure 1, bottom right). In column stores, the relation-
ship between individual column values and their originating
datasets are established via Tuple IDentifiers (TID). The main
advantage of column stores during query processing is the fact
that only data from columns which are of relevance to a query
have to be loaded. To answer the same query in a row store,
all columns of a dataset have to be loaded, despite the fact,
that only a small portion of them are actually of interest to the
processing. On the other side, the column store architecture is
disadvantageous for frequent changes (in particular insertions)
to datasets. As the values are stored by column, they are
distributed at various locations, which leads to a higher number
of required write operations exceeding those within a row store
to perform the same changes. This characteristic makes this
type of storage interesting especially for applications with very

high data volume and few sporadic changes only (preferably
as bulk upload), as it is the case in, e.g., data warehouses,
business intelligence systems or text retrieval systems.

In our previous work [1], we identified the basic building
blocks of our Column Store ToolKit (CSTK) and its interfaces
with respect to providing a toolkit for building column store-
based applications. In this paper, we extend our formulated
ideas with a number of experiments which demonstrate the
suitability of our toolkit with regard to building a query
optimizer for column stores and the general suitability for
scientific questions in the field of column store research.

Interest in column store systems has recently been re-
inforced by steady growth of main memory capacities that
meanwhile allow for main memory-based database solutions
and, additionally, by the constantly increasing CPU-memory
gap [2]. Today’s processors can process data much quicker than
it can be loaded from main memory into the processor cache.
Consequently, modern processors for database applications
spend a major part of their time waiting for the required
data. Column stores and special cache-conscious [3] algorithms
are attempts to avoid this “waste of time”. A number of
commercial and academic column store systems have been
developed in the past. In the research area, MonetDB [4] and
C-Store [5] are widely known. Open Source and commercial
systems include Sybase IQ, Infobright, Vertica, LucidDB, and
Ingres. All these systems are more or less complete database
systems with an SQL interface and a query optimizer.

As column stores are a young field of research, numerous
aspects remain to be examined. For example, separation of
datasets into individual columns result in a series of addi-
tional degrees of freedom when processing a query. Abadi
et al. [6] developed several strategies as to when a result
is to be “materialized”, i.e., at which point in time result
tuples shall be composed. Depending on the type of query
and selectivity of predicates, an early or late materialization
may be reasonable. Interesting studies were published about
compression methods [7], various index types as well as the
execution of join operations, e.g., Radix-Join [2], Invisible
Join [8] or LZ-Join [9]. In addition to that, there are attempts at
creating hybrid approaches that try to combine the advantages
of column and row stores. The main objective of this paper is to
present a number of low-level building blocks for constructing
applications based on column store systems. Instead of copy-

15

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ID Name Firstname date-of-birth sex

31 Waits Tom 1949-12-07 M

45 Benigni Roberto 1952-10-27 M

65 Jarmusch Jim 1953-01-22 M

77 Ryder Winona 1971-10-29 F

81 Rowlands Gena 1930-06-19 F

82 Perez Rosa 1964-09-06 F

Ro
w-
St
or
e Column-Store

31 Waits Tom 1949-12-07 M

31
45 Benigni Roberto 1952-10-27 M

65 Jarmusch Jim 1953-01-22 M

77 Ryder Winona 1971-10-29 F

81 Rowlands Gena 1930-06-19 F

82 Perez Rosa 1964-09-06 F

45

65

77

81

82

Benigni

Jarmusch

Ryder

Rowlands

Perez

1952-10-27

1953-01-22

1971-10-29

1930-06-19

1964-09-06

M

M

F

F

F

 Waits Tom 1949-12-07 M

Roberto

Jim

Winona

Gena

Rosa

Fig. 1. Comparison of the layouts of a row store and a column store

ing the low-level constructs of existing sophisticated column
stores, our research work is focused on identifying components
and operations that allow for building specialized column store
based applications in a rapid prototyping fashion. As our
components can be composed in a “plug and compute”-style,
our contribution is a column-store-tool-kit, which is a building
block for experimental and prototypical setup of applications
within the field of column stores. A possible field of applica-
tion is the rapid development of high-performance components
in various data-intensive areas such as text-retrieval systems.

This paper is structured as follows. In the next section,
related work is mentioned. Then, in Section III, some basic
considerations about column stores will be outlined. After-
wards, in Section IV and V the identified components and
corresponding operations will be explained on a logical level.
On this basis, various implementations of logical components
and operations will be presented in Section VI. Finally, results
will be summarized and an outlook will be given on future
research activities.

II. RELATED WORK

In the field of database systems, there are a number of
related approaches. For example the C++-fastbit-library [10]
provides a number of searching functions based on compressed
bitmap indexes. Beside the low-level bitmap components,
also a SQL interface exists in this library. The approach is
comparable to the bitmap index in some relational database
systems (i.e., Oracle, PostgreSQL). In contrast to these in-
dexes, the fastbit bitmaps are compressed and therefore also
usable for high cardinality attributes. The CSTK described in
this paper can benefit from the compressed bitmap classes
when implementing the PositionLists (see Section IV). Weather
this implementation variant is advantageous depends on a
number of factors. For details see [11]. In the field of query
optimization there are a number of different tools, i.e., the
Volcano project [12], developed by Goetz Graefe. Volcano
is a optimizer generator, which means, that the source code

of the optimizer is generated, based on a model specification
which consists of algebraic expressions. The library itself con-
tains modules for a file-system, buffer management, sorting,
duplicate elimination, B+-trees, aggregation, different join
implementations, set operations, and aggregation functions.
Based on the experiences gained with Volcano, the Cascades
framework [13] was started, which later forms the base for the
SQL Server 7.0 query optimizer [14].

III. COLUMN STORE PRINCIPLES

Nowadays, modern processors utilize one or more cache
hierarchies to accelerate access to main memory. A cache is a
small and fast memory that resides between main memory and
the CPU. In case the CPU requests data from main memory, it
is first checked, whether it already resides within the cache. In
this case, the item is sent directly from the cache to the CPU,
without accessing the much slower main memory. If the item
is not yet in the cache, it is first copied from the main memory
to the cache and then further sent to the CPU. However, not
only the requested data item, but a whole cache line, which
is between 8 and 128 bytes long, is copied into the cache.
This prefetching of data has the advantage, that requests to
subsequent items are much faster, because they already reside
within the cache. Meanwhile, the speed gain when accessing a
dataset in the first-level cache is up to two orders of magnitude
compared to regular main memory access [15]. Column stores
take advantage of this prefetching behavior, because values
of individual columns are physically connected together and,
therefore, often already reside in the cache when requested,
as the execution of complex queries is processed column by
column rather than dataset by dataset. This also means that
the decision whether a dataset fulfills a complex condition is
generally delayed until the last column is processed. Conse-
quently, additional data structures are required to administrate
the status of a dataset in a query. These data structures are
referred to as Position Lists. A PositionList stores the TIDs
of matching datasets. Execution of a complex query generates

16

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a PositionList with entries of the qualified datasets for every
simple predicate. Then, the PositionLists are linked by and/or
semantics. As an example, Figure 2 shows a possible execution
plan for the following query:

select birthday, name
from person
where birthdate < ’1960-01-01’
and sex=’F’

First, the predicates birthdate <’1960-01-01’ and
sex =’F’ must be evaluated against the correponding columns
(birthdate and sex), which results in the PositionLists PL1
and PL2. These two evaluations could also be done in par-
allel. Next, an and-operation must be performed on these
two PositionLists, resulting in the PositionList PL3. As we
are interested in the birthdate and name of the persons that
fulfil the query conditions, we have to perform another two
operations (extract), which finally returns the entries for the
TIDs, specified by the PositionList PL3.

name

Waits
Begnini

Jarmusch

Ryder

Rowlands

Perez

birthdate

1949-12-07

1952-10-27

1953-01-22

1971-10-29

1930-06-19

1964-09-06

sex

 M
 M

 M

 F

 F

 F

PL2

4

6

5

PL1

1

3

5

2

sex=’F’birthdate < ’1960-01-01’

PL3

5

and

name

Rowlands

materializematerialize

birthdate

1930-06-19

 merge

birthdate

1930-06-19

name

Rowlands

Fig. 2. Processing of a query with PositionLists

IV. CONCEPT

The main focus of our components is to model the individ-
ual columns, which can occur both in the secondary store as
well as main memory. Their types of representation may vary.
To store all values of a column, for example, it is not necessary
to explicitly store the TID for each value, because it can be de-
termined by its position (dense storage). To handle the results

of a filter operation however, the TIDs must be stored explicitly
with the value (sparse storage). Another important component
is the PositionList already mentioned in Section III. Just like
columns, two different representation forms are available for
main and secondary storage. To generate results or to handle
intermediate results consisting of attributes of several columns,
data structures are required for storing several values (so-called
multi columns). These may also be used for the development
of hybrid systems as well as for comparing the performance of
row and column store systems. The operations mainly focus
on writing, reading, merging, splitting, sorting, projecting, and
filtering data. Predicates and/or PositionLists are applied as
filtering arguments. Figure 3 illustrates a high level overview
of the most important operations and transformations between
the components. In Section V, they will be described in detail.
Moreover, the components are to be developed for use on both
secondary store and main memory as well as designed for
maximum performance. This particularly implies the use of
cache-conscious algorithms and structures.

V. PRESENTATION OF LOGICAL COMPONENTS

In the following sections, the aforementioned components
will be presented together with their structure and their cor-
responding operations. Section VI will then outline potential
implementations to reach highest possible performance.

A. Structure

1) ColumnFile: The ColumnFile serves to represent a col-
umn on the secondary storage. Supported primitive data types
are: uint, int, char, date und float. Moreover, the composite type
SimpleStruct (see V-A2) is supported, which may consist of
a runtime definable list of the previously mentioned primitive
data types. As a standard, the TID of a value in the ColumnFile
is given implicitly by the position of the value in the file. If
this is not the case, a SimpleStruct is used, which explicitly
contains the TID in the first column.

2) SimpleStruct: SimpleStruct is a dynamic, runtime defin-
able data structure. It is used within ColumnFile as well as
within ColumnArrays (see below). The SimpleStruct plays a
role in the following cases:

• Result of a filter query, in which the TIDs of the
original datasets are also given.

• Combination of results consisting of several columns.

• Setup of hybrid systems having characteristics of both
column and row stores. For example, it may be advan-
tageous to store several attributes in a SimpleStruct
that are frequently requested together.

• Representation of sorted columns, where TIDs are
required. This is particularly reasonable for Join op-
erators or a run-length-encoded compression on their
basis.

3) ColumnArray and MultiColumnArray: A ColumnArray
represents a column in main memory, which consists of a
flexible number of lines. The data types correspond to those of
the previously defined ColumnFile. If the data type is a Sim-
pleStruct, it is referred to as MultiColumnArray. In addition to
the actual column values, the TIDs of the first and last dataset

17

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and/or

 Dense ColumnArray

 ColumnFile

 PositionList

 PositionListFile

 Sparse ColumnArray

load

filter

filter/split/sort/(project)

filter

 load

 store

split/sort/(project)
filter/split/sort

store

store

filter/sort

filter

merge/materialize

sort and/or

Fig. 3. Components and Operations

and the number of datasets stored are given in the header
of the (Multi)ColumnArray. Two types of representations are
distinguished:

• Dense: The type of representation is dense, if no gaps
can be found in the datasets, i.e., if the TIDs are
consecutive. In this case, the TID is given virtually
by the TID of the first data set and the position in the
array and does not have to be stored explicitly (see
Figure 4, left side). This type of representation is par-
ticularly suited for main memory-based applications,
in which all datasets (or a continuous section of them)
are located in main memory.

• Sparse: This type of representation explicitly stores
the TIDs of the datasets (see Figure 4, right). The pri-
mary purpose of a sparse ColumnArray is the storage
of (intermediate) results. As will be outlined in more
detail in Section V, it may be chosen between two
physical implementations depending on the concrete
purpose.

4) ColumnBlocks and MultiColumnBlocks: Apart from the
(Multi)ColumnArrays of flexible size, (Multi)ColumnBlocks
exist, which possess a arbitrary, but fixed size. They are
mainly used to implement ColumnArrays with their flexible
size. In addition, they may be applied in the implementation
of an custom buffer management as a transfer unit between
secondary and main memory and as a unit that can be indexed.

5) PositionList: A PositionList is nothing else than a
ColumnArray with the data type uint(4) as far as structure
is concerned. However, it has a different semantics. The Posi-
tionList stores TIDs. A PositionList is the result of a query via
predicate(s) on a ColumnFile or a (Multi)ColumnArray, where
the actual values are of no interest, but rather the information
about the qualified data sets. Position Lists store the TIDs in
ascending order without duplicates. This makes the typical
and/or operations very fast, as the cost for both operations
is O(|Pl1|+ |Pl2|). As will be outlined in Section VI, various
types of implementations may be applied. Analogously to the
(Multi)ColumnArray, there is a representation of the Position-
List for the secondary store, which is called PositionFile.

StartPos:1024
EndPos :2047

11

21

45

51

89

93

..

StartPos: 1024
EndPos :2047

11

21

45

51

89

93

name sex

name sex

..

StartPos : 1024
EndPos : 2047
Entries : 351

StartPos : 1024
EndPos : 2047
Entries : 351

ColumnArray MultiColumnArray ColumnArray MultiColumnArray

Dense Sparse

Fig. 4. Types of ColumnArrays

B. Operations

1) Transformations on ColumnFiles: Several operations
are defined on ColumnFiles. A filter operation (via predicate
and/or PositionList) can be performed on a ColumnFile and
the result can be written to another ColumnFile (with or
without explicit TIDs). Other operations are the splitting of
a ColumnFile as well as sorting among different criterias (see
Section V-B6) with and without explicitly storing the TID.

2) Transformations between ColumnFile and (Multi)-
Column-Array: ColumnFiles and (Multi)ColumnArrays are
different types of representation of one or more logical
columns. Physically, ColumnFiles are located in the secondary
storage, while ColumnArrays are located in main memory.
Consequently, both types of representations can also be trans-
formed into each other using the corresponding operators.

A ColumnFile can be transformed completely or partially
into a dense (Multi)ColumnArray. If not all, but only certain
datasets that match special predicates or PositionLists are to be
loaded into a (Multi)ColumnArray, this can be achieved using
filter operations that generate a sparse (Multi)ColumnArray.
A sparse (Multi)ColumnArray may also be transformed into
a ColumnFile. In this case, the TIDs are stored explicitly in
combination with the values. Other operations refer to the
insertion of new values and the deletion of values. An outline
of the most important operations of ColumnFiles is given in
Table I.

18

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. OUTLINE OF OPERATIONS ON COLUMNFILES

Operation Result type
read(ColumnFile) ColumnArray (dense)
read(ColumnFile, start, length) ColumnArray (dense)
filter(ColumnFile, predicate) ColumnArray (sparse)
filter(ColumnFile, predicate-list) ColumnArray (sparse)
filter(ColumnFile, positionlist) ColumnArray (sparse)
filter(ColumnFile, positionlist-list) ColumnArray (sparse)
filter(ColumnFile, predicate-list, ColumnArray (sparse)

positionlist-list)
fileFilter(ColumnFile, predicate) ColumnFile (explicit TIDs)
fileFilter(ColumnFile, predicate-list) ColumnFile (explicit TIDs)
fileFilter(ColumnFile, positionlist) ColumnFile (explicit TIDs)
fileFilter(ColumnFile, positionlist-list) ColumnFile (explicit TIDs)
fileFilter(ColumnFile, predicate-list, ColumnFile (explicit TIDs)

positionlist-list)
split(ColumnFile, predicate) ColumnFile, ColumnFile
split(ColumnFile, position) ColumnFile, ColumnFile
merge(ColumnFile-list, predicate-list) MultiColumnArray (sparse),
sort(ColumnFile, column(s), direction) ColumnFile
sort(ColumnFile, Orderlist) ColumnFile
mapSort(ColumnFile) ColumnFile, Orderlist
mapSort(ColumnFile) ColumnArray, Orderlist
insert(ColumnFile, value) Tupel-ID
insert(MultiColumnFile, value1, . . .) Tupel-ID
delete(ColumnFile, Tupel-ID) boolean
delete(ColumnFile, Positionlist) integer
delete(ColumnFile, predicate) integer
delete(ColumnFile, predicate-list) integer

3) Operations on ColumnArrays: Filter operations can
be executed on (Multi)ColumnArrays using predicates and/or
PositionLists. This may result in a sparse (Multi)ColumnArray
or a PositionList. Furthermore, ColumnArrays may also
be linked with each other by and/or semantics. If the
(Multi)ColumnArrays have the same structure, the result also
possesses this structure. The results correspond to the in-
tersection or union of the original datasets. The result is a
sparse (Multi)ColumnArray. If (Multi)ColumnArrays of dif-
fering structure are to be combined, only the and operation
is defined. The result is a (Multi)ColumnArray that contains
a union of all columns of the involved (Multi)ColumnArrays
and returns the values for the datasets having identical TIDs.
If the (Multi)ColumnArrays used as input are dense and if they
have the same TID interval, the resulting MultiColumnArray
is also dense. An outline of the most important operations of
ColumnArrays is given in Table II. ColumnArray may also
refer to a MultiColumnArray. A MultiColumnArray, however,
only refers to the version having several columns.

4) Transformation from PositionList to ColumnArray: If
the column values of the stored TIDs inside a PositionList
are needed, an extract operation must be performed. Input
to this operation is a PositionList as well as a dense (multi)
ColumnArray. The result is a sparse (Multi) ColumnArray.

5) Operations between PositionLists: Several PositionLists
may be combined by and, or semantics, with the result
being a PositionList. The result list is sorted in ascending
order corresponding to the TIDs. In addition, operations exist
to load and store PositionLists. An outline of operations of
PositionLists can be found in Table III.

6) Sorting: One basic operation on (Multi) ColumnArrays
as well as ColumnFiles is sorting. Beside the obvious task to
bring the result of a query in a specific order, sorting also
plays an important role regarding performance considerations.
For the elimination of duplicates, for join operations and for
compression using run-length encoding, previous sorting can

TABLE II. OUTLINE OF OPERATIONS ON ColumnArrays

Operation Result type
filter(ColumnArray, predicate) ColumnArray (sparse)
filter(ColumnArray, predicate-list) ColumnArray (sparse)
filter(ColumnArray, positionlist) ColumnArray (sparse)
filter(ColumnArray, positionlist-list) ColumnArray (sparse)
filter(ColumnArray, predicate-list, ColumnArray (sparse)

positionlist-list)
filter(ColumnArray, predicate) PositionList
filter(ColumnArray, predicate-list) PositionList
filter(ColumnArray, positionlist) PositionList
filter(ColumnArray, positionlist-list) PositionList
filter(ColumnArray, predicate-list, PositionList

positionlist-list)
and(ColumnArray, ColumnArray) ColumnArray
or(ColumnArray, ColumnArray) ColumnArray
and(ColumnArray, ColumnArray) PositionList
or(ColumnArray, ColumnArray) PositionList
project(MultiColumnArray, columns) (Multi)ColumnArray
asPositionList(ColumnArray, column) PositionList
split(ColumnArray, predicate) ColumnArray (sparse)

ColumnArray (sparse)
sort(ColumnArray) ColumnArray
sort(ColumnArray, Orderlist) ColumnArray
mapSort(ColumnArray) ColumnArray, Orderlist
split(ColumnArray(dense), position) ColumnArray (dense)

ColumnArray (dense)
split(ColumnArray (sparse), position) ColumnArray (sparse)

ColumnArray (sparse)
merge(ColumnArray-list (sparse), predicate-list) MultiColumnArray (sparse)
store(ColumnArray (dense)) ColumnFile
store(ColumnArray (sparse)) ColumnFile (explicit TIDs)

TABLE III. OUTLINE OF OPERATIONS ON PositionListS

Operation Result type
load(ColumnFile) PositionList
store(PositionList) ColumnFile
and(PositionList, PositionList) PositionList
or(PositionList, PositionList) PositionList
materialize(PositionList, ColumnArray,
. . .)

ColumnArray

materialize(PositionList, ColumnFile,
. . .)

ColumnArray

read(PositionListFile) PositionList
store(PositionList) PositionListFile

dramatically improve performance. As a consequence of sort-
ing, the natural order is lost. This is critical for dense columns
with implicit TIDs, because the relation to the other column
values is lost. The problem can be solved by an additional data
structure, similar to a PositionList that contains the mapping
information to the original order of the datasets. Figure 5 gives
an example of this situation. The Multi ColumnArray on the
left side is to be sorted according to the column “name”.
Additionally to the sorting of the MultiColumn (top right), a
list is generated which holds the information about the original
positions (down right). The list can then be reused by applying
it as a sorting criterion to other columns later, as shown in
Figure 6.

7) Compression: Compression plays an important role in
column stores [7], as it reduces the data volume that needs to
be loaded. Nevertheless, we decided not to include compres-
sion in the first prototype and to concentrate on the interfaces
of the components. To a certain extent, this constraint can be
compensated by the use of dictionary-based compression [16],
which will be implemented above the basic components. In
later versions, various compression methods will be integrated,
so first of all run-length encoding (RLE) [17].

19

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

StartPos: 1024
EndPos : 1029

name sex

Waits M

Begnini M

Jarmusch M

Ryder F

Rowlands F

Perez F

1024

1025

1026

1027

1028

1029

sort(name)

StartPos: 1024
EndPos : 1029

name sex

Waits M
Begnini M

Jarmusch M

Ryder F

Rowlands F

Perez F

Fig. 5. Sorting with explicit generation of an additional mapping list

StartPos: 1024
EndPos : 1029

birthdate

1949-12-07

1952-10-27

1953-01-22

1971-10-29

1930-06-19

1964-09-06

1024

1025

1026

1027

1028

1029

sort()

StartPos: 1024
EndPos : 1029

birthdate

1949-12-07

1952-10-27

1953-01-22

1971-10-29

1930-06-19

1964-09-06

Fig. 6. Sorting with explicit given sort-order

VI. IMPLEMENTATION-SPECIFIC CONSIDERATIONS

After presenting the logical structure and the required
operations, this section will now focus on considerations for
achieving a performance-oriented implementation. Due to the
constantly increasing CPU-memory gap, cache-conscious pro-
gramming is indispensable. For this reason, the implementation
was made in C/C++. All time-critical parts were implemented
in pure C using pointer arithmetics. The uncritical parts
were implemented using C++ classes. The ColumnBlock was
established as a basic component of the implementation. It is
the basic unit for data storage. Its size is defined at creation
time and it contains the actual data as well as information on
its structure and the number of datasets. The structurization
options correspond to those of the (Multi)ColumnArray. The
ColumnBlock also handles all queries by predicates and/or
PositionLists. A (Multi)ColumnArray consists of n Column-
Block instances. All operations on a (Multi)ColumnArray are
transferred to the underlying ColumnBlocks.

PositionLists play a central role in column store applica-
tions. One important point is the size of a PositionList. If the
PositionLists are short (i.e., if they contain a few TIDs only),
representation as ColumnArray is ideal. Four bytes are required
per selected entry. If the lists are very large, however, memory
of 400 MB is required for ten million entries, for instance.
In this case, a bit vector is recommended for representation.
This bit vector uses for each dataset a bit at a fixed position
to indicate whether a dataset belongs to the set of results or
not. If, for example, 10 million data sets exist for a table,
only 1.25 MB are required to represent the PositionList for

certain selectivities. Moreover, the two important operations
and and or can be mapped on the respective primitive proces-
sor commands, which makes the operations extremely fast. If
PositionLists are sparse, bit vectors can be compressed very
well using run-length encoding (RLE) (e.g., to a few KB
in case of 0.1% selectivity). The necessary operations can
be performed very efficiently on the compressed lists, which
further increases the performance. An implementation based
on the word-aligned hybrid algorithm [18] with satisfactory
compression for medium-sparse representations was developed
within the framework of the activities reported here [19], [20].

Figure 7 gives an overview of the memory consumption for
different implementations of a PositionList. Here, we compare
the behavior of a dynamic array containing 4-byte TIDs with
a plain uncompressed bitvector and different implementa-
tions (32, 64 bit) of the Word Aligned Hybrid (WAH) algo-
rithm [18], both compressed and uncompressed. As we can see
in the figure, the behavior of the dynamic array implementation
is quite good for very small selectivities, but changes for the
worse for medium and high densities. Uncompressed bitmaps
(plain bitvector or WAH uncompressed) behave independently
for all densities. Their size is determined by the number
of tuples in a table only. Compressed bitmaps show a very
good behavior for all densities. If selectivities become low,
they behave like uncompressed bitmaps (compared to a pure
uncompressed implementation of a bitvector, there will be a
slight overhead of 1/32. resp. 1/64.). From a selectivity of
about 3%, the array has a higher memory consumption than
the uncompressed bitvector. Beside the memory consumption,
also the runtime behavior of the different implementation
variants plays a very important role. In [21], an elaborate
analysis of the memory consumption and runtime behavior of
different implementation variants (array, bitvector, compressed
bitvector) for positionlists can be found. The bottom line of
this paper is that the choice of the right implementation variant
is not a trivial task and depends heavily on the selectivity of
the predicates. The differences in the runtime behavior are over
two orders of magnitude for typical PositionList operations.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1 0.5

m
em

or
y

(b
yt

es
)

density (selectivity)

Plain Bitvector, 64 bit
WAH-Bitvector, compressed, 32 bit

WAH-Bitvector, uncompressed, 32-bit
WAH-Bitvector, compressed, 64 bit

WAH-Bitvector, uncompressed, 64-bit
dynamic array

Fig. 7. Comparison of the memory consumption for different implementation
variants of PositionLists

MultiColumnArrays may exist in two different physical
layouts. In the first version, the n values are written in a
physically successive manner and correspond to the classical
n-ary storage model (NSM). This type of representation is

20

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

particularly suited, if further queries are to be performed
on this MultiColumnArray with predicates on the respective
attributes. The individual values of a dataset are stored together
in the cache and all attribute values are checked simultaneously
rather than successively with the help of additional Position-
Lists (see Figure 8, left). The second type of representation
corresponds to the PAX format [22]. Here, every column is
stored in a separate ColumnArray. In addition, a PositionList
is stored, which identifies the datasets (see Figure 8, right).
This type of representation is recommended, for instance, for
collecting values for subsequent aggregation functions. Several
(Multi)ColumnArrays may share a single PositionList.

11

21

45

51

89

93

name sex

...

StartPos:1024
EndPos :2047
Entries: 351

StartPos:1024
EndPos :2047

13

17

18

28

33

41

...

67

43

Entries: 351
PositionList:
Column[name]:
Column[sex]:
...

Fig. 8. Comparison of storage formats for ColumnArrays

VII. USE CASES

In this section, we want to deal with the usage of the
CSTK-components. We will present the general mechanism for
building complex queries from the components, demonstrate
the suitability of our components for scientific questions in the
field of column store research and present an execution plan
and the runtime behavior for a typical data warehouse query
from the TPC-H [23] benchmark. The aim of this experiment is
to gain further insight into the costs of the different operations
and to derive rules for a query optimizer for column stores [24].

A. Usability of the Components

1) Materialization: In [6], Abadi et al. propose different
strategies to construct the final result sets from the interme-
diate PositionLists. This step is called “materialization”. One
strategy is to keep the PositionList values as long as possible
and to only materialize the attribute values in a very last
step. This is called “late materialization”. On the other hand,
“early materialization” means that the values should already
be extracted in every selection step. The quintessence of the
paper is that the superiority of any strategy depends on the
characteristic of the query.

In the paper, Abadi et al. identified four different datasource
operators (DS1, .., DS4) from which data could be read from
disk or main memory. Additionally, they identified the AND
operator for PositionLists and two more tuple construction
operators, MERGE and SPC (Scan, Predicate, and Construct)
for the construction of result tuples.

Based on these operators, they formed different query plans
to implement early and late materialization strategies. Figure 9
shows the different execution plans for the following query,
implementing an early materialization strategy (a, b) or a late
materialization strategy (c, d).

SELECT l_shipdate, l_linenum
FROM lineitem

WHERE l_shipdate < C1
AND l_linenum < C2

DS 2

DS 4

Shipdate

Linenum

Predicate

Predicate

{(Val1, Val2)}

{(Pos, Val2)}

{Val2}

{Val1}

Shipdate Linenum

{Val2}{Val1}

SPC

Predicate

{(Val1, Val2)}

DS 1 DS 1

PredicatePredicate

Shipdate

{Val1}

Linenum

{Val2}

AND

{Pos}

DS 3 DS 3

MERGE

{(Val1, Val2)}

Shipdate

{Val1}

Linenum

{Val2}

DS 1

DS 3

DS 1

DS 3 DS 3

MERGE

{(Val1, Val2)}

{Pos}

{Val1} {Val2}

{Pos}

{Val2}

{Pos}

{Val1} {Val2}

(a) (b)

(c) (d)

Predicate

Predicate

Fig. 9. Different query-plans from [6]

Using the components from the CSTK, these query plans
can easily be rebuilt, using the operations from Tables I, II,
and III. This is shown in Figure 10. In contrast to the original
execution plans, which do not distinguish between file and
main memory representation in each case, this is done with
the execution plans built with the CSTK.

2) Complex Queries: In the following, a step-by-step
explanation of a join operation is performed based on an
example. The underlying dataset is from TPC-H benchmark
(lineitem and partkey table).

The SQL query is the following:

SELECT p_name, l_quantity
FROM part
JOIN lineitem

ON p_partkey = l_partkey
WHERE l_orderkey = 34

Figure 11 shows the corresponding operations on the
required columns. First, the WHERE-clause on the l_orderkey
column is executed (1) to get the corresponding TIDs (l_TID)
from the lineitem table. The extracted TIDs (5,6,7) are then
used to read the corresponding values (883, 894, 169) from
the l_partkey column of the lineitem table (2). Next, the
(l_TID, l_partkey tuples are sorted based on their l_partkey

21

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

lineitem_

lineitem_

Predicate:

Predicate:

lineitem_
lineitem_

Predicate:

Predicate:

merge

lineitem_ lineitem_

Predicate:

Predicate:

AND

lineitem_

lineitem_

Predicate:

Predicate:

MERGE

(a)

(b)

(c)

(d)

l_linenum < C2

l_shipdate < C1

l_linenum < C2

l_shipdate < C1

l_linenum < C2

l_shipdate < C1

l_linenum < C2

l_shipdate < C1

linenum_file

shipdate_file

shipdate_file
linenum_file

shipdate_file linenum_file

shipdate_file

linenum_file

Fig. 10. Different materialization strategies from [6] using the CSTK
components

values (3). The resorted tuples can then be merged with the
sorted p_partkey column of the partkey table (5), which has
to be sorted priorly (4) and enriched with the p_TID column,
which was implicitly given by the position of the values in the
unsorted p_partkey column.

The result of the merge operation are tuples of the form
(l_TID, p_TID). They represent the result of the join operation

predicate

sort

sort

1 2

4

6

5

3

Fig. 11. Join-Operation with the Column-Store-Tool-Kit

between the lineitem and partkey table on the partkey column.
In the last step, the materialization (6) takes place. The l_TID
and p_TID values are replaced by their corresponding values
from the p_name and p_quantity columns.

After demonstration of a CSTK-Join on a concrete ex-
ample, the principle data flows, based on the operations on
Tables I, II, and III are shown. Figure 12 shows an execution
plan performing the following SQL query:

SELECT *
FROM orders o
JOIN lineitem l

ON l_orderkey=o_orderkey

In the current execution plan, a sort-merge join is per-
formed. As a first step, the entries in the two column files
orders_orderkey_file and lineitem_orderkey_file must be sorted
(remember: in the files, the TIDs are implicit given by the

22

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

position of the values in the file). This is done with the
mapSort-operation. The mapSort operation sorts the column
values and provides an additional data structure pl_o and pl_l,
which contains the TIDs for each sorted value. The structure
is similar to a PositionList, but the TIDs are no longer sorted.

After the preparatory sorting step, the values in the columns
are compared position by position (operation cmp). For each
matching value from the two columns, the corresponding
entries in the previously generated PositionList pl_o and pl_l
are taken and written into the joined PositionList (pl_o’,pl_l’).
In a final step (not shown in Figure 12), the joined PositionList
is materialized.

orders_orderkey_file

mapSort

lineitem_orderkey_file

mapSort

cmp

Column Files
(implicit position ID)

resort order

sorted column

joined position list

pl_o pl_l

(pl_o’, pl_l’)

Fig. 12. Join-Operation with the Column-Store-Tool-Kit

An additional WHERE clause (see below) leads to the
execution plan in Figure 13.

SELECT *
FROM orders o
JOIN lineitem l

ON l_orderkey=o_orderkey
WHERE o_orderdate= ’1992-01-13’

The evaluation of the condition on the or-
ders_orderdate_file generates a PositionList (pl_o), which
acts as a filter criterion for the orders_orderkey_file. After
filtering, the PositionList also represents the TIDs for the
orders_orderkey column. In the subsequent mapSort operation,
the orders_orderkey column is resorted along its values and
the corresponding TIDs in the PositionList pl_o get resorted,
respectively (pl_o’). The rest of the join operation is similar
to that already described in Figure 12.

B. Performance Tests

To complete our case study concerning our toolkit, we
present a more complex query from the TPC-H repository
(Query 3). We model an execution plan using our components
and run some performance tests, which we compare with
MySQL and Infobright.

The SQL query we use is the following:

orders_orderdate_file

mapSort

lineitem_orderkey_file

mapSort

cmp

(o_orderdate =’1992-01-13’)

(pl_o’’, pl_l’)

pl_l

pl_o

pl_o’

orders_orderkey_file

Fig. 13. Join-Operation with the Column-Store-Tool-Kit

select l_orderkey,
sum(l_extendedprice*(1-l_discount))

as revenue,
o_orderdate,
o_shippriority

from customer,
orders,
lineitem

where c_mktsegment = ’BUILDING’
and c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate < date ’1995-03-15’
and l_shipdate > date ’1995-03-15’

group by l_orderkey,
o_orderdate,
o_shippriority

order by revenue desc,
o_orderdate

A possible corresponding execution plan for this query
using late materialization is shown in Figure 14. Beside the
used operations and the intermediate results. shown. The input
consists of about 6 million lineitem tuples, 727 thousand orders
and over 30 thousand customers from the TPC-H benchmark
dataset. The machine settings are the following: Intel R⃝ CoreTM

i7-3520M CPU, 2.9 GHz processor with 2 physical cores,
8 GB main memory, running Windows 7 Enterprise, 64 bit.
The cache sizes are: First level cache: 128KB, second-level
cache: 512KB, third-level cache: 4MB.

The operation mainly consists of a join over the three tables
and a subsequent grouping according to three columns. The
overall execution time is about 1.107 sec. About 20% of the
overall time is spent reading the needed columns from file and
performing the selections based on predicates or PositionLists.
The most expensive operations are the mapSort-operations,
which take about 25% of the execution time. The subsequent
sorting of the corresponding PositionLists takes another 15%.

23

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

materialize

o_shippriority_file

l_extendeprice_file

o_orderdate_file

l_discount_file

l_orderkey_file

1

1

1

2

2

group

o_orderdate_file

o_custkey_file

o_custkey_col

o_custkey_col’

mapSort

pl_o

sortMap

cmp

sort

o_orderkey_file

o_orderkey_col

mapSort

sort

l_shipdate_file

l_orderkey_file

l_orderkey_col

pl_l

l_corderkey_col’

mapSort

sort

cmp

c_mktsegment_file

c_custkey_file

c_custkey_col

mapSort

pl_c

sort

sortMap

sort

Fig. 14. TPC-H Query 3, execution plan and time behavior with CSTK
components

Currently, we use a standard quicksort implementation without
any optimizations. By exchanging the sorting algorithm with a
more sophisticated version, we expect a further improvement
of the runtime behavior. After sorting of the columns, we
can use a merge-join implementation, which performs its task
in about 0.03 seconds for an input cardinality of over 3.2
million tuples (lineitem datasets) and 727 thousand tuples
(order datasets).

About one third of the complete execution time is spent
accessing files on disk. Using a main-memory implementation
could further reduce the overall execution time significantly.
In comparison, the execution time of the same query using
MySQL (with indexes on all foreign keys as well as on the
columns which are predicated) takes about 116 seconds (cold
start) with empty cache and about 13 seconds for repeated
executions. Infobright [25], a column store-based version of
MySQL, takes about 3 seconds to execute the query.

VIII. CONCLUSION

This paper presented a collection of basic components to
build column store applications. The components are semanti-

cally located below those of the existing column store database
implementations and are suited for building experimental (dis-
tributed) systems in the field of column store databases.

As a proof of concept, we used these components to
retrace the materialization experiments carried out by Abadi
et al. [6]. Additionally, we show that typical operations like
joining tables and grouping results can be carried out. Finally,
we construct an execution plan from the TPC-H benchmark
and point out that the performance is quite good, compared
to existing column store databases. It is planned to use these
components to obtain further scientific findings in the area of
column stores and to develop data-intensive applications.

IX. FUTURE WORK

A first version of the column store tool kit is available
without support for compression. The next steps planned are
the integration of compression and the use in concrete areas,
such as text retrieval systems. A future activity will be the
implementation of a scripting language interface for the com-
ponents. With the help of this interface, it will be possible to
assemble the developed components more easily without losing
the performance of the underlying C/C++ implementation.
In this case, the scripting language act as glue between the
components, allowing the developer to build up complex high
performance applications with very little effort [26]. As an al-
ternative, a custom domain-specific language (DSL) [27] may
be used for building column store applications. A bachelor’s
thesis [28] focused on the extent to which various degrees of
flexibility regarding the structure of MultiColumnArrays and
expression of the predicates affect the performance. According
to the thesis, the structural definition at compilation time is
of significant advantage compared to the structural definition
at runtime. If the implemented flexibility of the SimpleStruct
is not required at runtime, an alternative implementation may
be used. It may be realized by defining a language extension
for C/C++, for example. Thus, the respective structures and
operations can be defined using a simple syntax. With a
number of macros of the C++ preprocessor or a separate inline
code expander [29], these could then be transformed into valid
C/C++ code.

REFERENCES

[1] A. Schmidt and D. Kimmig, “Basic components for building column
store-based applications,” in DBKDA’12: Procceedings of the The Forth
International Conference on Advances in Databases, Knowledge, and
Data Applications. iaria, 2012, pp. 140–146.

[2] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing database ar-
chitecture for the new bottleneck: memory access,” The VLDB Journal,
vol. 9, no. 3, pp. 231–246, 2000.

[3] T. M. Chilimbi, B. Davidson, and J. R. Larus, “Cache-conscious
structure definition,” in PLDI ’99: Proceedings of the ACM SIGPLAN
1999 conference on Programming language design and implementation.
New York, NY, USA: ACM, 1999, pp. 13–24.

[4] P. A. Boncz, M. L. Kersten, and S. Manegold, “Breaking the memory
wall in monetdb,” Commun. ACM, vol. 51, no. 12, pp. 77–85, 2008.

[5] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin,
N. Tran, and S. Zdonik, “C-store: a column-oriented dbms,” in VLDB
’05: Proceedings of the 31st international conference on Very large
data bases. VLDB Endowment, 2005, pp. 553–564.

[6] D. J. Abadi, D. S. Myers, D. J. Dewitt, and S. R. Madden, “Materi-
alization strategies in a column-oriented dbms,” in In Proc. of ICDE,
2007.

24

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] D. J. Abadi, S. R. Madden, and M. Ferreira, “Integrating compression
and execution in column-oriented database systems,” in SIGMOD,
Chicago, IL, USA, 2006, pp. 671–682.

[8] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores vs. row-
stores: How different are they really,” in In SIGMOD, 2008.

[9] L. Gan, R. Li, Y. Jia, and X. Jin, “Join directly on heavy-weight
compressed data in column-oriented database,” in WAIM, 2010, pp.
357–362.

[10] K. Wu, “Fastbit reference manual,” Scientific Data Management
Lawrence Berkeley National Lab, Tech. Rep. LBNL/PUB-3192, august
2007. [Online]. Available: http://lbl.gov/%7Ekwu/ps/PUB-3192.pdf

[11] A. Schmidt and D. Kimmig, “Considerations about implementation
variants for position lists,” in DBKDA’13: Procceedings of the The Fifth
International Conference on Advances in Databases, Knowledge, and
Data Applications. iaria, 2013, pp. 108–115.

[12] G. Graefe and W. J. McKenna, “The volcano optimizer generator:
Extensibility and efficient search,” in Proceedings of the Ninth Inter-
national Conference on Data Engineering, April 19-23, 1993, Vienna,
Austria. IEEE Computer Society, 1993, pp. 209–218.

[13] G. Graefe, “The cascades framework for query optimization,” IEEE
Data Eng. Bull., vol. 18, no. 3, pp. 19–29, 1995.

[14] B. Nevarez, Inside the SQL Server Query Optimizer. United Kingdom:
Red gate books, 2011.

[15] P. A. Boncz, M. Zukowski, and N. Nes, “Monetdb/x100: Hyper-
pipelining query execution,” in CIDR, 2005, pp. 225–237.

[16] C. Binnig, S. Hildenbrand, and F. Färber, “Dictionary-based order-
preserving string compression for main memory column stores,” in SIG-
MOD ’09: Proceedings of the 35th SIGMOD international conference
on Management of data. New York, NY, USA: ACM, 2009, pp. 283–
296.

[17] S. Smith, The scientist and engineer&s guide to digital signal process-
ing. California Technical Publishing, 1997.

[18] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap indices with
efficient compression,” ACM Trans. Database Syst., vol. 31, no. 1, pp.
1–38, 2006.

[19] A. Schmidt and M. Beine, “A concept for a compression scheme of
medium-sparse bitmaps,” in DBKDA’11: Procceedings of the The Third
International Conference on Advances in Databases, Knowledge, and
Data Applications. iaria, 2011, pp. 192–195.

[20] M. Beine, “Implementation and Evaluation of an Efficient Compression
Method for Medium-Sparse Bitmap Indexes,” Bachelor Thesis, De-
partment of Informatics and Business Information Systems, Karlsruhe
University of Applied Sciences, Karlsruhe, Germany, 2011.

[21] A. Schmidt and D. Kimmig, “Considerations about implementation
variants for position-lists,” in DBKDA’13: Proceedings of the Fifth
International Conference on Advances in Databases, Knowledge, and
Data Applications, 2013.

[22] A. Ailamaki, D. J. DeWitt, and M. D. Hill, “Data page layouts for
relational databases on deep memory hierarchies,” The VLDB Journal,
vol. 11, no. 3, pp. 198–215, 2002.

[23] “TPC Benchmark H Standard Specification, Revision 2.1.0,” Transac-
tion Processing Performance Council, Tech. Rep., 2002.

[24] A. Schmidt, D. Kimmig, and R. Hofmann, “A first step towards a
query optimizer for column-stores,” Poster presentation at the Forth
International Conference on Advances in Databases, Knowledge, and
Data Applications, DBKDA’12, Saint Gilles, Reunion, 2012.

[25] D. Ślezak and V. Eastwood, “Data warehouse technology by infobright,”
in Proceedings of the 2009 ACM SIGMOD International Conference on
Management of data, ser. SIGMOD ’09. New York, NY, USA: ACM,
2009, pp. 841–846.

[26] J. K. Ousterhout, “Scripting: Higher-Level Programming for the 21st
Century,” IEEE Computer, vol. 31, no. 3, pp. 23–30, 1998.

[27] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4, pp.
316–344, 2005.

[28] M. Herda, “Entwicklung eines Baukastens zur Erstellung von Column-
Store basierten Anwendungen Bachelor’s thesis, Department of Infor-
matics, Heilbronn University of Applied Sciences, Germany,” Jun. 2011.

[29] J. Herrington, Code Generation in Action. Greenwich, CT, USA:
Manning Publications Co., 2003.

25

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Theoretical and Practical Implications of User Interface Patterns Applied for the

Development of Graphical User Interfaces

Stefan Wendler, Danny Ammon, Teodora Kikova, Ilka Philippow, and Detlef Streitferdt
Software Systems / Process Informatics Department

Ilmenau University of Technology
Ilmenau, Germany

{stefan.wendler, danny.ammon, teodora.kikova, ilka.philippow, detlef.streitferdt}@tu-ilmenau.de

Abstract — We address current research concerning patterns

dedicated to enable higher reusability during the automated

development of GUI systems. User interface patterns are

promising artifacts for improvements in this regard. Both

general models for abstractions of graphical user interfaces

and user interface pattern based concepts such as potential

notations and model-based processes are considered. On that

basis, the present limitations and potentials surrounding user

interface patterns are to be investigated. We elaborate what

theoretical implications emerge from user interface patterns

applied for reuse and automation within user interface

transformation steps. For this purpose, formal descriptions of

user interface patterns are necessary. We analyze the

capabilities of the mature XML-based user interface

description languages UIML and UsiXML to express user

interface patterns. Additionally, we experimentally investigate

and analyze strengths and weaknesses of two general

transformation approaches to derive practical implications of

user interface patterns. As a result, we develop suggestions on

how to apply positive effects of user interface patterns for the

development of pattern-based graphical user interfaces.

Keywords — graphical user interface development; model-

based software development; HCI patterns; user interface

patterns; UIML; UsiXML

I. INTRODUCTION

Interactive systems. Interactive systems demand for a
fast and efficient development of their graphical user
interface (GUI), as well as its adaptation to changing
requirements throughout the software life cycle. In this
paper, E-Commerce software serves as a representative of
these interactive systems. Currently, these are a fundamental
asset of modern business models providing B2C interaction
via online-shops. In many cases, such systems are offered as
standard software, which allows several customization
options after installation. In this context, they are
differentiated into the application kernel and a GUI system.

The application kernel software architecture relies on
well-proven and, partially, self-developed software patterns.
Thus, it offers a consistent structure with defined and
differentiated types of system elements. So, the design has a

positive influence on the understanding of the modular
functional structures as well as their modification options.

Limited customizability of GUIs. Contrary to the
application kernel, the customization of the GUI is possible
only with rather high efforts. An important reason is that
software patterns do not cover all aspects needed for GUIs.
These patterns have been commonly applied for GUIs [2][3],
but in most cases they are limited to functional and control
related aspects [4]. The visual and interactive components of
the GUI are not supported by software patterns yet.
Furthermore, the reuse of GUI components, e.g., layout,
navigation structures, choice of user interface controls (UI-
Controls) and type of interaction, is only sparsely supported
by current methods and tools. For each project with its
varying context, those potentially reusable entities have to be
implemented and customized anew, leading to high efforts.

Moreover, the functional range of standard software does
not allow a comprehensive customization of its GUI system.
The GUI requirements are very customer-specific. In this
regard, the customers want to apply the functionality of the
standard software in their individual work processes along
with customized dialogs. However, due to the characteristics
of standard software, only basic variants or standard GUIs
can be offered. So far, combinations of components of the
application architecture with a GUI are too versatile for a
customizable standard product.

User interface patterns. Along with other researchers
[5] [6] [7] [8] [9], we propose an approach to this problem
through the deployment of User Interface Patterns (UIPs).
These patterns offer well-proven solutions for GUI designs
[10], which embody a high quality of usability [11]. So far,
UIPs usually have not been considered as source code
artifacts, in contrast to software patterns. Current UIPs and
their compilations mostly reside on an informal level of
description [5]. The research towards formal pattern
representations is still in progress.

A. Objectives

In this paper, we elaborate that formal UIPs can assist in
raising effectiveness and efficiency of the development
process of a GUI system. For a start, we present and analyze
conceptual models for the GUI development to valuate and
position UIPs as unique artifacts. In this regard, we describe,
from a theoretical point of view, how reuse and automation
within GUI transformation steps can be established by the
deployment of UIPs.

This is a revisited and substantially augmented version of “Development of
Graphical User Interfaces based on User Interface Patterns”, which
appeared in the in Proceedings of The Fourth International Conferences on
Pervasive Patterns and Applications (PATTERNS 2012) [1].

26

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Moreover, we present and review current approaches
concerning the definition, formalization, and deployment of
UIPs within model-based software development processes
dedicated to GUI-systems. On this basis, we discuss the
limitations and possibilities of transformations into
executable GUIs. For that purpose, two different
transformation approaches have been experimentally
investigated. These approaches will be assessed facing two
different GUI dialog examples. As a result, we derive
practical implications of UIPs and develop suggestions, how
the positive effects of UIPs for the development of GUIs can
be applied. Finally, influences resulting from the use of UIPs
in the development process are discussed.

B. Structure of the Paper

In Section II, selected state of the art and related work
according to general applicable models for the GUI
development are presented. The next section is dedicated to
the current state of concepts and processes already applying
UIPs as software artifacts. Both parts of related work are
assessed according to our objectives in Sections IV and VI
respectively. Subsequently, the theoretical implications of
UIPs on the development process for GUIs are elaborated in
Section V. Afterwards, Section VII presents our two
approaches for the transformation of formal UIPs into source
code. The practical implications of UIPs resulting from their
application in experimental transformations are presented in
Section VIII, which also combines the findings of Sections V
and VII for discussion. Finally, our conclusions are drawn
and future research options are outlined in Section IX.

II. RELATED WORK: GUI DEVELOPMENT PROCESSES

The development of GUI systems still remains a
challenge in our days. To discuss the activities and potentials
of UIPs independently from specific software development
processes and requirement models, we refer to generic model
concepts. In the following sub-sections, we present two
models, which describe activities and capture work products
of the GUI specification process. Additionally, an early
generation concept for GUI systems is presented.

A. GUI Specification Process and Model Transformations

A general GUI specification model. In reference [12],
Ludolph elaborates the common steps of a GUI specification
process. To master the complexity that occurs when deriving
GUI specifications from requirement models, Ludolph
proposes four model layers and corresponding
transformations built on each other. Three of them, being
relevant in our context, are depicted in Figure 1.

Essential model. By the essential model, all functional
requirements and their structures are described. This
information consists of the core specification, which is
necessary for the development of the application kernel.
Examples for respective artifacts are use cases, domain
models and the specification of tasks or functional
decompositions. These domain-specific requirements are
abstracted from the realization technology, and thus, from
the GUI system [12].

Figure 1. Model transformations of the GUI

development process based on [12]

Consequently, a GUI specification must be established to
bridge the information gap between requirements and a GUI
system.

User model. A first step in the direction of GUI
specification is prepared by the user model. With this model,
the domain-specific information of the essential model is
picked up and enhanced by so-called metaphors. The latter
symbolize generic combinations of actions and suitable tools,
which represent interactions with a GUI. Examples of
metaphors would be indexes, catalogues, help wizards or
table filters. The principal action performed by these
examples is a search for objects. How this action is carried
out may differ, since the respective metaphors embody
varying functionality to be accessed by the user in order to
find objects.

The tasks of the essential model have to be refined and
structured in task trees. For each task of a certain refinement
stage, metaphors are assigned, which will guide the GUI
design for this part of the process. In the same manner, use
cases can be supplemented with these new elements in their
sequences to describe user scenarios.

User interface. This model is used for establishing the
actual GUI specification. Through the three parts rough
layout, interaction design and detailed design [12], the
appearance and behavior of the GUI system are concretized.
The aim is to set up a suitable mapping between the elements
of the user model and views, windows, as well as UI-
Controls of the user interface. For the metaphors chosen
before, graphical representations are now to be developed.
The objects to be displayed, their attributes and the relations
between them are represented by views. Subsequently, the
views are arranged in windows according to the activities of
the user scenarios, or alternatively, to the structure of the
more detailed task trees. In these steps, there are often
alternatives, which are influenced by style guides or the used
GUI library and especially by the provided UI-Controls. At
the same time, generic interaction patterns are applied as
transformation tools, which also have an impact on the
choice of UI-Controls.

27

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Cameleon Reference Framework

User interface challenges. In reference [13],
Vanderdonckt presents a GUI specification and development
model, which is more concerned with handling
environmental and non-functional requirements of GUI
systems. The challenges to overcome are represented by
different user skills and cultures. In addition, a user interface
should be aware of different usage contexts and respective
user intentions as well as working environments and
individual capabilities of devices the user interface is running
on.

Need for automation. GUI development is tedious when
facing the above mentioned challenges, and thus,
Vanderdonckt states in [13] that normally, GUIs would have
to be developed for each context or device separately. A
reason is given by the difficulty to source common or shared
parts of the user interfaces. Since architectures and final code
or frameworks have a great impact on the final shape of the
certain user interfaces, the potential reuse is largely limited.
Finally, advice is given to employ model-driven software
development techniques within a GUI development
environment.

To approach a solution, which copes with both the
challenges and need for model-driven development,
Vanderdonckt proposes a methodology, which consists of
GUI modeling abstractions or steps besides a method and
tool support. The proposed four modeling steps [13],
originated from [14], are described in the following
paragraphs:

Task & Concepts (T&C). The tasks to be performed by
the user, while interacting with the GUI-system, are specified
during this step. Additionally, domain concepts relevant to
those tasks are specified as well.

Abstract UI (AUI). With the AUI, tasks are being
grouped and structured by Abstract Interaction Objects
(AIOs): Individual Components and Abstract Containers are
both sub-types of AIOs and form the main elements of an
AUI. These resemble rather abstract entities serving for
definition and structuring purposes only. Thus, AIOs come
without any technical appearance or other format of
imagination, since the options to shape them are very
different during the next two modeling steps and should be
preserved for developers. Besides the structuring of AIOs, an
AUI specifies very basic interaction information such as
input, output, navigation and control [5], which is defined
independently from modality. Finally, the AUI acts as a
“canonical expression of the rendering of the domain
concepts and tasks” [13].

Concrete UI (CUI). The CUI refines the elements of an
AUI to a complete but platform-independent user interface
model. In this regard, Concrete Interaction Objects (CIOs)
refine the AIOs of the AUI. CIOs resemble a chosen set of
both UI-Controls or containers and their respective
properties. While resembling an abstraction, the CUI
“abstracts a FUI into a UI definition that is independent of
any computing platform” [13].

Tasks &

Concepts
Tasks Domain Concepts

Abstract User

Interface (AUI)

Concrete User

Interface (CUI)

Final User

Interface (FUI)

Abstract Containers Individual Components

Graphical Containers Graphical Individual Components

Graph Transformations

Graph Transformations

Rendering

Platform-Specific User Interface Components

Legend
Transformation Transformation Tools

Figure 2. Modeling steps of the Cameleon Reference Framework based
on [13] and implemented by UsiXML [15]

Final UI (FUI). As the last refinement, the FUI
represents a certain device or platform specific user interface
model. So, it embodies the final user interface components
running in that specific environment.

The above described modeling steps are depicted by
Figure 2, which is focused on graphical user interface
implementations, as this is the case for its source [13].

UsiXML. To express the occurring models within these
modeling steps, the GUI specification language UsiXML
(user interface extensible markup language) [15] has been
developed. Concerning the modeling facilities for the CUI
step, UsiXML offers a specific set of CIOs sourced from
common UI toolkits or frameworks. Therefore, the available
modeling elements represent an intersection set of common
GUI element sets.

C. Generators for graphical User Interfaces

To raise efficiency in GUI development, concepts and
frameworks have been invented, which are able to generate
complete GUI applications based on a partly specification of
the application kernel or comparative model bases. Here,
Naked Objects [16] and JANUS [17] can be mentioned. Both
rely on an object-oriented domain model, which has to be a
part of the application kernel. Based on the information
provided by this model, standard dialogs are being generated
with appropriate UI-Controls for the repetitive tasks to be
carried out in conjunction with certain objects. For instance,
to generate an object editor for entities like product or
customer, certain text fields, lists or date pickers are selected
as UI-Controls, which match the domain data types of the
selected domain object for editing.

III. RELATED WORK: USER INTERFACE PATTERNS

In this part of related work, we present definitions,
notations and concepts that address or employ patterns
specific for model-based user interface development.

28

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. User Interface Pattern Definition and Types

Current research has been discussing Human-Computer-
Interaction (HCI) patterns [18] and especially User Interface
Patterns (UIPs) for a longer period [19] [5] now. A UIP can
be defined as a universal and reusable solution for common
interaction and visual structures of GUIs. UIPs are
distinguished by two types according to Vanderdonckt and
Simarro [5]:

Descriptive UIPs. Primarily, UIPs are provided by
means of verbal and graphical descriptions. In this context,
UIPs are commonly specified following a scheme similar to
the one used for design patterns [20]. By reference [21], a
specialized language for patterns was proposed, which is
named PLML (pattern language markup language). Details
about the language structure can be found in [22] as well as
its XML DTD in [5]. A practical application of its
descriptive capabilities for several types of patterns, which
may occur in conjunction with the Cameleon Reference
Framework, is also outlined in [5].

UIP-Libraries. UIP libraries such as [23], [24], and [25]
provide numerous examples for descriptive UIPs. Based on
the presented categories, concepts about possible UIP
hierarchies and their collaborations can be imagined.

Formal UIPs. Generative UIPs [5] are presented rarely.
In contrast to descriptive UIPs, they feature a machine-
readable form and are regarded as formal UIPs accordingly.
The format for storing such UIPs may constitute of a
graphic, e.g., UML [19] or XML based notation [26] [8] [9].
The formal UIPs are of great importance, since they can be
used within development environments, especially for
automated transformations to certain GUI-implementations.

B. Formalization of User Interface Patterns

In order to permit the processing of descriptive UIPs,
they have to be converted to formal UIPs. Possible means for
this step can be provided by formal languages applied for
specifying GUIs. These languages, however, have been
designed for the specification of certain GUIs and were not
intended for a pattern-based approach in the first place. Until
now, there is no specialized language available for
formalizing UIPs.

UsiXML and UIML. In our preparation, we conducted
an extensive investigation on formal GUI specification
languages and their applicability for UIPs. As result, two
languages with an outstanding maturity have been identified.

Intentionally, the XML-based languages UsiXML [15]
and UIML [27] were developed for specifying a GUI
independently from technology and platform specifics.
However, such languages may be applicable for UIPs. One
the one hand, UIML offers templates and associated
parameters for reusing pre-defined structures and behavior of
GUI components. On the other hand, UsiXML is designed to
implement the Cameleon Reference Framework, which
already propagated higher reuse by its abstractions of GUI
modeling steps as well as automated processing by model-
driven software development techniques. Moreover, both
indeed have been applied in model-based processes or have
been extended for that context. More information on that is
provided in Section III.C.

IDEALXML. To raise the efficiency of GUI
development environments, tools are necessary that facilitate
formal specifications of UIPs with regard to language
definitions and rules. A widespread tool concept for
UsiXML is presented with IDEALXML [13] [5]. By using
the various models defined by UsiXML as an information
basis, many aspects of a GUI and additionally the applied
domain model of the application kernel are included in the
GUI specification. As a result, a detailed and comprehensive
XML specification for the GUI can be created. Many aspects
of the user model from [12] are already included.

C. Model-based Processes with User Interface Pattern

Integration

The pattern conception emerged from the HCI research
has already been taken into consideration for model-based
software development of GUI-systems. Researchers have
introduced several model frameworks and notations to
express generative UIPs, and thus, enable formalization
facilities for descriptive UIPs. A common basis assumed for
all different processes is a task based user model that is
exploited to derive dialog and navigation structures of the
user interface. Yet, all approaches have not reached a
sufficient maturity level according to the available
publications. They still were drafting or enhancing their
processes, tools or notations as they had been by challenged
relevant issues surrounding generative pattern definition and
application.

Queen’s University Kingston. Zhao et al. [6] proposed
the detailed modeling of tasks in order to be able to group
them into segments, which are being transformed to dialogs
displaying the associated data or contained sub-tasks.

As challenges for future work, two main aspects
remained: the evaluation of achieved usability by the pattern
application and the extension of customization abilities of the
underlying framework to allow the definition of specific UI-
Controls and even patterns to be integrated into the
established process were suggested in [28]. In addition, the
integration of more user interface patterns along with
guidelines for final UI design as well as an enhancement of
the task analysis to exploit more information relevant for UI
generation were outlined in [6] as future work.

University of Rostock. Radeke et al. [29] presented a
modeling framework that would be capable of employing
patterns for all involved models (task, dialog, presentation
and layout). Since the approach was focused on task
modeling and respective patterns, the derivation of dialog
structures was a main outcome. In order to enhance their
capabilities towards pattern application for CUI models,
UsiPXML (user interface modeling pattern language) was
introduced in [26] as a notation to express all kinds of
involved patterns. Being based on UsiXML as well as
PLML, the new notation incorporated enhancements like
structure attributes and variables to allow for a context-
specific instantiation of a defined pattern.

However, future challenges were stated as follows. The
need for enhanced tool support and the definition of more
complex patterns was raised in [30]. Moreover, the pattern
representation on the CUI level with UsiXML should be

29

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

revised as well according to [31]. Lastly, the expansion of
the set of available patterns and the concept of pattern inter-
relationships were relevant considerations in [26]. For the
latter, the research question about how task and dialog
patterns would influence other patterns situated on lower
levels is left open.

University of Augsburg. An alternative modeling
framework integrating patterns on selected model stages was
suggested by Engel and Märtin in [8]. Rooted in principles
on the structuring of pattern languages [32], the main
emphasis was laid on the hierarchy of patterns and their
notation [33], which was based on a custom XML DTD for
the generative part.

For the encountered challenges, future activities were
considered, which would enrich the implementation aspects
of pattern descriptions [34] and deliver concepts of pattern
relationships. In the focus of transformations, future work
was seen for the derivation of concrete UI models from
abstract ones [35].

University of Kaiserslautern. Starting with criticism of
recent approaches of other researchers, Seissler et al. [9]
proposed a third modeling framework with comparative
models and patterns, but they employed different notations
and introduced a suggestion for a classification of pattern
relationships. Additionally, the need for runtime adaptation
of user interfaces was considered [36] as well as the concept
of encapsulation of UIML fragments [9] within their notation
to express user interface patterns.

They emphasized on tool support for pattern instantiation
or the adaptation of patterns to different contexts of use that
may even change at runtime [36]. Moreover, a proper tool
for pattern selection and integration as well as the refinement
of inter-model pattern relationships were stated as future
challenges in [9]. The latter was considered to reflect the
relations between pattern of different abstractions in order to
offer better modularization and provide options for patterns
that may be better suited for a specific context. Finally,
Seissler et al. recognized in [9] that their future work should
extend the pattern language for further testing of their
notation approach.

IV. MODEL CONSIDERATIONS FOR DEPLOYING USER

INTERFACE PATTERNS

This section is intended to discuss the first part of related
work presented in Section II. Before the more advanced
concepts of Section III are addressed, the transition of
traditional GUI specification and development towards a
pattern-based solution shall be attended to. In this context,
we outline the possible deployment of UIPs in development
processes referring to both conceptual models elaborated by
Ludolph and Vanderdonckt.

A. Review of the GUI Specification Model by Ludolph

Model transformations as described by Ludolph [12]
illustrate a detailed account of relevant model elements for
the GUI specification of the covered domain. However, any
transformations are carried out manually. Besides that, no
automation and only few options for reuse are mentioned.

However, artifact dependencies are detailed and the
transformation of essential model requirement elements to
certain user interface model elements is outlined. For the
final transformation, Ludolph suggests manual and cognitive
means of transformation, which lead to clearly defined
dependencies between user model and user interface entities.
These prerequisites are ideal to be considered in the
discussion on how UIPs influence artifacts. Particularly, it is
of interest, how a GUI specification can be developed
starting from a basis of functional requirement artifacts and
using UIPs as bridging elements for transformations.

B. Review of the Cameleon Reference Framework

Relevance. From our point of view, the Cameleon
Reference Framework as presented in [13] resembles a
valuable model foundation or mental concept for UIPs, since
it addresses the following two aspects. Firstly, GUI
development activities and related tool support to decide on
automation steps are covered. Secondly, pattern deployment
possibilities and related abstractions may be derived. In this
regard, a developer can decide on the granularity, reach and
modularization of potential patterns while having the four
segregated modeling steps on his mind. However, the latter
aspect was not met by the original source and is only
inspired.

GUI development aspect. As far as the first aspect is
addressed, the proposed model abstractions or steps resemble
UI concerns applicable to a wide range of different domains.
The model abstractions make sense as they address the
elaborated challenges in [13] by a separation of concerns.
The four steps have been introduced to handle the various
challenges or requirements by sharing or distributing them
across the abstractions. Consequently, the separation of
models enables different grades of reuse and an isolation of
particular challenges, as they are no longer bound to single
GUI models but to a set of models as proposed.

To approach the modeling steps, a strict top-down
decomposition procedure is not required. In contrast, the
entry point is variable so that one can start with an AUI or
CUI without tasks modeling at all. A user interface may be
subsequently abstracted or refined across the proposed
reification model stages.

Moreover, the steps aid both in forward and reverse
engineering, since they demand for explicitly capturing
implicit knowledge applied in both model transformation
paths: the refinement towards a FUI can be approached by
subsequent increase in detail, which is stored in segregated
models and their elemental notations. As the reification of an
AUI towards CUI is progressing, the elementary concepts
embodied by AIOs of different dialogs can be lined up to
identify reoccurring structures. In this respect, AIOs are an
abstraction and so they do share the commonalities of certain
GUI structures. Consequently, identified AIO structures offer
potentials to discover UIPs for the particular domain during
the transition to the CUI.

 Concerning reverse engineering, the abstraction of a
given FUI or CUI model to abstract grouped tasks embodied
by AIOs is also supported. The derived AUI may be reified
to another platforms’ CUI. If an AUI was already created by

30

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

forward engineering, a modeling step could be avoided for
the migration to other platforms or devices.

For practical implementation, transformation means or
tools mentioned as in the Ludolph model are missing.
Although the models used for implementing the four steps
are closely related to the UsiXML language, the associated
metamodel as a potential implementation is still work in
progress. At usixml.org, no current version could be
consulted. Therefore, no detailed mappings like in the
Ludolph model could be depicted.

Pattern incorporation aspect. As respective
implementations of the Cameleon modeling steps, the
presented models in [13] and [5] currently do not outline the
reuse or modularization of artifacts. A proper pattern-based
view to overcome the manual “translation” [13] process
between available models still has to be invented. At last,
models or fragments of them can only be reused in their
completeness and are not abstracted further. Patterns may be
instantiated at various modeling steps (e.g., AUI, CUI) as
suggested in [5], but can hardly be adapted to other contexts
without manual re-modeling. To conclude, an additional
abstraction inside modeling steps, which allows for pattern
definition and instantiation, is missing and is not provided by
the available sources.

As far as UIPs are concerned, these patterns should not
be associated to the AUI, since the latter is too abstract for
UIPs. Certain UI-Controls cannot be modeled or imagined
on the AUI level, so that a great portion of an individual
UIP’s characteristics cannot be expressed. The resulting
refinement work to “reify” [13] an AUI based UIP towards a
CUI representation would denote a considerable effort. For
instance, whenever a selection AIO is encountered inside a
UIP definition, there would be more than one possible
reification available like a combobox, listbox or a radio
group. Therefore, it could be implied that the model-to-
model transformation between AUI and CUI relied on
extensive manual configuration or intervention, as the CUI
does possess much more detail than the AUI. Otherwise,
strict rules to enable automated graph transformation may
prevent the expression of particular UIPs. Lastly, for the
particular domain addressed here, UIPs rely on the WIMP
(windows, icons, menus and pointer) paradigm, so AUI
considerations will not merit extensive reuse as this would be
permitted by a CUI model.

With respect to the CUI modeling stage, the applied
notation like UsiXML would have to reflect a chosen set of
UI-Controls, events and containers as well as their chosen set
of properties. These sets may already limit the
expressiveness of UIPs or an issue would be the integration
of new types or properties. Due to the fact that particular
UIPs may exclusively address certain devices or platforms or
that other classifications of UIPs may restrict their reusability
to a certain domain [37], even the CUI level would be too
abstract to allow for an exact representation. If this aspect
would not pose an issue in a certain development
environment, UIPs clearly are to be settled on the CUI level,
since there are several advantages for keeping UIPs on that
particular abstraction level:

As mentioned in [13], a notation like UsiXML or even
UIML could be used to express UIPs on the CUI level
leading to the benefits of these languages. Firstly, for the
machine-readable XML languages no programming skills
would be needed. Secondly, with XML as a basis, the
notation would posses a standard format and vast tool
support (parsers, editors). Thirdly, “cross-toolkit
development” [13] would be possible and UIP sources could
be kept independently from changing GUI platforms or
frameworks and lastly, programming languages.

C. Exertion of Ludolph and Cameleon Models

Current state of the art has proposed own specific model
frameworks as mentioned in Section III.C. These approaches
neither have achieved a truly reusable pattern-based solution
yet, nor have they positioned UIPs in relation to generally
applicable fundamentals. Since the transformations by
Ludolph or the Cameleon model have been formulated from
different perspectives, but still embody general concepts, we
take them into consideration to derive theoretical and
practical implications of UIPs.

Different focus. The model by Ludolph is focused on
particular artifacts, their transformations and related
measures. In contrast, the Cameleon Reference Model by
Vanderdonckt presents abstractions to treat environments,
devices, portability, and most notably, the software
production environment, as XML and automation or model-
driven software development are of the essence.

GUI transformations by Ludolph. The model
established by Ludolph can be considered as a refinement of
the Tasks & Concepts as well as the CUI level for graphic
user interfaces, since most artifacts can be allocated to one of
these levels. An AUI level is actually missing and only
implicitly established by the augmentation of user model
elements with metaphors. The final stage of the Ludolph
model can be defined in terms of the CUI when specification
notations like UIML or UsiXML-CUI are being used.

Cameleon. The Cameleon Reference Model is the more
abstract model as its details are to be defined by the
implementation language, especially by UsiXML, and the
particular context of use or domain. Due to the defined
modeling stages, pattern deployment and modularization
concerns can be approached more gentle rather than being
trapped in discussions of how to structure a pattern language
for certain artifacts [38].

Shared limitation. Both models do not feature a clearly
distinguished pattern dimension.

Reuse may be already addressed by Ludolph for GUI
structures within a certain project. For instance, the views
associated to certain objects may experience reuse in each
task they are handled by different operations. However,
objects tend to change in the face of different contexts,
domains, users and thus, real pattern-based reuse across
different projects is missing.

Although the pattern support for the UsiXML metamodel
was already inspired by Vanderdonckt as a “Translation”
[13] of models to different contexts and PLML-patterns in
the environment of IDEALXML [5], it has not been
implemented in the main language facilities of UsiXML yet.

31

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Exertion. The model by Ludolph is already detailed
concerning domain artifacts. Therefore, it will be used to
discuss both the theoretical and practical implications of
UIPs on artifact development stages. Nevertheless, it is not
suitable to position UIPs without the conception of a pattern
language or hierarchy. Märtin et al. [32] [33] support a fine-
grained structure, which is clearly neglected by Seissler et al.
[9]. Furthermore, pattern relations are still to be outlined in
most model-based approaches as mentioned in Section III.C.
Assuming that a pattern language with appropriate pattern
relationships would have been elaborated, Ludolph’s model
may be customized for the particular domain, as it already
holds artifacts typical for business information systems.

The Cameleon Reference Framework will be taken into
consideration to position UIPs concerning their practical
implications. In this context, the abstraction level of UIPs
has to be discussed, i.e., how concrete UIPs should be
compared to implementation level GUI elements.
Additionally, technical considerations should be addressed
like the coupling to GUI frameworks and programming
languages. The most important fact is the positioning of UIPs
in the light of potential notations, which have been
introduced in Section III.B.

D. Limitations of GUI-Generators

In contrast to IDEALXML, which enables the extensive
modeling of the GUI, GUI-generators may generate
executable GUI code but they lack such a broad
informational basis. Therefore, GUI-generators have two
essential weaknesses:

Limited functionality. The information for generating
the GUI is restricted to a domain model and previously
determined dialog templates along with their UI-Controls.
Hence, their applicability is limited to operations and
relations of single domain objects. When multiple and
differing domain objects do play a role in complex user
scenarios [12], the generators can no longer provide suitable
dialogs for the GUI application. Moreover, extensive
interaction flows require hierarchical decisions, which have
to be realized, e.g., by using wizard dialogs. In this situation,
GUI generators cannot be applied. The connection between
dialogs and superordinate interaction design still has to be
implemented manually.

Uniform visuals. A further weakness is related to the
visual GUI design. Each dialog created by generators is
based on the same template for the GUI-design. Solely the
contents which are derived from the application kernel are
variable. Both layout and possible interactions are fixed in
order to permit the automatic generation. The uniformity and
its corresponding usability have been criticized for Naked
Objects [39]. Assuming the best case, the information for
GUI design is based on established UIPs and possesses their
accepted usability for certain tasks. Nevertheless, the
generated dialogs look very similar and there is no option to
select or change the UIPs incorporated in the GUI design.

V. THEORETICAL IMPLICATIONS OF USER INTERFACE

PATTERNS

In this section, the theoretical implications of UIPs are
derived on the basis of considered models of Section IV and
the following scenario serving as a background.

A. Application Scenario: GUI Customization of Standard

Software

On the basis of the customization of GUIs for standard
software and the model transformations described in Section
II.A, the theoretical implications of UIPs are to be
considered. To present an example of standard software, we
refer to e-commerce software, which usually offers both a
front-end system for online-shopping and a back-end system
to manage orders and stock.

Common essential model. This kind of standard
software fulfils the functional requirements of a multitude of
users at the same time. Therefore, these systems share a well-
defined essential model that specifies their functional range
and has many commonalities along existing installations.
Standard software implements the essential model through
different components of the Application Kernel as shown in
Figure 3. Each installation consists of a configuration for the
Application Kernel, which includes many already available
and little custom components in most cases. In this context,
the User Interface acts as a compositional layer that
combines Core and Custom Services together with suitable
dialogs for the user.

Individual GUIs for eShops. Concerning eShops, the
visual design of the GUI is of special relevance, since the
user interface is defined as a major product feature that
differentiates the competitors on the market. Hence, the
needs of customers and users are vitally important in order to
provide them with the suitable and individual dialogs. In this
regard, the proportions of components related to the whole
system are symbolized by their size in Figure 3.

cmp Customizing

Application Kernel

Core Components Custom
Components

User Interface

Core Dialogs Custom Dialogs

Core Services Custom Services

Essential Model

User Model

«call»
«call»

«call»

Figure 3. Components involved in the customization of standard software

32

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In comparison to the Custom Components of the
Application Kernel the Custom Dialogs represent the greater
part of the User Interface and the customization accordingly.
Along with the customization of the application kernel there
is a high demand for an easy and vast adaptability of the
GUI.

GUIs for custom services. The customization of the
GUI system is needed, as elements of the essential model
tend to be very specific after extensive customization or
maintenance processes. Thus, the standard user model as
well as the user interface can no longer be used for the
customized services. In this case, models have to be
developed from scratch and a corresponding solution for the
GUI has to be implemented.

Usability. The development of GUIs is caught in a field
of tension between an efficient design and an easy but
extensive customization. High budgets for the emerging
efforts have to be planned. Additional efforts are needed for
important non-functional requirements such as high usability
and uniformity in interaction concepts and low-effort
learning curve during the customization process of GUIs. For
realizing these requirements, extensive style guides and
corresponding user interface models often need to be
developed prior to the manual adaptation of the GUI. These
specifications will quickly lose their validity as soon as the
GUI-framework and essential functions of the Application
Kernel change.

B. Model Aspects of User Interface Patterns

With the aid of UIPs the time-consuming process of GUI
development and customizing can be increased in efficiency.
To prove this statement, the influences of UIPs on the
common model transformations of the Ludolph model from
Section II.A are examined in the next step. In Section V.C
potentials for improvements are derived from these
influences.

Metaphors and UIPs. Metaphors act as the sole
transformation tool between essential model and user model.
Since they lack visual appearances as well as concrete
interactions, the mapping of metaphors to the elements of the
essential model is very demanding. Metaphors will not be
visualized by GUI sketches prior to the transformation of the
user model.

Since UIPs are defined more extensively and concretely,
they can be applied as a transformation tool instead of using
metaphors. Descriptive UIPs feature a pattern-like
description scheme that, for example, is provided in the
catalogues in [23] and [24]. Thus, they offer much more
information and sometimes even assessments, which can
inspire the GUI specification. In addition, descriptive UIPs
do already possess visual designs that may be exemplary, or
in the worst-case, abstract.

With the user model, operations on objects have to be
specified. The metaphors do not provide enough information
for this step. In contrast, UIPs are definitely clearer
concerning these operations since they group UI-Controls
according to their tasks and do operationalize them in this
way. Interaction designs and appropriate visuals are
presented along with UIPs. These aspects would have to be

defined by on behalf of the developer using only the
metaphor.

When UIPs are used in place of metaphors for
formalization, these new entities can be integrated in the
tools for specifications. Concerning UsiXML, UIPs could
describe the CUIM. Task-Trees are already present in
UsiXML, so this concept of specification partly follows the
modeling concepts in [12] and thus may be generically
applicable.

User model and UIPs. With regard to the user model,
the numerous modeling steps no longer need to be performed
with the introduction of UIPs. Instead, it is sufficient to
derive the tasks from the use cases within the essential model
and allocate UIPs for these. Detailed task-trees no longer
have to be created, since UIPs already contain these
operations within their interaction design. Nevertheless, tasks
have to provide a certain level of detail to derive navigation
structures [29].

Interactions can already be specified in formal UIPs.
Later on, this information can directly be used for parts of
the presentation control of views or windows. As a result, an
extensive user scenario also is obsolete, as it was originally
needed for deriving the more detailed task-tree. Now it is
sufficient to lay emphasis on expressing the features of UIPs
and their connection to the tasks defined by the essential
model. The objects are also represented within the UIPs in an
abstract way. With the aid of placeholders for certain domain
data types, adaptable views for object data can already be
prepared in formal UIPs. Finally, much of the afore-
mentioned information of the user model now will be
provided by completely specified UIPs.

User interface and UIPs. UIPs provide the following
information for the user interface: Layout and interaction of
the GUI will be described by a composition of a hierarchy of
UIPs that is settled on the level of views and windows. When
creating the UIP-hierarchy, a prior categorization is helpful,
which features the distinction between relationship, object
and task related UIPs. This eases the mapping to the
corresponding model entities.

For interactions, the originally applied Models of Human
Perception and Behavior of Figure 1 are no longer explicitly
needed since they are implicitly incorporated in the
interaction designs of the UIPs. In this context, suitable types
of UI-Controls are already determined by UIPs.
Nevertheless, a complete and concrete GUI-design will not
be provided by UIPs, since the number, ordering and
contents of UI-Controls depend on the context and have to
be specified by the developer with instance parameters
accordingly. In the same way, Platform and Graphic
Guidelines act as essential policies to adapt the UIPs to the
available GUI-framework and its available UI-Controls.

Conclusion. We explained that UIPs might cover most
parts of the user model as well as numerous aspects of the
user interface. By using UIPs in the modeling process, these
specification contents can be compiled based on the
respective context without actually performing the two
transformations from Figure 1 explicitly. Basically, the
transformation to the target platform remains as depicted in
Figure 4.

33

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. GUI transformations with the aid of UIPs and automation

C. Influence of User Interface Patterns on GUI-

Transformations

In this section, the potentials of UIPs related to the GUI
specification process are summarized from a theoretical
perspective.

Reuse. By means of UIPs, the transformational gap
between essential model and user interface can be bridged
more easily since reuse of many aspects will be enhanced
significantly. Thereby UIPs are not the starting point of
model transformations; they rather serve as a medium for
conducting needed information for the transformations. The
information originally included in the user model and parts
of the user interface are now extracted from the selection and
composition of UIPs.

Layout and interaction of windows as well as the
interaction paradigm of many parts of the GUI can be
determined by a single UIP configuration on a high level in
hierarchy. This superordinate GUI design can be inherited by
a number of single dialogs without the need for deciding
about these aspects for each dialog in particular.

Many interaction designs can be derived from initial
thoughts about GUI design for the most important use cases
and their corresponding tasks. When a first UIP
configuration has been created, the realization of the Graphic
and Platform Guidelines therein can be adopted for other
UIP-applications since the target platform is the same for
each dialog of a system. Especially when user scenarios
overlap, meaning they partly use the same views or windows
as well as object data, UIPs enable a high grade of reuse. UIP
assignments, already established for other tasks, can be
reused with the appropriate changes.

E-commerce software tends to use many application
components together although they are offered by different
dialogs as illustrated in Figure 3. UIPs can contribute to a
higher level of reuse in this context. Depending on the
possible mapping between Application Kernel components
and UIP-hierarchy, new dialogs can be formed by combining
the views of certain services which are determined by their
assigned UIPs.

Reuse and usability. Besides reuse, UIPs ensure that
multiple non-functional requirements will be met. As proven
solutions for GUI designs their essential function is to enable
a high usability by the application of best-practices or the
expression of design experiences. In this context, they
facilitate the adherence of style guides by means of their
hierarchical composition.

Technically independent essential model. It is a
common goal to keep elements of the essential model free
from technical issues. Thus, the essential model has no
reference to the GUI specification. Therefore, it is not
subject to changes related to new requirements, which the
user may incorporate for the GUI during the lifecycle of the
system. User preferences often tend to change in terms of the
visuals and interactions of the GUI. Concerning use cases,
this rule of thumb is elaborated in [40] and [41]. Technical
aspects and in particular the GUI specification are addressed
in separate models such as user model and user interface
according to [12]. After changes, these models have to be
kept consistent what results in high efforts. For instance, a
new or modified step within a use case scenario has to be
considered in the corresponding user scenario, too.

By assigning UIPs to elements of the essential model,
explicit user models and the prior checking of consistency
between these models both become obsolete. Instead, user
models will be created dynamically as well as implicitly by
an actual configuration of UIPs and essential model
mapping. The approach of Zhao et al. [6] strictly follows this
concept. A technical transformation to the source code of the
GUI that relies on the concrete appearances of the UIPs
remains as shown in Figure 4. By modeling assignments
between UIP and task or between UIP and object, the
number of UI-Controls, the hierarchy and layout of UIPs,
sufficient and structured information on the GUI system is
provided. Subsequently, a generator will be able to compile
the GUI suited for the chosen target platform. These
theoretical influences enable an increased independence from
the technical infrastructure, since the generator can be
supplied with an appropriate configuration to instantiate the
UIPs compatible to the target platform and its specifics.

Modular structuring of windows and views. Common
to software patterns, UIPs reside on different model
hierarchies. Dialog navigation, frame and detailed layout of a
dialog can be characterized by separate UIPs. The views of a
window can be structured by different UIPs on varying
hierarchy levels. Thus, a modular structure of dialogs is
enabled. In addition, versatile combinations, adaptability and
extensibility of building blocks of a GUI will be promoted.

VI. REVIEW OF UIP NOTATIONS AND APPLICATIONS

In this section, both potential notations and applications
of UIPs are reviewed.

A. Review Criteria for XML GUI Specification Languages

Both languages are to be assessed by the following
criteria:

Pattern variability criterion. The main criterion to be
supported by a formalization language is the ability to allow
the developer to abstract certain model structures to patterns.
Each pattern embodies some points of variability to express a
solution that is applicable and adaptable to a number of
contexts. For instance, Figure 5 displays on the upper right
hand side two exemplary UIP sketches. On the lower left
hand side of Figure 5 possible UIP applications are drafted.

34

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Schematic UIP examples and instances used in GUI dialogs

An apparent variability point of each illustrated UIP is
the number of elements of the defined structure, e.g., how
many buttons will appear in a certain UIP instance.

Content criteria. Besides the pattern abstraction
criterion, three additional criteria are relevant for UIPs to be
formalized. Firstly, the visuals to appear in the pattern
structure have to be specified. In some cases certain UI-
Control types make up the main impact of a certain UIP. For
instance, the patterns “Collapsible Panels”, “Carrousel”,
“Fly-out Menu” and the “Retractable Menu” sourced from
[23] require certain UI-Controls that enable animation
effects. It is important for the formalization to express UI-
Controls that enable the desired interaction as close as
possible while retaining a CUI level specification. Secondly,
the layout of modeled structures has to be defined. Thirdly,
stereotype behavior that is represented by the UIP has to be
expressed.

B. UsiXML User Interface Pattern Abstraction Capability

Issues. The assessment of UsiXML is not an easy task
compared to UIML. This is due to the facts that UsiXML is a
far more complex language supporting most levels of
Cameleon and it is not documented by a comprehensive
specification with integrated examples as this is the case for
UIML. At the time of writing, only older metamodels [42] of
UsiXML and the W3C submission [43] of the AUI model
[44] were available, possibly not reflecting new features.

Variability points. At its current state, whenever a
pattern is to be expressed in UsiXML CUI, the variability
points have to be avoided and specified directly. More
precisely, it is only possible to specify a certain button bar or
tab navigation instance with UsiXML. As far as we know,
there is no way to parameterize the number of desired
buttons or tabs. Thus, the described user interface structure
looses on genericity [5]. Only the generativity [5] for a
certain context and the platform- or device independence of
the pattern remains on the CUI model of UsiXML. Other
variability points for behavior and layout may be identified
and reviewed. Unfortunately, this basic variability concern is
a knock-out criterion.

IDEALXML. According to IDEALXML and its pattern
expression capabilities [5], it was not mentioned how UIPs
are being expressed in models such as the AUI or CUI model
as reusable artifacts. Thus, it seems the patterns being
modeled with the IDEALXML environment are always
special instances to be manually adapted to new or changing
contexts.

AUI patterns. Nevertheless, the AUI model and
IDEALXML tool still might be mighty assets for pattern
formalization. Following this thought, a developer would
have to create AIOs of desired facets to model certain
portions of a pattern, e.g., a single control facet for the button
bar UIP or a single navigation facet for the tab navigation
UIP of Figure 5. The modeling would solely be based on
abstract structuring and interaction definition, as there would
be no visual impressions of the final user interface. Later on,
the instantiation of an AUI model pattern towards a CUI
model would be prone to demand for fine-grained
information, as each AIO would have to be configured
individually to represent a specific set of CIOs and thus UI-
Controls. In addition, language facilities would be needed to
determine if an AIO was to be instantiated once or several
times for a CUI. In any case, the modeling of UIPs with the
UsiXML AUI model does not seem to be practical feasible,
since user interface engineers would have a hard time to
imagine the results. Finally, UIPs from public or corporate
libraries could not be modeled with an adequate level of
detail with respect to content criteria introduced in the
previous section.

C. UIML User Interface Pattern Abstraction Capability

Reuse by templates. The UIML language facilities may
enable the storing of UIPs. More precisely, UIML provides
templates for the integration and reuse of already defined
structures in new GUI formalizations [45]. The templates
even may be parameterized, hierarchically nested and
incorporated in the same way as ordinary <part> or
<structure> elements [45]. Additionally, UIML templates
may be used to restructure present <part> elements within a
UIML document by the mechanisms of replace, union and
cascade [45].

Sourcing of templates. UIML templates can only be
sourced by concrete UIML structures, e.g., an existing
<structure> or <part> element. The final element that
incorporates any template must define certain values per
<template-parameters> tag, which holds constants for the
parameters of sourced templates [45].

Variability points. For UIPs to be stored inside a UIML
document variability points need to be maintained.
Therefore, it would be necessary to nest templates up to the
structure root. In other words, the resulting main UIML
document would have to resemble another template itself.

In this regard, even parameterized templates do not seem
to be able to store UIPs deployable for varying contexts,
since the respective parameters would have to be provided in
the main UIML document. Unfortunately, a main UIML
specification cannot be defined as a template that
incorporates other templates and defines their variability
point parameters, which would govern the elements of child

35

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

templates. In detail, it is not allowed for <structure> to define
parameters on that root level. Neither <interface>,
<structure> or <part> tags can define own parameters to be
processed by a pattern instantiation wizard [29] or similar
tool.

Separation of instances and templates. To resolve this
issue, a separation of UIML document types could be
attempted where UIP definition and UIP instantiation are
segregated. The UIML templates stand alone as separate files
and may promise some reuse. Those templates can be
sourced from the same or other UIML files. However, there
are some restrictions as follows. As stated in the UIML 4.0
specification [45], <part> tags can only source <part>-based
templates and <structure> tags <structure>-based templates
respectively. Possible scenarios, which can be derived from
this approach, are explained in the following sub-sections.

1) Sourcing several <part>-based Templates

In this approach, several UIML documents would each
specify a certain UIP with (hierarchical) templates and
respective parameters, repeated parts and maybe
restructuring actions or behavior as additional options. A
schematic example for this kind of solution related to the tab
UIP and “Dialog 1” of Figure 5 is provided by Figure 6.

Definition of placeholders. As shown on the right hand
side of Figure 6, one major UIML document would have to
define the particular UIP instance or complete dialog
(“Dialog 1”) to be rendered. Separate container elements
would have to be defined in the main UIML document
serving as placeholders to be merged with the sourced
template by either the replace, union or cascade options. In
this regard, template parameters of UIML reside on the child
node level as outlined on the right hand side of Figure 6.
This implies that concrete parameters have to be passed to

included templates and consequently, the final UIML
document describing the UIP instances would have to be
created for each application or dialog separately. In this way,
the UIP instance document would be sourcing several
smaller templates as lower level hierarchy <part> elements
within their <structure>.

Separate definition of individual UIP instances.
Finally, parameters would have to be provided and kept in
the UIML UIP instance document as shown in Figure 6.
Therefore, each UIP instance would have to be specified at
root node level separately. The main UIML document would
have to define the panels or containers to include UIPs into
the hierarchy of the virtual tree. This is due to the fact that
UIML template parameters may only be applied for root and
child node level.

2) Sourcing nested <part>-based Templates

The reuse of several <part>-based templates could be
approached, but contained structures would build a strict
hierarchy. As depicted on the left hand side of Figure 6, for
<part>-based templates only one root level container would
be possible, which combines several nested <part> elements
into the same sub-tree. Hence, the incorporation of two UIPs
at the same time would result in a “virtual tree” [45] with
equally ranked or nested elements inside the same container.
The main UIML document could only source both UIPs
within this strictly defined hierarchy and thus, the developer
would replace a <part> with both UIPs at once. According to
Figure 5, the tab UIP would be directly followed by the
button UIP inside the same panel and the dialog data
contents would be situated at the bottom differing from the
actual desired layout depicted in Figure 5.

Figure 6. Schematic UIML <part>-based template and its sourcing inside a UIML document

36

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3) Sourcing <structure>-based Templates
UIP compositions. Complex UIPs or their compositions

like in Figure 5, forming entire new UIP units of reuse, could
be specified with <structure>-based templates and
hierarchical <part> elements. Following this approach,
parameters could be applied to denote the iterators for each
<part> at root node level included in the <structure>-based
template. This variant is illustrated in Figure 7. Additionally,
the cascade merging strategy could be used to preserve
elements not to be replaced and the main UIML document
would have to maintain a similar naming for <part> elements
to be replaced by the template. In Figure 7, the <part>
elements of both the template and UIML instance document
are named equally.

However, these kinds of templates can only replace,
cascade or union with one main <structure> element. Finally,
this implies that only one template can be included in a
UIML document using union or cascade at once. There is no
sourcing of multiple <structure>-based templates possible.

Limitations of UIML instance documents. The current
UIML template facilities are not a suitable solution for UIPs,
since a strong tool support should define an instantiation
configuration at design-time to raise efficiency and not the
UIML document itself. With UIML as the basic
configuration document there would be no overview about
required parameters and no checking of constraints, e.g., the
minimum, maximum or optional occurrence of elements), as
there is even no definition of them inside the UIML
document. UIML offers no visual aids in defining a UIP-
instance. To conclude, reuse would still be limited to certain
portions and GUI specification as well as configuration
would pose high efforts.

Moreover, the above discussed strategies for applying
UIML templates have another considerable drawback. The

<d-template-parameters> definitions only allow for flat
parameter structures. According to the presented examples,
only the number of occurrences of child elements can be
specified in the template and thus, configured in the UIML
instance document. We cannot think of a way how to
configure <style> information such as the label names for the
given UIPs.

Summary. To draw a conclusion, UIML offers rich
facilities like templates and restructuring mechanisms to
manipulate a “virtual tree” structure [45] of a CUI model.
Nevertheless, these capabilities are only valid for structure
elements enumerated and defined concretely. There is no
sufficient solution for the usage of a template, <repeat> or
<restructure> for abstract elements with variable
occurrences.

Currently, it seems that primitive UIPs may be defined
via <part>-based templates, but the template has to be
incorporated into a full UIML document and thus, variables
have to be defined concretely. In addition, the limitations of
parameter definition have to be taken into account.

In the following we provide a summary of current UIML
shortcomings.

4) Current UIML Limitations

No meta-parameters for UIML documents. UIML
provides no means to parameterize templates or UIML
documents even further; meaning the introduction of meta-
templates is not possible. UIML documents do not allow
variables to govern nested templates. A higher level UIP
configuration layer is missing, as indicated on the upper right
hand side of in Figure 6. Such a layer could compensate for
missing pattern support and allow nested parameterization
for the final UIML document.

Figure 7. Schematic UIML <structure>-based template and its sourcing inside a UIML document

37

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. UIML 4.0 DTD [45] template tag definition

This way, the number of embedded template elements or
respective sub-ordinate UIP instance could be governed.
Currently, there is no reuse possible concerning root node
structure elements with UIML, since the root elements are
defined by the UIML UIP instance document itself. A
developer would need to use UIML for defining final dialogs
in detail this way.

Referencing abstract elements. Structure elements that
are sourced from templates need to be referenced explicitly
as this is needed for <style> and <behavior> sections for
example. Therefore, a developer cannot specify the
<behavior> or <style> of abstract elements or those yet to
appear or being instantiated at design- or run-time inside a
UIML document.

UIML DTD. Concerning the current UIML 4.0 XML
DTD [45] as listed in Figure 8, the definition of templates
may be faulty, since only one child element is currently
allowed.

For instance, that means either <structure>, <part> or <d-
template-parameters> are allowed as the solely child.
Restrictions limit reuse to certain UIP combinations: Either
one <structure>-based template in union or cascade as well
as multiple <part>-based templates inside separately defined
container elements are allowed. So a developer cannot
specify how many template instances would be needed.
Meta-parameters that would govern the individual template-
specific parameters are not yet supported.

UIPs already instantiated. In the end, UIML itself is not
capable of expressing complex UIPs. Only concrete template
instances can be used, as they are configured concretely per
<template-parameters> tag.

D. Review of Content Criteria

UI-Control types of UsiXML. According to UI-
Controls, UsiXML defines precisely which types of UI-
Controls are available and what properties they can possess.
An additional mapping model would have to be created in
order to assign these elements to the entities of the target
platform.

UI-Control types of UIML. In comparison to UsiXML,
UIML offers a more flexible definition of UI-Controls, since
custom UI-Controls as well as their properties can be
declared freely in the structure- or respective style-sections
[45] without the need to define them beforehand. To map
these structure parts to technical counterparts of the
implementation, UIML offers a peer-section. This separate
section can be used to specify a mapping between the parts
defined within the structure and any target platform GUI
component. The mapping to the GUI-framework can be
altered afterwards without the need for changing the already
defined UIPs. In addition, standard mappings can be defined
and reused for a certain platform. However, the type safety

like in UsiXML is not given. Thus, a homogenous usage of
types and their pairing with properties has to be ensured by
the developer and is not backed by the language specification
like this is the case for UsiXML.

Layout definition of UsiXML. Concerning layout,
UsiXML uses special language elements to set up a
GridBagLayout.

Layout definition of UIML. UIML offers two variants
for layout definition: Firstly, it is possible to use containers
as structuring elements along with their properties. The
containers have information attached that governs the
arrangement of their constituent parts. Secondly, UIML
provides special tags used for the layout definition. In
comparison to UsiXML, UIML has a more flexible solution
by defining layouts with containers that can be nested
arbitrarily.

Behavior definition. Related to behavior, both languages
define own constructs. Nevertheless, complex behavior is
difficult to master without clear guidelines for both.

E. Summary of XML GUI Specification Languages Review

Besides the considered criteria for review, the two
languages differ in indirect, supportive categories like
framework and tool support or documentation. Additional
comparison criteria and results of our evaluation are
presented by TABLE I.

UsiXML and UIML may express structures similar to
UIPs to some extent, but these resemble already instantiated
patterns or their fragments. In fact, UIML may even express
assorted UIPs through its template facilities. Nevertheless,
these features are not sufficient for most UIP applications. In
sum, both languages are missing the capability to specify
UIPs properly.

F. Valuation of model-based Processes

Referring to the related work in Section III.C, promising
solutions that enable higher reuse through the selection and
instantiation of UIPs during specification and development
of GUI systems are in reach. However, the presented
approaches partly face the same challenges:

Common challenges. On the conceptual level, they need
to review pattern relationships, enhance notations or probe
the expression of more complex patterns or extend the set of
supported patterns. For public evaluation, working examples
of UIP instantiated to a certain context should be provided.
Concerning tool support, researchers have to develop or
enhance tools that aid in selection of appropriate patterns
under consideration of possible relations among them.
Moreover, tools are needed to guide the instantiation or
configuration of selected patterns for a given context.
Therefore, a solution finally adequate to fulfill each
individual project’s goals seems to be ahead of elaborate
work in the future.

Common issues. In sum, we see some issues relevant to
limit the effectiveness of further progress as follows.

Firstly, no detailed requirements or project goals have
been communicated along with the presentation of concepts.

<!ELEMENT template (behavior| d-class| d-

component| constant| content| interface| logic|

part| layout| peers| presentation|

property| restructure| rule| script| structure|

style| variable| d-template-parameters)>

38

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. UIML AND USIXML IN COMPARISON

 UIML UsiXML

language base XML XML

application

platform-independent
user interface
specification

device-, modality- and
platform-independent

user interface
specification

reuse of code parts
by templates with

assigned parameters
no

more than one user

interface structure in

one document

yes no

manipulation of

interface structures

through behavioral
rules and replacement
mechanisms of code

parts

no, only method calls
can be described

dynamic creation of

interface structures

referenced through
the use of variables

no, only static
description

language

documentation

extensive, with
detailed language

specification 4.0 [45]
supplemented by
descriptions and

examples

2012: relative short,
meta model described
by class diagrams and
short descriptions, no

examples
03/2013: no updated
meta model available

corresponding

specification method

and modeling

framework

no, focused on
implementation and

prototyping

yes, implementation
of Cameleon

Reference Model
(Task, Domain, AUI,

CUI models),
IDEALXML both as

method and tool

tool support GUI designer only

vast selection of tools
(GUI designer,

renderer, modeling
framework, …)

rendering

XSL transformation,
or compilation by
own development

XSL transformation,
rendering tools

(XHTML, XUL,
Java)

This hinders the evaluation of given approaches, and thus,
their own justification and comparison to other approaches is
hampered. More precisely, the UIPs defined as generative
patterns and their capabilities remain a vague concept.
Another considerable set-back is due to the fact that no
detailed code examples or notation details have been
presented yet.

Secondly, the general modeling framework and approach
have been outlined as main assets, but no detailed
architecture or transformations to code or final artifacts to be
interpreted have been discussed so far. Up to now, the
readiness of the approaches for practice or even their
invented notations has to be questioned. For a more precise
analysis of considered model-based processes reference [46]
may be consulted.

VII. EXPERIMENTAL APPLICATION OF UIPS IN GUI-
MODEL-TRANSFORMATIONS

Up to now, there have been no reports about experiences
in the practical application of formal UIPs. The particular
steps to be performed for a model-to-code-transformation

and the shape as well as the outline of a formalization of
UIPs are analyzed in the following sections.

A. Approach

To gain further insights about the practical implications
of UIPs, they have been experimentally applied by two
different prototypes. Similar to the probing of software
patterns, selected UIPs were instantiated for simple example
dialogs. These are illustrated in Figure 9.

Sketched examples. On the one hand, the examples
consisted of a view fixed in shape that contained the UIP
„Main Navigation“ [23] on the upper part. On the other hand,
the lower part shows two variants for a view whose visuals
are dependent on the input of the user.
Thereby, the UIP „Advanced Search“ [23] was applied. This
UIP demands for a complex presentation control and is
characteristic for E-commerce applications. Depending on
the choice of the user, the view and interactions are altered.
The search criteria can be changed, deleted and added as
depicted in Figure 9 by two possible states. Both example
dialogs should have been realized by formalized UIPs and
one prototype.

Influences. Based on the current state-of-the-art
concerning potential UIP notations, model-based processes
employing generative patterns and the chosen example, we
opted for two considerable different approaches and
architectures.

Firstly, the potential GUI specification languages turned
out not being capable of storing UIPs in a satisfactory
manner. Only UIML was able to specify selected UIPs at
design-time.

Secondly, the available sources of existing approaches
provide no details about practical considerations and
architectures related to UIP instantiation. In addition, they
are affected by missing requirements for a definition and
vagueness concerning the notation format of UIPs.

Lastly, the chosen dialog examples pointed out, that
certain CUI models statically exists at specification time and
others are due to change at runtime. Thus, a dynamic
reconfiguration of a CUI model has to be considered.

Figure 9. Example dialogs used for prototypes

39

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Seissler et al. [36] also have outlined this aspect, but have
not provided details yet. Finally, XML language capabilities
will not be sufficient to provide proper formalization for
dynamic user interfaces, as static user interfaces are already
restricted.

Generation at design time. To test the formalization of
simple UIPs and the generation of code for the examples, a
solution, which generates the GUI dialogs at design time,
was chosen. In general, the possibility to generate an
executable GUI with the aid of UIPs had to be proven. The
UIPs had to be completely defined at design time. Testing of
the prototype had to be conducted after the GUI system was
fully generated.

Choice of UIP notation. Regarding the structure of a
GUI-specification, UsiXML proposes numerous models in
order to separate the different information concerns domain
objects, tasks and user interface as required by the
underlying Cameleon Reference Framework. Not all the
models were mandatory in terms of the example, since no
explicit essential model was given. On the contrary, UIML
operates with few sections within one XML-document. This
is because the UIML format was easier to handle and learn
with respect to the simple example. With UIML we could
focus on the CUI to FUI transformation only.

In addition, on the basis of our review in Section VI
UIML proved to be better suited for the specification of
UIPs. Firstly, UIML is more compact in structure and
enables a higher flexibility for shaping the formalization.
Secondly, many of the language elements and models from
UsiXML were not actually needed for the UIP „Main
Navigation“. Thirdly, even the „Advanced Search“ example
could not profit from the vast language range of UsiXML,
since all possible variants for search criteria could not have
been formalized or even enumerated. At least UIML offered
the possibility to rely on templates in order to define all
possible lines of search criteria composed of simple UIPs.
UsiXML turned out to be too complex for these simple UIPs.
Due to the limitations in documentation and the metamodel,
it was not clear whether UsiXML permits the reuse of
already specified UIPs at the time of our experiments. So we
decided to apply UIML for the example dialogs.

Generation at runtime. The dynamic dialog Advanced
Search could not be realized by the first approach. Thus, a
solution had to be found that enables the instantiation of
UIPs at runtime. Thereby, it was of importance to keep the
platform independency of the UIML or respective CUI level
specification. The formal UIPs had to be processed directly
during runtime without binding them to a certain GUI-
framework.

In the following analysis, we mainly concentrate on the
latter approach where the instantiation of UIPs is executed at
runtime. In contrast, the generation at design time is an often
applied variant with respect to available approaches outlined
in Section III.C. This particular approach strongly relies on
the employed formalization language for UIPs. In fact, this
major asset is still challenged as seen in Section VI.F.
Therefore, we can not provide further advances by practical
application.

B. Generation at Design Time

Foremost, the simple UIP Main Navigation was realized.
This informally specified UIP was formalized using the
chosen XML language. By means of a self-developed
generator, a model-to-code-transformation was performed to
create an executable dialog. Subsequently, the complete GUI
system was started without any manual adaptations to the
code.

Realization of „Main Navigation“. Java Swing was
chosen as target platform. For the UIML <peer> section we
decided to map the elements of „Main Navigation“ to
horizontal JButtons instead of tabs.

In the formalization, the mandatory parameters for
number, order and naming of UI-Controls were specified. As
result, the UIP was described as an instance. The architecture
was structured following the MVC-pattern [1]. The sections
of UIML were assigned to components like this is illustrated
by Figure 10.

<Structure> and <style> were processed within the object
declarations (UI-Controls) of the View and its constructor.
Based on the <behavior> section, EventListeners were
generated acting as presentation controllers. For the Model
the <content> section was assigned. Hence, the UIP “Main
Navigation” formalized with UIML was transformed to
source code.

Realization of „Advanced Search“. Even by using the
UIML templates, this complex dialog could not be realized
by a generation at design time. It was not possible to
instantiate the formalized UIPs that were depending on the
choice of attributes at runtime.

Results. The prototype primarily was intended to prove
feasibility. This is because we chose a simple architecture
and did not incorporate a Dialog Controller for controlling
the flow of dialogs. The control was restricted to the scope of
the UI-Controls of the respective UIP. Thus, the behavior
only covered simple actions like the deactivation of UI-
Controls or changing the text of a label. Complex decisions
during the interaction process like the further processing of
input data and the navigation control amongst dialogs could
not be implemented.

cmp Generator architecture

UIML Document

<structure>

<style>

<behavior>

<content>

Generator Tool

Parser Java Code
Generator

GUI-System

Model

View

Dialog Controller

UI-Controls

EventListener

Constructor
«trace»

«trace»

«trace»

«trace»

«derive»

«use»

«use»

Figure 10. Architecture applied for code generation

40

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A corresponding superordinate control could have been
realized through a UIP-hierarchy in combination with
appropriate guidelines for the formalization of control
information. Despite the simplicity of the prototype, the
following insights could be gathered:

Informal UIPs could be converted to formal UIP
instances by using UIML as a formal language. Certain
guidelines needed to be defined for this initial step. The
layout of the example was specified by using containers for
the main window and their properties. As a result, the UI-
Controls were arranged according to these presets.

Nested containers and complex layouts have not yet been
used for the experiment in this way. The <style> also was
described concretely within the UIML document as well as
the number and order of UI-Controls. The mapping of a
formal UIP to a software pattern was described according to
the scheme in Figure 10. Concerning the example Advanced
Search, only fixed variants or a default choice of criteria
could have been formalized. The generator could have
created static GUIs accordingly without realizing the actual
dynamics of this particular UIP.

C. Generation at Runtime

Since the Advanced Search UIP was very versatile and
could not be formalized with all its variants with a single
CUI model, the layout of the dialogs was fragmented.

By the means of a superordinate UIP the framing layout
of the view was specified in a fixed manner at design time. In
detail, the headline, labels and the three-column structure of
the view appropriate to a table with the rows of search
criteria were defined.

The mandatory but unknown parameters that determine
the current choice of criteria and UIPs had to be processed at
runtime. Accordingly, a software pattern had to be chosen
that is able to instantiate UIP representations along with their
behavior. This pattern had to act similarly to the builder
design pattern [20], which enables the creation and
configuration of complex aggregates. In [47] a suitable
software pattern was discovered, which is explained shortly
in the following paragraph and depicted in Figure 11:

Quasar VUI. The Virtual User Interface (VUI) is an
early concept included in Quasar (quality software
architecture) [48]. The VUI pattern follows the intention of
programming dialogs in a generic way. This means that the
dialog and its events are implemented via the technical
independent, abstract interfaces WidgetBuilder and
EventListener rather than using certain interfaces and objects
of a GUI-framework directly. By means of this concept, the
GUI-framework is interchangeable without affecting existing
dialog implementations. Solely the component Virtual User
Interface (VUI) depends on technological changes. Upon
such changes, its interfaces would have to be re-
implemented.

We are inclined that the VUI pattern implements some
aspects symbolized by the CUI Cameleon step. Rather than
specifying a certain CUI at design time and statically storing
this as a source, the VUI creates a Dialog in an imperative
way based on CUI level interface operation sequences.

cmp VUI

GUI
Framework

Virtual User
Interface

DialogApplication
Kernel

EventListener

WidgetBuilder

«call»

«use»

«use»«call»

Figure 11. Virtual user interface architecture derived from [47]

By using the interface WidgetBuilder, a dialog
dynamically can adapt its view at runtime. For instance, the
Dialog delegates the VUI to create and configure a new
window containing certain UI-Controls.

The VUI notifies the Dialog via the interface
EventListener when events have been induced by UI-
Controls. Both interfaces have to be standardized for a GUI
system of a certain domain. This is essential to enable the
reuse of reoccurring functionality such as the building of
views and association of UI-Controls with events without
regarding the certain technology or platform specifics being
used. In short, an abstraction comparative to the CUI level
and its advantages are enforced.

VUI for UIPs. The concept, the VUI is based on, can be
adapted to the requirements of the UIP Advanced Search.
The idea is to instantiate complete view components with
UIP definitions besides simple UI-Controls. The Dialog is
implemented by using generic interfaces, which enable the
instantiation of UIPs, changing their layout and their
association with events. In Figure 12 our refinement of the
original VUI is presented.

To enable the implementation of UIP fragments, the VUI
for UIPs is based on our previously described generator
solution. Each possible variation of UI-Controls matching
the attributes of the domain objects for Advanced Search has
been formalized before. Hence, the search criteria rows of
the dialog were visualized by different UIP fragments.
Concerning the formal UIPs, the proper implementations for
the chosen GUI-framework were generated as stated in
Section VII.B. The previously mentioned generator was
integrated in the component UIP Implementations. These
implementations of UIPs located within VUI are based on the
interfaces and objects of the GUI-framework. In analogy to
the UI-Controls already implemented in the GUI-framework,
the available UIP instances were provided via the interface
UIPBuilder and could be positioned with certain parameters.

VUI at runtime. The VUI builds the view or a complete
window as requested by the Logical View. Furthermore, the
VUI provides information about the current composition and
the layout of the Dialog. This information can be used by the
Logical View for parameters to adapt the current view by
delegating the VUI respectively. The Dialog coordinates the
structuring of the view with the component Logical View and
implements the application specific control in the Dialog
Controller as well as dialog data in the Model.

Initially, events are reported to the VUI via API-Events.
The VUI only forwards relevant events to the Logical View.
When the respective event is solely related to properties of a
UI-Control or a UIP instance, it is directly processed by the
Logical View which delegates the VUI when necessary.

41

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cmp VUI UIPs

GUI
Framework

UI-Creation

API-Events

Virtual User
Interface

Dialog

Formal UIPs

UIPBuilder

ViewEvent

Application
Kernel

ViewData
Style
Data

Logical
View

Dialog
Controller

DialogEvents

Model

DialogData

StyleDefinition

Technical
View

UIP
Implementations

Observer

«use»

«call»

«call»

«use»
«call»

«use»

«use»

«call»

«use»

«call»

«use»

«use»

«trace»

«use»

Figure 12. Virtual user interface architecture for UIPs

If the Logical View cannot process the particular event on
its own, it will be forwarded to the Dialog Controller. For
instance, this occurs when the user presses the button Search
and a new view with the search results has to be loaded. The
Dialog Controller collects the search criteria via the interface
ViewData and sends an appropriate query to the Application
Kernel. The result of the query will be stored as dialog data
in the Model.

Results. For realizing Advanced Search with UIPs, a
complex architecture had to be developed. Details like the
connection of UIP instances to the Dialog data model as well
as the automation potentials of the Dialog Controller could
not yet be analyzed.

The UIPs had to be specified in a concrete manner like in
Section VII.B. The prototype was not mature enough to
handle abstract UIP specifications. The style of the UI-
Controls was also described concretely, so the control of
style by a component of the VUI, as depicted in Figure 12,
has not yet been realized.

Through the VUI, the versatile combinations of Advanced
Search could be realized according to the example at
runtime. The VUI constitutes of a component-oriented
structure related to the software categories of Quasar [48].
Accordingly, it possesses its virtues like the division of
application and technology, separation of concerns therein
and encapsulation by interfaces. Despite its challenging
complexity, a flexible and maintainable architecture for
dynamic GUI systems has been created. Finally, the
formalized UIP fragments could be maintained at CUI level.

VIII. PRACTICAL IMPLICATIONS OF USER INTERFACE

PATTERNS

The reflection of both the theoretical implications of
UIPs on GUI transformations and the results of our
experiments led us to the following findings.

A. Formalization of UIPs

Reflection of results. By experimentally evaluating the
model-to-code-transformation of formal UIPs, we came to
the conclusion that the generation of a GUI is not the
complicated part of the process. Instead, the formalization

and the occurring options in this step lead to the main
problem. Primarily, the preconditions to benefit from the
positive influences of the UIPs on the GUI development
process have to be established by the formalization.

The generator solution was well suited for stereotype and
statically defined UIML contents. In this context, layout,
number and order as well as style of UIPs have been
specified concretely. This led us to a static solution that can
be applied at design time. But the UIP Advanced Search
could not be realized by following this approach.

Parameters for UIPs. In order to overcome this static
solution, a parameterization of formal UIPs has to be
considered. Via parameters the number, order, ID, layout and
style of UI-Controls within UIPs specifications have to be
determined to provide a more flexible solution. Especially
the number and order of UI-Controls have to be abstractly
specified in the first place. In this way, UIPs can be applied
in varying contexts. In place of a concrete declaration of
style for each UIP, a global style template has to be kept in
mind. By using this template, dialogs could be created with
uniform visuals and deviations are avoided. For this purpose,
the VUI incorporated the Style Data component. It is
intended to configure the visuals of UIP instances and UI-
Controls globally. The configuration is used for the
instantiation of these entities by the Technical View.
Consequently, style information from single UIP
specifications could be avoided and the UIPs would receive a
more universal format.

The model-based processes have already approached the
formalization issues. In fact, they have detailed the
parameterization of presented XML languages UsiXML and
UIML for their custom modeling frameworks. However, we
could not rely on their findings, as both detailed information
was missing and considerable future work in the line of
improvements was outlined. Yet, a more sophisticated
solution has still to be invented. This conclusion is backed by
our subsequent work to derive detailed requirements on the
definition and application of generative UIPs [46].

B. Generation at Design Time

In principle, complex UIPs or UIP-hierarchies can be
realized with the generation at design time. The easiest cases
are elementary or invariant UIPs like calendar, fixed forms
or message windows. These examples can be generated with
ease, since they do not need parameters besides a data model.
For UIPs, which require parameters such as hierarchical UIP
structures, an additional transformation is needed prior to the
generation of source code.

Transformation of abstract UIPs. Firstly, the UIP is
abstractly specified along with all parameter declarations
needed and placeholders for nested UIPs. Subsequently,
these parameters have to be specified via a context model,
which adapts the UIP to a certain application. Based on the
abstract UIP specification and the context model, a model-to-
model-transformation is performed in order to generate
concrete UIP specifications like they were used in our
examples. In this state, all required information is available
for the generation of the GUI system. The described model-
to-code-transformation can be performed as a follow-up step.

42

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It has to be analyzed whether a suitable format is available to
realize this approach, by means of UsiXML or IDEALXML
and the respective AUI and CUI models.

C. Generation at Runtime

Regarding the UIP Advanced Search, it is clear that a
large gap has to be bridged between the essential model and
the user interface. A use case, which demands for such
dynamic UIPs, hides a whole variety of different GUI-
designs and thus CUI level models. Consequently, one static
user interface cannot always be established for the elements
of the essential model. However, even for these dynamic
GUIs UIPs can serve as media to enable reuse of numerous
aspects directly by generation along with a composition at
runtime. The combined application of both our approaches
can provide a feasible solution. Concerning the example
from Figure 9, the previously generated layouts actually
were reused for the Advanced Search window and the views
of search criteria. By instantiation of matching UIPs, even
the interactions respectively the presentation control was
reused.

Generation of dialogs. As shown with our example, the
current VUI is capable of the instantiation and composition
of single parts of a certain Logical View. The generation of
complete Logical Views on the basis of formal UIPs and
their hierarchy could possibly be realized with the VUI
architecture. The model describing the Logical View has to
refer to the standardized interfaces of the VUI and a common
UIP catalog.

To formally specify the UIPs to be used in this
environment, only UIML currently seems to be suitable.
Firstly, an analysis of the required and reused elementary
UIPs as well as the relevant UI-Controls has to be conducted
in order to populate the basic level in the hierarchy of UIPs.
Next, these UIPs have to be formalized with UIML along
with their required data types and invariant behavior that acts
as a basis for presentation control within the VUI.
Furthermore, the interaction and layout within the Logical
View have to be specified using UIML as well. This is
because UIML already offers templates that can be
parameterized and thus used for the composition of several
UIP-documents into one master document establishing a UIP
of higher level. Concerning UsiXML, one dialog can only be
specified by a single AUI or respective CUI model.

To complete the Dialog, meaning Dialog Controller and
Model, relevant information on tasks and data objects has to
be included into a formal model. The research on the
collaboration between adaptable UIPs and these logical
aspects already has advanced [6] [26] [29] [31].

D. Limitations through the Application of UIPs

Individualization. Using UIPs instead of time-
consuming manual transformations, a compromise is being
contracted: A full individualization of the GUI is not
possible with UIPs, since the customization is conducted
within the limits of available and formalized UIPs reside on a
CUI level of abstraction. Nevertheless, UIPs can embody a
further building block of standard software. Customization
will be facilitated by defined parameters and automation.

Metamodels. The application of UIPs demands for clear
guidelines for modeling of the essential model, which result
in a second limitation. The rules for this model need to
define stereotype element types and their delimitations. The
definition of the essential model should be governed by a
metamodel to ensure the uniformity of defined model
instance elements. In this respect, it will be defined what
types and refinements of tasks, domain objects and domain
data types do exist in order to assign them homogenously to
certain UIP categories. This concept is essential for the
proposal of suitable UIPs for the automated development of
GUI systems.

The proposing system needs to work in two ways: On the
one hand, the GUI developer asks for a suitable selection of
UIPs for a certain part of the essential model at design time.
On the other hand, users need to be provided with suitable
UIPs in dynamic dialogs at runtime based on their current
inputs. The mechanisms can only work if a uniform essential
model with clearly defined abstractions derived from fixed
guidelines is available as fundamental information.

IX. CONCLUSION AND FUTURE WORK

A. Conclusion

We theoretically and experimentally elaborated that UIPs
do have numerous positive influences on the GUI
development process. UIPs integrate well in the common
GUI transformations and respective models. Therefore, our
findings are not restricted to the domain of E-commerce
software, but rather can be adapted to other standard
software such as enterprise resource planning systems. Even
for individual software systems, UIPs can be of interest in
case that numerous GUI aspects are similar and their reuse
appears reasonable.

Currently, adaptability and reuse of UIPs are limited due
to inadequate formalization options. Mostly invariant UIP
and simple flat structures can be described by available
template facilities of UIML. UIP compositions could only be
created by manual implementation. We pointed to the
limitations of current UIP specification format options and
presented architectural solutions for their practical
application. Above all, the upstream transformation of the
abstract UIP description into UsiXML or UIML is worth to
be considered, since one could use their strength in
concretely specifying user interfaces. As an alternative to
attempt to fully define UIPs in a single model, the approach
to generate complete CUI level models on the basis of either
UsiXML or UIML should be considered. Afterwards, the
generation of GUIs based on this information would pose a
minor issue.

B. Future Work

Formalization. For future work, we primarily see the
research in formalizing UIPs. An important goal is to enable
UIPs to act as real patterns that are adaptable to various
contexts. The synthesis of a UIP-description model is the
next step to determine properties and parameters of UIPs
exactly and independently from GUI specification languages.
Consequently, it can be more accurately assessed whether

43

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

future UIML or UsiXML versions are able to express the
description model and thus UIPs completely. The
independence from the platform can be achieved by both
languages. However, it was not possible to specify context
independent UIPs besides invariant or concrete UIPs. In this
regard, the composition of UIPs, to form structured and
modular specifications, remains unsolved, too.

Paradigm. Another open issue exists in the field of
interaction paradigms [12] and the applicability of UIPs.
With respect to the procedural paradigm, processes are
defined, which exactly define the single steps of a use case
scenario. To provide a matching user interface for this case,
additional information needs to be included in the
formalization of UIPs. For instance, the process or task
structures have to be specified by UIPs on a high level of
hierarchy. These UIPs possess little visual content, maybe a
framing layout for windows, and mainly act as entities for
controlling the application flow. The Dialog Controller from
Figure 10 and Figure 12 could be based on such a UIP. In
this paper, no information for these components was
integrated in the formal UIPs. So these components had to be
implemented manually. For example, the Dialog Controller
opens a new window with search results for the Advanced
Search, controls the further navigation and delegates the
structuring of the next or previous windows. In this context,
our VUI solution is a compromise between automation and
the reuse of elementary and invariant UIPs through manual
configuration of the Dialog Controller and the delegated
Logical View. A full automation needs further research and
the consideration of the achievements other researchers have
gathered so far in the field of task pattern modeling.

REFERENCES

[1] S. Wendler, D. Ammon, T. Kikova, and I. Philippow,
“Development of Graphical User Interfaces based on User
Interface Patterns,” Proc. 4th International Conferences on
Pervasive Patterns and Applications (PATTERNS 2012),
Xpert Publishing Services, July 2012, pp. 57-66.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and
M. Stahl, A System of Patterns: Pattern-Oriented Software
Architecture, vol. 1. New York: Wiley, 1996.

[3] M. Fowler, Patterns of Enterprise Application Architecture.
Boston: Addison-Wesley, 2003.

[4] M. Haft and B. Olleck, “Komponentenbasierte Client-
Architektur,” Informatik Spektrum, vol. 30(3), June 2007, pp.
143-158, doi: 10.1007/s00287-007-0153-9.

[5] J. Vanderdonckt and F. M. Simarro, “Generative pattern-
based Design of User Interfaces,” Proc. 1st International
Workshop on Pattern-Driven Engineering of Interactive
Computing Systems (PEICS’10), ACM, June 2010, pp. 12-19,
doi: 10.1145/1824749.1824753.

[6] X. Zhao, Y. Zou, J. Hawkins, and B. Madapusi, “A Business-
Process-Driven Approach for Generating E-commerce User
Interfaces,” Proc. 10th International Conference on Model
Driven Engineering Languages and Systems (MoDELS
2007), Springer LNCS 4735, Sept. - Oct. 2007, pp. 256-270,
doi: 10.1007/978-3-540-75209-7_18.

[7] P. Forbrig, A. Wolff, A. Dittmar, and D. Reichart, “Tool
Support for an Evolutionary Design Process using XML and
User-Interface Patterns,” Proc. 5th Canadian University
Software Engineering Conference (CUSEC 2006), CUSEC
Proceedings, Jan. 2006, pp. 62-69.

[8] J. Engel and C. Märtin, “PaMGIS: A Framework for Pattern-
Based Modeling and Generation of Interactive Systems,”
Proc. 13th International Conference on Human-Computer
Interaction. New Trends (HCII 2009), Springer LNCS 5610,
July 2009, pp. 826-835, doi: 10.1007/978-3-642-02574-7_92.

[9] M. Seissler, K. Breiner, and G. Meixner, “Towards Pattern-
Driven Engineering of Run-Time Adaptive User Interfaces
for Smart Production Environments,” Proc. 14th International
Conference on Human-Computer Interaction. Design and
Development Approaches (HCII 2011), Springer LNCS 6761,
July 2011, pp. 299-308, doi: 10.1007/978-3-642-21602-2_33.

[10] M. van Welie, G. C. van der Veer, and A. Eliëns, “Patterns as
Tools for User Interface Design,” in Tools for Working with
Guidelines, J. Vanderdonckt and C. Farenc, Eds. London:
Springer, 2001, pp. 313-324, doi: 10.1007/978-1-4471-0279-
3_30.

[11] M. J. Mahemoff and L. J. Johnston, “Pattern languages for
usability: an investigation of alternative approaches,” Proc.
3rd Asian Pacific Computer and Human Interaction (APCHI
1998), IEEE Computer Society, July 1998, pp. 25-30, doi:
10.1109/APCHI.1998.704138.

[12] M. Ludolph, “Model-based User Interface Design: Successive
Transformations of a Task/Object Model,” in User Interface
Design: Bridging the Gap from User Requirements to Design,
L. E. Wood, Ed. Boca Raton, FL: CRC Press, 1998, pp. 81-
108.

[13] J. Vanderdonckt, “A MDA-Compliant Environment for
Developing User Interfaces of Information Systems,” Proc.
17th International Conference on Advanced Information
Systems Engineering (CAiSE 2005), Springer LNCS 3520,
June 2005, pp. 16-31, doi: 10.1007/11431855_2.

[14] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L.
Bouillon, and J. Vanderdonckt, “A Unifying Reference
Framework for Multi-Target User Interfaces,” Interacting
with Computers, vol. 15(3), June 2003, pp. 289-308, doi:
10.1016/S0953-5438(03)00010-9.

[15] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and
V. López-Jaquero, “USIXML: A Language Supporting Multi-
path Development of User Interfaces,” in Engineering Human
Computer Interaction and Interactive Systems, Joint Working
Conferences EHCI-DSVIS 2004, Revised Selected Papers, R.
Bastide, P. A. Palanque, and J. Roth, Eds. Springer LNCS
3425, July 2004, pp. 200-220, doi: 10.1007/11431879_12.

[16] R. Pawson and R. Matthews, Naked Objects. Chichester: John
Wiley & Sons, 2002.

[17] H. Balzert, “From OOA to GUIs: The JANUS system,”
Journal of Object-Oriented Programming, vol. 8(9), Feb.
1996, pp. 43-47.

[18] A. Dearden and J. Finlay, “Pattern Languages in HCI: A
critical Review,” Human-Computer Interaction, vol. 21(1),
2006, pp. 49-102, doi: 10.1207/s15327051hci2101_3.

[19] N. J. Nunes, “Representing User-Interface Patterns in UML,”
Proc. 9th International Conference on Object-Oriented
Information Systems (OOIS 2003), Springer LNCS 2817,
Sept. 2003, pp. 142-151, doi: 10.1007/978-3-540-45242-
3_14.

[20] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
Patterns: Elements of Reusable Object-oriented Software.
Reading: Addison-Wesley, 1995.

[21] S. Fincher, J. Finlay, S. Greene, L. Jones, P. Matchen, J.
Thomas, and P. J. Molina, “Perspectives on HCI Patterns:
Concepts and Tools (Introducing PLML),” Report of the
Workshop Perspectives on HCI Patterns: Concepts and Tools,
2003 Conference on Human Factors in Computing Systems
(CHI 2003), April 2003, http://www.cs.kent.ac.uk/
people/staff/saf/patterns/CHI2003WorkshopReport.doc,
15.06.2013

44

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[22] S. Fincher, PLML: Pattern Language Markup Language,
http://www.cs.kent.ac.uk/people/staff/saf/patterns/plml.html,
15.06.2013.

[23] M. van Welie, A pattern library for interaction design,
http://www.welie.com, 15.06.2013.

[24] Open UI Pattern Library, http://www.patternry.com,
15.06.2013.

[25] A. Toxboe, User Interface Design Pattern Library,
http://www.ui-patterns.com, 15.06.2013.

[26] F. Radeke and P. Forbrig, “Patterns in Task-based Modeling
of User Interfaces,” Proc. 6th International Workshop on Task
Models and Diagrams for User Interface Design (TAMODIA
2007), Springer LNCS 4849, Nov. 2007, pp. 184-197, doi:
10.1007/978-3-540-77222-4_15.

[27] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.
Williams, and J. E. Shuster, “UIML: An Appliance-
Independent XML User Interface Language,” Computer
Networks, vol. 31(11-16), May 1999, pp. 1695-1708, doi:
10.1016/S1389-1286(99)00044-4.

[28] X. Zhao and Y. Zou, “A Framework for Incorporating
Usability into Model Transformations,” Proc. MoDELS 2007
Workshop on Model Driven Development of Advanced User
Interfaces (MDDAUI 2007), CEUR Workshop Proceedings,
vol. 297, Oct. 2007, http://ceur-ws.org/Vol-297/paper8.pdf.

[29] F. Radeke, P. Forbrig, A. Seffah, and D. Sinnig, “PIM Tool:
Support for Pattern-driven and Model-based UI
development,” Proc. 5th International Workshop on Task
Models and Diagrams for Users Interface Design (TAMODIA
2006), Springer LNCS 4385, Oct. 2006, pp. 82-96, doi:
10.1007/978-3-540-70816-2_7.

[30] P. Forbrig and A. Wolff, “Different Kinds of Pattern Support
for Interactive Systems,” Proc. 1st International Workshop on
Pattern-Driven Engineering of Interactive Computing
Systems (PEICS’10), ACM, June 2012, pp. 36-39, doi:
10.1145/1824749.1824758.

[31] A. Wolff and P. Forbrig, “Deriving User Interfaces from Task
Models,” Proc. Workshop on Model Driven Development of
Advanced User Interfaces (MDDAUI 2009), CEUR
Workshop Proceedings, vol. 439, Feb. 2009, http://ceur-
ws.org/Vol-439/paper8.pdf.

[32] C. Märtin and A. Roski, “Structurally Supported Design of
HCI Pattern Languages,” Proc. 12th International Conference
on Human-Computer Interaction. Interaction Design and
Usability (HCII 2007), Springer LNCS 4550, July 2007, pp.
1159-1167, doi: 10.1007/978-3-540-73105-4_126.

[33] J. Engel, C. Märtin, and P. Forbrig, “Tool-support for Pattern-
based Generation of User Interfaces,” Proc. 1st International
Workshop on Pattern-Driven Engineering of Interactive
Computing Systems (PEICS’10), ACM, June 2012, pp. 24-27,
doi: 10.1145/1824749.1824755.

[34] J. Engel, C. Herdin, and C. Märtin, “Exploiting HCI Pattern
Collections for User Interface Generation,” Proc. 4th
International Conferences on Pervasive Patterns and
Applications (PATTERNS 2012), Xpert Publishing Services,
July 2012, pp. 36-44.

[35] J. Engel, C. Märtin, and P. Forbrig, “HCI Patterns as a Means
to Transform Interactive User Interfaces to Diverse Contexts
of Use,” Proc. 14th International Conference on Human-
Computer Interaction. Design and Development Approaches
(HCII 2011), Springer LNCS 6761, July 2011, pp. 204-213,
doi: 10.1007/978-3-642-21602-2_23.

[36] K. Breiner, G. Meixner, D. Rombach, M. Seissler, and D.
Zühlke, “Efficient Generation of Ambient Intelligent User
Interfaces,” Proc. 15th International Conference on
Knowledge-Based and Intelligent Information and
Engineering Systems (KES 2011), Springer LNCS 6884,
Sept. 2011, pp. 136-145, doi: 10.1007/978-3-642-23866-
6_15.

[37] D. Ammon, S. Wendler, T. Kikova, and I. Philippow,
“Specification of Formalized Software Patterns for the
Development of User Interfaces,” Proc. 7th International
Conference on Software Engineering Advances (ICSEA
2012), Xpert Publishing Services, Nov. 2012, pp. 296-303.

[38] C. Pribeanu and J. Vanderdonckt, “A Transformational
Approach for Pattern-Based Design of User Interfaces,” Proc.
4th International Conference on Autonomic and Autonomous
Systems (ICAS 2008), IEEE Computer Society, March 2008,
pp. 47-54, doi: 10.1109/ICAS.2008.36.

[39] L. Constantine, “The Emperor Has No Clothes: Naked
Objects Meet the Interface”, http://www.foruse.com/articles,
15.06.2013.

[40] D. Kulak and E. Guiney, Use Cases: Requirements in
Context. New York: Addison-Wesley, 2000.

[41] K. Bittner and I. Spence, Use Case Modeling. New York:
Addison-Wesley, 2003.

[42] UsiXML, abstract user interface (AUI) metamodel,
http://www.usixml.org/fr/downloads.html?IDC=348,
15.06.2013.

[43] UsiXML.eu, http://www.usixml.eu/w3c, 11.03.2013.
[44] UsiXML, metamodels submitted to W3C,

http://www.w3.org/wiki/images/5/5d/UsiXML_submission_to
_W3C.pdf, 15.06.2013.

[45] UIML 4.0 specification, http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=uiml, 15.06.2013.

[46] S. Wendler, D. Ammon, I. Philippow, and D. Streitferdt, “A
Factor Model Capturing Requirements for Generative User
Interface Patterns,” Proc. 5th International Conferences on
Pervasive Patterns and Applications (PATTERNS 2013),
Xpert Publishing Services, May 2013, pp. 34-43.

[47] E. Denert and J. Siedersleben, “Wie baut man
Informationssysteme? Überlegungen zur
Standardarchitektur,” Informatik Spektrum, vol. 23(4), Aug.
2000, pp. 247-257, doi: 10.1007/s002870000110.

[48] J. Siedersleben, Moderne Softwarearchitektur - Umsichtig
planen, robust bauen mit Quasar, 1st ed. 2004, corrected
reprint. Heidelberg: dpunkt, 2006.

45

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Message-Passing Interface for Java Applications: Practical Aspects of Leveraging
High Performance Computing to Speed and Scale Up the Semantic Web

Alexey Cheptsov and Bastian Koller
High Performance Computing Center Stuttgart (HLRS)

University of Stuttgart
70550 Stuttgart, Germany

Email: {cheptsov,koller}@hlrs.de

Abstract—The age of Big Data introduces a variety of
challenges in how to store, access, process, and stream mas-
sive amounts of structured and unstructured data effectively.
Among those domains that are impacted by the Big Data
problem at most, the Semantic Web holds a leading position.
By current estimates, the volume of Semantic Web data is ex-
ceeding the order of magnitude of billions of triples. Using High
Performance Computing infrastructures is essential in dealing
with these massive data volumes. Unfortunately, the most
Semantic Web applications are developed in Java language,
which makes them incompatible with the traditional high
performance computing software solutions, which are tailored
for compiled codes developed in C and Fortran languages. The
known attempts to port existing parallelization frameworks,
such as the Message-Passing Interface, to the Java platform
have proved either a poor efficiency in terms of performance
and scalability, or a limited usability due to a considerable
configuration and installation overhead. We present an efficient
porting of Java bindings based on Open MPI - one of the most
popular Message-Passing Interface implementations for the
traditional (C, C++, and Fortran) supercomputing applications.

Keywords-High Performance Computing, Big Data, Semantic
Web, Performance, Scalability, Message-Passing Interface, Open
MPI.

I. INTRODUCTION

The data volumes collected by the Semantic Web have
already reached the order of magnitude of billions of triples
and is expected to further grow in the future, which positions
this Web extension to dominate the data-centric computing
in the oncoming decade. Processing (e.g., inferring) such
volume of data, such as generated in the social networks
like Facebook or Twitter, or collected in domain-oriented
knowledge bases like pharmacological data integration plat-
form OpenPHACTS, poses a lot of challenges in terms of
reaching the high performance and scalability by the soft-
ware applications. As discussed in our previous publication
[1], while there is a number of existing highly-scalable
software solutions for storing data, such as Jena [2], the
scalable data processing constitutes the major challenge for
data-centric applications. This work is discussing application
of the techniques elaborated in the previous paper to the
Big Data application domain. In the literature, it is often
referred as “Big Data” a set of issues related to scaling

Figure 1. Parallelization patterns in a Reasoning application’s workflow.

existing processing techniques to large amounts of data, for
which standard computing platforms have proved inefficient
[3]. Among those data-centric communities that address the
Big Data, the Semantic Web enjoys a prominent position.
Semantic Data are massively produced and published at the
speed that makes traditional processing techniques (such
as reasoning) inefficient when applied to the real-scale
data. It is worth mentioning that the typical Semantic Web
application workflows are highly parallel in their nature (see
Figure 1) and are well-suited to run in high performance
computing environments.

The data scaling problem in the Semantic Web is con-
sidered in two its main aspects - horizontal and vertical
scale. Horizontal scaling means dealing with heterogeneous,
and often unstructured data acquired from heterogeneous
sources. The famous Linked Open Data cloud diagram [4]
consists of hundreds of diverse data sources, ranging from
geo-spatial cartographic sources like Open Street Map, to
governmental data, opened to the publicity, like data.gov.
Vertical scaling implies scaling up the size of similarly
structured data. Along the open government data spawns
over 851,000 data sets across 153 catalogues from more than
30 countries, as estimated in [5] at the beginning of 2012.
Processing data in such an amount is not straightforward and
challenging for any of the currently existing frameworks and
infrastructures. Whereas there are some known algorithms
dealing with the horizontal scaling complexity, such as

46

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Execution of a reasoning application’s workflow on a high
performance computing system.

identification of the information subsets related to a specific
problem, i.e., subsetting, the vertical scaling remains the
major challenge for all existing algorithms.

Another essential property of the Big Data is complexity.
Semantic applications must deal with rich ontological mod-
els describing complex domain knowledge, and at the same
time highly dynamic data representing recent or relevant in-
formation, as produced by streaming or search-enabled data
sources. A considerable part of the web data is produced as
a result of automatic reasoning over streaming information
from sensors, social networks, and other sources, which are
highly unstructured, inconsistent, noisy and incomplete.

The availability of such an amount of complex data makes
it attractive for Semantic Web applications to exploit High
Performance Computing (HPC) infrastructures to effectively
process the Big Data. There have been several pilot research
projects aiming to enable the potential of supercomputing
infrastructures to the Semantic Web application develop-
ment. One of the prominent examples of such projects is
the Large Knowledge Collider (LarKC), which is a software
platform for large-scale incomplete reasoning. In particular,
LarKC provides interfaces for loading off the computation-
intensive part of a reasoning application’s workflow to a
supercomputing infrastructure (see Figure 2).

Both commodity and more dedicated HPC architectures,
such as the Cray XMT [6], have been held in focus of
the data-intensive Web applications. The XMT dedicated
system, however, has proved successful only for a limited
number of tasks so far, which is mainly due to the complex-
ity of exploiting the offered software frameworks (mainly
non-standard pragma-based C extensions).

Unfortunately, most Semantic Web applications are writ-
ten in the Java programming language, whereas current
frameworks that make the most out of HPC infrastructures,
such as the Message Passing Interface (MPI), only target C
or Fortran applications. MPI is a process-based paralleliza-
tion strategy, which is a de-facto standard in the area of
parallel computing for C, C++, and Fortran applications.
Known alternative parallelization frameworks to MPI that

conform with Java, such as Hadoop[7] or Ibis [8], prove to
be scalable though but are not even nearly as efficient or
well-developed as numerous open-source implementations
of MPI, such as MPICH or Open MPI[9].

The implementation in Java has prevented MPI to be
adopted by Semantic Web applications. However, given the
vast data size addressed by the modern Web applications,
and given the emergence of the new communities interested
in adopting MPI, it seems natural to explore the benefits of
MPI for Java applications on the HPC platforms as well.
Introducing MPI to Java poses several challenges. First,
the API set should be compliant with the MPI standard
[9], but not downgrade the flexibility of the native Java
language constructions. Second, the hardware support should
be offered in a way that overcomes the limitation of the Java
run-time environment, but meet such important requirements
as thread-safety. Third, MPI support should be seamlessly
integrated in the parallel application’s execution environ-
ment. All of these three issues of functionality, adaptivity,
and usability must complexly be addressed to make the use
of MPI in Java applications practical and useful.

We look how to resolve the above-mentioned issues in
a way that leverages the advances of the existing MPI
frameworks. We present and evaluate our solution for intro-
ducing Java support in Open MPI [10], which is one of the
most popular open source MPI-2 standard’s implementations
nowadays. Our approach is based on the integration of Java
MPI bindings developed for mpiJava [11] directly in the
native C realization of Open MPI, thus minimizing the
bindings overhead and leveraging the Open MPI’s run-time
and development environment to ensure the high scalability
of the Java parallel application. We also give examples of
successful pilot scenarios implemented with our solution and
discuss future work in terms of the development, implemen-
tation, and standardization activities.

II. RELATED WORK

There are only a few alternatives to MPI in introducing
the large-scale parallelism to Java applications. The most
promising among those alternatives in terms of the perfor-
mance and usability are solutions offered by IBIS/JavaGAT
and MapReduce/Hadoop.

IBIS [12] is a middleware stack used for running Java
applications in distributed and heterogeneous computing en-
vironments. IBIS leverages the peer-to-peer communication
technology by means of the proprietary Java RMI (Re-
mote Memory Invocation) implementation, based on GAT
(Grid Application Toolkit) [13]. The Java realization of
GAT (JavaGAT) is a middleware stack that allows the Java
application to instatiate its classes remotely on the network-
connected resource, i.e., a remote Java Virtual Machine.
Along with the traditional access protocols. e.g., telnet or
ssh, the advanced access protocols, such as ssh-pbs for
clusters with PBS(cluster Portable Batch System)-like job

47

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

scheduling or gsissh for grid infrastructures are supported.
IBIS implements a mechanism of multiple fork-joins to
detect and decompose the application’s workload and ex-
ecute its parts concurrently on distributed machines. While
[8] indicates some successful Java applications implemented
with IBIS/JavaGAT and shows a good performance, there
is no clear evidence about the scalability of this solution
for more complex communication patterns, involving nested
loops or multiple split-joins. Whereas IBIS is a very effective
solution for the distributed computing environments, e.g.,
Grid or Cloud, it is definitively not the best approach to be
utilized on the tightly-coupled productional clusters.

The MapReduce framework [14] and its most prominent
implementation in Java, Hadoop, has got a tremendous
popularity in modern data-intensive application scenarios.
MapReduce is a programming model for data-centric appli-
cations exploiting large-scale parallelism, originally intro-
duced by Google in its search engine. In MapReduce, the
application’s workflow is divided into three main stages (see
Figure 3): map, process, and reduce. In the map stage, the
input data set is split into independent chunks and each of
the chunks is assigned to independent tasks, which are then
processed in a completely parallel manner (process stage).
In the reduce stage, the output produced by every map task
is collected, combined and the consolidated final output is
then produced. The Hadoop framework is a service-based
implementation of MapReduce for Java. Hadoop considers
a parallel system as a set of master and slave nodes,
deploying on them services for scheduling tasks as jobs
(Job Tracker), monitoring the jobs (Task Tracker), managing
the input and output data (Data Node), re-executing the
failed tasks, etc. This is done in a way that ensures a
very high service reliability and fault tolerance properties
of the parallel execution. In Hadoop, both the input and the
output of the job are stored in a special distributed file-
system. In order to improve the reliability, the file system
also provides an automatic replication procedure, which
however introduces an additional overhead to the inter-
node communication. Due to this overhead, Hadoop pro-
vides much poorer performance than MPI, however offering
better QoS characteristics related to the reliability and fault-
tolerance. Since MPI and MapReduce paradigms have been
designed to serve different purposes, it is hardly possible
to comprehensively compare them. However they would
obviously benefit from a cross-fertilization; e.g., MPI could
serve a high-performance communication layer to Hadoop,
which might help improve the performance by omitting the
disk I/O usage for distributing the map and gathering the
reduce tasks across the compute nodes.

III. DATA-CENTRIC PARALLELIZATION AND MPI

By “data-centric parallelization” we mean a set of tech-
niques for: (i) identification of non-overlapping application’s
dataflow regions and corresponding to them instructions; (ii)

Figure 3. MapReduce processing schema.

partitioning the data into subsets; and (iii) parallel processing
of those subsets on the resources of the high performance
computing system. For Semantic Web applications utilizing
the data in such well-established formats as RDF [15],
parallelization relies mainly on partitioning (decomposing)
the RDF data set on the level of statements (triples), see
Figure 4a. The ontology data (also often referred as tbox)
usually remains unpartitioned as its size is relatively small
as compared with the actual data (abox), so that it is just
replicated among all the compute nodes.

The Message-Passing Interface (MPI) is a process-based
standard for parallel applications implementation. MPI pro-
cesses are independent execution units that contain their
own state information, use their own address spaces, and
only interact with each other via interprocess communica-
tion mechanisms defined by MPI. Each MPI process can
be executed on a dedicated compute node of the high
performance architecture, i.e., without competing with the
other processes in accessing the hardware, such as CPU
and RAM, thus improving the application performance and
achieving the algorithm speed-up. In case of the shared
file system, such as Lustre [16], which is the most utilized
file system standard of the modern HPC infrastructures, the
MPI processes can effectively access the same file section
in parallel without any considerable disk I/O bandwidth
degradation. With regard to the data decomposition strategy
presented in Figure 4a, each MPI process is responsible for
processing the data partition assigned to it proportionally to
the total number of the MPI processes (see Figure 4b). The
position of any MPI process within the group of processes

48

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

involved in the execution is identified by an integer R (rank)
between 0 and N-1, where N is a total number of the
launched MPI processes. The rank R is a unique integer
identifier assigned incrementally and sequentially by the
MPI run-time environment to every process. Both the MPI
process’s rank and the total number of the MPI processes
can be acquired from within the application by using MPI
standard functions, such as presented in Listing 1.

import java.io.*;
import mpi.*;

class Hello {
public static void main(String[] args) throws

MPIException
{
int my_pe, npes; // rank and overall number of MPI

processes
int N; // size of the RDF data set (number of

triples)

MPI.Init(args); // intialization of the MPI RTE

my_pe = MPI.COMM_WORLD.Rank();
npes = MPI.COMM_WORLD.Size();

System.out.println("Hello from MPI process" + my_pe +
" out of " + npes);

System.out.println("I’m processing the RDF triples
from " + my_pe/npes + " to " + (my_pe+1)/npes);

MPI.Finalize(); // finalization of the MPI RTE
}

}

Listing 1. Acquiring rank and total number of processes in a simple MPI
application.

The typical data processing workflow with MPI can be
depicted as shown in Figure 5. The MPI jobs are executed by
means of the mpirun command, which is an important part
of any MPI implementation. mpirun controls several aspect
of parallel program execution, in particular launches MPI
processes under the job scheduling manager software like
OpenPBS [17]. The number of MPI processes to be started
is provided with the -np parameter to mpirun. Normally, the
number of MPI processes corresponds to the number of the
compute nodes, reserved for the execution of parallel job.
Once the MPI process is started, it can request its rank as
well as the total number of the MPI processes associated
with the same job. Based on the rank and total processes
number, each MPI process can calculate the corresponding
subset of the input data and process it. The data partitioning
problem remains beyond the scope of this work; particularly
for RDF, there is a number of well-established approaches
discussed in several previous publications, e.g., horizontal
[18], vertical [19], and workload driven [20] partitioning.

Since a single MPI process owns its own memory space
and thus can not access the data of the other processes
directly, the MPI standard foresees special communication
functions, which are necessary, e.g., for exchanging the
data subdomain’s boundary values or consolidating the final
output from the partial results produced by each of the
processes. The MPI processes communicate with each other

Figure 4. Data decomposition and parallel execution with MPI.

Figure 5. Typical MPI data-centric application’s execution workflow.

by sending messages, which can be done either in “point-to-
point”(between two processes) or collective way (involving
a group of or all processes).

More details about the MPI communication can also be
found in our previous publication [21].

IV. OPEN MPI JAVA BINDINGS

This section discusses implementation details of Java
bindings for the Open MPI library.

A. MPI bindings for Java

Although the official MPI standard’s bindings are limited
to C and Fortran languages, there has been a number of
standardization efforts made towards introducing the MPI
bindings for Java. The most complete API set, however, has
been proposed by mpiJava [22] developers.

49

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

There are only a few approaches to implement MPI
bindings for Java. These approaches can be classified in two
following categories:

• Pure Java implementations, e.g., based on RMI (Re-
mote Method Invocation) [23], which allows Java ob-
jects residing in different virtual machines to commu-
nicate with each other, or lower-level Java sockets API.

• Wrapped implementations using the native methods
implemented in C languages, which are presumably
more efficient in terms of performance than the code
managed by the Java run-time environment.

In practice, none of the above-mentioned approaches
satisfies the contradictory requirements of the Web users
on application portability and efficiency. Whereas the pure
Java implementations, such as MPJ Express [24] or MPJ/Ibis
[8], do not benefit from the high speed interconnects, e.g.,
InfiniBand [25], and thus introduce communication bottle-
necks and do not demonstrate acceptable performance on the
majority of today’s production HPC systems [26], a wrapped
implementation, such as mpiJava [27], requires a native C
library, which can cause additional integration and interop-
erability issues with the underlying MPI implementation.

In looking for a trade-off between the performance and
the usability, and also in view of the complexity of providing
Java support for high speed cluster interconnects, the most
promising solution seems to be to implement the Java
bindings directly in a native MPI implementation in C.

B. Native C Implementation

Despite a great variety of the native MPI implementations,
there are only a few of them that address the requirements
of Java parallel applications on process control, resource
management, latency awareness and management, and fault
tolerance. Among the known sustainable open-source imple-
mentations, we identified Open MPI[28] and MPICH2[29]
as the most suitable to our goals to implement the Java MPI
bindings. Both Open MPI and MPICH2 are open-source,
production quality, and widely portable implementations of
the MPI standard (up to its latest 2.0 version). Although
both libraries claim to provide a modular and easy-to-extend
framework, the software stack of Open MPI seems to better
suit the goal of introducing a new language’s bindings,
which our research aims to. The architecture of Open MPI
[10] is highly flexible and defines a dedicated layer used
to introduce bindings, which are currently provided for C,
F77, F90 and some other languages (see also Figure 7).
Extending the OMPI-Layer of Open MPI with the Java
language support seems to be a very promising approach to
the the discussed integration of Java bindings, taking benefits
of all the layers composing Open MPI’s architecture.

C. Design and Implementation in Open MPI

We have based our Java MPI bindings on the mpiJava
code, originally developed in HPJava[30] project and cur-

Figure 6. mpiJava architecture.

rently maintained by the High Performance Computing Cen-
ter Stuttgart[31]. mpiJava provides a set of Java Native Inter-
face (JNI) wrappers to the native MPI v.1.1 communication
methods, as shown in Figure 6. JNI enables the programs
running inside a Java run-time environment to invoke native
C code and thus use platform-specific features and libraries
[32], e.g., the InfiniBand software stack. The application-
level API is constituted by a set of Java classes, designed in
conformance to the MPI v.1.1 and the specification in [22].
The Java methods internally invoke the MPI-C functions
using the JNI stubs. The realization details for mpiJava can
be obtained from [11][33].

Open MPI is a high performance, production quality, MPI-
2 standard compliant implementation. Open MPI consists
of three combined abstraction layers that provide a full
featured MPI implementation: (i) OPAL (Open Portable
Access Layer) that abstracts from the peculiarities of a
specific system away to provide a consistent interface adding
portability; (ii) ORTE (Open Run-Time Environment) that
provides a uniform parallel run-time interface regardless
of system capabilities; and (iii) OMPI (Open MPI) that
provides the application with the expected MPI standard in-
terface. Figure 7 shows the enhanced Open MPI architecture,
enabled with the Java bindings support.

The major integration tasks that we performed were as
follows:

• extend the Open MPI architecture to support Java
bindings,

• extend the previously available mpiJava bindings to
MPI-2 (and possibly upcoming MPI-3) standard,

• improve the native Open MPI configuration, build,
and execution system to seamlessly support the Java
bindings,

• redesign the Java interfaces that use JNI in order to
better conform to the native realization,

• optimize the JNI code to minimize its invocation over-

50

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Open MPI architecture.

head,
• and create test applications for performance bench-

marking.
Both Java classes and JNI code for calling the native meth-

ods were integrated into Open MPI. However, the biggest
integration effort was required at the OMPI (Java classes,
JNI code) and the ORTE (run-time specific options) levels.
The implementation of the Java class collection followed
the same strategy as for the C++ class collection, for which
the opaque C objects are encapsulated into suitable class
hierarchies and most of the library functions are defined as
class member methods. Along with the classes implementing
the MPI functionality (MPI package), the collection includes
the classes for error handling (Errhandler, MPIException),
datatypes (Datatype), communicators (Comm), etc. More
information about the implementation of both Java classes
and JNI-C stubs can be found in previous publications
[11][26].

D. Performance

In order to evaluate the performance of our implementa-
tion, we prepared a set of Java benchmarks based on those
well-recognized in the MPI community, such as NetPIPE
[34] or NAS [35]. Based on those benchmarks, we compared
the performance of our implementation based on Open MPI
and the other popular implementation (MPJ Express) that
follows a “native Java” approach. Moreover, in order to
evaluate the JNI overhead, we reproduced the benchmarks
also in C and ran them with the native Open MPI. Therefore,
the following three configurations were evaluated:

• ompiC - native C implementation of Open MPI (the
actual trunk version), built with the GNU compiler
(v.4.6.1),

Figure 8. Message rate for the point-to-point communication.

• ompiJava - our implementation of Java bindings on top
of ompiC, running with Java JDK (v.1.6.0), and

• mpj - the newest version of MPJ Express (v.0.38),
a Java native implementation, running with the same
JDK.

We examined two types of communication: point-to-
point (between two nodes) and collective (between a group
of nodes), varying the size of the transmitted messages.
We did intentionally not rely on the previously reported
benchmarks[36] in order to eliminate the measurement de-
viations that might be caused by running tests in a different
hardware or software environment. Moreover, in order to
ensure a fair comparison between all these three implementa-
tions, we ran each test on the absolutely same set of compute
nodes.

The point-to-point benchmark implements a “ping-pong”
based communication between two single nodes; each node
exchanges the messages of growing sizes with the other
node by means of blocking Send and Receive operations.
As expected, our ompiJava implementation was not as
efficient as the underlying ompiC, due to the JNI function
calls overhead, but showed much better performance than
the native Java based mpj (Figure 8). Regardless of the
message size, ompiJava achieves around eight times higher
throughput than mpj (see Figure 9).

The collective communication benchmark implements a
single blocking message gather from all the involved nodes.
Figure 10 shows the results collected for P = 2k (where
k=2-7) nodes, with a varying size of the gathered messages.
The maximal size of the aggregated data was 8 GByte on 128
nodes. Figure 11 demonstrates the comparison of collective
gather performance for all tested implementations on the
maximal number of the available compute nodes (128).
Whereas the InfiniBand-aware ompiJava and ompiC scaled
quite well, the native Java based mpj has shown very poor
performance; for the worst case (on 128 nodes) a slow-down
up to 30 times compared with ompiJava was observed.

51

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Comparison of the message rate for ompiJava and mpj for a)
low and b) high message size range.

Figure 10. Collective gather communication performance of ompiJava.

Figure 11. Collective gather communication performance on 128 nodes.

Figure 12. Similarity index computation in a document collection.

V. MPI IMPLEMENTATION OF RANDOM INDEXING

Random indexing [37] is a word-based co-occurrence
statistics technique used in resource discovery to improve
the performance of text categorization. Random indexing
offers new opportunities for a number of large-scale Web
applications performing the search and reasoning on the
Web scale [38]. We used Random Indexing to determine the
similarity index (based on the words’ co-occurance statistic)
between the terms in a closed document collection, such as
Wikipedia or Linked Life Data (see Figure 12).

The main challenges of the Random Indexing algorithms
lay in the following:

• Huge and high-dimensional vector space. A typical ran-
dom indexing search algorithm performs traversal over
all the entries of the vector space. This means, that the
size of the vector space to the large extent determines
the search performance. The modern data stores, such
as Linked Life Data or Open PHACTS consolidate
many billions of statements and result in vector spaces
of a very large dimensionality. Performing Random
indexing over such large data sets is computationally
very costly, with regard to both execution time and
memory consumption. The latter poses a hard constraint
to the use of random indexing packages on the serial
mass computers. So far, only relatively small parts
of the Semantic Web data have been indexed and
analyzed.

• High call frequency. Both indexing and search over the
vector space is highly dynamic, i.e., the entire indexing

52

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. MPI-based parallel implementation of Airhead Search.

process repeats from scratch every time new data is
encountered.

In our previous work [39], we have already reported on the
efforts done on parallelizing the search operation of Airhead
- an open source Java implementation of Random Indexing
algorithm. Our MPI implementation of the Airhead search
is based on a domain decomposition of the analyzed vector
space and involves both point-to-point and collective gather
and broadcast MPI communication (see the schema in Fig-
ure 13). In our current work, we evaluated the MPI version
of Airhead with both ompijava and mpj implementations.

We performed the evaluation for the largest of the avail-
able data sets reported in [39] (namely, Wiki2), which com-
prises 1 Million of high density documents and occupies 16
GByte disk storage space. The overall execution time (wall
clock) was measured. Figure 14a shows that both ompijava
and mpj scale well until the problem size is large enough
to saturate the capacities of a single node. Nevertheless, our
implementation was around 10% more efficient over mpj
(Figure 14b).

VI. PERFORMANCE ANALYSIS AND OPTIMIZATION
TOOLS

Development of parallel communication patterns with
MPI is quite a nontrivial task, in particular for large-scale
use cases, which consist of hundreds and even thousands of
parallel processes. The synchronization among the MPI pro-
cesses of the parallel application can be a key performance
concern. Among the typical problems the following appear
most frequently:

• non-optimal balancing of the MPI processes load (i.e.,
wrong data decomposition),

• misconfiguration of the communication pattern prevent-
ing the applications scalability to the growing number

Figure 14. Airhead performance with ompiJava and mpj.

of compute nodes,
• incorrect usage of the MPI communication functions

(e.g., when point-to-point communication are used in-
stead of the collective ones, which lowers the perfor-
mance and also prevents the scalability).

One of the advantages of the C-based Java binding imple-
mentation as compared with the “native-Java” approach is
the possibility to use numerous performance optimization
tools available for the traditional HPC applications. This
is leveraged by the special profiling interface provided by
the MPI standard - PMPI (see Figure 6). Using PMPI,
performance analysis tools can inject the measurement code
directly in the parallel application’s object file and capture
and aggregate statistics about the application execution at
run-time. Among the parameters measured with PMPI are
duration of a single MPI communication, total number of
communications, processes that are involved in the commu-
nication, etc. The profiling code is dynamically linked with
the MPI library and thus does not require any changes in
either the application code or the MPI library. The captured
events are stored in trace files using a special format, such
as OTF - the Open Trace Format, which can then be

53

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 15. MPI Global Broadcast Communication visualization for four
MPI processes with Paraver.

analyzed in order to retrieve and visualize the application’s
communication profile.

In our pilot investigations, we evaluated the ability of the
Extrae [40] profiling library, developed by the Barcelona
Supercomputing Center, to collect event traces of the MPI-
parallelized Airhead Search application. For this purpose,
we linked Extrae with our Java-enabled version of Open
MPI and run the instrumented version of Airhead on the
cluster. The traces collected as result of the execution were
visualized with the Paraver [41] tool (see Figure 15), similar
to any other MPI application in C or Fortran.

VII. FUTURE WORK

Our future work will concentrate on promoting both MPI
standard and our ompiJava implementation to Semantic Web
applications as well as improving the current realization of
Java bindings in Open MPI.

With regard to promotion activities, we will be introduc-
ing our data-centric and MPI-based parallelization approach
to further challenging data-intensive applications, such as
Reasoning [42]. Regarding this application, there are highly
successful MPI imlementations in C, e.g., the parallel RDFS
graph closure materialization presented in [43], which are
indicatively much more preferable over all the existing Java
solutions in terms of performance. Our implementation will
allow the developed MPI communication patterns to be
integrated in existing Java-based codes, such as Jena [2] or
Pellet [44], and thus drastically improve the competitiveness
of the Semantic Web application based on such tools.

The development activities will mainly focus on extend-
ing the Java bindings to the full support of the MPI-3
specification. We will also aim at adding Java language-
specific bindings into the MPI standard, as a reflection of
the Semantic Web value in supercomputing.

The integration activities will concentrate on adapting the
performance analysis tools to the specific of Java applica-
tions. Unfortunately, the existing performance analysis tools,
such as Extrae discussed in the previous section, does not
provide a deep insight in the intrinsic characteristics of the
Java Virtual Machine, which however might be as important

for the application performance optimization as the com-
munication profile tailoring. For this purpose, the traditional
performance analysis tools for the Java applications, such as
ones provided by the Eclipse framework, must be extended
with the communication profiling capabilities. Several EU-
projects, such as JUNIPER, are already working in this
direction.

VIII. CONCLUSION

High Performance Computing is a relatively new trend for
the Semantic Web, which however has gained a tremendous
popularity thanks to the recent advances in developing data-
intensive applications.

The Message Passing Interface provides a very promising
approach for developing parallel data-centric applications.
Unlike its prominent alternatives, the MPI functionality is
delivered on the library-level, and thus does not require any
considerable development efforts to parallelize an existing
serial application. Apart from a very flexible parallelization
strategy, which foresees a number of parallelization options,
either on the code, data, or both levels, but also delivers a
very efficient communication mechanism, which takes full
advantages of the modern supercomputing communication
networks. Using MPI, the Semantic Web applications can
enjoy the full backing of the high performance computing
architectures. We would like to point out, that the current
work is in no case an attempt to undermine the value of
data-centric parallel implementations (like Hadoop), nor it
is a replacement for any current data processing infrastruc-
tures. However many of the current parallel data processing
systems can benefit from adopting MPI and ompiJava offers
a set of good tools for this.

We introduced a new implementation of Java bindings for
MPI that is integrated in one of the most popular open source
MPI-2 libraries - Open MPI. The integration allowed us to
deliver a unique software environment for flexible develop-
ment and execution of parallel MPI applications, integrating
the Open MPI framework’s capabilities, such as portability
and usability, with those of mpiJava, such as an extensive
set of Java-based API for MPI communication. We evaluated
our implementation for Random Indexing, which is one of
the most challenging Semantic Web applications in terms
of the computation demands currently. The evaluation has
confirmed our initial considerations about the high efficiency
of MPI for parallelizing Java applications. In the following,
we are going to investigate further capabilities of MPI for
improving the performance of data-centric applications, in
particular by means of MPI-IO (MPI extension to support
efficient file input-output). We will also concentrate on
promoting the MPI-based parallelization strategy to the other
challenging and performance-demanding applications, such
as Reasoning. We believe that our implementation of Java
bindings of MPI will attract Semantic Web development
community to increase the scale of both its serial and parallel

54

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

applications. The successful pilot application implementa-
tions done based on MPI, such as materialization of the
finite RDFS closure presented in [43], offer a very promising
outlook regarding the future perspectives of MPI in the
Semantic Web domain.

ACKNOWLEDGMENT

Authors would like to thank the Open MPI consortium for
the support with porting mpiJava bindings, to the EU-ICT
HPC-Europa project for granting access to the computing
facilities, as well as the EU-ICT JUNIPER project for the
support with the Java platform and parallelization.

REFERENCES

[1] A. Cheptsov, “Enabling high performance computing for
semantic web applications by means of open mpi java
bindings,” in Proc. the Sixth International Conference on
Advances in Semantic Processing (SEMAPRO 2012) Confer-
ence, Barcelona, Spain, 2012.

[2] P. McCarthy. Introduction to jena.
IBM developerWorks. [Online]. Available:
http://www.ibm.com/developerworks/xml/library/j-jena
[retrieved: January, 2013]

[3] (2011) Two kinds of big data. R. Gonzalez.
[Online]. Available: http://semanticweb.com/two-kinds-of-
big-dat b21925

[4] Lod cloud diagram. [Online]. Available:
http://richard.cyganiak.de/2007/10/lod/ [retrieved: January,
2013]

[5] R. Gonzalez. (2012) Closing in on a mil-
lion open government data sets. [Online].
Available: http://semanticweb.com/closinginona-millionopen-
governmentdatasets b29994 [retrieved: January, 2013]

[6] E. Goodman, D. J. Haglin, C. Scherrer, D. Chavarria,
J. Mogill, and J. Feo, “Hashing strategies for the cray xmt,”
in Proc. 24th IEEE Int. Parallel and Distributed Processing
Symp., 2010.

[7] Hadoop mapreduce framework homepage. [Online].
Available: http://hadoop.apache.org/mapreduce [retrieved:
January, 2013]

[8] M. Bornemann, R. van Nieuwpoort, and T. Kielmann,
“Mpj/ibis: A flexible and efficient message passing platform
for java,” Concurrency and Computation: Practice and Ex-
perience, vol. 17, pp. 217–224, 2005.

[9] (1995) Mpi: A message-passing interface standard.
Message Passing Interface Forum. [Online]. Avail-
able: http://www.mcs.anl.gov/research/projects/mpi/mpi-
standard/mpi-report-1.1/mpi-report.htm [retrieved: January,
2013]

[10] E. G. et al., “Open MPI: Goals, concept, and design of a
next generation MPI implementation,” in Proc., 11th Euro-
pean PVM/MPI Users’ Group Meeting, Budapest, Hungary,
September 2004, pp. 97–104.

[11] M. Baker, B. Carpenter, G. Fox, S. Ko, and S. Lim, “mpi-
Java: An object-oriented java interface to mpi,” in Proc.
International Workshop on Java for Parallel and Distributed
Computing IPPS/SPDP, San Juan, Puerto Rico, 1999.

[12] R. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman,
C. Jacobs, T. Kielmann, and H. Bal, “Ibis: a flexible and
efficient java based grid programming environment,” Concur-
rency and Computation: Practice and Experience, vol. 17, pp.
1079–1107, June 2005.

[13] R. van Nieuwpoort, T. Kielmann, and H. Bal, “User-friendly
and reliable grid computing based on imperfect middleware,”
in Proc. ACM/IEEE Conference on Supercomputing (SC’07),
November 2007.

[14] J. Dean and S. Ghemawat, “Mapreduce- simplified data pro-
cessing on large clusters,” in Proc. OSDI04: 6th Symposium
on Operating Systems Design and Implementation, 2004.

[15] (2004, February) Resource description framework
(RDF). RDF Working Group. [Online]. Available:
http://www.w3.org/RDF/ [retrieved: January, 2013]

[16] “Lustre file system - high-performance storage architecture
and scalable cluster file system,” White Paper, SunMicrosys-
tems, Inc., December 2007.

[17] Portable batch systems. [Online]. Available:
http://en.wikipedia.org/wiki/Portable Batch System [re-
trieved: January, 2013]

[18] A. Dimovski, G. Velinov, and D. Sahpaski, “Horizontal
partitioning by predicate abstraction and its application to data
warehouse design,” in ADBIS, 2010, pp. 164–175.

[19] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach,
“Scalable semantic web data management using vertical par-
titioning,” in Proc. The 33rd international conference on Very
large data bases (VLDB’07)).

[20] C. Curino, E. P. C. Jones, S. Madden, and H. Balakrishnan,
“Workload-aware database monitoring and consolidation,” in
SIGMOD Conference, 2011, pp. 313–324.

[21] A. Cheptsov, M. Assel, B. Koller, R. Kbert, and G. Gallizo,
“Enabling high performance computing for java applications
using the message-passing interface,” in Proc. The Second
International Conference on Parallel, Distributed, Grid and
Cloud Computing for Engineering (PARENG’2011).

[22] B. Carpenter, G. Fox, S.-H. Ko, and S. Lim, “mpiJava 1.2: Api
specification,” Northeast Parallel Architecture Center. Paper
66, 1999. [Online]. Available: http://surface.syr.edu/npac/66
[retrieved: January, 2013]

[23] T. Kielmann, P. Hatcher, L. Boug, and H. Bal, “Enabling
java for high-performance computing: Exploiting distributed
shared memory and remote method invocation,” Communica-
tions of the ACM, 2001.

[24] M. Baker, B. Carpenter, and A. Shafi, “MPJ Express: Towards
thread safe java hpc,” in Proc. IEEE International Conference
on Cluster Computing (Cluster’2006), September 2006.

55

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[25] R. K. Gupta and S. D. Senturia, “Pull-in time dynamics as
a measure of absolute pressure,” in Proc. IEEE International
Workshop on Microelectromechanical Systems (MEMS’97),
Nagoya, Japan, Jan. 1997, pp. 290–294.

[26] G. Judd, M. Clement, Q. Snell, and V. Getov, “Design issues
for efficient implementation of mpi in java,” in Proc. the 1999
ACM Java Grande Conference, 1999, pp. 58–65.

[27] B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox,
“MPJ: Mpi-like message passing for java,” Concurrency and
Computation - Practice and Experience, vol. 12(11), pp.
1019–1038, 2000.

[28] Open mpi homepaga. [Online]. Available: http://www.open-
mpi.org [retrieved: January, 2013]

[29] Mpich2 project website. [Online]. Available:
http://www.mcs.anl.gov/research/projects/mpich2/ [retrieved:
January, 2013]

[30] Hpjava project website. [Online]. Available:
http://www.hpjava.org [retrieved: January, 2013]

[31] mpijava website. [Online]. Available:
http://sourceforge.net/projects/mpijava/ [retrieved: January,
2013]

[32] S. Liang, Ed., Java Native Interface: Programmer’s Guide
and Reference. Addison-Wesley, 1999.

[33] M. Vodel, M. Sauppe, and W. Hardt, “Parallel high-
performance applications with mpi2java - a capable java
interface for mpi 2.0 libraries,” in Proc. The 16th Asia-
Pacific Conference on Communications (APCC), Nagoya,
Japan, 2010, pp. 509–513.

[34] Net pipe parallel benchmark website. [Online]. Available:
http://www.scl.ameslab.gov/netpipe/ [retrieved: January,
2013]

[35] Nas parallel benchmark website. [Online]. Available:
http://sourceforge.net/projects/mpijava/ [retrieved: January,
2013]

[36] Mpj express benchmarking results. [Online]. Available:
http://mpj-express.org/performance.html [retrieved: January,
2013]

[37] M. Sahlgren, “An introduction to random indexing,” in Proc.
Methods and Applications of Semantic Indexing Workshop
at the 7th International Conference on Terminology and
Knowledge Engineering (TKE)’2005, 2005, pp. 1–9.

[38] D. Jurgens, “The S-Space package: An open source package
for word space models,” in Proc. the ACL 2010 System
Demonstrations, 2010, pp. 30–35.

[39] M. Assel, A. Cheptsov, B. Czink, D. Damljanovic, and
J. Quesada, “Mpi realization of high performance search for
querying large rdf graphs using statistical semantics,” in Proc.
The 1st Workshop on High-Performance Computing for the
Semantic Web, Heraklion, Greece, May 2011.

[40] Extrae performance trace generation library homepage. [On-
line]. Available: http://www.bsc.es/computer-sciences/extrae
[retrieved: January, 2013]

[41] Extrae performance trace generation library home-
page. [Online]. Available: http://www.bsc.es/computer-
sciences/performance-tools/paraver [retrieved: January, 2013]

[42] D. Fensel and F. van Harmelen, “Unifying reasoning and
search to web scale,” IEEE Internet Computing, vol. 11(2),
pp. 95–96, 2007.

[43] J. Weaver and J. A. Hendler, “Parallel materialization of the
finite rdfs closure for hundreds of millions of triples,” in Proc.
International Semantic Web Conference (ISWC) 2009, A. B.
et al., Ed., 2009.

[44] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur,
and Y. Katz. Pellet: a practical owl-dl reasoner.
Journal of Web Semantics. [Online]. Available:
http://www.mindswap.org/papers/PelletJWS.pdf [retrieved:
January, 2013]

56

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A QoS-Aware BPEL Framework for Service
Selection and Composition Using QoS Properties

Chiaen Lin and Krishna Kavi
Department of Computer Science and Engineering

Unitersity of North Texas
Denton, TX 76203 USA

chiaen@unt.edu, kavi@cse.unt.edu

Abstract—The promise of service oriented computing, and
the availability of web services in particular, promote delivery
of services and creation of new services composed of existing
services – service components are assembled to achieve integrated
computational goals. Business organizations strive to utilize the
services and to provide new service solutions and they will need
appropriate tools to achieve these goals. As web and internet
based services grow into clouds, inter-dependency of services
and their complexity increases tremendously. The cloud ontology
depicts service layers from a high-level, such as Application and
Software, to a low-level, such as Infrastructure and Platform.
Each component resides at one layer can be useful to others as a
service. It hints the amount of complexity resulting from not only
horizontal but also vertical integrations in building and deploying
a composite service. Our framework tackles the complexity of
the selection and composition issues with additional qualitative
information to the service descriptions using Business Process
Execution Language (BPEL). Engineers can use BPEL to explore
design options, and have the QoS properties analyzed for the
design. QoS properties of each service are annotated with our
extension to Web Service Description Language (WSDL). In this
paper, we describe our framework and illustrate its application to
one QoS property, performance. We translate BPEL orchestration
and choreography into appropriate queuing networks, and ana-
lyze the resulting model to obtain the performance properties of
the composed service. Our framework is also designed to support
utilizations of other QoS extensions of WSDL, adaptable business
logic languages, and composition models for other QoS properties.

Keywords—WSDL; WS-BPEL; Quality of Services; Non-
functional Properties; Service Composition.

I. INTRODUCTION

Service oriented architecture (SOA) is a flexible and scalable
design methodology to seamlessly integrate and cooperate
services in distributed software and systems. As more services
are on the web and in the cloud, it becomes easier to create
customized services dynamically by composing existing ser-
vices and meet the service requirements. The framework we
proposed serves the purposes [1]. Before invoking a service,
a service requester has to query the functionality as well
as the interaction protocols defined to access the service.
Web Service Description Language (WSDL) [2] is a widely
accepted standard from World Wide Web Consortium (W3C)
for describing functionality of web services. The Universal
Description, Discovery and Integration (UDDI) registry serves

as a repository for the services with WSDL descriptions. Users
can query the UDDI and find services meeting their needs
since the functionality of the services can be obtained from
their WSDL specifications [3].

Once the services are selected, interactions among the ser-
vices are achieved using messaging protocol defined in WSDL.
Even with ever increasing number of services, it may still not
be possible to find the ”right” service, and in such cases, one
has to either create a new service from scratch, or compose
the service using existing services. Tools and frameworks are
becoming available to aid in the dynamic composition of
services [4], [5], [6], [7], [8]. Another issue that needs to
be addressed is related to selecting the appropriate services
that takes part in a composition, particularly when multiple
services with the same functionality are available. In such
cases, non-functional or Quality of Service (QoS) properties,
such as performance, security, reliability become the delimiters
[9], [10], [11], [12].

While standard WSDL describes the functionality of a
service, it does not specify QoS or non-functional properties.
In the previous work [1], we augmented the WSDL to permit
specification of non-functional properties of a service. The
additional information can help distinguish between services
with the same functionality, and these properties can be used
while composing new services to ascertain the QoS properties
of the composed service.

Enterprise software systems or cloud computing often use
business logic to refine their design and regulate the behavior
of services according to business processes [13]. Business
Process Execution Language (BPEL) has become the standard
for describing the architecture of a service process [14]. It
contains control constructs for the orchestration of component
services in a workflow style. While tools and frameworks are
available to use BPEL orchestrations in composing services,
they are not suitable to evaluate the QoS properties of spe-
cific orchestrations [15], [16]. In this paper, we expand our
framework to adapt the notion of BPEL to describe QoS-
aware services for their selection and composition. We argue
that based on our previous QoS-extension framework, BPEL
is compatible for use of QoS extensions. The expansion is
also backward compatible with the SOA in general and web
services in particular. It is suitable for the incorporation of any
tools that facilitate QoS extensions and models for analyzing
QoS properties. We illustrate how to create queuing models

57

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for various BPEL orchestration logic compositions. In the
case study, we also demonstrate our framework for composing
performance properties using stochastic models, such as the
Layered Queueing Network (LQN) model.

The main contribution of our work is the framework that per-
mits the description of QoS properties with services (using our
QoS extensions to WSDL, or other suitable QoS extensions),
reasonable composition processes of these services, and the
generation of models for deriving QoS properties of composed
services that use BPEL. While we focus on stochastic models,
our framework can also be used to incorporate models for
reliability, availability, as well as security, provided tools for
deriving these properties for composed services from proper-
ties of component services are available.

The rest of the paper is organized as follows. Section II
describes our QoS-extension framework and its suitability for
use with BPEL. Section III gives details of BPEL service
composition approaches. Section IV presents the rules for
translating BPEL logic constructs into queuing network models
for use by the Layered Queuing Network (LQN). Section
V illustrates our framework with a case study. Section VI
describes research that is closely related to ours. Finally,
Section VII contains conclusions about our work and what
we propose to do in the near future.

II. QOS-AWARE FRAMEWORK IN SOA
In this section, we present the QoS-aware framework in the

SOA environment which is an extension to our previous work
[1]. We first describe essential components of the framework,
and its operational processes. Then, we consider the quality
awareness extension to the business processes, specifically
using WS-BPEL [17] to enable the performance evaluation
result in service design, selection, and composition which
include operational logic choices.

A. Framework Description
In our previous work, we extended WSDL to permit spec-

ification of non-functional property elements with services.
Each web service can optionally describe QoS properties along
with functional properties, in order to distinguish itself from
other services providing similar functionality. QoS properties
can include performance, reliability, security or other quality
metrics. The framework is compatible with traditional SOA for
either standard or quality-aware service publication, selection
and interaction. The infrastructure of the framework augments
the SOA with three elements:

• QoS-Aware WSDL Extension (QoS WSDL): These are
new WSDL elements for specifying QoS properties with
services.

• Ontological QoS Modeling (QoS Ontology): QoS prop-
erties and categories are classified by our ontology
model allowing different classes of QoS properties and
relationships among these categories.

• Testing and Composition QoS Modeling
(QoS TestCompose): QoS properties can be used
for selecting services and evaluating QoS properties
of composed services using component properties.

Figure. 1. QoS-Aware Service Oriented Architecture Modeling.

The composition properties can be evaluated based on
different ontological classes and relationships.

The QoS-aware framework for SOA is depicted in Figure 1.
For a QoS-aware service to work, QoS WSDL has to be
prepared by instantiation of the QoS Ontology model of the
service. The value of the QoS properties can be obtained by
using QoS-TestCompose as a testbed for analytical modeling
or testing (P1). Once the Service Provider equips the service
with the QoS extension, the provider can register the service
specification on the Service Registry (P2). A Service Requester
can query the Service Registry to discover qualified candidates
by examining both functional and non-functional properties
(D1). Functional properties are interpreted by reading WSDL,
while non-functional properties are referenced by the QoS
extensions. In case multiple services are selected with the same
functional properties, the requester can use QoS properties to
differentiate between the services. The selected services can be
used to create new composed services and the QoS properties
of the new services be obtained using the QoS-TestCompose
Modeling(D2).

For those services that have not used our QoS extensions,
our framework uses conventional selection and composition
processes (P2 and D1).

B. QoS-Aware Framework with WS-BPEL Extension
Using our previous work, we now extended the QoS-Aware

framework to use business processes. We discern service decla-
ration types with atomic and process descriptions. An atomic
service (AS) is the one whose provider offers functionality
with design details but implementations hidden. Access to the
service is achieved with required message exchange pattern
(MEP) and binding of ports as shown in WSDL. In other
words, an atomic service is opaque and represents the standard
web services. We illustrated service selection and compositions

58

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with respect to service performance in [1]. However, at that
time, we did not use any specific logic for the composition.

A process service (PS) is a service that facilitates collabora-
tions between services controlled by business logic. A PS may
be composed by multiple AS and/or PS. PSes can be nested.
At the lowest layer of the hierarchy, a PS should only consist
of ASes. We will show that both AS and PS can be modeled
and analyzed in our QoS-aware framework.

There are many well-known business process modeling lan-
guages available to formally describe the interactions among
different service components with business logic [18]. These
languages rely on well-defined workflow formats. In some
cases they use meta-data that can be used for management
purposes. In this paper, we use WS-BPEL or BPEL for short, to
demonstrate the service selection and composition capabilities
of our framework.

In the web service context, BPEL can be treated as a
layer on top of WSDL [19]. BPEL provides the description
of behavior and interactions of a process instance with its
partners and resources through Web Service interfaces. Both
the process and its partners are exposed as WSDL services
[17]. Furthermore, BPEL follows WSDL model of separation
between abstract information, such as message and port type,
and concrete information, such as binding and endpoint. The
two use cases for modeling BPEL processes are abstract and
executable. Abstract processes describe the protocol that spec-
ifies the message exchange between parties without revealing
their underlining implementations. While abstract processes
may hide some of the required operational details, executable
processes are fully specified and can be executed. Both abstract
and executable processes share all the BPEL constructs, except
that the former has additional opaque mechanisms for hiding
operational details [17].

To include a PS in our framework, we assume that WSDL
descriptions for all services are available. WSDL files describe
how to use services, while BPEL describe collaborations
among the services or tasks. In accordance to our previous
design of the framework, only concrete WSDL is relied upon in
our QoS-aware framework. Quality of Services with concrete
bindings provides more specific range of values, derived from
actual tests or analyses. The service that is extended for use
in our framework can be viewed as an AS with a concrete
WSDL. Or an abstract AS can be included in our framework,
provided the QoS properties are derived through a concrete
binding (as shown by process P1 in Figure 1).

Now we consider if the assumptions can be applied to the
cases of acquiring a PS in the framework. For an executable
PS, it is natural to assume that the services involved in the PS
have concrete WSDLs, since an executable process is assumed
to be concrete. For an abstract PS to be included in the
framework, it must first be transformed into an executable PS.
The transformation is called Executable Completion [17] in the
web services context of WS-BPEL. The main algorithm of the
transformation and related issues concerning QoS properties
will be addressed in later sections.

With the adaptation of PS into the framework, we now
consider the process of publishing and discovery operations
for processes. Once again, an executable PS can be observed

as services with concrete WSDL in the framework. To publish
a PS service, it applies the same process P1 and P2, shown in
Figure 1; for service registration of ASes, additional service
meta data is added to the QoS Ontology compartment for
describing management related information. Since the frame-
work differentiates a PS from an AS, the ontology model notes
the service identification and service type classification when
a service is instantiated. The additional information includes
identification of a PS, the business process structure, and
its sub-components. Note that the additional information of
a PS is stored in the framework and is independent of the
data minted in a Service Register of the SOA triangle. To
discover a PS service, it makes no difference as to discovering
any AS with QoS annotations in its registered WSDL (D1).
Re-discovery of a PS service is required to first discover
its sub-services as ASes, and submit the business process to
QoS TestCompose for updating QoS values (D2).

Although only concrete AS and executable PS are allowed
in the framework, abstract processes can still be included. An
abstract process can be viewed as embedding multiple use
cases. The use cases are differentiated by their usage profiles.
From the abstract processes, one can analyze the profiles to
obtain specific values for QoS properties of the processes.
To this end, we suggest that records of abstract processes be
kept so as to facilitate QoS-aware compositions using different
business process operations. We will discuss how PSes can be
used in our framework in Section III.

III. SERVICE COMPOSITIONS WITH WS-BPEL IN THE
QOS-AWARE FRAMEWORK

SOA enables a flexible and adaptable web service discovery
and service composition. To allow for selection and compo-
sition based on QoS properties within our framework, we
need to devise processes to guide QoS-aware business process
selection and compositions. Since WS-BPEL is an established
standard to describe business processes in the web services
context, we will use BPEL to describe business processes in
our framework.

Orchestration and choreography are two aspects of creating
businesses from composite web services [19]. Orchestration
refers to an executable process that interacts with internal
and external web services. Since the executable process may
include business logic and task execution order, it represents
the control flow among the participating services. On the other
hand, choreography refers to the interactions (or data flow)
among participants who cooperate to achieve the objectives
of the composed services. Choreography coordinates message
exchanges occurring among services. For our purpose, we
adapted BPEL4Chor [20], an extension of BPEL to address
service composition, as the choreography framework. Engi-
neers can use the language and available tools to readily model
service interactions. We will show how this BPEL choreogra-
phy can be used within our QoS-aware service composition
framework.

The following subsections include discussions of the ap-
plicability of quality awareness to both orchestration and
choreography compositions, and their operational processes.

59

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Note that the focus of the service composition here concerns
non-functional properties while assuming the functional se-
mantics in the selection and composition has already been
completed. We use the term service candidates to refer to the
services already selected for composition based on functional
requirements.

Our framework is designed to permit the use of many
different approaches for specifying QoS properties, provided
appropriate tools for selecting services meeting specific non-
functional properties are also available.

A. Business Process Service Orchestration
A service orchestration is to organize the sub-services of a

PS, and the message exchange with other services to achieve
its service purposes. The PSes considered here are executable
with their sub-services are also executable. Since the PS and
its component services are all executable, they are eligible
to apply the QoS extension when registering the service in
the framework. Service composition from the perspective of
orchestration involves sub-services selection. The PS selection
for orchestration comes down to two scenarios: a fixed process
organization, and process candidates of the same functionality
with alternative design.

A PS may consist of m sub-services whose organization is
based on the business process logic and how the tasks are
ordered. Candidates for the m component sub-services are
selected based on both functional and non-functional (QoS)
properties. Since candidate services are assumed to use QoS
extended WSDL, QoS references can be obtained for services
and appropriate service components can be selected based on
QoS properties.

In the case of multiple candidates of the same services with
alternative business processes, they can be further classified as
fixed or non-fixed sub-services. If the sub-services are fixed,
the whole PS can be treated as AS. Then, the service selection
only involves comparing the QoS values of the targeted non-
functional attributes.

If the sub-services can be changed dynamically, each of the
process candidates may be evaluated using multiple use cases.
Each use case that belongs to a process candidate must be re-
discovered for its QoS values. The result of QoS criteria for
each candidate can be obtained, which can be used to match
the requirements in order to make the decision.

B. Business Process Service Choreography
As stated perviously, choreography describes the interaction

protocols (or data flows) among component services of a busi-
ness process. While orchestration utilizes executable processes
for modeling, choreography uses abstract process to describe
the collaboration among service partners.

Since our QoS-aware framework requires concrete services
with binding so that non-functional properties can be mea-
sured, the abstract nature of choreography in describing service
interactions is not a direct fit for our framework. Thus, we need
to extend the abstract interactions with appropriate concrete
annotations of QoS attributes. Since our framework adapts

BPEL as the descriptive language for business processes, we
adapt BPEL4Chor [20] to model service choreography. We
further annotate the interactions to make the choreography
QoS-aware.

BPEL4Chor consists of three artifact types:
• Participant behavior description (PBD): It defines control

flow dependencies between activities. It uses the Ab-
stract Process Profile to describe requirements on the
behavior of a participant. The profile inherits from Ab-
stract Process Profile for Observable Behavior specified
in BPEL, with the addition of identifying activities with
unique identifiers. The PBD is essentially an abstract
process with the additional attributes kept in the profile.

• Participant topology: It defines the collaboration struc-
ture of participant types, participants, and message links.
The topology describes the communication structure of
the service interactions among participants.

• Participant grounding: It defines the actual configuration
of the choreography, and shows the connections to the
concrete WSDL of the service participants. For each
message link defined in the participant topology, a port
type and its operation is specified. After the grounding,
every PBD of the service can be transformed to an
executable BPEL process based on their profiles.

An initial high level mapping from the modules of
BPEL4Chor to our framework is straightforward. Although our
framework requires concrete service data, abstract process is
included in the framework. And, it is feasible to use abstract
processes during the composition process before the new
grounding of composition is admitted in the framework. The
processes of adapting the composition to our QoS framework
are presented below. We will refer to the processes shown in
Figure 1 in our discussions below.
• From BPEL4Chor to QoS-Aware Extension

The main product of a service choreography is an
executable process. The new service can be included
in the QoS-extension framework by first submitting
to the QoS TestComposite for QoS evaluation (D2).
Corresponding process data is established with addi-
tional specific records for a choreography including PBD
for all the participants and the composition topology.
Recording a PBD is compatible with storing an abstract
process, which is supported in the QoS-Aware extension.

• From QoS-Aware Extension to BPEL4Chor
The main activity of BPEL4Chor is to identify a set
of service participants to create a new service. The
process involves selecting the service participants, ex-
tracting the PDB, and applying BPEL4Chor processes to
compose the new service. The participants are restricted
to only PSes since we have to identify the names of
the operations. The QoS-aware framework facilitates
the selection process by providing QoS values during
discovery (D1). The selection process is similar to the
selection process of a PS as introduced in Section III-A.
Once we select the participants for composition, we will
need the PDB for each participant. Since each participant
selected is executable PS, there always exits one and

60

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

only one abstract PS in the framework that belongs to
the PS. Transforming a PS to a PDB is straightforward
with adding the unique name to the message exchange
operations. With the named message links, practitioners
then put together the required participant topology with
the design. The grounding information for each linked
operation is already available with an executable PS.
Then BPEL4Chor composition process is complete, and
the new composite service is created. To accommodate
the created PS in the framework, the same processes
mentioned in Section II-B is followed.

IV. FROM WS-BPEL TO LQN
In this section, we explain the QoS TestCompose module

in our framework to illustrate how QoS properties of services
that are composed using BPEL are calculated. Modeling non-
functional properties for services and their composition is not
always straightforward, since combining QoS properties of dif-
ferent services are based on underlying mathematical models.
For example, given a process with the service components
executed in sequential order, one may assume that the response
time of the combined process is the sum of the response times
of the component services. However, this will not be accurate
because combining performance properties rely on stochastic
processes. In other words, for obtaining performance attributes
of a composed process we must use stochastic models. In our
case, we use the layered queueing network (LQN) for modeling
performance. However, other stochastic models and tools can
be used to compute QoS properties of processes using BPEL.

The following subsections give a brief introduction to the
essential elements of BPEL and LQN. Then we derive the
transformation rules for mapping from BPEL compositions to
models in LQN, and discuss how LQN can be used to compute
performance attributes.

A. WS-BPEL constructs
WS-BPEL [17] is a standard language intended to describe

business processes for web services. The idea is to represent
collaborations among services or tasks described in the WSDL
language. As a descriptive language using XML format to
describe workflow of business process, BPEL consists of two
types of activities: Basic and Structured.

Basic activities are atomic activities mainly describing ser-
vice interactions. They include <receive> and <reply> ,
which represent waiting for a message, and response to a mes-
sage respectively; <invoke> enables a web service operations
offered by a service partner. The invocation enables either a
one-way or request-response message exchanges. Other basic
activities include <assign> to update a value of a variable,
<exit> to end the process, <wait> to delay the execution,
and <empty> to express no-op operation. Still others include
<scope> , <throw> ,<compensate> , and <validate> that
handle from the execution scopes to fault handling operations.
New activity creation is also possible through <extensionAc-
tivity>.

Structured activities control the process order of activities.
They can be nested in other structured activities as well.

The constructs include <sequence> and <flow> to express
sequential and parallel order of the enclosed tasks. The control
flow constructs include <if> that sets a boolean condition for
activities, <while> and <repeatUntil> that iterate through
their enclosed processes until the condition becomes false;
<forEach> controls the number of times the set of enclosed
tasks can repeat, either running in sequential or parallel, while
<pick> chooses among tasks to be executed depending on the
occurrence of the event.

B. Layered Queueing Networks
Layered queueing network [21] is an extended queueing

model with the layered structure representing servers at higher
levels making requests to servers at lower levels. Each task
in the model involves sharing and consuming processing
resources. An entry of a task can be modeled as the service
operation stub receiving requests and responding with a reply
to higher level systems. The entry can be further refined with
activities representing the workflow of its sub-components
which are organized with precedence operators, such as fork
and join. For each task and activities, there are resource
requirements specified, as service demand in time. The interac-
tions between different servers and their tasks can be modeled
with phases representing message receipt and response in
different time slots. The nature of the communication can
be defined as synchronous and asynchronous, which model
blocking and non-blocking interactions respectively.

As modelers put together the service architecture and infor-
mation needed for the system integration, a queueing network
is created. The system modeling can be subjected to either
open or close networks during performance analysis. LQN
comes with an analytic solver (lqns) and a simulator (lqsim)
to generate the performance indexes such as response time,
utilization, and throughput.

LQN models can also be expressed in XML format. A
further analysis to explore the design space with different
combination of system configuration is also possible with its
LQX tool. LQX is a general purpose programming language
used for the control of input parameters to the LQN solver
system. The language allows a user to put together a wide
range of different set of input parameters, and solve the model
accordingly.

C. Transition Rules from BPEL to LQN
A structure of business process in BPEL largely consists of

activities and their corresponding fault handlers, in addition to
variables, correlation sets, and partner links. Since performance
evaluation of the business processes is the focus here, the
derivation of the transformation rules only focuse on the
process activities. For the performance analysis purpose, the
activities in the event and fault handlers can follow the same
set of rules, and integrated with the activities in the main
processes.

The main process activities usually begins with a list of
sequential activities. The behavior of the activities, both basic
and structured, are described by the control constructs. The
main task of the transformation is to maintain the same

61

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. MAPPING BPEL BASIC ACTIVITY TO LQN ELEMENTS.

BPEL Basic Activity LQN Description

<receive> Pre-precedence (or a join-list) Getting a message from a service partner.

<reply> Request (send-no-reply) : direct reply
Request (forwarded) : indirect reply

Sending a message to a service partner.

<invoke> Request (send-no-reply) : one-way
Request (rendezvous) :request-response

Invocation of a service offered by a service partner. It can be one-way or request-response
interactions.

<wait> Activity with a think time A delay for a timer.

<empty> Activity with zero service time A no-op holder which does nothing.

<exit> N/A Immediate termination

<assign> N/A Assign a value to a variable.

<validate> N/A Validate the value of variable defined in WSDL.

<throw> N/A Generate a fault from business process. Fault handler needs to be specifically modeled.

<rethrow> N/A Regenerate a fault from fault handler. Fault handler needs to be specifically modeled.

<compensate> N/A Compensate actions can not be completed. Fault handler needs to be specifically modeled.

<compensateScope> N/A Compensate actions can not be completed in a specified scope. Fault handler needs to be specifically
modeled.

TABLE II. MAPPING BPEL STRUCTURED ACTIVITY TO LQN ELEMENTS.

BPEL Structure Activity LQN Description

<sequence> Precedence: Sequence A list of service activities executed in the specific order.

<flow> Precedence: And-Fork & And-Join A bag of service activities executed in concurrent and finished in synchronization.

<if> N/A [Use Or-Fork & Or-Join to emulate the
condition with a probability 1 or 0.]

Take different actions depends on the Boolean condition.

<pick> N/A [Use Or-Fork & Or-Join to emulate the
condition with a probability p.]

Activity is chosen depending on the kind of message or timeout events.

<while> N/A [Precedence: Loop to emulate the num-
ber of iteration.]

Iteration on the Boolean condition evaluated to true.

<repeatUntil> N/A [Precedence: Loop to emulate the num-
ber of iteration.]

Iteration will stop on the Boolean condition evaluated to true.

<forEach> N/A [Precedence:Loop to emulate the num-
ber of iteration]

Repeat activities multiple times, activities in each iteration can be modeled with <sequence>or
<flow>

activity orders as in BPEL when creating the LQN model.
For basic activities, the order of the behavior relates to mainly
communication protocols. For structured activities, the order
can be focused on the mapping of business logic.

The order of the control flow in the transformation is
realized using precedence of activity connections in LQN
tasks. The precedence can be sub-classed into Join and Fork
for modeling synchronization and concurrency of activities. To
connect one activity to another, the source activity connects to
a pre-precedence (or Join). A pre-precedence in turn connects
to a post-precedence (or Fork), and then to the destination
activity. More details on precedence types can be found in the
LQN User manual [21].

Service requests in LQN can be of three types: rendezvous,
send-no-reply, and forwarded. Rendezvous is a blocking syn-
chronous request, while the send-no-reply is an asynchronous
request. Forwarded requests are redirected to a subsequent
server, which may forward the requests again, or reply to the
original client. In the translation, we consider the message
exchange pattern to match either blocking or non-blocking,
and either one-way or two-way for service invocation.

The summary of mapping of basic constructs are listed
in Table I, while the mapping of structured constructs are
listed in Table II. For each mapping entry, a brief description
is included. For those elements that have no direct LQN
semantic counterparts, we use (N/A) with explanation. Since

the focus of the transformation is on performance analysis, the
corresponding performance models for fault handling activities
should be obtained by following the error handling mech-
anisms designated in the processes. The handling processes
can then be subjected to the transformation rules to obtain
appropriate performance models. The part of fault handling
of the transformation and its performance evaluation is not
included in this paper.

D. Data Dependency in Transformation

There is no direct equivalent LQN transformation for the
BPEL conditional construct such as if-else. However, an Or-
Fork representing a branching point with a given probability
p to a selected process path can emulate the semantics of if
construct. The probability is set to 1.0 for the if-clause, if
the condition should be evaluated to true. On the other hand,
the else-clause will be taken with the probability of the if-
clause set to zero, if the condition should be evaluated to
false. The transformation from <if> in BPEL to LQN can
thus be expressed using the semantic of Or-Fork and Or-Join
with appropriate probability p. The probability depends on the
variables involved in the condition. The frequency of which
path is taken depends on the statistical or empirical evaluations.
Each sample represents a specific service system configuration
that is invoked in a specific use case.

62

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The conditional variables can be related to either service
workload or the frequency of the variable assignments. For
example, in a sorting algorithm, workload as the size of input
list can impact the service time. The business process may
consider splitting the input into smaller sizes, and merging the
result later. The condition may also depend on a multivariate
function when multiple outcomes are possible. Data profiling
and other empirical evaluations can be used to assign proba-
bility values with each outcome [22]. Similar approach can be
applied to <pick> where the Boolean condition becomes the
frequency of the message variable. The sum of the probabilities
of each case in the Or-Fork is to be 1.

For the loop control statements, such as <while> and
<repeatUntil> , the Boolean condition should be analyzed
using the number of times the iteration will be executed.
The counterpart in the LQN is a loop (for a service) which
is executed desired number of times. <forEach> is similar
to these iterative controls with the addition of specifying the
execution type, in sequence or parallel, of activities in the loop
clause.

V. CASE STUDIES

A. Facial Detection and Recognition Example
A building security monitoring system, which uses facial

detection and recognition technique, is used as the example
to demonstrate how to use our framework. The purpose of
the system is to detect intruders, and raise an alarm when
intruders are detected, as well as recognizing the intruders
using facial recognition software to compare with existing
database of stored images.

A general computation of facial detection and recognition is
split into multiple tasks – signal processing, image analysis of
machine learning algorithms and processes. In our example,
the service is divided into three modules: Facial Detection
(FD), Image Converter (IC), and Facial Recognition (FR).

• FD receives video frame input and detects if there are
faces appearing in the image. If no face is detected,
no action will be taken. However, if faces are detected,
alarm messages will be sent and image frame will be
the output for further processing.

• IC receives image frames with faces detected, and pre-
pare the normalized file formats for each face. The
output consists of the images that can be compared
against images stored in the databases.

• FR receives the normalized face images as input, and
sets the connections to databases containing images of
faces for identification. Once there is a match, a report
is sent to human operators with information about the
persons identified.

The three modules will be considered as web services, and
our goal is to create a new web service that will combine
these component services, using sequential composition in the
order of FD, IC, and FR. The process sequence of the three
services in BPEL is shown in Listing 1, Listing 2, and Listing 3
respectively.

Each BPEL is transformed into a LQN model for analysis.
To submit the service into the framework, the LQN model is

Listing 1. Facial Detection BPEL (FD).
<s e q u e n c e>

<o p a q u e A c t i v i t y name=” D e t e c t F a c i a l P r o c e s s ” />
< i f>

<c o n d i t i o n opaque=” yes ” />
<f low>

<i n vo ke w s u : i d =” SubmitICReq ” />
<o p a q u e A c t i v i t y name=” SubmitAlarm ” />

< / f low>
<e l s e>

<o p a q u e A c t i v i t y name=” Submi tNoResu l t ” />
< / e l s e>
< / i f>

< / s e q u e n c e>

Listing 2. Image Converter BPEL (IC).
<s e q u e n c e>

<r e c e i v e w s u : i d =” ReceiveICReq ” c r e a t e I n s t a n c e =” yes
” />

< i f>
<o p a q u e A c t i v i t y name=” S p l i t I m a g e F r a m e ” />
<f o r E a c h name=” s p l i t F i l e ” w s u : i d =”

Norma l i zeFrameSize ” p a r a l l e l =” yes ”>
<s t a r t C o u n t e r V a l u e>1< / s t a r t C o u n t e r V a l u e>
<f i n a l C o u n t e r V a l u e>2< / f i n a l C o u n t e r V a l u e>
<scope>

<o p a q u e A c t i v i t y name=” N o r m a l i z e M u l t i p l e I m a g e
” />

< / s cope>
< / f o r E a c h>

<e l s e>
<o p a q u e A c t i v i t y name=” Normal izeNormalImage ” />

< / e l s e>
< / i f>
<i n vo ke w s d : i d =” SubmitFRReq ” />

< / s e q u e n c e>

Listing 3. Facial Recognition BPEL (FR).
<s e q u e n c e>

<r e c e i v e w s u : i d =” ReceiveFRReq ” c r e a t e I n s t a n c e =” yes
” />

<f o r E a c h w s u : i d =” q u e r y D a t a b a s e ” p a r a l l e l =” yes ”
opaque=” yes ”>

<s t a r t C o u n t e r V a l u e>1< / s t a r t C o u n t e r V a l u e>
<f i n a l C o u n t e r V a l u e>3< / f i n a l C o u n t e r V a l u e>
<scope>

<o p a q u e A c t i v i t y w s u : i d =”
F a c i a l R e c o g n i t i o n P r o c e s s ” />

< / s cope>
< / f o r E a c h>

< / s e q u e n c e>

63

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

User_T

User_E
[100]

(1)

FD_T

facialDetect_E
[0.9]

(0.8) (0.2)

FacesDetected_T

facesDetected_E

a1
[0]

(1)

b1
[0]

(1)

c1
[0]

(1)

d1
[0]

SubmitNoResult_T

submitNoResult_E
[0.09]

(1)

SubmitICReq_T

submitICReq_E
[0.02]

InteralFinal_T

internalFinal_E
[0]

SubmitAlarm_T

submitAlarm_E
[0.01]

&

&

Figure. 2. Facial Detection LQN Model.

User_T

User_E
[100]

(1)

IC_T

receiveICReq_E
[0.9]

(1)

MultiGrid_T

multiGrid_E

a1
[0]

m1
[0]

0.7 0.3

(1)

mp
[0.1]

(1)

mp1
[0]

(1)

mp2
[0]

(1)

s1
[0]

ConverterM_T

multiConv_E
[1.3]

ConverterS_T

singleConv_E
[1.3]

(1)

InternalFinal_T

internalFinal_E
[0]

+

&

&

Figure. 3. Image Converter LQN Model.

User_T

User_E
[100]

(1)

FR_T

receiveFRReq_E
[0.9]

(1)

MultiData_T

multiData_E

a1
[0]

(1)

d1
[0]

(1)

d2
[0]

(1)

d3
[0]

(1)

f1
[0]

DB1_T

db1_E
[1]

DB2_T

db2_E
[2]

IdReport_T

idReport_E
[1]

DB3_T

db3_E
[2.8]

+

&

Figure. 4. Facial Recognition LQN Model.

User_T

User_E
[100]

(1)

FD_T

FD_E
[3.2]

(0.4)

IC_T

IC_E
[0.8]

(1)

FR_T

FR_E
[5.8]

Figure. 5. FD IC FR Sequential Composition LQN Model.

analyzed with the result of the performance indexes obtained
from QoS values of individual services. The transformation of
the LQN models are shown in Figure 2, Figure 3, and Figure 4
respectively.

The entire composition for the building security application
can be sought in different ways depending on the approaches
the engineers use. We demonstrate two example scenarios
to show how the framework facilitates compositions. In a
simplified scenario, all services can be considered as atomic
services, while in a more flexible scenario, the composition

utilizes the workflow processes to leverage the service choices
in order to gain a better performance.

To compose the the system in the simplest case, service
discovery process (D1, shown in Figure 1) is applied. For FD,
IC, and FR, QoS values such as service execution time are ob-
tained from their QoS extended WSDL files. A simple version
of the sequential BPEL expression is created in Listing 4.

The transformation steps along with the quality attributes
obtained from the WSDL extension of each services, together
create the LQN model of the composition. The LQN model

64

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Listing 4. Atomic Composition of FD, IC, and FR.
<s e q u e n c e>

<o p a q u e A c t i v i t y name=” FD Process ” />
<o p a q u e A c t i v i t y name=” I C P r o c e s s ” />
<o p a q u e A c t i v i t y name=” FR Process ” />

< / s e q u e n c e>

Listing 5. Choreography Topology for Process Service Composition of FD
<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<t o p o l o g y name=”

e x a m p l e f a c i a l D e t e c t R e c o g n i z e t o p o l o g y ”
t a r g e t N a m e s p a c e =” h t t p : / / agentmode . com /
c h o r e o g r a p h y / f a c i a l / t o p o l o g y ”

x m l n s : f d =” h t t p : / / agentmode . com / c h o r e o g r a p h y / f a c i a l
/ d e t e c t e r ”

x m l n s : i c =” h t t p : / / agentmode . com / c h o r e o g r a p h y / f a c i a l
/ c o n v e r t e r ”

x m l n s : f r =” h t t p : / / agentmode . com / c h o r e o g r a p h y / f a c i a l
/ r e c o g n i z e r ”

x m l n s : x s i =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−
i n s t a n c e ”>

<p a r t i c i p a n t T y p e s>
<p a r t i c i p a n t T y p e name=”FD”

p a r t i c i p a n t B e h a v i o r D e s c r i p t i o n =” f d : d e t e c t e r ”
/>

<p a r t i c i p a n t T y p e name=” IC ”
p a r t i c i p a n t B e h a v i o r D e s c r i p t i o n =” i c : c o n v e r t e r
” />

<p a r t i c i p a n t T y p e name=”FR”
p a r t i c i p a n t B e h a v i o r D e s c r i p t i o n =”
f r : r e c o g n i z e r ” />

< / p a r t i c i p a n t T y p e s>

<p a r t i c i p a n t s>
<p a r t i c i p a n t name=” d e t e c t e r ” t y p e =”FD” s e l e c t s =”

c o n v e r t e r ” />
<p a r t i c i p a n t name=” c o n v e r t e r ” t y p e =” IC ” s e l e c t s =

” r e c o g n i z e r ” />
<p a r t i c i p a n t name=” r e c o g n i z e r ” t y p e =”FR” />

< / p a r t i c i p a n t s>

<messageLinks>
<messageLink name=” i c R e q u e s t ” s e n d e r =” d e t e c t e r ”

s e n d A c t i v i t y =” SubmitICReq ” r e c e i v e r =”
c o n v e r t e r ” r e c e i v e A c t i v i t y =” ReceiveICReq ”
messageName=” i c R e q u e s t ” />

<messageLink name=” f r R e q u e s t ” s e n d e r =” c o n v e r t e r ”
s e n d A c t i v i t y =” SubmitFRReq ” r e c e i v e r =”

r e c o g n i z e r ” r e c e i v e A c t i v i t y =” ReceiveFRReq ”
messageName=” f r R e q u e s t ” />

< / messageLinks>
< / t o p o l o g y>

is depicted in Figure 5. The new composition along with the
performance indexes resulting from analyzing LQN models
can be published using service publish process (P2, shown in
Figure 1).

A more flexible way to consider the composition is to
observe the web services components as processes. We first
retrieve web services along with their processes. Applying
BPEL4Chor processes, a topology file is created to build the
service interactions. A snapshot of the topology configuration
is shown in Listing 5. The result of the composition along with
the derived BPEL and corresponding LQN model is shown in
Figure 6.

User_T

User_E
[100]

(1)

FD_T

facialDetect_E
[0.9]

(0.8) (0.2)

FacesDetected_T

facesDetected_E

a1
[0]

(1)

b1
[0]

(1)

c1
[0]

(1)

d1
[0]

SubmitNoResult_T

submitNoResult_E
[0.09]

(1)

SubmitICReq_T

submitICReq_E
[0.02]

IC_T

receiveICReq_E
[0.9]

(0.6)

(0.4)

SubmitAlarm_T

submitAlarm_E
[0.01]

InteralFinal_FD_T

internalFinal_FD_E
[0]

MultiGrid_T

multiGrid_E

a1
[0]

(1)

b1
[0]

(1)

c1
[0]

Converter_T

singleConv_E multiConv_E

m1
[0.33]

s1
[0.33]

(1)

submitFRReq_E
[0.25]

FR_T

receiveFRReq_E
[0.9]

(1)

MultiData_T

multiData_E

a1
[0]

(1)

d1
[0]

(1)

d2
[0]

(1)

d3
[0]

(1)

f1
[0]

DB1_T

db1_E
[1]

DB2_T

db2_E
[2]

IdReport_T

idReport_E
[1]

DB3_T

db3_E
[2.8]

&

&

&

+

+

&

Figure. 6. FD IC FR Choreography Model.

B. Data Dependency Considerations

In the Image Converter (IC) BPEL process, the if-clause
distinguishes between single and multiple faces that need to
converted, since converting multiple faces increases workload
on the processing systems. If the image contains multiple
faces, it may be desirable to use multiple processes executing
concurrently to improve the speed of IC process. Here we
model two identical servers executing the same job by splitting
the conversion tasks into two assuming two faces are detected.
Each server, which either processes the single task or two
tasks, has the same execution performance and same capacity.
The service time depends on the probabilities associated with
detecting one or two faces. In this example, we vary the if-
clause probability from 0.01 to 0.99, and estimate the effective

65

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure. 7. IC Service Execution Time vs if-clause Probability. Figure. 8. IC Utilization vs if-clause Probability.

Figure. 9. FR Service Execution Time vs Database Probability. Figure. 10. FR Utilization vs Database Probability.

performance. Figure 7 shows the execution time ranges while
the probability with the if-clause is changed. Figure 8 shows
the utilization of the image conversion servers.

Similar method is also be used with Facial Recognition
(FR) BPEL process, using either a single or multiple tasks
to compare the faces with those in the database. To further
speedup the process, the database may be organized into
frequently accessed faces and less frequently accessed faces.
In this example, we separated the facial detabases into three
separate databases, d1, d2, and d3. Rather than concurrently
querying all three databases, modelers can select just one
representative database based on the likelihood of finding a

match. Figure 9 shows the execution time of the FR service
while adjusting the probability of success with d1. Figure 10
shows the utilization versus the probabilities.

C. Performance Space Considerations

Various design topologies that yield different service per-
formances can also be considered. In this example, system
structure and server capacity are explored. Consider the IC
example for multiple image conversion. Instead of running
two converters concurrently, suppose we want to explore
the alternatives that execute them sequentially as a two-step

66

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure. 11. IC Service Execution Time vs if-clause Probability
on Service Design Alternatives.

Figure. 12. IC Utilization vs if-clause Probability on Service Design Alterna-
tives.

pipeline, where the execution time of each step is only one
forth compared to the parallel ones. There are also options that
the server can be equipped with single or multiple processors
(e.g., multicore systems) to speed up the service. Together
these options can be analyzed by the LQN. Figure 11 shows
the service times of the converter compared to the previously
shown split workflow; we use S to represent the sequential flow
and P to represent parallel workflow and the suffix indicates
the number of processors.

VI. RELATED WORKS

The promise of service oriented computing, and the avail-
ability of web services in particular, promote delivery of
services and creation of new services composed of existing
services [23] – service components are assembled to achieve
integrated computational goals. Business organizations strive
to utilize the services and provide new service solutions
and they will need appropriate tools to achieve these goals
[24]. As webs and internet based services grow into clouds,
inter-dependency of services and their complexity increases
tremendously. The cloud ontology suggested in [25] depicts
service layers from a high-level, such as Application and
Software, to a low-level, such as Infrastructure and Platform.
Each component resides at one layer can be useful to others
as a service. It hints the amount of complexity resulting from
not only horizontal but also vertical integrations in building
and deploying a composite service. Our framework tackles
the complexity of the selection and composition issues with
additional qualitative information to the service descriptions
in BPEL. Engineers can use BPEL to explore design options,
and have the QoS properties analyzed for the design. QoS
properties of each service are annotated with our WSDL
extension for future references.

There have been several works on QoS-awareness for BPEL
services. In [26], a service broker offers composite service
with multiple QoS classes to the users. The selection scheme
optimizes aggregated QoS of incoming request flows using
linear programming. In [27], business workflow is parsed into
a tree structure, where heuristic algorithms are applied for
selecting service candidates based on QoS properties. In [28],
QoS is acquired by constructing activity graph and reason-
ing the dependencies among them for the QoS parameters,
including response time and cost. A declarative approach
is proposed in [29] by creating the policy-based language
QoSL4BP to specify QoS constraints and logic over scopes
of the orchestration. QoS planning, monitoring, and adaptation
of the BPEL can be expressed to model the service behavior.
An extension to BPEL for specifying QoS and non-functional
requirements is proposed in [30]. The extension point is at the
service invocation of a partner web service. Our framework
is able to provide compatible SOA infrastructure to test on
different approaches surveyed above and others, however, the
foundation to address QoS properties for BPEL relies on
the WSDL extension at the service level [1]. The benefit is
that modeling business services to annotate QoS properties
is compatible with standard WS-BPEL without the need to
introduce other artifacts.

Performance evaluation on BPEL often involves analytical
model construction by transforming the business logic into
appropriate model logic. In [31] and [32], BPEL processes
are translated into stochastic petri nets by a set of rules to
model waiting queues and their performance distributions. In
[33], a formalism for the SYNTHESys framework [34] is
generated by the translation from BPEL to PerfBPEL models.
The PerfBPEL serves as the performance annotation to the
BPEL workflow, and a Markov chain for the model can be
generated. Then multi-formalism modeling technique enables

67

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the use of other tools for analysis. In [35], BPEL is annotated
with a performance metadata for operations and resources. A
queueing model can be derived from these annotations to gen-
erate the bounds of throughput and response times. While the
translation is similar to ours, our framework uses an ontology
for QoS data management, and use LQN to keep the original
mapping of service architecture. In [36], support from abstract
to executable processes for service orchestration is proposed
according to three levels: needed functionality, expected QoS,
and composition flow. Process realization, discovery, classifica-
tion, and selection steps lead to the composition. The expected
QoS is reasoned by a classification method to select services
for composition. While our framework can also rank services
using ontology models and plug in different selection filters,
the QoS prediction for service composition is based on the
result of modeling analysis.

A feature-completed Petri net semantic counterpart for
BPEL has been established in [16]. As mapping from BPEL
is easily obtained, Petri net can be subjected to formal model
checking [37] and workflow performance analysis [38].

VII. CONCLUSION

In this paper, we described our framework for web service
QoS-aware selection and composition of web services using
BPEL. With the foundation of WSDL extension to annotate
non-functional properties, web services can be selected based
on both functional and non-functional (QoS) properties. We
described the process for publishing and discovering services
which meet requirements in the standard service oriented
architecture. We show that services in BPEL description can
be seamlessly accommodated in the framework. By adapting
BPEL and BPEL4Chor for service composition, we reason
about the feasibility of service orchestration and choreogra-
phy in our framework. To illustrate the applicability of our
framework to derive QoS properties of composed services, we
use performance properties such as throughput, response times
and utilization. To this end, we described transformation rules
for converting BPEL into appropriate queuing networks which
can be used by the LQN (Layered Queuing Network) tool that
can compute throughput, utilization, and response times. We
used a case study to demonstrate this process. Although we
focused on performance in the paper, our framework can also
be used to compute other QoS properties such as reliability,
security, availability, with appropriate rules for converting
BPEL logic into corresponding models and tools for obtaining
QoS properties from these models.

VIII. ACKNOWLEDGEMENTS

This work is supported in part by the NSF Net-Centric
IURCRC and a grant #1128344. The authors acknowledge help
given by Sagarika Adepu.

REFERENCES

[1] C. Lin, K. Kavi, and S. Adepu, “A description language for qos proper-
ties and a framework for service composition using qos properties,”
in ICSEA 2012, The Seventh International Conference on Software
Engineering Advances, 2012, pp. 90–97.

[2] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web
services description language (wsdl) version 2.0 part 1: Core language,”
W3C Recommendation, vol. 26, 2007.

[3] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the web services web: an introduction to soap,
wsdl, and uddi,” Internet Computing, IEEE, vol. 6, no. 2, pp. 86–93,
2002.

[4] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “Qos-aware middleware for web services composition,”
Software Engineering, IEEE Transactions on, vol. 30, no. 5, pp. 311–
327, 2004.

[5] R. Mietzner, C. Fehling, D. Karastoyanova, and F. Leymann, “Combin-
ing horizontal and vertical composition of services,” in Service-Oriented
Computing and Applications (SOCA), 2010 IEEE International Confer-
ence on. IEEE, 2010, pp. 1–8.

[6] A. Mukhija, A. Dingwall-Smith, and D. S. Rosenblum, “Qos-aware
service composition in dino,” in Web Services, 2007. ECOWS’07. Fifth
European Conference on. IEEE, 2007, pp. 3–12.

[7] R. Hamadi and B. Benatallah, “A petri net-based model for web
service composition,” in Proceedings of the 14th Australasian database
conference-Volume 17. Australian Computer Society, Inc., 2003, pp.
191–200.

[8] D. Bonetta, A. Peternier, C. Pautasso, and W. Binder, “A multicore-
aware runtime architecture for scalable service composition,” in Services
Computing Conference (APSCC), 2010 IEEE Asia-Pacific. IEEE, 2010,
pp. 83–90.

[9] Y. Liu, A. H. Ngu, and L. Z. Zeng, “Qos computation and policing in
dynamic web service selection,” in Proceedings of the 13th international
World Wide Web conference on Alternate track papers & posters. ACM,
2004, pp. 66–73.

[10] N. Limam and R. Boutaba, “Assessing software service quality and
trustworthiness at selection time,” Software Engineering, IEEE Trans-
actions on, vol. 36, no. 4, pp. 559–574, 2010.

[11] S. Reiff-Marganiec, H. Q. Yu, and M. Tilly, “Service selection based
on non-functional properties,” in Service-Oriented Computing-ICSOC
2007 Workshops. Springer, 2009, pp. 128–138.

[12] H.-C. Wang, C.-S. Lee, and T.-H. Ho, “Combining subjective and
objective qos factors for personalized web service selection,” Expert
Systems with Applications, vol. 32, no. 2, pp. 571–584, 2007.

[13] T. Anstett, F. Leymann, R. Mietzner, and S. Strauch, “Towards bpel
in the cloud: Exploiting different delivery models for the execution of
business processes,” in Services-I, 2009 World Conference on. IEEE,
2009, pp. 670–677.

[14] F. Curbera, F. Leymann, T. Storey, D. Ferguson, and S. Weerawarana,
Web services platform architecture: SOAP, WSDL, WS-policy, WS-
addressing, WS-BPEL, WS-reliable messaging and more. Prentice Hall
PTR Englewood Cliffs, 2005.

[15] C. Ouyang, E. Verbeek, W. M. van der Aalst, S. Breutel, M. Dumas, and
A. H. ter Hofstede, “Wofbpel: A tool for automated analysis of bpel
processes,” in Service-Oriented Computing-ICSOC 2005. Springer,
2005, pp. 484–489.

[16] N. Lohmann, “A feature-complete petri net semantics for ws-bpel 2.0
and its compiler bpel2owfn,” Techn. report, vol. 212, 2007.

[17] D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary, C. Barreto,
B. Bloch, F. Curbera, M. Ford, Y. Goland et al., “Web services business
process execution language version 2.0,” OASIS Standard, vol. 11, 2007.

[18] H. Mili, G. Tremblay, G. B. Jaoude, E. Lefebvre, L. Elabed, and G. E.
Boussaidi, “Business process modeling languages: Sorting through the
alphabet soup,” ACM Computing Surveys (CSUR), vol. 43, no. 1, p. 4,
2010.

[19] C. Peltz, “Web services orchestration and choreography,” Computer,
vol. 36, no. 10, pp. 46–52, 2003.

[20] G. Decker, O. Kopp, F. Leymann, and M. Weske, “Bpel4chor: Extend-
ing bpel for modeling choreographies,” in Web Services, 2007. ICWS
2007. IEEE International Conference on. IEEE, 2007, pp. 296–303.

68

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[21] G. Franks, P. Maly, M. Woodside, D. C. Petriu, and A. Hubbard,
“Layered queueing network solver and simulator user manual,” Real-
time and Distributed Systems Lab, Carleton University, Ottawa, 2005.

[22] D. Ivanovic, M. Carro, and M. Hermenegildo, “Towards data-aware qos-
driven adaptation for service orchestrations,” in Web Services (ICWS),
2010 IEEE International Conference on. IEEE, 2010, pp. 107–114.

[23] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: State of the art and research challenges,” Computer,
vol. 40, no. 11, pp. 38–45, 2007.

[24] M. B. Blake, W. Tan, and F. Rosenberg, “Composition as a service
[web-scale workflow],” Internet Computing, IEEE, vol. 14, no. 1, pp.
78–82, 2010.

[25] L. Youseff, M. Butrico, and D. Da Silva, “Toward a unified ontology of
cloud computing,” in Grid Computing Environments Workshop, 2008.
GCE’08. IEEE, 2008, pp. 1–10.

[26] V. Cardellini, E. Casalicchio, V. Grassi, and F. Lo Presti, “Flow-
based service selection forweb service composition supporting multiple
qos classes,” in Web Services, 2007. ICWS 2007. IEEE International
Conference on. IEEE, 2007, pp. 743–750.

[27] D. Comes, H. Baraki, R. Reichle, M. Zapf, and K. Geihs, “Heuristic ap-
proaches for qos-based service selection,” Service-Oriented Computing,
pp. 441–455, 2010.

[28] D. Mukherjee, P. Jalote, and M. Gowri Nanda, “Determining qos of
ws-bpel compositions,” Service-Oriented Computing–ICSOC 2008, pp.
378–393, 2008.

[29] F. Baligand, N. Rivierre, and T. Ledoux, “A declarative approach for
qos-aware web service compositions,” Service-Oriented Computing–
ICSOC 2007, pp. 422–428, 2007.

[30] V. Agarwal and P. Jalote, “From specification to adaptation: an in-
tegrated qos-driven approach for dynamic adaptation of web service
compositions,” in Web Services (ICWS), 2010 IEEE International Con-
ference on. IEEE, 2010, pp. 275–282.

[31] M. Teixeira, R. Lima, C. Oliveira, and P. Maciel, “Performance evalu-
ation of service-oriented architecture through stochastic petri nets,” in
Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International
Conference on. IEEE, 2009, pp. 2831–2836.

[32] D. Bruneo, S. Distefano, F. Longo, and M. Scarpa, “Qos assessment
of ws-bpel processes through non-markovian stochastic petri nets,” in
Parallel & Distributed Processing (IPDPS), 2010 IEEE International
Symposium on. IEEE, 2010, pp. 1–12.

[33] E. Barbierato, M. Iacono, and S. Marrone, “Perfbpel: A graph-based
approach for the performance analysis of bpel soa applications,” in
Performance Evaluation Methodologies and Tools (VALUETOOLS),
2012 6th International Conference on. IEEE, 2012, pp. 64–73.

[34] M. Iacono and M. Gribaudo, “Element based semantics in multi
formalism performance models,” in Proceedings of the 2010 IEEE
International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems. IEEE Computer Society,
2010, pp. 413–416.

[35] M. Marzolla and R. Mirandola, “Performance prediction of web service
workflows,” Software Architectures, Components, and Applications, pp.
127–144, 2007.

[36] Z. Azmeh, M. Huchard, F. Hamoui, and N. Moha, “From abstract to
executable bpel processes with continuity support,” in Web Services
(ICWS), 2012 IEEE 19th International Conference on. IEEE, 2012,
pp. 368–375.

[37] F. Van Breugel and M. Koshkina, “Models and verification of bpel,”
Unpublished Draft (January 1, 2006), 2006.

[38] W. M. van der Aalst, “The application of petri nets to workflow
management,” Journal of circuits, systems, and computers, vol. 8,
no. 01, pp. 21–66, 1998.

69

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Supporting Test Code Generation with an
Easy to Understand Business Rule Language

Christian Bacherler, Ben Moszkowski
Software Technology Research Lab

DeMontfort University
Leicester, UK

christian.bacherler@email.dmu.ac.uk, benm@dmu.ac.uk

Christian Facchi
Institute of Applied Research

Ingolstadt University of Applied Sciences
Ingolstadt, Germany

christian.facchi@haw-ingolstadt.de

Abstract—The paper addresses two fundamental problems in
requirements engineering. First, the conflict between understand-
ability for non-programmers and a semantically well-founded
representation of business rules. Second, the verification of pro-
ductive code against business rules in requirements documents.
As a solution, a language to specify business rules that are close
to natural language and at the same time formal enough to be
processed by computers is introduced. A case study with 30 test
persons indicates that the proposed language caters to a better
understandability for domain experts. For more domain specific
expressiveness, the language framework permits the definition
of basic language statements. The language also defines business
rules as atomic formulas, that are frequently used in practice.
This kind of constraints is also called common constraints.
Each atomic formula has a precise semantics by means of
predicate or Interval Temporal Logic. The customization feature
is demonstrated by an example from the logistics domain.
Behavioral business rule statements are specified for this domain
and automatically translated to an executable representation
of Interval Temporal Logic. Subsequently, the verification of
requirements by automated test generation is shown. Thus, our
framework contributes to an integrated software development
process by providing the mechanisms for a human and machine
readable specification of business rules and for a direct reuse of
such formalized business rules for test cases.

Keywords—Requirements engineering; business rules; common
constraints; natural language; testing; logic.

I. INTRODUCTION

In software development, different stakeholders with dif-
ferent knowledge and intention cooperate, typically domain
experts and developers. Requirements engineers are acting as
negotiators between these two worlds and prepare requirement
specifications in a way that can be understood by both sides.
Unstructured natural language in requirements documents does
not ensure identical interpretations by different stakeholders,
especially by domain experts and developers. In order to
overcome the problem of divergence between specification
and implementation we proposed AtomsPro Rule Integration
Language (APRIL) [1] [2], a business rule language that is
both, understandable enough to domain experts and translat-
able to executable representations. To raise the expressiveness
of APRIL we have also defined a framework to add new
language constructs.

By the introduction of APRIL, we propose a means to
develop a formalized version of business rules specifications

by precise semantics that support human- as well as machine-
readability. The APRIL statements representing business rules
are easy to design and can be customized by the construction
of tailored statements, a feature, which we introduce via a
novel combination of pattern building mechanisms. In this
paper, we show how to utilize the framework for extending
APRIL’s expressiveness using atomic formulas that constitute
the link between statements that are like natural language and
formal frameworks. Moreover, we also present some common
constraints that are incorporated as atomic formulas.

Formal specifications enhance the established software de-
velopment process. As a general advantage, such specifications
allow consistency checking of business rules, e.g., reveal
conflicts or proof properties. The aspect we want to focus on
in this work is based on the fact that in the established soft-
ware development process, code and corresponding tests are
developed based on the natural language specification. In order
to reduce complexity of the development process, we support
automated creation of tests based on formal APRIL state-
ments representing business rules. With our method, human
understandable formal specifications can be used to directly
generate formal logical conditions and behavior specifications
for testing. This approach shifts the creation of the test code
from the developer to the requirements engineer, which helps
to improve test-driven development projects [3] [4].

The paper is structured as follows: Section II gives an
impression of the context and the facets of the work presented.
Section III presents the framework for our language to describe
business rules close to natural language. After laying down
the fundamentals, we demonstrate in Section VII the transfor-
mation of example statements in our language into computer
processable test code. In Section IV, we present the utilization
of the extension mechanism to incorporate a set of frequently
used constraints, known as common constraints, into APRIL.
Section VII-B deals with usability aspect of APRIL, explored
in a case study. After the discussion of related work (Section
VIII), a conclusion will be drawn and future work will be
presented (Section IX).

II. OVERVIEW

The APRIL framework can be embedded into standard
software development processes. As an example, the seamless
integration into the V-Model is shown in Figure 1. Aspects
that will be detailed in this paper are highlighted in dark grey.

70

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 1. Overview of the software development process using APRIL.

Next to the clear definition of business rules, our framework
aims at supporting the generation of computer executable test
code from formal specifications that are close to natural lan-
guage and thus enable the verification of the productive code
against the original user specification. In Section III, a detailed
explanation of the substantial concepts of the APRIL language
is given, exemplifying the formalization of business rules as
APRIL statements in Section III-A. Section VII-B presents the
results of a case study that shows that ARPIL is understandable
even to untrained test persons. The specification of complex
real-world business rules using mix-fix notation and decom-
position into reusable sub-statements (APRIL-Definitions) is
presented in Section III-B. Section III-C deals with support
for customizing parts of the language using so-called atomic
formulas. These are verbalized versions of operations on sets,
predicate-logic formulas and special common constraints and
provide a precise semantics for APRIL Definitions. In Section
IV we present common constraints that are incorporated into
APRIL using the extension mechanism to add atomic formulas.
In practice, these frequently used constraints can make up a
significant part of the overall constraints defined on a software
system.

Tests based on APRIL statements can be generated to
check conditions using invariants, pre- and post-conditions in
the Object Constraint Language (OCL) [5] notation. Checking
process behavior is done by the use of a subset of Interval
Temporal Logic (ITL) called Tempura [6]. The rationale for
applying our testing-framework is laid down in Section VII-A.
Section VII-B presents the testing-framework by example,
taking into account the significant concepts for defining a
custom atomic formula for modeling a simple example-process
and the relation to the semantic frameworks presented in
Section VI. This section will also include a presentation
of the automated test generation for behavior testing using
Tempura. Due to space limitations, the detailed presentation
of generating OCL-statements is omitted and can be reviewed
in [2]. Some translation examples are shown alongside the
introduction of the APRIL language.

After the discussion of related work (Section VIII), a
conclusion will be drawn and future work will be sketched
(Section IX).

III. THE APRIL FRAMEWORK - SPECIFYING BUSINESS
RULES IN FORMAL NATURAL LANGUAGE

Business rules are restrictions of certain object constella-
tions and behaviors based on domain models [7]. Typically in
software development, requirements engineers produce busi-
ness rules in natural language and hand them to developers
along with the respective domain models to enable the devel-
opment of a software-system compliant to these input artifacts.
Mostly, those natural language business rules are informal
and suffer from ambiguity and imprecision. Therefore, we
introduced APRIL, which is a language to specify business
rules, close to natural language and such is easy to use. On
the other hand, APRIL has a formal semantics, which is based
on OCL and in consequence, an unambiguous description of
business rules is possible.

A. Business Rules in APRIL

In general, the different types of business rules in the
industrial practice are: Integrity Rules, Derivation Rules and
Rules to describe behavior [8]. Despite the fact that there are
fundamental intentional differences, these rule types have one
aspect in common: The description of the semantics of parts of
the real world into formal representations by means of logic. In
APRIL, we use UML-class models [9] to formally represent
business domain models. The reason is that the UML-class
model is widely used for representing conceptual schemas and
is easily understood by people. APRIL requires UML-class
models as the domain of discourse to specify business rules as
constraints, which are of the following types: invariant, pre-
, post-condition and behavioral rules. Invariants describe
allowed system states that must not be violated during any
point in time. This is unlike the pre- and post-conditions, which
have a restricted scope right before and after a transition. The
fourth rule type describes behavior explicitly. Behavioral rules
can describe operations lasting over multiple state transitions
[7], which is not possible with a single pair of pre- and post-
condition.

In Figure 2, a simple domain model of an order system,
with the basic concepts Order, Customer Shipment, Vehicle
and Product is shown as UML-class model. As an example of

Fig. 2. UML-model of the example domain model.

71

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

APRIL usage on the class model, the corresponding statement
for the invariant rule1 can be seen in Listing I.

1 Invariant rule1 concerns Customer:
2 aaaA premium customer who buys a special offer must pay
3 aaa0 EURO for the shipment of that order.

Listing I. TOP-LEVEL RULE, COMPOSED OF SEVERAL APRIL
DEFINITIONS.

The header (line 1) of a rule contains its name (rule1)
and the token after the keyword concerns, which represents
the context set (represented by the class name Customer) of
the business rule to which the formula after the colon applies.
With respect to UML-models, the context in invariant rules
is represented by a class name and by a qualified method
name in the case of pre- and post-conditions respectively.
The rule body (lines 2-3) contains the actual business rule. In
order to use a natural language sentence in the needed formal
way, a couple of definitions have to be installed, which are
explained in Section III-B continuing this example. Moreover,
a detailed specification of APRIL including default logic- and
set- operators, is given in [2].

The mathematical representation of the rule can be ex-
pressed as predicate logic formula as follows.

∀c ∈ {CustomerallInstances} (isPremium(c) =⇒
∃p ∈ {c.orders.product} isSpecialOffer(p) =⇒
∀o ∈ {c.orders} {isSpecialOffer(o.product) ∧
isFreeOfCharge(o.shipment)})

B. APRIL-Definitions

APRIL Definitions are special mix-fix operators, which
allow the intuitive construction of patterns that decompose
large business rules into smaller, comprehensible and reusable
sub-statements. Mix-fix is a particularly useful technique to
form natural language statements [10]. Mix-fix operators al-
low to compose an operator’s constants and placeholders in
arbitrary order. The design of the APRIL-Definition’s headers
is based on sequences of static name parts and placeholders.
Both static name parts and placeholders can be arbitrarily
composed to express a business statement reflected as a natural
language sentence pattern. This makes them particularly easy
to construct for humans [11]. The below given example D.1,
shows a definition signature between the Definition and the
yielding keyword. Here placeholders, wrapped by the outmost
brackets, and keywords are mixed together to constitute a
pattern. Sentences based on the pattern come close to a natural
language sentence, when the placeholders get filled out with
the correct concepts of the domain model.

Despite the convenience that mix-fix operators provide to
humans, it is quite challenging to implement the parser logic
[12], especially for nested definition calls. The problem is that
the parser has to recognize a definition call embedded inside
an ID-token sequence in what is in the grammar specification
another definition call (see highlighted EBNF-grammar rules
in Listing II). As a consequence, a conventional context free
grammar provides only insufficient means to specify sub ID-
token streams with a different semantics to their embedding
ID-token streams. To overcome this, we use the ANTLR
v3 [13] parser-/compiler-generator framework. The framework

allows to specify semantic annotations [14], which is actually
user defined code (e.g., in Java), that gets inserted into the
proper positions of the grammar to guide parser decisions,
based on the semantics of tokens. Consider Listing II, where
the Boolean return-values of the semantic annotations indicated
by α0 and α1 influence the generated parsers resolution
algorithm. The semantic annotations indicated by the symbols
αn represent Java code that gets integrated into the parser.
The implemented logic performs the link between syntax and
semantics. For instance, when a token with the value Customer
gets recognized, the semantic annotation allows to conclude on
further decision steps for the parser. Or also trigger some type-
checking mechanism. However, for parsing mix-fix operators,
we limit the nesting depth to three, which was shown to be
sufficient in our preliminary case study.

definition::= ’Definition’ nameSignature ’yielding’
definition::= typeDef ’is defined as’ ruleBody ’.’
nameSignature::= (ID | parameterDef)+
parameterDef::= ’(’ name=ID ’as’ type=ID ’)’;
typeDef::= ID | ID ’(’ typeDef ’)’;
ruleBody::= statement+ ;
statement::= ... | referenceOrDefinitionCall | ...;
referenceOrDefinitionCall::= {α0}modelReference
referenceOrDefinitionCall:: |{α1} definitionCall | ...;
definitionCall::= ID (ID | referenceOrDefinitionCall)* ;

Listing II. GRAMMAR SNIPPET FOR APRIL DEFINITIONS

Given the example from Section III-A, the APRIL-
Definitions (D.1)-(D.3) decompose the business rule statement
from Listing I into reusable and easy to define sub-statements
with a signature in mix-fix notation.

(D.1) Definition All (customers as Collection(Customer)) who
buy (products as Collection(Product)) must pay (price as
Number) EURO for the shipment yielding Boolean
is defined as
every customer satisfies that every ”ordered product”
satisfies that shipment.fee = prize
with
”ordered products” (orderer as Customer) is defined as
each product where product.order.customer = orderer.

(D.2) Definition premium customer yielding Collec-
tion(Customer)
is defined as
each customer in all instances of Customer where
customer.AverageAnnualTurnover > 20,000 .

(D.3) Definition special offer yielding Collection(Product)
is defined as
each product in all instances of Product where prod-
uct.IsSpecialOffer.

In (D.1), the orders of specific customers are mapped
to a shipment prize. On the other hand, (D.2) is a set-
comprehension on the set of all customers defining, what a
premium customer is. Furthermore, (D.3) defines attributes that
characterize special offers.

In order to provide a precise semantics, APRIL atomic for-
mulas are used. They are verbalized versions of operations on
sets, predicate-logic formulas and special common constraints
sketched by Halpin [10]. For example, the every-satisfies-that-
statement of Definition (D.1) is an atomic formula in APRIL
that constitutes a universal quantification that is by default
incorporated into the language. Some more operators are

72

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

described in [2]. Default atomic formulas are for maintaining
sufficient expressive power and straight-forward translation
into executable representations.

Moreover, we have defined some syntactical rules for the
default atomic formulas to make their syntax a bit more
appealing. For example the auto-mapping of plural to singular
symbols. Like in D.1, in which the symbol ”ordered products”
represents a collection of objects of type Product and the
symbol ”ordered product”, which is used as iterator symbol for
the univesal quantification. One auto-mapping rule says that if
any iterator symbol postfixed with an ”s” equals a symbol that
is in the scope of the same function or definition the short
form, omitting the ”in Collection(<Type>)” declarator can be
used. This only applies if the types can be resolved and the
symbol is unique in the entire scope stack.

In order to resolve symbols from their usage to their defi-
nition, APRIL uses different scope levels, e.g., like global and
local variables known from the most programming languages.
The precendences for resolving symbols are as follows:

• Atomic formulas (with iterator(s))

• Local variable / local method symbols

• Definition signatures (symbolic name with types of
parameters)

• Class names and role names from the UML model
used in the rule header after the concerns keyword

If we consider the example from Listing D.1 the
body of the definition contains two nested universal quan-
tification opertors ∀1.customer(i1|P (i1)) with P (i1) :=
∀2.fLM (i1)(i2|P (i2))) and fLM (i1) := ”ordered product”(i1)
with in are iterator variables, bound to the respective universal
quantification operator. Note that we have marked the universal
quantifiers with indexes, which makes it easier to refer to them
later. The following annotated excerpt of D.1 illustrates the
earlier definition:

every∀1
customer satisfies that (

every∀2
”ordered product” satisfies that (shipment.fee = prize)P2

)P1

In this case the iterators i1 and i2 are related by i2 ∈
Ret1 := fLM (i1), whereas fLM (i1) is actually defined in the
local members (LM) section of definition D.1 after the with
keyword. Ret1 is the return value yielded by fLM . That is the
local method fLM with the symbolic name ”ordered products”,
which takes a single parameter of type Customer. The method
itself is implicitly typed as collection by the set comprehension
function used in the proposition PfLM of its body, which is:

”ordered products” (orderer as Customer) is defined as
(each product where product.order.customer = orderer)PfLM

.

The inference mechanism of the typing of fLM works as
described earlier by simply adding a ”s”-postfix of the iterator
so the short form of the operator ”each product where . . . ”
can be resolved to the conventional form ”each product in
products where . . . ”. The symbol products can be resolved
within the scope of D.1 as this is one of the parameters of
type ”Collection(Product)”. Thus, the set comprehension also
yields the same type. If we memorize ∀1 that uses the symbol

”ordered product” as iterator symbol and we also apply the
”s”-postfix mechanism then ”ordered products” is resolvable
as local method. As ∀2 is nested in ∀1 that uses an iterator
variable (i1) represented by symbol customer of type Cus-
tomer, the call to fLM does not necessitate to explicitly state
the parameter, which would be the iterator of the surrounding
operator i1 of ∀1. This abbreviation mechanism is similar
to that, e.g., used in λ-expressions in C# 4.0. Resuming the
body statement of ∀2, the scope stack now adds the symbol
”ordered product”, which is actually i2, at its lowest level.
Thus, both the immediate short navigation shipment.fee and
the conventional navigation ”ordered product”.shipment.fee are
both valid in this context. We chose the short form for our
example. The ability to unambiguously resolve the types of
the used symbols is obligatory to detect trivial typing faults
during design time of a business rule. Moreover, it is helpful
in the translation process into the target language as it gives at
least some evidence that the business rule is formally correct.

APRIL uses OCL as target language for translating in-
variants and pre-and post conditions. Behavioral rules are
translated into Tempura, which is briefly explained later.In
order to extend APRIL’s expressiveness over general purpose
operators provided by OCL, we allow the customization of
atomic formulas that can be tailored to a certain domain. This
delegates the design of the atomic formulas as natural language
statements to the human user, who is still the best choice for
this creative task.

C. Extending APRIL with Custom Atomic Formulas

Like definitions, customizable atomic formulas are defined
using textual business patterns (bp). Here, a requirements
engineer can, e.g., reuse his already existing, informal textual
business patterns [11], which, unlike the more abstract Defini-
tions, express a very basic business rule- or business process
pattern that regulates the business concepts and facts under
consideration. For example, if a requirements engineer wants
to verbalize business process statements which specify that in
a warehouse all elements in a goods-stock move to a dedicated
truck-loading bay and have to pass a certain gate on their way,
she would have to specify parts of the grammar. Generally, a
context free grammar consists of a start symbol, production
rules, terminals and non-terminals [15]. Therefore, a state
of practice language implementation mechanism described by
Parr [14] is used. First, a formal production rule of the new
atomic formula must be specified. Formal production rules are
used to generate text recognition algorithms of a parser that
processes statements of a language to generate a parse tree.
Second, a parse tree rewrite rule has to be specified along with
the production rule. Parse tree rewrite rules are instructions for
the parser on how to construct the abstract syntax tree (AST)
from the parse tree.

The AST is a condensed version of the parse tree that can
be influenced by semantic considerations to form a concise
and expressive logical representation of the parsed statements.
For APRIL the AST provides the necessary flexibility to
incorporate user defined language parts and also makes it
particularly easy to extract the necessary parameters for the
compiler. For clarification, Listing III sketches the definition
of a user defined atomic formula. It formalizes the example
operator that reflects the scenario mentioned above. In line 1,

73

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the production rule with the name of the non-terminal (atomic
formula) moveTo is introduced. The definition of the new
atomic formula’s regular syntax is defined in the lines 2-7.
Here, the non-terminal referenceOrDefinitionCall is similar to
that in Listing II. This non-terminal is a predefined APRIL
concept and can either refer to an element of the related domain
model (e.g., to class names Store, Bay, Gate) or to values in
the scope stack of the parent rule or definition, in which the
formula is used. The references to the parse tree nodes of type
referenceOrDefinitionCall in the lines 3, 5 and 7 are stored
one by one in the local variables source, target and routeNode.
Line 9 concludes the specification of the grammar rule with
the parse tree rewrite rule. It is delimited from the syntax rule
by the ”→” sign. It tells the parser to construct a tree with the
MOVETO-terminal as root node having three leaves: source,
target and routeNode.

1 moveTo :
2 ’all elements in’
3 source=referenceOrDefinitionCall
4 ’move to’
5 target=referenceOrDefinitionCall
6 ’over’
7 routeNode=referenceOrDefinitionCall
8
9 → â(MOVETO $source $target $routeNode);

Listing III. GRAMMAR RULE AND PARSE TREE REWRITE RULE FOR THE
OPERATOR MOVETO IN ANTLR 3.0.

The grammar rule and the parse tree rewrite rule in
Listing III get injected into dedicated areas of the APRIL core
grammar. Parameterization of the APRIL-compiler is straight
forward, which is depicted in Figure 3. In the second pass,
a so called tree parser interprets the AST (of the rewrite
rule MOVETO) and decides, which target language template
to apply to the AST of the atomic formula. It then passes
the values of the leaf-nodes (here the values of the variables
$source, $target and $routeNode) to the parameters of the
respective template. The instantiated template is the actual
translation of the atomic formula into the target language,
representing the semantics of the respective operator. Please
see Listing V as an example instantiation.

Fig. 3. Translation example of the atomic operator moveTo.

IV. FREQUENTLY USED BUSINESS RULES AS ATOMIC
FORMULAS

A central aspect that increases the expressiveness of APRIL
is the utilization of language constructs that allow to shortly
specify business rules. These abbreviations are frequently used
in practice and would be partly complicated to formulate in
the underlying target languages. Such constraints are also often
referred to as common constraints. Costal et.al. [16] show that
these types of business rules can cover a significant amount
of the overall constraints occurring in real life systems. In
order to give the presented common constraints a structure, we
have grouped them together based on the taxonomy presented
in Figure 4, which was inspired by Halpin et al. [10] and
Miliauskaite et al. [17] [18] and will be explained in the
following subchapters.

A. Constraints on Values

Restricting values of variables can be done in several
ways. For example assigning an integer data type to a variable
restricts its values to a given range of natural numbers. Another
way is to use relational operators with, e.g., constants to explic-
itly constrain variables. Therefore, the conventional and well
known binary relational operators (e.g.,{<,>,=,<>,<=,>=})
are used. Although APRIL’s is meant to be close to natural
language, we use the mathematical representation for the afore
mentioned operators as atomic formulas as we think this is
well known enough to anyone. Moreover, if this might be too
disconcerting for a user to use in a language like APRIL, it is
possible to redefine that particular part of the grammar to give
these operators a natural language syntax (e.g., ”A>B” may
become ”A greater than B”). Here is an example:

Invariant Values concerns Vehicle:
MilesTotal<100000 .

B. Identifier

According to Miliauskaite et al. [18], a useful and strongly
demanded constraint is the identifier or primary identifier
known to ERM [19], ORM [20], xUML [21] and relational
database management systems (RDBMS). UML’s class at-
tributes are predestined for holding a primary identification
rule stated in APRIL or OCL, as UML class diagrams by
default lack such means. This can be shown with the help

Fig. 4. Taxonomy of some important common constraints.

74

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the model in Figure 2. A common scenario is that an object
is identified by an attribute that carries a unique value over
all objects of the entire population. This can be formalized as
follows:

APRIL:

Invariant id concerns Customer:
each ID is unique .

OCL:

context id inv Customer:
Customer.allInstances→isUnique(ID)

A more general version of the primary identifier constraint
is the internal uniqueness constraint also called composed
identifier. It says that value combinations of two or more
attributes of an object are unique [10] [17]. The APRIL and
OCL versions look like:

APRIL:

Invariant composedId concerns Customer:
each Name, DateOfBirth combination is unique .

OCL:

context Customer inv composedId:
Customer.allInstances→forAll(c1,c2 | c1 <> c2 implies
not((c1.Name = c2.Name and c1.DateOfBirth = c2.DateOfBirth)))

Towards a reasoning of common constraints we can say
that if a class has a tuple of attributes {a1,...,ai} out of which
at least one has to obey a primary identifier constraint it
is redundant to additionally specify that the combination of
{a1,...,ai,...,an} has to obey a composed identifier constraint.

C. External Uniqueness

A uniqueness constraint is denoted as external if the identi-
fication scheme is bound to another attribute of an associated
class. For example an object a may be related to an object
b only once. This does not restrict the overall occurrence of
object b throughout the entire model as it might be that a is
also related to an object c.

In the example below, the constraint only holds if different
instances of Vehicle with potentially equivalent values in
VRN (vehicle registration number) are not linked to the same
instance of Shipment. The combination of Shipment and
the attribute VRN of the class Vehicle is inherently done
by the navigation path from Shipment to Vehicle by
stating its concrete role name, vehicles. This collects all
instances of Vehicle that are linked with the current instance
of Shipment.

APRIL:

Invariant externalUniqueness concerns Shipment:
VRN is unique in vehicles.

OCL:

context Shipment inv externalUniqueness:
vehicles→isUnique(VRN)

D. External Uniqueness Involving Objectification

This type of constraints deals with associations that are
regarded as objects. Hence, objectification [29], known as
reification in UML, aims to combine multiple classes or
attributes to a single one in order to apply constraints on the
combination. In UML, this is typically done using association
classes which objectify the association between two classes
[8]. Hence, an object of an association class identifies a
unique n-tuple of linked objects. In an attempt to generalize
several UML concepts, Gogolla et al. [23] uncover how to
transform association classes and association-qualifiers into n-
ary associations (with n>=2 at this point). As they show in
[24], there are several problems with the use and constraining
of n-ary associations and thus, the n-ary association has to
be transformed into a proper set of binary associations. For
our example in Figure 2 it would mean that the association
diamond in the middle of the three associated classes (Order,
Shipment, Product) is transformed into an additional synthetic
class, e.g., called ASSOC being associated to each of the
afore mentioned classes with a binary association. In order
to handle objectification in business rule statements between
two or more Classes {c1,...,cN} the APRIL ”each c1,...,cN
combination” expression is used. It returns a set of synthetic
association objects instanciated from class ASSOC each of
which is associated to one object of the corresponding type
of c1,...,cN . The first example shows how to constrain tuples
of classes. We omit the prose explanation for the APRIL
constraint here because we consider it to be self explanatory.

APRIL:

Invariant externalUniqueness concerns Product:
each Product, Order, Shipment combination is unique .

OCL:

context Product
inv externalUniqueness:
Product.allInstances→forAll(c |
Order.allInstances→forAll (b |
Shipment.allInstances→forAll (a |
ASSOC.allInstances→select(assoc | assoc.product = c and
assoc.order = b and assoc.shipment = a)→size()<=1)))

E. Recursive Associations

A UML class can be associated with itself (see class
Product in Figure 2). This allows recursions between objects.
Rules on such models are called ring constraints [10]. Common
ring constrains follow typical association properties. Here are
some examples:

• Irreflexive constraints do not allow objects to refer to
theirselves which is formally stated below. Note that
the OCL keyword self corresponds to the lower-
cased class name in the APRIL rule body.

75

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

APRIL:

Invariant irreflexive concerns Package:
package is not in elements .

OCL:

context Package inv:
elements→excludes(self)

• A transitive constraint says that if a first object bears
the relationship to a second and the second to a third
one then the first also bears a relationship to the third.
This can be formally stated as follows.

• An intransitive constraint is the negation of the core-
sponding transitive constraint.

• Symmetric means that if the first bears the relationship
to the second, then the second bears the relationship
to the first. However, a ring constraint defined in a
UML class diagram is by default symmetric so there
is no need to state that an association is symmetric if
it is meant to be optional. If not the following example
shows how it can be stated.

• Asymmetric means that if the first bears the relation-
ship to the second, then the second cannot bear the
relationship to the first.

• Anti-Symmetric means that if the objects are different,
then if the first bears the relationship to the second,
then the second cannot bear that relationship to the
first.

• Acyclic means that a chain of one ore more instances,
which are linked to objects of the same type cannot
form a recursive loop (cycle).

As acyclic constraints are common practice in business rule
modelling [10] we can define a new atomic formula. That is the
”deep collection of ”-operator. The notation of the operator is
exemplified in the listing below. The semantics of the operator
is as follows:

Let A be a set of objects of type τ and {a0. . .an} ∪ ∅
be elements of A. Let Rn(an, An:= {an+1,j . . .an+1,k}\∅) be
the representation of a set of relations between an element an
and a non-empty set An ⊂ A.

Then Adeep :=
⋃

Am(Rm); with 0 ≤ m ≤ n. After all
(a0, Adeep) |= ”deep collection of”(a0).

APRIL:

Invariant acyclic concerns Package:
package is not in deep collection of elements.

OCL:

context Package def :
successors(): Collection(Product) =
self.elements→
union(self.elements.successors())
context Package inv acyclic:
self.successors()→excludes(self)

In the OCL example, the first constraint defines a synthetic
operation named successor() that is recursively called
within an OCL union operation which is called on the set of
elements of the current object. The intent is to unite all the
Package objects linked with the current objects elements
that also play this role in the linked subordinated objects. This
construct is inherently typed as collection type Collection.

F. Sets

The upper part of the Table I shows the verbalization of
common constraints on sets according to Costal et al. [16] and
Miliauskaite et al. [18]. Note that lower case latters denote
elements of sets and upper case letters denote sets.

The lower, folded part of the table handles a specialization
of the natural-join operator, indicated by on′. In APRIL it
is used to ”navigate” through UML class models, gathering
(sets-of) objects along association graphs, which then can be
utilized to formulate constraints. Hence, this is one of the most
important constructs in APRIL and deserves special mention.
The semantics is equivalent to OCL’s [5] collect-operation.

mathematical APRIL OCL
a ∈ A a is in A A→ includes (a)
B ∈ A B is in A A→ includesAll (B)
A = B A = B A = B

A ∩ B = ∅ A is not in B B → excludesAll(A)
a /∈ A a is not in A A→ excludes(a)

A on′ B A.B A.B
A→collect(B)

TABLE I. SOME COMMON CONSTRAINTS ON SETS.

More conventional and common constraints in APRIL can
be found in [2].

V. CASE STUDY ON THE ACCEPTANCE OF APRIL

The goal of the case study was to discover, if the APRIL
syntax is understandable to untrained users with a basic
understanding of logic. For this, a representative group of thirty
computer science students in their first and second year could
be motivated to participate. The major part was completely
inexperienced in the field of UML-modeling and has never
heard of OCL before. We considered OCL version 2.0 as the
benchmark language. That was because OCL 2.0 -as a part
of the UML specification- is an established and well defined
language that is close to our purpose: defining business rules on
UML-class models. Two days before the case study, an infor-
mation sheet was handed to the test persons, that explained the
very basics of the APRIL and OCL syntax. This included pred-
icate logic operators (e.g., universal and existential quantifier),
operators on sets (e.g., for union, exclusion and intersection of
sets) and the very important join operator. Moreover, necessary
concepts of UML-class models were explained, necessary to
comprehend the APRIL and OCL materials. This comprised
the use of the most important class models concepts, e.g.,
classes, associations, roles and multiplicities. Directly before
launching the case study session, a brief introduction into the
domain of discourse was given, on which the APRIL and
OCL constraints were written against. The case study sheet
consisted of four sections. The first section dealt with questions
on an example UML-class model and intended to show how
mature the skills of the experimentees in UML modeling were

76

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and also if the essentials of the related UML-model were
comprehended that were necessary to understand the tasks
given in the succeeding parts. The second and third section
demanded to try to interpret and write down the meaning of
a given sequence of 18 APRIL and 18 OCL constraints in
own words. The 36 constraints were based on an example
UML-class model that consisted of 5 classes. Each APRIL and
OCL constraint had its semantic counterpart in the opposite
language. The complexity of the constraints was increasing
continually, whereas the simplest constraint was like the listing
for the value constraint in Section IV-A. The APRIL constraint
with the highest complexity was comparable to that in Listing I
including all related Definitions from D.1 to D.3 and Listing IV
as its OCL representation, respectively. In the last and shortest
section, the test persons had to formulate OCL and APRIL
constraints, based on business rules, given in real natural
language. The conduction of the case study was organized
as follows. The group of test persons was divided into two
equally sized subgroups each starting either with the third part
(OCL) or the second part (APRIL). This was to counterbalance
potential learning effects. Remember, each constraint had its
semantic counterpart in the opposite language and that is why
learning effects could not be precluded. The results were as
follows with respect to the average ratio of correct answers or
correctly interpreted APRIL or OCL business rules:

• UML-part: 74% with an average spread of 10%.

• Simple expressions: OCL: 38%, APRIL: 69%

• Complex expressions: OCL: 36%, APRIL: 57%

• Writing expressions: OCL: 12%, APRIL: 27%

Textual feedback of the test persons:

• About 50 per cent of the test persons spent less than
20 minutes in their preparation phase. About 30 per
cent were unprepared. Persons of the remaining 20
per cent invested one to two hours to prepare for the
survey.

• About 90 per cent of the test persons subjectively esti-
mated that APRIL is more understandable than OCL.
Whereas, 2 students found both languages equally
understandable and one student with a significant
background in other formal languages found, that OCL
is more understandable.

The resulting percentage of APRIL, reflecting the correctly
interpreted constraints, allows to conclude that it is possible
for untrained test persons to understand APRIL statements.
A surprisingly high number of test persons was able to write
rules. This discipline has been considered to pose a bigger
problem, regarding the low preparation effort of 20 minutes
for the major part of the testees. Students who invested more
time for preparation gained better results in both interpreting
and writing APRIL rules. For OCL we were not able to observe
a similarly strong coherence between preparation time and
improved results. The unexpectedly very good understand-
ability of UML-class models, even without any preparation,
might be a good indication that the combination of a graphical
notation to represent concept models and a textual notation for
constraints is suitable to specify understandable business rules.

VI. APRIL’S TARGET LANGUAGES

APRIL makes use of the logical frameworks OCL and
Tempura to underpin its language constituents with a well
defined semantics. Both languages are briefly introduced in
the subsequent sections.

1) OCL: As part of the UML, OCL 2.3.1 is the target
language for APRIL-invariants, pre- and post- conditions. For
the sake of brevity, we give a rudimentary introduction to OCL
because it is well known. The interested reader should consult
the literature on OCL. The specification of OCL 2.3.1 can be
found on [5].

OCL restricts UML-class models using predicate logic
and operations on sets. Arithmetic-, Boolean- and relational
operators are used in the conventional way. Existential and
universal quantifiers allow to quantify on propositions holding
on an object population derived from a class model. In order
to give an idea of the OCL syntax, we provide in Listing IV
a translation into OCL of the example mentioned earlier in
Listing I and the definitions from (D.1)-(D.3). Here, we used
OCL’s decomposition mechanisms to cater to an improved
readability.

context Customer inv rule1:
Customer::
All customers who buy products must pay price for shipment(
aaCustomer::premium customers(),
aaProduct::special offers(),
aa0)

context Customer def:
All customers who buy products must pay price for shipment(
aa customers : Collection(Customer),
aa products : Collection(Product),
aa price : Real) : Boolean =
aaaa customers→forAll(customer |
aaaaaa products→select(product |
aaaaaaaa product.order.customer = product)→forAll(orderedProduct |
aaaaaaaaaa orderedProduct.shipment.price = price))

context Customer def:
premium customers() : Collection(Customer) =
aaself.AverageAnnualTurnover > 20,000 EURO)

context Product def:
special offer(): Collection(Product) =
aa self.IsSpecialOffer = true

Listing IV. POSSIBLE OCL-TRANSLATION OF LISTING I

2) Tempura: Tempura is an executable subset of Interval
Temporal Logic (ITL) [6]. ITL enhances predicate calculus
with a notation of discrete time, expressed by separated states,
and associated operators. A key feature of ITL and Tempura is
that the states of a predicate are grouped together as nonempty
sequences of states called intervals σplus. For example the
shortest interval of states σ on a predicate can be represented
by < s > where s is a state. Please note that here the length σ
:= |σ| = 0, which is generally the number of states in σ minus
1. The semantics of ITL keeps the interpretations of function
and predicate symbols independent of intervals. Thus, well
known operators like {+, -, *, and, or, not,...} are interpreted
in the usual way. The characteristic operator for ITL is the
operator chop (;), which says that a prefix subinterval is
followed by a suffix subinterval. Both subintervals share one
state ”between” them. Conventional temporal logic operators
such as next (#) and always (�) examine an interval’s suffix

77

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

subintervals whereas chop splits the interval into two parts and
tests both. Furthermore, Moszkowski [6] shows how to derive
operators such as always and sometimes from chop. In ITL, the
formula w := w1;w2 is true if I〈σ0..σi〉 Jw1K and I〈σi..σ|σ|〉
Jw2K are true in the respective sub-formulas. Note that w1 and
w2 share the same subinterval σi. We adopt some examples
from [6], which are as follows:

σ P R
s 1 2
t 2 1
u 3 1

The lenght of interval σ is expressed by |σ| and is defined
as the number of the states in σ minus one. Thus, in our
example, |σ| = 2.

The following formulas on the predicates P and R are true
on the interval < stu >:

• P = 1. The initial value of P is 1.

• #(P) = 2 and #(#(P)) = 3. The next value of P is
2 and the next next value of P is 3.

• P = 1 and P gets P + 1. The initial value of P is 1
and P gets increased by 1 in each subsequent state.

• R = 2 and #(�(R)) = 1 The initial value of R is 2
and R is always 1 beginning from the next state.

• P ← 1 ; P ← P + 1 ; P ← P + 1. The formula e2
← e1 is true on an interval if σ0(e1) equals σ|σ|(e2).
Thus, ← is called temporal assignment.

We adopt Tempura because it is able to model operations
lasting over multiple state transitions, which would not be
possible with a single pair of OCL pre- and post-conditions.
Moreover, the reader will recognize similarities with the ratio-
nale of the test-definitions given in Section VII-A.

VII. GENERATING TEST CODE FROM APRIL
STATEMENTS

This section clarifies the connection between APRIL and
its target languages utilizing the moveTo-operator example
introduced earlier. Section VII-A describes the basic rationale
that influence the test framework presented in Section VII-B.
The test framework is applied to an application, which helps to
track movements of goods in a logistics centre. For testing the
correct routing, we use the example operator moveTo described
in Section III-C.

A. Testing

For generating proper test-code based on APRIL state-
ments, the classification of different test types into black- and
white-box testing has to be clarified. Our definition of the test
types is as follows: Each function fi in the set of functions F
::= {f0, . . . , fn} of a component under test (CUT) triggers a
state transition and obeys a predefined signature. This signature
requires a tuple of input values (fIN) and yields a tuple of
output values (fOUT). A signature of a function is an interface
describing a contract [22] with IN- and OUT-data, which is
specified in UML-class models. We assume that a composite

function gik is a conglomerate of some functions fi to fk, for
some natural numbers 0 <= i < k <= n. Then, any OUT-
signature of a proceeding function fj must correspond to the
IN-signature of the succeeding function fj+1, for some natural
numbers k < j <= i. This convention of the inner structure
can be formalized by OUT (fj) == IN(fj+1), which we want
to abbreviate with Dj . It represents an element of a function
sequence. Moreover, the following holds IN(gik) == IN(fi)
and OUT (gik) == OUT (fk).

A white-box test necessitates the knowledge of the entire
sequence of DD0,...,Dn as the internal structure of g (gik),
which is normally the case as the user knows the source code.
If D(g) is unknown, tests are limited to reason on the data
given by IN(g) and OUT (g), they are called black-box tests.
In APRIL, black-box tests are issued to the invariants, pre-
and post-conditions.

For the specification of behavioral models, we extend our
recent definition of white-box tests beyond reasoning on D. We
use Interval Temporal Logic (ITL) [6] for modeling behavior in
white-box-tests. Therefore, we introduce behavioral constraints
in APRIL, which we regard as orthogonal to the invariants as
well as pre- and post-conditions. Assume D represents a state
σ1 that maps a set of values to their corresponding variables at
one certain point in time. Then let σ be an ordered set of states
σ0 to σn, each of which describes a different D at different
subsequent, discrete points in time. In our understanding, the
knowledge of σ is sufficient for applying white-box-tests,
which we want to utilize in our framework.

B. Test Framework and Case Study

In this section, we build a representative example around
the behavioral all-elements-move-to-operator introduced in
Section III-C. The definitions of the previous section are used
in our test framework, which deals with logistic processes
to handle the material flow in a warehouse. It consists of a
simple 3-tier architecture with RFID-readers and light sensors
at the field-level and an ERP-system at the top level. Between
these two levels, we use an RFID-middleware -Rifidi [23]- for
information exchange and filtering.

The connection between a specification in Tempura and
a function in the productive code is the test data. Therefore,
the user has to provide initial test data IN(f0), constituting
an important part of a test-case. The productive code affects
the data OUT (fi) in the memory for each invocation of fi,
which marks a new interval at the same time. Thus, each time a
function under test fi gets invoked a snapshot of the input data
(fIN) prior to the invocation and output data (fOUT) when fi
is left gets generated. The test data for the Tempura-statements
is provided by recorded history-data that is stored in a properly
formatted log-file containing a condensed version of the data-
snapshots. The retrieval of the test data from the running
system is achieved via AspectJ [24]. Therefore, AspectJ point-
cut statements are generated based on the reference-nodes (see
Listing III) to class-attributes found in the AST of an APRIL
statement. The use of AspectJ permits us to leave the original
code of the productive system untouched.

The use case for the earlier mentioned example with the
behavioral operator moveTo formalized in Listing III is as
follows: Imagine a warehouse that has a high-bay storage

78

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and a loading bay for lorries. Both, storage and lorry-bay are
connected with a conveyor belt. Each of the three components
is equipped with one RFID-reader that can detect tagged-goods
in its near field to allow tracking whether the correct thing
takes the right path in the right direction. For a customer order,
all goods in store contained in the order must go from the
store to the lorry-bay via the conveyor belt. For simplicity
we assume that each good will be detected by exactly one
of the three RFID-readers at a time. This simplification is
an abstraction of the real world, which does not influence
considerations regarding the presented methodology.

O
U

T
PU

T

σI STORE GATE1 BAY
I=1 ”a”,”b”
I=2 ”b” ”a”
I=3 ”b” ”a”
I=4 ”b” ”a”
I=5 ”a”,”b”

TABLE II. REPRESENTATION OF LOG-FILE RECORDED FOR
EXAMPLE-OPERATOR

The described scenario can be reflected by a log file as
depicted in Table II, if the actual memories of the readers
holding the IDs of the tags can be accessed in the productive
application via the following reference-IDs: STORE for the
RFID-reader observing the near-field of the storage, GATE1
for the conveyor and BAY for the lorry-bay. The data in the log
file is formatted as array with the symbolic name OUTPUT.

define store moves to Bay over Gate1 () = {
aalen(|OUTPUT|-1) and
aaI = 0 and
aaI gets I+1 and
aamoveAtoB(OUTPUT[I][Store], OUTPUT[I][Gate1]) and
aamoveAtoB(OUTPUT[I][Gate1], OUTPUT[I][Bay]) and
aaOUTPUT[|OUTPUT|-1] [Bay] ← OUTPUT[0] [Store]
}.

define moveAtoB (A,B) = {
aaif (|A| > 0) then {
aaaafirst(A) gets last(B) and skip
aa}
}.

Listing V. TEMPLATE FOR THE ALL-ELEMENTS-MOVE-TO OPERATOR.

With regard to the model, the Tempura statements in
Listing V hold. They are actually an instantiation of a template
that is used by the APRIL-compiler for translating the move-
to-operator if used in an APRIL statement like in Listing VI.

all elements in Store move to Bay over Gate1.

Listing VI. USAGE OF THE ALL-ELEMENTS-MOVE-TO OPERATOR.

The formatting of the statements is according to String-
Template described by Parr [25] and contains generic parts
that get filled according to the parameters of the operator in
Listing VI.

VIII. RELATED WORK

SBVR-Structured-English (SE) and similarly RuleSpeak
[26] are so-called controlled languages to express business
rules in a restricted version of natural language. Both are based
on SBVR, which defines semantic parts, e.g., terms and facts to
determine business concepts and their relations. The syntactic

representation of these parts is achieved by text formatting and
coloring, which could be used to aid parsing SE-statements.
From our viewpoint, mixing technical information with the
textual representation is problematic because formalized and
natural language semantics have to be maintained in one and
the same statement. However, natural language does not utilize
text formatting information for transporting semantics.

Nevertheless, SE is used for model representation, which
Kleiner et al. [27] utilize as a starting point for translating
schema descriptions (in SE) into UML-class models, which
is helpful for software development. Unfortunately, they leave
the treatment of business rules for further work. Regarding the
customizability aspect of business statements, the approach of
Sosunovas et al. [28] presents another way, utilizing regular
patterns. They pursue a three-step approach to constructing
business rule templates that are first defined on an abstract level
and then tailored to fit a specific domain with every further
refinement step. Therewith, they provide precise meta-model-
based semantics to the template elements but -as they admit-
not to the business rule resulting from using the template.

In the field of semantic web, several controlled natural
language (CNL) approaches have been elaborated. Hart et al.
[29] propose a CNL called Rabbit to specify ontologies. The
language provides means to specify concepts and relations in a
dictionary like manner. Axioms describe the kind of relations
between concepts and also allow to specify cardinalities on
relations and constraints based on propositional logic. More-
over, Rabbit allows to reference other ontologies to make use
of already existing concepts and axioms.

A pragmatic approach to define natural language constructs
in CNL is presented by Spreeuwenberg et al. [30] and van
Grondelle et al. [31]. They use patterns with a regular syntax
consisting of constants and placeholders that can be replaced
by instances of meta model concepts. Each pattern is related to
a graph in the meta model to represent its semantics exclusively
based on that meta model. However, from our viewpoint the
interesting thing is that they emphasis the particular simplicity
of the construction of patterns even for untrained persons. That
is also what we found out with our APRIL definitions.

Another interesting approach in generating tests from re-
quirements specifications is introduced by Nebut et al. [32].
They utilize UML use-case models combined with contracts
represented by pre- and post- conditions to specify sequences
of state transitions. Based on these contracts, they simulate
the modeled behavior by intentionally ”instantiating” the use
case model. This approach could be a worthy extension to
ours, which uses historical data that could also be generated by
simulation. Moreover, Nebut et al. show how to generate test-
cases from sequence diagrams and test objectives, that cater
to a defined test coverage.

IX. CONCLUSION AND FUTURE WORK

With APRIL we want to provide a customizable and
semantically well-founded notation that is close to natural
language and suitable for humans as well as for computers. A
core feature of APRIL is the ability to define abstract mix-fix
operators that are particularly useful to define natural language
expressions as reusable patterns. We consider this pattern
building technique as sufficiently intuitive even for untrained

79

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

persons, which we could show in a case study with 30 test
persons. The semantic underpinning of the mix-fix operators
is achieved by customizable atomic formulas. Te ease the use
of APRIL, we have encorporated additional atomic formulas
that are based on frequently used constraints in practice, so
called common constraints. The syntax of atomic formulas
can be tailor-made for any domain. This is exemplified by
a new atomic formula taken from the logistics domain to
model behavior. We extend APRIL’s grammar and present
a mapping to the interpretation function based on Interval
Temporal Logic. With the use of the new atomic formula and
the transformation into the instantiated Tempura statement, ex-
ecutable test code can be generated. This way, our framework
contributes to an integrated software development process by
providing unambiguous and understandable business rules that
can be used for specification purposes and for automatically
generating tests.

From the current viewpoint, some issues are still open. Fur-
ther evaluation is needed to determine wether the specification
of the grammar rules and their corresponding rewrite rules are
suitable to a typical requirements engineer. The use of OCL
and especially Tempura, for creating the templates requires a
considerable amount of skills. Moreover, using APRIL require-
ments requires a basic understanding of logic and set-theory.
It has to be discovered if the aforementioned challenges are
manageable by the typical requirements engineer in reasonable
amout of training-time. Hence, future work will target on
refining the presented approach with a focus on methodologies
to improve APRIL’s usability.

ACKNOWLEDGEMENTS

The authors are greatful for many hours of inspiring dis-
cussion and feedback received from Hans-Michael Windisch.

REFERENCES

[1] Christian Bacherler, B. Moszkowski, C. Facchi, and A. Huebner, “Au-
tomated Test Code Generation Based on Formalized Natural Language
Business Rules,” in ICSEA 2012, The Seventh International Conference
on Software Engineering Advances: IARIA Conference., 2012, pp. 165–
171.

[2] C. Bacherler, C. Facchi, and H.-M. Windisch. (2010) Enhancing
Domain Modeling with Easy to Understand Business Rules. HAW-
Ingolstadt. [retrieved: 09,2012]. [Online]. Available: http://www.haw-
ingolstadt.de/fileadmin/daten/allgemein/dokumente/Working
Paper/ABWP 19.pdf

[3] K. Beck, Test-driven development: by example. Addison-Wesley
Professional, 2003.

[4] P. Liggesmeyer, Software-Qualität. Spektrum, Akad. Verl, 2002.
[5] Object Management Group. (2010) OCL Specification:

version 2.3.1. [retrieved: 09,2012]. [Online]. Available:
http://www.omg.org/spec/OCL/2.3.1/PDF/

[6] B. Moszkowski, Executing Temporal Logic Programs. Cambridge,
1986.

[7] A. van Lamsweerde, Requirements engineering: from system goals to
UML models to software specifications. Chichester: Wiley, 2009.

[8] J. Cabot, R. Pau, and R. Raventós, “From UML/OCL to SBVR speci-
fications: A challenging transformation,” Information Systems, vol. 35,
no. 4, pp. 417–440, 2010.

[9] Object Management Group. (2010) UML Specification: version 2.2.
[retrieved: 09,2012]. [Online]. Available: www.omg.com/uml

[10] T. A. Halpin, “Verbalizing Business Rules : Part 1-16,” Business Rules
Journal, 2006.

[11] C. Rupp, Requirements-Engineering und -Management: Professionelle,
iterative Anforderungsanalyse für die Praxis, 5th ed. München and
Wien: Hanser, 2009.

[12] N. Danielsson and U. Norell, “Parsing mixfix operators,” Proceedings
of the 20th International Symposium on the Implementation and Appli-
cation of Functional Languages (IFL 2008), 2009.

[13] T. Parr. (2012) ANTLR v3. [retrieved: 09,2012]. [Online]. Available:
http://www.antlr.org/

[14] ——, The Definitive ANTLR Reference. Pragmatic Bookshelf, 2007.
[15] A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers: principles,

techniques, and tools. Pearson/Addison Wesley, 2007.
[16] D. Costal, C. Gómez, A. Queralt, R. Raventós, and E. Teniente,

“Facilitating the Definition of General Constraints in UML,” in Model
Driven Engineering Languages and Systems, ser. Lecture Notes in
Computer Science, O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio,
Eds. Springer Berlin / Heidelberg, 2006, vol. 4199, pp. 260–274.

[17] E. Miliauskait and L. Nemurait, “Representation of integrity constraints
in conceptual models,” Information technology and control, Kauno
technologijos universitetas, ISSN, pp. 34–4, 2005.

[18] E. Miliauskaite and L. Nemuraite, “Taxonomy of integrity constraints
in conceptual models,” Proceedings of IADIS Database Systems, 2005.

[19] S. Navathe and e. Ramez, Fundamentals of Database Systems.
Addison-Wesley, 2002.

[20] T. Halpin, A. Morgan, and T. Morgan, Information modeling and
relational databases. Morgan Kaufmann, 2008.

[21] S. Mellor and M. Balcer, Executable UML: A foundation for model-
driven architectures. Addison-Wesley Longman Publishing Co., Inc,
2002.

[22] B. Meyer, “Applying Design by Contract,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[23] Rifidi Community. (2012) Rifidi-Platform. [retrieved: 09,2012].
[Online]. Available: http://www.transcends.co/community

[24] Eclipse Open Plattform Community. (2012) AspectJ: Version 1.7.0. [re-
trieved: 09,2012]. [Online]. Available: http://www.eclipse.org/aspectj/

[25] T. Parr. (2012) String Template: Version 4.0. [retrieved: 09,2012].
[Online]. Available: http://www.stringtemplate.org/

[26] Object Management Group. (2008) SBVR Specification:
version 1.0. [retrieved: 09,2012]. [Online]. Available:
http://www.omg.org/spec/SBVR/1.0/

[27] M. Kleiner, P. Albert, and J. Bézivin, “Parsing SBVR-Based Controlled
Languages,” in Model Driven Engineering Languages and Systems,
ser. Lecture Notes in Computer Science, A. Schürr and B. Selic, Eds.
Springer Berlin / Heidelberg, 2009, vol. 5795, pp. 122–136.

[28] S. Sosunovas and O. Vasilecas, “Precise notation for business rules
templates,” Databases and Information Systems, 2006 7th International
Baltic Conference on, pp. 55–60, 2006.

[29] G. Hart, M. Johnson, and C. Dolbear, “Rabbit: Developing a Control
Natural Language for Authoring Ontologies,” in The Semantic Web:
Research and Applications, ser. Lecture Notes in Computer Science,
S. Bechhofer, M. Hauswirth, J. Hoffmann, and M. Koubarakis, Eds.
Springer Berlin Heidelberg, 2008, vol. 5021, pp. 348–360.

[30] S. Spreeuwenberg, J. van Grondelle, R. Heller, and G. Grijzen, “Using
CNL techniques and pattern sentences to involve domain experts in
modeling,” Controlled Natural Language, pp. 175–193, 2012.

[31] J. van Grondelle, R. Heller, E. van Haandel, and T. Verburg, “Involving
business users in formal modeling using natural language pattern
sentences,” Knowledge Engineering and Management by the Masses,
pp. 31–43, 2010.

[32] C. Nebut, F. Fleurey, Y. Le Traon, and J. Jézéquel, “Automatic test
generation: A use case driven approach,” Software Engineering, IEEE
Transactions on, vol. 32, no. 3, pp. 140–155, 2006.

80

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Design and Classification of Mutation Operators for
Abstract State Machines

Jameleddine Hassine
Department of Information and Computer Science

King Fahd University of Petroleum and Minerals, Dhahran, KSA
jhassine@kfupm.edu.sa

Abstract—Mutation testing is a well established fault-based
technique for assessing and improving the quality of test suites.
Mutation testing can be applied at different levels of abstraction,
e.g., the unit level, the integration level, and the specification level.
Designing mutation operators is the most critical activity towards
conducting effective mutation testing and analysis. Mutation
operators are well defined for a number of programming (e.g., C,
Java, etc.) and specification (e.g., FSM, Petri Nets, etc.) languages.
In this paper, we design and classify mutation operators for
the Abstract State Machines (ASM) formalism. The designed
operators are defined based on the types of faults that may
occur in ASM specifications and can be classified into three
categories: (1) Domain operators, (2) function update operators,
and (3) transition rules operators. Furthermore, a prototype
mutation tool for the CoreASM language, has been built to
automatically generate mutants and check their validity. We
illustrate our approach using a simple CoreASM implementation
of the Fibonacci series. Finally, an empirical comparison of the
designed operators is presented and discussed.

Keywords—Mutation testing; specification; mutation operator;
Abstract State Machines (ASM); domain operators; function update
operators; transition rules operators; CoreASM.

I. INTRODUCTION

In this article, we describe an extension of our work on de-
signing Abstract State Machines mutation operators published
in [1].

Fault based testing strategies aim at finding prescribed faults
in a program [2]. Mutation testing [3] is a well established
fault-based testing technique for assessing and improving the
quality of test suites. Mutation testing uses mutation opera-
tors to introduce small modifications, or mutations, into the
software artifact (i.e., source code or specification) under test.
Mutation operators are classified by the language constructs
they are created to alter. Given the fact that a program/spec-
ification being mutated is syntactically correct, a mutation
operator must produce a mutant that is also syntactically
correct. The objective is then to select test cases that are
capable to distinguish the behavior of the mutants from the
behavior of the original artifact. Such test cases are said to
kill the mutants. However, it may also be that the mutant
keeps the program’s semantics unchanged-and thus cannot be
detected by any test case. Such mutants are called equivalent
mutants. The detection of equivalent mutants is, in general, one
of biggest obstacles for practical usage of mutation testing. The

effort needed to check if mutants are equivalent or not, can be
very high even for small programs [4].

Since the number of possible faults for a given program or
specification can be large, mutation-based testing strategies are
based on the following two principles: (1) the Competent Pro-
grammer Hypothesis [3], which states that competent program-
mers tend to write programs that are close to being correct. In
other words, a program written by a competent programmer
may be incorrect but it is generally likely close to being correct
(containing relatively simple faults) (2) the Coupling Effect [3],
which states that a test data set that catches all simple faults in
a program is so sensitive that it will also catch more complex
faults. Analogously to the Competent Programmer Hypothesis
[3], Ammann and Black [5] have proposed the Competent
Specifier Hypothesis stating that analysts write specifications
which are likely to be close to what is desired.

In a recent survey on the development of mutation testing,
Jia and Harman [4] have stated that more than 50% of the
mutation related publications have been applied to Java [6],
[7], Fortran [8], [9] and C [10]. Although mutation testing
has mostly been applied at the source code level, it has also
been applied at the specification and design level [11], [4].
Formal specification languages to which mutation testing has
been applied include Finite State Machines [12], [13], [14],
Statecharts [15], Petri Nets [16], and Estelle [17].

Fabbri et al. [12] have applied specification mutation to
validate specifications based on Finite State Machines (FSM).
They have proposed 9 mutation operators, representing faults
related to the states (e.g., wrong-starting-state, state-extra,
etc.), transitions (e.g., event-missing, event-exchanged, etc.)
and outputs (e.g., output-missing, output-exchanged, etc.) of
an FSM. In a related work, Fabbri et al. [15] have defined
mutation operators for Statecharts, an extension of FSM for-
malism, while Batth et al. [18] have applied mutation testing to
Extended Finite State Machines (EFSM) formalism. Hierons
and Merayo [14] have investigated the application of mutation
testing to Probabilistic (PFSMs) or stochastic time (PSFSMs)
Finite State Machines. The authors have defined new mutation
operators representing FSM faults related to altering proba-
bilities (PFSMs) or changing its associated random variables
(PSFSMs) (i.e., the time consumed between the input being
applied and the output being received).

The widespread interest in model-based testing techniques
provides the major motivation of this research. We, in par-
ticular, focus on investigating the applicability of fault-based

81

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

testing (vs. scenario-based testing) to Abstract State Machines
(ASM) [19] specifications. In this paper, we extend our pre-
vious work [1] on designing ASM-based mutation operators
by:
• Extending the set of operators, introduced in [1], by

adding the Call Rule Operators, the Pick Rule Oper-
ators, and the Extend Rule Operators.

• Refining the classification of the proposed ASM-based
mutation operators. The resulting ASM-based operators
can be classified using three categories: (1) ASM domain
operators, (2) ASM function update operators, and (3)
ASM transition rules operators.

• Presenting CoreASM [20], an ASM-based language,
illustrative examples of the proposed mutation operators.

• Presenting an enhanced version of our CoreASM [20]
mutation prototype tool, for automatic generation, vali-
dation, and execution of CoreASM mutants.

• Analyzing the generated mutants using an illustrative
example of a CoreASM specification of Fibonacci series.

• Presenting an empirical comparison of the pro-
posed CoreASM mutation operators using three Core-
ASM specifications: Dining Philosophers, Vending Ma-
chine, and Rail Road Crossing.

The remainder of this paper is organized as follows. The
next section provides an overview of the Abstract State Ma-
chines (ASM) [19] formalism and the CoreASM language.
In Section III, we define and classify a collection of mu-
tation operators for CoreASM language. An analysis of the
generated mutants is presented in Section IV. Section V
describes the CoreASM Mutation toolkit. To demonstrate the
applicability of the proposed approach, Section VI describes
the application of CoreASM mutation operators to Fibonacci
specification. An empirical comparison of CoreASM-based
mutation operators is presented in Section VII. Finally, con-
clusions are drawn in Section VIII.

II. ABSTRACT STATE MACHINES

Abstract State Machines (ASMs), originally known
as Evolving Algebras, were first introduced by Yuri Gure-
vich [21], [19] in an attempt to improve on Turing’s thesis [22]
so that:

“Every algorithm is an ASM as far as the behav-
ior is concerned. In particular the given algorithm
can be step-for-step simulated by an appropriate
ASM [23].” (The ASM Thesis)

This means that an activity that is conceptually done in one
step can be executed in the model in one step. This is in
contrast to Turing machines, where simple operations might
need any finite number of steps.

Abstract State Machines have been used to capture sequen-
tial, parallel and distributed algorithms. ASMs combine two
fundamental concepts of transition systems: (1) transitions to
model the dynamic aspects of a system, and (2) abstract states
to model the static aspects at any desired level of abstraction.
Börger and Stärk [24] further developed ASMs into a system
engineering method that guides the development of software
from requirements capture to implementation.

Widely recognized applications of ASMs include semantic
foundations of a wide variety of programming languages
like C++ [25], C# [26], and Java [27], logic programming
languages such as Prolog [28] and its variants, hardware
languages such as VHDL [29], system design languages like
the ITU-T standard for SDL [30], [31], Web service description
languages [32], design of distributed systems [33], [34], etc.

A. ASM Program
Abstract State Machines (ASM) [19] define a state-based

computational model, where computations (runs) are finite or
infinite sequences of states {Si} obtained from a given initial
state S0 by repeatedly executing transitions δi:

S0
δ1 // S1

δ2 // S2
. . . δn // Sn

An ASM A is defined over a fixed vocabulary V , a finite
collection of function names and relation names. Each function
name f has an arity (number of arguments that the function
takes). Function names can be static (i.e., fixed interpretation
in each computation state of A) or dynamic (i.e., can be altered
by transitions fired in a computation step). Dynamic functions
can be further classified into:
• Input functions that A can only read, which means that

these functions are determined entirely by the environ-
ment of A. They are also called monitored.

• Controlled functions of A are those which are updated
by some of the rules of A and are never changed by the
environment.

• Output functions of A are functions which A can only
update but not read, whereas the environment can read
them (without updating them).

• Shared functions are functions which can be read and
updated by both A and the environment.

Static nullary (i.e., 0-ary) function names are called constants
while Dynamic nullary functions are called variables.

Given a vocabulary V , an ASM A is defined by its program
P and a set of distinguished initial states S0. The program
P consists of transition rules and specifies possible state
transitions of A in terms of finite sets of local function updates
on a given global state. Such transitions are atomic actions. A
transition rule that describes the modification of the functions
from one state to the next has the following form:

if Condition then <Updates> endif

where Updates is a set of function updates (containing only
variable free terms) of the form:

f(t1,t2,. . .,tn) := t

where t1, t2, . . ., tn, and t are first order terms.
The set of function updates are simultaneously executed

when Condition (called also guard) is true. In a given state,
first all parameters ti, t are evaluated to their values, vi, v,
then the value of f(v1,. . .,vn) is updated to v. Such pairs of
a function name f, which is fixed by the signature, and an
optional argument (v1,. . .,vn), which is formed by a list of
dynamic parameters value vi, are called locations.

82

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Example 1: The following rule yields the update-set {(x, 2),
(y(0), 1)}, if the current state of the ASM is {(x, 1), (y(0),
2)}:

if (x = 1) then x := y(0)
y(0) := x

In every state, all the rules which are applicable are simulta-
neously applied. A set of ASM updates is called consistent if it
contains no pair of updates with the same location updated with
two different values, i.e., no two elements (loc,v) and (loc,v’)
with v ̸=v’. In the case of inconsistency, the computation does
not yield a next state.

Example 2: The following update set {(x, 1), (y, 2), (x, 2),
(y, 2)}, is inconsistent due to the conflicting updates for x (i.e.,
x is updated with different values 1 and 2). It is worth noting
that even though y is updated twice, it does not lead to an
inconsistent update since it has been updated with the same
value 2.

x := 1

y := 2

x := 2

y := 2

For a detailed description and a rigorous mathematical defi-
nition of the semantic foundations of Abstract State Machines,
the reader is invited to consult [19], [24], [35], [36].

B. CoreASM Language
The CoreASM project [37] focuses on the design of a lean

executable ASM language, in combination with a supporting
tool environment for high-level design, experimental validation
and, where appropriate, formal verification of abstract system
models [20]. The CoreASM engine, implemented in Java,
consists of a parser, an interpreter, a scheduler, and an abstract
storage. The interpreter, the scheduler, and the abstract storage
work together to simulate an ASM run. For a detailed descrip-
tion of CoreASM architecture, reader is invited to consult [20].

CoreASM is designed with extensibility in mind, supporting
the extension of both the specification language and the exe-
cution engine’s behavior through plug-ins (e.g., Standard, Ker-
nelExtensions, Abstraction, TurboASM, etc.).

Figure 1 shows a typical structure of a CoreASM specifi-
cation. Every specification starts with the keyword CoreASM
followed by the name of the specification. Plugins that are
required are then listed with the keyword use followed by the
name of the plugin (e.g., use Standard). The Header block
is where various definitions take place (e.g., Declaration of
an enumeration type). The init rule (the rule that creates the
initial state) is defined by the keyword init followed by a rule
name. This would be the rule that initializes the state of the
ASM machine. The body of the init rule must be declared in
the rule declaration block along with other user defined rules.

To run a CoreASM specification, two user interfaces are
available:

enum MyEnum = {Ele1, Ele2}

function controlled Association: MyEnum -> NUMBER

Specify the Init Rule

use Standard

use TurboASM

CoreASM SpecificationName

Use plugins

CoreASM Specification (.coreasm)

Header Block (various definitions)

init InitRule

rule InitRule =

// InitRule body

rule rule1 =
// rule1 body

Rule Declaration Block

Fig. 1. Typical Structure of a CoreASM Specification

• A comprehensive command-line user interface
called Carma, which accepts the name of the
specification file and optional termination conditions
(e.g., --steps 10 and/or --empty-updates) as arguments.
For example, the following command runs Spec.coreasm
using Carma and stops after 10 steps, or after a step
that generates empty updates.

carma --steps 10 --empty-updates Spec.coreasm
• A graphical interactive development environment in the

Eclipse platform, known as the CoreASM Eclipse Plugin.
In what follows, we define and classify mutation operators

for Abstract State Machines.

III. ABSTRACT STATE MACHINES MUTATION OPERATORS

In order to formulate mutation operators for ASM for-
malism, we use the following guiding principles, introduced
in [38]:
• Mutation categories should model potential faults.
• Only simple, first order mutants (i.e., a single change to

an artifact) should be generated.
• Only syntactically correct mutants should be generated.

A. Categories of ASM Mutation Operators
There exist several aspects of an ASM specification that can

be subject to faults. These aspects can be classified into three
main categories of mutation operators, each category contains
many mutation operators, one per a fault class:

1) ASM domain mutation operators.
2) ASM function update mutation operators.
3) ASM transition rules mutation operators.
Although the proposed categorization yields few generic

categories that can be applied to any ASM-based language,
the operators themselves are dependent on the syntax of the
ASM-based language. Indeed, given that a specification being
mutated is syntactically correct, a mutation operator must
produce a mutant that is also syntactically correct. To do so,

83

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

it is required that a valid syntactic construct be mapped to
another syntactic construct in the same language. In addition,
peculiarities of language syntax have an effect on the kind
of mistakes that a modeler could make. For instance, aspects
such as procedural (e.g., CoreASM [20] language) versus
object oriented (e.g., AsmL [39] language) are captured in the
language syntax. In this paper, we target the CoreASM [20]
language.

B. ASM Domain Mutation Operators
A domain (called also universe or background) consists

of a set of declarations that establish the ASM vocabulary.
Each declaration establishes the meaning of an identifier
within its scope. For example, the following CoreASM [20]
code defines a new enumeration background PRODUCT
having three elements (Soda, Candy, and Chips) and three
functions selectedProduct, price, and packaging:

enum PRODUCT = {Soda, Candy, Chips}
function selectedProduct: → PRODUCT
function price: PRODUCT → NUMBER
function packaging: PRODUCT*PRODUCT → NUMBER

ASM domains/universes can be mutated by adding or re-
moving elements:
• Extend Domain Operator (EDO): the domain is extended

with a new element.
• Reduce Domain Operator (RDO): the domain is reduced

by removing one element.
• Empty Domain Operator (EYDO): the domain is emp-

tied.
These mutation operators can be applied to enumeration

(See Table I), universes, collections, the set background, the
list background, and the map background.

TABLE I. EXAMPLES OF ASM DOMAIN MUTATION OPERATORS
FOR CoreASM

Domain Mutation Operator CoreASM Mutant S’

Extend Domain Operator
(EDO)

enum PRODUCT = {Soda, Candy,
Chips, Sandwich}

Reduce Domain Operator
(RDO)

enum PRODUCT = {Soda, Candy}

Empty Domain Operator
(EYDO)

enum PRODUCT = {}

C. ASM Function Update Mutation Operators
A function update has the following form:

f(t1, t2, . . ., tn):= value

Depending on the type of operands, the traditional opera-
tors [8], [40] such as Absolute Value Insertion (ABS), Arith-
metic Operator Replacement (AOR), Logical Operator Re-
placement (LOR), Statement Deletion (SDL), Scalar Variable
Replacement (SVR), and Unary Operator Insertion (UOI) can
be applied. In addition to these traditional mutation operators,
we define Function Parameter Replacement (FPR) operator,

where parameters of a function are replaced by other parame-
ters of a compatible type. Two Types are compatible if values
of one type can appear wherever values of the other type are
expected, and vice versa.
• Function Parameter Replacement (FPR): parameters of

a function are replaced by other parameters of the same
type.

• Function Parameter Permutation (FPP): parameters of
a function of same type are permuted.

Table II illustrates some examples of the proposed function
update mutation operators.

TABLE II. EXAMPLES OF FUNCTION UPDATE MUTATION OPERATORS
FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

ABS x := a + b x := a + abs(b)
AOR x := a + b x := a - b
LOR y := m and n y := m or n
SDL x := a + b skip
SVR x := a * b a := a * b
UOI x := 3 * a x := 3 * -a
FPR price(Soda):=70 price(Candy):=70
FPP packaging(Soda, Candy):=1 packaging(Candy, Soda):=1

D. ASM Transition Rules Mutation Operators
The transition relation is specified by guarded function

updates, called rules, describing the modification of the func-
tions from one state to the next. An ASM state transition is
performed by firing a set of rules in one step.

1) Conditional Rule Mutation Operators: The general
schema of an ASM transition system appears as a set of
guarded rules:

if Cond then Rulethen else Ruleelse endif

where Cond, the guard, is a term representing a boolean
condition. Rulethen and Ruleelse are transition rules.

Many types of faults may occur on the guards of conditional
rules [41]. Some of these faults include Literal Negation
fault (LNF), Expression Negation fault (ENF), Missing Literal
fault (MLF), Associative Shift fault (ASF), Operator Refer-
ence fault (ORF), Relational Operator fault (ROF), Stuck at
0(true)/1(false) fault (STF). Table III illustrates the mutation
operators addressing the above fault classes. Furthermore, we
define three additional conditional rule mutation operators:
• Then Rule Replacement Operator (TRRO): replaces the

rule Rulethen by another existing rule.
• Else Rule Replacement Operator (ERRO): replaces the

rule Ruleelse by another existing rule.
• Then Else Rule Permutation Operator (TERPEO): per-

mutes the Rulethen and the Ruleelse rules. It is worth
noting that operators TERPEO and ENO would produce
syntactically different but semantically equivalent mu-
tants.

2) Sequence Rule Mutation Operators: The sequence rule
aims at executing rules/function updates in sequence. Tur-
boASM plugin offers two forms of sequential rules:

seq Rule1 next Rule2 (1)

84

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. EXAMPLES OF CONDITIONAL RULE MUTATION OPERATORS FOR CoreASM

Mutation Operator CoreASM Spec S CoreASM Mutant S’

LNO (Literal Negation) if (a and b) if (not a and b)
ENO (Expression Negation) if (a and b) if not (a and b)
MLO (Missing Literal) if (a and b) if (b)
ASO (Associative Shift) if (a and (b or a)) if ((a and b) or a)
ORO (Operator Reference) if (a and b) if (a or b)
ROO (Relational Operator) if (x >= c) if (x <= c)
STO (Stuck at 0/1) if (a and b) if (true)
TRRO (Then Rule Replacement) if a then R1 else R2 if a then R3 else R2
ERRO (Else Rule Replacement) if a then R1 else R2 if a then R1 else R3
TERPEO (Then Else Rule Permutation) if a then R1 else R2 if a then R2 else R1

Evaluates Rule1, applies the generated updates in a virtual
state, and evaluates Rule2 in that state. The resulting update
set is a sequential composition of the updates generated by
Rule1 and Rule2.

seqblock Rule1 . . . Rulen endseqblock (2)

Similar to the seq rule (above), this rule form executes the
listed rules in sequence. The resulting update set is a sequential
composition of the updates generated by Rule1 . . . Rulen.

We define the following mutation operators for the sequence
rule:
• Add Rule Operator (ARO): adds a new rule to the

sequence of rules.
• Delete Rule Operator (DRO): deletes a rule from the

sequence of rules.
• Replace Rule Operator (RRO): replaces one of the rules

in the sequence by another rule.
• Permute Rule Operator (PRO): changes the order of the

sequence rules by permuting two rules.
Table IV illustrates examples of the sequence rule mutation

operators.

TABLE IV. EXAMPLES OF THE SEQUENCE RULE MUTATION
OPERATORS FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

ARO seqblock R1 R2 endseqblock seqblock R1 R2 R3 endseqblock
DRO seqblock R1 R2 R3 endseqblock seqblock R1 R3 endseqblock
RRO seqblock R1 R2 endseqblock seqblock R1 R3 endseqblock
PRO seqblock R1 R2 endseqblock seqblock R2 R1 endseqblock

3) Block Rule Mutation Operators: If a set of ASM tran-
sition rules have to be executed simultaneously, a block rule
(included in the BlockRule plugin) is used:

par Rule1 . . . Rulen endpar

The update generated by this rule is the union of all the updates
generated by Rule1 . . .Rulen. The sequence rule operators
(i.e., ARO, DRO, and RRO defined in Section III-D2) can be
applied to the block rule. Table V illustrates the sequence-block
exchange mutation operator.

Applying PRO to a block rule, will produce an equiv-
alent specification (i.e., par R1 R2 endpar is equivalent
to par R2 R1 endpar). Section IV-B discusses equivalent
mutants.

TABLE V. EXAMPLES OF THE BLOCK RULE MUTATION OPERATORS
FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

ARO par R1 R2 endpar par R1 R2 R3 endpar
DRO par R1 R2 R3 endpar par R1 R3 endpar
RRO par R1 R2 endpar par R1 R3 endpar

4) Sequence-Block Exchange Operator: In addition to
the sequence and block mutation operators, we define
the Sequence-Block Exchange Operator (SBEO) to exchange
a sequence rule with a block rule and vice versa. Table VI
illustrates the sequence-block exchange mutation operator.

TABLE VI. EXAMPLES OF THE SEQUENCE-BLOCK RULE MUTATION
OPERATOR

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

SBEO seqblock R1 R2 endseqblock par R1 R2 endpar
SBEO par R1 R2 endpar seqblock R1 R2 endseqblock

5) Choose Rule Mutation Operators: The choose rule con-
sists on selecting elements (non deterministically) from spec-
ified domains that satisfy guards φ, then evaluates Ruledo. If
no such elements exist, then evaluates Ruleifnone.

choose x1 in D1, . . ., xn in Dn with φ (x1, . . ., xn) do
Ruledo ifnone Ruleifnone

The with and ifnone blocks are optional. The guard φ may
be a simple boolean expression of predicate logic expressions.

To cover the choose rule, we define the following mutation
operators:
• Choose Domain Replacement Operator (CDRO): re-

places a variable domain with another compatible do-
main.

• Choose Guard Modification Operator (CGMO): alters
the guard φ using the operators described in Table III.
In this paper, we consider simple boolean expressions
as guards. Predicate logic expressions such as exists are
left for future work.

• Choose DoRule Replacement Operator (CDoRO): re-
places the rule Ruledo by another rule.

• Choose IfNoneRule Replacement Operator (CIRO):
replaces the rule Ruleifnone by another rule.

• Choose Rule Exchange Operator (CREO): replaces the
Ruledo rule by Ruleifnone rule.

Table VII illustrates the choose rule mutation operators.

85

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VII. EXAMPLE OF THE CHOOSE RULE MUTATION OPERATORS
FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

CDRO choose x in Set1 with (x
>= 0)

choose x in Set2 with (x
>= 0)

CGMO choose x in Set1 with (x
>= 0)

choose x in Set1 with (x
<= 0)

CDoRO choose x in Set1 do R1 choose x in Set1 do R2
CIRO choose x in Set1 do R1

ifnone R2
choose x in Set1 do R1
ifnone R3

CREO choose x in Set1 do R1
ifnone R2

choose x in Set1 do R2
ifnone R1

6) Forall Rule Mutation Operators: The synchronous par-
allelism is expressed by a forall rule, which has the following
form:

forall x1 in D1, . . ., xn in Dn with φ do Ruledo

where x1, . . ., xn are variables, D1, . . ., Dn are the domains
where xi take their value, φ is a boolean condition, Ruledo
is a transition rule containing occurences of the variables xi

bound by the quantifier.
We define the following mutation operators for the forall

rule that are quite similar to the ones of the choose rule :
• Forall Domain Replacement Operator (FDRO): replaces

a variable domain with another compatible domain.
• Forall Guard Modification Operator (FGMO): alters the

guard φ using the set of operators introduced in Table
III.

• Forall DoRule Replacement Operator (FDoRO): re-
places the rule Ruledo by any other rule.

TABLE VIII. EXAMPLES OF THE FORALL RULE MUTATION
OPERATORS FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

FDRO forall x in Set1 with (x = 0)
do R1

forall x in Set2 with (x >=
0) do R1

FGMO forall x in Set1 with (x = 0)
do R1

forall x in Set1 with (x <=
0) do R1

FDoRO forall x in Set1 do R1 forall x in Set1 do R2

7) Choose-Forall Exchange Operator: In addition to the
proposed forall and choose rule mutation operators illustrated
in Tables VIII and VII, we define the Choose-Forall Exchange
Operator (CFEO) to exchange a choose rule with a forall rule
and vice versa (See Table IX).

TABLE IX. EXAMPLES OF THE CHOOSE-FORALL EXCHANGE
OPERATOR FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

CFEO forall x in Set1 do R1 choose x in Set1 do R1
CFEO choose x in Set1 do R1 forall x in Set1 do R1

8) Let Rule Mutation Operators: The let rule, included in
the LetRule plugin, assigns a value of a term t to the variable x
and then execute the rule Rule which contains occurrences of
the variable x. The syntax of a Let rule is:

let (x = t) in Rule

We define the following Let rule mutation operators (see
Table X):
• Let Variable Assignment Operator (LVAO): assigns a

different value to x, other than t, of a compatible type.
• Let Rule Replacement Operator (LRRO): replaces the

rule Rule by another rule that has occurrences of x.
• Let Rule Variable Replacement (LRVR): replaces the

variable x by another variable of same type.

TABLE X. EXAMPLES OF THE LET RULE OPERATORS FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

LVAO let x = 1 in R1 let x = 2 in R1
LRRO let x = 1 in R1 let x = 1 in R2
LRVR let x = 1 in R1 let y = 1 in R1

9) Call Rule Mutation Operators: The call rule executes the
previously defined transition rule R with the given parameters.
Parameters are passed in a call-by-name fashion; i.e., they are
passed unevaluated. The syntax of a Call rule is:

R(a1, . . . , an)

We define the following Call rule mutation operators (see
Table XI):
• Call Rule Parameter Replacement (CRPR): replaces the

actual rule parameter by another parameter of the same
type.

• Call Rule Parameter Exchange (CRPE): permutes actual
parameters if they are of the same type.

TABLE XI. EXAMPLE OF CALL RULE MUTATION OPERATOR

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

CRPR rule Add(a, b)= rule Add(a, b)=
return a+b return a+b

rule Main = rule Main =
addition := Add(x,y) addition := Add (x,z)

CRPE rule Add(a, b)= rule Add(a, b)=
return a+b return a+b

rule Main = rule Main =
addition := Add(x,y) addition := Add (y,x)

10)Pick Rule Mutation Operators: The pick rule, part of
the ChooseRule plugin, provides another way of pick non-
deterministically a value that satisfies a given condition from
an enumerable. Its syntax is as follows:

pick x in D with guard

To cover the pick rule, we define the following mutation
operators:
• Pick Domain Replacement Operator (PDRO): replaces

the domain D with another compatible domain.
• Pick Guard Modification Operator (PGMO): alters the

guard φ using the operators described in Table III.
Table XII illustrates the pick rule mutation operators.
11)Extend Rule Mutation Operators: The extend rule, part

of ExtendRule plugin, is used to construct new elements and
add them to a specific domain. The resulting update set is the
updates generated by Rule.

86

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XII. EXAMPLE OF THE PICK RULE MUTATION OPERATORS
FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

PDRO pick x in D1 with (x >=
0)

pick x in D2 with (x >=
0)

PGMO pick x in D1 with (x >=
0)

pick x in D1 with (x <=
0)

extend D with id do Rule

We define the following Extend rule mutation operators (see
Table XIII):
• Extend Domain Replacement Operator (EDRO): re-

places the domain by another compatible domain.
• Extend Rule Replacement Operator (ERRO): replaces

the rule Rule by another one.
• Extend Id Replacement Operator (EIRO): extends the

domain with another element of a compatible type (e.g.,
extend the domain D1 with id2 instead of id1). All
occurrences of the id are replaced in Rule.

TABLE XIII. EXAMPLES OF THE EXTEND RULE OPERATORS
FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

EDRO extend D1 with id1 do R1 extend D2 with id1 do R1
ERRO extend D1 with id1 do R1 extend D1 with id1 do R2
EIRO extend D1 with id1 do R1 extend D1 with id2 do R1

Other CoreASM-specific rules and constructs such as Case
rule, add/remove List constructs, enqueue/dequeue Queue con-
structs, etc. are not covered in this paper.

E. CoreASM: What is not Mutated
Some mutation operators may have a possible infinite do-

main on which they operate. For instance, given the fact that
the set of types might be infinite, it is difficult to determine
how the declaration of a variable of one specific type may
be mutated. This is applicable to libraries, functions names,
etc. For the CoreASM language, the following entities are not
mutated:
• Variable declarations.
• Format of strings in I/O functions.
• The init rule declaration (i.e., init InitRule)
• Plugin names introduced using the use keyword.
• Rule declarations
• Rule names indicating a call to a rule. Note that the

actual parameters in a Call rule are mutated (e.g., CRPR
and CRPE operators) but the rule names are not.

IV. ANALYSIS OF THE GENERATED MUTANTS

A. Inconsistent Updates
Applying SBEO operator may result into mutants that

are syntactically correct but containing inconsistent updates.
Therefore, the computation does not yield a next state. Ta-
ble XIV shows a simple CoreASM sequence rule and its

corresponding mutant after applying SBEO operator. The ex-
ecution of the produced mutant may lead to an inconsistent
update of variable a (i.e., in case variable a is updated twice
simultaneously with different values (a+1 ̸= b)).

TABLE XIV. APPLYING SBEO OPERATOR THAT LEADS TO AN
INCONSISTENT UPDATE

CoreASM Spec S CoreASM Mutant S’

rule Main = rule Main =
seqblock par

a := a + 1 a := a + 1
a := b a := b

endseqblock endpar

B. Equivalent Mutants
In many cases, applying CoreASM mutation operator pro-

duces a specification that is equivalent to the original specifica-
tion. For instance, the application of the PRO (Permute Rule
Operator) to a block rule (e.g., par R1 R2 endpar), would
produce a mutant (e.g., par R2 R1 endpar) that is equivalent
to the original specification.

Similarly, applying SBEO operator may produce a mutant
that is equivalent to the original specification. This might be
the case when the rules enclosed within the parallel/sequence
blocks are independent (i.e., with different functions updates).
Table XV shows a specifications S and its mutant S’. Rules “
a:=a+1” and “b:=b+1” are independent (i.e., Variables a and b
are updated independently). Hence, no test cases would kill
mutant S’. However, the original specification S produces 2
states (i.e., one a:= a + 1 and one for b := b +1) whereas its
mutant S’ produces only one single state (i.e., a:= a +1 and b
:= b + 1 are executed in one single step).

TABLE XV. APPLYING SBEO OPERATOR PRODUCES A MUTANT
THAT IS EQUIVALENT TO THE ORIGINAL SPEC

CoreASM Spec S CoreASM Mutant S’

rule Main = rule Main =
seqblock par

a := a + 1 a := a + 1
b := b + 1 b := b + 1

endseqblock endpar

In general, like traditional programming languages, detect-
ing CoreASM equivalent mutants is an undecidable prob-
lem [40].

V. COREASM MUTATION TOOLKIT

Figures 2, 3, and 4 illustrate the Microsoft .NET C#-
based, CoreASM Mutation Toolkit GUI. The GUI is composed
of four tab pages: (1) Mutants Generator tab (Figure 2), (2)
Mutants Viewer tab (Figure 3), (3) Test Execution tab (Figure
4), and (4) Help tab. The user starts with loading a CoreASM
specification, then he/she selects one or multiple operators
from the three operator categories. The produced mutants are
created and stored in separate files in a separate directory.

In Section III, we have stated that only syntactically correct
mutants are generated, as a result of applying the mutation

87

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

operators. This guiding principle is further enforced by check-
ing the validity of the produced mutants using the Carma
command line. The invalid mutants, if any, are then discarded.
The error output for syntactically invalid mutants is stored in
a log file.

The generated mutants can be viewed using the second tab
page (see Figure 3). Statistics about the type and the number
of produced valid mutants are listed in the log section.

The test execution GUI (Figure 4) allows for the execution
of test cases against the generated mutants. The test case
definition include a sequence of inputs that the specification
requires the user to enter, a sequence of expected outputs (one
per line), and a sequence of strings from which the output will
be extracted (one per line).

VI. ILLUSTRATIVE EXAMPLE: FIBONACCI SERIES

In this section, we apply mutation testing to a CoreASM
specification that produces Fibonacci numbers. The Fibonacci
numbers or Fibonacci series are the numbers in the following
integer sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

By definition, the first two numbers in the Fibonacci sequence
are 0 and 1, and each subsequent number is the sum of
the previous two. In mathematical terms, the sequence Fn of
Fibonacci numbers is defined by the recurrence relation:

Fn = Fn−1 + Fn−2

Figure 5 describes the CoreASM recursive implementation
for producing Fibonacci numbers. The user is asked to enter
a number from the standard input (the entered string is
converted into a Number and stored in variable n), then the
function fibo r is invoked and the output is printed on the
standard output using the print directive.

CoreASM Fibonacci
use Standard
init InitRule
rule InitRule =

seqblock
n := toNumber(input(”Enter n now \n:”))
print ”Fibonacci(” + n + ”) using pure recursion: ” + fibo r(n)
program(self) := undef

endseqblock
derived fibo r(x) =

local r in return r in
if x < 0 then r := 0
else if x < 2 then r := x
else r := fibo r(x-2) + fibo r(x-1)

Fig. 5. CoreASM Fibonacci Recursive Specification

The input domain for the Fibonacci example can be parti-
tioned into three blocks: (1) negative numbers, (2) zero, and
(3) positive numbers. The refinement of the resulting three
blocks lead to the creation of three test cases: (TC1) input:-
1, expected output:0, (TC2) input:0, expected output:0, and

Fig. 2. CoreASM Mutation Toolkit: Mutants Generation GUI

88

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 3. CoreASM Mutation Toolkit: Mutants Viewer GUI

Fig. 4. CoreASM Mutation Toolkit: Mutants Executor GUI

89

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(TC3) input:10, expected output:55.
Table XVI shows the distribution breakdown into separate

operators of the 48 generated mutants (i.e, valid mutants only).
The execution of a test case leads to one the following two
outputs:
• A numeric output value. For example, the execution

of the TC3 against mutant FibonacciRecursiveInput-
Mutant-ROO-27.coreasm (Figure 4) produces an output
equal to 0, which is different from the expected output
55. Hence the test case has killed the mutant. This
mutant is said to be of type error revealing.

• A null output in case the execution is not
conclusive. For example, the execution of TC3
against mutant FibonacciRecursiveInput-Mutant-AOR-
9.coreasm which replaces fibo r(x-2) with fibo r(x+2)
leads to a null output. Again, the test case has killed
the mutant.

Fourty seven mutants have been killed by the pro-
posed test suite. Mutant FibonacciRecursiveInput-Mutant-
ROO-1.coreasm that replaces x<0 by x<=0) remains alive.
This mutant is equivalent to the original specification and
cannot be killed by any test case.

TABLE XVI. GENERATED MUTANTS STATISTICS FOR THE FIBONACCI
EXAMPLE (FIGURE 5)

Mutation
Operator

Number of Valid Mutants Number of Killed
Mutants

ABS 6 6
AOR 4 4
SDL 3 3
SVR 3 3
UOI 6 6
STO 4 4
ENO 2 2
ROO 8 7
TRRO 2 2
ERRO 2 2
TERPEO 1 1
CRPR 6 6
SBEO 1 1
Total 48 47

The test set effectiveness (TCeff) (also called adequacy
score) is computed by the following equation:

TCeff =
Mk

Mt −Me
(3)

where Mk is the number of killed mutants, Mt is the total
number of generated mutants, and Me is the number of
equivalent mutants.

A test set effectiveness score of 100% is acquired for the
three proposed test cases.

VII. EMPIRICAL COMPARISON OF MUTATION
OPERATORS

To empirically compare the proposed mutation operators,
we ran experiments on three CoreASM specifications:
• Dining Philosophers [42] (98 LOC).
• Vending Machine [43] (208 LOC).
• Rail Road Crossing [44] (107 LOC).

Tables 6(a), 6(b), and 6(c) illustrate the number of resulting
mutants for each mutation operators for each specification. We
made the following observations:
• The number of mutants produced by domain operators

is low (2, 3, and 4 respectively). Indeed, we were able
to apply EDO only. Applying RDO and EYDO have
produced syntactically incorrect mutants for the three
specifications.

• The number of mutants produced by transition rules
operators (e.g., ROO, STO, etc.) is the highest amongst
the three categories. This is expected because the general
schema of an ASM transition system appears as a set of
guarded rules.

• The number of rules, the number of used variables, the
number of conditions, the number of rule calls, etc.
are important factors impacting the number of produced
CoreASM mutants.

• ROO (relational operator) is the operator that have
produced the largest number of mutants for the vending
machine and the rail road crossing examples.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have extended our previous work [1] on
designing mutation operators for the Abstract State Machines
(ASM) formalism. The developed operators are classified into
three categories: (1) Domain operators, (2) function update
operators, and (3) transition rules operators. Furthermore, a
prototype mutation tool for the CoreASM language, has been
built to automatically generate mutants and check their validity.
We have illustrated our approach using a simple CoreASM
implementation of the Fibonacci series. An initial empirical
comparison of the number of generated mutants is presented
and discussed.

As a future work, we are planning to enhance our em-
pirical study by considering parameters such as the number
of variables, the number of rules, etc, and by assessing the
effectiveness of the defined mutation operators.

REFERENCES

[1] J. Hassine, “Absbtract state machines mutation operators,” in The
Seventh International Conference on Software Engineering Advances
(ICSEA 2012), Lisbon, November 18-23, 2012, pp. 436–441.

[2] L. J. Morell, “A theory of fault-based testing,” IEEE Transactions on
Software Engineering, vol. 16, no. 8, pp. 844–857, Aug. 1990.

[3] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on
test data selection: Help for the practicing programmer,” Computer,
vol. 11, no. 4, pp. 34–41, Apr. 1978. [Online]. Available:
http://dx.doi.org/10.1109/C-M.1978.218136

[4] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649 –678, sept.-oct. 2011.

[5] P. Ammann and P. E. Black, “A specification-based coverage metric to
evaluate test sets,” in The 4th IEEE International Symposium on High-
Assurance Systems Engineering, ser. HASE ’99. Washington, DC,
USA: IEEE Computer Society, 1999, pp. 239–248.

[6] P. Chevalley and P. Thévenod-Fosse, “A mutation analysis tool for
java programs,” International Journal on Software Tools for Technology
Transfer, vol. 5, no. 1, pp. 90–103, 2003.

90

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

EDO, 2
LOR, 1

SDL, 21

SVR, 10FPR, 10

LNO, 5

ENO, 3

MLO, 4

ORO, 2
STO, 6

TRRO, 2 CFEO, 2

(a) Dining Philosophers Mutants Distribution

ABS, 5
EDO, 3

AOR,

16

SDL, 33

UOI, 4FPR, 16

SVR

, 14

PRO, 3LVAO, 5

SBEO,

15
CFEO, 5

ENO, 9

ROO, 36

STO, 18

TRRO, 5
ERRO, 5

(b) Vending Machine Mutants Distribution

EDO, 4

SVR, 9

SDL, 18

AOR, 12

CFEO, 4

ARO, 1

ENO, 12

LNO, 6MLO, 6

ORO, 3

ROO, 40

STO, 12

SBEO, 1

(c) Rail Road Crossing Mutants Distribution

Fig. 6. Number of Generated Mutants for Dining Philosophers, Vending Machine, and Rail Road Crossing CoreASM Specifications

[7] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated class
mutation system: Research articles,” Softw. Test. Verif. Reliab., vol. 15,
pp. 97–133, June 2005.

[8] A. J. Offutt, VI and K. N. King, “A fortran 77 interpreter for mutation
analysis,” in Papers of the Symposium on Interpreters and interpretive
techniques, ser. SIGPLAN ’87. New York, NY, USA: ACM, 1987, pp.
177–188. [Online]. Available: http://doi.acm.org/10.1145/29650.29669

[9] K. N. King and A. J. Offutt, “A fortran language system for mutation-
based software testing,” Software:Practice and Experience, vol. 21, pp.
685–718, June 1991.

[10] H. Agrawal, “Design of mutant operators for the C programming
language,” Software Engineering Research Center/Purdue University,
Tech. Rep., 1989.

[11] P. E. Black, V. Okun, and Y. Yesha, “Mutation operators for specifi-
cations,” in Proceedings of the 15th IEEE international conference on
Automated software engineering, ser. ASE ’00. Washington, DC, USA:
IEEE Computer Society, 2000, pp. 81–88.

[12] S. Pinto Ferraz Fabbri, M. Delamaro, J. Maldonado, and P. Masiero,
“Mutation analysis testing for finite state machines,” in Proceedings of
the 5th International Symposium on Software Reliability Engineering,
November 1994, pp. 220 –229.

[13] J.-h. Li, G.-x. Dai, and H.-h. Li, “Mutation analysis for testing finite
state machines,” in Proceedings of the 2009 Second International
Symposium on Electronic Commerce and Security - Volume 01, ser.
ISECS ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 620–624.

[14] R. M. Hierons and M. G. Merayo, “Mutation testing from probabilistic
and stochastic finite state machines,” J. Syst. Softw., vol. 82, pp. 1804–
1818, November 2009.

[15] S. C. P. F. Fabbri, J. C. Maldonado, T. Sugeta, and P. C. Masiero,
“Mutation testing applied to validate specifications based on state-
charts,” in Proceedings of the 10th International Symposium on Software
Reliability Engineering, ser. ISSRE ’99. Washington, DC, USA: IEEE
Computer Society, 1999, pp. 210–.

[16] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M. E. Delamaro,
and E. Wong, “Mutation testing applied to validate specifications based
on petri nets,” in Proceedings of the IFIP TC6 Eighth International
Conference on Formal Description Techniques VIII. London, UK,
UK: Chapman & Hall, Ltd., 1996, pp. 329–337.

[17] S. D. R. S. De Souza, J. C. Maldonado, S. C. P. F. Fabbri, and W. L.
De Souza, “Mutation testing applied to estelle specifications,” Software
Quality Control, vol. 8, pp. 285–301, December 1999.

[18] S. S. Batth, E. R. Vieira, A. Cavalli, and M. U. Uyar, “Specification of
timed efsm fault models in sdl,” in Proceedings of the 27th IFIP WG
6.1 international conference on Formal Techniques for Networked and
Distributed Systems, ser. FORTE ’07. Berlin, Heidelberg: Springer-
Verlag, 2007, pp. 50–65.

[19] Y. Gurevich, “Evolving Algebras 1993: Lipari Guide,” in Specification
and Validation Methods, E. Börger, Ed. Oxford University Press, 1995,
pp. 9–36.

[20] R. Farahbod, V. Gervasi, and U. Glässer, “CoreASM: An Extensible
ASM Execution Engine,” Fundamenta Informaticae, vol. 77, pp. 71–
103, January 2007.

[21] Y. Gurevich, “Evolving Algebras. A Tutorial Introduction,” Bulletin of
The European Association for Theoretical Computer Science, vol. 43,
pp. 264–284, 1991.

[22] A. M. Turing, “On computable numbers, with an application to the
Entscheidungsproblem,” Proc. London Math. Soc., vol. 2, no. 42, pp.

91

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

230–265, 1936.
[23] Y. Gurevich, “Abstract state machines: An overview of the project,” in

Foundations of Information and Knowledge Systems, ser. Lecture Notes
in Computer Science, D. Seipel and J. Turull-Torres, Eds. Springer
Berlin Heidelberg, 2004, vol. 2942, pp. 6–13.

[24] E. Börger and R. F. Stärk, Abstract State Machines: A Method for
High-Level System Design and Analysis. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2003.

[25] C. Wallace, “The semantics of the C++ programming language,” in
Specification and validation methods. New York, NY, USA: Oxford
University Press, Inc., 1995, pp. 131–164.

[26] E. Börger, N. G. Fruja, V. Gervasi, and R. F. Stärk, “A high-level
modular definition of the semantics of c#,” Theor. Comput. Sci., vol.
336, no. 2-3, pp. 235–284, May 2005.

[27] E. Börger and W. Schulte, “Defining the java virtual machine as plat-
form for provably correct java compilation,” in MFCS ’98: Proceedings
of the 23rd International Symposium on Mathematical Foundations of
Computer Science. London, UK: Springer-Verlag, 1998, pp. 17–35.

[28] E. Börger and D. Rosenzweig, “A mathematical definition of full
prolog,” Sci. Comput. Program., vol. 24, no. 3, pp. 249–286, 1995.

[29] U. Glässer, E. Börger, and W. Müller, “Formal definition of an abstract
vhdl’93 simulator by ea-machines,” in Formal Semantics for VHDL,
C. Delgado Kloos and P. T. Breuer, Eds. Kluwer Academic Publishers,
1995.

[30] U. Glässer and R. Karges, “Abstract state machine semantics of SDL,”
Journal of Universal Computer Science, vol. 3, no. 12, pp. 1382–1414,
1997.

[31] R. Eschbach, U. Glässer, R. Gotzhein, M. von Löwis, and A. Prinz,
“Formal definition of SDL-2000: Compiling and running SDL spec-
ifications as ASM models,” Journal of Universal Computer Science,
Special Issue on Abstract State Machines - Theory and Applications,
2001, springer-Verlag.

[32] R. Farahbod, U. Glsser, and M. Vajihollahi, “Specification and valida-
tion of the business process execution language for web services,” in
Abstract State Machines 2004. Advances in Theory and Practice, ser.
Lecture Notes in Computer Science, W. Zimmermann and B. Thalheim,
Eds. Springer Berlin / Heidelberg, 2004, vol. 3052, pp. 78–94.

[33] U. Glässer and Q.-P. Gu, “Formal description and analysis of a

distributed location service for mobile ad hoc networks,” Theor. Comput.
Sci., vol. 336, no. 2-3, pp. 285–309, May 2005.

[34] U. Glässer, Y. Gurevich, and M. Veanes, “Abstract communication
model for distributed systems,” IEEE Transactions on Software Engi-
neering, vol. 30, no. 7, pp. 458–472, Jul. 2004.

[35] Y. Gurevich, “Sequential abstract-state machines capture sequential
algorithms,” ACM Trans. Comput. Logic, vol. 1, no. 1, pp. 77–111,
Jul. 2000.

[36] A. Blass and Y. Gurevich, “Abstract state machines capture parallel
algorithms: Correction and extension,” ACM Trans. Comput. Logic,
vol. 9, no. 3, pp. 19:1–19:32, Jun. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1352582.1352587

[37] CoreASM, “The CoreASM Project,” http://www.coreasm.org, 2012, last
accessed, June 2013.

[38] M. Woodward, “Errors in algebraic specifications and an experimental
mutation testing tool,” Software Engineering Journal, vol. 8, no. 4, pp.
211 –224, jul 1993.

[39] AsmL, “Microsoft Research: The Abstract State Machine Language,”
http://research.microsoft.com/en-us/projects/asml/, 2006, last accessed,
June 2013.

[40] P. Ammann and J. Offutt, Introduction to Software Testing, 1st ed. New
York, NY, USA: Cambridge University Press, 2008.

[41] M. F. Lau and Y. T. Yu, “An extended fault class hierarchy for
specification-based testing,” ACM Trans. Softw. Eng. Methodol., vol. 14,
pp. 247–276, July 2005.

[42] G. Ma and R. Farahbod, “Dining Philosphers: A Sample
Specification in CoreASM,” 2006, last accessed, June

2013. [Online]. Available: http://coreasm.svn.sourceforge.net/viewvc/
coreasm/engine-carma/trunk/sampleSpecs/DiningPhilosophers.coreasm

[43] M. Vajihollahi and R. Farahbod, “Vending Machine CoreASM
Spec,” 2006, last accessed, June 2013. [Online]. Avail-
able: http://coreasm.svn.sourceforge.net/viewvc/coreasm/engine-carma/
trunk/sampleSpecs/VendingMachine.coreasm

[44] R. Farahbod, “Rail Road Crossing CoreASM Spec,”
2009, last accessed, June 2013. [Online]. Avail-
able: http://coreasm.svn.sourceforge.net/viewvc/coreasm/engine-carma/
trunk/sampleSpecs/RailroadCrossing.coreasm

92

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Transformational Implementation of Business Processes in SOA

Krzysztof Sacha and Andrzej Ratkowski
Warsaw University of Technology

Warszawa, Poland
{k.sacha, a.ratkowski}@ia.pw.edu.pl

Abstract—The paper develops a method for transformational
implementation and optimization of business processes in a
service oriented architecture. The method promotes separation
of concerns and allows making business decisions by business
people and technical decisions by technical people. To achieve
this goal, a description of a business process designed by
business people is automatically translated into a program in
Business Process Execution Language, which is then subject to
a series of transformations developed by technical people. Each
transformation changes the process structure in order to
improve the quality characteristics. Two approaches to the
verification of the process correctness are discussed. The first
one applies a correct-by-construction approach to
transformations. The other one relies on automatic verification
of the transformed process behavior against the behavior of
the original reference process. The verification mechanism is
based on a mapping from Business Process Execution
Language to Language of Temporal Ordering Specification,
followed by a comparison of the trace set that is generated
using a program dependence graph of the reference process
and the trace set of the transformed one. When the design
goals have been reached, the transformed BPEL process can be
executed on a target SOA environment using a BPEL engine.

Keywords-business process; service oriented architecture;
BPEL; LOTOS; transformational implementation.

I. INTRODUCTION
This paper is an extension of the ICSEA paper [1] on

transformational implementation of business processes in a
service oriented architecture. A business process is a set of
logically related activities performed to achieve a defined
business outcome [2]. The structure of a business process
and the ordering of activities reflect business decisions made
by business people and, when defined, can be visualized
using an appropriate notation, e.g., Business Process Model
and Notation [3] or the notation of ARIS [4]. The
implementation of a business process on a computer system
is expected to exhibit the defined behavior at a satisfactory
level of quality. Reaching the required level of quality may
need decisions, made by technical people and aimed at
restructuring of the initial process in order to benefit from the
characteristics offered by an execution environment. The
structure of the implementation can be described using
another notation, e.g., Business Process Execution Language
[5] or UML activity diagrams [6].

This paper describes a transformational method for the
implementation and optimization of business processes in a

service oriented architecture (SOA). The method begins with
an initial definition of a business process, written by business
people using Business Process Modeling Notation (BPMN).
The business process is automatically translated into a
program in Business Process Executable Language (BPEL),
called a reference process. The program is subject to a series
of transformations, each of which preserves the behavior of
the reference process, but changes the order of activities, as
means to improve the quality of the process implementation,
e.g., by benefiting from the parallel structure of services.
Transformations applied to the reference process are selected
manually by human designers (technical people) and
performed automatically, by a software tool. When the
design goals have been reached, the iteration stops and the
result is a transformed BPEL process, which can be executed
on a target SOA environment.

Such an approach promotes separation of concerns and
allows making business decisions by business people and
technical decisions by technical people.

A critical part of the method is providing assurance on
the correctness of the transformational implementation of a
business process. Two approaches to the verification of the
process correctness are discussed in this paper. The first one
applies a correct-by-construction approach that consists in
defining a set of safe transformations, which do not change
the process behavior. If all transformations are safe, then the
transformed program will also be correct, i.e., semantically
equivalent to the original reference process.

The other approach relies on automatic verification of the
transformed process behavior against the behavior of the
original reference process. The verification mechanism is
based on a mapping from BPEL to Language of Temporal
Ordering Specification (LOTOS), followed by a comparison
of the trace set that is generated using a program dependence
graph of the reference process and the trace set of the
transformed one.

The rest of this paper is organized as follows. Related
work is briefly surveyed in Section II. The semantics of a
BPEL process and its behavior are defined in Section III. A
set of safe transformations are introduced in Section IV. An
illustrative case study is provided in Section V. A method for
the verification of correctness, based on LOTOS language
and a BPEL to LOTOS mapping is covered in Section VI.
Quality metrics to assess transformation results are described
in Section VII. Conclusions and plans for future research are
given in Section VIII.

93

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. RELATED WORK
Transformational implementation of software is not a

new idea. The approach was developed many years ago
within the context of monolithic systems, with the use of
several executable specification techniques. The formal
foundation was based on problem decomposition into a set of
concurrent processes, use of functional languages [7] and
formal modeling by means of Petri nets [8].

An approach for transformational implementation of
business processes was developed in [9]. This four-phase
approach is very general and not tied to any particular
technology. Our method, which can be placed in the fourth
phase (implementation), is much more specific and focused
on the implementation of runnable processes described in
BPMN and BPEL.

BPMN defines a model and a graphical notation for
describing business processes, standardized by OMG [3].
The reference model of SOA [10,11] and the specification of
BPEL [5] are standardized by OASIS. An informal mapping
of BPMN to BPEL was defined in [3]. A comprehensive
discussion of the translation between BPMN and BPEL, and
of some conceptual discrepancies between the languages,
can be found in [12,13]. An open-source tool is available for
download at [14].

The techniques of building program dependence graph
and program slicing, which we adopted for proving safeness
of transformations, were developed in [15,16] and applied to
BPEL programs in [17].

Several metrics to measure the quality of parallel
programs have been proposed in the literature and studied for
many years. A traditional metric for measuring performance
of a parallel application is Program Activity Graph, which
describes parallel flow of control within the application [18].
We do not use such a graph, nevertheless, our two metrics:
Length of thread and Response time, can be viewed as an
approximation of Critical path metric described in [18].
Similarly, our Number of threads metric is similar to
Available concurrency defined in [19].

To the best of our knowledge, our work on the
implementation of business processes in service oriented
architecture is original. Preliminary results of our research
were published in [1]. An extended version, including a
revised algorithm for building program dependence graph
and an original method for the verification of transformation
correctness are introduced in this paper.

III. THE SEMANTICS OF A BUSINESS PROCESS
A business process is a collection of logically related

activities, performed in a specific order to produce a service
or product for a customer. The activities can be implemented
on-site, by local data processing tasks, or externally, by
services offered by a service-oriented environment. The
services can be viewed from the process perspective as the
main business data processing functions.

A specification of a business process can be defined
textually, e.g., using a natural language, or graphically, using
BPMN. An example BPMN process, which executes a
simplified processing of a bank transfer order is shown in
Fig. 1. The process begins and waits for an external
invocation from a remote client (another process). When the
invocation is received, the process extracts the source and the
target account numbers from the message, checks the
availability of funds at source and splits into two alternative
branches. If the funds are missing, the process prepares a
negative acknowledgement message, replies to the invoker,
and ends. Otherwise, the alternative branch is empty. Then,
the process invokes the withdraw service at source account,
invokes the deposit service at target account, packs the
results returned by the two services into a single reply
message, replies to the invoker and ends. This way, the
process implements a service, which is composed of another
services.

BPMN specification of a business process can be
automatically translated into a BPEL program, which can be
used for a semi-automatic implementation.

 BPEL syntax is composed of a set of instructions, called
activities, which are XML elements indicated in the
document by explicit markup. The set of BPEL activities is
rich. However, in this paper, we focus on a limited subset of
activities for defining control flow, service invocation, and
basic data handling.

The body of a BPEL process consists of simple activities,
which are elementary pieces of computation, and structured
elements, which are composed of other simple or structured
activities, nested in each other to an arbitrary depth. Simple
activities are <assign>, which implements substitution,
<invoke>, which invokes an external service, and <receive>,
<reply> pair, which receives and replies to an invocation.
Structured activities are <sequence> element to describe
sequential execution, <flow> element to describe parallel
execution and <if> alternative branching. An example BPEL
program, which implements the business process in Fig. 1, is

Extract source
account no

Extract target
account no

Check funds
at source

Prepare
negative ack

Empty

Pack the
results

Withdraw at
source

Deposit at
target

Figure 1. BPMN specification of a business process

94

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

shown in Fig. 2. Name attribute will be used to refer to
particular activities of the program in the subsequent figures.

The first executable activity of the program is <receive>,
which waits for a message that invokes the process execution
and conveys a value of the input argument. The last activity
of the process is <reply>, which responds to the invocation
and sends a message that returns the result. The activities
between <receive> and <reply> execute a business process,
which invokes other services and transforms the input into
the output. This is a typical construction of a BPEL process,
which can be viewed as a service invoked by other services.

SOA services are assumed stateless [20], which means
that the result of a service execution depends only on values
of data passed to the service at the invocation, and manifests
to the outside world as values of data sent by the service in
response to the invocation. Therefore, we assume that the
observable behavior of a process in a SOA environment
consists of data values, which the process passes as
arguments when it invokes external services, and data values,
which it sends in reply to the invoker.

A. Program Dependence Graph
To capture the influence of a process structure into the

process behavior, we use a technique called program slicing
[15,16], which allows finding all the instructions in a
program, which influence the value of a variable in a specific
point of the program. For example, finding the instructions
that influence the value of a variable that is used as an
argument by a service invocation activity or by a reply
activity of the process.

The conceptual tool for the analysis is Program
Dependence Graph (PDG), whose nodes are activities of a
BPEL program, and edges reflect dependencies between the
activities. An algorithm for constructing PDG of a BPEL
program consists of the following steps:

<sequence>
 <receive name="rcv" variable="transfer"/>
 <assign name="src">
 <copy> <from variable="transfer" part="srcAccNo"/>
 <to variable="source" part="account"/> </copy>
 <copy> <from variable="transfer" part="srcAmount"/>
 <to variable="source" part="amount"/> </copy>
 </assign>
 <assign name="dst">
 <copy> <from variable="transfer" part="dstAccNo"/>
 <to variable="target" part="account"/> </copy>
 <copy> <from variable="transfer" part="dstAmount"/>
 <to variable="target" part="amount"/> </copy>
 </assign>
 <invoke name="verify" inputVariable="source"
 outputVariable="fundsAvailable"/>
 <if> <condition> $fundsAvailable.res </condition>
 <empty name="empty"/>
 <else> <sequence>
 <assign name="fail">
 <copy> <from> 'lack of funds' </from>
 <to variable="response" part="fault"/> </copy>
 </assign>
 <reply name="nak" variable="response"/>
 <exit name="exit"/>
 </sequence> </else> </if>
 <invoke name="withdraw" inputVariable="source"
 outputVariable="wResult"/>
 <invoke name="deposit" inputVariable="target"
 outputVariable="dResult"/>
 <assign name="success">
 <copy> <from variable="wResult" part="res"/>
 <to variable="result" part="withdraw"/> </copy>
 <copy> <from variable="dResult" part="res"/>
 <to variable="result" part="deposit"/> </copy>
 </assign>
 <reply name="ack" variable="result"/>
</sequence>

Figure 2. A skeleton of a BPEL program of a bank transfer (Fig. 1)

1. Define nodes of the graph, which are activities at all
layers of nesting.

2. Define control edges (solid lines in Fig. 3), which follow
the nested structure of the program, e.g., an edge from
<sequence> to <if> shows that <if> activity is nested
within the <sequence> element. Output edges of <if>
node are labeled "Yes" or "No", respectively.

3. Define dataflow edges (dashed lines in Fig. 3), which
reflect dataflow dependencies between the activities, e.g.,
an edge from activity "rcv" to activity "src" shows that an
output variable of "rcv" is used as input variable to "src".

4. Add dataflow edges from <receive> activity, which is
nested within a <sequence> element, to each subsequent
activity of this <sequence> such that no paths from
<receive> to this activity exists (there are no such items
in Fig. 3).

5. If an <exit> activity is nested within a <sequence>, then:
a. remove all the activities, which are subsequent to

<exit>, together with all the input and output edges,

<sequence>

Figure 3. Program dependence graph of the bank transfer process

"dst"

"withdraw" "ack" "deposit" "success"

"empty"

<sequence>

"nak" "exit"

"fail"

"verify"

"src"

<if>

Yes
No

"rcv"

Yes

95

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

b. for each antecedent activity with no path to <exit>,
add a dataflow edge from this activity to <exit>
("nak" to "exit" edge in Fig. 3).

6. If an <if> element is nested within a <sequence> and
there is an <exit> within "Yes" ("No") branch of <if>,
then add "No" ("Yes") edges from <if> to subsequent
activities with no path from <if> (<if> to "deposit" and
<if> to withdraw edges in Fig. 3).

7. Convert "Yes" and "No" edges that output <if> activities
into dataflow edges.

Dataflow edges within a program dependence graph
reflect the dataflow dependencies between subsequent
activities, which determine values of the program variables.
The edges added in step 4 reflect the semantics of the
process as a service, which starts after receiving an
invocation message. The edges added in steps 5 and 6 reflect
the semantics of <exit>, which stops the program and
prevents execution of all the subsequent activities. Dataflow
edges introduced in step 7 reflect the semantics of <if>
statement, which outgoing branches may execute only after
evaluating the condition. An example program dependence
graph of the business process in Fig. 2 is shown in Fig. 3. It
can be noted, that the flow of control within the original
BPEL program complies with dataflow edges of its program
dependence graph.

In the rest of this paper, we adopt a definition that a
transformation preserves the process behavior, if it keeps the
set of messages sent by the process as well as the data values
carried by these messages unchanged. Such a definition
neglects the timing aspects of the process execution. This is
justified, given that it does not change the business
requirements. There are many delays in a SOA system and
the correctness of software must not relay on a specific order
of activities, unless they are explicitly synchronized.

A transformation that preserves the process behavior is
called safe.

Definition (Safeness of a transformation)
A transformation is safe, if the set of messages sent by

the activities of a program remains unchanged and the flow
of control within the transformed program complies with the
direction of dataflow edges within the program dependence
graph of the reference process. □

The set of activities executed within a program may vary,
depending on decisions made when passing through decision
points of <if> activities. To fulfill the above definition, the
set of messages must remain unchanged, for each particular
combination of these decisions.

A path composed of dataflow edges in a program
dependence graph reflects the dataflow relationships
between the activities, and implies that the result of the
activity at the end of the path depends only on the preceding
activities on this path. If the succession of activities executed
within a program complies with the dataflow edges, then the
values of variables computed by the program remain the
same, regardless of the ordering of other activities of this
program.

Safeness of a transformation guarantees that the
transformation preserves the behavior of the transformed
program as observed by other services in a SOA
environment. Safeness is transitive and a sequence of safe
transformations is also safe. Therefore, a process resulting
from a series of safe transformations applied to a reference
process preserves the behavior of the reference process.

IV. SAFE TRANSFORMATIONS
The body of a BPEL process consists of simple activities,

e.g., <assign>, which define elementary pieces of
computation, and structured elements, e.g., <flow>, which is
composed of other simple or structured activities. The
behavior of the process results from the order of execution of
activities, which stem from the type of structured elements
and the positioning of activities within these elements. A
transformation applies to a structured element and consists in
replacing one element, e.g., <flow>, by another element, e.g.,
<sequence>, or in relocation of activities within the
structured element. If the behavior of the transformed
element before and after the transformation is the same, then
the behavior of the process stands also unchanged.

Several transformations have been defined. The basic
ones: simple and alternative displacement, parallelization
and serialization of the process operations, and process
partitioning are described in detail below. All the
transformations are safe, according to definition of safeness
given in Section III. As pointed out in Section III, a safe
transformation does not change the behavior of a process,
which is composed of stateless services. A problem may
arise, if the services invoked by a process have an impact on
the real world. If this is the case, a specific ordering of these
services may be required. In our approach, a designer can
express the necessary ordering conditions adding
supplementary edges to the program dependence graph.

Transformation 1: Simple displacement
Consider a <sequence> element, which contains n

arbitrary activities executed in a strictly sequential order.
Transformation 1 moves a selected activity A from its
original position i, into position j within the sequence.

Theorem 1. Transformation 1 is safe, if no paths between
activity A and the activities placed on positions i+1, … j in
the sequence existed in the program dependence graph of the
transformed program.

Proof: Assume that i < j (move forward). The
transformation has no influence on activities placed on
positions lower than i or higher than j. However, moving
activity A from position i to j reverts the direction of the flow
of control between A and the activities that are in-between.
This could be dangerous if a dataflow from A to those
activities existed. However, if no dataflow paths from A to
the activities placed on positions i+1, … j existed in the
program dependence graph, then no inconsistency between
the control and data flow can exist.

If j < i (move backward), the proof is analogous. The lack
of dataflow path guarantees lack of inconsistency between
the data and control flows within the program. □

96

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Transformation 2: Pre-embracing <invoke name="xxx" (a)
 inputVariable="source" outputVariable="target"
/>

<sequence> (b)
 <invoke name="xxx_i" inputVariable="source"/>
 <receive name="xxx_r" variable="target"/>
</sequence>

Figure 4. Synchronous (a) and asynchronous service invocation (b)

Consider a <sequence> element, which includes an <if>
element preceded by an <assign> activity, among others.
Branches of <if> element are <sequence> elements.
Transformation 2 moves <assign> activity from its original
position in the outer <sequence>, into the first position
within one branch of <if> element.

Theorem 2. Transformation 2 is safe, if neither a path from
the moved <assign> to an activity placed in the other branch
of <if>, nor a path from the moved <assign> to the activities
positioned after <if> in the outer sequence, existed in the
program dependence graph of the transformed program.

Proof: The transformation has no influence on activities
placed prior to <if> element in the outer <sequence>.
Moving <assign> activity to one branch of <if> removes the
flow of control from <assign> to activities in the other
branch of <if> and – possibly – to activities placed after
<if>. But according to the assumption of this theorem, there
is no data flow between these activities. Therefore, no
inconsistency between the control and data flow can exist. □

Transformation 3: Post-embracing
Consider a <sequence> element, which includes an <if>

activity followed by a number of another activities. Branches
of <if> element are <sequence> elements, one of which
contains <exit> activity. Transformation 3 moves the
activities, which follow <if>, from its original position in the
outer <sequence> into the end of the second <sequence> of
<if> element.

Theorem 3. Transformation 3 is safe.
Proof: Activities, which are placed after an <if> element

in the reference process, are executed only after the
execution of <if> is finished. The existence of <exit> in one
branch of <if> prevents execution of these activities when
this branch is selected. The activities are executed only in
case the other branch is selected. Therefore, neither the flow
of control nor the flow of data is changed in the program,
when the activities are moved to the other branch of <if>,
i.e., the branch without <exit> activity. □

Transformation 4: Parallelization
Consider a <sequence> element, which contains n

arbitrary activities executed in a strictly sequential order.
Transformation 4 parallelizes the execution of activities by
replacing <sequence> element by <flow> element composed
of the same activities, which – according to the semantics of
<flow> – are executed in parallel.

Theorem 4. Transformation 4 is safe, if for each pair of
activities Ai , Aj neither a path from Ai to Aj nor a path from Aj
to Ai existed in the program dependence graph of the
transformed program.

Proof: The transformation changes the flow of control
between the activities of the transformed element. The lack
of dataflow paths between these activities means that no
inconsistency between the control and data flow can exist. □

Transformation 5: Serialization
Consider a <flow> element, which contains n arbitrary

activities executed in parallel. Transformation 5 serializes the

execution of activities by replacing <flow> element by
<sequence> element, composed of the same activities, which
are now executed sequentially.

Theorem 5. Transformation 5 is safe.
Proof: The proof is obvious. Parallel commands can be

executed in any order, also sequentially.

Transformation 6: Asynchronization
Consider a two-way <invoke> activity, which sends a

message to invoke an external service and then waits for a
response (Fig. 4a). Transformation 6 replaces the two-way
<invoke> activity with a sequence of a one-way <invoke>
activity followed by a <receive> (Fig. 4b). This way, a
synchronous invocation of a service is converted into an
asynchronous one.

Transformation 6 can be proved safe, if we add a
dataflow edge from <invoke> node to <receive> node in the
program dependence graph of each program, which includes
an asynchronous service invocation shown in Fig. 4b.
Theorem 6. Transformation 6 is safe.

Proof: The transformation has no influence on activities
executed prior to <invoke> activity. Dataflow edges from
these activities to <invoke> remain unchanged. The
transformation has no influence on activities executed after
<invoke>, as well. Dataflow edges to these activities from
<invoke> are redirected to begin at node <receive>. Hence,
there is a one-to-one mapping between the sets of dataflow
paths, which exist in program dependence graph of a
program before and after the transformation. Therefore, no
inconsistency between the control and data flow can exist.

Transformations 1 through 6 can be composed in any
order, resulting in a complex transformation of the process
structure. Transformations 7 and 8 play an auxiliary role and
facilitate such a composition. These transformations are safe,

<sequence> (a) <flow> (b)
 <sequence> <flow>
 <C1> </C1> <C1> </C1>

 <Ck> </Ck> <Ck> </Ck>
 </sequence> </flow>
 <sequence> <flow>
 <Ck+1> </Ck+1> <Ck+1> </Ck+1>

 <Cn> </Cn> <Cn> </Cn>
 </sequence> </flow>
</sequence> </flow>

Figure 5. Sequential (a) and parallel (b) partitioning of commands

97

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

because they do not change the order of execution of any
activities within a BPEL program. □

Transformation 7: Sequential partitioning
Transformation 7 divides a single <sequence> element

into a nested structure of <sequence> elements (Fig. 5a).

Transformation 8: Parallel partitioning
Transformation 8 divides a single <flow> element into a

nested structure of <flow> elements (Fig. 5b).

V. CASE STUDY
Consider a process of transferring funds between two

different bank accounts, shown in Fig. 1, implemented by a
BPEL process. A skeleton of the simplified BPEL program
of this process is shown in Fig. 2.

The process body is a sequence of activities, which starts
at <receive>. Then, it proceeds through a series of steps to
process the received bank transfer order and to invoke
services offered by the banking systems to verify availability
of funds at source account, to withdraw funds and to deposit
the funds at the destination account. Finally, it ends after
replying positively, if the transfer has successfully been
done, or negatively, if the required amount of funds was not
available at source.

PDG of this program is shown in Fig. 3. The first two
<assign> activities process the contents of the received
message in order to extract the source and destination
account numbers and the amount of money to transfer.
Therefore, there are dataflow edges from "rcv" to "src" and
to "dst" nodes in PDG. The next consecutive <invoke>
activity uses the extracted source account number and the
amount of money to invoke the verification service, and the
response of the invocation is checked by <if> activity.
Therefore, two dataflow edges from src to verify and from
verify to <if> exist in the graph. Similarly, the <invoke>
activities named "withdraw" and "deposit" use the account
numbers calculated by "src" and "dst", respectively. Two
dataflow edges from "withdraw" and "deposit" nodes to
"success" node, and then an edge from "success" to "ack",
reflect the path of preparing the acknowledgement message
that is sent to the invoker when the transfer is finished.

The analysis of the program dependence graph in Fig. 3
reveals that no dataflow path between activity named "dst"
and the next two activities "src" and "verify" exists in the
graph. Therefore, these activities can be executed in parallel.
Similarly, there is no dataflow path between two consecutive
<invoke> activities "withdraw" and "deposit". These two
activities can also be executed in parallel.

To perform these changes, we can partition the outer
<sequence> element using transformation 6 three times, and
then parallelize the program structure using transformation 4
twice. A skeleton of the resulting BPEL program is shown in
Fig. 6. Only names of the activities are shown in Fig. 6. The
variables used by the activities are omitted for brevity.

However, this is not the only way of transformation.
Alternatively, the designer can displace "dst" forward, just
before <if> activity, and then use transformation 2 in order to
enter "dst" to the inside of <if> in place of <empty> activity.
Next, transformation 3 can be used to embrace the last three

activities of the outer <sequence> element into the first
branch of <if> element, consecutively following "dst". Then,
the designer can move "dst" forward, adjacent to "deposit",
partition the inner sequence of <if> using transformation 6,
and parallelize the program structure using transformation 4.
A skeleton of the resulting BPEL program is shown in Fig. 7.
We removed "exit" activity from the final program, because
it is obviously redundant at the end of the program.

<sequence>
 <receive name="rcv"> - receive transfer order
 <flow>
 <assign name="dst"> - extract destination no
 <sequence>
 <assign name="src"> - extract source no
 <invoke name="verify"> - verify funds at source
 </sequence>
 </flow>
 <if>
 <condition> ... </condition> - check availability
 <empty name="empty"> - do nothing if available
 <else> <sequence>
 <assign name="fail"> - set response
 <reply name="nak"> - reply negatively
 <exit name="exit"> - end of execution
 </sequence> </else>
 </if>
 <flow>
 <invoke name="withdraw"> - withdraw funds
 <invoke name="deposit"> - deposit funds
 </flow>
 <assign name="success">
 <reply name="ack"> - reply positively
</sequence>

Figure 6. A skeleton of the transformed bank transfer process – variant I

<sequence>
 <receive name="rcv"> - receive order
 <assign name="src"> - extract source no
 <invoke name="verify"> - verify funds
 <if>
 <condition> ... </condition> - check availability
 <sequence>
 <flow>
 <invoke name="withdraw"> - withdraw funds
 <sequence>
 <assign name="dst"> - extract dst. no
 <invoke name="deposit"> - deposit funds
 </sequence>
 </flow>
 <assign name="success">
 <reply name="ack"> - reply positively
 </sequence>
 <else> <sequence>
 <assign name="fail"> - set response
 <reply name="nak"> - reply negatively
 </sequence> </else>
 </if>
</sequence>

Figure 7. A skeleton of the transformed bank transfer process – variant II

98

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The main advantage of the transformed process over the
original one is higher level of parallelism, which can lead to
better performance of the program execution. If we compare
the two alternative designs, then intuition suggests that the
structure of the second process is better than of the first one.
In order to verify this impression, the reference process and
the transformed processes can be compared to each other,
with respect to a set of quality metrics. Depending on the
results, the design phase can stop, or a selected candidate (a
transformed process) can be substituted as the reference
process for the next iteration of the design phase.

TABLE I. EXPRESSIONS IN BASIC LOTOS

Syntax Explanation
stop inaction, lack of action
µ ; B action µ precedes execution of

expression B
B1 [] B2 alternative choice of expressions B1

and B2
B1 |[g1,…gn]| B2 parallel execution of B1 and B2

synchronized at actions g1,…,gn
B1 ||| B2 parallel execution with no

synchronization between B1 and B2
exit successful termination; generates a

special action δ
B1 >> B2 sequential composition: successful

execution of B1 enables B2
B1 [> B2 disabling: successful execution of B1

disables execution of B2
hide g1,…,gn in B hiding: actions g1,…,gn are

transformed into unobservable ones

VI. VERIFICATION OF CORRECTNESS
The correct-by-construction approach is appealing for the

implementation designer because it can open the way
towards automatic process optimization. However, the
approach has also some practical limitations. It is possible
that small changes to a process behavior can be acceptable
within the application context. If this was the case, then a
verification method is needed, capable not only of verifying
the process behavior, but also showing the designer all the
potential changes, if they exist. In this section, we introduce
LOTOS language, which is used as a formal basis for such a
verification method.

A. The language LOTOS
Language of Temporal Ordering Specification (LOTOS)

is one of the formal description techniques developed within
ISO [21] for the specification of open distributed systems.
The semantics of LOTOS is based on algebraic concepts and
is defined by a labeled transition system (LTS), which can be
built for each LOTOS expression.

A process, or a set of processes, is modeled in LOTOS as
a behavior expression, composed of actions, operators and
parenthesis. Actions correspond to activities, which
constitute the process body. Operators describe the ordering
of actions during the process execution. The list of operators,
together with an informal explanation of their meaning is
given in Table I. We use µ to denote an arbitrary action and
δ to denote a special action of a successful termination of an
expression or sub-expression.

LOTOS expression can be executed, generating a
sequence of actions, which is called the execution trace. An
expression that contains parallel elements can generate many
traces, each of which describes an acceptable ordering of
actions. Not all of the actions that are syntactic elements of
an expression are directly visible within the execution trace.
These actions are called observable actions and are denoted
by alphanumeric identifiers, e.g., g1, g2, etc. Only
observable actions are counted as members of an execution
trace of the expression. Other actions cannot be identified
when observing the trace. These actions are called
unobservable actions. Unobservable actions are denoted by
letter i and are not counted as members of an execution trace.

Formally, unobservable actions are those that are listed
within the hide clause of LOTOS. In this paper, we omit this
clause to help keeping the expressions simple.

The operational semantics of LOTOS provides a means
to derive the actions that an expression may perform from

the structure of the expression itself. Formally, the semantics
of an expression B is a labeled transition system < S, A,→, I >
where:

S – is a set of states (LOTOS expressions),
A – is a set of actions,
→ – is a transition relation, → ⊆ S × A × S,
B – is the initial state (the given expression).

The transition relation is usually written as B →
µ

 B’. For
example, the semantics of expression (g; B1) can be
described by a labeled transition:

g; B1 →
g

 B1
This means that expression (g; B1) is capable of performing
action g and transforming into expression B1.

The semantics of a complex expression consists of a
directed graph (a tree) of labeled transitions, which root is
the expression itself, and which edges are the labeled
transitions. Each path from the root node to a leaf node of the
graph defines a sequence of actions, which is an execution
trace of the expression.

LOTOS expression can serve as a tool for modeling the
set of traces of execution of a BPEL process. To use the tool,
we can model BPEL activities as observable actions in
LOTOS, and describe the ordering of activities during the
process execution by means of a LOTOS expression.

Simple activities of BPEL are mapped to observable
actions of LOTOS, followed by exit symbol. For example:

<assign name="ass"> is mapped to ass; exit
<invoke name="inv"> is mapped to inv; exit

Exceptions are BPEL <empty>, which is mapped to exit, and
<exit>, which is mapped to stop.

Structured activities of BPEL are translated into LOTOS
expressions according to the following rules:

99

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• <sequence> element is mapped into sequential
composition (>>),

• <flow> element is mapped to parallel execution (|||),
• <if> element is mapped to alternative choice ([]).
The semantics of parallelism in LOTOS is interleaved.

Parallel execution of activities that are nested within <flow>
element of a BPEL process is modeled by the possibility of
executing the corresponding LOTOS actions in an arbitrary
order. The semantics of choice is exclusive. When one
branch of <if> element begins execution, then the other
branch disappears. Special action δ generated by exit is not
counted in the execution traces because it is an unobservable
action.

Consider, for example, BPEL process in Fig. 2. If we
map the process activities according to the above rules, then
the resulting LOTOS expression looks as follows:

rcv;exit >> src;exit >> dst;exit >> verify;exit >>
(exit [] fail;exit >> nak;exit >> stop) >>

withdraw;exit >> deposit;exit >> success;exit >> ack;exit
The trace set generated by the labeled transition system

of this expression consists of two traces composed of the
following observable actions:
rcv; src; dst; verify; withdraw; deposit; success; ack
rcv; src; dst; verify; fail; nak

B. The Verification Method
The verification follows a two-phase approach illustrated

in Fig. 8, where B2L acronym stands for: BPEL-to-LOTOS
mapping. In the first phase, dataflow dependencies between
the activities of the reference process are analyzed using the
Program Dependence Graph (PDG) and all the unnecessary
sequencing constraints on these activities are removed. The
resulting reduced program dependence graph reflects all the
dataflow dependencies between the activities of the reference
process and is free from the initial process structuring. If we
preserve the dataflow dependencies during the process
transformation, then the values computed by all the activities
remain unchanged. In particular, the values that are passed
between the processes by means of the inter-process
communication activities: <invoke> in one process and
<receive> <reply> pair in the other one, remain also
unchanged. The reduced program dependence graph is then

transformed into a LOTOS expression, which is called a
Minimal Dependence Process (MDP). The labeled transition
system of the minimal dependence process defines a set of
traces that define the behavior of all processes, which
comply with dataflow dependencies defined within the
reference process. The first phase is performed only once for
a given reference process.

The second phase is performed repetitively during the
transformational implementation cycle. A transformed BPEL
process is mapped into a LOTOS expression, as described in
the previous subsection. The set of traces generated by the
labeled transition system of this expression is compared with
the set of traces generated by the labeled transition system of
the minimal dependence process. If the trace set generated by
the expression is within the trace set of MDP, then the
behavior of the transformed BPEL process is safe in that it
preserves the behavior of the reference process.

C. The Reduced Program Dependence Graph
A dataflow edge between two nodes in a program

dependence graph implies that the result of the activity at the
end of the edge depends on the result of the activity at the
beginning of this edge. Therefore, the arrangement of
activities during the program execution, reflected by the
succession of activities in an execution trace, must comply
with the direction of dataflow edges. Any change to this
arrangement may lead to a change in the program behavior.

Structured nodes <sequence> and <flow>, as well as
control edges connected to these nodes, reflect the structure
and the flow of control within the reference process. Both of
the two can be changed during the process transformation.
Therefore, <sequence> and <flow> nodes are removed from
the program dependence graph. The reduced program
dependence graph of the reference process in Figs. 2 and 3 is
shown in Fig. 9. An algorithm for removing the nodes
consists of the following steps:

1. Remove all <sequence> and <flow> nodes, which are not
directly nested within an <if> element. Redirect control
edges, which output each removed node, to the direct
predecessor node if one exists, or remove otherwise.

2. If a <sequence> node is nested within an <if>, then:
a. Remove <sequence> node together with the input

"Yes" ("No") edge.
b. Add dataflow edges labeled "Yes" ("No") from <if>

node to each member of <sequence> such that no
path from <if> to this node exists (<if> to "fail"
edge in Fig. 9). Program

Dependence
Graph

Minimal
Dependence

Process

BPEL
reference
process

B2L
The services invoked by a process can have an impact on

the real world. If this is the case, a specific ordering of these
services can be required, regardless of the dataflow relation
between the invoking activities. A designer can reflect this
requirement adding supplementary edges between the
appropriate nodes of the reduced program dependence graph.

D. Minimal Dependence Process
Let GP = (NP, EP) be a reduced program dependence

graph of a BPEL process P. It can be proved that graph GP is
acyclic. We say that node ni precedes node nj, denoted

Transformations

Transformed
BPEL

process

B2L LTS

LTS

ResultLTS LOTOS
expression ⊆

??

Figure 8. Verification of a process behavior

100

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ni < nj, if there exists a path from ni to nj in the reduced
program dependence graph. Precedence relation is a strict
partial order in NP.

An execution of a BPEL program can be modeled as a
process of traversing through the program dependence graph,
starting at the initial node and moving along the directed
edges. The process stops when the last node of the graph is
reached. Because the ordering of nodes is only partial, then
the succession of visited nodes and edges may vary. For
example, the first node in Fig. 9 is rcv. After visiting this
node, data can be passed along the edge to src or along the
edge to dst. If the former is true, then in the next step either
node src can be visited or data can be passed along the edge
to dst. However, node dst could not be visited before the data
were passed through its incoming edge.

Nodes and edges of a program dependence graph can be
mapped to LOTOS actions in such a way that a visit to a
node is mapped to an observable action, while moving along
an edge is mapped to an unobservable action. A sequence of
execution steps is mapped to a sequence of LOTOS actions.
An example mapping of nodes and edges is shown in Fig.
10.

A visit to a node enables visiting all the succeeding
nodes. However, the way of reaching this node (described by
an expression B1) has no influence on the other part of
execution after visiting the node (described by another
expression B2), and vice versa. This means that actions
performed before the visit (within B1) and actions performed
after the visit (within B2) are independent. However,
finishing the visit and passing data along the output edges of
the visited node make a synchronization point between the
two. This informal description can be expressed formally in
LOTOS using the operator of parallel execution of B1 and
B2 synchronized at action assigned to the output edge.

Minimal dependence process is a LOTOS expression that
defines the set of traces, which are compliant with dataflow
dependencies described by the program dependence graph.
This way, minimal dependence process defines the semantics
of a BPEL reference process. The algorithm for building
MDP searches through the reduced program dependence
graph, starting at the initial node. LOTOS expression is
constructed iteratively, by appending a new sub-expression
to the existing part of MDP in each visited node.

For example, the first action in the graph in Fig. 10 is rcv,
followed by one of the actions a or b. Hence, the appropriate
LOTOS expression begins with:

rcv; (a|||b) …

Passing data along one of the output edges enables
traversing through the other parts of the graph. Action a
enables src, while action b enables dst. Both of the enabled
actions are independent and can be executed in parallel.
Hence, the next part of the LOTOS expression is:

((rcv; (a||b)) |[a]| a; src;…) |[b]| b; dst;…

Formally, the algorithm for constructing MDP of a BPEL
program described by a reduced program dependence graph
consists of the following steps:

1. Assign an observable LOTOS action to each node of the
reduced program dependence graph, except of <if>
nodes. The action is identified by the name attribute of
the node (nodes in PDG are BPEL activities).

2. Find paths in the reduced program dependence graph,
such that the first node of a path has one output edge, the
last node has one input edge and each other node has one
input and one output edge. Substitute each path with a
single node, and assign to this node LOTOS expression
composed of actions, which were assigned to the
removed nodes, separated by semicolons.

3. Assign an unobservable LOTOS action to each edge of
the graph. The actions should be distinct, except of the
edges, which output the alternative nodes of an <if>
activity and input the same node. These actions should be
equal.

4. Initiate graph search from the initial node. Create
LOTOS expression, denoted MDP', composed of:
• the expression assigned to the initial node,
• semicolon and parallel composition of actions

assigned to the output edges.
5. Search through the nodes of the reduced program

dependence graph in a sequence complying with the
precedence relation (ni is visited before nj, if ni < nj). For
each node, place parentheses around the MDP' and
append the following expressions:
• parallel composition synchronized on actions

assigned to the input edges,
• a sequence of actions assigned to the input edges,

separated by semicolons,
• semicolon and LOTOS expression assigned to the

node (empty for <if> node),
• semicolon, and parallel composition of actions

assigned to the output dataflow edges or an
alternative selection of actions assigned to the output
control edges (the case of <if> activity).

6. When the algorithm stops, after visiting the last node,
MDP' becomes the minimal dependence process MDP.

Figure 9. The reduced program dependence graph of the process in Figs. 2 and 3

Yes

"rcv"

"src"

"dst"

"verify" <if> "fail" "nak" "exit"

"deposit"

"success" "ack"

No

"withdraw"
Yes

101

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For example, let us consider the reduced program
endence graph in Fig. 9. The steps of assigning LOTOdep S

exp

ify;(y1;y2[]n)) |[d,y1]| d;y1;withdraw; f)

The erates
a set of 13 traces, each of which is a sequence of observable
act

; src; dst; verify; fail; nak; exit ,

sit; success; ack ,
; success; ack ,

The trace set of the reference process in Fig. 2 consists of

; src; dst; verify; withdraw; deposit; success; ack }

process in Fig. 6
con ist

erify; fail; nak; exit ,

sit; success; ack ,
; success; ack ,

Th

; dst; withdraw; deposit; success; ack ,
 t; withdraw; success; ack ,

Ob

Thi

Many metrics re v s characteristics of
software have be [18,19]. In this
res

 program. More precisely, the
val

f the process size
me

 For example, The complexity of
the

ribes the amount of excess in the graph, which
can

 all
lev

of a <flow> element is the sum of
i.e., nodes

•
es (i.e.,

ressions to nodes (step 1), removing paths (step 2), and
assigning unobservable actions to edges (step 3) change the
graph as shown in Fig. 10.

The minimal dependence process derived from the graph
in Fig. 10 takes the form of the following LOTOS
expression:

(((((((rcv;(a|||b)) |[a]| a;src;(c|||d)) |[b]| b;dst;e)
|[c]| c;ver

|[e,y2]| e;y2;deposit;g) |[f,g]| f;g;success;ack)
|[n]| n;fail;nak;exit

labeled transition system of this expression gen

ions:

{ rcv; dst; src; verify; fail; nak; exit ,
 rcv

rcv; src; verify; dst; fail; nak; exit ,
 rcv; src; verify; fail; dst; nak; exit ,
 rcv; src; verify; fail; nak; dst; exit ,
 rcv; src; verify; fail; nak; exit; dst ,
 rcv; dst; src; verify; withdraw; depo
 rcv; dst; src; verify; deposit; withdraw
 rcv; src; dst; verify; withdraw; deposit; success; ack ,
 rcv; src; dst; verify; deposit; withdraw; success; ack ,
 rcv; src; verify; dst; withdraw; deposit; success; ack ,
 rcv; src; verify; dst; deposit; withdraw; success; ack ,
 rcv; src; verify; withdraw; dst; deposit; success; ack }

2 traces:

{ rcv; src; dst; verify; fail; nak; exit ,
 rcv

The trace set of the first transformed
s s of 9 traces:

{ rcv; dst; src; verify; fail; nak; exit ,
 rcv; src; dst; v

rcv; src; verify; dst; fail; nak; exit ,
 rcv; dst; src; verify; withdraw; depo
 rcv; dst; src; verify; deposit; withdraw
 rcv; src; dst; verify; withdraw; deposit; success; ack ,
 rcv; src; dst; verify; deposit; withdraw; success; ack ,

 rcv; src; verify; dst; withdraw; deposit; success; ack ,
 rcv; src; verify; dst; deposit; withdraw; success; ack }

e trace set of the second transformed process in Fig. 7
consists of 4 traces:

{ rcv; src; verify; fail; nak ,
 rcv; src; verify

rcv; src; verify; dst; deposi
 rcv; src; verify; withdraw; dst; deposit; success; ack }

viously, the trace set of MDP includes the trace sets of
the reference process as well as of the transformed processes.

s proves that both transformations are safe.

VII. QUALITY METRICS
 to measu ariou
en proposed in literature

earch, we use simple metrics that characterize the size of a
BPEL process, the complexity and the degree of parallel
execution. The value of each metric can be calculated using a
program dependence graph.

The size of a process is measured as the number of
simple activities in a BPEL

ue of this metric equals the number of leaf nodes in the
program dependence graph of a BPEL process. For example,
the size of the processes shown in Figs. 2 and 6 is 12, while
the size of the process in Fig. 7 equals 10.

Leaf nodes are simple activities, which perform the
processing of data. Therefore, the value o

tric could be considered a measure of the amount of work,
which can be provided by the process. However, smaller
number of this metric may result from removing excessive,
unstructured activities, like <empty> and <exit>. This is the
case of program in Fig. 7.

The complexity of a process is measured as the total
number of nodes in PDG.

 process shown in Fig. 2 is 15, the complexity of the
process in Fig. 6 is 18, and the complexity of the process in
Fig. 7 is 16.

The number of nodes in PDG, compared to the size of the
process, desc

 be considered a measure of the process complexity.
The number of threads is measured as the number of

items within <flow> elements of a BPEL program, at
els of nesting. A problem with this metric is such that the

number of executed items can vary, depending on values of
conditions within <if> elements. Therefore, the metric is a
vector of values, computed for all combinations of values of
these conditions. The algorithm of computation assigns
weights to nodes of the program dependence graph of the
process, starting from the leaves up to the root, according to
the following rules:

• the weight of a simple BPEL activity is 1,
• the weight

weights assigned to the descending nodes (
directly nested within the <flow> element),
the weight of a <sequence> element is the maximum
of weights assigned to the descending nodFigure 10. Construction of MDP: The reduced program dependence graph

(Fig. 9) after step 3

rcv

src

dst

withdraw

fail;nak;exit

deposit

success;ack

n

a

b

c

d

e

y2

f

g

verify

y1

102

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. NUMBER OF THREADS METRIC

if -
condition

Process in
Fig. 2

Process in
Fig. 6

Process in
Fig. 7

YES 1 2 2
NO 1 2 1

nodes directly nested within the <sequence>
element),
the weight of an <if> element is the weight assigned
to the act

•
ivity in this branch of <if>, which is

The
the pre , which ends the process
exe

f PDG. Values of the metric for the
pro

 executed activities within a BPEL program.
Be

f a <flow> element is the maximum of
i.e., nodes

•
e., nodes

•
 is

Nod
ordered order of execution. Nodes
sub

r the
pro

xecuted
wit

ution time of this activity,

just dif ipulation activity
and

s considered in the case study in Section V, one can
not

executed according to a given value of condition
within the <if> element.

 number of executed items can be influenced also by
sence of <exit> activity

cution. Therefore, the nodes directly nested within a
<sequence> element are ordered in compliance with the
order of execution. Nodes subsequent to a node, which is, or
which comprises, <exit> activity, are not taken into account
in the computation.

The metric value equals the weight assigned to the top
<sequence> node o

cesses in Figs. 2, 6, and 7 are shown in Table I. Program
dependence graph and calculation of the metric for the
program in Fig. 7 is shown in Fig. 11 (grey numbers right to
the nodes).

The length of thread is measured as the number of
sequentially

cause the number of executed items can vary, depending
on values of conditions within <if> elements, the metric is a
vector of values, computed for all combinations of values of
these conditions. The algorithm of computation assigns
weights to nodes of the program dependence graph of the
process, starting from the leaves up to the root, according to
the following rules:

• the weight of a simple BPEL activity is 1,
• the weight o

weights assigned to the descending nodes (
directly nested within the <flow> element),
the weight of a <sequence> element is the sum of
weights assigned to the descending nodes (i.
directly nested within the <sequence> element),
the weight of an <if> element is the weight assigned
to the activity in this branch of <if>, which
executed according to a given value of condition
within the <if> element.
es directly nested within a <sequence> element are
 in compliance with the

sequent to a node, which is, or which comprises, <exit>
activity, are not taken into account in the computation.

The metric value equals the weight assigned to the top
<sequence> node of PDG. Values of the metric fo

cesses in Figs. 2, 6, and 7 are shown in Table II.

The response time is measured as the sum of estimated
execution times of activities, which are sequentially e

hin a BPEL program. Because the number of executed
items can vary, depending on values of conditions within
<if> elements, the metric is a vector of values, computed for
all combinations of values of these conditions The algorithm
of computation is identical to the algorithm of computation
of the length of thread metric, except of the first point, which
now reads:

• the weight of a simple activity is the estimated
exec

In the simplest case, the estimated execution time can
ferentiate between local data man

 a service invocation. Values of the metric for the
processes in Figs. 2, 6, and 7, calculated under an assumption
that a local data manipulation time equals 1, while a service
execution time equals 10, are shown in Table III. Program
dependence graph and calculation of the metric for the
program in Fig. 7 is shown in Fig. 11 (numbers left to the
nodes).

Comparing the values of metrics calculated for the
processe

e that both transformed processes are faster than the
original reference process (smaller value of the response time

TABLE III. LENGTH OF THREAD METRIC

if -
condition

Process in
Fig. 2

Process in
Fig. 6

Process in
Fig. 7

YES 9 7 7
NO 7 6 5

TABLE IV. RESPONSE TIME METRIC

if -
condition

Process in
Fig. 2

Process in
Fig. 6

Process in
Fig. 7

YES 36 25 25
NO 16 15 14

verify

dst

<if>

<sequence>

withdraw

deposit ack

nak

Y
N

<sequence>

src

<sequence>

<flow>

1 10

11

10

11

1

13

1

1

2

1 1 10

Y: 25 / N: 14 Y: 2 / N: 1

1 1 1

1

1 1 1

1

2

2

1

1

1

success
1

rcv

fail

<sequence>

1

Figure 11. Program dependence graph of the program in Fig. 7 and
calculation of metrics: Number of threads (grey numbers right to the

nodes) and length of execution (left to the nodes)

103

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

metric). Speeding up the process execution is a benefit from
parallel invocation of services in a SOA environment.
Comparing the variants of the transformed bank transfer
process (Fig. 6 and Fig. 7), one can note that the second
variant is a bit faster and simpler (smaller values of the size
metrics). This variant can be accepted by the customer or
used as a new reference process in the next transformation
cycle.

VIII. CONCLUSION AND FUTURE WORK
Defi siness

decision rocess
on

ot change the behavior of a
tran

matic process optimization. However, the
app

text.
Th

[1] K. Sacha and A. Ratkowski, “Impleme ness Processes
in Service Oriented A The Seventh International

[2]
d Business Process Redesign,” Sloan

[3]
N/2.0/PDF/,10.06.2013.

ge Version 2.0,” OASIS Standard, Apr. 2007,

[6]

[7]

ol. 6, 1994, pp. 153–172.

ystems,”

[10]
tecture 1.0,” OASIS

ning the behavior of a business process is a bu
. Defining the implementation of a business p

a computer system is a technical decision. The
transformational method for implementing business
processes in a service oriented architecture, described in this
paper, promotes separation of concerns and allows making
business decisions by business people and technical
decisions by technical people.

The transformations described in this paper are correct by
construction in that they do n

sformed process. However, the transformations change
the process structure in order to improve efficiency and
benefit from the parallel execution of services in a SOA
environment. The quality characteristics of the process
implementation are measured by means of quality metrics,
which account for the process size, complexity and the
response time of the process as a service. Other quality
features, such as modifiability or reliability, are not covered
in this paper.

The correct-by-construction approach opens the way
towards auto

roach has also some practical limitations. If the external
services invoked by a process have an impact on the real
world, as is usually the case, a specific ordering of these
services may be required, regardless of the dataflow
dependencies between the service invocation activities
within a program. In our approach, a designer can express
the necessary ordering conditions adding supplementary
edges to the program dependence graph. Therefore, the
approach cannot be fully automated and a manual
supervision over the transformation process is needed.

It is also possible that small changes to a process
behavior can be acceptable within the application con

erefore, part of our research was aimed at finding a
verification method capable not only of verifying the process
behavior, but also of showing the designer all the potential
changes, if they exist. A decision on whether to accept the
changes or not is made by a human.

REFERENCES
ntation of Busi

rchitecture,” Proc.
Conference on Software Engineering Advances (ICSEA 2012),
IARIA, 2012, pp. 129–136.

T. H. Davenport and J. E. Short, “The New Industrial Engineering:
Information Technology an
Management Review, 1990, pp. 11–27.
OMG, “Business Process Model and Notation (BPMN), Version 2.0,”
Jan. 2011, http://www.omg.org/spec/BPM

[4] A. W. Scheer, ARIS – Business Process Modeling, Springer, Berlin
Heidelberg, 2007.

[5] D. Jordan and J. Evdemon, “Web Services Business Process
Execution Langua
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, 10.06.2013.
OMG, “OMG Unified Modeling Language (OMG UML),
Superstructure, V2.1.2,” Nov. 2007, http://www.omg.org/spec/UML/
2.1.2/Superstructure/PDF, 10.06.2013.
P. Zave, “An Insider's Evaluation of Paisley,” IEEE Trans. Software
Eng., vol. 17, 1991, pp. 212–225.

[8] K. Sacha, “Real-Time Software Specification and Validation with
Transnet,” Real-Time Systems J., v

[9] F. J. Duarte, R. J. Machado, and J. M. Fernandes, “BIM: A
methodology to transform business processes into software s
SWQD 2012, LNBIP vol. 94, 2012, pp. 39–58.
C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and R. Metz,
“Reference Model for Service Oriented Archi
Standard, Oct. 2006, http://docs.oasis-open.org/soa-rm/v1.0/soa-
rm.html, 10.06.2013.
J. A. Estefan, K. Laskey, F. G. McCabe, and D. Thornton, “Reference
Architecture for Servi

[11]
ce Oriented Architecture Version 1.0,” OASIS

Public Review Draft 1, Apr. 2008, http://docs.oasis-open.org/soa-
rm/soa-ra/v1.0/soa-ra-pr-01.pdf, 10.06.2013.
S. A. White, “Using BPMN to Model a BPEL Process,” BPTrends 3,
2005, pp. 1–18.

[12]

al Mismatch between Process Modeling Languages,”

[14]

[13] J. Recker and J. Mendling, “On the Translation between BPMN and
BPEL: Conceptu
The 18th International Conference on Advanced Information Systems
Engineering (CAISE 2006), Proc. Workshops and Doctoral
Consortium, Namur University Press, 2006, pp. 521–532.
Bpmn2bpel, “A tool for translating BPMN models into BPEL
processes,” http://code.google.com/p/bpmn2bpel/, 10.06.2013

, pp. 1–50.

Service-Oriented Computing and

[18]
EEE Conference

[19]

[20]
l, Englewood Cliffs, 2005.

 Technique Based on

[15] M. Weiser, “Program slicing,” IEEE Trans. Software Eng., vol. 10,
1984, pp. 352–357.

[16] D. Binkley and K. B. Gallagher, “Program slicing,” Advances in
Computers, 43, 1996

[17] C. Mao, “Slicing web service-based software,” Proc. IEEE
International Conference on
Applications (SOCA 2009), IEEE, 2009, pp. 1–8.
J. K. Hollingsworth and B. P. Miller, “Parallel program performance
metrics: A comparison and validation,” Proc. ACM/I
on Supercomputing (SC 92), IEEE Computer Society Press, pp. 4–13.
A. S. Van Amesfoort, A. L. Varbanescu, and H. J. Sips, “Parallel
Application Characterization with Quantitative Metrics,”
Concurrency and Computation: Practice and Experience, vol. 24,
2012, pp. 445–462.
T. Erl, Service-oriented Architecture: Concepts, Technology, and
Design. Prentice Hal

[21] ISO 8807, “Information Processing Systems: Open Systems
Interconnection: LOTOS: A Formal Description
the Temporal Ordering of Observational Behaviour,” International
Organization for Standards, 1989.

104

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Automated Tailoring of Application Lifecycle Management Systems
to Existing Development Processes

Matthias Biehl, Jad El-khoury, and Martin Törngren
Embedded Control Systems

Royal Institute of Technology
Stockholm, Sweden

{biehl, jad, martin}@md.kth.se

Abstract—Application lifecycle management approaches are
used to tame the increasing complexity, size and number of
development artifacts. Throughout the application lifecycle, a
number of tools are used to create a diversity of development
artifacts. It is widely believed that the efficiency of development
can be improved by the integration of these tools. However,
such integrated solutions are not accepted by practitioners if
the solutions are not aligned with the established development
culture, processes and standards. Thus, application lifecycle
management needs to be tailored to the specific corporate
needs. The tailoring, however, is typically performed manually
and is thus resource intensive. We propose a cost efficient
tailoring approach for application lifecycle management, which
is based on reuse and automation. We explore to what extent
existing process models can be reused for automatically con-
figuring the application lifecycle management system, so it is
aligned with the development process. We identify a number
of relationship patterns between the development process and
its supporting tool chain and show how the patterns can be
used for constructing a tool chain. In three case studies, we
examine the practical applicability of the approach.

Keywords-Application Lifecycle Management; Process Model-
ing; Tool Integration; Tool Chain; Generative Approach; Model
Driven Development.

I. INTRODUCTION

The development of software-intensive products, such as
embedded systems, produces a large number of diverse
development artifacts, such as documents, models and source
code. The artifacts are produced and used throughout the
product lifecycle and are ideally managed systematically in
an application lifecycle management (ALM) system [1]. In
this article, we focus on one specific aspect of application
lifecycle management systems – the aspect of tool integra-
tion. Currently available commercial application lifecycle
management systems do not provide adequate tool integra-
tion, as shown in a recent analysis [2]. Tool integration is an
essential aspect of ALM, since the development artifacts in
the ALM system are typically developed with a number of
different development tools. The development tools ideally
interoperate seamlessly, however, the tools are often “island
solutions” and a considerable engineering effort is necessary
to make a specific set of tools interoperate. Thus, tool
integration is realized externally to the development tools,

in the form of tool chains. A tool chain can be regarded
as an integrated development environment consisting of
several development tools, which is intended to increase the
efficiency of development by providing connections between
the tools used in a development process [3].

To be effectively used, tool chains need to be customized
to a specific selection of development tools and a specific
development process. For example, a company might se-
lect IBM DOORS for requirements management, Enterprise
Architect for UML modeling and MATLAB/Simulink for
designing and simulating control algorithms. The tool chain
needs to include these development tools. The way in which
these tools are connected, is determined by the development
process, which might prescribe that a connection between
requirements and UML models is needed, and a connection
between UML models and MATLAB/Simulink models.

Building automated tool chains that fit the individual
needs is an expensive and time-consuming task. In Section
II, we describe the challenges involved in building such
customized tool chains and study the perspective of involved
stakeholders. If a systematic and automated development
approach for tool chains was available, tool chains could
be efficiently developed for each new development context.
We introduce a domain-specific modeling language for tool
chains in Section III. The language allows us to express
the essential design decisions for creating a tool chain. In
Section V, we propose a systematic development process for
building tool chains with this language, including the design
phase, analysis phase, verification phase and implementation
phase of tool chains. In Section IV, we focus in-depth on the
relationship between process models and tool chain models
and ways of leveraging this relationship in the conceptual
design and verification phases of tool chain construction.
We describe the relationship between process and tool
chain in the form of patterns, implement them as model
transformations and leverage these patterns for design and
verification. We apply the approach in three case studies in
Section VI. In the remaining Sections VII - IX, we relate
our approach to other work in the field, sketch future work
and consider the implications of this work.

105

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. CHALLENGES

To develop modern software-intensive systems, such as an
embedded system, a large number of development tools are
used. Each of these tools can help us to be more productive,
manage knowledge, and manage the complexity of devel-
opment. The use of single, specialized tools has the poten-
tial to improve the efficiency of the development process,
improve knowledge management, and improve complexity
management, depending on the degree of automation they
provide [4]. Multiple tools have the potential to improve
the productivity in the development process, depending on
how well they are integrated with each other and their
degree of automation [3]. The reasons for using multiple
tools can be found in the high degree of specialization
of the tools, which is necessary to support the different
engineering disciplines and the different engineering phases.
The engineering of a software intensive system requires
experts from a number of different engineering disciplines,
such as control, hardware, software and mechanics. Each
engineering discipline prefers a different set of development
tools that excel in that particular discipline [5]. Throughout
the different phases of the development process, specific
tools are used, such as tools for prototyping, requirements
engineering, design, implementation, verification and test-
ing. In addition, crosscutting tools are used that support
the process as a whole, such as repositories or tools for
data management. The used tools are for the largest part
commercial-off-the-shelf tools. The tools can thus not be
changed and have to be used as they are.

Since engineers use the various tools to develop a single
system, they need to relate the data that is captured in
different tools, exchange data for reusing it in another tool
or even to automate tasks that involve different tools. Most
development tools do not interoperate well with one another,
this is why additional software external to the tools – a tool
chain – is needed as the glue to facilitate the integration.

Tool chains can provide different coverage of the de-
velopment process; therefore, we distinguish between task-
oriented tool chains with a small coverage and lifecycle-
oriented tool chains with a larger coverage. Many existing
tool chains cover only one task in the development process,
e.g., the tool chain between source code editor, compiler and
linker. We call these tool chains task-oriented. The tools are
used in a linear chain, so that the output of one tool is the
input for the next tool. These tool chains have a relatively
small scope and integrate a small number of tools from
within one phase in the lifecycle. Characteristic for these
traditional tool chains are their linear connections, using a
pipes and filter design pattern [6].

Along with the efforts to capture the complete application
lifecycle in systems for ALM, there is a need for tool integra-
tion with a larger scope. Lifecycle-oriented tool chains sup-
port data exchange, tracing, and automation across the com-

plete development lifecycle, from requirements engineering
over verification, design and implementation to maintenance.
When creating software-intensive systems, such tool chains
may span multiple disciplines such as software engineering,
hardware engineering and mechanical engineering and inte-
grate a large number of different development and lifecycle
management tools. In addition, modern development pro-
cesses put new demands on the tool chain: processes might
be agile, iterative or model-driven, which implies that the
supporting tool chain cannot be linear.

With the large number of alternative development tools
available in the marketplace and the large number of
company-specific development processes, there is an even
larger number of potential, different development processes
that need to be supported by tool chains. A static, one-size-
fits-all application lifecycle management system cannot ful-
fill these needs. Ideally, a tailor-made, customizable solution
is available that addresses the individual needs. Since there
is limited methodological and tool support and little reuse
of tool chain parts, either one-size-fits-all tool chains are
used despite their suboptimal support or customized tool
chains are built, in a mostly manual way, which requires
a tremendous development effort and investment.

In this article, we present one approach for solving this
issue: by providing cost-efficient methods for building tool
chains, the individual development of tailored tool chains
becomes feasible. The approach manages to be cost-efficient
by reuse of existing information and automation of develop-
ment activities. The approach thus provides an opportunity
to bring tailored tool chains within the reach of industrial
application.

A. Stakeholders

As part of the description of challenges, some of the
most important stakeholders of tools and tool chains are
introduced, as depicted in Figure 1, including their roles
as users or creators of tools and tool chains. The embedded
systems developers work with multiple development tools
and take on the role of the users of tools. In addition,
the embedded systems developers take on the role of the
users of tool chains, motivated by the expected efficiency
gains in development provided by tool chains. The vendors
of tools for embedded systems development take on the
role of the creators of tools. IT infrastructure deploys the
development tools. Process engineers have the big picture
of the development process, which is hopefully consistent
with the actual development practices of the embedded
developers. Tool integration specialists are the only ones
who know the integration technologies and conventions.
A challenge is the effective communication between the
stakeholders, as it requires a description of the different
needs and possibilities of the stakeholders on the appropriate
level of abstraction.

106

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Stakeholders of tool chain development

Each one of the different stakeholders for tool chain de-
velopment provides some important information for building
a tool chain. Based on observations and interactions with
industry in the research projects iFEST [7] and CESAR [8],
the assignment of the role of the creator of tool chains is
not clearly defined in industry. The role might be assigned to
third party tool integration developers, but also to embedded
systems developers or to tool vendors, which is problematic.
Tool vendors are mostly interested in connecting only their
tools to other tools, resulting in a limited scope of the in-
tegration. For embedded systems developers, the implemen-
tation of a tool chain is an additional burden that distracts
them from their primary task of developing an embedded
system. The observed constellation of stakeholders requires
an approach for describing and communicating tool chains
both in early design phases and in later phases, when more
precision is needed.

III. MODELING THE DESIGN OF TOOL CHAINS

We need an early design model that describes all im-
portant design decisions of a tool chain. Such a design
model can also serve as a boundary object [9] for the
communication between different stakeholders. We chose
to use the Tool Integration Language (TIL) [10], a domain
specific modeling language for tool chains. TIL allows us not
only to model a tool chain, but also to analyze it and generate
code from it. The implementation of a tool chain can be
partly synthesized from a TIL model, given that metamodels
and model transformations are provided. Here we can only
give a short overview of TIL, for an elaborated description
of concrete graphical syntax, abstract syntax and semantics
we refer to [10].

The graphical concrete syntax of each language concept
is introduced by a simple example in Figure 2, the concrete
mapping function, which maps abstract to concrete syntax,
is defined by corresponding circled numbers 0©.. 7© in Figure

2 and the following text. This section also briefly and
informally introduces the semantics of TIL concepts.

Figure 2. A simple TIL model illustrating the graphical concrete syntax
of the language concepts

A ToolChain 0© provides a container for instances of TIL
concepts. An instance of the ToolChain concept describes
the tool chain by the composition of its contained instances
of TIL concepts.

A ToolAdapter 1© is a software component that describes
the role of a tool in the tool chain by exposing the services
and data of the tool, which are relevant for the specific role.
Exposing the services of a tool enables control integration.
Exposing the data of a tool enables data integration. A
ToolAdapter makes two kinds of adaptation: (1) It adapts
between the technical space of the tool and the technical
space of integration for both data and services. (2) It adapts
the structure of data and the signature of services available
in the development tool to the data structure and service
signatures defined by the ToolAdapter metamodel.

Each ToolAdapter has two associated ToolAdapter meta-
models: one that specifies the structure of the exposed
tool data and another that specifies the signature of the
exposed services. In addition to the services defined in the
metamodel, all ToolAdapters provide the default services
activate to start the tool, injectData to load data (which is an
instance of the ToolAdapter data metamodel) into the tool
and extractData to access the tool data (as an instance of the
ToolAdapter data metamodel). The ToolAdapter metamodels
serve as an interface specification for the ToolAdapter and
describe which data and services of the tool are exposed.
More information on the structure of the ToolAdapter meta-
models is provided in [10], [11].

Subtypes of ToolAdapters are defined, such as a Repos-
itory 7©, which provides storage and version management,
e.g., a ToolAdapter for Subversion [12].

A DataChannel 5© describes the possibility to transfer
and transform data from a source ToolAdapter to a target
ToolAdapter at the run-time of the tool chain; it is a directed
connection. The data originates from the source service of
the source ToolAdapter (default service: extractData), is
transformed and is finally received by the target service
of the target ToolAdapter (default service: injectData). A

107

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

model transformation is attached to the DataChannel; the
source and target metamodels of the transformation need to
match the respective data metamodels of source and target
ToolAdapters.

A TraceChannel 6© describes the possibility to establish
trace links between the data of two ToolAdapters at the run-
time of the tool chain; it is an undirected connection. A
TraceChannel is a design-time representative for a number
of trace links at run-time. At design-time one can specify
the type of data that can be linked by traces. The endpoints
of the traces can be restricted to a subset of the tool data
by specifying the source service and target service (default
service: extractData), which provide the data. At run-time,
these services provide a list of all the source and target
elements that are offered as endpoints for specifying a trace.

A ControlChannel 2© describes an invocation or notifi-
cation, it is a directed connection originating from a source
component and ending in a target component. If the target
of the ControlChannel is a ToolAdapter, the ControlChannel
denotes the invocation of a tool service; if the target is a
DataChannel, the data-transfer is executed; if the target is
a TraceChannel, a dialog for creating traces is presented.
If the target is a User, it denotes notification of the User.
A condition for the execution of the ControlChannel can
be specified by a guard expression. A service of the source
component, called source service (default value: activate),
can be specified as the event that triggers the ControlChan-
nel. The invoked service in the target component is spec-
ified as the target service (default value: activate) of the
ControlChannel.

A Sequencer 3© describes a sequence of invocations or
notifications. When a Sequencer is activated by an incoming
ControlChannel, it activates the outgoing ControlChannels
in the specified order. The order is specified by the events
(0..n), which are specified as the source service in the
outgoing ControlChannels from the Sequencer. Only after
the service executed by the previous ControlChannel is
finished, will the next ControlChannel be activated.

A User 4© represents a real-world tool chain user. The
concept is used to describe the possible interactions of the
real-world users with the tool chain. Outgoing ControlChan-
nels from the User denote the invocation of tool chain
services by the real-world user. Incoming ControlChannels
to a User denote a notification sent to the real-world user,
e.g., by e-mail.

By default, all TIL concepts describe parts of an auto-
mated tool chain, however some parts of the tool chain
may not need to be automated and are manually integrated.
TIL allows marking ControlChannels, DataChannels and
TraceChannels as manually executed, in which case they
are depicted by dashed lines.

The semantics of TIL is defined in the text above, in
addition, compatible formal semantics of the behavior of TIL
can be described by a mapping of TIL concepts to networks

of finite state machines (FSMs) [13].

IV. RELATIONSHIP BETWEEN PROCESS AND TOOL
CHAIN

When building a tool chain, it is important to study which
development tools need to be connected. This information
about the relationship between development tools is often
already available in a process model. Process models exist
for a variety of reasons, i.e., for documenting, planning or
tracking progress in a development project. The Software
& Systems Process Engineering Metamodel (SPEM) [14] is
the standardized formalism by the OMG for this purpose.
A SPEM model might already be available independently
from a tool integration effort, e.g., as it is the case in
development with the Automotive Open Software Architec-
ture (AUTOSAR) [15]. The information available in process
models forms the skeleton of a tool chain, i.e., which tools
are involved and how they are connected in the process. To
construct an executable tool chain as a software solution,
additional details are needed, e.g., information about the
data of tools, how to access it, how to convert it and how
to describe the relation between data of different tools. In
this Section we evaluate, to what extent information from
existing SPEM models can be used for constructing a tool
chain.

Ideally, connections for all tools used throughout the
development process are provided; and in this case the tool
chain supports the development process. The process pro-
vides constraints and requirements for the construction of the
tool chain. While generic process models are available, e.g.,
the SPEM models for the Rational Unified Process (RUP)
[16] or for AUTOSAR [15], companies also create individual
process models for various purposes, e.g., to customize
these generic models to their individual environments, to
document the development process, to plan the development
process, to track the progress in the development or to
document their selection of tools.

If both the process is described as a model and the tool
chain is described as a model, information from the process
model can be reused for constructing a tool chain model.
This approach ensures that the tool chain and the process are
aligned. Alignment decreases the friction experienced when
using the development tools according to the process model.
Process models only contain some, but not all information
necessary for specifying tool chains. Especially the type of
the connection between tools needs to be added later on.

1) Modeling the Product Development Process: In this
section, we introduce a modeling language that is used
for describing the development process. There are both
formal and informal processes in companies, documented to
different degrees and there is an increasing trend to model
processes. Several established languages exist for modeling
processes or workflows. These languages have various pur-
poses, for example BPMN [17] and BPEL [18] describe

108

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

business processes and SPEM describes development pro-
cesses. We apply SPEM, since it is a standardized and
relatively widespread language for modeling development
processes with mature and diverse tool support. A SPEM
model describes both the product development process and
the set of tools used and can thus be applied to describe the
process requirements of a tool chain. An example model is
provided in Figure 5.

A number of concepts are defined in SPEM, we introduce
here the core concepts that are relevant in the context of
tool chains: a Process is composed of several Activities; an
Activity is described by a set of linked Tasks, WorkProducts
and Roles. A number of relationships, here represented by
�.�, are defined between the concepts of the metamodel:
a Role, typically an engineer or software, can �perform�
a Task and a WorkProduct can be marked as the �input�
or �output� of a Task. A WorkProduct can be �managed
by� a Tool and a Task can �use� a Tool.

A. Development Process Model as Requirements for Tool
Chains

In general, a requirement is a documented need of the
nature or behavior of a particular product or service. Re-
quirements can have different degrees of formalization and
structure. In the context of developing tool chains, the tool
chain is the product. The nature or behavior of a particular
tool chain is documented by process models, which thus can
be interpreted as the requirements. Process models contain
the selection of tools and the description of the connections
between the tools. Since process models describe the process
in a structured and formalized form, the requirements of
a tool chain are formalized and structured, which we will
use for describing the relationship between process and tool
chain and using this relationship for efficiently constructing
and verifying tool chains.

B. Relationship Patterns between Process and Tool Chain

If both the process and tool chain are described as a
model, we can also model the relationship between them. A
process described in SPEM might provide several opportu-
nities for tool integration. Such an opportunity involves two
tools and a direct or indirect connection between them. The
tools and the connections found in SPEM are included into
the tool chain architecture as ToolAdapters and Channels.
The direction of the DataChannel can be determined by the
involved work products, which have either the role of input
or output of the task. Tasks connected to only one tool or
tasks dealing with work products connected to the same tool
do not require support from a tool chain; in these tasks
engineers work directly with this tool, e.g., by using the
GUI of the tool.

The challenge is to identify those parts in a SPEM
model that are relevant for tool integration. The relationship
cannot be described by mapping single metaclasses, as in

Table I, instead the relationship needs to be described by
combinations of several connected metaclasses, which we
call patterns. To describe this relationship in more detail,
we list patterns of both SPEM and TIL models and their
correspondences.

Table I
CORRESPONDENCES BETWEEN SPEM AND TIL METACLASSES

SPEM Metaclass TIL Metaclass
Role User
Tool ToolAdapter
Task Channel

The relationship patterns consist of a SPEM part, which
matches a subgraph of a process model in SPEM, and a
TIL part, which will become a new subgraph in the tool
chain model in TIL. The mapping is established by pairs
of model elements from both SPEM and TIL, whose name
attribute is equivalent and whose types are mapped according
to the correspondences of metaclasses presented in Table I.
In the following, we show four SPEM patterns that describe
tool integration related activities, they are illustrated in the
top part of Figure 3, and the corresponding TIL pattern is
illustrated in the bottom.

1) Task-centered Integration Pattern: For each Task in
SPEM that has associated WorkProducts as input and
output, where the input WorkProduct has a different
associated Tool than the output WorkProduct, this
pattern produces ToolAdapters and a Channel between
them in the TIL model. The pattern is shown in (1)
and can be observed in case study 1 in Figure 5 for the
Task TraceReq2UML connecting the WorkProduct Re-
quirementsDatabase and the WorkProduct UMLFile.

2) Multi-tool Task-centered Integration Pattern: For each
SPEM Task with two SPEM Tools associated with it,
this pattern produces ToolAdapters and two Channels
between them in the TIL model, since no directionality
is modeled in SPEM. This pattern is theoretically pos-
sible according to the SPEM metamodel, but we have
not observed it in practice. The pattern is illustrated
in (2).

3) WorkProduct-centered Integration Pattern: For each
SPEM WorkProduct that is both input and output
of its associated Tasks, which have a different asso-
ciated Tool, this pattern produces ToolAdapters and
a Channel between them in the TIL model. The
pattern is illustrated in (3) and can be observed in
case study 2 in Figure 7 for the WorkProduct ECU-
ConfigurationDescription, which is output of the Task
GenerateBaseECUConfiguration and input to the Task
GenerateRTE.

4) Multi-tool WorkProduct-centered Integration Pattern:
For each SPEM WorkProduct in that is associated to
two different Tools, this pattern produces ToolAdapters

109

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. SPEM and TIL Patterns

and two Channels between them in the TIL model,
since no directionality is modeled in SPEM. This
pattern is theoretically possible according to the SPEM
metamodel, but we have not observed it in practice.
The pattern is illustrated in (4).

For all relationship patterns, the following constraints
need to be fulfilled: For each Role in SPEM that is connected
to the Task, we create a User model element in the TIL
model, which means that the Role in SPEM and the User
in TIL are optional parts in the patterns of Figure I. If a
ToolAdapter corresponding to the Tool already exists in the
TIL model, the existing ToolAdapter is connected, otherwise
a new ToolAdapter is produced.

C. Implementation as Model Transformations

The implementation of the patterns offers possibilities
for automation of the pattern usage. We implement the
relationship patterns as model transformations, with SPEM
as the source metamodel and TIL as the target metamodel.
We chose the model-to-model transformation language in
QVT-R, with the mediniQVT engine, and the Eclipse Mod-
eling Framework (EMF) for realizing the metamodels. We
use a simplified SPEM metamodel in EMF, and for the
visualization of SPEM models we use Enterprise Architect.
For modeling and visualization of TIL, we use the TIL
Workbench described in [10].

Patterns (1) to (4) in Figure 3 are graphical representations
of the relational QVT model transformation rules. Since
QVT relational is a declarative language, the implementation
describes the source patterns and the corresponding target
patterns in the form of rules. Additionally, the attributes
between source and target pattern are mapped, as described
in Table I.

D. Usage of Relationship Patterns

The relationship patterns can be used in different ways.
Here, we apply the relationship patterns for constructing the
initial design of a new tool chain starting from a process
model. Other forms of using the relationship patterns are

possible, but are not considered in depth here. We can use the
patterns, e.g., for verification: based on a process model and
a tool chain model we check if the requirements provided
by the process are realized by the tool chain model.

In the following, we focus on the application of the
relationship patterns to create an initial tool chain design
in TIL based on the process requirements expressed in the
SPEM model. The patterns can be applied to a SPEM model
that is complete and contains all necessary references to
Tools. The patterns ensure that the design of the tool chain
is aligned with the process, a necessity for acceptance of the
tool chain with practitioners. This design of the tool chain
can be created in an automated way and might need to be
iteratively refined by adding details.

The process model only provides the skeleton for the
specification of a tool chain, such as the selection of tools,
the connections between the tools and the user role working
with the tools. The process model does not provide the
nature of the connections and the exact execution semantics
of the automated tool chain. The nature of the connection
can be data exchange, for creating trace links between tool
data or for accessing specific functionality of the tool. This
information needs to be added manually by configuring and
choosing the right type of channel in TIL, a DataChannel,
TraceChannel or ControlChannnel. Also, events need to be
specified that trigger the data transfer or activate the tracing
tool. For each ToolAdapter, a metamodel describing the data
and functionality of the tool need to be added to the TIL
model. For each DataChannel, a model transformation needs
to be added.

To handle these cases, we add a refinement step, which
complements the automated construction. Once this infor-
mation is added, the TIL model can be used as input to a
code generator for tool chains, as detailed in [11].

After focusing on the initial conceptual design phase
for tool chains in this section, we explain the complete
development process for tool chains in the following section.

110

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. TOOL CHAIN DEVELOPMENT PROCESS

When developing tool chains, two processes are relevant:
(1) the process for developing the embedded system as a
product, called PDP (Product Development Process) and (2)
the process for developing a tool chain (TCDP). The TCDP
is followed at design-time of the tool chain to ensure that
the developed tool chain can support the PDP at run-time
by automating its integration-related tasks. In this section
we address the TCDP.

A. Overview
In Figure 4, the TCDP – the process for developing a tool

chain with TIL – is illustrated using the SPEM [14] notation.
The development process for tool chains with TIL is struc-
tured into five phases: requirements engineering, conceptual
design, detailed design, analysis and implementation. These
phases are presented according to the order in which they
are traversed during tool chain development. The complete
tool chain development process has the following phases:

1) The requirements of the tool chain are elicited from the
selection of tools and from the dependencies of tasks
and tool usages in the product development process.

2) In the conceptual design phase, a conceptual model
of the tool chain is described using TIL based on the
requirements stipulated by the product development
process. The conceptual model conveys the overall
architecture of the tool chain, including the existing
ToolAdapters, Users and connections between the
ToolAdapters.

3) The alignment of the conceptual TIL model with
the process model can be verified to highlight any
intended or unintended discrepancies between tool
chain design and the requirements stipulated by the
product development process. Depending on the out-
come of the analysis, the conceptual design phase can
be iterated in order to create a conceptual model which
is better aligned with the requirements.

4) In the detailed design phase, the conceptual TIL
model is refined by different types of Channels and
ToolAdapter metamodels. ToolAdapter metamodels
are attached to each ToolAdapter in the TIL model to
describe the data and services of the tool, which are
exposed by the ToolAdapter. The connections between
ToolAdapters and other components are refined by
choosing the type of the connector (ControlChannel,
DataChannel or TraceChannel). A model transforma-
tion is attached to each DataChannel in the TIL model;
it describes the translation of data from the source
tool to the target tool. The model transformation can
be specified in different ways, either manually or
computed based on the information in an ontology
or weaving model). The conceptual TIL model with
attached metamodels and model transformations yields
a complete TIL model. Figure 4. Process for developing a tailored tool chain with semi-automated

support based on TIL, illustrated using SPEM [14] notation

111

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

5) Additional analyses are possible based on the detailed
design. The syntactic correctness of the model can
be checked and non-functional properties, such as the
development cost of the tool chain, can be estimated.
Depending on the outcome of the analyses, the tool
chain design can be corrected before proceeding to
the implementation phase.

6) In the implementation phase, the TIL model can serve
as a blueprint for implementing the tool chain. The
code of the tool chain is compiled and deployed.

7) At run-time1 of the tool chain, the embedded devel-
opers use the deployed tool chain, which integrates
several embedded systems tools.

There are different stakeholders of the tool chain, who
are in contact with the tool chain at different points in the
lifecycle of the tool chain. For this purpose, a distinction
is made between the design-time of a tool chain and the
run-time.

At design-time of the tool chain, the tool chain develop-
ment process is executed, which involves a process engineer,
tool chain architect and tool chain developers. A process
engineer may model the product development process that is
supported by the tool chain. The tool chain architect defines
the conceptual and detailed design of the tool chain. One or
several tool chain developers implement the tool chain as
software based on the tool chain design.

At run-time, the tool chain software is executed to realize
the data-transfer, traceability, invocation and notification to
support the product development process of the embedded
system. The embedded systems developers have the role of
tool chain users.

The role of the tool chain architect has been explicitly
introduced to cover the responsibility of specifying, refining
and analyzing the architecture of the tool chain. Since TIL
allows the tool chain to be described independently of im-
plementation technology, the role of the tool chain architect
can be separated from that of the tool chain developer. As the
tool chain users, embedded systems developers are familiar
with the requirements for the tool chain, but not with their
implementation. Thus, embedded systems developers may
be suitable candidates to take on the role of the tool chain
architect and leave the implementation to dedicated tool
chain developers. This separation of responsibilities is one
attempt to resolve the unclear responsibility for the creation
of tool chains observed in industry (cf. Section II-A).

B. Requirements Engineering

As described in Section IV-A, the product development
process constitutes an important part of the requirements
for the tool chain. By modeling the product development
process in SPEM, we capture and model the requirements

1Strictly speaking, the run-time is outside the scope of the development
process but has been added here for illustrating the connection between the
tool chain and the embedded systems developers.

of the tool chain. We are thus in the situation to have semi-
formal requirements for the tool chain.

C. Conceptual Design

In the early design phase of the tool chain development
process, a conceptual TIL model is created, which only
describes the components and connections of the tool chain
without any additional details. The conceptual model of the
tool chain should be aligned to the product development
process and the choice of development tools, so the tool
chain can support the integration-related tasks in the devel-
opment process. Development processes can be modeled for
different purposes [19], however, here we focus on process
models that have been created as a means for documentation,
and are expressed by the Software and Process Engineering
Metamodel (SPEM) [14].

If in addition to describing the tool chain as a model
(e.g., using TIL), the process is also modeled (e.g., using
SPEM), the relationship between the process model and
tool chain model can be described. Possible relationships
between SPEM and TIL models are identified and expressed
by a mapping of a pattern of SPEM metaclasses to a pattern
of TIL metaclasses. This mapping is implemented as a model
transformation. Using the transformation and an existing
process model, an initial conceptual design model of the
tool chain is created. The main benefit of an automated
mapping between process models and tool chain models is
that an alignment between the design of the tool chain and
the process can be achieved. This approach was described
in detail in Section IV.

D. Refinement and Detailed Design

The conceptual TIL model needs to be refined by adding
ToolAdapter metamodels that describe the data and the
services exposed by each ToolAdapter and thus serve as
interface specifications. If the ToolAdapter is to be newly
implemented, the ToolAdapter metamodels need to be man-
ually specified.

If an existing, already deployed ToolAdapter is to be
reused and integrated into a tool chain, such as an existing
ToolAdapter provided by a third party, the integration of the
ToolAdapter would be possible on implementation level. In
this approach, however, we explore the integration at model
level, since a complete model of the tool chain enables
correctness checks, analysis of the tool chain and complete
synthesis of the implementation. The integration on model-
level entails representing the interface of the remotely de-
ployed ToolAdapter by ToolAdapter metamodels. This work
explores, how the ToolAdapter metamodels of the remotely
deployed ToolAdapter can be automatically discovered and
integrated into a comprehensive TIL model of the tool chain.

The approach allows for the efficient reuse of deployed
ToolAdapters in a new tool chain, ensures the consistency

112

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

between the ToolAdapter metamodel and the deployed im-
plementation, and the consistency between the ToolAdapter
metamodel and the TIL model, enabled by the representation
of all relevant information on the model level. This approach
is further detailed in [20].

The conceptual TIL model needs to be further refined with
detailed specifications for each DataChannel. DataChannels
denote the transfer of data from a source ToolAdapter to
a target ToolAdapter. The tool data is exposed by the
ToolAdapter in the form of a model that conforms to the
ToolAdapter metamodel. If the metamodels of source and
target ToolAdapters are the same, the data can be simply
copied between the ToolAdapters. In the more common
case that the metamodels are different, the data needs to
be transformed before it can be transferred to the target
ToolAdapter. For this purpose, TIL offers the possibility to
link a model transformation to each DataChannel. The model
transformation converts the data between the metamodels of
source and target ToolAdapters.

Typically, the details of a DataChannel are manually
specified in the form of a model transformation, which
requires time and effort. Especially if the requirements
for the tool chain are still changing and prototypes of a
tool chain are developed, an automated approach for the
specification of model transformations can be valuable. In
this setting, the intention is to rapidly and automatically
create a first prototype of a model transformation, which
can be manually refined later on.

Under certain conditions it might be possible to provide
support for specifying a prototype model transformation
automatically. The TIL model contains relevant information
for generating the transformation, such as its execution
direction and both its source and target metamodels. This
information is not sufficient for an algorithmic approach, but
a heuristic approach for prototyping model transformations
can be realized. With the assumption that similar metaclasses
of the metamodels of source and target ToolAdapters should
be mapped, a model transformation can be computed using
heuristics. As a measure for the similarity of the metaclasses,
the similarity of the reference structure and the names of the
metaclasses are used. The automatic refinement of the tool
chain model by generating the information in DataChannels
is described in [21].

E. Verification and Analysis

The analysis of a tool chain design is intended to support
the tool chain architect when designing a tool chain. An
advantage of using an explicit model-based description of
the tool chain is the possibility for early analysis. Early
analysis allows for evaluating different designs of the tool
chain and especially allows finding problems during design
that would be more expensive to correct if discovered
later [22]. Instead of applying generic, existing analysis
techniques, we here focus on domain-specific analyses that

make use of the additional knowledge of the domain of tool
integration, which is encoded in TIL models.

1) Correctness Checks of the Tool Chain Design: Cor-
rectness checks are used to detect specification errors in
TIL models. Syntactic correctness of the TIL model is
checked by the TIL Workbench when a TIL model is
created. In addition, the following checks for semantic
correctness are performed. A TIL model provides language
concepts for both specifying service signatures and invoking
the services. All service calls need to be consistent with
their respective specification. Correctness checks compare
the usage with the specification. The services and data
structures are specified in the ToolAdapter metamodels and
are used in the ControlChannels. The TIL model is checked
for correctness by analyzing whether all service usages
in the ControlChannels comply with their definitions in
the ToolAdapter metamodels. The correctness check in the
current implementation checks whether the used services are
defined in the ToolAdapter metamodels by using the name
of the services. Future work on the implementation could
also take the parameters of the services into account.

2) Early Structural Design Verification of Tool Chain
Design: In general, design verification checks if the design
fulfills the specified requirements. The requirements for a
tool chain are provided by the selection of tools, the product
development process and additional information. Here the
verification effort focuses on structural design verification,
which is concerned with the extent to which the structure
of the design of the tool chain is aligned to the structure
required by the product development process. Early verifica-
tion of tool chain design can detect possible misalignments
between the structure of the product development process
and the structure of the tool chain, when corrections are still
relatively simple and cheap. By automating the early verifi-
cation of tool chain design, it can be performed repeatedly
with little effort, supporting the iterative refinement of tool
chains.

The alignment of the design provided by a TIL model
is checked against the requirements provided by a SPEM
model [23]. This alignment can be expressed by a mapping
of a pattern of SPEM metaclasses to a pattern of TIL meta-
classes. Even if the conceptual model has been constructed
based on a SPEM model, unintended changes might have
been introduced by manual refinements. The verification
produces a list of misalignments and a measurement indicat-
ing the degree of alignment between the tool chain and the
product development process using precision/recall metrics
[24], where a tool chain that is well-aligned to the process
model has both a high degree of precision and a high degree
of recall.

Structural design verification is only one part of a compre-
hensive design verification, since other requirements besides
the structure, such as the behavior and non-functional re-
quirements, need to be checked as well. Even a comprehen-

113

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sive design verification is a complement – not a replacement
– to testing and verification of the final implementation.

F. Implementation

To support the implementation phase of the tool chain
development process, the TIL approach provides a code
generator. For any correct TIL model the code generator
synthesizes a corresponding implementation automatically.
TIL is designed to be independent of any particular imple-
mentation technology and thus code for different implemen-
tation technologies could be generated for a TIL model. For
the purpose of showing that code generation is feasible, a
particular implementation technology was chosen as a target
platform and a code generator was built for it.

Code generation can produce a large part of the implemen-
tation automatically, however, it needs to be complemented
with some manual implementation for interfacing the APIs
of the integrated tools. We refer to [10] and [11] for a
detailed description of the support for the implementation
phase and code generator.

VI. CASE STUDIES

In this section, we apply the identified relationship pat-
terns between a process model and a tool chain (see Section
IV) in two industrial case studies and a case study that
recursively applies the approach to the development of tool
chains. The tool chain development process (see Section V)
and the tool integration language (see Section III) are used
as enabling technologies. The variety of case studies gives us
the opportunity to study different ways of using the patterns
and to explore the impact of different modeling styles.

A. Case Study 1: Conceptual Design of a Tool Chain Model
for a Hardware-Software Co-Design Process

This case-study deals with an industrial development
process of an embedded system that is characterized by
tightly coupled hardware and software components. The
development process for hardware-software co-design is
textually described in the following:

• The requirements of the embedded system are captured
in the IRQA2 tool. The system architect designs a UML
component diagram and creates trace links between
UML components and the requirements.

• The UML model is refined and a fault tree analysis is
performed by the safety engineer. When the results are
satisfactory, the control engineer creates a Simulink3

model for simulation and partitions the functionality
for realization in software and hardware.

• The application engineer uses Simulink to generate C
code, which is refined in the WindRiver4 tool. The

2http://www.visuresolutions.com/irqa-web
3http://www.mathworks.com/products/simulink
4http://www.windriver.com

data from UML and Simulink is input to the IEC-
61131-3 conform ControlBuilder tool. The data from
ControlBuilder, Simulink and WindRiver is integrated
in the Freescale development tool for compiling and
linking to a binary for the target hardware.

• A hardware engineer generates code in the hardware
description language VHDL from Simulink and refines
it in the Xilinx ISE5.

Based on the description of the process, we have created the
corresponding SPEM model visualized in Figure 5.

We apply the model-to-model transformation that realizes
the relationship patterns on the SPEM model in Figure 5.
This yields a tool chain model that is aligned with the
process, as shown in Figure 6. By applying the task-centered
integration pattern shown in (1), we identify integration
tasks that are linked to two work products that in turn
are linked to different development tools (e.g., the task
Trafo UML2Safety). Some other tasks are not concerned
with integration, they are related to one tool only (e.g., the
task Use UML).

The TIL model resulting from application of the rela-
tionship patterns is internally consistent; this means that
there are no conflicts, missing elements or duplications
in the model. All tools mentioned in the SPEM model
are also present in the TIL model as ToolAdapters and
all ToolAdapters are connected. In addition, the approach
ensures that the design of the tool chain matches the process.

Since the tool chain is modeled, we can easily change,
extend and refine the initial model before any source code
for the tool chain is developed. The TIL model is relatively
small compared to the SPEM model, thus hinting at its effect
to reduce complexity. When using the simple complexity
metric of merely counting model elements and connections,
we see that in the TIL model their number is reduced by
2/3 compared to the SPEM model (cf. Table II).

Table II
SIZE OF THE SPEM AND TIL MODEL OF CASE STUDY 1

Count Model Elements Connections
SPEM Model 43 71
TIL Model 13 26

The important architectural design decisions of the tool
chain (such as the adapters and their connections) can be
expressed in TIL, while the complexity has been decreased
compared to a SPEM model (cf. Table II). The tool chain
model can be analyzed and - after additional refinement with
tool adapter metamodels and transformations - can be used
for code generation, as detailed in [11], [10]. Moreover,
the presented model-driven construction of the tool chain
ensures that the tool chain is aligned with the process.

5http://www.xilinx.com/ise

114

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Case Study 1: Product Development Process of the Case Study as a SPEM Model

Figure 6. Case Study 1: Tool Chain of the Case Study as a TIL Model

115

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Case Study 2: Verification of a Tool Chain Model for
AUTOSAR ECU Design

In this case study, we model a tool chain for AUTOSAR.
AUTOSAR is developed by the automotive industry and de-
fines an architectural concept, a middleware and in addition
a methodology for creating products with AUTOSAR. The
AUTOSAR methodology describes process fragments, so
called capability patterns in SPEM. Generic AUTOSAR tool
chains are implemented in both commercial tools and open
frameworks, however, it is a challenge to set up tool chains
consisting of tools from different vendors [25] and tool
chains customized to the needs of a particular organization.

The SPEM process model is provided by the AUTOSAR
consortium and is publicly available, which contributes to
the transparency of this case study. An excerpt of this
model that is relevant for the design of a ECU, is depicted
in Figure 7. We use this excerpt of the SPEM model to
initialize a tool chain. Applying the patterns creates the
tool chain model in TIL, illustrated in Figure 8. Out of the
four different SPEM parts of the relationship patterns (1)
- (4), only the workproduct-centered integration pattern (3)
matched several times in the SPEM model. This is due to the
modeling style used in the AUTOSAR methodology, where
WorkProducts are used as an interface for integrating tools.

The generated skeleton of the tool chain lays the founda-
tion for ensuring that the AUTOSAR methodology can be
realized by this tool chain. The skeleton can now be refined
with metamodels, model transformations and the behavior.

C. Case Study 3: A Tool Chain for Developing Tool Chains

To create a tool chain for developing tool chains, we apply
the approach recursively onto itself: the tool chain is the
product that will be developed according to the process for
developing the tool chains. Using the terminology introduced
in Section V, this process is called tool chain development
process (TCDP) illustrated in Figure 4. We now interpret
the TCDP as the PDP and thus as the basis for tool chain
creation: the TCDP is interpreted as a description of the
requirements of the tool chain.

Figure 9. The tool chain for developing tool chains.

Only three tools are involved in the TCDP, and the tool
chain is a straightforward pipe-and-filter architecture. The
tool chain in TIL, which results from applying the patterns
described in Section IV-B, is depicted in Figure 9. For
each ToolAdapter, the metamodels are already defined and

can be reused: The SPEM metamodel is defined [14] the
TIL metamodel is defined [10] and the metamodel for Java
is simply text in this context. The model transformations
that need to be associated with the DataChannels are also
defined: the model transformation from SPEM to TIL is
described in Section IV-B in the form of patterns, the model
transformation from TIL to Java code is described in paper
[10]. With these cornerstones, it is thus perfectly feasible
to apply the approach onto itself. This exercise can also be
seen as an additional form of validation for the approach.

VII. RELATED WORK

Related work can be found in the areas tool integration
and process modeling. There are a number of approaches
for tool integration, as documented in the annotated bibli-
ographies [26], [27]. Most of the approaches do not take
the process into account; in this section, we focus on those
approaches that do.

Different process metamodels have been compared in
[28] and specifically process models based on UML [29].
These approaches are usually focused on the description
and documentation of processes. The execution of process
models can range from simple workflow systems to more
elaborate automation models. An example of an approach
in the latter category is the PM+FDT approach [30]. It
is based on a formalism for activity diagrams and uses
model transformations to realize activities for transitioning
from one formalism to another one. While dealing with
multiple formalisms through transformations is possible, the
connection to industrially used development tools is out of
scope.

In the following, we classify approaches for process
modeling according to two dimensions: The first dimension
comprises different execution mechanisms, which can be
interpretation vs. compilation. The second dimension com-
prises different process modeling languages, which can be
proprietary vs. standardized.

Interpretation-based approaches [31], [32], [33] use the
process definition for tool integration. This technique is also
known as enactment of process models. Since the description
of the process is identical to the specification of the tool
chain, no misalignment between process and tool chain is
possible. There are two preconditions for this approach: the
process model needs to be executable and the access to
data and functionality of the development tools needs to
be possible. The use of a proprietary process model for
interpretation in tool chains is introduced in [34], as the
process-flow pattern. Approaches that extend SPEM make
the process model executable [31], [32]. The orchestration
of tools by a process model is shown in [33]. However,
the interpretation of integration related tasks is often not
possible, since the interfaces to the development tools are
not standardized. Thus, the use of process enactment to build
tool chains is limited.

116

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Case Study 2: Excerpt of the AUTOSAR Methodology for Designing an ECU [15].

Figure 8. Case Study 2: AUTOSAR Tool Chain for Designing an ECU as a TIL Model

Compilation-based approaches transform the process
model into another format, where the process model serves
as a set of requirements. Proprietary process models provide
great flexibility to adapt them to the specific needs of tool
integration. An integration process model is developed in
[35], where each process step can be linked to a dedicated
activity in a tool. For execution, it is compiled into a low-
level process model. The proprietary process model needs to
be created specifically for constructing a tool chain. In this
work, we use the standardized process metamodel SPEM
[14], which allows us to reuse existing process models as a
starting point for building tool chains and as a reference for
verification for tool chains.

VIII. FUTURE WORK

This approach assumes that an appropriate process model
for tool chains is available. We assume that the process
model does not contain any integration related overhead,
i.e., explicit representation of a model transformation tool
and intermediate data model. We assume that tools have

been assigned to process activities. The choice for certain
tools is usually independent of automating the tool chain, the
choice merely needs to be documented in the process model.
SPEM offers several ways for describing tool integration.
Future work can identify additional SPEM patterns for
describing tool integration. Future work can also identify
possible uses of additional SPEM constructs for describing
tool integration, such as the the SPEM work breakdown
structure.

The use of the presented patterns is limited to processes
represented in SPEM and tool chains modeled in TIL.
However, the patterns could be adapted to similar process
metamodels, as long as the required concepts are present.
In the future, we would like to experiment with additional
languages for describing the process model, such as BPMN.
This might help us to further generalize the patterns.

We have evaluated the approach in two case studies from
the area of embedded systems and one case study from
software development. We do not see any reason why the

117

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

patterns could not be applied for creating tool chain from
process models in other application areas in the future and
are thus generalizable. For further validation, we thus plan
to apply the presented techniques in another area of software
and systems engineering.

IX. CONCLUSION

In modern development processes, tools are no longer
used in a linear sequence, but as networks of interacting
tools. The tool chain represents this network of interacting
tools that needs to be tailored to the the development
process. Processes are increasingly described as process
models, which exist for a variety of reasons, i.e., for doc-
umenting, planning or tracking progress in a development
project. SPEM is the standardized language by the OMG for
this purpose. In this article, we recognize the development
process modeled in SPEM as a set of requirements for the
architecture of tool chains. We devise a number of patterns
for creating the skeleton of a tool chain model in TIL, which
is aligned with the process. This allows us to automate the
creation of an initial tool chain design.

We have further shown how a tool chain model can be
systematically developed into a tool chain implementation
by following a structured tool chain development process.
We have shown that many phases of this tool chain develop-
ment process can be automated. If this process is followed,
a semi-automated construction of tool chain software is
possible. The semi-automation makes the construction cost-
efficient, which is one of the decisive factors for building
and configuring tailored application lifecycle management
systems.

The presented cost-efficient construction has the potential
to resolves the dilemma faced by industry today: Applica-
tion lifecycle management can only deliver the promised
efficiency improvements and cost savings, if it is tailored
to the given set of tools and processes, but tailoring itself
is expensive, has a cost and thus reduces the net-value
of application lifecycle management. By automating the
tailoring, as described in this article, the cost of tailoring
is reduced and thus the net-value of application lifecycle
management is highly improved.

Acknowledgement

The authors acknowledge partial funding by the
ARTEMIS project iFEST.

REFERENCES

[1] M. Biehl and M. Törngren, “Constructing Tool Chains based
on SPEM Process Models,” in Seventh International Confer-
ence on Software Engineering Advances (ICSEA2012), Nov.
2012.

[2] C. Singh and M. Azoff, “Ovum Decision Matrix: Selecting
an Application Lifecycle Management Solution, 2013-14,”
Ovum, Tech. Rep., Jan. 2013.

[3] M. Wicks and R. Dewar, “A new research agenda for tool
integration,” Journal of Systems and Software, vol. 80, no. 9,
pp. 1569–1585, Sep. 2007. [Online]. Last accessed June
2013. Available: http://dx.doi.org/10.1016/j.jss.2007.03.089

[4] T. Bruckhaus, N. H. Madhavii, I. Janssen, and J. Henshaw,
“The impact of tools on software productivity,” Software,
IEEE, vol. 13, no. 5, pp. 29–38, Sep. 1996. [Online]. Last
accessed June 2013. Available: http://dx.doi.org/10.1109/52.
536456

[5] J. El-khoury, O. Redell, and M. Törngren, “A Tool
Integration Platform for Multi-Disciplinary Development,”
in 31st EUROMICRO Conference on Software Engineering
and Advanced Applications. IEEE, 2005, pp. 442–
450. [Online]. Last accessed June 2013. Available: http:
//dx.doi.org/10.1109/euromicro.2005.10

[6] M. Shaw and D. Garlan, Software architecture. Prentice
Hall, 1996.

[7] iFEST Project: Industrial Framework for Embedded Systems
Tools. [Online]. Last accessed June 2013. Available:
http://www.artemis-ifest.eu

[8] CESAR Project: Cost-Efficient Methods and Processes for
Safety Relevant Embedded Systems. [Online]. Last accessed
June 2013. Available: http://www.cesarproject.eu

[9] S. L. Star and J. R. Griesemer, “Institutional Ecology,
’Translations’ and Boundary Objects: Amateurs and
Professionals in Berkeley’s Museum of Vertebrate Zoology,
1907-39,” Social Studies of Science, vol. 19, no. 3, pp.
387–420, 1989. [Online]. Last accessed June 2013. Available:
http://dx.doi.org/10.2307/285080

[10] M. Biehl, J. El-Khoury, F. Loiret, and M. Törngren, “On
the modeling and generation of service-oriented tool chains,”
Journal of Software and Systems Modeling, vol. 0275,
Sep. 2012. [Online]. Last accessed June 2013. Available:
http://dx.doi.org/10.1007/s10270-012-0275-7

[11] M. Biehl, J. El-Khoury, and M. Törngren, “High-Level
Specification and Code Generation for Service-Oriented Tool
Adapters,” in Proceedings of the International Conference on
Computational Science (ICCSA2012), Jun. 2012.

[12] C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick,
Version Control with Subversion, 1st ed. O’Reilly Media,
Jun. 2004. [Online]. Last accessed June 2013. Available:
http://www.worldcat.org/isbn/0596004486

[13] M. Biehl, “Semantic Anchoring of TIL,” Royal Institute
of Technology, Tech. Rep. ISRN/KTH/MMK/R-12/19-SE,
Oct. 2012. [Online]. Last accessed June 2013. Available:
http://www1.md.kth.se/∼biehl/files/papers/semantics.pdf

[14] OMG, “Software & Systems Process Engineering Metamodel
Specification (SPEM),” ”OMG”, Tech. Rep., Apr. 2008.
[Online]. Last accessed June 2013. Available: http://www.
omg.org/spec/SPEM/2.0

[15] AUTOSAR Consortium. (2011, Apr.) Automotive open
software architecture (AUTOSAR) 3.2. [Online]. Last
accessed June 2013. Available: http://autosar.org/

118

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[16] P. Kruchten and P. Kruchten, The Rational Unified Process.
Addison-Wesley Pub (Sd), Dec. 1998. [Online]. Last
accessed June 2013. Available: http://www.worldcat.org/isbn/
0201604590

[17] OMG, “Business Process Model And Notation (BPMN),”
”OMG”, Tech. Rep., Jan. 2011. [Online]. Last accessed June
2013. Available: http://www.omg.org/spec/BPMN/2.0/

[18] OASIS, “OASIS Web Services Business Process Execution
Language (WSBPEL) TC,” ”OASIS”, Tech. Rep., Apr. 2007.

[19] B. Curtis, M. I. Kellner, and J. Over, “Process modeling,”
Commun. ACM, vol. 35, no. 9, pp. 75–90, Sep. 1992.
[Online]. Last accessed June 2013. Available: http://dx.doi.
org/10.1145/130994.130998

[20] M. Biehl, W. Gu, and F. Loiret, “Model-based Service Discov-
ery and Orchestration for OSLC Services in Tool Chains,” in
International Conference on Web Engineering (ICWE2012),
Jul. 2012.

[21] M. Biehl, J. Hong, and F. Loiret, “Automated Construction
of Data Integration Solutions for Tool Chains,” in Seventh
International Conference on Software Engineering Advances
(ICSEA2012), Nov. 2012.

[22] D. Jackson and M. Rinard, “Software analysis: a roadmap,”
in Proceedings of the Conference on The Future of Software
Engineering, ser. ICSE ’00. New York, NY, USA: ACM,
2000, pp. 133–145. [Online]. Last accessed June 2013.
Available: http://dx.doi.org/10.1145/336512.336545

[23] OMG, “Software & Systems Process Engineering Metamodel
specification (SPEM) 2.0,” OMG, Tech. Rep., 2008. [Online].
Last accessed June 2013. Available: http://www.omg.org/
spec/SPEM/2.0/PDF

[24] C. J. Van Rijsbergen, Information Retrieval, 2nd ed.
Butterworth-Heinemann. [Online]. Last accessed June 2013.
Available: http://www.dcs.gla.ac.uk/Keith/Preface.html

[25] S. Voget, “AUTOSAR and the automotive tool chain,” in
Proceedings of the Conference on Design, Automation and
Test in Europe, ser. DATE ’10. 3001 Leuven, Belgium,
Belgium: European Design and Automation Association,
2010, pp. 259–262. [Online]. Last accessed June 2013.
Available: http://portal.acm.org/citation.cfm?id=1870988

[26] M. N. Wicks, “Tool Integration within Software Engineering
Environments: An Annotated Bibliography,” Heriot-Watt
University, Tech. Rep., 2006. [Online]. Last accessed June
2013. Available: http://www.macs.hw.ac.uk:8080/techreps/
docs/files/HW-MACS-TR-0041.pdf

[27] A. W. Brown and M. H. Penedo, “An annotated bibliography
on integration in software engineering environments,”
SIGSOFT Softw. Eng. Notes, vol. 17, no. 3, pp. 47–
55, 1992. [Online]. Last accessed June 2013. Available:
http://dx.doi.org/10.1145/140938.140944

[28] B. Henderson-Sellers and C. Gonzalez-Perez, “A comparison
of four process metamodels and the creation of a new
generic standard,” Information and Software Technology,
vol. 47, no. 1, pp. 49–65, Jan. 2005. [Online]. Last accessed
June 2013. Available: http://dx.doi.org/10.1016/j.infsof.2004.
06.001

[29] R. Bendraou, J. M. Jezequel, M. P. Gervais, and X. Blanc,
“A Comparison of Six UML-Based Languages for Software
Process Modeling,” IEEE Trans. Softw. Eng., vol. 36, no. 5,
pp. 662–675, Sep. 2010. [Online]. Last accessed June 2013.
Available: http://dx.doi.org/10.1109/tse.2009.85

[30] L. Lucio, S. Mustafiz, J. Denil, B. Meyers, and
H. Vangheluwe, “The Formalism Transformation Graph as a
Guide to Model Driven Engineering,” School of Computer
Science, McGill University, Tech. Rep. SOCS-TR2012.1,
Mar. 2012.

[31] A. Koudri and J. Champeau, “MODAL: A SPEM Extension
to Improve Co-design Process Models,” in ICSP’10
Proceedings of the 2010 international conference on
New modeling concepts for today’s software processes, ser.
Lecture Notes in Computer Science, J. Münch, Y. Yang,
and W. Schäfer, Eds., vol. 6195. Springer, 2010, pp.
248–259. [Online]. Last accessed June 2013. Available:
http://dx.doi.org/10.1007/978-3-642-14347-2 22

[32] R. Bendraou, B. Combemale, X. Cregut, and M. P. Gervais,
“Definition of an Executable SPEM 2.0,” in Software
Engineering Conference, 2007. APSEC 2007. 14th Asia-
Pacific. IEEE, Dec. 2007, pp. 390–397. [Online]. Last
accessed June 2013. Available: http://dx.doi.org/10.1109/
aspec.2007.60

[33] B. Polgar, I. Rath, Z. Szatmari, A. Horvath, and I. Majzik,
“Model-based Integration, Execution and Certification of De-
velopment Tool-chains,” in Workshop on model driven tool
and process integration, Jun. 2009.

[34] G. Karsai, A. Lang, and S. Neema, “Design patterns for
open tool integration,” Software and Systems Modeling,
vol. 4, no. 2, pp. 157–170, May 2005. [Online]. Last
accessed June 2013. Available: http://dx.doi.org/10.1007/
s10270-004-0073-y

[35] A. Balogh, G. Bergmann, G. Csertán, L. Gönczy, Horváth,
I. Majzik, A. Pataricza, B. Polgár, I. Ráth, D. Varró, and
G. Varró, “Workflow-driven tool integration using model
transformations,” in Graph transformations and model-driven
engineering, G. Engels, C. Lewerentz, W. Schäfer, A. Schürr,
and B. Westfechtel, Eds. Springer-Verlag, 2010, ch. 10,
pp. 224–248. [Online]. Last accessed June 2013. Available:
http://portal.acm.org/citation.cfm?id=1985534

119

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Towards an Approach for Analysing the Strategic Alignment

of Software Requirements using Quantified Goal Graphs

Richard Ellis-Braithwaite
1

Russell Lock
1

Ray Dawson
1

Badr Haque
2

1
Computer Science, Loughborough University

2
Rolls-Royce Plc.

Leicestershire, United Kingdom

Derby, United Kingdom

{r.d.j.ellis-braithwaite@lboro.ac.uk, r.lock@lboro.ac.uk, r.j.dawson@lboro.ac.uk, badr.haque@rolls-royce.com}

Abstract—Analysing the strategic alignment of software re-

quirements primarily provides assurance to stakeholders that

the software-to-be will add value to the organization. Addi-

tionally, such analysis can improve a requirement by disam-

biguating its purpose and value, thereby supporting validation

and value-oriented decisions in requirements engineering pro-

cesses, such as prioritization, release planning, and tradeoff

analysis. We review current approaches that could enable such

an analysis. We focus on Goal Oriented Requirements Engineer-

ing methodologies, since goal graphs are well suited for relating

software goals to business goals. However, we argue that unless

the extent of goal-goal contribution is quantified with verifiable

metrics, goal graphs are not sufficient for demonstrating the

strategic alignment of software requirements. Since the con-

cept of goal contribution is predictive, what results is a forecast

of the benefits of implementing software requirements. Thus,

we explore how the description of the contribution relationship

can be enriched with concepts such as uncertainty and confi-

dence, non-linear causation, and utility. We introduce the ap-

proach using an example software project from Rolls-Royce.

Keywords—Requirements Engineering; Strategic Alignment;

Quantified Goal Graphs; Requirements Traceability

I. INTRODUCTION

This paper describes in more detail the concepts and the
technique originally presented at the 7

th
 International Con-

ference on Software Engineering Advances [1]. It extends
the work namely through a more comprehensive literature
review, and the introduction of multi-point goal contribution.

The growth of the strategic importance of IT [2] necessi-
tates the need to ensure that software to be developed or
procured is aligned with the strategic business objectives of
the organization it will support [3]. Attaining this alignment
is a non-trivial problem; firstly, decisions in the Require-
ments Engineering (RE) phase are some of the most complex
in the software development or procurement lifecycle [4],
and secondly, there is a gulf of understanding between busi-
ness strategists and IS/IT engineers [5]. If alignment were
trivial and easy, then it would not have been the “top ranking
concern” of business executives for the last two decades [6],
over 150 papers would not have been published on the topic
[7], and perhaps there would be less software features im-
plemented but never used (currently half of all features [8]).

Decisions made in the requirements phase greatly affect
the value of the resulting software, e.g., in requirements pri-
oritisation, the selection of the least important requirements

allows costs to be cut by trading off the development of those
requirements. The correctness of any such decision depends
entirely on the availability of information about the choices
available to the decision maker [9]. In this context, infor-
mation about the value of a requirement, in particular, the
causes and dependencies of value creation, is highly useful.
Goal graphs are of great interest because they are well suited
for visualising cause-effect, dependency, and hierarchical
relationships between requirements [10].

This paper explores the suitability of goal graphs for
demonstrating a software requirement’s strategic alignment.
Current Goal Oriented Requirements Engineering (GORE)
approaches primarily take a qualitative or subjective approach
to describing goal contribution, such as GRL’s {--,-,+,++} or
[-100,100] scores [11]. As a result, any strategic alignment
proposed by the use of goal graphs is not specific, measura-
ble or testable. Proposed extensions by Van Lamsweerde
[12] do not consider that a chain of linked goals may contain
a variety of metrics that need to be translated in order to
demonstrate strategic alignment. Additionally, the certainty,
confidence, and credibility of the predicted contribution is
not explored. A probabilistic layer for goal graphs is pro-
posed in [13], which recognises that goals are often only
partially satisfied by software requirements. However, the
(often non-linear [14]) effects of the incomplete goal satis-
faction on an organisation’s various levels of business strate-
gy are not explored. Furthermore, current methods do not
consider how goal contribution scores are elicited [15], and
how their calculation affects the credibility and accuracy of
the claimed benefits. This paper attempts to demonstrate how
the above problems can be addressed, thereby improving the
applicability of goal graphs for the problem of analysing the
strategic alignment of software requirements. By making
assumptions about business value explicit, our approach com-
plements Value-Based Software Engineering (VBSE) [16].

We have developed and implemented our approach in
partnership with an industrial partner (Rolls-Royce) to en-
sure its usability and utility in real world settings. We use
examples in the context of a software project for a Business
Unit (BU) responsible for part of a Gas Turbine (GT) engine,
henceforth referred to as GT-BU. The software will automate
geometry design and analysis for engine components, as well
as for their manufacturing tools such as casting molds. Simp-
ly put, engineers will input the desired design parameters and
the software will output the component’s geometry. At the
time of our involvement with the project, some high level

120

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

software requirements had already been elicited and defined
according to the Volere template [17].

In Section II, we describe the problem that this paper ad-
dresses. Then, in Section III, we define and describe the
essential terminology and concepts, while in Section IV, we
present and evaluate the extent to which existing solutions
address it. Section V presents our approach and tool in order
to address the gaps outlined in Section IV. We conclude in
Section VI with the paper’s contributions and future work.

II. THE PROBLEM

Stakeholders responsible for a software project’s funding
need to be able to demonstrate that the software they want to
develop or purchase will be beneficial. Decision makers
require granularity at the requirement level, rather than the
project level, since individual software functionalities or
qualities may significantly affect the benefit or cost of the
software’s development or procurement. Furthermore, stake-
holders performing requirements engineering processes
where the benefit of a requirement is questioned (e.g., in
prioritisation, release planning, trade-off, etc.) need to know
how benefit is defined by the stakeholders, and then how the
requirements (and their alternatives) contribute to it.

As an example of the problem that this paper examines,
we introduce the following high-level software requirement
taken from our example project: “While operating in an
analysis solution domain and when demanded, the system
shall run analysis models”. The rationale attached to this
requirement is “So that structural integrity analysis models
can be solved as part of an automated process”. Although the
rationale hints at automation, the requirement’s benefit to the
business and the potential for alignment with business strate-
gy are unclear. In order to understand the latter (i.e., the
alignment with business strategy), the extent to which the
organisation wants to reduce the problems related to manual
structural integrity analysis needs to be understood (i.e., it’s
business objectives). In order to understand the former (i.e.,
the business value), the extent of the requirement’s contribu-
tion to the problem-to-be-solved needs to be made clear, e.g.,
the extent that automation is likely to solve the problems
related to manual structural integrity analysis. For example,
if the manual process costs the business in terms of employee
time and computing time, how much time is consumed, and
at what cost? Then finally, to what extent will the software
requirement’s successful (or partially successful) implemen-
tation reduce the time consumption and cost?

To paraphrase Jackson & Zave [18], for every stated ben-
efit (or an answer to “why?”), there is always a discoverable
super benefit (i.e., benefit that arises from that benefit). For
example, the slow and human resource intensive process
may constrain the designer’s ability to innovate (by not being
able to analyse new design ideas), which may ultimately
harm the organisation’s competitive advantage. Many levels
of benefit follow a requirement’s implementation. Each level
provides the possibility of contributing to a business objec-
tive at a different level of the organisation. There are argua-
bly more levels of benefit than it would be sensible to ex-
press within a requirement, since several requirements may
achieve the same benefit, but their contribution will vary.

III. BACKGROUND TERMINOLOGY

 Software Requirements A.

In 1977, Ross and Schoman stated that software require-
ments “must say why a system is needed, based on current or
foreseen conditions” as well as “what system features will
serve and satisfy this context” [19]. Robertson & Robertson
later expanded the concept of a “feature” by defining a re-
quirement as: “something that a product must do or a quality
that the product must have” [17], otherwise known as func-
tional and non-functional requirements, respectively. It is
worth noting here that, according to the “what, not how” [20]
paradigm, software requirements are often incorrectly speci-
fied in practice (i.e., they often describe how features should
work, rather than what features should be implemented).
Consequently, implementation bias may occur, unnecessarily
constraining the design space. Practitioners are not entirely
to blame however, since the what and how separation is con-
fusing. This is because a requirement describes both con-
cepts at the same time, but at different levels of abstraction.
For example, “print a report” is what the system should do,
but also how the system should “make the report portable” –
which again, is what the system should do, but also how the
system should “make reports shareable”. The how and why
aspects of a what statement are simply shifts in the level of
the statement’s abstraction (down, and up, respectively).

Popular requirements engineering templates (e.g., Volere
[17] and IEEE Std 830-1998 [21]) and meta models (e.g.,
SysML [22] and the Core Metamodel [23]) tend not to focus
on the why aspect, typically addressing it by stipulating that
rationale be attached to a requirement. However, rationale is
not always an adequate description of why the requirement is
valuable. If only one why question is asked about the re-
quirement then the rationale can still be distant from the true
problem to be solved (i.e., the essence of the requirement),
and it may be defined without consideration of its wider
implications. A stakeholder’s “line of sight” (i.e., the ability
to relate low level requirements to high level business goals),
and thus, the ability to determine the value of a requirement,
depends on their ability to find answers to enough recursive
why questions. Anecdotally, empirical studies at Toyota de-
termined that the typical number of why questions required
to reach the root cause of a problem is five (thus spawning
the “five why’s” method popularised by Six Sigma) [24].

 Strategic Alignment B.

Singh and Woo define business-IT strategic alignment as
“the synergy between strategic business goals and IT goals”
[7]. In the IT context, Van Lamsweerde defines the term
“goal” as a prescriptive, optative statement (i.e., desired fu-
ture state) about an objective that the system hopes to
achieve [25]. In the business context, a goal is defined as an
abstract indication of “what must be satisfied on a continuing
basis to effectively attain the vision of the business” [26]. In
order to relate the goals of the system to those of the busi-
ness, an integrated definition of the terms used by business
strategists and software developers is required. Furthermore,
the first definition does not make “objective” distinct from
“goal”. The Object Management Group (OMG) defines such

121

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

terms in its Business Motivation Model (BMM) [26]. There,
an objective is defined as a specific “statement of an attaina-
ble, time-targeted, and measurable target that the enterprise
seeks to meet in order to achieve its goals”. According to the
definitions of goals and objectives provided by the BMM,
the difference between a goal and an objective lies in the
goal’s hardness (i.e., whether the goal’s satisfaction can be
determined). Therefore, from now on, we use the terms
“hard goal” and “objective” interchangeably.

Finally, the BMM defines that a collection of business
objectives forms a business strategy [26], thus satisfaction of
objectives leads to the satisfaction of the strategy. It logically
follows that the extent to which a software requirement
aligns to business strategy depends on the extent to which the
requirement contributes to the satisfaction of the strategy’s
objectives. Attempting to demonstrate a requirement’s strate-
gic alignment to soft goals (e.g., “maximise profit”) would
be inappropriate, since it would not be possible to describe
the extent of the requirement’s contribution to the goal.
Therefore, when demonstrating strategic alignment, require-
ments should be related to objectives rather than goals.

IV. RELATED WORK

The following areas of research are related to analysing
the strategic alignment of software requirements: (A) Value
Based Software Engineering, (B) Goal Oriented Require-
ments Engineering, (C) Strategic Alignment Approaches, (D)
Quantitative Requirements and Metrics, and (E) Require-
ments Traceability Approaches.

 Value Based Software Engineering A.

The Value Based Software Engineering (VBSE) agenda
is motivated by observations that most software projects fail
because they don’t deliver stakeholder value, yet, much
software engineering practice is done in a value-neutral set-
ting (e.g., where project cost and schedule is tracked rather
than value) [27]. Value Based Requirements Engineering
(VBRE) takes the economic value of software systems into
perspective through activities such as stakeholder identifica-
tion, business case analysis, requirements prioritisation, and
requirements negotiation [28]. The primary VBRE activities
are Business Case Analysis (BCA) and Benefits Realization
Analysis (BRA) [16]. Other VBRE activities such as prioriti-
sation are considered secondary to these, since they depend
on (and often start with) benefit estimation [29].

In its simplest form, BCA involves calculating a system’s
Return on Investment (ROI) - which is the estimated finan-
cial gain versus cost, defined in present value. While simple
in definition, accurately calculating ROI is complex, since
the validity of any concise financial figure depends on as-
sumptions holding true, e.g., that independent variables re-
main within expected intervals (e.g., time saved is between
[x,y]). Estimating benefit involves further intricacies such as
uncertainty and the translation of qualitative variables (e.g.,
the software user’s happiness) to quantitative benefits (e.g.,
sales revenue) - none of which are made explicit by BCA.
An advancement from BCA in descriptiveness, e

3
value mod-

elling seeks to understand the economic value of a system by
mapping value exchanges between actors, ultimately leading

to financial analysis such as discounted cash flow [30].
However, it does not address how economic value creation is
linked to requirements, nor are links between value creation
and business strategy attempted.

BRA’s fundamental concept is the Results Chain [2],
which visually demonstrates traceability between an initia-
tive (i.e., a new software system) and its outcomes (i.e., ben-
efits) using a directed graph, where nodes represent initia-
tives, outcomes, and assumptions, while edges represent
contribution links. BRA’s contribution links allow one initia-
tive to spawn multiple outcomes, but the links are not quanti-
tative, e.g., outcome: “reduced time to deliver product” can
contribute to outcome: “increased sales” if assumption: “de-
livery time is an important buying criterion” holds true – but
the quantitative relationship between “delivery time” and
“sales increase” is not explored. This is problematic when
outcomes are business objectives, since their satisfaction
depends on the extent that they are contributed to, e.g., in the
case of a cost reduction objective, the primary concern is the
amount of reduction that is contributed by the actions.

In summary, neither BCA nor BRA estimates the benefit
of individual requirements, but rather for whole systems. A
similar criticism also applies to the majority of requirements
prioritisation methods, as a systematic literature review
“found no methods which estimate benefit for [primary]
individual requirements” [29], nor were any found which
derive the benefits of secondary requirements from their
contribution to primary requirements. In this context, prima-
ry refers to stakeholder requirements or business objectives
while secondary refers to those derived from the primary
requirements (e.g., a refined functional requirement).

 Goal Oriented Requirements Engineering (GORE) B.

GORE seeks to provide answers to “why?” software
functionality should exist. The most well-known GORE
methodologies include KAOS [31], i* [32] and GRL [33].
Such methodologies produce goal graphs whereby goals at a
high level represent the end state that should be achieved and
lower level goals represent possible means to that end. A
goal graph is traversed upwards in order to understand why a
goal should be satisfied and downwards to understand how
that goal could be satisfied. In this context, a requirement is a
low level goal, which is simply a means to achieving an end
(a high level goal). Other related concepts such as resources,
beliefs and obstacles are typically related to goals to describe
what a goal’s satisfaction requires, while agents (or actors)
indicate which stakeholders are responsible for (or depend
on) a goal’s satisfaction. Relationships between goals are
typically represented by means-end links, where optional
AND/OR constraints represent alternative options for satis-
ficing a goal. Contribution links are enhanced means-end
links, in that they describe the extent to which a goal con-
tributes to the achievement of another. However, “extent” is
usually defined in terms of sufficiency and necessity (logic),
not as in the quantitative extent of the contribution [34].

i. Goal-Goal Contribution Links

Contribution links are usually annotated with a score or a
weight, to represent the degree of contribution made by the

122

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

goal. Three approaches for applying scores to contribution
links in goals graphs are described by Van Lamsweerde [12]:

1. Subjective qualitative scores e.g., --, -, +, ++.
2. Subjective quantified scores e.g., -100 to 100.
3. Objective gauge variable (i.e., a measured quantity

predicted to be increased, reduced, etc.).
After evaluating the above approaches, Van Lamsweerde

concludes that the specification of contribution scores with
objective gauge variables (the third option) is the most ap-
propriate for deciding among alternatives, due to its verifia-
bility and rooting in observable phenomena. Of course, the
subjective approaches are no doubt quicker to use, but their
sole use risks misunderstanding the actual contribution
mechanism. A comprehensive comparison of the qualitative
contribution reasoning techniques can be found in [35].

Just as objective contribution scoring adds rigour and
testability to the task of deciding between alternatives, the
same applies to the task of demonstrating alignment to busi-
ness objectives. Thus, contribution scores should be quanti-
fied in terms of the contribution likely to be made to the
objective. Our rationale is that, by definition, objectives are
quantitatively prescribed, and reasoning qualitatively about
degrees of satisfaction of a quantitative target is highly am-
biguous. Additionally, this will allow the contribution scores
to be verifiable so that they (as predictions) may be later
compared to actual results in the evaluation stage of the pro-
ject. It must be noted here, however, that this option is not
without its disadvantages - empirical studies in requirements
prioritisation show that practitioners find providing subjec-
tive data far easier than objective data [36]. A parallel can be
drawn here to the decision analysis field, where inferior (i.e.,
qualitative) processes have found favour with decision mak-
ers because “they do not force you to think very hard” [9].

Van Lamsweerde goes on to explain how alternative goal
(i.e., requirement) options can be evaluated by predicting
contributions made by goals to soft goals (which define the
qualities to be used for comparison) [12]. However, in the
prescribed approach, the relationship between the soft goals
and the predicted benefit to be gained by their achievement is
not made explicit. In other words, the contribution scores are
not abstracted to different levels of benefit such that they
may eventually relate to business objectives. Each of these
potential benefit abstractions require that the metrics used to
measure contribution (and satisfaction) are translated (e.g.,
from time saved to money saved). Furthermore, the expected
values allocated to the objective gauge variables are single-
point representations of inconstant and variable phenomena.
For example, when estimating the number of interactions re-
quired to “arrange a meeting via email” – an alternative re-
quirement option taken from the paper’s meeting scheduling
system example – a single number does not describe the
possible variance, or how that variance can affect the desired
end. This is important for predicting strategic alignment, since
variance in a requirement’s satisfaction is likely [13], and it
will affect the satisfaction of the related business objective(s).

GORE approaches typically describe a goal’s benefit rel-
ative to other goals with an importance or weight attribute
[12], where importance is a qualitative label (e.g., high, me-
dium, low) and weight is a percentage (where the total of all

assigned weights is 100%). Both of these approaches are
ambiguous and subjective, and are not traceable to observa-
ble benefits, e.g., alignment with business objectives.

A probabilistic layer for quantified goal graphs is pro-
posed in [13] to represent the variance of goal contributions
in terms of probability density functions (pdf’s). However,
effects of the variance on the satisfaction of high level goals,
or business objectives, are not described. To use the example
provided in the paper, the effects of an ambulance arriving at
a scene within 8, 14, or 16 minutes (i.e., satisfaction of the
target exceedingly, completely, or partially) are not described
in the context of the benefits of doing so – i.e., to what extent
will some problem(s) be affected given these possible goal
satisfaction levels. If this is not explored, then it might be
that there are no significant benefits to be gained at certain
intervals of goal satisfaction levels (note that this point is
more significant for non-life-threating systems). Thus, if a
goal is defined with a specific target (e.g., target arrival time)
in mind, without the rationale for doing so explored as fur-
ther goal abstractions, then satisfying that goal may not be
worthwhile - “wrong decisions may be taken if they are
based on wrong objectives” [13]. Furthermore, probabilistic
approaches have limited applications (pdf’s are not often
available and are time consuming to construct), and do not
capture stakeholder “attitude, preference and likings” [15].

ii. The Goal-oriented Requirements Language (GRL)

Given the choice of GORE methodologies, we chose to
focus on and adopt GRL [33] for the following reasons:

1. GRL’s diagrammatic notation is well known within
the RE community (since it originates from i*) [33].

2. i* (GRL’s primary component) has been shown to
be the most suitable for modelling Information Sys-
tem (IS) strategic alignment according to the strate-
gy map concept (GRL not included in review) [37].

3. GRL has an ontology describing its modelling con-
cepts (where others are described informally) [34].

4. GRL was recently made an international standard
through ITU specification Z.151 [11].

GRL integrates the core concepts of i* and the NFR
Framework [33] (where i* inherits the qualitative goal con-
tribution mechanism from NFR [32]), but GRL adds to i* the
capability to express contributions quantitatively. Thus, goal
contributions in GRL can be specified with either subjective
numeric scores (interval [-100,100]) or qualitative labels
(one of {--,-,+,++}) [33], i.e., the first and second options
outlined in Van Lamsweerde’s paper [12]. For example, a
time reduction goal might contribute to an overall-cost sav-
ing goal with a contribution weight of 67 out of 100 with
positive polarity (+). Such a contribution score is untestable
and not grounded by observable phenomena. Moreover it is
not refutable, which, according to Jackson [38], means that
the description is inadequate because no one can dispute it.
The only way such scales could be testable is if the goals
were specified with fit criterions (e.g., a cost to be saved),
which mapped to the scale, e.g., that they implied percentage
satisfaction (which they do not). In which case, a 50/100
contribution might imply that 50% of a £20,000 annual cost
saving will be achieved. However, this is only applicable for

123

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

goals whose satisfaction upper bound is 100% (since the
scale’s upper bound is 100), which is not the case for goals
involving increases (e.g., where a mean’s contribution to an
end exceeds the end’s target level).

Recently, the jUCMNav tool allowed goals to relate to
Key Performance Indicators (KPIs) in GRL, in order to map
a goal’s satisfaction value to real world numbers [39]. How-
ever, subjectivity still exists in goal chains (i.e., >1 link),
since KPIs do not affect the way in which goal contribution
is specified further up the goal chain (i.e., as low level bene-
fits are translated to high level business objectives, e.g., con-
verting time to cost). Also, the interaction between KPIs is
not considered, e.g., composition via hierarchy or non-linear
causation. Since the publication of our original work,
Horkoff et al. have improved GRL’s integration with indica-
tors to consider the hierarchy of KPIs alongside a goal model
[40]. However, their approach is concerned with improving
Business Intelligence (BI), rather than aligning software
requirements to strategic business goals. Thus, several areas
are still lacking when applied to our problem. Means are not
distinguished from ends (i.e., business objectives and soft-
ware requirements), making it difficult to know which sets of
goals should be aligned, or how those goals should be de-
fined or organised differently. Also, stakeholder utility and
confidence through the range of possible goal satisfaction
levels (i.e., KPIs in the approach) is not specified – making it
hard to know the effects of partial requirement satisfaction,
or the credibility of the estimated alignment. Furthermore,
non-linear relationships in the associated KPI hierarchy (i.e.,
diminishing returns in achieving an objective) are not ame-
nable to algebraic description [14] (i.e., “business formulae”,
as termed in the approach) – making their definition and
communication difficult. Finally, potential fluctuation or
uncertainty (i.e., the range of possibilities) in goal contribu-
tion is not described, as is done with usage profiles in [41] .

As an additional concern, a contribution link is under-
pinned by assumptions which can either make or break the
satisfaction of the end goal. For example, a reduction in task
time will only reduce costs if associated costs are actually cut
(e.g., by billing work to a different project, or through redun-
dancies). GRL’s belief elements (otherwise known as “argu-
mentation goals”) could be used to express such assumptions
in order to provide an integrated view, despite their inferiori-
ty in richness to satisfaction arguments [42]. However, in the
case of this particular assumption, it seems more semantical-
ly appropriate to model it as a necessary action for the end-
outcome, just as the BRA’s Results Chain [2] does.

 Strategic Alignment Approaches C.

The Balanced Scorecard and Strategy Maps (SMs) ap-
proaches [43] offer guidance on formulating and relating
business goals to each other under four perspectives: finan-
cial, customer, internal processes, learning and growth. In order
to improve traceability between these perspectives, SMi*
combines SMs with i* goal models [44]. While this approach
does not directly relate to software requirements, goals could
be categorised by the four perspectives to ensure coverage.

The most suitable framework for relating software re-
quirements to business strategy is B-SCP [45], due to its tight

integration with the OMG’s Business Motivation Model
(BMM) and the explicit treatment of business strategy that
this affords [7]. B-SCP decomposes business strategy to-
wards organisational IT requirements through the various
levels of the BMM (i.e., the vision, mission, objective, etc.).
However, B-SCP cannot show the extent to which a require-
ment satisfies a strategy, since no contribution strengths are
assigned to links between requirements and the strategy’s
objectives. Moreover, B-SCP’s methodology refines business
strategy top-down towards IT requirements, which means
that completeness of the model is dependent on the com-
pleteness of the business strategy, i.e., there is no opportunity
to refine software functionality upwards to propose new
business strategy. Additionally, B-SCP does not consider rich
GORE concepts (e.g., AND/OR, actors), as found in GRL.

 Quantitative Requirements and Metrics D.

The contribution that a requirement’s implementation
makes to a business objective depends on the extent of the
requirement’s satisfaction (i.e., partially or completely). In
order to understand the extent of a requirement’s satisfaction,
the desired outcome of the requirement must first be made
explicit. Although its practicality is debated [46], it is con-
sidered best practice to describe a requirement’s desired
outcome using quantitative measures [47]. In [48], Gilb de-
scribes the steps that requirements quantification should
entail. Firstly, the desired level of achievement should be
elicited. Then secondly, the capabilities of the various alter-
native design solutions should be estimated against that de-
sired level. Finally, the delivered solution should be continu-
ously measured against that desired level. Unfortunately,
these steps are rarely followed in practice [47], [48].

As a result of a career training practitioners to quantify
requirements, Gilb concludes that there are two main obsta-
cles to quantifying requirements [48]. Primarily, practitioners
find defining quantitative scales of measure for a require-
ment difficult, often believing that it is impossible to quanti-
fy all requirements due to their sometimes qualitative nature
(which, according to Gilb is incorrect). Secondly, practition-
ers encounter difficulty in finding ways of measuring numer-
ic qualities of a software product which are practical to use
(i.e., meters in Planguage), and at the same time, measure
real qualities. Besides, even if a requirement is quantified, its
quality is not necessarily improved; a related survey revealed
that precisely quantifying requirements can lead to long pro-
ject delays and increased costs if the quantifications are un-
realistic [49]. This is problematic, since it is not straightfor-
ward to determine what is realistic with current technology
in order to set the desired level of achievement. Despite the
difficulties in expressing a requirement’s fit criterion quanti-
tatively, qualitative descriptions (e.g., “good uptime”) are too
ambiguous to be useful – in both trying to achieve that re-
quirement, and in analysing the effect of its implementation
on the (quantitatively defined) business objectives. The only
caveat to this is that qualitative terms such as “good” can be
suitable if they have been defined as fuzzy numbers [50].

The Volere [17] template stipulates that a Fit Criterion be
attached to a requirement in order to make its satisfaction
empirically testable (i.e., the first step of Gilb’s requirement

124

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

quantification steps). Planguage [51] similarly provides a
template for describing how a requirement’s satisfaction
should be tested, and what the result of the test should be.
Planguage’s fit criterions are more descriptive than Volere’s,
since multiple levels of quantitative fit criterion are specified,
e.g., for what must be achieved (minimum), what is planned
to be achieved (likely), what is wished to be achieved (best
case), and what has been achieved in the past (benchmark).

GQM+Strategies™ [52] was developed to extend the
Goal Question Metrics methodology by providing explicit
support for the traceability of software metrics measurement
effort at the project level (e.g., measuring the impact that pair
programming has on quality) to high-level goals at the busi-
ness level (e.g., increasing the software user’s satisfaction).
In [53], the approach is used to show the alignment of soft-
ware project goals to high level business goals by using a 2d
matrix. The approach’s main benefits are that goals are de-
fined quantitatively using a tried and tested metrics template,
and, that assumptions which underpin goal to goal contribu-
tions are made explicit, much like GRL’s belief element al-
lows for. However, the approach focuses on decisions at the
project level, rather than the requirements level (i.e., which
projects, rather than requirements, should be implemented?),
so is not directly applicable to the problem – a large and
variable number of goal abstractions can be required to link a
requirement (a means) to a project goal (an end). Additional-
ly, the approach falls short in areas similar to the other meth-
odologies reviewed. Firstly, when a link exists between two
goals, the effects of the first goal’s satisfaction on the second
goal are not explored. Thus, although each goal has a target
satisfaction level (e.g., 5% profit increase), the predicted
contributions that its child goals (e.g., software requirements)
make toward it are not represented (along with forecast relat-
ed information such as confidence, evidence, stakeholder
agreement, etc.). Therefore, although GQM+Strategies™
achieves traceability between project goals and business
goals, it is not possible to analyse the extent of the strategic
alignment of software requirements, since, as aforementioned,
requirements often partially satisfy goals [13], i.e., the effect
of a requirement’s partial satisfaction is not described in the
context of business objectives. Finally, the approach lacks
concepts found in GORE which contextualise goals and sup-
port decision analysis (e.g., actors, obstacles, AND/OR links).

 Requirements Traceability Approaches E.

Several approaches exist which allow means to be traced
to ends, typically by constructing a 2d comparison matrix
where rows list means and columns list ends. Such traceabil-
ity allows questions such as “what ends will be affected if
this means is affected?” Additionally, it is usually possible to
answer the question “how well does this means satisfy the
end we want?” One of the most popular tools to trace (and
then compare) product features (i.e., means) to customer
requirements (i.e., ends) is the House of Quality (HoQ) [54].
Numbers are assigned (e.g., 1-9) to each means-end relation-
ship based on the strength that the means contributes to the
end. A drawback to the HoQ is that the numerical score val-
ues used to measure the strength of the contribution are sub-
jective (e.g., strong, medium, weak). Additionally, since the

HoQ is constructed using a 2D grid, only two dimensions
can be compared in the same grid, i.e., requirements can be
related to software goals, but if those software goals are to be
related to stakeholder goals or business goals, then additional
grids will be required for each extra dimension. If these di-
mensions are not explored (e.g., if the software project goals
are not abstracted to business goals), then the goals that the
alternative solutions will be evaluated against may be incor-
rect (e.g., solution specific or aiming to solve the wrong
problem). Despite the drawbacks to using grids, they are
argued to be the best means of visually displaying traceabil-
ity for large numbers of traced entities [55], since they avoid
diagrammatic “spaghetti”, and perhaps most importantly,
they visualise the lack of traceability with empty cells (e.g.,
means which do not contribute to an end).

To complement Planguage, Gilb proposes an approach
called impact estimation [51], which estimates the impact of
alternative system options (i.e., means) against a set of re-
quirements (i.e., ends) using a 2d grid. This approach is very
similar to the approach used by Van Lamsweerde to evaluate
alternative design options [12], as previously discussed in
subsection IV.B.i, and as such, it shares the same problems
for application to our problem. The main contribution (relat-
ed to our problem) of the impact estimation method is that it
allows the practitioner to represent their confidence (interval
[0,1]) in their prediction of the effect a means has on an end.

V. PROPOSED APPROACH

We propose that GRL goal graphs can be used to demon-
strate strategic alignment by linking requirements as tasks
(where the task is to implement the requirement) and busi-
ness objectives as hard goals (where the hard goal brings
about some business benefit) with contribution links (where
the requirement is the means to the objective’s end). The
requirements should be abstracted (asking “why?”) until they
link to business objectives. Business objectives then link to
higher objectives, until the business strategy is represented.

 Constructing the Goal Graph A.

Before looking at how software requirements and busi-
ness objectives can be connected with goal graphs, we must
first explain how we represent the individual concepts.

We define business objectives using an adaption of the
GQM+Strategies formalisation template [56], as in Table 1.
Requiring a description of a goal using a metrics template
encourages more descriptive goal models, e.g., “improve
component lifespan” is defined rather than “improve engine”.

TABLE 1:EXAMPLE GQM+STRATEGIES FORMALISATION

Activity Reduced

Object GT-BU Fabricated Structures (FS)

Focus Average Manufacturing Lead Time

Magnitude
Target: 3 months [reduction]
Threshold: 2 months [reduction]

As-Is: 6 months

Scale
Average time in months required to have FS parts
manufactured from the inception of a new engine

Timeframe 1 year after system deployment

Scope Gas Turbine Components X,Y & Z

Author John Smith (Component Engineer, GT-BU)

125

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Our modifications to the textual template attempt to im-
prove integration with visual GRL diagrams through:

1. The addition of the most important concept [47]
from Planguage - the scale, which specifies exactly
what is to be measured, and the unit of measure.

2. The addition of scale qualifiers [51] to better de-
scribe the magnitude, e.g., “threshold” separates ac-
ceptable from unacceptable [39]. When we refer to
the magnitude of an objective, we refer to the target.

3. The specification of the objective’s activity attribute
in the past tense, since objectives represent desired
outcomes rather than an activities.

4. The removal of the constraints and relations fields -
these can be expressed diagrammatically with ob-
stacles and links (e.g., dependencies), respectively.

5. The addition of the author field so that newly pro-
posed objectives can be identified and traced.

For our reference implementation, we used the Volere
template to define the attributes of a requirement, primarily
because it requires a fit criterion for testing the satisfaction of
a requirement. Similarly, an objective can be considered
satisfied when the specified magnitude is achieved within the
specified timeframe (since benefits are not realised instantly).

Figure 1 shows an example diagram produced following
the approach to explore and visualise the strategic alignment
of three high-level software requirements.

Achieved[GT-BU

Alignment with Future

NPI Timescales]

(NPITimescaleAligned)

Reduced[GT-BU Overall

Design Costs](20%)

Increased[GT-BU

Fabricated Structure

Component Lifespan]

(10%)

Reduced[GT-BU

Fabricated Structure

Manufacturing Lead

Time](3 months)

Reduced[GT-BU

Fabricated Structure

Design Human Workload]

(2 FTE’s)

Increased[No. of Possible

GT-BU Fab. Struct.

Design Iterations](50%)

Reduced[GT-BU

Fabricated Structure

Design Time](33%)

Reduced[GT-BU

Fabricated Structure

Geometry Analysis

Time](50%)

Reduced[GT-BU

Fabricated Structure

Geometry Creation

Time](80%)

{F}[Automate Creation of

Fab. Struct. Geometry]

(systemCanCreateGeometry)

{F}[Automate Fabricated

Structure Design]

(systemCanAutomateDesign

Process)

{F}[Automate Solving of Fab.

Struct. Analysis Models]

(systemCanAnalyseGeometry)

[C]

[A] [B]

[D]

[1] [2]

[4] [5]

[3]

[6]

[E] [F]

[G] [H] [I]

[J] [K] [L]

[12][11][10]

[9][8][7]

Figure 1: Example Strategic Alignment Diagram using GRL

Figure 2: Key for Figure 1 - GRL Elements Used

We represent software requirements as GRL tasks (i.e.,

the task of implementing the requirement) using the naming
syntax: “{F/NF}[Requirement](Fit Criterion)”, where
“F/NF” is either Functional or Non-Functional, “Require-
ment” is a short headline version of the requirement descrip-
tion, and “Fit Criterion” is the short-hand version of the met-
ric used to test the requirement’s satisfaction. In order to
visualise the objectives (specified by the GQM+Strategies
template) in a goal graph, we use GRL hard goals with the
naming syntax: “Activity[Object Focus](Magnitude)”.

Soft goal elements (e.g., goals and visions from the BMM)
are not defined in the goal graph for the purpose of demon-
strating strategic alignment. This is because their satisfaction
criteria is undefined and thus immeasurable. Therefore, it is
nonsensical to consider that a requirement may either partial-
ly or completely satisfy a goal or a vision. However, since
objectives exist to quantify goals, and since goals exist to
amplify the vision [26], non-weighted traceability between
an objective and its goals (and their related vision) should be
maintained for posterity and for impact analysis.

A contribution link between a requirement and an objec-
tive specifies that the requirement’s satisfaction will achieve
some satisfaction of the objective. The extent of the satisfac-
tion is defined by the contribution score specified by the link,
and is defined in terms of the objective’s scale. A link be-
tween two objectives is similar, except that the satisfaction of
an objective is measured by its magnitude rather than by a fit
criterion. If the contributions of the child elements additively
amount to meet the parent element’s specified magnitude, then
the model suggests that the parent element will be satisfied.

An “OR” contribution specifies that if there are multiple
“OR” links, a decision has to be made about which should be
satisfied. An “AND” contribution specifies that all “AND”
links are required for the objective to be satisfied. The con-
tribution links (E & F) are of the “AND” type, since both
objectives (4 & 5) are required if objective (6) is to be satis-
fied. Decomposition links can be used to refine a require-
ment into more specific requirements, much like SysML’s
“hierarchy” link stereotype [22]. The high-level software
requirement (3) is decomposed to two lower level require-
ments (1 & 2) to represent the hierarchy of requirement ab-
straction. The decomposed requirements (1 & 2) then link to
objectives (4 & 5) with contribution links in order to repre-
sent what those requirements hope to achieve. The decompo-
sition of requirements continues until the lowest level of
requirements are represented. For example, requirement (2)
is decomposed to specify which type of analysis should be
automated (e.g., structural integrity, cost, etc.). Then, these
decompositions contribute to more specific objectives (e.g.,
“reduce the average time taken to assess structural integrity”).

contribution (or)

contribution (and)

decomposition (and)

hard goal (objective)

task (requirement)

126

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Single-Point Goal Graph Quantification B.

Both requirements and objectives have target levels of
satisfaction (e.g., the fit criterion and magnitude). This target
level is a single point of possible satisfaction, where multiple
points refer to satisfaction better or worse than the target lev-
el. We will now explain how a contribution relationship is de-
scribed for a single point of goal or requirement satisfaction.

TABLE 2: QUANTIFIED LINK CONTRIBUTION PREDICTIONS

Table 2 shows a sample of the quantifications that com-

plement Figure 1 in order to make contributions testable (the
numbers are now fictional due to commercial sensitivity).

The quantified contribution for link (C) tells us that objec-
tive (4) will be satisfied if requirement (1) is satisfied, since
objective (4)’s required magnitude of reduction (80%) will
be contributed by the complete satisfaction of requirement
(1). It is important to note that where percentages are used as
contribution scores on links, this does not infer that a certain
percentage of the objective’s magnitude will be achieved (in
this case, 80% of 80%). Instead, the focus of the objective
(e.g., geometry creation time) will be affected by that per-
centage in the context of the activity (e.g., a reduction by
80%). Contribution links between pairs of objectives are read
in the same way; link (E) specifies that the satisfaction of
objective (4), determined by its magnitude attribute, will lead
to some contribution toward objective (6).

This abstraction of objectives to higher level objectives
allows the benefits to be expressed in terms of high-level
business objectives. This is done in order to disambiguate the
predicted business value by placing the quantifications into
context (i.e., a large saving from a small cost may be less
than a small saving from a large cost). It must be noted that a
contribution link should represent causation rather than cor-
relation, and thus care should be taken to separate the two as
far as possible (guidance on this can be found in [14]).

 Multi-Point Goal Graph Quantification C.

Our approach so far represents the contribution that ob-
jectiveX makes to objectiveY when objectiveX’s magnitude
is completely satisfied (objectiveX is interchangeable with
requirementX in this statement). However, it is likely that
objectives and requirements will only be partially satisfied,
i.e., their required magnitude will likely not be fully
achieved. Thus, pessimistic, realistic, and optimistic views
(i.e., multiple points of goal satisfaction) of strategic align-

ment are not currently possible. Also, it is not possible to
understand the pareto optimality of software requirements
(e.g., where most of the benefit is achieved and where dimin-
ishing returns starts to occur). Additionally, the potential for
benefit caused by a software feature is finite, e.g., a reduction
in Full Time Employees (FTE’s) can be gained by task au-
tomation – up to a point. Furthermore, conflated goal contri-
bution links whose polarity is mixed can remain hidden until
multi-point contribution is modelled. Checking if the rela-
tionship between two goals is hump or U-shaped (i.e., not
monotonic) will indicate that the causal pathway is more
complex than is modelled, and thus the goal graph should be
expanded. This separation of causal pathways is advocated
both in utility theory for systems engineering in [57], and
business system dynamics in [14] - which gives the example:
the relationship between “increase pressure to finish work”,
positively, and then negatively contributes to the goal “increase
employee output”, as fatigue eventually overcomes motivation.

 In order to understand the effects of partial satisfaction
on the chain of goals, it is important to know the contribution
objectiveX makes to objectiveY at various levels of objec-
tiveX’s satisfaction. This is represented by defining a table
function [14], i.e., pairs of objectiveX and objectiveY values,
together with a chosen interpolation method (linear, step-
after, cardinal, monotone, etc.). Table functions are used as
opposed to analytic (i.e., algebraic) functions since analytic
functions are difficult to design, experiment with, and most
importantly, communicate to stakeholders [14]. The table
function should span the worst-case to best-case range for
each objective. If the value of objectiveX lies outside the
table function, i.e., objectiveX’s value is extreme, then ideal-
ly the table function should be updated to cover the extreme
value, since the worst or best case points are no longer repre-
sentative. Alternatively, the slope of the last two points could
support extrapolation, or the minimum and maximum values
of the table function could be mapped to all values lower and
higher (respectively) than the table function’s range.

To illustrate a multi-point quantified contribution link,
Figure 3 visualises link (H) between objective (6) and (8).

Figure 3: Link (H)’s Quantitative Contribution Relationship

Link (H), as shown in Figure 3, is comprised of 4 pairs of

values, and, in this case, step-after interpolation to represent
integer increments (in other organisations or projects, linear

Link [Contribution] [Activity] [Scale] Confidence

C

(1→4)
[80%] [Reduction] in

[Geometry Creation Time]
1

D

(2→5)
[50%] [Reduction] in

[Geometry Analysis Time]
0.75

E

(4→6)

[20%] [Reduction] in
[Time Required to Design]

1

F

(5→6)

[13%] [Reduction] in
[Time Required to Design]

0.75

G

(6→7)

[3 months] [Reduction] in
[Manufacturing Lead Time]

0.75

H

(6→8)

[2 FTE’s] [Reduction] in
[Human Workload]

1

0

1

2

3

0% 15% 30% 45%O
b
j(

8
)

R
e

d
u

c
ti
o
n

 i
n

 F
T

E
’s

Obj(6) Reduction in Avg. Time Required to Design

The effect on the number of “FTE’s required for
GT-BU Fabricated Structure (FS) Design” when the

“Avg. Time Required to Design FSs” is reduced.

127

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

interpolation and rounding may be more fitting). In this con-
tribution link, extreme values of objective(6) are mapped to
the minimum and maximum data point specified by the table
function, to represent finite benefit realisation. Improvements
to the reusability and robustness of the relationship, currently
in the form of Y = f(X), could be made by normalising the
function such that the input and output of the function are
dimensionless, i.e., independent of the unit of measurement
used (e.g., to define time or human resource usage). Guidance
on constructing non-linear functions can be found in [14].

The visualisation appropriate to depict a contribution link
depends on the type of numerical data (i.e., discrete or con-
tinuous) used by an objective’s scale or a requirement’s fit
criterion. Thus, either a bar chart or a line chart can be used.
For functional requirements, the former should be used, since
they have two states (i.e., implemented or not), whereas non-
functional requirements should be represented using the
latter, since they have infinite states of satisfaction. Note that
the dashed green lines on the axes represent the magnitudes
(targets) required by the respective objectives, as specified
by the goal formalisation template (as in Table 1).

 Describing Confidence in Quantifications D.

Contribution links in goal graphs are predictions of a
causality relationship between two goals. Epistemological
uncertainty (caused by a lack of knowledge) about a contri-
bution link therefore must exist to some degree, since we
cannot have perfect knowledge about future events. Before
we look to describe confidence in goal contribution links, we
must first distinguish uncertainty from confidence.

When predicting unknown quantities, uncertainty refers
to beliefs about possible values for the unknown quantity,
while confidence refers to the belief that a given predicted
value is correct [58]. For example with reference to contribu-
tion link (H), uncertainty represents the range of possible
values of FTE reduction (e.g., an interval [0, maxWork-
loadInFTE’s]) that could reasonably occur given a reduction
in design time of 33%, i.e., the satisfaction of objective (8).
In terms of Figure 3, uncertainty would affect the thickness of
the line (i.e., lack of precision) used to represent the causa-
tion. Confidence, on the other hand, represents the belief that
the chosen prediction (e.g., 2 FTE’s, according to Table 2,
and/or Figure 3) is the correct one. Thus in summary, a
stakeholder’s confidence is influenced by the salient factors
that they believe to affect the correctness of their prediction,
while a stakeholder’s uncertainty is influenced by the num-
ber of different prediction options that could be correct [58].

In the decision analysis field, it is well recognised that
confidence plays an essential part in determining optimal
decisions, especially where a choice has to be made between
two options which seem to provide similar benefits [9]. Fur-
thermore, the description of confidence will indicate the risk
that the modelled strategic alignment may not occur in prac-
tice. In this paper, we focus on confidence, since empirical
studies have shown that while practitioners can judge which
of their predictions are more uncertain, they find quantifying
the uncertainty interval difficult [59]. However, if a stake-
holder were reluctant to provide a single value to quantify
the contribution, the contribution could be specified in more

uncertain terms, such as: 2 ± 1 FTE’s for link (H), i.e., an
interval estimate [60]. It is important that the range is re-
stricted as far as possible to avoid ambiguity in the contribu-
tion description, since the utility of a prediction is diminished
by imprecision. If the range of uncertainty is wide, it should
be expressed with a probability density function (pdf) to
show which points in the range are more or less certain [13].
For a single-point contribution relationship (where it is as-
sumed that the target of the first objective will be met), a pdf
would describe the distribution of belief over the range of
possible values for objectiveY, given a specific value of
objectiveX (i.e., objectiveX’s target). However, many values
of objectiveX (i.e., the x-axis in Figure 3) are possible, lead-
ing to many possible pdf’s to describe - reducing the usabil-
ity of the approach. Thus, stakeholders should be encouraged
to specify a single value of objectiveY that they are most cer-
tain of, i.e., a point estimate [60], rather than a range of least to
most certain values. An interesting and more manageable
source of uncertainty stems from the observation that a re-
quirement’s benefit depends on the system’s environment (i.e.,
context or scenario of use) [47]. Thus, contribution scores
could be associated to those environments. We further describe
and exemplify this concept (usage profiles) in [41].

The confidence level representation concept we adopt is
similar to that used by Gilb for impact estimation [51], so, in
Table 3, we enumerate confidence levels using a similar scale.
Mapping textual descriptions to confidence values (interval
[0,1]) allows stakeholders to more easily select a value based
on the quality of the supporting evidence (i.e., salient factors).

TABLE 3: CONFIDENCE LEVEL ENUMERATIONS

Confidence Description

0.25
Poor credibility, no supporting evidence or calcula-

tions, high doubt about capability

0.5
Average credibility, no evidence but reliable calcu-

lations, some doubt about capability

0.75
Great credibility, reliable secondary sources of

evidence, small doubt about capability

1
Perfect credibility, multiple primary sources of

evidence, no doubt about capability

Basic confidence adjustment can be performed by multi-

plying contributions by their associated confidence level so
that users are reminded of the impact confidence has on pre-
dictions, as in [51]. For example, when confidence levels are
taken into consideration in Table 2, the satisfaction of re-
quirement (1) still leads to the full satisfaction of objective
(4). However, when confidence levels are considered for
links (E & F), the satisfaction of objective (6) is in doubt,
since (20*1) + (13*0.75) is less than the 33% required by the
objective’s magnitude attribute. Adjusting contributions to
account for confidence in this way is similar to calculating
the expected value of a random variable. However, since the
mapping between the textual statements and the numbering
in Table 3 (adapted from [51]) is not grounded by evidence
or heuristics, a contribution score which is adjusted for con-
fidence using them should not be treated as an expected val-
ue, but rather as an indication of the effects of confidence. If
we wanted to better approximate the expected value, a num-
ber based on probability should be used to represent confi-

128

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

dence [58], i.e., the answer to such a question: if the re-
quirement were implemented a large number of times, what
percentage of those times would the stated contribution be
contributed? Formulating an answer to such a question de-
pends on the experiences of the stakeholders in implement-
ing similar requirements in similar projects in a similar envi-
ronment. Similarity in this sense is difficult to achieve, since
there are many socio-technical variables that can affect the
benefits realised by a software project or a particular feature.

Additional confidence levels could be associated to the
user’s predictions to represent how qualified that user is at
predicting contribution scores. For example, someone who
has implemented similar systems should be able to provide
more accurate predictions than someone who has not. The
accuracy of a person’s previous predictions (i.e., their credi-
bility) could also be considered in order to improve the relia-
bility of the predictions (i.e., calibrated confidence levels).

 Describing the Utility of a Goal’s Satisfaction E.

One important value consideration is so far, untreated:
“what is the benefit in achieving a root goal to various de-
grees of satisfaction?” i.e., business objectives that do not
contribute to other business objectives, such as objective
(12). Root objectives exist when the business has not defined
any objectives higher than the objective, and where it would
not make sense for them to have done so. To address this, we
map various levels of a root goal’s satisfaction to degrees of
utility [9], whereby various levels of “goodness” can be
achieved. For example, referring to objective (12), various
levels of component lifespan improvement map to utility
values (interval [0,1]). This allows the representation of non-
linear relationships between component lifespan improve-
ment and the associated benefit; perhaps after a 60% im-
provement on the average component’s lifespan, there is no
more benefit to be gained since the engine would be retired
before the component would fail. Thus, the utility of a 60%
improvement would peak at 1. The concept of utility is both
subjective and specific to the stakeholder who assigned it.
However, capturing it will explain the criticality of a root
goal’s satisfaction criteria, and differences in utility assign-
ment between stakeholders will be made apparent for con-
flict resolution before the requirement is implemented.

Note that the maximum utility of some goal satisfaction
is defined in isolation from other goals. That is to say that the
maximum utility value (i.e., 1) should be defined for each
root goal, and then weights can be assigned to those root
goals to determine the relative utility of some goal satisfac-
tion, in the context of the system-to-be as a whole. This is
done in order to decide on the relative importance of root
goals, as in [61]. Pairwise comparison or balance beam dia-
grams can be used to decide on, and refine the weights [57].

 Describing & Monitoring As-Is Values for Goals F.

Wherever the magnitude attribute of an objective (and re-
lated contribution scores) is/are specified a percentage, it is
especially important that the objective’s as-is value is de-
scribed. Otherwise, it is not possible to later verify that the
magnitude (i.e., change) has happened. These values can then
be recorded over time in order to evaluate the system (valida-

tion) and provide a benchmark for future improvement. Fur-
thermore, prescribed goal satisfaction levels and predicted
goal contribution levels, in current and future projects, can
then be made more realistic through a feedback mechanism.

 Describing Assumptions or Necessary Goals G.

When a contribution link is made between two goals,
there may be an implicit assumption behind it, e.g., that some
other phenomenon will occur which will enable the contribu-
tion. Without this assumption holding true, the contribution
made by the contributing goal would be inhibited. For exam-
ple, Figure 1’s contribution link (K) is underpinned by the
assumption that, given a reduction in human workload, some
design costs can be reduced. While this may seem trivial to
highlight, the actual cost reducing mechanism (perhaps re-
dundancy) is often a thorny issue, and it should be communi-
cated as early as possible for conflict resolution. To describe
this assumption, either a GRL belief node can be used, or a
new task can be added as a decomposition of objective (11);
in GRL, decomposition links represent necessity, while con-
tribution links represent sufficiency and polarity (+ive or -ive).

 Intended Context of Use H.

We suggest that this approach should be performed after
the high-level requirements have been elicited, so that re-
sources are not wasted eliciting lower level requirements that
do not align well to business strategy. It is especially im-
portant that the strategic alignment of solution oriented re-
quirements (i.e., specified for the machine [38]) is explored,
since they do not explain the problem to be solved.

It is important to note that software engineers and busi-
ness analysts may not know the objectives (or the goals and
visions, for that matter) at different levels of the business
(i.e., the project, the business unit, the department, the over-
all business, etc.). Therefore, managers should work with
stakeholders to define the business objectives before the
requirements can be abstracted toward them. Indeed, it is
likely that some software requirements will be abstracted
toward business objectives that were not previously elicited.

Users may resist quantifying benefits of requirements,
especially for non-functional requirements where the subject
may be intangible, however, Gilb has found that it has al-
ways been possible to do so in his experience (e.g., by poll-
ing customers to quantify customer satisfaction) and has
provided guidance on doing so in [51]. Even if the quantifica-
tions cannot be elicited at first, providing a scale by which the
objective’s success will be measured improves the definition
of the objective by reducing ambiguity, as aforementioned.
Where stakeholders are unable to explain the causal relation-
ship between a requirement and higher goals, the risk that the
contribution may not occur as expected will have been indicated.

While we have focused on the benefits of software re-
quirements, both sides of the value equation need to be consid-
ered (i.e., costs). Effort estimation models such as COCOMO
[62] would be useful in predicting the cost of a requirement.

 Tool Support I.

Tool support (GoalViz) has been developed (free to
download at [63]) to support the approach through:

129

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Input support for requirements, objectives, and con-
tribution data (with graphical function input).

 Automatic diagram drawing to focus the user on the
approach and data rather than the graph layout.

 Project libraries to facilitate learning about the con-
tributions predicted in previous projects to improve
future quantification of confidence assignment.

 Automatic evaluation and summarisation of chains
of links to enable efficient understanding.

 What-if analysis allowing comparison of outcomes
for different inputs where there is some uncertainty.

VI. CONCLUSION AND FUTURE WORK

The presented approach facilitates the disambiguation of
a requirement’s business value through the enrichment of
contribution links in a goal graph. The approach is descrip-
tive (a goal is abstracted to describe the underlying problem),
prescriptive (a certain amount of goal satisfaction is re-
quired), and predictive (a quantitative goal contribution score
predicts how much of the prescription will be achieved by
the means). This paper’s unique contribution includes:

1. We have argued that the strategic alignment of
software requirements depends on the contribution
they make to business objectives, and since they are
quantitative in nature, reasoning about the contribu-
tion made toward them should also be quantitative.

2. We have argued that since strategic alignment is
based on predictions of benefit, confidence (and
sometimes uncertainty) should be made explicit.

3. We have shown that the non-linear dynamics of
contribution links can be explored as quantitative
causation relationships (defined with table func-
tions) through more than one level of goal abstrac-
tion, in order to understand the effects of partial re-
quirement satisfaction on high level goals.

Future work will evaluate this approach (and those relat-
ed to it) against required capabilities elicited from our indus-
trial partners. We have outlined two case studies within dif-
ferent industrial settings, such that the benefits and challeng-
es can be evaluated in the context of a range of domains.
Feedback resulting from the evaluations in industry will be
used to improve the approach and the tool. Planned investi-
gations into optimising the utility and the usability of the
approach include empirically evaluating the:

1. extent to which stakeholder utility functions for a
goal’s satisfaction can be aggregated to represent the
preferences and uncertainty of a collective;

2. optimal representation of uncertainty, confidence,
and credibility in the causal relationships;

3. optimal way (especially with regards to reusability)
to specify the causal relationship between two vari-
ables (i.e., gauge variables, KPIs, or goal satisfac-
tion levels), e.g., with causal loop diagrams and di-
mensionless table functions using Vensim® [14], or
specifying “business formulae” as in [40];

4. optimal way to maintain traceability between re-
quirements and design artefacts, perhaps through
SysML Requirements [22] and a GRL UML profile.

ACKNOWLEDGEMENTS

The authors wish to thank Ralph Boyce from Rolls-
Royce for his valued participation and feedback in this pro-
ject, and also Rolls-Royce for granting permission to publish.

REFERENCES

[1] R. Ellis-Braithwaite, R. Lock, R. Dawson, and B. Haque,

“Modelling the Strategic Alignment of Software Require-

ments using Goal Graphs,” in 7th International Conference

on Software Engineering Advances, 2012, pp. 524–529.

[2] J. Thorp, The Information Paradox: Realizing the Business

Benefits of Information Technology. McGraw-Hill, 1999.

[3] A. Aurum and C. Wohlin, “Aligning requirements with busi-

ness objectives: A framework for requirements engineering

decisions,” in Requirements Engineering Decision Support

Workshop, 2005.

[4] Frederick P. Brooks, The Mythical Man Month and Other

Essays on Software Engineering, 2nd ed. Addison Wesley, 1995.

[5] J Luftman, “Assessing business-IT alignment maturity,”

Commun Assoc Inf Syst 4, Article 4, 2000.

[6] J. Luftman and T. Ben-Zvi, “Key Issues for IT Executives

2011: Cautious Optimism in Uncertain Economic Times,”

MIS Quarterly Executive, vol. 10, no. 4, 2011.

[7] S. Singh and C. Woo, “Investigating business-IT alignment

through multi-disciplinary goal concepts,” Requirements En-

gineering, vol. 14, no. 3, pp. 177–207, 2009.

[8] The Standish Group, “CHAOS Summary for 2010,” 2010.

[9] R. A. Howard, “The foundations of decision analysis revisit-

ed,” Advances in decision analysis: From foundations to ap-

plications, pp. 32–56, 2007.

[10] A. van Lamsweerde, “Requirements engineering: from craft

to discipline,” in 16th ACM SIGSOFT FSE, 2008, pp. 238–249.

[11] International Telecommunication Union, “Z.151 : User re-

quirements notation (URN) - Language definition.” [Online].

Available: http://www.itu.int/rec/T-REC-Z.151/en. [Ac-

cessed: 02-Jul-2012].

[12] A. Van Lamsweerde, “Reasoning about alternative require-

ments options,” Conceptual Modeling: Foundations and Ap-

plications, pp. 380–397, 2009.

[13] E. Letier and A. Van Lamsweerde, “Reasoning about partial

goal satisfaction for requirements and design engineering,”

in ACM SIGSOFT SEN, 2004, vol. 29, pp. 53–62.

[14] J. Sterman, Business Dynamics: Systems Thinking and Mod-

eling for a Complex World. McGraw-Hill/Irwin, 2000.

[15] S. Liaskos, R. Jalman, and J. Aranda, “On eliciting contribu-

tion measures in goal models,” in 20th IEEE RE, 2012, pp.

221 –230.

[16] B. Boehm, “Value-based software engineering: Seven key

elements and ethical considerations,” Value-Based Software

Engineering, pp. 109–132, 2006.

[17] S. Roberson and J. Robertson, “Volere: Requirements

Specifcation Template.” The Atlantic Systems Guild, 2012.

[18] M. Jackson and P. Zave, “Four Dark Corners of Require-

ments Engineering,” ACM TOSEM, vol. 6, no. 1, 1997.

[19] D. T. Ross and K. E. Schoman Jr, “Structured analysis for

requirements definition,” IEEE TSE, no. 1, pp. 6–15, 1977.

[20] R. Stevens, Systems Engineering: Coping With Complexity.

Pearson Education, 1998.

[21] The Institute of Electrical and Electronics Engineers, IEEE

Std 830-1998: IEEE Recommended Practice for Software

Requirements Specifications. IEEE-SA Standards Board, 1998.

130

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[22] M. S. Soares and J. Vrancken, “Model-driven user require-

ments specification using SysML,” Journal of Software, vol.

3, no. 6, pp. 57–68, 2008.

[23] A. Goknil, I. Kurtev, and K. van den Berg, “A metamodeling

approach for reasoning about requirements,” in Model Driven

Architecture–Foundations and Applications, 2008, pp. 310–325.

[24] T. Ōno, Toyota Production System: Beyond Large-Scale

Production. Productivity Press, 1988.

[25] A. Van Lamsweerde, “Goal-oriented requirements engineer-

ing: A guided tour,” 5th IEEE RE, pp. 249–262, 2001.

[26] Object Management Group, “BMM 1.1.” [Online]. Availa-

ble: http://www.omg.org/spec/BMM/1.1/. [Accessed: 16-

Mar-2012].

[27] B. Boehm, “Value-Based Software Engineering: Overview

and Agenda,” USC-CSE-2005-504, Feb. 2005.

[28] J. M. Akkermans and J. Gordijn, “Value-based requirements

engineering: exploring innovative e-commerce ideas,” Re-

quirements Engineering, vol. 8, no. 2, pp. 114–134, Jul. 2003.

[29] A. Herrmann and M. Daneva, “Requirements Prioritization

Based on Benefit and Cost Prediction: An Agenda for Future

Research,” in 16th IEEE RE, 2008, pp. 125 –134.

[30] J. Gordijn, E. Yu, and B. van der Raadt, “E-service design

using i* and e3value modeling,” IEEE Software, vol. 23, no.

3, pp. 26–33, 2006.

[31] A. Dardenne, A. Van Lamsweerde, and S. Fickas, “Goal-

directed requirements acquisition,” Science of Computer

Programming, vol. 20, no. 1–2, pp. 3–50, Apr. 1993.

[32] E. Yu, “Modelling Strategic Relationships for Process Ren-

gineering,” University of Toronto, 1995.

[33] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L.

Peyton, and E. Yu, “Evaluating goal models within the goal-

oriented requirement language,” International Journal of In-

telligent Systems, vol. 25, no. 8, pp. 841–877, 2010.

[34] L. Liu, “GRL Ontology,” University of Toronto Computer

Science. [Online]. Available:

http://www.cs.toronto.edu/km/GRL/grl_syntax.html. [Ac-

cessed: 14-Aug-2012].

[35] J. Horkoff and E. Yu, “Comparison and evaluation of goal-

oriented satisfaction analysis techniques,” Requirements

Eng, pp. 1–24, 2012.

[36] J. Karlsson, “Software requirements prioritizing,” in 2nd

IEEE RE, 1996, pp. 110 –116.

[37] A. Babar, B. Wong, and A. Q. Gill, “An evaluation of the

goal-oriented approaches for modelling strategic alignment

concept,” in 5th IEEE RCIS, 2011, pp. 1 –8.

[38] M. Jackson, Software requirements & specifications: a lexi-

con of practice, principles, and prejudices. ACM Press, 1995.

[39] A. Pourshahid, D. Amyot, L. Peyton, S. Ghanavati, P. Chen,

M. Weiss, and A. J. Forster, “Business process management

with the user requirements notation,” Electronic Commerce

Research, vol. 9, no. 4, pp. 269–316, Aug. 2009.

[40] J. Horkoff, D. Barone, L. Jiang, E. Yu, D. Amyot, A. Bor-

gida, and J. Mylopoulos, “Strategic business modeling: repre-

sentation and reasoning,” Softw Syst Model, pp. 1–27, 2012.

[41] R. Ellis-Braithwaite, “Analysing the Assumed Benefits of

Software Requirements,” in 19th REFSQ, Proceedings of the

Workshops and the Doctoral Symposium, 2013.

[42] N. Maiden, J. Lockerbie, D. Randall, S. Jones, and D. Bush,

“Using Satisfaction Arguments to Enhance i* Modelling of an Air

Traffic Management System,” in 15th IEEE RE, 2007, pp. 49 –52.

[43] R. S. Kaplan and D. P. Norton, “Linking the balanced scorecard

to strategy,” California Management Review, vol. 39, no. 1, 1996.

[44] A. Babar, D. Zowghi, and E. Chew, “Using Goals to Model

Strategy Map for Business IT Alignment,” in 5th BUSITAL, 2010.

[45] S. J. Bleistein, K. Cox, J. Verner, and K. T. Phalp, “B-SCP: A

requirements analysis framework for validating strategic

alignment of organizational IT based on strategy, context,

and process,” Information and Software Technology, vol. 48,

no. 9, pp. 846–868, Sep. 2006.

[46] T. Gilb and A. Cockburn, “Point/Counterpoint,” IEEE Soft-

ware, vol. 25, no. 2, pp. 64 –67, Apr. 2008.

[47] N. Maiden, “Improve Your Requirements: Quantify Them,”

Software, IEEE, vol. 23, no. 6, pp. 68 –69, Dec. 2006.

[48] T. Gilb, “What’s Wrong With Agile Methods? Some Princi-

ples and Values to Encourage Quantification,” in Agile Soft-

ware Development Quality Assurance, Information Science

Reference, 2007.

[49] N. Juristo, A. M. Moreno, and A. Silva, “Is the European

industry moving toward solving requirements engineering

problems?,” IEEE Software, vol. 19, no. 6, pp. 70 – 77, 2002.

[50] J. Yen and W. A. Tiao, “A systematic tradeoff analysis for

conflicting imprecise requirements,” in 3rd IEEE RE, 1997,

pp. 87 –96.

[51] T. Gilb, Competitive Engineering: A Handbook For Systems

Engineering, Requirements Engineering, and Software Engi-

neering Using Planguage. Butterworth-Heinemann Ltd, 2005.

[52] V. Basili, J. Heidrich, M. Lindvall, J. Münch, M. Regardie,

D. Rombach, C. Seaman, and A. Trendowicz, “Bridging the

gap between business strategy and software development,”

in 28th ICIS, 2007, pp. 1–16.

[53] A. Trendowicz, J. Heidrich, and K. Shintani, “Aligning

Software Projects with Business Objectives,” in 21st IWSM-

MENSURA, 2011, pp. 142 –150.

[54] J. R. Hauser and D. Clausing, “The house of quality,” Har-

vard Business Review, pp. 63–73, 1988.

[55] D. L. Moody, P. Heymans, and R. Matulevičius, “Visual

syntax does matter: improving the cognitive effectiveness of

the i* visual notation,” Requirements Engineering, vol. 15,

no. 2, pp. 141–175, Jun. 2010.

[56] V. Mandić, V. Basili, L. Harjumaa, M. Oivo, and J. Markku-

la, “Utilizing GQM+Strategies for business value analysis:

an approach for evaluating business goals,” in ACM-IEEE

ESEM, New York, NY, USA, 2010, pp. 20:1–20:10.

[57] D. M. Buede, The Engineering Design of Systems: Models

and Methods. John Wiley & Sons, 2011.

[58] D. K. Peterson and G. F. Pitz, “Confidence, uncertainty, and the

use of information,” Journal of Experimental Psychology: Learn-

ing, Memory, and Cognition, vol. 14, no. 1, pp. 85–92, 1988.

[59] A. Herrmann, “REFSQ 2011 Live Experiment about Risk-

Based Requirements Prioritization: The Influence of Word-

ing and Metrics,” in 17th REFSQ, Proceedings of the Empir-

ical Track, 2011.

[60] R A. Kent, “Estimation,” in Data Construction and Data

Analysis for Survey Research, 2001.

[61] W. Heaven, D. Sykes, J. Magee, and J. Kramer, “A case

study in goal-driven architectural adaptation,” Software En-

gineering for Self-Adaptive Systems, pp. 109–127, 2009.

[62] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy,

and R. Selby, “Cost models for future software life cycle

processes: COCOMO 2.0,” Annals of Software Engineering,

vol. 1, no. 1, pp. 57–94, 1995.

[63] R. Ellis-Braithwaite, “GoalViz Tool.” [Online]. Available:

http://www.goalviz.info/IJAS/index.html. [Accessed: 10-

Jan-2013].

131

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Towards the Standardization of Industrial Scientific and Engineering

Workflows with QVT Transformations

Corina Abdelahad, Daniel Riesco

Departamento de Informática

Universidad Nacional de San Luis

San Luis, Argentina

{cabdelah, driesco}@unsl.edu.ar

Alessandro Carrara, Carlo Comin, Carlos Kavka

Research and Development Department

ESTECO SpA

Trieste, Italy

{carrara, comin, kavka}@esteco.com

Abstract— Nowadays, design activities in engineering and

many other applied science fields require the execution of

computational models in order to simulate experiments. This

step is usually automated through the execution of the so-called

scientific workflows. A large number of different graphic and

execution formats are currently in use today, with no clear

signs of convergence into a standard format. Things are

different in the area of business processes, where many

standards have been defined for both the graphical and the

execution representation of business process workflows.

Significant efforts are currently being carried out to apply

business workflow technology into engineering fields.

Nevertheless, one of the main obstacles for the industrial

adoption of standards is the large base of existing workflows

used currently by industry, which cannot be just thrown away.

This paper presents a model-to-model transformation using

QVT between a widely used industrial metamodel and the

BPMN 2.0 standard metamodel. Legacy workflow support is

an essential first step to allow the introduction of the use of a

business process standard in scientific and engineering

industrial applications.

Keywords – BPMN 2.0; business workflow; industrial

workflow; transformation; QVT.

I. INTRODUCTION

Scientific and industrial design activities depend more
and more on the execution of computational models in order
to run in-silico experiments. These applications are
characterized of being computationally intensive and
strongly data-driven. Heavy requirements are imposed, not
only on the bare computing technology, but also on the high
level execution mechanisms [1][2]. The most widely
accepted and effective formalism used to represent these
computational processes is in terms of scientific and
engineering workflows, which provide a declarative way of
stating the required high level specifications. In general
terms, a scientific or engineering workflow is an automated
business process used to execute complex computational
processing tasks [3] in scientific or engineering application
areas respectively. These kinds of workflows are widely used
in natural science, computational simulations, chemistry,
medicine, environmental sciences, engineering, geology,

astronomy, automotive industry, aerospace, and other
industrial fields. Its use has been extended also to
optimization tasks, where the development of complex
industrial products is modeled as an optimization cycle
which includes an engineering process defined in terms of
the collaboration of various engineering services with
usually large exchange of information between them [4][5].

It is expected that the success of business process
technology in business scenarios can contribute to introduce
this already mature technology into the field of scientific and
engineering workflows. However, it is not yet the case, even
if some interesting contributions are indisputable. The main
reason is that scientific and engineering workflows require
many features that most business process models do not
currently support [6][3]. For example, business workflows
usually deal with discrete transactions, but engineering and
scientific workflows in most cases deal with many
interconnected software tools, large quantities of data with
multiple data sources and in multiple formats [7]. Also,
engineering services usually have a very long execution
duration and depend on the execution environment.

Even if scientific and engineering workflows have been
used successfully since many years, most of the tools used to
define and execute them are not based on standard
technologies. The situation is completely different in the area
of business processes, where many well-defined standards
have been proposed and are widely used. Some attempts to
use a business process standard in the domain of scientific
and engineering workflows have been performed, though till
now, a single standard cannot be used to represent both the
abstract view (used by the engineer to represent the process
at the scientific domain) and the workflow representation
used for execution (at workflow engine level). However, the
last definition of the BPMN standard (the release 2.0) from
the Object Management Group (OMG) has been developed
with broader objectives, overcoming in fact the limitations
that prevented the use of previous versions in scientific and
engineering applications [8][9]. From now on, all references
with the acronym BPMN are intended as references to
version 2.0 of the standard. BPMN defines a formal notation
for developing platform-independent business processes,
contrasting with specific definitions of business processes
such as BPEL4WS (Business Process Execution Language

132

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for Web Services) [10]. BPMN defines an abstract
representation for the specification of executable business
processes within a company, which can include human
intervention, or not. BPMN also allows collaboration
between business processes of different organizations. The
definition of this new standard allows, for the very first time,
to extend the use of workflows from the field of business
process to the field of science and engineering.

With BPMN, many companies will be tempted to support
a standard workflow for scientific and engineering
applications. However, it must be considered that there exists
a large base of engineering workflows already designed and
used currently by industry, which cannot be just thrown
away. In order to provide legacy workflow support, we
propose a methodology for the transformation of legacy
proprietary workflows into BPMN standard workflows. This
approach will provide an extra incentive for companies to
abandon proprietary workflows and move to standard
technologies coming from the field of business processes.
However, the transformation is not without pain. The extra
data and process requirements in engineering workflows
need to be handled properly. Fortunately, BPMN has been
defined with an extension facility which allows to add
required constructions without breaking standard
compliance.

As a part of the methodology, this paper presents a
transformation for selected constructions of a widely used
industrial engineering workflow to BPMN, in order to
present a valid path to perform legacy workflow conversion
to a well-defined standard. It is an extension of the work
presented in [1], where the basic methodology was
presented. In this present paper, transformations of more
complex elements based in BPMN extensions are also
considered, providing insights on a not-so-easy to handle
BPMN construction, which is essential for the support of
scientific and engineering workflows. Also, an extended
example is presented, together with a more deep explanation
of the legacy workflow model and the results of the
transformation in terms of XML elements. New sections
were added to present the motivations and a discussion on
the proposed approach.

The transformation is defined in QVT, a standard relation
language for model transformation defined by the OMG with
a specification based on MOF and OCL [11]. The language
consents to express a declarative specification of the
relationships between MOF models and metamodels
supporting complex object pattern matching. A QVT
transformation defines the rules by which a set of models can
be transformed into a different set [12]. Furthermore, it
specifies a set of relations that the elements of the implicated
models in the transformation must fulfill. The model types
are represented by their corresponding metamodels. A
relation in QVT specification consists in a set of
transformation rules where a rule contains a source domain
and a target domain [13]. A domain is a set of variables to be
matched in a typed model, with each domain defining a
candidate model and also having its own set of patterns [12].
For more details on QVT, the reader is invited to visit the
OMG links [11].

The paper is structured in sections. Section II presents
related works. The industrial metamodel used as the source
model for transformations is described in Section III. Section
IV presents an example of the transformation from the point
of view of the workflow designer, while Sections V and VI
describe the transformation architecture and the
transformation between models, respectively. The paper ends
with an example in Section VII, and discussions and
conclusions in Sections VIII and IX, respectively.

II. RELATED WORK

The use of scientific and engineering workflows for
process automation has been widely analyzed in literature
[3]. Many commercial and open source implementations do
exist. The most widely used by the open source community
are Kepler [14], Triana [15], Taverna [16], Pegasus [17] and
KNime [18], with many new frameworks appearing
continuously. However, all these scientific and/or
engineering workflow frameworks are based in proprietary
non-standard formats. In the area of commercial tools, there
exists many options like for example modeFRONTIER [4]
widely used in CAD/CAE engineering optimization.
However, again, all of them are based in proprietary formats.

In [1], the authors present a model-to-model
transformation using QVT between a widely used
engineering workflow and BPMN 2.0, converting
successfully data inputs, input sets and input output
specifications into the target format. The approach was
validated experimentally in the engineering environment
supported by a company in the field of multi-objective
optimization. This current paper is an extension of [1].

The use of standards like BPMN 1.0 for the abstract
representation of scientific workflows, and BPEL or Pegasus
for execution were proposed in the past, but never went too
far in industry due to the need to support two different
standards for the same workflow [17].

Several works in the field of software engineering are
related to the concept of transformation between models, and
many of them use BPMN to model business process.

Marcel van Amstel et al. [19] investigate the factors that
have an impact on the execution performance of model
transformation. This research estimates the performance of a
transformation and allows to choose among alternative
implementations to obtain the best performance. The results
of this study can be used by implementers of transformation
engines in order to improve the set of currently available
tools.

In this same line, a model-to-model transformation
between PICTURE and BPMN 1.0 is presented in [20].
PICTURE is a domain-specific process modeling language
for the public administration sector. The transformation
allows to model administrative processes in PICTURE and
to get BPMN models for these processes automatically,
helping electronic government by making possible the
implementation of supporting processes. In addition, this
research contributes to simplify the development process,
improves its flexibility and allows meeting organizational

133

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

challenges arising in the development of systems that
support electronic government.

In [21], three sets of QVT relations are presented as a
mean of implementing transformations in a model-driven
method for web development. One of them transforms a
high-level input model to an abstract web-specific model.
The other two transform the abstract web model to specific
web platform models.

In [22], the generation of components of the Java EE 6
business platform from technical business processes modeled
with BPMN 1.0 was presented. The generation was obtained
by performing three transformations in the context of Model-
Driven Architecture, performed with QVT Relations and a
MOFScript. This research contributed improving the
development productivity and reducing design errors.

A solution for the modeling of Clinical Pathways (CP)
processes in terms of standard business process models is
presented in [23]. To represent a CP as a process workflow, a
high-level semantic mapping between the CP ontology and
the BPMN ontology was developed. This research shows
how a clinical specific process defined in the CP ontology is
mapped to a standard BPMN workflow element. This
mapping allows healthcare professionals to model a CP by
using familiar modeling constructs. Once ready, they can
transform this CP to a business process model and thus
leveraging the standard definitions of processes to represent
and optimize clinical environments by incorporating process
optimization tools.

An example application is presented in [24] to
demonstrate an automated transformation of a business
process model into a parameterized performance model, thus
obtaining significant advantages in terms of easy
customization and improved automation.

However, to the best of our knowledge, no other research
work has considered BPMN as the target model for
transformation in the context of industrial scientific or
engineering workflows.

III. ESTECO METAMODEL

The metamodel selected as an example is the workflow
model used for modeling simulation workflows by ESTECO,
a company specialized in industrial multi-objective
optimization[4]. The simulated process is represented with a
formalism which provides both a representation for the
abstract view (used by the engineer to represent the process)
and the associated execution model (used for the real
simulation). The abstract view is a human-understandable
graphic representation, while the execution model is
represented with XML. This last model is used by a

workflow engine in order to execute the workflow and
perform the simulation.

This workflow, which is typical in this kind of
environments, includes one task node for each activity and
data nodes used to represent input, output and temporary data
objects. Data objects can represent simple data like integer,
doubles, vectors, matrices or more complex data like files or
databases. Activities correspond to the execution of
simulators, scripts and other applications in local or remote
locations. Usually, each activity is defined through a set of
configuration files, which can be large (many gigabytes
being common), and a set of inputs and outputs (which can
also be very large files or databases). Distributed execution is
required, meaning that the activities specified in the
workflow can be executed in different nodes (on the grid or
the cloud system[25]), requiring data to be passed between
them. More information about the ESTECO metamodel can
be found in the documentation provided in the web site [4].

The next sections provide a description of the
framework used for the transformation by applying it to a
small subset of ESTECO’s workflow.

IV. TRANSFORMATION EXAMPLE

As it was mentioned before, the ESTECO and the BPMN
notations have both a graphical and an XML representation.
Usually, the simulation engineer designs the workflow by
using a graphical editor, not being at all interested in the
associated XML representation, which is used behind the
scenes by the editor and the execution engine as the storage
and execution format respectively.

This section presents an example of a transformation
from the point of view of the designer, who expects to get a
BPMN workflow to be obtained from a previously defined
ESTECO workflow as a result of the transformation process.
Please note that the example presented in this section is
intended to present only data handling aspects, and does not
include other components, which also need to be considered
when performing a full transformation process.

Figure 1 shows an example of a workflow specified in
terms of the ESTECO model. It consists of a sequence of
two activities, which performs some computation tasks.
Execution starts with the node labeled START, which just
transfer the execution flow to the first activity (labeled
SUM). This first activity receives two inputs and produces a
single output as a result of a computational activity. The
second activity (labeled MEAN) takes two inputs, one of
them being the output of the previous activity, and produces
a single output as a result. The workflow terminates
successfully when both tasks are executed properly, reaching
the node labeled EXIT, or it can generate an exception
reaching the node labeled ERROR.

134

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2 shows the equivalent BPMN process. Note that
the overall graphical structure is not too different between
the two workflows. In both of them there is a start node, an
end node and an exception event node. There is, however,
one extra data object used to transfer intermediate data
between the two activities, something that is not required by
the ESTECO workflow presented before, which allows
direct communication between activities. Note that different
kind of arrows and lines are required to indicate the data
flow and process flow in BPMN, something that is not so
nicely differentiated in the original ESTECO workflow.

An important point to note is that, even if the overall
graphical structure is very similar in both workflows, the
XML representation is definitely very different. And of
course, the transformation process does not take place at the
graphical level, but at the XML representation level. This
transformation is made possible since both workflow models
are defined formally with an XML schema, which provides
the basis for a formal transformation process. This
transformation process, including selected transformation
code in QVT and some examples, is presented in next
sections.

V. TRANSFORMATION ARCHITECTURE

Our proposal aims to apply the most recent concepts of
business processes to the field of engineering workflows in
industrial fields. The use of standards in industry is important
since it guarantees portability between tools that support
BPMN.

The industrial legacy workflow selected has an XML
representation, allowing the use of tools like Medini QVT
for transformation [26]. There is no one-to-one
correspondence between the different components of
ESTECO’s workflow and BPMN constructions, since
control nodes and data nodes are very differently handled in
both models. Also, files and database handling put extra
requirements which can only be handled properly with
BPMN extensions.

The QVT transformations describe relations between the
source metamodel and the target metamodel, both specified
in MOF. The transformation defined is then applied to a
source model, which is an instance of the ESTECO source
metamodel, to obtain a target model, which is an instance of
the BPMN target metamodel, as can be seen in Figure 3. The
metamodels used in the definition of the transformation are
shown at the top level. The specific models to which the
transformation defined in the metamodel level is applied in
order to obtain BPMN models is shown at the middle level.
The lower level represents the instances of the models which
can be executed in the corresponding workflow engines.

As mentioned before, activities and processes need data
in order to be executed, and in addition, they can produce
data during or as a result of their execution. In BPMN, data
requirements are captured as DataInputs and InputSets. The
produced data is captured using DataOutputs and
OutputSets. These elements are aggregated in an
InputOutputSpecification class [2], as can be seen from the
UML class diagram presented in Figure 4. The DataInputs
and DataOutputs are additional attributes of the
InputOutputSpecification element; these elements are
optional references to the DataInputs and DataOutputs
respectively. A DataInput is a declaration that a particular

Figure 1. Example of an ESTECO workflow.

Figure 2. Example of the equivalent BPMN 2.0 workflow.

Figure 3. Transformation architecture.

ESTECO
meta-model

ESTECO
model

ESTECO
instance

BPMN2
meta-model

BPMN2
model

BPMN2
instance

Definition of transformation
using QVT

Application of the
transformation

135

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

kind of data will be used as input of the
InputOutputSpecification. A DataOutput is a declaration that
a particular kind of data can be produced as output of the
InputOutputSpecification. DataInputs and DataOutputs are
ItemAware elements. If the InputOutputSpecification defines
no DataInput, it means no data is required to start an
Activity. If the InputOutputSpecification defines no
DataOutput, it means no data is required to finish an Activity
[8].

The BPMN specification provides an extension
mechanism for both the process model and the graphic
representation that allows the extension of standard BPMN
elements with additional attributes. This mechanism can be
used by modelers and modeling tools to add non-standard
elements or artifacts to satisfy a specific need. The only
requirement is that these extension attributes must not
contradict the semantics of any BPMN element [8]. The
ExtensionAttributeValue class has a relationship with
BaseElement class, defining a list of attributes or elements

that can be attached to any standard BPMN element, as can
be seen in Figure 4. As mentioned before, a DataInput is an
ItemAwareElement. All item aware elements inherit the
attributes and model associations of BaseElement. Therefore,
a DataInput element inherits the attributes and model
associations of BaseElement, allowing the extension
mechanism to be used by a DataInput [8].

A partial view of the ESTECO metamodel with the
metaclasses involved in the relations described in this work
is shown in the UML class diagram presented in Figure 5.
The TInputDataNode and TOutputDataNode elements
inherit the attributes and model associations of TDataNode,
which in turn, inherits from TNode. The TGeometry class is
the outermost object for all ESTECO elements, i.e., all these
elements are contained in a TGeometry. The
TInputDataNode element is a particular kind of TDataNode
that will be used as input of TGeometry to a Task. The
TOutputDataNode element is a particular kind of TDataNode
which can be produced as output of a Task contained in

Figure 4. Partial view of the BPMN2 metamodel (from [8]).

136

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TGeometry. A TTaskNode class represents the task that is
performed within an industrial workflow.

VI. TRANSFORMATION BETWEEN MODELS

A transformation specifies a group of relations that the
elements of the involved models must fulfill. A
transformation may have any number of input or output
parameters known as domains. For each output parameter, a
new model instance is created according to the metamodel of
the output metamodel (in this case, the metamodel BPMN).

Each domain identifies a corresponding set of elements

defined by means of patterns. A domain pattern can be

considered an object template. A relation in QVT defines

the transformation rules. A relation implies the existence of

classes for each one of its domains. In a relation, a domain

is a type that may be the root of a template pattern. A

domain implies the existence of a property of the same type

in a class. A pattern can be viewed as a set of variables and

a set of constraints that model elements must satisfy. A

template pattern is a combination of a literal that can match

against instances of a class and values for its properties. A

domain can be marked as checkonly or enforced. A

checkonly domain simply verifies if the model contains a

valid correspondence that satisfies the relation. When a

domain is enforced, if checking fails, the elements of target

model can be created, deleted or modified so as to satisfy

the relationship.
A relation can contain two sets of predicates identified by

a when or a where clause. The when clause specifies the
condition that must be satisfied to execute the
transformation. The where clause specifies the condition that
must be satisfied by all model elements involved in the
relation, and it may contain any variable involved in the
relation and its domains [5]. In the context of transformation,
a model type represents the type of the model. A model type
is defined by a metamodel and an optional set of constraint
expressions. Please note that the definition of these terms can
be found in the QVT specification, where the interested
reader is referred to [5].

The transformation between ESTECO metamodel and
BPMN metamodel is defined as follows:

transformation ESTECOToBPMN2(source : esteco_m,
 target : bpmn2)

Figure 5. Partial view of ESTECO metamodel (from [4]).

137

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Note that this transformation takes as input an ESTECO

model, which is an instance of the ESTECO metamodel, and
produces a BPMN model, that will be an instance of the
BPMN metamodel.

Below, the relations which define the mapping between
ESTECO metamodel classes and BPMN metamodel classes
are presented. This correspondence is not straightforward. As
we mentioned in the previous section, the DataInputs are
captured in InputSets and both are added into an
InputOutputSpecification. The same happens with the
DataOutputs. So, in the transformation it is necessary to
generate an IoSpecification object to aggregate DataInputs,
DataOutputs, InputSets and OutputSets.

The relation used to create an IoSpecification object is
shown below:

The relations that are referenced in the previous code,

which are used to create InputSets and OutputSets, are the
following:

Note that an InputSet is a collection of DataInput

elements that together define a valid set of data inputs
associated to an InputOutputSpecification. An
InputOutputSpecification must define at least one InputSet
element. An OutputSet is a collection of DataOutputs
elements that together can be produced as output from an
Activity. An InputOutputSpecification element must have at
least OutputSet element [3].

The relation used to obtain the DataInputs of the
ESTECO model and the generation of DataInputs in BPMN
is the following:

relation createIOSpecificationTask {
 checkonly domain source g:esteco_m::TGeometry { };
 enforce domain target t:bpmn2::Task {
 ioSpecification= ioSpecif :
 bpmn2::InputOutputSpecification {}
 };
 primitive domain id_task:String;
 where {
 getDataInputTask(g,ioSpecif, id_task);
 createInputSetsTask(ioSpecif,ioSpecif);
 getDataOutputTask(g, ioSpecif, id_task);
 createOutputSetsTask(ioSpecif, ioSpecif);
 }
}

relation createInputSetsTask {
 checkonly domain target ioSpecif:
 bpmn2::InputOutputSpecification {
 };
 enforce domain target ioSpecif :
 bpmn2::InputOutputSpecification {
 inputSets = input_set :bpmn2::InputSet{
 dataInputRefs= ioSpecif.dataInputs
 }
 };
}

...

...

relation createOutputSetsTask {
 checkonly domain target ioSpecif:
 bpmn2::InputOutputSpecification{
 };
 enforce domain target ioSpecif :
 bpmn2::InputOutputSpecification{
 outputSets = output_set :bpmn2::OutputSet{
 dataOutputRefs= ioSpecif.dataOutputs
 }
 };

relation getDataInputTask{
 id_input, name_input : String;
 value_input : Real;
 checkonly domain source g:esteco_m::TGeometry{
 taskNode = t:esteco_m::TTaskNode{
 bufferInputDataConnector = buffer_input :
 esteco_m::TBufferInputDataConnector {}
 },
 inputDataNode = input : esteco_m::TInputDataNode {
 id = id_input,
 name = name_input,
 value = value_input,
 outputDataConnector = output_data :
 esteco_m::TOutputDataConnector {}
 },
 dataEdge = data_edge : esteco_m::TDataEdge {}
 };

...

138

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Each data input of ESTECO must be transformed into a

data input of BPMN. This transformation is straightforward;
the QVT code presented before shows the procedure by
which the id, name, value and connectors are obtained. Note
that there is an extensionValues attribute referenced in the
previous code. This attribute belongs to the BaseElement
class (Figure 4), which is defined with type
ExtensionAttributeValue.

To understand the extensions processing during the
transformation process, it is necessary to refer to the
definition of types in the ESTECO metamodel. This
definition is presented in Figure 6: DocumentRoot element
inherits the attributes and model associations of
ExtensionAttributeValue, a class belonging to the BPMN
definition, as can be seen in Figure 4. It was necessary to
aggregate new attributes: the Value attribute, which is
contained within TSimpleValue and has default value of zero,
and the simpleValue attribute, which is contained within
TDefault.

The relation used to obtain the DataOutputs of ESTECO
model and the generation of DataOutputs in BPMN is shown
below.

VII. A TRANSFORMATION EXPERIMENT

This section presents an example of a transformation by

using the QVT code presented before. The QVT
transformations were defined by using Medini QVT, a tool
developed by IKV++ technologies with an Eclipse

…

 enforce domain target ioSpecif :
 bpmn2::InputOutputSpecification {
 dataInputs = data_input : bpmn2::DataInput {
 id= id_input + '_T',
 name = name_input,
 itemSubjectRef = item : bpmn2::ItemDefinition {
 id = 'DoubleItemDefinition'
 }, extensionValues = extension :
 esteco::DocumentRoot{
 default = default : esteco::TDefault {
 simpleValue = simple_value : esteco::TSimpleValue {
 value = '0'
 }
 }
 }
 }
 };

 primitive domain id_task:String;
 when {
 if (data_edge.from = output_data.id) and
 (data_edge.to = buffer_input.id) and
 (id_task=t.id) then true else false
 endif;
 }
}

relation getDataOutputTask{
 id_output, name_output : String;
 checkonly domain source g:esteco_m::TGeometry {
 taskNode = t:esteco_m::TTaskNode{
 bufferOutputDataConnector = buffer_output :
 esteco_m::TBufferOutputDataConnector {}
 },
 outputDataNode = output :
 esteco_m::TOutputDataNode {
 id = id_output, name = name_output,
 inputDataConnector = input_data :
 esteco_m::TInputDataConnector {}
 },
 dataEdge = data_edge : esteco_m::TDataEdge {}
 };
 enforce domain target ioSpecif :
 bpmn2::InputOutputSpecification {
 dataOutputs = data_output : bpmn2::DataOutput {
 id= id_output + '_T',
 name = name_output,
 itemSubjectRef = item : bpmn2::ItemDefinition {
 id = 'DoubleItemDefinition' }
 }
 };
 primitive domain id_task:String;
 when {
 if (data_edge.from = buffer_output.id) and
 (data_edge.to = input_data.id) and
 (id_task=t.id) then true else false
 endif;
 }
}

Figure 6. Partial view of the ESTECO XSD definition.

139

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

integration [26]. Medini QVT allows both single direction
and bidirectional transformations. The core engine
implements the OMG’s QVT Relations standard, and is
licensed under EPL (Eclipse Public License). The Relations
language implicitly creates trace classes and objects to record
the events that occurred during a transformation execution.

The QVT Process package contains classes that are used
for modeling the flow of Activities, Events, and Gateways,
and their sequence within a Process. When a Process is
defined it is contained within Definitions [8]. A Process is
instantiated when one of its Start Events occurs. The End
Event indicates where a Process will end, finishing the flow
of the Process. Data requirements and Data Outputs are
contained within an ioSpecification object, which defines not
only the inputs and outputs, but also the InputSets and
OutputSets for the Process and the Activities [8].

Figure 7 presents the results of the execution of a
transformation when applied to one single activity node in
the workflow defined in Figure 1. Each box corresponds to
an XML element, and the hierarchy between the elements is
represented with the tree-like structure. Each task has its own
ioSpecification object, which contains its own data. Hence,
the transformation generates an ioSpecification object to
combine DataInputs, DataOutputs, InputSets and
OutputSets, as it was mentioned previously.

Each data input of the ESTECO workflow task is
captured as an inputDataNode object, which is transformed
into a dataInput of BPMN. To satisfy specific needs of
ESTECO, it has become necessary to use the extension
mechanism of BPMN for DataInput handling. As it was
shown in the previous section, the QVT code for the
getDataInputTask relation presents the procedure by which
the id, name, value and connectors are obtained and the

extensionValues element is generated. The two new elements
contained in the extensionValues element are default and
simpleValue.

Each data output of the activity node is captured as an
outputDataNode object, which is in turn transformed into a
dataOutput of BPMN. This transformation has been
presented in the definition of the relation getDataOutputTask
introduced before. Note that an InputOutputSpecification
must define at least one InputSet element and at least one
OutputSet element. Once the data input and output have been
generated, the inputSet and outputSet are in turn generated.
The corresponding QVT generation code can be found in the
relations createInputSetsTask and createOutputSetsTask
respectively.

VIII. DISCUSSION

The paper has proposed the use of a standard model-to-
model transformation technology in order to convert
scientific and engineering workflows into a business process
standard format. The main contributions of the proposal are
the following:

• Technical feasibility: the paper has shown that QVT
provides an effective and standard method to
transform scientific and engineering workflows into
a standard business process format. It has shown that
concepts coming from model driven architecture
(MDA) can be applied in the domain of science and
engineering design. Being QVT part of the OMG
standards, these concepts can be useful as the basis
for the development of domain-specific Model
Driven Engineering tools [27].

• Incentive to support standards in scientific and
engineering community: companies that use a
proprietary workflow format that is properly defined
with a model schema, can use a similar
transformation process to export their workflows
into a standard format. There are no restrictions on
the use of QVT for this purpose, since it is an open
standard defined by the OMG with many alternative
implementations available.

• Transformation example with a real workflow
format widely used in industry: the legacy
workflow model is a widely used format in
engineering all around the world, definitely not a
model defined just for this paper evaluation.
ESTECO is a world-wide leader in the domain of
multi-objective optimization applied to engineering
design, which is currently pursuing strong efforts to
increase support for standards in the multi-objective
optimization domain in the context of engineering
processes, as it can be seen in [5].

Note that the example presented in this paper is
intentionally small, in order to effectively demonstrate the
approach, without introducing the reader into extra
complexity generated by a larger example. Due to this
successful results, the company plan to extended it to support
the full specifications of the original legacy workflows,

process

ioSpecification

startEvent

Task

ioSpecification

dataInput

extensionValues

simpleValue

default

dataOutput

inputSet

outputSet

endEvent

sequenceFlow

TGeometry

startNode

endConnector

taskNode

startConnector

bufferInputDataConnector

inputDataNode

outputDataNode

outputDataConnector

inputDataConnector

outputDataConnector

dataEdge

endConnector

bufferOutputDataConnector

dataInput

dataOutput

inputSet

outputSet

exitNode

startConnector

definitions

Figure 7. Correspondence between the XML elements during a
transformation by considering a single activity from the

workflows defined in Figures 1 and 2.

140

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

becoming a part of the tool sets provided in a new BPMN
compatible workflow environment.

IX. CONCLUSION

The paper has proposed the use of QVT-based

transformation technology in order to transform engineering
workflows defined in a legacy proprietary format to a well-
defined business process standard. An example involving
only data related components has been presented. The
approach has been validated experimentally in an
engineering environment supported by a company
specialized in multi-objective optimization. It is important to
stress that this transformation allows the conversion of most
ESTECO industrial workflows to BPMN, consenting their
execution in BPMN workflow engines with adequate
extensions support.

The objective of this work has been to apply important
concepts of business processes to the industrial field.
Furthermore, it intended to show the importance of the use of
standards in industrial fields in order to guarantee portability
between tools that support BPMN. As a more general
objective, it is expected that the use of a standard for
scientific and engineering workflows will facilitate the
collaboration between scientists and industrial designers,
enhance the interaction between different engineering and
scientific fields, providing also a common vocabulary in
scientific and engineering publications [5].

ACKNOWLEDGMENT

 The authors thank the reviewers of the ICSEA’12

conference and the IARIA Journal for the very useful
comments that have contributed to enhance both the original
and the extended versions of the paper.

REFERENCES

[1] Corina Abdelahad, Daniel Riesco, Carlo Comin, Alessandro

Carrara, and Carlos Kavka, “Data Transformations using
QVT between Industrial Workflows and Business Models in
BPMN”, Proceedings of the Seventh International Conference
on Software Engineering Advances ICSEA, 2012, IARIA.

[2] Yolanda Gil, Ewa Deelman, Mark Ellisman, Thomas
Fahringer, Geoffrey Fox et al., “Examining the challenges of
scientific workflows”, IEEE Computer vol. 40, no. 12, 2007,
pp. 24-32.

[3] Cui Lin, Shiyong Lu, Xubo Fei, Artem Chebotko, Darshan
Pai et al., “A reference architecture for scientific workflow
management systems and the VIEW SOA solution”, IEEE
Transactions on Service Computing, vol. 2, no. 1, 2009, pp.
79-92.

[4] ESTECO S.p.A., “modeFRONTIER applications across
industrial sectors involving advanced CAD/CAE packages”,
http://www.esteco.com/home/mode_frontier/by_industry, [re-
trieved: March, 2013]

[5] Carlo Comin, Luka Onesti, and Carlos Kavka, “Towards a
Standard Approach for Optimization in Science and

Engineering”, Proceedings of the 8th International
Conference on Software Engineering and Applications
ICSOFT-EA, 2013, SciTePress.

[6] Li Hongbiao, Li Feng, and Yu Wanjun, “The research of
scientific workflow engine”, Proceedings of the IEEE
International Conference on Software Engineering and
Service Sciences (ICSESS), 2010, pp. 412-414.

[7] Shown Bowers. “Scientific Workflow, Provenance and Data
Modeling Challenges and Approaches”, Journal on Data
Semantics, vol. 1, pp. 19-30, 2012, Springer.

[8] Object Management Group (OMG), “Business process model
and notation”, http://www.omg.org/spec/BPMN/2.0
[retrieved: March, 2013]

[9] The Business Process Management Initiative (BPMI.org),
http://www.bpmi.org/ [retrieved: October, 2012]

[10] Oasis, “Web services business process execution language
version 2.0”, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.html, [retrieved: March, 2013]

[11] Object Management Group (OMG), “Modeling and metadata
specifications”, http://www.omg.org/spec, [retrieved: October
2012]

[12] Object Management Group (OMG), “Meta object facility
(MOF) 2.0 query/view/transformation, V1.1”,
http://www.omg.org/spec/QVT/1.1 [retrieved: October, 2012]

[13] Li Dan, “QVT based model transformation from sequence
diagram to CSP”, Proceedings of the 15th IEEE International
Conference on Engineering of Complex Computer Systems
(ICECCS), 2010, pp. 349-354.

[14] Bertram Ludascher, Ilkay Altintas, Shawn Bowers, Julian
Cummings, Terence Critchlow et al., “Scientific Process
Automation and Workflow Management”, in “Scientific Data
Management: Challenges, Technology, and Deployment”,
edited by A. Shoshan and D. Rotem, 2009, Chapman and
Hall/CDC.

[15] Ian Taylor, Matthew Shields, Ian Wang, and Andrew
Harrison, “The Triana workflow environment: architecture
and applications”, in “Workflows for e-Science: Scientific
Workflows for Grids”, I. Taylor et al., 2007, Springer.

[16] Pablo Missier, Stian Soiland-Reyes, Stuart Owen, Wei Tan,
Alexrandra Nenadic et al., “Taverna, Reloaded”, Lecture
Notes in Computer Science, vol. 6187, pp. 471-481, 2010,
Springer.

[17] Mirko Sonntag, Dimka Karastoyanova, and Ewa Deelman,
“Bridging The Gap Between Business And Scientific
Workflows”, Proceedings of the ESCIENCE 2010, 6th IEEE
International Conference on e-Science, 2010, IEEE Computer
Society.

[18] Michael Berthold, Nicolas Cebtron, Fabian Dill, Thomas R.
Gabriel, Tobias Kotter et al., “KNIME: The Konstanz
Information Miner”, in “Data Analysis, Machine Learning
and Applications”, ed. H. Bock, W. Gaul, M. Vichi, pp. 319-
326, 2008, Springer.

[19] Marcel van Amstel, Steven Bosems, Ivan Kurtev, and Luís
Ferreira Pires, “Performance in model transformations:
experiments with ATL and QVT”, Lecture Notes in Computer
Science, Volume 6707, Theory and Practice of Model
Transformations, Springer, 2011, pp. 198-212.

[20] Henning Heitkoetter, “Transforming PICTURE to BPMN 2.0
as part of the model-driven development of electronic
government systems”, Proceedings of the 44th Hawaii
International Conference on System Sciences (HICSS), 2011,
pp. 1-10.

[21] Ali Fatolahi, Stéphane Somé, and TimothyLethbridge,
“Automated generation of abstract web models using QVT
relations”, Technical Report TR-2010-06, School of
Information Technology and Engineering, University of
Ottawa, September 2010.

141

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[22] Narayan Debnath, Carlos Alejandro Martinez, Fabio Zorzan,
Daniel Riesco, and German Montejano, “Transformation of
business process models BPMN 2.0 into components of the
Java business platform”, Proceedings of the Industrial
Informatics (INDIN), 10th IEEE International Conference on
Digital Objects, 2012, pp. 1035-1040, IEEE

[23] Nima Hashemian and Samina Sibte Raza Abidi, “Modeling
clinical workflows using business process modeling
notation”, Computer-Based Medical Systems (CBMS), 25th
International Symposium on Digital Object, 2012 , pp. 1-4,
IEEE

[24] Paolo Bocciarelli and Andrea D'Ambrogio, “A BPMN
extension for modeling non functional properties of business
processes”, Proceedings of the 2011 Symposium on Theory of
Modeling & Simulation: DEVS Integrative M&S
Symposium, Springer-Verlag, 2011, pp. 160-168.

[25] Gideon Juve and Ewa Deelman, “Scientific workflows and
clouds”, ACM Crossroads, vol. 16, no. 3, 2010, pp. 14-18.

[26] IKV, “The Medini QVT project”, http://projects.ikv.de/qvt,
[retrieved: March, 2013]

[27] D. Schmidt, “Guest Editor's Introduction: Model-Driven
Engineering”, Computer IEEE, vol. 39, pp. 25-31, 2006.

142

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

GUI Failures of In-Vehicle Infotainment:
Analysis, Classification, Challenges, and Capabilities

Daniel Mauser
Daimler AG

Ulm, Germany
daniel.mauser@daimler.com

Alexander Klaus
Fraunhofer IESE

Kaiserslautern, Germany
alexander.klaus

@iese.fraunhofer.de

Konstantin Holl
Fraunhofer IESE

Kaiserslautern, Germany
konstantin.holl

@iese.fraunhofer.de

Ran Zhang
Robert Bosch GmbH
Leonberg, Germany

ran.zhang@de.bosch.com

Abstract—With the growth of complexity in modern auto-
motive infotainment systems, graphical user interfaces become
more and more sophisticated, and this leads to various chal-
lenges in software testing. Due to the enormous amount of
possible interactions, test engineers have to decide, which test
aspects to focus on. In this paper, we examine what types of
failures can be found in graphical user interfaces of automotive
infotainment systems, and how frequently they occur. In total,
we have analyzed more than 3,000 failures, found and fixed
during the development of automotive infotainment systems
at Audi, Bosch, and Mercedes-Benz. We applied the Orthog-
onal Defect Classification for categorizing these failures. The
difficulties we faced when applying this classification led us
to formulating requirements for an own classification scheme.
On this basis, we have developed a hierarchical classification
scheme for failures grounded on common concepts in software
engineering, such as Model-View-Controller and Screens. The
results of the application of our classification show that 62%
of the reports describe failures related to behavior, 25% of the
reports describe failures related to contents, 6% of the reports
describe failures related to design, and 7% of the reports
describe failures to be categorized. An outlined capability of
the results is the support for fault seeding approaches which
leads to the challenge of tracing the found failures to the
correspondent faults.

Keywords-domain specific failures; GUI based software; in-
vehicle infotainment system; failure classification; fault seeding.

I. INTRODUCTION

This article focuses on classifying failures found and
fixed during the development of automotive infotainment
systems. As the research was conducted as part of a funded
research project, we had the unique chance to analyze failure
data collected by both car manufacturers and suppliers. The
developed classification was awarded as best paper on the
Fourth International Conference on Advances in System
Testing and Validation Lifecycle [1] and invited for an
additional journal publication.

In modern automotive infotainment systems (“Infotain-
ment” is a combination of “information” and “entertain-
ment”), the graphical user interface (GUI) is an essential
part of the software. The so-called human machine inter-
faces (HMI) enable the user to interact with the system
functionality, such as the radio system, the navigation, or

the tire pressure monitoring system. According to Robinson
and Brooks [2], a GUI “is essential to customers, who must
use it whenever they need to interact with the system”.
Additionally, they “found that the majority of customer-
reported GUI defects had a major impact on day-to-day
operations, but were not fixed until the next major release”
[2].

GUI-based software, especially in the automotive domain,
is becoming more and more complex [3] - often, documents
with more than 2,000 pages are written to describe all the
functionality [4]. The reasons are (a) the growing number of
functions, which form more and more complex systems, as
well as (b) increasing variability due to more adaptive and
customizable interaction behavior.

When testing GUIs, sequences of system interactions
are performed and the system reaction is compared to the
specified reaction in each step. It is obvious that not all
possible combinations of user inputs can be tested. Thus,
it is necessary to focus testing activities on certain failure
types. To be able to (a) choose strategies accordingly, (b)
adjust test case development or (c) guide failure recognition,
the following questions need to be answered: What types of
failures are to be expected in GUI based software today?
Is it possible to build a classification of these types? What

Figure 1. Example of a graphical user interface of the Mercedes-Benz
infotainment system COMAND.

143

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Example of a graphical user interface of the AUDI infotainment
system MMI [6].

are frequent failures in current GUI software? Which are
common, which are rare?

Our context is the quality assurance of GUIs for automo-
tive infotainment systems. As these are built into a car, the
situation is different from that of desktop software. There is
no convenient possibility to upgrade the system or to buy a
new release, which means that manufacturers need to assure
quality in the first release. Additionally, when the system
does not work correctly, drivers may get distracted from
driving. Therefore, special attention has to be paid to find
and fix defects during development. The interaction with the
system is different from that of desktop GUIs [5]. A common
interaction device is the central control element (CCE).

Based on typical examples, the structure and the in-
teraction concept of automotive infotainment systems are
described in the following. In the Mercedes-Benz COMAND
system shown in Figure 1, the GUI consists of a menu
at the top of the screen, where all available applications,
e.g., navigation or audio, can be accessed. Each application
consists of an application area in the middle of the screen,
where the actual content is displayed (here: information
about the radio station and the song being played) and a
sub-menu for content-specific options at the bottom (here:
“Radio”, “Presets”, “Info”, etc.). The GUI is operated via the
CCE, allowing the user to set the selection focus by rotating
or pushing the CCE in one direction, and to activate options
by pressing it.

Another well-known in-vehicle infotainment system is the
“MMI” (Multi Media Interface) developed by Audi. Figure
2 shows a GUI of the MMI with an example of a navigation
program. In contrast to COMAND, the main menu options
of the Audi infotainment system are located in the four
corners of the screen. In the middle area of the screen, the
information and the menu options of the navigation program
are displayed. To operate the GUI, a physical interactive
component called MMI-Terminal is used, which consists of
a central button allowing rotary and push operations, as well
as four push buttons around the central button. Analogous

Figure 3. Example of a graphical user interface of the Bosch Multimedia
Reference System (MRS).

to COMAND, the MMI enables the focus selection and the
operation confirmation of the GUI.

Besides the above described ones, Bosch has introduced
another in-vehicle infotainment system called “Multimedia
Reference System” (MRS), which is based on an open
source platform. Compared with infotainment systems of
Mercedes-Benz and Audi, the MRS focuses on a full touch
solution. Figure 3 exemplifies the MRS with a view of the
main menu and with a view of the albums. The top of
the screen is the area displaying the status of applications,
such as E-mail, phone and weather report. The left border
and right border are used for hot keys related to several
frequently used functionality.

This article is structured as follows. In Section II, we
discuss related work and stress the need to create a new
classification scheme. In Section III, we describe how we
applied the scheme that has been identified as most appro-
priate in an empirical study. In Section IV, we present our
approach to develop the classification. The scheme itself is
detailed in Section V. Section VI discusses the results based
on the defined requirements. Section VII presents concluding
remarks and future research directions.

II. RELATED WORK

In the literature, various types of defect classifications can
be found. However, many of them lack practical usage and
empirical data in the form of distributions of defects into
the scheme, and thus it is hard to tell whether they are a
valuable addition. Other schemes for classification are used
frequently, or at least once. For our study, we concentrate on
those latter ones, and discuss why they are not fully suited
for our means. As described above, our context is black-box
testing of a GUI for automotive infotainment systems.

A. Definitions

First, we have to clarify the distinction between different
terms for “defects”. The IEEE [7] released a standard
for defect classification, which also includes a scheme for

144

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Example of the distinction of a fault, an error and a failure.

distinguishing between defects and failures. A defect is “an
imperfection or deficiency in a work product that does not
meet its requirements or specifications”, while a failure is
“an event, in which a system or system component does
not perform a required function within specified limits”
[7]. Therefore, when a defect is present, and we perform
GUI testing, we can observe failures. They are caused by
defects in the code, but since we test by using the GUI, and
not the code (i.e., black-box), what we can observe is the
behavior. This is why we do not create a defect but a failure
classification scheme. The missing consistency of precise
terms within the related work is complicating its conflation.
According to [7], e.g., the terms anomaly, error, fault, failure,
incident, flaw, problem, gripe, glitch, defect, and bug are
often used synonymously. There is no need for our work to
define all related terms. Here, “defect” is used as a collective
noun. In accordance with IEEE [7], the usage of the terms
fault, error and failure is based on Jean-Claude Laprie [8]:
“A system failure occurs when the delivered service deviates
from fulfilling the system function, the latter being what
the system is aimed at. An error is that part of the system
state, which is liable to lead to subsequent failure: an error
affecting the service is an indication that a failure occurs
or has occurred. The adjudged or hypothesized cause of an
error is a fault.” Figure 4 shows a concise example in the
HMI context for clarifying the distinction between the terms.

According to [9], faults cause errors and errors cause
failures. However, not every fault is the reason for an error

and not every error is the reason for a failure. Hence black-
box testing can lead to a sophisticated task because some
faults cause failures only in very particular situations. In
addition, failures that are caused by faults and lead to errors
can cause other faults – resulting in a propagation of faults.
Additionally, no one-to-one correspondence of failure and
faults can be assumed. One failure can be symptom for more
than one fault, one fault can cause more than one failure.
The analyzed reports are based on the results of black-box
testing. Thus, only failures were detected and documented
within these reports. They contain no information about the
faults – the root of the failures.

B. Defect Classification Schemes

IBM created the so-called Orthogonal Defect Classifica-
tion (ODC) [10] in the early nineties. Since then, many
companies have applied this approach. It consists of several
attributes, such as triggers, defect types, impact, and others.
A GUI section is included in the ODC extension V5.11 [10].
It contains triggers, such as design conformance, navigation,
and widget / GUI behavior.

Another scheme, which contains several categories for
GUI-related issues, was proposed by Li et al. [11]. It consists
of 300 categories and is based on the ODC, but adapted
for black-box testing. It contains, e.g., categories for a
GUI in general, and for GUI control [11]. However, this
scheme contains many categories that refer to highly specific
GUI elements and therefore lacks in abstraction levels. For
example, there are categories for a Textbox, Dropdown list,
or a Title bar that are not applicable to systems that do
not contain those. The scheme also contains categories for
interaction of various menus or display styles [11]. There is
no further differentiation, e.g., there may be an unexpected
reaction of the system, or there may be no reaction when
using a menu. This scheme is created for regular desktop
software, as it also classifies keyboard- or mouse-related
faults. In order to adapt this schema, a large number of
categories would have to be exchanged. As there are no
further abstraction levels, only few common aspects remain
which limits the potential of general conclusions.

Børretzen and Dyre-Hansen [12] created a scheme that
is also based on the ODC. They target industrial projects.
A single GUI fault category is included, but not further
segmented. The rationale for this is that, although “function
and GUI faults are the most common fault types”, they are
most often not severe, and thus, not as critical as other
categories [12]. This seems to be a contradiction to what
was stated in the introduction, but the criticalities of certain
types of defects are subject to the application domain. In the
beginning, in our application domain they are very critical,
and therefore, we focus on them to assure software quality.

Hewlett-Packard created a scheme based on three cat-
egories: origin, type, and mode [13]. Origin refers to
where the defect was introduced; the type can, e.g., be

145

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

logic, computation, or user interface. The mode refers to
why something has been entered: missing, unclear, wrong,
changed, or better way. This last category, mode, is an
interesting detail for classifications, as it not only allows a
deeper hierarchical structure, but also allows distinguishing
different kinds of defects of one type. However, the scheme
created by Hewlett-Packard does not distinguish the various
types of GUI-related failures, and, thus, does not enable us
to categorize our defects.

Another well-known scheme was developed by Beizer
[14]. The main categories are “requirements, features and
functionality, structure, data, implementation and coding,
integration, system and software architecture, and testing”
([14], p. 33), each having three levels of subcategories.
The scheme is very detailed, but does not contain GUI-
related categories. An adaptation of this scheme for GUI
contexts was created by Brooks, Robinson and Memon
[15]. The authors emphasize that “defining a GUI-fault
classification scheme remains an open area for research”
[15]. They simplified Beizer’s scheme to create a two-
level classification and added a subcategory for GUI-related
issues, “to categorize defects that exist either in the graphical
elements of the GUI or in the interaction between the GUI
and the underlying application” [15]. However, since there
is only one category specifically for GUIs and since we
focus on GUIs, it is not possible to use this scheme for
our purposes. Adapting it would result in the same effort as
creating a separate one.

There also exists a fault classification scheme for auto-
motive infotainment systems [16]; however, this scheme is
based on network communication and can thus not be used
for classifying software based GUI failures. This scheme
differentiates between hardware and software, but does not
differentiate further. It also has many categories not usable
in our context, and does not include different GUI-related
categories. Ploski et al. [17] studied several schemes for clas-
sification, including approaches not presented here. Since
there were no matching schemes, we do not present them
here.

Another approach was created by the IEEE [7]. However,
this approach lists a number of attributes to be filled out for
each defect and is not expedient for reaching our goals. This
is due to the purpose of the standard to “define a common
vocabulary with which different people and organizations
can communicate [...] and to establish a common set of
attributes that support industry techniques for analyzing
software defect and failure data” [7]. This is much broader
than what we want to achieve. However, the examples of
defect attribute values in the standard contain a mode section
with the values wrong, missing, and extra [7]. We adapted
this mode section, and expanded it where necessary. The
results will be presented in Section V.

The classification schemes available do not meet our
requirements. Since we employ black-box testing of GUIs,

we cannot use any code-related categories or schemes. We
focus only on GUI-related failures. The schemes presented
in [13][14] and [16] do not have GUI-related categories and
because of this, they cannot be used by us. Others ([12][15])
have GUI-related categories, but still do not match very well
to our purposes. The scheme presented in [11] has many
GUI-related categories, but for desktop software. Due to the
differences between desktop and automotive infotainment
GUIs, we did not adapt it because we would then have had
to either delete or change most of the categories.

As the trigger aspect listed in the ODC ([10]) was
identified as the most appropriate existing scheme we found,
an experimental application of the ODC was conducted, and
the results are presented in Section III. For now, we just
state that the ODC in the current state cannot be employed
for our purposes perfectly. Since using or adapting other
schemes does not lead to savings in effort (no differentiated
GUI categories to use, most categories not applicable), we
created our own failure classification scheme. After describ-
ing the approach we used, the categories of our scheme are
explained in Section V.

III. EMPIRICAL PRE-STUDY

As stated in Section II, the ODC [18] [10] seems to be
the most appropriate scheme to classify failures in GUIs
for automotive infotainment systems. It provides eight at-
tributes, such as triggers, defect types, impact, and others,
describing pieces of information concerning a defect from
different points of view. The ODC is intended to facilitate
the entire bug tracking process including reproducibility
(opener section) and fixing (closer section). The information
of the ODC describing how the defect has been produced
can be specified in the opener section using so called
“trigger” categories. According to [18], a trigger is “the
environment or condition that had to exist for the defect
to surface”. As this paper focuses on classifying failure
types, this trigger section is most relevant for our purposes.
Originally, the ODC included not primarily GUI related
categories, such as “Logic/Flow” or “Concurrency”. With
the extension v5.11, these have been extended for graphical
user interfaces introducing the values design conformance,
widget / icon appearance, screen text / characters, input
devices, navigation, and widget / GUI behavior [18]. See
Table I below for an explanation for the trigger values.

A. Design

For this research, we analyzed databases of existing failure
reports. The data was collected during the development of
state-of-the-art automotive infotainment systems. The testers
executed the System Under Test (SUT) manually, based on
specification documents, and used failure reporting tools
to keep records of anomalies. The reports were handed
over to the developers, who then rechecked and fixed the
software. In this context, failures are defined as mismatch

146

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

between the SUT and an explicit GUI specification, which
can be observed while operating the system. Any implicit
requirements, such as general standards or guidelines, are
not subject of the study. Only reports that were accepted
as failures by both testers and developers were considered.
Failures not referring to the GUI were sorted out. Examples
for such failures are hardware errors or display flickering.

As a threat to the validity of this application of the ODC
has to be mentioned, that we want to use the classification for
dynamic testing purposes. However, in this section, we also
selected entries for the design conformance value. One can
argue that reviewing the design documents is not a dynamic
testing activity. However, the ODC is not meant solely for
testing, and a real application has to be done for the whole
life cycle. When we simulate the usage of the ODC, we have
to account for this, even when we do this in the aftermath
of quality assurance activities. Additionally, a deviation
between the design documents and the realization in a
system cannot be found until the application is implemented
and the implemented design can be reviewed and compared
to the design documents.

B. Execution

For this study, Audi, Bosch, and Mercedes-Benz provided
failure data. Hence, the analyzed reports represent a broad
variety of contexts, as they stand for different infotainment
systems (Audi MMI, Mercedes-Benz COMAND, and sev-
eral projects developed at Bosch), different steps in the
development process involved (e.g., module, system, and
acceptance test), as well as different test strategies, test
personnel, and test environments. As preparation to the
analysis, the reports were exported to an Excel document.
Testers sometimes recognize several anomalies at once but
register those only in a single report. Therefore, reports that
describe more than one failure have been split up in one line
for each failure. Redundant reports that describe exactly the
same failure as already considered ones were removed. After
that, more than 3,000 reports remained to be analyzed. One

Table I
TRIGGER VALUES OF THE ODC EXTENSIONS V5.11.

Value for the attribute
“trigger”

Description

Widget / GUI Behavior Concerned with the system reaction re-
lated to widget / GUI elements.

Navigation Concerned with the system reaction re-
lated to navigating between screens.

Widget / Icon Appearance Concerned with the layout / design of
widget or icon elements.

Design Conformance Concerned with the conformance of
the design of the developed application
with the design documents.

Screen Text / Characters Concerned with the correctness of la-
bels or other text elements.

Input Devices Concerned with the system reaction re-
lated to using various input devices.

Table II
EXAMPLES OF THE ANALYZED FAILURE REPORTS.

ID Title Problem description
4711 Inserted music CDs Setup: Any state

are not played auto- Actions: Insert music CD
matically Observed result: Nothing happens

Expected result: System should display
CD play screen
Reference: R0026679
Workaround: Navigate to CD play
screen manually

4712 Cell phone icon on Setup: Connect cell phone
call screen obsolete Actions: Navigate to Call screen

Observed result: Placeholder icon for
cell phones is displayed
Expected result: Correct icon is dis-
played
Reference: R0026672
Workaround: —

third of the reports were used as training data to construct
the failure classification, which was then fine-tuned using the
remaining reports as test data. The following information per
report was relevant for the analysis:

A Report ID provides unique identification for each
report. In the Title, the testers describe the essence of the
report. The Problem description is a detailed statement about
(a) the required setup of the system under test, (b) the actions
that lead to the failure, (c) the behavior or result that has
been observed, (d) a description of what should have been
displayed instead, and (e) how this failure could be bypassed.
If failures were ambiguous or hard to describe, screen shots
were added. Table II shows simple examples of reports.

C. Results & Discussion

In Table III, the percentages of the pre-study results are
presented. As shown, of the more than 3,000 failure reports,
we could classify more than 90% into the values suggested
by the ODC extension. However, as we focus exclusively
on HMI software testing, it was not possible to classify any
reports to the input devices value. Input device reliability
had been ensured in previous testing phases. We examined
the failure reports manually to categorize them according to
the trigger values mentioned above. During this process, we
had the impression that the values in the ODC are not as
disjunctive as expected: [18] states that an example of widget
/ GUI behavior is “help button doesn’t work”. However,
when this button is pressed, one could argue that an attempt
to navigate has been made. Thus, such a failure could also
be categorized with the navigation value for the trigger.
To be able to categorize such failures, we decided to use
screens as a criterion; if the screen does change although it
should not, or if the wrong screen is presented, or no new
screen appears although it should, then we classified this as
navigation, otherwise as widget / GUI behavior. More than
50% of all reports fall into these two values: we classified
18% as navigation failures, and 38% as wrong widget / GUI

147

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table III
RESULTS OF THE ODC APPLICATION.

Value for the attribute “trigger” Distribution
Widget / GUI Behavior 38.0%
Navigation 18.0%
Widget / Icon Appearance 17.0%
Design Conformance 9.6%
Screen Text / Characters 9.2%
Input Devices 0%
— —
Remaining reports not classified 8.2%

behavior.
We could classify 9.6% as design conformance and 9.2%

as screen text / characters. Differentiation between these
two values was not clear either. In this case, we had to use
an additional criterion for separation: If a text is “wrong”
and the text itself is known only at run time, then it is a
screen text / characters failure. If a text is “wrong” and
is known already at design time, then it can be found in
design documents, and thus it is categorized under design
conformance. This separation does not comply with the
examples given in [18]. However, we did not consider the
examples given for these values sufficient, as the example for
screen text / characters is limited to the description “button
mislabeled”. Such a label is known at design time, and
thus, the label has to be defined in the design documents.
If the label is correct in the documents and wrong in the
implemented system, the application does not conform to
its design. This is a problem with design conformance, but
it is listed under screen text / characters. Now, we could also
differentiate whether the label is already wrong in the design
documents or not and then had the possibility to categorize
it. Nevertheless, this discussion shows that the values are
not detailed enough as necessary for our purposes.

The last remaining value in the trigger section, widget
/ icon appearance, was used to classify about 17% of all
reports. One additional problem we faced was that we also
had to classify failures in relation to animations. Here,
we decided to use the same criterion as with the design
conformance and the screen text / characters values: Is the
problem already known at design time or only at run time?
The former are categorized as being a problem with design
conformance, the latter were tagged with the widget / icon
appearance value.

In summary, we state that the categorization following
the ODC extension v5.11 was not satisfactory. Besides the
difficulties with the values not being disjunctive enough
for our purposes, which led to the usage of additional
criteria, the distribution across the trigger values is rather
imbalanced. Not a single entry could be categorized into
input devices, because this is not in the focus of the testing
activities we examined, so this cannot be counted as a
weakness in the ODC. But for the remaining values, we
have two categories with more than 9%, two categories with

nearly 18%, and one category with more than 38%.

IV. APPROACH

The experiences described in Section II led us to the
conclusion that it is more appropriate to create our own
classification scheme, which would be more suitable for
our needs. Following the lessons we had learned, we tried
to include the additional categories we invented for using
the ODC, and we posed requirements, for example to
prevent categories growing as large as the widget / GUI
behavior value. It should also be possible to use the ODC
in combination with our taxonomy.

Therefore, a classification is needed that both gives a
good overview and allows extension for comprehensiveness.
Guidance is necessary to avoid universal categories with
little information. In order to achieve those objectives, a hier-
archical structure seems adequate: the lowest levels represent
the actual failure class. Higher levels should summarize
similar categories on the following level. By doing so, the
impact of adding additional classes in the future should be
mitigated, and different versions of the classification should
be comparable at least at higher abstraction levels, such as
“logic” or “design”. Developing failure classes on lower
levels has to be conducted thoroughly: On the one hand,
classes have to be sufficiently abstract to satisfy the various
analyzed contexts; on the other hand, they still have to
be meaningful. As an indication of how many hierarchy
levels have to be applied and whether one category could be
subdivided reasonably or whether several categories should
be combined, we defined the following requirements for the
failure classes:

• To scale the scope of each classification level, an initial
analysis of the data indicates the necessity to limit
the percentage of the lowest level to 10% of the total
numbers of failures.

• To develop a clear and easy-to-use structure, the num-
ber of categories on every level has to be a minimum
of 2 and a maximum of 5.

• To ensure reproducibility, the assignment of failure
reports should allow no ambiguity. Each failure class on
the lowest level has to be disjunctive and well-defined.

The development of the classification was influenced by
the Bug Tracking Systems (BTS) in use, as they already
allow to roughly categorize reports. However, as this classi-
fication is intended (a) to focus on GUI-related failures and
(b) to be applicable not only to one system, we combined
several report databases that use different failure categories
with varying levels of abstraction. During the development
stage analyzing one third of the reports, the classification
had to be conducted manually. Once the basic structures
had been established, the newly developed categories could
be compared and systematically reviewed to match the ex-
isting ones. Unclear reports were reviewed and information
required for classification was added. In the future, BTS

148

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Screen example: Telephone application.

might be able to provide these more detailed classes to
make the classification during the GUI testing process more
meaningful. Manual categorization would then no longer be
necessary.

To determine the similarity of failures, the classification is
based on concepts and patterns used in software engineering.
For example, the top-level failure classes are behavior, con-
tents, and design, according to the well-established Model-
View-Controller [19] design pattern. The structure of the
classification and the related separation criteria are presented
in Section V.

V. FAILURE CLASSIFICATION

In this section, the GUI failure report classification is
described. Table IV gives an overview of the entire clas-
sification, including the failure distribution. In Figure 7, the
distribution of the most frequent classes is illustrated. As
mentioned above, the top level follows the Model-View-
Controller concept [19], proved to be an adequate abstraction
for GUI-based software. This choice was made due to
the authors’ background as software developers. Controllers
(here: behavior) abstract the observable behavior, indicating
how input is processed. Models (here: contents) define all
contents that are displayed by the system. Views (here:
design) describe the layout and appearance of the contents
to be displayed. As the SUT was tested as a blackbox, the
MVC pattern is not intended to represent the actual software
structure or to relate any failures to implemented software
modules.

In order to avoid enforced classifications of reports to
existing classes, a category “to be categorized” (TBC) was
created. As for other categories, on the lowest level the
TBC failure class is limited to 10% of the total number
of failures. Classifying more failures than that limit as TBC
would indicate that the definition of an additional failure
class is necessary.

A. Behavior
The top-level failure class behavior contains all failure

reports describing that stimuli to the SUT do not result in

Figure 6. Screen example: Overlaying submenu.

the specified output. In order to subdivide this failure class,
common abstractions in GUI development were applied:

Screens [20][21] represent the current state of the GUI
displayed. This state defines the options available to the
user. Figure 1 shows the radio screen, where the current
radio station and the song playing are displayed. The options
provided allow users to change the waveband (FM option)
or adjust the sound setting (Sound option).

The scope of screens is often a matter of system design.
For example, in the COMAND infotainment system, similar
to desktop applications, some of the options shown in the
first place are general topics. Upon activation, a submenu is
displayed on top of the remaining screen content (Figure 6).
As the context of use remains unchanged, those menus are
considered as part of the original screen, although they are
not displayed all the time.

Screens are structured based on elementary GUI elements,
so-called widgets. Widgets are either primitive (label, rectan-
gle, etc.) or complex, meaning that they are compositions of
primitive or again complex widgets. An example of widgets
in Figure 5 would be the horizontal list in the top part. This
list contains button widgets for all available applications,
such as “Navi”, “Audio”, or “Tel” (i.e., phone). In terms
of interaction logic, lists primarily manage the focus. Lists
determine how their content can be iterated and what option
is focused on (re)entering. If many options are available,
e.g., when entering alphanumeric characters, the middle of
the available options has to be focused on start. In cases
of touch screens as input modality, lists would calculate
the touch points of their containing entries depending on
their visibility. Buttons consist of labels and/or symbols
representing their function to the user. Additionally, buttons
might define what actions have to be executed on pressing
them and provide their visibility status on demand.

In this classification, the concepts of screens and widgets
are used to differentiate micro behavior, which affects single
elements on the display (e.g., iterating list entries), and
macro behavior, which changes the entire context of use.

149

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0% 20% 40% 60% 80% 100%

Behavior 2. lvl

Screen transition

Pop-up behavior

Screen structure

Widget

0% 20% 40% 60% 80% 100%

Contents 2. lvl
Text

Animation

Symbols & Icons

0% 20% 40% 60% 80% 100%

1. level

Behavior

Contents

Design

TBC

Figure 7. Failure distribution overview.

1) Widget Failures: The GUIs of the automotive infotain-
ment systems analyzed mainly use various types of lists to
present options to the user. To activate an option, those lists
set a focus by having the user turn or push the CCE and
press it once the desired option is focused. Potential failures
might be that the wrong option is focused on start or that
the focus does not change as specified. An example would
be that every time the main menu is entered, the element in
the middle should be focused automatically. A failure would
exist if the first element would be focused instead. Those
failures are considered as deficient widgets focus logic. The
subcategories are:

• initial: the wrong option is focused when a list is (re-)
entered.

• implicit: the focus has to be reset due to changing
system conditions.

• explicit: the user resets the focus by turning or pushing
the CCE.

For widgets, additional behavior is often specified. One
example might be alphabetic scrolling to allow the user
to jump to a subgroup of list entries starting with one
specific letter. Those failures are considered as deficient
widget behavior. Subcategories are:

• missing: specified behavior is not implemented.
• wrong: instead of the specified behavior, not specified

behavior is implemented.
• extra: behavior is implemented but is not specified.
2) Screen Structure Failures: In this failure class, reports

are clustered describing the logic for determining the widget
objects the screens contain and what data they hold. In
automotive infotainment systems, the availability of options

Table IV
THE DISTRIBUTION OF FAILURES.

1. level 2. level 3. level 4. level distr.
TBC - - - 7.6 %

Behavior

Screen missing - 5.8 %
Transition extra - 2.9 %

(Σ: 17.9%) wrong - 9.2 %
Pop-up missing - 3.6 %

Behavior extra - 3.2 %
(Σ: 11.7%) priority - 0.5 %

wrong - 4.4 %
screen missing 2.4 %

composition extra 0.9 %
(Σ: 5.4%) wrong 2.1 %

options missing 2.2 %
Screen offer extra 1.3 %

(Σ: 61.5%) Structure (Σ: 5.4%) wrong 1.0 %
(Σ: 13.8%) order 0.9 %

option missing 1.6 %
gray-out extra 1.0 %

(Σ: 3.0%) wrong 0.4 %
Behavior missing 5.1 %

(Σ: 14.7%) extra 0.9 %
Widget wrong 8.7 %

(Σ: 18.1%) focus initial 0.9 %
(Σ: 3.4%) implicit 1.5 %

explicit 1.0 %

Contents

missing 1.2 %
design time incomplete 0.3 %
(Σ: 5.9%) extra 0.5 %

Text wrong 3.9 %
(Σ: 15.1%) missing 2.2 %

run time incomplete 1.1 %
(Σ: 9.2%) extra 1.0 %

wrong 4.9 %
missing 0.4 %

design time extra 0.1 %
(Σ: 0.8%) wrong 0.2 %

Animation others 0.1 %
(Σ: 25.1%) (Σ: 1.8%) missing 0.4 %

run time extra 0.1 %
(Σ: 1.0%) wrong 0.3 %

others 0.1 %
design time missing 1.5 %

Symbols (Σ: 2.9%) extra 0.2 %
& Icons wrong 1.2 %

(Σ: 8.2%) run time missing 2.2 %
(Σ: 5.3%) extra 1.0 %

wrong 2.1 %

Design

color - - 1.0 %
font - - 0.4 %

dimension - - 0.7 %
(Σ: 5.8%) shape - - 0.4 %

position - - 2.7 %
other - - 0.6 %

depends on numerous conditions, such as available devices
(e.g., radio tuner available, connected mobile phones, etc.),
the current environmental conditions (e.g., car is moving
faster than 6 km/h), or even previous interactions (e.g.,
activating route guidance). These conditions affect whether
options are displayed but cannot be selected (gray-out mech-
anism) or whether options are even listed at all. Therefore,
two subcategories refer to option provision behavior. The
first subclass is option offer which summarizes failures that
refer to occurrence or order of options. The class is further

150

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

differentiated as follows:
• missing: an option that should be displayed is not

visible.
• wrong: an option A is displayed instead of option B.
• extra: an option is displayed but should not be visible.
• order: an option B is listed before option A but should

be listed after.
The second option specific failure class contains failures

that refer to their gray-out behavior, which again is further
detailed as follows:

• missing: an option should be grayed-out but is available.
• wrong: instead of an option A an option B is grayed-

out.
• extra: an option A is grayed-out but should be available.
The subclass screen composition clusters failures related

to deficient setup of widgets on screen. Subclasses of this
category are:

• missing: widgets that are specified are absent.
• wrong: the wrong widget is displayed.
• extra: an unspecified widget is displayed.
Screen structure failures are distinguished from the widget

behavior category as follows: the former represents erro-
neous selection of widgets such as horizontal or vertical lists,
whereas the latter clusters failures of widget behavior itself,
such as the scrolling logic or widget state change.

3) Screen Transition Failures: As described above,
screens represent one special usage context. The failure
class screen transition clusters failures occurring when those
usage contexts change, such as radio, players, or system
setup. One indication of a screen transition is that the widget
composition and the displayed options are replaced. With
Figure 1 and Figure 5, a screen transition is demonstrated:
First, the Radio screen is shown; by activating the option
“Tel”, the context changes to the telephone screen of the
infotainment system. Subclasses of this category are

• missing: a screen transition that is specified does not
take place.

• wrong: instead of screen A, screen B is displayed.
• extra: a screen transition that is not specified takes

place.
4) Pop-up Behavior Failures: In automotive infotainment

systems, messages are often overlaid over the regular screen
(Pop-up mechanism). Those messages inform users about
relevant events or changes of conditions. For example,
those messages might state that the car has reached the
destination of an active route guidance or that hardware has
heated up critically. These messages might be confused with
overlaying submenus described above as part of screens. The
difference is that pop-up messages do not depend on the
current system state and may occur any time, triggered by
system conditions or events. Overlaying submenus are only
displayed on particular screens and are triggered explicitly
by user input. Pop-up behavior subcategories are

• missing: the pop-up is not displayed although the re-
spective conditions are active.

• wrong: instead of pop-up A, pop-up B is displayed.
• extra: pop-up appears although the respective condi-

tions are not active.
Additionally, with the pop-up mechanism the priority

system is important: A pop-up with higher priority always
has to be displayed on top of pop-ups with lower priority.
Those failures are clustered in the subclass priority.

B. Contents Failures

The next top-level category is related to contents. The
separation criterion is the type of the content: symbols &
icons, animations, or text. In Figure 1, a text failure would
be if the button for the “Audio” application was labeled
incorrectly with “Adio”. If the globe symbol in the upper
right corner of the screen were a simple square as place-
holder, this would be considered a symbol failure. Examples
of erroneous animations might be if the focus highlight
transition is faster than specified (wrong) or if the overlay
menus are not faded in (missing). In this classification, we
additionally distinguish content that is known at design time
(e.g., the labels of available applications) and content that
cannot be defined until runtime (e.g., displaying the names
of available Bluetooth devices). Design time does include
localization failures. Although this content depends on the
language setting, the particular data is already defined and
stored in a database. Characteristic for failures at runtime
are patterns that define what data is needed for the content
(e.g., title and artist of music on connected media) and
how it is displayed (e.g., order, format, etc.). This explicitly
includes how content might have to be shortened or reduced.
Therefore, content runtime failures are close to the behavior
category. As they are strongly related to the respective data
to be displayed, we considered this a content category. For
each of those content types, the following subclasses are
defined:

• missing: Content that is specified is not displayed.
• wrong: Instead of the content that is specified other

content is displayed.
• extra: Content that is not specified is displayed.
This category might be confused with the screen structure

failure class in the behavior sub-tree. For example, a failure
report describing that the second button in the main menu
is “Blind Text” instead of “Audio” could be categorized as
either a contents or an option provision failure. If pressing
the button still leads to a screen transition to the Audio
context, the report is considered as deficient contents. If
another context is displayed, for example the Telephone
screen, it would be a deficient option provision.

C. Design Failures

The last top-level category clusters reports that describe
design failures. This includes

151

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• color: e.g., focus color is red instead of orange.
• font: e.g., text font is Courier instead of Arial.
• dimension: e.g., a button is higher or broader than

specified.
• shape: e.g., a button should be displayed with rounded

instead of sharp edges.
• position: e.g., a label of a button is centered instead of

left-aligned.

As design failures were often described vaguely, a subcat-
egory for other design failures was defined. Ambiguous
descriptions were, for example, that wrong arrows, wrong
Cyrillic letters, or a wrong clock were observed. As it
became obvious early that a low percentage of reports were
categorized as design failures, no additional work was done
to clarify this category.

VI. DISCUSSION

The requirements defined in Section IV were fulfilled for
most failure classes. We intended to cover at least 90% of all
defect reports analyzed. Only 7.6% of the reported failures
had to be classified as “to be categorized”. Furthermore, we
intended to limit the percentage of the classes on the lowest
level of the hierarchy to 10%. This could be achieved as
well: with 9.2%, the largest category was behavior - screen
transition - wrong. We intended to allow only 2-5 categories
on each hierarchy level. This could not be realized for the
design category (6 sub classes). However, due to a very small
number of failures classified as design-related (5.8%), we did
not consider it necessary to restructure this category.

The requirements further stated that the failure classes
have to be disjunctive. Most of the distinction was clear
during the classification process. In the available reports,
there was no interference between logic and design failures.
However, failures regarding design, which is determined by
algorithms were not analyzed. For those cases, a new class
within the logic sub-tree has to be defined. No ambiguity
was noticed in terms of differences between content and
design failures.

Most challenges were experienced in differentiating con-
tent and logic failures, especially in cases where several
failures occurred at once. This was due to the fact that
the systems had to be tested as a black-box and only the
information displayed on the screen could be accessed. The
following scenario exemplifies the key issues: let us assume
all 5 buttons in the main menu line illustrated in Figure
1 are labeled as “Blind Text”. This is definitely a content
text failure. However, it has to be checked whether there are
additional failure symptoms such as wrong, missing, or extra
options provided, or a failure regarding the order of menu
entries. Those additional failures have to be revealed by
analyzing other button properties. In this case, it would have
been checked which screen transition they trigger. However,
several alternatives have to be considered:

• If pressing the second button in the menu line – which
should be the Audio button – triggers the transition
to the Audio context, no additional failure has to be
reported.

• If pressing not the second but the third button triggers
the transition to the Audio screen, an additional option
provision (order or extra) failure has been revealed.

• If pressing a button labeled Telephone triggers the
Audio screen, this could be a screen transition failure
or a content text failure.

In the analyzed reports, this distinction was possible due
to the given descriptions. However, problems might occur
when applying the classification in the future. This is not
only an issue with failure classifications, but an issue with
reporting failures in general. We recommend bearing the
ambiguity of symptoms in mind while testing and reporting.
It is essential to provide the information that is needed
to differentiate failure symptoms. A detailed classification,
such as the one presented in this paper, might help to clarify
the exact circumstances even in early phases.

Further, we answered the question raised in this paper
what types of failures are frequent in current information
systems. The results show that the majority (61.5%) are
failures related to behavior. This demonstrates the complex
macro and micro behavior in modern infotainment systems.
Most of the failure reports are related to missing or wrong
individual widget behavior (13.8%) as well as missing or
wrong screen transitions (15.0%). The content category
is the second largest top-level failure class (25.1%), with
erroneous text being the biggest subcategory (15.1%). The
majority (9.2%) is not known until runtime. Explanations
are (a) that in most infotainment systems, information is
mainly displayed textually and (b) that testing texts is easier
for human testers than comparing symbols or animations
in detail. Very few failures (5.8%) describe erroneous de-
sign. One explanation might be that design is hard to test
manually. For example, it is a problem to differentiate
shades of colors visually. In addition, most design errors
are less critical and even might not be recognized by users.
Therefore, testing design might not be of high priority to test
planners. Hence, this data cannot be seen as definite evidence
showing that design failures are indeed this rare. However,
we addressed this limitation by analyzing failure reports
representing a broad variety of contexts such as testing goals,
test personnel, or test environments.

VII. CONCLUSION AND FUTURE WORK

In this paper, we answered the question of what types of
failures can be found in GUI-based software in the auto-
motive domain today. A failure classification was developed
and applied to more than 3,000 failure reports. Ultimately,
each related fault concerning the reported failures was fixed
during the development process. The reports were created
during the development of modern automotive infotainment

152

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

systems at AUDI, Bosch, and Mercedes-Benz. 61.5% of
the reports describe failures related to high- and low-level
behavior, 25.1% of the reports describe failures related to
contents, and 5.8% of the reports describe failures related to
design. We support not only the testers in creating detailed
and clear reports, but also the entire GUI development
process by pointing out pitfalls leading to gaps between
the specification and the implementation. The classification
indicates, which aspects need special attention in specifi-
cation documents and might need to be described more
explicitly than is common today. For roles responsible for
the implementation of GUI concepts, this work points out
aspects that might be ambiguous and require clarification.

Requirements were defined in order to guide the classifi-
cation process and to avoid categories that are too general or
too specific. These requirements proved to be effective for
guiding the classes development process. General sections
such as those suggested by the ODC extension v5.11 [18]
could be avoided. However, as there are classes with less
than 1%, the presented classification seems to be over de-
tailed. In most cases, classes follow the missing/extra/wrong
pattern suggested by the IEEE classification [7], which was
applied with ease. In future applications, those minor classes
might be ignored.

In future research, the suggested classification might be
scaled by reducing the maximum percentages of lowest-level
categories. Thus, some categories have to be differentiated
further and additional failure classes have to be defined.
Moreover, additional parameters such as “failure criticality”,
“predicted number of affected users”, or “costs for testing”
could be added to the classification. Those aspects are
not in focus at the current stage and might influence the
choice of test strategies significantly. Future failure reports
should include information about those aspects. Extension
of the failure reports would require intensive collaboration
between testers, programmers, requirement engineers, and
other participants in the development process. Extended
reports together with the failure distribution might enable
the derivation of prioritization factors. The usage of ex-
isting prioritization approaches, such as the techniques for
selecting cost-effective test cases shown by Elbaum [22], is
conceivable. One could then focus or prioritize testing on
those types of failures that are most critical based on their
frequency and these additional parameters. For this purpose,
coverage criteria and prioritization techniques are currently
being examined to check which of them, if any, can be
used for our purposes. This classification could be applied to
future automotive infotainment systems to analyze changes
of the failure focus.

Another part of future work will be to analyze whether our
defined classification scheme and the ascertained distribution
of failures could be combined with fault seeding approaches,
which are used to measure and predict reliability. One of the
most popular fault seeding models is the hypergeometric

model by Harlan D. Mills [23]. According to [24] and
[25], fault seeding is based on seeding a known number of
faults in a software program whose total number of faults
is unknown. After testing the software, the comparison of
the number of “found seeded faults” and “found indigenous
faults” allows estimating the number of remaining faults.
In the case of [23], estimation is realized by using the
hypergeometric distribution. Related work like [26], [27]
and [28] focus on the described principle “with the purpose
of simulating the occurrence of real software faults” [29].
Andrews [30] shows that generated mutants are similar to
real faults and consequently claims that mutation operators
yield trustworthy results. Based on Andrews, the work of
[31] is about adding numerous faults for each module by
selecting mutation operators simultaneously applied to the
source code. This results in a single high-order mutant that
represents the faulty version of the system. The approach
performs a “1/10 sampling” to limit the number of seeded
faults. This means that 10% of the maximum number of the
calculated faults – e.g., faults regarding the logical operators
or any constants – are seeded into the system.

The knowledge of the classified distribution of faults
could improve fault seeding approaches by considering the
known fault rates during the seeding process. However, the
analyzed reports in our work contain the description of
failures and not faults. Due to the fact that the origin of
a failure is always a fault and that fault seeding is based
on faults and not failures, traceability between faults and
failures (through errors) is necessary to obtain the benefits
of a known classified distribution of failures. An enabler for
these benefits could be failure proximity approaches, which
identify failing traces and group traces to the same fault
together. [32] regards “two failing traces as similar if they
suggest roughly the same fault location” and assumes that
collecting failing traces can support developers, respectively
testers, in prioritizing and diagnosing faults. In conclusion,
our classified distribution of failures could support the
effectiveness of fault seeding approaches. Applications will
follow.

ACKNOWLEDGMENT

The authors would like to thank Krishna Murthy Murlid-
har, Sven Neuendorf, and Jasmin Zieger for their contribu-
tions. The research described in this paper was conducted
within the project automotiveHMI1. The project automo-
tiveHMI is funded by the German Federal Ministry of Eco-
nomics and Technology under grant number 01MS11007.

REFERENCES

[1] D. Mauser, A. Klaus, R. Zhang, and L. Duan, “GUI failure
analysis and classification for the development of in-vehicle
infotainment,” in Proceedings of the Fourth International
Conference on Advances in System Testing and Validation
Lifecycle, 2012, pp. 79–84.

1http://www.automotive-hmi.org/

153

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[2] B. Robinson and P. Brooks, “An initial study of customer-
reported GUI defects,” in Proceedings of the IEEE Inter-
national Conference on Software Testing, Verification, and
Validation Workshops. IEEE Computer Society, 2009, pp.
267–274.

[3] S. Gerlach, “Modellgetriebene entwicklung von automotive-
hmi-produktlinien.” Ph.D. dissertation, AutoUni, Logos
Verlag Berlin, 2012, pp. 2–6.

[4] C. Bock, “Model-driven hmi development: Can meta-case
tools do the job?” in Proceedings of 40th Annual Hawaii
International Conference on System Sciences (HICSS 2007).
IEEE Computer Society, 2007, pp. 287b–287b.

[5] L. Duan, “Model-based testing of automotive hmis with
consideration for product variability.” Ph.D. dissertation,
Ludwig-Maximilians-Universität München, 2012, pp. 18–22.

[6] “Audi infotainment system MMI.” [Online]. Avail-
able: https://www.audi-mediaservices.com [last visited:
25.02.2013]

[7] IEEE Standard Classification for Software Anomalies, IEEE
Std., Rev. 1044-2009, 1994.

[8] J.-C. Laprie, “Dependability of computer systems: concepts,
limits, improvements,” in Proceedings of Sixth International
Symposium on Software Reliability Engineering, Oct 1995,
pp. 2–11.

[9] E. Dubrova, “Fault tolerant design: An introduction,” De-
partment of Microelectronics and Information Technology,
Royal Institute of Technology, Stockholm, Sweden, Tech.
Rep., 2008.

[10] R. Chillarege, “Orthogonal defect classification,” Handbook
of Software Reliability Engineering, pp. 359–399, 1996.

[11] N. Li, Z. Li, and X. Sun, “Classification of software defect
detected by black-box testing: An empirical study,” in Pro-
ceedings of Second World Congress on Software Engineering
(WCSE), vol. 2. IEEE, 2010, pp. 234–240.

[12] J. Børretzen and R. Conradi, “Results and experiences from
an empirical study of fault reports in industrial projects,” in
Proceedings of the 7th international conference on Product-
Focused Software Process Improvement. Springer-Verlag,
2006, pp. 389–394.

[13] R. Grady, Practical software metrics for project management
and process improvement. Prentice-Hall, Inc., 1992.

[14] B. Beizer, Software testing techniques (2nd ed.). Van
Nostrand Reinhold Co., 1990.

[15] P. Brooks, B. Robinson, and A. Memon, “An initial charac-
terization of industrial graphical user interface systems,” in
Proceedings of International Conference on Software Testing
Verification and Validation, ser. ICST ’09. IEEE Computer
Society, 2009, pp. 11–20.

[16] M. Kabir, “A fault classification model of modern automotive
infotainment system,” in Proceedings of Applied Electronics,
2009, pp. 145–148.

[17] J. Ploski, M. Rohr, P. Schwenkenberg, and W. Hasselbring,
“Research issues in software fault categorization,” SIGSOFT
Software Engineering Notes, vol. 32, no. 6, pp. 1–8, Novem-
ber 2007.

[18] IBM Research Center for Software Engineering,
Extensions to ODC, 2002. [Online]. Available:
http://www.research.ibm.com/softeng/SDA/EXTODC.HTM
[last visited: 19.02.2013]

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, De-
sign Patterns: Elements of reusable object-oriented software.
Reading, MA: Addison Wesley, 1995.

[20] S. Stoecklin and C. Allen, “Creating a reusable GUI compo-
nent,” Software: Practice and Experience, vol. 32, no. 5, pp.
403–416, Apr. 2002.

[21] J. Chen and S. Subramaniam, “Specification-based testing for
GUI-based applications,” Software Quality Journal, vol. 10,
pp. 205–224, 2002.

[22] S. Elbaum, G. Rothermel, S. K, and A. G. Malishevsky,
“Selecting a cost-effective test case prioritization technique,”
Software Quality Journal, vol. 12, no. 3, pp. 185–210,
September 2004.

[23] H. Mills, “On the statistical validation of computer programs,”
Federal Systems Division, IBM, Report FSC-72-6015, 1972.

[24] A. L. Goel, “Software reliability models: Assumptions, lim-
itations, and applicability,” IEEE Transactions on Software
Engineering, vol. 11, no. 12, pp. 1411–1423, 1985.

[25] G. Schick and R. Wolverton, “An analysis of competing
software reliability models,” IEEE Transactions on Software
Engineering, vol. SE-4, no. 2, pp. 104–120, March 1978.

[26] M. J. Harrold, A. J. Offutt, and K. Tewary, “An approach to
fault modeling and fault seeding using the program depen-
dence graph,” The Journal of Systems and Software, vol. 36,
no. 3, pp. 273–296, March 1997.

[27] C. Artho, A. Biere, and S. Honiden, “Enforcer - efficient
failure injection,” in Proceedings of the 14th international
conference on Formal Methods. Springer-Verlag, 2006, pp.
412–427.

[28] J. Voas, G. McGraw, L. Kassab, and L. Voas, “A crystal ball
for software liability,” Computer, vol. 30, pp. 29–36, June
1997.

[29] A. Marchetto, F. Ricca, and P. Tonella, “Empirical validation
of a web fault taxonomy and its usage for fault seeding,” in
Proceedings of 9th IEEE International Workshop on Web Site
Evolution (WSE 2007), Oct. 2007, pp. 31–38.

[30] J. Andrews, L. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?” in Proceedings of
the 27th International Conference on Software Engineering,
2005, pp. 402–411.

[31] F. Belli, M. Beyazit, and N. Güler, “Event-oriented, model-
based GUI testing and reliability assessment - approach and
case study,” Advances in Computers, vol. 85, pp. 277–326,
2012.

154

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[32] C. Liu and J. Han, “Failure proximity: A fault localization-
based approach,” in Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engi-
neering, 2006, pp. 46–56.

155

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Linear Constraints and Guarded Predicates as a Modeling Language for Discrete

Time Hybrid Systems

Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci

Department of Computer Science – Sapienza University of Rome

Via Salaria 113, 00198 Rome, Italy

Email: {mari,melatti,salvo,tronci}@di.uniroma1.it

Abstract—Model based design is particularly appealing in
software based control systems (e.g., embedded software) design,
since in such a case system level specifications are much
easier to define than the control software behavior itself.
In turn, model based design of embedded systems requires
modeling both continuous subsystems (typically, the plant) as
well as discrete subsystems (the controller). This is typically
done using hybrid systems. Mixed Integer Linear Programming
(MILP) based abstraction techniques have been successfully
applied to automatically synthesize correct-by-construction
control software for discrete time linear hybrid systems, where
plant dynamics is modeled as a linear predicate over state,
input, and next state variables. Unfortunately, MILP solvers
require such linear predicates to be conjunctions of linear
constraints, which is not a natural way of modeling hybrid
systems. In this paper we show that, under the hypothesis
that each variable ranges over a bounded interval, any linear
predicate built upon conjunction and disjunction of linear
constraints can be automatically translated into an equivalent
conjunctive predicate. Since variable bounds play a key role
in this translation, our algorithm includes a procedure to
compute all implicit variable bounds of the given linear
predicate. Furthermore, we show that a particular form of
linear predicates, namely guarded predicates, are a natural
and powerful language to succinctly model discrete time linear
hybrid systems dynamics. Finally, we experimentally show the
feasibility of our approach on an important and challenging
case study taken from the literature, namely the multi-input
Buck DC-DC Converter. As an example, the guarded predicate
that models (with 57 constraints) a 6-inputs Buck DC-DC
Converter is translated in a conjunctive predicate (with 102
linear constraints) in about 40 minutes.

Keywords-Model-based software design; Linear predicates;
Hybrid systems

I. INTRODUCTION

Many embedded systems are

Software Based Control Systems (SBCS). An SBCS

consists of two main subsystems: the controller and

the plant. Typically, the plant is a physical system

consisting, for example, of mechanical or electrical

devices, while the controller consists of control software

running on a microcontroller. In an endless loop, each

T seconds (sampling time), the controller, after an

Analog-to-Digital (AD) conversion (quantization), reads

sensor outputs from the plant and, possibly after a

Digital-to-Analog (DA) conversion, sends commands to

plant actuators. The controller selects commands in order

to guarantee that the closed loop system (that is, the system

consisting of both plant and controller) meets given safety

and liveness specifications (system level specifications).

This paper is an extension of the ICSEA 2012 pa-

per [1], and contributes to model based design of embed-

ded software [2]. Software generation from models and

formal specifications forms the core of model based de-

sign of embedded software. This approach is particularly

interesting for SBCSs, since in such a case system level

specifications are much easier to define than the con-

trol software behavior itself. In this setting, correct-by-

construction software generation from (as well as formal

verification of) system level specifications for SBCSs re-

quires modeling both the continuous subsystem (the plant)

and discrete systems (the controller). This is typically done

using hybrid systems (e.g., see [3][4]). Here we focus

on Discrete Time Linear Hybrid Systems (DTLHS) [5][6]

which provide an expressive model for closed loop systems.

A DTLHS is a discrete time hybrid system whose dynamics

is defined as a linear predicate (i.e., a boolean combination

of linear constraints) on its continuous as well as discrete

(modes) variables. A large class of hybrid systems, including

mixed-mode analog circuits, can be modeled using DTLHSs.

System level safety as well as liveness specifications are

modeled as set of states defined, in turn, as linear predicates.

Moreover, discrete time non-linear hybrid systems may be

properly overapproximated with DTLHSs [7] in such a

way that a controller for the overapproximated system is

guaranteed to work also for the original non-linear system.

In our previous work [8][9], stemming from a constructive

sufficient condition for the existence of a quantized sampling

controller for an SBCS modelled as a DTLHS (which is

an undecidable problem [10]), we presented an algorithm

that, given a DTLHS model H for the plant, a quantization

schema (i.e., how many bits we use for AD conversion)

and system level specifications, returns the C code [11] of a

correct-by-construction quantized feedback control software

(if any) meeting the given system level specifications. The

synthesis algorithm rests on the fact that, because of the

quantization process, the plant P is seen by the controller as

a Nondeterministic Finite State Automaton (NFSA) P̂ , that

156

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is an abstraction of P . The NFSA P̂ is computed by

solving Mixed Integer Linear Programming (MILP) prob-

lems which contains the definition of the DTLHS dynam-

ics as a sub-problem. Since available MILP solvers (e.g.,

GLPK [12] and CPLEX [13]) require conjunctive predicates

(i.e., a conjunction of linear constraints) as input, we have

that the DTLHS dynamics must be given as a conjunctive

predicate.

While this is not a limitation for DTLHSs with a not

too complex dynamics, this may turn in an obstruction

for more complex systems. As an example, the dynamics

of the 6-inputs Buck DC-DC Converter of Section VII-A

is described by the conjunction of 102 linear constraints.

However, by allowing disjunction, the same dynamics may

be written as a linear predicate consisting of 45 linear

constraints. Moreover, constants occurring in such a linear

constraint are directly linked to the system physical (known)

parameters, while the ones in the conjunctive predicate must

be suitably computed. This results in a practical limitation

for the effective application of the method in [8][9].

This paper is motivated by circumventing such a limita-

tion, by showing that, under the hypothesis that each variable

ranges over a bounded interval, any linear predicate can

be automatically translated into an equivalent conjunctive

predicate.

Note that it is a reasonable hypothesis to assume variables

describing a DTLHS behavior to be bounded. In fact, control

software drives the plant towards a goal, while keeping it

inside a given desired bounded admissible region. Namely,

bounds on present state variables essentially model the

sensing region, that is the range of values observable by

the sensors. Such a region is usually a bounded rectangular

region (i.e., the Cartesian product of bounded intervals).

Bounds on controllable input variables model the actuation

region, that is the range of values of commands that the

actuators may send to the plant and it is also typically a

bounded rectangular region. Other variables may model both

non-observable plant state variables and uncontrollable in-

puts (i.e., disturbances). Therefore, bounds on such variables

are usually derived from reasonable assumptions or DTLHS

knowledge. On the other hand, next state variable bounds are

typically not explicitly given. However, they may be derived

from all other above mentioned variable bounds (as it will

be shown in Example 4 of Section V).

Finally, note that the application of the methods outlined

here is not limited to the scenario shown above, but may be

applied to nearly all possible usages of MILP solvers in any

field.

A. Our Main Contributions

In this paper, we give an algorithm to translate any linear

predicate into an equivalent (as for solving MILP problems,

as it will be shown in Proposition 1 of Section II-B) con-

junctive predicate, i.e., a conjunction of linear constraints.

This allows us to circumvent the limitation mentioned above,

i.e., that conjunctive predicates must be used to describe

DTLHSs dynamics.

We consider predicates built upon conjunctions and dis-

junctions of linear constraints (i.e., inequalities of the shape
∑n

i=1 aixi ≤ b, Section II). In order to translate them into

a conjunctive predicate, we employ a two-stage approach.

First, we show that, at the price of introducing fresh boolean

variables, a predicate can be translated into an equivalent

guarded predicate (Section IV-A), i.e., a conjunction of

guarded constraints of the shape y → (
∑n

i=1 aixi ≤ b).
Guarded predicates themselves are shown to be a power-

ful means of modeling DTLHSs dynamics in Section VI.

Second, once a guarded predicate has been obtained (or a

guarded predicate has been directly provided as the input

DTLHS model), we show that it can be in turn translated into

a conjunctive predicate (Section IV-B). This latter translation

needs, as a further input, the (finite) upper and lower bounds

for each variable in the predicate. To this end, in Section V

we give an algorithm that computes bounds for a variable x
in a given guarded predicate G(X), i.e., either it returns

two values mx,Mx ∈ R such that if G(X) holds, then

mx ≤ x ≤ Mx, or it concludes that such values do not

exist.

An experimental evaluation of the translation algorithm

presented in this paper is in Section VII. As an example, we

show that the linear predicate that models a 4-inputs Buck

DC-DC Converter with 39 linear constraints is translated

into a conjunctive predicate of 82 linear constraints in

slightly more than 3 hours.

Note that there are two available inputs for our translation

algorithm: i) a linear predicate or ii) a guarded predicate.

Namely, if a guarded predicate is provided as input, only

the second stage mentioned above is performed. Our ex-

perimental evaluation also shows that it is more convenient

to use guarded predicates instead of linear predicates when

modeling DTLHSs dynamics. As an example, the guarded

predicate that models a 6-inputs Buck DC-DC Converter

with 57 constraints (including 12 different guards), is trans-

lated into a conjunctive predicate of 102 linear constraints

in about 40 minutes.

B. Paper Outline

The paper is organized as follows. Section II provides the

basic definitions to understand our approach. In Section III,

we formally define DTLHSs. In Section IV, our two-steps

approach (from linear predicates to guarded predicates and

then to conjunctive predicates) is outlined, assuming vari-

ables bounds to be known. In Section V, we show how we

automatically compute bounds for all variables in a guarded

predicate, thus completing the description of our approach.

Section VI shows that guarded predicates are a powerful

and natural modeling language for DTLHSs. Section VII

shows experimental results on a meaningful case study,

157

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

namely the multi-input Buck DC-DC Converter. Finally,

Sections VIII and IX conclude the paper, by comparing

the approach presented here with previous work and by

providing concluding remarks and future work.

II. BASIC DEFINITIONS

An initial segment {1, . . . , n} of N is denoted by [n]. We

denote with X = [x1, . . . , xn] a finite sequence of distinct

variables, that we may regard, when convenient, as a set.

Each variable x ranges on a known (bounded or unbounded)

interval Dx either of the reals (continuous variables) or of the

integers (discrete variables). The set
∏

x∈X Dx is denoted

by DX . Boolean variables are discrete variables ranging on

the set B = {0, 1}. If x is a boolean variable we write x̄
for (1− x). The sequence of continuous (discrete, boolean)

variables in X is denoted by Xr (Xd, Xb).

The set of sequences of n boolean values is denoted

by B
n. The set B

n
k ⊆ B

n denotes sequences that contains

exactly k elements equal to 1. Given a, b ∈ B
n, we say that

a ≤ b if a is point-wise less or equal to b, i.e., if for all

i ∈ [n] we have that ai ≤ bi. Given a set B ⊆ B
n and

a ∈ B
n we write a ≤ B if there exists b ∈ B such that

a ≤ b and a ≥ B if there exists b ∈ B such that a ≥ b. We

denote with Ones(b) be the set of indexes such that bj = 1,

i.e., Ones(b) = {j ∈ [n] | bj = 1}.

A. Predicates

A linear expression L(X) =
∑n

i=1 aixi is a linear

combination of variables in X with rational coefficients. A

constraint is an expression of the form L(X) ≤ b, where b
is a rational constant. We write L(X) ≥ b for −L(X) ≤ −b,
L(X) = b for (L(X) ≤ b) ∧ (−L(X) ≤ −b), and

a ≤ L(X) ≤ b for (L(X) ≤ b) ∧ (L(X) ≥ a).
(Linear) predicates are inductively defined as follows. A

constraint C(X) is a predicate over X . If A(X) and B(X)
are predicates, then (A(X)∧B(X)) and (A(X)∨B(X)) are

predicates over X . Parentheses may be omitted, assuming

usual associativity and precedence rules of logical operators.

A conjunctive predicate is a conjunction of constraints.

A valuation over X is a function v that maps each variable

x ∈ X to a value v(x) in Dx. We denote with X∗ ∈ DX

the sequence of values v(x1), . . . , v(xn). We call valuation

also the sequence of values X∗. Given a valuation X∗, the

value for variable x is X∗(x). Given a predicate P (Y,X),
P (Y,X∗) denotes the predicate obtained by replacing each

occurrence of x with X∗(x). A satisfying assignment to a

predicate P (X) is a valuation X∗ such that P (X∗) holds.

A predicate is said to be satisfiable if there exists at least

one satisfying assignment. Abusing notation, we denote with

P also the set of satisfying assignments to the predicate

P . P (X) and Q(X) are equivalent, notation P ≡ Q, if

they have the same set of satisfying assignments. P (X) and

Q(Z) are equisatisfiable, notation P ≃ Q, if P is satisfiable

if and only if Q is satisfiable. Finally, two predicates P (X)

and Q(X,Z) are X-equivalent, notation P ≡X Q, if the

following holds for all valuations X∗, Z∗:

1) if P (X∗) holds, then Q(X∗, Z) is satisfiable;

2) if Q(X∗, Z∗) holds, then P (X∗) holds.

B. Mixed Integer Linear Programming

A Mixed Integer Linear Programming (MILP) problem

with decision variables X is a tuple (max, J(X), A(X))
where X is a list of variables, J(X) (objective function)

is a linear expression over X , and A(X) (constraints) is a

predicate over X . A solution to (max, J(X), A(X)) is a

valuation X∗ such that A(X∗) and ∀Z (A(Z)→ (J(Z)≤
J(X∗))). J(X∗) is the optimal value of the MILP problem.

A feasibility problem is a MILP problem of the form

(max, 0, A(X)). We write also A(X) for (max, 0, A(X)).
In algorithm outlines, MILP solver invocations are denoted

by function feasible(A(X)) that returns 1 if A(X) is satis-

fiable and 0 otherwise, and by function optimalValue(max,

J(X), A(X)) that returns either the optimal value of the

MILP problem (max, J(X), A(X)) or ∞ if such MILP

problem is unbounded. We write (min, J(X), A(X)) for

(max,−J(X), A(X)).

Note that available MILP solvers (e.g., GLPK [12] or

CPLEX [13]) require A(X) to be a conjunctive predicate.

However, as explained in Section I, MILP problems arising

in methods like [8][9] are more easily represented as linear

predicates. Thus, we need a translation algorithm from a

linear predicate A to a conjunctive predicate A′ such that a

solution to (max, J, A′) (which may be computed by a MILP

solver) is also a solution to (max, J, A) (which may not be

computed by a MILP solver). To this end, Proposition 1

clarifies that X-equivalence between predicates must be

sought.

Proposition 1: Let (max, J(X), A(X)) be a MILP prob-

lem, let B(X,Z) be a conjunctive predicate which is X-

equivalent to A(X) and let J̃(X,Z) = J(X) +
∑

z∈Z 0z.

Then for all solutions X∗, Z∗ of (max, J̃(X,Z), B(X,Z)),
X∗ is a solution of (max, J(X), A(X)). Moreover, for

all solutions X∗ of (max, J(X), A(X)), there exists

Z∗ such that X∗, Z∗ is a solution of (max, J̃(X,Z),
B(X,Z)). Finally, optimalValue(max, J(X), A(X)) = op-

timalValue(max, J̃(X,Z), B(X,Z)).

Proof: Let X∗, Z∗ be a solution of (max, J̃(X,Z),
B(X,Z)). This entails that B(X∗, Z∗) holds, and that

∀X+, Z+ such that B(X+, Z+) holds, J̃(X∗, Z∗) ≥
J̃(X+, Z+). Suppose by absurd that X∗ is not a solution for

(max, J(X), A(X)). Then, either i) A(X∗) does not hold or

ii) there exist X̃ such that A(X̃) holds and J(X∗) < J(X̃).
Case i) is not possible, since B(X∗, Z∗) holds and B(X,Z)
is X-equivalent to A(X). Case ii) is not possible since, by

X-equivalence of B(X,Z) and A(X) and by definition of

J̃(X,Z), there would exist Z̃ such that B(X̃, Z̃) holds and

J̃(X̃, Z̃) = J(X̃) > J(X∗) = J̃(X∗, Z∗).

158

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

With a similar reasoning, it is possible to prove the other

implication. Finally, equality of optimal values immediately

follows from solutions equivalence and definition of J̃ .

As a consequence of Proposition 1, the translation algo-

rithm we need must take as input a linear predicate P (X)
and return as output an X-equivalent conjunctive predicate

Q(X,Z). In the following sections, we will show how we

achieve this goal.

III. DISCRETE TIME LINEAR HYBRID SYSTEMS

Discrete Time Linear Hybrid Systems (DTLHS) provide a

suitable model for many SBCS (including embedded control

systems) since they can effectively model linear algebraic

constraints involving both continuous as well as discrete

variables. This is shown, e.g., in Example 1, that presents a

DTLHS model of a buck DC-DC converter, i.e., a mixed-

mode analog circuit that converts the Direct Current (DC)

input voltage to a desired DC output voltage.

Definition 1: A Discrete Time Linear Hybrid System is a

tuple H = (X, U, Y, N) where:

• X = Xr ∪Xd is a finite sequence of real and discrete

present state variables. X ′ denotes the sequence of next

state variables obtained by decorating with ′ variables

in X .

• U = Ur ∪ Ud is a finite sequence of input variables.

• Y = Y r∪Y d is a finite sequence of auxiliary variables.

Auxiliary variables typically models modes (switching

elements) or uncontrollable inputs (e.g., disturbances).

• N(X,U, Y,X ′) is a predicate over X ∪ U ∪ Y ∪ X ′

defining the transition relation (next state) of the sys-

tem.

Example 1: The buck DC-DC converter [15] is a mixed-

mode analog circuit (Figure 1) converting the DC input

voltage (Vi in Figure 1) to a desired DC output volt-

age (vO in Figure 1). Buck DC-DC converters are used

off-chip to scale down the typical laptop battery volt-

age (12-24) to the just few volts needed by the laptop

processor (e.g., see [15]) as well as on-chip to support

Dynamic Voltage and Frequency Scaling (DVFS) in multi-

core processors. (e.g., see [14]). Because of its widespread

use, control schemes for buck DC-DC converters have been

widely studied (e.g., see [14][15][16]). The typical software

based approach (e.g., see [15]) is to control the switch u
in Figure 1 (typically implemented with a MOSFET, i.e., a

Metal-Oxide-Semiconductor Field-Effect Transistor) with a

microcontroller.

The circuit in Figure 1 can be modeled as a DTLHS

H=(X,U, Y,N) as follows. The circuit state variables are

iL and vC . However we can also use the pair iL, vO as

state variables in H model since there is a linear relationship

between iL, vC and vO, namely: vO = rCR
rC+R

iL+ R
rC+R

vC .

Such considerations lead us to the following DTLHS model

R
C

rC

D

iD

L

u

+vu

+vD iC

+vO

Vi

iL
rL

iu +vC

Figure 1. Buck DC-DC converter

H: X = Xr = [iL, vO], U = Ud = [u], Y = Y r ∪ Y d

where Y r = [iu, vu, iD, vD] and Y d = [q]. Note how H
auxiliary variables Y stem from the constitutive equations

of the switching elements (i.e., the switch u and the diode D

in Figure 1). From a simple circuit analysis (e.g., see [17])

we have the following equations:

˙iL = a1,1iL + a1,2vO + a1,3vD (1)

˙vO = a2,1iL + a2,2vO + a2,3vD (2)

where the coefficients ai,j depend on the circuit parameters

R, rL, rC , L and C as follows: a1,1 = −
rL
L

, a1,2 = −
1
L

,

a1,3=−
1
L

, a2,1=
R

rc+R
[− rcrL

L
+ 1

C
], a2,2=

−1
rc+R

[rcR
L

+ 1
C
],

a2,3=−
1
L

rcR
rc+R

. Using a discrete time model with sampling

time T and writing x′ for x(t+ 1), we have:

i′L = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD (3)

v′O = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD. (4)

The algebraic constraints stemming from the constitutive

equations of the switching elements are the following:

vD = vu − Vi (5)

iD = iL − iu (6)

(u = 1) ∨ (vu = Roff iu) (7)

(u = 0) ∨ (vu = 0) (8)

((iD ≥ 0) ∧ (vD = 0)) ∨ ((iD ≤ 0) ∧ (vD = Roff iD)) (9)

The transition relation N of H is given by the conjunction

of the linear predicates (3)–(9).

IV. FROM LINEAR TO CONJUNCTIVE PREDICATES

As shown in [8][9], MILP solvers can be used to build

a suitable discrete abstraction of a DTLHS. As shown in

Sections I and II-B (especially in Proposition 1), in order

to do this we need a translation algorithm from linear

predicates to X-equivalent conjunctive predicates. In this

section, we show how we achieve this goal, by designing

a two-steps algorithm. First, in Section IV-A, we introduce

guarded predicates and we show that each predicate P (X)
can be translated into an X-equivalent guarded predicate

Q(X,Z) at the price of introducing new auxiliary boolean

variables Z. Then, in Section IV-B, we show that, under

the hypothesis that each variable ranges over a bounded

interval, each guarded predicate can be in turn translated

into an equivalent conjunctive predicate.

159

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Guarded Predicates

As formalized in Definition 2, a guarded predicate is

an implication between a boolean variable (guard) and a

predicate.

Definition 2: Given a predicate P (X) and a fresh boolean

variable z 6∈ X , the predicate z → P (X) (resp. z̄ →
P (X)) denotes the predicate (z = 0) ∨ P (X) (resp.

(z = 1) ∨ P (X)). We call z the guard variable and

both z and z̄ guard literals. Let C(X) be a constraint. A

predicate of the form z → C(X) or z̄ → C(X) is called

guarded constraint. A predicate of the form z → C(X) is

called positive guarded constraint, whilst a predicate of the

form z̄ → C(X) is called negative guarded constraint. A

generalized guarded constraint is a predicate of the form

z1 → (z2 → . . . → (zn → C(X)) . . .) A guarded predi-

cate (resp. generalized guarded predicate, positive guarded

predicate) is a conjunction of either constraints or guarded

constraints (resp. generalized guarded constraints, positive

guarded constraints).

To simplify proofs and notations, without loss of gen-

erality, we always assume guard literals to be distinct: a

conjunction z → C1(X) ∧ z → C2(X) is X-equivalent to

the guarded predicate z1 → C1(X) ∧ z2 → C2(X) ∧ z1 =
z ∧ z2 = z, being z1, z2 fresh boolean variables. Moreover,

in algorithm outlines, conjunctive (resp., guarded) predicates

will be sometimes regarded as sets of linear (resp., guarded)

constraints.

By applying standard propositional equivalences, we have

the following facts.

Fact 2: A predicate of the form z →
∧

i∈[n] Pi(X) is

equivalent to the predicate
∧

i∈[n](z → Pi(X)).

Fact 3: A generalized guarded constraint z1 → (z2 →
. . . → (zn → C(X)) . . .) is X-equivalent to the positive

guarded predicate (z −
∑

i∈[n] zi ≥ 1− n) ∧ (z → C(X)),
where z is a fresh boolean variable.

Proof: Let z be a fresh boolean variable. We have:

z1 → (z2 → . . .→ (zn → C(X)) . . .)
≡ z1 ∧ z2 ∧ . . . ∧ zn → C(X)
≡X ((z1 ∧ z2 ∧ . . . ∧ zn)→ z) ∧ (z → C(X))
≡ (z̄1 ∨ z̄2 ∨ . . . ∨ z̄n ∨ z) ∧ (z → C(X))
≡ z +

∑

i∈[n](1− zi) ≥ 1 ∧ (z → C(X))

≡ (z −
∑

i∈[n] zi ≥ 1− n) ∧ (z → C(X))

Lemma 4 and its constructive proof allow us to translate

any predicate P (X) to an X-equivalent generalized guarded

predicate Q(X,Z).
Lemma 4: For all predicates P (X), there exists a predi-

cate Q(X,Z) = G(X,Z) ∧D(Z) such that:

1) P (X) is X-equivalent to Q(X,Z);
2) G(X,Z) and D(Z) (and hence Q(X,Z)) are gener-

alized guarded predicates;

3) each generalized guarded constraint in G(X,Z) is of

the form z1 → z2 → . . .→ zm → C(X), with zi ∈ Z
and zi /∈ X for all i ∈ [m].

Proof: The proof is by induction on the structure of the

predicate P (X).

• Case P (X) = C(X) for some linear constraint C(X)
(base of the induction). Then the thesis holds with

G(X,Z) = P (X), D(Z) = 1 and Z = ∅.

• Case P (X) = P1(X) ∧ P2(X) for some predicates

P1(X), P2(X). By inductive hypothesis there exist

Z1, Z2, G1(X,Z1), D1(X,Z1), G2(X,Z2), D2(X,Z2)
such that Pi is X-equivalent to Gi(X,Zi)∧Di(Zi) for

all i ∈ {1, 2}. This entails that P (X) is X-equivalent to

G1(X,Z1)∧G2(X,Z1)∧D1(Z1)∧D2(Z1). By taking

Z = Z1∪Z2, G(X,Z) = G1(X,Z1)∧G2(X,Z2) and

D(X,Z) = D1(Z1) ∧ D2(Z2), and recalling that by

inductive hypothesis Gi, Di are generalized guarded

predicates and Zi is the set of boolean variables that

occur positively as guards in Gi (for all i ∈ {1, 2}),
the thesis follows.

• Case P (X) = P1(X) ∨ P2(X) for some predicates

P1(X), P2(X). By inductive hypothesis there exist

Z1, Z2, G1(X,Z1), D1(X,Z1), G2(X,Z2), D2(X,Z2)
such that Pi is X-equivalent to Qi(X,Zi) =
Gi(X,Zi) ∧Di(Zi) for all i ∈ {1, 2}. We can always

choose auxiliary boolean variables in such a way that

Z1 ∩ Z2 = ∅.

Taken two fresh boolean variables y1, y2 /∈ Z1 ∪ Z2,

the predicate y1 → Q1(X,Z1) ∧ y2 → Q2(X,Z2) ∧
y1 + y2 ≥ 1 is X-equivalent to P (X). For all

i ∈ {1, 2}, the predicate Q̃i(X,Zi, yi) = yi →
Qi(X,Zi) = yi → (Gi(X,Zi) ∧ Di(Zi)) is not

a generalized guarded predicate. Since Gi(X,Zi)
and Di(Zi) are generalized guarded predicates by

inductive hypothesis, we have that Gi(X,Zi) =
∧

j∈[n] G̃i,j(X,Zi) and Di(Zi) =
∧

j∈[p] D̃i,j(Zi),

being G̃i,j(X,Zi), D̃i,j(Zi) generalized guarded con-

straints. This allows us to apply Fact 2 to Q̃i(X,Zi, yi),
obtaining an equivalent predicate Ri(X,Zi, yi) =
(
∧

j∈[n] yi → G̃i,j(X,Zi)) ∧ (
∧

j∈[p] yi → D̃i,j(Zi)).
The thesis follows by taking Z = Z1 ∪ Z2 ∪ {y1, y2},
G(X,Z) =

∧

i∈{1,2}(
∧

j∈[n] yi → G̃i,j(X,Zi)), and

D(Z) =
∧

i∈{1,2}(
∧

j∈[p] yi → D̃i,j(Zi))∧ (y1 + y2 ≥
1). As for point 3, note that this is the only case in

which generalized guarded constraints in G(X,Z) are

generated, and that the generation takes place by adding

boolean fresh guards only. Being the starting predicate

only dependent on X , also point 3 is proved.

Lemma 4 and its constructive proof are exploited in

Algorithm 1, which takes as input a linear predicate P (X)
and outputs the generalized guarded predicates G(X,Z) and

D(Z). The function fresh() returns at each invocation a

160

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(globally) fresh variable. Correctness of Algorithm 1 is given

as a corollary of Lemma 4.

Corollary 5: For all predicates P (X), Algorithm 1 re-

turns 〈G,D,Z〉 such that G(X,Z)∧D(Z) is X-equivalent

to P and fulfills all properties of Lemma 4.

Proposition 6 and its constructive proof allow us to

translate any predicate P (X) in an X-equivalent positive

guarded predicate Q(X,Z). Moreover, predicate Q(X,Z)
has a special form, i.e., it is the conjunction of two positive

guarded predicates G(X, Z̃) and D(Z), with Z̃ ⊆ Z. This is

accomplished by first translating P (X) in an X-equivalent

generalized guarded predicate Q̃(X, Z̃) by using Lemma 4.

Proposition 6: For all predicates P (X), there exists

an X-equivalent positive guarded predicate Q(X,Z) =
G(X, Z̃) ∧ D(Z), where G and D are positive guarded

predicates and Z̃ ⊆ Z.

Proof: Let Q̃(X,Z1) = G̃(X,Z1) ∧ D̃(Z1) be the

generalized guarded predicate obtained by applying the

proof of Lemma 4 (i.e., by applying Algorithm 1 to

P (X)). Let G̃(X,Z1) = G1(X,Z1) ∧
∧

i∈[n](zi,1 →
zi,2 → . . . zi,qi → Ci,1(X))), being G1 a positive

guarded predicate. By Fact 3, G̃(X,Z1) is (X ∪ Z1)-
equivalent to the positive guarded predicate G1(X,Z1) ∧
∧

i∈[n]

(

z̃i → Ci,1(X) ∧ z̃i −
∑

j∈[qi]
zi,j ≥ 1− qi

)

, where

z̃i /∈ Z1 for all i ∈ [n]. Analogously, by Fact 3 D̃(Z1) is

Z1-equivalent to the positive guarded predicate D1(Z1) ∧
∧

i∈[p]

(

ẑi → Ci,2(Z1) ∧ ẑi −
∑

j∈[ri]
zi,j ≥ 1− ri

)

,

where ẑi /∈ Z1 ∪ {z̃j | j ∈ [n]} for all i ∈ [p]. Thus the

thesis follows by taking:

• Z̃ = Z1 ∪ {z̃j | j ∈ [n]}
• Z = Z̃ ∪ {ẑj | j ∈ [p]}
• G(X, Z̃) = G1(X,Z1) ∧

∧

i∈[n] z̃i → Ci,1(X)
• D(Z) = D1(Z1) ∧

(

∧

i∈[n] z̃i −
∑

j∈[qi]
zi,j ≥ 1− qi

)

∧
(

∧

i∈[p] ẑi → Ci,2(Z1) ∧ ẑi −
∑

j∈[ri]
zi,j ≥ 1− ri

)

Proposition 6 and its constructive proof are exploited in

Algorithm 2, which takes as input a linear predicate P (X)
and outputs the positive guarded predicates G(X, Z̃) and

D(Z). To this aim, Algorithm 1 is used as an auxiliary

procedure. Correctness of Algorithm 2 is given as a corollary

of Proposition 6.

Corollary 7: For all predicates P (X), Algorithm 2 re-

turns 〈G,D, Z̃, Z〉 such that G(X, Z̃)∧D(Z) is X-equivalent

to P and Z̃ ⊆ Z.

Example 2: Let H be DTLHS in Example 1. Given the

predicate N(X,U, Y,X ′) that defines the transition rela-

tion of H, function PtoG computes the guarded predicate

Ngp(X,U, Y,X ′) which is (X ∪U ∪Y ∪X ′)-equivalent to

N as follows.

Constraints (3)–(6) remain unchanged, as they are linear

constraints in a top-level conjunction. The disjunction (9) is

Algorithm 1 From predicates to generalized guarded pred-

icates (auxiliary for Algorithm 5)

Input: P predicate over X
Output: 〈G,D,Z〉 where G(X,Z)∧D(Z) is a generalized

guarded predicate X-equivalent to P (X) (see Lemma 4)

function PtoGG(P,X)
1. if P is a constraint C(X) then return 〈C(X),∅,∅〉
2. let P = P1 ⋄ P2 (⋄ ∈ {∧,∨})
3. 〈G1, D1, Z1〉 ←PtoGG (P1)

4. 〈G2, D2, Z2〉 ←PtoGG (P2)

5. if P = P1∧P2 then return 〈G1∪G2, D1∪D2, Z1∪Z2〉

6. if P = P1 ∨ P2 then

7. y1← fresh(), y2← fresh(), Z̃←Z1 ∪ Z2 ∪ {y1, y2}
8. D̃={y1→γ|γ∈D1}∪{y2→γ|γ∈D2}∪{y1+y2≥1}

9. G̃ = {y1 → γ | γ ∈ G1} ∪ {y2 → γ | γ ∈ G2}
10. return 〈G̃, D̃, Z̃〉

first replaced by the conjunction of linear predicates (10)–

(12) as follows.

z1→(iD≥0 ∧ vD=0) (10) z2→(iD≤0 ∧ vD=Roff iD) (11)

z1 + z2 ≥ 1 (12)

Then, predicates (10)–(11) are replaced by guarded con-

straints (17)–(20) below, obtained by moving arrows in-

side the conjunctions, as shown by Fact 2. Similarly,

disjunctions (7) and (8) are replaced by guarded lin-

ear constraints (21)–(24) and (26)–(27). Summing up,

Ngp(X,U, Y,X ′) is given by the conjunction of the fol-

lowing (guarded) constraints:

i
′

L = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD (13)

v
′

O = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD. (14)

vD = vu − Vi (15) iD = iL − iu (16)

z1→(iD≥0) (17)

z1→(vD=0) (18)

z2→(iD≤0) (19)

z2→(vD=Roff iD) (20)

z3→(u=1) (21)

z4→(vu=Roff iu) (22)

z5→(u=0) (23)

z6→(vu=0) (24)

z1+z2≥1 (25) z3+z4≥1 (26) z5+z6≥1 (27)

With respect to the statement of Proposition 6, we have

that Z = Z̃ = {z1, z2, z3, z4, z5, z6}, G(X,Z ′) is the

conjunction of guarded constraints (13)–(24) and D(Z) is

the conjunction of constraints (25)–(27).

B. From Guarded Predicates to Conjunctive Predicates

Guarded predicates may be translated into equivalent con-

junctive predicates (our final target for Proposition 1) once

bounds for all variables occurring in them are known. In

this section, we will show how this translation is performed,

assuming bounds to be known. In Section V, we will show

161

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 2 From predicates to positive guarded predicates

(auxiliary for Algorithm 5)

Input: P predicate over X
Output: 〈G,D,Z, Z̃〉 where G(X, Z̃)∧D(Z) is a positive

guarded predicate X-equivalent to P (X) (see Proposi-

tion 6)

function PtoG(P,X)
1. 〈G,D,Z〉 ←PtoGG (P , X)

2. G̃← ∅, D̃ ← ∅, Z̃ = Z
3. for all γ ∈ G ∪D do

4. if γ ≡ z1 → (. . .→ (zn → C(W)) . . .) then

5. w ←fresh(), Z ← Z ∪ {w}
6. if W ⊆ X then

7. G̃← G̃ ∪ {w → C(W)}, Z̃ ← Z̃ ∪ {w}
8. else

9. D̃ ← D̃ ∪ {w → C(W)}
10. D̃ ← D̃ ∪ {w −

∑

i∈[n] zi ≥ 1− n}
11. else if vars(γ)⊆ X then

12. G̃← G̃ ∪ {γ}
13. else

14. D̃ ← D̃ ∪ {γ}
15. return 〈G̃, D̃, Z, Z̃〉

how bounds for variables may be computed if some bounds

are already known.

Definition 3: Let P (X) be a predicate. A variable x ∈ X
is said to be bounded in P if there exist a, b ∈ Dx such that

P (X) implies a ≤ x ≤ b. A predicate P is bounded if all its

variables are bounded. We write sup(P, x) and inf(P, x) for

the minimum and maximum value that the variable x may

assume in a satisfying assignment for P . When P is clear

from the context, we will write simply sup(x) and inf(x).

Given a real number a and a variable x ∈ X over a

bounded interval, we write sup(ax) for a sup(x) if a ≥ 0
and for a inf(x) if a < 0. We write inf(ax) for a inf(x) if

a ≥ 0 and for a sup(x) if a < 0. Given a linear expression

L(X) =
∑n

i=1 aixi over a set of bounded variables, we

write sup(L(X)) for
∑n

i=1 sup(aixi) and inf(L(X)) for
∑n

i=1 inf(aixi).

Proposition 8: For each bounded guarded predicate P (X)
there exists an equivalent conjunctive predicate Q(X).

Proof: The conjunctive predicate Q(X) is obtained from

the guarded predicate P (X) by replacing each guarded con-

straint C(X) of the shape z → (L(X) ≤ b) in P (X)
with the constraint C̃(X) = (sup(L(X)) − b)z + L(X) ≤
sup(L(X)). If z = 0 we have C(X) ≡ C̃(X) since C(X)
holds trivially and C̃(X) reduces to L(X) ≤ sup(L(X))
that holds by construction. If z = 1 both C(X) and C̃(X)
reduce to L(X) ≤ b. Along the same line of reasoning,

if C(X) has the form z̄ → (L(X) ≤ b) we set C̃(X) to

(b− sup(L(X)))z + L(X) ≤ b.

Together with Proposition 6, Proposition 8 implies that

any bounded predicate P (X) can be translated into an X-

equivalent conjunctive predicate, at the cost of adding new

auxiliary boolean variables, as stated in the following propo-

sition.

Proposition 9: For each bounded predicate P (X), there

exists an X-equivalent conjunctive predicate Q(X,Z).

Example 3: Let H be the DTLHS in Example 2. We set
the parameters of H as follows:

rL=0.1Ω R=5Ω Vi=15V L=2 · 10−4H

rC =0.1Ω Roff =104 T =10−6secs C=5 · 10−5F

and we assume variables bounds as follows:

−2·104≤vu≤15 −4≤ iL≤4 −1≤vO≤7 −4≤ i′L≤96
−2·104≤vD≤0 −1.1≤v′O≤17 −4≤ iu≤4 −2≤ iD≤4

By first decomposing equations of the shape L(X) = b
in the conjunctive predicate L(X)≤ b ∧ −L(X)≤−b and

then by applying the transformation given in the proof of

Proposition 8, guarded constraints (17)–(24) are replaced by

the following linear constraints:

2z1 − iD ≤ 2 (28)

4 · 104z4 + vu − 104iu ≤ 4 · 104 (29)

6 · 104z4 − vu + 104iu ≤ 6 · 104 (30)

−2.104z1 − vD ≤ 2 · 104 (31)

2.104z2 + vD − 104iD ≤ 2.104 (32)

6.104z2 − vD + 104iD ≤ 6.104 (33)

2 · 104z6 + vu ≤ 15 (34)

2 · 104z4 − vu ≤ 2 · 104 (35)

vD ≤ 0 (36)

4z2 + iD ≤ 4 (37)

z5 + u ≤ 1 (38)

−u ≤ 0 (39)

15z6 + vu ≤ 15 (40)

z3 − u ≤ 1 (41)

u ≤ 1 (42)

V. COMPUTING VARIABLE BOUNDS

In this section, we present two algorithms that check if

a variable x is bounded in a guarded predicate G(X,Z),
where Z is the set of guard variables. If this is the case, both

algorithms return BND (for bounded) and compute a, b ∈
DX such that G(X,Z) implies a ≤ x ≤ b. If this is not the

case, then INFEAS (for infeasible) is returned if G(X,Z) is

unfeasible, and UNB (for unbounded) is returned otherwise.

The first algorithm, described in function exhCompute-

Bounds of Algorithm 3, works for all guarded predicates

G(X,Z), where Z is the set of (boolean) variables occurring

as guards in G(X,Z). Namely, it is the naïve algorithm

which, for all valuations Z∗ of B
|Z| (line 5), builds the

conjunctive predicate Q(X) = G(X,Z∗). This implies that,

for all guarded constraints G̃(X,Z) = z → C(X,Z) inside

G, if Z∗(z) is false then Q will not contain G̃, and will con-

tain only C(X,Z∗) otherwise (line 6). Then, if G(X,Z∗) is

feasible, the upper and lower bounds for x under G(X,Z∗)
are computed (lines 9 and 10). The overall maximum upper

bound and minimum lower bound are finally returned in

line 15. Unfortunately, this exhaustive procedure requires to

solve 2|Z| MILP problems.

The second algorithm, described in function compute-

Bounds of Algorithm 4, refines Algorithm 3 in order to

162

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 3 Computing variable bounds in a guarded

predicate (auxiliary for Algorithm 5 and 6)

Input: Guarded predicate G(X,Z) and variable x ∈ X .

Output: 〈µ, inf, sup〉 with µ ∈ {BND, UNBND, INFEAS},
inf, sup ∈ Dx∪ ⊥.

function exhComputeBounds(G,X,Z, x)
1. let G(X,Z) =

∧

i∈[n] Gi(X,Z), being each Gi(X,Z)
either a constraint Ci(X,Z) or a guarded constraint

zi → Ci(X,Z), z̄i → Ci(X,Z)
2. let g(i), for i ∈ [n], be the guard of Gi, if any , or 1

otherwise

3. let c(i, Z∗), for i ∈ [n], be true iff (g(i) = zi∧Z
∗(zi) =

1) ∨ (g(i) = z̄i ∧ Z∗(zi) = 0) ∨ g(i) = 1
4. inf ← +∞, sup← −∞, f ← 0
5. for Z∗ ∈ B

|Z| do

6. Q(X,Z∗)←
∧

i∈[n]∧c(i,Z∗) Ci(X,Z∗)
7. if feasible(Q(X,Z∗)) then

8. f ← 1
9. M ← optimalValue(max, x, Q(X,Z∗))

10. m ← optimalValue(min, x, Q(X,Z∗))
11. if M =∞∨m =∞ then

12. return 〈UNBND, ⊥,⊥〉
13. sup ← max(sup, M), inf ← min(inf , m)

14. if f then

15. return 〈BND, inf , sup〉
16. else

17. return 〈INFEAS, ⊥, ⊥〉

save unnecessary MILP invocations. Differently from Algo-

rithm 3, Algorithm 4 works only in the case that the input

is a positive guarded predicate of form G(X, Z̃) ∧ D(Z),
where G(X, Z̃) is a positive guarded predicate, D(Z) is a

conjunctive predicate, and Z̃ ⊆ Z is the set of (boolean)

variables occurring as guards in G(X, Z̃). However, such

form may be derived from the one output by Algorithm 2

(see Algorithm 5), thus we still have a method to translate

any predicate into a conjunctive predicate.

Algorithm 4 is based on the observation that, if an

assignment Z∗
1 makes true more guards than an assignment

Z∗
2 , then the conjunctive predicate G(X,Z∗

1) has more

constraints than G(X,Z∗
2). Therefore, if x is bounded in

G(X,Z∗
2), then it is also bounded in G(X,Z∗

1), and if

G(X,Z∗
2) is unfeasible, then also G(X,Z∗

1) is unfeasi-

ble (Proposition 10). In the following, we establish the

correctness of function computeBounds . We begin with a

proposition on fixing boolean values in a positive guarded

predicate.

Proposition 10: Let Z = [z1, . . . , zn] and let G(X,Z) =
∧

i∈[n](zi → Ci(X)) be a conjunction of positive guarded

constraints. Then:

1) For any Z∗∈Bn, G(X,Z∗) is equivalent to the con-

junctive predicate
∧

j∈Ones(Z∗)Cj(X).

2) If Z∗
1 ≤ Z∗

2 , then G(X,Z∗
2)⇒G(X,Z∗

1).

Proof: Statement 1 easily follows by observing that a

guarded constraint z → C(X) is trivially satisfied if z is

assigned to 0 and it is equivalent to C(X) if z is assigned

to 1. Statement 2 follows from the observation that a ≤ b
implies Ones(a) ⊆ Ones(b) and hence G(X, b) has more

constraints than G(X, a).

Algorithm 4 is based on the capability of operating cuts

on the boolean space. Definition 4 formalizes this concept.

Definition 4: We say that a set C ⊆ B
n is a cut if for all

b ∈ B
n we have b ≤ C or b ≥ C. Let D(Z) be a predicate

over a set boolean variables Z = Z1 ∪Z2. A cut C ⊆ B
|Z2|

is (D,Z2)-minimal if

• for all c ∈ C, D(Z1, c), is satisfiable

• for all b < C, D(Z1, b) is not satisfiable.

Proposition 11 shows how cuts are exploited by Algo-

rithm 4. Namely, to verify that a variable x is bounded in the

positive guarded predicate G(X, Z̃)∧D(Z), where D(Z) is

a conjunctive predicate, it suffices to check if it is bounded in

the conjunctive predicate G(X, c), for all c that are (D, Z̃)-
minimal cuts.

Algorithm 4 Computing variable bounds in a positive

guarded predicate (auxiliary for Algorithms 5 and 6)

Input: Positive guarded predicate G(X, Z̃), conjunctive

predicate D(Z) with Z̃ ⊆ Z set of guards in G(X, Z̃),
and variable x ∈ X .

Output: 〈µ, inf, sup〉 with µ ∈ {BND, UNBND, INFEAS},
inf, sup ∈ Dx∪ ⊥.

function computeBounds(G,D,X,Z, Z̃, x)
1. C←∅, r←|Z̃|, inf←+∞, sup←−∞, f← 0
2. r′←optimalValue(min,

∑

i∈[r] zi, D(Z))
3. r′′←optimalValue(max,

∑

i∈[r] zi, D(Z))
4. for k = r′ to r′′ do

5. end← 1
6. for all b ∈ B

r
k do

7. if C 6≤b then

8. end← 0
9. if feasible(D(Z, c)) then

10. C�C ∪ {b}
11. if feasible(G(X, b)) then

12. f ← 0
13. M ← optimalValue(max, x, G(X, b))
14. m ← optimalValue(min, x, G(X, b))
15. if M=∞ or m=∞ then

16. return 〈UNBND, ⊥,⊥〉
17. sup ← max(sup, M), inf ← min(inf , m)

18. if end then break

19. if f then

20. return 〈BND, inf , sup〉
21. else

22. return 〈INFEAS, ⊥, ⊥〉

163

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Proposition 11: Let Q(X,Z) = G(X, Z̃)∧D(Z), where

G(X, Z̃) is a positive guarded predicate, D(Z) is a conjunc-

tive predicate, and Z̃ ⊆ Z is the set of (boolean) variables

occurring as guards in G(X, Z̃). Let C be a (D, Z̃)-minimal

cut and x ∈ X . If, for all c ∈ C, x is bounded in G(X, c),
then x is bounded in Q(X,Z).

Proof: Since C is a (D, Z̃)-minimal cut, any sat-

isfying assignment (X∗, Z∗) to Q is such that C ≤
Z̃∗. As a consequence, there exists c ∈ C such that

c ≤ Z̃∗. Proposition 10 (point 2) implies that, for all

Z∗ ≥ C, max{x | G(X,Z∗)} ≤ max{x | G(X, c)} and

min{x | G(X,Z∗)} ≥ min{x | G(X, c)}. Therefore, if x
is bounded in Q(X, c) for any c ∈ C, then it is bounded in

Q(X,Z).
Stemming from Proposition 11, function computeBounds

(Algorithm 4) checks if a variable x is bounded in a

guarded predicate by finding a minimal cut. To limit the

search space, in line 2 (resp. line 3) it is computed the

minimum (resp. maximum) number of 1 that a satisfying

assignment to the predicate D(Z) must have. The loop in

lines 4–18 examines possible assignments to guard variables

in Z, keeping the invariant ∀b < C[¬feasibleG(X, b)] ∧
∀b ≥ C[max{x | G(X,Z)} ≤ max{x | G(X, b)} ∧
min{x | G(X,Z∗)} ≥ min{x | G(X, b)}]. In the loop

in lines 6–17, if the assignment c under consideration is

greater than an assignment in C, no further investigation

are needed (by Proposition 11 x is bounded in Q(X, c)). If

D(Z \ Z̃, b) is unfeasible, the assignment c is not relevant,

because c ≤ C, for any (D, Z̃)-minimal cut C. Otherwise, c
is a relevant assignment and it is added to C (line 10). If x is

unbounded in Q(X, c) (lines 13 and 16) we can immediately

conclude that x is unbounded in Q(X,Z). Otherwise, we

update the approximations computed for inf(x) and sup(x)
(line 17). If for all assignments in c ∈ B

n
k we have c ≥ C

(Bn
k is a cut) we are done, C is a (D, Z̃)-minimal cut, and

inf and sup computed so far are over-approximation of x
bounds in Q(X,Z) (line 18).

The above reasoning gives the proof of correctness for

function computeBounds of Algorithm 4.

Proposition 12: Let G(X, Z̃) be a positive guarded pred-

icate, D(Z) be a conjunctive predicate, where Z̃ is the set

of guards in G(X, Z̃) and Z̃ ⊆ Z, and let x ∈ X . Then

function computeBounds of Algorithm 4 returns:

• 〈UNBND,⊥,⊥〉 if G(X, Z̃) ∧ D(Z) is unbounded in

x;

• 〈INFEAS,⊥,⊥〉 if G(X, Z̃) ∧D(Z) is unfeasible;

• 〈BND, a, b〉 if G(X, Z̃)∧D(Z) is bounded, where a, b
are such that G(X, Z̃) ∧D(Z) implies a ≤ x ≤ b.

Example 4: In Example 3 we assumed bounds for each

variable in the DTLHS H introduced in Example 1. Such

bounds has been obtained by fixing bounds for state vari-

ables iL and vO and for auxiliary variables iu, vu, vD and

iD, and then by computing bounds for variables i′L, v′O using

Algorithm 4.

Algorithm 5 From predicates to conjunctive predicates

Input: P predicate over X and modality ν ∈ {EXH, CUT}
Output: result µ and conjunctive predicate C(X,Z) such

that C(X,Z) is X-equivalent to P (X) if P (X) is

bounded.

function PtoC(P,X, ν)
1. 〈G,D,Z, Z̃〉 ←PtoG (P,X)

2. D̃ ←GtoC (D,Z,0,1)

3. for all x ∈ X do

4. if ν = CUT then

5. 〈µ,mx,Mx〉 ←computeBounds(G, D̃,X,Z, Z̃, x)

6. else

7. 〈µ,mx,Mx〉 ←exhComputeBounds(G(X, Z̃) ∧
D̃(Z), X ∪ Z, x)

8. if µ 6= BND then

9. return 〈µ,⊥〉
10. return 〈BND,GtoC(G,X ∪ Z,m,M)〉

Function PtoC of Algorithm 5 presents the overall

procedure that translates a bounded predicate P (X) into

an X-equivalent conjunctive predicate C(X,Z). Function

PtoC calls functions in Algorithms 1–4 and function

GtoC (A,W,m,M), which translates a bounded guarded

predicate A(W) with known lower bounds m and upper

bounds M for variables in W in a conjunctive predicate,

as shown in the proof of Proposition 8. As a first step,

Algorithm 5 translates the input predicate P (X) into an X-

equivalent guarded predicate G(X, Z̃) ∧ D(Z) by calling

the function PtoG (line 1). Since boolean variables are

trivially bounded (bounds are vectors 0 = 〈0, . . . , 0〉 and

1 = 〈1, . . . , 1〉), the guarded predicate D can be translated

into a conjunctive predicate D̃ by calling the function GtoC

on D (line 2). To apply function GtoC on G(X, Z̃), we need

bounds for each variable in X . These bounds are computed

by calling |X| times the function computeBounds and are

stored in the two arrays m,M (lines 3 and 5). If the function

computeBounds finds that G̃ is unfeasible or some x is

not bounded in G̃ (line 8), the empty constraint is returned

together with the failure explanation (line 9). Otherwise, the

desired conjunctive predicate is returned in line 10.

Correctness of function PtoC of Algorithm 5 is stated in

Proposition 13.

Proposition 13: Let P (X) be a predicate. Then function

PtoC of Algorithm 5 returns:

• 〈UNB,⊥〉 if P (X) is unbounded for some x ∈ X;

• 〈INFEAS,⊥〉 if P (X) is unfeasible;

• 〈BND, C(X,Z)〉 if P (X) is bounded, being C(X,Z) a

conjunctive predicate which is X-equivalent to P (X).

Proof: The proof easily follows Propositions 5, 7, 8

and 12.

We end this section by proposing a syntactic check, that

most of the time may be used to compute variable bounds

164

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

avoiding to use the function computeBounds .

Definition 5: A variable x is explicitly bounded in a pred-

icate P (X), if P (X) =B(x) ∧ P̃ (X), where B(x) = x≤
b ∧ x≥a, for some constants a and b.

Proposition 14: Let H=(X,U, Y,N) be a DTLHS such

that each variable v∈X∪U ∪Y is explicitly bounded in N ,

and for all x′∈X ′ there are in N at least two constraints of

the form x′≥L1(X,U, Y) and x′≤L2(X,U, Y). Then N
is bounded.

Proof: Since all variables in X , U , and Y are explicitly

bounded in N , they are also bounded in N . Therefore

inf(L1(X,U, Y)) and sup(L2(X,U, Y)) are finite. Since N
is guarded, it is a conjunction of guarded constraints and

for all x′ ∈ X ′ it can be written as x′ ≥ L1(X,U, Y) ∧
x′ ≤ L2(X,U, Y) ∧ Ñ(X,U, Y,X ′) for a suitable guarded

predicate Ñ . This implies inf(L1(X,U, Y)) ≤ x′ ≤
sup(L2(X,U, Y)), which in turn implies that x′ is bounded

in N .

Example 5: Let H1 be the DTLHS ({x}, {u},∅, N1),
where N1(x, u, x

′) = (0 ≤ x ≤ 3)∧(0 ≤ u ≤ 1)∧(x′ = x+
3u). By Proposition 14, H1 is bounded with inf(x′) = 0 and

sup(x′) = 6. All other variables are explicitly bounded in N .

Explicit bounds on present state and input variables do not

imply that next state variables are bounded. As an example,

let us consider the DTLHS H2 = ({x}, {u},∅, N2), where

N2(x, u, x
′) = (0 ≤ x ≤ 3)∧ (0 ≤ u ≤ 1)∧ (x′ ≥ x+3u).

Since, for any value of x and u, x′ can assume arbitrary

large values, we have that N2 is not bounded.

VI. GUARDED PREDICATES AS MODELING LANGUAGE

The disjunction elimination procedure given in Algorithm 5

returns a guarded predicate that may contain a large number

of fresh auxiliary boolean variables and this may heavily

impact on the effectiveness of control software synthesis

or verification (as well as the complexity of Algorithm 5

itself, since the auxiliary Algorithm 4 depends on the number

of guard variables). On the other hand, guarded predicates,

which are used as an intermediate step in Algorithm 5, are

themselves a natural language to describe DTLHS behavior:

assignments to guard variables play a role similar to modes

in hybrid systems and, by using negative literals as guards,

we can naturally model different kinds of plant behavior

according to different commands sent by actuators.

Example 6: By directly using guarded predicates as mod-

eling language, the DTLHS of Example 1 may be modeled

by the conjunction of guarded constraints (43)–(52).

i
′

L = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD (43)

v
′

O = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD. (44)

vD = vu − Vi (45)

iD = iL − iu (46)

u→vu=0 (47)

ū→vu=Roff iu (48)

q→vD=0 (49)

q→ iD≥0 (50)

q̄→vD=Roff iD (51)

q̄→vD≤0 (52)

Algorithm 6 From guarded predicates to conjunctive pred-

icates

Input: G(X,Z) guarded predicate over X with guards in

Z and modality ν ∈ {EXH, CUT}.
Output: result µ and conjunctive predicate C(X,Z) such

that C(X,Z) is X-equivalent to G(X,Z) if G(X,Z)
is bounded.

function GPtoC(G,X,Z, ν)
1. let G and g be as in lines 1–2 of Algorithm 3

2. if ν = CUT then

3. Ẑ ← {z ∈ Z | ∃i : g(i) = z̄ ∨ g(i) = z} ∪ {z̃ ∈
Z | ∃i : g(i) = z̄}

4. Z ← Z ∪ {z̃ ∈ Z | ∃i : g(i) = z̄}
5. G(X, Ẑ) ←

∧

i∈[n]∧g(i)=zi
g(i) → Ci(X,Z) ∧

∧

i∈[n]∧g(i)=z̄i
z̃i → Ci(X,Z)

6. D(Z) ←
∧

i∈[n]∧g(i)=1 Ci(X,Z) ∧
∧

z∈Z∧∃i:g(i)=z̄ z̃ + z = 1
7. for all x ∈ X do

8. if ν = CUT then

9. 〈µ,mx,Mx〉 ←computeBnds(G,D,X,Z, Ẑ, x)

10. else

11. 〈µ,mx,Mx〉 ←exhComputeBounds(G,X,Z, x)

12. if µ 6= BND then

13. return 〈µ,⊥〉
14. return 〈BND,GtoC(G,X ∪ Z,m,M)〉

Note that disjunctions (7)–(9) in Example 1 have been re-

placed by guarded constraints (47)–(52). The resulting model

for the buck DC-DC converter is much more succinct than

the guarded model in Example 2 and it has 2 guard vari-

ables only, rather than 6 as in Example 2 (and 10 guarded

constraints rather than 15).

Algorithm 4 cannot be directly applied to guarded predi-

cates with both positive and negative guard literals. This ob-

struction can be easily bypassed, by observing that a guarded

constraint z̄ → C(X) is (X∪{z})-equivalent to the positive

guarded predicate (z̃ → C(X))∧ (z̃+ z = 1). On the other

hand, guarded predicates with both positive and negative

guard literals may be directly translated in a conjunctive

predicate by using the exhaustive procedure in Algorithm 3

to compute variable bounds. Both such translations are out-

lined in function GPtoC of Algorithm 6. Namely, if ν =
CUT then the input guarded predicate is translated in a pos-

itive guarded predicate and then Algorithm 4 is used. Oth-

erwise, i.e., if ν = EXH then the exhaustive Algorithm 3 is

used directly on the original guarded predicate. Note that the

above described method to obtain a positive guarded pred-

icate from a guarded predicate (lines 3–6 in Algorithm 6)

doubles the number of variables originally used as negative

guards. Thus, it turns out that it is more convenient to call

function GPtoC with ν = EXH (see experimental results in

Section VII).

165

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Summing up, guarded predicates turn out to be a pow-

erful and natural modeling language for describing DTLHS

transition relations.

VII. EXPERIMENTAL RESULTS ON A CASE STUDY

In this section, we evaluate the effectiveness of our predi-

cate translation functions, i.e., function PtoC of Algorithm 5

and function GPtoC of Algorithm 6. To this end, we im-

plemented such functions in C programming language, us-

ing GLPK to solve MILP problems. We name the resulting

tools PTOC (Predicates to Conjunctive predicates transla-

tor) and GPTOC (Guarded Predicates to Conjunctive pred-

icates translator). We will write calls to functions PtoC

(resp. GPtoC) with ν = ν̃ as PTOC(ν̃) (resp., GPTOC(ν̃)).

PTOC and GPTOC are part of a more general tool named

Quantized feedback Kontrol Synthesizer (QKS) [8][9].

We present the experimental results obtained by using

PTOC and GPTOC on a n-inputs buck DC-DC converter

(described in Section VII-A), that we model with two

DTLHSs Hi = (Xi, Ui, Yi, Ni), with i ∈ [2], such that

X1 = X2, U1 = U2, Y1 ⊂ Y2, N1(X1, U1, Y1, X
′
1) is a

predicate, and N2(X2, U2, Y2, X
′
2) is a guarded predicate

(X1∪U1∪Y1∪X
′
1)-equivalent to N1. All experiments have

been carried out on a 3.00GHz Intel Xeon hyperthreaded

Quad Core Linux PC with 8GB of RAM.

We run PTOC on N1 and GPTOC on N2 for increas-

ing values of n (which entails that the number of guards

increases), in order to show effectiveness of PTOC and GP-

TOC. To this end, both values for parameter ν will be used,

which means that, for each n, 4 experiments are run. In

Section VII-B we show experimental results PTOC. Further-

more, in Section VII-C we show that results obtained with

GPTOC(EXH) are better than those obtained with both GP-

TOC(CUT) and PTOC. That is, the best results are obtained

by exploiting knowledge of the system and modeling it with

guarded predicates, and then using the exhaustive algorithm.

A. Multi-Input Buck DC-DC Converter

A Multi-Input Buck DC-DC Converter [18] (Figure 2),

consists of n power supplies with voltage values V1<. . .<
Vn, n switches with voltage values vu1 , . . . , v

u
n and current

values Iu1 , . . . , I
u
n , and n input diodes D0, . . . , Dn−1 with

voltage values vD0 , . . . , vDn−1 and current values iD0 , . . . , iDn−1

(in the following, we will also write vD for vD0 and iD for

iD0). As for the converter in Example 1, the state variables

are iL and vO, whereas action variables are u1, . . . , un, thus

a control software for the n-input buck DC-DC converter has

to properly actuate the switches u1, . . . , un. Constant values

are the same given in Example 3.

B. Multi-Input Buck as a Predicate

We model the n-input buck DC-DC converter

with the DTLHS H1 = (X1, U1, Y1, N1),
where X1 = [iL, vO], U1 = [u1, . . . , un], and

R+
v
O

L

i D

V
n

V
n
−
1

V
i

V
1

I
u n

I
u n
−
1

I
u i

+
v
u n

u
n

D
0

D
1

D
i

D
n
−
1

i L
r
L

+
v
C

C r
C

i C

+
v
u i

u
n
−
1

u
i

+
v
D

. .
.

. .
.

I
u 1

+
v
D 1

+
v
D i

+
v
u n
−
1

+
v
D n
−
1

+
v
u 1

u
1

Figure 2. Multi-input Buck DC-DC converter

Y1 = [vD, vD1 , . . . , vDn−1, iD, Iu1 , . . . , I
u
n , v

u
1 , . . . , v

u
n].

From a simple circuit analysis (e.g., see [17]), we have that

N1 is the conjunction of linear predicates (53)–(61).

i
′

L = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD (53)

v
′

O = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD. (54)

((iD ≥ 0) ∧ (vD = 0)) ∨ ((iD ≤ 0) ∧ (vD = Roff iD)) (55)

∧

i∈[n]

(ui=0) ∨ (vui =0) (56)

∧

i∈[n]

(ui=1) ∨ (vui =RoffI
u
i) (57)

∧

i∈[n−1]

((Iui ≥0) ∧ (vDi =0)) ∨ ((Iui ≤0) ∧ (vDi =RoffI
u
i)) (58)

iL= iD+

n∑

i=1

I
u
i (59)

∧

i∈[n−1]

vD=v
u
i +v

D
i −Vi (60)

vD=v
u
n−Vn (61)

N1 also contains the following explicit bounds: −4≤ iL≤
4 ∧ −1≤ vO ≤ 7∧ −103 ≤ iD ≤ 103 ∧

∧n

i=1−10
3 ≤ Iui ≤

103 ∧
∧n

i=1−10
7 ≤ vui ≤ 107 ∧

∧n−1
i=0 −10

7 ≤ vDi ≤ 107.

166

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I
PTOC PERFORMANCE (PREDICATES)

n r r′ r′′ k |cut| CPUc Memc CPUe Meme |In| |Out|

2 12 6 12 11 64 1.07e+00 5.14e+07 3.07e+01 5.14e+07 21 44
3 18 9 18 17 512 9.63e+01 5.15e+07 2.92e+03 5.14e+07 30 63
4 24 12 24 23 4096 1.15e+04 5.15e+07 >1.38e+06 N/A 39 82

We run PTOC(CUT) with parameters N1, X1∪U1∪Y1∪X
′
1

for increasing values of n, and we compare its computation

time with that of PTOC(EXH) with the same input param-

eters. Table I shows our experimental results. In Table I,

columns meaning are as follows:

• column n shows the number of buck inputs;

• column r shows the number of guards (see line 1 of

Algorithm 4);

• columns r′, r′′ have the meaning given in lines 2 and 3

of Algorithm 4;

• column k gives the value of k at the end of the outer

for loop of Algorithm 4;

• column |cut| gives the size of cut at the end of the for

loop of Algorithm 4;

• columns CPUc and Memc (resp. CPUe and Meme)

show the computation time in seconds and memory

usage in bytes of PTOC(CUT) (resp., of PTOC(EXH))

• column |In| shows the size of the input predicate, as the

number of linear constraints (i.e., of the linear predicate

atoms) in the input linear predicate N1;

• column |Out| shows the size of the output conjunctive

predicate, as the resulting number of linear constraints

in the output conjunctive predicate.

C. Multi-Input Buck as a Guarded Predicate

We modify the DTLHS H1 of Section VII-B by defin-

ing H2 = (X2, U2, Y2, N2), where X2 = X1, U2 = U1,

Y2 = Y1 ∪ Y ′
2 = Y1 ∪ {q0, . . . , qn−1} and N2 is obtained

from N1 by replacing disjunctions (55)–(58) with guarded

constraints. Thus, N1 is given by the conjunction of guarded

constraints (62)–(76).

i
′

L = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD (62)

v
′

O = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD. (63)

q→vD=0 (64)

q→ iD≥0 (65)

q̄→vD=Roff iD (66)

q̄→vD≤0 (67)

∧

i∈[n−1]

qi→v
D
i =0 (68)

∧

i∈[n−1]

qi→I
u
i ≥0 (69)

∧

i∈[n]

ui→v
u
i =0 (70)

∧

i∈[n−1]

q̄i→v
D
i ≤0 (71)

∧

i∈[n−1]

q̄i→v
D
i =RoffI

u
i (72)

∧

i∈[n]

ūi→v
u
i =RoffI

u
i (73)

iL= iD+

n∑

i=1

I
u
i (74)

∧

i∈[n−1]

vD=v
u
i +v

D
i −Vi (75)

vD=v
u
n−Vn (76)

We call both GPTOC(CUT) and GPTOC(EXH) with pa-

rameters N2, X2 ∪U2 ∪ Y2 ∪X
′
2 for increasing values of n,

and we compare their computation times.

Table II shows our experimental results. Columns mean-

ing in Table II are the same as of Table I. An additional

column |Y2| shows the number of guard variables in N2.

D. Evaluation

Results in Table I show that heuristics implemented in

function computeBounds are indeed effective w.r.t. execut-

ing function exhComputeBounds . In fact, by comparing

columns CPUc and CPUe (and recalling that the only differ-

ence between PTOC(CUT) shown in CPUc and PTOC(CUT)

shown in CPUe is that the former calls function compute-

Bounds whilst the latter calls function exhComputeBounds),

we see that such heuristics provide at least a one-order-of-

magnitude speed-up in variable bounds computation. Such

speed-up rapidly grows with the size of the input. In fact,

for the 4-bits buck DC-DC converter, PTOC(EXH) requires

more than 2 weeks, whilst PTOC(CUT) terminates in about

3 hours. Moreover, we also note that the resulting number

of linear constraints output by PTOC is at most twice the

starting number of linear constraints.

PTOC(CUT) is however not effective on the n-input buck

DC-DC converter for n ≥ 5. In fact, for n = 5, there are

30 boolean guards (i.e., r = 30), and the heuristics do not

provide enough speed-up to obtain termination in a reason-

able time. However, if we directly use guarded predicates as

input language as in Section VII-C, we are able to generate

the conjunctive predicate for both n = 5 and n = 6. This

is due to the smaller number of guard variables used in

Section VII-C than that used in Section VII-B. The negative

impact of auxiliary boolean variables is clearly showed by

the fact that GPTOC(EXH), much slower than GPTOC(CUT)

on a model of the same size, performs better than GP-

TOC(CUT) in this case, because it can work on a model with

half of the variables (see columns |Y2| and r). The same

holds if we compare results of GPTOC(EXH) with those

of PTOC(EXH) and PTOC(CUT). This phenomenon would

be greatly amplified in a verification or control software

synthesis procedure. These results strongly support guarded

predicates as modeling language.

167

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table II
GPTOC PERFORMANCE (GUARDED PREDICATES)

n |Y2| r r′ r′′ k |cut| CPUc Memc CPUe Meme |In| |Inpos| |Out|

2 4 8 4 4 4 16 2.80e-01 5.14e+07 2.50e-01 5.14e+07 17 21 38
3 6 12 6 6 6 64 9.70e-01 5.15e+07 9.70e-01 5.15e+07 24 30 54
4 8 16 8 8 8 256 1.04e+01 5.16e+07 3.41e+00 5.15e+07 31 39 70
5 10 20 10 10 10 1024 1.75e+02 5.17e+07 1.69e+01 5.16e+07 38 48 86
6 12 24 12 12 12 4096 2.55e+03 5.17e+07 8.57e+01 5.17e+07 45 57 102

VIII. RELATED WORK

This paper is an extended version of [1]. With respect

to [1], this paper provides more details in the introduction

and in the related work description, extends basic definitions

and algorithms descriptions, gives more detailed proofs for

theorems, and provides a revised and enriched version of the

experiments.

MILP problems solving based abstraction

techniques have been designed for the verification

of Discrete Time Hybrid Automata (DHA) [5] and

implemented within the symbolic model checker HYSDEL

[19]. A MILP based DTLHS abstraction algorithm is the

core of automatic control software synthesis from system

level specifications in [8][9], and it requires DTLHS

dynamics modeled as a conjunctive predicate. The same

limitation occurs in abstraction techniques based on

the Fourier-Motzkin procedure for existential quantifier

elimination [20]. All such approaches may exploit the

translation algorithm presented here in order to improve

their applicability.

Automatic or automatable translation procedures targeting

MILP formulations have been presented in [21] and [22].

Namely, in [22] the authors propose an approach to trans-

late (reformulate in their parlance) mixed integer bilinear

problems (i.e., problems in which constraints may contain

products of a nonnegative integer variable and a nonnegative

continuous variable) into MILP problems. This reformula-

tion is obtained by first replacing a general integer variable

with its binary expansion and then using McCormick en-

velopes to linearize the resulting product of continuous and

binary variables. In [21], the authors present an automatic

conversion from deterministic finite automata to MILP for-

mulations. This allows to efficiently combine supervisory

control theory and MILP to automatically generate time-

optimal, collision-free and non-blocking working schedules

for a flexible manufacturing system. Both these works differ

from ours in the starting point of the translation procedure

(and of course in the actual algorithms designed): in [21]

they are interested in translating deterministic finite au-

tomata, whilst in [22] the goal is to translate mixed integer

bilinear problems. On the other hand, in this paper we are

interested in translating conjunctions and disjunctions of

linear constraints (see Section II-A), thus the approaches

in [21][22] cannot be used in our context.

Many works in the literature deal with automatic spec-

ification of MILP problems in order to solve customized

synthesis problem. As an example, in [23] the target is a

formal synthesis approach to design of optimal application-

specific heterogeneous multiprocessor systems. As a further

example, in [24], a topology synthesis method for high

performance System-on-Chip design is presented. Finally,

in [25] the development of a technique to target fresh

water consumption and wastewater generation for systems

involving multiple contaminants is presented. In this paper,

rather than giving a MILP scheme to be properly customized

to solve a problem of a given type, we provide a translation

from a general-purpose predicate to an equivalent MILP

problem.

Finally, we note that the automatic procedure presented

in this paper is reminiscent of Mixed Integer Program-

ming modeling techniques [26] in Operations Research and

boolean formula transformations involved in the conver-

sion of a formula into a conjunctive or disjunctive normal

form [6][27].

IX. CONCLUSIONS AND FUTURE WORK

The results presented in this paper contribute to model

based design of SBCS (most notable, of embedded software)

by proposing an expressive modeling language for DTLHS.

In fact, in our previous work MILP based approaches

have been used to synthesize correct-by-construction control

software for DTLHSs. However, such approaches require

DTLHS dynamics to be modeled as a conjunctive linear

predicate over state, input, and next state variables. This

may turn out to be not practically feasible for DTLHSs with

complex dynamics.

In this paper, we circumvented such a limitation, by giv-

ing an automatic procedure that translates any disjunction-

conjunction of linear constraints into an equisatisfiable con-

junctive predicate, provided that each variable ranges over a

bounded interval. This last proviso is automatically enforced

by our procedure, since it includes a routine algorithm that,

taking a linear predicate P and a variable x, verifies if x
is bounded in P , by computing (an over-approximation of)

bounds for x.

Finally, our experimental results show the effectiveness

of our approach on an important and challenging case study

168

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

taken from the literature, namely the multi-input Buck DC-

DC Converter. As an example, the linear predicate that

models a 4-inputs buck DC-DC converter with 39 linear con-

straints is translated into a conjunctive predicate of 82 linear

constraints in slightly more than 3 hours. Most notably, our

experimental results show that guarded predicates, which

are used by our translation procedure as an intermediate

language, turn out to be a natural language to succinctly

describe DTLHS dynamics. In fact, the guarded predicate

that models a 6-inputs Buck DC-DC Converter with 57

constraints (including 12 different guards), is translated into

a conjunctive predicate of 102 linear constraints in about 40

minutes.

The presented approach has the main drawback to be

exponential on the number of boolean guards used in the

(initial or intermediate) guarded predicate. As a future work,

we aim to counteract such a limitation by recognizing if the

input predicate is of some known structure. As an example,

if the guarded predicate is composed by k blocks of the same

structure, we may translate just one of such blocks and then

suitably copy the resulting conjunctive predicate k times.

ACKNOWLEDGMENTS

Our work has been partially supported by: MIUR project

DM24283 (TRAMP) and by the EC FP7 projects GA600773

(PAEON) and GA317761 (SmartHG).

ACRONYMS

AD Analog-to-Digital. 1

DA Digital-to-Analog. 1

DC Direct Current. 4

DHA Discrete Time Hybrid Automata. 12

DTLHS Discrete Time Linear Hybrid System. 1, 2, 4, 6,

7, 9–13

DVFS Dynamic Voltage and Frequency Scaling. 4

MILP Mixed Integer Linear Programming. 1–4, 7, 10, 12,

13

NFSA Nondeterministic Finite State Automaton. 1

QKS Quantized feedback Kontrol Synthesizer. 10

SBCS Software Based Control System. 1

REFERENCES

[1] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Linear constraints
as a modeling language for discrete time hybrid systems,” in
ICSEA, 2012, pp. 664–671.

[2] T. A. Henzinger and J. Sifakis, “The embedded systems
design challenge,” in FM, ser. LNCS 4085, 2006, pp. 1–15.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger,
P. H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine,
“The algorithmic analysis of hybrid systems,” Theoretical
Computer Science, vol. 138, no. 1, pp. 3 – 34, 1995.

[4] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic symbolic
verification of embedded systems,” IEEE Trans. Softw. Eng.,
vol. 22, no. 3, pp. 181–201, 1996.

[5] A. Bemporad and M. Morari, “Verification of hybrid systems
via mathematical programming,” in HSCC, ser. LNCS 1569,
1999, pp. 31–45.

[6] F. Mari and E. Tronci, “CEGAR based bounded model
checking of discrete time hybrid systems,” in HSCC, ser.
LNCS 4416, 2007, pp. 399–412.

[7] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci,
“Automatic control software synthesis for quantized discrete
time hybrid systems,” in CDC. IEEE, 2012, pp. 6120–6125.

[8] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Synthesis of
quantized feedback control software for discrete time linear
hybrid systems,” in CAV, ser. LNCS 6174, 2010, pp. 180–195.

[9] ——, “Model based synthesis of control software from
system level formal specifications,” ACM Trans. on Soft.
Eng. and Meth., vol. To appear. [Online]. Available:
http://mclab.di.uniroma1.it/publications/papers/federicomari/
2013/110_FedericoMari2013.pdf

[10] ——, “Undecidability of quantized state feedback control for
discrete time linear hybrid systems,” in Proceedings of the
International Colloquium on Theoretical Aspects of Comput-
ing, ICTAC, ser. LNCS, A. Roychoudhury and M. D’Souza,
Eds., vol. 7521. Springer-Verlag Berlin Heidelberg, 2012,
pp. 243–258.

[11] ——, “Synthesizing control software from boolean relations,”
Int. J. on Advances in SW, vol. 5, no. 3&4, pp. 212–223, 2012.

[12] “Gnu GLPK Web Page: http://www.gnu.org/software/glpk/,”
last accessed 6 mar 2013.

[13] “CPLEX Web Page: http://www-
01.ibm.com/software/integration/optimization/cplex-
optimization-studio/,” last accessed 6 mar 2013.

[14] W. Kim, M. S. Gupta, G.-Y. Wei, and D. M. Brooks, “En-
abling on-chip switching regulators for multi-core processors
using current staggering,” in ASGI, 2007.

[15] W.-C. So, C. Tse, and Y.-S. Lee, “Development of a fuzzy
logic controller for dc/dc converters: design, computer simu-
lation, and experimental evaluation,” IEEE Trans. on Power
Electronics, vol. 11, no. 1, pp. 24–32, 1996.

[16] V. Yousefzadeh, A. Babazadeh, B. Ramachandran, E. Alar-
con, L. Pao, and D. Maksimovic, “Proximate time-optimal
digital control for synchronous buck dc–dc converters,” IEEE
Trans. on Power Electronics, vol. 23, no. 4, pp. 2018–2026,
2008.

[17] P.-Z. Lin, C.-F. Hsu, and T.-T. Lee, “Type-2 fuzzy logic
controller design for buck dc-dc converters,” in FUZZ, 2005,
pp. 365–370.

[18] M. Rodriguez, P. Fernandez-Miaja, A. Rodriguez, and J. Se-
bastian, “A multiple-input digitally controlled buck converter
for envelope tracking applications in radiofrequency power
amplifiers,” IEEE Trans. on Power Electronics, vol. 25, no. 2,
pp. 369–381, 2010.

169

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[19] F. Torrisi and A. Bemporad, “HYSDEL — A tool for gener-
ating computational hybrid models for analysis and synthesis
problems,” IEEE Transactions on Control System Technology,
vol. 12, no. 2, pp. 235–249, 2004.

[20] S. K. Jha, B. H. Krogh, J. E. Weimer, and E. M. Clarke,
“Reachability for linear hybrid automata using iterative re-
laxation abstraction,” in HSCC, ser. LNCS 4416, 2007, pp.
287–300.

[21] A. Kobetski and M. Fabian, “Scheduling of discrete event
systems using mixed integer linear programming,” in Discrete
Event Systems, 2006 8th International Workshop on, july
2006, pp. 76 –81.

[22] A. Gupte, S. Ahmed, M. S. Cheon, and S. S.
Dey, “Solving mixed integer bilinear problems using
milp formulations,” SIAM J. on Optimization, vol.
To appear. [Online]. Available: http://www.optimization-
online.org/DB_FILE/2011/07/3087.pdf

[23] S. Prakash and A. C. Parker, “Readings in hardware/software
co-design,” G. De Micheli, R. Ernst, and W. Wolf, Eds.
Norwell, MA, USA: Kluwer Academic Publishers, 2002,
ch. SOS: synthesis of application-specific heterogeneous

multiprocessor systems, pp. 324–337. [Online]. Available:
http://dl.acm.org/citation.cfm?id=567003.567031

[24] M. Jun, S. Yoo, and E.-Y. Chung, “Mixed integer linear
programming-based optimal topology synthesis of cascaded
crossbar switches,” in Proceedings of the 2008 Asia and
South Pacific Design Automation Conference, ser. ASP-
DAC ’08. Los Alamitos, CA, USA: IEEE Computer
Society Press, 2008, pp. 583–588. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1356802.1356945

[25] Z. Handani, H. Hashim, S. Alwi, and Z. Manan, “A mixed
integer linear programming (milp) model for optimal design
of water network,” in Modeling, Simulation and Applied
Optimization (ICMSAO), 2011 4th International Conference
on, april 2011, pp. 1 –6.

[26] F. S. Hillier and G. J. Lieberman, Introduction to operations
research. McGraw-Hill Inc., 2001.

[27] D. Sheridan, “The optimality of a fast cnf conversion and its
use with sat,” in SAT, 2004.

170

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Derivation of Web Service Implementation Artifacts

 from Service Designs Based on SoaML

Michael Gebhart

Gebhart Quality Analysis (QA) 82

Karlsruhe, Germany

michael.gebhart@qa82.de

Jaouad Bouras

ISB AG

Karlsruhe, Germany

jaouad.bouras@isb-ag.de

Abstract—The increasing complexity of service landscapes

requires a detailed planning that considers wide-spread quality

attributes, such as loose coupling between services and their

autonomy. To support this planning task, the Object

Management Group standardized the Service oriented

architecture Modeling Language for designing services and

entire service-oriented architectures. In order to use the

service designs modeled using SoaML within a model-driven

development process, the created service designs have to be

used to derive web service implementation artifacts. However,

mapping rules described nowadays do not consider the SoaML

design artifacts or do not consider service designs as a whole.

In this article, mapping rules are identified and enhanced to

transform service designs into web service implementation

artifacts. The transformation rules are exemplarily applied to

implement a service-oriented workshop organization system.

Keywords-service design; SoaML; web service,

implementation; derivation.

I. INTRODUCTION

This article is an extension of the work presented in [1].
Due to the increasing number of applications within
Information Technology (IT) landscapes, the integration of
these applications is an important success factor when
realizing new functionality. For that purpose, service-
oriented architecture (SOA) evolved as architecture
paradigm [2] to create a flexible and maintainable IT. These
strategic goals are massively influenced by the design of the
building blocks of an SOA, the services. Quality attributes,
such as loose coupling and autonomy [3], have been
identified that impact flexibility and maintainability as
higher-value quality attributes [4]. In order to ensure their
fulfillment, a detailed planning is necessary.

For that purpose and for reducing the complexity when
designing services, the Object Management Group (OMG)
standardized a new language for designing services and
entire service-oriented architectures, the Service oriented
architecture Modeling Language (SoaML). The standard is
vendor- and tool-independent and provides a meta model and
a profile for the Unified Modeling Language (UML). As
UML profile SoaML adds several stereotypes that focus on
the specifics when designing services. Currently, SoaML is
released in version 1.0.1 and is already supported by several
tool vendors. Also some vendors already replaced their
proprietary UML profiles with SoaML, such as IBM [4].

In order to use SoaML as language within a model-driven
development process for services in particular web services
as introduced by Hoyer et al. [5], a derivation of web service
implementation artifacts from service designs based on
SoaML is necessary. For that purpose, mapping rules have to
be formalized that describe the relation between constructs of
the modeled service designs and the generated final
implementation. Furthermore, they constitute the basis for
automatic transformations that can be embedded into
software development tools. The mapping rules have to
consider the underlying concepts so that the characteristics of
the service designs are reflected by the web services. This is
an important aspect for mapping rules, because for example
when quality attributes have been considered during the
service design phase, such as introduced by Gebhart et al.
[1][6][7], the mapping rules are then expected to create web
services that again fulfill these quality attributes.

This article analyses proposed mapping rules for creating
web service implementation artifacts from service designs
based on SoaML. As languages for web service
implementation the Web Service Description Language
(WSDL) and XML Schema Definition (XSD) are chosen to
describe the service interface and included data types.
Furthermore, Service Component Architecture (SCA) as
component model, and Business Process Execution
Language (BPEL) for the implementation of composed
services are considered. In a first step, existing rules are
analyzed. Since SoaML is available as a UML profile there
exist a lot of rules, for instance to create data types based on
XSD from UML Classes that can be reused. Afterwards,
these rules are extended to support the service designs as a
whole. To illustrate the mapping process introduced above,
web service designs describing a workshop organization
system have been designed using SoaML regarding wide-
spread quality attributes.

The article is organized as follows: Section II introduces
the concept of service designs and their creation using
SoaML. Furthermore, in this section, existing mapping rules
and their applicability for service designs are analyzed. In
Section III, the scenario of the workshop organization is
illustrated and its functioning especially through the created
service designs is described. In Section IV, these service
designs are mapped onto web services using the prior created
mapping rules. Section V concludes this article and
introduces future research work.

171

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. RELATED WORK

This section describes the fundamental terms and existing
work in the context of specifying service designs and their
mapping onto web service implementation artifacts based on
XSD, WSDL, BPEL, and SCA.

A. Service Design

According to Gebhart et al. [7][8] and Erl [9], a service
design consists of a service interface as external point of
view and a service component fulfilling its functionality. In
order to formalize service designs and to enable their
transformation into implementation artifacts, Mayer et al. [9]
introduce a UML profile for describing behavioral and
structural aspects of service interactions. Similarly, within
the SENSORIA project [10] a UML profile for the service
interaction is specified. Also IBM [11] introduced a UML
profile for modeling software services. Even though all of
these UML profiles enable the modeling of services they
lack in acceptance as they are not standardized. For that
reason the OMG decided to work on a standardized UML
profile [12] and a meta model to formalize service-oriented
architectures and their services. As a result, SoaML has been
created [13]. In this article, SoaML in version 1.0.1 is used.

According to Gebhart [14], in SoaML a service interface
is described by a stereotyped UML Class that realizes a
UML Interface describing the provided operations. A second
UML Interface can be used for specifying callback
operations the service consumer has to provide. These are
necessary to realize asynchronous operation calls as they are
for example required to invoke long-running business
processes [7].

Figure 1. Service interface in SoaML.

An interaction protocol can be added as owned behavior.
It is described by means of a UML Activity and determines
the valid order of the operation calls. Every call is modeled
using a UML Call Operation Action and is assigned to a
UML Partition that represents one of the participating roles.
Figure 1 shows a service interface in SoaML. In this case,
the service interface describes that an operation is provided,
namely the operation “operation1”. There is one request
message expected as input parameter. A response message
will be returned as a result of the operation call. Furthermore,
one callback operation is expected to be provided by the
service consumer. In this case according messages are also
included. The service provider is named “provider” and the
service consumer is named “consumer”. The interaction
protocol describes that for a valid result the provided
operation has be to be called initially on the part of the
provider. Afterwards, the callback operation will be invoked.
The messages used as input and output parameters are
modeled using UML Classes stereotyped by
“MessageType”. They can be further refined into more fine-
grained data types. Figure 2 shows the modeling of message
types.

Figure 2. Message types in SoaML.

The service component is represented by a UML
Component stereotyped by “Participant”. Ports with Service
or Request stereotype constitute the access points to the
provided or required functionality and are typed by a certain
service interface. An Activity as an owned behavior and
visualized as UML activity diagram enables the specification
of the internal logic.

Figure 3. Service component in SoaML.

«ServiceInterface»

ServiceName

«interface»

ProvidedOperations

+ operation1(: Operation1Request) : Operation1Response

consumer :

«interface» RequiredOperations

provider :

«interface» ProvidedOperations

+

Interaction Protocol

: provider : consumer

operation1

«use»

«interface»

RequiredOperations

+ callbackOperation1(: CallbackOperation1Request) : CalbackOperation1Response

callbackOperation1

«MessageType»

Operation1Request

«dataType»

DataType1

+ attribute1 : String

+ attribute2 : String
«MessageType»

Operation1Response

+ success : Boolean

*

«Participant»

ServiceComponent
«ServicePoint»

serviceName :

ServiceName

«RequestPoint»

serviceName2 :

ServiceName2

«RequestPoint»

serviceName3 :

ServiceName3
+

operation1

: serviceName : serviceName2 : serviceName3

Internal

operation

operation2

operation3

callback

Operation1

callback

Operation2

172

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3 shows a service component in SoaML. It
provides one service specified by the service interface
depicted before. In order to fulfill the functionality of the
service component, two other services are required.
According to the Activity owned by the component, in a first
step, an internal operation is performed. This means that this
functionality is completely fulfilled by the service
component itself. Thus it is modeled using a UML Opaque
Action. Afterwards, the operations “operation2” and
“operation3”, provided by the services “serviceName2” and
“serviceName3” respectively, are invoked. These operation
calls are modeled using UML Call Operation Actions within
according UML Partitions. Next, the service component
waits for “callbackOperation2” being invoked. Finally, it
invokes the callback operation provided by the initial service
consumer.

B. Mapping Rules

In the context of mapping formalized service designs
onto web service implementation artifacts based on XSD,
WSDL, SCA, and BPEL approaches exist that consider
either the derivation from SoaML-based models, UML
models with own applied UML profiles, or standard UML
models.

For the generation of XSD, IBM [15] and Sparx Systems
[16] provide adequate mapping rules that map UML class
diagrams onto XSD artifacts and support both the
transformation of classes and their relationships like
aggregations, compositions, associations, and generalization.
Both vendors integrate the mapping rules into their own
tools, which enable a model-driven development with a
graphical tool support. The transformations are applicable to
all UML models without any constraints. The applied rules
can be used in our approach to map message types of service
designs onto XSD.

Regarding WSDL, Grønmo et al. [17] discuss the
advantages and disadvantages between using WSDL-
independent and WSDL-dependent models. Their conclusion
is that WSDL-dependent models, which are UML models
containing WSDL-specific constructs, obscure the behavior
and content of modeled services and make service designs
incomprehensible. WSDL-independent models in contract
simplify building complex web services and integrating
existing web services. For that reason, they provide
transformations based on UML class diagrams with custom
WSDL-independent stereotypes. However, most of the
presented transformations are based on standard UML
elements and are thus applicable for service designs based on
SoaML as it abstracts from WSDL details too. Also IBM
[18] introduces mapping rules and an automatic
transformation from UML to WSDL in [8]. These rules fully
cover the transformation of standard UML elements into
WSDL but are not described in detail. Only the relationships
between source and target elements can be inferred and used
in our work. In contradistinction to the previous related work
the transformation generates also needed namespaces not
bound to the source models but bound to the project structure
used during the transformation. The project structure has the
form of a file system containing source models and the

relative paths will be used in order to generate namespaces
for the target artifacts. This strategy may generate correct
namespaces for a simple project. However, when merging
the generated artifacts from many projects or changing the
project structure during development the resulting
namespace changes will make the WSDL files ambiguous.

Hahn et al. [19] present a transformation from a Platform
Independent Model (PIM) to a Platform Specific Model
(PSM), which converts SoaML to BPEL, WSDL, and XSD
artifacts. Compared to our approach requiring a generation of
BPEL processes from UML activity diagrams, the authors
use BPMN processes as source models for the generation of
executable BPEL processes. Even though no detailed
mapping rules are provided, a promising and consistent
output is generated and the mapping is illustrated using a
simple scenario. The approach can be considered as a proof
for the possibility of producing web service artifacts from
SoaML service designs. The authors restrict that a SoaML
service interface is mapped onto one and only one WSDL
document containing XSD types that represent the SoaML
Messages. A new capability supported by the SoaML to
WSDL transformation is the ability to generate Semantic
Annotations for WSDL (SAWSDL).

For generating BPEL, Mayer et al. [20] discuss the
difficulties when transforming a UML Activity illustrated by
means of a UML activity diagram into an executable
language, such as BPEL. They introduce two alternatives on
generating BPEL constructs. The first alternative is to
generate a BPEL process similar to the UML Activity, where
control nodes of the UML are replaced with edge and
activity guards. The second alternative is to create a BPEL
process with constructs in UML converted to their equivalent
BPEL constructs. The first alternative is easy to be
implemented and results in an unreadable and complex
BPEL process, whereas the second one results in a better
structured orchestration. The approach presents a robust and
promising transformation into BPEL. However, the WSDL
artifacts are inferred from elements described by a custom
UML profile. Further mapping rules to transform workflows
modeled using UML Activity elements onto BPEL artifacts
are presented by IBM [21]. The approach handles some
constraints of a UML Activity and provides adequate
solutions. For example, to specify needed information, as for
instance the partner links, the activity diagram should be
extended with UML elements, such as input and output pins.
Another constraint handled by the authors is how to model
loop nodes in an Activity. Here, the authors propose a
specific representation in UML to enable an easy and
consistent generation of a BPEL loop element. These
enhancements among others can be applied to consistently
transform a UML Activity as the internal behavior of service
components into an executable BPEL process.

SCA is a software technology which provides a model
for building and composing applications and systems
applying a service-oriented architecture paradigm. Combined
with other technologies, such as WSDL and BPEL, SCA
provides the underlying component model. In [18], Digre
provides mapping rules for SoaML elements and SCA. The
transformation is executed manually and the author mentions

173

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that ambiguities in the SoaML model may prevent from
producing proper SCA models. This is exactly the reason
why a certain self-contained and well-understood design
artifact, such as the service design in this article, has to be
chosen when describing transformations. Another fully
automated and tool-supported mapping of SoaML onto SCA
artifacts is proposed by IBM [22]. The tool allows the
application of SCA stereotypes to the source models in order
to add more details specific to the SCA domain.

III. SCENARIO

In order to illustrate the transformation of service designs
based on SoaML into web service implementation artifacts,
the scenario of a workshop organization at a university and
the involved systems are introduced in this section. The
system helps visitors and members of the university in
organizing a meeting or a workshop at a room located at the
university campus. Additionally, the development steps for
creating the required service designs are explained.

A. Business Requirements

In a first step, the business requirements have to be
formalized. For that purpose, a domain model, business use
cases, and the business processes that are expected to be
supported by IT have to be described. These artifacts
constitute the basis to create service designs based on
SoaML that can be used to derive web service
implementation artifacts.

The domain model describes entities and their relation
within the considered domain. It is necessary to understand
the domain, to unify the terminology, and to avoid
misunderstandings. Thus, terms used within business use
cases and business processes are expected to follow the
domain model. Furthermore, operations and parameters are
expected to be named functionally when designing services
[1]. This can be only determined when functional terms, such
as entities, are documented. To formalize the domain model,
there exist several approaches. One alternative is to use UML
class diagrams.

Figure 5. Domain model for workshop organization scenario.

Another alternative that has been chosen in this article is
the Web Ontology Language (OWL) [23][24]. One
advantage of OWL is that it can be directly referenced by
WSDL using the Semantic Annotations language for WSDL
(SAWSDL) [25]. By means of labels, OWL allows the
description of terms in various languages. This is especially
helpful when different languages are used during the
requirements, the design, and implementation phases. In this
case, the domain model includes the terms in English and
German. An excerpt of the domain model for the workshop
organization scenario is depicted in Figure 5. The domain
model can either be formalized directly using XML or by
means of tools, such as Protégé [24].

Figure 6. Business use case expected to be supported by IT.

The business use cases are modeled using UML use

cases extended by the UML profile for business modeling as
introduced by Johnston in [26]. The business use case
expected to be supported by IT is illustrated in Figure 6.

Compared to standard UML use cases, a business use
case describes the business boundaries instead of system

Workshop
(Seminar@de)

Room
(Raum@de)

POI
(POI@de)

Attendees
(Teilnehmer@de)

takes place at
(findet statt in@de)

has

(hat@de)

Perform a workshop

organization

Direction committee

Figure 4. Business process of the workshop organization scenario.

University

Search for

a suitable room

Book a suitable

room

Search for relevant

POIs in the area

Create an

information

brochure

Determine route between

room and each POI

Direction committee

E
v
e

n
t

p
la

n
n

e
r

R
o

o
m

c
o

o
rd

in
a
to

r

O
rg

a
n

iz
e

r

Perform a workshop

organization

Reservation confirmationAttendee count

Attendee

count and

time interval

Room Room Confirmation

Room POIs
Room and

POI
Route (including map sections)

174

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

boundaries. This means that the business actor specified by
the stereotyped UML Actor is not part of the business
represented by the business use case. The business actor, i.e.,
is an external participant that interacts with the business
realizing the business use case. According to the diagram a
direction committee is expected to be supported while
performing a workshop organization.

A business use case is realized by means of a business
process. The business process, i.e., describes the internal
behavior of a business use case. Since the business process
represents the essential artifact when deriving service
designs, the business process for the workshop organization
business use case has to be described. For that purpose the
Business Process Model and Notation (BPMN) [27] is
applied. The process for the considered scenario is illustrated
in Figure 4. Two existing systems, provided by the
university, are involved in the realization of the business
process, namely the KITCampusGuide system and the
facility management system. The KITCampusGuide system
provides operations to manage Points of Interest (POI) such
as the determination of all relevant POIs (Parking, Cafeteria,
etc.) in the area surrounding the target and the provision of
route guidance to all relevant POIs. The facility management
system is concerned with room searches and enables the
reservation of a room for a given number of attendees at the
desired time interval.

B. Service Designs

In the second phase of the development process, the
service design phase, a set of service designs have to be
designed and modeled using SoaML. Each service design is
built according to the understanding introduced in Section II.
The service designs can be created systematically as
introduced by Gebhart et al. in [28]. In a first step, the
service designs are derived from the business requirements.
For example, for every pool within the business process, one
service interface and one service component is created. All
message interactions are used to derive provided and
required operations. For example, a message start event in
BPMN is transformed into one provided operation. In a next
step, the derived service designs are revised regarding
quality attributes, such as loose coupling and autonomy, as
introduced in [29]. This is important, because these quality
attributes influence higher-value ones, such as flexibility and
maintainability, which in turn represent essential drivers for
service-oriented architectures. For example, in this step
naming conventions are considered, operations within
service interfaces are split or merged, and it is ensured that
long-running operations are provided by means of
asynchronous instead of synchronous operations.

The resulting artifact from the design phase which
describes the service “WorkshopOrganization” are presented
below. This represents the business process and realizes the
orchestration of involved services. Figure 7 shows the
designed service interface. The UML Interface realized by
the ServiceInterface element lists the provided operation
“organize” with its input and output parameters. The input
and output parameters are defined using the message types
“OrganizeRequest” and “OrganizeResponse” described in
Figure 9. As the interface associated by means of the usage
dependency does not contain any operation, the service
consumer does not have to provide callback operations. This
corresponds to the interaction protocol. This example also
shows the consideration of quality attributes. The operation
“organize” represents the “Perform a workshop
organization” message start event within the business
process modeled in BPMN. However, the quality attribute
discoverability describes that operations should be
functionally named and should follow naming conventions.
Thus, after a systematic derivation of the service interface,
the operation is renamed from “Perform a workshop
organization” to “organize”.

In addition, a service component, representing the
component that fulfills the functionality, is specified for this
service. The service component and its internal behavior are
illustrated in Figure 8. Also in this case, a systematic
derivation is first performed. For example, every invoke
activity within the business process in BPMN is transformed
into a UML Call Operation Action that is assigned to a UML
Partition representing a certain system. Flow elements are
transformed into equivalents UML constructs. In a next step,
quality attributes are considered, i.e., regarding the
discoverability, naming conventions are considered and the
functional naming is ensured.

«ServiceInterface»

WorkshopOrganization

«interface»

WorkshopOrganization

consumer :

«interface» WorkshopOrganizationRequester

provider :

«interface» WorkshopOrganization

Interaction Protocol

: provider : consumer

organize

«interface»

WorkshopOrganizationRequester

«use»

+ organize(: OrganizeRequest) : OrganizeResponse

+

Figure 7. Derived service interface.

175

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Derived service component.

IV. DERIVATION OF WEB SERVICE IMPLEMENTATION

ARTIFACTS FROM SERVICE DESIGNS BASED ON SOAML

In this section, the steps necessary to derive web service
implementation artifacts from service design are illustrated.
Divided into four parts, the first subsection targets the
derivation of data types and their definitions using XSD. For
the provided and required interfaces of the service interface,
service interface descriptions based on WSDL with
associated message types are generated. For realizing the
orchestration of services, BPEL is derived from UML
Activity elements and added as the owned behavior of the
service component. Finally, a SCA component model
describing the structure of the application is derived from the
service component. For each step and for each
transformation performed existing mapping rules are applied.

A. Derivation of Data Types

Data types contained within the SoaML service designs
are expected to be mapped onto XSD to describe request and
response messages used within WSDL operations.

 The service interface in Figure 7 provides the operation
“organize”, which contains input and output messages in the
form of UML DataTypes stereotyped by MessageType. They
constitute containers for further data types described using
attributes or UML Associations to other UML Classes. We
follow the mapping rules provided by Sparx Systems [16].
Each input and output parameter is mapped onto an element
with a complexType and a sequence of XML elements
defining the attributes of the messages as demonstrated in
Source Code 1. The XSD descriptions are stored in separate
files in order to allow other WSDL documents to reuse the
data types.

The separated XSD files are then imported into the
WSDL document using an import statement with the
corresponding namespace and schema location as shown in
Source Code 1.

<wsdl:types>

 <xs:import namespace="http://.../OrganizeRequest"

 schemaLocation="http://.../organize.xsd"/>

</wsdl:types>

<wsdl:message name="OrganizeRequestMessage">

 <wsdl:part name="body" element="OrganizeRequest"/>

</wsdl:message>

Source Code 1. Derived WSDL message types.

Table I summarizes the transformation, provides more

details about the mapping rules, and lists the source and the

target elements with necessary attribute configurations.

TABLE I. SOAML ARTIFACTS TO XML SCHEMA DEFINITION

SoaML Artifact XML Schema Definition

Package A schema element with the “targetNamespace“
attribute to identify and reference the XSD is

generated.

Class

(MessageType)

An element as a root element and a
complexType definition containing a sequence

of child elements are generated. The “name”

attribute corresponds to the name of the class.

Attributes

(ownedAttributes)

Is mapped onto an element with the “name” and

“type” attributes set to the same as in the
source.

PrimitiveType,
Datatype and

MessageType

Are mapped onto the “type” attribute of an
element generated while mapping the member

attributes of a class. For each referenced data
type an import element is used to add the

corresponding external schema.

Association An element is declared for each association
owned by a class. The “name” attribute is set to

the one of the association role. The
“minOccurs” and “maxOccurs” reflect the

cardinality of the association.

Generalization

(Inheritance)

An extension element is generated for a single

inheritance with the “base” attribute set to the

base class name. The UML Attributes of the

child class are then appended to an “all” group

within the extension element.

<<Participant>>

WorkshopOrganization

Component

<<ServicePoint>>

workshopOrganization:

WorkshopOrganization

<<RequestPoint>>

room: Room

<<RequestPoint>>

pOI: POI

: workshopOrganization

organize

Reservation

Confirmation

: room

get

: pOI : rootDetermination

book get

determine
For each POI

[room found]

[room not found]

<<RequestPoint>>

routeDetermination:

RouteDetermination

«MessageType»

OrganizeResponse

+ reservation: Conf irmation

«MessageType»

OrganizeRequest

+ attendeeCount: Integer

+ startTime: DateTime

+ endTime: DateTime

<xs:schema targetNamespace="http://.../OrganizeRequest">

<xs:element name="OrganizeRequest">

<xs:complexType>

<xs:sequence>

<xs:element name="attendeeCount“ type="integer"/>

...

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 9. Derived XML Schema Definitions from SoaML messages.

176

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Derivation of Service Interfaces

After generating data types, the operation definitions and
their parameters can be derived from the SoaML service
interface and its realized interface.

According to IBM [18], a port type acting as container
for the operations is generated and each parameter is mapped
onto a part element as shown in Source Code 1. The name of
the port type is derived from the name of the realized
interface in the SoaML service design and enhanced with the
suffix “PortType”. The WSDL operation element includes
the attribute “name”, which corresponds to the operation
name within the service design. Additionally, the previously
derived input and output messages are associated. In case of
service inheritance the operations of the parent interface are
copied to the same generated port type as stated by Hahn et
al. [19]. This allows overcoming the not supported WSDL
inheritance limitation.

<wsdl:portType name="WorkshopOrganizationPortType">

 <wsdl:operation name="organize">

 <wsdl:input message="OrganizeRequestMessage"/>

 <wsdl:output message="OrganizeResponseMessage"/>

 </wsdl:operation>

</wsdl:portType>

Source Code 2. Derived port type in WSDL.

Till now, the abstract part of a WSDL was generated.

The concrete part encompasses deployment-specific details
about how and where to access a service. A binding
definition specifying the communication technology that can
be used by the consumer is generated. The binding is named
as a combination of the interface name and the suffix
“SOAP”. Additionally, it is associated with the prior defined
port type by setting the attribute “type” to the name of the
interface including the suffix “PortType”. The messaging
protocol binding and the transport protocol binding are set to
Simple Object Access Protocol (SOAP) and Hypertext
Transfer Protocol (HTTP). In this work, we use SOAP as a
default protocol. The final part focuses on the physical
endpoint of the service. The endpoint is specified by a URL
that has to be specified by the developer.

<wsdl:binding name="WorkshopOrganizationSOAP"

 type="WorkshopOrganizationPortType">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="organize"/>

</wsdl:binding>

<wsdl:service name="WorkshopOrganization">

 <wsdl:port binding="tns:WorkshopOrganizationSOAP"

 name="WorkshopOrganizationSOAP">

 <soap:address location="<server>:<port>"/>

 </wsdl:port>

</wsdl:service>

Source Code 3: Derived binding and service definition.

TABLE II. SOAML ARTIFACTS TO WSDL

SoaML Artifact WSDL

Interface realized by a
ServiceInterface

WSDL PortType that will be named
according to the interface. It represents

provided operations.

Interfaces used by a

ServiceInterface

WSDL PortType that will be named

according to the interface. It represents
callback operations.

Input / Result /
Exception parameters

in a service interface

WSDL Messages that can be used within the
operations.

Parameters Message Parts that reference the WSDL

Messages.

Parameter types Types, they will be defined in a separate *.xsd

document

C. Derivation of Executable Business Logic

The mapping rules provided by IBM [21] cover all UML
artifacts of a UML Activity involved in the derivation of
control flow elements of a BPEL process. Additionally, new
mapping rules to set attribute values were identified in this
article and are also mentioned in the following
transformation description.

The UML activity diagram in Figure 8 describes the
internal behavior of a service operation “organize” and is
considered to demonstrate the transformation for most often
used control flow elements of a UML activity diagram. The
first generated fragment for the BPEL process is the main
scope. It exists only once and consists of a sequence of other
activities.

Figure 10. Derivation of main scope.

: workshopOrganization

organize

Reservation

Confirmation

: room

get

: pOI : rootDetermination

book get

determine
For each POI

[room found]

[room not found]

<bpel:process>

…

<bpel:sequence name="main">

<bpel:receive name="organize" operation="organize"

partnerLink="workshopOrganization“

portType="tns:WorkshopOrganization"

createInstance="yes" variable="input"/>

…

</bpel:sequence>

…

</bpel:process>

177

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The first partition in the activity diagram contains an
initial node which is mapped onto a receive activity with the
attribute “partnerLink” set to the label of the partition,
namely “workshopOrganization”. The attribute “operation”
corresponds to the operation name in the interaction
protocol. This activity is located at the top of the main scope
and waits for an arriving message. The derivation is shown
in Figure 10. The mapping rules are not summarized within a
table, as according tables are directly available in [21].

The involved web services are specified by separate
WSDL definitions containing partnerLink definitions. In
order to call these web services, the BPEL process sets a
partnerLink for each invoke activity. The partnerLinks are
derived from the label of the partitions, such as “room” or
“rootDetermination”.

Figure 11. Derivation of partner links.

The partition containing the initial node is mapped onto a
partnerLink definition with the attribute “name” set to the
value “client” representing the BPEL process itself. For the
other partitions, the attribute “name” is equal to the label of
the respective partition. Moreover, the partnerLink defining
the process itself has the attribute “myRole” whereas other
partnerLinks have an attribute “partnerRole” representing the
role of an invoked web service. Figure 11 shows the derived
partnerLinks for the considered service operation and the
invoked service “Room”. After defining the partnerLinks,
which belong to the abstract part of a BPEL process, the
actions within the partitions are mapped onto invoke
activities as illustrated in Figure 12.

Figure 12. Derivation of activities.

Each activity has the attributes “name” and “operation”

set to the name of the action. The attribute “partnerLink” is
set to the corresponding partnerLink defined earlier. The
activities are located within the corresponding scopes of flow
elements mapped later. Compared to the other activities, the
action “ReservationConfirmation” in the first partition is an
opaque action executed by the BPEL process itself and thus
is not mapped onto an invoke activity. After a skeleton for
the BPEL process has been created, the control flow
elements are derived from corresponding UML elements.
The decision node is mapped onto a BPEL if-else construct.
The condition of the node has to be added manually by the
developer. The black bar representing a fork node and a
parallel execution of the contained action is mapped onto a
BPEL flow construct. The black bar representing a join node
with incoming arrows is implicitly included in the earlier
derived BPEL flow construct. The loop node is illustrated
using a dashed area and is mapped onto a forEach construct
with the attribute “parallel” set to the value “no”. If the loop
node in UML contains a fork and a join node, the attribute
“parallel” is set to “yes”. The derivation of flow elements is
depicted in Figure 13.

: workshopOrganization

organize

Reservation

Confirmation

: room

get

: pOI : rootDetermination

book get

determine
For each POI

[room found]

[room not found]

<bpel:partnerLinks>

<bpel:partnerLink name="client"

partnerLinkType="tns:WorkshopOrganization"

myRole="WorkshopOrganizationProvider"/>

<bpel:partnerLink name="room"

partnerLinkType="tns:Room"

partnerRole="RoomProcessProvider"/>

<bpel:partnerLink name="pOI"

partnerLinkType="tns:POI"

partnerRole="POIProcessProvider"/>

<bpel:partnerLink name="rootDetermination"

partnerLinkType="tns:RootDetermination"

partnerRole="RootDeterminationProcessProvider"/>

</bpel:partnerLinks>

: workshopOrganization

organize

Reservation

Confirmation

: room

get

: pOI : rootDetermination

book get

determine
For each POI

[room found]

[room not found]

<bpel:invoke name="book" operation="get" partnerLink="room"

portType="tns:Room" />

<bpel:if name="If">

<bpel:flow name="Flow">

...

<bpel:forEach parallel="no" counterName="Counter"

name="ForEach">

<bpel:scope>

<bpel:invoke name="determine"

operation="determine"

partnerLink="rootDetermination"/>

</bpel:scope>

</bpel:forEach>

...

</bpel:flow>

<bpel:else>...</bpel:else>

</bpel:if>

178

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Derivation of flow elements.

D. Derivation of Component Models

In order to embed the already generated artifacts into an
entire component model, SCA elements are derived from the
service designs. Figure 14 illustrates the mapping between
service components described by SoaML Participants and
SCA elements, such as SCA Composites, Components,
Services, References, and Wires, using mapping rules
provided by Digre et al. in [18].

Figure 14. Derivation of SCA component model.

Regard naming conventions, each Participant is mapped
onto a SCA component with name set to the label of the
Participant. Since each SoaML Participant contains Services
and Requests representing provided and required services,
SCA Services and SCA References are generated. The
names of these elements are set to the names of the ports
within the SoaML Participant. The derivation is shown in
Figure 14.

The SCA Composite is the basic unit of a composition in
a SCA Domain and is an assembly of SCA Components,
Services, References, and Wires. The service component
presented earlier deals with the orchestration of external
services and contains also a reference to an internal
component for creating the reservation confirmation. These
two components are to be grouped into an SCA Composite,
whereas SoaML service channels wiring the Services to
Requests are mapped onto SCA Wire elements. Additionally,
if two Services or two Requests are wired together to
delegate service calls, a promote element is added. Figure 15
illustrates the final SCA Composite in a graphical
visualization as introduced by the standard.

Figure 15. SCA Composite for the workshop organization process.

SCA requires that Service and Reference elements are
compatible. The compatibility is assured by means of the
assigned interfaces. The interfaces used in this context can be
derived from service interfaces in SoaML as illustrated in
Section B. The resulting service interface descriptions based
on WSDL can be embedded into the SCA Composite. For
this purpose, based on the realized and used UML Interfaces
representing provided and required interfaces within the
service designs, a bidirectional service interface description
using WSDL with a base and a callback interface is
generated. An “interface.wsdl” element is added to the
Service element with the attribute “interface” set to the URL
of the WSDL service representing the provided service
interface “WorkshopOrganization”. The “callbackInterface”
attribute of the Service element is set to the port type
representing the “WorkshopOrganizationRequester”. For the
corresponding SCA Reference, the assignment is reversed,
i.e., the attribute “interface” of the interface element within
the SCA Reference is set to the required interface and the
attribute “callbackInterface” is set to the provided interface.
The systematical derivation is depicted in the following
figure.

: workshopOrganization

organize

Reservation

Confirmation

: room

get

: pOI : rootDetermination

book get

determine
For each POI

[room found]

[room not found]

<bpel:if name="If">

<bpel:flow name="Flow">

...

<bpel:forEach parallel="no" counterName="Counter"

name="ForEach">

<bpel:scope>

...

</bpel:scope>

</bpel:forEach>

</bpel:flow>

<bpel:else>

...

</bpel:else>

</bpel:if>

<sca:component

name="WorkshopOrganization Composition Component">

<sca:service name="workshopOrganization"/>

<sca:reference name="room"/>

<sca:reference name="poi"/>

<sca:reference name="routeDetermination"/>

<sca:reference name="createReservationConfirmation"/>

</sca:component>

<<Participant>>

WorkshopOrganization

Composition

Component

<<ServicePoint>>

workshopOrganization:

WorkshopOrganization

<<RequestPoint>>

room: Room

<<RequestPoint>>

poi: POI

<<RequestPoint>>

routeDetermination:

RouteDetermination

<<RequestPoint>>

createReservation

Confirmation

Internal
Component

Composition
Component

WorkshopOrganizationComposite

179

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16. Integration of WSDL into SCA.

When a service component in SoaML consists of further

service components, these refinements are also transformed

into equivalents in SCA. Figure 17 illustrates the mapping

of composite service components.

Figure 17. Transformation of composite service components.

As a result, the entire service components including their

implementation and refinements into further service

components can be mapped into SCA. The following table

summarizes the mapping rules.

TABLE III. SOAML ARTIFACTS TO WSDL

SoaML Artifact SCA

Service Component /
Participant

Composite that is named according to the
Participant.

Service Service that is named according to the Service
in SoaML. As interface in SCA the mapped

service interface the Service is typed by is
referenced.

Request Reference that is named according to the
Request in SoaML. Also in this case the

Reference has an interface that is derived by

the service interface the Request is typed by.

ServiceInterface The service interface a Service or Request is
typed by is transformed into a WSDL

according to the rules described before. The

service interface is transformed into a
interface in SCA that is used to describe

Service and References.

OwnedBehavior An owned behavior that can be transformed
into a BPEL process is set as implementation

for a certain component in SCA.

Internal
Participant

Component within the SCA composite. The
component is named according to the internal

participant.

Service Channels Wiring between component within the SCA
composite.

V. CONCLUSION AND OUTLOOK

In this article, we illustrated the derivation of web service
implementation artifacts from prior created service designs
that base on SoaML as standardized modeling language. For
that purpose, existing mapping rules that in particular focus
on UML as source artifacts have been analyzed and enriched
with details that aim at supporting service design specifics.
As a result, the mapping rules could be identified to enable
the systematic derivation of web services based on XSD,
WSDL, BPEL, and SCA as wide-spread technologies.

This systematic derivation is especially necessary in
model-driven development approaches for web services. As
SoaML is a language standardized by the OMG it is the
preferred language when modeling services. Due to the
complexity of today’s software, a detailed planning and thus
modeling before implementation is recommended. During
the design phase it is easier to focus on architecture-relevant
issues, such as a loose coupling between services. The
mapping rules enable a systematic derivation of web services
so that prior considered quality attributes are also fulfilled by
the implementation artifacts.

The created mapping rules have been exemplified by
means of a service-oriented workshop organization system.
The system has been created using a model-driven approach.
After capturing the requirements, the service designs have
been created and aligned with wide-spread quality attributes
as introduced by Gebhart et al. [7][29] using the QA82
Analyzer [32]. The methodology has been described in [33].
Afterwards, the service designs have been used to derive
web services using the extended mapping rules.

«ServiceInterface»

WorkshopOrganization

consumer :

«interface» WorkshopOrganizationRequester

provider :

«interface» WorkshopOrganization

«interface»

WorkshopOrganization

+ organize(: OrganizeRequest) : OrganizeResponse

<sca:service name="workshopOrganization">

<interface.wsdl

interface="http://.../WorkshopOrganization#

wsdl.interface(WorkshopOrganization)"

callbackInterface="http://.../WorkshopOrganizationRequester#

wsdl.interface(WorkshopOrganizationRequester)"

remotable="true"/>

</sca:service>

«interface»

WorkshopOrganization

Requester

«use»

<<Participant>>

WorkshopOrganization

<<Participant>>

Workshop

Organization

Composition

Component

<<Participant>>

WorkshopOrganization

Intern

Component

<<RequestPoint>>

room: Room

<<RequestPoint>>

routeDetermination:

RouteDetermination

<<ServicePoint>>

workshopOrganization:

WorkshopOrganization

<sca:composite ... name="WorkshopOrganization">

<sca:component

name="WorkshopOrganization Composition Component">

...

</sca:component>

<sca:component

name="WorkshopOrganization Intern Component">

...

</sca:component>

</sca:composite>

180

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The rules on the one hand help IT architects to
understand the relation between service designs, the
language SoaML, and web services as implementation,
which allows IT architects to reduce the impact of service
design changes on the final implementation. On the other
hand, the mapping rules constitute the conceptual basis for
automatic transformation as they can be realized using
languages, such as Query Views Transformation (QVT) [34].
This will increase the significance of SoaML in model-
driven development processes as it represents a full-fledged
development artifact.

In the past, we especially focused on the creation of
quality attributes and metrics for service designs based on
SoaML. Also our tool, the QA82 Analyzer that enables
automatic quality analyses aimed at the analyses of SoaML
models. The conceptual understanding about how
characteristics of service designs are reflected within web
service implementations enables us to transform our existing
SoaML metrics into metrics for web services. Thus, in the
future our QA82 Analyzer will also be able to analyze web
services regarding wide-spread quality attributes, such as
loose coupling and autonomy.

REFERENCES

[1] M. Gebhart and J. Bouras, “Mapping between service designs based
on soaml and web service implementation artifacts”, Seventh
International Conference on Software Engineering Advances (ICSEA
2012), Lisbon, Portugal, November 2012, pp. 260-266.

[2] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA – Service-
Oriented Architecture Best Practices, 2005. ISBN 0-13-146575-9.

[3] T. Erl, SOA – Principles of Service Design, Prentice Hall, 2008.
ISBN 978-0-13-234482-1.

[4] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, Addison-Wesley, 2003. ISBN 978-0321154958.

[5] P. Hoyer, M. Gebhart, I. Pansa, S. Link, A. Dikanski, and S. Abeck,
“A model-driven development approach for service-oriented
integration scenarios”, 2009.

[6] M. Gebhart and S. Abeck, “Quality-oriented design of services”,
International Journal on Advances in Software, 4(1&2), 2011, pp.
144-157.

[7] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck,
“Evaluation of service designs based on soaml”, Fifth International
Conference on Software Engineering Advances (ICSEA 2010), Nice,
France, August 2010, pp. 7-13.

[8] M. Gebhart, M. Baumgartner, and S. Abeck, “Supporting service
design decisions”, Fifth International Conference on Software
Engineering Advances (ICSEA 2010), Nice, France, August 2010, pp.
76-81.

[9] T. Erl, Service-Oriented Architecture – Concepts, Technology, and
Design, Pearson Education, 2006. ISBN 0-13-185858-0.

[10] SENSORIA, “D1.4a: UML for Service-Oriented Systems”,
http://www.sensoria-ist.eu/, 2006. [accessed: July 11, 2012]

[11] S. Johnston, “UML 2.0 profile for software services”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/05/
419_soa/, 2005. [accessed: July 11, 2012]

[12] OMG, “Unified modeling language (UML), superstructure”, Version
2.2, 2009.

[13] OMG, “Service oriented architecture modeling language (SoaML) –
specification for the uml profile and metamodel for services
(UPMS)”, Version 1.0, 2012.

[14] M. Gebhart, “Service Identification and Specification with SoaML”,
in Migrating Legacy Applications: Challenges in Service Oriented
Architecture and Cloud Computing Environments, Vol. I, A. D.

Ionita, M. Litoiu, and G. Lewis, Eds. 2012. IGI Global.
ISBN 978-1-46662488-7.

[15] IBM, Generating XSD Schemas from UML Models, Rational
Systems Developer Information Center.
http://publib.boulder.ibm.com/infocenter/rsdvhelp/v6r0m1/index.jsp.
[accessed: July 11, 2012]

[16] Sparx Systems, XML Schema Generation,
http://www.sparxsystems.com.au/resources/xml_schema_generation.
html, 2011. [accessed: July 11, 2012]

[17] Roy Grønmo, David Skogan, Ida Solheim and Jon Oldevik, Model-
driven Web Services Development, SINTEF Telecom and
Informatics, 2004.

[18] IBM, Transforming UML models into WSDL documents, Rational
Software Architect. http://publib.boulder.ibm.com/infocenter/
rsahelp/v7r0m0/index.jsp. [accessed: July 11, 2012]

[19] Christian Hahn, David Cerri, Dima Panfilenko, Gorka Benguria,
Andrey Sadovykh and Cyril Carrez, Model transformations and
deployment, SHAPE 2010.

[20] Philip Mayer, Andreas Schroeder and Nora Koch, MDD4SOA
Model-Driven Service Orchestration, 2008.

[21] IBM: Transforming UML models to BPEL artifacts, Rational
Software Architect. http://publib.boulder.ibm.com/infocenter/rsahelp/
v7r0m0/index.jsp, 2010. [accessed: July 11, 2012]

[22] IBM, Transforming UML models to Service Component Architecture
artifacts, Rational Software Architect. http://publib.boulder.ibm.com/
infocenter/rsahelp/v7r0m0/index.jsp. [accessed: July 11, 2012]

[23] W3C, “OWL 2 web ontology language (OWL)”, W3C
Recommendation, 2009.

[24] M. Horridge, “A practical guide to building owl ontologies using
protégé 4 and co-ode tools”, http://owl.cs.manchester.ac.uk/tutorials/
protegeowltutorial/, Version 1.2, 2009. [accessed: January 04, 2011]

[25] W3C, “Semantic Annotations for WSDL and XML Schema
(SAWSDL)”, W3C Recommendation, 2007.

[26] S. Johnston, “Rational uml profile for business modeling”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
library/5167.html, 2004. [accessed: March 04, 2013]

[27] OMG, “Business process model and notation (BPMN)”, Version 2.0
Beta 1, 2009.

[28] M. Gebhart, S. Sejdovic, and S. Abeck, “Case study for a quality-
oriented service design process”, Sixth International Conference on
Software Engineering Advances (ICSEA 2011), Barcelona, Spain,
October 2011, pp. 92-97.

[29] M. Gebhart and S. Abeck, “Metrics for evaluating service designs
based on soaml”, International Journal on Advances in Software,
4(1&2), 2011, pp. 61-75.

[30] Tom Digre, ModelDriven.org, http://lib.modeldriven.org/MDLibrary/
trunk/Applications/ModelPro/docs/SoaML/SCA/SoaML to
SCA.docx, May 2009. [accessed: July 11, 2012]

[31] J. Amsden, “Modeling with soaml, the service-oriented architecture
modeling language – part 1 – service identification”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/09/
modelingwithsoaml-1/index.html, 2010. [accessed: July 11, 2012]

[32] Gebhart Quality Analysis (QA) 82, QA82 Analyzer,
http://www.qa82.de. [accessed: July 11, 2012]

[33] M. Gebhart and S. Sejdovic, “Quality-oriented design of software
services in geographical information systems”, International Journal
on Advances in Software, 5(3&4), 2012, pp. 293-307.

[34] OMG, “Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification”, Version 1.1, 2011. [accessed: July 11, 2012]

181

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Incorporating Design Knowledge into the Software Development Process
using Normalized Systems Theory

Peter De Bruyn, Philip Huysmans, Gilles Oorts,
Dieter Van Nuffel, Herwig Mannaert and Jan Verelst

Normalized Systems Institute (NSI)
University of Antwerp

Antwerp, Belgium
{peter.debruyn,philip.huysmans,gilles.oorts,dieter.vannuffel,

herwig.mannaert,jan.verelst}@ua.ac.be

Arco Oost
Normalized Systems eXpanders factory (NSX)

Antwerp, Belgium
{arco.oost}@nsx.normalizedsystems.org

Abstract—The knowledge residing inside a firm is considered
to be one of its most important internal assets in obtain-
ing a sustainable competitive advantage. Also in software
engineering, a substantial amount of technical know-how is
required in order to successfully deploy the organizational
adoption of a technology or application. In this paper, we
show how knowledge on the development of evolvable soft-
ware can be managed and incorporated into a knowledge
base, to enable the more productive construction of evolvable
systems. The Normalized Systems (NS) theory offers well-
founded knowledge on the development of highly evolvable
software architectures. This knowledge is captured in the form
of Normalized Systems elements, which can be regarded as
design patterns. In this paper, it is discussed how Normalized
Systems elements facilitate the management of state-of-the-
art knowledge in four processes: (1) knowledge creation, (2)
knowledge storage/retrieval, (3) knowledge application, and
(4) knowledge transfer. Based on this discussion, it is shown
how lessons can be drawn from the NS approach for the
management of software engineering knowledge.

Keywords-Normalized Systems; Design Patterns; Knowledge
Management.

I. INTRODUCTION

As we highlighted in our previous work on which this
paper further elaborates [1], an important movement within
the strategic management literature, the resource-based view
of the firm (RBV) states that internal resources (e.g., money,
patents, buildings, geographical location,etc.) are the key
elements for organizations in order to obtain a sustainable
competitive advantage [2]. More specifically, the knowledge
residing inside a firm is frequently considered to be its most
important internal asset [3]. Further, focusing on the case
of software adoption and development within organizations,
the prevalence of the available knowledge becomes even
clearer and knowledge management practices have in this re-
spect been acknowledged frequently [4]. Indeed, information
technology in general can be considered as a knowledge-
intensive or complex technology innovation, requiring a
substantial amount of know-how and technical knowledge
by the adopting firm [5]. As a result, the degree of expertise

or advanced knowledge of best-practices regarding a certain
software technology becomes a decisive factor in the possi-
bility for an organization to successfully deploy and manage
it. Consequently, a firm should either already (i.e., prior to
the adoption) possess the advanced knowledge required to
operate the software technology or engage in organizational
learning during exploitation.

Organizational learning is generally regarded as the re-
sult of individual learning experiences of members of an
organization, which become incorporated into the behavior,
routines and practices of the organization the individuals
belong to [5]. According to Levitt and March [6], such an
organizational learning can occur in two general ways: (1)
“learning by doing”, which involves a learning process by
self-experienced trial-and-error and (2) learning from the
direct experiences of other people. While the first type of
learning is typically a very profound and thorough way of
knowledge gathering, it can be time-consuming, expensive
and error-prone in the earliest stages. At this point, know-
how, experiences and best-practices formulated by other
users (i.e., the second type of organizational learning) come
into play. Inside organizations, such knowledge transfers in
software development can occur in many different ways,
including, for example, explicit knowledge bases or experi-
ence repositories [7], “yellow pages” enabling search actions
for accessible knowledgeable people [8] and mentoring
programs [9]. At the inter-organizational or industrial level,
the gathered knowledge can benefit from experience based
on many different development projects.

In this paper, we explore how knowledge is managed
within Normalized Systems (NS) theory (outlined in Sec-
tion III). Furthermore we will indicate how this approach is
deemed to offer additional benefits in terms of knowledge
management compared to other software engineering ap-
proaches. In order to do so, the widely accepted framework
of Alavi and Leidner [10] (summarized in Section II) will be
used to base this claim and position how NS supports knowl-
edge management in the development process of evolvable

182

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

software. Specifically, the role of knowledge in NS will be
demonstrated according to four knowledge processes [10]:

• Knowledge Creation
• Knowledge Storage/Retrieval
• Knowledge Application
• and Knowledge Transfer.

This analysis will be presented in Section IV, after which
an overview and a discussion regarding some significant
differences between NS patterns and more commonly known
design patterns, will be offered in Section V. Finally, we
conclude the the paper in Section VI.

This paper is an extension of our previous work [1], as it
offers a more in-depth analysis of knowledge management
practices regarding NS and includes additional illustrating
examples, guided by the widely accepted work of Alavi and
Leidner [10].

II. KNOWLEDGE MANAGEMENT AND INFORMATION
TECHNOLOGY

Over the last decades, knowledge and knowledge manage-
ment (KM) have been the subject of research within several
disciplines, such as knowledge engineering, artificial intel-
ligence, social science, management science, information
science, etc. [11]. Due to this multidisciplinary character of
the research topic, knowledge and knowledge management
have been defined in numerous ways. In spite of this variety
of definitions, the goal of knowledge management can most
ordinarily be defined as to facilitate the flow of knowledge.
To define what knowledge management covers, Tuzhilin
identified some common aspects among the variety of KM
definitions [12]. In its essence, the management of knowl-
edge should include the acquisition, conversion, structuring
and organizing and sharing of knowledge. These essential
and agreed upon components of knowledge management
are very similar to the framework formulated by Alavi and
Leidner [10], of which the core aspects will be summarized
below. Given the fact that Alavi and Leidner [10] have per-
formed an in-depth, overarching and widely cited overview
and analysis of knowledge management aspects present dur-
ing the use of information systems, we choose to discuss and
employ this framework in the current paper. Hence, in this
section, we highlight this particular framework to analyze
and discuss how information technology and IT artifacts
in general can be used to engage in knowledge manage-
ment. Alavi and Leidner distinguish four main processes of
knowledge management facilitated by information systems:
(1) knowledge creation, (2) knowledge storage/retrieval, (3)
knowledge application and (4) knowledge transfer. We will
highlight each of these processes briefly in the following
sub-sections. The concepts of this framework are represented
in Figure 1. During our discussion, we will systematically
relate each of the processes to the this figure. Also, we will
illustrate the application of this framework in previous work
by showing how other authors have used this framework to

analyze their knowledge management efforts by using infor-
mation systems [13]. Later on, we will use this framework
as our starting point for analyzing how NS theory enables
an efficient way of knowledge management.

A. Knowledge Creation

Before one can only begin to point out the importance
of knowledge management, knowledge needs to be created.
Such knowledge creation can both entail the development
of new content or the replacement or improvement of al-
ready existing knowledge within the organization. Although
this creation process always fundamentally starts from an
individual, interactions between individuals are an equally
important factor in the knowledge creation process [14].
These interactions are represented by the conversion types
of knowledge presented by Nonaka, which are based on the
differentiation of explicit and tacit knowledge [14]. Based
on the conversion of knowledge between these two types,
he distinguishes four possible modes of knowledge creation
(although they are mentioned to be often interdependent and
intertwined in reality) [10]: (1) socialization (the transfer of
one’s personal tacit knowledge to new tacit knowledge of
another person), (2) externalization (the conversion of tacit
knowledge to new explicit knowledge, such as formulated
in best practices), (3) internalization (the conversion of
explicit knowledge to one’s tactic knowledge, such as truly
understanding some read findings) and (4) combination
(“the creation of new explicit knowledge by merging, cat-
egorizing, reclassifying, and synthesizing existing explicit
knowledge”).

Each of these knowledge creation modes are also visu-
ally represented in Figure 1. More specifically, arrow E
represents socialization, arrows C represent externalization,
arrows D represent internalization and arrow F represents
combination. For each of the discussed knowledge cre-
ation modes, facilitating conditions or environments can
be considered. Also, for these processes, the interaction
with information systems and technology is twofold. On
the one hand, the knowledge creation modes facilitate the
amassment of knowledge on technologies and information
systems used within an organization. On the other hand,
information systems can be used to facilitate each of these
knowledge creation modes in several ways (e.g., by the use
of information systems for collaboration support).

As an example of academic efforts to identify knowl-
edge creation, one can cite the work Lee et al. [13], who
studied the knowledge management of a Korean automobile
company. More specifically, they reviewed the process of
making engineering changes to the finished design of auto-
mobiles from a knowledge-management perspective. They
however found that little attention is payed to the knowledge
creation within the knowledge-intensive process of making
engineering changes. The knowledge that is amassed from a
design change is documented in separate documents, without

183

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

����������	
��	����	��������� ����������	���	����	���������
����������	���	��������	�������������������	
��	��������	��������� ���������	
�������������������	
���������� �

�
�

���
� � ���

� � �����	��!�����	!�!� "� �����	��������	!�!� "
� � ��

��� � � �

��������� ���� ����#������� ���� ����#�����	� �������#�����
� ��!$��������� �%�	� ���&� 	�&	����������	��������	'��������	��	� ���	��!�����	!�!� "	���	����	�� ���� �%�	��� ����	�� ����	& �!	��	����������	��	����"���	'��������	�%��	$���!��	�� �	�&	�%�	� �����	��������	!�!� "
� ��	���������	� �����	����	� ���	!�!� "	���	����"���	�%�	'��������	��	�	����������� �%�	� �����	�&	��� ������ �%�	� �����	�&	������������� �%�	� ���&� 	�&	����������	�����	'��������	��	� ���	��������	!�!� "	���	����	�� ��� �����	����	���%��	()	'��������	!�����!���� �����	������ ��	$"	()	'��������	!�����!���

Figure 1. Visual representation of different knowledge management processes, adapted from Alavi and Leidner [10].

being captured in a knowledge base or incorporated into
(other) workflows. Lee et al. therefore argue that due to
the importance of the knowledge creation process, it should
be supported better by proper knowledge management and
a more elaborate Knowledge Management System (KMS)
[13].

B. Knowledge Storage/Retrieval

To fully leverage its value, knowledge needs to be dif-
fused across individuals within a company, research area,etc.
once it has been created. Otherwise, companies lose the
knowledge by simply forgetting the newly created knowl-
edge or by forgetting it exists [15], [16]. However, this
can be prevented by what literature identifies as individual
and organizational memories, which are used within the
knowledge storage and retrieval process [10]. Whereas the
individual memory is simply referring to the knowledge
of a single person, organizational memory is defined as

“the means by which knowledge from the past, experi-
ence, and events influence present organizational activities”
[17]. Such organizational memory can be facilitated by
several means, including written documentation, databases
with structured information, etc. Also, to a certain extent,
organizational memory may extend traditional individual
memories by including components such as organizational
culture, structure, information archives, and so on. It may
be subdivided in semantic memory (i.e., general, explicit
and articulated memory) and episodic memory (i.e., context-
specific and situated knowledge) [18]. Organizational me-
mory is claimed to have both possible positive effects (e.g.,
by being able to reuse good solutions in the form of
standards and procedures and by avoiding to make mistakes
again) and negative effects (e.g., decision-making biases or
status quo tending behavior). The authors of [10] mention
database management techniques, document management

184

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and groupware applications as typical IT means to develop
and maintain (i.e., store) the “memory” of an organization.
Additionally, IT artifacts in terms of design patterns have
been claimed to provide useful means to store and retrieve
organizational knowledge and best-practices. This is obvious
within the domain of software engineering, as for instance
initiated by the work of Gamma et al. [19]. The use
of design patterns facilitates the translation of individual
knowledge to organizational knowledge and the opposite
translation (see the bidirectional arrow G in Figure 1) by
offering a central organizational knowledge base (i.e., the
design patterns). The design patterns within this knowledge
repository can be accessed by all programmers for both
storage and retrieval of the latest iteration of the design
patterns. In this way, the central knowledge base acts as the
organizational memory and thereby “helps in storing and
reapplying workable solutions in the form of standards and
procedures, which in turn avoid the waste of organizational
resources in replicating previous work” [10]. In Section V,
we will further elaborate on this specific way of enabling
knowledge storage and retrieval by means of design patterns
and how these more traditional design pattern approaches
differ from the Normalized Systems theory patterns on
which we focus in the remainder of the paper.

In Figure 1, the various kinds of knowledge reposito-
ries are represented by the ovals, as they represent both
knowledge repositories or memories at the organizational
and individual level. Obviously, as the aim in organiza-
tional knowledge management is to leverage the storage
and retrieval of the organizational memory, the main focus
should be placed on the ovals labeled as containing group
memory. The processes of knowledge storage and retrieval,
are represented by the bidirectional arrow G.

In the previously discussed research of Lee et al. [13],
knowledge is stored in an intranet system. All engineering
change requests (ECRs) and engineering change orders
(ECOs) are automatically stored in a repository. The problem
with this repository is however that it does not provide the
functionality to navigate for relevant knowledge. Another
important aspect that the repository lacks is the possibility of
linking specific engineering changes with related problems,
solutions,etc. These shortcomings clearly show the different
levels and possible implementations of knowledge storage
management [13].

C. Knowledge Application

The only way an organization can valorize the knowl-
edge stored in its organizational memory, is by eventually
applying the knowledge. Such applications might be realized
by practices ranging between a continuum from directives
(i.e., a set of specific rules, standard and procedures to make
the tacit knowledge of specialists explicit for efficient com-
munication, including non-specialists) to self-contained task
mechanisms (i.e., a group of individuals with prerequisite

knowledge in several domains which becomes combined in
the considered team without explicitly formulated routines
or procedures).

As typical examples of the usage of IT systems, corporate
intranets are mentioned as useful means to access and
maintain directives. Similarly, workflow automation systems
and rule-based expert systems are suggested as interesting
IT artifacts to enable the efficient automation of captured
organizational knowledge and procedures.

Also, a large amount of codified best-practice might
generate a new problem as the organizational members need
to become competent in choosing the adequate best-practices
to be employed.

The extent to which practitioners depend on the ap-
plication of centrally available knowledge is demonstrated
by Lee et al. [13]. When valuable knowledge about the
incorporation of design changes is not readily available,
engineers have to solely rely on their own tacit knowl-
edge and off-line communication with colleagues to deal
with challenging engineering changes. This shows that the
application of knowledge highly depends on the available
knowledge stored in a repository or transferred between
agents.

D. Knowledge Transfer

The fourth knowledge management process discussed
by Alavi and Leidner is the transfer of knowledge [10].
This process is considered to be an important process in
knowledge management, as it provides the transfer of knowl-
edge between individuals, groups, organizations and other
sources. In spite of the acknowledgment of its importance,
the dissociation of knowledge transfer from knowledge
sharing is still unclear and both terms are often used inter-
changeably in academic literature [20]. Transfer and sharing
can however be differentiated based on some parameters.
While knowledge transfer is considered to be focused and
direct communication to a receiver, sharing is far more a
way of diffusing knowledge widespread (i.e., to multiple
people via for example a repository). These two definitions
are however just two extremes of an hypothetical continuum
in which characteristics of both terms can be combined [21].
Others authors also point out that knowledge sharing is about
exchanging tacit knowledge [22], while knowledge transfer
exchanges more explicit knowledge [23], [24].

Within the case study of Lee et al. [13], one out of three
problems related to a change in the final design of a car
where not new. Because of significant differences between
car models, knowledge on a specific problem (requiring a
design change) on one component or car model cannot be
easily transferred to another component or car model. The
knowledge in this case can therefore be classified as very
context-specific, consistent with the definition of episodic
knowledge by El Sawy et al. [13], [18]. This example

185

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

therefore shows how the type of knowledge also impacts
the transfer of knowledge.

III. NORMALIZED SYSTEMS

The Normalized Systems (NS) theory starts from the
postulate that software architectures should exhibit evolv-
ability due to ever changing business requirements, while
many indications are present that most current software
implementations do not conform with this evolvability req-
uisite. Evolvability in this theory is operationalized as being
the absence of so-called combinatorial effects: changes to
the system of which the impact is related to the size of
the system, not only to the kind of the change which is
performed. As the assumption is made that software systems
are subject to unlimited evolution (i.e., both additional
and changing requirements), such combinatorial effects are
obviously highly undesirable. In the event that changes are
dependent on the size of the system and the system itself
keeps on growing, changes proportional to the systems size
become ever more difficult to cope with (i.e., requiring
more efforts) and hence hampering evolvability. Normalized
Systems theory further captures its software engineering
knowledge by offering a set of four theorems and five
elements, and enables the application of this knowledge
through pattern expansion of the elements. The theorems
consist of a set of formally proven principles which offer a
set of necessary conditions which should be strictly adhered
to, in order to obtain an evolvable software architecture
(i.e., in absence of combinatorial effects). The elements
offer a set of predefined higher-level structures, primitives
or “building blocks” offering an unambiguous blueprint for
the implementation of the core functionalities of realistic
information systems, adhering to the four stated principles
[25].

A. Theorems

Normalized Systems theory proposes four theorems,
which have been proven to be necessary conditions to obtain
software architectures in absence of combinatorial effects
[26] :

• Separation of Concerns, requiring that every change
driver (concern) is separated from other concerns by
separating it in its own construct;

• Data Version Transparency, requiring that data entities
can be updated without impacting the entities using it
as an input or producing it as an output;

• Action Version Transparency, requiring that an action
entity can be upgraded without impacting its calling
components;

• Separation of States, requiring that each step in a work-
flow is separated from the others in time by keeping
state after every step.

In terms of knowledge management, as mentioned ex-
plicitly in [27], it must clearly be noted that the design

theorems proposed are not new themselves; in fact, they
relate to well-known (but often tacit or implicit) heuristic
design knowledge of experienced software developers. For
instance, well-known concepts such as an integration bus, a
separated external workflow or the use of multiple tiers can
all be seen as manifestations of the Separation of Concerns
theorem [27]. Consequently, the added value of the theorems
should then rather be situated in the fact that they (1)
make certain aspects of that heuristic design knowledge
explicit, (2) offer this knowledge in an unambiguous way
(i.e., violations against the theorems can be proven), (3)
are unified based on one single postulate (i.e., the need
for evolvable software architectures having no combinatorial
effects) and (4) have all been proven in a formal way in [26].

B. Normalized Systems Elements as Patterns

The theorems stated above illustrate that traditional soft-
ware primitives do not offer explicit mechanisms to incorpo-
rate the principles. As (1) each violation of the NS theorems
during any stage of the development process results in
a combinatorial effect, and (2) the systematic application
of these theorems results in very fine-grained structures,
it becomes extremely challenging for a human developer
to consistently obtain such modular structures. Indeed, the
fine-grained modular structure might become a complexity-
issue on its own when performed “from scratch”. Therefore,
NS theory proposes a set of five elements as encapsulated
higher-level patterns complying with the four theorems:

• data elements, being the structured encapsulation of a
data construct into a data element (having get- and set-
methods, exhibiting version transparency,etc.);

• action elements, being the structured encapsulation of
an action construct into an action element;

• workflow elements, being the structured encapsulation
of software constructs into a workflow element describ-
ing the sequence in which a set of action elements
should be performed in order to fulfill a flow;

• connector elements, being the structured encapsulation
of software constructs into a connector element allow-
ing external systems to interact with the NS system
without calling components in a stateless way;

• trigger elements, being the structured encapsulation of
software constructs into a trigger element controlling
the states of the system and checking whether any
action element should be triggered accordingly.

More extensive descriptions of these elements have been
included in other papers (e.g., [25]–[27]). As these elab-
orated descriptions would offer little to no value to this
paper, they were not included here. Each of the elements
is a pattern as it represents a recurring set of constructs:
besides the intended, encapsulated core construct, also a set
of relevant cross-cutting concerns (such as remote access,
logging, access control, etc.) is incorporated in each of these
elements. For each of the patterns, it is further described

186

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in [27] how they facilitate a set of anticipated changes in a
stable way. In essence, these elements offer a set of building
blocks, offering the core functionalities for contemporary
information systems. In this sense, the NS patterns might
offer the necessary simplification by offering pre-constructed
structures that can be parametrized during implementation
efforts. This way the NS patterns dictate the source code for
implementing the pattern.

Regarding these patterns, it can be noted that their def-
inition and identification are based on the implications of
the set of theorems. For instance, the theorems Separation
of Concerns (SoC) and Separation of States (SoS) indicate
the need to formulate a workflow element. Contrary (and
in addition) to an action element, such a workflow ele-
ment allows the stateful invocation of action elements in a
(workflow) construct. The SoS principle indeed requires this
kind of stateful invocation and the SoC principle demands
that the concern of invocation is handled by a separate
construct. Next, each of the five patterns themselves contain
knowledge concerning all the implications of the theorems
referred to in Section III-A. Finally, each of these patterns
has been described in a very detailed way. Consider for
instance a data element in a Java Enterprise Edition (JEE)
implementation (a widely used platform for the development
of distributed systems) [28]. In [27] it is discussed how a
data element Obj is associated with a bean class ObjBean,
interfaces ObjLocal and ObjRemote, home interfaces
ObjHomeLocal and ObjHomeRemote, transport classes
ObjDetails and ObjInfo, deployment descriptors and
EJB-QL for finder methods. Additionally, methods to ma-
nipulate a data element’s bean class (create, delete, etc.)
and to retrieve the two serializable transport classes are
incorporated. Finally, to provide remote access, an agent
class ObjAgent with several lifecycle manipulation and
details retrieval methods is included. It can be argued that
these elements incorporate the main concerns which are
relevant for their function.

Moreover, the complete set of elements covers the core
functionality of an information system. Consequently, as
such detailed description is provided for each of the
five elements, an NS application can be considered as
an aggregation of a set of instantiations of the ele-
ments. Consider for example the implementation of an
observer design pattern [19]. In order to implement this
pattern in NS, three data elements (i.e., Subscriber,
Subscription and Notification) are required. A
Notifier connector element will observe the subject,
and create instances of the Notification data element.
These Notification data elements will be sent to ev-
ery Subscriber that has a Subscription through a
Publisher connector element. The sending is triggered by
a PublishEngine trigger element which will periodically
activate a PublishFlow workflow element. Consider that
each NS element consists of around ten classes [25]. The

seven identified elements therefore result in around seventy
classes used to implement the design pattern, whereas the
original implementation of the design pattern consists of two
classes and two interfaces. Consequently, it is clear that, in
order to prevent combinatorial effects, a very fine-grained
modular structure needs to be adhered to.

C. Pattern Expansion

As stated before, in practice, the very fine-grained mod-
ular structure implied by the NS principles seems very
unlikely to arrive at without the use of higher-level primitives
or patterns. The process of defining these patterns and
transforming them into code is shown in Figure 2. As NS
proposes a set of five elements which serve for this purpose,
this figure shows how the actual software architecture of NS
conform software applications can be generated relatively
straightforward. First the requirements of the application
are translated in instantiations of the five NS elements. To
achieve generated software code, these instantiations need
to be created. Therefore, the instantiations are coded into
so-called descriptor files, which are text- or XML-based
files describing the inputs for the expanders. For example,
in case of the data element pattern, the pattern expansion
mechanism needs a set of parameters including the basic
name of the data element (e.g., Invoice), context infor-
mation (e.g., component and package name) and data field
information (e.g., data type). The expanders then generate
skeleton source code for all these instantiations, together
with all deployment and configuration files required to
construct a working application on one of several technology
stacks, such as Java Enterprise Edition. For the invoice
example, this would be the set of classes and data fields:
the bean class InvoiceBean, interfaces InvoiceLocal
and InvoiceRemote,etc. As the code generation process
is typically very fast, this allows for interactive sessions
to use the generated application to validate the correctness
of the descriptor files. Next, extensions can be added to
the generated code, but only in very specific pre-defined
locations in the generated code to ensure that the extension
do not compromise the control of combinatorial effects.
Extensions can be inserted typically in the implementation
class of an action element, or more generally in pre-specified
anchors in the code. Next, these extensions are harvested
by automated tools and stored separately from the skeleton
code. When a new version of the expanders is built, for
example with new frameworks in the web tier or in the
persistence tier, or with minor upgrades, the application is
re-generated by first expanding the skeleton code and then
injecting the extensions.

In terms of knowledge management, it should be noted
that the patterns and the expansion mechanism should not be
considered as separate knowledge reuse mechanisms: rather,
the pattern expansion facilitates the re-use of knowledge
embedded in the patterns, as each expansion of the patterns

187

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

���������	
���������
��������
��
����
��
��
�������
������������	�	
�	�����
����
�

��������	��������������������

����	����

����������������������

�����	
��
���������
�����
����
����
���������
��
�������
������
����

�����
�����	������
���
���������
������

���������������������

������	�����

!������
��
����������������������������

"��	�
��
����������
��
����#����
����	
�����������	����	����	����

�
�
�
�
�
�
��
�	

�
��

����
���

��
�	�����

�
���

�
��

�
�
��
�
��

�
�

Figure 2. Visual representation of the Normalized Systems development
process.

results in a new application of the knowledge encapsulated in
the pattern. Through this, pattern expansion facilitates both
types of learning discussed earlier (i.e., “learning by doing”
and learning from experience of other people) by utilizing
the knowledge contained in the patterns.

Also, the information codified in a pattern may not be
sufficient to adequately transfer the intended knowledge.
This is even the case when using the design patterns
proposed by Gamma et al. [19]. For example, it has been
claimed that the Dependency Inversion Principle helps to
gain a better understanding of the Abstract Factory pattern
[29]. Similarly, the structure of the NS patterns can only be
understood when the NS theorems are taken into account.

IV. NORMALIZED SYSTEMS PATTERNS AS KNOWLEDGE
MANAGEMENT

In the previous sections, we explained four processes
that are widely regarded to be the essential processes of
knowledge management. We also outlined how Normalized
Systems theory employs a set of NS patterns to represent a
fine-grained modular structure which can be systematically

expanded to provide an evolvable software architecture. In
this section, we discuss how the use of NS patterns seems to
facilitate each of the four essential processes of knowledge
management as identified by Alavi and Leidner [10].

A. Knowledge Creation

As discussed in section III-B, Normalized Systems theory
relies on the use of patterns to capture design knowledge.
One of the main purposes of the use of patterns and
the associated pattern expansion mechanism, is to easily
incorporate new knowledge into the patterns themselves, and
the expanded NS applications in a second stage. Therefore,
Normalized Systems theory can be considered to easily
facilitate knowledge creation using IT artifacts (i.e., elements
as design patterns). This opportunity for knowledge creation
can be interpreted from two distinct perspectives.

First, improvements (i.e., new content) or changes (i.e.,
replacement of already existing knowledge such as typical
bug fixing or a new kind of algorithm) regarding the actual
functional parts of the system (i.e., the so-called ‘tasks’) are
easily incorporated in the whole system (i.e., transformed
from tacit into explicit knowledge). This because functional
parts that are different change drivers are separated accord-
ing to NS principles, meaning a single functional part is
the only place where any modifications have to be made
and the remainder of the system can easily interact with
the new task (and hence, use this knowledge). In NS terms,
we could call this kind of changes and expertise inclusions,
knowledge dispersion at the “sub-modular level” as only
changes and new knowledge are incorporated at the sub-
modular level of the tasks (and not in the modular structure
of the elements). In order to illustrate this first kind of
knowledge creation in NS, consider the developments on
the connector element. A user connector element allows
a user to interact with the application, for example by
offering create, read, update, delete and search (CRUDS)
functionality on a data element. Such connector elements
are expanded based on the parametrization of the data
elements, resulting in separate CRUDS screens for every
data element. In certain applications, the end users requested
that CRUDS functionality for different data elements is com-
bined within one page. This could be achieved, but only by
adding extensions to the expanded code from the connector
element. These extensions were performed by the same
team of programmers over and over again. After several
iterations, different ways of integrating CRUDS functionality
emerged, which were referred to by the programmers of
these extensions using specific names. For example, a screen
where a linked data element is added below another data
element is referred to as a “waterfall screen”. For such a
waterfall screen, a reoccurring extension needs to be made
every time. Once the specific code for creating this screen
is separated from other concerns, it can be added to the
connector element. Therefore, the user connector element

188

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

will be updated to provide the expansion such waterfall
screen without needing any extension. According to the
programmers, this can only be achieved because all other
concerns are removed from within the functional class of
the connector element, allowing them to focus solely on the
organization of the user interface components.

Second, knowledge can be incorporated at the “modular
level” as well. This kind of knowledge inclusion would
include change (e.g., an extra separated class in the pattern)
and modifications (e.g., improved persistence mechanism)
regarding the internal structure of an element (the pattern).
Indeed, once the basic structure or cross-cutting concern im-
plementation of an element is changed due to a certain iden-
tified need or improvement, the new best-practice knowledge
can be expanded throughout the whole (existing) modular
structure and used for new (i.e., additional) instantiations
of the elements. In order to further illustrate this second
kind of knowledge creation based on NS patterns, consider
the following example, based on real-life experience from
developers using NS.

For instance, one way to adopt a model-view-controller
(MVC) architecture in a JEE distributed programming envi-
ronment is by adopting (amongst others) the Struts frame-
work. In such MVC architecture, a separate controller is
responsible for handling an incoming request from the
client (e.g., a user via a web interface) and will invoke
(based on this request) the appropriate model (i.e., business
logic) and view (i.e., presentation format), after which the
result will eventually be returned to the client. Struts is
a framework providing the controller (ActionServlet) and
enabling the creation of templates for the presentation layer.
Obviously, security issues need to be handled properly in
such architecture as well. Applied to our example, these
security issues in Struts were handled in the implementation
of the Struts Action itself in a previous implementation
of our elements. In other words, the implementation class
itself was responsible for determining whether or not a
particular operation was allowed to be executed (based on
information such as the user’s access rights, the screen
in which the action was called, etc.). As a result, this
“security function” became present in all instantiations of
an action element type (i.e., each session). Moreover, this
resulted in a combinatorial effect as the impact of a change
such as switching towards an equivalent framework (i.e.,
handling similar functions as Struts), would entail a set
of changes dependent on the number of instantiated action
elements (and hence, on the size of the system). In order
to solve the identified combinatorial effect, the Separation
of Concern theorem has to be applied: separating the part
of the implementation class responsible for the discussed
security issues (i.e., a separate change driver) in its own
module within the action element. In our example, a separate
interceptor module was implemented, next to the already
existing implementation class. This way, not only the com-

binatorial effect was excluded, but the new knowledge in
terms of a separate interceptor class was applied to all action
elements after isolating the relevant implementation class
parts and executing the pattern expansion. Additionally, all
new applications will use the new action element.

Considering the underlying idea of design patterns and
the NS element, namely to transform tacit knowledge into
explicit knowledge, one can readily understand why theories
using design patterns (such as NS) mostly rely on “exter-
nalization” and “combination” regarding the relevant knowl-
edge management aspects. Thereby, both these knowledge
creation processes refer to the definition of new explicit
knowledge, be it from existing tacit knowledge (i.e. exter-
nalization) or existing explicit knowledge (i.e. combination).
First, the use of externalization is demonstrated by the fact
a lot of good programming practices (i.e., best-practices)
are incorporated in the structure of the elements themselves.
Indeed, while the NS theorems prescribe a set of necessary
conditions in order to attain evolvable and easily adaptable
software architectures, the elements provide a constructive
proof and explicit way of working regarding how to achieve
this in reality, which is generally conceived to be only
attainable by very highly experienced and skilled program-
mers. For instance, designing software architectures in such
a way that the cross-cutting concerns are integrated in a fine-
grained modular way is considered to be rather challenging.
The formulation of the elements in combination with the
expansion mechanism allow a way to externalize this ex-
perience and apply it at large scale. Second, one example
of the use of combination to formulate new explicit design
knowledge within NS, is the elimination of combinatorial
effects within a software application. Whenever violations of
the four NS principles are discovered within new software,
programmers report the violations and their effects to their
colleagues and supervisors. This way, a solution can be
found for eliminating the violations (using both tacit and
explicit knowledge).

B. Knowledge Storage/retrieval

Knowledge storage and retrieval should ensure that a cer-
tain expertise within companies is retained and placed easily
at the disposal of the relevant people within the organization,
in order to be applied at a later stage. In the Normalized
Systems approach, a major part of the knowledge is stored
within the NS elements. These elements offer a standard-
ized way to create (i.e., generate) software applications by
prescribing a set of predefined and systematically re-used
modules. Consequently, the use of design patterns (i.e.,
the NS elements) facilitates the translation of individual
knowledge to organizational knowledge by offering a central
organizational knowledge base (i.e., the design patterns).
The design patterns within this knowledge repository can be
accessed by all programmers for both storage and retrieval
of the latest iteration of the design pattern, and can hence

189

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be considered to be a part of the organizational memory.
With Normalized Systems, this advantage of re-using the
“standard” design patterns is in fact exceeded by the benefit
of using a solution that —from an evolvability viewpoint—
is proven to be optimal.

To further position knowledge used within Normalized
Systems, we can refer once more to the classification of
El Sawy et al. [18], which breaks down organizational
memory into semantic memory and episodic memory. As
the design patterns formulate a sound software structure that
is generally applicable to every software application, this
knowledge should be classified as semantic knowledge. The
opposite of this general and explicit semantic knowledge
is the so-called episodic knowledge, which is defined as
context-specific knowledge. As Normalized Systems formu-
lates general software architecture principles for software,
this type of organizational knowledge is not part of the
general Normalized Systems patterns. This context-specific
knowledge in incorporated in so-called extensions that are
added to the software after the expansion based on the five
recurrent elementary structures. Because the patterns are
detailed enough to be instantiated, no manual implemen-
tation of the patterns (as is the case with the design patterns
proposed by Gamma et al. [19]) is required. Consequently,
an identical code structure reoccurs in every application
which is created using the expansion of NS elements. The
commonality of the structure of the patterns makes that
once one understands the patterns, one understands all its
instantiations as well. In this way, it could be argued that
—at least partially— the pattern structure becomes the docu-
mentation. Therefore, no source code level documentation is
required and all knowledge is stored in the NS patterns. Such
advantages can only be achieved for semantic knowledge,
since episodic knowledge is different is various contexts.

C. Knowledge Application

In the Normalized Systems theory rationale, the knowl-
edge present in the NS elements is applied by employing
the elements as a design template for evolvable software.
Each NS compliant software application is an aggregation
of a set of instantiation of one of the five NS elements.
Therefore, the knowledge of NS contained in the NS el-
ements and their accompanying expansion mechanism can
be considered to be prescriptions or directives as defined
by Grant [3] (i.e., a set of rather unambiguous and specific
standards or rules used to guide the actions of persons).
When writing a software application, a programmer retrieves
the latest version of the software design patterns from the
knowledge repository. Afterwards, the element instances
are parametrized and configured in descriptors files (e.g.,
the relevant fields, relationships,etc. for a data element are
specified). Hence, by combining their tacit knowledge with
the described structure of the NS elements, the programmers
build evolvable software.

The use of the NS elements and theorems indeed results
in evolvable and easily adaptable software architectures. For
instance, an important characteristic of these structures is
that they separate technology-dependent aspects from the
actual implementation, resulting in the fact that one can
easily switch the underlying technology stack of the soft-
ware. One transition that has been performed, is changing the
underlying implementation architecture from Enterprise Java
Beans (EJB) version 2 to EJB version 3. Because these stan-
dards encapsulate the business logic of an application, they
use a different way of communicating between agents and
beans. Therefore, this transition normally is a labor-intensive
and difficult task. Using the architecture described in this
paper, this transition can however be achieved rather easily
by using the pattern expansion mechanism. This is because
the expanders that perform the expansion are very similar
for different technologies. This is done by clearly separating
functional requirements of the system (i.e., input variables,
transfer functions and output variables) from constructional
aspects of the system (i.e., composition of the system).
Whereas all constructional aspects are described in patterns,
functional aspects are separately included in descriptor files
(such as data elements, action elements,etc.). As each pattern
can be conceived a recurring structure of programming
constructs in a particular programming environment (e.g.,
classes), one can conclude that the functional/constructional
transformation then becomes located at one abstraction level
higher than before.

An important result from the application of knowledge
is that it is often combined with a learning process. By
building software using the expansion of NS elements, the
programmers improve both their tacit knowledge on building
(evolvable) software and explicit knowledge that will be
incorporated in the design pattern (i.e., NS elements). This
increased tacit knowledge (“experience”) will over time also
contribute to the definition of changes to the design patterns.
The inherent way of working implied by the NS expansion
mechanism (i.e., expanding software architectures by sys-
tematically instantiating the NS elements, and incorporating
new bits knowledge again into this core of patterns) also
efficiently copes with the issue articulated in Section II-C,
namely that the automated ways of working should be
continually kept up-to-date.

D. Knowledge Transfer

Within a knowledge system, knowledge is transferred
from where it is available (i.e., a repository) to where it is
needed. For Normalized Systems, the knowledge repository
of the NS design patterns (NS elements) needs consistent
updating to reflect the most recent software architecture
for evolvable software. This is done by transferring the
new explicit design knowledge created by individuals to the
group semantic knowledge repository of NS elements. The
use of this repository can be characterized as impersonal

190

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and formal, which promotes a faster and further distribution
and is a good way to transfer knowledge that can be
readily generalized to other contexts (which is the case for
NS) [10]. Analogously to the discussion in Section II, the
exchange of explicit knowledge (i.e., NS elements) in NS
theory can be classified most appropriately as knowledge
transfer. The use of a NS repository however bears closer
resemblance to knowledge sharing process. This shows that
the exchange of NS knowledge should be placed on the
previously discussed continuum between knowledge transfer
and knowledge sharing.

V. DISCUSSION

In this section, in order to provide a summarizing
overview of our analysis presented above, we will first dis-
cuss to which extent the knowledge management practices
within Normalized Systems cover all aspects as identified
by Alavi and Leidner [10], based on Figure 1. Next, we
will present some reflections with respect to design patterns
in general and how the use of elements within Normalized
Systems seems to enhance the existing practices of design
patterns regarding knowledge management on several do-
mains.

A. Overview of knowledge management aspects of Normal-
ized Systems

To recapitulate the NS knowledge management processes,
we will discuss these processes according to the represen-
tation introduced by Alavi and Leidner [10], as shown in
Figure 1. This figure has been adapted to represent whether
or not the defined knowledge processes are used within
Normalized Systems theory. This is done by indicating those
processes which are not covered by the Normalized Systems
theory by dotted lines. Consequently, full lines indicate the
knowledge processes that are used within NS knowledge
management.

Regarding the knowledge management creation processes
(i.e., arrows C, D, E, and F), we can notice that the Nor-
malized Systems theory primarily enables the externalization
and combination processes (i.e., the processes indicated by
the arrows C and F respectively). These processes aim to
make implicit knowledge and best practices explicit (as is
done by the formulation of the NS theorems and elements)
and to combine already existing explicit knowledge among
several members of the group (e.g., discussing additional
concerns which need to be separated or improvements of
the current elements). While the processes of socialization
(i.e., arrow E) and internalization (i.e., arrow D) might oc-
casionally occur in the NS community, those aspects are not
explicitly managed within the Normalized Systems rationale.
Indeed, the aim of the Normalized Systems approach is to
design evolvable software architectures based on formally
proven and tested (and hence, explicit) principles and their
implications.

The bidirectional interaction between an individual’s ex-
plicit knowledge repository and the group’s memory is visu-
alized trough arrow G. In NS reasoning, such explicit knowl-
edge (e.g., the formally known need to separate a certain
external technology in a distinct module) becomes embedded
in the group’s memory by incorporating it in the general
structure of the NS elements and might subsequently offer
new insights regarding the explicit knowledge of another
person as well. Also arrows K and J are relevant in a NS
context. The first represents the application of a developer’s
new tacit insights (i.e., new possible improvements of the
elements) into a trial-version of the elements, while the latter
may occur in the situation where the real-life implementation
of software in an organizational setting may point out that
a certain part of of a ‘task’ implemented in an action
element evolves independently in a realistic setting, thus
constitutes a separate change driver and should consequently
be separated.

The transfer of individual tacit knowledge to group’s
episodic memory (i.e., arrows L), is a type of knowledge
transfer that is not used in NS knowledge management.
This simply because the knowledge repository does not
include any type of episodic memory, rendering the transfer
of knowledge non-existent. Arguably the most important
transfer of knowledge within NS theory is the expansion
of NS elements into evolvable software. This transfer is
shown by arrows I, which represent the repeated use of
design patterns (i.e., the NS elements) for building agile
software. In the opposite direction, directly learning from
the application of the NS elements is not supported in the
knowledge management for NS theory (i.e., arrows H). As
the Normalized Systems rationale stipulates a deterministic
and proven way of constructing evolvable software based
on the NS design theory, it does not allow new knowledge
to be formulated directly from the application of the NS
elements. Instead, new knowledge should always be rigor-
ously verified by traditional knowledge creation processes of
externalization and combination before being added to the
existing knowledge base of NS elements.

Finally, the extension of the NS knowledge management
to multiple groups will add an extra layer of complexity
to the management of knowledge. However, the centrality
of the current knowledge base and the limited size of
developers working on the development of the NS elements
are the reasons these challenges are not the main point of
interest at this moment.

B. Knowledge Management using Design Patterns

As discussed in the introduction, knowledge management
also plays an important parts in software engineering. The
specific use of design patterns in object-orientation during
the 90’s, exemplified by the seminal work of Gamma et al.
[19], was incited by the fact that modern computer literature
regularly failed to make tacit (success determining) knowl-

191

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

edge regarding low-level principles of good software design
explicit [30]. Patterns provide high-level solution templates
for often-occurring problems. The patterns proposed by
Gamma et al. [19] were conceived as the bundling of a set of
generally accepted high-quality and best-practice solutions
to frequently occurring problems in object-orientation pro-
gramming environments. For instance, in order to create an
one-to-many dependency between objects so that when the
state of one object changes, all its dependents are notified
and automatically updated, the observer pattern (i.e., an over-
all structure of classes giving a description or template of
how to solve the concerned problem) was proposed [19]. As
a consequence, the use of these patterns can be considered
as specifically aimed at facilitating (inter-)organizational
learning by learning from direct experiences of other people
— in this case experienced software engineers —, and being
one specific way of knowledge transfer.

According to Schmidt [31], design patterns have been so
successful because they explicitly capture knowledge that
experienced developers already understand implicitly. The
captured knowledge is called implicit because it is often
not captured adequately with design methods and notations.
Instead, it has been accumulated through timely processes of
trial and error. Capturing this expertise allows other devel-
opers to avoid spending time rediscovering these solutions.
Moreover, the captured knowledge has been claimed to
provide benefits in several areas [32]. Such benefits include
(a) documentation of software code, (b) knowledge reuse
when building new applications, and (c) incorporation of
new knowledge in existing software applications. In this
section, we focus on these benefits, and discuss how NS
elements can be considered to be an improvement on this
way of working.

1) Documentation: Patterns provide developers with a
vocabulary which can be used to document a design in a
more concise way [19], [32], [33]. For example, pattern-
based communication can be used to preserve design de-
cisions without elaborate descriptions. By delineating and
naming groups of classes which belong to the same pattern,
the descriptive complexity of the design documentation (e.g.,
a UML class diagram) can be reduced [33]. Consequently,
the vocabulary offered by patterns allows a shift in the
abstraction level of the discussions. This usage of design
patterns is mostly applied at the conceptual level, and ne-
glects the source code documentation. However, the abstract
nature of patterns, i.e., as a solution template, means that
it is possible to implement a certain design pattern using
different alternatives. Therefore, it has been argued that the
addition of source-code level documentation of the pattern
usage is required to perform coding and maintenance tasks
faster and with fewer errors [34].

In NS, the structure of the five software patterns could
be described in a similar way. The focus would then be on
the different concerns which need to be separated in each

element. As discussed in Section III, each concern needs
to be encapsulated in a separate module (e.g., a class in
the object-oriented paradigm). Consequently, the different
concerns dictate the modular structure of the element. As
a result, this documentation could provide similar insights
as obtained by traditional design patterns. However, the
NS elements are described in such detail that they can be
expanded, resulting in working code. In Section IV-B, we
discussed how the reoccurring code structure in itself be-
comes the documentation for expanded software: because a
certain piece of code is identical in every expanded instance,
a programmer only needs to inspect this piece of code once
in order to understand how that particular piece works. This
eliminates the need for including documentation in every
instance of source code. In conclusion, the pattern expansion
allows documentation at the pattern level to be sufficient,
eliminating the need for code-level documentation.

2) Using knowledge to build new applications: Several
authors propose the usage of design patterns to create new
software applications (e.g., [35]). Earlier we discussed how
patterns provide high-level solution templates, and conse-
quently, do not dictate the actual source code. As a result,
knowledge concerning the implementation platform remains
important. A correct and efficient implementation of a design
pattern requires a careful selection of language features [31].
Clearly, design patterns alone are not sufficient to build
software. As a result, the implementation of a design pattern
during a software development process remains essentially
a complex activity [31]. Developing software for a con-
crete application then requires the concrete experience of
a domain and the specifics of the programming language,
as well as the ability to abstract away from details and
adhere to the structure prescribed by the design pattern.
Nevertheless, certain companies and researchers attempt to
integrate the knowledge available in design patterns in other
approaches, in order to create automated code generation.
For example, so-called software factories attempt to create
software similar to automated manufacturing plants [36].
This should drastically improve software development pro-
ductivity. However, such approaches have not yet reached
widespread adoption.

The code expansion which occurs when using NS ele-
ments needs to be distinguished from this approach. Con-
sider for example the action element. The functional class
of such an element still needs to be programmed manually.
However, the code for reoccurring concerns, such as remote
access, can be expanded since this code is identical for
different action element instantiations. Similarly, an instan-
tiation of a data element needs to be functionally defined
(i.e., through descriptor files which contain data field defi-
nitions). However, the concerns which reoccur in every data
element instantiation are expanded. In Section IV-C, these
are referred to as constructional elements. Consequently,
the building of new applications applies code reuse to an

192

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

extent as large as possible: the common source code, which
is similar for all element instantiations, is expanded, while
functional requirements need to be provided by the program-
mer. As a result, an optimal way of using knowledge to build
applications is applied, without restricting the programmer
in addressing functional requirements.

3) Incorporating new knowledge in existing applications:
Because of the increasing change in the organizational envi-
ronment in which software applications are used, adaptabil-
ity is considered to be an important characteristic. However,
adapting software remains a complex task. Various studies
have shown that the main part of the software development
cost is spent after the initial deployment [37], [38]. Several
design patterns focus on incorporating adaptability into their
solution template. Empirical observations have been reported
which confirm the increased adaptability when using de-
sign patterns [39]. Adaptations could be made easier in
comparison with an alternative that was programmed using
no design patterns, and achieved adaptability was retained
more successfully because of the prescribed structure. Nev-
ertheless, some researchers also report negative effects on
adaptability, caused by the added complexity of the design
patterns. By prescribing additional classes in comparison to
simpler solutions, more errors have been introduced in some
cases [39].

Both observations are consistent with the experiences ob-
tained by developing NS. By separating all concerns within
the elements, combinatorial effects are prevented, which
allows improved adaptability. Since this is similar to how
design patterns work, it shows how NS incorporates existing
design knowledge. However, NS prescribes to separate more
concerns than traditional patterns or methods. This leads to
a very fine-grained, but complex structure. As described by
Prechelt et al., such complexity reduces adaptability [39].
Therefore, the pattern expansion mechanism is a crucial
component of NS, as discussed in Section III-C. We dis-
cussed how code expansion seems to be indispensable for
knowledge reuse to separate concerns and prevent combina-
torial effects. Moreover, the expansion mechanism also al-
lows to make adaptations in a structured way. When changes
or updates are applied to the elements, the expanded code
can be updated by either re-expanding, or by using marginal
expansion. Marginal expansion updates only parts of already
expanded code, without replacing the expanded element as a
whole. Consequently, newly generated knowledge (such as,
e.g., a newly identified combinatorial effect) can be applied
in existing applications as well.

C. Positioning NS as knowledge management

The approach of capturing knowledge using NS as de-
scribed in this paper clearly deviates from the body of
thought of other knowledge management approaches. For
example, in the article by Tuzilin [12], the evolution of
knowledge management systems from content management

systems is discussed, and it is highlighted how the process
of making tacit knowledge explicit was initially regarded
to be optimal for capturing knowledge. However, as this
proved to be an insurmountable challenge, future devel-
opments of knowledge management are expected to focus
on the indexation of tacit knowledge. Consequently, when
knowledge is needed, the responsible knowledge source can
be identified, and can be shared without needing to make
all tacit knowledge explicit. NS theory opposes this idea.
The rate of reuse of the evolvable modular structure of
software elements is too high to be supported by such
communication-based approaches. Therefore, the knowledge
captured in NS (i.e., being the modular structure of evolvable
software patterns) is made explicit. Consider for example
the implications of the Separation of Concerns theorem, as
discussed in Section III-A. It implies that each concern needs
to be separated in a separate module. Compare this to a non-
normalized system, where multiple concerns are mixed in a
module. These concerns are on a sub-modular level, and are
not explicitly identified as different concerns. Nevertheless,
knowledge of these concerns is vital, since they introduce
combinatorial effects, and hence limit evolvability. The
knowledge related to which concerns need to be separated
is made explicit in NS through the modular structure, as
available in the expanders.

Our discussed way of knowledge capture in NS is feasible
since a specific kind of knowledge is focused on: the modu-
lar structure of software. For organizational knowledge, such
a modular structure may not be well-suited, and different
systems may be needed here (cf. infra). Nevertheless, many
organizational issues are being studied as being modular
structures. For example, coordination issues in supply chains
have been claimed to be modularity issues [40]–[42]. Conse-
quently, making knowledge concerning such issues explicit
in a modular structure could be explored as well.

D. Contributions and Future Work

This paper could be claimed to have several contri-
butions, while indicating several opportunities of future
work. Regarding contributions, first, this paper might help
in clarifying the particular way of how software applica-
tions are built according to the Normalized Systems way
of thinking and —more specifically— how this enables
the creation, storage/retrieval, application and transfer of
knowledge. Our aim was to provide a practical overview,
including examples, of how NS might enhance knowledge
management in practice, based on a theoretically founded
framework and its concepts. Second, this paper illustrates
the possibility of readily applying the published frame-
work of Alavi and Leidner [10] to analyze the knowledge
management processes regarding a software development
approach. To the authors’ knowledge, no other researchers
have described their software development approach based
on this framework in such an extensive way. Therefore, this

193

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

paper illustrates the benefits researchers might realize by
presenting their software development approach according
to this framework for clarifying any related knowledge
management benefits or issues, as well as the relevance
of the considered framework for this purpose. Third, our
analysis clearly highlighted how NS differentiates from the
direction which is taken in other knowledge management
approaches. In NS, knowledge is made explicit by capturing
it into modular structures of evolvable software patterns,
instead of pure textual descriptions. While we are not
the first to argue that more efficient ways of knowledge
management can be attained by the use of design patterns,
we argued that the NS patterns could be hypothesized to be a
sort of “enhanced design patterns” regarding documentation
(i.e., only requiring documentation at the pattern level),
knowledge usage (i.e., maximal code expansion) and new
knowledge incorporation (i.e., including new knowledge by
simple re-expansion or marginal expansions).

Regarding future work, we could first notice that, although
the discussion in this paper is limited to Normalized Systems
theory for software, the theory has recently been applied
to both Business Process Management [43] and Enterprise
Architecture [44] domains. As part of future research, the
possible formulation and investigation of patterns on the
level of business processes and enterprise architecture (and
their knowledge management implications) can be studied.
However, we already mentioned in Section V-C that the
concerns (and hence modular structures) identified at these
levels are of a different kind. Therefore, the knowledge
management issues regarding the identification, storage and
“deployment” of such modular structures at the organiza-
tional level should be investigated in the future as well.

Another area of future research concerns a more elab-
orated and detailed way of describing how the discussed
knowledge management processes in NS relate to similar
software development approaches. The Normalized Systems
approach was shown to include and support the four widely
adopted types of knowledge management processes. The
question however remains how the support of these knowl-
edge management processes by NS precisely relates to other
software development paradigms and approaches. Such a
comparison calls for rather extensive research efforts and
is therefore suggested as part of future research.

VI. CONCLUSION

Creating, managing and applying knowledge is a crucial
competence for organizations today. Therefore, knowledge
management is a widely investigated and popular research
topic. In this paper, we explored how Normalized Sys-
tems theory, and its use of elements and their expansion
mechanisms in particular, support knowledge management
in the development process of evolvable software. For this
purpose, we employed the framework of Alavi and Leidner
[10] to analyze how the four essential processes within

knowledge management are facilitated in the Normalized
Systems reasoning: (1) knowledge creation, (2) knowledge
storage/retrieval, (3) knowledge application and (4) knowl-
edge transfer. Our analysis shows that design patterns as
a central knowledge repository facilitate the transfer of
knowledge from an individual to others in an explicit and
efficient way. All processes of Alavi and Leidner [10] seem
to be supported by Normalized Systems reasoning. Some
transformations are considered to be essential (e.g., new
knowledge can be absorbed by arrow J in Figure 1 going
from “knowledge application” to an individual tacit knowl-
edge), while others are not directly (but rather indirectly)
included in the NS rationale (e.g., not directly incorporating
knowledge from applications into the group’s memory, but
through the knowledge creation processes of externalization
and combination).

Further, we showed in this paper that the NS elements
can be considered to be enhanced patterns for software de-
velopment with benefits on three dimensions (i.e., less need
for explicit documentation, more deterministic development
of new applications and more convenient incorporation of
new knowledge into existing applications). From interviews
with developers, these benefits have shown to enhance the
transfer of knowledge, success rate and the overall quality
of NS developments.

ACKNOWLEDGMENT

P.D.B. is supported by a Research Grant of the Agency for
Innovation by Science and Technology in Flanders (IWT).

REFERENCES

[1] P. De Bruyn, P. Huysmans, G. Oorts, D. Van Nuffel, H. Man-
naert, J. Verelst, and A. Oorst, “Using normalized systems
patterns as knowledge management,” in Proceedings of the
Seventh International Conference of Software Engineering
Advances (ICSEA), Lisbon, Portugal, 2012, pp. 28–33.

[2] B. Wernerfelt, “A resource-based view of the firm,” Strategic
Management Journal, vol. 5, no. 2, pp. 171–180, 1984.

[3] R. M. Grant, “Toward a knowledge-based theory of the firm,”
Strategic Management Journal, vol. 17, pp. 109–122, 1996.

[4] F. Bjrnson and T. Dingsyr, “Knowledge management in
software engineering: A systematic review of studied con-
cepts, findings and research methods used,” Information and
Software Technology, vol. 50, no. 11, pp. 1055–1068, 2008.

[5] P. Attewell, “Technology diffusion and organizational learn-
ing: The case of business computing,” Organization Science,
vol. 3, no. 1, pp. 1–19, 1992.

[6] B. Levitt and J. G. March, “Organizational learning,” Annual
Review of Sociology, vol. 14, pp. 319–340, 1988.

[7] C. Chewar and D. McCrickaerd, “Links for a human-centered
science of design: integrated design knowledge environments
for a software development process,” in Proceedings of the
Hawaii International Conference on System Sciences, 2005,
p. 256.3.

194

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] T. Dings yr, H. K. Djarraya, and E. Røyrvik, “Practical
knowledge management tool use in a software consulting
company,” Communications of the ACM, vol. 48, no. 12, pp.
96–100, 2005.

[9] F. Bjrnson and T. Dingsyr, “A study of a mentoring program
for knowledge transfer in a small software consultancy com-
pany,” in Product Focused Software Process Improvement,
ser. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2005, vol. 3547, pp. 245–256.

[10] M. Alavi and D. E. Leidner, “Review: Knowledge man-
agement and knowledge management systems: Conceptual
foundations and research issues,” MIS Quarterly, vol. 25,
no. 1, pp. 107–136, 2001.

[11] N. K. Kakabadse, A. Kakabadse, and A. Kouzmin, “Re-
viewing the knowledge management literature: towards a
taxonomy,” Journal of Knowledge Management, vol. 7, no. 4,
pp. 75–91, 2003.

[12] A. Tuzhilin, “Knowledge management revisited: Old dogs,
new tricks,” ACM Trans. Manage. Inf. Syst., vol. 2, no. 3, pp.
13:1–13:11, 2011.

[13] H. Lee, H. Ahn, J. Kim, and S. Park, “Capturing and reusing
knowledge in engineering change management: A case of au-
tomobile development,” Information Systems Frontiers, vol. 8,
pp. 375–394, 2006.

[14] I. Nonaka, “A dynamic theory of organizational knowledge
creation.” Organization Science, vol. 5, no. 1, pp. 14–37,
1994.

[15] L. Argote, S. L. Beckman, and D. Epple, “The persistence
and transfer of learning in industrial settings,” Manage. Sci.,
vol. 36, no. 2, pp. 140–154, 1990.

[16] E. D. Darr, L. Argote, and D. Epple, “The acquisition, trans-
fer, and depreciation of knowledge in service organizations:
productivity in franchises,” Manage. Sci., vol. 41, no. 11, pp.
1750–1762, 1995.

[17] E. W. Stein and V. Zwass, “Actualizing organizational me-
mory with information systems,” Information Systems Re-
search, vol. 6, no. 2, pp. 85–117, 1995.

[18] O. A. El Sawy, G. M. Gomes, and M. V. Gonzalez, “Pre-
serving institutional memory: The management of history as
an organizational resource.” Academy of Management Best
Papers Proceedings, vol. 1, pp. 118–122, 1986.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley Professional, 1994.

[20] J. A. Kumar and L. Ganesh, “Research on knowledge trans-
fer in organizations: a morphology,” Journal of Knowledge
Management, vol. 13, pp. 161–174, 2009.

[21] W. R. King, T. R. Chung, and M. H. Haney, “Knowledge
management and organizational learning,” Omega, vol. 36,
no. 2, pp. 167–172, 2008.

[22] M. Polanyi, The Tacit Dimension. Routledge, London, 1967.

[23] M. Hansen, N. Nohria, and T. Tierney, “Whats your strategy
for managing knowledge?” Harvard Business Review, vol. 77,
no. 2, pp. 106–116, 1999.

[24] I. Pinho, A. Rego, and M. Pina e Cunha, “Improving knowl-
edge management processes: a hybrid positive approach,”
Journal of Knowledge Management, vol. 16, no. 2, pp. 215–
242, 2012.

[25] H. Mannaert and J. Verelst, Normalized systems: re-creating
information technology based on laws for software evolvabil-
ity. Koppa, 2009.

[26] H. Mannaert, J. Verelst, and K. Ven, “The transformation of
requirements into software primitives: Studying evolvability
based on systems theoretic stability,” Science of Computer
Programming, vol. 76, no. 12, pp. 1210–1222, 2011.

[27] ——, “Towards evolvable software architectures based on
systems theoretic stability,” Software: Practice and Experi-
ence, vol. 42, pp. 89–116, 2012.

[28] Oracle. Java platform, enterprise edition. Last access
date: 04.01.2013. [Online]. Available: http://www.oracle.
com/technetwork/java/javaee/overview/index.html

[29] L. Welicki, J. Manuel, C. Lovelle, and L. J. Aguilar, “Patterns
meta-specification and cataloging: towards knowledge man-
agement in software engineering,” in Companion to the 21st
ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, 2006, pp. 679–680.

[30] J. Coplien, “The culture of patterns,” Computer Science and
Information Systems, vol. 1, no. 2, pp. 1–26, 2004.

[31] D. C. Schmidt, “Using design patterns to develop reusable
object-oriented communication software,” Commun. ACM,
vol. 38, no. 10, pp. 65–74, 1995.

[32] D. Riehle, “Lessons learned from using design patterns in
industry projects,” in Transactions on pattern languages of
programming II, J. Noble and R. Johnson, Eds. Berlin,
Heidelberg: Springer-Verlag, 2011, ch. Lessons learned from
using design patterns in industry projects, pp. 1–15.

[33] G. Odenthal and K. Quibeldey-Cirkel, “Using patterns for
design and documentation,” in ECOOP, 1997, pp. 511–529.

[34] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. F.
Tichy, “Two controlled experiments assessing the usefulness
of design pattern documentation in program maintenance,”
IEEE Trans. Softw. Eng., vol. 28, no. 6, pp. 595–606, 2002.

[35] C. Larman, Applying UML and Patterns. Prentice Hall, 1997.

[36] J. Greenfield and K. Short, “Software factories: assembling
applications with patterns, models, frameworks and tools,” in
Companion of the 18th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications, 2003, pp. 16–27.

[37] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using met-
rics to evaluate software system maintainability,” Computer,
vol. 27, no. 8, pp. 44–49, 1994.

195

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[38] R. L. Glass, “Maintenance: Less is not more,” IEEE Software,
vol. 15, no. 4, pp. 67–68, 1998.

[39] L. Prechelt, B. Unger, W. Tichy, P. Brossler, and L. Votta,
“A controlled experiment in maintenance: comparing design
patterns to simpler solutions,” Software Engineering, IEEE
Transactions on, vol. 27, no. 12, pp. 1134–1144, 2001.

[40] S. K. Ethiraj and D. Levinthal, “Bounded rationality and the
search for organizational architecture: An evolutionary per-
spective on the design of organizations and their evolvability.”
Administrative Science Quarterly, vol. 49, no. 3, pp. 404–437,
2004.

[41] C. Y. Baldwin and K. B. Clark, Design Rules, Volume 1: The
Power of Modularity, ser. MIT Press Books. The MIT Press,
January 2000.

[42] Y. K. Ro, J. K. Liker, and S. K. Fixson, “Modularity as a
strategy for supply chain coordination: The case of u.s. auto,”
Engineering Management, IEEE Transactions on, vol. 54,
no. 1, pp. 172 –189, feb. 2007.

[43] D. Van Nuffel, “Towards designing modular and evolv-
able business processes,” Ph.D. dissertation, University of
Antwerp, 2011.

[44] P. Huysmans, “On the feasibility of normalized enterprises:
Applying normalized systems theory to the high-level design
of enterprises,” Ph.D. dissertation, University of Antwerp,
2011.

196

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Enhancing the Performance of J2EE Applications through Entity Consolidation

Design Patterns

Reinhard Klemm

Collaborative Applications Research Department

Avaya Labs Research

Basking Ridge, New Jersey, U.S.A.

klemm@research.avayalabs.com

Abstract— J2EE is a specification of services and interfaces

that support the design and implementation of Java server

applications. Persistent and transacted entity Enterprise

JavaBean objects are important components in J2EE

applications. The persistence and transaction semantics of

entity Enterprise JavaBeans, however, lead to a sometimes

significantly decreased performance relative to traditional

Java objects. From an application performance point of view, a

J2EE-compliant object persistence and transaction mechanism

with a lower performance penalty would be highly desirable.

In this article, we present and evaluate two J2EE software

design patterns aimed at enhancing the performance of entity

Enterprise JavaBeans in J2EE applications with large

numbers of JavaBean instances. Both design patterns

consolidate multiple real-world entities of the same type, such

as users and communication sessions, into a single consolidated

entity Enterprise JavaBean. The entity consolidation results in

a smaller number of entity JavaBean instances in a given J2EE

application, thereby increasing JavaBean cache hit rates and

database search performance. We present detailed

experimental assessments of performance gains due to entity

consolidation and show that consolidated Enterprise

JavaBeans can accelerate common JavaBean operations in

large-data J2EE applications by factors of more than 2.

Keywords-Enterprise Java Beans; object caching; object

consolidation; software design patterns; software performance

I. INTRODUCTION

In this article, we extend our earlier work on
performance-enhancing J2EE software design patterns
published in [1]. To make the article self-contained and thus
easier to read, we include a comprehensive description of the
research presented in [1]. The focus of our work is entity
Enterprise JavaBeans (EJBs) [2]. Entity EJB objects take
advantage of a plethora of platform services from EJB
containers in J2EE application servers [3]. Examples of
platform services are data persistence, object caching and
pooling, object lifecycle management, database connection
pooling, transaction semantics and concurrency control,
entity relationship management, security, and clustering. EJB
containers obviate the need for redeveloping such generic
functionality for each application and thus allow developers
to more quickly build complex and robust server-side
applications.

A common and important component in J2EE application
servers is an in-memory EJB cache that speeds up access to
entity EJBs in an application’s working set [4]. Yet, common
entity EJB operations such as creating, accessing, modifying,

and removing entity EJBs tend to execute much more slowly
than analogous operations for traditional Java objects (J2SE
objects, also often referred to as Plain Old Java Objects or
simply POJOs) that do not implement the functional
equivalent of the J2EE platform services. The performance
of data-intensive J2EE applications, i. e., those with large
numbers of entity EJBs, can therefore be much slower than
desired.

Although not mandated by the EJB specification, entity
EJBs are typically stored as rows in relational database tables
and we will assume this type of storage in the remainder of
this article. Furthermore, we will concentrate on entity EJBs
with container-managed persistence (CMP) rather than bean-
managed persistence (BMP). CMP entity EJBs have the
advantage of receiving more platform assistance than BMP
entity EJBs and are thus usually preferable from a software
engineering point of view. They also tend to perform better
than BMP entity EJBs because of extensive application-
independent performance optimizations that EJB containers
incorporate for CMP EJBs [5]. For the sake of simplicity, we
will refer to CMP entity EJBs simply as “EJBs”.

Note that the mapping from EJBs to database tables and
the data transfer between cached EJBs and the database is the
responsibility of the proprietary J2EE platform and can
therefore be only minimally influenced by the EJB
developer. Hence, we cannot discuss the direct impact of the
design patterns presented in this article on structural or
operational details of the data persistence layer of the J2EE
platform. Instead, we will discuss how our technique
changes the characteristics of the EJB layer that is under the
control of the EJB developer and show how these changes
affect the overall performance of EJB operations.

In the past, much research into improving J2EE
application performance has focused on tuning the
configuration of EJBs and of the EJB operating environment
consisting of J2EE application servers, databases, Web
servers, and hardware. In addition, some software
engineering methods such as software design patterns and
coding guidelines have been developed to address
performance issues with J2EE applications. This article
presents two J2EE software design patterns for accelerating
J2EE applications. Both patterns result in specialized EJBs
that we call consolidated EJBs (CEJBs). By applying the
first pattern, we obtain fixed-size consolidated EJBs
(fCEJBs). Fixed-size CEJBs are the topic of our earlier work
published in [1]. The second, new pattern generates variable-
size consolidated EJBs (vCEJBs). Both CEJB patterns
attempt to optimize the caching and database storage of EJBs

197

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for enhanced execution speed of common EJB operations
(creating, accessing, modifying, and removing entities).

We devised these two software design patterns during a
multiyear research project at Avaya Labs Research where we
developed a J2EE-based context aware communications
middleware called Mercury. Mercury operates on a large
number of EJB instances that represent enterprise users and
communication sessions (hence our User and Session EJB
examples later in this article). Due to the large frequency of
retrieval, query, and update operations on these EJBs,
Mercury suffered from slow performance even after tuning
J2EE application server and database settings. Thus, we felt
compelled to investigate structural changes to Mercury’s
J2EE implementation as a remedy for the performance
problems and arrived at the CEJB design patterns. The
technical discussion in this article will show that our design
patterns are more generally applicable in a wide range of
J2EE applications.

The J2EE and entity Enterprise JavaBeans specifications
that we refer to in this article have meanwhile been
supplanted by updated standards and with a new
terminology: The J2EE 1.4 specification has been replaced
with Java EE 6 [6], and the entity EJBs in the Enterprise
JavaBeans specification 2.1 have been replaced with entities
according to the Java Persistence API 2.0 [7]. The software
design patterns in this article remain equally relevant in the
context of the new specifications and require mostly
syntactic changes.

The remainder of this article is organized as follows. In
Section II, we describe some of the related work. Section III
contains an overview of the key idea behind both CEJB
software design patterns. Section IV presents the fCEJB
pattern and its use in J2EE applications. We describe the
details of fCEJB allocation, the mapping of entities to
fCEJBs, the storage of entities within fCEJBs, and retrieval
of entities from fCEJBs. Similarly, Section V contains a
detailed explanation of the vCEJB pattern. We compare the
performance of fCEJBs, vCEJBs, and traditional EJBs in
Section VI. A summary and an outline of future work
conclude the article in Section VII.

II. RELATED WORK

The performance penalty of using EJBs in J2EE
applications has been well documented in the relevant
literature, some of which we review in this section. A
substantial number of articles present various remedies for
this performance penalty, ranging from performance-tuning
of application servers to alternative object persistence
mechanisms to performance-enhancing EJB software design
patterns. However, to our knowledge, our CEJBs are the first
application-level approach that yields verified, substantial
performance improvements in a wide range of J2EE
applications where alternatives to EJBs are not acceptable,
practical, or desirable. In our earlier research presented in [1]
we introduced fCEJBs as a performance-enhancing J2EE
software design pattern. However, in the presence of entities
that do not have the cluster property that we describe in
Section IV, fCEJBs perform no better than traditional EJBs.

Our new vCEJB design pattern aims at addressing this
shortcoming of fCEJBs.

Much research has been devoted to speeding up J2EE
applications by tuning EJBs and J2EE application server
parameters. Pugh and Spacco [8] and Raghavachari et al. [9]
discuss the potentially large performance impact and
difficulties of tuning J2EE application servers, connected
software systems such as databases, and the underlying
hardware. In contrast, CEJBs constitute an application-level
technique to attain additional J2EE application speed-ups.

The MTE project [10][11] offers more insight into the
relationship between J2EE application server parameters,
application structure, and application deployment parameters
on the one hand and performance on the other hand. The
MTE project underscores the sensitivity of J2EE application
performance to application server parameters as well as to
the application structure and deployment parameters.

Another large body of research into J2EE application
performance has investigated the relationship between J2EE
software design patterns and performance. Cecchet et al. [12]
study the impact of the internal structure of a J2EE
application on its performance. Many examples of J2EE
design patterns such as the session façade EJB pattern can be
found in [13] and [14], while Cecchet et al. [15] and Rudzki
[16] discuss performance implications of selected J2EE
design patterns. The CEJB design patterns improve
specifically the performance of EJB caches and database
searches for EJBs. The Aggregate Entity Bean Pattern [17]
consolidates logically dependent entities of different types
into the same EJB while CEJBs consolidate entities of the
same type into an EJB. Converting EJBs into CEJBs can
therefore be automated by a tool whereas the aggregation
pattern requires knowledge of the specific application and
the logical dependencies of its entities. Aggregation and
CEJBs can be synergistically used in the same application to
increase overall execution speed. No performance
measurements are reported in [17].

Leff and Rayfield [4] show the importance of an EJB
cache in a J2EE application server for improving application
performance. We can find an in-depth study of performance
issues with entity EJBs in [5]. The authors point out that
caching is one of the greatest benefits of using entity EJBs
provided that the EJB cache is properly configured and entity
EJB transaction settings are optimized.

Our CEJB design patterns comply with the EJB
specification and therefore can be applied to any J2EE
application on any J2EE application server. Several J2SE-
based technologies, from Java Data Objects (JDO) to Java
Object Serialization (JOS), sacrifice the benefit of J2EE
platform services in return for much higher performance than
would be possible on a J2EE platform. Jordan [18] provides
an extensive comparison of EJB data persistence and several
J2SE-based data persistence mechanisms and their relative
performance. The comparison includes EJB, JDO, Java
Database Connectivity (JDBC), Orthogonal Persistence
(OPJ), JavaBeans Persistence (JBP), and Java Object
Serialization (JOS). Interestingly, the comparison revealed
that EJBs had the worst performance among the compared
persistence mechanisms, while JDOs had the best

198

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performance. The author states that “acceptable EJB
performance seems unattainable at present unless dramatic
changes are made to the application object model to avoid
fine-grain objects when mapped to EJB”. The fCEJB and
vCEJB design patterns are an application-level approach to
avoiding the mapping of fine-grained objects to EJBs and
thus the performance penalty associated with using EJB-
based persistence in J2EE applications. Not included in the
study in [18] is another popular J2SE persistence
mechanism, Hibernate. The performance of Hibernate – in
comparison to the object database db4o, but not in
comparison to EJBs – is discussed in [19].

Trofin and Murphy [20] present the idea of collecting
runtime information in J2EE application servers and to
modify EJB containers accordingly to improve performance.
CEJBs, on the other hand, execute in unmodified EJB
containers and improve performance by multiplexing
multiple logical entities into one entity as seen by the EJB
container.

III. CEJB GOALS AND CONCEPT

The intention of both of our CEJB software design
patterns is to narrow the performance gap between EJBs and
POJOs in J2EE applications with large numbers of EJBs. A
look at common operations during the life span of an EJB
explains some of the performance differences between EJBs
and POJOs:

 Creating EJBs entails the addition of rows in a table
in the underlying relational database at transaction
commit time, whereas POJOs exist only in memory.

 Accessing EJBs requires the execution of finder
methods to locate the EJBs in the EJB cache of the
J2EE application server or in the database, whereas
access to POJOs is accomplished by simply
following object references.

 Depending on the selected transaction commit
options (pessimistic or optimistic), the execution of
business methods on EJBs is either serialized or
requires synchronization with the underlying
database. Calling POJO methods, on the other hand,
simply means accessing objects in the Java heap in
memory, possibly with application-specific
concurrency control in place.

 Deleting EJBs implies the removal of the EJB
objects from the EJB cache, if they are stored there,
and the deletion of the corresponding database table
rows at commit time. Deleting POJOs affects only
the Java heap in memory.

The preceding list identifies the interaction between EJBs
and the persistence mechanism (EJB cache plus database) as
a performance bottleneck for EJBs that POJOs do not suffer
from. One way of decreasing the performance gap between
EJBs and POJOs, therefore, is to increase the EJB cache hit
rate, thereby reducing the database access frequency. In case
of EJB cache misses and when synchronizing the state of
EJBs with the database, we would like to speed up the search
for the database table rows that represent EJBs. CEJBs are
intended to significantly decrease the number of EJBs in a

J2EE application. A smaller number of EJBs translates into
higher EJB cache hit rates and faster EJB access in the
database due to a smaller search space in database tables for
EJB finder operations. In other words, CEJBs reduce the
number and execution times of database accesses by
increasing the rate of in-memory search operations.

CEJBs are based on a simple idea. Traditionally, when
developing EJBs we map each real-world entity in the
application domain to a separate EJB. Examples of such
entities are users and communication sessions, to stay with
the example of the Mercury system in Section I. This
approach can result in a large number of EJB instances in the
application. With CEJBs, on the other hand, we consolidate
multiple entities of the same type into a single “special” EJB.
The difference between fCEJBs and vCEJBs is in the way
the entities are organized within each CEJB and the resulting
impact on the overall pool of CEJBs. In the remainder of this
article, when we speak of “entities”, we implicitly assume
“entities of the same type” unless otherwise noted.

IV. FIXED-SIZE CONSOLIDATED EJBS

In this section, we present the key idea, design
methodology, and some practical aspects of developing
fCEJBs.

A. Concept of the fCEJB Pattern

In the case of fCEJBs, we store up to N POJO entities in
the same EJB (the fCEJB), where N is a constant that is
determined at application design time. We store the entities
in arrays of size N inside the fCEJB. Hence, locating an
entity within an fCEJB can be accomplished through simple
array indexing operations requiring only constant time. The
challenge for developing fCEJBs is devising an appropriate
mapping function

 ,

where KE is the primary key space of the real-world entities
and KC is the primary key space of the fCEJBs. Function m
maps a given entity primary key k, for example a
communication session ID, to a tuple (k1, k2) where

 k1 is an artificial primary key for an fCEJB that will
store the entity,

 k2 is the index of the array elements inside the fCEJB
that store the POJO with primary key k.

The mapping function m has to ensure that no more than
N entities are mapped to the same fCEJB. On the other hand,
m also has to attempt to map as many entities to the same
fCEJB as possible. Otherwise, fCEJBs would perform little
or no better than EJBs. Moreover, the computation of m for a
given entity primary key has to be fast.

B. Developing an fCEJB

Consider a simple communication session entity
represented as an EJB Session with the J2EE-mandated local
interface, local home interface, and bean implementation:

 The local home interface is responsible for creating

new Sessions through a method create(String

sessionID, long startTime) and finding existing ones

199

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

through method findByPrimaryKey(String

sessionID).

 The local interface allows a client to call getter and
setter methods for the sessionID and startTime
properties of Sessions. It also contains a method
businessMethod(long newStartTime) that changes
the value of the startTime of the EJB.

 The bean implementation is the canonical bean
implementation of the methods in the local and local
home interfaces. For the sake of brevity, we omit
details of the (quite trivial) bean implementation
here.

In Figures 1-3, we present an fCEJB CSession that we
derive from the Session EJB. To arrive at CSession, we first
map the persistent (CMP) fields in Session to

 a transient String array sessionIDs,

 a transient long array startTimes,

 a persistent String field encodedSessionIDs,

 and a persistent String field encodedStartTimes,
as shown in lines 2-9 in Figure 3. Note that we do not
implement sessionIDs and startTimes as persistent array
fields. Instead, we encode sessionIDs and startTimes as
persistent Strings encodedSessionIDs and
encodedStartTimes, respectively, during J2EE ejbStore
operations (Figure 3, lines 32-45). To do so, ejbStore creates
a #-separated concatenation of all elements of sessionIDs and
one of all elements of startTimes where # is a special symbol
that does not appear in sessionIDs or startTimes. This
technique allows us to store the sessionIDs and start times as
VARCHARs in the underlying database and avoid the much
less time-efficient storage as VARCHAR for bit data that
persistent array fields require. During J2EE ejbLoad
operations (Figure 3, lines 18-30), the encodedSessionIDs
and encodedStartTimes are being demultiplexed into the
transient arrays sessionIDs and startTimes, respectively. The
CSessionBean then uses the state of the latter two arrays until
the next ejbLoad operation refreshes the state of the two
arrays from the underlying database.

The ejbCreate method in Figure 3, lines 11-16, assigns
an objectID to the persistent objectID field. We will discuss
the choice of the objectID later. The method also allocates
and initializes the transient sessionIDs and startTimes arrays.
The size of the arrays is determined by the formal parameter
N.

In the CSessionLocal interface in Figure 2, we add an
index parameter to all getter and setter methods and to the
businessMethod. We also add the lifecycle methods
createSession and removeSession. The getter and setter
methods in CSessionLocal with the index parameter have to
be implemented by CSessionBean because they are different
from the abstract getter and setter methods in CSessionBean
that are applied to the persistent encodedSessionIDs and
encodedStartTimes fields. The new getter and setter methods
access the indexed slot in the array fields sessionIDs and
startTimes. An example of a setter method is shown in lines
62-64 in Figure 3. Similarly, we have to change the
businessMethod, which now accesses the indexed slot in the
transient sessionIDs and startTimes arrays rather than

operating on persistent entity fields (lines 58-60 in Figure 3).
The createSession method in lines 47-51 in Figure 3 first
ensures that the indexed slots in the sessionIDs and
startTimes are empty. If not, this session has been added
before and a DuplicateKeyException is raised. If the slots are
empty, createSession will assign the state of the new
communication session to the indexed slots in the arrays.
The removeSession method in lines 53-56 in Figure 3
ensures that the indexed sessionIDs and startTimes slots are
not empty, i. e., the referenced session is indeed stored in this
CSession. If so, removeSession deletes the state of this
communication session by setting the indexed slot in the
sessionIDs to null.

Figure 4 shows a class ObjectIDMapping that
encapsulates an exemplary mapping function m from Session
primary keys (Strings) to CSession primary keys (objectIDs).
We will discuss m in conjunction with the code example
given in Figure 5 that retrieves a CSession through an
ObjectIDMapping and executes the businessMethod on the
retrieved CSession. The argument for the constructor of an
ObjectIDMapping is N, the maximum number of entities
consolidated in a CSession, as shown in line 6 in Figure 4.
The mapping function m is computed by a call to the
setObjectID method in line 2 in Figure 5. This method maps
a Session primary key, objectIDArg, to the tuple (objectID,
index). In Figure 5, the Session primary key is voiceCall-05-
12-2012a. The objectID is derived from objectIDArg by
replacing objectIDArg’s last character c with an underscore
followed by c – index, where we interpret c as the ordinal
value of the character in the ASCII character table (lines 14
and 16 in Figure 4). In line 15 in Figure 4, the value of
index is computed as the result of the operation

 ,

i. e.,

 ,

where

and q is the integer quotient of c and N. In our example,
c is the ordinal value of a, the last character of voiceCall-05-
12-2012a, so c = 97. If we assume N = 20, then index = 17,
and c – index = 80. Therefore, objectID = voiceCall-05-12-
2012_80. While getObjectID() (line 3, Figure 5) identifies
the CSession in which we store an entity with objectIDArg as
its primary key, getIndex() (line 4, Figure 5) identifies the
slots in the CMP array fields in the CSession that store the
given entity. In the example, the real-world entity with
primary key voiceCall-05-12-2012a is thus stored in slot 17
in the CSession with primary key voiceCall-05-12-2012_80.
Figure 6 depicts the mapping from the Session primary key
voiceCall-05-12-2012a to CSession primary key voiceCall-
05-12-2012_80 and slot 17 in the CSession.

Although our definition of m is somewhat complex, its
computation is fast and it maps at most N entities to each

200

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CSession, which is a key requirement for m. If the Session
primary keys had numerical suffixes such as 100, 101, 102
instead of alphabetical suffixes a, b, c, and so forth, we could
modify the setObjectID method in Figure 4 such that c is the
value of the integer following the year (2012) in the suffix. If
our Session sample EJBs had entirely numeric primary keys
k, the mapping function m could have been conveniently
defined as

 .

Many EJBs have numeric primary keys, especially if the

developer delegates the assignment of primary keys to the
application server, in which case the server can use
consecutive integers as EJB primary keys. This is very
helpful in situations where the real-world entities that the
EJBs represent have no “natural” unique primary key. An
example would be a product or an order for a product. We
chose a string primary key for our Session example to
demonstrate that the fCEJB pattern does not rely on a
numeric primary key.

C. Design Considerations for fCEJBs

By creating a simple façade session bean we can
completely hide CSessions from the rest of the application
and expose only POJOs to clients. With a façade session
bean, the two-step process of first building an idMapping
and then retrieving the desired CSession as shown in Figure
5 can be collapsed into one step. The façade bean is quite
straightforward and obvious to program and therefore we do
not show it here. For more complicated entities than our
Sessions, consolidation through fCEJBs requires more effort
but is straightforward and could be supported by a tool.
Ideally, such a tool would be offered as part of a J2EE
development environment and convert EJBs into fCEJBs at
the request and under the directions of the developer. The
tool would also need to support the following scenarios:

 If Session implements customized ejbLoad, ejbStore,
ejbActivate, or ejbPassivate methods, these need to
be adapted in CSessionBean to reflect the fact that
the state of a Session is stored across different arrays
in the CSessionBean.

 Finder and select queries for Session must be re-
implemented for the fCEJB, and with less J2EE
platform support, because they need to access both a
CSession and the arrays within a CSession.

 If Session has customized ejbHome methods, we
need to add functionally equivalent ejbHome
methods to CSession. Changes to the original
Session ejbHome methods are only necessary if these
methods access the state of a specific Session EJB
after a prior select method. In this case, the CSession
ejbHome methods need to retrieve POJO instead of
Sessions.

 If Session is part of a container-managed relationship
(CMR), consolidation through fCEJBs requires
removal of the CMRs and re-implementation of the
CMRs without direct J2EE support.

The mapping function m has a strong impact on the
performance of fCEJBs and therefore needs to be defined
carefully for the given application. The mapping function
delivers its best performance if primary keys that occur in the
application are clustered. Clustering here means that for
every primary key k in the application there is a set of
roughly N primary keys for other entities in the application
that are similar enough to k to be mapped to the same
objectID by m. The challenge is therefore to analyze the
actual primary key space of the entities that are to be
consolidated in a given application and to then define an
efficient and effective mapping function based on this
analysis. The primary key space of our sample Session
entities fulfills the cluster property because our Sessions have
largely lexicographically consecutive sessionIDs such as
voiceCall-05-12-2012a, voiceCall-05-12-2012b, voiceCall-
05-12-2012c, and so on.

Figure 1. Local home interface for CSession.

Figure 2. Local interface for CSession.

201

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Portion of the CSessionBean relevant to the fCEJB discussion.

202

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. A class for mapping Session primary keys to CSession primary keys and array index slots.

Figure 5. Accessing a CSession EJB.

Figure 6. Mapping a Session primary key to a tuple (objectID, index): objectID is the primary key of a CSession, index is the slot in the CSession that stores
the original Session entity.

203

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. VARIABLE-SIZE CEJBS

In this section, we describe the key idea behind vCEJBs,
the design methodology, and practical aspects of developing
vCEJBs.

A. Concept of the vCEJB Pattern

The fCEJBs pattern stores a fixed number of entities in
each fCEJB, while the size of the pool of all fCEJBs varies
with the total number of entities. In contrast, the vCEJB
pattern creates a fixed-size pool of vCEJBs but each vCEJB
stores a variable number of entities. Variable-size CEJBs
constitute a distributed EJB equivalent of hashtables. A
hashtable contains a fixed number of slots, each of which can
hold a variable number of entities that are mapped to the
slots based on a mapping (hash) function. A direct
implementation of a hashtable as a single EJB could lead to a
prohibitively slow performance for a large number of
hashtable entries because

 the time for synchronizing the EJB state with the
underlying database at the beginning and/or end of a
transaction would be very long,

 the amount of parallelism in accessing the hashtable
would be severely limited.

Therefore, we distribute the content of the hashtable
across several EJBs, one EJB for each hashtable slot. The
resulting EJBs are our vCEJBs. Unlike an fCEJB, a vCEJB
imposes no predefined limit on the number of entities stored
in the vCEJB.

The primary keys of the vCEJBs are integers ranging
from 0 to N - 1 for a chosen value of N that we will discuss
later. We define a mapping function from the entities’
primary keys to the interval that determines
which vCEJB stores which entity. The entities are
represented as POJOs and are stored in a Java hashtable (a
java.util.HashMap) in the vCEJBs. To store all entities of a
given type in an application, N vCEJBs are allocated in a
fixed-size pool at application startup time.

To demonstrate the fCEJB pattern, we chose the example
of a Session entity because its primary key space has the
desired cluster property that makes it amenable to the fCEJB
pattern. In contrast, we will illustrate the vCEJB pattern with
the example of a User EJB whose primary keys do not
exhibit the cluster property. We assume that the primary key
of our User entity is a unique userID such as a first
name/middle name/last name combination, passport number,
social security ID, employee number, telephone number, or
similar. The uneven distribution of these identifiers makes it
extremely difficult to define a mapping function m that
would evenly map User entities to fCEJBs. As we will see,
the performance of vCEJBs does not depend on the cluster
property, and therefore vCEJBs are the preferable choice for
User entities.

In the following explanations, we assume that User has
two fields firstName and lastName in addition to the userID,
Furthermore, User is implemented with the canonical
getter/setter interfaces and local and local home interfaces.
We omit additional implementation details because they are
irrelevant to our vCEJB discussion.

B. Developing a vCEJB

We derive a vCEJB CUser from User in two steps. In the
first step, we create a POJO equivalent of User, which we
call POJOUser (omitted from the figures for the sake of
brevity). POJOUser contains three private instance variables
userID, firstName, and lastName, and the canonical getter
and setter methods for the three variables. In the second step,
we create CUser as an entity EJB as depicted in Figures 8-
10. CUser has three CMP fields, objectID of type Integer, N
of type int, and users of type java.util.HashMap (lines 2-7 in
Figure 10). The methods in CUserBean pertinent to our
discussion are ejbCreate, createUser, getUser, setUser,
changeUser, and removeUser.

A CUser acts as a container for POJOUsers in a way that
is similar to EJB containers managing EJBs. Unlike EJB
containers, on the other hand, a CUser cannot hold objects of
different classes. The lifecycle methods for a POJOUser
(createUser, removeUser) can be found in the local interface
for CUser (Figure 9), whereas the lifecycle methods for a
User reside in the local home interface for the User EJB
(Figure 8). EJB containers are automatically instantiated by
the application server, whereas CUsers have to be created by
the J2EE application. This also implies that the number of
vCEJBs depends on the application rather than the
application server.

To consolidate Users into CUsers in a given J2EE
application, the application first creates a pool of N CUsers
with objectIDs ranging from 0 to N - 1 in increments of 1.
Subsequently, the application can create, find, modify,
execute business methods on, and remove POJOUsers inside
CUsers. To do so, the application first executes
findByPrimaryKey on the CUserLocalHome interface (see
Figure 8) with the argument

new Integer(Integer.abs(userID.hashCode()) % N),

where userID is the return value of the getUserID method
for the POJOUser in question and % denotes an integer
division. In other words, the application maps hash values of
the POJOUser identities to CUser identities in an attempt to
evenly distribute POJOUsers across CUsers. Notice that due
to integer arithmetic and the definition of the hashCode
method for Java strings, the result of the hashCode method
can be negative and therefore we apply the Integer.abs
method to guarantee values in the range . The
return value of the findByPrimaryKey method is the CUser
vCEJB that already contains or will contain the POJOUser
that we are interested in. Figure 7 illustrates the mapping of
User primary keys to CUser primary keys.

To store a new POJOUser in the CUser vCEJB, the
application executes the createUser method on the CUser as
shown in lines 16-24 in Figure 10. First, this method ensures
that the POJOUser indeed belongs in this CUser based on
the mapping of POJOUsers’ userIDs to CUser object
identities, as described in the previous paragraph. Then, the
method checks whether there is already a POJOUser with
the same identity stored in this CUser. This is the equivalent
of the EJB container checking for duplicate object identities

204

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

when creating an entity EJB. Finally, the method stores the
mapping from the userID to the POJOUser in the vCEJB’s
internal HashMap.

The equivalent of an EJB finder method for POJOUsers
is the getUser method in the CUserLocal interface (Figure 9,
line 3). After a prior call to the findByPrimaryKey method on
the CUserLocalHome interface to obtain the appropriate
CUser, the application calls the getUser method on the local
interface of that CUser to obtain the desired POJOUser. The
application can now execute business methods on the
returned POJOUser. The users field (a HashMap) in CUser
is a so-called dependent value object in the J2EE world. By
extension, the same applies to POJOUsers inside the users
HashMap. Hence, the EJB container returns a copy of a
POJOUser whenever the getUser method is invoked, as
prescribed by the Enterprise JavaBeans specification. To
reflect changes to the state of a POJOUser due to business
method calls, the application has to store the POJOUser
back to users. The setUser and changeUser methods in
Figure 10 in lines 33-38 and 40-49, respectively, serve this
purpose. The changeUser method is useful in situations
where we want to change the state of a POJOUser without a
need to know the previous state of this POJOUser. Rather
than calling getUser followed by setUser, one call to
changeUser will suffice in that situation, hence reducing the
number of accesses to the users HashMap and consequently
the number of HashMap copy operations from two to one.

To delete a POJOUser, the application calls the
removeUser method on the CUser (lines 51-56 in Figure 10).
Like the setUser, getUser, and changeUser methods,
removeUser first checks that the referenced POJOUser
indeed exists in this CUser vCEJB. Then, removeUser
deletes the POJOUser from the users HashMap.

C. Design Considerations for vCEJBs

By creating a simple façade session bean we can
completely hide CUsers from the rest of the application and
expose only POJOUsers to clients. With a façade session
bean, the two-step process of first retrieving a CUser and
subsequently accessing a POJOUser turns into one step for
clients. The façade bean is straightforward and we will
therefore not show it here.

Our sample User EJB is very simple. For more
complicated entities, consolidation through vCEJBs requires
more effort but, as with fCEJBs, is straightforward and could
be automated by a tool as part of a J2EE development
environment. The following is a list of considerations during
vCEJB creation in the context of the User EJB that Section
V.B did not address.

1. If the original User EJB implements the ejbLoad,
ejbStore, ejbActivate, or ejbPassivate methods, the
CUser methods getUser, setUser, and changeUser
need to be modified. For example, the content of a
User ejbLoad method needs to be moved into the
getUser and changeUser methods after some
modifications. The modifications reflect the fact that
the state of a User is stored in a POJOUser and
needs to be retrieved from a HashMap rather than
from the CMP fields of a User.

2. Finder and select queries for User must be re-
implemented for the vCEJB because they need to
access the users HashMap. Notice that the getUser
method in our example is derived from the
findByPrimaryKey method for the User EJB. More
complicated finder methods in User would require
more complicated getUser methods in CUser.

3. If User has ejbHome methods, we need to add
functionally equivalent ejbHome methods to CUser.
Changes to the original User ejbHome methods will
only be necessary if these methods access the state
of a specific User EJB after a prior select method. In
this case, the CUser ejbHome methods need to
retrieve POJOUsers instead of Users.

4. If User is part of a container-managed relationship
(CMR), consolidation through vCEJBs requires
removal of the CMRs and re-implementation of the
CMRs without direct J2EE support.

5. Variable-size CEJBs aggravate the existing problem
of variable-size data structures in EJBs. EJBs with
variable-size data structures as CMP fields and
databases as persistent storage require a design-time
decision for the maximum length of each database
column that stores a variable-size CMP field. If such
a maximum size is exceeded a runtime error will
occur during EJB storage in the database. CUser
contains a variable-size CMP field (users) even
though User does not. To safely use vCEJBs, we
require knowledge of the maximum number of EJBs
that are stored in each CEJB and have to
appropriately size the database column that stores
the users HashMap.

D. Configuring the vCEJB Pool Size N

By consolidating a large number of EJBs into a small
number of vCEJBs, the number of rows in a relational
database required to store entity EJB state can be
substantially reduced. At the same time, the degree of
locality in EJB operations increases, which has a positive
effect on the efficacy of the EJB cache in a J2EE application
server. In our example, we can reduce the number of
database rows and EJB cache entries for storing n user
entities from n to N.

With CUsers, the time for retrieving a user entity is
divided into time for searching cached or uncached CUsers
and time for an in-memory search within a HashMap. In the
extreme case of N = 1, there is only one CUser and it is
likely to be present in the EJB cache of the application
server. In this case, the vCEJB is essentially a persistent and
transacted HashMap. Even if the CUser is not cached, it can
be located very quickly in the database. Most of the search
time is spent in memory within the HashMap of the CUser.
However, this HashMap grows potentially very large (to n
entries) and can itself turn into a performance bottleneck.
Moreover, the time for synchronizing the in-memory
representation of CUser with the database at transaction
commit time could be very long. The same applies to loading
the CUser from the database at the beginning of a transaction
with J2EE commit options B and C [2]. Note that for a

205

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

clustered J2EE application server commit options B and C
are mandatory. Lastly, like fCEJBs, vCEJBs can restrict the
degree of parallelism in the J2EE application. If two
transactions attempt to access two POJOs that happen to be
in the same vCEJB, one of the transactions may lock out the
other transaction. The likelihood of this situation increases
with decreasing values for N.

The other extreme is N = nmax, where nmax denotes the
maximum number of concurrently existing user entities
throughout the lifetime of the application, provided such a
maximum exists. With N = nmax, we arrive at the same
situation as with EJBs except that with vCEJBs every access
to an embedded POJO requires an additional step relative to
EJBs. In other words, with N = nmax we can expect a
performance penalty relative to using EJBs.

The ideal value for N therefore lies between these
extremes. Clearly, this value depends on the size and
structure of the EJB cache in the J2EE application server, the
implementation of the EJB container, the database specifics,
and the hardware on which the application server and the
database run. Since we typically have no insight into the
inner workings of a J2EE application server or the database,
there is no general way of determining the best choice for N.

In addition, the value of nmax may not be known and nmax may
not even exist, which complicates the configuration of N.

One of our future research directions is therefore a self-
adjusting vCEJB technique, where a session façade bean for
vCEJBs would create vCEJBs dynamically as needed. The
session façade bean would monitor the vCEJB performance
and dynamically shrink or enlarge the size of the vCEJB
pool accordingly, similar to automatic hashtable resizing
techniques. After creation or destruction of vCEJBs, the
façade bean would reallocate the existing POJOs across the
modified set of vCEJBs. By appropriately sizing the vCEJB
pool, the façade bean would also ensure that the size of the
HashMap in each vCEJB does not exceed the limit imposed
by the maximum size of the corresponding database column
(see bullet item 5 in Section V.C). We believe that such a
self-adjusting vCEJB technique may be beneficial in
applications with slowly changing sets of real-world entities
where dynamic reallocations would take place rarely and
thus the performance cost of the reallocation itself would be
limited.

Figure 7. Mapping of a User primary key uid to a CUser primary key, where h is the absolute value of the hashcode for uid.

Figure 8. Local home interface for the vCEJB CUser.

206

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Local interface for the vCEJB CUser.

Figure 10. Portion of the CUserBean implementation relevant to the vCEJB discussion.

207

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. PERFORMANCE EVALUATION

This section contains an assessment of the comparative
performance of fCEJBs, vCEJBs, and traditional EJBs in a
test environment that simulates different usage profiles.

A. Methodology

We compared the performance of “traditional” EJBs with
one real-world entity per EJB, fCEJBs, and vCEJBs in a
J2EE test application. The entities that the test application
creates have lexicographically consecutive strings as primary
keys (as shown in our Session example in Section IV). For
fCEJBs, the application uses the mapping function m in
Figure 4. The test application executes a sequence of
operations either on traditional EJBs (EJB mode), fCEJBs
(fCEJB mode), or vCEJBs (vCEJB mode). In EJB mode, the
application executes the following sequence of steps:

1. Create n EJBs. We call each entity creation a
creation operation.

2. Find EJB with randomly selected primary key and
read its state through getter operations. Repeat n
times. We call each such operation a find and read
operation.

3. Find EJB with randomly selected primary key and
execute a business method on it. The business
method changes the state of the EJB, and thus
requires synchronization with the underlying
database at transaction commit time. Repeat n
times. We call each such operation a find and
change operation.

4. Delete all EJBs through EJB remove operations.
Between any two consecutive steps, the test application

creates 20000 unrelated EJBs in order to introduce as much
disturbance as possible in the application server EJB cache
and in the connection to the underlying database. During our
performance testing, however, it turned out that these cache
disturbance operations had a negligible effect on the
performance differences between the CEJB and EJB modes.

In fCEJB mode, the application performs the same steps
on fCEJBs instead of EJBs. Also, in step 4 in fCEJB mode,
the application sequentially deletes all entities in each fCEJB
but not the fCEJB itself. We varied the maximum number N
of entities per fCEJB, from 2 to 250 in consecutive runs of
the test application. The performance of the test application
peaked around N = 20. We therefore present only the
performance results for N = 20.

In vCEJB mode, the application first creates N vCEJBs,
followed by the same steps as the test application in fCEJB
mode but with vCEJBs instead. We varied N in consecutive
runs of the test application in vCEJB mode and determined
that the performance of the test application peaked roughly at
N ≈ n/10, i. e., when approximately 10 entities are stored in
each variable-size vCEJB on average. We will only present
the performance results for N = n/10.

We configured the test application with two different
transaction settings in two different experiments: in long
transaction mode, each of the four steps of the test
application is executed in one long-lived transaction. In short
transaction mode, the application commits every data change
as soon as it occurs, i. e., after each entity creation, change,

or removal. Here, the application performs a large number of
short-lived transactions. In successive runs of the test
application, n iterated over the set {1000, 10000, 50000}.
After each run, we restarted the database server and the
application server and deleted all database rows created by
the application.

We deployed the test application on an IBM WebSphere
5.1.1.6 J2EE application server with default EJB cache and
performance settings. The hardware is a dual Xeon 2.4 GHz
server running Microsoft Windows 2000 Server. An IBM
DB2 8.1.9 database provides the data storage. All EJBs use
the WebSphere default commit option C.

B. Performance Analysis

Figures 11-16 display the results of our performance
testing with the test application in long and short transaction
modes for the three different values of n. Each figure shows
the time that each entity creation, entity find/read, entity
find/change, and entity removal operation takes in
milliseconds when using traditional EJBs, fCEJBs, and
vCEJBs, respectively. In each figure, for each of the four
types of entity operations, there is one bar indicating the
speed of the operation when using EJBs, fCEJBs, and
vCEJBs, respectively. In addition, we show the speedup for
the operation when using fCEJBs instead of EJBs and the
speedup when using vCEJBs instead of EJBs. The speedup
in the figures is defined as the time for an EJB operation
divided by the time for the equivalent f/vCEJB operation.
Speedup values greater than 1 indicate results where
f/vCEJBs outperform EJBs, values of less than 1 indicate
EJBs performing better than f/vCEJBs. For the vCEJB
performance tests, our figures do not show the time for
creating the N vCEJBs because we consider this fixed
overhead at application startup time.

In long transaction mode, fCEJBs significantly
outperformed EJBs. For n = 50000 (Figure 13), for example,
creating entities through fCEJBs was more than twice as fast
as with EJBs, finding and reading entities was more than 5
times faster, finding and changing entities was more than 7
times faster, and deleting entities with CEJBs was more than
14 times faster. Our performance tests also show that fCEJBs
are consistently faster than vCEJBs.

Because in fCEJB mode the mapping function m in our
test application clusters the primary keys of the entities, the
fCEJBs consolidate almost the maximum possible number of
entities (20 per our definition of N). Hence, the number of
fCEJBs necessary to store all entities in the test application is
about 1/20

th
 that of the number of EJBs in EJB mode, which

translates into much improved application server caching
behavior and accelerated database search times. Once an
fCEJB has been retrieved, extracting the desired entity from
the fCEJB is a simple and fast array indexing operation. It is
only insignificantly slower than retrieving the state of a
traditional EJB from the EJB fields and faster than retrieving
an entity from the internal HashMap in a vCEJB. Writing the
state of an fCEJB back to the underlying database is much
faster than the analogous operation for a vCEJB with its
large internal data structure, which explains why fCEJBs
perform reading and changing operations much faster than

208

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

vCEJBs. It also explains why the latter are only about 23%
faster than EJBs for this type of operation (see find and read
operations in Figure 13). However, if the chosen mapping
function m for fCEJBs in a given application does not yield
the desirable cluster property, vCEJBs may outperform
fCEJBs, which is why we developed the vCEJB pattern as an
alternative to the fCEJB pattern.

Although fCEJBs perform better than vCEJBs in our
tests due to the distribution of the primary keys and the
selection of the fCEJB mapping function m, there is still a
significant speed-up when using vCEJBs as opposed to
EJBs, with the exception of creation operations. For n =
50000 (Figure 13), finding and reading entities is more than
twice as fast in vCEJB mode than in EJB mode, finding and
changing entities is about 23% faster, and removal is more
than three times faster in vCEJB mode than in EJB mode.
Variable-size CEJBs are only at a performance disadvantage
over EJBs in the case of creating entities. Here, retrieving an
entry in the potentially large CEJB-internal HashMap for the
purpose of checking for DuplicateKeyExceptions, the
subsequent storage of a new entity in this HashMap, and the
occasional re-sizing of the HashMap costs more time than
the consolidation of entities saves.

Unlike in EJB mode, entity deletion in either CEJB mode
does not force the deletion of EJBs in the application server
or the database. Instead, entity deletion in CEJBs is
accomplished through the removal of entities inside EJBs.
Not surprisingly therefore, deleting entities in both CEJBs
modes is much faster than in EJB mode.

In short transaction mode, our performance testing shows
a very different outcome (Figures 14-16). For example,
Figure 16 (n = 50000) shows that both types of CEJBs only
offer performance advantages over EJBs for finding and
reading operations. Fixed-size CEJBs are about as fast as
EJBs for finding and changing operations and for entity
removal but much slower in creating entities. Variable-size
CEJBs are consistently slower than EJBs except for finding
and reading entities. In short transaction mode, transaction
commits after EJB state changes dominate the execution
time of the test application and void many performance
advantages due to consolidation. J2EE applications that
eagerly commit every EJB state change will still experience
a significant speed-up as a result of consolidation but only if
EJB read operations outnumber EJB write operations by a
significant margin.

In conclusion, fCEJBs provide strong performance
advantages over EJBs if (1) the application contains a large
number of EJBs, (2) it accesses EJBs either in long-lived
transactions or in short-lived transaction with a large EJB
read to write ratio, and (3) if a mapping function m can be
found for the EJB primary key space that exhibits the cluster
property. If no such function can be found but (1) and (2) are
true, vCEJBs can be used to considerably increase
application performance.

Our test application is designed to execute a large
number of common EJB operations in a repeatable fashion.
As such, the test application is somewhat artificial. It does
not involve human interactions and arbitrary timing delays
due to human input. The pattern of EJB operations is highly

regular and maximizes the number of EJB accesses, whereas
other J2EE applications may have irregular EJB accesses and
also contain computationally or I/O-intensive tasks. Our
Session and User EJBs are simple while EJBs in common
J2EE applications can be more complex and may also be
linked to each other. However, we believe that our test
application realistically captures the performance differences
between EJBs and f/vCEJBs in a large class of J2EE
applications that are characterized by high numbers of
entities, a high frequency of EJB accesses with a large
degree of regularity (e. g., certain data mining applications
such as our Mercury system), and a predictable and regular
primary key space for the entities.

VII. CONCLUSION AND FUTURE WORK

We presented two J2EE software design patterns that
consolidate multiple entities in J2EE applications into
special-purpose entity EJBs that we call consolidated EJBs
(CEJBs). Our first design pattern maps entities to fixed-size
CEJBs (fCEJBs), whereas our second pattern constructs
variable-size CEJBs (vCEJBs). Consolidation increases the
locality of data access in J2EE applications, thus making
EJB caching in the application server more effective and
decreasing search times for entity EJBs in the underlying
database. In J2EE applications with large numbers of EJBs,
CEJBs can therefore greatly increase the overall application
performance. Using a test application, we showed that
especially fCEJBs can outperform traditional EJBs by a wide
margin for common EJB operations. For example, the fCEJB
equivalent of an EJB findByPrimaryKey operation is more
than five times faster in one of our experiments, and the
execution of a data-modifying business method on an EJB is
more than seven times faster in fCEJBs. In applications that
do not lend themselves to the fCEJB design pattern, the
second design pattern, vCEJBs, can enhance the application
performance, albeit by smaller factors. In our experiments,
we measured a speed-up of entity finder and access
operations by a factor of more than two for vCEJBs versus
traditional EJBs. Both types of CEJBs conform to the EJB
specification and can therefore be used in any J2EE
application on any J2EE application server.

We have several future research goals for CEJBs. First,
we would like to modify CEJBs in such a way that
applications with short-lived transactions and a small ratio of
EJB read to EJB write operations perform better than our
current patterns. Secondly, we intend to investigate mapping
functions for fCEJBs that (1) perform well if the primary key
space for EJBs is irregular or unpredictable (such as user
names, phone numbers, or national IDs), and (2) that can be
automatically defined without requiring complex developer
decisions. Thirdly, we would like to address a currently open
question for our f/vCEJB design patterns: how can we
modify the f/vCEJB patterns so that they are beneficial in
most J2EE applications and thus could ultimately become a
standard way of implementing entities in J2EE applications?
Lastly, a tool that would assist the developer in converting
traditional EJBs into CEJBs would be highly desirable.

209

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Test application performance in long transaction mode, n = 1000.

.

Figure 12. Test application performance in long transaction mode, n = 10000.

Create Find and read Find and change Remove

EJBs 0.55 2.25 3.38 3.88

fCEJBs 0.30 0.23 0.28 0.20

vCEJBs 1.77 0.81 1.48 1.14

Speedup fCEJBs->EJBs 1.84 9.62 12.01 19.00

Speedup vCEJBs->EJBs 0.31 2.78 2.28 3.40

E
J

B
s

E
J

B
s

E
J

B
s

E
J

B
s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

0.00

1.00

2.00

3.00

4.00

5.00
T

im
e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

Create Find and read Find and change Remove

EJBs 0.50 1.67 1.56 3.79

fCEJBs 0.16 0.27 0.27 0.32

vCEJBs 0.95 0.61 1.14 0.82

Speedup fCEJBs->EJBs 3.02 6.14 5.72 11.84

Speedup vCEJBs->EJBs 0.52 2.74 1.37 4.62

E
J

B
s

E
J

B
s

E
J

B
s

E
J

B
s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

0.00

1.00

2.00

3.00

4.00

5.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

210

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Test application performance in long transaction mode, n = 50000.

Figure 14. Test application performance in short transaction mode, n = 1000.

Create Find and read Find and change Remove

EJBs 0.39 1.38 1.48 3.21

fCEJBs 0.17 0.24 0.20 0.23

vCEJBs 0.93 0.58 1.20 0.87

Speedup fCEJBs->EJBs 2.24 5.75 7.58 14.28

Speedup vCEJBs->EJBs 0.42 2.37 1.23 3.69

E
J

B
s

E
J

B
s

E
J

B
s

E
J

B
s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

0.00

1.00

2.00

3.00

4.00

5.00
T

im
e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

Create Find and read Find and change Remove

EJBs 7.41 2.31 12.05 5.81

fCEJBs 10.34 0.36 12.41 5.08

vCEJBs 11.47 0.83 14.42 6.98

Speedup fCEJBs->EJBs 0.72 6.44 0.97 1.14

Speedup vCEJBs->EJBs 0.65 2.79 0.84 0.83

E
J

B
s

E
J

B
s

E
J

B
s

E
J

B
s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

211

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 15. Test application performance in short transaction mode, n = 10000.

Figure 16. Test application performance in short transaction mode, n = 50000.

VIII. ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers of this article
for the numerous and detailed suggestions for improvements
to the manuscript. The clarity and quality of the article has
greatly benefited from the reviewers’ suggestions.

REFERENCES

[1] R. Klemm, “The Consolidated Enterprise Java Beans Design
Pattern for Accelerating Large-Data J2EE Applications”, The
Seventh International Conference on Software Engineering
Advances (ICSEA), Nov. 2012, retrieved February 1, 2013,
from http://bit.ly/VgMuXs.

[2] Oracle Inc., “Enterprise JavaBeans Specification 2.1,”
retrieved September 28, 2012, from http://bit.ly/Ovip59.

Create Find and read Find and change Remove

EJBs 7.41 2.31 12.05 5.81

fCEJBs 10.34 0.36 12.41 5.08

vCEJBs 11.47 0.83 14.42 6.98

Speedup fCEJBs->EJBs 0.72 6.44 0.97 1.14

Speedup vCEJBs->EJBs 0.65 2.79 0.84 0.83

E
J

B
s

E
J

B
s

E
J

B
s

E
J

B
s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00
T

im
e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

Create Find and read Find and change Remove

EJBs 3.08 1.34 4.69 5.01

fCEJBs 5.35 0.18 4.75 4.96

vCEJBs 6.72 0.58 7.03 7.07

Speedup fCEJBs->EJBs 0.58 7.34 0.99 1.01

Speedup vCEJBs->EJBs 0.46 2.32 0.67 0.71

E
J

B
s

E
J

B
s

E
J

B
s

E
J

B
s

fC
E

J
B

s fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

212

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] Oracle Inc., “J2EE v1.4 Documentation”, retrieved February
1, 2013, from http://bit.ly/Ys0j2B.

[4] A. Leff and J. T. Rayfield, “Improving Application
Throughput with Enterprise JavaBeans Caching,” Proc. 23rd
International Conference on Distributed Computing Systems
(ICDCS), May 2003, pp. 244-251.

[5] S. Kounev and A. Buchmann, “Improving Data Access of
J2EE Applications by Exploiting Asynchronous Messaging
and Caching Services,” Proc. 28th International Conference on
Very Large Databases (VLDB), Aug. 2002, retrieved
September 28, 2012, from http://bit.ly/QgduUf.

[6] Java Community Process, “JSR 316: Java Platform,
Enterprise Edition 6 (Java EE 6) Specification”, retrieved
February 1, 2013, from http://bit.ly/YsbKYb.

[7] Java Community Process, “JSR 317: Java Persistence 2.0”,
retrieved February 1, 2013, from http://bit.ly/XCa6WN.

[8] S. Pugh and J. Spacco, “RUBiS Revisited: Why J2EE
Benchmarking is Hard,” Companion to the 19th Annual ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), Oct. 2004,
pp. 204-205.

[9] M. Raghavachari, D. Reiner, and R. Johnson, “The
Deployer’s Problem: Configuring Application Servers for
Performance and Reliability,” Proc. 25th International
Conference on Software Engineering ICSE ’03, May 2003,
pp. 484-489.

[10] S. Ran, P. Brebner, and I. Gorton, “The Rigorous Evaluation
of Enterprise Java Bean Technology,” Proc. 15th International
Conference on Information Networking (ICOIN), IEEE
Computer Society, Jan. 2001, pp. 93-100.

[11] S. Ran, D. Palmer, P. Brebner, S. Chen, I. Gorton, J. Gosper,
L. Hu, A. Liu, and P. Tran, “J2EE Technology Performance
Evaluation Methodology,” Proc. International Conference on
the Move to Meaningful Internet Systems 2002, pp. 13-16.

[12] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and W,
Zwaenepoel, “Performance Comparison of Middleware

Architectures for Generating Dynamic Web Content,” Lecture
Notes in Computer Science, Vol. 2672, Jan. 2003, pp. 242-
261.

[13] D. Alur, J. Crupi, and D. Malks, “Core J2EE Patterns,”
Prentice Hall/Sun Microsystems Press, Jun. 2001.

[14] F. Marinescu, “EJB Design Patterns: Advanced Patterns,
Processes, and Idioms,” John Wiley & Sons Inc., Mar. 2002.

[15] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “Performance
and Scalability of EJB Applications,” Proc. 17th ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Application (OOPSLA), Nov. 2002,
retrieved May 25, 2013, from http://bit.ly/18fl5w9.

[16] J. Rudzki, “How Design Patterns Affect Application
Performance – A Case of a Multi-Tier J2EE Application,”
Lecture Notes in Computer Science, No. 3409, Springer-
Verlag, 2005, pp. 12-23.

[17] C. Larman, “The Aggregate Entity Bean Pattern,” Software
Development Magazine, Apr. 2000, retrieved September 28,
2012, from http://bit.ly/PgBoxe.

[18] M. Jordan, “A Comparative Study of Persistence Mechanisms
for the Java Platform,” Sun Microsystems Technical Report
TR-2004-136, Sep. 2004, retrieved May 25, 2013, from
http://bit.ly/ZkxPhT.

[19] P. Van Zyl,, D. G. Kourie, and A. Boake, “Comparing the
Performance of Object Databases and ORM Tools,”
Proceedings of the 2006 Annual Research Conference of the
South African Institute of Computer Scientists and
Information Technologists on IT Research in Developing
Countries (SAICSIT ‘06), 2006, retrieved May 25, 2013, from
http://bit.ly/1135N9a.

[20] J. Trofin and J. Murphy, “A Self-Optimizing Container
Design for Enterprise Java Beans Applications,” 8th
International Workshop on Component Oriented
Programming (WCOP), Jul. 2003, retrieved September 28,
2012, from http://bit.ly/O4biAD.

213

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Automated Software Engineering Process Assessment:
Supporting Diverse Models using an Ontology

Gregor Grambow and Roy Oberhauser
Computer Science Dept.

Aalen University
Aalen, Germany

{gregor.grambow, roy.oberhauser}@htw-aalen.de

Manfred Reichert
Institute for Databases and Information Systems

Ulm University
Ulm, Germany

manfred.reichert@uni-ulm.de

Abstract—Current software engineering process assessment
reference models rely primarily on manual acquisition of
evidence of practices. This manually collected data is then
correlated with expected model attributes to assess compliance.
Such manual data acquisition is inefficient and error-prone,
and any assessment feedback is temporally detached from the
original context by months or years. Yet in order to automate
the process data acquisition and assessment, one is confronted
with various challenges that such diverse project-specific
software engineering environments involve. This paper
presents an ontology-based approach for enhancing the degree
of automation in current process assessment while
simultaneously supporting diverse process assessment
reference models (CMMI, ISO/IEC 15504, ISO 9001). It also
provides an in-the-loop automated process assessment
capability that can help software engineers receive immediate
feedback on process issues. The evaluation showed the
approach’s technical feasibility, model diversifiability across
various process assessment models (CMMI, ISO/IEC 15504,
ISO 9001), and suitable performance and scalability. The
approach can reduce the effort required to determine process
compliance, maturity, or improvement, and can provide more
timely and precise feedback compared to current manual
process assessment methods and tools.

Keywords-software engineering process assessment tooling;
semantic technology; Capability Maturity Model Integration;
ISO/IEC 15504; ISO 9000

I. INTRODUCTION
This article extends our previous work in [1]. Processes -

be they technical, managerial, or quality processes, are an
inherent part of software engineering (SE), and subsequently
so is process assessment and process improvement [2].
Software process improvement typically involves some
assessment, and common reference model assessment
standards utilize external audits (CMMI [3], ISO 15504 [4],
and ISO 9001 [5]) that are performed manually to gather
compliance evidence. Often the maturity of software
organizations is assessed based primarily on their process-
orientation and correlation of processes to a reference model.

If SE processes were supported or enacted by process-
aware information systems (PAIS), then the efficiency of
data acquisition and analysis for process assessment could
also be improved. One prerequisite - the adoption and use of

automated process enactment support is relatively rare in SE
projects. This can be attributed to a number of factors: (1)
software development projects face a high degree of new and
changing technological dependencies (typically impacting
project tool environments, knowledge management, process
integration, and process data acquisition); (2) significant
process modeling effort is necessary and PAIS usage has
been somewhat restrictive [6]; (3) SE processes are
knowledge processes [7], so that the exact operational
determination and sequencing of tasks and activities is not
readily foreknown; and (4) most current process models are
too inflexible to mirror such detailed operational dynamics.

We developed the Context-aware Software Engineering
Environment Event-driven frameworK (CoSEEEK) [8] to
improve SE process support and guidance in an automated
fashion. That way, enhanced support features are possible,
such as automatically gathering information from the
environment and users, uniting it with information from a
knowledge base, and utilizing this information for on-the-fly
process optimization (Section IIIC provides more
information on CoSEEEK). Given such a context-aware
event-driven automated process guidance system, we
investigated the feasibility of enabling in-the-loop automated
process assessment support. Our ontology-based approach
semantically enhances a PAIS for SE operational process
enactment and assessment support.

The paper is organized as follows: Section II describes
the attributes of three common SE process reference models
used in later sections. Section III describes general
requirements and the solution approach for automated
process assessment. An evaluation of this approach is
described in Section IV. Section V positions related work
relative to the solution approach. Section VII concludes the
paper.

II. PROCESS ASSESSMENT MODELS
Three of the most mature and prevalent process

assessment approaches used in software projects (CMMI,
ISO/IEC 15504 / SPICE, and ISO 9001) are described in
order to later show how automation was achieved. Despite
the differences, with ISO 9000 being more of a requirement
model and CMMI and SPICE meta-process models, they are
similarly used for assessing process compliance or maturity.
All three models have several basic concepts in common:

214

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

They define basic activities to be executed in a project such
as ‘Identify Configuration Items’ for configuration
management. (These will be mapped by a concept called
base practice in our approach.) These activities are grouped
together (e.g., ‘Establish Baselines’ in the configuration
management example, with these groupings being mapped
by a concept called process in our approach.) In turn, the
latter are further grouped (e.g., ‘Configuration
Management’) to allow further structuring. (This will be
mapped by a concept called process category in our
approach.) To be able to rate these practices and processes,
the assessment models feature a performance scale to
quantify the assessment. Finally, most models use the
quantified assessments to assign capability levels to
processes.

A. CMMI
CMMI (Capability Maturity Model Integration) [3] is one

of the most widely used assessment models. It exists in
different constellations, from which CMMI-DEV (CMMI for
Development) is utilized in our context. The CMMI staged
representation model comprises five maturity levels (1-
‘Initial’, 2-‘Managed’, 3-‘Defined’, 4-‘Quantitatively
Managed’, 5-‘Optimizing’). The levels indicate ‘Degree of
process improvement across a predefined set of process
areas, in which all goals within the set are attained’ (cf. [3]).
To implement this, each of the levels has subordinate
activities that are organized as follows: A maturity level
(e.g., ‘2’) has process categories (e.g., ‘Support’) that have
process areas (e.g., ‘Configuration Management’) that have
specific goals (e.g., ‘Establish Baselines’) that finally have
specific practices (e.g., ‘Identify Configuration Items’). To
illustrate the CMMI, the maturity levels, categories, and
areas are shown in the following table:

To quantify the assessment, CMMI has a performance
scale (1-‘unrated’, 2-‘not applicable’, 3-‘unsatisfied’, 4-
‘satisfied’). Using these concepts, process assessment is
applied as follows:

• Rate each generic and specific goal of a process area
using the introduced performance scale.

• A maturity level is achieved if all process areas
within the level and within each lower level are
either 2 or 4 (cf. the performance scale introduced).

In addition to these concrete activities and maturity
levels, CMMI features generic goals (e.g., ‘Institutionalize a
Managed Process’) with generic practices (e.g., ‘Control
Work Products’). These are subordinate to capability levels
(0-‘Incomplete’, 1-‘Performed’, 2-‘Managed’, 3-‘Defined’,
4-‘Quantitatively Managed’, 5-‘Optimizing’). The latter
indicate ‘Achievement of process improvement within an
individual process area’ (cf. [3]). SCAMPI (Standard CMMI
Appraisal Method for Process Improvement) [9] is the
official CMMI appraisal method. It collects and characterizes
findings in a Practice Implementation Indicator Database.
According to SCAMPI, there is a direct relationship between
specific and generic goals (SG and GG), which are required
model components, and the specific and generic practices
(SP and GP), which are expected model components.
Satisfaction of the goals is determined by a detailed

investigation, and alternative practices could be implemented
that are equally effective in achieving the intent of the goals.

TABLE I. CMMI

Mat.
Level Category Process Area

2 Support Configuration Management (CM/SCM)
2 Support Measurement and Analysis (MA)
2 Project Man. Project Monitoring and Control (PMC)
2 Project Man. Project Planning (PP)

2 Support
Process and Product Quality
Assurance (PPQA)

2 Project Man. Requirements Management (REQM)
2 Project Man. Supplier Agreement Management (SAM)
3 Support Decision Analysis and Resolution (DAR)
3 Project Man. Integrated Project Management (IPM)

3
Process
Man. Organizational Process Definition (OPD)

3
Process
Man. Organizational Process Focus (OPF)

3
Process
Man. Organizational Training (OT)

3 Engineering Product Integration (PI)
3 Engineering Requirements Development (RD)
3 Project Man. Risk Management (RSKM)
3 Engineering Technical Solution (TS)
3 Engineering Validation (VAL)
3 Engineering Verification (VER)

4
Process
Man. Organizational Process Performance (OPP)

4 Project Man. Quantitative Project Management (QPM)
5 Support Causal Analysis and Resolution (CAR)

5
Process
Man.

Organizational Performance
Management (OPM)

B. ISO/IEC 15504 (SPICE)
The SPICE (Software Process Improvement and

Capability Determination) [4][10] model is an international
standard for measuring process performance. It originated
from the process lifecycle standard ISO/IEC 12207 [11] and
maturity models such as CMM (the predecessor of CMMI).
SPICE comprises six capability levels (0-‘Incomplete
process’, 1-‘Performed process’, 2-‘Managed process’, 3-
‘Established process’, 4-‘Predictable process’, 5-‘Optimizing
process’). Each of the latter has one or multiple process
attributes (e.g., ‘2.1 Performance Management’). In the
following table, the capability levels and process attributes
are shown:

A process reference model was included in the initial
version of the standard. This was later removed to support
different process models (or the ISO/IEC 12207). Thus,
mappings to various process models are possible. In this
paper, the examples use the initial process model
specifications for illustration. These comprised process
categories (e.g., ‘Organization’) with processes (e.g.,
‘Improve the process’) that contained base practices (e.g.,
‘Identify reusable components’). SPICEs measurement
model applies the following performance scale for

215

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

assessment: 1-‘not achieved’ (0-15%), 2-‘partially achieved’
(16% - 50%), 3-‘largely achieved’ (51% - 85%), and 4-‘fully
achieved’ (86% - 100%).

TABLE II. SPICE

Cap.
Level Name Process Attribute

0 Incomplete process -
1 Performed process Process Performance
2 Managed process Performance Management
 Work Product Management
3 Established process Process Definition
 Process Deployment
4 Predictable process Process Measurement
 Process Control
5 Optimizing process Process Innovation
 Process Optimization.

SPICE does not use assessments of practices to directly

determine whether an overall capability level is achieved, but
uses them to assign to each process one or more capability
levels and to use them to recursively calculate assessments
for projects and organizations. The assessment comprises the
following steps:

• Assess every base practice with respect to each of
the process attributes.

• Determine the percentage of base practices of one
process that have the same performance scale with
respect to one process attribute.

• Assessment of the processes: Assign the capability
level for process attributes where all base practices
of the process have performance scale 3 or 4 and for
all lower capability levels, the same applies with
performance scale 4.

• Assessment of a project is done by using the
mathematical mean of the ratings of all of its
processes.

• Assessment of an organization is done by using the
mathematical mean of the ratings of all of its
projects.

C. ISO 9001
ISO 9000 comprises a family of standards relating to

quality management systems. ISO 9001 [5] deals with the
requirements organizations must fulfill to meet the standard.
Formal ISO 9001 certifications have gained great importance
for organizations worldwide. The ISO 9001 assessment
model uses no capability scale; it only determines whether a
certain practice is in place. Therefore, a simple performance
scale suffices: 0-‘not satisfied’, 1-‘satisfied'. The assessed
practices are structured by process sub-systems (e.g.,
‘Organization Management’) that contain main topic areas
(e.g., ‘Management responsibility’). In turn, the latter contain
management issues (e.g., ‘Define organization structure’).
Based on these concepts, a recursive assessment can be
applied rating an organization by its process sub-systems and
the contained management issues with a pass threshold of
100%. Our approach is targeted at creating more quality

awareness in companies, not at replacing or conducting
formal reviews. Therefore, the standard ISO 19001:2011
(Guidelines for auditing management systems) [12] is not
taken into account here.

D. Summary
As shown by these three assessment models, the

approaches to process assessment differ significantly. This
applies for the concepts utilized as well as for the applied
procedures: For example, CMMI knows two different types
of levels that have subordinate activities. For ISO/IEC
15504, the levels have certain attributes that serve to assess
all existing practices. As opposed to the two other models,
ISO 9001 does not apply levels or different performance
scales. These differences hamper convergence to a unified
model or approach and present the primary technical
challenge.

III. AUTOMATED PROCESS ASSESSMENT
This section describes the approach taken to provide

automated process assessment including the requirements
elicited for such an approach, application concept,
conceptual framework, and procedure applied. The approach
extends and annotates process management concepts,
enhancing them with additional information required for
assessment. The aim of our approach is not to replace
manual ratings of processes conducted by humans or to be
used in formal process audits. It shall rather contribute to the
quality awareness of a company and provide information on
the current state of the process as it is executed. Therefore,
our approach, despite adding automated rating facilities, still
integrates and relies on manual ratings or confirmations for
ratings.

A. Requirements
This sub-section briefly elicits basic requirements for

providing automated integration of process assessment and
process execution facilities into SE project environments.
These requirements are:
- R:Proc: If a system aims at automatically integrating

assessments with the executed process, the first basic
requirements is that the system must be aware of the
process and be able to govern the latter.

- R:Cntx: To be able to not only be aware of the planned
process, but also integrate with the real operational
process as it is enacted by SE project members,
facilities must be in place the provide usable context
information to the system.

- R:MultModel: To be able to provide flexible support
for diverse projects and organizations, the assessment
approach should not be tied to a single assessment
model. It should support implementation and
customization of various models.

- R:Integrate: An automated assessment approach should
not produce much additional effort or disturb users in
their normal work. Therefore, the assessment facilities
should integrate seamlessly with normal process
execution.

216

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Application concept for automated process assessment.

- R:Auto: To avoid unnecessarily burdening users, an
automated assessment approach should enable
automate ratings to the degree feasible . However, it
must also incorporate facilities for humans to interfere
or override automated ratings.

B. Concept for Application
As aforementioned, to be able to integrate process
assessment tightly into the software developments process
and everyday work in SE projects, our approach is realized
within the CoSEEEK framework [8]. The latter provides
holistic process and project support by integrating various
technologies for context awareness and management as well
as dynamic and adaptive process management. The different
components of the framework and the contextual integration
capabilities are illustrated in Figure 1.

The different components of the framework are loosely
coupled and feature reactive event-based communication via
the central Data Storage component. As the framework shall
be context-aware, a way of acquiring context data is
necessary. In an SE project, context consists mostly of
different actors that use SE tools to manipulate a variety of
SE artifacts. To gain an awareness of these, the following
approach is taken: The Event Extraction component of the

framework features a set of sensors that are integrated into
various SE tools. These sensors generate events as users
change the states of various artifacts. As these events are of
rather atomic nature, the Event Processing component
aggregates them to derive higher-level events that contain
more semantic value.

To be able to utilize contextual knowledge directly for
process guidance, the Process Management and Context
Management components work tightly together: The former
enables the dynamic implementation and execution of
processes (cf. requirement R:Proc) while the latter stores,
processes and evaluates the context information (cf.
requirement R:Cntx) using an ontology and reasoning.
Furthermore, it encapsulates the Process Management from
the other components. Thus, all process communication is
routed over the Context Management component, which
enhances it with context information and utilizes it to adjust
the process execution.

To enable a reasonable level of dynamicity and
automation, CoSEEEK also features to further components:
The Rules Processing component enables the flexible and
simple definition and execution of certain automatisms as
rules. The Agent System component enables CoSEEEK to
react to different dynamic situations in which different
conflicting goals have to be evaluated and decisions made.

217

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Based on these components, CoSEEEK provides a
variety of different functionalities that support different
aspects of automated process and project support for SE
projects:
- Quality Management: CoSEEEK enhances the

automated detection of quality problems in the source
code by facilitating the automated assignment of
software quality measures to counteract these
problems. The measures are seamlessly integrated into
users’ workflows to minimize user disturbance and
maximize efficiency. For further reading on this topic,
see [13].

- Knowledge Management: CoSEEEK enables the
collection and management of knowledge in SE
projects. This information is semantically enhanced,
and thus CoSEEEK can automatically provide the
appropriate knowledge to the users at the appropriate
point in the process. For further reading on this topic,
see [14].

- Exception Handling: CoSEEEK enables a flexible and
generic exception handling approach that is capable of
detecting various exceptions related to activities as
well as artifacts. Furthermore, the appropriate
exception handling, the responsible person for applying
that handling, and the appropriate point in the process
to apply it can be automatically determined. For further
reading on this topic, see [15].

- Task Coordination: CoSEEEK features the ability to
automatically coordinate activities of different areas of
a SE project. This comprises the automatic notification
of users in case of certain changes to artifacts or
activities as well as the automatic issuing of follow-up
actions required by other actions or changes. For
further reading on this topic, see [16].

- Extended process support: CoSEEEK incorporates
facilities to implement a greater coverage of activities
carried out in SE projects as SE process models. Many
dynamic activities and workflows that are not covered
by the models can be modeled and executed, featuring
a suitable simple modeling and transformation facility.
For further reading on this topic, see [17].

C. Conceptual Framework
To achieve extended assessment functionality, process

management concepts were enhanced. These are defined in
the Context Management component and are associated with
a Process Management component that manages process
execution. Thus, assessment concepts can be tightly and
seamlessly integrated with process execution (cf.
requirement R:Integrate). Figure 2 shows a simple workflow
in the Process Management component: This workflow is
defined by ‘Workflow Template 1’ that contains four activity
templates. Both of these concepts are mirrored in the Context
Management component by the Work Unit Container
Template that contains Work Unit Templates. When the
workflow is to be executed, it is instantiated in the Process
Management component and then represented by a workflow

instance (‘Workflow Instance 1’) containing the activities to
be processed. These two concepts are again mirrored in the
Context Management component by the Work Unit
Container that contains Work Units. These have explicitly
defined states that are automatically synchronized with the
states in the Process Management component. That way, the
Context Management component is aware of the current
execution state of workflows and activities.

Figure 2. Conceptual framework for automating process assessment.

Similar to the Work Unit Containers and their templates,
the concepts for process assessment are separated into
template concepts for definition and individual concepts
holding the actual values of one execution. These concepts
are abstract and generic to be applicable to various models
(cf. requirement R:MultModel). The Assessment Process
Template defines one process assessment model. In
alignment to the aforementioned assessment approaches, it
features templates for Process Categories, Processes, and
Base Practices as well as Capability Levels. The latter are
general level concepts used to model various capability or
maturity levels that can be calculated for other concepts such
as Base Practices or Assessment Processes. To explicitly
configure how the capability level achievement will be
determined, Capability Determinator Templates are used.
The Assessment Process Template also defines a number of
Performance Scales that are used for the assessment later.
For all these concepts, there are individual counterparts used
for each concrete assessment that are based on the template
concepts. Table 1 depicts their relevant properties including
a short description.

218

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. CONCEPTS PROPERTIES

Property Description
Assessment Process Template
capabilityLevels all defined capability levels templates
procCatTempls all defined process category templates
Capability Level Template
calcFor concept, for which the level is calculated
capDet attached capability determinator templates
perfScale required performance scale for achievement

scaleRatio
ratio of capability determinators that must meet
required performance scale

subCL subordinate capability level template
subCLPerfScale required performance scale of subordinate level
Level number indicating the level
Capability Determinator Template
Source base practice to be assessed
Target capability level, for which this determinator is used

For flexibility in the assessment calculation, the

Capability Level Templates have a property ‘calcFor’ that is
used to attach them to the target concept to be calculated
(e.g., the whole assessment process when calculated for a
project of a single process). As proposed by the three
introduced models, level achievement calculation can rely on
the assessment of the designated practices (be they required
or expected) or subordinate levels. Therefore, the
achievement of a capability level is determined by the
following properties: ‘perfScale’ defines which Performance
Scale the attached Capability Determinators has, and via
‘scaleRatio’ a ratio of Capability Determinators can be
defined as required for the Performance Scale. Additionally,
as the Capability Levels are connected to other subordinate
levels, the Performance Scale of their determinators can also
be used (cf. SPICE, required by the ‘subCLPerfScale’
property).

The assessment of the concrete individual concepts is
then applied via the explicit Rating concept, which connects
a Performance Scale with a Base Practice and a Capability
Determinator. It can also be connected to a concrete Person
who will then be asked to do the assessment. To support
automation in the assessment procedure and unburden the
users, it is also possible to automate ratings with Automated
Rating. It can be connected to an Event Template concept
that, in turn, is connected to the States of Artifacts or Work
Unit Containers. That way, it can be configured so that when
the Concept Management component receives certain status
change events, a certain Performance Scale is assigned to a
certain rating. Examples of such a definition include: ‘Assign
Performance Scale 1 if workflow x is present (created)’ or
‘Assign Performance Scale 2 if workflow x is completed’ or
‘Assign Performance Scale 3 if Artifact y is in state z’.

D. Assessment Procedure
The concrete assessment procedure applied to rate

process performance is shown in Listing 1. The following
algorithm describes how a concrete Assessment Process is
created from its template, how the ratings are applied to the

different Base Practices contained in the process, and how
achievement of maturity/capability levels is determined.

Listing 1. The Rate Process Performance algorithm in pseudocode.

Require: Project P, AssessmentProcessTemplate APT,
Person Pers
01: AssessmentProcess AP ← createConcept(APT)
02: linkConcepts(P, AP)
03: for all APT.processCategoryTemplates PCT do
04: ProcessCategory PC ← createConcept(PCT)
05: linkConcepts(AP, PC)
06: for all PCT.processTemplates PT do
07: Process PR ← createConcept(PRT)
08: linkConcepts(PC, PR)
09: for all PRT.basePracticesTemplates BPT do
10: BasePractice BP ← createConcept(BPT)
11: linkConcepts(PR, BP)
12: end for
13: end for
14: end for
15: for all APT.capabilityLevelTemplates CLT do
16: CapabilityLevel CL ← createConcept(CLT)
17: linkConcepts(AP, CL)
18: linkConcepts(CL, CLT.calculatedFor)
19: for all CLT.capabilityDeterminatorTemplates
 CDT do
20: CapabilityDeterminator CD ←
 createConcept(CDT)
21: linkConcepts(CL, CD)
22: List relatedBPs ← getRelatedBasePracts(CD,
 AP)
23: for all relatedBPs BP do
24: new rating(CD, BP,
 AP.getStandardPerformanceScale,Pers)
25: end for
26: end for
27: end for
28: automatedRating(AP)
29: manualRating(AP)
30: for all AP.capabilityLevels CL do
31: checkAchievement(CL)
32: end for

The algorithm requires a concrete project and an
Assessment Process Template to be used for that project. The
first part of the algorithm (lines 01-14) then creates a
structure comprising Process Categories, Processes, and
Base Practices for the new Assessment Process. For this
paper, the following two functions are used: ‘createConcept’
creates an individual concept from a given template and
‘linkConcepts’ links two individual concepts together.

The second part of the algorithm (line 15-27) creates the
Capability Level structure. Therefore, the Capability Levels
and their attached Determinators are created first. Thereafter
the Determinators are linked to the Base Practices they use
for determining capability. This is done using the function
‘getRelatedBasePractices’ that gets all Base Practices in the
current Assessment Process that are configured to be
connected to a certain Capability Determinator via their
templates. For each of these Base Practices, a new Rating is
created linking them to the Capability Determinator. To this
Rating, a standard Performance Scale (usually the one equal
to ‘not achieved’) and a responsible person are attached.

The third part of the algorithm (lines 28-32) deals with
the concrete assessment. During the whole project, an

219

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

automated rating is applied whenever a matching event or
status change happens. At the end of a project (or anytime an
assessment is desired), the manual rating is applied,
distributing the rating information to the responsible person
(cf. requirement R:Auto). The latter can then check the
automated rating, rate practices that have not yet been rated,
or distribute certain parts of the assessment to others who can
provide the missing information needed to rate the practices.
The final action applied is to check the achievement for each
Capability Level of an Assessment Process.

E. Technical Realization
This section gives insights on the technical realization of

our process assessment concept and the CoSEEEK
framework. The technical implementation of each of
CoSEEEK's components is shown in Figure 3.

Figure 3. Technical Realization.

As mentioned before, CoSEEEK's context awareness
builds primarily on sensors that are integrated into various
applications. Applications with sensor support include, as
shown in the figure, the version control management system
Subversion, the integrated development environment
Eclipse, or the quality measurement tool PMD. Artifacts
whose state can be monitored this way include source or test
code, requirements, or various reports.

The Event Extraction component is implemented with
the Hackystat [18] framework. The latter provides a rich set
of sensors for the aforementioned applications. Furthermore,
it features an open architecture for the implementation of
new sensors. The aggregation of these events is done via

complex event processing (CEP) [19] enabled by the tool
esper [20]. The latter provides easy facilities to define and
execute CEP patterns. This, together with the sensors,
enables the recording of various activities people really
execute using SE tools like IDEs (Integrated Development
Environments). Thus, the execution of several activities
relating to the assessment of the process can be automatically
detected and their achievement level can be adjusted.

The communication of the different components is
realized via the tuple space paradigm [21]. The latter, in turn,
is implemented via a tuple space that has been built on top of
the XML database eXist [22]. The Agent System component
is implemented via the FIPA [23] compliant JADE
framework [24] and the Rules Processing component with
JBoss Drools [25].

The Process Management component is implemented
with AristaFlow [26]. The latter was chosen due to its
capabilities concerning correctness and flexibility. It enables
the correct adaptation even of running workflows. In
particular, during run-time, selected workflow instances can
be dynamically and individually adapted in a correct and
secure way; e.g., to deal with exceptional situations or
evolving business needs. Examples of workflow instance
changes supported by AristaFlow include the dynamic
insertion, deletion, or movement of single workflow
activities or entire workflow fragments respectively.

The Context Management component applies semantic
web technology. This comprises an OWL-DL [27] ontology
for knowledge organization and Pellet [28] as reasoner for
inferences and logical classifications. The usage of
ontologies reduces portability, flexibility, and information
sharing problems that are often coupled to technologies like
relational databases. Furthermore, ontologies support
extensibility since they are, in contrast to relational
databases, based on an open world assumption and thus
allow the modeling of incomplete knowledge.

IV. EVALUATION
This section evaluates our approach by applying it to the

three different process assessment models introduced in
Section II, and further elucidates technical realization details.
A selection of the applied concepts is shown in Figure 4 for
all of the three models.

A. CMMI
An excerpt of the implementation of the CMMI model is

shown in Figure 4(a). On the upper half, the templates for
defining the CMMI concepts are shown: The assessment of
the process is carried out in a slightly different way than the
reference model of the CMMI, since our concept does not
feature explicit goal concepts. Moreover, the assessment for
the maturity levels is done directly with the specific and
generic practices and not by using the latter for the goals and
these, in turn, for the maturity levels.

220

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Process
Category
Template

Capability
Level

Template

Process
Template

Base
Practice
Template

Process
Category Process

Perfor
mance
Scale

Base
Practice

Assessment
Process

Assessment
Process
Template

Capability
Determinator

Template

Capability
Level

Capability
Determin

ator
Rating

CMMI
Template

SPICE
Template

ISO 9001
Template

CMMI

ISO 9001

SPICE

Process
Category
Template

Process
Area

Template

Process
Subsystem
Template

Generic
Goal

Template

Specific
Goal

Template

Process
Template

Main Topic Area
Template

Generic
Practice
Template

Base
Practice
Template

Specific
Practice
Template

Specific
Practice
Template

Base
Practice
Template

Management
Issue Template

Capability
Level 2

Maturity
Level 2 Maturity

Level 1

Capability
Level 2

Capability
Level 1

Achievement

Cap
Det

Cap
Det

Cap
Det

Cap
Det

Process
Area 1

Process
Area 2

Process
Area 3

4 – Fully
Achieved

0 – Not
satisfied

1 –
Satisfied

Configuration
Management

Organization

Configuration
Management

Establish
Baselines

Institutionalize
a Managed

Process

Improve the
process

Establish
Baselines

Establish an
Organizational

Policy
Identify

Configuration
Items

Identify
reusable

components

Identify
Configuration

Items

Capability
Level 2

Maturity
Level 2

Capability
Level 2

Achievement

Capability
Determinator

Capability
Determinator

Performance
Management

Work Product
Management

Capability
Determinator

Rating

Rating

Rating

Rating

RatingRating

Rating

2

1

4

2

4
4

2

(a)
CMMI

(b)
ISO

15504

(c)
ISO
9001

Individual ConceptsTemplate Concepts

4 –
Satisfied

Cap
Det

Figure 4. Realization for specific reference models: (a) CMMI (b) ISO 15504 (c) ISO 9001.

The structure of the process is built by the Process
Category Template (used for the process areas CMMI), the
Process Template (used for the specific goals CMMI), and
the Base Practice Template (used for the specific practice of
CMMI). Connected to the ‘CMMI Template’ (implemented
by the Assessment Process Template) are also the ‘Maturity
Levels’ (implemented by the Capability Level Template
concept). In addition to this structure with the specific goals
and maturity levels, the applied concepts can also be used to
implement the generic goals of CMMI with their generic
practices and the relating capability levels as illustrated. For
the Assessment Process Template, the maturity levels are
connected to the Capability Determinators of all specific
practices that belong to the relating maturity level. The

Capability Determinators also realize connections to Base
Practices that implement CMMIs generic practices applied
to the respective process area (implemented by a connection
from the Base Practice, the Process, and the Process
Category, cf. ‘Establish an Organizational Policy’,
‘Institutionalize a Managed Process’, and ‘Configuration
Management’ in Figure 4). Similar connections can be
established for the capability levels, so that the staged or the
continuous representation of CMMI to assess respectively
the maturity of a whole organization or its capabilities
concerning the different process areas. For the capability
determination, the Assessment Process Template is also
connected to the Performance Scales that will be used for it.
The figure shows one example of them (4 – Satisfied).

221

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On the lower part of Figure 4(a), the individual concepts
for the assessment of one concrete project with CMMI are
illustrated. It shows one exemplary maturity level and one
process area with one specific goal with one specific
practice. The Capability Determinators of the maturity level
are connected to the specific practices that shall be rated via
the Rating that has an assigned Performance Scale. A similar
excerpt of the structure is shown for the capability levels and
generic goals in the figure.

The achievement calculation for the maturity levels is
done with the ‘perfScale’ and ‘scaleRatio’ properties of the
Capability Level Template: That way it can be defined that
100% of the Capability Determinators must have the
Performance Scale ‘4’ or ‘2’ as defined in the CMMI model.
If calculations for all of the projects of an organization were
in place, maturity indicators for the entire organization could
use the lowest maturity level achieved by all projects.

B. ISO/IEC 15504 (SPICE)
An excerpt of the implementation of the SPICE model is

shown in Figure 4(b). In this case the names of the concepts
match with the names used in SPICE (e.g., for capability
levels or base practices). The Performance Scales are
defined for the Assessment Process Template similar to the
CMMI implementation, e.g., 4 – Fully Achieved (86%-
100%) as shown in the figure. The process areas that are
subordinate to the capability levels in SPICE are
implemented using the Capability Determinator Templates.
Each of the latter is connected to all Base Practice Templates
to enable their rating concerning all process attributes as
required by SPICE.

The lower part of Figure 4(b) again shows an excerpt of
the individual concepts used for the assessment of a concrete
project. It comprises an exemplary capability level with its
two process attributes and an exemplary process category
with one process and one base practice.

The SPICE assessment works as follows: All base
practices are rated according to all process attributes, and
capability levels are determined for the processes. A level is
achieved if all its related process areas have only ratings with
Performance Scales ‘3’ or ‘4’, and the process areas of the
subordinate levels all have Performance Scale ‘4’. The
assessment of the project is the mathematical mean of the
assessments of the processes, and can thus be easily
computed without explicit modeling. The same applies to the
assessment of a whole organization.

C. ISO 9001
As ISO 9001 is a requirement and not a process model, it

must be mapped to the organization’s process. This can be
applied by connecting automated ratings to events occurring
in the execution of work unit containers representing the real
execution of a related workflow or be applied manually by a
person doing a manual rating. An excerpt of the
implementation of the ISO 9001 assessment model is shown
in Figure 4(c). In this case, the upper part of the figure again
shows the template concepts for defining the model.
Compared to the other two models, ISO 9001 is simpler: It
knows no capability levels and only two performance scales

(as shown in the figure). Therefore, there is only one
Capability Level Template defined that is used to determine
achievement for the whole ISO 9001 assessment. That
template has one Capability Determinator Template for each
management issue.

The lower part of Figure 4(c) again shows the individual
concepts used for a concrete assessment using a concrete
example for a process subsystem, a main topic area, and a
management issue. The assessment is applied by the
‘perfScale’ and ‘scaleRatio’ properties of the single
Capability Level, specifying that all Capability
Determinators must have the Performance Scale ‘1’. As ISO
9001 knows no project level, this can be added by using a
separate Assessment Process for each project, and
cumulating the assessment over the whole organization (if all
projects have achieved, the whole organization has
achieved).

D. Performance and Scalability
Process assessment approaches often comprise dozens or

even hundreds of concepts (e.g., SPICE has over 200 base
practices), which implies the creation of an even higher
number of concepts in the ontology to enable automated
assessment. Therefore, the utilization of a separate ontology
for process assessment is considered to keep the operational
ontology of the CoSEEEK framework clean. Furthermore, to
support stability and performance, the CoSEEEK ontologies
are not managed as plain files but stored in a database (using
Protégé functionality). The test configuration consisted of a
PC with an AMD Dual Core Opteron 2.4 GHz processor and
3.2GB RAM with Windows XP Pro (SP3) and the Java
Runtime Environment 1.5.0_20, on which CoSEEEK was
running networked via Gigabit Ethernet to a virtual machine
(cluster with VMware ESX server 4.0, 2 GB RAM allocated
to the VM, dynamic CPU power allocation) where the
AristaFlow process server is installed.

The approach supports model diversity, and thus the
ontology size can vary based on various reference models.
Scalability of the approach was assessed, since a large
number of concepts can be required with complicated
models such as SPICE - which has over 200 Base Practices
that require linking to all process areas and calculation of all
Capability Levels for the Processes. The most resource
intensive point is when the entire Assessment Process for a
project is created, thus performance and scalability tests were
conducted for the automatic creation of linked ontology
concepts, scaling the number of concepts to account for
smaller to larger models.

The results obtained were: 1.7 seconds for the creation
and linking of 100 concepts, 14.2 seconds for the creation
and linking of 1000 concepts, and 131.4 seconds for the
creation and linking of 10000 concepts. The results show
that the computation time is acceptable with approximately
linear scaling. The slight reduction in average creation time
for a single concept is perhaps explainable by reduced
initialization percentages and caching effects. At this stage,
the performance of the Rate Process Performance algorithm
(Listing 1) was not assessed since it is fragmented across a
project timescale (at the beginning the concepts are created

222

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and later the ratings are applied), it is dependent on human
responses (manual ratings), and live project data has not as
yet been collected.

V. RELATED WORK
This section reviews different areas of related work: At

first, approaches covering the basic requirements for
implementing automated process assessment support are
reviewed. This includes automated process and project
support as well as the contextual integration of process
management. After that, approaches enabling semantic
extensions to process management concepts are examined.
Finally, approaches aiming at directly supporting automated
assessments are discussed.

A. Automated Process Support
To integrate automated assessments with operational

process execution, holistic process support should be enabled
by that system. In related work, many approaches target that
topic. However, many of them focus strongly on governing
activities and their dependencies. One of them is the
framework CASDE [29]. It utilizes activity theory to provide
a role-based awareness module managing mutual awareness
of different roles in the project. The collaborative SE
framework CAISE [30] enables the integration of SE tools
and the development of new SE tools based on collaboration
patterns. Caramba [31] provides coordination capabilities for
virtual teams. It features support for ad-hoc workflows
utilizing connections between different artifacts, resources,
and processes. For pre-modeled workflows, UML activity
diagram notation is used. For ad-hoc workflows not
matching a template, an empty process is instantiated. In that
case, work between different project members is coordinated
via so-called Organizational Objects. The process-centered
SE environment EPOS [32] applies planning techniques to
automatically adapt a process instance if certain goals are
violated. All of these approaches have capabilities for
supporting and automating process execution in SE projects,
yet none enacted an entire SE process model and thus failed
to provide holistic project support.

B. Contextual Process Integration
As discussed in the requirements section, to be integrated

with the real operational process of SE projects, a system
providing process support must also take into account
contextual data. In related work, numerous approaches for
context modeling exist, including frameworks like Context
Management [33], CASS [34], SOCAM [35], and CORTEX
[36]. These provide support for gathering, storing, and
processing context data, but leave the reaction to context
changes to the application, or use rule-based approaches that
are hard to maintain. There are only few approaches
combining context-awareness with workflows. One of these
is inContext [37] that makes heavy use of context knowledge
for supporting teamwork. However, inContext does not offer
the necessary capabilities to implement whole SE process
models.

C. Semantic Process Extensions
As aforementioned, the assessment concepts elaborated

in this work are implemented as semantic extensions of
process management concepts. This enables tight integration
with process execution. In related work, there are various
approaches implementing such extensions to process
management for different purposes: COBRA [38] focuses
business process analysis and, for that purpose, presents a
core ontology. With the latter, it supports better and easier
analysis of processes to comply with standards or laws like
the Sarbanes-Oxley act. [39] presents a semantic business
process repository that fosters automation of the business
process lifecycle and offers capabilities for checking in and
out, as well as locking and options for simple querying and
complex reasoning. The approach presented in [40] features
multiple levels of semantic annotations: a meta-model
annotation, a model content annotation, and a model profile
annotation as well as a process template modeling language.
With these annotations, it aims at facilitating process models
across various model representations and languages. A
concept for machine-readable process models is presented by
[41]. It targets achieving better integration and automation
and utilizes a combination of Petri Nets and an ontology,
whereby direct mappings of Petri Net concepts in the
ontology are established. [42] describes an approach that
proposes an effective method for managing and evaluating
business processes via the combination of semantic and
agent technology to monitor business processes. None of
these approaches provides a general semantic extension that
allows direct interaction with and management of process
execution as well as extensibility to achieve an integration
between the latter and process assessment approaches.

D. Automated Process Assessment Support
The core area of related work for this paper is automated

process assessment. In this area, a number of approaches
exist. One of these constitutes a multi-agent system approach
that is presented in [43], to enable automatic measurements
for the SW-CMM (Software Capability Maturity Model).
The latter is combined with the GQM (Goal-Question-
Metric) [44] method, where Goals of the SW-CMM are used
as a first step for GQM.

An OWL ontology and reasoner approach for CMMI-SW
(CMMI for Software) is presented in [45]. In contrast to our
approach, the size of the ontology caused issues for the
reasoner. A software process ontology in [46] enables the
capturing of software processes on a conceptual level. An
extension includes specific models such as SPICE or CMMI.
Ontological modeling of both CMMI and ISO 9001 as well
as certain process interoperability features is shown in [47].
The authors identify issues in consistently implementing
both models simultaneously. This problem was addressed in
our approach by including concepts abstracted from a single
model. In [48], a Process-Centered Software Engineering
Environment supports process implementation focused on
CMMI and a Brazilian process improvement model. For
CMMI-specific appraisals, multiple supportive tools are
available such as the Appraisal Assistant [49]. However,
these focus only on CMMI / SCAMPI support.

223

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We provide a more general and flexible approach, since
the applied concepts are abstracted from a single model. In
contrast to above related work that focused on one or two
specific models, ours is capable of assessment model
diversity as shown in Section IV. Furthermore, it integrates
automated SE process enactment support and supports a
combination of automated and manual ratings. That way, the
assessment is tightly and automatically integrated with SE
process execution support, providing the option of automatic
on-the-fly assessments while preserving the ability for
humans to manually rate practices and processes. This can
support quality awareness.

VI. CONCLUSION AND FUTURE WORK
This paper has described an ontology-based multi-model

holistic approach for automating the assessment of software
engineering processes. Extending our prior work in [1],
richer technical details were presented and related work was
expanded. Also general requirements for such an approach
were described, those being R:Proc, R:Cntx, R:MultModel,
R:Integrate, and R:Auto. Then the differences between three
common SE process reference models were elucidated.
Thereafter, our conceptual framework with semantic
extensions to a process-aware information system was
presented. It was shown how process reference models such
as CMMI, ISO 15504, and ISO 9001 were unified in the
ontology and the algorithm that performs the assessment was
described. The evaluation demonstrated the technical
feasibility, model diversity, and that performance with
current technology for expected application scenarios is
sufficient.

Our approach is not meant to replace manual ratings or
formal appraisals. In our opinion, this is not possible in an
automated fashion due to the many factors influencing such
ratings in real world process execution. However, our
approach can support automatic data collection, supplement
manual ratings of practices or processes, contribute to the
quality awareness of an organization, and (automatically)
highlight areas for process optimization. Furthermore, it can
help prepare an organization for a formal appraisal.

Future work involves empirical studies to evaluate the
effectiveness of the approach in industrial settings with a
variety of software organizations, with various SE process
lifecycle models in various projects, at various process
capability levels and utilizing different process assessment
standards simultaneously.

ACKNOWLEDGMENT
This work was sponsored by the BMBF (Federal

Ministry of Education and Research) of the Federal Republic
of Germany under Contract No. 17N4809.

REFERENCES
[1] G. Grambow, R. Oberhauser, and M. Reichert, “Towards Automated

Process Assessment in Software Engineering,” 7th Int’l Conf. on
Software Engineering Advances, 2012, pp. 289-295.

[2] P. Bourque and R. Dupuis, (ed.), “Guide to the Software Engineering
Body of Knowledge”, IEEE Computer Society, 2004.

[3] CMMI Product Team, “CMMI for Development, Version 1.3,”
Software Engineering Institute, Carnegie Mellon University, 2010.

[4] ISO, “ISO/IEC 15504-2 -- Part 2: Performing an assessment,” 2003.
[5] R. Bamford, and W. J. Deibler, “ISO 9001: 2000 for software and

systems providers: an engineering approach,” CRC-Press, 2004.
[6] M. Reichert and B. Weber, “Enabling Flexibility in Process-aware

Information Systems – Challenges, Methods, Technologies,”
Springer, 2012.

[7] G. Grambow, R. Oberhauser, and M. Reichert, “Towards Dynamic
Knowledge Support in Software Engineering Processes,” 6th Int’l
Workshop Applications of Semantic Technologies, 2011, pp. 149.

[8] R. Oberhauser and R. Schmidt, “Towards a Holistic Integration of
Software Lifecycle Processes using the Semantic Web,” Proc. 2nd
Int. Conf. on Software and Data Technologies, 3, 2007, pp. 137-144.

[9] SCAMPI Upgrade Team, "Standard CMMI Appraisal Method for
Process Improvement (SCAMPI) A, v. 1.3," Software Engineering
Institute, 2011.

[10] ISO, “ISO/IEC 15504-5:2012 -- Part 5: An exemplar software life
cycle process assessment model,” 2012.

[11] ISO, “ISO/IEC 12207:2008 -- Software life cycle processes,” 2008.
[12] ISO, “ISO 19011 - Guidelines for auditing management systems,”

2011.
[13] G. Grambow, R. Oberhauser, and M. Reichert, “Contextual Injection

of Quality Measures into Software Engineering Processes,” Int'l
Journal on Advances in Software, 4(1 & 2), 2011, pp. 76-99.

[14] G. Grambow, R. Oberhauser, and M. Reichert, “Knowledge
Provisioning: A Context-Sensitive Process-Oriented Approach
Applied to Software Engineering Environments,” Proc. 7th Int’l
Conf. on Software and Data Technologies, 2012.

[15] G. Grambow, R. Oberhauser, and M. Reichert, “Event-driven
Exception Handling for Software Engineering Processes,” 5th Int’l
Workshop on event-driven Business Process Management, LNBIP
99, 2011, pp. 414-426.

[16] G. Grambow, R. Oberhauser, and M. Reichert, “Enabling Automatic
Process-aware Collaboration Support in Software Engineering
Projects,” Selected Papers of the ICSOFT'11 Conference.
Communications in Computer and Information Science (CCIS) 303,
pp. 73-89, 2012.

[17] G. Grambow, R. Oberhauser, and M. Reichert, “Contextual
Generation of Declarative Workflows and their Application to
Software Engineering Processes,” Int'l Journal On Advances in
Intelligent Systems, vol. 4, no. 3 & 4, pp. 158-179, 2012.

[18] P.M. Johnson, “Requirement and design trade-offs in Hackystat: An
in-process software engineering measurement and analysis system,”
Proc. 1st Int. Symp. on Empirical Software Engineering and
Measurement, 2007, pp. 81-90.

[19] D.C. Luckham, “The power of events: an introduction to complex
event processing in distributed enterprise systems,” Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 2001

[20] Esper: http://esper.codehaus.org/ [January 2013]
[21] D. Gelernter, “Generative communication in Linda,” ACM

Transactions on Programming Languages and Systems (TOPLAS),
7(1), 1985, pp. 80-112

[22] W. Meier, “eXist: An open source native XML database,” Web, Web-
Services, and Database Systems, LNCS, 2593, 2009, pp. 169-183

[23] P.D. O'Brien and R.C. Nicol, “FIPA — Towards a Standard for
Software Agents,” BT Technology Journal, 16 (3):51-59, 1998.

[24] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE - A FIPA-
compliant Agent Framework,” Proc. 4th Int’l Conf. and Exhibition on
the Practical Application of Intelligent Agents and Multi-Agents.
London, 1999.

[25] P. Browne, “JBoss Drools Business Rules,” Packt Publishing, 2009.
[26] P. Dadam and M. Reichert, “The ADEPT project: a decade of

research and development for robust and flexible process support,”
Computer Science-Research & Development, 23(2), 2009, pp. 81-97.

224

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[27] World Wide Web Consortium, “OWL Web Ontology Language
Semantics and Abstract Syntax,” 2004.

[28] E. Sirin, , B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet:
A practical owl-dl reasoner,” Web Semantics: Science, Services and
Agents on the World Wide Web, 5(2), 2007, pp. 51-53.

[29] T. Jiang, J. Ying, and M, Wu, “CASDE: An Environment for
Collaborative Software Development,” Computer Supported
Cooperative Work in Design III, LNCS, 4402, 2007, pp. 367-376

[30] C. Cook, N. Churcher, and W. Irwin, “Towards synchronous
collaborative software engineering,” Proc. 11th Asia-Pacific Software
Engineering Conference, 2004, pp. 230-239

[31] S. Dustdar, “Caramba—a process-aware collaboration system
supporting ad hoc and collaborative processes in virtual teams,”
Distributed and parallel databases, 15(1), 2004, pp. 45-66

[32] R. Conradi, C. Liu, and M. Hagaseth, “Planning support for
cooperating transactions in EPOS,” Information Systems, 20(4),
1995, pp. 317-336

[33] P. Korpipipää, J. Mantyjarvi, J. Kela, H. Keranen, and E.J. Malm,
“Managing context information in mobile devices,” IEEE Pervasive
Computing 2(3), pp.42-51, 2003

[34] P. Fahy and S. Clarke, “CASS – a middleware for mobile context-
aware applications,” Proc. Workshop on Context-awareness (held in
connection with MobiSys’04), 2004.

[35] T. Gu., H.K. Pung, and D.Q. Zhang, “A middleware for building
context-aware mobile services,” Proc. IEEE Vehicular Technology
Conference (VTC), Milan, Italy, pp. 2656 – 2660, 2004.

[36] G. Biegel. and V. Cahill, “A framework for developing mobile,
context-aware applications,” Proc. 2nd IEEE Conference on
Pervasive Computing and Communication, pp. 361 - 365 , 2004

[37] C. Dorn, S. Dustdar, “Sharing Hierarchical Context for Mobile Web
services,” Distributed and Parallel Databases 21(1), pp. 85-111, 2007.

[38] C. Pedrinaci, J. Domingue, and A. Alves de Medeiros, “A Core
Ontology for Business Process Analysis,” LNCS 5021, pp. 49-64,
2008.

[39] Z. Ma, B. Wetzstein, D. Anicic, S. Heymans, and F. Leymann,
“Semantic Business Process Repository,” Proc. Workshop on
Semantic Business Process and Product Lifecycle Management, pp.
92–100, 2007

[40] Y. Lin and D. Strasunskas, “Ontology-based Semantic Annotation of
Process Templates for Reuse,” Proc.10th Int’l Workshop on
Exploring Modeling Methods for Systems Analysis and Design
(EMMSAD'05), 2005.

[41] A. Koschmider and A. Oberweis, “Ontology based Business Process
Description,” Proc. CAiSE´05 Workshops, pp. 321-333, 2005.

[42] M. Thomas, R. Redmond, V. Yoon, and R. Singh, “A Semantic
Approach to Monitor Business Process Performance,”
Communications of the ACM 48(12), pp. 55-59, 2005

[43] M.A. Seyyedi, M. Teshnehlab, and F. Shams, “Measuring software
processes performance based on the fuzzy multi agent
measurements,” Proc. Intl Conf. on Information Technology: Coding
and Computing (ITCC'05) – Vol. II, IEEE CS, 2005, pp. 410-415.

[44] V.R. Basili, V.R.B.G. Caldiera, and H.D. Rombach, “The goal
question metric approach,” Encycl. of SW Eng., 2, 1994, pp. 528-532.

[45] G.H. Soydan and M. Kokar, “An OWL ontology for representing the
CMMI-SW model,” Proc. 2nd Int'l Workshop on Semantic Web
Enabled Software Engineering, 2006, pp. 1-14.

[46] L. Liao, Y. Qu, and H. Leung, “A software process ontology and its
application,” Proc. ISWC2005 Workshop on Semantic Web Enabled
Software Engineering, 2005, pp. 6–10.

[47] A. Ferchichi, M. Bigand, and H. Lefebvre, “An ontology for quality
standards integration in software collaborative projects,” Proc. 1st
Int'l Workshop on Model Driven Interoperability for Sustainable
Information Systems, 2008, pp. 17-30.

[48] M. Montoni et al., “Taba workstation: Supporting software process
deployment based on CMMI and MR-MPS,” Proc. 7th Int’l Conf. on
Product-Focused Software Process Improvement, 2006, pp. 249-262.

[49] Appraisal Assistant,
http://www.sqi.gu.edu.au/AppraisalAssistant/about.html [June 2013]

www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO, BIOSYSCOM,
BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE,
CONTENT, PATTERNS, CLOUD COMPUTING, COMPUTATION TOOLS, ENERGY, COLLA, IMMM, INTELLI,
SMART, DATA ANALYTICS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING, MOBILITY, WEB

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM, BIOINFO,
BIOTECHNO, SOTICS, GLOBAL HEALTH

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE COMPUTATION,
VEHICULAR, INNOV

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, CLOUD
COMPUTING, COMPUTATION TOOLS, IMMM, MOBILITY, VEHICULAR, DATA ANALYTICS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL, INFOCOMP

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA, COCORA, PESARO, INNOV

issn: 1942-2601

